WorldWideScience

Sample records for national laboratory search

  1. Environment | Argonne National Laboratory

    Science.gov (United States)

    Skip to main content Argonne National Laboratory Toggle Navigation Toggle Search Energy Environment Laboratory About Safety News Careers Education Community Diversity Directory Energy Environment National Security User Facilities Science Work with Us Environment Atmospheric and Climate Science Ecological

  2. Energy | Argonne National Laboratory

    Science.gov (United States)

    Skip to main content Argonne National Laboratory Toggle Navigation Toggle Search Energy Batteries and Energy Storage Energy Systems Modeling Materials for Energy Nuclear Energy Renewable Energy Smart Laboratory About Safety News Careers Education Community Diversity Directory Energy Environment National

  3. Sandia National Laboratories 1979 environmental monitoring report

    International Nuclear Information System (INIS)

    Simmons, T.N.

    1980-04-01

    Sandia National Laboratories in Albuquerque is located south of the city on two broad mesas. The local climate is arid continental. Radionuclides are released from five technical areas from the Laboratories' resarch activities. Sandia's environmental monitoring program searches for cesium-137, tritium, uranium, alpha emitters, and beta emitters in water, soil, air, and vegetation. No activity was found in public areas in excess of local background in 1979. The Albuquerque population receives only 0.076 person-rem (estimated) from airborne radioactive releases. While national security research is the laboratories' major responsibility, energy research is a major area of activity. Both these research areas cause radioactive releases

  4. Batteries and Energy Storage | Argonne National Laboratory

    Science.gov (United States)

    Skip to main content Argonne National Laboratory Toggle Navigation Toggle Search Energy Batteries Security User Facilities Science Work with Us Energy Batteries and Energy Storage Energy Systems Modeling Transportation SPOTLIGHT Batteries and Energy Storage Argonne's all- encompassing battery research program spans

  5. Searching for God: Illness-Related Mortality Threats and Religious Search Volume in Google in 16 Nations.

    Science.gov (United States)

    Pelham, Brett W; Shimizu, Mitsuru; Arndt, Jamie; Carvallo, Mauricio; Solomon, Sheldon; Greenberg, Jeff

    2018-03-01

    We tested predictions about religiosity and terror management processes in 16 nations. Specifically, we examined weekly variation in Google search volume in each nation for 12 years (all weeks for which data were available). In all 16 nations, higher than usual weekly Google search volume for life-threatening illnesses (cancer, diabetes, and hypertension) predicted increases in search volume for religious content (e.g., God, Jesus, prayer) in the following week. This effect held up after controlling for (a) recent past and annual variation in religious search volume, (b) increases in search volume associated with religious holidays, and (c) variation in searches for a non-life-threatening illness ("sore throat"). Terror management threat reduction processes appear to occur across the globe. Furthermore, they may occur over much longer periods than those studied in the laboratory. Managing fears of death via religious belief regulation appears to be culturally pervasive.

  6. Technology transfer in the national laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Yonas, G.

    1991-08-01

    The title of this paper might unfairly provoke readers if it conjures up visions of vast stores of high-tech gadgets in several hundred technology warehouses'' (also known as federal laboratories) around the country, open for browsing by those in search of a bargain. That vision, unfortunately, is a mirage. The term technology transfer'' is not really as accurate as is the term technology team-work,'' a process of sharing ideas and knowledge rather than widgets. In addition, instead of discussing the efforts of more than 700 federal labs in the US, I mean to address only those nine government-owned, contractor-operated multiprogram labs run by the Department of Energy. Nevertheless, the topic of technology team-work opportunities with DOE multiprogram national lab is of significance to those concerned with increasing economic competitiveness and finding technological solutions to a host of national problems. A significant fraction of US R D capabilities rests in the nine DOE multiprogram national laboratories -- and these labs have only just begun to join the other federal laboratories in these efforts due to the passage and recent implementation of the National Competitiveness Technology Transfer Act of 1989.

  7. Sandia National Laboratories: Search Results

    Science.gov (United States)

    Locations Contact Us Employee Locator Search Menu About Leadership Mission Social Media Community Diversity Social Media Careers View All Jobs Students & Postdocs Benefits & Perks Hiring Process Deployment Centers New Mexico Small Business Assistance Program Sandia's Economic Impact Sandia Science &

  8. Egyptian Journal of Medical Laboratory Sciences: Advanced Search

    African Journals Online (AJOL)

    Egyptian Journal of Medical Laboratory Sciences: Advanced Search. Journal Home > Egyptian Journal of Medical Laboratory Sciences: Advanced Search. Log in or Register to get access to full text downloads.

  9. Sandia National Laboratories

    Data.gov (United States)

    Federal Laboratory Consortium — For more than 60 years, Sandia has delivered essential science and technology to resolve the nation's most challenging security issues.Sandia National Laboratories...

  10. Push technology at Argonne National Laboratory.

    Energy Technology Data Exchange (ETDEWEB)

    Noel, R. E.; Woell, Y. N.

    1999-04-06

    Selective dissemination of information (SDI) services, also referred to as current awareness searches, are usually provided by periodically running computer programs (personal profiles) against a cumulative database or databases. This concept of pushing relevant content to users has long been integral to librarianship. Librarians traditionally turned to information companies to implement these searches for their users in business, academia, and the science community. This paper describes how a push technology was implemented on a large scale for scientists and engineers at Argonne National Laboratory, explains some of the challenges to designers/maintainers, and identifies the positive effects that SDI seems to be having on users. Argonne purchases the Institute for Scientific Information (ISI) Current Contents data (all subject areas except Humanities), and scientists no longer need to turn to outside companies for reliable SDI service. Argonne's database and its customized services are known as ACCESS (Argonne-University of Chicago Current Contents Electronic Search Service).

  11. National laboratories

    International Nuclear Information System (INIS)

    Moscati, G.

    1983-01-01

    The foundation of a 'National Laboratory' which would support a Research center in synchrotron radiation applications is proposed. The essential features of such a laboratory differing of others centers in Brazil are presented. (L.C.) [pt

  12. Sandia National Laboratories

    Science.gov (United States)

    Gilliom, Laura R.

    1992-01-01

    Sandia National Laboratories has identified technology transfer to U.S. industry as a laboratory mission which complements our national security mission and as a key component of the Laboratory's future. A number of technology transfer mechanisms - such as CRADA's, licenses, work-for-others, and consortia - are identified and specific examples are given. Sandia's experience with the Specialty Metals Processing Consortium is highlighted with a focus on the elements which have made it successful. A brief discussion of Sandia's potential interactions with NASA under the Space Exploration Initiative was included as an example of laboratory-to-NASA technology transfer. Viewgraphs are provided.

  13. Los Alamos National Laboratory A National Science Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Chadwick, Mark B. [Los Alamos National Laboratory

    2012-07-20

    Our mission as a DOE national security science laboratory is to develop and apply science, technology, and engineering solutions that: (1) Ensure the safety, security, and reliability of the US nuclear deterrent; (2) Protect against the nuclear threat; and (3) Solve Energy Security and other emerging national security challenges.

  14. Sandia National Laboratories: Sandia National Laboratories: Missions:

    Science.gov (United States)

    Defense Systems & Assessments: About Us Sandia National Laboratories Exceptional service in ; Security Weapons Science & Technology Defense Systems & Assessments About Defense Systems & Information Construction & Facilities Contract Audit Sandia's Economic Impact Licensing & Technology

  15. Research programs at the Department of Energy National Laboratories. Volume 2: Laboratory matrix

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-01

    For nearly fifty years, the US national laboratories, under the direction of the Department of Energy, have maintained a tradition of outstanding scientific research and innovative technological development. With the end of the Cold War, their roles have undergone profound changes. Although many of their original priorities remain--stewardship of the nation`s nuclear stockpile, for example--pressing budget constraints and new federal mandates have altered their focus. Promotion of energy efficiency, environmental restoration, human health, and technology partnerships with the goal of enhancing US economic and technological competitiveness are key new priorities. The multiprogram national laboratories offer unparalleled expertise in meeting the challenge of changing priorities. This volume aims to demonstrate each laboratory`s uniqueness in applying this expertise. It describes the laboratories` activities in eleven broad areas of research that most or all share in common. Each section of this volume is devoted to a single laboratory. Those included are: Argonne National Laboratory; Brookhaven National Laboratory; Idaho National Engineering Laboratory; Lawrence Berkeley Laboratory; Lawrence Livermore National Laboratory; Los Alamos National Laboratory; National Renewable Energy Laboratory; Oak Ridge National Laboratory; Pacific Northwest Laboratory; and Sandia National Laboratories. The information in this volume was provided by the multiprogram national laboratories and compiled at Lawrence Berkeley Laboratory.

  16. Laboratories in search of a job

    International Nuclear Information System (INIS)

    MacKenzie, Debora

    1988-01-01

    The paper concerns the European Community's Joint Research Centre (JRC), which has four laboratory complexes at Ispra, Geel, Petten and Karlsruhe. Research Ministers, the Brussels bureaucrats and the scientists themselves agree that a decision must be made soon about the role of these laboratories. Critics allege that the JRC is hopelessly bureaucratic, lacks scientific direction and duplicates work done in National Laboratories. In 1987 the European Commission recommended that the JRC should spend 15 per cent of its time on work for contract customers, but scientists at the JRC are doubtful that National Governments will provide funding for research at the Laboratories. Problems at JRC are discussed including: diversifying into new areas of research, management problems and aging staff. A brief description is given of the research work carried out at each of the four laboratories. (U.K.)

  17. Proposals for ORNL [Oak Ridge National Laboratory] support to Tiber LLNL [Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    Berry, L.A.; Rosenthal, M.W.; Saltmarsh, M.J.; Shannon, T.E.; Sheffield, J.

    1987-01-01

    This document describes the interests and capabilities of Oak Ridge National Laboratory in their proposals to support the Lawrence Livermore National Laboratory (LLNL) Engineering Test Reactor (ETR) project. Five individual proposals are cataloged separately. (FI)

  18. Forest Products Laboratory : supporting the nation's armed forces with valuable wood research for 90 years

    Science.gov (United States)

    Christopher D. Risbrudt; Robert J. Ross; Julie J. Blankenburg; Charles A. Nelson

    2007-01-01

    Founded in 1910 by the U.S. Forest Service to serve as a centralized, national wood research laboratory, the USDA Forest Products Laboratory (FPL) has a long history of providing technical services to other government agencies, including those within the Defense (DoD). A recent search of FPL’s library and correspondence files revealed that approximately 10,000...

  19. Quantify uncertain emergency search techniques (QUEST) -- Theory and user's guide

    International Nuclear Information System (INIS)

    Johnson, M.M.; Goldsby, M.E.; Plantenga, T.D.; Porter, T.L.; West, T.H.; Wilcox, W.B.; Hensley, W.K.

    1998-01-01

    As recent world events show, criminal and terrorist access to nuclear materials is a growing national concern. The national laboratories are taking the lead in developing technologies to counter these potential threats to the national security. Sandia National laboratories, with support from Pacific Northwest National Laboratory and the Bechtel Nevada, Remote Sensing Laboratory, has developed QUEST (a model to Quantify Uncertain Emergency Search Techniques), to enhance the performance of organizations in the search for lost or stolen nuclear material. In addition, QUEST supports a wide range of other applications, such as environmental monitoring, nuclear facilities inspections, and searcher training. QUEST simulates the search for nuclear materials and calculates detector response for various source types and locations. The probability of detecting a radioactive source during a search is a function of many different variables, including source type, search location and structure geometry (including shielding), search dynamics (path and speed), and detector type and size. Through calculation of dynamic detector response, QUEST makes possible quantitative comparisons of various sensor technologies and search patterns. The QUEST model can be used as a tool to examine the impact of new detector technologies, explore alternative search concepts, and provide interactive search/inspector training

  20. Proposal for the establishment of a national underground physics laboratory

    International Nuclear Information System (INIS)

    Mann, A.K.; Sharp, R.R. Jr.

    1982-01-01

    Advances in elementary particles physics and astrophysics during the past decade have indicated certain areas in those fields in which experiments of high potential significance, albeit great difficulty, need to be done. In general, these are experiments that seek to uncover rare, new physical phenomena, or to study quantitatively phenomena that are especially difficult to observe. Among them are: (1) the study of solar and other cosmic neutrinos; (2) the search for nucleon instability; (3) the search for non-zero neutrino mass through the study of neutrino stability and double beta-decay; and (4) intensive searches for and attempts to measure accurately very energetic, rare elementary particle interactions such as may be manifested, for example, in the so-called Centauro events. The nature of these experiments requires that they be shielded from the intense flux of cosmic ray muons and air showers on the earth's surface, and therefore that the experimental apparatus be located deep underground or in the deep sea. However, for most of the experiments, and the apparatus also needs to be very large in mass and volume, and highly instrumented to achieve the necessary measurement capability. It is proposed to establish a laboratory deep underground of sufficient scope to be capable of housing and maintaining a variety of experiments that employ the most advanced technology. A specific channel is discussed whereby a national underground physics laboratory might be formed. The desirable characteristics of such a laboratory are described, and a possible location is recommended. Detailed cost estimates are provided

  1. Secondary standards laboratories for ionizing radiation calibrations: the national laboratory interests

    International Nuclear Information System (INIS)

    Roberson, P.L.; Campbell, G.W.

    1984-11-01

    The national laboratories are probable candidates to serve as secondary standards laboratories for the federal sector. Representatives of the major Department of Energy laboratories were polled concerning attitudes toward a secondary laboratory structure. Generally, the need for secondary laboratories was recognized and the development of such a program was encouraged. The secondary laboratories should be reviewed and inspected by the National Bureau of Standards. They should offer all of the essential, and preferably additional, calibration services in the field of radiological health protection. The selection of secondary laboratories should be based on economic and geographic criteria and/or be voluntary. 1 ref., 2 tabs

  2. Scientific Openness and National Security at the National Laboratories

    Science.gov (United States)

    McTague, John

    2000-04-01

    The possible loss to the People's Republic of China of important U.S. nuclear-weapons-related information has aroused concern about interactions of scientists employed by the national laboratories with foreign nationals. As a result, the National Academies assembled a committee to examine the roles of the national laboratories, the contribution of foreign interactions to the fulfillment of those roles, the risks and benefits of scientific openness in this context, and the merits and liabilities of the specific policies being implemented or proposed with respect to contacts with foreign nationals. The committee concluded that there are many aspects of the work at the laboratories that benefit from or even demand the opportunity for foreign interactions. The committee recommended five principles for guiding policy: (1) Maintain balance. Policy governing international dialogue by laboratory staff should seek to encourage international engagement in some areas, while tightly controlling it in others. (2) Educate staff. Security procedures should be clear, easy to follow, and serve an understandable purpose. (3) Streamline procedures. Good science is compatible with good security if there is intelligent line management both at the labs and in Washington, which applies effective tools for security in a sensible fashion. (4) Focus efforts. DOE should focus its efforts governing tightened security for information. The greatest attention should obviously be provided to the protection of classified information by appropriate physical and cybersecurity measures, and by personnel procedures and training. (5) Beware of prejudice against foreigners. Over the past half-century foreign-born individuals have contributed broadly and profoundly to national security through their work at the national laboratories.

  3. The National Fire Research Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The National Fire Research Laboratory (NFRL) is adding a unique facility that will serve as a center of excellence for fireperformance of structures ranging in size...

  4. POLLUTION PREVENTION OPPORTUNITY ASSESSMENT - GEOCHEMISTRY LABORATORY AT SANDIA NATIONAL LABORATORIES

    Science.gov (United States)

    These reports summarize pollution prevention opportunity assessments conducted jointly by EPA and DOE at the Geochemistry Laboratory and the Manufacturing and Fabrication Repair Laboratory at the Department of Energy's Sandia National Laboratories facility in Albuquerque, New Mex...

  5. QUEST: A model to quantify uncertain emergency search techniques, theory and application

    International Nuclear Information System (INIS)

    Johnson, M.M.; Goldsby, M.E.; Plantenga, T.D.; Wilcox, W.B.; Hensley, W.K.

    1996-01-01

    As recent world events show, criminal and terrorist access to nuclear materials is a growing national concern. The national laboratories are taking the lead in developing technologies to counter these potential threats to our national security. Sandia National Laboratories, with support from Pacific Northwest Laboratory and the Remote Sensing Laboratory, has developed QUEST (a model to Quantify Uncertain Emergency Search Techniques), to enhance the performance of organizations in the search for lost or stolen nuclear material. In addition, QUEST supports a wide range of other applications, such as environmental monitoring, nuclear facilities inspections, and searcher training. QUEST simulates the search for nuclear materials and calculates detector response fro various source types and locations. The probability of detecting a radioactive source during a search is a function of many different variables. Through calculation of dynamic detector response, QUEST makes possible quantitative comparisons of various sensor technologies and search patterns. The QUEST model can be used to examine the impact of new detector technologies, explore alternative search concepts, and provide interactive search/inspector training

  6. Frederick National Laboratory's Contribution to ATOM | Frederick National Laboratory for Cancer Research

    Science.gov (United States)

    As a founding member organization of ATOM, the Frederick National Laboratory will contribute scientific expertise in precision oncology, computational chemistry and cancer biology, as well as support for open sharing of data sets and predictive model

  7. Argonne National Laboratory 1983-1984

    International Nuclear Information System (INIS)

    1984-01-01

    This publication presents significant developments at Argonne National Laboratory during 1983-84. Argonne is a multidisciplinary research center with primary focus on nuclear energy, basic research, biomedical-environmental studies and alternate energy research. The laboratory is operated by the University of Chicago for the Department of Energy

  8. Risk management at Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    Cummings, G.E.; Strait, R.S.

    1993-10-01

    Managing risks at a large national laboratory presents a unique set of challenges. These challenges include the management of a broad diversity of activities, the need to balance research flexibility against management control, and a plethora of requirements flowing from regulatory and oversight bodies. This paper will present the experiences of Lawrence Livermore National Laboratory (LLNL) in risk management and in dealing with these challenges. While general risk management has been practiced successfully by all levels of Laboratory management, this paper will focus on the Laboratory's use of probabilistic safety assessment and prioritization techniques and the integration of these techniques into Laboratory operations

  9. Brookhaven National Laboratory Institutional Plan FY2001--FY2005

    Energy Technology Data Exchange (ETDEWEB)

    Davis, S.

    2000-10-01

    Brookhaven National Laboratory is a multidisciplinary laboratory in the Department of Energy National Laboratory system and plays a lead role in the DOE Science and Technology mission. The Laboratory also contributes to the DOE missions in Energy Resources, Environmental Quality, and National Security. Brookhaven strives for excellence in its science research and in facility operations and manages its activities with particular sensitivity to environmental and community issues. The Laboratory's programs are aligned continuously with the goals and objectives of the DOE through an Integrated Planning Process. This Institutional Plan summarizes the portfolio of research and capabilities that will assure success in the Laboratory's mission in the future. It also sets forth BNL strategies for our programs and for management of the Laboratory. The Department of Energy national laboratory system provides extensive capabilities in both world class research expertise and unique facilities that cannot exist without federal support. Through these national resources, which are available to researchers from industry, universities, other government agencies and other nations, the Department advances the energy, environmental, economic and national security well being of the US, provides for the international advancement of science, and educates future scientists and engineers.

  10. Idaho National Laboratory Research & Development Impacts

    Energy Technology Data Exchange (ETDEWEB)

    Stricker, Nicole [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-01-01

    Technological advances that drive economic growth require both public and private investment. The U.S. Department of Energy’s national laboratories play a crucial role by conducting the type of research, testing and evaluation that is beyond the scope of regulators, academia or industry. Examples of such work from the past year can be found in these pages. Idaho National Laboratory’s engineering and applied science expertise helps deploy new technologies for nuclear energy, national security and new energy resources. Unique infrastructure, nuclear material inventory and vast expertise converge at INL, the nation’s nuclear energy laboratory. Productive partnerships with academia, industry and government agencies deliver high-impact outcomes. This edition of INL’s Impacts magazine highlights national and regional leadership efforts, growing capabilities, notable collaborations, and technology innovations. Please take a few minutes to learn more about the critical resources and transformative research at one of the nation’s premier applied science laboratories.

  11. LDRD Highlights at the National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Alayat, R. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-10-10

    To meet the nation’s critical challenges, the Department of Energy (DOE) national laboratories have always pushed the boundaries of science, technology, and engineering. The Atomic Energy Act of 1954 provided the basis for these laboratories to engage in the cutting edge of science and technology and respond to technological surprises, while retaining the best scientific and technological minds. To help re-energize this commitment, in 1991 the U.S. Congress authorized the national laboratories to devote a relatively small percentage of their budget to creative and innovative work that serves to maintain their vitality in disciplines relevant to DOE missions. Since then, this effort has been formally called the Laboratory Directed Research and Development (LDRD) Program. LDRD has been an essential mechanism to enable the laboratories to address DOE’s current and future missions with leading-edge research proposed independently by laboratory technical staff, evaluated through expert peer-review committees, and funded by the individual laboratories consistent with the authorizing legislation and the DOE LDRD Order 413.2C.

  12. National High Magnetic Field Laboratory (NHMFL)

    Data.gov (United States)

    Federal Laboratory Consortium — The Pulsed Field Program is located in Northern New Mexico at Los Alamos National Laboratory. The user program is designed to provide researchers with a balance of...

  13. Science | Argonne National Laboratory

    Science.gov (United States)

    Security Photon Sciences Physical Sciences & Engineering Energy Frontier Research Centers Scientific Publications Researchers Postdocs Exascale Computing Institute for Molecular Engineering at Argonne Work with Us About Safety News Careers Education Community Diversity Directory Argonne National Laboratory

  14. The Future of the National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Hartley, D.

    1997-12-31

    The policy debate that has surrounded the national laboratories of the Department of Energy since the end of the Cold War has been very confusing. Initially, with the passage of the National Competitiveness Technology Transfer Act of 1989, the laboratories were encouraged to form cooperative arrangements with industry to maintain their technology base and give a boost for U.S. industrial competitiveness. But in the 104th Congress, technology transfer programs were severely constrained.

  15. Power source evaluation capabilities at Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Doughty, D.H.; Butler, P.C.

    1996-04-01

    Sandia National Laboratories maintains one of the most comprehensive power source characterization facilities in the U.S. National Laboratory system. This paper describes the capabilities for evaluation of fuel cell technologies. The facility has a rechargeable battery test laboratory and a test area for performing nondestructive and functional computer-controlled testing of cells and batteries.

  16. Replacement of the Idaho National Engineering Laboratory Health Physics Instrumentation Laboratory

    International Nuclear Information System (INIS)

    1995-05-01

    The DOE-Idaho Operations Office (DOE-ID) has prepared an environmental assessment (EA) on the replacement of the Idaho National Engineering Laboratory Health Physics Instrumentation Laboratory at the Idaho National Engineering Laboratory (INEL). The purpose of this project is to replace the existing Health Physics Instrumentation Laboratory (HPIL) with a new facility to provide a safe environment for maintaining and calibrating radiation detection instruments used at the Idaho National Engineering Laboratory. The existing HPIL facility provides portable health physics monitoring instrumentation and direct reading dosimetry procurement, maintenance and calibration of radiation detection instruments, and research and development support-services to the INEL and others. However, the existing facility was not originally designed for laboratory activities and does not provide an adequate, safe environment for calibration activities. The EA examined the potential environmental impacts of the proposed action and evaluated reasonable alternatives, including the no action alternative in accordance with the Council on Environmental Quality (CEQ) Regulations (40 CFR Parts 1500-1508). Based on the environmental analysis in the attached EA, the proposed action will not have a significant effect on the human environment within the meaning of the National Environmental Policy Act (NEPA) and 40 CFR Parts 1508.18 and 1508.27. The selected action (the proposed alternative) is composed of the following elements, each described or evaluated in the attached EA on the pages referenced. The proposed action is expected to begin in 1997 and will be completed within three years: design and construction of a new facility at the Central Facility Area of the INEL; operation of the facility, including instrument receipt, inspections and repairs, precision testing and calibration, and storage and issuance. The selected action will result in no significant environmental impacts

  17. Privacy Policy | Frederick National Laboratory for Cancer Research

    Science.gov (United States)

    The privacy of our users is of utmost importance to Frederick National Laboratory. The policy outlined below establishes how Frederick National Laboratory will use the information we gather about you from your visit to our website. We may coll

  18. Partnering with Sandia National Laboratories through alliances or consortia

    Energy Technology Data Exchange (ETDEWEB)

    Winchell, B.M.

    1994-12-01

    To better facilitate working with industry, groups of industrial participants, and partners in alliances or consortia, Sandia National Laboratories presents information helpful to those outside groups as to the forms of arrangements that may be used to better facilitate partnering relationships between Sandia National Laboratories and consortia or alliances of outside parties. It is expected that these alliances and consortia will include both large and small for-profit industrial concerns, as well as not-for-profit entities such as universities, institutes, other research facilities, and other nonprofit institutions or consortia containing institutions. The intent of this report is to provide such outside groups with information that will facilitate rapid interactions with Sandia National Laboratories through some of these forms of business which will be discussed in this report. These are not the only approaches to facilitating business interactions with Sandia National Laboratories and it is not intended that this report be legal advice or required approaches to doing business with Sandia National Laboratories. The intent of this report is merely to suggest ways in which Sandia National Laboratories can work with outside parties in the most expeditious manner.

  19. Partnering with Sandia National Laboratories through alliances or consortia

    Energy Technology Data Exchange (ETDEWEB)

    Winchell, B.M.

    1994-04-01

    To better facilitate working with industry, groups of industrial participants, and partners in alliances or consortia, Sandia National laboratories presents information helpful to those outside groups as to the forms of arrangements that may be used to better facilitate partnering relationships between Sandia National Laboratories and consortia or alliances of outside parties. It is expected that these alliances and consortia will include both large and small for-profit industrial concerns, as well as not-for-profit entities such as universities, institutes, other research facilities, and other nonprofit institutions or consortia containing institutions. The intent of this report is to provide such outside groups with information that will facilitate rapid interactions with Sandia National Laboratories through some of these forms of business which will be discussed in this report. These are not the only approaches to facilitating business interactions with Sandia National Laboratories and it is not intended that this report be legal advice or required approaches to doing business with Sandia National Laboratories. The intent of this report is merely to suggest ways in which Sandia National Laboratories can work with outside parties in the most expeditious manner.

  20. Lawrence Livermore National Laboratory Environmental Report 2012

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Henry E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Armstrong, Dave [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Blake, Rick G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bertoldo, Nicholas A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Cerruti, Steven J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Fish, Craig [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dibley, Valerie R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Doman, Jennifer L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Grayson, Allen R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Heidecker, Kelly R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hollister, Rod K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kumamoto, Gene [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); MacQueen, Donald H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Nelson, Jennifer C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ottaway, Heather L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Paterson, Lisa E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Revelli, Michael A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rosene, Crystal A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Terrill, Alison A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wegrecki, Anthony M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wilson, Kent R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Woollett, Jim S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2013-09-19

    Lawrence Livermore National Laboratory (LLNL) is a premier research laboratory that is part of the National Nuclear Security Administration (NNSA) within the U.S. Department of Energy (DOE). As a national security laboratory, LLNL is responsible for ensuring that the nation’s nuclear weapons remain safe, secure, and reliable. The Laboratory also meets other pressing national security needs, including countering the proliferation of weapons of mass destruction and strengthening homeland security, and conducting major research in atmospheric, earth, and energy sciences; bioscience and biotechnology; and engineering, basic science, and advanced technology. The Laboratory is managed and operated by Lawrence Livermore National Security, LLC (LLNS), and serves as a scientific resource to the U.S. government and a partner to industry and academia. LLNL operations have the potential to release a variety of constituents into the environment via atmospheric, surface water, and groundwater pathways. Some of the constituents, such as particles from diesel engines, are common at many types of facilities while others, such as radionuclides, are unique to research facilities like LLNL. All releases are highly regulated and carefully monitored. LLNL strives to maintain a safe, secure and efficient operational environment for its employees and neighboring communities. Experts in environment, safety and health (ES&H) support all Laboratory activities. LLNL’s radiological control program ensures that radiological exposures and releases are reduced to as low as reasonably achievable to protect the health and safety of its employees, contractors, the public, and the environment. LLNL is committed to enhancing its environmental stewardship and managing the impacts its operations may have on the environment through a formal Environmental Management System. The Laboratory encourages the public to participate in matters related to the Laboratory’s environmental impact on the

  1. Lawrence Livermore National Laboratory Environmental Report 2013

    Energy Technology Data Exchange (ETDEWEB)

    Jones, H. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bertoldo, N. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Blake, R. G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Cerruti, S. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dibley, V. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Doman, J. L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Fish, C. B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Grayson, A. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Heidecker, K. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kumamoto, G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); MacQueen, D. H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Montemayor, W. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ottaway, H. L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Paterson, L. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Revelli, M. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rosene, C. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Terrill, A. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wegrecki, A. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wilson, K. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Woollett, J. S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Veseliza, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-10-01

    Lawrence Livermore National Laboratory (LLNL) is a premier research laboratory that is part of the National Nuclear Security Administration (NNSA) within the U.S. Department of Energy (DOE). As a national security laboratory, LLNL is responsible for ensuring that the nation’s nuclear weapons remain safe, secure, and reliable. The Laboratory also meets other pressing national security needs, including countering the proliferation of weapons of mass destruction and strengthening homeland security, and conducting major research in atmospheric, earth, and energy sciences; bioscience and biotechnology; and engineering, basic science, and advanced technology. The Laboratory is managed and operated by Lawrence Livermore National Security, LLC (LLNS), and serves as a scientific resource to the U.S. government and a partner to industry and academia. LLNL operations have the potential to release a variety of constituents into the environment via atmospheric, surface water, and groundwater pathways. Some of the constituents, such as particles from diesel engines, are common at many types of facilities while others, such as radionuclides, are unique to research facilities like LLNL. All releases are highly regulated and carefully monitored. LLNL strives to maintain a safe, secure and efficient operational environment for its employees and neighboring communities. Experts in environment, safety and health (ES&H) support all Laboratory activities. LLNL’s radiological control program ensures that radiological exposures and releases are reduced to as low as reasonably achievable to protect the health and safety of its employees, contractors, the public, and the environment. LLNL is committed to enhancing its environmental stewardship and managing the impacts its operations may have on the environment through a formal Environmental Management System. The Laboratory encourages the public to participate in matters related to the Laboratory’s environmental impact on the

  2. ISO 14001 IMPLEMENTATION AT A NATIONAL LABORATORY

    International Nuclear Information System (INIS)

    BRIGGS, S.L.K.

    2001-01-01

    After a tumultuous year discovering serious lapses in environment, safety and health management at Brookhaven National Laboratory, the Department of Energy established a new management contract. It called for implementation of an IS0 14001 Environmental Management System and registration of key facilities. Brookhaven Science Associates, the managing contractor for the Laboratory, designed and developed a three-year project to change culture and achieve the goals of the contract. The focus of its efforts were to use IS0 14001 to integrate environmental stewardship into all facets of the Laboratory's mission, and manage its programs in a manner that protected the ecosystem and public health. A large multidisciplinary National Laboratory with over 3,000 employees and 4,000 visiting scientists annually posed significant challenges for IS0 14001 implementation. Activities with environmental impacts varied from regulated industrial waste generation, to soil activation from particle accelerator operations, to radioactive groundwater contamination from research reactors. A project management approach was taken to ensure project completion on schedule and within budget. The major work units for the Environmental Management System Project were as follows: Institutional EMS Program Requirements, Communications, Training, Laboratory-wide Implementation, and Program Assessments. To minimize costs and incorporate lessons learned before full-scale deployment throughout the Laboratory, a pilot process was employed at three facilities. Brookhaven National Laboratory has completed its second year of the project in the summer of 2000, successfully registering nine facilities and self-declaring conformance in all remaining facilities. Project controls, including tracking and reporting progress against a model, have been critical to the successful implementation. Costs summaries are lower than initial estimates, but as expected legal requirements, training, and assessments are key cost

  3. Secondary calibration laboratory for ionizing radiation laboratory accreitation program National Institute of Standards and Technology National Voluntary Laboratory Accreditation Program

    Energy Technology Data Exchange (ETDEWEB)

    Martin, P.R.

    1993-12-31

    This paper presents an overview of the procedures and requirements for accreditation under the Secondary Calibration Laboratory for Ionizing Radiation Program (SCLIR LAP). The requirements for a quality system, proficiency testing and the onsite assessment are discussed. The purpose of the accreditation program is to establish a network of secondary calibration laboratories that can provide calibrations traceable to the primary national standards.

  4. Secondary calibration laboratory for ionizing radiation laboratory accreitation program National Institute of Standards and Technology National Voluntary Laboratory Accreditation Program

    International Nuclear Information System (INIS)

    Martin, P.R.

    1993-01-01

    This paper presents an overview of the procedures and requirements for accreditation under the Secondary Calibration Laboratory for Ionizing Radiation Program (SCLIR LAP). The requirements for a quality system, proficiency testing and the onsite assessment are discussed. The purpose of the accreditation program is to establish a network of secondary calibration laboratories that can provide calibrations traceable to the primary national standards

  5. National Laboratory Planning: Developing Sustainable Biocontainment Laboratories in Limited Resource Areas.

    Science.gov (United States)

    Yeh, Kenneth B; Adams, Martin; Stamper, Paul D; Dasgupta, Debanjana; Hewson, Roger; Buck, Charles D; Richards, Allen L; Hay, John

    2016-01-01

    Strategic laboratory planning in limited resource areas is essential for addressing global health security issues. Establishing a national reference laboratory, especially one with BSL-3 or -4 biocontainment facilities, requires a heavy investment of resources, a multisectoral approach, and commitments from multiple stakeholders. We make the case for donor organizations and recipient partners to develop a comprehensive laboratory operations roadmap that addresses factors such as mission and roles, engaging national and political support, securing financial support, defining stakeholder involvement, fostering partnerships, and building trust. Successful development occurred with projects in African countries and in Azerbaijan, where strong leadership and a clear management framework have been key to success. A clearly identified and agreed management framework facilitate identifying the responsibility for developing laboratory capabilities and support services, including biosafety and biosecurity, quality assurance, equipment maintenance, supply chain establishment, staff certification and training, retention of human resources, and sustainable operating revenue. These capabilities and support services pose rate-limiting yet necessary challenges. Laboratory capabilities depend on mission and role, as determined by all stakeholders, and demonstrate the need for relevant metrics to monitor the success of the laboratory, including support for internal and external audits. Our analysis concludes that alternative frameworks for success exist for developing and implementing capabilities at regional and national levels in limited resource areas. Thus, achieving a balance for standardizing practices between local procedures and accepted international standards is a prerequisite for integrating new facilities into a country's existing public health infrastructure and into the overall international scientific community.

  6. Brookhaven National Laboratory site environmental report for calendar year 1994

    Energy Technology Data Exchange (ETDEWEB)

    Naidu, J.R.; Royce, B.A. [eds.

    1995-05-01

    This report documents the results of the Environmental Monitoring Program at Brookhaven National Laboratory and presents summary information about environmental compliance for 1994. To evaluate the effect of Brookhaven National Laboratory`s operations on the local environment, measurements of direct radiation, and a variety of radionuclides and chemical compounds in ambient air, soil, sewage effluent, surface water, groundwater, fauna and vegetation were made at the Brookhaven National Laboratory site and at sites adjacent to the Laboratory.

  7. POLLUTION PREVENTION OPPORTUNITY ASSESSMENT - MANUFACTURING AND FABRICATION REPAIR LABORATORY AT SANDIA NATIONAL LABORATORIES

    Science.gov (United States)

    These reports summarize pollution prevention opportunity assessments conducted jointly by EPA and DOE at the Geochemistry Laboratory and the Manufacturing and Fabrication Repair Laboratory at the Department of Energy's Sandia National Laboratories facility in Albuquerque, New Mex...

  8. Brookhaven highlights - Brookhaven National Laboratory 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    This report highlights research conducted at Brookhaven National Laboratory in the following areas: alternating gradient synchrotron; physics; biology; national synchrotron light source; department of applied science; medical; chemistry; department of advanced technology; reactor; safety and environmental protection; instrumentation; and computing and communications.

  9. National Laboratory of Synchrotron Radiation: technologic potential

    International Nuclear Information System (INIS)

    Silva, C.E.T.G. da; Rodrigues, A.R.D.

    1987-01-01

    The technological or industrial developments based on the accumulated experience by research group of condensed matter physics, in Brazil, are described. The potential of a National Laboratory of Synchrotron Radiation for personnel training, absorption and adaptation of economically important technologies for Brazil, is presented. Examples of cooperations between the Laboratory and some national interprises, and some industrial applications of the synchrotron radiation are done. (M.C.K.) [pt

  10. National Laboratory Planning: Developing Sustainable Biocontainment Laboratories in Limited Resource Areas

    OpenAIRE

    Yeh, Kenneth B.; Adams, Martin; Stamper, Paul D.; Dasgupta, Debanjana; Hewson, Roger; Buck, Charles D.; Richards, Allen L.; Hay, John

    2016-01-01

    Strategic laboratory planning in limited resource areas is essential for addressing global health security issues. Establishing a national reference laboratory, especially one with BSL-3 or -4 biocontainment facilities, requires a heavy investment of resources, a multisectoral approach, and commitments from multiple stakeholders. We make the case for donor organizations and recipient partners to develop a comprehensive laboratory operations roadmap that addresses factors such as mission and r...

  11. Brookhaven National Laboratory site environmental report for calendar year 1996

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, G.L.; Paquette, D.E.; Naidu, J.R.; Lee, R.J.; Briggs, S.L.K.

    1998-01-01

    This report documents the results of the Environmental Monitoring Program at Brookhaven National Laboratory and summarizes information about environmental compliance for 1996. To evaluate the effect of Brookhaven National Laboratory`s operations on the local environment, measurements of direct radiation, and of a variety of radionuclides and chemical compounds in the ambient air, soil, sewage effluent, surface water, groundwater, fauna, and vegetation were made at the Brookhaven National Laboratory site and at adjacent sites. The report also evaluates the Laboratory`s compliance with all applicable guides, standards, and limits for radiological and non-radiological emissions and effluents to the environment.

  12. Prototype prosperity-diversity game for the Laboratory Development Division of Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    VanDevender, P.; Berman, M.; Savage, K.

    1996-02-01

    The Prosperity Game conducted for the Laboratory Development Division of National Laboratories on May 24--25, 1995, focused on the individual and organizational autonomy plaguing the Department of Energy (DOE)-Congress-Laboratories` ability to manage the wrenching change of declining budgets. Prosperity Games are an outgrowth and adaptation of move/countermove and seminar War Games. Each Prosperity Game is unique in that both the game format and the player contributions vary from game to game. This particular Prosperity Game was played by volunteers from Sandia National Laboratories, Eastman Kodak, IBM, and AT&T. Since the participants fully control the content of the games, the specific outcomes will be different when the team for each laboratory, Congress, DOE, and the Laboratory Operating Board (now Laboratory Operations Board) is composed of executives from those respective organizations. Nevertheless, the strategies and implementing agreements suggest that the Prosperity Games stimulate cooperative behaviors and may permit the executives of the institutions to safely explore the consequences of a family of DOE concert.

  13. Fuel cells for transportation program: FY1997 national laboratory annual report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The Department of Energy (DOE) Fuel Cells for Transportation Program is structured to effectively implement the research and development (R and D) required for highly efficient, low or zero emission fuel cell power systems to be a viable replacement for the internal combustion engine in automobiles. The Program is part of the Partnership for a New Generation of Vehicles (PNGV), a government-industry initiative aimed at development of an 80 mile-per-gallon vehicle. This Annual Report summarizes the technical accomplishments of the laboratories during 1997. Participants include: Argonne National Laboratory (ANL), Brookhaven National Laboratory (BNL), Lawrence Berkeley National Laboratory (LBNL), Los Alamos National Laboratory (LANL), Oak Ridge National Laboratory (ORNL), Pacific Northwest National Laboratory (PNNL), and the National Renewable Energy Laboratory (NREL). During 1997, the laboratory R and D included one project on solid oxide fuel cells; this project has since been terminated to focus Department resources on PEM fuel cells. The technical component of this report is divided into five key areas: fuel cell stack research and development; fuel processing; fuel cell modeling, testing, and evaluation; direct methanol PEM fuel cells; and solid oxide fuel cells.

  14. Brookhaven National Laboratory site environmental report for calendar year 1994

    International Nuclear Information System (INIS)

    Naidu, J.R.; Royce, B.A.

    1995-05-01

    This report documents the results of the Environmental Monitoring Program at Brookhaven National Laboratory and presents summary information about environmental compliance for 1994. To evaluate the effect of Brookhaven National Laboratory's operations on the local environment, measurements of direct radiation, and a variety of radionuclides and chemical compounds in ambient air, soil, sewage effluent, surface water, groundwater, fauna and vegetation were made at the Brookhaven National Laboratory site and at sites adjacent to the Laboratory

  15. Los Alamos National Laboratory plans for a laboratory microfusion facility

    International Nuclear Information System (INIS)

    Harris, D.B.

    1988-01-01

    Los Alamos National Laboratory is actively participating in the National Laboratory Microfusion Facility (LMF) Scoping Study. We are currently performing a conceptual design study of a krypton-fluoride laser system that appears to meet all of the diver requirements for the LMF. A new theory of amplifier module scaling has been developed recently and it appears that KrF amplifier modules can be scaled up to output energies much larger than thought possible a few years ago. By using these large amplifier modules, the reliability and availability of the system is increased and its cost and complexity is decreased. Final cost figures will be available as soon as the detailed conceptual design is complete

  16. In summary: Idaho National Engineering Laboratory site environmental report for calendar year 1995

    International Nuclear Information System (INIS)

    Roush, D.; Mitchell, R.G.; Peterson, D.

    1996-08-01

    Every human is exposed to natural radiation. This exposure comes from many sources, including cosmic radiation from outer space, naturally-occurring radon, and radioactivity from substances in our bodies. In addition to natural sources of radiation, humans can also be exposed to man-made sources of radiation. Examples of man-made sources include nuclear medicine, X-rays, nuclear weapons testing, and accidents at nuclear power plants. The Idaho National Engineering Laboratory (INEL) is a U.S. Department of Energy (DOE) research facility that deals, in part, with studying nuclear reactors and storing radioactive materials. Careful handling and rigorous procedures do not completely eliminate the risk of releasing radioactivity. So, there is a remote possibility for a member of the public near the INEL to be exposed to radioactivity from the INEL. Extensive monitoring of the environment takes place on and around the INEL. These programs search for radionuclides and other contaminants. The results of these programs are presented each year in a site environmental report. This document summarizes the Idaho National Engineering Laboratory Site Environmental Report for Calendar Year 1995

  17. Chemical research at Argonne National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-04-01

    Argonne National Laboratory is a research and development laboratory located 25 miles southwest of Chicago, Illinois. It has more than 200 programs in basic and applied sciences and an Industrial Technology Development Center to help move its technologies to the industrial sector. At Argonne, basic energy research is supported by applied research in diverse areas such as biology and biomedicine, energy conservation, fossil and nuclear fuels, environmental science, and parallel computer architectures. These capabilities translate into technological expertise in energy production and use, advanced materials and manufacturing processes, and waste minimization and environmental remediation, which can be shared with the industrial sector. The Laboratory`s technologies can be applied to help companies design products, substitute materials, devise innovative industrial processes, develop advanced quality control systems and instrumentation, and address environmental concerns. The latest techniques and facilities, including those involving modeling, simulation, and high-performance computing, are available to industry and academia. At Argonne, there are opportunities for industry to carry out cooperative research, license inventions, exchange technical personnel, use unique research facilities, and attend conferences and workshops. Technology transfer is one of the Laboratory`s major missions. High priority is given to strengthening U.S. technological competitiveness through research and development partnerships with industry that capitalize on Argonne`s expertise and facilities. The Laboratory is one of three DOE superconductivity technology centers, focusing on manufacturing technology for high-temperature superconducting wires, motors, bearings, and connecting leads. Argonne National Laboratory is operated by the University of Chicago for the U.S. Department of Energy.

  18. The CHASE laboratory search for chameleon dark energy

    International Nuclear Information System (INIS)

    Steffen, Jason H.

    2010-01-01

    A scalar field is a favorite candidate for the particle responsible for dark energy. However, few theoretical means exist that can simultaneously explain the observed acceleration of the Universe and evade tests of gravity. The chameleon mechanism, whereby the properties of a particle depend upon the local environment, is one possible avenue. We present the results of the Chameleon Afterglow Search (CHASE) experiment, a laboratory probe for chameleon dark energy. CHASE marks a significant improvement other searches for chameleons both in terms of its sensitivity to the photon/chameleon coupling as well as its sensitivity to the classes of chameleon dark energy models and standard power-law models. Since chameleon dark energy is virtually indistinguishable from a cosmological constant, CHASE tests dark energy models in a manner not accessible to astronomical surveys.

  19. The CHASE laboratory search for chameleon dark energy

    Energy Technology Data Exchange (ETDEWEB)

    Steffen, Jason [Fermi National Accelerator Laboratory - Fermilab, P.O. Box 500, Batavia, IL 60510-5011 (United States)

    2010-07-01

    A scalar field is a favorite candidate for the particle responsible for dark energy. However, few theoretical means exist that can simultaneously explain the observed acceleration of the Universe and evade tests of gravity. The chameleon mechanism, whereby the properties of a particle depend upon the local environment, is one possible avenue. I present the results of the Chameleon Afterglow Search (CHASE) experiment, a laboratory probe for chameleon dark energy. CHASE marks a significant improvement over other searches for chameleons both in terms of its sensitivity to the photon/chameleon coupling as well as its sensitivity to the classes of chameleon dark energy models and standard power-law models. Since chameleon dark energy is virtually indistinguishable from a cosmological constant, CHASE tests dark energy models in a manner not accessible to astronomical surveys. (author)

  20. Final Report National Laboratory Professional Development Workshop for Underrepresented Participants

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Valerie [Texas Engineering Experiment Station, College Station, TX (United States)

    2016-11-07

    The 2013 CMD-IT National Laboratories Professional Development Workshop for Underrepresented Participants (CMD-IT NLPDev 2013) was held at the Oak Ridge National Laboratory campus in Oak Ridge, TN. from June 13 - 14, 2013. Sponsored by the Department of Energy (DOE) Advanced Scientific Computing Research Program, the primary goal of these workshops is to provide information about career opportunities in computational science at the various national laboratories and to mentor the underrepresented participants through community building and expert presentations focused on career success. This second annual workshop offered sessions to facilitate career advancement and, in particular, the strategies and resources needed to be successful at the national laboratories.

  1. Annotated bibliography National Environmental Policy Act (NEPA) documents for Sandia National Laboratories

    International Nuclear Information System (INIS)

    Harris, J.M.

    1995-04-01

    The following annotated bibliography lists documents prepared by the Department of Energy (DOE), and predecessor agencies, to meet the requirements of the National Environmental Policy Act (NEPA) for activities and facilities at Sandia National Laboratories sites. For each NEPA document summary information and a brief discussion of content is provided. This information may be used to reduce the amount of time or cost associated with NEPA compliance for future Sandia National Laboratories projects. This summary may be used to identify model documents, documents to use as sources of information, or documents from which to tier additional NEPA documents

  2. Annotated bibliography National Environmental Policy Act (NEPA) documents for Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Harris, J.M.

    1995-04-01

    The following annotated bibliography lists documents prepared by the Department of Energy (DOE), and predecessor agencies, to meet the requirements of the National Environmental Policy Act (NEPA) for activities and facilities at Sandia National Laboratories sites. For each NEPA document summary information and a brief discussion of content is provided. This information may be used to reduce the amount of time or cost associated with NEPA compliance for future Sandia National Laboratories projects. This summary may be used to identify model documents, documents to use as sources of information, or documents from which to tier additional NEPA documents.

  3. Lawrence Livermore National Laboratory 2007 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Chrzanowski, P; Walter, K

    2008-04-25

    Lawrence Livermore National Laboratory's many outstanding accomplishments in 2007 are a tribute to a dedicated staff, which is shaping the Laboratory's future as we go through a period of transition and transformation. The achievements highlighted in this annual report illustrate our focus on the important problems that affect our nation's security and global stability, our application of breakthrough science and technology to tackle those problems, and our commitment to safe, secure, and efficient operations. In May 2007, the Department of Energy (DOE) awarded Lawrence Livermore National Security, LLC (LLNS), a new public-private partnership, the contract to manage and operate the Laboratory starting in October. Since its inception in 1952, the Laboratory had been managed by the University of California (UC) for the DOE's National Nuclear Security Administration (NNSA) and predecessor organizations. UC is one of the parent organizations that make up LLNS, and UC's presence in the new management entity will help us carry forward our strong tradition of multidisciplinary science and technology. 'Team science' applied to big problems was pioneered by the Laboratory's co-founder and namesake, Ernest O. Lawrence, and has been our hallmark ever since. Transition began fully a year before DOE's announcement. More than 1,600 activities had to be carried out to transition the Laboratory from management by a not-for-profit to a private entity. People, property, and procedures as well as contracts, formal agreements, and liabilities had to be transferred to LLNS. The pre-transition and transition teams did a superb job, and I thank them for their hard work. Transformation is an ongoing process at Livermore. We continually reinvent ourselves as we seek breakthroughs that impact emerging national needs. An example is our development in the late 1990s of a portable instrument that could rapidly detect DNA signatures, research that

  4. 1992 Environmental monitoring report, Sandia National Laboratories, Albuquerque, New Mexico

    International Nuclear Information System (INIS)

    Culp, T.; Cox, W.; Hwang, H.; Irwin, M.; Jones, A.; Matz, B.; Molley, K.; Rhodes, W.; Stermer, D.; Wolff, T.

    1993-09-01

    This 1992 report contains monitoring data from routine radiological and nonradiological environmental surveillance activities. summaries of significant environmental compliance programs in progress, such as National Environmental Policy Act documentation, environmental permits, envirorunental restoration, and various waste management programs for Sandia National Laboratories in Albuquerque, New Mexico, are included. The maximum offsite dose impact was calculated to be 0.0034 millirem. The total population within a 50-mile radius of Sandia National Laboratories/New Mexico received an estimated collective dose of 0.019 person-rem during 1992 from the laboratories' operations. As in the previous year, the 1992 operations at Sandia National Laboratories/New Mexico had no discernible impact on the general public or on the environment

  5. Search for magnetic monopoles at the Chacaltaya cosmic ray laboratory

    International Nuclear Information System (INIS)

    Cecchini, S.; Giacomelli, G.; Giorgini, M.; Mandrioli, G.; Manzoor, S.; Margiotta, A.; Patrizii, L.; Popa, V.; Serra, P.; Spurio, M.; Togo, V.; Zanini, A.; Saavedra, O.; Zanini, A.; McDonald, J.; Pinfold, J.; Manzoor, S.; Rana, M. A.; Qureshi, I. E.; Shahzad, M. I.; Popa, V.; Ticona, R.; Velarde, A.; Cechini, S.

    2001-01-01

    The new large area (400 m 2 ) experiment - SLIM - to search for magnetic monopoles and other exotic massive particles is presented. It uses of nuclear track detectors and is being deployed at the Chacaltaya cosmic ray laboratory for at least 4 years. The detection capability of the experiment is discussed

  6. Oak Ridge National Laboratory Next Generation Safeguards Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Kirk, Bernadette Lugue [ORNL; Eipeldauer, Mary D [ORNL; Whitaker, J Michael [ORNL

    2011-12-01

    In 2007, the Department of Energy's National Nuclear Security Administration (DOE/NNSA) Office of Nonproliferation and International Security (NA-24) completed a comprehensive review of the current and potential future challenges facing the international safeguards system. The review examined trends and events impacting the mission of international safeguards and the implications of expanding and evolving mission requirements on the legal authorities and institutions that serve as the foundation of the international safeguards system, as well as the technological, financial, and human resources required for effective safeguards implementation. The review's findings and recommendations were summarized in the report, 'International Safeguards: Challenges and Opportunities for the 21st Century (October 2007)'. One of the report's key recommendations was for DOE/NNSA to launch a major new program to revitalize the international safeguards technology and human resource base. In 2007, at the International Atomic Energy Agency's General Conference, then Secretary of Energy Samuel W. Bodman announced the newly created Next Generation Safeguards Initiative (NGSI). NGSI consists of five program elements: (1) Policy development and outreach; (2) Concepts and approaches; (3) Technology and analytical methodologies; (4) Human resource development; and (5) Infrastructure development. The ensuing report addresses the 'Human Resource Development (HRD)' component of NGSI. The goal of the HRD as defined in the NNSA Program Plan (November 2008) is 'to revitalize and expand the international safeguards human capital base by attracting and training a new generation of talent.' One of the major objectives listed in the HRD goal includes education and training, outreach to universities, professional societies, postdoctoral appointments, and summer internships at national laboratories. ORNL is a participant in the NGSI program, together

  7. Sandia National Laboratories: The First Fifty Years

    Energy Technology Data Exchange (ETDEWEB)

    MORA,CARL J.

    1999-11-03

    On Nov. 1, 1999, Sandia National Laboratories celebrates its 50th birthday. Although Sandia has its roots in the World War II-era Manhattan Project, Sandia began operating as a separate nuclear weapons engineering laboratory under the management of AT&T on Nov. 1, 1949. Today the lab employs more than 7,000 people at its two sites in Albuquerque and Livermore, California, and has research and development missions in national security, energy and environmental technologies, and U.S. economic competitiveness. Lockheed Martin Corporation operates Sandia for the US. Department of Energy.

  8. Annual Report on the State of the DOE National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    None

    2017-01-01

    This first Annual Report to Congress on the State of the DOE National Laboratories provides a comprehensive overview of the Lab system, covering S&T programs, management and strategic planning. The Department committed to prepare this report in response to recommendations from the Congressionally mandated Commission to Review the Effectiveness of the National Energy Laboratories (CRENEL) that the Department should better communicate the value that the Laboratories provide to the Nation. We expect that future annual reports will be much more compact, building on the extensive description of the Laboratories and of the governance structures that are part of this first report.

  9. Sandia National Laboratories: Sandia National Laboratories: Missions:

    Science.gov (United States)

    Responsibility History Diversity Social Media Careers View All Jobs Students & Postdocs Benefits & Perks Technology Deployment Centers New Mexico Small Business Assistance Program Sandia's Economic Impact Sandia interest Menu Search Icon Locations Contact Us Employee Locator Search Menu About Leadership Mission Social

  10. Idaho National Laboratory Cultural Resource Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    Julie Braun Williams

    2013-02-01

    As a federal agency, the U.S. Department of Energy has been directed by Congress, the U.S. president, and the American public to provide leadership in the preservation of prehistoric, historic, and other cultural resources on the lands it administers. This mandate to preserve cultural resources in a spirit of stewardship for the future is outlined in various federal preservation laws, regulations, and guidelines such as the National Historic Preservation Act, the Archaeological Resources Protection Act, and the National Environmental Policy Act. The purpose of this Cultural Resource Management Plan is to describe how the Department of Energy, Idaho Operations Office will meet these responsibilities at Idaho National Laboratory in southeastern Idaho. The Idaho National Laboratory is home to a wide variety of important cultural resources representing at least 13,500 years of human occupation in the southeastern Idaho area. These resources are nonrenewable, bear valuable physical and intangible legacies, and yield important information about the past, present, and perhaps the future. There are special challenges associated with balancing the preservation of these sites with the management and ongoing operation of an active scientific laboratory. The Department of Energy, Idaho Operations Office is committed to a cultural resource management program that accepts these challenges in a manner reflecting both the spirit and intent of the legislative mandates. This document is designed for multiple uses and is intended to be flexible and responsive to future changes in law or mission. Document flexibility and responsiveness will be assured through regular reviews and as-needed updates. Document content includes summaries of Laboratory cultural resource philosophy and overall Department of Energy policy; brief contextual overviews of Laboratory missions, environment, and cultural history; and an overview of cultural resource management practices. A series of appendices

  11. ORNL (Oak Ridge National Laboratory) 89

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, T.D.; Appleton, B.R.; Jefferson, J.W.; Merriman, J.R.; Mynatt, F.R.; Richmond, C.R.; Rosenthal, M.W.

    1989-01-01

    This is the inaugural issues of an annual publication about the Oak Ridge National Laboratory. Here you will find a brief overview of ORNL, a sampling of our recent research achievements, and a glimpse of the directions we want to take over the next 15 years. A major purpose of ornl 89 is to provide the staff with a sketch of the character and dynamics of the Laboratory.

  12. ORNL [Oak Ridge National Laboratory] 89

    International Nuclear Information System (INIS)

    Anderson, T.D.; Appleton, B.R.; Jefferson, J.W.; Merriman, J.R.; Mynatt, F.R.; Richmond, C.R.; Rosenthal, M.W.

    1989-01-01

    This is the inaugural issues of an annual publication about the Oak Ridge National Laboratory. Here you will find a brief overview of ORNL, a sampling of our recent research achievements, and a glimpse of the directions we want to take over the next 15 years. A major purpose of ornl 89 is to provide the staff with a sketch of the character and dynamics of the Laboratory

  13. A History of Building 828, Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Ullrich, Rebecca

    1999-08-01

    This report documents the history of Building 828 in Sandia National Laboratories' Technical Area I. Building 828 was constructed in 1946 as a mechanical test laboratory for Los Alamos' Z-Division (later Sandia) as it moved to Sandia Base. The building has undergone significant remodeling over the years and has had a variety of occupants. The building was evaluated in compliance with the National Historic Preservation Act, but was not eligible for the National Register of Historic Places. Nevertheless, for many Labs employees, it was a symbol of Sandia's roots in World War II and the Manhattan Project.

  14. Supplement analysis for continued operation of Lawrence Livermore National Laboratory and Sandia National Laboratories, Livermore. Volume 2: Comment response document

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The US Department of Energy (DOE), prepared a draft Supplement Analysis (SA) for Continued Operation of Lawrence Livermore National Laboratory (LLNL) and Sandia National Laboratories, Livermore (SNL-L), in accordance with DOE`s requirements for implementation of the National Environmental Policy Act of 1969 (NEPA) (10 Code of Federal Regulations [CFR] Part 1021.314). It considers whether the Final Environmental Impact Statement and Environmental Impact Report for Continued Operation of Lawrence Livermore National Laboratory and Sandia National Laboratories, Livermore (1992 EIS/EIR) should be supplement3ed, whether a new environmental impact statement (EIS) should be prepared, or no further NEPA documentation is required. The SA examines the current project and program plans and proposals for LLNL and SNL-L, operations to identify new or modified projects or operations or new information for the period from 1998 to 2002 that was not considered in the 1992 EIS/EIR. When such changes, modifications, and information are identified, they are examined to determine whether they could be considered substantial or significant in reference to the 1992 proposed action and the 1993 Record of Decision (ROD). DOE released the draft SA to the public to obtain stakeholder comments and to consider those comments in the preparation of the final SA. DOE distributed copies of the draft SA to those who were known to have an interest in LLNL or SNL-L activities in addition to those who requested a copy. In response to comments received, DOE prepared this Comment Response Document.

  15. Lawrence Livermore National Laboratory Environmental Report 2015

    International Nuclear Information System (INIS)

    Rosene, C. A.; Jones, H. E.

    2016-01-01

    The purposes of the Lawrence Livermore National Laboratory Environmental Report 2015 are to record Lawrence Livermore National Laboratory's (LLNL's) compliance with environmental standards and requirements, describe LLNL's environmental protection and remediation programs, and present the results of environmental monitoring at the two LLNL sites-the Livermore Site and Site 300. The report is prepared for the U.S. Department of Energy (DOE) by LLNL's Environmental Functional Area. Submittal of the report satisfies requirements under DOE Order 231.1B, ''Environment, Safety and Health Reporting,'' and DOE Order 458.1, ''Radiation Protection of the Public and Environment.''

  16. Neutron-antineutron transition search at HFIR reactor

    International Nuclear Information System (INIS)

    Kamyshkov, Yuri A.

    1997-01-01

    A new experiment to search for neutron-antineutron transitions was recently proposed for High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL). In this paper the physics motivation of a new search, the scheme and the discovery potential of the proposed HFIR-based experiment are discussed

  17. Neutron-antineutron transition search at HFIR Reactor

    International Nuclear Information System (INIS)

    Kamyshkov, Y.A.

    1997-01-01

    A new experiment to search for neutron-antineutron transitions was recently proposed for High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL). In this paper the physics motivation of a new search, the scheme and the discovery potential of the proposed HFIR-based experiment are discussed

  18. Argonne National Laboratory 1985 publications

    International Nuclear Information System (INIS)

    Kopta, J.A.; Hale, M.R.

    1987-08-01

    This report is a bibliography of scientific and technical 1985 publications of Argonne National Laboratory. Some are ANL contributions to outside organizations' reports published in 1985. This compilation, prepared by the Technical Information Services Technical Publications Section (TPB), lists all nonrestricted 1985 publications submitted to TPS by Laboratory's Divisions. The report is divided into seven parts: Journal Articles - Listed by first author, ANL Reports - Listed by report number, ANL and non-ANL Unnumbered Reports - Listed by report number, Non-ANL Numbered Reports - Listed by report number, Books and Book Chapters - Listed by first author, Conference Papers - Listed by first author, Complete Author Index

  19. Laboratory quality stepwise implementation tool: National reference TB laboratory of Iran

    OpenAIRE

    Ali Naghi Kebriaee; Donya Malekshahian; Mojtaba Ahmadi; Parissa Farnia

    2015-01-01

    Background and objective: During recent years, the World Health Organization (WHO) proposed new software for improving the tuberculosis (TB) laboratory services. The protocol is known as “quality stepwise implementation tool” and is based on enforcement of quality assurance services through accreditation by the International Organization for Standardization (ISO) 15189. As a national reference TB laboratory (NRL) of Iran, the benefit and challenges of implementing this standard were analyzed....

  20. Pacific Northwest National Laboratory Institutional Plan FY 2004-2008

    Energy Technology Data Exchange (ETDEWEB)

    Quadrel, Marilyn J.

    2004-04-15

    This Institutional Plan for FY 2004-2008 is the principal annual planning document submitted to the Department of Energy's Office of Science by Pacific Northwest National Laboratory in Richland, Washington. This plan describes the Laboratory's mission, roles, and technical capabilities in support of Department of Energy priorities, missions, and plans. It also describes the Laboratory strategic plan, key planning assumptions, major research initiatives, and program strategy for fundamental science, energy resources, environmental quality, and national security.

  1. Laboratory measurements and astronomical search for cyanomethanimine

    Science.gov (United States)

    Melosso, M.; Melli, A.; Puzzarini, C.; Codella, C.; Spada, L.; Dore, L.; Degli Esposti, C.; Lefloch, B.; Bachiller, R.; Ceccarelli, C.; Cernicharo, J.; Barone, V.

    2018-02-01

    Context. C-cyanomethanimine (HNCHCN), existing in the two Z and E isomeric forms, is a key prebiotic molecule, but, so far, only the E isomer has been detected toward the massive star-forming region Sagittarius B2(N) using transitions in the radio wavelength domain. Aims: With the aim of detecting HNCHCN in Sun-like-star forming regions, the laboratory investigation of its rotational spectrum has been extended to the millimeter-/submillimeter-wave (mm-/submm-) spectral window in which several unbiased spectral surveys have been already carried out. Methods: High-resolution laboratory measurements of the rotational spectrum of C-cyanomethanimine were carried out in the 100-420 GHz range using a frequency-modulation absorption spectrometer. We then searched for the C-cyanomethanimine spectral features in the mm-wave range using the high-sensitivity and unbiased spectral surveys obtained with the IRAM 30-m antenna in the ASAI context, the earliest stages of star formation from starless to evolved Class I objects being sampled. Results: For both the Z and E isomers, the spectroscopic work has led to an improved and extended knowledge of the spectroscopic parameters, thus providing accurate predictions of the rotational signatures up to 700 GHz. So far, no C-cyanomethanimine emission has been detected toward the ASAI targets, and upper limits of the column density of 1011-1012 cm-2 could only be derived. Consequently, the C-cyanomethanimine abundances have to be less than a few 10-10 for starless and hot-corinos. A less stringent constraint, ≤10-9, is obtained for shocks sites. Conclusions: The combination of the upper limits of the abundances of C-cyanomethanimine together with accurate laboratory frequencies up to 700 GHz poses the basis for future higher sensitivity searches around Sun-like-star forming regions. For compact (typically less than 1″) and chemically enriched sources such as hot-corinos, the use of interferometers as NOEMA and ALMA in their extended

  2. Frederick National Laboratory Rallies to Meet Demand for Zika Vaccine | Frederick National Laboratory for Cancer Research

    Science.gov (United States)

    The Frederick National Laboratory for Cancer Research is producing another round of Zika vaccine for ongoing studies to determine the best delivery method and dosage. This will lay the groundwork for additional tests to see if the vaccine prevents i

  3. Pacific Northwest National Laboratory institutional plan FY 1997--2002

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    Pacific Northwest National Laboratory`s core mission is to deliver environmental science and technology in the service of the nation and humanity. Through basic research fundamental knowledge is created of natural, engineered, and social systems that is the basis for both effective environmental technology and sound public policy. Legacy environmental problems are solved by delivering technologies that remedy existing environmental hazards, today`s environmental needs are addressed with technologies that prevent pollution and minimize waste, and the technical foundation is being laid for tomorrow`s inherently clean energy and industrial processes. Pacific Northwest National Laboratory also applies its capabilities to meet selected national security, energy, and human health needs; strengthen the US economy; and support the education of future scientists and engineers. Brief summaries are given of the various tasks being carried out under these broad categories.

  4. Hazardous waste systems analysis at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Urioste, J.

    1997-01-01

    Los Alamos National Laboratory produces routine and non-routine hazardous waste as a by-product of mission operations. Hazardous waste commonly generated at the Laboratory includes many types of laboratory research chemicals, solvents, acids, bases, carcinogens, compressed gases, metals, and other solid waste contaminated with hazardous waste. The Los Alamos National Laboratory Environmental Stewardship Office has established a Hazardous Waste Minimization Coordinator to specifically focus on routine and non-routine RCRA, TSCA, and other administratively controlled wastes. In this process, the Waste Minimization Coordinator has developed and implemented a systems approach to define waste streams, estimate waste management costs and develop plans to implement avoidance practices, and develop projects to reduce or eliminate the waste streams at the Laboratory. The paper describes this systems approach

  5. 1993 Site environmental report Sandia National Laboratories, Albuquerque, New Mexico

    International Nuclear Information System (INIS)

    Culp, T.A.; Cheng, C.F.; Cox, W.; Durand, N.; Irwin, M.; Jones, A.; Lauffer, F.; Lincoln, M.; McClellan, Y.; Molley, K.

    1994-11-01

    This 1993 report contains monitoring data from routine radiological and nonradiological environmental surveillance activities. Summaries of significant environmental compliance programs in progress, such as National Environmental Policy Act documentation, environmental permits, environmental restoration, and various waste management programs for Sandia National Laboratories in Albuquerque, New Mexico, are included. The maximum offsite dose impact was calculated to be 0.0016 millirem. The total population within a 50-mile (80 kilometer) radius of Sandia National Laboratories/New Mexico received an estimated collective dose of 0.027 person-rem during 1993 from the laboratories operations, As in the previous year, the 1993 operations at Sandia National Laboratories/New Mexico had no discernible impact on the general public or on the environment. This report is prepared for the U.S. Department of Energy in compliance with DOE Order 5400.1

  6. National Environmental Policy Act (NEPA) compliance at Sandia National Laboratories/New Mexico (SNL/NM)

    International Nuclear Information System (INIS)

    Wolff, T.A.

    1998-08-01

    This report on National Environmental Policy Act (NEPA) compliance at Sandia National Laboratories/New Mexico (SNL/NM) chronicles past and current compliance activities and includes a recommended strategy that can be implemented for continued improvement. This report provides a list of important references. Attachment 1 contains the table of contents for SAND95-1648, National Environmental Policy Act (NEPA) Compliance Guide Sandia National Laboratories (Hansen, 1995). Attachment 2 contains a list of published environmental assessments (EAs) and environmental impact statements (EISs) prepared by SNL/NM. Attachment 3 contains abstracts of NEPA compliance papers authored by SNL/NM and its contractors

  7. National Environmental Policy Act (NEPA) compliance at Sandia National Laboratories/New Mexico (SNL/NM)

    Energy Technology Data Exchange (ETDEWEB)

    Wolff, T.A. [Sandia National Labs., Albuquerque, NM (United States). Community Involvement and Issues Management Dept.; Hansen, R.P. [Hansen Environmental Consultants, Englewood, CO (United States)

    1998-08-01

    This report on National Environmental Policy Act (NEPA) compliance at Sandia National Laboratories/New Mexico (SNL/NM) chronicles past and current compliance activities and includes a recommended strategy that can be implemented for continued improvement. This report provides a list of important references. Attachment 1 contains the table of contents for SAND95-1648, National Environmental Policy Act (NEPA) Compliance Guide Sandia National Laboratories (Hansen, 1995). Attachment 2 contains a list of published environmental assessments (EAs) and environmental impact statements (EISs) prepared by SNL/NM. Attachment 3 contains abstracts of NEPA compliance papers authored by SNL/NM and its contractors.

  8. Oak Ridge National Laboratory institutional plan, FY 1992--FY 1997

    Energy Technology Data Exchange (ETDEWEB)

    1991-11-01

    In operation for fifty years, the Oak Ridge National Laboratory (ORNL) is managed by Martin Marietta Energy Systems, Inc., for the US Department of Energy (DOE). ORNL is one of DOE's major multiprogram national laboratories. Activities at the Laboratory are focused on basic and applied research, on technology development, and on other technological challenges that are important to DOE and to the nation. The Laboratory also performs research and development (R D) for non-DOE sponsors when such activities complement DOE missions and address important national or international issues. The Laboratory is committed to the pursuit of excellence in all its activities, including the commitment to carry out its missions in compliance with environmental, safety, and health laws and regulations. The principal elements of the Laboratory's missions in support of DOE include activities in each of the following areas: (1) Energy production and conservation technologies; (2) physical and life sciences; (3) scientific and technical user facilities; (4) environmental protection and waste management; (5) science technology transfer; and, (6) education. This institutional plan for ORNL activities is for the next five years: FY 1992--1997.

  9. Research at the Oak Ridge National Laboratory (ORNL)

    International Nuclear Information System (INIS)

    Postma, H.

    1980-01-01

    The Oak Ridge National Laboratory is a large (5300 people), US-government-funded laboratory, which performs research in many disciplines and in many technological areas. Programs and organization of ORNL are described for the People's Republic of China

  10. Accreditation of testing laboratories in CNEA (National Atomic Energy Commission)

    International Nuclear Information System (INIS)

    Piacquadio, N.H.; Casa, V.A.; Palacios, T.A.

    1993-01-01

    The recognition of the technical capability of a testing laboratory is carried out by Laboratory Accreditation Bodies as the result of a satisfactory evaluation and the systematic follow up of the certified qualification. In Argentina the creation of a National Center for the Accreditation of Testing Laboratories, as a first step to assess a National Accreditation System is currently projected. CNEA, as an institution involved in technological projects and in the development and production of goods and services, has adopted since a long time ago quality assurance criteria. One of their requirements is the qualification of laboratories. Due to the lack of a national system, a Committee for the Qualification of Laboratories was created jointly by the Research and Development and Nuclear Fuel Cycle Areas with the responsibility of planning and management of the system evaluation and the certification of the quality of laboratories. The experience in the above mentioned topics is described in this paper. (author)

  11. Hydraulics national laboratory; Laboratoire national d`hydraulique

    Energy Technology Data Exchange (ETDEWEB)

    Chabard, J P

    1996-12-31

    The hydraulics national laboratory is a department of the service of applications of electric power and environment from the direction of studies and researches of Electricite de France. It has to solve the EDF problems concerning the fluids mechanics and hydraulics. Problems in PWR type reactors, fossil fuel power plants, circulating fluidized bed power plants, hydroelectric power plants relative to fluid mechanics and hydraulics studied and solved in 1995 are explained in this report. (N.C.)

  12. Hydraulics national laboratory; Laboratoire national d`hydraulique

    Energy Technology Data Exchange (ETDEWEB)

    Chabard, J.P.

    1995-12-31

    The hydraulics national laboratory is a department of the service of applications of electric power and environment from the direction of studies and researches of Electricite de France. It has to solve the EDF problems concerning the fluids mechanics and hydraulics. Problems in PWR type reactors, fossil fuel power plants, circulating fluidized bed power plants, hydroelectric power plants relative to fluid mechanics and hydraulics studied and solved in 1995 are explained in this report. (N.C.)

  13. Critical Infrastructure Protection- Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Bofman, Ryan K. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-24

    Los Alamos National Laboratory (LANL) has been a key facet of Critical National Infrastructure since the nuclear bombing of Hiroshima exposed the nature of the Laboratory’s work in 1945. Common knowledge of the nature of sensitive information contained here presents a necessity to protect this critical infrastructure as a matter of national security. This protection occurs in multiple forms beginning with physical security, followed by cybersecurity, safeguarding of classified information, and concluded by the missions of the National Nuclear Security Administration.

  14. Argonne National Laboratory 1985 publications

    Energy Technology Data Exchange (ETDEWEB)

    Kopta, J.A. (ED.); Hale, M.R. (comp.)

    1987-08-01

    This report is a bibliography of scientific and technical 1985 publications of Argonne National Laboratory. Some are ANL contributions to outside organizations' reports published in 1985. This compilation, prepared by the Technical Information Services Technical Publications Section (TPB), lists all nonrestricted 1985 publications submitted to TPS by Laboratory's Divisions. The report is divided into seven parts: Journal Articles - Listed by first author, ANL Reports - Listed by report number, ANL and non-ANL Unnumbered Reports - Listed by report number, Non-ANL Numbered Reports - Listed by report number, Books and Book Chapters - Listed by first author, Conference Papers - Listed by first author, Complete Author Index.

  15. Global Impact | Frederick National Laboratory for Cancer Research

    Science.gov (United States)

    Through its direct support of clinical research, Frederick National Laboratory activities are not limited to national programs. The labis actively involved in more than 400 domestic and international studies related to cancer; influenza, HIV, E

  16. Database activities at Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    Trahern, C.G.

    1995-01-01

    Brookhaven National Laboratory is a multi-disciplinary lab in the DOE system of research laboratories. Database activities are correspondingly diverse within the restrictions imposed by the dominant relational database paradigm. The authors discuss related activities and tools used in RHIC and in the other major projects at BNL. The others are the Protein Data Bank being maintained by the Chemistry department, and a Geographical Information System (GIS)--a Superfund sponsored environmental monitoring project under development in the Office of Environmental Restoration

  17. Sandia National Laboratories focus issue: introduction.

    Science.gov (United States)

    Boye, Robert

    2014-08-20

    For more than six decades, Sandia has provided the critical science and technology to address the nation's most challenging issues. Our original nuclear weapons mission has been complemented with work in defense systems, energy and climate, as well as international and homeland security. Our vision is to be a premier science and engineering laboratory for technology solutions to the most challenging problems that threaten peace and freedom for our nation and the globe.

  18. Sustainability Report: National Renewable Energy Laboratory (NREL) 2003 -- 2004

    Energy Technology Data Exchange (ETDEWEB)

    2004-09-01

    The National Renewable Energy Laboratory's (NREL) Sustainability Report for 2003-2004 highlights the Laboratory's comprehensive sustainability activities. These efforts demonstrate NREL's progress toward achieving overall sustainability goals. Sustainability is an inherent centerpiece of the Laboratory's work. NREL's mission--to develop renewable energy and energy efficiency technologies and practices and transfer knowledge and innovations to address the nation's energy and environmental goals--is synergistic with sustainability. The Laboratory formalized its sustainability activities in 2000, building on earlier ideas--this report summarizes the status of activities in water use, energy use, new construction, green power, transportation, recycling, environmentally preferable purchasing, greenhouse gas emissions, and environmental management.

  19. Brookhaven National Laboratory site environmental report for calendar year 1995

    Energy Technology Data Exchange (ETDEWEB)

    Naidu, J.R.; Paquette, D.E.; Schroeder, G.L. [eds.] [and others

    1996-12-01

    This report documents the results of the Environmental Monitoring Program at Brookhaven National Laboratory and summarizes information about environmental compliance for 1995. To evaluate the effect of Brookhaven National Laboratory`s operations on the local environment, measurements of direct radiation, and of a variety of radionuclides and chemical compounds in the ambient air, soil, sewage effluent, surface water, groundwater, fauna, and vegetation were made at the Brookhaven National Laboratory site and at adjacent sites. The report also evaluates the Laboratory`s compliance with all applicable guides, standards, and limits for radiological and nonradiological emissions and effluents to the environment. Areas of known contamination are subject to Remedial Investigation/Feasibility Studies under the Inter Agency Agreement established by the Department of Energy, Environmental Protection Agency and the New York Department of Environmental Conservation. Except for identified areas of soil and groundwater contamination, the environmental monitoring data has continued to demonstrate that compliance was achieved with the applicable environmental laws and regulations governing emission and discharge of materials to the environment. Also, the data show that the environmental impacts at Brookhaven National Laboratory are minimal and pose no threat to the public nor to the environment. This report meets the requirements of Department of Energy Orders 5484.1, Environmental Protection, Safety, and Health Protection Information reporting requirements and 5400.1, General Environmental Protection Programs.

  20. Human factors at the Department of Energy National Laboratories

    International Nuclear Information System (INIS)

    Pond, D.J.; Waters, R.M.

    1991-01-01

    After World War II, a system of national laboratories was created to foster a suitable environment for scientific research. This paper reports that today, human factors activities are in evidence at most of the nine U.S. Department of Energy multi-program national laboratories as well as at a number of special program facilities. This paper provides historical and future perspectives on the DOE's human factors programs

  1. Site environmental report for 2004 Sandia National Laboratories, California.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L. (Sandia National Laboratories, Livermore, CA)

    2005-06-01

    Sandia National Laboratories, California (SNL/CA) is a government-owned/contractor-operated laboratory. Sandia Corporation, a Lockheed Martin Company, operates the laboratory for the Department of Energy's (DOE) National Nuclear Security Administration. The DOE Sandia Site Office oversees operations at the site, using Sandia Corporation as a management and operating contractor. This Site Environmental Report for 2004 was prepared in accordance with DOE Order 231.1A. The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2004. General site and environmental program information is also included.

  2. Site Environmental Report for 2007: Sandia National Laboratories, California

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Environmental Management Dept.

    2008-06-01

    Sandia National Laboratories, California (SNL/CA) is a government-owned/contractor-operated laboratory. Sandia Corporation, a Lockheed Martin Company, operates the laboratory for the Department of Energy’s National Nuclear Security Administration (NNSA). The NNSA Sandia Site Office oversees operations at the site, using Sandia Corporation as a management and operating contractor. This Site Environmental Report for 2007 was prepared in accordance with DOE Order 231.1A (DOE 2004a). The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2007. General site and environmental program information is also included.

  3. Site environmental report for 2008 Sandia National Laboratories, California.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2009-04-01

    Sandia National Laboratories, California (SNL/CA) is a government-owned/contractor operated laboratory. Sandia Corporation, a Lockheed Martin Company, operates the laboratory for the Department of Energy's National Nuclear Security Administration (NNSA). The NNSA Sandia Site Office oversees operations at the site, using Sandia Corporation as a management and operating contractor. This Site Environmental Report for 2008 was prepared in accordance with DOE Order 231.1A (DOE 2004a). The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2008. General site and environmental program information is also included.

  4. Site environmental report for 2006 Sandia National Laboratories, California.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2007-06-01

    Sandia National Laboratories, California (SNL/CA) is a government-owned/contractor-operated laboratory. Sandia Corporation, a Lockheed Martin Company, operates the laboratory for the Department of Energy's National Nuclear Security Administration (NNSA). The NNSA Sandia Site Office oversees operations at the site, using Sandia Corporation as a management and operating contractor. This Site Environmental Report for 2006 was prepared in accordance with DOE Order 231.1A (DOE 2004a). The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2006. General site and environmental program information is also included.

  5. Site environmental report for 2005 Sandia National Laboratories, California.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2006-06-01

    Sandia National Laboratories, California (SNL/CA) is a government-owned/contractor-operated laboratory. Sandia Corporation, a Lockheed Martin Company, operates the laboratory for the Department of Energy's (DOE) National Nuclear Security Administration (NNSA). The DOE/NNSA Sandia Site Office (SSO) oversees operations at the site, using Sandia Corporation as a management and operating contractor. This Site Environmental Report for 2005 was prepared in accordance with DOE Order 231.1A. The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2005. General site and environmental program information is also included.

  6. Site environmental report for 2003 Sandia National Laboratories, California.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2004-06-01

    Sandia National Laboratories, California (SNL/CA) is a government-owned/contractor-operated laboratory. Sandia Corporation, a Lockheed Martin Company, operates the laboratory for the Department of Energy's (DOE) National Nuclear Security Administration. The DOE Sandia Site Office oversees operations at the site, using Sandia Corporation as a management and operating contractor. This Site Environmental Report for 2003 was prepared in accordance with DOE Order 231.1A. The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2003. General site and environmental program information is also included.

  7. National Renewable Energy Laboratory: 35 Years of Innovation (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2012-04-01

    This brochure is an overview of NREL's innovations over the last 35 years. It includes the lab's history and a description of the laboratory of the future. The National Renewable Energy Laboratory (NREL) is the U.S. Department of Energy's (DOE) primary national laboratory for renewable energy and energy efficiency. NREL's work focuses on advancing renewable energy and energy efficiency technologies from concept to the commercial marketplace through industry partnerships. The Alliance for Sustainable Energy, LLC, a partnership between Battelle and MRIGlobal, manages NREL for DOE's Office of Energy Efficiency and Renewable Energy.

  8. Idaho National Laboratory Cultural Resource Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    Lowrey, Diana Lee

    2009-02-01

    As a federal agency, the U.S. Department of Energy has been directed by Congress, the U.S. president, and the American public to provide leadership in the preservation of prehistoric, historic, and other cultural resources on the lands it administers. This mandate to preserve cultural resources in a spirit of stewardship for the future is outlined in various federal preservation laws, regulations, and guidelines such as the National Historic Preservation Act, the Archaeological Resources Protection Act, and the National Environmental Policy Act. The purpose of this Cultural Resource Management Plan is to describe how the Department of Energy, Idaho Operations Office will meet these responsibilities at the Idaho National Laboratory. This Laboratory, which is located in southeastern Idaho, is home to a wide variety of important cultural resources representing at least 13,500 years of human occupation in the southeastern Idaho area. These resources are nonrenewable; bear valuable physical and intangible legacies; and yield important information about the past, present, and perhaps the future. There are special challenges associated with balancing the preservation of these sites with the management and ongoing operation of an active scientific laboratory. The Department of Energy, Idaho Operations Office is committed to a cultural resource management program that accepts these challenges in a manner reflecting both the spirit and intent of the legislative mandates. This document is designed for multiple uses and is intended to be flexible and responsive to future changes in law or mission. Document flexibility and responsiveness will be assured through annual reviews and as-needed updates. Document content includes summaries of Laboratory cultural resource philosophy and overall Department of Energy policy; brief contextual overviews of Laboratory missions, environment, and cultural history; and an overview of cultural resource management practices. A series of

  9. Idaho National Laboratory Cultural Resource Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    Lowrey, Diana Lee

    2011-02-01

    As a federal agency, the U.S. Department of Energy has been directed by Congress, the U.S. president, and the American public to provide leadership in the preservation of prehistoric, historic, and other cultural resources on the lands it administers. This mandate to preserve cultural resources in a spirit of stewardship for the future is outlined in various federal preservation laws, regulations, and guidelines such as the National Historic Preservation Act, the Archaeological Resources Protection Act, and the National Environmental Policy Act. The purpose of this Cultural Resource Management Plan is to describe how the Department of Energy, Idaho Operations Office will meet these responsibilities at the Idaho National Laboratory. This Laboratory, which is located in southeastern Idaho, is home to a wide variety of important cultural resources representing at least 13,500 years of human occupation in the southeastern Idaho area. These resources are nonrenewable; bear valuable physical and intangible legacies; and yield important information about the past, present, and perhaps the future. There are special challenges associated with balancing the preservation of these sites with the management and ongoing operation of an active scientific laboratory. The Department of Energy, Idaho Operations Office is committed to a cultural resource management program that accepts these challenges in a manner reflecting both the spirit and intent of the legislative mandates. This document is designed for multiple uses and is intended to be flexible and responsive to future changes in law or mission. Document flexibility and responsiveness will be assured through annual reviews and as-needed updates. Document content includes summaries of Laboratory cultural resource philosophy and overall Department of Energy policy; brief contextual overviews of Laboratory missions, environment, and cultural history; and an overview of cultural resource management practices. A series of

  10. Idaho National Laboratory Mission Accomplishments, Fiscal Year 2015

    Energy Technology Data Exchange (ETDEWEB)

    Allen, Todd Randall [Idaho National Lab. (INL), Idaho Falls, ID (United States); Wright, Virginia Latta [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-01

    A summary of mission accomplishments for the research organizations at the Idaho National Laboratory for FY 2015. Areas include Nuclear Energy, National and Homeland Security, Science and Technology Addressing Broad DOE Missions; Collaborations; and Stewardship and Operation of Research Facilities.

  11. Relay testing at Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    Bandyopadhyay, K.; Hofmayer, C.

    1989-01-01

    Brookhaven National Laboratory (BNL) is conducting a seismic test program on relays. The purpose of the test program is to investigate the influence of various designs, electrical and vibration parameters on the seismic capacity levels. The first series of testing has been completed and performed at Wyle Laboratories. The major part of the test program consisted of single axis, single frequency sine dwell tests. Random multiaxis, multifrequency tests were also performed. Highlights of the test results as well as a description of the testing methods are presented in this paper. 10 figs

  12. Post Irradiation Capabilities at the Idaho National Laboratory

    International Nuclear Information System (INIS)

    Schulthess, J.L.; Rosenberg, K.E.

    2011-01-01

    The U.S. Department of Energy (DOE), Office of Nuclear Energy (NE) oversees the efforts to ensure nuclear energy remains a viable option for the United States. A significant portion of these efforts are related to post-irradiation examinations (PIE) of highly activated fuel and materials that are subject to the extreme environment inside a nuclear reactor. As the lead national laboratory, Idaho National Laboratory (INL) has a rich history, experience, workforce and capabilities for performing PIE. However, new advances in tools and techniques for performing PIE now enable understanding the performance of fuels and materials at the nano-scale and smaller level. Examination at this level is critical since this is the scale at which irradiation damage occurs. The INL is on course to adopt these advanced tools and techniques to develop a comprehensive nuclear fuels and materials characterization capability that is unique in the world. Because INL has extensive PIE capabilities currently in place, a strong foundation exist to build upon as new capabilities are implemented and work load increases. In the recent past, INL has adopted significant capability to perform advanced PIE characterization. Looking forward, INL is planning for the addition of two facilities that will be built to meet the stringent demands of advanced tools and techniques for highly activated fuels and materials characterization. Dubbed the Irradiated Materials Characterization Laboratory (IMCL) and Advanced Post Irradiation Examination Capability, these facilities are next generation PIE laboratories designed to perform the work of PIE that cannot be performed in current DOE facilities. In addition to physical capabilities, INL has recently added two significant contributors to the Advanced Test Reactor-National Scientific User Facility (ATR-NSUF), Oak Ridge National Laboratory and University of California, Berkeley.

  13. NNSA Master Asset Map - Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Billie, Gepetta S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-01-01

    This report gives information on the following topics related to Sandia National Laboratories: site leadership's vision, condition, footprint management, major gaps and risks, and proposed investment plan.

  14. Argonne Research Library | Argonne National Laboratory

    Science.gov (United States)

    Argonne Argonne Research Library The Argonne Research Library supports the scientific and technical research needs of Argonne National Laboratory employees. Our library catalog is available via the Research questions or concerns, please contact us at librarians@anl.gov. Contact the Library Argonne Research Library

  15. Oak Ridge National Laboratory Institutional Plan, FY 1995--FY 2000

    Energy Technology Data Exchange (ETDEWEB)

    1994-11-01

    This report discusses the institutional plan for Oak Ridge National Laboratory for the next five years (1995-2000). Included in this report are the: laboratory director`s statement; laboratory mission, vision, and core competencies; laboratory plan; major laboratory initiatives; scientific and technical programs; critical success factors; summaries of other plans; and resource projections.

  16. Universities and national laboratory roles in nuclear engineering

    International Nuclear Information System (INIS)

    Sackett, J.I.

    1991-01-01

    Nuclear Engineering Education is being significantly challenged in the United States. The decline in enrollment generally and the reduction of the number of nuclear engineering departments has been well documented. These declines parallel a lack of new construction for nuclear power plants and a decline in research and development to support new plant design. Precisely at a time when innovation is is needed to deal with many issues facing nuclear power, the number of qualified people to do so is being reduced. It is important that the University and National Laboratory Communities cooperate to address these issues. The Universities must increasingly identify challenges facing nuclear power that demand innovative solutions and pursue them. To be drawn into the technology the best students must see a future, a need and identify challenges that they can meet. The University community can provide that vision with help from the National Laboratories. It has been a major goal within the reactor development program at Argonne National Laboratory to establish the kind of program that can help accomplish this

  17. Pacific Northwest National Laboratory FY96 Annual Self-Evaluation Report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    Pacific Northwest National Laboratory (PNNL) research and development efforts are concentrated on DOE`s environmental quality mission and the scientific research required to support that mission. The Laboratory also supports the energy resources and national security missions in areas where an overlap between our core competencies and DOE`s goals exists. Fiscal year 1996 saw the Laboratory focus its efforts on the results necessary for us to meet DOE`s most important needs and expectations. Six Critical Outcomes were established in partnership with DOE. The Laboratory met or exceeded performance expectations in most areas, including these outcomes and the implementation of the Laboratory`s Integrated Assessment Program. We believe our overall performance for this evaluation period has been outstanding. A summary of results and key issues is provided.

  18. Cultural Resource Investigation for the Materials and Fuels Complex Wastewater System Upgrade at the Idaho National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Brenda R. Pace; Julie B raun Williams; Hollie Gilbert; Dino Lowrey; Julie Brizzee

    2010-05-01

    The Materials and Fuels Complex (MFC) located in Bingham County at the Idaho National Laboratory (INL) in southeastern Idaho is considering several alternatives to upgrade wastewater systems to meet future needs at the facility. In April and May of 2010, the INL Cultural Resource Management Office conducted archival searches, archaeological field surveys, and coordination with the Shoshone-Bannock Tribes to identify cultural resources that may be adversely affected by the proposed construction and to provide recommendations to protect any resources listed or eligible for listing on the National Register of Historic Places. These investigations showed that one National Register-eligible archaeological site is located on the boundary of the area of potential effects for the wastewater upgrade. This report outlines protective measures to help ensure that this resource is not adversely affected by construction.

  19. Final Environmental Impact Statement/Environmental Impact Report for continued operation of Lawrence Livermore National Laboratory and Sandia National Laboratories, Livermore

    International Nuclear Information System (INIS)

    1992-08-01

    This Environmental Impact Statement/Environmental Impact Report (EIS/EIR) is prepared pursuant to the National Environmental Policy Act (NEPA) and the California Environmental Quality Act (CEQA). This document analyzes the potential environmental impacts of the proposed action: continued operation, including near-term (within 5 to 10 years) proposed projects, of Lawrence Livermore National Laboratory (LLNL) and Sandia National Laboratories, Livermore (SNL, Livermore). Additionally, this document analyzes a no action alternative involving continuing operations at FY 1992 funding levels without further growth, a modification of operations alternative to reduce adverse environmental impacts of operations or facilities, and a shutdown and decommissioning alternative of UC discontinuing its management of LLNL after the current contract expires on September 30, 1992. This document assesses the environmental impacts of the Laboratories' operations on air and water quality, geological and ecological systems, occupational and public health risks, prehistoric and historic resources, endangered species, floodplains and wetlands, socioeconomic resources, hazardous waste management, site contamination, and other environmental issues. The EIS/EIR is divided into five volumes and two companion reports. This volume contains the Final EIS/EIR technical appendices which provide technical support for the analyses in Volume 1 and also provide additional information and references

  20. Site environmental report for 2011. Sandia National Laboratories, California

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L. [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2012-05-01

    Sandia National Laboratories, California (SNL/CA) is a government-owned/contractoroperated laboratory. Sandia Corporation, a wholly-owned subsidiary of Lockheed Martin Corporation, manages and operates the laboratory for the Department of Energy’s National Nuclear Security Administration (NNSA). The NNSA Sandia Site Office administers the contract and oversees contractor operations at the site. This Site Environmental Report for 2011 was prepared in accordance with DOE Order 231.1B, Environment, Safety and Health Reporting (DOE 2011d). The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2011. General site and environmental program information is also included.

  1. Site Environmental Report for 2012 Sandia National Laboratories California

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L. [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2013-05-01

    Sandia National Laboratories, California (SNL/CA) is a government-owned/contractor-operated laboratory. Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, manages and operates the laboratory for the Department of Energy’s National Nuclear Security Administration (NNSA). The NNSA Sandia Field Office administers the contract and oversees contractor operations at the site. This Site Environmental Report for 2012 was prepared in accordance with DOE Order 231.1B, Environment, Safety and Health Reporting (DOE 2011d). The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2012. General site and environmental program information is also included.

  2. Charter of the Sandia National Laboratories Sandia Postdoctoral Development (SPD) Association.

    Energy Technology Data Exchange (ETDEWEB)

    McBride, Amber Alane Fisher; McBride, Amber Alane Fisher; Rodgers, Theron; Dong, Wen; Juan, Pierre-Alexandre; Barkholtz, Heather; Alley, William Morgan; Wolk, Benjamin Matthew; Vane, Zachary Phillips; Priye, Aashish; Ball, Cameron Scott; McBride, Amber Alane Fisher

    2017-03-01

    The SNL SPD Association represents all personnel that are classified as Postdoctoral Appointees at Sandia National Laboratories. The purpose of the SNL SPD Association is to address the needs and concerns of Postdoctoral Appointees within Sandia National Laboratories.

  3. 1994 Site Environmental Report Sandia National Laboratories Albuquerque, New Mexico

    International Nuclear Information System (INIS)

    Shyr, L.J.; Wiggins, T.; White, B.B.

    1995-09-01

    This 1994 report contains data from routine radiological and nonradiological environmental monitoring activities. Summaries of significant environmental compliance programs in progress, such as National Environmental Policy Act documentation, environmental permits, environmental restoration, and various waste management programs for Sandia National Laboratories in Albuquerque, New Mexico, are included. The maximum off-site dose impact from air emissions was calculated to be 1.5 x 10 -4 millirem. The total population within a 50-mile radius of Sandia National Laboratories/New Mexico received an estimated collective dose of 0.012 person-rem during 1994 from the laboratories' operations. This report is prepared for the U.S. Department of Energy in compliance with DOE Order 5400.1

  4. Targets development at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Smith, M.L.; Hebron, D.; Derzon, M.; Olson, R.; Alberts, T.

    1997-01-01

    For many years, Sandia National Laboratories under contract to the Department of Energy has produced targets designed to understand complex ion beam and z-pinch plasma physics. This poster focuses on the features of target designs that make them suitable for Z-pinch plasma physics applications. Precision diagnostic targets will prove critical in understanding the plasma physics model needed for future ion beam and z-pinch design. Targets are designed to meet specific physics needs; in this case the authors have fabricated targets to maximize information about the end-on versus side-on x-ray emission and z-pinch hohlraum development. In this poster, they describe the fabrication and characterization techniques. They include discussion of current targets under development as well as target fabrication capabilities. Advanced target designs are fabricated by Sandia National Laboratories in cooperation with General Atomics of San Diego, CA and W.J. Schafer Associates, Inc. of Livermore, CA

  5. Challenges and Opportunities To Achieve 50% Energy Savings in Homes. National Laboratory White Papers

    Energy Technology Data Exchange (ETDEWEB)

    Bianchi, Marcus V.A. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2011-07-01

    This report summarizes the key opportunities, gaps, and barriers identified by researchers from four national laboratories (Lawrence Berkeley National Laboratory, National Renewable Energy Laboratory, Oak Ridge National Laboratory, and Pacific Northwest National Laboratory) that must be addressed to achieve the longer term 50% saving goal for Building America to ensure coordination with the Building America industry teams who are focusing their research on systems to achieve the near-term 30% savings goal. Although new construction was included, the focus of the effort was on deep energy retrofits of existing homes.

  6. The DOE/NOAA meteorological program at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    George, D.H.

    1996-01-01

    The National Oceanic and Atmospheric Administration (NOAA) Air Resources Laboratory (ARL) has recently upgraded the U.S. Department of Energy's (DOE's) Idaho National Engineering Laboratory (INEL) Meteorological Measuring Network. This has allowed the entire service system to be modernized

  7. Serving the Nation for Fifty Years: 1952 - 2002 Lawrence Livermore National Laboratory [LLNL], Fifty Years of Accomplishments

    Science.gov (United States)

    2002-01-01

    For 50 years, Lawrence Livermore National Laboratory has been making history and making a difference. The outstanding efforts by a dedicated work force have led to many remarkable accomplishments. Creative individuals and interdisciplinary teams at the Laboratory have sought breakthrough advances to strengthen national security and to help meet other enduring national needs. The Laboratory's rich history includes many interwoven stories -- from the first nuclear test failure to accomplishments meeting today's challenges. Many stories are tied to Livermore's national security mission, which has evolved to include ensuring the safety, security, and reliability of the nation's nuclear weapons without conducting nuclear tests and preventing the proliferation and use of weapons of mass destruction. Throughout its history and in its wide range of research activities, Livermore has achieved breakthroughs in applied and basic science, remarkable feats of engineering, and extraordinary advances in experimental and computational capabilities. From the many stories to tell, one has been selected for each year of the Laboratory's history. Together, these stories give a sense of the Laboratory -- its lasting focus on important missions, dedication to scientific and technical excellence, and drive to made the world more secure and a better place to live.

  8. Challenges and Opportunities To Achieve 50% Energy Savings in Homes: National Laboratory White Papers

    Energy Technology Data Exchange (ETDEWEB)

    Bianchi, M. V. A.

    2011-07-01

    In 2010, researchers from four of the national laboratories involved in residential research (Lawrence Berkeley National Laboratory, National Renewable Energy Laboratory, Oak Ridge National Laboratory, and Pacific Northwest National Laboratory) were asked to prepare papers focusing on the key longer term research challenges, market barriers, and technology gaps that must be addressed to achieve the longer term 50% saving goal for Building America to ensure coordination with the Building America industry teams who are focusing their research on systems to achieve the near-term 30% savings goal. Although new construction was included, the focus of the effort was on deep energy retrofits of existing homes. This report summarizes the key opportunities, gaps, and barriers identified in the national laboratory white papers.

  9. Safeguards Knowledge Management & Retention at U.S. National Laboratories.

    Energy Technology Data Exchange (ETDEWEB)

    Haddal, Risa [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jones, Rebecca [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bersell, Bridget [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Frazar, Sarah [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Burbank, Roberta [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Stevens, Rebecca [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Cain, Ron [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kirk, Bernadette [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Morell, Sean [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-09-01

    In 2017, four U.S. National Laboratories collaborated on behalf of DOE/NNSA to explore the safeguards knowledge retention problem, identify possible approaches, and develop a strategy to address it. The one-year effort consisted of four primary tasks. First, the project sought to identify critical safeguards information at risk of loss. Second, a survey and workshop were conducted to assess nine U.S. National Laboratories' efforts to determine current safeguards knowledge retention practices and challenges, and identify best practices. Third, specific tools were developed to identify and predict critical safeguards knowledge gaps and how best to recruit in order to fill those gaps. Finally, based on findings from the first three tasks and research on other organizational approaches to address similar issues, a strategy was developed on potential knowledge retention methods, customized HR policies, and best practices that could be implemented across the National Laboratory Complex.

  10. Mathematics and Computer Science | Argonne National Laboratory

    Science.gov (United States)

    Extreme Computing Data-Intensive Science Applied Mathematics Science & Engineering Applications Software Extreme Computing Data-Intensive Science Applied Mathematics Science & Engineering Opportunities For Employees Staff Directory Argonne National Laboratory Mathematics and Computer Science Tools

  11. Power Management Controls, Ernest Orlando Lawrence Berkeley National Laboratory; Power Management Controls, Ernest Orlando Lawrence Berkeley National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Westerberg, Emil [Dalarna Univ., Borlaenge (Sweden). Graphic Art Technology

    2002-12-01

    This report describes the work that is being conducted on power management controls at Berkeley National Laboratory. We can see a significant increasing amount of electronic equipment in our work places and in our every day life. Today's modern society depends on a constant energy flow. The future's increasing need of energy will burden our economy as well as our environment. The project group at Berkeley National Laboratory is working with leading manufacturers of office equipment. The goal is to agree on how interfaces for power management should be presented on office equipment. User friendliness and a more consistent power management interface is the project focus. The project group's role is to analyze data that is relevant to power management, as well as to coordinate communication and discussions among the involved parties.

  12. Idaho National Laboratory - Nuclear Research Center

    International Nuclear Information System (INIS)

    Zaidi, M.K.

    2005-01-01

    Full text: The Idaho National Laboratory is committed to the providing international nuclear leadership for the 21st Century, developing and demonstrating compiling national security technologies, and delivering excellence in science and technology as one of the United States Department of Energy's (DOE) multiprogram national laboratories. INL runs three major programs - Nuclear, Security and Science. nuclear programs covers the Advanced test reactor, Six Generation technology concepts selected for R and D, Targeting tumors - Boron Neutron capture therapy. Homeland security - Homeland Security establishes the Control System Security and Test Center, Critical Infrastructure Test Range evaluates technologies on a scalable basis, INL conducts high performance computing and visualization research and science - INL facility established for Geocentrifuge Research, Idaho Laboratory, a Utah company achieved major milestone in hydrogen research and INL uses extremophile bacteria to ease bleaching's environmental cost. To provide leadership in the education and training, INL has established an Institute of Nuclear Science and Engineering (Inset). The institute will offer a four year degree based on a newly developed curriculum - two year of basic science course work and two years of participation in project planning and development. The students enrolled in this program can continue to get a masters or a doctoral degree. This summer Inset is the host for the training of the first international group selected by the World Nuclear University (WNU) - 75 fellowship holders and their 30 instructors from 40 countries. INL has been assigned to provide future global leadership in the field of nuclear science and technology. Here, at INL, we keep safety first above all things and our logo is 'Nuclear leadership synonymous with safety leadership'

  13. Sandia National Laboratories: Pathfinder Radar ISR and Synthetic Aperture

    Science.gov (United States)

    Radar (SAR) Systems Sandia National Laboratories Exceptional service in the national interest ; Technology Defense Systems & Assessments About Defense Systems & Assessments Program Areas Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  14. Dark Matter Search with sub-keV Germanium Detectors at the China Jinping Underground Laboratory

    International Nuclear Information System (INIS)

    Yue Qian; Wong, Henry T

    2012-01-01

    Germanium detectors with sub-keV sensitivities open a window to search for low-mass WIMP dark matter. The CDEX-TEXONO Collaboration is conducting the first research program at the new China Jinping Underground Laboratory with this approach. The status and plans of the laboratory and the experiment are discussed.

  15. Oak Ridge National Laboratory institutional plan, FY 1996--FY 2001

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-01

    This report discusses the institutional plan for Oak Ridge National Laboratory for the next five years. Included in the report are: laboratory director`s statement; laboratory mission, vision, and core competencies; laboratory strategic plan; major laboratory initiatives; scientific and technical programs; critical success factors; summaries of other plans; resource projections; appendix which contains data for site and facilities, user facility, science and mathematic education and human resources; and laboratory organization chart.

  16. Pacific Northwest National Laboratory institutional plan: FY 1996--2001

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-01-01

    This report contains the operation and direction plan for the Pacific Northwest National Laboratory of the US Department of Energy. The topics of the plan include the laboratory mission and core competencies, the laboratory strategic plan; the laboratory initiatives in molecular sciences, microbial biotechnology, global environmental change, complex modeling of physical systems, advanced processing technology, energy technology development, and medical technologies and systems; core business areas, critical success factors, and resource projections.

  17. Applied programs at Brookhaven National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    1991-09-01

    This document overviews the areas of current research at Brookhaven National Laboratory. Technology transfer and the user facilities are discussed. Current topics are presented in the areas of applied physics, chemical science, material science, energy efficiency and conservation, environmental health and mathematics, biosystems and process science, oceanography, and nuclear energy. (GHH)

  18. High energy laser facilities at Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    Holmes, N.C.

    1981-06-01

    High energy laser facilities at Lawrence Livermore National Laboratory are described, with special emphasis on their use for equation of state investigations using laser-generated shockwaves. Shock wave diagnostics now in use are described. Future Laboratory facilities are also discussed

  19. Oak Ridge National Laboratory site data for safety-analysis report

    International Nuclear Information System (INIS)

    Fitzpatrick, F.C.

    1982-12-01

    The Oak Ridge National Laboratory site data contained herein were compiled in support of the United States Department of Energy (USDOE) Oak Ridge Operations Office Order OR 5481.1. That order sets forth assignment of responsibilities for safety analysis and review responsibilities and provides guidance relative to the content and format of safety analysis reports. The information presented in this document is intended for use by reference in individual safety analysis reports where applicable to support accident analyses or the establishment of design bases of significance to safety, and it is applicable only to Oak Ridge National Laboratory facilities in Bethel and Melton Valleys. This information includes broad descriptions of the site characteristics, radioactive waste handling and monitoring practices, and the organization and operating policies at Oak Ridge National Laboratory. The historical background of the Laboratory is discussed briefly and the overall physical situation of the facilities is described in the following paragraphs

  20. Oak Ridge National Laboratory site data for safety-analysis report

    Energy Technology Data Exchange (ETDEWEB)

    Fitzpatrick, F.C.

    1982-12-01

    The Oak Ridge National Laboratory site data contained herein were compiled in support of the United States Department of Energy (USDOE) Oak Ridge Operations Office Order OR 5481.1. That order sets forth assignment of responsibilities for safety analysis and review responsibilities and provides guidance relative to the content and format of safety analysis reports. The information presented in this document is intended for use by reference in individual safety analysis reports where applicable to support accident analyses or the establishment of design bases of significance to safety, and it is applicable only to Oak Ridge National Laboratory facilities in Bethel and Melton Valleys. This information includes broad descriptions of the site characteristics, radioactive waste handling and monitoring practices, and the organization and operating policies at Oak Ridge National Laboratory. The historical background of the Laboratory is discussed briefly and the overall physical situation of the facilities is described in the following paragraphs.

  1. Argonne National Laboratory 1986 publications

    International Nuclear Information System (INIS)

    Kopta, J.A.; Springer, C.J.

    1987-12-01

    This report is a bibliography of scientific and technical 1986 publications of Argonne National Laboratory. Some are ANL contributions to outside organizations' reports published in 1986. This compilation, prepared by the Technical Information Services Technical Publications Section (TPS), lists all nonrestricted 1986 publications submitted to TPS by the Laboratory's Divisions. Author indexes list ANL authors only. If a first author is not an ANL employee, an asterisk in the bibliographic citation indicates the first ANL author. The report is divided into seven parts: Journal Articles -- Listed by first author; ANL Reports -- Listed by report number; ANL and non-ANL Unnumbered Reports -- Listed by report number; Non-ANL Numbered Reports -- Listed by report number; Books and Book Chapters -- Listed by first author; Conference Papers -- Listed by first author; and Complete Author Index

  2. Argonne National Laboratory 1986 publications

    Energy Technology Data Exchange (ETDEWEB)

    Kopta, J.A.; Springer, C.J.

    1987-12-01

    This report is a bibliography of scientific and technical 1986 publications of Argonne National Laboratory. Some are ANL contributions to outside organizations' reports published in 1986. This compilation, prepared by the Technical Information Services Technical Publications Section (TPS), lists all nonrestricted 1986 publications submitted to TPS by the Laboratory's Divisions. Author indexes list ANL authors only. If a first author is not an ANL employee, an asterisk in the bibliographic citation indicates the first ANL author. The report is divided into seven parts: Journal Articles -- Listed by first author; ANL Reports -- Listed by report number; ANL and non-ANL Unnumbered Reports -- Listed by report number; Non-ANL Numbered Reports -- Listed by report number; Books and Book Chapters -- Listed by first author; Conference Papers -- Listed by first author; and Complete Author Index.

  3. Location | Frederick National Laboratory for Cancer Research

    Science.gov (United States)

    The Frederick National Laboratory for Cancer Research campus is located 50 miles northwest of Washington, D.C., and 50 miles west of Baltimore, Maryland, in Frederick, Maryland. Satellite locations include leased and government facilities extending s

  4. Final Environmental Impact Statement and Environmental Impact Report for continued operation of Lawrence Livermore National Laboratory and Sandia National Laboratories, Livermore

    International Nuclear Information System (INIS)

    1992-08-01

    This Environmental Impact Statement/Environmental Impact Report (EIS/EIR) is prepared pursuant to the National Environmental Policy Act (NEPA) and the California Environmental Quality Act (CEQA). This document analyzes the potential environmental impacts of the proposed action: continued operation, including near-term (within 5 to 10 years) proposed projects, of Lawrence Livermore National Laboratory (LLNL) and Sandia National Laboratories, Livermore (SNL, Livermore). Additionally, this document analyzes a no action alternative involving continuing operations at FY 1992 funding levels without further growth, a modification of operations alternative to reduce adverse environmental impacts of operations or facilities, and a shutdown and decommissioning alternative of UC discontinuing its management of LLNL after the current contract expires on September 30, 1992. This document assesses the environmental impacts of the Laboratories' operations on air and water quality, geological and ecological systems, occupational and public health risks, prehistoric and historic resources, endangered species, floodplains and wetlands, socioeconomic resources, hazardous waste management, site contamination, and other environmental issues. The EIS/EIR is divided into five volumes and two companion reports. This volume contains copies of the written comments and transcripts of individual statements at the public hearing and the responses to them

  5. Oak Ridge National Laboratory Review

    Energy Technology Data Exchange (ETDEWEB)

    Krause, C.; Pearce, J.; Zucker, A. (eds.)

    1992-01-01

    This report presents brief descriptions of the following programs at Oak Ridge National Laboratory: The effects of pollution and climate change on forests; automation to improve the safety and efficiency of rearming battle tanks; new technologies for DNA sequencing; ORNL probes the human genome; ORNL as a supercomputer research center; paving the way to superconcrete made with polystyrene; a new look at supercritical water used in waste treatment; and small mammals as environmental monitors.

  6. A study of Consistency in the Selection of Search Terms and Search Concepts: A Case Study in National Taiwan University

    Directory of Open Access Journals (Sweden)

    Mu-hsuan Huang

    2001-12-01

    Full Text Available This article analyzes the consistency in the selection of search terms and search contents of college and graduate students in National Taiwan University when they are using PsycLIT CD-ROM database. 31 students conducted pre-assigned searches, doing 59 searches generating 609 search terms. The study finds the consistency in selection of search terms of first level is 22.14% and second level is 35%. These results are similar with others’ researches. About the consistency in search concepts, no matter the overlaps of searched articles or judge relevant articles are lower than other researches. [Article content in Chinese

  7. National Storage Laboratory: a collaborative research project

    Science.gov (United States)

    Coyne, Robert A.; Hulen, Harry; Watson, Richard W.

    1993-01-01

    The grand challenges of science and industry that are driving computing and communications have created corresponding challenges in information storage and retrieval. An industry-led collaborative project has been organized to investigate technology for storage systems that will be the future repositories of national information assets. Industry participants are IBM Federal Systems Company, Ampex Recording Systems Corporation, General Atomics DISCOS Division, IBM ADSTAR, Maximum Strategy Corporation, Network Systems Corporation, and Zitel Corporation. Industry members of the collaborative project are funding their own participation. Lawrence Livermore National Laboratory through its National Energy Research Supercomputer Center (NERSC) will participate in the project as the operational site and provider of applications. The expected result is the creation of a National Storage Laboratory to serve as a prototype and demonstration facility. It is expected that this prototype will represent a significant advance in the technology for distributed storage systems capable of handling gigabyte-class files at gigabit-per-second data rates. Specifically, the collaboration expects to make significant advances in hardware, software, and systems technology in four areas of need, (1) network-attached high performance storage; (2) multiple, dynamic, distributed storage hierarchies; (3) layered access to storage system services; and (4) storage system management.

  8. Argonne National Laboratory: An example of a US nuclear research centre

    International Nuclear Information System (INIS)

    Bhattacharyya, S.

    2001-01-01

    The nuclear era was ushered in 1942 with the demonstration of a sustained nuclear chain reaction in Chicago Pile 1 facility. The USA then set up five large national multi disciplinary laboratories for developing nuclear technology for civilian use and three national laboratories for military applications. Reactor development, including prototype construction, was the main focus of the Argonne National Laboratory. More than 100 power reactors operating in the USA have benefited from R and D in the national laboratories. However, currently the support for nuclear power has waned. With the end of the cold war there has also been a need to change the mission of laboratories involved in military applications. For all laboratories of the Department of Energy (DOE) the mission, which was clearly focused earlier on high risk, high payoff long term R and D has now become quite diffused with a number of near term programmes. Cost and mission considerations have resulted in shutting down of many large facilities as well as auxiliary facilities. Erosion of infrastructure has also resulted in reduced opportunities for research which means dwindling of interest in nuclear science and engineering among the younger generation. The current focus of nuclear R and D in the DOE laboratories is on plant life extension, deactivation and decommissioning, spent fuel management and waste management. Advanced aspects include space nuclear applications and nuclear fusion R and D. At the Argonne National Laboratory, major initiatives for the future would be in the areas of science, energy, environment and non-proliferation technologies. International collaboration would be useful mechanisms to achieve cost effective solutions for major developmental areas. These include reactor operation and safety, repositories for high level nuclear waste, reactor system decommissioning, large projects like a nuclear fusion reactor and advanced power reactors. The IAEA could have a positive role in these

  9. A woman like you: Women scientists and engineers at Brookhaven National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Benkovitz, Carmen; Bernholc, Nicole; Cohen, Anita; Eng, Susan; Enriquez-Leder, Rosario; Franz, Barbara; Gorden, Patricia; Hanson, Louise; Lamble, Geraldine; Martin, Harriet; Mastrangelo, Iris; McLane, Victoria; Villela, Maria-Alicia; Vivirito, Katherine; Woodhead, Avril

    1991-01-01

    This publication by the women in Science and Engineering introduces career possibilities in science and engineering. It introduces what work and home life are like for women who have already entered these fields. Women at Brookhaven National Laboratory work in a variety of challenging research roles -- from biologist and environmental scientist to safety engineer, from patent lawyer to technician. Brookhaven National Laboratory is a multi-program laboratory which carries out basic and applied research in the physical, biomedical and environmental sciences and in selected energy technologies. The Laboratory is managed by Associated University, Inc., under contract with the US Department of Energy. Brookhaven and the other national laboratories, because of their enormous research resources, can play a critical role in a education and training of the workforce.

  10. Argonne National Laboratory as an interface between physics and industry

    International Nuclear Information System (INIS)

    Sachs, R.G.

    1976-01-01

    Application of physics to industry requires the involvement of many other disciplines, including chemistry, material sciences, and many other fields of engineering; and the national laboratories in the United States have a mix of such disciplines particularly conducive to such transfer. They have participated in one of the most striking transfers of physics to industry in history, namely, the development of the nuclear power industry. Scientific feasibility of nuclear power was established when the first chain reaction was demonstrated at the Metallurgical Laboratory. Argonne National Laboratory as the successor to the Metallurgical Laboratory has played a major role in transferring the results of this physics experiment to industry, especially in demonstrating engineering feasibility of nuclear power. Major developments in industrial instrumentation have taken place in parallel with the development of nuclear energy, and many of these developments are applicable to other industrial systems as well. The responsibilities of the national laboratories have recently been extended into many energy technologies other than nuclear, offering them the opportunity to serve as an interface for transfer of physics into many new industries. A number of examples are cited. (author)

  11. Cultural Resource Assessment of the Test Area North Demolition Landfill at the Idaho National Engineering and Environmental Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Brenda R. Pace

    2003-07-01

    The proposed new demolition landfill at Test Area North on the Idaho National Engineering and Environmental Laboratory (INEEL) will support ongoing demolition and decontamination within the facilities on the north end of the INEEL. In June of 2003, the INEEL Cultural Resource Management Office conducted archival searches, field surveys, and coordination with the Shoshone-Bannock Tribes to identify all cultural resources that might be adversely affected by the project and to provide recommendations to protect those listed or eligible for listing on the National Register of Historic Places. These investigations showed that landfill construction and operation would affect two significant cultural resources. This report outlines protective measures to ensure that these effects are not adverse.

  12. Cultural Resource Assessment of the Test Area North Demolition Landfill at the Idaho National Engineering and Environmental Laboratory

    International Nuclear Information System (INIS)

    Brenda R. Pace

    2003-01-01

    The proposed new demolition landfill at Test Area North on the Idaho National Engineering and Environmental Laboratory (INEEL) will support ongoing demolition and decontamination within the facilities on the north end of the INEEL. In June of 2003, the INEEL Cultural Resource Management Office conducted archival searches, field surveys, and coordination with the Shoshone-Bannock Tribes to identify all cultural resources that might be adversely affected by the project and to provide recommendations to protect those listed or eligible for listing on the National Register of Historic Places. These investigations showed that landfill construction and operation would affect two significant cultural resources. This report outlines protective measures to ensure that these effects are not adverse

  13. Mobile robotics research at Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Morse, W.D.

    1998-09-01

    Sandia is a National Security Laboratory providing scientific and engineering solutions to meet national needs for both government and industry. As part of this mission, the Intelligent Systems and Robotics Center conducts research and development in robotics and intelligent machine technologies. An overview of Sandia`s mobile robotics research is provided. Recent achievements and future directions in the areas of coordinated mobile manipulation, small smart machines, world modeling, and special application robots are presented.

  14. LANMAS alpha configured for Sandia National Laboratories and Paducah Gaseous Diffusion Plant

    International Nuclear Information System (INIS)

    Woychick, M.R.; Bracey, J.T.; Kern, E.A.; Alvarado, A.

    1993-07-01

    Los Alamos National Laboratory and the Westinghouse Hanford Company have been working jointly for the past 2 years to develop LANMAS (Local Area Network Material Accountability System), the next generation of a US Department of Energy nuclear material accountability system. LANMAS is being designed to reflect the broad-based needs of the US Department of Energy's Material Control ampersand Accountability and Nuclear Materials Management communities, and its developers believe that significant cost savings can be achieved by implementing LANMAS complex-wide, where feasible. LANMAS is being designed so that it is transportable to appropriate US Department of Energy sites. To accomplish this, LANMAS will be configurable to local site work culture. Many US Department of Energy sites are interested in the LANMAS project, and several have participated in its development; some have committed resources. The original LANMAS project team included representatives from the Hanford Site and Los Alamos. As of June 1993, the following sites have also supported the project: Sandia National Laboratory Albuquerque; Sandia National Laboratory Livermore; Paducah Gaseous Diffusion Plant; Lawrence Livermore National Laboratory; Bettis Atomic Power Laboratory; and Knolls Atomic Power Laboratory. In addition, LANMAS is being targeted as a candidate for the US Department of Energy Complex 21, a project designed to restructure the nation's nuclear weapons complex

  15. Mozambique's journey toward accreditation of the National Tuberculosis Reference Laboratory.

    Science.gov (United States)

    Viegas, Sofia O; Azam, Khalide; Madeira, Carla; Aguiar, Carmen; Dolores, Carolina; Mandlaze, Ana P; Chongo, Patrina; Masamha, Jessina; Cirillo, Daniela M; Jani, Ilesh V; Gudo, Eduardo S

    2017-01-01

    Internationally-accredited laboratories are recognised for their superior test reliability, operational performance, quality management and competence. In a bid to meet international quality standards, the Mozambique National Institute of Health enrolled the National Tuberculosis Reference Laboratory (NTRL) in a continuous quality improvement process towards ISO 15189 accreditation. Here, we describe the road map taken by the NTRL to achieve international accreditation. The NTRL adopted the Strengthening Laboratory Management Toward Accreditation (SLMTA) programme as a strategy to implement a quality management system. After SLMTA, the Mozambique National Institute of Health committed to accelerate the NTRL's process toward accreditation. An action plan was designed to streamline the process. Quality indicators were defined to benchmark progress. Staff were trained to improve performance. Mentorship from an experienced assessor was provided. Fulfilment of accreditation standards was assessed by the Portuguese Accreditation Board. Of the eight laboratories participating in SLMTA, the NTRL was the best-performing laboratory, achieving a 53.6% improvement over the SLMTA baseline conducted in February 2011 to the Stepwise Laboratory Quality Improvement Process Towards Accreditation (SLIPTA) assessment in June 2013. During the accreditation assessment in September 2014, 25 minor nonconformities were identified and addressed. In March 2015, the NTRL received Portuguese Accreditation Board recognition of technical competency for fluorescence smear microscopy, and solid and liquid culture. The NTRL is the first laboratory in Mozambique to achieve ISO 15189 accreditation. From our experience, accreditation was made possible by institutional commitment, strong laboratory leadership, staff motivation, adequate infrastructure and a comprehensive action plan.

  16. Neutron Scattering Activity at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Bourke, M.A.M.

    2015-01-01

    The nondestructive and bulk penetrating aspects of neutron scattering techniques make them well suited to the study of materials from the nuclear energy sector (particularly those which are radioactive). This report provides a summary of the facility, LANSCE, which is used at Los Alamos National laboratory for these studies. It also provides a brief description of activities related to line broadening studies of radiation damage and recent imaging and offers observations about the outlook for future activity. The work alluded to below was performed during the period of the CRP by researchers that included but were not limited to; Sven Vogel and Don Brown of Los Alamos National Laboratory; and Anton Tremsin of the University of California, Berkeley. (author)

  17. Oak Ridge National Laboratory Institutional Plan, FY 1991--FY 1996

    Energy Technology Data Exchange (ETDEWEB)

    1991-02-01

    The Oak Ridge National Laboratory -- one of DOE's major multiprogram laboratories -- focuses its resources on energy research and development (R D). To be able to meet these R D challenges, the Laboratory must achieve excellence in its operations relative to environmental, safety, and health (ES H) protection and to restore its aging facility infrastructure. ORNL's missions are carried out in compliance with all applicable ES H regulations. The Laboratory conducts applied R D in energy technologies -- in conservation; fission; magnetic fusion; health and environmental protection; waste management; renewable resources; and fossil energy. Experimental and theoretical research is undertaken to investigate fundamental problems in physical, chemical, materials, computational, biomedical, earth, and environmental sciences; to advance scientific knowledge; and to support energy technology R D. ORNL designs, builds, and operates unique research facilities for the benefit of university, industrial, and national laboratory researchers. The Laboratory serves as a catalyst in bringing national and international research elements together for important scientific and technical collaborations. ORNL helps to prepare the scientific and technical work force of the future by offering innovative and varied learning and R D experiences at the Laboratory for students and faculty from preschool level through postdoctoral candidates. The transfer of science and technology to US industries and universities is an integral component of ORNL's R D missions. ORNL also undertakes research and development for non-DOE sponsors when such work is synergistic with DOE mission. 66 figs., 55 tabs.

  18. Oak Ridge National Laboratory Institutional Plan, FY 1991--FY 1996

    International Nuclear Information System (INIS)

    1991-02-01

    The Oak Ridge National Laboratory -- one of DOE's major multiprogram laboratories -- focuses its resources on energy research and development (R ampersand D). To be able to meet these R ampersand D challenges, the Laboratory must achieve excellence in its operations relative to environmental, safety, and health (ES ampersand H) protection and to restore its aging facility infrastructure. ORNL's missions are carried out in compliance with all applicable ES ampersand H regulations. The Laboratory conducts applied R ampersand D in energy technologies -- in conservation; fission; magnetic fusion; health and environmental protection; waste management; renewable resources; and fossil energy. Experimental and theoretical research is undertaken to investigate fundamental problems in physical, chemical, materials, computational, biomedical, earth, and environmental sciences; to advance scientific knowledge; and to support energy technology R ampersand D. ORNL designs, builds, and operates unique research facilities for the benefit of university, industrial, and national laboratory researchers. The Laboratory serves as a catalyst in bringing national and international research elements together for important scientific and technical collaborations. ORNL helps to prepare the scientific and technical work force of the future by offering innovative and varied learning and R ampersand D experiences at the Laboratory for students and faculty from preschool level through postdoctoral candidates. The transfer of science and technology to US industries and universities is an integral component of ORNL's R ampersand D missions. ORNL also undertakes research and development for non-DOE sponsors when such work is synergistic with DOE mission. 66 figs., 55 tabs

  19. National Environmental Policy Act (NEPA) Compliance Guide, Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, R.P. [Hansen Environmental Consultants, Englewood, CO (United States)

    1995-08-01

    This report contains a comprehensive National Environmental Policy Act (NEPA) Compliance Guide for the Sandia National Laboratories. It is based on the Council on Environmental Quality (CEQ) NEPA regulations in 40 CFR Parts 1500 through 1508; the US Department of Energy (DOE) N-EPA implementing procedures in 10 CFR Part 102 1; DOE Order 5440.1E; the DOE ``Secretarial Policy Statement on the National Environmental Policy Act`` of June 1994- Sandia NEPA compliance procedures-, and other CEQ and DOE guidance. The Guide includes step-by-step procedures for preparation of Environmental Checklists/Action Descriptions Memoranda (ECL/ADMs), Environmental Assessments (EAs), and Environmental Impact Statements (EISs). It also includes sections on ``Dealing With NEPA Documentation Problems`` and ``Special N-EPA Compliance Issues.``

  20. Argonne National Laboratory Annual Report of Laboratory Directed Research and Development program activities FY 2011.

    Energy Technology Data Exchange (ETDEWEB)

    (Office of The Director)

    2012-04-25

    As a national laboratory Argonne concentrates on scientific and technological challenges that can only be addressed through a sustained, interdisciplinary focus at a national scale. Argonne's eight major initiatives, as enumerated in its strategic plan, are Hard X-ray Sciences, Leadership Computing, Materials and Molecular Design and Discovery, Energy Storage, Alternative Energy and Efficiency, Nuclear Energy, Biological and Environmental Systems, and National Security. The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel technical concepts, enhance the Laboratory's research and development (R and D) capabilities, and pursue its strategic goals. projects are selected from proposals for creative and innovative R and D studies that require advance exploration before they are considered to be sufficiently developed to obtain support through normal programmatic channels. Among the aims of the projects supported by the LDRD Program are the following: establishment of engineering proof of principle, assessment of design feasibility for prospective facilities, development of instrumentation or computational methods or systems, and discoveries in fundamental science and exploratory development.

  1. Argonne National Laboratory Annual Report of Laboratory Directed Research and Development program activities FY 2010.

    Energy Technology Data Exchange (ETDEWEB)

    (Office of The Director)

    2012-04-25

    As a national laboratory Argonne concentrates on scientific and technological challenges that can only be addressed through a sustained, interdisciplinary focus at a national scale. Argonne's eight major initiatives, as enumerated in its strategic plan, are Hard X-ray Sciences, Leadership Computing, Materials and Molecular Design and Discovery, Energy Storage, Alternative Energy and Efficiency, Nuclear Energy, Biological and Environmental Systems, and National Security. The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel technical concepts, enhance the Laboratory's research and development (R and D) capabilities, and pursue its strategic goals. projects are selected from proposals for creative and innovative R and D studies that require advance exploration before they are considered to be sufficiently developed to obtain support through normal programmatic channels. Among the aims of the projects supported by the LDRD Program are the following: establishment of engineering proof of principle, assessment of design feasibility for prospective facilities, development of instrumentation or computational methods or systems, and discoveries in fundamental science and exploratory development.

  2. Inertial confinement fusion at the Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Lindman, E.; Baker, D.; Barnes, C.; Bauer, B.; Beck, J.B.

    1997-01-01

    The Los Alamos National Laboratory is contributing to the resolution of key issues in the US Inertial-Confinement-Fusion Program and plans to play a strong role in the experimental program at the National Ignition Facility when it is completed

  3. Computational geomechanics and applications at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Arguello, Jose Guadalupe Jr.

    2010-01-01

    Sandia National Laboratories (SNL) is a multi-program national laboratory in the business of national security, whose primary mission is nuclear weapons (NW). It is a prime contractor to the USDOE, operating under the NNSA and is one of the three NW national laboratories. It has a long history of involvement in the area of geomechanics, starting with the some of the earliest weapons tests at Nevada. Projects in which geomechanics support (in general) and computational geomechanics support (in particular) are at the forefront at Sandia, range from those associated with civilian programs to those in the defense programs. SNL has had significant involvement and participation in the Waste Isolation Pilot Plant (low-level defense nuclear waste), the Yucca Mountain Project (formerly proposed for commercial spent fuel and high-level nuclear waste), and the Strategic Petroleum Reserve (the nation's emergency petroleum store). In addition, numerous industrial partners seek-out our computational/geomechanics expertise, and there are efforts in compressed air and natural gas storage, as well as in CO 2 Sequestration. Likewise, there have also been collaborative past efforts in the areas of compactable reservoir response, the response of salt structures associated with reservoirs, and basin modeling for the Oil and Gas industry. There are also efforts on the defense front, ranging from assessment of vulnerability of infrastructure to defeat of hardened targets, which require an understanding and application of computational geomechanics. Several examples from some of these areas will be described and discussed to give the audience a flavor of the type of work currently being performed at Sandia in the general area of geomechanics.

  4. The integral fast reactor fuels reprocessing laboratory at Argonne National Laboratory, Illinois

    International Nuclear Information System (INIS)

    Wolson, R.D.; Tomczuk, Z.; Fischer, D.F.; Slawecki, M.A.; Miller, W.E.

    1986-09-01

    The processing of Integral Fast Reactor (IFR) metal fuel utilizes pyrochemical fuel reprocessing steps. These steps include separation of the fission products from uranium and plutonium by electrorefining in a fused salt, subsequent concentration of uranium and plutonium for reuse, removal, concentration, and packaging of the waste material. Approximately two years ago a facility became operational at Argonne National Laboratory-Illinois to establish the chemical feasibility of proposed reprocessing and consolidation processes. Sensitivity of the pyroprocessing melts to air oxidation necessitated operation in atmosphere-controlled enclosures. The Integral Fast Reactor Fuels Reprocessing Laboratory is described

  5. Argonne National Laboratory institutional plan FY 2002 - FY 2007

    International Nuclear Information System (INIS)

    Beggs, S. D.

    2001-01-01

    The national laboratory system provides a unique resource for addressing the national needs inherent in the mission of the Department of Energy. Argonne, which grew out of Enrico Fermi's pioneering work on the development of nuclear power, was the first national laboratory and, in many ways, has set the standard for those that followed. As the Laboratory's new director, I am pleased to present the Argonne National Laboratory Institutional Plan for FY 2002 through FY 2007 on behalf of the extraordinary group of scientists, engineers, technicians, administrators, and others who re responsible for the Laboratory's distinguished record of achievement. Like our sister DOE laboratories, Argonne uses a multifaceted approach to advance U.S. R and D priorities. First, we assemble interdisciplinary teams of scientists and engineers to address complex problems. For example, our initiative in Functional Genomics will bring together biologists, computer scientists, environmental scientists, and staff of the Advanced Photon Source to develop complete maps of cellular function. Second, we cultivate specific core competencies in science and technology; this Institutional Plan discusses the many ways in which our core competencies support DOE's four mission areas. Third, we serve the scientific community by designing, building, and operating world-class user facilities, such as the Advanced Photon Source, the Intense Pulsed Neutron Source, and the Argonne Tandem-Linac Accelerator System. This Plan summarizes the visions, missions, and strategic plans for the Laboratory's existing major user facilities, and it explains our approach to the planned Rare Isotope Accelerator. Fourth, we help develop the next generation of scientists and engineers through educational programs, many of which involve bright young people in research. This Plan summarizes our vision, objectives, and strategies in the education area, and it gives statistics on student and faculty participation. Finally, we

  6. Sandia National Laboratories analysis code data base

    Science.gov (United States)

    Peterson, C. W.

    1994-11-01

    Sandia National Laboratories' mission is to solve important problems in the areas of national defense, energy security, environmental integrity, and industrial technology. The laboratories' strategy for accomplishing this mission is to conduct research to provide an understanding of the important physical phenomena underlying any problem, and then to construct validated computational models of the phenomena which can be used as tools to solve the problem. In the course of implementing this strategy, Sandia's technical staff has produced a wide variety of numerical problem-solving tools which they use regularly in the design, analysis, performance prediction, and optimization of Sandia components, systems, and manufacturing processes. This report provides the relevant technical and accessibility data on the numerical codes used at Sandia, including information on the technical competency or capability area that each code addresses, code 'ownership' and release status, and references describing the physical models and numerical implementation.

  7. Sandia National Laboratories analysis code data base

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, C.W.

    1994-11-01

    Sandia National Laboratories, mission is to solve important problems in the areas of national defense, energy security, environmental integrity, and industrial technology. The Laboratories` strategy for accomplishing this mission is to conduct research to provide an understanding of the important physical phenomena underlying any problem, and then to construct validated computational models of the phenomena which can be used as tools to solve the problem. In the course of implementing this strategy, Sandia`s technical staff has produced a wide variety of numerical problem-solving tools which they use regularly in the design, analysis, performance prediction, and optimization of Sandia components, systems and manufacturing processes. This report provides the relevant technical and accessibility data on the numerical codes used at Sandia, including information on the technical competency or capability area that each code addresses, code ``ownership`` and release status, and references describing the physical models and numerical implementation.

  8. Final Environmental Impact Statement and Environmental Impact Report for continued operation of Lawrence Livermore National Laboratory and Sandia National Laboratories, Livermore

    International Nuclear Information System (INIS)

    1992-08-01

    This Environmental Impact Statement/Environmental Impact Report (EIS/EIR) is prepared pursuant to the National Environmental Policy Act (NEPA) and the California Environmental Quality Act (CEQA). This document analyzes the potential environmental impacts of the proposed action: continued operation, including near-term (within 5 to 10 years) proposed projects, of Lawrence Livermore National Laboratory (LLNL) and Sandia National Laboratories, Livermore (SNL, Livermore). Additionally, this document analyzes a no action alternative involving continuing operations at FY 1992 funding levels without further growth, a modification of operations alternative to reduce adverse environmental impacts of operations or facilities, and a shutdown and decommissioning alternative of UC discontinuing its management of LLNL after the current contract expires on September 30, 1992. This document assesses the environmental impacts of the Laboratories' operations on air and water quality, geological and ecological systems, occupational and public health risks, prehistoric and historic resources, endangered species, floodplains and wetlands, socioeconomic resources, hazardous waste management, site contamination, and other environmental issues. The EIS/EIR is divided into five volumes and two companion reports. This volume contains the Final EIS/EIR, which in part relies on the detailed information in the appendices, and comprehensively discusses the proposed action, the alternatives, and the existing conditions and impacts of the proposed action and the alternatives

  9. DECOMMISSIONING THE HIGH PRESSURE TRITIUM LABORATORY AT LOS ALAMOS NATIONAL LABORATORY

    International Nuclear Information System (INIS)

    Peifer, M.J.; Rendell, K.; Hearnsberger, D.W.

    2003-01-01

    In May 0f 2000, the Cerro Grande wild land fire burned approximately 48,000 acres in and around Los Alamos. In addition to the many buildings that were destroyed in the town site, many structures were also damaged and destroyed within the 43 square miles that comprise the Los Alamos National Laboratory (LANL). A special Act of Congress provided funding to remove Laboratory structures that were damaged by the fire, or that could be threatened by subsequent catastrophic wild land fires. The High Pressure Tritium Laboratory (HPTL) is located at Technical Area (TA) 33, building 86 in the far southeast corner of the Laboratory property. It is immediately adjacent to Bandelier National Park. Because it was threatened by both the Cerro Grande fire in 2000, and the 16,000- acre Dome fire in 1996, the former tritium processing facility was placed on the list of facilities scheduled for Decontamination and Decommissioning under the Cerro Grande Rehabilitation Project. The work was performed through the Facilities and Waste Operations (FWO) Division and is integrated with other Laboratory D and D efforts. The primary demolition contractor was Clauss Construction of San Diego, California. Earth Tech Global Environmental Services of San Antonio, Texas was sub-contracted to Clauss Construction, and provided radiological decontamination support to the project. Although the forty-seven year old facility had been in a state of safe-shutdown since operations ceased in 1990, a significant amount of tritium remained in the rooms where process systems were located. Tritium was the only radiological contaminant associated with this facility. Since no specific regulatory standards have been set for the release of volumetrically contaminated materials, concentration guidelines were derived in order to meet other established regulatory criteria. A tritium removal system was developed for this project with the goal of reducing the volume of tritium concentrated in the concrete of the

  10. DESALINATION AND WATER TREATMENT RESEARCH AT SANDIA NATIONAL LABORATORIES.

    Energy Technology Data Exchange (ETDEWEB)

    Rigali, Mark J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Miller, James E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Altman, Susan J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Biedermann, Laura [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brady, Patrick Vane. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kuzio, Stephanie P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Nenoff, Tina M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rempe, Susan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-11-01

    Water is the backbone of our economy - safe and adequate supplies of water are vital for agriculture, industry, recreation, and human consumption. While our supply of water today is largely safe and adequate, we as a nation face increasing water supply challenges in the form of extended droughts, demand growth due to population increase, more stringent health-based regulation, and competing demands from a variety of users. To meet these challenges in the coming decades, water treatment technologies, including desalination, will contribute substantially to ensuring a safe, sustainable, affordable, and adequate water supply for the United States. This overview documents Sandia National Laboratories' (SNL, or Sandia) Water Treatment Program which focused on the development and demonstration of advanced water purification technologies as part of the larger Sandia Water Initiative. Projects under the Water Treatment Program include: (1) the development of desalination research roadmaps (2) our efforts to accelerate the commercialization of new desalination and water treatment technologies (known as the 'Jump-Start Program),' (3) long range (high risk, early stage) desalination research (known as the 'Long Range Research Program'), (4) treatment research projects under the Joint Water Reuse & Desalination Task Force, (5) the Arsenic Water Technology Partnership Program, (6) water treatment projects funded under the New Mexico Small Business Administration, (7) water treatment projects for the National Energy Technology Laboratory (NETL) and the National Renewable Energy Laboratory (NREL), (8) Sandia- developed contaminant-selective treatment technologies, and finally (9) current Laboratory Directed Research and Development (LDRD) funded desalination projects.

  11. Idaho National Laboratory 2013-2022 Ten-Year Site Plan

    Energy Technology Data Exchange (ETDEWEB)

    Calvin Ozaki; Sheryl L. Morton; Elizabeth A. Connell; William T. Buyers; Craig L. Jacobson; Charles T. Mullen; Christopher P. Ischay; Ernest L. Fossum; Robert D. Logan

    2011-06-01

    The Idaho National Laboratory (INL) Ten-Year Site Plan (TYSP) describes the strategy for accomplishing the long-term objective of transforming the laboratory to meet Department of Energy (DOE) national nuclear research and development (R&D) goals, as outlined in DOE strategic plans. The plan links R&D mission goals and INL core capabilities with infrastructure requirements (single- and multi-program), establishs the 10-year end-state vision for INL complexes, and identifies and prioritizes infrastructure needs and capability gaps. The TYSP serves as the basis for documenting and justifying infrastructure investments proposed as part of the FY 2013 budget formulation process.

  12. Sandia National Laboratories embraces ISDN

    Energy Technology Data Exchange (ETDEWEB)

    Tolendino, L.F.; Eldridge, J.M.

    1994-08-01

    Sandia National Laboratories (Sandia), a multidisciplinary research and development laboratory located on Kirtland Air Force Base, has embraced Integrated Services Digital Network technology as an integral part of its communication network. Sandia and the Department of Energy`s Albuquerque Operations Office have recently completed the installation of a modernized and expanded telephone system based, on the AT&T 5ESS telephone switch. Sandia is committed to ISDN as an integral part of data communication services, and it views ISDN as one part of a continuum of services -- services that range from ISDN`s asynchronous and limited bandwidth Ethernet (250--1000 Kbps) through full bandwidth Ethernet, FDDI, and ATM at Sonet rates. Sandia has demonstrated this commitment through its use of ISDN data features to support critical progmmmatic services such as access to corporate data base systems. In the future, ISDN will provide enhanced voice, data communication, and video services.

  13. Pacific Northwest National Laboratory institutional plan FY 1998--2002

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    Pacific Northwest National Laboratory`s core mission is to deliver environmental science and technology in the service of the nation and humanity. Through basic research the lab creates fundamental knowledge of natural, engineered, and social systems that is the basis for both effective environmental technology and sound public policy. They solve legacy environmental problems by delivering technologies that remedy existing environmental hazards, they address today`s environmental needs with technologies that prevent pollution and minimize waste, and they are laying the technical foundation for tomorrow`s inherently clean energy and industrial processes. The lab also applies their capabilities to meet selected national security, energy, and human health needs; strengthen the US economy; and support the education of future scientists and engineers. The paper summarizes individual research activities under each of these areas.

  14. A data automation system at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Betts, S.E.; Schneider, C.M.; Pickrell, M.M.

    2001-01-01

    Idaho National Engineering and Environmental Laboratory (INEEL) has developed an automated computer program, Data Review Expert System (DRXS), for reviewing nondestructive assay (NDA) data. DRXS significantly reduces the data review time needed to meet characterization requirements for the Waste Isolation Pilot Plant (WIPP). Los Alamos National Laboratory (LANL) is in the process of developing a computer program, Software System Logic for Intelligent Certification (SSLIC), to automate other tasks associa ted with characterization of Transuranic Waste (TRU) samples. LANL has incorporated a version of DRXS specific to LANL's isotopic data into SSLIC. This version of SSLIC was audited by the National Transuranic Program on October, 24, 2001. This paper will present the results of the audit, and discuss future plans for SSLIC including the integration on the INEELLANL developed Rule Editor.

  15. Ergonomic assessments of three Idaho National Engineering Laboratory cafeterias

    Energy Technology Data Exchange (ETDEWEB)

    Ostrom, L.T.; Romero, H.A.; Gilbert, B.G.; Wilhelmsen, C.A.

    1993-01-01

    The Idaho National Engineering Laboratory is a Department of Energy facility that performs a variety of engineering and research projects. EG G Idaho is the prime contractor for the laboratory and, as such, performs the support functions in addition to technical, research, and development functions. As a part of the EG G Idaho Industrial Hygiene Initiative, ergonomic assessments were conducted at three Idaho National Engineering Laboratory Cafeterias. The purposes of the assessments were to determine whether ergonomic problems existed in the work places and, if so, to make recommendations to improve the work place and task designs. The study showed there were ergonomic problems in all three cafeterias assessed. The primary ergonomic stresses observed included wrist and shoulder stress in the dish washing task, postural stress in the dish washing and food preparation tasks, and back stress in the food handling tasks.

  16. Ergonomic assessments of three Idaho National Engineering Laboratory cafeterias

    Energy Technology Data Exchange (ETDEWEB)

    Ostrom, L.T.; Romero, H.A.; Gilbert, B.G.; Wilhelmsen, C.A.

    1993-05-01

    The Idaho National Engineering Laboratory is a Department of Energy facility that performs a variety of engineering and research projects. EG&G Idaho is the prime contractor for the laboratory and, as such, performs the support functions in addition to technical, research, and development functions. As a part of the EG&G Idaho Industrial Hygiene Initiative, ergonomic assessments were conducted at three Idaho National Engineering Laboratory Cafeterias. The purposes of the assessments were to determine whether ergonomic problems existed in the work places and, if so, to make recommendations to improve the work place and task designs. The study showed there were ergonomic problems in all three cafeterias assessed. The primary ergonomic stresses observed included wrist and shoulder stress in the dish washing task, postural stress in the dish washing and food preparation tasks, and back stress in the food handling tasks.

  17. Annual technology assessment and progress report for the Buried Transuranic Waste Program at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Low, J.O.

    1985-12-01

    An improved-confinement technology as applied to the Idaho National Engineering Laboratory (INEL) shallow-land-buried transuranic (TRU) waste is being investigated. An improved-confinement technology, in situ grouting, is being demonstrated in a 2-year engineering feasibility test at the INEL. Grout formulation and development were completed by Oak Ridge National Laboratory in Tennessee to support the in situ grouting test. Three grout formulations have been adapted to the arid, unsaturated soil conditions at the INEL: ordinary particulate grout; microfine penetration grout; soil grout. Three test trenches were constructed north of the INEL's Subsurface Disposal Area (SDA). Nonradioactive waste forms closely resembling TRU waste buried at the INEL have been fabricated and are ready for emplacement into these test trenches. A literature search for a simulated (analog) TRU tracer was completed as well as a chemical characterization of the INEL soil. Data developed from the chemistry characterization and literature search have been inputed into the selection and laboratory testing of the TRU analog tracers. Simulated TRU tracers will be loaded into waste forms prior to emplacement into the test trenches. Test trench data acquisition instrumentation will be installed during waste form emplacement. Instrumentation will monitor for moisture movement and tracer detection. Plans for test completion in FY-1986 are also shown. Various buried waste improved-confinement technologies performed by other Department of Energy sites were assessed for applicability to the INEL buried TRU waste. Primary demonstrations were performed at the Hanford site in Washington and at ORNL. This report also includes information on accomplishments of related activities at the INEL such as the program for Environmental Surveillance of the Radioactive Waste Management complex as well as the Subsurface Migration Studies. 18 refs., 11 figs., 12 tabs

  18. Sandia National Laboratories: Fabrication, Testing and Validation

    Science.gov (United States)

    digital and analog elements. * Cadence Process-Design Kit. Structured ASIC Sandia National Laboratories demonstrate complex multilevel devices such as micro-mass-analysis systems up to 25 microns thick and novel possible to fabricate a wide very large variety of useful devices. Micro-Mass-Analysis Systems Applications

  19. Proceedings of the National Renewable Energy Laboratory Wind Energy Systems Engineering Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Dykes, K.

    2014-12-01

    The second National Renewable Energy Laboratory (NREL) Wind Energy Systems Engineering Workshop was held in Broomfield, Colorado, from January 29 to February 1, 2013. The event included a day-and-a-half workshop exploring a wide variety of topics related to system modeling and design of wind turbines and plants. Following the workshop, 2 days of tutorials were held at NREL, showcasing software developed at Sandia National Laboratories, the National Aeronautics and Space Administration's Glenn Laboratories, and NREL. This document provides a brief summary of the various workshop activities and includes a review of the content and evaluation results from attendees.

  20. Computer technology forecasting at the National Laboratories

    International Nuclear Information System (INIS)

    Peskin, A.M.

    1980-01-01

    The DOE Office of ADP Management organized a group of scientists and computer professionals, mostly from their own national laboratories, to prepare an annually updated technology forecast to accompany the Department's five-year ADP Plan. The activities of the task force were originally reported in an informal presentation made at the ACM Conference in 1978. This presentation represents an update of that report. It also deals with the process of applying the results obtained at a particular computing center, Brookhaven National Laboratory. Computer technology forecasting is a difficult and hazardous endeavor, but it can reap considerable advantage. The forecast performed on an industry-wide basis can be applied to the particular needs of a given installation, and thus give installation managers considerable guidance in planning. A beneficial side effect of this process is that it forces installation managers, who might otherwise tend to preoccupy themselves with immediate problems, to focus on longer term goals and means to their ends

  1. Post Irradiation Capabilities at the Idaho National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Schulthess, J.L.

    2011-08-01

    The U.S. Department of Energy (DOE) Office of Nuclear Energy (NE) oversees the research, development, and demonstration activities that ensure nuclear energy remains a viable energy option for the United States. Fuel and material development through fabrication, irradiation, and characterization play a significant role in accomplishing the research needed to support nuclear energy. All fuel and material development requires the understanding of irradiation effects on the fuel performance and relies on irradiation experiments ranging from tests aimed at targeted scientific questions to integral effects under representative and prototypic conditions. The DOE recently emphasized a solution-driven, goal-oriented, science-based approach to nuclear energy development. Nuclear power systems and materials were initially developed during the latter half of the 20th century and greatly facilitated by the United States ability and willingness to conduct large-scale experiments. Fifty-two research and test reactors with associated facilities for performing fabrication and pre and post irradiation examinations were constructed at what is now Idaho National Laboratory (INL), another 14 at Oak Ridge National Laboratory (ORNL), and a few more at other national laboratory sites. Building on the scientific advances of the last several decades, our understanding of fundamental nuclear science, improvements in computational platforms, and other tools now enable technological advancements with less reliance on large-scale experimentation.

  2. Post Irradiation Capabilities at the Idaho National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Schulthess, J.L.; Robert D. Mariani; Rory Kennedy; Doug Toomer

    2011-08-01

    The U.S. Department of Energy (DOE) Office of Nuclear Energy (NE) oversees the research, development, and demonstration activities that ensure nuclear energy remains a viable energy option for the United States. Fuel and material development through fabrication, irradiation, and characterization play a significant role in accomplishing the research needed to support nuclear energy. All fuel and material development requires the understanding of irradiation effects on the fuel performance and relies on irradiation experiments ranging from tests aimed at targeted scientific questions to integral effects under representative and prototypic conditions. The DOE recently emphasized a solution-driven, goal-oriented, science-based approach to nuclear energy development. Nuclear power systems and materials were initially developed during the latter half of the 20th century and greatly facilitated by the United States’ ability and willingness to conduct large-scale experiments. Fifty-two research and test reactors with associated facilities for performing fabrication and pre and post irradiation examinations were constructed at what is now Idaho National Laboratory (INL), another 14 at Oak Ridge National Laboratory (ORNL), and a few more at other national laboratory sites. Building on the scientific advances of the last several decades, our understanding of fundamental nuclear science, improvements in computational platforms, and other tools now enable technological advancements with less reliance on large-scale experimentation.

  3. Ernest Orlando Lawrence Berkeley National Laboratory institutional plan, FY 1996--2001

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    The FY 1996--2001 Institutional Plan provides an overview of the Ernest Orlando Lawrence Berkeley National Laboratory mission, strategic plan, core business areas, critical success factors, and the resource requirements to fulfill its mission in support of national needs in fundamental science and technology, energy resources, and environmental quality. The Laboratory Strategic Plan section identifies long-range conditions that will influence the Laboratory, as well as potential research trends and management implications. The Core Business Areas section identifies those initiatives that are potential new research programs representing major long-term opportunities for the Laboratory, and the resources required for their implementation. It also summarizes current programs and potential changes in research program activity, science and technology partnerships, and university and science education. The Critical Success Factors section reviews human resources; work force diversity; environment, safety, and health programs; management practices; site and facility needs; and communications and trust. The Resource Projections are estimates of required budgetary authority for the Laboratory`s ongoing research programs. The Institutional Plan is a management report for integration with the Department of Energy`s strategic planning activities, developed through an annual planning process. The plan identifies technical and administrative directions in the context of the national energy policy and research needs and the Department of Energy`s program planning initiatives. Preparation of the plan is coordinated by the Office of Planning and Communications from information contributed by the Laboratory`s scientific and support divisions.

  4. Los Alamos National Laboratory Human and Intellectual Capital for Sustaining Nuclear Deterrence

    Energy Technology Data Exchange (ETDEWEB)

    McAlpine, Bradley [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-04-01

    This paper provides an overview of the current human and intellectual capital at Los Alamos National Laboratory, through specific research into the statistics and demographics as well as numerous personal interviews at all levels of personnel. Based on this information, a series of recommendations are provided to assist Los Alamos National Laboratory in ensuring the future of the human and intellectual capital for the nuclear deterrence mission. While the current human and intellectual capital is strong it stands on the precipice and action must be taken to ensure Los Alamos National Laboratory maintains leadership in developing and sustaining national nuclear capabilities. These recommendations may be applicable to other areas of the nuclear enterprise, including the Air Force, after further research and study.

  5. Los Alamos National Laboratory Human and Intellectual Capital for Sustaining Nuclear Deterrence

    International Nuclear Information System (INIS)

    McAlpine, Bradley

    2015-01-01

    This paper provides an overview of the current human and intellectual capital at Los Alamos National Laboratory, through specific research into the statistics and demographics as well as numerous personal interviews at all levels of personnel. Based on this information, a series of recommendations are provided to assist Los Alamos National Laboratory in ensuring the future of the human and intellectual capital for the nuclear deterrence mission. While the current human and intellectual capital is strong it stands on the precipice and action must be taken to ensure Los Alamos National Laboratory maintains leadership in developing and sustaining national nuclear capabilities. These recommendations may be applicable to other areas of the nuclear enterprise, including the Air Force, after further research and study.

  6. Pacific Northwest National Laboratory Institutional Plan FY 2001-2005

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, Darrell R.; Pearson, Erik W.

    2000-12-29

    The Pacific Northwest National Laboratory Institutional Plan for FY 2001-2005 sets forth the laboratory's mission, roles, technical capabilities, and laboratory strategic plan. In the plan, major initiatives also are proposed and the transitioning initiatives are discussed. The Programmatic Strategy section details our strategic intent, roles, and research thrusts in each of the U.S. Department of Energy's mission areas. The Operations/Infrastructure Strategic Plan section includes information on the laboratory's human resources; environment, safety, and health management; safeguards and security; site and facilities management; information resources management; managaement procatices and standards; and communications and trust.

  7. Pacific Northwest National Laboratory Institutional Plan FY 2000-2004

    Energy Technology Data Exchange (ETDEWEB)

    Pearson, Erik W.

    2000-03-01

    The Pacific Northwest National Laboratory Institutional Plan for FY 2000-2004 sets forth the laboratory's mission, roles, technical capabilities, and laboratory strategic plan. In the plan, major initiatives also are proposed and the transitioning initiatives are discussed. The Programmatic Strategy section details our strategic intent, roles, and research thrusts in each of the U.S. Department of Energy's mission areas. The Operations/Infrastructure Strategic Plan section includes information on the laboratory's human resources; environment, safety, and health management; safeguards and security; site and facilities management; information resources management; management practices and standards; and communications and trust.

  8. Nuclear physics and heavy element research at Lawrence Livermore National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Stoyer, Mark A; Ahle, L E; Becker, J A; Bernshein, L A; Bleuel, D L; Burke, J T; Dashdorj, D; Henderson, R A; Hurst, A M; Kenneally, Jacqueline M; Lesher, S R; Moody, K J; Nelson, S L; Norman, E B; Pedretti, M; Scielzo, N D; Shaughnessy, D A; Sheets, S A; Stoeffl, W; Stoyer, N J [Lawrence Livermore National Laboratory, University of California, Livermore (United States)

    2009-12-31

    This paper highlights some of the current basic nuclear physics research at Lawrence Livermore National Laboratory (LLNL). The work at LLNL concentrates on investigating nuclei at the extremes. The Experimental Nuclear Physics Group performs research to improve our understanding of nuclei, nuclear reactions, nuclear decay processes and nuclear astrophysics; an expertise utilized for important laboratory national security programs and for world-class peer-reviewed basic research.

  9. Site characteristics of Argonne National Laboratory in Illinois

    International Nuclear Information System (INIS)

    Chang, Y.W.

    1995-01-01

    This report reviews the geology and topography of the Argonne National Laboratory, near Lemont, Illinois. It describes the thickness and stratigraphy of soils, glacial till, and bedrock in and adjacent to the laboratory and support facilities. Seismic surveys were also conducted through the area to help determine the values of seismic wave velocities in the glacial till which is important in determining the seismic hazard of the area. Borehole log descriptions are summarized along with information on area topography

  10. National Research Council Research Associateships Program with Methane Hydrates Fellowships Program/National Energy Technology Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Basques, Eric O. [National Academy of Sciences, Washington, DC (United States)

    2014-03-20

    This report summarizes work carried out over the period from July 5, 2005-January 31, 2014. The work was carried out by the National Research Council Research Associateships Program of the National Academies, under the US Department of Energy's National Energy Technology Laboratory (NETL) program. This Technical Report consists of a description of activity from 2005 through 2014, broken out within yearly timeframes, for NRC/NETL Associateships researchers at NETL laboratories which includes individual tenure reports from Associates over this time period. The report also includes individual tenure reports from associates over this time period. The report also includes descriptions of program promotion efforts, a breakdown of the review competitions, awards offered, and Associate's activities during their tenure.

  11. On-site laboratory support of Oak Ridge National Laboratory environmental restoration field activities

    International Nuclear Information System (INIS)

    Burn, J.L.E.

    1995-07-01

    A remedial investigation/feasibility study has been undertaken at Oak Ridge National Laboratory (ORNL). Bechtel National, Inc. and partners CH2M Hill, Ogden Environmental and Energy Services, and PEER Consultants are contracted to Lockheed Martin Energy Systems, performing this work for ORNL's Environmental Restoration (ER) Program. An on-site Close Support Laboratory (CSL) established at the ER Field Operations Facility has evolved into a laboratory where quality analytical screening results can be provided rapidly (e.g., within 24 hours of sampling). CSL capabilities include three basic areas: radiochemistry, chromatography, and wet chemistry. Radiochemical analyses include gamma spectroscopy, tritium and carbon-14 screens using liquid scintillation analysis, and gross alpha and beta counting. Cerenkov counting and crown-ether-based separation are the two rapid methods used for radiostrontium determination in water samples. By extending count times where appropriate, method detection limits can match those achieved by off-site contract laboratories. Volatile organic compounds are detected by means of gas chromatography using either headspace or purge and trap sample introduction (based on EPA 601/602). Ionic content of water samples is determined using ion chromatography and alkalinity measurement. Ion chromatography is used to quantify both anions (based on EPA 300) and cations. Wet chemistry procedures performed at the CSL include alkalinity, pH (water and soil), soil resistivity, and dissolved/suspended solids. Besides environmental samples, the CSL routinely screens health and safety and waste management samples. The cost savings of the CSL are both direct and indirect

  12. Accelerator timing at Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    Oerter, B.; Conkling, C.R.

    1995-01-01

    Accelerator timing at Brookhaven National Laboratory has evolved from multiple coaxial cables transmitting individual pulses in the original Alternating Gradient Synchrotron (AGS) design, to serial coded transmission as the AGS Booster was added. With the implementation of this technology, the Super Cycle Generator (SCG) which synchronizes the AGS, Booster, LINAC, and Tandem accelerators was introduced. This paper will describe the timing system being developed for the Relativistic Heavy Ion Collider (RHIC)

  13. Interim Report of the Commission to Review the Effectiveness of the National Energy Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Cohon, Jared L. [Carnegie Mellon Univ., Pittsburgh, PA (United States); Glauthier, T. J. [TJG Energy Associates, LLC., Bloomberg, VA (United States); Augustine, Norman R. [U.S. Dept. of Homeland Security, Washington, DC (United States); Austin, Wanda M. [Aerospace Corporation, El Segundo, CA (United States); Elachi, Charles [California Inst. of Technology (CalTech), Pasadena, CA (United States); Fleury, Paul A. [Yale Univ., New Haven, CT (United States); Hockfield, Susan J. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Meserve, Richard A. [Covington and Burling LLP, Washington, DC (United States); Murray, Cherry A. [Harvard Univ., Cambridge, MA (United States)

    2015-02-27

    The Commission to Review the Effectiveness of the National Energy Laboratories was charged by Congress in January 2014 to evaluate the mission, capabilities, size, performance, governance, and agency oversight of the 17 Department of Energy (DOE) laboratories. Given the incredibly broad scope and aggressive timeline (the original deadline was February 2015), the Secretary of Energy and Congress agreed to split the task into two phases. This interim report contains the preliminary observations and recommendations gleaned from Phase 1 of the study, which consisted of a literature review; visits to five of the National Laboratories; semi-structured interviews with staff from across the National Laboratories, DOE, other Federal agencies, companies, other non-governmental organizations, and additional interested parties; and presentations at monthly public Commission meetings. The Commission notes that the purpose of the National Laboratories is to provide critical capabilities and facilities in service of DOE’s mission and the needs of the broader national and international science and technology (S&T) community, including other Federal agencies, academia, and private industry. The National Laboratories are successfully fulfilling that mission today. While the Commission believes significant improvements can be made to many aspects of DOE management and governance of the laboratories, those issues do not detract from the National Laboratories’ remarkable contributions to the American public. In Phase 2 the Commission will focus on ways to make the process of carrying out their missions more efficient and effective.

  14. Los Alamos National Laboratory scientific interactions with the Former Soviet Union

    International Nuclear Information System (INIS)

    White, P.C.

    1995-01-01

    The Los Alamos National Laboratory has a wide-ranging set of scientific interactions with technical institutes in the Former Soviet Union (FSU). Many of these collaborations, especially those in pure science, began long before the end of the Cold War and the breakup of the Soviet Union. This overview will, however, focus for the most part on those activities that were initiated in the last few years. This review may also serve both to indicate the broad spectrum of US government interests that are served, at least in part, through these laboratory initiatives, and to suggest ways in which additional collaborations with the FSU may be developed to serve similar mutual interests of the countries involved. While most of the examples represent programs carried out by Los Alamos, they are also indicative of similar efforts by Lawrence Livermore National Laboratory and Sandia National Laboratories. There are indeed other Department of Energy (DOE) laboratories, and many of them have active collaborative programs with FSU institutes. However, the laboratories specifically identified above are those with special nuclear weapons responsibilities, and thus have unique technical capabilities to address certain issues of some importance to the continuing interests of the United States and the states of the Former Soviet Union. Building on pre-collapse scientific collaborations and contacts, Los Alamos has used the shared language of science to build institutional and personal relationships and to pursue common interests. It is important to understand that Los Alamos, and the other DOE weapons laboratories are federal institutions, working with federal funds, and thus every undertaking has a definite relationship to some national objective. The fertile areas for collaboration are obviously those where US and Russian interests coincide

  15. Mozambique’s journey toward accreditation of the National Tuberculosis Reference Laboratory

    Directory of Open Access Journals (Sweden)

    Sofia O. Viegas

    2017-03-01

    Full Text Available Background: Internationally-accredited laboratories are recognised for their superior test reliability, operational performance, quality management and competence. In a bid to meet international quality standards, the Mozambique National Institute of Health enrolled the National Tuberculosis Reference Laboratory (NTRL in a continuous quality improvement process towards ISO 15189 accreditation. Here, we describe the road map taken by the NTRL to achieve international accreditation. Methods: The NTRL adopted the Strengthening Laboratory Management Toward Accreditation (SLMTA programme as a strategy to implement a quality management system. After SLMTA, the Mozambique National Institute of Health committed to accelerate the NTRL’s process toward accreditation. An action plan was designed to streamline the process. Quality indicators were defined to benchmark progress. Staff were trained to improve performance. Mentorship from an experienced assessor was provided. Fulfilment of accreditation standards was assessed by the Portuguese Accreditation Board. Results: Of the eight laboratories participating in SLMTA, the NTRL was the best-performing laboratory, achieving a 53.6% improvement over the SLMTA baseline conducted in February 2011 to the Stepwise Laboratory Quality Improvement Process Towards Accreditation (SLIPTA assessment in June 2013. During the accreditation assessment in September 2014, 25 minor nonconformities were identified and addressed. In March 2015, the NTRL received Portuguese Accreditation Board recognition of technical competency for fluorescence smear microscopy, and solid and liquid culture. The NTRL is the first laboratory in Mozambique toachieve ISO 15189 accreditation. Conclusions: From our experience, accreditation was made possible by institutional commitment, strong laboratory leadership, staff motivation, adequate infrastructure and a comprehensive action plan.

  16. Mozambique’s journey toward accreditation of the National Tuberculosis Reference Laboratory

    Science.gov (United States)

    Madeira, Carla; Aguiar, Carmen; Dolores, Carolina; Mandlaze, Ana P.; Chongo, Patrina; Masamha, Jessina

    2017-01-01

    Background Internationally-accredited laboratories are recognised for their superior test reliability, operational performance, quality management and competence. In a bid to meet international quality standards, the Mozambique National Institute of Health enrolled the National Tuberculosis Reference Laboratory (NTRL) in a continuous quality improvement process towards ISO 15189 accreditation. Here, we describe the road map taken by the NTRL to achieve international accreditation. Methods The NTRL adopted the Strengthening Laboratory Management Toward Accreditation (SLMTA) programme as a strategy to implement a quality management system. After SLMTA, the Mozambique National Institute of Health committed to accelerate the NTRL’s process toward accreditation. An action plan was designed to streamline the process. Quality indicators were defined to benchmark progress. Staff were trained to improve performance. Mentorship from an experienced assessor was provided. Fulfilment of accreditation standards was assessed by the Portuguese Accreditation Board. Results Of the eight laboratories participating in SLMTA, the NTRL was the best-performing laboratory, achieving a 53.6% improvement over the SLMTA baseline conducted in February 2011 to the Stepwise Laboratory Quality Improvement Process Towards Accreditation (SLIPTA) assessment in June 2013. During the accreditation assessment in September 2014, 25 minor nonconformities were identified and addressed. In March 2015, the NTRL received Portuguese Accreditation Board recognition of technical competency for fluorescence smear microscopy, and solid and liquid culture. The NTRL is the first laboratory in Mozambique to achieve ISO 15189 accreditation. Conclusions From our experience, accreditation was made possible by institutional commitment, strong laboratory leadership, staff motivation, adequate infrastructure and a comprehensive action plan. PMID:28879162

  17. Frontiers: Research highlights 1946-1996 [50th Anniversary Edition. Argonne National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    This special edition of 'Frontiers' commemorates Argonne National Laboratory's 50th anniversary of service to science and society. America's first national laboratory, Argonne has been in the forefront of U.S. scientific and technological research from its beginning. Past accomplishments, current research, and future plans are highlighted.

  18. BROOKHAVEN NATIONAL LABORATORY SITE ENVIRONMENTAL REPORT FOR CALENDAR YEAR 1994.

    Energy Technology Data Exchange (ETDEWEB)

    NAIDU,J.R.; ROYCE,B.A.

    1995-05-01

    This report documents the results of the Environmental Monitoring Program at Brookhaven National Laboratory and presents summary information about environmental compliance for 1994. To evaluate the effect of Brookhaven National Laboratory's operations on the local environment, measurements of direct radiation, and a variety of radionuclides and chemical compounds in ambient air, soil, sewage effluent, surface water, groundwater, fauna and vegetation were made at the Brookhaven National Laboratory site and at sites adjacent to the Laboratory. Brookhaven National Laboratory's compliance with all applicable guides, standards, and limits for radiological and nonradiological emissions and effluents to the environment were evaluated. Among the permitted facilities, two instances of pH exceedances were observed at recharge basins, possibly related to rain-water run-off to these recharge basins. Also, the discharge from the Sewage Treatment Plant to the Peconic River exceeded. on ten occasions, one each for fecal coliform and 5-day Biochemical Oxygen Demand (avg.) and eight for ammonia nitrogen. The ammonia and Biochemical Oxygen Demand exceedances were attributed to the cold winter and the routine cultivation of the sand filter beds which resulted in the hydraulic overloading of the filter beds and the possible destruction of nitrifying bacteria. The on-set of warm weather and increased aeration of the filter beds via cultivation helped to alleviate this condition. The discharge of fecal coliform may also be linked to this occurrence, in that the increase in fecal coliform coincided with the increased cultivation of the sand filter beds. The environmental monitoring data has identified site-specific contamination of groundwater and soil. These areas are subject to Remedial Investigation/Feasibility Studies under the Inter Agency Agreement. Except for the above, the environmental monitoring data has continued to demonstrate that compliance was achieved with

  19. 2016 Annual Site Environmental Report Sandia National Laboratories/New Mexico.

    Energy Technology Data Exchange (ETDEWEB)

    Salas, Angela Maria [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Griffith, Stacy R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-07-01

    Sandia National Laboratories (SNL) is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s (DOE’s), National Nuclear Security Administration (NNSA). The DOE/NNSA Sandia Field Office administers the contract and oversees contractor operations at SNL, New Mexico. This Annual Site Environmental Report (ASER) summarizes data and the compliance status of sustainability, environmental protection, and monitoring programs at SNL/NM during calendar year 2016. Major environmental programs include air quality, water quality, groundwater protection, terrestrial and ecological surveillance, waste management, pollution prevention, environmental restoration, oil and chemical spill prevention, and implementation of the National Environmental Policy Act. This ASER is prepared in accordance with and required by DOE O 231.1B, Admin Change 1, Environment, Safety, and Health Reporting.

  20. The University of New Mexico/Sandia National Laboratories small-angle scattering laboratory

    International Nuclear Information System (INIS)

    Rieker, T.P.; Hubbard, P.F.

    1998-01-01

    The University of New Mexico/Sandia National Laboratories small-angle scattering laboratory provides a wide q-range, 3x10 -4 Angstrom -1 -1 , for the structural analysis of materials on length scales from a few angstrom to ∼0.1 μm. The wide q-range is accomplished by combining data from a Bonse-Hart spectrometer (3x10 -4 Angstrom -1 -2 Angstrom -1 ) and a 5 m pinhole (3x10 -3 Angstrom -1 -1 ) instrument. Automation of the data acquisition systems along with a variety of sample environments and sample changers yields flexible, high throughput instruments. copyright 1998 American Institute of Physics

  1. Overview of theory and simulations in the Heavy Ion Fusion Science Virtual National Laboratory

    Science.gov (United States)

    Friedman, Alex

    2007-07-01

    The Heavy Ion Fusion Science Virtual National Laboratory (HIFS-VNL) is a collaboration of Lawrence Berkeley National Laboratory, Lawrence Livermore National Laboratory, and Princeton Plasma Physics Laboratory. These laboratories, in cooperation with researchers at other institutions, are carrying out a coordinated effort to apply intense ion beams as drivers for studies of the physics of matter at extreme conditions, and ultimately for inertial fusion energy. Progress on this endeavor depends upon coordinated application of experiments, theory, and simulations. This paper describes the state of the art, with an emphasis on the coordination of modeling and experiment; developments in the simulation tools, and in the methods that underly them, are also treated.

  2. 75 Breakthroughs by the U.S. Department of Energy's National Laboratories; Breakthroughs 2017

    Energy Technology Data Exchange (ETDEWEB)

    None

    2017-01-01

    Born at a time when the world faced a dire threat, the National Laboratory System protects America through science and technology. For more than 75 years, the Department of Energy’s national laboratories have solved important problems in science, energy and national security. Partnering with industry and academia, the laboratories also drive innovation to advance economic competitiveness and ensure our nation’s future prosperity. Over the years, America's National Laboratories have been changing and improving the lives of millions of people and this expertise continues to keep our nation at the forefront of science and technology in a rapidly changing world. This network of Department of Energy Laboratories has grown into 17 facilities across the country. As this list of breakthroughs attests, Laboratory discoveries have spawned industries, saved lives, generated new products, fired the imagination and helped to reveal the secrets of the universe.

  3. Pacific Northwest National Laboratory Annual Site Environmental Report for Calendar Year 2013

    Energy Technology Data Exchange (ETDEWEB)

    Duncan, Joanne P. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Sackschewsky, Michael R. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Tilden, Harold T. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Barnett, J. Matthew [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Su-Coker, Jennifer [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Ballinger, Marcel Y. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Fritz, Brad G. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Stoetzel, Gregory A. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Lowry, Kami L. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Moon, Thomas W. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Becker, James M. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Mendez, Keith M. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Raney, Elizabeth A. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Chamness, Michele A. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Larson, Kyle B. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)

    2014-09-30

    Pacific Northwest National Laboratory (PNNL), one of the U.S. Department of Energy (DOE) Office of Science’s 10 national laboratories, provides innovative science and technology development in the areas of energy and the environment, fundamental and computational science, and national security. DOE’s Pacific Northwest Site Office (PNSO) is responsible for oversight of PNNL at its Campus in Richland, Washington, as well as its facilities in Sequim, Seattle, and North Bonneville, Washington, and Corvallis and Portland, Oregon.

  4. Final Environmental Impact Statement and Environmental Impact Report for continued operation of Lawrence Livermore National Laboratory and Sandia National Laboratories, Livermore

    International Nuclear Information System (INIS)

    1992-08-01

    The US Department of Energy (DOE) and the Regents of the University of California (UC) propose the continued operation, including near-term proposed projects, of the Lawrence Livermore National Laboratory (LLNL). In addition, DOE proposes the continued operation, including near-term proposed projects, of Sandia National Laboratories, Livermore (SNL, Livermore). Continued operation plus proposed projects at the two Laboratories is needed so that the research and development missions established by Congress and the President can continue to be supported. As provided and encouraged by the National Environmental Policy Act (NEPA) and the California Environmental Quality Act (CEQA), DOE and UC have prepared this document as a joint Environmental Impact Statement (EIS) and Environmental Impact Report (EIR) to analyze the impacts of the proposed action. In addition, this document discusses a no action alternative for continuing operations at FY 1992 funding levels without further growth, a modification of operations alternative focused on specific adverse environmental impacts of operations or facilities, and a shutdown and decommissioning alternative. This document also examines the alternative of UC discontinuing its management of LLNL after the current contract expires on September 30, 1992. The environmental documentation process provides information to the public, government agencies, and decision makers about the environmental impacts of implementing the proposed and alternative actions. In addition, this environmental documentation identifies alternatives and possible ways to reduce or prevent environmental impacts. A list of the issues raised through the EIS/EIR scoping process is presented

  5. Environmental Survey preliminary report, Argonne National Laboratory, Argonne, Illinois

    International Nuclear Information System (INIS)

    1988-11-01

    This report presents the preliminary findings of the first phase of the Environmental Survey of the United States Department of Energy's (DOE) Argonne National Laboratory (ANL), conducted June 15 through 26, 1987. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. The team includes outside experts supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with ANL. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. The on-site phase of the Survey involves the review of existing site environmental data, observations of the operations carried on at ANL, and interviews with site personnel. The Survey team developed a Sampling and Analysis (S ampersand A) Plan to assist in further assessing certain of the environmental problems identified during its on-site activities. The S ampersand A Plan will be executed by the Oak Ridge National Laboratory (ORNL). When completed, the S ampersand A results will be incorporated into the Argonne National Laboratory Environmental Survey findings for inclusion in the Environmental Survey Summary Report. 75 refs., 24 figs., 60 tabs

  6. Environmental Survey preliminary report, Argonne National Laboratory, Argonne, Illinois

    Energy Technology Data Exchange (ETDEWEB)

    1988-11-01

    This report presents the preliminary findings of the first phase of the Environmental Survey of the United States Department of Energy's (DOE) Argonne National Laboratory (ANL), conducted June 15 through 26, 1987. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. The team includes outside experts supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with ANL. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. The on-site phase of the Survey involves the review of existing site environmental data, observations of the operations carried on at ANL, and interviews with site personnel. The Survey team developed a Sampling and Analysis (S A) Plan to assist in further assessing certain of the environmental problems identified during its on-site activities. The S A Plan will be executed by the Oak Ridge National Laboratory (ORNL). When completed, the S A results will be incorporated into the Argonne National Laboratory Environmental Survey findings for inclusion in the Environmental Survey Summary Report. 75 refs., 24 figs., 60 tabs.

  7. The Risoe National Laboratory, Denmark

    International Nuclear Information System (INIS)

    Majborn, B.

    2001-01-01

    The Risoe National Laboratory of Denmark started as a nuclear research centre, under the Atomic Energy Commission in 1955, with research reactors, an accelerator and related facilities. The research component, aimed at the introduction of nuclear power plants in Denmark, was wound up in 1985 with the country deciding to forego nuclear power in its energy planning. From 1993 the centre is under the jurisdiction of the Ministry of Research with three main areas of work: i) research on high international level; ii) train researchers; and iii) provide service to industry. The centre is funded up to 53% by the Danish Government and 47% by contract earnings. Some areas of current research include: i) materials science; ii) optics and sensor systems; iii) plant production and ecology; and iv) systems analysis. The nuclear component of the research centre is related to the operation of the nuclear facilities and for maintaining national expertise in nuclear safety and radiation protection. (author)

  8. Oak Ridge National Laboratory Review: Volume 24, No. 2, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Krause, C. (ed.)

    1991-01-01

    The Oak Ridge National Laboratory (ORNL) is a multiprogram, multipurpose laboratory that conducts research in the physical, chemical, and life sciences; in fusion, fission, and fossil energy; and in energy conservation and other energy-related technologies. This review outlines some current endeavors of the lab. A state of the laboratory presentation is given by director, Alvin Trivelpiece. Research of single crystals for welding is described. The Science Alliance, a partnership between ORNL and the University of Tennessee, is chronicled. And several incites into distinguished personnel at the laboratory are given. (GHH)

  9. Oak Ridge National Laboratory Review: Volume 24, No. 2, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Krause, C. [ed.

    1991-12-31

    The Oak Ridge National Laboratory (ORNL) is a multiprogram, multipurpose laboratory that conducts research in the physical, chemical, and life sciences; in fusion, fission, and fossil energy; and in energy conservation and other energy-related technologies. This review outlines some current endeavors of the lab. A state of the laboratory presentation is given by director, Alvin Trivelpiece. Research of single crystals for welding is described. The Science Alliance, a partnership between ORNL and the University of Tennessee, is chronicled. And several incites into distinguished personnel at the laboratory are given. (GHH)

  10. An in-house alternative to traditional SDI services at Argonne National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Noel, R.E.; Dominiak, R.R.

    1997-02-20

    Selective Dissemination of Information (SDIs) are based on automated, well-defined programs that regularly produce precise, relevant bibliographic information. Librarians have typically turned to information vendors such as Dialog or STN international to design and implement these searches for their users in business, academia, and the science community. Because Argonne National Laboratory (ANL) purchases the Institute for Scientific Information (ISI) Current Contents tapes (all subject areas excluding Humanities). ANL scientists enjoy the benefit of in-house developments with BASISplus software programming and no longer need to turn to outside companies for reliable SDI service. The database and its customized services are known as ACCESS (Argonne Current Contents Electronic Search Service). Through collaboration with librarians on Boolean logic and selection of terms, users can now design their own personal profiles to comb the new data, thereby avoiding service fees from outside providers. Based on the feedback from scientists, it seems that this new service can help transform the ANL distributed libraries into more efficient central functioning entities that better serve the users. One goal is to eliminate the routing of paper copies of many new journal issues to different library locations for users to browse; instead users may be expected to rely more on electronic dissemination of both table of contents and customized SDIs for new scientific and technical information.

  11. DOE Los Alamos National Laboratory – PV Feasibility Assessment, 2015 Update, NREL Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Dean, Jesse [National Renewable Energy Lab. (NREL), Golden, CO (United States); Witt, Monica Rene [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-04-06

    This report summarizes solar and wind potential for Los Alamos National Laboratory (LANL). This report is part of the “Los Alamos National Laboratory and Los Alamos County Renewable Generation” study.

  12. Idaho National Engineering Laboratory waste area groups 1--7 and 10 Technology Logic Diagram

    International Nuclear Information System (INIS)

    O'Brien, M.C.; Meservey, R.H.; Little, M.; Ferguson, J.S.; Gilmore, M.C.

    1993-09-01

    The Technology Logic Diagram was developed to provide technical alternatives for environmental restoration projects at the Idaho National Engineering Laboratory. The diagram (three volumes) documents suggested solutions to the characterization, retrieval, and treatment phases of cleanup activities at contaminated sites within 8 of the laboratory's 10 waste area groups. Contaminated sites at the laboratory's Naval Reactor Facility and Argonne National Laboratory-West are not included in this diagram

  13. The laboratory efficiencies initiative: partnership for building a sustainable national public health laboratory system.

    Science.gov (United States)

    Ridderhof, John C; Moulton, Anthony D; Ned, Renée M; Nicholson, Janet K A; Chu, May C; Becker, Scott J; Blank, Eric C; Breckenridge, Karen J; Waddell, Victor; Brokopp, Charles

    2013-01-01

    Beginning in early 2011, the Centers for Disease Control and Prevention and the Association of Public Health Laboratories launched the Laboratory Efficiencies Initiative (LEI) to help public health laboratories (PHLs) and the nation's entire PHL system achieve and maintain sustainability to continue to conduct vital services in the face of unprecedented financial and other pressures. The LEI focuses on stimulating substantial gains in laboratories' operating efficiency and cost efficiency through the adoption of proven and promising management practices. In its first year, the LEI generated a strategic plan and a number of resources that PHL directors can use toward achieving LEI goals. Additionally, the first year saw the formation of a dynamic community of practitioners committed to implementing the LEI strategic plan in coordination with state and local public health executives, program officials, foundations, and other key partners.

  14. The evolution of Interior Intrusion Detection Technology at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Graham, R.H.; Workhoven, R.M.

    1987-07-01

    Interior Intrusion Detection Technology began at Sandia National Laboratories (SNL) in 1975 as part of the Fixed Facilities Physical Protection Research and Development program sponsored by the US Department of Energy in connection with their nuclear safeguards effort. This paper describes the evolution of Interior Intrusion Detection Technology at Sandia National Laboratories from the beginning of the Interior Sensor Laboratory to the present. This Laboratory was established in 1976 to evaluate commercial interior intrusion sensors and to assist in site-specific intrusion detection system designs. Examples of special test techniques and new test equipment that were developed at the Lab are presented, including the Sandia Intruder Motion Simulator (SIMS), the Sensor and Environment Monitor (SEM), and the Sandia Interior Robot (SIR). We also discuss new sensors and unique sensor combinations developed when commercial sensors were unavailable and the future application of expert systems

  15. 2013 Los Alamos National Laboratory Hazardous Waste Minimization Report

    Energy Technology Data Exchange (ETDEWEB)

    Salzman, Sonja L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); English, Charles J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-08-24

    Waste minimization and pollution prevention are inherent goals within the operating procedures of Los Alamos National Security, LLC (LANS). The US Department of Energy (DOE) and LANS are required to submit an annual hazardous waste minimization report to the New Mexico Environment Department (NMED) in accordance with the Los Alamos National Laboratory (LANL or the Laboratory) Hazardous Waste Facility Permit. The report was prepared pursuant to the requirements of Section 2.9 of the LANL Hazardous Waste Facility Permit. This report describes the hazardous waste minimization program (a component of the overall Waste Minimization/Pollution Prevention [WMin/PP] Program) administered by the Environmental Stewardship Group (ENV-ES). This report also supports the waste minimization and pollution prevention goals of the Environmental Programs Directorate (EP) organizations that are responsible for implementing remediation activities and describes its programs to incorporate waste reduction practices into remediation activities and procedures. LANS was very successful in fiscal year (FY) 2013 (October 1-September 30) in WMin/PP efforts. Staff funded four projects specifically related to reduction of waste with hazardous constituents, and LANS won four national awards for pollution prevention efforts from the National Nuclear Security Administration (NNSA). In FY13, there was no hazardous, mixedtransuranic (MTRU), or mixed low-level (MLLW) remediation waste generated at the Laboratory. More hazardous waste, MTRU waste, and MLLW was generated in FY13 than in FY12, and the majority of the increase was related to MTRU processing or lab cleanouts. These accomplishments and analysis of the waste streams are discussed in much more detail within this report.

  16. Lawrence Livermore National Laboratory laser-fusion program

    International Nuclear Information System (INIS)

    Ahlstrom, H.G.

    1982-01-01

    The goals of the Laser-Fusion Program at Lawrence Livermore National Laboratory are to produce well-diagnosed, high-gain, laser-driven fusion explosions in the laboratory and to exploit this capability for both military applications and for civilian energy production. In the past year we have made significant progress both theoretically and experimentally in our understanding of the laser interaction with both directly coupled and radiation-driven implosion targets and their implosion dynamics. We have made significant developments in fabricating the target structures. Data from the target experiments are producing important near-term physics results. We have also continued to develop attractive reactor concepts which illustrate ICF's potential as an energy producer

  17. 1995 Site environmental report Sandia National Laboratories, Albuquerque, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Shyr, L.J.; Duncan, D. [eds.; Sanchez, R.

    1996-09-01

    This 1995 report contains data from routine radiological and non-radiological environmental monitoring activities. Summaries of significant environmental compliance programs in progress, such as National Environmental Policy Act documentation, environmental permits, environmental restoration and various waste management programs at Sandia National Laboratories in Albuquerque, New Mexico, are included.

  18. 1995 Site environmental report Sandia National Laboratories, Albuquerque, New Mexico

    International Nuclear Information System (INIS)

    Shyr, L.J.; Duncan, D.; Sanchez, R.

    1996-09-01

    This 1995 report contains data from routine radiological and non-radiological environmental monitoring activities. Summaries of significant environmental compliance programs in progress, such as National Environmental Policy Act documentation, environmental permits, environmental restoration and various waste management programs at Sandia National Laboratories in Albuquerque, New Mexico, are included

  19. Low Energy Accelerator Laboratory Technical Area 53, Los Alamos National Laboratory. Environmental assessment

    International Nuclear Information System (INIS)

    1995-04-01

    This Environmental Assessment (EA) analyzes the potential environmental impacts that would be expected to occur if the Department of Energy (DOE) were to construct and operate a small research and development laboratory building at Technical Area (TA) 53 at the Los Alamos National Laboratory (LANL), Los Alamos, New Mexico. DOE proposes to construct a small building to be called the Low Energy Accelerator Laboratory (LEAL), at a previously cleared, bladed, and leveled quarter-acre site next to other facilities housing linear accelerator research activities at TA-53. Operations proposed for LEAL would consist of bench-scale research, development, and testing of the initial section of linear particle accelerators. This initial section consists of various components that are collectively called an injector system. The anticipated life span of the proposed development program would be about 15 years

  20. Tiger Team assessment of the Idaho National Engineering Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, Edward S.; Keating, John J.

    1991-08-01

    The Management Subteam conducted a management assessment of Environment, Safety, and Health (ES H) programs and their implementation of Idaho National Engineering Laboratory (INEL). The objectives of the assessment were to: (1) evaluate the effectiveness of existing management functions and processes in terms of ensuring environmental compliance, and the health and safety of workers and the general public; and (2) identify probable root causes for ES H findings and concerns. Organizations reviewed were DOE-Headquarters: DOE Field Offices, Chicago (CH) and Idaho (ID); Argonne Area Offices, East (AAO-E) and West (AAO-W); Radiological and Environmental Sciences Laboratory (RESL); Argonne National Laboratory (ANL); EG G Idaho, Inc. (EG G); Westinghouse Idaho Nuclear Company, Inc. (WINCO); Rockwell-INEL; MK-Ferguson of Idaho Company (MK-FIC); and Protection Technology of Idaho, Inc. (PTI). The scope of the assessment covered the following ES H management issues: policies and procedures; roles, responsibilities, and authorities; management commitment; communication; staff development, training, and certification; recruitment; compliance management; conduct of operations; emergency planning and preparedness; quality assurance; self assessment; oversight activities; and cost plus award fee processes.

  1. Radioactive target and source development at Argonne National Laboratory

    International Nuclear Information System (INIS)

    Greene, J.P.; Ahmad, I.; Thomas, G.E.

    1992-01-01

    An increased demand for low-level radioactive targets has created the need for a laboratory dedicated to the production of these foils. A description is given of the radioactive target produced as well as source development work being performed at the Physics Division target facility of Argonne National Laboratory (ANL). Highlights include equipment used and the techniques employed. In addition, some examples of recent source preparation are given as well as work currently in progress

  2. Lawrence Livermore National Laboratory Environmental Report 2014

    Energy Technology Data Exchange (ETDEWEB)

    Jones, H. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bertoldo, N. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Blake, R. G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Buscheck, W. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Byrne, J. G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Cerruti, S. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bish, C. B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Fratanduono, M. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Grayson, A. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); MacQueen, D. H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Montemayor, W. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ottaway, H. L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Paterson, L. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Revelli, M. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rosene, C. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Swanson, K. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Terrill, A. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wegrecki, A. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wilson, K. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Woollett, J. S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-09-29

    The purposes of the Lawrence Livermore National Laboratory Environmental Report 2014 are to record Lawrence Livermore National Laboratory’s (LLNL’s) compliance with environmental standards and requirements, describe LLNL’s environmental protection and remediation programs, and present the results of environmental monitoring at the two LLNL sites—the Livermore Site and Site 300. The report is prepared for the U.S. Department of Energy (DOE) by LLNL’s Environmental Functional Area. Submittal of the report satisfies requirements under DOE Order 231.1B, “Environment, Safety and Health Reporting,” and DOE Order 458.1, “Radiation Protection of the Public and Environment.”

  3. Lawrence Livermore National Laboratory Environmental Report 2015

    Energy Technology Data Exchange (ETDEWEB)

    Rosene, C. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Jones, H. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-09-22

    The purposes of the Lawrence Livermore National Laboratory Environmental Report 2015 are to record Lawrence Livermore National Laboratory’s (LLNL’s) compliance with environmental standards and requirements, describe LLNL’s environmental protection and remediation programs, and present the results of environmental monitoring at the two LLNL sites—the Livermore Site and Site 300. The report is prepared for the U.S. Department of Energy (DOE) by LLNL’s Environmental Functional Area. Submittal of the report satisfies requirements under DOE Order 231.1B, “Environment, Safety and Health Reporting,” and DOE Order 458.1, “Radiation Protection of the Public and Environment.”

  4. National Renewable Energy Laboratory 2001 Information Resources Catalog

    Energy Technology Data Exchange (ETDEWEB)

    2002-03-01

    The National Renewable Energy Laboratory's (NREL) eighth annual Information Resources Catalog can help keep you up-to-date on the research, development, opportunities, and available technologies in energy efficiency and renewable energy. The catalog includes five main sections with entries grouped according to subject area.

  5. National Laboratory of Ionizing Radiation Metrology - Brazilian CNEN

    International Nuclear Information System (INIS)

    1992-01-01

    The activities of the Brazilian National Laboratory of Ionizing Radiations Metrology are described. They include research and development of metrological techniques and procedures, the calibration of area radiation monitors, clinical dosemeters and other instruments and the preparation and standardization of reference radioactive sources. 4 figs., 13 tabs

  6. Testing activities at the National Battery Test Laboratory

    Science.gov (United States)

    Hornstra, F.; Deluca, W. H.; Mulcahey, T. P.

    The National Battery Test Laboratory (NBTL) is an Argonne National Laboratory facility for testing, evaluating, and studying advanced electric storage batteries. The facility tests batteries developed under Department of Energy programs and from private industry. These include batteries intended for future electric vehicle (EV) propulsion, electric utility load leveling (LL), and solar energy storage. Since becoming operational, the NBTL has evaluated well over 1400 cells (generally in the form of three- to six-cell modules, but up to 140-cell batteries) of various technologies. Performance characterization assessments are conducted under a series of charge/discharge cycles with constant current, constant power, peak power, and computer simulated dynamic load profile conditions. Flexible charging algorithms are provided to accommodate the specific needs of each battery under test. Special studies are conducted to explore and optimize charge procedures, to investigate the impact of unique load demands on battery performance, and to analyze the thermal management requirements of battery systems.

  7. 2016 Los Alamos National Laboratory Hazardous Waste Minimization Report

    Energy Technology Data Exchange (ETDEWEB)

    Salzman, Sonja L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); English, Charles Joe [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-12-02

    Waste minimization and pollution prevention are goals within the operating procedures of Los Alamos National Security, LLC (LANS). The US Department of Energy (DOE), inclusive of the National Nuclear Security Administration (NNSA) and the Office of Environmental Management, and LANS are required to submit an annual hazardous waste minimization report to the New Mexico Environment Department (NMED) in accordance with the Los Alamos National Laboratory (LANL or the Laboratory) Hazardous Waste Facility Permit. The report was prepared pursuant to the requirements of Section 2.9 of the LANL Hazardous Waste Facility Permit. This report describes the hazardous waste minimization program, which is a component of the overall Pollution Prevention (P2) Program, administered by the Environmental Stewardship Group (EPC-ES). This report also supports the waste minimization and P2 goals of the Associate Directorate of Environmental Management (ADEM) organizations that are responsible for implementing remediation activities and describes its programs to incorporate waste reduction practices into remediation activities and procedures. This report includes data for all waste shipped offsite from LANL during fiscal year (FY) 2016 (October 1, 2015 – September 30, 2016). LANS was active during FY2016 in waste minimization and P2 efforts. Multiple projects were funded that specifically related to reduction of hazardous waste. In FY2016, there was no hazardous, mixed-transuranic (MTRU), or mixed low-level (MLLW) remediation waste shipped offsite from the Laboratory. More non-remediation hazardous waste and MLLW was shipped offsite from the Laboratory in FY2016 compared to FY2015. Non-remediation MTRU waste was not shipped offsite during FY2016. These accomplishments and analysis of the waste streams are discussed in much more detail within this report.

  8. Strengthening national health laboratories in sub-Saharan Africa: a decade of remarkable progress.

    Science.gov (United States)

    Alemnji, G A; Zeh, C; Yao, K; Fonjungo, P N

    2014-04-01

    Efforts to combat the HIV/AIDS pandemic have underscored the fragile and neglected nature of some national health laboratories in Africa. In response, national and international partners and various governments have worked collaboratively over the last several years to build sustainable laboratory capacities within the continent. Key accomplishments reflecting this successful partnership include the establishment of the African-based World Health Organization Regional Office for Africa (WHO-AFRO) Stepwise Laboratory Quality Improvement Process Towards Accreditation (SLIPTA); development of the Strengthening Laboratory Management Toward Accreditation (SLMTA) training programme; and launching of a Pan African-based institution, the African Society for Laboratory Medicine (ASLM). These platforms continue to serve as the foundations for national health laboratory infrastructure enhancement, capacity development and overall quality system improvement. Further targeted interventions should encourage countries to aim at integrated tiered referral networks, promote quality system improvement and accreditation, develop laboratory policies and strategic plans, enhance training and laboratory workforce development and a retention strategy, create career paths for laboratory professionals and establish public-private partnerships. Maintaining the gains and ensuring sustainability will require concerted action by all stakeholders with strong leadership and funding from African governments and from the African Union. Published 2014. This article is a U.S. Government work and is in the public domain in the U.S.A.

  9. Oak Ridge National Laboratory Waste Management Plan

    International Nuclear Information System (INIS)

    1991-12-01

    The goal of the Oak Ridge National Laboratory (ORNL) Waste Management Program is the protection of workers, the public, and the environment. A vital aspect of this goal is to comply with all applicable state, federal, and DOE requirements. Waste management requirements for DOE radioactive wastes are detailed in DOE Order 5820.2A, and the ORNL Waste Management Program encompasses all elements of this order. The requirements of this DOE order and other appropriate DOE orders, along with applicable Tennessee Department of Environment and Conservation (TDEC) and US Environmental Protection Agency (EPA) rules and regulations, provide the principal source of regulatory guidance for waste management operations at ORNL. The objective of the Oak Ridge National Laboratory Waste Management Plan is to compile and to consolidate information annually on how the ORNL Waste Management is to compile and to consolidate information annually on how the ORNL Waste Management Program is conducted, which waste management facilities are being used to manage wastes, what forces are acting to change current waste management systems, what activities are planned for the forthcoming fiscal year (FY), and how all of the activities are documented

  10. Securing America’s Future. Realizing the Potential of the Department of Energy’s National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Glauthier, T. J. [TJG Energy Associates, LLC, Bloomberg, VA (United States); Cohon, Jared L. [Carnegie Mellon Univ., Pittsburgh, PA (United States); Augustine, Norman R. [U.S. Dept. of Homeland Security, Washington, DC (United States); Austin, Wanda M. [Aerospace Corporation, El Segundo, CA (United States); Elachi, Charles [California Inst. of Technology (CalTech), Pasadena, CA (United States); Fleury, Paul A. [Yale Univ., New Haven, CT (United States); Hockfield, Susan J. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Meserve, Richard A. [Covington and Burling LLP, Washington, DC (United States); Murray, Cherry A. [Harvard Univ., Cambridge, MA (United States)

    2015-10-23

    The Department of Energy (DOE) laboratories are national assets that have contributed profoundly to the Nation’s security, scientific leadership, and economic competitiveness. In recognition of the continuing and evolving threats to our security and the dramatic increase in global economic and scientific competition, the laboratories are and will continue to be vitally important. Yet, the contributions of the National Laboratories are not inevitable, nor have they realized their full potential. This final report of the Commission to Review the Effectiveness of the National Energy Laboratories recommends ways the laboratories could overcome challenges to more efficiently and effectively accomplish the work for which they are uniquely suited.

  11. 78 FR 47007 - National Environmental Policy Act; Santa Susana Field Laboratory

    Science.gov (United States)

    2013-08-02

    ... project Web site address listed below. http://www.nasa.gov/agency/nepa/news/SSFL.html . ADDRESSES...; Santa Susana Field Laboratory AGENCY: National Aeronautics and Space Administration (NASA). ACTION... Environmental Cleanup Activities for the NASA-administered portion of the Santa Susana Field Laboratory (SSFL...

  12. Sandia National Laboratories, California Environmental Management System Program Manual.

    Energy Technology Data Exchange (ETDEWEB)

    2009-04-01

    The Sandia National Laboratories, California (SNL/CA) Environmental Management System (EMS) Program Manual documents the elements of the site EMS Program. The SNL/CA EMS Program conforms to the International Standard on Environmental Management Systems, ISO 14001:2004 and Department of Energy (DOE) Order 450.1. Sandia National Laboratories, California (SNL/CA) has maintained functional environmental programs to assist with regulatory compliance for more than 30 years. During 2005, these existing programs were rolled into a formal environmental management system (EMS) that expands beyond the traditional compliance focus to managing and improving environmental performance and stewardship practices for all site activities. An EMS is a set of inter-related elements that represent a continuing cycle of planning, implementing, evaluating, and improving processes and actions undertaken to achieve environmental policy and goals. The SNL/CA EMS Program conforms to the International Standard for Environmental Management Systems, ISO 14001:2004 (ISO 2004). The site received ISO 14001 certification in September 2006. SNL/CA's EMS Program is applicable to the Sandia, Livermore site only. Although SNL/CA operates as one organizational division of the overall Sandia National Laboratories, the EMS Program is site-specific, with site-specific objectives and targets. SNL/CA (Division 8000) benefits from the organizational structure as it provides corporate level policies, procedures, and standards, and established processes that connect to and support elements of the SNL/CA EMS Program. Additionally, SNL/CA's EMS Program benefits from two corporate functional programs (Facilities Energy Management and Fleet Services Environmental programs) that maintain responsibility for energy management and fleet services for all Sandia locations. Each EMS element is further enhanced with site-specific processes and standards. Division 8000 has several groups operating at Sandia

  13. Sandia National Laboratories, California Environmental Management System program manual.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2012-03-01

    The Sandia National Laboratories, California (SNL/CA) Environmental Management System (EMS) Program Manual documents the elements of the site EMS Program. The SNL/CA EMS Program conforms to the International Standard on Environmental Management Systems, ISO 14001:2004and Department of Energy (DOE) Order 436.1. Sandia National Laboratories, California (SNL/CA) has maintained functional environmental programs to assist with regulatory compliance for more than 30 years. During 2005, these existing programs were rolled into a formal environmental management system (EMS) that expands beyond the traditional compliance focus to managing and improving environmental performance and stewardship practices for all site activities. An EMS is a set of inter-related elements that represent a continuing cycle of planning, implementing, evaluating, and improving processes and actions undertaken to achieve environmental policy and goals. The SNL/CA EMS Program conforms to the International Standard for Environmental Management Systems, ISO 14001:2004 (ISO 2004). The site first received ISO 14001 certification in September 2006 and recertification in 2009. SNL/CA's EMS Program is applicable to the Sandia, Livermore site only. Although SNL/CA operates as one organizational division of the overall Sandia National Laboratories, the EMS Program is site-specific, with site-specific objectives and targets. SNL/CA (Division 8000) benefits from the organizational structure as it provides corporate level policies, procedures, and standards, and established processes that connect to and support elements of the SNL/CA EMS Program. Additionally, SNL/CA's EMS Program benefits from two corporate functional programs (Facilities Energy and Water Resource Management and Fleet Services programs) that maintain responsibility for energy management and fleet services for all Sandia locations. Each EMS element is further enhanced with site-specific processes and standards. Division 8000 has

  14. Sandia National Laboratories, California Environmental Management System Program Manual.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2011-04-01

    The Sandia National Laboratories, California (SNL/CA) Environmental Management System (EMS) Program Manual documents the elements of the site EMS Program. The SNL/CA EMS Program conforms to the International Standard on Environmental Management Systems, ISO 14001:2004and Department of Energy (DOE) Order 450.1. Sandia National Laboratories, California (SNL/CA) has maintained functional environmental programs to assist with regulatory compliance for more than 30 years. During 2005, these existing programs were rolled into a formal environmental management system (EMS) that expands beyond the traditional compliance focus to managing and improving environmental performance and stewardship practices for all site activities. An EMS is a set of inter-related elements that represent a continuing cycle of planning, implementing, evaluating, and improving processes and actions undertaken to achieve environmental policy and goals. The SNL/CA EMS Program conforms to the International Standard for Environmental Management Systems, ISO 14001:2004 (ISO 2004). The site received ISO 14001 certification in September 2006. SNL/CA's EMS Program is applicable to the Sandia, Livermore site only. Although SNL/CA operates as one organizational division of the overall Sandia National Laboratories, the EMS Program is site-specific, with site-specific objectives and targets. SNL/CA (Division 8000) benefits from the organizational structure as it provides corporate level policies, procedures, and standards, and established processes that connect to and support elements of the SNL/CA EMS Program. Additionally, SNL/CA's EMS Program benefits from two corporate functional programs (Facilities Energy Management and Fleet Services programs) that maintain responsibility for energy management and fleet services for all Sandia locations. Each EMS element is further enhanced with site-specific processes and standards. Division 8000 has several groups operating at Sandia National Laboratories

  15. [Information system of the national network of public health laboratories in Peru (Netlab)].

    Science.gov (United States)

    Vargas-Herrera, Javier; Segovia-Juarez, José; Garro Nuñez, Gladys María

    2015-01-01

    Clinical laboratory information systems produce improvements in the quality of information, reduce service costs, and diminish wait times for results, among other things. In the construction process of this information system, the National Institute of Health (NIH) of Peru has developed and implemented a web-based application to communicate to health personnel (laboratory workers, epidemiologists, health strategy managers, physicians, etc.) the results of laboratory tests performed at the Peruvian NIH or in the laboratories of the National Network of Public Health Laboratories which is called NETLAB. This article presents the experience of implementing NETLAB, its current situation, perspectives of its use, and its contribution to the prevention and control of diseases in Peru.

  16. Critical experiments at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Harms, G.A.; Ford, J.T.; Barber, A.D.

    2011-01-01

    Sandia National Laboratories (SNL) has conducted radiation effects testing for the Department of Energy (DOE) and other contractors supporting the DOE since the 1960's. Over this period, the research reactor facilities at Sandia have had a primary mission to provide appropriate nuclear radiation environments for radiation testing and qualification of electronic components and other devices. The current generation of reactors includes the Annular Core Research Reactor (ACRR), a water-moderated pool-type reactor, fueled by elements constructed from UO2-BeO ceramic fuel pellets, and the Sandia Pulse Reactor III (SPR-III), a bare metal fast burst reactor utilizing a uranium-molybdenum alloy fuel. The SPR-III is currently defueled. The SPR Facility (SPRF) has hosted a series of critical experiments. A purpose-built critical experiment was first operated at the SPRF in the late 1980's. This experiment, called the Space Nuclear Thermal Propulsion Critical Experiment (CX), was designed to explore the reactor physics of a nuclear thermal rocket motor. This experiment was fueled with highly-enriched uranium carbide fuel in annular water-moderated fuel elements. The experiment program was completed and the fuel for the experiment was moved off-site. A second critical experiment, the Burnup Credit Critical Experiment (BUCCX) was operated at Sandia in 2002. The critical assembly for this experiment was based on the assembly used in the CX modified to accommodate low-enriched pin-type fuel in water moderator. This experiment was designed as a platform in which the reactivity effects of specific fission product poisons could be measured. Experiments were carried out on rhodium, an important fission product poison. The fuel and assembly hardware for the BUCCX remains at Sandia and is available for future experimentation. The critical experiment currently in operation at the SPRF is the Seven Percent Critical Experiment (7uPCX). This experiment is designed to provide benchmark

  17. Critical experiments at Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Harms, G.A.; Ford, J.T.; Barber, A.D., E-mail: gaharms@sandia.gov [Sandia National Laboratories, Albuquerque, NM (United States)

    2011-07-01

    Sandia National Laboratories (SNL) has conducted radiation effects testing for the Department of Energy (DOE) and other contractors supporting the DOE since the 1960's. Over this period, the research reactor facilities at Sandia have had a primary mission to provide appropriate nuclear radiation environments for radiation testing and qualification of electronic components and other devices. The current generation of reactors includes the Annular Core Research Reactor (ACRR), a water-moderated pool-type reactor, fueled by elements constructed from UO2-BeO ceramic fuel pellets, and the Sandia Pulse Reactor III (SPR-III), a bare metal fast burst reactor utilizing a uranium-molybdenum alloy fuel. The SPR-III is currently defueled. The SPR Facility (SPRF) has hosted a series of critical experiments. A purpose-built critical experiment was first operated at the SPRF in the late 1980's. This experiment, called the Space Nuclear Thermal Propulsion Critical Experiment (CX), was designed to explore the reactor physics of a nuclear thermal rocket motor. This experiment was fueled with highly-enriched uranium carbide fuel in annular water-moderated fuel elements. The experiment program was completed and the fuel for the experiment was moved off-site. A second critical experiment, the Burnup Credit Critical Experiment (BUCCX) was operated at Sandia in 2002. The critical assembly for this experiment was based on the assembly used in the CX modified to accommodate low-enriched pin-type fuel in water moderator. This experiment was designed as a platform in which the reactivity effects of specific fission product poisons could be measured. Experiments were carried out on rhodium, an important fission product poison. The fuel and assembly hardware for the BUCCX remains at Sandia and is available for future experimentation. The critical experiment currently in operation at the SPRF is the Seven Percent Critical Experiment (7uPCX). This experiment is designed to provide

  18. The evolution of interior intrusion detection technology at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Graham, R.H.; Workhoven, R.M.

    1987-07-01

    Interior Intrusion Detection Technology began at Sandia National Laboratories (SNL) in 1975 as part of the Fixed Facilities Physical Protection Research and Development program sponsored by the US Department of Energy in connection with their nuclear safeguards effort. This paper describes the evolution of Interior Intrusion Detection Technology at Sandia National Laboratories from the beginning of the Interior Sensor Laboratory to the present. This Laboratory was established in 1976 to evaluate commercial interior intrusion sensors and to assist in site-specific intrusion detection system designs. Examples of special test techniques and new test equipment that were developed at the Lab are presented, including the Sandia Intruder Motion Simulator (SIMS), the Sensor and Environment Monitor (SEM), and the Sandia Interior Robot (SIR). We also discuss new sensors and unique sensor combination developed when commercial sensors were unavailable and the future application of expert systems. 5 refs

  19. The evolution of interior intrusion detection technology at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Graham, R.H.; Workhoven, R.M.

    1987-01-01

    Interior Intrusion Detection Technology began at Sandia National Laboratories (SNL) in 1975 as part of the Fixed Facilities Physical Protection Research and Development program sponsored by the U.S. Department of Energy in connection with their nuclear safeguards effort. This paper describes the evolution of Interior Intrusion Detection Technology at Sandia National Laboratories from the beginning of the Interior Sensor Laboratory to the present. This Laboratory was established in 1976 to evaluate commercial interior intrusion sensors and to assist in site-specific intrusion detection system designs. Examples of special test techniques and new test equipment that were developed at the Lab are presented, including the Sandia Intruder Motion Simulator (SIMS), the Sensor and Environment Monitor (SEM), and the Sandia Interior Robot (SIR). The authors also discuss new sensors and unique sensor combinations developed when commercial sensors were unavailable and the future application of expert systems

  20. The pressing energy innovation challenge of the US National Laboratories

    Science.gov (United States)

    Anadon, Laura Diaz; Chan, Gabriel; Bin-Nun, Amitai Y.; Narayanamurti, Venkatesh

    2016-10-01

    Accelerating the development and deployment of energy technologies is a pressing challenge. Doing so will require policy reform that improves the efficacy of public research organizations and strengthens the links between public and private innovators. With their US$14 billion annual budget and unique mandates, the US National Laboratories have the potential to critically advance energy innovation, yet reviews of their performance find several areas of weak organizational design. Here, we discuss the challenges the National Laboratories face in engaging the private sector, increasing their contributions to transformative research, and developing culture and management practices to better support innovation. We also offer recommendations for how policymakers can address these challenges.

  1. Overview of the Los Alamos National Laboratory Inertial Confinement Fusion Program

    International Nuclear Information System (INIS)

    Harris, D.B.

    1991-01-01

    The Los Alamos Inertial Confinement Fusion (ICF) Program is focused on preparing for a National Ignition Facility. Target physics research is addressing specific issues identified for the Ignition Facility target, and materials experts are developing target fabrication techniques necessary for the advanced targets. We are also working with Lawrence Livermore National Laboratory on the design of the National Ignition Facility target chamber. Los Alamos is also continuing to develop the KrF laser-fusion driver for ICF. We are modifying the Aurora laser to higher intensity and shorter pulses and are working with the Naval Research Laboratory on the development of the Nike KrF laser. 9 refs., 1 fig., 2 tabs

  2. Oak Ridge National Laboratory Waste Management Plan

    International Nuclear Information System (INIS)

    1992-12-01

    The objective of the Oak Ridge National Laboratory Waste Management Plan is to compile and to consolidate information annually on how the ORNL Waste Management Program is conducted, which waste management facilities are being used to manage wastes, what forces are acting to change current waste management systems, what activities are planned for the forthcoming fiscal year (FY), and how all of the activities are documented

  3. Oak Ridge National Laboratory Waste Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-01

    The objective of the Oak Ridge National Laboratory Waste Management Plan is to compile and to consolidate information annually on how the ORNL Waste Management Program is conducted, which waste management facilities are being used to manage wastes, what forces are acting to change current waste management systems, what activities are planned for the forthcoming fiscal year (FY), and how all of the activities are documented.

  4. A review of international underground laboratory developments

    International Nuclear Information System (INIS)

    Cheng Jianping; Yue Qian; Wu Shiyong; Shen Manbin

    2011-01-01

    Underground laboratories are essential for various important physics areas such as the search for dark matter, double beta decay, neutrino oscillation, and proton decay. At the same time, they are also a very important location for studying rock mechanics, earth structure evolution,and ecology. It is essential for a nation's basic research capability to construct and develop underground laboratories. In the past, China had no high-quality underground laboratory,in particular no deep underground laboratory,so her scientists could not work independently in major fields such as the search for dark matter,but had to collaborate with foreign scientists and share the space of foreign underground laboratories. In 2009, Tsinghua university collaborated with the Ertan Hydropower Development Company to construct an extremely deep underground laboratory, the first in China and currently the deepest in the world, in the Jinping traffic tunnel which was built to develop hydropower from the Yalong River in Sichuan province. This laboratory is named the China Jinping Underground Laboratory (CJPL) and formally opened on December 12, 2010. It is now a major independent platform in China and can host various leading basic research projects. We present a brief review of the development of various international underground laboratories,and especially describe CJPL in detail. (authors)

  5. Math and science education programs from the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    1991-01-01

    This booklet reviews math and science education programs at the Idaho National Engineering Laboratory (INEL). The programs can be categorized into six groups: teacher programs; science laboratories for students; student programs; education outreach programs; INEL Public Affairs Office; and programs for college faculty and students

  6. Sandia National Laboratories Institutional Plan FY1994--1999

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-01

    This report presents a five year plan for the laboratory. This plan takes advantage of the technical strengths of the lab and its staff to address issues of concern to the nation on a scope much broader than Sandia`s original mission, while maintaining the general integrity of the laboratory. The plan proposes initiatives in a number of technologies which overlap the needs of its customers and the strengths of its staff. They include: advanced manufacturing technology; electronics; information and computational technology; transportation energy technology and infrastructure; environmental technology; energy research and technology development; biomedical systems engineering; and post-cold war defense imperatives.

  7. Recent package testing successes at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Ludwig, S.B.; Singley, P.T.; Michelhaugh, R.D.; Hawk, M.B.; Shappert, L.B.

    2004-01-01

    Oak Ridge National Laboratory (ORNL)'s history of testing of radioactive material packages dates back to the early 1960s, and includes the testing of hundreds of different packages of all shapes and sizes. This paper provides an overview of ORNL's new Packaging Research Facility (PRF) at the National Transportation Research Center (NTRC), and describes recent package testing successes conducted at the NTRC from September 2002 to September 2003

  8. The Role of a National Biocontainment Laboratory in Emergencies.

    Science.gov (United States)

    Le Duc, James W; Ksiazek, Thomas G

    2015-01-01

    Over a decade ago, the National Institutes of Health awarded partial support for the construction and operation of 2 National Biocontainment Laboratories, with the condition that they would be available to assist in the event of public health emergencies-although how a biocontainment facility located on an academic campus might contribute was not defined. Here we offer examples of how one of these laboratories has contributed to a coordinated response to 2 recent international public health emergencies. Essential assets for success include highly trained and experienced staff, access to reference pathogens and reagents, cutting-edge knowledge of the field, appropriate biocontainment facilities, robust biosafety and biosecurity programs, and availability of modern instrumentation. The ability to marry the strengths of academia in basic and applied research with access to appropriate biocontainment facilities while drawing on a highly skilled cadre of experienced experts has proven extremely valuable in the response to recent national emergencies and will continue to do so in the future. Areas where additional planning and preparation are needed have also been identified through these experiences.

  9. 60 years of great science [Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    None

    2003-01-01

    This issue highlights Oak Ridge National Laboratory's contributions in more than 30 areas of research and related activities during the past 60 years and provides glimpses of current activities that are carrying on this heritage.

  10. Nuclear Plant Analyzer development at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Laats, E.T.

    1986-10-01

    The Nuclear Plant Analyzer (NPA) is a state-of-the-art safety analysis and engineering tool being used to address key nuclear power plant safety issues. Under the sponsorship of the US Nuclear Regulatory Commission (NRC), the NPA has been developed to integrate the NRC's computerized reactor behavior simulation codes such as RELAP5, TRAC-BWR and TRAC-PWR, with well-developed computer color graphics programs and large repositories of reactor design and experimental data. An important feature of the NPA is the capability to allow an analyst to redirect a RELAP5 or TRAC calculation as it progresses through its simulated scenario. The analyst can have the same power plant control capabilities as the operator of an actual plant. The NPA resides on the dual Control Data Corporation Cyber 176 mainframe computers at the Idaho National Engineering Laboratory and Cray-1S computers at the Los Alamos National Laboratory (LANL) and Kirtland Air Force Weapons Laboratory (KAFWL)

  11. Brookhaven National Laboratory moves to the fast lane

    CERN Multimedia

    2006-01-01

    "The U.S. Department of Energy's energy sciences network (ESnet) continues to roll out its next-generation architecture on schedule with the March 14 completion of the Long Island Metropolitan Area Network, connecting Brookhaven National Laboratory (BNL) to the ESnet point of presente (PO) 60 miles away in New York City." (1 page)

  12. Laboratory spectrum of the PS radical and related astronomical search

    International Nuclear Information System (INIS)

    Ohishi, M.; Yamamoto, S.; Saito, S.; Kawaguchi, K.; Suzuki, H.

    1988-01-01

    The millimeter-wave rotational spectrum of the PS radical (X 2Pi r) was observed in the laboratory for the first time in the frequency region of 79-293 GHz by discharging the mixture of PSCl3 and He. Some 44 lines were measured, and the rotational constant, the centrifugal distortion constant, the centrifugal distortion term of the spin-orbit coupling constant, the Lambda-type doubling constants, and the hyperfine coupling constants were determined. Based on the measured and calculated frequencies, an astronomical search for the interstellar and circumstellar PS radical was made without success in Orion KL, Sgr B2, L134N,IRC + 10216, VY CMa, and OH 231.8 + 4.2. 29 references

  13. Role of the laboratory for laser energetics in the National Ignition Facility Project

    International Nuclear Information System (INIS)

    Soures, J.M.; Loucks, S.J.; McCrory, R.L.

    1996-01-01

    The National Ignition Facility (NIF) is a 192-beam, 1.8-MJ (ultraviolet) laser facility that is currently planned to start operating in 2002. The NIF mission is to provide data critical to this Nation's science-based stockpile stewardship (SBSS) program and to advance the understanding of inertial confinement fusion and assess its potential as an energy source. The NIF project involves a collaboration among the Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Sandia National Laboratory (SNL), and the University of Rochester's Laboratory for Laser Energetics (UR/LLE). In this paper, the role of the University of Rochester in the research, development, and planning required to assure the success of the NIF will be presented. The principal roles of the UR/LLE in the NIF are (1) validation of the direct-drive approach to NIF using the OMEGA 60-beam, 40-kJ UV laser facility; (2) support of indirect-drive physics experiments using OMEGA in collaboration with LLNL and LANL; (3) development of plasma diagnostics for NIF; (4) development of beam-smoothing techniques; and (5) development of thin-film coatings for NIF and cryogenic-fuel-layer targets for eventual application to NIF. 3 refs., 6 figs

  14. Idaho national laboratory - a nuclear research center

    International Nuclear Information System (INIS)

    Zaidi Mohammed, K.

    2006-01-01

    Full text: The Idaho National Laboratory (INL) is committed to providing international nuclear leadership for the 21st Century, developing and demonstrating compelling national security technologies, and delivering excellence in science and technology as one of the United States Department of Energy's (DOE) multi program national laboratories. INL runs three major programs - Nuclear, Security and Science. Nuclear programs covers the Advanced test reactor, Six Generation IV technology concepts selected for Rand D, targeting tumors - Boron Neutron Capture therapy. Homeland Security establishes the Control System Security and Test Center, Critical Infrastructure Test Range evaluates technologies on a scalable basis, INL conducts high performance computing and visualization research and science. To provide leadership in the education and training, INL has established an Institute of Nuclear Science and Engineering (INSE) under the Center for Advanced Energy Studies (CAES) and the Idaho State University (ISU). INSE will offer a four year degree based on a newly developed curriculum - two year of basic science course work and two years of participation in project planning and development. The students enrolled in this program can continue to get a masters or a doctoral degree. This summer INSE is the host for the training of the first international group selected by the World Nuclear University (WNU) - 75 fellowship holders and their 30 instructors from 40 countries. INL has been assigned to provide future global leadership in the field of nuclear science and technology. Here, at INL, we keep safety first above all things and our logo is 'Nuclear leadership synonymous with safety leadership'. (author)

  15. Tiger Team assessment of the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    1991-08-01

    The Management Subteam conducted a management assessment of Environment, Safety, and Health (ES ampersand H) programs and their implementation of Idaho National Engineering Laboratory (INEL). The objectives of the assessment were to: (1) evaluate the effectiveness of existing management functions and processes in terms of ensuring environmental compliance, and the health and safety of workers and the general public; and (2) identify probable root causes for ES ampersand H findings and concerns. Organizations reviewed were DOE-Headquarters: DOE Field Offices, Chicago (CH) and Idaho (ID); Argonne Area Offices, East (AAO-E) and West (AAO-W); Radiological and Environmental Sciences Laboratory (RESL); Argonne National Laboratory (ANL); EG ampersand G Idaho, Inc. (EG ampersand G); Westinghouse Idaho Nuclear Company, Inc. (WINCO); Rockwell-INEL; MK-Ferguson of Idaho Company (MK-FIC); and Protection Technology of Idaho, Inc. (PTI). The scope of the assessment covered the following ES ampersand H management issues: policies and procedures; roles, responsibilities, and authorities; management commitment; communication; staff development, training, and certification; recruitment; compliance management; conduct of operations; emergency planning and preparedness; quality assurance; self assessment; oversight activities; and cost plus award fee processes

  16. Suicide rates and information seeking via search engines: A cross-national correlational approach.

    Science.gov (United States)

    Arendt, Florian

    2018-09-01

    The volume of Google searches for suicide-related terms is positively associated with suicide rates, but previous studies used data from specific, restricted geographical contexts, thus, limiting the generalizability of this finding. We investigated the correlation between suicide-related search volume and suicide rates of 50 nations from five continents. We found a positive correlation between suicide rates and search volume, even after controlling for the level of industrialization. Results give credence to the global existence of a correlation. However, the reason why suicide-related search volume is higher in countries with higher suicide rates is still unclear and up to future research.

  17. Argonne National Laboratory research offers clues to Alzheimer's plaques

    CERN Multimedia

    2003-01-01

    Researchers from Argonne National Laboratory and the University of Chicago have developed methods to directly observe the structure and growth of microscopic filaments that form the characteristic plaques found in the brains of those with Alzheimer's Disease (1 page).

  18. Environmental Assessment for the vacuum process laboratory (VPL) relocation at the Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    1992-04-01

    This Environmental Assessment (EA) evaluates the potential environmental impacts of relocating a vacuum process laboratory (VPL) from Building 321 to Building 2231 at Lawrence Livermore National Laboratory (LLNL). The VPL provides the latest technology in the field of vacuum deposition of coatings onto various substrates for several weapons-related and energy-related programs at LLNL. Operations within the VPL at LLNL will not be expanded nor reduced by the relocation. No significant environmental impacts are expected as a result of the relocation of the VPL

  19. A woman like you: Women scientists and engineers at Brookhaven National Laboratory. Careers in action

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-31

    This publication by the women in Science and Engineering introduces career possibilities in science and engineering. It introduces what work and home life are like for women who have already entered these fields. Women at Brookhaven National Laboratory work in a variety of challenging research roles -- from biologist and environmental scientist to safety engineer, from patent lawyer to technician. Brookhaven National Laboratory is a multi-program laboratory which carries out basic and applied research in the physical, biomedical and environmental sciences and in selected energy technologies. The Laboratory is managed by Associated University, Inc., under contract with the US Department of Energy. Brookhaven and the other national laboratories, because of their enormous research resources, can play a critical role in a education and training of the workforce.

  20. Lab Plays Central Role in Groundbreaking National Clinical Trial in Precision Medicine | Frederick National Laboratory for Cancer Research

    Science.gov (United States)

    The Molecular Characterization Laboratory at the Frederick National Laboratory for Cancer Research lies at the heart of an ambitious new approach for testing cancer drugs that will use the newest tools of precision medicine to select the best treatme

  1. Periodic Table of Elements: Los Alamos National Laboratory

    Science.gov (United States)

    metal buttons (photo courtesy Lawrence Berkeley National Laboratory) Neptunium metal buttons (photo Configuration: [Rn]7s25f46d1 Oxidation States: 7, 6, 5, 4, 3, 2 History Named for the planet Neptune (named bombarding uranium with neutrons followed by beta decay would lead to the formation of element 93. In 1934

  2. Argonne National Laboratory annual report of Laboratory Directed Research and Development Program Activities FY 2009.

    Energy Technology Data Exchange (ETDEWEB)

    Office of the Director

    2010-04-09

    I am pleased to submit Argonne National Laboratory's Annual Report on its Laboratory Directed Research and Development (LDRD) activities for fiscal year 2009. Fiscal year 2009 saw a heightened focus by DOE and the nation on the need to develop new sources of energy. Argonne scientists are investigating many different sources of energy, including nuclear, solar, and biofuels, as well as ways to store, use, and transmit energy more safely, cleanly, and efficiently. DOE selected Argonne as the site for two new Energy Frontier Research Centers (EFRCs) - the Institute for Atom-Efficient Chemical Transformations and the Center for Electrical Energy Storage - and funded two other EFRCs to which Argonne is a major partner. The award of at least two of the EFRCs can be directly linked to early LDRD-funded efforts. LDRD has historically seeded important programs and facilities at the lab. Two of these facilities, the Advanced Photon Source and the Center for Nanoscale Materials, are now vital contributors to today's LDRD Program. New and enhanced capabilities, many of which relied on LDRD in their early stages, now help the laboratory pursue its evolving strategic goals. LDRD has, since its inception, been an invaluable resource for positioning the Laboratory to anticipate, and thus be prepared to contribute to, the future science and technology needs of DOE and the nation. During times of change, LDRD becomes all the more vital for facilitating the necessary adjustments while maintaining and enhancing the capabilities of our staff and facilities. Although I am new to the role of Laboratory Director, my immediate prior service as Deputy Laboratory Director for Programs afforded me continuous involvement in the LDRD program and its management. Therefore, I can attest that Argonne's program adhered closely to the requirements of DOE Order 413.2b and associated guidelines governing LDRD. Our LDRD program management continually strives to be more efficient. In

  3. Argonne National Laboratory annual report of Laboratory Directed Research and Development Program Activities FY 2009

    International Nuclear Information System (INIS)

    2010-01-01

    I am pleased to submit Argonne National Laboratory's Annual Report on its Laboratory Directed Research and Development (LDRD) activities for fiscal year 2009. Fiscal year 2009 saw a heightened focus by DOE and the nation on the need to develop new sources of energy. Argonne scientists are investigating many different sources of energy, including nuclear, solar, and biofuels, as well as ways to store, use, and transmit energy more safely, cleanly, and efficiently. DOE selected Argonne as the site for two new Energy Frontier Research Centers (EFRCs) - the Institute for Atom-Efficient Chemical Transformations and the Center for Electrical Energy Storage - and funded two other EFRCs to which Argonne is a major partner. The award of at least two of the EFRCs can be directly linked to early LDRD-funded efforts. LDRD has historically seeded important programs and facilities at the lab. Two of these facilities, the Advanced Photon Source and the Center for Nanoscale Materials, are now vital contributors to today's LDRD Program. New and enhanced capabilities, many of which relied on LDRD in their early stages, now help the laboratory pursue its evolving strategic goals. LDRD has, since its inception, been an invaluable resource for positioning the Laboratory to anticipate, and thus be prepared to contribute to, the future science and technology needs of DOE and the nation. During times of change, LDRD becomes all the more vital for facilitating the necessary adjustments while maintaining and enhancing the capabilities of our staff and facilities. Although I am new to the role of Laboratory Director, my immediate prior service as Deputy Laboratory Director for Programs afforded me continuous involvement in the LDRD program and its management. Therefore, I can attest that Argonne's program adhered closely to the requirements of DOE Order 413.2b and associated guidelines governing LDRD. Our LDRD program management continually strives to be more efficient. In addition to

  4. Customer satisfaction assessment at the Pacific Northwest National Laboratory; TOPICAL

    International Nuclear Information System (INIS)

    DN Anderson; ML Sours

    2000-01-01

    The Pacific Northwest National Laboratory (PNNL) is developing and implementing a customer satisfaction assessment program (CSAP) to assess the quality of research and development provided by the laboratory. This report presents the customer survey component of the PNNL CSAP. The customer survey questionnaire is composed of two major sections: Strategic Value and Project Performance. Both sections contain a set of questions that can be answered with a 5-point Likert scale response. The strategic value section consists of five questions that are designed to determine if a project directly contributes to critical future national needs. The project Performance section consists of nine questions designed to determine PNNL performance in meeting customer expectations. A statistical model for customer survey data is developed and this report discusses how to analyze the data with this model. The properties of the statistical model can be used to establish a gold standard or performance expectation for the laboratory, and then to assess progress. The gold standard is defined using laboratory management input-answers to four questions, in terms of the information obtained from the customer survey: (1) What should the average Strategic Value be for the laboratory project portfolio? (2) What Strategic Value interval should include most of the projects in the laboratory portfolio? (3) What should average Project Performance be for projects with a Strategic Value of about 2? (4) What should average Project Performance be for projects with a Strategic Value of about 4? To be able to provide meaningful answers to these questions, the PNNL customer survey will need to be fully implemented for several years, thus providing a link between management perceptions of laboratory performance and customer survey data

  5. Assessment of Energy Efficiency Project Financing Alternatives for Brookhaven National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, W. D.; Hail, John C.; Sullivan, Gregory P.

    2000-02-14

    This document provides findings and recommendations that resulted from an assessment of the Brookhaven National Laboratory by a team from Pacific Northwest National Laboratory to assess the site's potential for various alternative financing options as a means to implement energy-efficiency improvements. The assessment looked for life-cycle cost-effective energy-efficiency improvement opportunities, and through a series of staff interviews, evaluated the various methods by which these opportunities may be financed, while considering availability of funds, staff, and available financing options. This report summarizes the findings of the visit and the resulting recommendations.

  6. Real-time laboratory exercises to test contingency plans for classical swine fever: experiences from two national laboratories

    DEFF Research Database (Denmark)

    Koenen, K.; Uttenthal, Åse; Meindl-Böhmer, A.

    2007-01-01

    In order to adequately and efficiently handle outbreaks of contagious diseases such as classical swine fever (CSF), foot and mouth disease or highly pathogenic avian influenza, competent authorities and the laboratories involved have to be well prepared and must be in possession of functioning....... It is essential that these plans are established during ‘peace-time’ and are reviewed regularly. This paper provides suggestions on how to perform laboratory exercises to test preparedness and describes the experiences of two national reference laboratories for CSF. The major lesson learnt was the importance...

  7. Brookhaven National Laboratory site report for calendar year 1988

    Energy Technology Data Exchange (ETDEWEB)

    Miltenberger, R.P.; Royce, B.A.; Naidu, J.R.

    1989-06-01

    Brookhaven National Laboratory (BNL) is managed by Associated Universities Inc. (AUI). AUI was formed in 1946 by a group of nine universities whose purpose was to create and manage a laboratory in the Northeast in order to advance scientific research in areas of interest to universities, industry, and government. On January 31, 1947, the contract for BNL was approved by the Manhattan District of the Army Corps of Engineers and BNL was established on the former Camp Upton army camp. 54 refs., 21 figs., 78 tabs.

  8. Brookhaven National Laboratory site report for calendar year 1988

    International Nuclear Information System (INIS)

    Miltenberger, R.P.; Royce, B.A.; Naidu, J.R.

    1989-06-01

    Brookhaven National Laboratory (BNL) is managed by Associated Universities Inc. (AUI). AUI was formed in 1946 by a group of nine universities whose purpose was to create and manage a laboratory in the Northeast in order to advance scientific research in areas of interest to universities, industry, and government. On January 31, 1947, the contract for BNL was approved by the Manhattan District of the Army Corps of Engineers and BNL was established on the former Camp Upton army camp. 54 refs., 21 figs., 78 tabs

  9. Environmental Monitoring Plan, Sandia National Laboratories, Livermore

    International Nuclear Information System (INIS)

    Holland, R.C.

    1992-06-01

    This Environmental Monitoring Plan was written to fulfill the requirements of DOE Order 5400.1 and DOE Environmental Regulatory Guide DOE/EH 0173T. This Plan documents the background, organizational structure, and methods used for effluent monitoring and environmental surveillance at Sandia National Laboratories, Livermore. The design, rationale, and historical results of the environmental monitoring system are discussed in detail. Throughout the Plan, recommendations for improvements to the monitoring system are made. 61 refs

  10. Environmental report 1997, Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    Lentzner, H.L.; Morris, J.C.; Harrach, R.J.

    1998-01-01

    This report summarizes the environmental program activities at the Lawrence Livermore National Laboratory (LLNL) for 1997. This report accurately summarizes the results of environmental monitoring, compliance, impacts assessment, and the restoration program at LLNL. It features individual chapters on monitoring of air, sewage, surface water, ground water, soil and sediment, vegetation and foodstuff, and environmental radiation. It also contains chapters on site overview, environmental program information, radiological dose assessment, and quality assurance

  11. Materials accounting at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Erkkila, B.H.; Roberts, N.J.

    1989-01-01

    This presentation gives an overview of the accounting system used at the Los Alamos National Laboratory by the Los Alamos Nuclear Material Accounting and Safeguards System (MASS). This system processes accounting data in real time for bulk materials, discrete items, and materials undergoing dynamic processing. The following topics are covered in this chapter: definitions; nuclear material storage; nuclear material storage; computer system; measurement control program; inventory differences; and current programs and future plans

  12. Radiographic testing at Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    Bossi, R.H.

    1982-01-01

    Radiographic testing is a nondestructive inspection technique which uses penetrating radiation. The Nondestructive Evaluation (NDE) Section at Lawrence Livermore National Laboratory has a broad spectrum of equipment and techniques for radiographic testing. These resources include low-energy vacuum systems, low- and mid-energy cabinet and cell radiographic systems, high-energy linear accelerators, portable x-ray machines and radioisotopes for radiographic inspections. For diagnostic testing the NDE Section also has real-time and flash radiographic equipment

  13. The Brookhaven National Laboratory Accelerator Test Facility

    International Nuclear Information System (INIS)

    Batchelor, K.

    1992-01-01

    The Brookhaven National Laboratory Accelerator Test Facility comprises a 50 MeV traveling wave electron linear accelerator utilizing a high gradient, photo-excited, raidofrequency electron gun as an injector and an experimental area for study of new acceleration methods or advanced radiation sources using free electron lasers. Early operation of the linear accelerator system including calculated and measured beam parameters are presented together with the experimental program for accelerator physics and free electron laser studies

  14. Environmental report 1996, Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    Lentzner, H.L.; Napolitano, M.M.; Harrach, R.J.

    1997-01-01

    This report summarizes the environmental program activities at the Lawrence Livermore National Laboratory (LLNL) for 1996. This report accurately summarizes the results of environmental monitoring, compliance, impacts assessment, and the restoration program at LLNL. It features individual chapters on monitoring of air, sewage, surface water, ground water, soil and sediment, vegetation and foodstuff, and environmental radiation. It also contains chapters on site overview, environmental program information, radiological dose assessment, and quality assurance

  15. GlueX: The Search for Gluonic Excitations at Jefferson Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    D.S. Carman

    2005-08-21

    One of the unanswered and most fundamental questions in physics regards the nature of the confinement mechanism of quarks and gluons in quantum chromodynamics (QCD). Exotic hybrid mesons manifest gluonic degrees of freedom and their detailed spectroscopy will provide the precision data necessary to test assumptions in lattice QCD and the specific phenomenology leading to confinement. Photoproduction is expected to be a particularly effective manner to produce exotic hybrids, however, existing data using photon beams are sparse. At Jefferson Laboratory, plans are underway by the GlueX Collaboration to use the coherent bremsstrahlung technique to produce a linearly polarized photon beam. A solenoid-based hermetic detector will be used to collect data on meson production and decays with statistics that will exceed existing photoproduction data by several orders of magnitude after the first year of running. In order to reach the ideal photon energy of 9 GeV required for these studies, the energy of the Jefferson Laboratory electron accelerator, CEBAF, will be doubled from its current maximum energy of 6 GeV to 12 GeV. The physics motivating the search and the status of the project are reviewed.

  16. The Research Career of Subramanian Raman at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Bertrand, Fred E.

    2005-01-01

    Subramanian 'Ram' Raman, a distinguished nuclear physicist and senior staff member of the Physics Division at Oak Ridge National Laboratory (ORNL), died April 8, 2003. In June 1966, Raman joined the staff at ORNL working in the Nuclear Data Project. This position provided him insights into important open questions in nuclear structure physics, and the power of 'horizontal' compilations of properties across a broad range of nuclei. These insights would guide Raman's research interests throughout his 36-year career at ORNL.As shown by his great variety of publications, Raman's research career was marked by an intense interest in all areas of nuclear physics. He published papers on topics ranging from detailed nuclear structure to giant resonances, to the search for superheavy nuclei, to the scattering of heavy ions. His research resulted in over 200 published papers and over 3000 citations of his work. It is however, his nuclear data evaluations, both horizontal and vertical, that we most often remember. His most often cited papers deal with the evaluation and systematics of nuclear data, and he helped establish many of the 'rules' and guidelines for assignment of nuclear level properties. An overview of Raman's work at ORNL is presented

  17. List of selected publications 1982. Risoe National Laboratory

    International Nuclear Information System (INIS)

    1983-12-01

    The list comprises a selection of scientific and technical publications of Risoe National Laboratory and its staff during 1982. Journal articles, conference papers, and reports are included. The publications are arranged in the following broad subject categories: Energy Supply and Supporting Technology, Environmental and Safety Research, Materials Research, Biotechnology and Radiation Research, Technical and Administrative Services, General. (author)

  18. List of selected publications 1983. Risoe National Laboratory

    International Nuclear Information System (INIS)

    1985-09-01

    The list comprises a selection of scientific and technical publications of Risoe National Laboratory and its staff during 1983. Journal articles, conference papers, and reports are included. The publications are arranged in the following broad subject categories: Energy Supply and Supporting Technology, Environmental and Safety Research, Materials Research, Biotechnology and Tradiation Research, Technical Support, General. (author)

  19. List of selected publications 1981. Risoe National Laboratory

    International Nuclear Information System (INIS)

    1982-07-01

    The list comprises a selection of scientific and technical publications of Risoe National Laboratory and its staff during 1981. Journal articles, conference papers, and reports are included. The publications are arranged in the following broad subject categories: Energy Supply, Environmental and Safety Reseach, Materials Research, Biotechnology and Radiation Research,Experimental Methods and Analyses, Major Research Facilities, General. (author)

  20. Search for the eta C

    International Nuclear Information System (INIS)

    Garren, L.A.

    1982-01-01

    In an experiment performed at the Alternating Gradient Synchrotron at Brookhaven National Laboratory, we searched for narrow resonances in the reaction pi minus p -> X n, X -> gamma gamma at 13 GeV. We used a double-arm spectrometer with lead glass and scintillation elements. No resonances were observed above mass 2.8 in the gamma-gamma spectrum. The upper limit for the eta c cross section times branching ratio is 23 pb

  1. Validation of SmartRank: A likelihood ratio software for searching national DNA databases with complex DNA profiles.

    Science.gov (United States)

    Benschop, Corina C G; van de Merwe, Linda; de Jong, Jeroen; Vanvooren, Vanessa; Kempenaers, Morgane; Kees van der Beek, C P; Barni, Filippo; Reyes, Eusebio López; Moulin, Léa; Pene, Laurent; Haned, Hinda; Sijen, Titia

    2017-07-01

    Searching a national DNA database with complex and incomplete profiles usually yields very large numbers of possible matches that can present many candidate suspects to be further investigated by the forensic scientist and/or police. Current practice in most forensic laboratories consists of ordering these 'hits' based on the number of matching alleles with the searched profile. Thus, candidate profiles that share the same number of matching alleles are not differentiated and due to the lack of other ranking criteria for the candidate list it may be difficult to discern a true match from the false positives or notice that all candidates are in fact false positives. SmartRank was developed to put forward only relevant candidates and rank them accordingly. The SmartRank software computes a likelihood ratio (LR) for the searched profile and each profile in the DNA database and ranks database entries above a defined LR threshold according to the calculated LR. In this study, we examined for mixed DNA profiles of variable complexity whether the true donors are retrieved, what the number of false positives above an LR threshold is and the ranking position of the true donors. Using 343 mixed DNA profiles over 750 SmartRank searches were performed. In addition, the performance of SmartRank and CODIS were compared regarding DNA database searches and SmartRank was found complementary to CODIS. We also describe the applicable domain of SmartRank and provide guidelines. The SmartRank software is open-source and freely available. Using the best practice guidelines, SmartRank enables obtaining investigative leads in criminal cases lacking a suspect. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Transport Energy Impact Analysis; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    Gonder, J.

    2015-05-13

    Presented at the Sustainable Transportation Energy Pathways Spring 2015 Symposium on May 13, 2015, this presentation by Jeff Gonder of the National Renewable Energy Laboratory (NREL) provides information about NREL's transportation energy impact analysis of connected and automated vehicles.

  3. Developing the Sandia National Laboratories transportation infrastructure for isotope products and wastes

    International Nuclear Information System (INIS)

    Trennel, A.J.

    1997-11-01

    The US Department of Energy (DOE) plans to establish a medical isotope project that would ensure a reliable domestic supply of molybdenum-99 ( 99 Mo) and related medical isotopes (Iodine-125, Iodine-131, and Xenon-133). The Department's plan for production will modify the Annular Core Research Reactor (ACRR) and associated hot cell facility at Sandia National Laboratories (SNL)/New Mexico and the Chemistry and Metallurgy Research facility at Los Alamos National Laboratory (LANL). Transportation activities associated with such production is discussed

  4. Laboratory services series: the utilization of scientific glassblowing in a national research and development laboratory

    International Nuclear Information System (INIS)

    Farnham, R.M.; Poole, R.W.

    1976-04-01

    Glassblowing services at a national research and development laboratory provide unique equipment tailored for specific research efforts, small-scale process items for flowsheet demonstrations, and solutions for unusual technical problems such as glass-ceramic unions. Facilities, equipment, and personnel necessary for such services are described

  5. Nuclear energy related capabilities at Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Pickering, Susan Y. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-02-01

    Sandia National Laboratories' technology solutions are depended on to solve national and global threats to peace and freedom. Through science and technology, people, infrastructure, and partnerships, part of Sandia's mission is to meet the national needs in the areas of energy, climate and infrastructure security. Within this mission to ensure clean, abundant, and affordable energy and water is the Nuclear Energy and Fuel Cycle Programs. The Nuclear Energy and Fuel Cycle Programs have a broad range of capabilities, with both physical facilities and intellectual expertise. These resources are brought to bear upon the key scientific and engineering challenges facing the nation and can be made available to address the research needs of others. Sandia can support the safe, secure, reliable, and sustainable use of nuclear power worldwide by incorporating state-of-the-art technologies in safety, security, nonproliferation, transportation, modeling, repository science, and system demonstrations.

  6. Sandia National Laboratories, California proposed CREATE facility environmental baseline survey.

    Energy Technology Data Exchange (ETDEWEB)

    Catechis, Christopher Spyros

    2013-10-01

    Sandia National Laboratories, Environmental Programs completed an environmental baseline survey (EBS) of 12.6 acres located at Sandia National Laboratories/California (SNL/CA) in support of the proposed Collaboration in Research and Engineering for Advanced Technology and Education (CREATE) Facility. The survey area is comprised of several parcels of land within SNL/CA, County of Alameda, California. The survey area is located within T 3S, R 2E, Section 13. The purpose of this EBS is to document the nature, magnitude, and extent of any environmental contamination of the property; identify potential environmental contamination liabilities associated with the property; develop sufficient information to assess the health and safety risks; and ensure adequate protection for human health and the environment related to a specific property.

  7. Idaho National Laboratory Annual Report FY 2013 LDRD Project Summaries

    Energy Technology Data Exchange (ETDEWEB)

    Dena Tomchak

    2014-03-01

    The FY 2013 LDRD Annual Report is a compendium of the diverse research performed to develop and ensure the INL’s technical capabilities support the current and future DOE missions and national research priorities. LDRD is essential to INL—it provides a means for the Laboratory to maintain scientific and technical vitality while funding highly innovative, high-risk science and technology research and development (R&D) projects. The program enhances technical capabilities at the Laboratory, providing scientific and engineering staff with opportunities to explore proof-of-principle ideas, advanced studies of innovative concepts, and preliminary technical analyses. Established by Congress in 1991, the LDRD Program proves its benefit each year through new programs, intellectual property, patents, copyrights, national and international awards, and publications.

  8. Gran Sasso National Laboratory: Outreach and communication activities

    Science.gov (United States)

    Antolini, R.; Di Giovanni, A.; Galeota, M.; Sebastiani, S.

    2010-01-01

    Due to its fascinating structures, the Gran Sasso National Laboratory (LNGS) offers huge opportunities for communication and outreach activities conceived for students and general public. A great effort is devoted to the organisation of the "OPEN DAY", in which the scientific staff of Gran Sasso introduces non expert people to the main relevant research topics of the laboratory through interactive demonstrations and particle detectors. In particular, a portable cosmic rays telescope has been realized: the detector is used by LNGS team in pubblic events as well as to promote the scientific activities of the Laboratory. In order to point out the importance of the scientific culture for young people, LNGS is involved in the organisation of several training courses for students and teachers focused on the improvement of the knowledge on modern physics topics. Since May 2008 is operating in Teramo the "Galileium", an interactive museum for physics and astrophysics.

  9. Developments of Spent Nuclear Fuel Pyroprocessing Technology at Idaho National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Michael F. Simpson

    2012-03-01

    This paper summarizes research in used fuel pyroprocessing that has been published by Idaho National Laboratory over the last decade. It includes work done both on treatment of Experimental Breeder Reactor-II and development of advanced technology for potential scale-up and commercialization. Collaborations with universities and other laboratories is included in the cited work.

  10. Material Transfer Agreement (MTA) | Frederick National Laboratory for Cancer Research

    Science.gov (United States)

    Material Transfer Agreements are appropriate for exchange of materials into or out of the Frederick National Laboratory for research or testing purposes, with no collaborative research by parties involving the materials.

  11. Aqueous Nitrate Recovery Line at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Finstad, Casey Charles [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-06-15

    This powerpoint is part of the ADPSM Plutonium Engineering Lecture Series, which is an opportunity for new hires at LANL to get an overview of work done at TA55. It goes into detail about the aqueous nitrate recovery line at Los Alamos National Laboratory.

  12. 78 FR 24154 - Notice of Availability of a National Animal Health Laboratory Network Reorganization Concept Paper

    Science.gov (United States)

    2013-04-24

    ...] Notice of Availability of a National Animal Health Laboratory Network Reorganization Concept Paper AGENCY... available a concept paper that describes a revised structure for the National Animal Health Laboratory... biological threats to the nation's food animals. The concept paper we are making available for comment...

  13. 75 FR 9953 - Definition and Requirements for a Nationally Recognized Testing Laboratory (NRTL); Extension of...

    Science.gov (United States)

    2010-03-04

    ...] Definition and Requirements for a Nationally Recognized Testing Laboratory (NRTL); Extension of the Office of Management and Budget's (OMB) Approval of Information Collection (Paperwork) Requirements AGENCY... its Regulation on the Definition and Requirements for a Nationally Recognized Testing Laboratory (29...

  14. National Renewable Energy Laboratory 2005 Research Review

    Energy Technology Data Exchange (ETDEWEB)

    Brown, H.; Gwinner, D.; Miller, M.; Pitchford, P.

    2006-06-01

    Science and technology are at the heart of everything we do at the National Renewable Energy Laboratory, as we pursue innovative, robust, and sustainable ways to produce energy--and as we seek to understand and illuminate the physics, chemistry, biology, and engineering behind alternative energy technologies. This year's Research Review highlights the Lab's work in the areas of alternatives fuels and vehicles, high-performing commercial buildings, and high-efficiency inverted, semi-mismatched solar cells.

  15. Idaho National Laboratory Quarterly Event Performance Analysis FY 2013 4th Quarter

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Lisbeth A. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2013-11-01

    This report is published quarterly by the Idaho National Laboratory (INL) Performance Assurance Organization. The Department of Energy Occurrence Reporting and Processing System (ORPS) as prescribed in DOE Order 232.2 “Occurrence Reporting and Processing of Operations Information” requires a quarterly analysis of events, both reportable and not reportable for the previous twelve months. This report is the analysis of occurrence reports and deficiency reports (including not reportable events) identified at the Idaho National Laboratory (INL) during the period of October 2012 through September 2013.

  16. Ernest Orlando Lawrence Berkeley National Laboratory Institutional Plan FY 2000-2004

    Energy Technology Data Exchange (ETDEWEB)

    Chartock, Mike (ed.); Hansen, Todd (ed.)

    1999-08-01

    The FY 2000-2004 Institutional Plan provides an overview of the Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab, the Laboratory) mission, strategic plan, initiatives, and the resources required to fulfill its role in support of national needs in fundamental science and technology, energy resources, and environmental quality. To advance the Department of Energy's ongoing efforts to define the Integrated Laboratory System, the Berkeley Lab Institutional Plan reflects the strategic elements of our planning efforts. The Institutional Plan is a management report that supports the Department of Energy's mission and programs and is an element of the Department of Energy's strategic management planning activities, developed through an annual planning process. The Plan supports the Government Performance and Results Act of 1993 and complements the performance-based contract between the Department of Energy and the Regents of the University of California. It identifies technical and administrative directions in the context of the national energy policy and research needs and the Department of Energy's program planning initiatives. Preparation of the plan is coordinated by the Office of Planning and Communications from information contributed by Berkeley Lab's scientific and support divisions.

  17. Remediating the past and preparing for the future at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Sanders, T.L.

    1996-01-01

    Sandia National Laboratories is one of the nation's largest multiprogram research, development, test, and evaluation (RDT ampersand E) facilities, with headquarters in Albuquerque, New Mexico, a laboratory in Livermore, California, and a test range near Tonopah, Nevada. Smaller testing facilities are also operated at other locations. Established in 1945, Sandia is currently operated for the U.S. Department of Energy by Lockheed-Martin's energy and environment sector. Sandia's responsibility is research and development for national security programs in defense, energy, and environment, with primary emphasis on nuclear weapons research and development. This article describes Sandia's program of remedial action which aims to use technology to reduce costs of decommissioning and decontamination, positioning itself for future opportunities

  18. Status report on the Advanced Photon Source Project at Argonne National Laboratory

    International Nuclear Information System (INIS)

    Huebner, R.H. Sr.

    1989-01-01

    The Advanced Photon Source at Argonne National Laboratory is designed as a national synchrotron radiation user facility which will provide extremely bright, highly energetic x-rays for multidisciplinary research. When operational, the Advanced Photon Source will accelerate positrons to a nominal energy of 7 GeV. The positrons will be manipulated by insertion devices to produce x-rays 10,000 times brighter than any currently available for research. Accelerator components, insertion devices, optical elements, and optical-element cooling schemes have been and continue to be the subjects of intensive research and development. A call for Letters of Intent from prospective users of the Advanced Photon Source has resulted in a substantial response from industrial, university, and national laboratory researchers

  19. The Fiftieth Anniversary of Brookhaven National Laboratory: A Turbulent Time

    Science.gov (United States)

    Bond, Peter D.

    2018-03-01

    The fiftieth anniversary year of Brookhaven National Laboratory was momentous, but for reasons other than celebrating its scientific accomplishments. Legacy environmental contamination, community unrest, politics, and internal Department of Energy issues dominated the year. It was the early days of perhaps the most turbulent time in the lab's history. The consequences resulted in significant changes at the lab, but in addition they brought a change to contracts to manage the Department of Energy laboratories.

  20. 78 FR 7460 - Stakeholder Meeting on the Nationally Recognized Testing Laboratory Program

    Science.gov (United States)

    2013-02-01

    ...] Stakeholder Meeting on the Nationally Recognized Testing Laboratory Program AGENCY: Occupational Safety and Health Administration (OSHA), Labor. ACTION: Notice of stakeholder meeting. SUMMARY: OSHA invites interested parties to attend an informal stakeholder meeting concerning Nationally Recognized Testing...

  1. Technical Service Agreement (TSA) | Frederick National Laboratory for Cancer Research

    Science.gov (United States)

    Frederick National Laboratory for Cancer Research (FNLCR) scientists provide services and solutions to collaborators through the Technical Services Program, whose portfolio includes more than 200 collaborations with more than 80 partners. The Frederi

  2. Site Environmental Report for 2010 Sandia National Laboratories, California.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2011-06-01

    Sandia National Laboratories, California (SNL/CA) is a government-owned/contractor-operated laboratory. Sandia Corporation, a Lockheed Martin Company, manages and operates the laboratory for the Department of Energy's National Nuclear Security Administration (NNSA). The NNSA Sandia Site Office administers the contract and oversees contractor operations at the site. This Site Environmental Report for 2010 was prepared in accordance with DOE Order 231.1A (DOE 2004a). The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2010. General site and environmental program information is also included. The Site Environmental Report is divided into ten chapters. Chapter 1, the Executive Summary, highlights compliance and monitoring results obtained in 2010. Chapter 2 provides a brief introduction to SNL/CA and the existing environment found on site. Chapter 3 summarizes SNL/CA's compliance activities with the major environmental requirements applicable to site operations. Chapter 4 presents information on environmental management, performance measures, and environmental programs. Chapter 5 presents the results of monitoring and surveillance activities in 2010. Chapter 6 discusses quality assurance. Chapters 7 through 9 provide supporting information for the report and Chapter 10 is the report distribution list.

  3. Site environmental report for 2009 : Sandia National Laboratories, California.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2010-06-01

    Sandia National Laboratories, California (SNL/CA) is a government-owned/contractor-operated laboratory. Sandia Corporation, a Lockheed Martin Company, operates the laboratory for the Department of Energy's National Nuclear Security Administration (NNSA). The NNSA Sandia Site Office oversees operations at the site, using Sandia Corporation as a management and operating contractor. This Site Environmental Report for 2009 was prepared in accordance with DOE Order 231.1A (DOE 2004a). The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2009. General site and environmental program information is also included. The Site Environmental Report is divided into ten chapters. Chapter 1, the Executive Summary, highlights compliance and monitoring results obtained in 2009. Chapter 2 provides a brief introduction to SNL/CA and the existing environment found on site. Chapter 3 summarizes SNL/CA's compliance activities with the major environmental requirements applicable to site operations. Chapter 4 presents information on environmental management, performance measures, and environmental programs. Chapter 5 presents the results of monitoring and surveillance activities in 2009. Chapter 6 discusses quality assurance. Chapters 7 through 9 provide supporting information for the report and Chapter 10 is the report distribution list.

  4. Amchitka Island Environmental Analysis at Idaho National Laboratory

    International Nuclear Information System (INIS)

    Gracy Elias; W. F. Bauer; J.G. Eisenmenger; C.C. Jensen; B.K. Schuetz; T. C. Sorensen; B.M. White; A. L. Freeman; M. E. McIlwain

    2005-01-01

    The Idaho National Laboratory (INL) provided support to Consortium for Risk Evaluation with Stakeholder Participation (CRESP) in their activities which is supported by the Department of Energy (DOE) to assess the impact of past nuclear testing at Amchitka Island on the ecosystem of the island and surrounding ocean. INL participated in this project in three phases, Phase 1, Phase 2 and Phase 3

  5. Risoe National Laboratory. List of selected publications 1980

    International Nuclear Information System (INIS)

    1981-12-01

    The list comprises a selection of scientific and technical publications of Risoe National Laboratory and its staff during 1980. Journal articles, conference papers, and reports are included. The publications are arranged in the following broad subject categories: Reactor Safety and Technology, The Nuclear Fuel Cycle, Environmental and General Safety Research, Materials Research, and Radiation Technology, Agricultural Research, Non-Nuclear Research, General. (author)

  6. Risoe National Laboratory. List of selected publications 1979

    International Nuclear Information System (INIS)

    1980-11-01

    The list comprises a selection of scientific and technical publications of Risoe National Laboratory and its staff during 1979. Journal articles, conference papers, and reports are included. The publications are arranged in the following broad subject categories: Reactor Safety and Technology, The Nuclear Fuel Cycle, Environmental and General Safety Research, Materials Research, Radiation Technology, Agricultural Research, Non-Nuclear Energy Research, General. (author)

  7. List of selected publications 1978 Risoe National Laboratory

    International Nuclear Information System (INIS)

    1979-09-01

    The list comprises a selection of scientific and technical publications of Risoe National Laboratory and its staff during 1978. Journal articles, conference papers, and reports are included. The publications are arranged in the following broad subject categories: Reactor Safety Technology, The Nuclear Fuel Cycle, Environmental and General Safety Research, Materials Research, Radiation Technology, Agricultural Research, Non-Nuclear Energy Research, General. (author)

  8. Idaho National Engineering Laboratory decontamination and decommissioning summary

    International Nuclear Information System (INIS)

    Chapin, J.A.

    1981-01-01

    Topics covered concern the decontamination and decommissioning (D and D) work performed at the Idaho National Engineering Laboratory (INEL) during FY 1979 and include both operations and development projects. Briefly presented are the different types of D and D projects planned and the D and D projects completed. The problems encountered on these projects and the development program recommended are discussed

  9. 76 FR 65752 - International Space Station (ISS) National Laboratory Advisory Committee; Charter Renewal

    Science.gov (United States)

    2011-10-24

    ... International and Interagency Relations, (202) 358-0550, National Aeronautics and Space Administration... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (11-104)] International Space Station (ISS... National Laboratory Advisory Committee is in the public interest in connection with the performance of...

  10. 76 FR 70456 - Decision To Evaluate a Petition To Designate a Class of Employees From Sandia National Laboratory...

    Science.gov (United States)

    2011-11-14

    ... Employees From Sandia National Laboratory, Albuquerque, NM, To Be Included in the Special Exposure Cohort... evaluate a petition to designate a class of employees from Sandia National Laboratory, Albuquerque, New... revision as warranted by the evaluation, is as follows: Facility: Sandia National Laboratory. Location...

  11. Sandia National Laboratories, California Environmental Management System program manual.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2013-04-01

    The Sandia National Laboratories, California (SNL/CA) Environmental Management System (EMS) Program Manual documents the elements of the site EMS Program. The SNL/CA EMS Program conforms to the International Standard on Environmental Management Systems, ISO 14001:2004 and Department of Energy (DOE) Order 436.1.

  12. Sandia National Laboratories, California Environmental Management System program manual

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2014-04-01

    The Sandia National Laboratories, California (SNL/CA) Environmental Management System (EMS) Program Manual documents the elements of the site EMS Program. The SNL/CA EMS Program conforms to the International Standard on Environmental Management Systems, ISO 14001:2004 and Department of Energy (DOE) Order 436.1.

  13. LAPP - Annecy le Vieux Particle Physics Laboratory. Activity report 1996-1997

    International Nuclear Information System (INIS)

    Colas, Jacques; Minard, Marie-Noelle; Decamp, Daniel; Marion, Frederique; Drancourt, Cyril; Riva, Vanessa; Berger, Nicole; Bombar, Claudine; Dromby, Gerard

    2004-01-01

    LAPP is a high energy physics laboratory founded in 1976 and is one of the 19 laboratories of IN2P3 (National Institute of Nuclear and particle physics), institute of CNRS (National Centre for Scientific Research). LAPP is joint research facility of the University Savoie Mont Blanc (USMB) and the CNRS. Research carried out at LAPP aims at understanding the elementary particles and the fundamental interactions between them as well as exploring the connections between the infinitesimally small and the unbelievably big. Among other subjects LAPP teams try to understand the origin of the mass of the particles, the mystery of dark matter and what happened to the anti-matter that was present in the early universe. LAPP researchers work in close contact with phenomenologist teams from LAPTh, a theory laboratory hosted in the same building. LAPP teams also work since several decades at understanding the neutrinos, those elementary almost massless particles with amazing transformation properties. They took part in the design and realization of several experiments. Other LAPP teams collaborate in experiments studying signals from the cosmos. This document presents the activities of the laboratory during the years 1996-1997: 1 - Presentation of LAPP; 2 - Data acquisition experiments: e"+e"- annihilations at LEP (standard model and beyond the standard model - ALEPH, Study of hadronic final state events and Search for supersymmetric particles at L3 detector); Neutrino experiments (neutrino oscillation search at 1 km of the Chooz reactors, search for neutrino oscillations at the CERN Wide Band neutrino beam - NOMAD); Quarks-Gluons plasma; Hadronic spectroscopy; 3 - Experiments under preparation (CP violation study - BABAR, Anti Matter Spectrometer in Space - AMS, Search for gravitational waves - VIRGO, Search for the Higgs boson - ATLAS and CMS); 4 - Technical departments; 5 - Theoretical physics; 6 - Other activities

  14. National CW GeV Electron Microtron laboratory

    International Nuclear Information System (INIS)

    1982-12-01

    Rising interest in the nuclear physics community in a CW GeV electron accelerator reflects the growing importance of high-resolution short-range nuclear physics to future advances in the field. To meet this need, Argonne National Laboratory proposes to build a CW GeV Electron Microtron (GEM) laboratory as a national user facility. The microtron accelerator has been chosen as the technology to generate the electron beams required for the research discussed because of the advantages of superior beam quality, low capital and operating costs and capability of furnishing beams of several energies and intensities simultaneously. A complete technical description of the conceptual design for a six-sided CW microtron (hexatron) is presented. The hexatron and three experimental areas will be housed in a well-shielded complex of existing buildings that provide all utilities and services required for an advanced accelerator and an active research program at a savings of $30 to 40 million. Beam lines have been designed to accommodate the transport of polarized beams to each area. The total capital cost of the facility will be $78.6 million and the annual budget for accelerator operations will be $12.1 million. Design and construction of the facility will require four and one half years. Staged construction with a 2 GeV phase costing $65.9 million is also discussed

  15. Draft environmental assessment of Argonne National Laboratory, East

    Energy Technology Data Exchange (ETDEWEB)

    1975-10-01

    This environmental assessment of the operation of the Argonne National Laboratory is related to continuation of research and development work being conducted at the Laboratory site at Argonne, Illinois. The Laboratory has been monitoring various environmental parameters both offsite and onsite since 1949. Meteorological data have been collected to support development of models for atmospheric dispersion of radioactive and other pollutants. Gaseous and liquid effluents, both radioactive and non-radioactive, have been measured by portable monitors and by continuous monitors at fixed sites. Monitoring of constituents of the terrestrial ecosystem provides a basis for identifying changes should they occur in this regime. The Laboratory has established a position of leadership in monitoring methodologies and their application. Offsite impacts of nonradiological accidents are primarily those associated with the release of chlorine and with sodium fires. Both result in releases that cause no health damage offsite. Radioactive materials released to the environment result in a cumulative dose to persons residing within 50 miles of the site of about 47 man-rem per year, compared to an annual total of about 950,000 man-rem delivered to the same population from natural background radiation. 100 refs., 17 figs., 33 tabs.

  16. Management of citation verification requests for multiple projects at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Crawford, C.S.

    1995-01-01

    Sandia National Laboratories' (SNL) Technical Library is now responsible for providing citation verification management support for all references cited in technical reports issued by the Nuclear Waste Management (NWM) Program. This paper dancing how this process is managed for the Yucca Mountain Site Characterization (YWP), Waste Isolation Pilot Plant (WIPP), Idaho National Engineering Laboratory (INEL), and Greater Confinement Disposal (GCD) projects. Since technical reports are the main product of these projects, emphasis is placed on meeting the constantly evolving needs of these customers in a timely and cost-effective manner

  17. Science with multiply-charged ions at Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    Jones, K.W.; Johnson, B.M.; Meron, M.; Thieberger, P.

    1987-01-01

    The production of multiply-charged heavy ions at Brookhaven National Laboratory and their use in different types of experiments are discussed. The main facilities that are used are the Double MP Tandem Van de Graaff and the National Synchrotron Light Source. The capabilities of a versatile Atomic Physics Facility based on a combination of the two facilities and a possible new heavy-ion storage ring are summarized. It is emphasized that the production of heavy ions and the relevant science necessitates very flexible and diverse apparatus

  18. Large-scale demonstration and deployment project at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Brown, S.; McFee, J.; Broom, C.; Dugger, H.; Stallings, E.

    1999-01-01

    Established by the US Department of Energy (DOE) Environmental Management program through its Office of Science and Technology, the Deactivation and Decommissioning Focus Area is developing answers to the technological problems that hinder Environmental Management's extensive cleanup efforts. The optimized application of technologies to ongoing nuclear facility decontamination and dismantlement is critical in meeting the challenge of decommissioning approximately 9,000 buildings and structures within the DOE complex. The significant technical and economic concerns in this area underscore a national imperative for the qualification and timely delivery of cost-reduction technologies and management approaches to meet federal and private needs. At Los Alamos National Laboratory (LANL), a Large-Scale Demonstration and Deployment Project (LSDDP) has been established to facilitate demonstration and deployment of technologies for the characterization, decontamination, and volume reduction of oversized metallic waste, mostly in the form of gloveboxes contaminated with transuranic radionuclides. The LANL LSDDP is being managed by an integrated contractor team (ICT) consisting of IT Corporation, ICF Incorporated, and Florida International University and includes representation from LANL's Environmental Management Program Office. The ICT published in the Commerce Business Daily a solicitation for interest for innovative technologies capable of improving cost and performance of the baseline process. Each expression of interest response was evaluated and demonstration contract negotiations are under way for those technologies expected to be capable of meeting the project objectives. This paper discusses management organization and approach, the results of the technology search, the technology selection methodology, the results of the selection process, and future plans for the program

  19. Materials Science Division HVEM-Tandem Facility at Argonne National Laboratory

    International Nuclear Information System (INIS)

    Taylor, A.

    1981-10-01

    The ANL-Materials Science Division High Voltage Electron Microscope-Tandem Facility is a unique national research facility available to scientists from industry, universities, and other national laboratories, following a peer evaluation of their research proposals by the Facility Steering Committee. The principal equipment consists of a Kratos EM7 1.2-MV high voltage electron microscope, a 300-kV Texas Nuclear ion accelerator, and a National Electrostatics 2-MV Tandem accelerator. Ions from both accelerators are transmitted into the electron microscope through the ion-beam interface. Recent work at the facility is summarized

  20. Neutron generator production mission in a national laboratory.

    Energy Technology Data Exchange (ETDEWEB)

    Pope, Larry E.

    2007-08-01

    In the late 1980's the Department of Energy (DOE) faced a future budget shortfall. By the spring of 1991, the DOE had decided to manage this problem by closing three production plants and moving production capabilities to other existing DOE sites. As part of these closings, the mission assignment for fabrication of War Reserve (WR) neutron generators (NGs) was transferred from the Pinellas Plant (PP) in Florida to Sandia National Laboratories, New Mexico (SNL/NM). The DOE directive called for the last WR NG to be fabricated at the PP before the end of September 1994 and the first WR NG to be in bonded stores at SNL/NM by October 1999. Sandia National Laboratories successfully managed three significant changes to project scope and schedule and completed their portion of the Reconfiguration Project on time and within budget. The PP was closed in October 1995. War Reserve NGs produced at SNL/NM were in bonded stores by October 1999. The costs of the move were recovered in just less than five years of NG production at SNL/NM, and the annual savings today (in 1995 dollars) is $47 million.

  1. Neutron radiography at the Risoe National Laboratory

    International Nuclear Information System (INIS)

    Domanus, J.C.; Gade-Nielsen, P.; Knudsen, P.; Olsen, J.

    1981-11-01

    In this report six papers are collected which will be presented at the First World Conference on Neutron Radiography in San Diego, U.S.A., 7 - 10 December 1981. They are preceded by a short description of the activities of Risoe National Laboratory in the field of post-irradiation examination of nuclear fuel. One of the nondestructive methods used for this examination is neutron radiography. In the six conference papers different aspects of neutron radiography performed at Risoe are presented. (author)

  2. The Dalian National Laboratory for Clean Energy.

    Science.gov (United States)

    Zhang, Tao; Li, Can; Bao, Xinhe

    2012-05-01

    The Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences conducts fundamental and applied research towards chemistry and chemical engineering, with strong competence in the development of new technologies. The research in this special issue, containing 19 papers, features some of the DICP's best work on sustainable energy, use of environmental resources, and advanced materials within the framework of the Dalian National Laboratory for Clean Energy (DNL). Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Cultural Resource Investigations for the Remote Handled Low Level Waste Facility at the Idaho National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Brenda R. Pace; Hollie Gilbert; Julie Braun Williams; Clayton Marler; Dino Lowrey; Cameron Brizzee

    2010-06-01

    The U. S. Department of Energy, Idaho Operations Office is considering options for construction of a facility for disposal of Idaho National Laboratory (INL) generated remote-handled low-level waste. Initial screening has resulted in the identification of two recommended alternative locations for this new facility: one near the Advanced Test Reactor (ATR) Complex and one near the Idaho Comprehensive Environmental Response, Compensation, and Liability Act Disposal Facility (ICDF). In April and May of 2010, the INL Cultural Resource Management Office conducted archival searches, intensive archaeological field surveys, and initial coordination with the Shoshone-Bannock Tribes to identify cultural resources that may be adversely affected by new construction within either one of these candidate locations. This investigation showed that construction within the location near the ATR Complex may impact one historic homestead and several historic canals and ditches that are potentially eligible for nomination to the National Register of Historic Places. No resources judged to be of National Register significance were identified in the candidate location near the ICDF. Generalized tribal concerns regarding protection of natural resources were also documented in both locations. This report outlines recommendations for protective measures to help ensure that the impacts of construction on the identified resources are not adverse.

  4. Signal and Image Processing Research at the Lawrence Livermore National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, R S; Poyneer, L A; Kegelmeyer, L M; Carrano, C J; Chambers, D H; Candy, J V

    2009-06-29

    Lawrence Livermore National Laboratory is a large, multidisciplinary institution that conducts fundamental and applied research in the physical sciences. Research programs at the Laboratory run the gamut from theoretical investigations, to modeling and simulation, to validation through experiment. Over the years, the Laboratory has developed a substantial research component in the areas of signal and image processing to support these activities. This paper surveys some of the current research in signal and image processing at the Laboratory. Of necessity, the paper does not delve deeply into any one research area, but an extensive citation list is provided for further study of the topics presented.

  5. Radiological NESHAP Annual Report CY 2015 Sandia National Laboratories New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Evelo, Stacie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-05-01

    This report provides a summary of the radionuclide releases from the United States (U.S.) Department of Energy (DOE) National Nuclear Security Administration facilities at Sandia National Laboratories, New Mexico (SNL/NM) during Calendar Year (CY) 2015, including the data, calculations, and supporting documentation for demonstrating compliance with 40 Code of Federal Regulation (CFR) 61.

  6. Environmental site characterization and remediation at Lawrence Livermore National Laboratory Site 300

    International Nuclear Information System (INIS)

    Lamarre, A.L.; Ferry, R.A.

    1992-04-01

    Lawrence Livermore National Laboratory (LLNL) is a research and development laboratory owned by the US Department of Energy (DOE) and operated by the University of California. The Laboratory operates its Site 300 test facility in support of DOE's national defense programs. In support of activities, at the 300 Site numerous industrial fluids are used and various process or rinse waters and solid wastes are produced. Some of these materials are hazardous by current standards. HE rinse waters were previously discharged to inlined lagoons; they now are discharged to a permitted Class II surface impoundment Solid wastes have been deposited in nine landfills. Waste HE compounds are destroyed by open burning at a burn pit facility. As a result of these practices, environmental contaminants have been released to the soil and ground water

  7. Keeping the Momentum and Nuclear Forensics at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Steiner, Robert Ernest; Dion, Heather M.; Dry, Donald E.; Kinman, William Scott; LaMont, Stephen Philip; Podlesak, David; Tandon, Lav

    2016-01-01

    LANL has 70 years of experience in nuclear forensics and supports the community through a wide variety of efforts and leveraged capabilities: Expanding the understanding of nuclear forensics, providing training on nuclear forensics methods, and developing bilateral relationships to expand our understanding of nuclear forensic science. LANL remains highly supportive of several key organizations tasked with carrying forth the Nuclear Security Summit messages: IAEA, GICNT, and INTERPOL. Analytical chemistry measurements on plutonium and uranium matrices are critical to numerous programs including safeguards accountancy verification measurements. Los Alamos National Laboratory operates capable actinide analytical chemistry and material science laboratories suitable for nuclear material and environmental forensic characterization. Los Alamos National Laboratory uses numerous means to validate and independently verify that measurement data quality objectives are met. Numerous LANL nuclear facilities support the nuclear material handling, preparation, and analysis capabilities necessary to evaluate samples containing nearly any mass of an actinide (attogram to kilogram levels).

  8. Keeping the Momentum and Nuclear Forensics at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Steiner, Robert Ernest [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dion, Heather M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dry, Donald E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kinman, William Scott [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); LaMont, Stephen Philip [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Podlesak, David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Tandon, Lav [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-07-22

    LANL has 70 years of experience in nuclear forensics and supports the community through a wide variety of efforts and leveraged capabilities: Expanding the understanding of nuclear forensics, providing training on nuclear forensics methods, and developing bilateral relationships to expand our understanding of nuclear forensic science. LANL remains highly supportive of several key organizations tasked with carrying forth the Nuclear Security Summit messages: IAEA, GICNT, and INTERPOL. Analytical chemistry measurements on plutonium and uranium matrices are critical to numerous programs including safeguards accountancy verification measurements. Los Alamos National Laboratory operates capable actinide analytical chemistry and material science laboratories suitable for nuclear material and environmental forensic characterization. Los Alamos National Laboratory uses numerous means to validate and independently verify that measurement data quality objectives are met. Numerous LANL nuclear facilities support the nuclear material handling, preparation, and analysis capabilities necessary to evaluate samples containing nearly any mass of an actinide (attogram to kilogram levels).

  9. A new matrix for scoring the functionality of national laboratory networks in Africa: introducing the LABNET scorecard.

    Science.gov (United States)

    Ondoa, Pascale; Datema, Tjeerd; Keita-Sow, Mah-Sere; Ndihokubwayo, Jean-Bosco; Isadore, Jocelyn; Oskam, Linda; Nkengasong, John; Lewis, Kim

    2016-01-01

    Functional national laboratory networks and systems are indispensable to the achievement of global health security targets according to the International Health Regulations. The lack of indicators to measure the functionality of national laboratory network has limited the efficiency of past and current interventions to enhance laboratory capacity in resource-limited-settings. We have developed a matrix for the assessment of national laboratory network functionality and progress thereof, with support from the African Society of Laboratory Medicine and the Association of Public Health Laboratories. The laboratory network (LABNET) scorecard was designed to: (1) Measure the status of nine overarching core capabilities of laboratory network required to achieve global health security targets, as recommended by the main normative standards; (2) Complement the World Health Organization joint external evaluation tool for the assessment of health system preparedness to International Health Regulations (2005) by providing detailed information on laboratory systems; and (3) Serve as a clear roadmap to guide the stepwise implementation of laboratory capability to prevent, detect and act upon infectious threats. The application of the LABNET scorecard under the coordination of the African Society of Laboratory Medicine and the Association of Public Health Laboratories could contribute to the design, monitoring and evaluation of upcoming Global Health Security Agenda-supported laboratory capacity building programmes in sub Saharan-Africa and other resource-limited settings, and inform the development of national laboratory policies and strategic plans. Endorsement by the World Health Organization Regional Office for Africa is foreseen.

  10. Surface Water Data at Los Alamos National Laboratory 2006 Water Year

    Energy Technology Data Exchange (ETDEWEB)

    R.P. Romero, D. Ortiz, G. Kuyumjian

    2007-08-01

    The principal investigators collected and computed surface water discharge data from 44 stream-gaging stations that cover most of Los Alamos National Laboratory and one at Bandelier National Monument. Also included are discharge data from three springs--two that flow into Canon de Valle and one that flows into Water Canyon--and peak flow data for 44 stations.

  11. DEMONSTRATION BULLETIN: IN SITU ELECTROKINETIC EXTRACTION SYSTEM - SANDIA NATIONAL LABORATORIES

    Science.gov (United States)

    Sandia National Laboratories (SNL) has developed an in situ soil remediation system that uses electrokinetic principles to remediate hexavalent chromium-contaminated unsaturated or partially saturated soils. The technology involves the in situ application of direct current to the...

  12. Idaho National Engineering Laboratory site development plan

    International Nuclear Information System (INIS)

    1994-09-01

    This plan briefly describes the 20-year outlook for the Idaho National Engineering Laboratory (INEL). Missions, workloads, worker populations, facilities, land, and other resources necessary to fulfill the 20-year site development vision for the INEL are addressed. In addition, the plan examines factors that could enhance or deter new or expanded missions at the INEL. And finally, the plan discusses specific site development issues facing the INEL, possible solutions, resources required to resolve these issues, and the anticipated impacts if these issues remain unresolved

  13. Sandia National Laboratories/New Mexico Environmental Information Document - Volume II

    Energy Technology Data Exchange (ETDEWEB)

    GUERRERO, JOSEPH V.; KUZIO, KENNETH A.; JOHNS, WILLIAM H.; BAYLISS, LINDA S.; BAILEY-WHITE, BRENDA E.

    1999-09-01

    This Sandia National Laboratories/New Mexico Environmental Information Document (EID) compiles information on the existing environment, or environmental baseline, for SNUNM. Much of the information is drawn from existing reports and databases supplemented by new research and data. The SNL/NM EID, together with the Sandia National Laboratories/New Mexico Facilities and Safety Information Document, provide a basis for assessing the environment, safety, and health aspects of operating selected facilities at SNL/NM. The environmental baseline provides a record of the existing physical, biological, and socioeconomic environment at SNL/NLM prior to being altered (beneficially or adversely) by proposed programs or projects. More specifically, the EID provides information on the following topics: Geology; Land Use; Hydrology and Water Resources; Air Quality and Meteorology; Ecology; Noise and Vibration; Cultural Resources; Visual Resources; Socioeconomic and Community Services; Transportation; Material Management; Waste Management; and Regulatory Requirements.

  14. Sandia National Laboratories/New Mexico Environmental Information Document - Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    BAYLISS, LINDA S.; GUERRERO, JOSEPH V.; JOHNS, WILLIAM H.; KUZIO, KENNETH A.; BAILEY-WHITE, BRENDA E.

    1999-09-01

    This Sandia National Laboratories/New Mexico Environmental Information Document (EID) compiles information on the existing environment, or environmental baseline, for SNUNM. Much of the information is drawn from existing reports and databases supplemented by new research and data. The SNL/NM EID, together with the Sandia National Laboratories/New Mexico Facilities and Safety Information Document, provide a basis for assessing the environment, safety, and health aspects of operating selected facilities at SNL/NM. The environmental baseline provides a record of the existing physical, biological, and socioeconomic environment at SNL/NLM prior to being altered (beneficially or adversely) by proposed programs or projects. More specifically, the EID provides information on the following topics: Geology; Land Use; Hydrology and Water Resources; Air Quality and Meteorology; Ecology; Noise and Vibration; Cultural Resources; Visual Resources; Socioeconomic and Community Services; Transportation; Material Management; Waste Management; and Regulatory Requirements.

  15. The national laboratory business role in energy technology research and development. Panel Discussion

    International Nuclear Information System (INIS)

    Sackett, John; Sullivan, Charles J.; Aumeier, Steve; Sanders, Tom; Johnson, Shane; Bennett, Ralph

    2001-01-01

    Full text of publication follows: Energy issues will play a pivotal role in the economic and political future of the United States. For reasons of both available supply and environmental concerns, development and deployment of new energy technologies is critical. Nuclear technology is important, but economic, political, and technical challenges must be overcome if it is to play a significant role. This session will address business opportunities for national laboratories to contribute to the development and implementation of a national energy strategy, concentrating on the role of nuclear technology. Panelists have been selected from the national laboratories, the U.S. Department of Energy, and state regulators. (authors)

  16. NWTC Helps Guide U.S. Offshore R&D; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-07-01

    The National Wind Technology Center (NWTC) at the National Renewable Energy Laboratory (NREL) is helping guide our nation's research-and-development effort in offshore renewable energy, which includes: Design, modeling, and analysis tools; Device and component testing; Resource characterization; Economic modeling and analysis; Grid integration.

  17. The visible Smith-Purcell radiation search

    International Nuclear Information System (INIS)

    Fernow, R.C.; Kirk, H.G.; Ulc, S. Wang, X.

    1994-03-01

    We report here the results of an experiment at the Accelerator Test Facility at Brookhaven National Laboratory to search for the production of visible radiation from the Smith-Purcell effect using a 3 MeV electron beam. After running the experiment under a variety of conditions we were unable to isolate a definite signal from Smith-Parcell effect. Any Smith-Purcell signal present in the measured radiation was less than 10% of the background signal

  18. Tiger Team assessment of the Idaho National Engineering Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    McKenzie, Barbara J.; West, Stephanie G.; Jones, Olga G.; Kerr, Dorothy A.; Bieri, Rita A.; Sanderson, Nancy L.

    1991-08-01

    The purpose of the Safety and Health (S H) Subteam assessment was to determine the effectiveness of representative safety and health programs at the Idaho National Engineering Laboratory (INEL) site. Four Technical Safety Appraisal (TSA) Teams were assembled for this purpose by the US Department of Energy (DOE), Deputy Assistant Secretary for Safety and Quality Assurance, Office of Safety Appraisals (OSA). Team No. 1 reviewed EG G Idaho, Inc. (EG G Idaho) and the Department of Energy Field Office, Idaho (ID) Fire Department. Team No. 2 reviewed Argonne National Laboratory-West (ANL-W). Team No. 3 reviewed selected contractors at the INEL; specifically, Morrison Knudsen-Ferguson of Idaho Company (MK-FIC), Protection Technology of Idaho, Inc. (PTI), Radiological and Environmental Sciences Laboratory (RESL), and Rockwell-INEL. Team No. 4 provided an Occupational Safety and Health Act (OSHA)-type compliance sitewide assessment of INEL. The S H Subteam assessment was performed concurrently with assessments conducted by Environmental and Management Subteams. Performance was appraised in the following technical areas: Organization and Administration, Quality Verification, Operations, Maintenance, Training and Certification, Auxiliary Systems, Emergency Preparedness, Technical Support, Packaging and Transportation, Nuclear Criticality Safety, Security/Safety Interface, Experimental Activities, Site/Facility Safety Review, Radiological Protection, Personnel Protection, Worker Safety and Health (OSHA) Compliance, Fire Protection, Aviation Safety, Medical Services, and Firearms Safety.

  19. Tiger Team assessment of the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    1991-08-01

    This report documents the Tiger Team Assessment of the Idaho National Engineering Laboratory (INEL) located in Idaho Falls, Idaho. INEL is a multiprogram, laboratory site of the US Department of Energy (DOE). Overall site management is provided by the DOE Field Office, Idaho; however, the DOE Field Office, Chicago has responsibility for the Argonne National Laboratory-West facilities and operations through the Argonne Area Office. In addition, the Idaho Branch Office of the Pittsburgh Naval Reactors Office has responsibility for the Naval Reactor Facility (NRF) at the INEL. The assessment included all DOE elements having ongoing program activities at the site except for the NRF. In addition, the Safety and Health Subteam did not review the Westinghouse Idaho Nuclear Company, Inc. facilities and operations. The Tiger Team Assessment was conducted from June 17 to August 2, 1991, under the auspices of the Office of Special Projects, Office of the Assistant Secretary for Environment, Safety and Health, Headquarters, DOE. The assessment was comprehensive, encompassing environmental, safety, and health (ES ampersand H) disciplines; management; and contractor and DOE self-assessments. Compliance with applicable federal, state, and local regulations; applicable DOE Orders; best management practices; and internal INEL site requirements was assessed. In addition, an evaluation of the adequacy and effectiveness of the DOE and the site contractors management of ES ampersand H/quality assurance programs was conducted

  20. Tiger Team assessment of the Idaho National Engineering Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    1991-08-01

    This report documents the Tiger Team Assessment of the Idaho National Engineering Laboratory (INEL) located in Idaho Falls, Idaho. INEL is a multiprogram, laboratory site of the US Department of Energy (DOE). Overall site management is provided by the DOE Field Office, Idaho; however, the DOE Field Office, Chicago has responsibility for the Argonne National Laboratory-West facilities and operations through the Argonne Area Office. In addition, the Idaho Branch Office of the Pittsburgh Naval Reactors Office has responsibility for the Naval Reactor Facility (NRF) at the INEL. The assessment included all DOE elements having ongoing program activities at the site except for the NRF. In addition, the Safety and Health Subteam did not review the Westinghouse Idaho Nuclear Company, Inc. facilities and operations. The Tiger Team Assessment was conducted from June 17 to August 2, 1991, under the auspices of the Office of Special Projects, Office of the Assistant Secretary for Environment, Safety and Health, Headquarters, DOE. The assessment was comprehensive, encompassing environmental, safety, and health (ES H) disciplines; management; and contractor and DOE self-assessments. Compliance with applicable federal, state, and local regulations; applicable DOE Orders; best management practices; and internal INEL site requirements was assessed. In addition, an evaluation of the adequacy and effectiveness of the DOE and the site contractors management of ES H/quality assurance programs was conducted.

  1. Tiger Team assessment of the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    1991-08-01

    The purpose of the Safety and Health (S ampersand H) Subteam assessment was to determine the effectiveness of representative safety and health programs at the Idaho National Engineering Laboratory (INEL) site. Four Technical Safety Appraisal (TSA) Teams were assembled for this purpose by the US Department of Energy (DOE), Deputy Assistant Secretary for Safety and Quality Assurance, Office of Safety Appraisals (OSA). Team No. 1 reviewed EG ampersand G Idaho, Inc. (EG ampersand G Idaho) and the Department of Energy Field Office, Idaho (ID) Fire Department. Team No. 2 reviewed Argonne National Laboratory-West (ANL-W). Team No. 3 reviewed selected contractors at the INEL; specifically, Morrison Knudsen-Ferguson of Idaho Company (MK-FIC), Protection Technology of Idaho, Inc. (PTI), Radiological and Environmental Sciences Laboratory (RESL), and Rockwell-INEL. Team No. 4 provided an Occupational Safety and Health Act (OSHA)-type compliance sitewide assessment of INEL. The S ampersand H Subteam assessment was performed concurrently with assessments conducted by Environmental and Management Subteams. Performance was appraised in the following technical areas: Organization and Administration, Quality Verification, Operations, Maintenance, Training and Certification, Auxiliary Systems, Emergency Preparedness, Technical Support, Packaging and Transportation, Nuclear Criticality Safety, Security/Safety Interface, Experimental Activities, Site/Facility Safety Review, Radiological Protection, Personnel Protection, Worker Safety and Health (OSHA) Compliance, Fire Protection, Aviation Safety, Medical Services, and Firearms Safety

  2. A new matrix for scoring the functionality of national laboratory networks in Africa: introducing the LABNET scorecard

    Directory of Open Access Journals (Sweden)

    Pascale Ondoa

    2016-10-01

    Full Text Available Background: Functional national laboratory networks and systems are indispensable to the achievement of global health security targets according to the International Health Regulations. The lack of indicators to measure the functionality of national laboratory network has limited the efficiency of past and current interventions to enhance laboratory capacity in resourcelimited-settings. Scorecard for laboratory networks: We have developed a matrix for the assessment of national laboratory network functionality and progress thereof, with support from the African Society of Laboratory Medicine and the Association of Public Health Laboratories. The laboratory network (LABNET scorecard was designed to: (1 Measure the status of nine overarching core capabilities of laboratory network required to achieve global health security targets, as recommended by the main normative standards; (2 Complement the World Health Organization joint external evaluation tool for the assessment of health system preparedness to International Health Regulations (2005 by providing detailed information on laboratory systems; and (3 Serve as a clear roadmap to guide the stepwise implementation of laboratory capability to prevent, detect and act upon infectious threats. Conclusions: The application of the LABNET scorecard under the coordination of the African Society of Laboratory Medicine and the Association of Public Health Laboratories could contribute to the design, monitoring and evaluation of upcoming Global Health Security Agenda-supported laboratory capacity building programmes in sub Saharan-Africa and other resource-limited settings, and inform the development of national laboratory policies and strategic plans. Endorsement by the World Health Organization Regional Office for Africa is foreseen.

  3. Institutional Plan, FY 1993--1998, Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    1993-01-01

    This document presents the plans and goals of the Idaho National Engineering Laboratory for FY 1993--1998. Areas discussed in this document include: INEL strategic view; initiatives; scientific and technical programs; environmental, safety, and health management, technology transfer, science and math education, and community affairs; human resources; site and facilities; and resource projections

  4. Commercialization of Los Alamos National Laboratory technologies via small businesses. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Brice, R.; Carton, D.; Rhyne, T. [and others

    1997-06-01

    Appendices are presented from a study performed on a concept model system for the commercialization of Los Alamos National Laboratory technologies via small businesses. Topics include a summary of information from the joint MCC/Los Alamos technology conference; a comparison of New Mexico infrastructure to other areas; a typical licensing agreement; technology screening guides; summaries of specific DOE/UC/Los Alamos documents; a bibliography; the Oak Ridge National Laboratory TCRD; The Ames Center for Advanced Technology Development; Los Alamos licensing procedures; presentation of slides from monthly MCC/Los Alamos review meetings; generalized entrepreneurship model; and a discussion on receiving equity for technology.

  5. Buried waste remote survey of the Idaho National Engineering Laboratory subsurface disposal area

    International Nuclear Information System (INIS)

    Richardson, B.S.; Noakes, M.W.; Griebenow, B.E.; Josten, N.E.

    1991-01-01

    Burial site characterization is an important first step in the restoration of subsurface disposal sites. Testing and demonstration of technology for remote buried waste site characterization were performed at the Idaho National Engineering Laboratory (INEL) by a team from five US Department of Energy (DOE) laboratories. The US Army's Soldier Robot Interface Project (SRIP) vehicle, on loan to the Oak Ridge National Laboratory (ORNL), was used as a remotely operated sensor platform. The SRIP was equipped with an array of sensors including terrain conductivity meter, magnetometer, ground-penetrating radar (GPR), organic vapor detector, gamma-based radar detector, and spectrum analyzer. The testing and demonstration were successfully completed and provided direction for future work in buried waste site characterization

  6. Malignant melanoma among employees of Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    Austin, D.F.; Reynolds, P.J.; Snyder, M.A.; Biggs, M.W.; Stubbs, H.A.

    1981-01-01

    19 cases of malignant melanoma (MM) were observed during 1972-77 among approximately 5100 employees of the Lawrence Livermore National Laboratory, where high energy physics research is conducted. This number was significantly higher (p -6 ) than that expected in a comparable age/race/sex/geographical segment of the population of the San Francisco Bay area. That excess seemed to occur only among laboratory employees and not among the surrounding community, which suggests that an occupational factor is responsible. Preliminary case-comparison findings suggest that MM risk is not associated with length of employment at the laboratory nor with type of monitored radiation exposure. Although the data did not support an association between MM incidence and all scientific job classifications combined, an excess relative risk was observed among chemists. The reasons for the MM excess have not been identified. (author)

  7. Idaho National Engineering Laboratory installation roadmap assumptions document

    International Nuclear Information System (INIS)

    1993-05-01

    This document is a composite of roadmap assumptions developed for the Idaho National Engineering Laboratory (INEL) by the US Department of Energy Idaho Field Office and subcontractor personnel as a key element in the implementation of the Roadmap Methodology for the INEL Site. The development and identification of these assumptions in an important factor in planning basis development and establishes the planning baseline for all subsequent roadmap analysis at the INEL

  8. Wellness Center use at Los Alamos National Laboratory: a descriptive study

    Energy Technology Data Exchange (ETDEWEB)

    Wiggs, L.D.; Wilkinson, G.S.; Weber, C.

    1985-10-01

    This study describes employee participation during the first six months of the Los Alamos National Laboratory's corporate Wellness Program. We describe temporal patterns of use, preferred activities, frequency of use, and characteristics of employees participating in Wellness activities. Characteristics of Wellness participants are compared with characteristics of the Laboratory population. During this period the Wellness Center, a multi-use facility that houses Wellness Program activities, had 17,352 visits. Employees visiting the Wellness Center were typical of the Laboratory population in their racial and ethnic characteristics, but different in their sex and age composition. Wellness participants were younger and more likely to be female than the Laboratory population. 6 refs., 19 tabs.

  9. Sandia National Laboratories Institutional Plan: FY 1996--2001

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    Sandia`s Institutional Plan is by necessity a large document. As their missions have grown and diversified over the past decades, the variety of technical and site activities has increased. The programs and activities described here cover an enormous breadth of scientific and technological effort--from the creation of new materials to the development of a Sandia-wide electronic communications system. Today, there are three major themes that greatly influence this work. First, every federally funded institution is being challenged to find ways to become more cost effective, as the US seeks to reduce the deficit and achieve a balanced federal spending plan. Sandia is evaluating its business and operational processes to reduce the overall costs. Second, in response to the Galvin Task Force`s report ``Alternative Futures for the Department of Energy National Laboratories``, Sandia and the Department of Energy are working jointly to reduce the burden of administrative and compliance activities in order to devote more of the total effort to their principal research and development missions. Third, they are reevaluating the match between their missions and the programs they will emphasize in the future. They must demonstrate that Sandia`s roles--in national security, energy security, environmental integrity, and national scientific and technology agenda support--fit their special capabilities and skills and thus ensure their place in these missions for the longer planning horizon. The following areas are covered here: Sandia`s mission; laboratory directives; programmatic activities; technology partnerships and commercialization; Sandia`s resources; and protecting resources and the community.

  10. Low-level radioactive waste management at Argonne National Laboratory-East

    International Nuclear Information System (INIS)

    Rock, C.M.; Shearer, T.L.; Nelson, R.A.

    1997-01-01

    This paper is an overview of the low-level radioactive waste management practices and treatment systems at Argonne National Laboratory - East (ANL-E). It addresses the systems, processes, types of waste treated, and the status and performance of the systems. ANL-E is a Department of Energy laboratory that is engaged in a variety of research projects, some of which generate radioactive waste, in addition a significant amount of radioactive waste remains from previous projects and decontamination and decommissioning of facilities where this work was performed

  11. Dr. Praveen Chaudhari named director of Brookhaven National Laboratory

    CERN Multimedia

    2003-01-01

    "Brookhaven Science Associates announced today the selection of Dr. Praveen Chaudhari as Director of the U.S. Department of Energy's Brookhaven National Laboratory. Dr. Chaudhari, who will begin his new duties on April 1, joins Brookhaven Lab after 36 years of distinguished service at IBM as a scientist and senior manager of research" (1 page).

  12. Tiger Team assessment of the Brookhaven National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    1990-06-01

    This report documents the results of the Department of Energy's (DOE's) Tiger Team Assessment conducted at Brookhaven National Laboratory (BNL) in Upton, New York, between March 26 and April 27, 1990. The BNL is a multiprogram laboratory operated by the Associated Universities, Inc., (AUI) for DOE. The purpose of the assessment was to provide the status of environment, safety, and health (ES H) programs at the laboratory. The scope of the assessment included a review of management systems and operating procedures and records; observations of facility operations; and interviews at the facilities. Subteams in four areas performed the review: ES H, Occupational Safety and Health, and Management and Organization. The assessment was comprehensive, covering all areas of ES H activities and waste management operations. Compliance with applicable Federal, State, and local regulations; applicable DOE Orders; and internal BNL requirements was assessed. In addition, the assessment included an evaluation of the adequacy and effectiveness of the DOE and the site contractor, Associated Universities, Inc. (AUI), management, organization, and administration of the ES H programs at BNL. This volume contains appendices.

  13. Tiger Team assessment of the Brookhaven National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    1990-06-01

    This report documents the results of the Department of Energy's (DOE's) Tiger Team Assessment conducted at Brookhaven National Laboratory (BNL) in Upton, New York, between March 26 and April 27, 1990. The BNL is a multiprogram laboratory operated by the Associated Universities, Inc., (AUI) for DOE. The purpose of the assessment was to provide the status of environment, safety, and health (ES H) programs at the Laboratory. The scope of the assessment included a review of management systems and operating procedures and records; observations of facility operations; and interviews at the facilities. Subteams in four areas performed the review: ES H, Occupational Safety and Health, and Management and Organization. The assessment was comprehensive, covering all areas of ES H activities and waste management operations. Compliance with applicable Federal, State, and local regulations; applicable DOE Orders; and internal BNL requirements was assessed. In addition, the assessment included an evaluation of the adequacy and effectiveness of the DOE and the site contractor, Associated Universities, Inc. (AUI), management, organization, and administration of the ES H programs at BNL.

  14. Decommissioning of surplus facilities at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Stout, D.S.

    1995-01-01

    Decommissioning Buildings 3 and 4 South at Technical Area 21, Los Alamos National Laboratory, involves the decontamination, dismantlement, and demolition of two enriched-uranium processing buildings containing process equipment and ductwork holdup. The Laboratory has adopted two successful management strategies to implement this project: Rather than characterize an entire site, upfront, investigators use the ''observational approach,'' in which they collect only enough data to begin decommissioning activities and then determine appropriate procedures for further characterization as the work progresses. Project leaders augment work packages with task hazard analyses to fully define specific tasks and inform workers of hazards; all daily work activities are governed by specific work procedures and hazard analyses

  15. ALPI project at Legnaro National Laboratory

    International Nuclear Information System (INIS)

    Fortuna, G.; Pengo, R.; Bassato, G.; Facco, A.; Favaron, P.; Palmieri, V.; Porcellato, A.M.; Rosa, M.; Tiveron, B.

    1988-01-01

    The conceptual design of a superconducting (linac) booster (named ALPI PROJECT) for the 17 MV XTU-TANDEM of Laboratori Nazionali di Legnaro has been recently accepted by the National Institute of Nuclear Physics as one of the leading projects to be funded in the next five year plan. Money for resonator and cryostat prototypes is already available and the building is going to be funded next January. The project aims at a machine capable of accelerating all the stable isotopes up to Uranium at energies above the Coulomb barrier of very possible ion-ion interaction with beam quality comparable to that of d.c. accelerators. At LNL the advantage of coupling the linac postaccelerator to the 17 MV XTU Tandem is taken which is able to produce even the very heavy beams with reliable intensity and velocities β ≥ 0.04 which can be matched by superconducting resonators feasible with the present available technology. As accelerating structures in the ALPI project straight line quarter wave resonators (QWR) have been chosen on the basis of their intrinsic mechanical stability and broad velocity acceptance (two gap resonator) particularly important for a national facility like ALPI which is expected to produce as many different beams as possible. Lead has been chosen as superconductor on the basis of the following considerations: (i) lead technology being much more applied for QWR resonators than the Nb one can be easier and faster introduced in a Nuclear Physics Laboratory without any experience in the field; (ii) the performances of SUNYLAC have demonstrated that their initial goal of reaching accelerating gradient of 3 MV/m is feasible; (iii) the difficulty in fabricating the OFHC copper base of the resonators (number of EB welds, joints) is relatively modest if compared with the solutions involving Nb as superconductor. 7 references, 3 figures

  16. Sandia National Laboratories Institutional Plan: FY 1999-2004

    Energy Technology Data Exchange (ETDEWEB)

    Garber, D.P.

    1999-01-06

    This Institutional Plan is the most comprehensive yearly "snapshot" available of Sandia National Laboratories' major programs, facilities, human resources, and budget. The document also includes overviews of our missions, organization, capabilities, planning functions, milestones, and accomplishments. The document's purpose is to provide the above information to the US Department of Energy, key congressional committees, Sandia management, and other present and potential customers. Chapter 2 presents information about Sandia's mission and summarizes our recent revision of Sandia's Strategic Plan. Chapter 3 presents an overview of Sandia's strategic objectives, chapter 4 lists laboratory goals and milestones for FY 1999, and chapter 5 presents our accomplishments during FY 1998. Chapters 3 through 5 are organized around our eight strategic objectives. The four primary objectives cover nuclear weapons responsibilities, nonproliferation and materials control, energy and critical infrastructures, and emerging national security threats. The major programmatic initiatives are presented in chapter 7. However, the programmatic descriptions in chapter 6 and the Associated funding tables in chapter 9 continue to be presented by DOE Budget and Reporting Code, as in previous Sandia institutional plans. As an aid to the reader, the four primary strategic objectives in chapter 3 are cross-referenced to the program information in chapter 6.

  17. Oak Ridge National Laboratory institutional plan, FY 1990--FY 1995

    Energy Technology Data Exchange (ETDEWEB)

    1989-11-01

    The Oak Ridge National Laboratory is one of DOE's major multiprogram energy laboratories. ORNL's program missions are (1) to conduct applied research and engineering development in support of DOE's programs in fusion, fission, fossil, renewables (biomass), and other energy technologies, and in the more efficient conversion and use of energy (conservation) and (2) to perform basic scientific research in selected areas of the physical and life sciences. These missions are to be carried out in compliance with environmental, safety, and health regulations. Transfer of science and technology is an integral component of our missions. A complementary mission is to apply the Laboratory's resources to other nationally important tasks when such work is synergistic with the program missions. Some of the issues addressed include education, international competitiveness, hazardous waste research and development, and selected defense technologies. In addition to the R D missions, ORNL performs important service roles for DOE; these roles include designing, building, and operating user facilities for the benefit of university and industrial researchers and supplying radioactive and stable isotopes that are not available from private industry. Scientific and technical efforts in support of the Laboratory's missions cover a spectrum of activities. In fusion, the emphasis is on advanced studies of toroidal confinement, plasma heating, fueling systems, superconducting magnets, first-wall and blanket materials, and applied plasma physics. 69 figs., 49 tabs.

  18. Public hospital quality report awareness: evidence from National and Californian Internet searches and social media mentions, 2012.

    Science.gov (United States)

    Huesch, Marco D; Currid-Halkett, Elizabeth; Doctor, Jason N

    2014-03-11

    Publicly available hospital quality reports seek to inform consumers of important healthcare quality and affordability attributes, and may inform consumer decision-making. To understand how much consumers search for such information online on one Internet search engine, whether they mention such information in social media and how positively they view this information. A leading Internet search engine (Google) was the main focus of the study. Google Trends and Google Adwords keyword analyses were performed for national and Californian searches between 1 August 2012 and 31 July 2013 for keywords related to 'top hospital', best hospital', and 'hospital quality', as well as for six specific hospital quality reports. Separately, a proprietary social media monitoring tool was used to investigate blog, forum, social media and traditional media mentions of, and sentiment towards, major public reports of hospital quality in California in 2012. (1) Counts of searches for keywords performed on Google; (2) counts of and (3) sentiment of mentions of public reports on social media. National Google search volume for 75 hospital quality-related terms averaged 610 700 searches per month with strong variation by keyword and by state. A commercial report (Healthgrades) was more commonly searched for nationally on Google than the federal government's Hospital Compare, which otherwise dominated quality-related search terms. Social media references in California to quality reports were generally few, and commercially produced hospital quality reports were more widely mentioned than state (Office of Statewide Healthcare Planning and Development (OSHPD)), or non-profit (CalHospitalCompare) reports. Consumers are somewhat aware of hospital quality based on Internet search activity and social media disclosures. Public stakeholders may be able to broaden their quality dissemination initiatives by advertising on Google or Twitter and using social media interactively with consumers looking

  19. Public hospital quality report awareness: evidence from National and Californian Internet searches and social media mentions, 2012

    Science.gov (United States)

    Huesch, Marco D; Currid-Halkett, Elizabeth; Doctor, Jason N

    2014-01-01

    Objectives Publicly available hospital quality reports seek to inform consumers of important healthcare quality and affordability attributes, and may inform consumer decision-making. To understand how much consumers search for such information online on one Internet search engine, whether they mention such information in social media and how positively they view this information. Setting and design A leading Internet search engine (Google) was the main focus of the study. Google Trends and Google Adwords keyword analyses were performed for national and Californian searches between 1 August 2012 and 31 July 2013 for keywords related to ‘top hospital’, best hospital’, and ‘hospital quality’, as well as for six specific hospital quality reports. Separately, a proprietary social media monitoring tool was used to investigate blog, forum, social media and traditional media mentions of, and sentiment towards, major public reports of hospital quality in California in 2012. Primary outcome measures (1) Counts of searches for keywords performed on Google; (2) counts of and (3) sentiment of mentions of public reports on social media. Results National Google search volume for 75 hospital quality-related terms averaged 610 700 searches per month with strong variation by keyword and by state. A commercial report (Healthgrades) was more commonly searched for nationally on Google than the federal government's Hospital Compare, which otherwise dominated quality-related search terms. Social media references in California to quality reports were generally few, and commercially produced hospital quality reports were more widely mentioned than state (Office of Statewide Healthcare Planning and Development (OSHPD)), or non-profit (CalHospitalCompare) reports. Conclusions Consumers are somewhat aware of hospital quality based on Internet search activity and social media disclosures. Public stakeholders may be able to broaden their quality dissemination initiatives by

  20. List of Selected Publications 1983. Risø National Laboratory

    DEFF Research Database (Denmark)

    Risø National Laboratory, Roskilde

    The list comprises a selection of scientific and technical publications of Risø National Laboratory and its staff during 1983. Journal articles, conference papers, and reports are included. The publications are arranged in the following broad subject categories: Energy Supply and Supporting...... Technology, Environmental and Safety Research, Materials Research, Biotechnology and Radiation Research, Technical Support, General....

  1. Idaho National Laboratory FY12 Greenhouse Gas Report

    Energy Technology Data Exchange (ETDEWEB)

    Kimberly Frerichs

    2013-03-01

    A greenhouse gas (GHG) inventory is a systematic approach to account for the production and release of certain gases generated by an institution from various emission sources. The gases of interest are those that climate science has identified as related to anthropogenic global climate change. This document presents an inventory of GHGs generated during Fiscal Year (FY) 2012 by Idaho National Laboratory (INL), a Department of Energy (DOE) sponsored entity, located in southeastern Idaho.

  2. U.S. Department of Energy, Sandia National Laboratories: Printing Case Study

    Science.gov (United States)

    The U.S. Department of Energy, Sandia National Laboratories (SNL), New Mexico quantified the costs associated with individual desktop printing devices, for comparison with costs associated with using networked copiers as printers

  3. Stabilization of mixed waste at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Boehmer, A.M.; Gillins, R.L.; Larsen, M.M.

    1989-01-01

    EG and G Idaho, Inc. has initiated a program to develop safe, efficient, cost-effective treatment methods for the stabilization of some of the hazardous and mixed wastes generated at the Idaho National Engineering Laboratory. Laboratory-scale testing has shown that extraction procedure toxic wastes can be successfully stabilized by solidification, using various binders to produce nontoxic, stable waste forms for safe, long-term disposal as either landfill waste or low-level radioactive waste, depending upon the radioactivity content. This paper presents the results of drum-scale solidification testing conducted on hazardous, low-level incinerator flyash generated at the Waste Experimental Reduction Facility. The drum-scale test program was conducted to verify that laboratory-scale results could be successfully adapted into a production operation

  4. Feed additives : annual report 2011 of the National Reference Laboratory

    NARCIS (Netherlands)

    Driessen, J.J.M.; Beek, W.M.J.; Jong, de J.

    2012-01-01

    This report describes the activities employed by RIKILT regarding the functions as: - the National Reference Laboratory (NRL) for feed additives; - advice regarding temporary use exemptions, other advice and support of EL&I. This report also presents the activities by the NRL to keep up

  5. Applying the National Industrial Security Program (NISP) in the laboratory environment

    International Nuclear Information System (INIS)

    Bruckner, D.G.

    1995-01-01

    With continuing changes in the world safeguards and security environment the effectiveness of many laboratory operations depends on correctly assessing the risk to its programs and developing protection technologies, research and concepts of operations being employed by the scientific community. This paper explores the opportunities afforded by the National Industrial Security Program (NISP) to uniformly and simply protect Laboratory security assets, sensitive and classified information and matter, during all aspects of a laboratory program. The developments in information systems, program security, physical security and access controls suggest an industrial security approach. This paper's overall objective is to indicate that the Laboratory environment is particularly well suited to take advantage being pursued by NISP and the performance objectives of the new DOE orders

  6. A Large Neutrino Detector Facility at the Spallation Neutron Source at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Efremenko, Y.V.

    1999-01-01

    The ORLaND (Oak Ridge Large Neutrino Detector) collaboration proposes to construct a large neutrino detector in an underground experimental hall adjacent to the first target station of the Spallation Neutron Source (SNS) at the Oak Ridge National Laboratory. The main mission of a large (2000 ton) Scintillation-Cherenkov detector is to measure bar ν μ -> bar ν e neutrino oscillation parameters more accurately than they can be determined in other experiments, or significantly extending the covered parameter space below (sin'20 le 10 -4 ). In addition to the neutrino oscillation measurements, ORLaND would be capable of making precise measurements of sin 2 θ W , search for the magnetic moment of the muon neutrino, and investigate the anomaly in the KARMEN time spectrum, which has been attributed to a new neutral particle. With the same facility an extensive program of measurements of neutrino nucleus cross sections is also planned to support nuclear astrophysics

  7. Radiation chemistry at the Metallurgical Laboratory, Manhattan Project, University of Chicago (1942-1947) and the Argonne National Laboratory, Argonne, IL (1947-1984)

    International Nuclear Information System (INIS)

    Gordon, S.

    1989-01-01

    The events in radiation chemistry which occurred in the Manhattan Project Laboratory and Argonne National Laboratory during World War II are reviewed. Research programmes from then until the present day are presented, with emphasis on pulse radiolysis studies. (UK)

  8. 76 FR 50212 - Site-Wide Environmental Impact Statement for Sandia National Laboratories, New Mexico (SNL/NM)

    Science.gov (United States)

    2011-08-12

    ... Environmental Impact Statement for Sandia National Laboratories, New Mexico (DOE/EIS-0281-SA-04), DOE/NNSA... Environmental Impact Statement for Sandia National Laboratories, New Mexico for the Installation of a Petawatt..., New Mexico Final Supplement Analysis for the Site-Wide Environmental Impact Statement (2006 SNL/NM...

  9. Proposal to the Gran Sasso Laboratory for a dark matter search using cryogenic detectors

    International Nuclear Information System (INIS)

    Cooper, S.; Colling, P.; Ferger, P.; Frank, M.; Gebauer, H.J.; Nagel, U.; Nucciotti, A.; Proebst, F.; Rulofs, A.; Seidel, W.; Stodolsky, L.; Feilitzsch, F. v.; Forster, G.; Hallatschek, K.; Kellner, E.

    1993-11-01

    We request space and support from the Gran Sasso Laboratory for an experiment searching for dark matter WIMPs using cryogenic detectors. Our experiment is complementary to other dark matter searches in that it extends the sensitivity for WIMPs to the mass range below 10 GeV and that different target materials can be used within the same setup. The proposed experiment uses in the first stage a detector consisting of 1 kg of sapphire with a threshold of 0.5 keV and a resolution of 0.2 keV at 1 keV. The detector would be run at a temperature of 15-30 mK within a low-background setup. The first stage could be installed in 1995. The proposed setup allows for future expansion of the detector to 10-100 kg without major changes. (orig.)

  10. Using the H Index to Assess Impact of DOE National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Springer, Everett P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-13

    The most readily accessible elements of the Emerald Matrix by quantitative measures are the knowledge and economy related measures. In this paper, the H Index for an institution will be used to assess STE impact, which is in the knowledge generation element. The H Index was developed by Hirsch (2005) as a measure of an individual’s scientific impact. The H Index is defined as the number of publications that have been cited h or more times for a given author. It has been generalized to organizations. Doing so leads to a complication in that H index scales with the number of publications. Although this may not be problematic when comparing individual researchers, it systematically favors larger institutions. Molinari and Molinari (2008) proposed an alternative index (hm) designed to assess organizational impact. It transforms the H Index for an organization into an impact index by removing a factor dependent on the number of publications. The hm provides another approach to compare institutions provided that differences in the citation patterns associated with fields of study are addressed. Kinney (2007) used the Molinari and Molinari (2008) approach to compare various scientific institutions in nonbiomedical research areas. Kinney (2007) used the Thomson Reuters Web of Science (WoS) as the source and used publications in nonbiomedical research areas, which is very important because the research areas of universities are much broader than say a DOE national laboratory. Also there are differences in citation rates for the various research fields that make comparisons between individuals or organizations difficult. The results from Kinney (2007) are given in Table 1 and indicate that the DOE national laboratories compare favorably with the selected universities in terms of impact (hm) in the research areas used in Kinney’s analysis. This report will compare hm for DOE national laboratories using an approach similar to Kinney (2007) providing a measure of impact of

  11. Quality assurance consideration for cement-based grout technology programs at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    McDaniel, E.W.; Tallent, O.K.; Sams, T.L.; Delzer, D.B.

    1987-01-01

    Oak Ridge National Laboratory has developed and is continuing to refine a method of immobilizing low-level radioactive liquid wastes by mixing them with cementitious dry-solid blends. A quality assurance program is vital to the project because Nuclear Regulatory Commission (NRC), Environmental Protection Agency (EPA) and state environmental regulations must be demonstrably met (the work must be defensible in a court of law). The end result of quality assurance (QA) is, by definition, a product of demonstrable quality. In the laboratory, this entails traceability, repeatability, and credibility. This paper describes the application of QA in grout technology development at Oak Ridge National Laboratory

  12. National survey on intra-laboratory turnaround time for some most common routine and stat laboratory analyses in 479 laboratories in China.

    Science.gov (United States)

    Fei, Yang; Zeng, Rong; Wang, Wei; He, Falin; Zhong, Kun; Wang, Zhiguo

    2015-01-01

    To investigate the state of the art of intra-laboratory turnaround time (intra-TAT), provide suggestions and find out whether laboratories accredited by International Organization for Standardization (ISO) 15189 or College of American Pathologists (CAP) will show better performance on intra-TAT than non-accredited ones. 479 Chinese clinical laboratories participating in the external quality assessment programs of chemistry, blood gas, and haematology tests organized by the National Centre for Clinical Laboratories in China were included in our study. General information and the median of intra-TAT of routine and stat tests in last one week were asked in the questionnaires. The response rate of clinical biochemistry, blood gas, and haematology testing were 36% (479/1307), 38% (228/598), and 36% (449/1250), respectively. More than 50% of laboratories indicated that they had set up intra-TAT median goals and almost 60% of laboratories declared they had monitored intra-TAT generally for every analyte they performed. Among all analytes we investigated, the intra-TAT of haematology analytes was shorter than biochemistry while the intra-TAT of blood gas analytes was the shortest. There were significant differences between median intra-TAT on different days of the week for routine tests. However, there were no significant differences in median intra-TAT reported by accredited laboratories and non-accredited laboratories. Many laboratories in China are aware of intra-TAT control and are making effort to reach the target. There is still space for improvement. Accredited laboratories have better status on intra-TAT monitoring and target setting than the non-accredited, but there are no significant differences in median intra-TAT reported by them.

  13. Site Environmental Report for 2016 Sandia National Laboratories California.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L. [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2017-06-01

    Sandia National Laboratories, California (SNL/CA) is a Department of Energy (DOE) facility. The management and operations of the facility are under a contract with the DOE’s National Nuclear Security Administration (NNSA). On May 1, 2017, the name of the management and operating contractor changed from Sandia Corporation to National Technology and Engineering Solutions of Sandia, LLC (NTESS). The DOE, NNSA, Sandia Field Office administers the contract and oversees contractor operations at the site. This Site Environmental Report for 2016 was prepared in accordance with DOE Order 231.1B, Environment, Safety and Health Reporting (DOE 2012). The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2016, unless noted otherwise. General site and environmental program information is also included.

  14. Feed additives : annual report 2010 of the National Reference Laboratory

    NARCIS (Netherlands)

    Driessen, J.J.M.; Beek, W.M.J.; Jong, de J.

    2011-01-01

    This report of the National Reference Laboratory (NRL) for feed additives describes the activties employed in 2010. The main tasks of the NRL are: giving assistance to the European Union Reference Laboratort (EU-RL) on their request and advice and support the competent authority, the Dutch Ministry

  15. Argonne National Laboratory research to help U.S. steel industry

    CERN Multimedia

    2003-01-01

    Argonne National Laboratory has joined a $1.29 million project to develop technology software that will use advanced computational fluid dynamics (CFD), a method of solving fluid flow and heat transfer problems. This technology allows engineers to evaluate and predict erosion patterns within blast furnaces (1 page).

  16. [Medical rescue of China National Earthquake Disaster Emergency Search and Rescue Team in Lushan earthquake].

    Science.gov (United States)

    Liu, Ya-hua; Yang, Hui-ning; Liu, Hui-liang; Wang, Fan; Hu, Li-bin; Zheng, Jing-chen

    2013-05-01

    To summarize and analyze the medical mission of China National Earthquake Disaster Emergency Search and Rescue Team (CNESAR) in Lushan earthquake, to promote the medical rescue effectiveness incorporated with search and rescue. Retrospective analysis of medical work data by CNESAR from April 21th, 2013 to April 27th during Lushan earthquake rescue, including the medical staff dispatch and the wounded case been treated. The reasonable medical corps was composed by 22 members, including 2 administrators, 11 doctors [covering emergency medicine, orthopedics (joints and limbs, spinal), obstetrics and gynecology, gastroenterology, cardiology, ophthalmology, anesthesiology, medical rescue, health epidemic prevention, clinical laboratory of 11 specialties], 1 ultrasound technician, 5 nurses, 1 pharmacist, 1 medical instrument engineer and 1 office worker for propaganda. There were two members having psychological consultants qualifications. The medical work were carried out in seven aspects, including medical care assurance for the CNESAR members, first aid cooperation with search and rescue on site, clinical work in refugees' camp, medical round service for scattered village people, evacuation for the wounded, mental intervention, and the sanitary and anti-epidemic work. The medical work covered 24 small towns, and medical staff established 3 medical clinics at Taiping Town, Shuangshi Town of Lushan County and Baoxing County. Medical rescue, mental intervention for the old and kids, and sanitary and anti-epidemic were performed at the above sites. The medical corps had successful evacuated 2 severe wounded patients and treated the wounded over thousands. Most of the wounded were soft tissue injuries, external injury, respiratory tract infections, diarrhea, and heat stroke. Compared with the rescue action in 2008 Wenchuan earthquake, the aggregation and departure of rescue team in Lushan earthquake, the traffic control order in disaster area, the self-aid and buddy aid

  17. Alternative futures for the Department of Energy National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    1995-02-01

    This Task Force was asked to propose alternate futures for the Department of Energy laboratories noted in the report. The authors` intensive ten months` study revealed multiple missions and sub-missions--traditional missions and new missions--programs and projects--each with factors of merit. They respectively suggest that the essence of what the Department, and particularly the laboratories, should and do stand for: the energy agenda. Under the overarching energy agenda--the labs serving the energy opportunities--they comment on their national security role, the all important energy role, all related environmental roles, the science and engineering underpinning for all the above, a focused economic role, and conclude with governance/organization change recommendations.

  18. Feasibility study of medical isotope production at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Massey, C.D.; Miller, D.L.; Carson, S.D.

    1995-12-01

    In late 1994, Sandia National Laboratories in Albuquerque, New Mexico, (SNL/NM), was instructed by the Department of Energy (DOE) Isotope Production and Distribution Program (IPDP) to examine the feasibility of producing medically useful radioisotopes using the Annular Core Research Reactor (ACRR) and the Hot Cell Facility (HCF). Los Alamos National Laboratory (LANL) would be expected to supply the targets to be irradiated in the ACRR. The intent of DOE would be to provide a capability to satisfy the North American health care system demand for 99 Mo, the parent of 99m Tc, in the event of an interruption in the current Canadian supply. 99m Tc is used in 70 to 80% of all nuclear medicine procedures in the US. The goal of the SNL/NM study effort is to determine the physical plant capability, infrastructure, and staffing necessary to meet the North American need for 99 Mo and to identify and examine all issues with potential for environmental impact

  19. Electron scattering. Lectures given at Argonne National Laboratory

    International Nuclear Information System (INIS)

    Walecka, J.D.

    1984-01-01

    This report is an almost verbatim copy of lectures on Electron Scattering given at Argonne National Laboratory in the Fall of 1982 by John Dirk Walecka. Professor Walecka was an Argonne Fellow in the Physics Division from October 1982 to January 1983. Broad headings include general considerations, coincidence cross section (e,e'x), quantum electrodynamics and radiative corrections, unification of electroweak interactions, relativistic models of nuclear structure, electroproduction of pions and nucleon resonances, and deep inelastic (e,e')

  20. BROOKHAVEN NATIONAL LABORATORY INSTITUTIONAL PLAN FY2003-2007.

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-06-10

    This document presents the vision for Brookhaven National Laboratory (BNL) for the next five years, and a roadmap for implementing that vision. Brookhaven is a multidisciplinary science-based laboratory operated for the U.S. Department of Energy (DOE), supported primarily by programs sponsored by the DOE's Office of Science. As the third-largest funding agency for science in the U.S., one of the DOE's goals is ''to advance basic research and the instruments of science that are the foundations for DOE's applied missions, a base for U.S. technology innovation, and a source of remarkable insights into our physical and biological world, and the nature of matter and energy'' (DOE Office of Science Strategic Plan, 2000 http://www.osti.gov/portfolio/science.htm). BNL shapes its vision according to this plan.

  1. CNEA's (Comision Nacional de Energia Atomica) experience in the preparation of a national system for laboratory accreditation

    International Nuclear Information System (INIS)

    Piacquadio, N.H.; Palacios, T.A.; Casa, V.A.; Koll, J.H.

    1993-01-01

    Within the regional markets, as it is the case of MERCOSUR , the laboratories which are suppliers of test and calibration results, are mutually recognized through the National Accreditation Systems. In Argentina there is a project to create a Center for the Accreditation of Test Laboratories. CNEA, which is involved in the execution of large projects and has adopted quality assurance criteria for a long time, requires for internal and external laboratories to be qualified. At the beginning of this year, a Committee for the Qualification of Laboratories was created in the Research and Development and Fuel Cycle Areas. Its objective was planning, management of documents, coordination, evaluation and quantification of laboratories, according to national IRAM and international ISO standards. This paper analyzes the organization of the system and the methods to evaluate and qualify laboratories as a process of growing up leading to the future National Accreditation System. (author). 3 figs

  2. Low-level radioactive waste disposal operations at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Stanford, A.R.

    1997-01-01

    Los Alamos National Laboratory (LANL) generates Low-Level Radioactive Waste (LLW) from various activities: research and development, sampling and storage of TRU wastes, decommissioning and decontamination of facilities, and from LANL's major role in stockpile stewardship. The Laboratory has its own active LLW disposal facility located at Technical Area 54, Area G. This paper will identify the current operations of the facility and the issues pertaining to operating a disposal facility in today's compliance and cost-effective environment

  3. THE IDAHO NATIONAL LABORATORY BERYLLIUM TECHNOLOGY UPDATE

    International Nuclear Information System (INIS)

    Glen R. Longhurst

    2007-01-01

    A Beryllium Technology Update meeting was held at the Idaho National Laboratory on July 18, 2007. Participants came from the U.S., Japan, and Russia. There were two main objectives of this meeting. One was a discussion of current technologies for beryllium in fission reactors, particularly the Advanced Test Reactor and the Japan Materials Test Reactor, and prospects for material availability in the coming years. The second objective of the meeting was a discussion of a project of the International Science and Technology Center regarding treatment of irradiated beryllium for disposal. This paper highlights discussions held during that meeting and major conclusions reached

  4. Journal of Medical Laboratory Science: Advanced Search

    African Journals Online (AJOL)

    Search tips: Search terms are case-insensitive; Common words are ignored; By default only articles containing all terms in the query are returned (i.e., AND is implied); Combine multiple words with OR to find articles containing either term; e.g., education OR research; Use parentheses to create more complex queries; e.g., ...

  5. Accelerating Ocean Energy to the Marketplace - Environmental Research at the U.S. Department of Energy National Laboratories

    International Nuclear Information System (INIS)

    Copping, Andrea E.; Cada, G.F.; Roberts, Jesse; Bevelhimer, Mark

    2010-01-01

    The U.S. Department of Energy (US DOE) has mobilized its National Laboratories to address the broad range of environmental effects of ocean and river energy development. The National Laboratories are using a risk-based approach to set priorities among environmental effects, and to direct research activities. Case studies will be constructed to determine the most significant environmental effects of ocean energy harvest for tidal systems in temperate estuaries, for wave energy installations in temperate coastal areas, wave installations in sub-tropical waters, and riverine energy installations in large rivers. In addition, the National Laboratories are investigating the effects of energy removal from waves, tides and river currents using numerical modeling studies. Laboratory and field research is also underway to understand the effects of electromagnetic fields (EMF), acoustic noise, toxicity from anti-biofouling coatings, effects on benthic habitats, and physical interactions with tidal and wave devices on marine and freshwater organisms and ecosystems. Outreach and interactions with stakeholders allow the National Laboratories to understand and mitigate for use conflicts and to provide useful information for marine spatial planning at the national and regional level.

  6. Environmental monitoring at the Lawrence Livermore National Laboratory: 1980 annual report

    International Nuclear Information System (INIS)

    Toy, A.J.; Lindeken, C.L.; Griggs, K.S.; Buddemeier, R.W.

    1981-01-01

    The results of environmental monitoring for 1980 at the Livermore National Laboratory are presented. Radioactivity in air, soil, sewage, water, vegetation and food, and milk was measured. Noise pollution, beryllium, heavy metals, and pesticides were monitored

  7. Idaho National Laboratory Quarterly Performance Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Lisbeth [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-11-01

    This report is published quarterly by the Idaho National Laboratory (INL) Quality and Performance Management Organization. The Department of Energy (DOE) Occurrence Reporting and Processing System (ORPS), as prescribed in DOE Order 232.2, “Occurrence Reporting and Processing of Operations Information,” requires a quarterly analysis of events, both reportable and not reportable, for the previous 12 months. This report is the analysis of 60 reportable events (23 from the 4th Qtr FY14 and 37 from the prior three reporting quarters) as well as 58 other issue reports (including not reportable events and Significant Category A and B conditions) identified at INL from July 2013 through October 2014. Battelle Energy Alliance (BEA) operates the INL under contract DE AC07 051D14517.

  8. Idaho National Laboratory Quarterly Occurrence Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Lisbeth Ann [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-11-01

    This report is published quarterly by the Idaho National Laboratory (INL) Quality and Performance Management Organization. The Department of Energy (DOE) Occurrence Reporting and Processing System (ORPS), as prescribed in DOE Order 232.2, “Occurrence Reporting and Processing of Operations Information,” requires a quarterly analysis of events, both reportable and not reportable, for the previous 12 months. This report is the analysis of 85 reportable events (18 from the 4th Qtr FY-15 and 67 from the prior three reporting quarters), as well as 25 other issue reports (including events found to be not reportable and Significant Category A and B conditions) identified at INL during the past 12 months (8 from this quarter and 17 from the prior three quarters).

  9. Recent developments in the target facilities at Argonne National Laboratory

    International Nuclear Information System (INIS)

    Greene, J.P.; Thomas, G.E.

    1989-01-01

    A description is given of recent developments in the target facility at Argonne National Laboratory (ANL). Highlights include equipment upgrades which enable us to provide enhanced capabilities for support of the Argonne Heavy-Ion ATLAS Accelerator Project. Also, future plans and additional equipment acquisitions will be discussed. (orig.)

  10. Lawrence Livermore National Laboratory DIII-D cooperation: 1987 annual report

    International Nuclear Information System (INIS)

    Allen, S.L.; Calderon, M.O.; Ellis, R.M.

    1988-01-01

    This report summarizes the Lawrence Livermore National Laboratory (LLNL) DIII-D cooperation during FY87. The LLNL participation in DIII-D concentrated on three principal areas: ECH and current-drive physics, divertor and edge physics, and tokamak operations. These topics are dicussed in this report. 27 refs., 11 figs

  11. Successful neural network projects at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Cordes, G.A.

    1991-01-01

    This paper presents recent and current projects at the Idaho National Engineering Laboratory (INEL) that research and apply neural network technology. The projects are summarized in the paper and their direct application to space reactor power and propulsion systems activities is discussed. 9 refs., 10 figs., 3 tabs

  12. Compliance program for 40 CFR 61, Subpart H at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    McNamara, E.A.

    1997-01-01

    Effective on March 15, 1990, the Environmental Protection Agency established regulations controlling the emission of radionuclides to the air from Department of Energy facilities to limit the dose to the public to 10 mrem/yr. These regulations are detailed in 40 CFR 61, Subpart H, open-quotes National Emission Standards for Emissions of Radionuclides Other Than Radon from Department of Energy Facilitiesclose quotes. Part of these regulations require the operation of sampling systems on stacks meeting certain requirements. Although Los Alamos National Laboratory has a long history of stack sampling, the systems in place at the time the regulation became effective did not meet the specific design requirements of the new regulation. In addition, certain specific program elements did not exist or were not adequately documented. The Los Alamos National Laboratory has undertaken a major effort to upgrade its compliance program to meet the requirements of USEPA. This effort involved: developing new and technically superior sampling methods and obtaining approval from the Environmental Protection Agency for their use; negotiating specific methodologies with the Environmental Protection Agency to implement certain requirements of the regulation: implementing a complete, quality assured, compliance program; and upgrading sampling systems. After several years of effort, Los Alamos National Laboratory now meets all requirements of the USEPA

  13. Evaluation of Radiometers Deployed at the National Renewable Energy Laboratory's Solar Radiation Research Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Habte, Aron; Wilcox, Stephen; Stoffel, Thomas

    2015-12-23

    This study analyzes the performance of various commercially available radiometers used for measuring global horizontal irradiances and direct normal irradiances. These include pyranometers, pyrheliometers, rotating shadowband radiometers, and a pyranometer with fixed internal shading and are all deployed at the National Renewable Energy Laboratory's Solar Radiation Research Laboratory. Data from 32 global horizontal irradiance and 19 direct normal irradiance radiometers are presented. The radiometers in this study were deployed for one year (from April 1, 2011, through March 31, 2012) and compared to measurements from radiometers with the lowest values of estimated measurement uncertainties for producing reference global horizontal irradiances and direct normal irradiances.

  14. Oak Ridge National Laboratory Waste Management Plan. Rev. 1

    Energy Technology Data Exchange (ETDEWEB)

    None

    1991-12-01

    The goal of the Oak Ridge National Laboratory (ORNL) Waste Management Program is the protection of workers, the public, and the environment. A vital aspect of this goal is to comply with all applicable state, federal, and DOE requirements. Waste management requirements for DOE radioactive wastes are detailed in DOE Order 5820.2A, and the ORNL Waste Management Program encompasses all elements of this order. The requirements of this DOE order and other appropriate DOE orders, along with applicable Tennessee Department of Environment and Conservation (TDEC) and US Environmental Protection Agency (EPA) rules and regulations, provide the principal source of regulatory guidance for waste management operations at ORNL. The objective of the Oak Ridge National Laboratory Waste Management Plan is to compile and to consolidate information annually on how the ORNL Waste Management is to compile and to consolidate information annually on how the ORNL Waste Management Program is conducted, which waste management facilities are being used to manage wastes, what forces are acting to change current waste management systems, what activities are planned for the forthcoming fiscal year (FY), and how all of the activities are documented.

  15. Scientific Computing Strategic Plan for the Idaho National Laboratory

    International Nuclear Information System (INIS)

    Whiting, Eric Todd

    2015-01-01

    Scientific computing is a critical foundation of modern science. Without innovations in the field of computational science, the essential missions of the Department of Energy (DOE) would go unrealized. Taking a leadership role in such innovations is Idaho National Laboratory's (INL's) challenge and charge, and is central to INL's ongoing success. Computing is an essential part of INL's future. DOE science and technology missions rely firmly on computing capabilities in various forms. Modeling and simulation, fueled by innovations in computational science and validated through experiment, are a critical foundation of science and engineering. Big data analytics from an increasing number of widely varied sources is opening new windows of insight and discovery. Computing is a critical tool in education, science, engineering, and experiments. Advanced computing capabilities in the form of people, tools, computers, and facilities, will position INL competitively to deliver results and solutions on important national science and engineering challenges. A computing strategy must include much more than simply computers. The foundational enabling component of computing at many DOE national laboratories is the combination of a showcase like data center facility coupled with a very capable supercomputer. In addition, network connectivity, disk storage systems, and visualization hardware are critical and generally tightly coupled to the computer system and co located in the same facility. The existence of these resources in a single data center facility opens the doors to many opportunities that would not otherwise be possible.

  16. Surface Water Data at Los Alamos National Laboratory 1998 Water Year

    International Nuclear Information System (INIS)

    Shaull, D.A.; Alexander, M.R.; Reynolds, R.P.; McLean, C.T.; Romero, R.P.

    1999-01-01

    The principal investigators collected and computed surface water discharge data from 19 stream-gaging stations that cover most of Los Alamos National Laboratory. Also included are discharge data from three springs that flow into Caiion de Vane

  17. Brookhaven National Laboratory site environmental report for calendar year 1990

    International Nuclear Information System (INIS)

    Miltenberger, R.P.; Royce, B.A.; Naidu, J.R.

    1992-01-01

    Brookhaven National Laboratory (BNL) carries out basic and applied research in the following fields: high-energy nuclear and solid state physics; fundamental material and structure properties and the interactions of matter; nuclear medicine, biomedical and environmental sciences; and selected energy technologies. In conducting these research activities, it is Laboratory policy to protect the health and safety of employees and the public, and to minimize the impact of BNL operations on the environment. This document is the BNL environmental report for the calendar year 1990 for the safety and Environmental Protection division and corners topics on effluents, surveillance, regulations, assessments, and compliance

  18. Brookhaven National Laboratory site environmental report for calendar year 1990

    Energy Technology Data Exchange (ETDEWEB)

    Miltenberger, R.P.; Royce, B.A.; Naidu, J.R.

    1992-01-01

    Brookhaven National Laboratory (BNL) carries out basic and applied research in the following fields: high-energy nuclear and solid state physics; fundamental material and structure properties and the interactions of matter; nuclear medicine, biomedical and environmental sciences; and selected energy technologies. In conducting these research activities, it is Laboratory policy to protect the health and safety of employees and the public, and to minimize the impact of BNL operations on the environment. This document is the BNL environmental report for the calendar year 1990 for the safety and Environmental Protection division and corners topics on effluents, surveillance, regulations, assessments, and compliance.

  19. A new matrix for scoring the functionality of national laboratory networks in Africa: introducing the LABNET scorecard

    NARCIS (Netherlands)

    Ondoa, Pascale; Datema, Tjeerd; Keita-Sow, Mah-Sere; Ndihokubwayo, Jean-Bosco; Isadore, Jocelyn; Oskam, Linda; Nkengasong, John; Lewis, Kim

    2016-01-01

    Functional national laboratory networks and systems are indispensable to the achievement of global health security targets according to the International Health Regulations. The lack of indicators to measure the functionality of national laboratory network has limited the efficiency of past and

  20. Commercialization of Los Alamos National Laboratory technologies via small businesses. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Brice, R.; Cartron, D.; Rhyne, T.; Schulze, M.; Welty, L.

    1997-06-01

    Over the past decade, numerous companies have been formed to commercialize research results from leading U.S. academic and research institutions. Emerging small businesses in areas such as Silicon Valley, Boston`s Route 128 corridor, and North Carolina`s Research Triangle have been especially effective in moving promising technologies from the laboratory bench to the commercial marketplace--creating new jobs and economic expansion in the process. Unfortunately, many of the U.S. national laboratories have not been major participants in this technology/commercialization activity, a result of a wide variety of factors which, until recently, acted against successful commercialization. This {open_quotes}commercialization gap{close_quotes} exists partly due to a lack, within Los Alamos in particular and the DOE in general, of in-depth expertise and experience in such business areas as new business development, securities regulation, market research and the determination of commercial potential, the identification of entrepreneurial management, marketing and distribution, and venture capital sources. The immediate consequence of these factors is the disappointingly small number of start-up companies based on technologies from Los Alamos National Laboratory that have been attempted, the modest financial return Los Alamos has received from these start-ups, and the lack of significant national recognition that Los Alamos has received for creating and commercializing these technologies.

  1. Brookhaven National Laboratory's multiparticle spectrometer drift chamber system

    International Nuclear Information System (INIS)

    Etkin, A.; Kramer, M.A.

    1979-01-01

    A system of drift chambers is being built to replace the present spark chambers in the Brookhaven National Laboratory's Multiparticle Spectrometer. This system will handle a beam of approx. 3 million particles per second and have a resolution of 200 μm. A summary of the status of the chambers and the custom integrated circuits is presented. The data acquisition system is described. Prototype chambers have been built and tested with results that are consistent with the expected chamber properties

  2. Seismic hazard studies for the high flux beam reactor at Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    Costantino, C.J.; Heymsfield, E.; Park, Y.J.; Hofmayer, C.H.

    1991-01-01

    This paper presents the results of a calculation to determine the site specific seismic hazard appropriate for the deep soil site at Brookhaven National Laboratory (BNL) which is to be used in the risk assessment studies being conducted for the High Flux Beam Reactor (HFBR). The calculations use as input the seismic hazard defined for the bedrock outcrop by a study conducted at Lawrence Livermore National Laboratory (LLNL). Variability in site soil properties were included in the calculations to obtain the seismic hazard at the ground surface and compare these results with those using the generic amplification factors from the LLNL study

  3. DarkLight: A Search for Dark Forces at the Jefferson Laboratory Free-Electron Laser Facility

    Energy Technology Data Exchange (ETDEWEB)

    Balewski, Jan; Bernauer, J; Bertozzi, William; Bessuille, Jason; Buck, B; Cowan, Ray; Dow, K; Epstein, C; Fisher, Peter; Gilad, Shalev; Ihloff, Ernest; Kahn, Yonatan; Kelleher, Aidan; Kelsey, J; Milner, Richard; Moran, C; Ou, Longwu; Russell, R; Schmookler, Barak; Thaler, J; Tschalar, C; Vidal, Christopher; Winnebeck, A; Benson, Stephen [JLAB; Gould, Christopher [JLAB; Biallas, George [JLAB; Boyce, James [JLAB; Coleman, James [JLAB; Douglas, David [JLAB; Ent, Rolf [JLAB; Evtushenko, Pavel [JLAB; Fenker, Howard [JLAB; Gubeli, Joseph [JLAB; Hannon, Fay [JLAB; Huang, Jia [JLAB; Jordan, Kevin [JLAB; Legg, Robert [JLAB; Marchlik, Matthew [JLAB; Moore, Steven [JLAB; Neil, George [JLAB; Shinn, Michelle D [JLAB; Tennant, Christopher [JLAB; Walker, Richard [JLAB; Williams, Gwyn [JLAB; Zhang, Shukui [JLAB; Freytsis, M; Fiorito, Ralph; O' Shea, P; Alarcon, Ricardo; Dipert, R; Ovanesyan, G; Gunter, Thoth; Kalantarians, Narbe; Kohl, M; Albayrak, Ibrahim; Horn, Tanja; Gunarathne, D S; Martoff, C J; Olvitt, D L; Surrow, Bernd; Lia, X; Beck, Reinhard; Schmitz, R; Walther, D; Brinkmann, K; Zaunig, H

    2014-05-01

    We give a short overview of the DarkLight detector concept which is designed to search for a heavy photon A' with a mass in the range 10 MeV/c^2 < m(A') < 90 MeV/c^2 and which decays to lepton pairs. We describe the intended operating environment, the Jefferson Laboratory free electon laser, and a way to extend DarkLight's reach using A' --> invisible decays.

  4. Recent developments in the target facilities at Argonne National Laboratory

    International Nuclear Information System (INIS)

    Greene, J.P.; Thomas, G.E.

    1988-01-01

    A description is given of recent developments in the target facility at Argonne National Laboratory. Highlights include equipment upgrades which enables us to provide enhanced capabilities for support of the Argonne Heavy-Ion ATLAS Accelerator Project. Also future plans and additional equipment acquisitions will be discussed. 3 refs., 3 tabs

  5. Decommissioning three nuclear reactors at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Montoya, G.M.; Salazar, M.

    1992-01-01

    Three nuclear reactors, including the historic water boiler reactor, were decommissioned at Los Alamos National Laboratory (LANL). The decommissioning of the facilities involved removing the reactors and their associated components. Planning for the decommissioning operation included characterizing the facilities, estimating the costs of decommissioning operations, preparing environmental documentation, establishing systems to track costs and work progress, and preplanning to correct health and safety concerns in each facility

  6. Los Alamos National Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Lab has a proud history and heritage of almost 70 years of science and innovation. The people at the Laboratory work on advanced technologies to provide the best...

  7. 2017 Annual Terrestrial Sampling Plan for Sandia National Laboratories/New Mexico on Kirtland Air Force Base

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, Stacy R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-02-01

    The 2017 Annual Terrestrial Sampling Plan for Sandia National Laboratories/New Mexico on Kirtland Air Force Base has been prepared in accordance with the “Letter of Agreement Between Department of Energy, National Nuclear Security Administration, Sandia Field Office (DOE/NNSA/SFO) and 377th Air Base Wing (ABW), Kirtland Air Force Base (KAFB) for Terrestrial Sampling” (signed January 2017), Sandia National Laboratories, New Mexico (SNL/NM). The Letter of Agreement requires submittal of an annual terrestrial sampling plan.

  8. 2018 Annual Terrestrial Sampling Plan for Sandia National Laboratories/New Mexico on Kirtland Air Force Base.

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, Stacy R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2018-01-01

    The 2018 Annual Terrestrial Sampling Plan for Sandia National Laboratories/New Mexico on Kirtland Air Force Base has been prepared in accordance with the “Letter of Agreement Between Department of Energy, National Nuclear Security Administration, Sandia Field Office (DOE/NNSA/SFO) and 377th Air Base Wing (ABW), Kirtland Air Force Base (KAFB) for Terrestrial Sampling” (signed January 2017), Sandia National Laboratories, New Mexico (SNL/NM). The Letter of Agreement requires submittal of an annual terrestrial sampling plan.

  9. Ernest Orlando Berkeley National Laboratory - Fundamental and applied research on lean premixed combustion

    International Nuclear Information System (INIS)

    Cheng, Robert K.

    1999-01-01

    Ernest Orland Lawrence Berkeley National Laboratory (Berkeley Lab) is the oldest of America's national laboratories and has been a leader in science and engineering technology for more than 65 years, serving as a powerful resource to meet Us national needs. As a multi-program Department of Energy laboratory, Berkeley Lab is dedicated to performing leading edge research in the biological, physical, materials, chemical, energy, environmental and computing sciences. Ernest Orlando Lawrence, the Lab's founder and the first of its nine Nobel prize winners, invented the cyclotron, which led to a Golden Age of particle physics and revolutionary discoveries about the nature of the universe. To this day, the Lab remains a world center for accelerator and detector innovation and design. The Lab is the birthplace of nuclear medicine and the cradle of invention for medical imaging. In the field of heart disease, Lab researchers were the first to isolate lipoproteins and the first to determine that the ratio of high density to low density lipoproteins is a strong indicator of heart disease risk. The demise of the dinosaurs--the revelation that they had been killed off by a massive comet or asteroid that had slammed into the Earth--was a theory developed here. The invention of the chemical laser, the unlocking of the secrets of photosynthesis--this is a short preview of the legacy of this Laboratory

  10. Oak Ridge National Laboratory remedial investigation/feasibility study

    International Nuclear Information System (INIS)

    Glenn, R.D.; Hoffman, J.M.; Hyde, L.D.

    1988-01-01

    The Oak Ridge National Laboratory (ORNL) Remedial Investigation/ Feasibility Study (RI/FS) began in June 1987 to evaluate 13 contaminated waste area groupings (WAGs) to determine the feasibility and benefits of potential remedial action. The RI/FS and any future remedial action at ORNL will be of national significance and will likely lead to developments that will become models for environmental investigations and cleanups. Bechtel National, Inc. and a team of subcontractors will be working with Martin Marietta Energy systems to conduct intensive field investigations to obtain data required to evaluate the WAGs. The RI/F project continued in FY 1988 with project planning and preparation for field activities. Remedial Investigation (RI) Plans were prepared for 10 of the 13 WAGs. These plans were developed with sufficient information to ensure compliance with regulatory requirements, with intensive attention given to environmental, safety, and health protection; waste management; data management; and quality assurance. This paper reports on the progress made during FY 1988 and discusses activities planned for FY 1989

  11. Clay mineralogy of selected borehole sediments from the Lawrence Livermore National Laboratory and Sandia National Laboratories, Livermore, California

    International Nuclear Information System (INIS)

    Smith, D.K.; Peifer, D.W.; Rood, C.K.

    1992-04-01

    Smectite, 90 to 100% interstratified illite-smectite, chlorate, and kaolinite are identified in boreholes drilled in fluvial and alluvial fan deposits of the Plio-Pleistocene Livermore Formation in the vicinity of Lawrence Livermore National Laboratory (LLNL) and Sandia National Laboratories (SNL), Livermore. X-ray diffraction, scanning electron microscopy, and electron microprobe studies indicate the clays persist through 150 ft of gravels, sands, silts, and mudstones of the vadose zone to total drilling depths of 200 ft in the saturated zone. Scanning electron microscopy indicates that true clays (layer silicate only) comprise between 2 and 15 modal percent of the Livermore Formation. Authigenic and detrital smectite, 90% interlayered illite-smectite, and chlorate persist throughout the stratigraphic section; kaolinite occurs only in the upper 100 ft of the section and is absent below. Smectite comprises between 60 to 90% of the true (layer silicate only) clay fraction. Illite and kaolinite±chlorite abundances fluctuate between 10 to 30% and 10 to 20% of this fraction, respectively. Authigenic smectite, illite, and chlorate crystallize together with detrital phases; the authigenic component increases with depth. The relative percentages of clay minerals define unique mineralogical intervals, which can be correlated between boreholes. Pervasive microfractures and interconnected porosity are inherent in the finer sediments; the microfractures typically are 1 mm or less in width and are variably spaced. Voids and microfractures are conspicuously lined by clays. Porosity for the argillaceous sediments ranges between 23 and 40%; Brunauer, Emmett, and Teller (BET) specific surface area decreases variably from 40 m 2 /g near the surface to 15 m 2 /g at the 115-ft depth. Within the pelitic matrix, iron, iron-titanium, chromium, and manganese oxides are pervasive

  12. Presentation of laboratory test results in patient portals: influence of interface design on risk interpretation and visual search behaviour.

    Science.gov (United States)

    Fraccaro, Paolo; Vigo, Markel; Balatsoukas, Panagiotis; van der Veer, Sabine N; Hassan, Lamiece; Williams, Richard; Wood, Grahame; Sinha, Smeeta; Buchan, Iain; Peek, Niels

    2018-02-12

    Patient portals are considered valuable instruments for self-management of long term conditions, however, there are concerns over how patients might interpret and act on the clinical information they access. We hypothesized that visual cues improve patients' abilities to correctly interpret laboratory test results presented through patient portals. We also assessed, by applying eye-tracking methods, the relationship between risk interpretation and visual search behaviour. We conducted a controlled study with 20 kidney transplant patients. Participants viewed three different graphical presentations in each of low, medium, and high risk clinical scenarios composed of results for 28 laboratory tests. After viewing each clinical scenario, patients were asked how they would have acted in real life if the results were their own, as a proxy of their risk interpretation. They could choose between: 1) Calling their doctor immediately (high interpreted risk); 2) Trying to arrange an appointment within the next 4 weeks (medium interpreted risk); 3) Waiting for the next appointment in 3 months (low interpreted risk). For each presentation, we assessed accuracy of patients' risk interpretation, and employed eye tracking to assess and compare visual search behaviour. Misinterpretation of risk was common, with 65% of participants underestimating the need for action across all presentations at least once. Participants found it particularly difficult to interpret medium risk clinical scenarios. Participants who consistently understood when action was needed showed a higher visual search efficiency, suggesting a better strategy to cope with information overload that helped them to focus on the laboratory tests most relevant to their condition. This study confirms patients' difficulties in interpreting laboratories test results, with many patients underestimating the need for action, even when abnormal values were highlighted or grouped together. Our findings raise patient safety

  13. Insects of the Idaho National Laboratory: A compilation and review

    Science.gov (United States)

    Nancy Hampton

    2005-01-01

    Large tracts of important sagebrush (Artemisia L.) habitat in southeastern Idaho, including thousands of acres at the Idaho National Laboratory (INL), continue to be lost and degraded through wildland fire and other disturbances. The roles of most insects in sagebrush ecosystems are not well understood, and the effects of habitat loss and alteration...

  14. Oak Ridge National Laboratory Technology Logic Diagram

    International Nuclear Information System (INIS)

    1993-09-01

    The Oak Ridge National Laboratory Technology Logic Diagram (TLD) was developed to provide a decision-support tool that relates environmental restoration (ER) and waste management (WM) problems at Oak Ridge National Laboratory (ORNL) to potential technologies that can remediate these problems. The TLD identifies the research, development, demonstration, testing, and evaluation needed to develop these technologies to a state that allows technology transfer and application to decontamination and decommissioning (D ampersand D), remedial action (RA), and WM activities. The TLD consists of three fundamentally separate volumes: Vol. 1 (Technology Evaluation), Vol. 2 (Technology Logic Diagram), and Vol. 3 (Technology Evaluation Data Sheets). Part A of Vols. 1 and 2 focuses on D ampersand D. Part B of Vols. 1 and 2 focuses on RA of contaminated facilities. Part C of Vols. 1 and 2 focuses on WM. Each part of Vol. 1 contains an overview of the TLD, an explanation of the program-specific responsibilities, a review of identified technologies, and the ranking os remedial technologies. Volume 2 (Pts. A, B, and C) contains the logic linkages among EM goals, environmental problems, and the various technologies that have the potential to solve these problems. Volume 3 (Pts. A, B, and C) contains the TLD data sheets. The focus of Vol. 1, Pt. B, is RA, and it has been divided into six chapters. The first chapter is an introduction, which defines problems specific to the ER Program for ORNL. Chapter 2 provides a general overview of the TLD. Chapters 3 through 5 are organized into necessary subelement categories: RA, characterization, and robotics and automation. The final chapter contains regulatory compliance information concerning RA

  15. Oak Ridge National Laboratory Technology Logic Diagram

    International Nuclear Information System (INIS)

    1993-09-01

    The Oak Ridge National Laboratory Technology Logic Diagram (TLD) was developed to provide a decision support tool that relates environmental restoration (ER) and waste management (WM) problems at Oak Ridge National Laboratory (ORNL) to potential technologies that can remediate these problems. The TLD identifies the research, development, demonstration testing, and evaluation needed to develop these technologies to a state that allows technology transfer and application to decontamination and decommissioning (D ampersand D), remedial action (RA), and WM activities. The TLD consists of three fundamentally separate volumes: Vol. 1, Technology Evaluation; Vol. 2, Technology Logic Diagram and Vol. 3, Technology EvaLuation Data Sheets. Part A of Vols. 1 and 2 focuses on RA. Part B of Vols. 1 and 2 focuses on the D ampersand D of contaminated facilities. Part C of Vols. 1 and 2 focuses on WM. Each part of Vol. 1 contains an overview of the TM, an explanation of the problems facing the volume-specific program, a review of identified technologies, and rankings of technologies applicable to the site. Volume 2 (Pts. A. B. and C) contains the logic linkages among EM goals, environmental problems, and the various technologies that have the potential to solve these problems. Volume 3 (Pts. A. B, and C) contains the TLD data sheets. This volume provides the technology evaluation data sheets (TEDS) for ER/WM activities (D ampersand D, RA and WM) that are referenced by a TEDS code number in Vol. 2 of the TLD. Each of these sheets represents a single logic trace across the TLD. These sheets contain more detail than is given for the technologies in Vol. 2

  16. Sandia National Laboratories/New Mexico 1994 site environmental report. Summary pamphlet

    International Nuclear Information System (INIS)

    1995-01-01

    This document presents details of the environmental activities that occurred during 1994 at Sandia National Laboratories. Topics include: Background about Sandia; radiation facts; sources of radiation; environmental monitoring; discussion of radiation detectors; radioactive waste management; environmental restoration; and quality assurance

  17. A gas phase work station for the Brazilian National Synchrotron Laboratory

    International Nuclear Information System (INIS)

    Souza, G.G.B. de

    1988-01-01

    A gas phase work station which has been proposed to the Brazilian National Synchrotron Laboratory is described with emphasis on the broad spectrum of physical and chemical processes which can be studied with the incorporated instrumentation. (A.C.A.S.) [pt

  18. Sandia National Laboratories/New Mexico 1994 site environmental report. Summary pamphlet

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    This document presents details of the environmental activities that occurred during 1994 at Sandia National Laboratories. Topics include: Background about Sandia; radiation facts; sources of radiation; environmental monitoring; discussion of radiation detectors; radioactive waste management; environmental restoration; and quality assurance.

  19. The Los Alamos, Sandia, and Livermore Laboratories: Integration and collaboration solving science and technology problems for the nation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-01

    More than 40 years ago, three laboratories were established to take on scientific responsibility for the nation`s nuclear weapons - Los Alamos, Sandia, and Livermore. This triad of laboratories has provided the state-of-the-art science and technology to create America`s nuclear deterrent and to ensure that the weapons are safe, secure, and to ensure that the weapons are safe, secure, and reliable. These national security laboratories carried out their responsibilities through intense efforts involving almost every field of science, engineering, and technology. Today, they are recognized as three of the world`s premier research and development laboratories. This report sketches the history of the laboratories and their evolution to an integrated three-laboratory system. The characteristics that make them unique are described and some of the major contributions they have made over the years are highlighted.

  20. Sitewide Environmental Assessment for the National Renewable Energy Laboratory, Golden, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-04

    The Solar Energy Research, Development, and Demonstration Act of 1974 authorized a federal program to develop solar energy as a viable source of the nation`s future energy needs. Under this authority, the National Renewable Energy Laboratory (NREL) was created as a laboratory of the Department of Energy (DOE) to research a number of renewable energy possibilities. The laboratory conducts its operations both in government-owned facilities on the NREL South Table Mountain (STM) Site near Golden, Colorado, and in a number of leased facilities, particularly the Denver West Office Park. NREL operations include research in energy technologies, and other areas of national environmental and energy technology interest. Examples of these technologies include electricity from sunlight with solar cells (photovoltaics); energy from wind (windmills or wind turbines); conversion of plants and plant products (biomass) into liquid fuels (ethanol and methanol); heat from the sun (solar thermal) in place of wood, oil, gas, coal and other forms of heating; and solar buildings. NREL proposes to continue and expand the present R&D efforts in C&R energy by making infrastructure improvements and constructing facilities to eventually consolidate the R&D and associated support activities at its STM Site. In addition, it is proposed that operations continue in current leased space at the present levels of activity until site development is complete. The construction schedule proposed is designed to develop the site as rapidly as possible, dependent on Congressional funding, to accommodate not only the existing R&D that is being conducted in leased facilities off-site but to also allow for the 20-year projected growth. Impacts from operations currently conducted off-site are quantified and added to the cumulative impacts of the STM site. This environmental assessment provides information to determine the severity of impacts on the environment from the proposed action.

  1. Summer school in nuclear and radiochemistry at Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    Kolsky, K.L.

    2005-01-01

    The U.S. Department of Energy supports 24 fellowships for students to attend six-week programs at either San Jose State University in California, or Brookhaven National Laboratory (BNL) in New York. The American Chemical Society through the Division of Nuclear Science and Technology operates both schools. The twelve students at the BNL program are enrolled in the State University of New York at Stony Brook (SUNYSB) and receive 3 college credits for the lecture course (CHE-361) and 3 additional credits for the laboratory course (CHE-362). In addition to lectures and laboratories, students tour various nuclear facilities offsite, at BNL, and at SUNYSB. Opportunities are given the students to interact with faculty and scientists within the profession through the Guest Lecture Program. Further details are discussed along with results of student surveys for the years 1999 through 2002. (author)

  2. [Building and implementation of management system in laboratories of the National Institute of Hygiene].

    Science.gov (United States)

    Rozbicka, Beata; Brulińska-Ostrowska, Elzbieta

    2008-01-01

    The rules of good laboratory practice have always been observed in the laboratories of National Institute of Hygiene (NIH) and the reliability of the results has been carefully cared after when performing tests for clients. In 2003 the laboratories performing analyses related to food safety were designated as the national reference laboratories. This, added to the necessity of compliance with work standards and requirements of EU legislation and to the need of confirmation of competence by an independent organisation, led to a decision to seek accreditation of Polish Centre of Accreditation (PCA). The following stages of building and implementation of management system were presented: training, modifications of Institute's organisational structure, elaboration of management system's documentation, renovation and refurbishment of laboratory facilities, implementation of measuring and test equipment's supervision, internal audits and management review. The importance of earlier experiences and achievements with regard to validation of analytical methods and guarding of the quality of the results through organisation and participation in proficiency tests was highlighted. Current status of accreditation of testing procedures used in NIH laboratories that perform analyses in the field of chemistry, microbiology, radiobiology and medical diagnostic tests was presented.

  3. 1987 environmental monitoring report, Sandia National Laboratories, Livermore, California

    International Nuclear Information System (INIS)

    Devlin, T.K.

    1988-04-01

    Sandia National Labortories conduct various research activities related to Department of Energy interests which have the potential for release of hazardous materials or radionuclides to the environment. A strict environmental control program places maximum emphasis on limiting releases. The environmental monitoring program conducted by Lawrence Livermore National Laboratory and augmented by Sandia is designed to measure the performance of the environmental controls. The program includes analysis of air, water, soil, vegetation, sewer effluent, ground water, and foodstuffs for various toxic, hazardous, or radioactive materials. Based on these studies, the releases of materials of concern at Sandia during 1987 were well below applicable Department of Energy standards. 8 refs., 3 figs., 12 tabs

  4. NATIONAL WEATHER SERVICE MARINE PRODUCTS VIA INTERNET

    Science.gov (United States)

    the search's key words. Tide Predictions, Observations and Storm Surge Forecasts Near real-time Water , Extratropical Water Level Forecasts are available from the National Weather Service's Meteorological Development Laboratory. Status maps are provided to give the user a quick overview of a region. Forecasts of storm surge

  5. Los Alamos National Laboratory Science Education Program. Annual progress report, October 1, 1995--September 30, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Gill, D.H.

    1997-01-01

    The National Teacher Enhancement program (NTEP) is a three-year, multi-laboratory effort funded by the National Science Foundation and the Department of Energy to improve elementary school science programs. The Los Alamos National Laboratory targets teachers in northern New Mexico. FY96, the third year of the program, involved 11 teams of elementary school teachers (grades 4-6) in a three-week summer session, four two-day workshops during the school year and an on-going planning and implementation process. The teams included twenty-one teachers from 11 schools. Participants earned a possible six semester hours of graduate credit for the summer institute and two hours for the academic year workshops from the University of New Mexico. The Laboratory expertise in the earth and environmental science provided the tie between the Laboratory initiatives and program content, and allowed for the design of real world problems.

  6. Sandia National Laboratories, California Waste Management Program annual report.

    Energy Technology Data Exchange (ETDEWEB)

    Brynildson, Mark E.

    2010-02-01

    The annual program report provides detailed information about all aspects of the Sandia National Laboratories, California (SNL/CA) Waste Management Program. It functions as supporting documentation to the SNL/CA Environmental Management System Program Manual. This annual program report describes the activities undertaken during the past year, and activities planned in future years to implement the Waste Management (WM) Program, one of six programs that supports environmental management at SNL/CA.

  7. HTGR safety research at the Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Stroh, K.R.; Anderson, C.A.; Kirk, W.L.

    1982-01-01

    This paper summarizes activities undertaken at the Los Alamos National Laboratory as part of the High-Temperature Gas-Cooled Reactor (HTGR) Safety Research Program sponsored by the US Nuclear Regulatory Commission. Technical accomplishments and analysis capabilities in six broad-based task areas are described. These tasks are: fission-product technology, primary-coolant impurities, structural investigations, safety instrumentation and control systems, accident delineation, and phenomena modeling and systems analysis

  8. Status of Data Base Management Systems at Argonne National Laboratory

    International Nuclear Information System (INIS)

    Fuja, P.M.; Lindeman, A.J.

    1978-01-01

    Argonne National Laboratory has been using the System 2000 data base management system for the past two years. It has been used for technical as well as administrative applications. This paper describes some of the experience gained relating to advantages and disadvantages of data base management systems as well as of System 2000 in particular

  9. Real-time laboratory exercises to test contingency plans for classical swine fever: experiences from two national laboratories.

    Science.gov (United States)

    Koenen, F; Uttenthal, A; Meindl-Böhmer, A

    2007-12-01

    In order to adequately and efficiently handle outbreaks of contagious diseases such as classical swine fever (CSF), foot and mouth disease or highly pathogenic avian influenza, competent authorities and the laboratories involved have to be well prepared and must be in possession of functioning contingency plans. These plans should ensure that in the event of an outbreak access to facilities, equipment, resources, trained personnel, and all other facilities needed for the rapid and efficient eradication of the outbreak is guaranteed, and that the procedures to follow are well rehearsed. It is essential that these plans are established during 'peace-time' and are reviewed regularly. This paper provides suggestions on how to perform laboratory exercises to test preparedness and describes the experiences of two national reference laboratories for CSF. The major lesson learnt was the importance of a well-documented laboratory contingency plan. The major pitfalls encountered were shortage of space, difficulties in guaranteeing biosecurity and sufficient supplies of sterile equipment and consumables. The need for a standardised laboratory information management system, that is used by all those involved in order to reduce the administrative load, is also discussed.

  10. Animal proteins in feed : annual report 2009-2010 of the Dutch National Reference Laboratory

    NARCIS (Netherlands)

    Raamsdonk, van L.W.D.; Scholtens-Toma, I.M.J.; Vliege, J.J.M.; Pinckaers, V.G.Z.; Groot, M.J.; Ossenkoppele, J.S.; Ruth, van S.M.

    2011-01-01

    RIKILT serves as the only official control laboratory for animal proteins in feeds in the Netherlands in the framework of Directive 882/2004/EC. As National Reference Laboratory (NRL), RIKILT participated in 2 annual proficiency tests during the reporting period, in 2 additional interlaboratory

  11. Oak Ridge National Laboratory Institutional Plan FY 1984-FY 1989

    International Nuclear Information System (INIS)

    1983-11-01

    In this plan, Oak Ridge National Laboratory (ORNL) continues to be committed to scientific and technological research that is based on technical excellence and innovation and that provides a foundation for and a stimulus to broader and more sustained economic growth. DOE is being asked to assist in establishing a new program for Laboratory cooperation with industry, beginning with an initial focus on materials science. The current Institutional Plan thus projects growth in the materials science area as well as in other basic physical science areas and suggests a new initiative designed to extend the various technology transfer activities and to make them more effective by using ORNL as the trial Laboratory for some of these different approaches. This Institutional Plan projects a stable future for ORNL, with only modest amounts of growth in selected areas of research for the FY 1984-FY 1989 planning cycle. Summaries of the overall picture of the proposed budget and personnel levels for the current planning cycle are included. Scientific programs, laboratory resource development, and private sector interactions are discussed

  12. [The National Reference Centres and Reference Laboratories. Importance and tasks].

    Science.gov (United States)

    Laude, G; Ammon, A

    2005-09-01

    Since 1995, the German Federal Ministry for Health and Social Security funds National Reference Centres (NRC) for the laboratory surveillance of important pathogens and syndromes. Which pathogens or syndromes are selected to be covered by a NRC depends on their epidemiological relevance, the special diagnostic tools, problems with antimicrobial resistance and necessary infection control measures. Currently, there are 15 NRC, which are appointed for a period of 3 years (currently from January 2005 through December 2007). Towards the end of their appointment all NRC are evaluated by a group of specialists. The assessment of their achievements is guided by a catalogue of tasks for the NRC. In addition to the NRC, a total of 50 laboratories are appointed which provide specialist expertise for additional pathogens in order to have a broad range of pathogens for which specialist laboratories are available. Their predominant task is to give advice and support for special diagnostic problems. Both NRC and the specialist laboratories are important parts of the network for infectious disease epidemiology.

  13. Ecological risk assessment at the Idaho National Engineering Laboratory: Overview

    International Nuclear Information System (INIS)

    VanHorn, R.; Bensen, T.; Green, T.; Hampton, N.; Staley, C.; Morris, R.; Brewer, R.; Peterson, S.

    1994-01-01

    The paper will present an overview of the methods and results of the screening level ecological risk assessment (ERA) performed at the Idaho National Engineering Laboratory (INEL). The INEL is a site with some distinct characteristics. First it is a large Department of Energy (DOE) laboratory (2,300 km 2 ) having experienced 40 years of nuclear material production operations. Secondly, it is a relatively undisturbed cold desert ecosystem. Neither of these issues have been sufficiently addressed in previous ERAs. It was necessary in many instances to develop methods that differed from those used in other studies. This paper should provide useful methodologies for the ERAs performed at other similar sites

  14. Customer service model for waste tracking at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Dorries, Alison M.; Montoya, Andrew J.; Ashbaugh, Andrew E.

    2010-01-01

    The deployment of any new software system in a production facility will always face multiple hurtles in reaching a successful acceptance. However, a new waste tracking system was required at the plutonium processing facility at Los Alamos National Laboratory (LANL) where waste processing must be integrated to handle Special Nuclear Materials tracking requirements. Waste tracking systems can enhance the processing of waste in production facilities when the system is developed with a focus on customer service throughout the project life cycle. In March 2010 Los Alamos National Laboratory Waste Technical Services (WTS) replaced the aging systems and infrastructure that were being used to support the plutonium processing facility. The Waste Technical Services (WTS) Waste Compliance and Tracking System (WCATS) Project Team, using the following customer service model, succeeded in its goal to meet all operational and regulatory requirements, making waste processing in the facility more efficient while partnering with the customer.

  15. Use of Internet Search Data to Monitor Rotavirus Vaccine Impact in the United States, United Kingdom, and Mexico.

    Science.gov (United States)

    Shah, Minesh P; Lopman, Benjamin A; Tate, Jacqueline E; Harris, John; Esparza-Aguilar, Marcelino; Sanchez-Uribe, Edgar; Richardson, Vesta; Steiner, Claudia A; Parashar, Umesh D

    2018-02-19

    Previous studies have found a strong correlation between internet search and public health surveillance data. Less is known about how search data respond to public health interventions, such as vaccination, and the consistency of responses in different countries. In this study, we aimed to study the correlation between internet searches for "rotavirus" and rotavirus disease activity in the United States, United Kingdom, and Mexico before and after introduction of rotavirus vaccine. We compared time series of internet searches for "rotavirus" from Google Trends with rotavirus laboratory reports from the United States and United Kingdom and with hospitalizations for acute gastroenteritis in the United States and Mexico. Using time and location parameters, Google quantifies an internet query share (IQS) to measure the relative search volume for specific terms. We analyzed the correlation between IQS and laboratory and hospitalization data before and after national vaccine introductions. There was a strong positive correlation between the rotavirus IQS and laboratory reports in the United States (R2 = 0.79) and United Kingdom (R2 = 0.60) and between the rotavirus IQS and acute gastroenteritis hospitalizations in the United States (R2 = 0.87) and Mexico (R2 = 0.69) (P United States and by 70% (95% CI, 55%-86%) in Mexico. In the United Kingdom, there was a loss of seasonal variation after vaccine introduction. Rotavirus internet search data trends mirrored national rotavirus laboratory trends in the United States and United Kingdom and gastroenteritis-hospitalization data in the United States and Mexico; lower correlations were found after rotavirus vaccine introduction. Published by Oxford University Press on behalf of The Journal of the Pediatric Infectious Diseases Society 2017. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  16. Preliminary assessment of the radiological impact for individual waste management areas at the Oak Ridge National Laboratory: Status report

    International Nuclear Information System (INIS)

    Sears, M.B.

    1987-09-01

    This study estimates the radiological impact (i.e., the potential doses) for individual waste management areas at the Oak Ridge National Laboratory and ranks the areas for remedial action based on the off-site doses that result from these discharges to White Oak Creek. Dose estimates are given for the drinking water pathway based on known discharges from White Oak Dam. Estimates are also made of doses for eating fish caught in the Clinch River near the confluence with White Oak Creek. The results of a search for data concerning the discharges of 90 Sr, 3 H, 137 Cs, and 60 Co from individual waste management areas are presented. A qualitative assessment is presented, and areas are ranked for remedial investigation based on the available information. 29 refs., 8 figs., 45 tabs

  17. Flow Induced Vibration Program at Argonne National Laboratory

    Science.gov (United States)

    1984-01-01

    The Argonne National Laboratory's Flow Induced Vibration Program, currently residing in the Laboratory's Components Technology Division is discussed. Throughout its existence, the overall objective of the program was to develop and apply new and/or improved methods of analysis and testing for the design evaluation of nuclear reactor plant components and heat exchange equipment from the standpoint of flow induced vibration. Historically, the majority of the program activities were funded by the US Atomic Energy Commission, the Energy Research and Development Administration, and the Department of Energy. Current DOE funding is from the Breeder Mechanical Component Development Division, Office of Breeder Technology Projects; Energy Conversion and Utilization Technology Program, Office of Energy Systems Research; and Division of Engineering, Mathematical and Geosciences, office of Basic Energy Sciences. Testing of Clinch River Breeder Reactor upper plenum components was funded by the Clinch River Breeder Reactor Plant Project Office. Work was also performed under contract with Foster Wheeler, General Electric, Duke Power Company, US Nuclear Regulatory Commission, and Westinghouse.

  18. Oak Ridge National Laboratory Review: Volume 24, Nos. 3 and 4, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Krause, C. (ed.)

    1991-01-01

    Oak Ridge National Laboratory (ORNL) is a multiprogram, multipurpose laboratory that conducts research in the physical, chemical, and life sciences; in fusion, fission, and fossil energy; and in energy conservation and other energy-related technologies. This review contains articles on chemical extraction techniques, electron transport in gases and liquids, diamond films, the contribution of fossil fuels to the greenhouse effect, various sensors for safety applications, and temperature measurement with fluorescing paints. (GHH)

  19. Oak Ridge National Laboratory Review: Volume 24, Nos. 3 and 4, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Krause, C. [ed.

    1991-12-31

    Oak Ridge National Laboratory (ORNL) is a multiprogram, multipurpose laboratory that conducts research in the physical, chemical, and life sciences; in fusion, fission, and fossil energy; and in energy conservation and other energy-related technologies. This review contains articles on chemical extraction techniques, electron transport in gases and liquids, diamond films, the contribution of fossil fuels to the greenhouse effect, various sensors for safety applications, and temperature measurement with fluorescing paints. (GHH)

  20. Sandia National Laboratories/California site environmental report for 1997

    Energy Technology Data Exchange (ETDEWEB)

    Condouris, R.A. [ed.] [Sandia National Labs., Livermore, CA (United States); Holland, R.C. [Science Applications International Corp. (United States)

    1998-06-01

    Sandia National Laboratories (SNL) is committed to conducting its operations in an environmentally safe and sound manner. It is mandatory that activities at SNL/California comply with all applicable environmental statutes, regulations, and standards. Moreover, SNL/California continuously strives to reduce risks to employees, the public, and the environment to the lowest levels reasonably possible. To help verify effective protection of public safety and preservation of the environment, SNL/California maintains an extensive, ongoing environmental monitoring program. This program monitors all significant effluents and the environment at the SNL/California site perimeter. Lawrence Livermore National Laboratory (LLNL) performs off-site external radiation monitoring for both sites. These monitoring efforts ensure that emission controls are effective in preventing contamination of the environment. As part of SNL/California`s Environmental Monitoring Program, an environmental surveillance system measures the possible presence of hazardous materials in groundwater, stormwater, and sewage. The program also includes an extensive environmental dosimetry program, which measures external radiation levels around the Livermore site and nearby vicinity. The Site Environmental Report describes the results of SNL/California`s environmental protection activities during the calendar year. It also summarizes environmental monitoring data and highlights major environmental programs. Overall, it evaluates SNL/California`s environmental management performance and documents the site`s regulatory compliance status.

  1. Sandia National Laboratories, California: site environmental report for 1997

    International Nuclear Information System (INIS)

    Condouris, R.A.; Holland, R.C.

    1998-06-01

    Sandia National Laboratories (SNL) is committed to conducting its operations in an environmentally safe and sound manner. It is mandatory that activities at SNL/California comply with all applicable environmental statutes, regulations, and standards. Moreover, SNL/California continuously strives to reduce risks to employees, the public, and the environment to the lowest levels reasonably possible. To help verify effective protection of public safety and preservation of the environment, SNL/California maintains an extensive, ongoing environmental monitoring program. This program monitors all significant effluents and the environment at the SNL/California site perimeter. Lawrence Livermore National Laboratory (LLNL) performs off-site external radiation monitoring for both sites. These monitoring efforts ensure that emission controls are effective in preventing contamination of the environment. As part of SNL/California's Environmental Monitoring Program, an environmental surveillance system measures the possible presence of hazardous materials in groundwater, stormwater, and sewage. The program also includes an extensive environmental dosimetry program, which measures external radiation levels around the Livermore site and nearby vicinity. The Site Environmental Report describes the results of SNL/California's environmental protection activities during the calendar year. It also summarizes environmental monitoring data and highlights major environmental programs. Overall, it evaluates SNL/California's environmental management performance and documents the site's regulatory compliance status

  2. A comparative study of the systems for neutronics calculations used in Los Alamos Scientific Laboratory (LASL) and Argonne National Laboratory (ANL)

    International Nuclear Information System (INIS)

    Amorim, E.S. do; D'Oliveira, A.B.; Oliveira, E.C. de.

    1980-11-01

    A comparative study of the systems for neutronics calculations used in Los Alamos Scientific Laboratory (LASL) and Argonne National Laboratory (ANL) has been performed using benchmark results available in the literature, in order to analyse tghe convenience of using the respective codes MINX/NJOY and ETOE/MC 2 -2 for performing neutronics calculations in course at the Divisao de Estudos Avancados. (Author) [pt

  3. Waste management study: Process development at Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    1984-12-01

    This report presents the results of an evaluation of the present Toxic Waste Control Operations at the Lawrence Livermore National Laboratory, evaluates the technologies most applicable to the treatment of toxic and hazardous wastes and presents conceptual designs of processes for the installation of a new decontamination and waste treatment facility (DWTF) for future treatment of these wastes

  4. Accelerating Ocean Energy to the Marketplace – Environmental Research at the U.S. Department of Energy National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Copping, Andrea E.; Cada, G. F.; Roberts, Jesse; Bevelhimer, Mark

    2010-10-06

    The U.S. Department of Energy (US DOE) has mobilized its National Laboratories to address the broad range of environmental effects of ocean and river energy development. The National Laboratories are using a risk-based approach to set priorities among environmental effects, and to direct research activities. Case studies will be constructed to determine the most significant environmental effects of ocean energy harvest for tidal systems in temperate estuaries, for wave energy installations in temperate coastal areas, wave installations in sub-tropical waters, and riverine energy installations in large rivers. In addition, the National Laboratories are investigating the effects of energy removal from waves, tides and river currents using numerical modeling studies. Laboratory and field research is also underway to understand the effects of electromagnetic fields (EMF), acoustic noise, toxicity from anti-biofouling coatings, effects on benthic habitats, and physical interactions with tidal and wave devices on marine and freshwater organisms and ecosystems. Outreach and interactions with stakeholders allow the National Laboratories to understand and mitigate for use conflicts and to provide useful information for marine spatial planning at the national and regional level.

  5. Idaho National Engineering Laboratory radioecology and ecology programs. 1983 progress report

    International Nuclear Information System (INIS)

    Markham, O.D.

    1983-06-01

    Progress is reported in research on: the baseline ecology of the Idaho National Engineering Laboratory (INEL), the effects of disturbance on animal and plant communities, and the behavior of radionuclides in the environment surrounding radioactive waste sites. Separate abstracts have been prepared for individual reports

  6. 78 FR 55763 - National Environmental Policy Act; Santa Susana Field Laboratory

    Science.gov (United States)

    2013-09-11

    ... document format at http://www.nasa.gov/agency/nepa/news/SSFL.html . The Federal Register Notice of Intent...; Santa Susana Field Laboratory AGENCY: National Aeronautics and Space Administration (NASA). ACTION... Demolition and Environmental Cleanup Activities for the NASA-administered portion of the Santa Susana Field...

  7. Los Alamos National Laboratory Economic Analysis Capability Overview

    Energy Technology Data Exchange (ETDEWEB)

    Boero, Riccardo [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Information Systems and Modeling Group; Edwards, Brian Keith [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Information Systems and Modeling Group; Pasqualini, Donatella [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Information Systems and Modeling Group; Rivera, Michael Kelly [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Information Systems and Modeling Group

    2016-04-19

    Los Alamos National Laboratory has developed two types of models to compute the economic impact of infrastructure disruptions. FastEcon is a fast running model that estimates first-­order economic impacts of large scale events such as hurricanes and floods and can be used to identify the amount of economic activity that occurs in a specific area. LANL’s Computable General Equilibrium (CGE) model estimates more comprehensive static and dynamic economic impacts of a broader array of events and captures the interactions between sectors and industries when estimating economic impacts.

  8. To test or not to test? Laboratory support for the diagnosis of Lyme borreliosis

    DEFF Research Database (Denmark)

    Dessau, Ram B; van Dam, Alje P; Fingerle, Volker

    2018-01-01

    rational use of laboratory testing in patients with clinically suspected Lyme borreliosis. SOURCES: This is a narrative review combining various aspects of the clinical and laboratory diagnosis with an educational purpose. The literature search was based on existing systematic reviews, national...... and international guidelines and supplemented with specific citations. IMPLICATIONS: The main recommendations according to current European case definitions for Lyme borreliosis are as follows: Typical erythema migrans should be diagnosed clinically and does not require laboratory testing, the diagnosis of Lyme...

  9. Solid modeling research at Lawrence Livermore National Laboratory: 1982-1985

    International Nuclear Information System (INIS)

    Kalibjian, J.R.

    1985-01-01

    The Lawrence Livermore National Laboratory has sponsored solid modeling research for the past four years to assess this new technology and to determine its potential benefits to the Nuclear Weapons Complex. We summarize here the results of five projects implemented during our effort. First, we have installed two solid modeler codes, TIPS-1 (Technical Information Processing System-1) and PADL-2 (Part and Assembly Description Language), on the Laboratory's CRAY-1 computers. Further, we have extended the geometric coverage and have enhanced the graphics capabilities of the TIPS-1 modeler. To enhance solid modeler performance on our OCTOPUS computer system, we have also developed a method to permit future use of the Laboratory's network video system to provide high-resolution, shaded images at users' locations. Finally, we have begun to implement code that will link solid-modeler data bases to finite-element meshing codes

  10. Associated Western Universities summer participant program at the Lawrence Livermore National Laboratory, Summer 1997

    Energy Technology Data Exchange (ETDEWEB)

    Williams, B.

    1997-08-01

    The Associated Western Universities, Inc. (AWU) supports a student summer program at Lawrence Livermore National Laboratory (LLNL). This program is structured so that honors undergraduate students may participate in the Laboratory`s research program under direct supervision of senior Laboratory scientists. Included in this report is a list of the AWU participants for the summer of 1997. All students are required to submit original reports of their summer activities in a format of their own choosing. These unaltered student reports constitute the major portion of this report.

  11. Income Inequality, Income, and Internet Searches for Status Goods: A Cross-National Study of the Association Between Inequality and Well-Being.

    Science.gov (United States)

    Walasek, Lukasz; Brown, Gordon D A

    Is there a positive association between a nation's income inequality and concerns with status competition within that nation? Here we use Google Correlate and Google Trends to examine frequency of internet search terms and find that people in countries in which income inequality is high search relatively more frequently for positional brand names such as Prada, Louis Vuitton, or Chanel. This tendency is stronger among well-developed countries. We find no evidence that income alone is associated with searches for positional goods. We also present evidence that the concern with positional goods does not reflect non-linear effects of income on consumer spending, either across nations or (extending previous findings that people who live in unequal US States search more for positional goods) within the USA. It is concluded that income inequality is associated with greater concerns with positional goods, and that this concern is reflected in internet searching behaviour.

  12. Accuracy in HIV Rapid Testing among Laboratory and Non-laboratory Personnel in Zambia: Observations from the National HIV Proficiency Testing System.

    Directory of Open Access Journals (Sweden)

    Sheila Mwangala

    Full Text Available Despite rapid task-shifting and scale-up of HIV testing services in high HIV prevalence countries, studies evaluating accuracy remain limited. This study aimed to assess overall accuracy level and factors associated with accuracy in HIV rapid testing in Zambia.Accuracy was investigated among rural and urban HIV testing sites participating in two annual national HIV proficiency testing (PT exercises conducted in 2009 (n = 282 sites and 2010 (n = 488 sites. Testers included lay counselors, nurses, laboratory personnel and others. PT panels of five dry tube specimens (DTS were issued to testing sites by the national reference laboratory (NRL. Site accuracy level was assessed by comparison of reported results to the expected results. Non-parametric rank tests and multiple linear regression models were used to assess variation in accuracy between PT cycles and between tester groups, and to examine factors associated with accuracy respectively.Overall accuracy level was 93.1% (95% CI: 91.2-94.9 in 2009 and 96.9% (95% CI: 96.1-97.8 in 2010. Differences in accuracy were seen between the tester groups in 2009 with laboratory personnel being more accurate than non-laboratory personnel, while in 2010 no differences were seen. In both PT exercises, lay counselors and nurses had more difficulties interpreting results, with more occurrences of false-negative, false-positive and indeterminate results. Having received the standard HIV rapid testing training and adherence to the national HIV testing algorithm were positively associated with accuracy.The study showed an improvement in tester group and overall accuracy from the first PT exercise to the next. Average number of incorrect test results per 1000 tests performed was reduced from 69 to 31. Further improvement is needed, however, and the national HIV proficiency testing system seems to be an important tool in this regard, which should be continued and needs to be urgently strengthened.

  13. Implementing a lessons learned process at Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Fosshage, Erik D.; Drewien, Celeste A.; Eras, Kenneth; Hartwig, Ronald Craig; Post, Debra S.; Stoecker, Nora Kathleen

    2016-01-01

    The Lessons Learned Process Improvement Team was tasked to gain an understanding of the existing lessons learned environment within the major programs at Sandia National Laboratories, identify opportunities for improvement in that environment as compared to desired attributes, propose alternative implementations to address existing inefficiencies, perform qualitative evaluations of alternative implementations, and recommend one or more near-term activities for prototyping and/or implementation. This report documents the work and findings of the team.

  14. Oak Ridge National Laboratory DOE Site Sustainability Plan (SSP) with FY 2013 Performance Data

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, Teresa A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lapsa, Melissa Voss [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2013-12-01

    Oak Ridge National Laboratory (ORNL) is both the largest science and energy laboratory of the US Department of Energy (DOE) and one of the oldest national laboratories still operating at its original site. These characteristics provide the Sustainable Campus Initiative (SCI) both a unique opportunity and a unique challenge to integrate sustainability into facilities and activities. As outlined in this report, SCI is leveraging the outcomes of ORNL’s DOE-sponsored research and development programs to maximize the efficient use of energy and natural resources across ORNL. Wherever possible, ORNL is integrating technical innovations into new and existing facilities, systems, and processes with a widespread approach to achieving Executive Order 13514. ORNL continues to pursue and deploy innovative solutions and initiatives to advance regional, national, and worldwide sustainability and continues to transform its culture and engage employees in supporting sustainability at work, at home, and in the community. Table 1 summarizes ORNL's FY 2013 performance and planned actions to attain future goals. ORNL has achieved numerous successes during FY 2013, which are described in detail throughout this document.

  15. Activities of the cross-section compilation and evaluation centers at the Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    Chernick, J.

    1967-01-01

    The growth of the compilation and evaluation efforts at the Brookhaven National Laboratory are reviewed. The current work of the Sigma Center is discussed, including the status of the publication of supplements to BNL-325 and the current state of the SCISRS-I tape. Future needs for BNL-325 type publications and SCISRS-II cross-section tapes are outlined. The history of the Cross-Section Evaluation Center at the Brookhaven National Laboratory is similarly reviewed. The status of current work is discussed, including the growth of the ENDF/A tape. The status of US efforts to produce a cross-section tape (ENDF7B) at an early date to satisfy the needs of US reactor designers is discussed. The continued importance of integral experiments and their accurate analysis to provide checks of the cross-section tapes is pointed out. The role of the Brookhaven National Laboratory in collaboration on an international basis is reviewed, including its current relationship to the ENEA Neutron Data Compilation Centre, the International Atomic Energy Agency and other nuclear centres. (author)

  16. In summary: Idaho National Engineering and Environmental Laboratory site environmental report for calendar year 1997

    International Nuclear Information System (INIS)

    Mitchell, R.G.; Roush, D.E. Jr.; Evans, R.B.

    1998-10-01

    Every human is exposed to natural radiation. This exposure comes from many sources, including cosmic radiation from outer space, naturally-occurring radon, and radioactivity from substances in the body. In addition to natural sources of radiation, humans can also be exposed to human-generated sources of radiation. Some examples of these sources include nuclear medicine, X-rays, nuclear weapons testing, and accidents at nuclear power plants. The Idaho National Engineering and Environmental Laboratory (INEEL) is a US Department of Energy (DOE) research facility that deals, in part, with studying nuclear reactors and the storage and cleanup of radioactive materials. Careful handling and rigorous procedures do not completely eliminate the risk of releasing radioactivity. So, there is a possibility for a member of the public near the INEEL to be exposed to radioactivity from the INEEL. Extensive monitoring of the environment takes place one and around the INEEL. These programs search for radionuclides and other contaminants. The results of these programs are presented each year in a site environmental report. This document summarizes the INEEL site environmental report for 1997

  17. Idaho National Laboratory Environmental Monitoring Plan

    Energy Technology Data Exchange (ETDEWEB)

    Joanne L. Knight

    2008-04-01

    This plan describes environmental monitoring as required by U.S. Department of Energy (DOE) Order 450.1, “Environmental Protection Program,” and additional environmental monitoring currently performed by other organizations in and around the Idaho National Laboratory (INL). The objective of DOE Order 450.1 is to implement sound stewardship practices that protect the air, water, land, and other natural and cultural resources that may be impacted by DOE operations. This plan describes the organizations responsible for conducting environmental monitoring across the INL, the rationale for monitoring, the types of media being monitored, where the monitoring is conducted, and where monitoring results can be obtained. This plan presents a summary of the overall environmental monitoring performed in and around the INL without duplicating detailed information in the various monitoring procedures and program plans currently used to conduct monitoring.

  18. Idaho National Engineering Laboratory radioecology and ecology programs. 1983 progress report

    Energy Technology Data Exchange (ETDEWEB)

    Markham, O. D. [ed.

    1983-06-01

    Progress is reported in research on: the baseline ecology of the Idaho National Engineering Laboratory (INEL), the effects of disturbance on animal and plant communities, and the behavior of radionuclides in the environment surrounding radioactive waste sites. Separate abstracts have been prepared for individual reports. (ACR)

  19. Pacific Northwest National Laboratory Facility Radionuclide Emission Points and Sampling Systems

    International Nuclear Information System (INIS)

    Barfuss, Brad C.; Barnett, J. M.; Ballinger, Marcel Y.

    2009-01-01

    Battelle-Pacific Northwest Division operates numerous research and development laboratories in Richland, Washington, including those associated with the Pacific Northwest National Laboratory (PNNL) on the Department of Energy's Hanford Site that have the potential for radionuclide air emissions. The National Emission Standard for Hazardous Air Pollutants (NESHAP 40 CFR 61, Subparts H and I) requires an assessment of all effluent release points that have the potential for radionuclide emissions. Potential emissions are assessed annually. Sampling, monitoring, and other regulatory compliance requirements are designated based upon the potential-to-emit dose criteria found in the regulations. The purpose of this document is to describe the facility radionuclide air emission sampling program and provide current and historical facility emission point system performance, operation, and design information. A description of the buildings, exhaust points, control technologies, and sample extraction details is provided for each registered or deregistered facility emission point. Additionally, applicable stack sampler configuration drawings, figures, and photographs are provided

  20. Pacific Northwest National Laboratory Facility Radionuclide Emission Points and Sampling Systems

    Energy Technology Data Exchange (ETDEWEB)

    Barfuss, Brad C.; Barnett, J. Matthew; Ballinger, Marcel Y.

    2009-04-08

    Battelle—Pacific Northwest Division operates numerous research and development laboratories in Richland, Washington, including those associated with the Pacific Northwest National Laboratory (PNNL) on the Department of Energy’s Hanford Site that have the potential for radionuclide air emissions. The National Emission Standard for Hazardous Air Pollutants (NESHAP 40 CFR 61, Subparts H and I) requires an assessment of all effluent release points that have the potential for radionuclide emissions. Potential emissions are assessed annually. Sampling, monitoring, and other regulatory compliance requirements are designated based upon the potential-to-emit dose criteria found in the regulations. The purpose of this document is to describe the facility radionuclide air emission sampling program and provide current and historical facility emission point system performance, operation, and design information. A description of the buildings, exhaust points, control technologies, and sample extraction details is provided for each registered or deregistered facility emission point. Additionally, applicable stack sampler configuration drawings, figures, and photographs are provided.

  1. Association Euratom - Risø National Laboratory annual progress report for 1998

    DEFF Research Database (Denmark)

    Lynov, Jens-Peter; Singh, Bachu Narain

    1999-01-01

    The programme of the Research Unit of the Fusion Association Euratom - Risø National Laboratory covers work in fusion plasma physics and in fusion technology. The fusion plasma physics group has activities within development of laser diagnostics forfusion plasmas and studies of nonlinear dynamica....... The technology activities also include contibutions to macrotasks, which are carried out under the programme for Socio-Economic Research on Fusion(SERF). A summary is presented of the results obtained in the Research Unit during 1998.......The programme of the Research Unit of the Fusion Association Euratom - Risø National Laboratory covers work in fusion plasma physics and in fusion technology. The fusion plasma physics group has activities within development of laser diagnostics forfusion plasmas and studies of nonlinear dynamical...... processes related to electrostatic turbulence and turbulent transport in magnetised plasmas. The activities in technology cover investigations of radiation damage of fusion reactor materials. Theseactivities contribute to the Next Step, the Long-term and the Underlying Fusion Technology programme...

  2. Master--slave manipulators and remote maintenance at the Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Jenness, R.G.; Wicker, C.D.

    1975-01-01

    The volume of master-slave manipulator maintenance at Oak Ridge National Laboratory has necessitated the establishment of a repair facility and the organization of a specially trained group of craftsmen. Emphasis on cell containment requires the use of manipulator boots and the development of precise procedures for accomplishing the maintenance of 283 installed units. To provide the most economical type of preventive maintenance, a very satisfactory computer-programmed maintenance system has been established at the Laboratory. (auth)

  3. Idaho National Engineering Laboratory installation roadmap document

    International Nuclear Information System (INIS)

    1993-01-01

    The roadmapping process was initiated by the US Department of Energy's office of Environmental Restoration and Waste Management (EM) to improve its Five-Year Plan and budget allocation process. Roadmap documents will provide the technical baseline for this planning process and help EM develop more effective strategies and program plans for achieving its long-term goals. This document is a composite of roadmap assumptions and issues developed for the Idaho National Engineering Laboratory (INEL) by US Department of Energy Idaho Field Office and subcontractor personnel. The installation roadmap discusses activities, issues, and installation commitments that affect waste management and environmental restoration activities at the INEL. The High-Level Waste, Land Disposal Restriction, and Environmental Restoration Roadmaps are also included

  4. Annual Site Environmental Report Sandia National Laboratories, Albuquerque, New Mexico, Calendar year 2007

    Energy Technology Data Exchange (ETDEWEB)

    Agogino, Karen [National Nuclear Security Administration (NNSA), Washington, DC (United States); Sanchez, Rebecca [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2008-09-30

    Sandia National Laboratories, New Mexico (SNL/NM) is a government-owned/contractor-operated facility. Sandia Corporation (Sandia), a wholly owned subsidiary of Lockheed Martin Corporation, manages and operates the laboratory for the U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA). The DOE/NNSA Sandia Site Office (SSO) administers the contract and oversees contractor operations at the site. This annual report summarizes data and the compliance status of Sandia Corporation’s environmental protection and monitoring programs through December 31, 2007. Major environmental programs include air quality, water quality, groundwater protection, terrestrial surveillance, waste management, pollution prevention (P2), environmental restoration (ER), oil and chemical spill prevention, and implementation of the National Environmental Policy Act (NEPA). Environmental monitoring and surveillance programs are required by DOE Order 450.1, Environmental Protection Program (DOE 2007a) and DOE Manual 231.1-1A, Environment, Safety, and Health Reporting (DOE 2007).

  5. Salaries and compensation practices in public health, environmental, and agricultural laboratories: findings from a 2010 national survey.

    Science.gov (United States)

    DeBoy, John M; Boulton, Matthew L; Carpenter, David F

    2013-01-01

    The public health, environmental, and agricultural laboratory (PHEAL) workforce is a key component of the public health infrastructure. The national laboratory workforce faces an ongoing challenge of recruitment and retention of workers often related to pay and other compensation issues. To collect information on laboratory salaries and laboratory compensation practices using a national compensation survey targeting the PHEAL workforce. Seventy-three of 109 (67%) PHEAL directors in the 50 states and District of Columbia collectively employ 3723/4830 (77%) PHEAL employees in the United States. A standardized survey was developed and administered in 2010. Compensation data were compiled by job classification, geographic region, laboratory gross operating budget size, laboratory staff size, and laboratory type. Laboratory staff size ranged from 3 to 327 individuals (mean = 74 and median = 51). Median base salaries were lowest in the Southwest and South and highest in the Mountain and Pacific regions. Mean and median laboratory gross operating budgets for all participating PHEALs were $8 609 238 and $5 671 500, respectively. Extra cash compensation, used by 8 of 60 (13.3%) PHEALs, was more likely to go to a scientist-manager or scientist-supervisor. In 2010, a standardized national compensation survey of technical and scientific public health employees working in 73 PHEALs was effective in collecting previously unavailable data about laboratory salaries, laboratory budgets, and payroll practices. Laboratory salaries varied by geographic region and there was an uneven distribution of extra cash compensation among job classifications. The compensation data collected may be useful in characterizing and improving laboratory salary structures and practices to better support workforce recruitment and retention.

  6. Searches for very rare decays of kaons

    International Nuclear Information System (INIS)

    Lang, K.

    1997-01-01

    The physics motivation for searches for very rare kaon decays, either forbidden or suppressed within the Standard Model, is briefly discussed. Simple arguments conclude that such searches probe possible new forces at a 200 TeV mass scale or constitute a precision test of the electroweak model. The examples of such process are decays of K L 0 → μ ± e -+ , K + → π + μ + e - , K L 0 → μ + μ - , and K + → π → π + ν bar ν. We present the current experimental status and describe the new efforts to reach sensitivities down to one part in 10 12 . The discussion is focused on the experimental program at the Alternating Gradient Synchrotron at Brookhaven National Laboratory, where intense beams make such studies possible

  7. Searches for very rare decays of kaons

    International Nuclear Information System (INIS)

    Lang, K.

    1995-01-01

    The physics motivation for searches for very rare kaon decays, either forbidden or suppressed within the Standard Model, is briefly discussed. Simple arguments conclude that such searches probe possible new forces at a 200 TeV mass scale or constitute a precision test of the electroweak model. The examples of such processes are decays of K L O →μ ± e minus-plus , K + →π + μ + e - , K L O →μ - , and K + →π + ν bar ν. We present the current experimental status and describe the new efforts to reach sensitivities down to 1 part in 10 12 . The discussion is focused on the experimental program at the Alternating Gradient Synchrotron at Brookhaven National Laboratory, where intense beams make such studies possible

  8. Monolithic circuit development for RHIC at Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Alley, G.T.; Britton, C.L. Jr.; Kennedy, E.J.; Newport, D.F.; Wintenberg, A.L.; Young, G.R. [Oak Ridge National Laboratory, TN (United States)

    1991-12-31

    The work performed for RHIC at Oak Ridge National Laboratory during FY 91 is presented in this paper. The work includes preamplifier, analog memory, and analog-digital converter development for Dimuon Pad Readout, and evaluation and development of preamplifier-shapers for silicon strip readout. The approaches for implementation are considered as well as measured data for the various circuits that have been developed.

  9. FY2000 Annual Self-Evaluation Report for the Pacific Northwest National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    RR Labarge

    2000-11-15

    This self-evaluation report offers a summary of results from FY2000 actions to achieve Pacific Northwest National Laboratory's strategy and provides an analysis of the state of their self-assessment process. The result of their integrated planning and assessment process identifies Laboratory strengths and opportunities for improvement. Critical elements of that process are included in this report; namely, a high-level summary of external oversight activities, progress against Operations Improvement Initiatives, and a summary of Laboratory strengths and areas for improvement developed by management from across the laboratory. Some key areas targeted for improvement in FY2001 are: systems approach to resource management; information protection; integrated safety management flow-down to the benchtop; cost management; integrated assessment; Price Anderson Amendments Act (PAAA) Program; and travel risk mitigation.

  10. Materials Capability Review Los Alamos National Laboratory May 4-7, 2009

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Antoniette J [Los Alamos National Laboratory

    2009-01-01

    Los Alamos National Laboratory (LANL) uses external peer review to measure and continuously improve the quality of its science, technology and engineering (STE). LANL uses capability reviews to assess the STE quality and institutional integration and to advise Laboratory Management on the current and future health of the STE. Capability reviews address the STE integration that LANL uses to meet mission requirements. STE capabilities are define to cut across directorates providing a more holistic view of the STE quality, integration to achieve mission requirements, and mission relevance. The scope of these capabilities necessitate that there will be significant overlap in technical areas covered by capability reviews (e.g ., materials research and weapons science and engineering). In addition, LANL staff may be reviewed in different capability reviews because of their varied assignments and expertise. LANL plans to perform a complete review of the Laboratory's STE capabilities (hence staff) in a three-year cycle. The principal product of an external review is a report that includes the review committee's assessments, commendations, and recommendations for STE. The Capability Review Committees serve a dual role of providing assessment of the Laboratory's technical contributions and integration towards its missions and providing advice to Laboratory Management. The assessments and advice are documented in reports prepared by the Capability Review Committees that are delivered to the Director and to the Principal Associate Director for Science, Technology and Engineering (PADSTE). This report will be used by Laboratory Management for STE assessment and planning. The report is also provided to the Department of Energy (DOE) as part of LANL's Annual Performance Plan and to the Los Alamos National Security (LANS) LLC's Science and Technology Committee (STC) as part of its responsibilities to the LANS Board of Governors. LANL has defined fourteen

  11. The Livermore Free-Electron Laser Program Magnet Test Laboratory

    International Nuclear Information System (INIS)

    Burns, M.J.; Kulke, B.; Deis, G.A.; Frye, R.W.; Kallman, J.S.; Ollis, C.W.; Tyler, G.C.; Van Maren, R.D.; Weiss, W.C.

    1987-01-01

    The Lawrence Livermore National Laboratory (LLNL) Free-Electron Laser Program Magnet Test Laboratory supports the ongoing development of the Induction Linac Free Electron Laser (IFEL) and uses magnetic field measurement systems that are useful in the testing of long periodic magnetic structures, electron-beam transport magnets, and spectrometer magnets. The major systems described include two computer-controlled, three-axis Hall probe-and-search coil transports with computer-controlled data acquisition; a unique, automated-search coil system used to detect very small inaccuracies in wiggler fields; a nuclear magnetic resonance (NMR)-based Hall probe-calibration facility; and a high-current DC ion source using heavy ions of variable momentum to model the transport of high-energy electrons. Additionally, a high-precision electron-beam-position monitor for use within long wigglers that has a positional resolution of less than 100 μm is under development in the laboratory and will be discussed briefly. Data transfer to LLNL's central computing facility and on-line graphics enable us to analyze large data sets quickly. 3 refs

  12. Environmental safety and health vulnerabilities of plutonium at the Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Pillay, K.K.S.

    1995-01-01

    A national effort to assess the environmental safety and health issues of plutonium at nuclear facilities included an assessment of such vulnerabilities at the Los Alamos National Laboratory (LANL). LANL was well below the most serious problem sites, however, the problems are serious enough to require immediate attention and resources are being sought to address the most serious vulnerabilities

  13. Solid oxide cell R&D at Riso National Laboratory-and its transfer to technology

    DEFF Research Database (Denmark)

    Linderoth, Søren

    2009-01-01

    Risø National Laboratory has conducted R&D on solid oxide cells for almost 20 years—all the time together with industries with interest in deploying the technology when mature. Risø National Laboratory (Risø) and Topsoe Fuel Cell A/S (TOFC) have for several years jointly carried out a development...... programme focusing on low cost manufacturing of flat planar anode-supported cells and stacks employing metallic interconnects. The consortium of Risø and TOFC has up-scaled its production capacity of anode-supported cells to about 1,100 per week. New generations of SOFCs are being developed...

  14. SANDIA NATIONAL LABORATORIES IN SITU ELECTROKINETIC EXTRACTION TECHNOLOGY; INNOVATIVE TECHNOLOGY EVALUATION REPORT

    Science.gov (United States)

    As a part of the Superfund Innovative Technology Evaluation (SITE) Program, the U.S. Environmental Protection Agency evaluated the In-Situ Electrokinetic Extraction (ISEE) system at Sandia National Laboratories, Albuquerque, New Mexico.The SITE demonstration results show ...

  15. Dose profile modeling of Idaho National Laboratory's active neutron interrogation laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Chichester, D.L. [Idaho National Laboratory, 2525 N. Fremont Avenue, Idaho Falls, ID 83415 (United States)], E-mail: david.chichester@inl.gov; Seabury, E.H.; Zabriskie, J.M.; Wharton, J.; Caffrey, A.J. [Idaho National Laboratory, 2525 N. Fremont Avenue, Idaho Falls, ID 83415 (United States)

    2009-06-15

    A new laboratory has been commissioned at Idaho National Laboratory for performing active neutron interrogation research and development. The facility is designed to provide radiation shielding for deuterium-tritium (DT) fusion (14.1 MeV) neutron generators (2x10{sup 8} n/s), deuterium-deuterium (DD) fusion (2.5 MeV) neutron generators (1x10{sup 7} n/s), and {sup 252}Cf spontaneous fission neutron sources (6.96x10{sup 7} n/s, 30 {mu}g). Shielding at the laboratory is comprised of modular concrete shield blocks 0.76 m thick with tongue-in-groove features to prevent radiation streaming, arranged into one small and one large test vault. The larger vault is designed to allow operation of the DT generator and has walls 3.8 m tall, an entrance maze, and a fully integrated electrical interlock system; the smaller test vault is designed for {sup 252}Cf and DD neutron sources and has walls 1.9 m tall and a simple entrance maze. Both analytical calculations and numerical simulations were used in the design process for the building to assess the performance of the shielding walls and to ensure external dose rates are within required facility limits. Dose rate contour plots have been generated for the facility to visualize the effectiveness of the shield walls and entrance mazes and to illustrate the spatial profile of the radiation dose field above the facility and the effects of skyshine around the vaults.

  16. Establishing a national biological laboratory safety and security monitoring program.

    Science.gov (United States)

    Blaine, James W

    2012-12-01

    The growing concern over the potential use of biological agents as weapons and the continuing work of the Biological Weapons Convention has promoted an interest in establishing national biological laboratory biosafety and biosecurity monitoring programs. The challenges and issues that should be considered by governments, or organizations, embarking on the creation of a biological laboratory biosafety and biosecurity monitoring program are discussed in this article. The discussion focuses on the following questions: Is there critical infrastructure support available? What should be the program focus? Who should be monitored? Who should do the monitoring? How extensive should the monitoring be? What standards and requirements should be used? What are the consequences if a laboratory does not meet the requirements or is not willing to comply? Would the program achieve the results intended? What are the program costs? The success of a monitoring program can depend on how the government, or organization, responds to these questions.

  17. The Role of the National Laboratory in Improving Secondary Science Education

    Energy Technology Data Exchange (ETDEWEB)

    White,K.; Morris, M.; Stegman, M.

    2008-10-20

    While the role of science, technology, engineering, and mathematics (STEM) teachers in our education system is obvious, their role in our economic and national security system is less so. Our nation relies upon innovation and creativity applied in a way that generates new technologies for industry, health care, and the protection of our national assets and citizens. Often, it is our science teachers who generate the excitement that leads students to pursue science careers. While academia provides these teachers with the tools to educate, the rigors of a science and technology curriculum, coupled with the requisite teaching courses, often limit teacher exposure to an authentic research environment. As the single largest funding agency for the physical sciences, the US Department of Energy's (DOE) Office of Science plays an important role in filling this void. For STEM teachers, the DOE Academies Creating Teacher Scientists program (ACTS) bridges the worlds of research and education. The ACTS program at Brookhaven National Laboratory (BNL), one of several across the country, exemplifies the value of this program for participating teachers. Outcomes of the work at BNL as evidenced by the balance of this report, include the following: (1) Teachers have developed long-term relationships with the Laboratory through participation in ongoing research, and this experience has both built enthusiasm for and enriched the content knowledge of the participants. (2) Teachers have modified the way they teach and are more likely to engage students in authentic research and include more inquiry-based activities. (3) Teachers have reported their students are more interested in becoming involved in science through classes, extra-curricular clubs, and community involvement. (4) Teachers have established leadership roles within their peer groups, both in their own districts and in the broader teaching community. National laboratories are making an important contribution to the

  18. Design assessment for the Bethel Valley FFA Upgrades at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1995-09-01

    This report describes the proposed upgrades to Building 3025 and the Evaporator Area at Oak Ridge National Laboratory. Design assessments, specifications and drawings are provided. Building 3025 is a general purpose research facility utilized by the Materials and Ceramics Division to conduct research on irradiated materials. The Evaporator Area, building 2531, serves as the collection point for all low-level liquid wastes generated at the Oak Ridge National Laboratory

  19. Services of the CDRH X-ray calibration laboratory and their traceability to National Standards

    Energy Technology Data Exchange (ETDEWEB)

    Cerra, F.; Heaton, H.T. [Center for Devices and Radiological Health, Rockville, MD (United States)

    1993-12-31

    The X-ray Calibration Laboratory (XCL) of the Center for Devices and Radiological Health (CDRH) provides calibration services for the Food and Drug Administration (FDA). The instruments calibrated are used by FDA and contract state inspectors to verify compliance with federal x-ray performance standards and for national surveys of x-ray trends. In order to provide traceability of measurements, the CDRH XCL is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP) for reference, diagnostic, and x-ray survey instrument calibrations. In addition to these accredited services, the CDRH XCL also calibrates non-invasive kVp meters in single- and three-phase x-ray beams, and thermoluminescent dosimeter (TLD) chips used to measure CT beam profiles. The poster illustrates these services and shows the traceability links back to the National Standards.

  20. Calendar Year 2013 Annual Site Environmental Report for Sandia National Laboratories, Albuquerque, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, Stacy [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-09-01

    Sandia National Laboratories, New Mexico is a government-owned/contractor-operated facility. Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, manages and operates the laboratory for the U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA). The DOE/NNSA, Sandia Field Office administers the contract and oversees contractor operations at the site. This annual report summarizes data and the compliance status of Sandia Corporation’s sustainability, environmental protection, and monitoring programs through December 31, 2013. Major environmental programs include air quality, water quality, groundwater protection, terrestrial surveillance, waste management, pollution prevention, environmental restoration, oil and chemical spill prevention, and implementation of the National Environmental Policy Act. Environmental monitoring and surveillance programs are required by DOE Order 231.1B, Environment, Safety, and Health Reporting (DOE 2012).

  1. Services of the CDRH X-ray calibration laboratory and their traceability to National Standards

    International Nuclear Information System (INIS)

    Cerra, F.; Heaton, H.T.

    1993-01-01

    The X-ray Calibration Laboratory (XCL) of the Center for Devices and Radiological Health (CDRH) provides calibration services for the Food and Drug Administration (FDA). The instruments calibrated are used by FDA and contract state inspectors to verify compliance with federal x-ray performance standards and for national surveys of x-ray trends. In order to provide traceability of measurements, the CDRH XCL is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP) for reference, diagnostic, and x-ray survey instrument calibrations. In addition to these accredited services, the CDRH XCL also calibrates non-invasive kVp meters in single- and three-phase x-ray beams, and thermoluminescent dosimeter (TLD) chips used to measure CT beam profiles. The poster illustrates these services and shows the traceability links back to the National Standards

  2. Calendar Year 2013 Annual Site Environmental Report for Sandia National Laboratories, Albuquerque, New Mexico

    International Nuclear Information System (INIS)

    Griffith, Stacy

    2014-01-01

    Sandia National Laboratories, New Mexico is a government-owned/contractor-operated facility. Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, manages and operates the laboratory for the U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA). The DOE/NNSA, Sandia Field Office administers the contract and oversees contractor operations at the site. This annual report summarizes data and the compliance status of Sandia Corporation's sustainability, environmental protection, and monitoring programs through December 31, 2013. Major environmental programs include air quality, water quality, groundwater protection, terrestrial surveillance, waste management, pollution prevention, environmental restoration, oil and chemical spill prevention, and implementation of the National Environmental Policy Act. Environmental monitoring and surveillance programs are required by DOE Order 231.1B, Environment, Safety, and Health Reporting (DOE 2012).

  3. Axion Searches, Old and New

    CERN Multimedia

    CERN. Geneva

    2005-01-01

    Outline of the lecture: Constraints from laboratory searches and astrophysics, axion cosmology, the cavity detector of dark matter axions, solar axion searches, laser experiments, a telescope search, macroscopic forces mediated by axions.

  4. The Holifield Radioactive Ion Beam Facility at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Garrett, J.D.

    1996-01-01

    The status of the new Holifield Radioactive Ion Beam Facility at Oak Ridge National Laboratory (ORNL), which is slated to start its scientific program late this year is discussed, as is the new experimental equipment which is being constructed at this facility. Information on the early scientific program also is given

  5. Research and Development Program for transportation packagings at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Hohnstreiter, G.F.; Sorenson, K.B.

    1995-01-01

    This document contains information about the research and development programs dealing with waste transport at Sandia National Laboratories. This paper discusses topics such as: Why new packaging is needed; analytical methodologies and design codes;evaluation of packaging components; materials characterization; creative packaging concepts; packaging engineering and analysis; testing; and certification support

  6. The Holifield Radioactive Ion Beam Facility at Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Garrett, J.D. [Oak Ridge National Lab., TN (United States)

    1996-12-31

    The status of the new Holifield Radioactive Ion Beam Facility at Oak Ridge National Laboratory (ORNL), which is slated to start its scientific program late this year is discussed, as is the new experimental equipment which is being constructed at this facility. Information on the early scientific program also is given.

  7. Lawrence Berkeley National Laboratory 1995 site environmental report

    Energy Technology Data Exchange (ETDEWEB)

    Balgobin, D.; Javandel, I.; Lackner, G.; Smith, C.; Thorson, P.; Tran, H.

    1996-07-01

    The 1995 Site Environmental Report summarizes environmental activities at the Ernest Orlando Lawrence Berkeley National Laboratory (LBNL) for the 1995 calendar year. The report strives to present environmental data in a manner that characterizes the performance and compliance status of the environmental management programs. The report also discusses significant highlights and plans of these programs. Topics discussed include: environmental monitoring, environmental compliance programs, air quality, water quality, ground water protection, sanitary sewer monitoring, soil and sediment quality, vegetation and foodstuffs monitoring, and special studies which include preoperational monitoring of building 85 and 1995 sampling results, radiological dose assessment, and quality assessment.

  8. Lawrence Berkeley National Laboratory 1995 site environmental report

    International Nuclear Information System (INIS)

    Balgobin, D.; Javandel, I.; Lackner, G.; Smith, C.; Thorson, P.; Tran, H.

    1996-07-01

    The 1995 Site Environmental Report summarizes environmental activities at the Ernest Orlando Lawrence Berkeley National Laboratory (LBNL) for the 1995 calendar year. The report strives to present environmental data in a manner that characterizes the performance and compliance status of the environmental management programs. The report also discusses significant highlights and plans of these programs. Topics discussed include: environmental monitoring, environmental compliance programs, air quality, water quality, ground water protection, sanitary sewer monitoring, soil and sediment quality, vegetation and foodstuffs monitoring, and special studies which include preoperational monitoring of building 85 and 1995 sampling results, radiological dose assessment, and quality assessment

  9. The Los Alamos National Laboratory Nuclear Vision Project

    International Nuclear Information System (INIS)

    Arthur, E.D.; Wagner, R.L. Jr.

    1996-01-01

    Los Alamos National Laboratory has initiated a project to examine possible futures associated with the global nuclear enterprise over the course of the next 50 years. All major components are included in this study--weapons, nonproliferation, nuclear power, nuclear materials, and institutional and public factors. To examine key issues, the project has been organized around three main activity areas--workshops, research and analyses, and development of linkages with other synergistic world efforts. This paper describes the effort--its current and planned activities--as well as provides discussion of project perspectives on nuclear weapons, nonproliferation, nuclear energy, and nuclear materials focus areas

  10. Proceedings of Brookhaven National Laboratory's fusion/synfuel workshop

    International Nuclear Information System (INIS)

    Fillo, J.A.; Powell, J.R.

    1979-01-01

    The fusion synfuels workshop held at Brookhaven National Laboratory (BNL) on August 27-29, 1979 examined the current status of candidate synfuel processes and the R and D required to develop the capability for fusion synfuel production. Participants divided into five working groups, covering the following areas: (1) economics and applications; (2) high-temperature electrolysis; (3) thermochemical processes (including hybrid thermo-electrochemical); (4) blanket and materials; and (5) high-efficiency power cycles. Each working group presented a summary of their conclusions and recommendations to all participants during the third day of the Workshop. These summaries are given

  11. Pellet fueling development at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Foster, C.A.; Milora, S.L.; Schuresko, D.D.; Combs, S.K.; Lunsford, R.V.

    1982-01-01

    A pellet injector development program has been under way at the Oak Ridge National Laboratory (ORNL) since 1976 with the goals of developing D 2 , T 2 pellet fuel injectors capable of reliable repetitive fueling of reactors and of continued experimentation on contemporary plasma devices. The development has focused primarily on two types of injectors that show promise. One of these injectors is the centrifuge-type injector, which accelerates pellets in a high speed rotating track. The other is the gas or pneumatic gun, which accelerates pellets in a gun barrel using compressed helium of H 2 gas

  12. Robotic applications at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Griebenow, B.E.; Marts, D.J.

    1990-01-01

    The Idaho National Engineering Laboratory (INEL) has several programs and projected programs that involve work in hazardous environments. Robotics/remote handling technology is being considered for an active role in these programs. The most appealing aspect of using robotics is in the area of personnel safety. Any task requiring an individual to enter a hazardous or potentially hazardous environment can benefit substantially from robotics by removing the operator from the environment and having him conduct the work remotely. Several INEL programs were evaluated based on their applications for robotics and the results and some conclusions are discussed in this paper. 1 fig

  13. Tiger Team Assessment of the Fermi National Accelerator Laboratory

    International Nuclear Information System (INIS)

    1992-06-01

    This draft report documents the Tiger Team Assessment of the Fermi National Accelerator Laboratory (Fermilab) located in Batavia, Illinois. Fermilab is a program-dedicated national laboratory managed by the Universities Research Association, Inc. (URA) for the US Department of Energy (DOE). The Tiger Team Assessment was conducted from May 11 to June 8, 1992, under the auspices of DOE's Office of Special Projects (OSP) under the Office of the Assistant Secretary for Environment, Safety and Health (EH). The assessment was comprehensive, encompassing environmental, safety and health (ES ampersand H), and quality assurance (QA) disciplines; site remediation; facilities management; and waste management operations. Compliance with applicable Federal , State of Illinois, and local regulations; applicable DOE Orders; best management practices; and internal Fermilab requirements was addressed. In addition, an evaluation of the effectiveness of DOE and Fermilab management of the ES ampersand H/QA and self-assessment programs was conducted. The Fermilab Tiger Team Assessment is part a larger, comprehensive DOE Tiger Team Independent Assessment Program planned for DOE facilities. The objective of the initiative is to provide the Secretary of Energy with information on the compliance status of DOE facilities with regard to ES ampersand H requirements, root causes for noncompliance, adequacy of DOE and contractor ES ampersand H management programs, response actions to address the identified problem areas, and DOE-wide ES ampersand H compliance trends and root causes

  14. Applications of Short Message Service and WAP in Operating Remotely Triggered Laboratories

    Directory of Open Access Journals (Sweden)

    Ananda Maiti

    2011-11-01

    Full Text Available Mobile devices are becoming more powerful, reliable and common every year. Hence we can use mobile devices for conducting laboratory sessions in distance education. This paper discusses issues of integrating Short Message Service (SMS to operate instruments of hardware-based remotely triggered laboratories. Components of the system include searching an experiment, performing experiment, result handling, error handling and method of exchanging information. It is designed using the National Instruments (NI Laboratory Virtual Instrument Engineering Workbench (LabVIEW development system and web services. The scheme will enable students to conduct hardware experiments with mobile devices using SMS from anywhere and anytime.

  15. NATURAL RESOURCE MANAGEMENT PLAN FOR BROOKHAVEN NATIONAL LABORATORY.

    Energy Technology Data Exchange (ETDEWEB)

    GREEN,T.ET AL.

    2003-12-31

    Brookhaven National Laboratory (BNL) is located near the geographic center of Long Island, New York. The Laboratory is situated on 5,265 acres of land composed of Pine Barrens habitat with a central area developed for Laboratory work. In the mid-1990s BNL began developing a wildlife management program. This program was guided by the Wildlife Management Plan (WMP), which was reviewed and approved by various state and federal agencies in September 1999. The WMP primarily addressed concerns with the protection of New York State threatened, endangered, or species of concern, as well as deer populations, invasive species management, and the revegetation of the area surrounding the Relativistic Heavy Ion Collider (RHIC). The WMP provided a strong and sound basis for wildlife management and established a basis for forward motion and the development of this document, the Natural Resource Management Plan (NRMP), which will guide the natural resource management program for BNL. The body of this plan establishes the management goals and actions necessary for managing the natural resources at BNL. The appendices provide specific management requirements for threatened and endangered amphibians and fish (Appendices A and B respectively), lists of actions in tabular format (Appendix C), and regulatory drivers for the Natural Resource Program (Appendix D). The purpose of the Natural Resource Management Plan is to provide management guidance, promote stewardship of the natural resources found at BNL, and to integrate their protection with pursuit of the Laboratory's mission. The philosophy or guiding principles of the NRMP are stewardship, adaptive ecosystem management, compliance, integration with other plans and requirements, and incorporation of community involvement, where applicable.

  16. Calendar Year 2009 Annual Site Environmental Report for Sandia National Laboratories, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, Karen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bailey-White, Brenda [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bonaguidi, Joseph [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brown, Mendy [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Byrd, Caroline [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Cabble, Kevin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Castillo, Dave [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Coplen, Amy [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Curran, Kelsey [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Deola, Regina [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Duran, Leroy [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Eckstein, Joanna [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Evelo, Stacie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Fitzgerald, Tanja [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); French, Chris [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gerard, Morgan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gonzales, Linda [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gorman, Susan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jackson, Timothy [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jarry, Jeff [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jones, Adrian [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lauffer, Franz [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mauser, Joseph [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mayeux, Lucie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); McCord, Samuel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Miller, Mark [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Oborny, Stephanie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Perini, Robin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Puissant, Pamela [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Reiser, Anita [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Roma, Charles [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Salinas, Stephanie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Skelly, Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ullrich, Rebecca [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wagner, Katrina [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wrons, Ralph [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2010-09-30

    Sandia National Laboratories, New Mexico (SNL/NM) is a government-owned/contractor operated facility. Sandia Corporation (Sandia), a wholly owned subsidiary of Lockheed Martin Corporation (LMC), manages and operates the laboratory for the U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA). The DOE/NNSA, Sandia Site O ffice (SSO) administers the contract and oversees contractor operations at the site. This annual report summarizes data and the compliance status of Sandia Corporation’s environmental protection and monitoring programs through December 31, 2009. Major environmental programs include air quality, water quality, groundwater protection, terrestrial surveillance, waste management, pollution prevention (P2), environmental restoration (ER), oil and chemical spill prevention, and implementation of the National Environmental Policy Act (NEPA). Environmental monitoring and surveillance programs are required by DOE Order 450.1A, Environmental Protection Program (DOE 2008a) and DOE Manual 231.1-1A, Environment, Safety, and Health Reporting (DOE 2007).

  17. The passive autocatalytic recombiner test program at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Blanchat, T.K.; Malliakos, A.

    1998-01-01

    Sandia National Laboratories (SNL) has developed systems and methodologies to measure the amount of hydrogen that can be depleted in a containment by a passive autocatalytic recombiner (PAR). Experiments were performed that determined the hydrogen depletion rate of a PAR in the presence of steam and also evaluated the effect of scale (number of cartridges) on the PAR performance at both low and high hydrogen concentrations. (author)

  18. Flow Induced Vibration Program at Argonne National Laboratory

    International Nuclear Information System (INIS)

    1984-01-01

    Argonne National Laboratory has had a Flow Induced Vibration Program since 1967; the Program currently resides in the Laboratory's Components Technology Division. Throughout its existence, the overall objective of the program has been to develop and apply new and/or improved methods of analysis and testing for the design evaluation of nuclear reactor plant components and heat exchange equipment from the standpoint of flow induced vibration. Historically, the majority of the program activities have been funded by the US Atomic Energy Commission (AEC), Energy Research and Development Administration (ERDA), and Department of Energy (DOE). Current DOE funding is from the Breeder Mechanical Component Development Division, Office of Breeder Technology Projects; Energy Conversion and Utilization Technology (ECUT) Program, Office of Energy Systems Research; and Division of Engineering, Mathematical and Geosciences, Office of Basic Energy Sciences. Testing of Clinch River Breeder Reactor upper plenum components has been funded by the Clinch River Breeder Reactor Plant (CRBRP) Project Office. Work has also been performed under contract with Foster Wheeler, General Electric, Duke Power Company, US Nuclear Regulatory Commission, and Westinghouse

  19. Lawrence Berkeley National Laboratory 2015 Annual Financial Report

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Kim, P

    2017-08-11

    FY2015 financial results reflect a year of significant scientific, operational and financial achievement for Lawrence Berkeley National Laboratory. Complementing many scientific accomplishments, Berkeley Lab completed construction of four new research facilities: the General Purpose Laboratory, Chu Hall, Wang Hall and the Flexlab Building Efficiency Testbed. These state-of-the-art facilities allow for program growth and enhanced collaboration, in part by enabling programs to return to the Lab’s Hill Campus from offsite locations. Detailed planning began for the new Integrative Genomics Building (IGB) that will house another major program currently located offsite. Existing site infrastructure was another key focus area. The Lab prioritized and increased investments in deferred maintenance in alignment with the Berkeley Lab Infrastructure Plan, which was developed under the leadership of the DOE Office of Science. With the expiration of American Recovery and Reinvestment Act (ARRA) funds, we completed the close-out of all of our 134 ARRA projects, recording total costs of $331M over the FY2009-2015 period. Download the report to read more.

  20. About the Director of EPA's National Health and Environmental Effects Research Laboratory (NHEERL)

    Science.gov (United States)

    Dr. Wayne Cascio serves as Acting Director for the National Health and Environmental Effects Research Laboratory (NHEERL) within the U.S. Environmental Protection Agency's Office of Research and Development (ORD).