WorldWideScience

Sample records for national laboratory draft

  1. Supplement analysis for continued operation of Lawrence Livermore National Laboratory and Sandia National Laboratories, Livermore. Volume 2: Comment response document

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The US Department of Energy (DOE), prepared a draft Supplement Analysis (SA) for Continued Operation of Lawrence Livermore National Laboratory (LLNL) and Sandia National Laboratories, Livermore (SNL-L), in accordance with DOE`s requirements for implementation of the National Environmental Policy Act of 1969 (NEPA) (10 Code of Federal Regulations [CFR] Part 1021.314). It considers whether the Final Environmental Impact Statement and Environmental Impact Report for Continued Operation of Lawrence Livermore National Laboratory and Sandia National Laboratories, Livermore (1992 EIS/EIR) should be supplement3ed, whether a new environmental impact statement (EIS) should be prepared, or no further NEPA documentation is required. The SA examines the current project and program plans and proposals for LLNL and SNL-L, operations to identify new or modified projects or operations or new information for the period from 1998 to 2002 that was not considered in the 1992 EIS/EIR. When such changes, modifications, and information are identified, they are examined to determine whether they could be considered substantial or significant in reference to the 1992 proposed action and the 1993 Record of Decision (ROD). DOE released the draft SA to the public to obtain stakeholder comments and to consider those comments in the preparation of the final SA. DOE distributed copies of the draft SA to those who were known to have an interest in LLNL or SNL-L activities in addition to those who requested a copy. In response to comments received, DOE prepared this Comment Response Document.

  2. Draft environmental assessment of Argonne National Laboratory, East

    Energy Technology Data Exchange (ETDEWEB)

    1975-10-01

    This environmental assessment of the operation of the Argonne National Laboratory is related to continuation of research and development work being conducted at the Laboratory site at Argonne, Illinois. The Laboratory has been monitoring various environmental parameters both offsite and onsite since 1949. Meteorological data have been collected to support development of models for atmospheric dispersion of radioactive and other pollutants. Gaseous and liquid effluents, both radioactive and non-radioactive, have been measured by portable monitors and by continuous monitors at fixed sites. Monitoring of constituents of the terrestrial ecosystem provides a basis for identifying changes should they occur in this regime. The Laboratory has established a position of leadership in monitoring methodologies and their application. Offsite impacts of nonradiological accidents are primarily those associated with the release of chlorine and with sodium fires. Both result in releases that cause no health damage offsite. Radioactive materials released to the environment result in a cumulative dose to persons residing within 50 miles of the site of about 47 man-rem per year, compared to an annual total of about 950,000 man-rem delivered to the same population from natural background radiation. 100 refs., 17 figs., 33 tabs.

  3. 76 FR 9210 - Draft DOC National Aquaculture Policy

    Science.gov (United States)

    2011-02-16

    ... DEPARTMENT OF COMMERCE Draft DOC National Aquaculture Policy AGENCY: Commerce. ACTION: Notice of availability of draft aquaculture policy; request for comments. SUMMARY: The Department of Commerce (DOC) is... United States. The intent of the policy is to guide DOC's actions and decisions on aquaculture and to...

  4. 75 FR 27579 - Bison Brucellosis Remote Vaccination, Draft Environmental Impact Statement, Yellowstone National...

    Science.gov (United States)

    2010-05-17

    ... DEPARTMENT OF THE INTERIOR National Park Service Bison Brucellosis Remote Vaccination, Draft... Brucellosis Remote Vaccination Program, Yellowstone National Park. SUMMARY: Pursuant to the National... the Bison Brucellosis Remote Vaccination Draft Environmental Impact Statement (EIS) for Yellowstone...

  5. 75 FR 53979 - Bison Brucellosis Remote Vaccination, Draft Environmental Impact Statement, Yellowstone National...

    Science.gov (United States)

    2010-09-02

    ... DEPARTMENT OF THE INTERIOR National Park Service Bison Brucellosis Remote Vaccination, Draft Environmental Impact Statement, Yellowstone National Park, Wyoming ACTION: Reopening of public comment period... Brucellosis Remote Vaccination Draft Environmental Impact Statement. The original comment period was from 28...

  6. 75 FR 21650 - Coral Reef Restoration Plan, Draft Programmatic Environmental Impact Statement, Biscayne National...

    Science.gov (United States)

    2010-04-26

    ... DEPARTMENT OF THE INTERIOR National Park Service Coral Reef Restoration Plan, Draft Programmatic... Coral Reef Restoration Plan, Biscayne National Park. SUMMARY: Pursuant to the National Environmental... availability of a Draft Programmatic Environmental Impact Statement (DEIS) for the Coral Reef Restoration Plan...

  7. 77 FR 38824 - Winter Use Plan, Supplemental Draft Environmental Impact Statement, Yellowstone National Park

    Science.gov (United States)

    2012-06-29

    ... DEPARTMENT OF THE INTERIOR National Park Service [2310-0070-422] Winter Use Plan, Supplemental.... ACTION: Notice of Availability of the Draft Supplemental Environmental Impact Statement for the Winter... Supplemental Environmental Impact Statement (Draft SEIS) for a Winter Use Plan for Yellowstone National Park...

  8. 76 FR 24511 - Cabo Rojo National Wildlife Refuge, Cabo Rojo, Puerto Rico; Draft Comprehensive Conservation Plan...

    Science.gov (United States)

    2011-05-02

    ... DEPARTMENT OF THE INTERIOR Fish and Wildlife Service [FWS-R4-R-2010-N277; 40136-1265-0000-S3] Cabo Rojo National Wildlife Refuge, Cabo Rojo, Puerto Rico; Draft Comprehensive Conservation Plan and... draft comprehensive conservation plan and environmental assessment (Draft CCP/EA) for Cabo Rojo National...

  9. 1986 environmental monitoring program report for the Idaho National Engineering Laboratory Site

    International Nuclear Information System (INIS)

    Hoff, D.L.; Chew, E.W.; Rope, S.K.

    1987-05-01

    This report presents onsite and offsite data collected in 1986 for the routine environmental monitoring program conducted by the Radiological and Environmental Sciences Laboratory (RESL) of the Department of Energy (DOE) at the Idaho National Engineering Laboratory (INEL) Site. The purpose of this routine program is to monitor radioactive and nonradioactive materials resulting from INEL Site operations which may reach the surrounding offsite environment and population. This report is prepared in accordance with the DOE requirements in draft DOE Order 5484.1 and is not intended to cover the numerous special environmental research programs being conducted at the INEL by RESL and others

  10. 77 FR 2514 - National Ocean Council-National Ocean Policy Draft Implementation Plan

    Science.gov (United States)

    2012-01-18

    ... Ocean Council developed actions to achieve the Policy's nine priority objectives, and to address some of..., contribute trillions of dollars a year to the national economy, and are essential to public health and... departments, agencies, and offices developed the actions in the draft Implementation Plan with significant...

  11. Forced draft wet cooling systems

    International Nuclear Information System (INIS)

    Daubert, A.; Caudron, L.; Viollet, P.L.

    1975-01-01

    The disposal of the heat released from a 1000MW power plant needs a natural draft tower of about 130m of diameter at the base, and 170m height, or a cooling system with a draft forced by about forty vans, a hundred meters in diameter, and thirty meters height. The plumes from atmospheric cooling systems form, in terms of fluid mechanics, hot jets in a cross current. They consist in complex flows that must be finely investigated with experimental and computer means. The study, currently being performed at the National Hydraulics Laboratory, shows that as far as the length and height of visible plumes are concerned, the comparison is favorable to some types of forced draft cooling system, for low and medium velocities, (below 5 or 6m/s at 10m height. Beyond these velocities, the forced draft sends the plume up to smaller heights, but the plume is generally more dilute [fr

  12. 77 FR 61426 - Rose Atoll National Wildlife Refuge, American Samoa; Draft Comprehensive Conservation Plan and...

    Science.gov (United States)

    2012-10-09

    ... DEPARTMENT OF THE INTERIOR Fish and Wildlife Service [FWS-R1-R-2012-N171; 1265-0000-10137-S3] Rose... Rose Atoll National Wildlife Refuge (NWR/refuge) for public review and comment. In the Draft CCP/EA, [email protected] . Include ``Rose Atoll National Wildlife Refuge Draft CCP/EA'' in the subject line of the...

  13. Argonne National Laboratory institutional plan FY 2001--FY 2006.

    Energy Technology Data Exchange (ETDEWEB)

    Beggs, S.D.

    2000-12-07

    This Institutional Plan describes what Argonne management regards as the optimal future development of Laboratory activities. The document outlines the development of both research programs and support operations in the context of the nation's R and D priorities, the missions of the Department of Energy (DOE) and Argonne, and expected resource constraints. The Draft Institutional Plan is the product of many discussions between DOE and Argonne program managers, and it also reflects programmatic priorities developed during Argonne's summer strategic planning process. That process serves additionally to identify new areas of strategic value to DOE and Argonne, to which Laboratory Directed Research and Development funds may be applied. The Draft Plan is provided to the Department before Argonne's On-Site Review. Issuance of the final Institutional Plan in the fall, after further comment and discussion, marks the culmination of the Laboratory's annual planning cycle. Chapter II of this Institutional Plan describes Argonne's missions and roles within the DOE laboratory system, its underlying core competencies in science and technology, and six broad planning objectives whose achievement is considered critical to the future of the Laboratory. Chapter III presents the Laboratory's ''Science and Technology Strategic Plan,'' which summarizes key features of the external environment, presents Argonne's vision, and describes how Argonne's strategic goals and objectives support DOE's four business lines. The balance of Chapter III comprises strategic plans for 23 areas of science and technology at Argonne, grouped according to the four DOE business lines. The Laboratory's 14 major initiatives, presented in Chapter IV, propose important advances in key areas of fundamental science and technology development. The ''Operations and Infrastructure Strategic Plan'' in Chapter V includes

  14. 77 FR 53908 - Winter Use Plan, Supplemental Draft Environmental Impact Statement, Yellowstone National Park

    Science.gov (United States)

    2012-09-04

    ... DEPARTMENT OF THE INTERIOR National Park Service [NPS-IMRO-YELL-11188; 2310-0070-422] Winter Use... comment period on the Draft Supplemental Environmental Impact Statement (Draft SEIS) for a Winter Use Plan... online at http://parkplanning.nps.gov/YELL (click on the link to the 2012 Supplemental Winter Use Plan...

  15. The National Football League Combine: performance differences between drafted and nondrafted players entering the 2004 and 2005 drafts.

    Science.gov (United States)

    Sierer, S Patrick; Battaglini, Claudio L; Mihalik, Jason P; Shields, Edgar W; Tomasini, Nathan T

    2008-01-01

    The purpose of this study was to examine performance differences between drafted and nondrafted athletes (N = 321) during the 2004 and 2005 National Football League (NFL) Combines. We categorized players into one of 3 groups: Skill, Big skill, and Linemen. Skill players (SP) consisted of wide receivers, cornerbacks, free safeties, strong safeties, and running backs. Big skill players (BSP) included fullbacks, linebackers, tight ends, and defensive ends. Linemen (LM) consisted of centers, offensive guards, offensive tackles, and defensive tackles. We analyzed player height and mass, as well as performance on the following combine drills: 40-yard dash, 225-lb bench press test, vertical jump, broad jump, pro-agility shuttle, and the 3-cone drill. Student t-tests compared performance on each of these measures between drafted and nondrafted players. Statistical significance was found between drafted and nondrafted SP for the 40-yard dash (P ready themselves for the NFL Combine.

  16. Sandia National Laboratories

    Data.gov (United States)

    Federal Laboratory Consortium — For more than 60 years, Sandia has delivered essential science and technology to resolve the nation's most challenging security issues.Sandia National Laboratories...

  17. Predictive Validity of National Basketball Association Draft Combine on Future Performance.

    Science.gov (United States)

    Teramoto, Masaru; Cross, Chad L; Rieger, Randall H; Maak, Travis G; Willick, Stuart E

    2018-02-01

    Teramoto, M, Cross, CL, Rieger, RH, Maak, TG, and Willick, SE. Predictive validity of national basketball association draft combine on future performance. J Strength Cond Res 32(2): 396-408, 2018-The National Basketball Association (NBA) Draft Combine is an annual event where prospective players are evaluated in terms of their athletic abilities and basketball skills. Data collected at the Combine should help NBA teams select right the players for the upcoming NBA draft; however, its value for predicting future performance of players has not been examined. This study investigated predictive validity of the NBA Draft Combine on future performance of basketball players. We performed a principal component analysis (PCA) on the 2010-2015 Combine data to reduce correlated variables (N = 234), a correlation analysis on the Combine data and future on-court performance to examine relationships (maximum pairwise N = 217), and a robust principal component regression (PCR) analysis to predict first-year and 3-year on-court performance from the Combine measures (N = 148 and 127, respectively). Three components were identified within the Combine data through PCA (= Combine subscales): length-size, power-quickness, and upper-body strength. As per the correlation analysis, the individual Combine items for anthropometrics, including height without shoes, standing reach, weight, wingspan, and hand length, as well as the Combine subscale of length-size, had positive, medium-to-large-sized correlations (r = 0.313-0.545) with defensive performance quantified by Defensive Box Plus/Minus. The robust PCR analysis showed that the Combine subscale of length-size was a predictor most significantly associated with future on-court performance (p ≤ 0.05), including Win Shares, Box Plus/Minus, and Value Over Replacement Player, followed by upper-body strength. In conclusion, the NBA Draft Combine has value for predicting future performance of players.

  18. Technical evaluation of draft ANSI Standard N13.30, ''Performance Criteria for Radiobioassay''

    International Nuclear Information System (INIS)

    MacLellan, J.A.; Traub, R.J.

    1986-01-01

    To evaluate the appropriateness of the draft Standard, a research program, entitled Technical Evaluation of Draft ANSI Standard N13.30, ''Performance Criteria for Radiobioassay,'' was initiated at the Pacific Northwest Laboratory (PNL). This program incorporates a number of tasks including a nationwide, two-round intercomparison study to test the analytical performance of both in-vitro and in-vivo bioassay laboratories and determine their ability to meet the minimum performance criteria specified in the American National Standards Institute (ANSI) draft Standard, and other tasks related to the establishment of an accreditation laboratory. Based on two rounds of in-vitro testing and the in-vivo pilot study, the project staff has concluded that the criteria selected are appropriate for the existing state of the industry and achievable by most participating laboratories. Specific conclusions are as follows: the AMDA criteria are most difficult for the laboratories to achieve, the relative bias criterion is second in difficulty, and the precision criterion presents no problem for the laboratories, most of the participating laboratories can meet the Standard, and failure rates may decrease as the laboratories become knowledgeable of the performance criteria

  19. 77 FR 42758 - Notice of Availability of the Prehistoric Trackways National Monument Draft Resource Management...

    Science.gov (United States)

    2012-07-20

    ... Environmental Impact Statement, New Mexico AGENCY: Bureau of Land Management, Interior. ACTION: Notice of availability. SUMMARY: In accordance with the National Environmental Policy Act of 1969, as amended, and the... prepared a Draft Resource Management Plan (RMP) and Draft Environmental Impact Statement (EIS) for the...

  20. 76 FR 4719 - Draft Comprehensive Conservation Plan and Environmental Assessment, Selawik National Wildlife...

    Science.gov (United States)

    2011-01-26

    ... guides and transporters to maintain big game hunting opportunities while reducing social conflict in the...] Draft Comprehensive Conservation Plan and Environmental Assessment, Selawik National Wildlife Refuge... period for the Revised Comprehensive Conservation Plan and Environmental Assessment for Selawik National...

  1. Lawrence Livermore National Laboratory Decontamination and Waste Treatment Facility: Documentation of impact analysis for design alternatives presented in the Draft Environmental Impact Statement

    International Nuclear Information System (INIS)

    1988-05-01

    Lawrence Livermore National Laboratory (LLNL) is proposing to construct and operate a new Decontamination and Waste Treatment Facility (DWTF). The proposed DWTF would replace the existing Hazardous Waste Management (HWM) facilities at LLNL. The US Department of Energy (DOE) is preparing a Draft Environmental Impact Statement (DEIS) to assess the environmental consequences of the proposed DWTF and its alternatives. This report presents the assumptions, methodologies, and analyses used to estimate the waste flows, air emissions, ambient air quality impacts, and public health risks that are presented in the DEIS. Two DWTF design alternatives (Level I and Level II) have been designated as reasonable design alternatives considering available technologies, environmental regulations, and current and future LLNL waste generation. Both design alternatives would include new, separate radioactive and nonradioactive liquid waste treatment systems, a solidification unit, a new decontamination facility, storage and treatment facilities for reactive materials, a radioactive waste storage area, receiving and classification areas, and a uranium burn pan. The Level I design alternative would include a controlled-air incinerator system, while the Level II design alternative would include a rotary kiln incinerator system. 43 refs., 4 figs., 24 tabs

  2. National laboratories

    International Nuclear Information System (INIS)

    Moscati, G.

    1983-01-01

    The foundation of a 'National Laboratory' which would support a Research center in synchrotron radiation applications is proposed. The essential features of such a laboratory differing of others centers in Brazil are presented. (L.C.) [pt

  3. 75 FR 1806 - Draft General Management Plan and Environmental Impact Statement, New River Gorge National River, WV

    Science.gov (United States)

    2010-01-13

    ... visitor experiences. Management actions would build upon the cultural resource, interpretive, and... DEPARTMENT OF THE INTERIOR National Park Service Draft General Management Plan and Environmental... Interior. ACTION: Notice of availability of the Draft General Management Plan and Environmental Impact...

  4. Relationship between concussion history and neurocognitive test performance in National Football League draft picks.

    Science.gov (United States)

    Solomon, Gary S; Kuhn, Andrew

    2014-04-01

    There are limited empirical data available regarding the relationship between concussion history and neurocognitive functioning in active National Football League (NFL) players in general and NFL draft picks in particular. Potential NFL draft picks undergo 2 neurocognitive tests at the National Invitational Camp (Scouting Combine) every year: the Wonderlic and, since 2011, the Immediate Post-concussion Assessment and Cognitive Testing (ImPACT). After conclusion of the combine and before the draft, NFL teams invite potential draft picks to their headquarters for individual visits where further assessment may occur. To examine the relationship between concussion history and neurocognitive performance (ImPACT and Wonderlic) in a sample of elite NFL draft picks. Cohort study; Level of evidence, 3. Over 7 years, 226 potential draft picks were invited to visit a specific NFL team's headquarters after the combine. The athletes were divided into 3 groups based on self-reported concussion history: no prior concussions, 1 prior concussion, and 2 or more prior concussions. Neurocognitive measures of interest included Wonderlic scores (provided by the NFL team) and ImPACT composite scores (administered either at the combine or during a visit to the team headquarters). The relationship between concussion history and neurocognitive scores was assessed, as were the relationships among the 2 neurocognitive tests. Concussion history had no relationship to neurocognitive performance on either the Wonderlic or ImPACT. Concussion history did not affect performance on either neurocognitive test, suggesting that for this cohort, a history of concussion may not have adverse effects on neurocognitive functioning as measured by these 2 tests. This study reveals no correlation between concussion history and neurocognitive test scores (ImPACT, Wonderlic) in soon-to-be active NFL athletes.

  5. Sandia National Laboratories

    Science.gov (United States)

    Gilliom, Laura R.

    1992-01-01

    Sandia National Laboratories has identified technology transfer to U.S. industry as a laboratory mission which complements our national security mission and as a key component of the Laboratory's future. A number of technology transfer mechanisms - such as CRADA's, licenses, work-for-others, and consortia - are identified and specific examples are given. Sandia's experience with the Specialty Metals Processing Consortium is highlighted with a focus on the elements which have made it successful. A brief discussion of Sandia's potential interactions with NASA under the Space Exploration Initiative was included as an example of laboratory-to-NASA technology transfer. Viewgraphs are provided.

  6. Los Alamos National Laboratory A National Science Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Chadwick, Mark B. [Los Alamos National Laboratory

    2012-07-20

    Our mission as a DOE national security science laboratory is to develop and apply science, technology, and engineering solutions that: (1) Ensure the safety, security, and reliability of the US nuclear deterrent; (2) Protect against the nuclear threat; and (3) Solve Energy Security and other emerging national security challenges.

  7. Sandia National Laboratories: Sandia National Laboratories: Missions:

    Science.gov (United States)

    Defense Systems & Assessments: About Us Sandia National Laboratories Exceptional service in ; Security Weapons Science & Technology Defense Systems & Assessments About Defense Systems & Information Construction & Facilities Contract Audit Sandia's Economic Impact Licensing & Technology

  8. Safety Research Experiment Facilities, Idaho National Engineering Laboratory, Idaho. Draft environmental statement

    International Nuclear Information System (INIS)

    1977-01-01

    This environmental statement was prepared in accordance with the National Environmental Policy Act of 1969 (NEPA) in support of the Energy Research and Development Administration's (ERDA) proposal for legislative authorization and appropriations for the Safety Research Experiment Facilities (SAREF) Project. The purpose of the proposed project is to modify some existing facilities and provide a new test facility at the Idaho National Engineering Laboratory (INEL) for conducting fast breeder reactor (FBR) safety experiments. The SAREF Project proposal has been developed after an extensive study which identified the FBR safety research needs requiring in-reactor experiments and which evaluated the capability of various existing and new facilities to meet these needs. The proposed facilities provide for the in-reactor testing of large bundles of prototypical FBR fuel elements under a wide variety of conditions, ranging from those abnormal operating conditions which might be expected to occur during the life of an FBR power plant to the extremely low probability, hypothetical accidents used in the evalution of some design options and in the assessment of the long-term potential risk associated with wide-scale deployment of the FBR

  9. Tiger Team Assessment of the Fermi National Accelerator Laboratory

    International Nuclear Information System (INIS)

    1992-06-01

    This draft report documents the Tiger Team Assessment of the Fermi National Accelerator Laboratory (Fermilab) located in Batavia, Illinois. Fermilab is a program-dedicated national laboratory managed by the Universities Research Association, Inc. (URA) for the US Department of Energy (DOE). The Tiger Team Assessment was conducted from May 11 to June 8, 1992, under the auspices of DOE's Office of Special Projects (OSP) under the Office of the Assistant Secretary for Environment, Safety and Health (EH). The assessment was comprehensive, encompassing environmental, safety and health (ES ampersand H), and quality assurance (QA) disciplines; site remediation; facilities management; and waste management operations. Compliance with applicable Federal , State of Illinois, and local regulations; applicable DOE Orders; best management practices; and internal Fermilab requirements was addressed. In addition, an evaluation of the effectiveness of DOE and Fermilab management of the ES ampersand H/QA and self-assessment programs was conducted. The Fermilab Tiger Team Assessment is part a larger, comprehensive DOE Tiger Team Independent Assessment Program planned for DOE facilities. The objective of the initiative is to provide the Secretary of Energy with information on the compliance status of DOE facilities with regard to ES ampersand H requirements, root causes for noncompliance, adequacy of DOE and contractor ES ampersand H management programs, response actions to address the identified problem areas, and DOE-wide ES ampersand H compliance trends and root causes

  10. 75 FR 75707 - Request for Public Comment on the Draft National Nanotechnology Initiative Strategy for...

    Science.gov (United States)

    2010-12-06

    ... Nanotechnology Initiative Strategy for Nanotechnology-Related Environmental, Health, and Safety Research AGENCY..., Engineering, and Technology Subcommittee of the National Science and Technology Council request comments from the public regarding the draft National Nanotechnology Initiative (NNI) Strategy for Nanotechnology...

  11. 76 FR 2428 - Request for Public Comment on the Draft National Nanotechnology Initiative Strategy for...

    Science.gov (United States)

    2011-01-13

    ... Nanotechnology Initiative Strategy for Nanotechnology-Related Environmental, Health, and Safety Research AGENCY..., Engineering, and Technology Subcommittee of the National Science and Technology Council request comments from the public regarding the draft National Nanotechnology Initiative (NNI) Strategy for Nanotechnology...

  12. 76 FR 22917 - Dog Management Plan/Draft Environmental Impact Statement, Golden Gate National Recreation Area...

    Science.gov (United States)

    2011-04-25

    ... DEPARTMENT OF THE INTERIOR National Park Service [NPS-PWR-PWRO--0315-696; 8145-8B90-SZM] Dog... Impact Statement/Dog Management Plan, Golden Gate National Recreation Area. SUMMARY: The National Park Service has prepared a Draft Dog Management Plan and Environmental Impact Statement (Plan/DEIS). The Plan...

  13. Performance assessment experience at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Lee, D.W.

    1994-01-01

    The development of a performance assessment (PA) for low-level radioactive waste disposal operations at Oak Ridge National Laboratory (ORNL) was initiated in 1989 and is continuing. A draft PA was prepared in September 1990 and submitted to the DOE Peer Review Panel for review and comment. Recommendations were received that formed the basis for a revised PA that was completed in December 1993. The review of the revised PA is continuing. This paper reviews the experience gained in the preparation of the PA including the technical difficulties associated with performance assessment in Oak Ridge and an overview of the methods used in the PA. Changes in waste operations that resulted from the findings in the PA include improved waste acceptance criteria, waste certification, and waste management practices. The discussion includes issues that relate to the application of current performance objectives to older disposal facilities, which are being addressed as part of the CERCLA process

  14. Safety analysis report upgrade program at the Plutonium Facility, Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Pan, P.Y.

    1993-01-01

    Plutonium research and development activities have resided at the Los Alamos National Laboratory (LANL) since 1943. The function of the Plutonium Facility (PF-4) has been to perform basic special nuclear materials research and development and to support national defense and energy programs. The original Final Safety Analysis Report (FSAR) for PF-4 was approved by DOE in 1978. This FSAR analyzed design-basis and bounding accidents. In 1986, DOE/AL published DOE/AL Order 5481.1B, ''Safety Analysis and Review System'', as a requirement for preparation and review of safety analyses. To meet the new DOE requirements, the Facilities Management Group of the Nuclear Material Technology Division submitted a draft FSAR to DOE for approval in April 1991. This draft FSAR analyzed the new configurations and used a limited-scope probabilistic risk analysis for accident analysis. During the DOE review of the draft FSAR, DOE Order 5480.23 ''Nuclear Safety Analysis Reports'', was promulgated and was later officially released in April 1992. The new order significantly expands the scope, preparation, and maintenance efforts beyond those required in DOE/AL Order 5481.1B by requiring: description of institutional and human-factor safety programs; clear definitions of all facility-specific safety commitments; more comprehensive and detailed hazard assessment; use of new safety analysis methods; and annual updates of FSARs. This paper describes the safety analysis report (SAR) upgrade program at the Plutonium Facility in LANL. The SAR upgrade program is established to meet the requirements in DOE Order 5480.23. Described in this paper are the SAR background, authorization basis for operations, hazard classification, and technical program elements

  15. Environment | Argonne National Laboratory

    Science.gov (United States)

    Skip to main content Argonne National Laboratory Toggle Navigation Toggle Search Energy Environment Laboratory About Safety News Careers Education Community Diversity Directory Energy Environment National Security User Facilities Science Work with Us Environment Atmospheric and Climate Science Ecological

  16. Recommended procedures for performance testing of radiobioassay laboratories: Volume 1, Quality assurance

    International Nuclear Information System (INIS)

    Fenrick, H.W.; MacLellan, J.A.

    1988-11-01

    Draft American National Standards Institute (ANSI) Standard N13.30 (Performance Criteria for Radiobioassay) was developed in response to a concern expressed by the US Department of Energy and US Nuclear Regulatory Commission to help ensure that bioassay laboratories provide accurate and consistent results. The draft standard specifies the criteria for defining the procedures necessary to establish a bioassay performance-testing laboratory and program. The testing laboratory will conduct tests to evaluate the performance of service laboratories. Pacific Northwest Laboratory helped define responsibilities and develop procedures as part of an effort to evaluate the draft ANSI N13.30 performance criteria for quality assurance at bioassay laboratories. This report recommends elements of quality assurance and quality control responsibilities for the bioassay performance-testing laboratory program, including the qualification and performance of personnel and the calibration, certification, and performance of equipment. The data base and recommended records system for documenting radiobioassay performance at the service laboratories are also presented. 15 refs

  17. Energy | Argonne National Laboratory

    Science.gov (United States)

    Skip to main content Argonne National Laboratory Toggle Navigation Toggle Search Energy Batteries and Energy Storage Energy Systems Modeling Materials for Energy Nuclear Energy Renewable Energy Smart Laboratory About Safety News Careers Education Community Diversity Directory Energy Environment National

  18. 78 FR 26067 - General Management Plan, Draft Environmental Impact Statement, Big Thicket National Preserve, Texas

    Science.gov (United States)

    2013-05-03

    .... Alternative 2, the NPS preferred alternative, would support a broad ecosystem approach for preserve management... management of cross-boundary resource issues and the importance of encouraging partnerships to address and... Management Plan, Draft Environmental Impact Statement, Big Thicket National Preserve, Texas AGENCY: National...

  19. Research programs at the Department of Energy National Laboratories. Volume 2: Laboratory matrix

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-01

    For nearly fifty years, the US national laboratories, under the direction of the Department of Energy, have maintained a tradition of outstanding scientific research and innovative technological development. With the end of the Cold War, their roles have undergone profound changes. Although many of their original priorities remain--stewardship of the nation`s nuclear stockpile, for example--pressing budget constraints and new federal mandates have altered their focus. Promotion of energy efficiency, environmental restoration, human health, and technology partnerships with the goal of enhancing US economic and technological competitiveness are key new priorities. The multiprogram national laboratories offer unparalleled expertise in meeting the challenge of changing priorities. This volume aims to demonstrate each laboratory`s uniqueness in applying this expertise. It describes the laboratories` activities in eleven broad areas of research that most or all share in common. Each section of this volume is devoted to a single laboratory. Those included are: Argonne National Laboratory; Brookhaven National Laboratory; Idaho National Engineering Laboratory; Lawrence Berkeley Laboratory; Lawrence Livermore National Laboratory; Los Alamos National Laboratory; National Renewable Energy Laboratory; Oak Ridge National Laboratory; Pacific Northwest Laboratory; and Sandia National Laboratories. The information in this volume was provided by the multiprogram national laboratories and compiled at Lawrence Berkeley Laboratory.

  20. 75 FR 52355 - Draft National Conversation on Public Health and Chemical Exposures Work Group Reports...

    Science.gov (United States)

    2010-08-25

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Centers for Disease Control and Prevention Draft National Conversation on Public Health and Chemical Exposures Work Group Reports; Opportunity for Public Comment AGENCY.../nationalconversation/work_groups.html . For additional information on the National Conversation on Public Health and...

  1. 78 FR 13081 - Draft Environmental Impact Statement for General Management Plan, Everglades National Park, Florida

    Science.gov (United States)

    2013-02-26

    ... visitor use in the Park. The GMP will provide updated management direction for the entire park. The EEWS....YP0000] Draft Environmental Impact Statement for General Management Plan, Everglades National Park... the General Management Plan (GMP) and East Everglades Wilderness Study (EEWS) for Everglades National...

  2. Recommended procedures for performance testing of radiobioassay laboratories: Volume 3, In vivo test phantoms

    International Nuclear Information System (INIS)

    MacLellan, J.A.; Traub, R.J.

    1988-11-01

    Draft American National Standards Institute (ANSI) Standard N13.30 (Performance Criteria for Radiobioassay) was developed for the US Department of Energy and the US Nuclear Regulatory Commission to help ensure that bioassay laboratories provide accurate and consistent results. The draft standard describes the procedures necessary to establish a bioassay performance-testing laboratory and program. The bioassay performance-testing laboratory will conduct tests to evaluate the performance of service laboratories. Pacific Northwest Laboratory helped develop testing procedures as part of an effort to evaluate the draft ANSI N13.30 performance criteria by testing the existing measurement capabilities of various bioassay laboratories. This report recommends guidelines for the preparation, handling, storage, distribution, shipping, and documentation of test phantoms used for calibration of measurement systems for direct bioassay. The data base and recommended records system for documenting radiobioassay performance at the service laboratories are also presented

  3. 78 FR 5494 - Off-Road Vehicle Management Plan, Draft Environmental Impact Statement, Lake Meredith National...

    Science.gov (United States)

    2013-01-25

    ... DEPARTMENT OF THE INTERIOR National Park Service [NPS-IMR-LAMR-10224; 2310-0091-422] Off-Road... Service (NPS) is releasing a Draft Environmental Impact Statement (DEIS) for the Off- Road Vehicle... impacts of four alternatives that address off-road vehicle (ORV) management in the national recreation...

  4. 75 FR 52357 - Request for Comment: National Center for Complementary and Alternative Medicine Draft Strategic Plan

    Science.gov (United States)

    2010-08-25

    ...: National Center for Complementary and Alternative Medicine Draft Strategic Plan ACTION: Notice. SUMMARY: The National Center for Complementary and Alternative Medicine (NCCAM) is developing its third... for Complementary and Alternative Medicine (NCCAM) was established in 1998 with the mission of...

  5. 75 FR 54225 - Comment Request for the Financial Literacy and Education Commission on the Draft National...

    Science.gov (United States)

    2010-09-03

    ... DEPARTMENT OF THE TREASURY Comment Request for the Financial Literacy and Education Commission on the Draft National Strategy, Entitled National Strategy for Financial Literacy 2010 AGENCY: Department... Literacy and Education Commission (Commission) through passage of the Financial Literacy and Education...

  6. 78 FR 78975 - Notice of Publication of a Draft of the Revised Guidebook for the National Practitioner Data Bank

    Science.gov (United States)

    2013-12-27

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Health Resources and Services Administration Notice of Publication of a Draft of the Revised Guidebook for the National Practitioner Data Bank AGENCY: Health Resources and Services Administration (HRSA), HHS. ACTION: Notice of Publication of a Draft of the Revised...

  7. 77 FR 37438 - Draft Trail Management Plan and Environmental Impact Statement for Cuyahoga Valley National Park...

    Science.gov (United States)

    2012-06-21

    ... DEPARTMENT OF THE INTERIOR National Park Service [NPS-MWR-CUVA-10100; 6065-4000-409] Draft Trail... Park Service, Interior. ACTION: Notice of Availability. SUMMARY: The National Park Service (NPS... blueprint to guide the expansion, elimination, restoration, management, and use of the trail system and its...

  8. 76 FR 8741 - National Toxicology Program (NTP): Office of Liaison, Policy, and Review; Availability of Draft...

    Science.gov (United States)

    2011-02-15

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Toxicology Program (NTP): Office of Liaison... Materials The agenda topic is the peer review of the findings and conclusions of draft NTP TRs of toxicology... advisory committees. Dated: February 3, 2011. John R. Bucher, Associate Director, National Toxicology...

  9. Proposals for ORNL [Oak Ridge National Laboratory] support to Tiber LLNL [Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    Berry, L.A.; Rosenthal, M.W.; Saltmarsh, M.J.; Shannon, T.E.; Sheffield, J.

    1987-01-01

    This document describes the interests and capabilities of Oak Ridge National Laboratory in their proposals to support the Lawrence Livermore National Laboratory (LLNL) Engineering Test Reactor (ETR) project. Five individual proposals are cataloged separately. (FI)

  10. 75 FR 73085 - National Toxicology Program (NTP): Office of Liaison, Policy, and Review; Availability of Draft...

    Science.gov (United States)

    2010-11-29

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Toxicology Program (NTP): Office of Liaison... Materials The agenda topic is the peer review of the findings and conclusions of draft NTP TRs of toxicology.... Bucher, Associate Director, National Toxicology Program. [FR Doc. 2010-29945 Filed 11-26-10; 8:45 am...

  11. 76 FR 24512 - Laguna Cartagena National Wildlife Refuge, Lajas, Puerto Rico; Draft Comprehensive Conservation...

    Science.gov (United States)

    2011-05-02

    ... National Wildlife Refuge (NWR) for public review and comment. In the Draft CCP/ EA, we describe the... photography, and environmental education and interpretation. We will review and update the CCP at least every... plants, particularly the endangered yellow-shouldered blackbird; increasing the level of environmental...

  12. Draft site-wide environmental impact statement for Sandia National Laboratories/New Mexico. Summary

    International Nuclear Information System (INIS)

    1999-04-01

    The DOE proposes to continue operating the Sandia National Laboratories/New Mexico (SNL/NM) located in central New Mexico. The DOE has identified and assessed three alternatives for the operation of SNL/NM: (1) No Action, (2) Expanded Operations, and (3) Reduced Operations. In the No Action Alternative, the DOE would continue the historical mission support activities SNL/NM has conducted at planned operational levels. In the Expanded Operations Alternative, the DOE would operate SNL/NM at the highest reasonable levels of activity currently foreseeable. Under the Reduced Operations Alternative, the DOE would operate SNL/NM at the minimum levels of activity necessary to maintain the capabilities to support the DOE mission in the near term. Under all of the alternatives, the affected environment is primarily within 50 miles (80 kilometers) of SNL/NM. Analyses indicate little difference in the environmental impacts among alternatives

  13. 78 FR 19733 - Draft General Management Plan and Draft Environmental Impact Statement, Fort Raleigh National...

    Science.gov (United States)

    2013-04-02

    ... announce the dates, times, and locations of public meetings on the draft EIS/GMP through the NPS Planning... delivery to the above address. Electronic copies of the Draft EIS/GMP will be available online at http... through additional interpretive efforts, marketing, and facilities. Alternative C, the NPS preferred...

  14. Berkeley Lab Pilot on External Regulation of DOE National Laboratories by the U.S. NRC

    International Nuclear Information System (INIS)

    Zeman, Gary H.

    1999-01-01

    The US Department of Energy and the US Nuclear Regulatory Commission entered into an agreement in November 1997 to pursue external regulation of radiation safety at DOE national laboratories through a Pilot Program of simulated regulation at 6-10 sites over a 2 year period. The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab), the oldest of the DOE national laboratories, volunteered and was selected as the first Pilot site. Based on the similarities and linkages between Berkeley Lab and nearby university research laboratories, Berkeley Lab seemed a good candidate for external regulation and a good first step in familiarizing NRC with the technical and institutional issues involved in regulating laboratories in the DOE complex. NRC and DOE team members visited Berkeley Lab on four occasions between October 1997 and January 1998 to carry out the Pilot. The first step was to develop a detailed Work Plan, then to carry out both a technical review of the radiation safety program and an examination of policy and regulatory issues. The Pilot included a public meeting held in Oakland, CA in December 1997. The Pilot concluded with NRC's assessment that Berkeley Lab has a radiation protection program adequate to protect workers, the public and the environment, and that it is ready to be licensed by the NRC with minor programmatic exceptions. A draft final report of the Pilot was prepared and circulated for comment as a NUREG document (dated May 7, 1998). The report's recommendations include extending NRC regulatory authority to cover all ionizing radiation sources (including accelerators, x-ray units, NARM) at Berkeley Lab. Questions remaining to be resolved include: who should be the licensee (DOE, the Lab, or both)?; dealing with legacy issues and NRC D and D requirements; minimizing dual oversight; quantifying value added in terms of cost savings, enhanced safety, and improved public perception; extrapolating results to other national laboratories; and

  15. New Tool to Draft National Nuclear Laws. Second Nuclear Law Handbook Available Online

    International Nuclear Information System (INIS)

    Kaiser, Peter

    2011-01-01

    Drafting new national nuclear laws and reviewing existing laws and regulations requires extensive and specialized expertise. For many countries this represents a significant challenge. The IAEA's legislative assistance programme was established to help Member States adopt adequate national nuclear legislation. In 2003, the legistlative assistance programme published the Handbook on Nuclear Law. The reference text provides a fundamental understanding of the key elements and principles of national nuclear legislation. The Handbook is widely utilized by Member States, industry and experts. A second volume of the Handbook was released during the IAEA's 54th General Conference, which convened in Vienna from 20 to 24 September 2010.

  16. Secondary standards laboratories for ionizing radiation calibrations: the national laboratory interests

    International Nuclear Information System (INIS)

    Roberson, P.L.; Campbell, G.W.

    1984-11-01

    The national laboratories are probable candidates to serve as secondary standards laboratories for the federal sector. Representatives of the major Department of Energy laboratories were polled concerning attitudes toward a secondary laboratory structure. Generally, the need for secondary laboratories was recognized and the development of such a program was encouraged. The secondary laboratories should be reviewed and inspected by the National Bureau of Standards. They should offer all of the essential, and preferably additional, calibration services in the field of radiological health protection. The selection of secondary laboratories should be based on economic and geographic criteria and/or be voluntary. 1 ref., 2 tabs

  17. Accuracy of professional sports drafts in predicting career potential.

    Science.gov (United States)

    Koz, D; Fraser-Thomas, J; Baker, J

    2012-08-01

    The forecasting of talented players is a crucial aspect of building a successful sports franchise and professional sports invest significant resources in making player choices in sport drafts. The current study examined the relationship between career performance (i.e. games played) and draft round for the National Football League, National Hockey League, National Basketball League, and Major League Baseball for players drafted from 1980 to 1989 (n = 4874) against the assumption of a linear relationship between performance and draft round (i.e. that players with the most potential will be selected before players of lower potential). A two-step analysis revealed significant differences in games played across draft rounds (step 1) and a significant negative relationship between draft round and games played (step 2); however, the amount of variance accounted for was relatively low (less than 17%). Results highlight the challenges of accurately evaluating amateur talent. © 2011 John Wiley & Sons A/S.

  18. Scientific Openness and National Security at the National Laboratories

    Science.gov (United States)

    McTague, John

    2000-04-01

    The possible loss to the People's Republic of China of important U.S. nuclear-weapons-related information has aroused concern about interactions of scientists employed by the national laboratories with foreign nationals. As a result, the National Academies assembled a committee to examine the roles of the national laboratories, the contribution of foreign interactions to the fulfillment of those roles, the risks and benefits of scientific openness in this context, and the merits and liabilities of the specific policies being implemented or proposed with respect to contacts with foreign nationals. The committee concluded that there are many aspects of the work at the laboratories that benefit from or even demand the opportunity for foreign interactions. The committee recommended five principles for guiding policy: (1) Maintain balance. Policy governing international dialogue by laboratory staff should seek to encourage international engagement in some areas, while tightly controlling it in others. (2) Educate staff. Security procedures should be clear, easy to follow, and serve an understandable purpose. (3) Streamline procedures. Good science is compatible with good security if there is intelligent line management both at the labs and in Washington, which applies effective tools for security in a sensible fashion. (4) Focus efforts. DOE should focus its efforts governing tightened security for information. The greatest attention should obviously be provided to the protection of classified information by appropriate physical and cybersecurity measures, and by personnel procedures and training. (5) Beware of prejudice against foreigners. Over the past half-century foreign-born individuals have contributed broadly and profoundly to national security through their work at the national laboratories.

  19. Pilot test of ANSI draft standard N13.29 environmental dosimetry -- Performance criteria for testing

    International Nuclear Information System (INIS)

    Klemic, G.; Shebell, P.; Monetti, M.; Raccah, F.; Sengupta, S.

    1998-09-01

    American National Standards Institute Draft N13.29 describes performance tests for environmental radiation dosimetry providers. If approved it would be the first step toward applying the types of performance testing now required in personnel dosimetry to environmental radiation monitoring. The objective of this study was to pilot test the draft standard, before it undergoes final balloting, on a small group of dosimetry providers that were selected to provide a mix of facility types, thermoluminescent dosimeter designs and monitoring program applications. The first phase of the pilot test involved exposing dosimeters to laboratory photon, beta, and x-ray sources at routine and accident dose levels. In the second phase, dosimeters were subjected to ninety days of simulated environmental conditions in an environmental chamber that cycled through extremes of temperature and humidity. Two out of seven participants passed all categories of the laboratory testing phase, and all seven passed the environmental test phase. While some relatively minor deficiencies were uncovered in the course of the pilot test, the results show that draft N13.29 describes useful tests that could be appropriate for environmental dosimetry providers. An appendix to this report contains recommendations that should be addressed by the N13.29 working group before draft N13.29 is submitted for balloting

  20. The National Fire Research Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The National Fire Research Laboratory (NFRL) is adding a unique facility that will serve as a center of excellence for fireperformance of structures ranging in size...

  1. POLLUTION PREVENTION OPPORTUNITY ASSESSMENT - GEOCHEMISTRY LABORATORY AT SANDIA NATIONAL LABORATORIES

    Science.gov (United States)

    These reports summarize pollution prevention opportunity assessments conducted jointly by EPA and DOE at the Geochemistry Laboratory and the Manufacturing and Fabrication Repair Laboratory at the Department of Energy's Sandia National Laboratories facility in Albuquerque, New Mex...

  2. Recommended procedures for performance testing of radiobioassay laboratories: Volume 2, In vitro samples

    International Nuclear Information System (INIS)

    Fenrick, H.W.; MacLellan, J.A.

    1988-11-01

    Draft American National Standards Institute (ANSI) Standard N13.30 (Performance Criteria for Radiobioassay) was developed for the US Department of Energy and the US Nuclear Regulatory Commission to help ensure that bioassay laboratories provide accurate and consistent results. The draft standard specifies the criteria for defining the procedures necessary to establish a bioassay performance-testing laboratory and program. The bioassay testing laboratory will conduct tests to evaluate the performance of service laboratories. Pacific Northwest Laboratory helped develop testing procedures as part of an effort to evaluate the performance criteria by testing the existing measurement capabilities of various bioassay laboratories. This report recommends guidelines for the preparation, handling, storage, distribution, shipping, and documentation of in vitro test samples (artificial urine and fecal matter) for indirect bioassay. The data base and recommended records system for documenting radiobioassay performance at the service laboratories are also presented. 8 refs., 3 tabs

  3. Draft of „National Radon Programme” 2013-2017

    International Nuclear Information System (INIS)

    Ivanova, K.; Badulin, V.; Georgieva, R.

    2013-01-01

    The World Health Organization defines radon as the second most important causal factor for lung cancer after smoking and the number one factor for people who have never smoked. The draft of the new European Directive takes accounts the latest ICRP Recommendations for reducing radon exposure in buildings. The Directive requires Member States to bring into force the laws, regulations and administrative provisions. The main goal of „National Radon Programme” is establishment and implementation of long-term policy to reduce and prevent risks of public health resulting from exposure to high concentrations of indoor radon in buildings. To achieve this are required: – to establish an appropriate system; – to carry out national survey and mapping of areas with radon background; – to establish radon prevention strategies in newly constructed buildings and radon mitigation strategies in existing buildings; – to improve public awareness; – to lay down a system for protection against radon in workplaces. The implementation of the program will contribute to reducing the public exposure due to indoors due to radon. Along with the reduction of smoking, it will directly and indirectly improve the prevention of lung cancer risks. (author)

  4. 77 FR 75646 - Kenai National Wildlife Refuge, Soldotna, AK; Draft Environmental Impact Statement for the...

    Science.gov (United States)

    2012-12-21

    ... intermingled with hundreds of lakes. Boreal forests are home to moose, wolves, black and brown bears, lynx... FXRS12650700000] 123 Kenai National Wildlife Refuge, Soldotna, AK; Draft Environmental Impact Statement for the... . Send your comments or requests for information by any one of the following methods: Email: fw7_kenai...

  5. THE DRAFT LAW ON THE STATUS OF NATIONAL MINORITIES VERSUS THE REAL CHALLENGES OF THE SYSTEM FOR THE PROTECTION OF MINORITIES

    Directory of Open Access Journals (Sweden)

    Gabriel ANDREESCU

    2011-12-01

    Full Text Available The study proposes an in-depth discussion of the provisions of the Draft Status of National Minorities: the definition of national minorities, the cultural autonomy system, the monopoly of political and cultural rights, and lack of transparency in the resources usage, the statements of individuals concerning their affiliation to a national community, the provisions dealing with religions “specific” to minorities, and the status of national minorities as constitutive factors of the Romanian state. The intention to reform the system for the protection of national minorities by adding cultural autonomy to other provisions is a positive one. However, the solutions put forward are dissatisfying. The Draft Status destroys democracy within the minority communities; reinforces the status quo where it should be questioned; extends the monopoly of political groups regarding decision-making in the cultural and educational areas; creates the conditions for increased ethnic business and leads to unreasonably higher costs of the national minority protection system compared to the benefits. Particularly important is the fact that the Draft Status does not tackle the specificity of the two big “nationalizing minorities”, Hungarians and Roma population. Hungarians are experiencing a continuous population decrease and are concerned about the decline of the old Hungarian civilization in Transylvania. The Roma population is facing severe issues regarding social status and poverty and need to be provided with an environment in which this fragmented community may mobilize. They need creative solutions for institutionalization.

  6. Laboratory rock mechanics testing manual. Public draft

    Energy Technology Data Exchange (ETDEWEB)

    Shuri, F S; Cooper, J D; Hamill, M L

    1981-10-01

    Standardized laboratory rock mechanics testing procedures have been prepared for use in the National Terminal Waste Storage Program. The procedures emphasize equipment performance specifications, documentation and reporting, and Quality Assurance acceptance criteria. Sufficient theoretical background is included to allow the user to perform the necessary data reduction. These procedures incorporate existing standards when possible, otherwise they represent the current state-of-the-art. Maximum flexibility in equipment design has been incorporated to allow use of this manual by existing groups and to encourage future improvements.

  7. 76 FR 39890 - St. Johns National Wildlife Refuge, FL; Draft Comprehensive Conservation Plan and Environmental...

    Science.gov (United States)

    2011-07-07

    ... DEPARTMENT OF THE INTERIOR Fish and Wildlife Service [FWS-R4-R-2011-N053; 40136-1265-0000-S3] St... conservation plan and environmental assessment (Draft CCP/EA) for St. Johns National Wildlife Refuge (NWR) in... Complex, P.O. Box 2683, Titusville, FL 32781, or via e-mail at [email protected] , or St. Johns CCP...

  8. Frederick National Laboratory's Contribution to ATOM | Frederick National Laboratory for Cancer Research

    Science.gov (United States)

    As a founding member organization of ATOM, the Frederick National Laboratory will contribute scientific expertise in precision oncology, computational chemistry and cancer biology, as well as support for open sharing of data sets and predictive model

  9. Argonne National Laboratory 1983-1984

    International Nuclear Information System (INIS)

    1984-01-01

    This publication presents significant developments at Argonne National Laboratory during 1983-84. Argonne is a multidisciplinary research center with primary focus on nuclear energy, basic research, biomedical-environmental studies and alternate energy research. The laboratory is operated by the University of Chicago for the Department of Energy

  10. Predicted percentage dissatisfied with ankle draft.

    Science.gov (United States)

    Liu, S; Schiavon, S; Kabanshi, A; Nazaroff, W W

    2017-07-01

    Draft is unwanted local convective cooling. The draft risk model of Fanger et al. (Energy and Buildings 12, 21-39, 1988) estimates the percentage of people dissatisfied with air movement due to overcooling at the neck. There is no model for predicting draft at ankles, which is more relevant to stratified air distribution systems such as underfloor air distribution (UFAD) and displacement ventilation (DV). We developed a model for predicted percentage dissatisfied with ankle draft (PPD AD ) based on laboratory experiments with 110 college students. We assessed the effect on ankle draft of various combinations of air speed (nominal range: 0.1-0.6 m/s), temperature (nominal range: 16.5-22.5°C), turbulence intensity (at ankles), sex, and clothing insulation (thermal sensation and air speed at ankles are the dominant parameters affecting draft. The seated subjects accepted a vertical temperature difference of up to 8°C between ankles (0.1 m) and head (1.1 m) at neutral whole-body thermal sensation, 5°C more than the maximum difference recommended in existing standards. The developed ankle draft model can be implemented in thermal comfort and air diffuser testing standards. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Risk management at Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    Cummings, G.E.; Strait, R.S.

    1993-10-01

    Managing risks at a large national laboratory presents a unique set of challenges. These challenges include the management of a broad diversity of activities, the need to balance research flexibility against management control, and a plethora of requirements flowing from regulatory and oversight bodies. This paper will present the experiences of Lawrence Livermore National Laboratory (LLNL) in risk management and in dealing with these challenges. While general risk management has been practiced successfully by all levels of Laboratory management, this paper will focus on the Laboratory's use of probabilistic safety assessment and prioritization techniques and the integration of these techniques into Laboratory operations

  12. Brookhaven National Laboratory Institutional Plan FY2001--FY2005

    Energy Technology Data Exchange (ETDEWEB)

    Davis, S.

    2000-10-01

    Brookhaven National Laboratory is a multidisciplinary laboratory in the Department of Energy National Laboratory system and plays a lead role in the DOE Science and Technology mission. The Laboratory also contributes to the DOE missions in Energy Resources, Environmental Quality, and National Security. Brookhaven strives for excellence in its science research and in facility operations and manages its activities with particular sensitivity to environmental and community issues. The Laboratory's programs are aligned continuously with the goals and objectives of the DOE through an Integrated Planning Process. This Institutional Plan summarizes the portfolio of research and capabilities that will assure success in the Laboratory's mission in the future. It also sets forth BNL strategies for our programs and for management of the Laboratory. The Department of Energy national laboratory system provides extensive capabilities in both world class research expertise and unique facilities that cannot exist without federal support. Through these national resources, which are available to researchers from industry, universities, other government agencies and other nations, the Department advances the energy, environmental, economic and national security well being of the US, provides for the international advancement of science, and educates future scientists and engineers.

  13. Analysis of the Kaplan turbine draft tube effect

    International Nuclear Information System (INIS)

    Motycak, L; Skotak, A; Obrovsky, J

    2010-01-01

    The aim of this paper is to present information about possible problems and errors which can appear during numerical analyses of low head Kaplan turbines with a view to the runner - draft tube interaction. The setting of numerical model, grid size, used boundary conditions are the interface definition between runner and draft tube are discussed. There are available data from physical model tests which gives a great opportunity to compare CFD and experiment results and on the basis of this comparison to determine the approach to the CFD flow modeling. The main purpose for the Kaplan turbine model measurement was to gather the information about real flow field. The model tests were carried out in new hydraulic laboratory of CKD Blansko Engineering. The model tests were focused on the detailed velocity measurements downstream of the runner by differential pressure probe and on the velocity measurement downstream of the draft tube elbow by Particle Image Velocimetry method (PIV). The data from CFD simulation were compared to the velocity measurement results. In the paper also the design of the original draft tube modification due to flow improvement is discussed in the case of the Kaplan turbine uprating project. The results of the draft tube modification were confirmed by model tests in the hydraulic laboratory as well.

  14. Analysis of the Kaplan turbine draft tube effect

    Energy Technology Data Exchange (ETDEWEB)

    Motycak, L; Skotak, A; Obrovsky, J, E-mail: motycak.vhs@cbeng.c [CKD Blansko Engineering, a.s., Capkova 2357/5, Blansko 67801 (Czech Republic)

    2010-08-15

    The aim of this paper is to present information about possible problems and errors which can appear during numerical analyses of low head Kaplan turbines with a view to the runner - draft tube interaction. The setting of numerical model, grid size, used boundary conditions are the interface definition between runner and draft tube are discussed. There are available data from physical model tests which gives a great opportunity to compare CFD and experiment results and on the basis of this comparison to determine the approach to the CFD flow modeling. The main purpose for the Kaplan turbine model measurement was to gather the information about real flow field. The model tests were carried out in new hydraulic laboratory of CKD Blansko Engineering. The model tests were focused on the detailed velocity measurements downstream of the runner by differential pressure probe and on the velocity measurement downstream of the draft tube elbow by Particle Image Velocimetry method (PIV). The data from CFD simulation were compared to the velocity measurement results. In the paper also the design of the original draft tube modification due to flow improvement is discussed in the case of the Kaplan turbine uprating project. The results of the draft tube modification were confirmed by model tests in the hydraulic laboratory as well.

  15. Analysis of the Kaplan turbine draft tube effect

    Science.gov (United States)

    Motycak, L.; Skotak, A.; Obrovsky, J.

    2010-08-01

    The aim of this paper is to present information about possible problems and errors which can appear during numerical analyses of low head Kaplan turbines with a view to the runner - draft tube interaction. The setting of numerical model, grid size, used boundary conditions are the interface definition between runner and draft tube are discussed. There are available data from physical model tests which gives a great opportunity to compare CFD and experiment results and on the basis of this comparison to determine the approach to the CFD flow modeling. The main purpose for the Kaplan turbine model measurement was to gather the information about real flow field. The model tests were carried out in new hydraulic laboratory of CKD Blansko Engineering. The model tests were focused on the detailed velocity measurements downstream of the runner by differential pressure probe and on the velocity measurement downstream of the draft tube elbow by Particle Image Velocimetry method (PIV). The data from CFD simulation were compared to the velocity measurement results. In the paper also the design of the original draft tube modification due to flow improvement is discussed in the case of the Kaplan turbine uprating project. The results of the draft tube modification were confirmed by model tests in the hydraulic laboratory as well.

  16. Idaho National Laboratory Research & Development Impacts

    Energy Technology Data Exchange (ETDEWEB)

    Stricker, Nicole [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-01-01

    Technological advances that drive economic growth require both public and private investment. The U.S. Department of Energy’s national laboratories play a crucial role by conducting the type of research, testing and evaluation that is beyond the scope of regulators, academia or industry. Examples of such work from the past year can be found in these pages. Idaho National Laboratory’s engineering and applied science expertise helps deploy new technologies for nuclear energy, national security and new energy resources. Unique infrastructure, nuclear material inventory and vast expertise converge at INL, the nation’s nuclear energy laboratory. Productive partnerships with academia, industry and government agencies deliver high-impact outcomes. This edition of INL’s Impacts magazine highlights national and regional leadership efforts, growing capabilities, notable collaborations, and technology innovations. Please take a few minutes to learn more about the critical resources and transformative research at one of the nation’s premier applied science laboratories.

  17. 76 FR 381 - Notice of Availability of the Draft Environmental Impact Statement/Draft Environmental Impact...

    Science.gov (United States)

    2011-01-04

    ...In accordance with the National Environmental Policy Act of 1969, as amended (NEPA), and the Federal Land Policy and Management Act of 1976, as amended (FLPMA), the Bureau of Land Management (BLM) and the California Public Utilities Commission (CPUC) have prepared a Draft Environmental Impact Statement (EIS), and Draft Environmental Impact Report (EIR) as a joint environmental analysis document for the Iberdrola Renewable/Pacific Wind Development Tule Wind Project (Tule Project) and the San Diego Gas and Electric's (SDG&E) East County Substation Project (ECO Project) and by this notice are announcing the opening of the comment period on the Draft EIS/EIR.

  18. LDRD Highlights at the National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Alayat, R. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-10-10

    To meet the nation’s critical challenges, the Department of Energy (DOE) national laboratories have always pushed the boundaries of science, technology, and engineering. The Atomic Energy Act of 1954 provided the basis for these laboratories to engage in the cutting edge of science and technology and respond to technological surprises, while retaining the best scientific and technological minds. To help re-energize this commitment, in 1991 the U.S. Congress authorized the national laboratories to devote a relatively small percentage of their budget to creative and innovative work that serves to maintain their vitality in disciplines relevant to DOE missions. Since then, this effort has been formally called the Laboratory Directed Research and Development (LDRD) Program. LDRD has been an essential mechanism to enable the laboratories to address DOE’s current and future missions with leading-edge research proposed independently by laboratory technical staff, evaluated through expert peer-review committees, and funded by the individual laboratories consistent with the authorizing legislation and the DOE LDRD Order 413.2C.

  19. National High Magnetic Field Laboratory (NHMFL)

    Data.gov (United States)

    Federal Laboratory Consortium — The Pulsed Field Program is located in Northern New Mexico at Los Alamos National Laboratory. The user program is designed to provide researchers with a balance of...

  20. Drafting Lab Management Guide.

    Science.gov (United States)

    Ohio State Univ., Columbus. Instructional Materials Lab.

    This manual was developed to guide drafting instructors and vocational supervisors in sequencing laboratory instruction and controlling the flow of work for a 2-year machine trades training program. The first part of the guide provides information on program management (program description, safety concerns, academic issues, implementation…

  1. 77 FR 74175 - Solicitation of Review Editors for the Draft Report of the National Climate Assessment and...

    Science.gov (United States)

    2012-12-13

    ... Climate Change Science; The NCA Long-Term Process. Dated: December 6, 2012. Jason Donaldson, Chief Financial Officer/Chief Administrative Officer, Office of Oceanic and Atmospheric Research, National Oceanic... Assessment 2013 Draft Report. Review Editor Role In the NCA Process: One Review Editor for each NCA 2013...

  2. Science | Argonne National Laboratory

    Science.gov (United States)

    Security Photon Sciences Physical Sciences & Engineering Energy Frontier Research Centers Scientific Publications Researchers Postdocs Exascale Computing Institute for Molecular Engineering at Argonne Work with Us About Safety News Careers Education Community Diversity Directory Argonne National Laboratory

  3. Draft site-wide environmental impact statement for Sandia National Laboratories/New Mexico. Volume 2: Appendixes

    International Nuclear Information System (INIS)

    1999-04-01

    The DOE proposes to continue operating the Sandia National Laboratories/New Mexico (SNL/NM) located in central New Mexico. The DOE has identified and assessed three alternatives for the operation of SNL/NM: (1) No Action, (2) Expanded Operations, and (3) Reduced Operations. In the No Action Alternative, the DOE would continue the historical mission support activities SNL/NM has conducted at planned operational levels. In the Expanded Operations Alternative, the DOE would operate SNL/NM at the highest reasonable levels of activity currently foreseeable. Under the Reduced Operations Alternative, the DOE would operate SNL/NM at the minimum levels of activity necessary to maintain the capabilities to support the DOE mission in the near term. Under all of the alternatives, the affected environment is primarily within 50 miles (80 kilometers) of SNL/NM. Analyses indicate little difference in the environmental impacts among alternatives. This volume contains Appendices A--H

  4. The Future of the National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Hartley, D.

    1997-12-31

    The policy debate that has surrounded the national laboratories of the Department of Energy since the end of the Cold War has been very confusing. Initially, with the passage of the National Competitiveness Technology Transfer Act of 1989, the laboratories were encouraged to form cooperative arrangements with industry to maintain their technology base and give a boost for U.S. industrial competitiveness. But in the 104th Congress, technology transfer programs were severely constrained.

  5. Instructor qualification for radiation safety training at a national laboratory

    International Nuclear Information System (INIS)

    Trinoskey, P.A.

    1994-10-01

    Prior to 1993, Health Physics Training (HPT) was conducted by the Lawrence Livermore National Laboratory (LLNL) health physics group. The job requirements specified a Masters Degree and experience. In fact, the majority of Health Physicists in the group were certified by the American Board of Health Physics. Under those circumstances, it was assumed that individuals in the group were technically qualified and the HPT instructor qualification stated that. In late 1993, the Health Physics Group at the LLNL was restructured and the training function was assigned to the training group. Additional requirements for training were mandated by the Department of Energy (DOE), which would necessitate increasing the existing training staff. With the need to hire, and the policy of reassignment of employees during downsizing, it was imperative that formal qualification standards be developed for technical knowledge. Qualification standards were in place for instructional capability. In drafting the new training qualifications for instructors, the requirements of a Certified Health Physicists had to be modified due to supply and demand. Additionally, for many of the performance-based training courses, registration by the National Registry of Radiation Protection Technologists is more desirable. Flexibility in qualification requirements has been incorporated to meet the reality of ongoing training and the compensation for desirable skills of individuals who may not meet all the criteria. The qualification requirements for an instructor rely on entry-level requirements and emphasis on goals (preferred) and continuing development of technical and instructional capabilities

  6. Power source evaluation capabilities at Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Doughty, D.H.; Butler, P.C.

    1996-04-01

    Sandia National Laboratories maintains one of the most comprehensive power source characterization facilities in the U.S. National Laboratory system. This paper describes the capabilities for evaluation of fuel cell technologies. The facility has a rechargeable battery test laboratory and a test area for performing nondestructive and functional computer-controlled testing of cells and batteries.

  7. Replacement of the Idaho National Engineering Laboratory Health Physics Instrumentation Laboratory

    International Nuclear Information System (INIS)

    1995-05-01

    The DOE-Idaho Operations Office (DOE-ID) has prepared an environmental assessment (EA) on the replacement of the Idaho National Engineering Laboratory Health Physics Instrumentation Laboratory at the Idaho National Engineering Laboratory (INEL). The purpose of this project is to replace the existing Health Physics Instrumentation Laboratory (HPIL) with a new facility to provide a safe environment for maintaining and calibrating radiation detection instruments used at the Idaho National Engineering Laboratory. The existing HPIL facility provides portable health physics monitoring instrumentation and direct reading dosimetry procurement, maintenance and calibration of radiation detection instruments, and research and development support-services to the INEL and others. However, the existing facility was not originally designed for laboratory activities and does not provide an adequate, safe environment for calibration activities. The EA examined the potential environmental impacts of the proposed action and evaluated reasonable alternatives, including the no action alternative in accordance with the Council on Environmental Quality (CEQ) Regulations (40 CFR Parts 1500-1508). Based on the environmental analysis in the attached EA, the proposed action will not have a significant effect on the human environment within the meaning of the National Environmental Policy Act (NEPA) and 40 CFR Parts 1508.18 and 1508.27. The selected action (the proposed alternative) is composed of the following elements, each described or evaluated in the attached EA on the pages referenced. The proposed action is expected to begin in 1997 and will be completed within three years: design and construction of a new facility at the Central Facility Area of the INEL; operation of the facility, including instrument receipt, inspections and repairs, precision testing and calibration, and storage and issuance. The selected action will result in no significant environmental impacts

  8. 78 FR 26616 - Draft NOAA Five Year Research and Development Plan

    Science.gov (United States)

    2013-05-07

    ... DEPARTMENT OF COMMERCE Draft NOAA Five Year Research and Development Plan AGENCY: National Oceanic and Atmospheric Administration (NOAA), Department of Commerce (DOC). ACTION: Draft NOAA Five Year Research and Development Plan for Public Review. SUMMARY: NOAA's draft Five Year Research and Development...

  9. Privacy Policy | Frederick National Laboratory for Cancer Research

    Science.gov (United States)

    The privacy of our users is of utmost importance to Frederick National Laboratory. The policy outlined below establishes how Frederick National Laboratory will use the information we gather about you from your visit to our website. We may coll

  10. Technology transfer in the national laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Yonas, G.

    1991-08-01

    The title of this paper might unfairly provoke readers if it conjures up visions of vast stores of high-tech gadgets in several hundred technology warehouses'' (also known as federal laboratories) around the country, open for browsing by those in search of a bargain. That vision, unfortunately, is a mirage. The term technology transfer'' is not really as accurate as is the term technology team-work,'' a process of sharing ideas and knowledge rather than widgets. In addition, instead of discussing the efforts of more than 700 federal labs in the US, I mean to address only those nine government-owned, contractor-operated multiprogram labs run by the Department of Energy. Nevertheless, the topic of technology team-work opportunities with DOE multiprogram national lab is of significance to those concerned with increasing economic competitiveness and finding technological solutions to a host of national problems. A significant fraction of US R D capabilities rests in the nine DOE multiprogram national laboratories -- and these labs have only just begun to join the other federal laboratories in these efforts due to the passage and recent implementation of the National Competitiveness Technology Transfer Act of 1989.

  11. Partnering with Sandia National Laboratories through alliances or consortia

    Energy Technology Data Exchange (ETDEWEB)

    Winchell, B.M.

    1994-12-01

    To better facilitate working with industry, groups of industrial participants, and partners in alliances or consortia, Sandia National Laboratories presents information helpful to those outside groups as to the forms of arrangements that may be used to better facilitate partnering relationships between Sandia National Laboratories and consortia or alliances of outside parties. It is expected that these alliances and consortia will include both large and small for-profit industrial concerns, as well as not-for-profit entities such as universities, institutes, other research facilities, and other nonprofit institutions or consortia containing institutions. The intent of this report is to provide such outside groups with information that will facilitate rapid interactions with Sandia National Laboratories through some of these forms of business which will be discussed in this report. These are not the only approaches to facilitating business interactions with Sandia National Laboratories and it is not intended that this report be legal advice or required approaches to doing business with Sandia National Laboratories. The intent of this report is merely to suggest ways in which Sandia National Laboratories can work with outside parties in the most expeditious manner.

  12. Partnering with Sandia National Laboratories through alliances or consortia

    Energy Technology Data Exchange (ETDEWEB)

    Winchell, B.M.

    1994-04-01

    To better facilitate working with industry, groups of industrial participants, and partners in alliances or consortia, Sandia National laboratories presents information helpful to those outside groups as to the forms of arrangements that may be used to better facilitate partnering relationships between Sandia National Laboratories and consortia or alliances of outside parties. It is expected that these alliances and consortia will include both large and small for-profit industrial concerns, as well as not-for-profit entities such as universities, institutes, other research facilities, and other nonprofit institutions or consortia containing institutions. The intent of this report is to provide such outside groups with information that will facilitate rapid interactions with Sandia National Laboratories through some of these forms of business which will be discussed in this report. These are not the only approaches to facilitating business interactions with Sandia National Laboratories and it is not intended that this report be legal advice or required approaches to doing business with Sandia National Laboratories. The intent of this report is merely to suggest ways in which Sandia National Laboratories can work with outside parties in the most expeditious manner.

  13. Lawrence Livermore National Laboratory Environmental Report 2012

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Henry E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Armstrong, Dave [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Blake, Rick G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bertoldo, Nicholas A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Cerruti, Steven J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Fish, Craig [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dibley, Valerie R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Doman, Jennifer L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Grayson, Allen R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Heidecker, Kelly R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hollister, Rod K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kumamoto, Gene [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); MacQueen, Donald H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Nelson, Jennifer C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ottaway, Heather L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Paterson, Lisa E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Revelli, Michael A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rosene, Crystal A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Terrill, Alison A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wegrecki, Anthony M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wilson, Kent R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Woollett, Jim S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2013-09-19

    Lawrence Livermore National Laboratory (LLNL) is a premier research laboratory that is part of the National Nuclear Security Administration (NNSA) within the U.S. Department of Energy (DOE). As a national security laboratory, LLNL is responsible for ensuring that the nation’s nuclear weapons remain safe, secure, and reliable. The Laboratory also meets other pressing national security needs, including countering the proliferation of weapons of mass destruction and strengthening homeland security, and conducting major research in atmospheric, earth, and energy sciences; bioscience and biotechnology; and engineering, basic science, and advanced technology. The Laboratory is managed and operated by Lawrence Livermore National Security, LLC (LLNS), and serves as a scientific resource to the U.S. government and a partner to industry and academia. LLNL operations have the potential to release a variety of constituents into the environment via atmospheric, surface water, and groundwater pathways. Some of the constituents, such as particles from diesel engines, are common at many types of facilities while others, such as radionuclides, are unique to research facilities like LLNL. All releases are highly regulated and carefully monitored. LLNL strives to maintain a safe, secure and efficient operational environment for its employees and neighboring communities. Experts in environment, safety and health (ES&H) support all Laboratory activities. LLNL’s radiological control program ensures that radiological exposures and releases are reduced to as low as reasonably achievable to protect the health and safety of its employees, contractors, the public, and the environment. LLNL is committed to enhancing its environmental stewardship and managing the impacts its operations may have on the environment through a formal Environmental Management System. The Laboratory encourages the public to participate in matters related to the Laboratory’s environmental impact on the

  14. Lawrence Livermore National Laboratory Environmental Report 2013

    Energy Technology Data Exchange (ETDEWEB)

    Jones, H. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bertoldo, N. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Blake, R. G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Cerruti, S. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dibley, V. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Doman, J. L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Fish, C. B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Grayson, A. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Heidecker, K. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kumamoto, G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); MacQueen, D. H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Montemayor, W. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ottaway, H. L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Paterson, L. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Revelli, M. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rosene, C. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Terrill, A. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wegrecki, A. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wilson, K. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Woollett, J. S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Veseliza, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-10-01

    Lawrence Livermore National Laboratory (LLNL) is a premier research laboratory that is part of the National Nuclear Security Administration (NNSA) within the U.S. Department of Energy (DOE). As a national security laboratory, LLNL is responsible for ensuring that the nation’s nuclear weapons remain safe, secure, and reliable. The Laboratory also meets other pressing national security needs, including countering the proliferation of weapons of mass destruction and strengthening homeland security, and conducting major research in atmospheric, earth, and energy sciences; bioscience and biotechnology; and engineering, basic science, and advanced technology. The Laboratory is managed and operated by Lawrence Livermore National Security, LLC (LLNS), and serves as a scientific resource to the U.S. government and a partner to industry and academia. LLNL operations have the potential to release a variety of constituents into the environment via atmospheric, surface water, and groundwater pathways. Some of the constituents, such as particles from diesel engines, are common at many types of facilities while others, such as radionuclides, are unique to research facilities like LLNL. All releases are highly regulated and carefully monitored. LLNL strives to maintain a safe, secure and efficient operational environment for its employees and neighboring communities. Experts in environment, safety and health (ES&H) support all Laboratory activities. LLNL’s radiological control program ensures that radiological exposures and releases are reduced to as low as reasonably achievable to protect the health and safety of its employees, contractors, the public, and the environment. LLNL is committed to enhancing its environmental stewardship and managing the impacts its operations may have on the environment through a formal Environmental Management System. The Laboratory encourages the public to participate in matters related to the Laboratory’s environmental impact on the

  15. ISO 14001 IMPLEMENTATION AT A NATIONAL LABORATORY

    International Nuclear Information System (INIS)

    BRIGGS, S.L.K.

    2001-01-01

    After a tumultuous year discovering serious lapses in environment, safety and health management at Brookhaven National Laboratory, the Department of Energy established a new management contract. It called for implementation of an IS0 14001 Environmental Management System and registration of key facilities. Brookhaven Science Associates, the managing contractor for the Laboratory, designed and developed a three-year project to change culture and achieve the goals of the contract. The focus of its efforts were to use IS0 14001 to integrate environmental stewardship into all facets of the Laboratory's mission, and manage its programs in a manner that protected the ecosystem and public health. A large multidisciplinary National Laboratory with over 3,000 employees and 4,000 visiting scientists annually posed significant challenges for IS0 14001 implementation. Activities with environmental impacts varied from regulated industrial waste generation, to soil activation from particle accelerator operations, to radioactive groundwater contamination from research reactors. A project management approach was taken to ensure project completion on schedule and within budget. The major work units for the Environmental Management System Project were as follows: Institutional EMS Program Requirements, Communications, Training, Laboratory-wide Implementation, and Program Assessments. To minimize costs and incorporate lessons learned before full-scale deployment throughout the Laboratory, a pilot process was employed at three facilities. Brookhaven National Laboratory has completed its second year of the project in the summer of 2000, successfully registering nine facilities and self-declaring conformance in all remaining facilities. Project controls, including tracking and reporting progress against a model, have been critical to the successful implementation. Costs summaries are lower than initial estimates, but as expected legal requirements, training, and assessments are key cost

  16. Secondary calibration laboratory for ionizing radiation laboratory accreitation program National Institute of Standards and Technology National Voluntary Laboratory Accreditation Program

    Energy Technology Data Exchange (ETDEWEB)

    Martin, P.R.

    1993-12-31

    This paper presents an overview of the procedures and requirements for accreditation under the Secondary Calibration Laboratory for Ionizing Radiation Program (SCLIR LAP). The requirements for a quality system, proficiency testing and the onsite assessment are discussed. The purpose of the accreditation program is to establish a network of secondary calibration laboratories that can provide calibrations traceable to the primary national standards.

  17. Secondary calibration laboratory for ionizing radiation laboratory accreitation program National Institute of Standards and Technology National Voluntary Laboratory Accreditation Program

    International Nuclear Information System (INIS)

    Martin, P.R.

    1993-01-01

    This paper presents an overview of the procedures and requirements for accreditation under the Secondary Calibration Laboratory for Ionizing Radiation Program (SCLIR LAP). The requirements for a quality system, proficiency testing and the onsite assessment are discussed. The purpose of the accreditation program is to establish a network of secondary calibration laboratories that can provide calibrations traceable to the primary national standards

  18. Source document for waste area groupings at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Osborne, P.L.; Kuhaida, A.J., Jr.

    1996-09-01

    This document serves as a source document for Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and other types of documents developed for and pertaining to Environmental Restoration (ER) Program activities at Oak Ridge National Laboratory (ORNL). It contains descriptions of the (1) regulatory requirements for the ORR ER Program, (2) Oak Ridge Reservation (ORR) ER Program, (3) ORNL site history and characterization, and (4) history and characterization of Waste Area Groupings (WAGS) 1-20. This document was created to save time, effort, and money for persons and organizations drafting documents for the ER Program and to improve consistency in the documents prepared for the program. By eliminating the repetitious use of selected information about the program, this document will help reduce the time and costs associated with producing program documents. By serving as a benchmark for selected information about the ER Program, this reference will help ensure that information presented in future documents is accurate and complete

  19. National Laboratory Planning: Developing Sustainable Biocontainment Laboratories in Limited Resource Areas.

    Science.gov (United States)

    Yeh, Kenneth B; Adams, Martin; Stamper, Paul D; Dasgupta, Debanjana; Hewson, Roger; Buck, Charles D; Richards, Allen L; Hay, John

    2016-01-01

    Strategic laboratory planning in limited resource areas is essential for addressing global health security issues. Establishing a national reference laboratory, especially one with BSL-3 or -4 biocontainment facilities, requires a heavy investment of resources, a multisectoral approach, and commitments from multiple stakeholders. We make the case for donor organizations and recipient partners to develop a comprehensive laboratory operations roadmap that addresses factors such as mission and roles, engaging national and political support, securing financial support, defining stakeholder involvement, fostering partnerships, and building trust. Successful development occurred with projects in African countries and in Azerbaijan, where strong leadership and a clear management framework have been key to success. A clearly identified and agreed management framework facilitate identifying the responsibility for developing laboratory capabilities and support services, including biosafety and biosecurity, quality assurance, equipment maintenance, supply chain establishment, staff certification and training, retention of human resources, and sustainable operating revenue. These capabilities and support services pose rate-limiting yet necessary challenges. Laboratory capabilities depend on mission and role, as determined by all stakeholders, and demonstrate the need for relevant metrics to monitor the success of the laboratory, including support for internal and external audits. Our analysis concludes that alternative frameworks for success exist for developing and implementing capabilities at regional and national levels in limited resource areas. Thus, achieving a balance for standardizing practices between local procedures and accepted international standards is a prerequisite for integrating new facilities into a country's existing public health infrastructure and into the overall international scientific community.

  20. Brookhaven National Laboratory site environmental report for calendar year 1994

    Energy Technology Data Exchange (ETDEWEB)

    Naidu, J.R.; Royce, B.A. [eds.

    1995-05-01

    This report documents the results of the Environmental Monitoring Program at Brookhaven National Laboratory and presents summary information about environmental compliance for 1994. To evaluate the effect of Brookhaven National Laboratory`s operations on the local environment, measurements of direct radiation, and a variety of radionuclides and chemical compounds in ambient air, soil, sewage effluent, surface water, groundwater, fauna and vegetation were made at the Brookhaven National Laboratory site and at sites adjacent to the Laboratory.

  1. Environmental monitoring plan for Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1995-09-01

    This document presents an Environmental Monitoring Plan (EMP) for Waste Area Grouping (WAG 6) at Oak Ridge National Laboratory (ORNL). This document updates a draft monitoring plan developed in 1993. The draft plan was never finalized awaiting resolution of the mechanisms for addressing RCRA concerns at a site where the CERCLA process resulted in a decision to defer action, i.e., postpone closure indefinitely. Over the past two years the Tennessee Department of Environment and Conservation (TDEC), US Department of Energy (DOE), and US Environmental Protection Agency (EPA) Region IV, have agreed that RCRA authority at the site will be maintained through a post- closure permit; ''closure'' in this case referring to deferred action. Both a Revised Closure Plan (DOE 1995a) and a Post-Closure Permit Application (DOE 1995b) have been developed to document this agreement; relevant portions of the EMP will be included in the RCRA Post-Closure Permit Application. As the RCRA issues were being negotiated, DOE initiated monitoring at WAG 6. The purpose of the monitoring activities was to (1) continue to comply with RCRA groundwater quality assessment requirements, (2) install new monitoring equipment, and (3) establish the baseline conditions at WAG 6 against which changes in contaminant releases could be measured. Baseline monitoring is scheduled to end September 30, 1995. Activities that have taken place over the past two years are summarized in this document

  2. POLLUTION PREVENTION OPPORTUNITY ASSESSMENT - MANUFACTURING AND FABRICATION REPAIR LABORATORY AT SANDIA NATIONAL LABORATORIES

    Science.gov (United States)

    These reports summarize pollution prevention opportunity assessments conducted jointly by EPA and DOE at the Geochemistry Laboratory and the Manufacturing and Fabrication Repair Laboratory at the Department of Energy's Sandia National Laboratories facility in Albuquerque, New Mex...

  3. Brookhaven highlights - Brookhaven National Laboratory 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    This report highlights research conducted at Brookhaven National Laboratory in the following areas: alternating gradient synchrotron; physics; biology; national synchrotron light source; department of applied science; medical; chemistry; department of advanced technology; reactor; safety and environmental protection; instrumentation; and computing and communications.

  4. National Laboratory of Synchrotron Radiation: technologic potential

    International Nuclear Information System (INIS)

    Silva, C.E.T.G. da; Rodrigues, A.R.D.

    1987-01-01

    The technological or industrial developments based on the accumulated experience by research group of condensed matter physics, in Brazil, are described. The potential of a National Laboratory of Synchrotron Radiation for personnel training, absorption and adaptation of economically important technologies for Brazil, is presented. Examples of cooperations between the Laboratory and some national interprises, and some industrial applications of the synchrotron radiation are done. (M.C.K.) [pt

  5. National Laboratory Planning: Developing Sustainable Biocontainment Laboratories in Limited Resource Areas

    OpenAIRE

    Yeh, Kenneth B.; Adams, Martin; Stamper, Paul D.; Dasgupta, Debanjana; Hewson, Roger; Buck, Charles D.; Richards, Allen L.; Hay, John

    2016-01-01

    Strategic laboratory planning in limited resource areas is essential for addressing global health security issues. Establishing a national reference laboratory, especially one with BSL-3 or -4 biocontainment facilities, requires a heavy investment of resources, a multisectoral approach, and commitments from multiple stakeholders. We make the case for donor organizations and recipient partners to develop a comprehensive laboratory operations roadmap that addresses factors such as mission and r...

  6. Brookhaven National Laboratory site environmental report for calendar year 1996

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, G.L.; Paquette, D.E.; Naidu, J.R.; Lee, R.J.; Briggs, S.L.K.

    1998-01-01

    This report documents the results of the Environmental Monitoring Program at Brookhaven National Laboratory and summarizes information about environmental compliance for 1996. To evaluate the effect of Brookhaven National Laboratory`s operations on the local environment, measurements of direct radiation, and of a variety of radionuclides and chemical compounds in the ambient air, soil, sewage effluent, surface water, groundwater, fauna, and vegetation were made at the Brookhaven National Laboratory site and at adjacent sites. The report also evaluates the Laboratory`s compliance with all applicable guides, standards, and limits for radiological and non-radiological emissions and effluents to the environment.

  7. Prototype prosperity-diversity game for the Laboratory Development Division of Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    VanDevender, P.; Berman, M.; Savage, K.

    1996-02-01

    The Prosperity Game conducted for the Laboratory Development Division of National Laboratories on May 24--25, 1995, focused on the individual and organizational autonomy plaguing the Department of Energy (DOE)-Congress-Laboratories` ability to manage the wrenching change of declining budgets. Prosperity Games are an outgrowth and adaptation of move/countermove and seminar War Games. Each Prosperity Game is unique in that both the game format and the player contributions vary from game to game. This particular Prosperity Game was played by volunteers from Sandia National Laboratories, Eastman Kodak, IBM, and AT&T. Since the participants fully control the content of the games, the specific outcomes will be different when the team for each laboratory, Congress, DOE, and the Laboratory Operating Board (now Laboratory Operations Board) is composed of executives from those respective organizations. Nevertheless, the strategies and implementing agreements suggest that the Prosperity Games stimulate cooperative behaviors and may permit the executives of the institutions to safely explore the consequences of a family of DOE concert.

  8. 76 FR 7817 - Announcing Draft Federal Information Processing Standard 180-4, Secure Hash Standard, and Request...

    Science.gov (United States)

    2011-02-11

    ...-02] Announcing Draft Federal Information Processing Standard 180-4, Secure Hash Standard, and Request... and request for comments. SUMMARY: This notice announces the Draft Federal Information Processing..., Information Technology Laboratory, Attention: Comments on Draft FIPS 180-4, 100 Bureau Drive--Stop 8930...

  9. Fuel cells for transportation program: FY1997 national laboratory annual report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The Department of Energy (DOE) Fuel Cells for Transportation Program is structured to effectively implement the research and development (R and D) required for highly efficient, low or zero emission fuel cell power systems to be a viable replacement for the internal combustion engine in automobiles. The Program is part of the Partnership for a New Generation of Vehicles (PNGV), a government-industry initiative aimed at development of an 80 mile-per-gallon vehicle. This Annual Report summarizes the technical accomplishments of the laboratories during 1997. Participants include: Argonne National Laboratory (ANL), Brookhaven National Laboratory (BNL), Lawrence Berkeley National Laboratory (LBNL), Los Alamos National Laboratory (LANL), Oak Ridge National Laboratory (ORNL), Pacific Northwest National Laboratory (PNNL), and the National Renewable Energy Laboratory (NREL). During 1997, the laboratory R and D included one project on solid oxide fuel cells; this project has since been terminated to focus Department resources on PEM fuel cells. The technical component of this report is divided into five key areas: fuel cell stack research and development; fuel processing; fuel cell modeling, testing, and evaluation; direct methanol PEM fuel cells; and solid oxide fuel cells.

  10. Brookhaven National Laboratory site environmental report for calendar year 1994

    International Nuclear Information System (INIS)

    Naidu, J.R.; Royce, B.A.

    1995-05-01

    This report documents the results of the Environmental Monitoring Program at Brookhaven National Laboratory and presents summary information about environmental compliance for 1994. To evaluate the effect of Brookhaven National Laboratory's operations on the local environment, measurements of direct radiation, and a variety of radionuclides and chemical compounds in ambient air, soil, sewage effluent, surface water, groundwater, fauna and vegetation were made at the Brookhaven National Laboratory site and at sites adjacent to the Laboratory

  11. Los Alamos National Laboratory plans for a laboratory microfusion facility

    International Nuclear Information System (INIS)

    Harris, D.B.

    1988-01-01

    Los Alamos National Laboratory is actively participating in the National Laboratory Microfusion Facility (LMF) Scoping Study. We are currently performing a conceptual design study of a krypton-fluoride laser system that appears to meet all of the diver requirements for the LMF. A new theory of amplifier module scaling has been developed recently and it appears that KrF amplifier modules can be scaled up to output energies much larger than thought possible a few years ago. By using these large amplifier modules, the reliability and availability of the system is increased and its cost and complexity is decreased. Final cost figures will be available as soon as the detailed conceptual design is complete

  12. Preliminary draft: environmental impact statement for Hot Engineering Test Project at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Boyle, J.W.; Baxter, B.J.; Carpenter, J.A.

    1978-08-01

    The project considered is the Hot Engineering Test Project (HETP), which is to be located in largely existing facilities at Oak Ridge National Laboratory (ORNL). The project is a part of the National High Temperature Gas-Cooled Reactor Fuel Recycle Program, which seeks to demonstrate the technological feasibility of the recycle processes. The HETP will attempt to confirm the operability of the processes (proven feasible in cold or nonradioactive, benchtop experimentation) under the more realistic radioactive condition. As such, the operation will involve the reprocessing and refabrication of spent HTGR fuel rods obtained from the Fort St. Vrain reactor. The reference fuel is highly enriched uranium. No significant radiological impacts are expected from routine operation of the facility to any biota or ecosystem. Concentrations of one or more radionuclides in Whiteoak Lake will increase as a result of the combination of HETP wastes with other ORNL wastes. Nonradiological effects from construction activities and routine operation should be insignificant on land and water use and on terrestrial and aquatic ecosystems. No significant socioeconomic impacts should occur from either construction or operation of the facility. Some conservative accident scenarios depict significant releases of radioactivity. Effects should be localized and would not be severe for all but the most unlikely of such incidents. No significant long-term commitment of resources is expected to be required for the project. Nor are any large quantities of scarce or critical resources likely to be irreversibly or irretrievably committed to the project. Principal alternatives considered were: relocation of the project site, postponement of the project schedule, project cancellation, and chemical process variations

  13. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement

    International Nuclear Information System (INIS)

    1994-06-01

    This document analyzes at a programmatic level the potential environmental consequences over the next 40 years of alternatives related to the transportation, receipt, processing, and storage of spent nuclear fuel under the responsibility of the US Department of Energy. It also analyzes the site-specific consequences of the Idaho National Engineering Laboratory sitewide actions anticipated over the next 10 years for waste and spent nuclear fuel management and environmental restoration. For programmatic spent nuclear fuel management this document analyzes alternatives of no action, decentralization, regionalization, centralization and the use of the plans that existed in 1992/1993 for the management of these materials. For the Idaho National Engineering Laboratory, this document analyzes alternatives of no action, ten-year plan, minimum and maximum and maximum treatment, storage, and disposal of US Department of Energy wastes

  14. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement

    International Nuclear Information System (INIS)

    1994-06-01

    This document analyzes at a pregrammatic level the potential environmental consequences over the next 40 years of alternatives related to the transportation, receipt, processing, and storage of spent nuclear fuel under the responsibility of the US Department of Energy. It also analyzes the site-specific consequences of the Idaho National Engineering Laboratory sitewide actions anticipated over the next 10 years for waste and spent nuclear fuel management and environmental restoration. For pregrammatic spent nuclear fuel management, this document analyzes alternatives of no action, decentralization, regionalization, centralization and the use of the plans that existed in 1992/1993 for the management of these materials. For the Idaho National Engineering Laboratory, this document analyzes alternatives of no action, ten-year plan, minimum and maximum treatment, storage, and disposal of US Department of Energy wastes

  15. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs draft environmental impact statement

    International Nuclear Information System (INIS)

    1994-06-01

    This document analyzes at a programmatic level the potential environmental consequences over the next 40 years of alternatives related to the transportation, receipt, processing, and storage of spent nuclear fuel under the responsibility of the US Department of Energy. It also analyzes the site-specific consequences of the Idaho National Engineering Laboratory sitewide actions anticipated over the next 10 years for waste and spent nuclear fuel management and environmental restoration. For programmatic spent nuclear fuel management, this document analyzes alternatives of no action, decentralization, regionalization, centralization and the use of the plans that existed in 1992/1993 for the management of these materials. For the Idaho National Engineering Laboratory, this document analyzes alternatives of no action, ten-year plan, minimum and maximum treatment, storage, and disposal of US Department of Energy wastes

  16. Sandia National Laboratories 1979 environmental monitoring report

    International Nuclear Information System (INIS)

    Simmons, T.N.

    1980-04-01

    Sandia National Laboratories in Albuquerque is located south of the city on two broad mesas. The local climate is arid continental. Radionuclides are released from five technical areas from the Laboratories' resarch activities. Sandia's environmental monitoring program searches for cesium-137, tritium, uranium, alpha emitters, and beta emitters in water, soil, air, and vegetation. No activity was found in public areas in excess of local background in 1979. The Albuquerque population receives only 0.076 person-rem (estimated) from airborne radioactive releases. While national security research is the laboratories' major responsibility, energy research is a major area of activity. Both these research areas cause radioactive releases

  17. Nation state and the challenge of globalization: Project draft

    Directory of Open Access Journals (Sweden)

    Obrenović Zoran G.

    2002-01-01

    Full Text Available This project draft discusses the issues facing a nation state in the dynamic processes of globalization. First, the term globalization is tentatively defined as a decentralized process of condensation and homogenization of space and time. Then, the ambivalent structure of the globalization discourse, i.e. its semantic and pragmatic dimensions, are shown. The neo-liberal viewpoint is explored of the erosion and weakening of the nation state within the global capitalist power, both in terms of its (state's traditional functions, and in terms of its internal and external sovereignty. Against the neo-liberal thesis about the decline of the nation state many empirical arguments have been offered. Some of these are presented in this text. The main point of this argumentation consists in a general view that the decline of the nation state is strongly linked with the process of globalization. In view of the critical argumentation included in the paper, it is argued that in the environment of global processes only the societies which have a strong state behind them have a chance to succeed. Politics, not economy, still dominates international relations. Emphasis on state politics opens a new perspective in discussing the process of globalization. Current globalization processes cannot be judged accurately unless geopolitical interests and the changing balance of world power are understood. Finally, the paper points to the ideological nature of the neo-liberal discourse of globalization, questioning another basic assumption of the latter, namely, the idea that the process of globalization is at the same time a process of emancipation. By challenging the positing of a necessary link between globalization and emancipation we formulate a position that allows for a normative critique of current processes.

  18. Chemical research at Argonne National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-04-01

    Argonne National Laboratory is a research and development laboratory located 25 miles southwest of Chicago, Illinois. It has more than 200 programs in basic and applied sciences and an Industrial Technology Development Center to help move its technologies to the industrial sector. At Argonne, basic energy research is supported by applied research in diverse areas such as biology and biomedicine, energy conservation, fossil and nuclear fuels, environmental science, and parallel computer architectures. These capabilities translate into technological expertise in energy production and use, advanced materials and manufacturing processes, and waste minimization and environmental remediation, which can be shared with the industrial sector. The Laboratory`s technologies can be applied to help companies design products, substitute materials, devise innovative industrial processes, develop advanced quality control systems and instrumentation, and address environmental concerns. The latest techniques and facilities, including those involving modeling, simulation, and high-performance computing, are available to industry and academia. At Argonne, there are opportunities for industry to carry out cooperative research, license inventions, exchange technical personnel, use unique research facilities, and attend conferences and workshops. Technology transfer is one of the Laboratory`s major missions. High priority is given to strengthening U.S. technological competitiveness through research and development partnerships with industry that capitalize on Argonne`s expertise and facilities. The Laboratory is one of three DOE superconductivity technology centers, focusing on manufacturing technology for high-temperature superconducting wires, motors, bearings, and connecting leads. Argonne National Laboratory is operated by the University of Chicago for the U.S. Department of Energy.

  19. Final Report National Laboratory Professional Development Workshop for Underrepresented Participants

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Valerie [Texas Engineering Experiment Station, College Station, TX (United States)

    2016-11-07

    The 2013 CMD-IT National Laboratories Professional Development Workshop for Underrepresented Participants (CMD-IT NLPDev 2013) was held at the Oak Ridge National Laboratory campus in Oak Ridge, TN. from June 13 - 14, 2013. Sponsored by the Department of Energy (DOE) Advanced Scientific Computing Research Program, the primary goal of these workshops is to provide information about career opportunities in computational science at the various national laboratories and to mentor the underrepresented participants through community building and expert presentations focused on career success. This second annual workshop offered sessions to facilitate career advancement and, in particular, the strategies and resources needed to be successful at the national laboratories.

  20. Draft Statement of Work / Performance Work Statement SOL-R3-13-00006: Region 3 - National Remedial Action Contracts / Multiple Award Competition

    Science.gov (United States)

    Region 3 - EPA is performing market research to determine if industry has the capability and capacity to perform the work, on a national level, as described in the attached draft Statement of Work /Performance Work Statement(SOW/PWS).

  1. Accreditation - Its relevance for laboratories measuring radionuclides

    Energy Technology Data Exchange (ETDEWEB)

    Palsson, S E [Icelandic Radiation Protection Inst. (Iceland)

    2001-11-01

    Accreditation is an internationally recognised way for laboratories to demonstrate their competence. Obtaining and maintaining accreditation is, however, a costly and time-consuming procedure. The benefits of accreditation also depend on the role of the laboratory. Accreditation may be of limited relevance for a research laboratory, but essential for a laboratory associated with a national authority and e.g. issuing certificates. This report describes work done within the NKSBOK-1.1 sub-project on introducing accreditation to Nordic laboratories measuring radionuclides. Initially the focus was on the new standard ISO/IEC 17025, which was just in a draft form at the time, but which provides now a new framework for accreditation of laboratories. Later the focus was widened to include a general introduction to accreditation and providing through seminars a forum for exchanging views on the experience laboratories have had in this field. Copies of overheads from the last such seminar are included in the appendix to this report. (au)

  2. Comments from the Developmental Neurotoxicology Committee of the Japanese Teratology Society on the OECD Guideline for the Testing of Chemicals, Proposal for a New Guideline 426, Developmental Neurotoxicity Study, Draft Document (October 2006 version), and on the Draft Document of the Retrospective Performance Assessment of the Draft Test Guideline 426 on Developmental Neurotoxicity.

    Science.gov (United States)

    Ema, Makoto; Fukui, Yoshihiro; Aoyama, Hiroaki; Fujiwara, Michio; Fuji, Junichiro; Inouye, Minoru; Iwase, Takayuki; Kihara, Takahide; Oi, Akihide; Otani, Hiroki; Shinomiya, Mitsuhiro; Sugioka, Kozo; Yamano, Tsunekazu; Yamashita, Keisuke H; Tanimura, Takashi

    2007-06-01

    In October 2006, a new revision of the draft guideline (OECD Guideline for the Testing of Chemicals, Proposal for a New Guideline 426. Developmental Neurotoxicity Study) and Draft Document of the Retrospective Performance Assessment (RPA) of the Draft Test Guideline 426 on Developmental Neurotoxicity were distributed following incorporation of the results of the Expert Consultation Meeting in Tokyo on May 24-26, 2005. The draft guideline consists of 50 paragraphs and an appendix with 102 references; and the draft RPA consists of 37 paragraphs with 109 references. National coordinators were requested to arrange for national expert reviews of these draft documents in their member countries. Members of the Developmental Neurotoxicology (DNT) Committee of the Japanese Teratology Society (JTS) reviewed, discussed, and commented on the draft Test Guideline Proposal. The DNT Committee of the JTS also commented on the draft document of the RPA. These comments were sent to the OECD Secretariat. The DNT Committee of the JTS expects the comments to be useful for the finalization of these draft documents.

  3. Annotated bibliography National Environmental Policy Act (NEPA) documents for Sandia National Laboratories

    International Nuclear Information System (INIS)

    Harris, J.M.

    1995-04-01

    The following annotated bibliography lists documents prepared by the Department of Energy (DOE), and predecessor agencies, to meet the requirements of the National Environmental Policy Act (NEPA) for activities and facilities at Sandia National Laboratories sites. For each NEPA document summary information and a brief discussion of content is provided. This information may be used to reduce the amount of time or cost associated with NEPA compliance for future Sandia National Laboratories projects. This summary may be used to identify model documents, documents to use as sources of information, or documents from which to tier additional NEPA documents

  4. Annotated bibliography National Environmental Policy Act (NEPA) documents for Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Harris, J.M.

    1995-04-01

    The following annotated bibliography lists documents prepared by the Department of Energy (DOE), and predecessor agencies, to meet the requirements of the National Environmental Policy Act (NEPA) for activities and facilities at Sandia National Laboratories sites. For each NEPA document summary information and a brief discussion of content is provided. This information may be used to reduce the amount of time or cost associated with NEPA compliance for future Sandia National Laboratories projects. This summary may be used to identify model documents, documents to use as sources of information, or documents from which to tier additional NEPA documents.

  5. 76 FR 55391 - Notice of Postponement of Release of Draft NTP Monograph on Potential Developmental Effects of...

    Science.gov (United States)

    2011-09-07

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Notice of Postponement of Release of Draft NTP Monograph... Review Draft Monograph AGENCY: Division of the National Toxicology Program (DNTP), National Institute of... NTP monograph and peer review panel meeting. SUMMARY: The NTP is postponing the release of the Draft...

  6. Lawrence Livermore National Laboratory 2007 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Chrzanowski, P; Walter, K

    2008-04-25

    Lawrence Livermore National Laboratory's many outstanding accomplishments in 2007 are a tribute to a dedicated staff, which is shaping the Laboratory's future as we go through a period of transition and transformation. The achievements highlighted in this annual report illustrate our focus on the important problems that affect our nation's security and global stability, our application of breakthrough science and technology to tackle those problems, and our commitment to safe, secure, and efficient operations. In May 2007, the Department of Energy (DOE) awarded Lawrence Livermore National Security, LLC (LLNS), a new public-private partnership, the contract to manage and operate the Laboratory starting in October. Since its inception in 1952, the Laboratory had been managed by the University of California (UC) for the DOE's National Nuclear Security Administration (NNSA) and predecessor organizations. UC is one of the parent organizations that make up LLNS, and UC's presence in the new management entity will help us carry forward our strong tradition of multidisciplinary science and technology. 'Team science' applied to big problems was pioneered by the Laboratory's co-founder and namesake, Ernest O. Lawrence, and has been our hallmark ever since. Transition began fully a year before DOE's announcement. More than 1,600 activities had to be carried out to transition the Laboratory from management by a not-for-profit to a private entity. People, property, and procedures as well as contracts, formal agreements, and liabilities had to be transferred to LLNS. The pre-transition and transition teams did a superb job, and I thank them for their hard work. Transformation is an ongoing process at Livermore. We continually reinvent ourselves as we seek breakthroughs that impact emerging national needs. An example is our development in the late 1990s of a portable instrument that could rapidly detect DNA signatures, research that

  7. 1992 Environmental monitoring report, Sandia National Laboratories, Albuquerque, New Mexico

    International Nuclear Information System (INIS)

    Culp, T.; Cox, W.; Hwang, H.; Irwin, M.; Jones, A.; Matz, B.; Molley, K.; Rhodes, W.; Stermer, D.; Wolff, T.

    1993-09-01

    This 1992 report contains monitoring data from routine radiological and nonradiological environmental surveillance activities. summaries of significant environmental compliance programs in progress, such as National Environmental Policy Act documentation, environmental permits, envirorunental restoration, and various waste management programs for Sandia National Laboratories in Albuquerque, New Mexico, are included. The maximum offsite dose impact was calculated to be 0.0034 millirem. The total population within a 50-mile radius of Sandia National Laboratories/New Mexico received an estimated collective dose of 0.019 person-rem during 1992 from the laboratories' operations. As in the previous year, the 1992 operations at Sandia National Laboratories/New Mexico had no discernible impact on the general public or on the environment

  8. 75 FR 9613 - Draft NIJ Restraints Standard for Criminal Justice

    Science.gov (United States)

    2010-03-03

    ... DEPARTMENT OF JUSTICE Office of Justice Programs [OJP (NIJ) Docket No. 1512] Draft NIJ Restraints Standard for Criminal Justice AGENCY: National Institute of Justice, Office of Justice Programs, DOJ. ACTION: Notice of Draft NIJ Restraints Standard for Criminal Justice and Certification Program...

  9. Oak Ridge National Laboratory Next Generation Safeguards Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Kirk, Bernadette Lugue [ORNL; Eipeldauer, Mary D [ORNL; Whitaker, J Michael [ORNL

    2011-12-01

    In 2007, the Department of Energy's National Nuclear Security Administration (DOE/NNSA) Office of Nonproliferation and International Security (NA-24) completed a comprehensive review of the current and potential future challenges facing the international safeguards system. The review examined trends and events impacting the mission of international safeguards and the implications of expanding and evolving mission requirements on the legal authorities and institutions that serve as the foundation of the international safeguards system, as well as the technological, financial, and human resources required for effective safeguards implementation. The review's findings and recommendations were summarized in the report, 'International Safeguards: Challenges and Opportunities for the 21st Century (October 2007)'. One of the report's key recommendations was for DOE/NNSA to launch a major new program to revitalize the international safeguards technology and human resource base. In 2007, at the International Atomic Energy Agency's General Conference, then Secretary of Energy Samuel W. Bodman announced the newly created Next Generation Safeguards Initiative (NGSI). NGSI consists of five program elements: (1) Policy development and outreach; (2) Concepts and approaches; (3) Technology and analytical methodologies; (4) Human resource development; and (5) Infrastructure development. The ensuing report addresses the 'Human Resource Development (HRD)' component of NGSI. The goal of the HRD as defined in the NNSA Program Plan (November 2008) is 'to revitalize and expand the international safeguards human capital base by attracting and training a new generation of talent.' One of the major objectives listed in the HRD goal includes education and training, outreach to universities, professional societies, postdoctoral appointments, and summer internships at national laboratories. ORNL is a participant in the NGSI program, together

  10. Sandia National Laboratories: The First Fifty Years

    Energy Technology Data Exchange (ETDEWEB)

    MORA,CARL J.

    1999-11-03

    On Nov. 1, 1999, Sandia National Laboratories celebrates its 50th birthday. Although Sandia has its roots in the World War II-era Manhattan Project, Sandia began operating as a separate nuclear weapons engineering laboratory under the management of AT&T on Nov. 1, 1949. Today the lab employs more than 7,000 people at its two sites in Albuquerque and Livermore, California, and has research and development missions in national security, energy and environmental technologies, and U.S. economic competitiveness. Lockheed Martin Corporation operates Sandia for the US. Department of Energy.

  11. Annual Report on the State of the DOE National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    None

    2017-01-01

    This first Annual Report to Congress on the State of the DOE National Laboratories provides a comprehensive overview of the Lab system, covering S&T programs, management and strategic planning. The Department committed to prepare this report in response to recommendations from the Congressionally mandated Commission to Review the Effectiveness of the National Energy Laboratories (CRENEL) that the Department should better communicate the value that the Laboratories provide to the Nation. We expect that future annual reports will be much more compact, building on the extensive description of the Laboratories and of the governance structures that are part of this first report.

  12. Idaho National Laboratory Cultural Resource Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    Julie Braun Williams

    2013-02-01

    As a federal agency, the U.S. Department of Energy has been directed by Congress, the U.S. president, and the American public to provide leadership in the preservation of prehistoric, historic, and other cultural resources on the lands it administers. This mandate to preserve cultural resources in a spirit of stewardship for the future is outlined in various federal preservation laws, regulations, and guidelines such as the National Historic Preservation Act, the Archaeological Resources Protection Act, and the National Environmental Policy Act. The purpose of this Cultural Resource Management Plan is to describe how the Department of Energy, Idaho Operations Office will meet these responsibilities at Idaho National Laboratory in southeastern Idaho. The Idaho National Laboratory is home to a wide variety of important cultural resources representing at least 13,500 years of human occupation in the southeastern Idaho area. These resources are nonrenewable, bear valuable physical and intangible legacies, and yield important information about the past, present, and perhaps the future. There are special challenges associated with balancing the preservation of these sites with the management and ongoing operation of an active scientific laboratory. The Department of Energy, Idaho Operations Office is committed to a cultural resource management program that accepts these challenges in a manner reflecting both the spirit and intent of the legislative mandates. This document is designed for multiple uses and is intended to be flexible and responsive to future changes in law or mission. Document flexibility and responsiveness will be assured through regular reviews and as-needed updates. Document content includes summaries of Laboratory cultural resource philosophy and overall Department of Energy policy; brief contextual overviews of Laboratory missions, environment, and cultural history; and an overview of cultural resource management practices. A series of appendices

  13. ORNL (Oak Ridge National Laboratory) 89

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, T.D.; Appleton, B.R.; Jefferson, J.W.; Merriman, J.R.; Mynatt, F.R.; Richmond, C.R.; Rosenthal, M.W.

    1989-01-01

    This is the inaugural issues of an annual publication about the Oak Ridge National Laboratory. Here you will find a brief overview of ORNL, a sampling of our recent research achievements, and a glimpse of the directions we want to take over the next 15 years. A major purpose of ornl 89 is to provide the staff with a sketch of the character and dynamics of the Laboratory.

  14. ORNL [Oak Ridge National Laboratory] 89

    International Nuclear Information System (INIS)

    Anderson, T.D.; Appleton, B.R.; Jefferson, J.W.; Merriman, J.R.; Mynatt, F.R.; Richmond, C.R.; Rosenthal, M.W.

    1989-01-01

    This is the inaugural issues of an annual publication about the Oak Ridge National Laboratory. Here you will find a brief overview of ORNL, a sampling of our recent research achievements, and a glimpse of the directions we want to take over the next 15 years. A major purpose of ornl 89 is to provide the staff with a sketch of the character and dynamics of the Laboratory

  15. Draft site-wide environmental impact statement for Sandia National Laboratories/New Mexico. Volume 1: Chapters 1-15

    International Nuclear Information System (INIS)

    1999-04-01

    The DOE proposes to continue operating the Sandia National Laboratories/New Mexico (SNL/NM) located in central New Mexico. The DOE has identified and assessed three alternatives for the operation of SNL/NM: (1) No Action, (2) Expanded Operations, and (3) Reduced Operations. In the No Action Alternative, the DOE would continue the historical mission support activities SNL/NM has conducted at planned operational levels. In the Expanded Operations Alternative, the DOE would operate SNL/NM at the highest reasonable levels of activity currently foreseeable. Under the Reduced Operations Alternative, the DOE would operate SNL/NM at the minimum levels of activity necessary to maintain the capabilities to support the DOE mission in the near term. Under all of the alternatives, the affected environment is primarily within 50 miles (80 kilometers) of SNL/NM. Analyses indicate little difference in the environmental impacts among alternatives

  16. A History of Building 828, Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Ullrich, Rebecca

    1999-08-01

    This report documents the history of Building 828 in Sandia National Laboratories' Technical Area I. Building 828 was constructed in 1946 as a mechanical test laboratory for Los Alamos' Z-Division (later Sandia) as it moved to Sandia Base. The building has undergone significant remodeling over the years and has had a variety of occupants. The building was evaluated in compliance with the National Historic Preservation Act, but was not eligible for the National Register of Historic Places. Nevertheless, for many Labs employees, it was a symbol of Sandia's roots in World War II and the Manhattan Project.

  17. New way of demonstrating the competence of a laboratory measuring radionuclides - The international draft standard ISO/IEC DIS 17025

    International Nuclear Information System (INIS)

    Palsson, S.E.

    1999-01-01

    In recent years there has been increased interest, and even need, amongst laboratories performing measurements of radionuclides to obtain accreditation. It has been discussed how this could be achieved with maximum flexibility for the laboratories and with minimum effort. The issuing of a new draft international standard, the ISO/IEC DIS 17025, created speculations whether it could offer a new and better way for laboratories to obtain accreditation. It was decided within the NKS/BOK-1.1 project to explore possible options for obtaining accreditation and what possibilities the new standard could offer. The benefits of computerised document control systems were also explored. The results were reported at the 12th Annual Meeting of the Nordic Society for Radiation Protection, 23-27 August 1999. Since then the final version of the standard has been published. The voting will continue until November 16th 1999 and is not clear at present whether the standard will be accepted or not. The original version of this paper was updated to reflect these recent developments. (au)

  18. Lawrence Livermore National Laboratory Environmental Report 2015

    International Nuclear Information System (INIS)

    Rosene, C. A.; Jones, H. E.

    2016-01-01

    The purposes of the Lawrence Livermore National Laboratory Environmental Report 2015 are to record Lawrence Livermore National Laboratory's (LLNL's) compliance with environmental standards and requirements, describe LLNL's environmental protection and remediation programs, and present the results of environmental monitoring at the two LLNL sites-the Livermore Site and Site 300. The report is prepared for the U.S. Department of Energy (DOE) by LLNL's Environmental Functional Area. Submittal of the report satisfies requirements under DOE Order 231.1B, ''Environment, Safety and Health Reporting,'' and DOE Order 458.1, ''Radiation Protection of the Public and Environment.''

  19. Argonne National Laboratory 1985 publications

    International Nuclear Information System (INIS)

    Kopta, J.A.; Hale, M.R.

    1987-08-01

    This report is a bibliography of scientific and technical 1985 publications of Argonne National Laboratory. Some are ANL contributions to outside organizations' reports published in 1985. This compilation, prepared by the Technical Information Services Technical Publications Section (TPB), lists all nonrestricted 1985 publications submitted to TPS by Laboratory's Divisions. The report is divided into seven parts: Journal Articles - Listed by first author, ANL Reports - Listed by report number, ANL and non-ANL Unnumbered Reports - Listed by report number, Non-ANL Numbered Reports - Listed by report number, Books and Book Chapters - Listed by first author, Conference Papers - Listed by first author, Complete Author Index

  20. Laboratory quality stepwise implementation tool: National reference TB laboratory of Iran

    OpenAIRE

    Ali Naghi Kebriaee; Donya Malekshahian; Mojtaba Ahmadi; Parissa Farnia

    2015-01-01

    Background and objective: During recent years, the World Health Organization (WHO) proposed new software for improving the tuberculosis (TB) laboratory services. The protocol is known as “quality stepwise implementation tool” and is based on enforcement of quality assurance services through accreditation by the International Organization for Standardization (ISO) 15189. As a national reference TB laboratory (NRL) of Iran, the benefit and challenges of implementing this standard were analyzed....

  1. Pacific Northwest National Laboratory Institutional Plan FY 2004-2008

    Energy Technology Data Exchange (ETDEWEB)

    Quadrel, Marilyn J.

    2004-04-15

    This Institutional Plan for FY 2004-2008 is the principal annual planning document submitted to the Department of Energy's Office of Science by Pacific Northwest National Laboratory in Richland, Washington. This plan describes the Laboratory's mission, roles, and technical capabilities in support of Department of Energy priorities, missions, and plans. It also describes the Laboratory strategic plan, key planning assumptions, major research initiatives, and program strategy for fundamental science, energy resources, environmental quality, and national security.

  2. Frederick National Laboratory Rallies to Meet Demand for Zika Vaccine | Frederick National Laboratory for Cancer Research

    Science.gov (United States)

    The Frederick National Laboratory for Cancer Research is producing another round of Zika vaccine for ongoing studies to determine the best delivery method and dosage. This will lay the groundwork for additional tests to see if the vaccine prevents i

  3. Pacific Northwest National Laboratory institutional plan FY 1997--2002

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    Pacific Northwest National Laboratory`s core mission is to deliver environmental science and technology in the service of the nation and humanity. Through basic research fundamental knowledge is created of natural, engineered, and social systems that is the basis for both effective environmental technology and sound public policy. Legacy environmental problems are solved by delivering technologies that remedy existing environmental hazards, today`s environmental needs are addressed with technologies that prevent pollution and minimize waste, and the technical foundation is being laid for tomorrow`s inherently clean energy and industrial processes. Pacific Northwest National Laboratory also applies its capabilities to meet selected national security, energy, and human health needs; strengthen the US economy; and support the education of future scientists and engineers. Brief summaries are given of the various tasks being carried out under these broad categories.

  4. Hazardous waste systems analysis at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Urioste, J.

    1997-01-01

    Los Alamos National Laboratory produces routine and non-routine hazardous waste as a by-product of mission operations. Hazardous waste commonly generated at the Laboratory includes many types of laboratory research chemicals, solvents, acids, bases, carcinogens, compressed gases, metals, and other solid waste contaminated with hazardous waste. The Los Alamos National Laboratory Environmental Stewardship Office has established a Hazardous Waste Minimization Coordinator to specifically focus on routine and non-routine RCRA, TSCA, and other administratively controlled wastes. In this process, the Waste Minimization Coordinator has developed and implemented a systems approach to define waste streams, estimate waste management costs and develop plans to implement avoidance practices, and develop projects to reduce or eliminate the waste streams at the Laboratory. The paper describes this systems approach

  5. 1993 Site environmental report Sandia National Laboratories, Albuquerque, New Mexico

    International Nuclear Information System (INIS)

    Culp, T.A.; Cheng, C.F.; Cox, W.; Durand, N.; Irwin, M.; Jones, A.; Lauffer, F.; Lincoln, M.; McClellan, Y.; Molley, K.

    1994-11-01

    This 1993 report contains monitoring data from routine radiological and nonradiological environmental surveillance activities. Summaries of significant environmental compliance programs in progress, such as National Environmental Policy Act documentation, environmental permits, environmental restoration, and various waste management programs for Sandia National Laboratories in Albuquerque, New Mexico, are included. The maximum offsite dose impact was calculated to be 0.0016 millirem. The total population within a 50-mile (80 kilometer) radius of Sandia National Laboratories/New Mexico received an estimated collective dose of 0.027 person-rem during 1993 from the laboratories operations, As in the previous year, the 1993 operations at Sandia National Laboratories/New Mexico had no discernible impact on the general public or on the environment. This report is prepared for the U.S. Department of Energy in compliance with DOE Order 5400.1

  6. National Environmental Policy Act (NEPA) compliance at Sandia National Laboratories/New Mexico (SNL/NM)

    International Nuclear Information System (INIS)

    Wolff, T.A.

    1998-08-01

    This report on National Environmental Policy Act (NEPA) compliance at Sandia National Laboratories/New Mexico (SNL/NM) chronicles past and current compliance activities and includes a recommended strategy that can be implemented for continued improvement. This report provides a list of important references. Attachment 1 contains the table of contents for SAND95-1648, National Environmental Policy Act (NEPA) Compliance Guide Sandia National Laboratories (Hansen, 1995). Attachment 2 contains a list of published environmental assessments (EAs) and environmental impact statements (EISs) prepared by SNL/NM. Attachment 3 contains abstracts of NEPA compliance papers authored by SNL/NM and its contractors

  7. National Environmental Policy Act (NEPA) compliance at Sandia National Laboratories/New Mexico (SNL/NM)

    Energy Technology Data Exchange (ETDEWEB)

    Wolff, T.A. [Sandia National Labs., Albuquerque, NM (United States). Community Involvement and Issues Management Dept.; Hansen, R.P. [Hansen Environmental Consultants, Englewood, CO (United States)

    1998-08-01

    This report on National Environmental Policy Act (NEPA) compliance at Sandia National Laboratories/New Mexico (SNL/NM) chronicles past and current compliance activities and includes a recommended strategy that can be implemented for continued improvement. This report provides a list of important references. Attachment 1 contains the table of contents for SAND95-1648, National Environmental Policy Act (NEPA) Compliance Guide Sandia National Laboratories (Hansen, 1995). Attachment 2 contains a list of published environmental assessments (EAs) and environmental impact statements (EISs) prepared by SNL/NM. Attachment 3 contains abstracts of NEPA compliance papers authored by SNL/NM and its contractors.

  8. Oak Ridge National Laboratory institutional plan, FY 1992--FY 1997

    Energy Technology Data Exchange (ETDEWEB)

    1991-11-01

    In operation for fifty years, the Oak Ridge National Laboratory (ORNL) is managed by Martin Marietta Energy Systems, Inc., for the US Department of Energy (DOE). ORNL is one of DOE's major multiprogram national laboratories. Activities at the Laboratory are focused on basic and applied research, on technology development, and on other technological challenges that are important to DOE and to the nation. The Laboratory also performs research and development (R D) for non-DOE sponsors when such activities complement DOE missions and address important national or international issues. The Laboratory is committed to the pursuit of excellence in all its activities, including the commitment to carry out its missions in compliance with environmental, safety, and health laws and regulations. The principal elements of the Laboratory's missions in support of DOE include activities in each of the following areas: (1) Energy production and conservation technologies; (2) physical and life sciences; (3) scientific and technical user facilities; (4) environmental protection and waste management; (5) science technology transfer; and, (6) education. This institutional plan for ORNL activities is for the next five years: FY 1992--1997.

  9. Research at the Oak Ridge National Laboratory (ORNL)

    International Nuclear Information System (INIS)

    Postma, H.

    1980-01-01

    The Oak Ridge National Laboratory is a large (5300 people), US-government-funded laboratory, which performs research in many disciplines and in many technological areas. Programs and organization of ORNL are described for the People's Republic of China

  10. 46 CFR 167.55-1 - Draft marks and draft indicating systems.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Draft marks and draft indicating systems. 167.55-1... NAUTICAL SCHOOL SHIPS Special Markings Required § 167.55-1 Draft marks and draft indicating systems. (a... aft to the location of the draft marks, due to a raked stem or cut away skeg, the draft must be...

  11. Accreditation of testing laboratories in CNEA (National Atomic Energy Commission)

    International Nuclear Information System (INIS)

    Piacquadio, N.H.; Casa, V.A.; Palacios, T.A.

    1993-01-01

    The recognition of the technical capability of a testing laboratory is carried out by Laboratory Accreditation Bodies as the result of a satisfactory evaluation and the systematic follow up of the certified qualification. In Argentina the creation of a National Center for the Accreditation of Testing Laboratories, as a first step to assess a National Accreditation System is currently projected. CNEA, as an institution involved in technological projects and in the development and production of goods and services, has adopted since a long time ago quality assurance criteria. One of their requirements is the qualification of laboratories. Due to the lack of a national system, a Committee for the Qualification of Laboratories was created jointly by the Research and Development and Nuclear Fuel Cycle Areas with the responsibility of planning and management of the system evaluation and the certification of the quality of laboratories. The experience in the above mentioned topics is described in this paper. (author)

  12. Hydraulics national laboratory; Laboratoire national d`hydraulique

    Energy Technology Data Exchange (ETDEWEB)

    Chabard, J P

    1996-12-31

    The hydraulics national laboratory is a department of the service of applications of electric power and environment from the direction of studies and researches of Electricite de France. It has to solve the EDF problems concerning the fluids mechanics and hydraulics. Problems in PWR type reactors, fossil fuel power plants, circulating fluidized bed power plants, hydroelectric power plants relative to fluid mechanics and hydraulics studied and solved in 1995 are explained in this report. (N.C.)

  13. Hydraulics national laboratory; Laboratoire national d`hydraulique

    Energy Technology Data Exchange (ETDEWEB)

    Chabard, J.P.

    1995-12-31

    The hydraulics national laboratory is a department of the service of applications of electric power and environment from the direction of studies and researches of Electricite de France. It has to solve the EDF problems concerning the fluids mechanics and hydraulics. Problems in PWR type reactors, fossil fuel power plants, circulating fluidized bed power plants, hydroelectric power plants relative to fluid mechanics and hydraulics studied and solved in 1995 are explained in this report. (N.C.)

  14. Critical Infrastructure Protection- Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Bofman, Ryan K. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-24

    Los Alamos National Laboratory (LANL) has been a key facet of Critical National Infrastructure since the nuclear bombing of Hiroshima exposed the nature of the Laboratory’s work in 1945. Common knowledge of the nature of sensitive information contained here presents a necessity to protect this critical infrastructure as a matter of national security. This protection occurs in multiple forms beginning with physical security, followed by cybersecurity, safeguarding of classified information, and concluded by the missions of the National Nuclear Security Administration.

  15. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    This document analyzes at a pregrammatic level the potential environmental consequences over the next 40 years of alternatives related to the transportation, receipt, processing, and storage of spent nuclear fuel under the responsibility of the US Department of Energy. It also analyzes the site-specific consequences of the Idaho National Engineering Laboratory sitewide actions anticipated over the next 10 years for waste and spent nuclear fuel management and environmental restoration. For pregrammatic spent nuclear fuel management, this document analyzes alternatives of no action, decentralization, regionalization, centralization and the use of the plans that existed in 1992/1993 for the management of these materials. For the Idaho National Engineering Laboratory, this document analyzes alternatives of no action, ten-year plan, minimum and maximum treatment, storage, and disposal of US Department of Energy wastes.

  16. 76 FR 51034 - Availability of Draft NTP Monograph on Potential Developmental Effects of Cancer Chemotherapy...

    Science.gov (United States)

    2011-08-17

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Availability of Draft NTP Monograph on Potential... Meeting To Peer Review Draft Monograph AGENCY: Division of the National Toxicology Program (DNTP...: Availability of Draft Monograph; Request for Comments; Announcement of a Peer Review Panel Meeting. SUMMARY...

  17. Argonne National Laboratory 1985 publications

    Energy Technology Data Exchange (ETDEWEB)

    Kopta, J.A. (ED.); Hale, M.R. (comp.)

    1987-08-01

    This report is a bibliography of scientific and technical 1985 publications of Argonne National Laboratory. Some are ANL contributions to outside organizations' reports published in 1985. This compilation, prepared by the Technical Information Services Technical Publications Section (TPB), lists all nonrestricted 1985 publications submitted to TPS by Laboratory's Divisions. The report is divided into seven parts: Journal Articles - Listed by first author, ANL Reports - Listed by report number, ANL and non-ANL Unnumbered Reports - Listed by report number, Non-ANL Numbered Reports - Listed by report number, Books and Book Chapters - Listed by first author, Conference Papers - Listed by first author, Complete Author Index.

  18. 78 FR 16655 - Draft Damage Assessment, Restoration Plan and Environmental Assessment for the T/B DBL 152 Oil...

    Science.gov (United States)

    2013-03-18

    ... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration Draft Damage Assessment...: National Oceanic and Atmospheric Administration (NOAA), Commerce. ACTION: Notice of Availability of a Draft... natural resources. Under the federal Oil Pollution Act (OPA), the National Oceanic and Atmospheric...

  19. Global Impact | Frederick National Laboratory for Cancer Research

    Science.gov (United States)

    Through its direct support of clinical research, Frederick National Laboratory activities are not limited to national programs. The labis actively involved in more than 400 domestic and international studies related to cancer; influenza, HIV, E

  20. Database activities at Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    Trahern, C.G.

    1995-01-01

    Brookhaven National Laboratory is a multi-disciplinary lab in the DOE system of research laboratories. Database activities are correspondingly diverse within the restrictions imposed by the dominant relational database paradigm. The authors discuss related activities and tools used in RHIC and in the other major projects at BNL. The others are the Protein Data Bank being maintained by the Chemistry department, and a Geographical Information System (GIS)--a Superfund sponsored environmental monitoring project under development in the Office of Environmental Restoration

  1. Sandia National Laboratories focus issue: introduction.

    Science.gov (United States)

    Boye, Robert

    2014-08-20

    For more than six decades, Sandia has provided the critical science and technology to address the nation's most challenging issues. Our original nuclear weapons mission has been complemented with work in defense systems, energy and climate, as well as international and homeland security. Our vision is to be a premier science and engineering laboratory for technology solutions to the most challenging problems that threaten peace and freedom for our nation and the globe.

  2. Sustainability Report: National Renewable Energy Laboratory (NREL) 2003 -- 2004

    Energy Technology Data Exchange (ETDEWEB)

    2004-09-01

    The National Renewable Energy Laboratory's (NREL) Sustainability Report for 2003-2004 highlights the Laboratory's comprehensive sustainability activities. These efforts demonstrate NREL's progress toward achieving overall sustainability goals. Sustainability is an inherent centerpiece of the Laboratory's work. NREL's mission--to develop renewable energy and energy efficiency technologies and practices and transfer knowledge and innovations to address the nation's energy and environmental goals--is synergistic with sustainability. The Laboratory formalized its sustainability activities in 2000, building on earlier ideas--this report summarizes the status of activities in water use, energy use, new construction, green power, transportation, recycling, environmentally preferable purchasing, greenhouse gas emissions, and environmental management.

  3. Brookhaven National Laboratory site environmental report for calendar year 1995

    Energy Technology Data Exchange (ETDEWEB)

    Naidu, J.R.; Paquette, D.E.; Schroeder, G.L. [eds.] [and others

    1996-12-01

    This report documents the results of the Environmental Monitoring Program at Brookhaven National Laboratory and summarizes information about environmental compliance for 1995. To evaluate the effect of Brookhaven National Laboratory`s operations on the local environment, measurements of direct radiation, and of a variety of radionuclides and chemical compounds in the ambient air, soil, sewage effluent, surface water, groundwater, fauna, and vegetation were made at the Brookhaven National Laboratory site and at adjacent sites. The report also evaluates the Laboratory`s compliance with all applicable guides, standards, and limits for radiological and nonradiological emissions and effluents to the environment. Areas of known contamination are subject to Remedial Investigation/Feasibility Studies under the Inter Agency Agreement established by the Department of Energy, Environmental Protection Agency and the New York Department of Environmental Conservation. Except for identified areas of soil and groundwater contamination, the environmental monitoring data has continued to demonstrate that compliance was achieved with the applicable environmental laws and regulations governing emission and discharge of materials to the environment. Also, the data show that the environmental impacts at Brookhaven National Laboratory are minimal and pose no threat to the public nor to the environment. This report meets the requirements of Department of Energy Orders 5484.1, Environmental Protection, Safety, and Health Protection Information reporting requirements and 5400.1, General Environmental Protection Programs.

  4. Human factors at the Department of Energy National Laboratories

    International Nuclear Information System (INIS)

    Pond, D.J.; Waters, R.M.

    1991-01-01

    After World War II, a system of national laboratories was created to foster a suitable environment for scientific research. This paper reports that today, human factors activities are in evidence at most of the nine U.S. Department of Energy multi-program national laboratories as well as at a number of special program facilities. This paper provides historical and future perspectives on the DOE's human factors programs

  5. 75 FR 78980 - Notice of Availability of the Draft Programmatic Environmental Impact Statement for Solar Energy...

    Science.gov (United States)

    2010-12-17

    ...] Notice of Availability of the Draft Programmatic Environmental Impact Statement for Solar Energy... Draft Programmatic Environmental Impact Statement (EIS) for Solar Energy Development in Six Southwestern... preferred method of commenting. Mail: Addressed to: Solar Energy Draft Programmatic EIS, Argonne National...

  6. Site environmental report for 2004 Sandia National Laboratories, California.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L. (Sandia National Laboratories, Livermore, CA)

    2005-06-01

    Sandia National Laboratories, California (SNL/CA) is a government-owned/contractor-operated laboratory. Sandia Corporation, a Lockheed Martin Company, operates the laboratory for the Department of Energy's (DOE) National Nuclear Security Administration. The DOE Sandia Site Office oversees operations at the site, using Sandia Corporation as a management and operating contractor. This Site Environmental Report for 2004 was prepared in accordance with DOE Order 231.1A. The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2004. General site and environmental program information is also included.

  7. Site Environmental Report for 2007: Sandia National Laboratories, California

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Environmental Management Dept.

    2008-06-01

    Sandia National Laboratories, California (SNL/CA) is a government-owned/contractor-operated laboratory. Sandia Corporation, a Lockheed Martin Company, operates the laboratory for the Department of Energy’s National Nuclear Security Administration (NNSA). The NNSA Sandia Site Office oversees operations at the site, using Sandia Corporation as a management and operating contractor. This Site Environmental Report for 2007 was prepared in accordance with DOE Order 231.1A (DOE 2004a). The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2007. General site and environmental program information is also included.

  8. Site environmental report for 2008 Sandia National Laboratories, California.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2009-04-01

    Sandia National Laboratories, California (SNL/CA) is a government-owned/contractor operated laboratory. Sandia Corporation, a Lockheed Martin Company, operates the laboratory for the Department of Energy's National Nuclear Security Administration (NNSA). The NNSA Sandia Site Office oversees operations at the site, using Sandia Corporation as a management and operating contractor. This Site Environmental Report for 2008 was prepared in accordance with DOE Order 231.1A (DOE 2004a). The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2008. General site and environmental program information is also included.

  9. Site environmental report for 2006 Sandia National Laboratories, California.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2007-06-01

    Sandia National Laboratories, California (SNL/CA) is a government-owned/contractor-operated laboratory. Sandia Corporation, a Lockheed Martin Company, operates the laboratory for the Department of Energy's National Nuclear Security Administration (NNSA). The NNSA Sandia Site Office oversees operations at the site, using Sandia Corporation as a management and operating contractor. This Site Environmental Report for 2006 was prepared in accordance with DOE Order 231.1A (DOE 2004a). The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2006. General site and environmental program information is also included.

  10. Site environmental report for 2005 Sandia National Laboratories, California.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2006-06-01

    Sandia National Laboratories, California (SNL/CA) is a government-owned/contractor-operated laboratory. Sandia Corporation, a Lockheed Martin Company, operates the laboratory for the Department of Energy's (DOE) National Nuclear Security Administration (NNSA). The DOE/NNSA Sandia Site Office (SSO) oversees operations at the site, using Sandia Corporation as a management and operating contractor. This Site Environmental Report for 2005 was prepared in accordance with DOE Order 231.1A. The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2005. General site and environmental program information is also included.

  11. Site environmental report for 2003 Sandia National Laboratories, California.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2004-06-01

    Sandia National Laboratories, California (SNL/CA) is a government-owned/contractor-operated laboratory. Sandia Corporation, a Lockheed Martin Company, operates the laboratory for the Department of Energy's (DOE) National Nuclear Security Administration. The DOE Sandia Site Office oversees operations at the site, using Sandia Corporation as a management and operating contractor. This Site Environmental Report for 2003 was prepared in accordance with DOE Order 231.1A. The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2003. General site and environmental program information is also included.

  12. National Renewable Energy Laboratory: 35 Years of Innovation (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2012-04-01

    This brochure is an overview of NREL's innovations over the last 35 years. It includes the lab's history and a description of the laboratory of the future. The National Renewable Energy Laboratory (NREL) is the U.S. Department of Energy's (DOE) primary national laboratory for renewable energy and energy efficiency. NREL's work focuses on advancing renewable energy and energy efficiency technologies from concept to the commercial marketplace through industry partnerships. The Alliance for Sustainable Energy, LLC, a partnership between Battelle and MRIGlobal, manages NREL for DOE's Office of Energy Efficiency and Renewable Energy.

  13. Idaho National Laboratory Cultural Resource Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    Lowrey, Diana Lee

    2009-02-01

    As a federal agency, the U.S. Department of Energy has been directed by Congress, the U.S. president, and the American public to provide leadership in the preservation of prehistoric, historic, and other cultural resources on the lands it administers. This mandate to preserve cultural resources in a spirit of stewardship for the future is outlined in various federal preservation laws, regulations, and guidelines such as the National Historic Preservation Act, the Archaeological Resources Protection Act, and the National Environmental Policy Act. The purpose of this Cultural Resource Management Plan is to describe how the Department of Energy, Idaho Operations Office will meet these responsibilities at the Idaho National Laboratory. This Laboratory, which is located in southeastern Idaho, is home to a wide variety of important cultural resources representing at least 13,500 years of human occupation in the southeastern Idaho area. These resources are nonrenewable; bear valuable physical and intangible legacies; and yield important information about the past, present, and perhaps the future. There are special challenges associated with balancing the preservation of these sites with the management and ongoing operation of an active scientific laboratory. The Department of Energy, Idaho Operations Office is committed to a cultural resource management program that accepts these challenges in a manner reflecting both the spirit and intent of the legislative mandates. This document is designed for multiple uses and is intended to be flexible and responsive to future changes in law or mission. Document flexibility and responsiveness will be assured through annual reviews and as-needed updates. Document content includes summaries of Laboratory cultural resource philosophy and overall Department of Energy policy; brief contextual overviews of Laboratory missions, environment, and cultural history; and an overview of cultural resource management practices. A series of

  14. Idaho National Laboratory Cultural Resource Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    Lowrey, Diana Lee

    2011-02-01

    As a federal agency, the U.S. Department of Energy has been directed by Congress, the U.S. president, and the American public to provide leadership in the preservation of prehistoric, historic, and other cultural resources on the lands it administers. This mandate to preserve cultural resources in a spirit of stewardship for the future is outlined in various federal preservation laws, regulations, and guidelines such as the National Historic Preservation Act, the Archaeological Resources Protection Act, and the National Environmental Policy Act. The purpose of this Cultural Resource Management Plan is to describe how the Department of Energy, Idaho Operations Office will meet these responsibilities at the Idaho National Laboratory. This Laboratory, which is located in southeastern Idaho, is home to a wide variety of important cultural resources representing at least 13,500 years of human occupation in the southeastern Idaho area. These resources are nonrenewable; bear valuable physical and intangible legacies; and yield important information about the past, present, and perhaps the future. There are special challenges associated with balancing the preservation of these sites with the management and ongoing operation of an active scientific laboratory. The Department of Energy, Idaho Operations Office is committed to a cultural resource management program that accepts these challenges in a manner reflecting both the spirit and intent of the legislative mandates. This document is designed for multiple uses and is intended to be flexible and responsive to future changes in law or mission. Document flexibility and responsiveness will be assured through annual reviews and as-needed updates. Document content includes summaries of Laboratory cultural resource philosophy and overall Department of Energy policy; brief contextual overviews of Laboratory missions, environment, and cultural history; and an overview of cultural resource management practices. A series of

  15. Idaho National Laboratory Mission Accomplishments, Fiscal Year 2015

    Energy Technology Data Exchange (ETDEWEB)

    Allen, Todd Randall [Idaho National Lab. (INL), Idaho Falls, ID (United States); Wright, Virginia Latta [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-01

    A summary of mission accomplishments for the research organizations at the Idaho National Laboratory for FY 2015. Areas include Nuclear Energy, National and Homeland Security, Science and Technology Addressing Broad DOE Missions; Collaborations; and Stewardship and Operation of Research Facilities.

  16. India's draft nuclear doctrine

    International Nuclear Information System (INIS)

    Kapur, A.

    2000-01-01

    India's draft nuclear doctrine and its nuclear and missile testing are a response to recent international, regional and domestic developments. Nehru's policy of nuclear disarmament, non-discriminatory international arrangements and unilateral restraint has been overturned in favour of self-reliant security and negotiated nuclear restraints. The draft nuclear doctrine is aimed at transparency and formalization of existing capacities. It is anchored in the United Nations Charter, based on the legitimacy of self-defence and espouses minimum nuclear deterrence. After the launching of Pokhran II, the debate in India has been settled on weaponization and deployment. The doctrine is not country-specific with respect to threat perceptions, but the author posits that the long-term focus is on China and the short-term on Pakistan. The doctrine emphasizes civilian command and control. India's decision to test incurred diplomatic and other economic costs, but afforded new opportunities for the country to assert itself militarily and politically in Asia and in the world. There were no diplomatic costs in issuing the draft nuclear doctrine, but the author estimates the economic costs of a full-blown (triad) Indian nuclear deterrent. (author)

  17. Draft Strategic Laboratory Missions Plan. Volume II

    International Nuclear Information System (INIS)

    1996-03-01

    This volume described in detail the Department's research and technology development activities and their funding at the Department's laboratories. It includes 166 Mission Activity Profiles, organized by major mission area, with each representing a discrete budget function called a Budget and Reporting (B ampersand R) Code. The activities profiled here encompass the total research and technology development funding of the laboratories from the Department. Each profile includes a description of the activity and shows how the funding for that activity is distributed among the DOE laboratories as well as universities and industry. The profiles also indicate the principal laboratories for each activity, as well as which other laboratories are involved. The information in this volume is at the core of the Strategic Laboratory Mission Plan. It enables a reader to follow funds from the Department's appropriation to a specific activity description and to specific R ampersand D performing institutions. This information will enable the Department, along with the Laboratory Operations Board and Congress, to review the distribution of R ampersand D performers chosen to execute the Department's missions

  18. Draft Strategic Laboratory Missions Plan. Volume II

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    This volume described in detail the Department`s research and technology development activities and their funding at the Department`s laboratories. It includes 166 Mission Activity Profiles, organized by major mission area, with each representing a discrete budget function called a Budget and Reporting (B & R) Code. The activities profiled here encompass the total research and technology development funding of the laboratories from the Department. Each profile includes a description of the activity and shows how the funding for that activity is distributed among the DOE laboratories as well as universities and industry. The profiles also indicate the principal laboratories for each activity, as well as which other laboratories are involved. The information in this volume is at the core of the Strategic Laboratory Mission Plan. It enables a reader to follow funds from the Department`s appropriation to a specific activity description and to specific R & D performing institutions. This information will enable the Department, along with the Laboratory Operations Board and Congress, to review the distribution of R & D performers chosen to execute the Department`s missions.

  19. 76 FR 61704 - Availability of Draft NTP Monograph on the Health Effects of Low-Level Lead; Request for Comments...

    Science.gov (United States)

    2011-10-05

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Availability of Draft NTP Monograph on the Health Effects... Monograph AGENCY: Division of the National Toxicology Program (DNTP), National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health. ACTION: Availability of Draft NTP Monograph...

  20. Relay testing at Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    Bandyopadhyay, K.; Hofmayer, C.

    1989-01-01

    Brookhaven National Laboratory (BNL) is conducting a seismic test program on relays. The purpose of the test program is to investigate the influence of various designs, electrical and vibration parameters on the seismic capacity levels. The first series of testing has been completed and performed at Wyle Laboratories. The major part of the test program consisted of single axis, single frequency sine dwell tests. Random multiaxis, multifrequency tests were also performed. Highlights of the test results as well as a description of the testing methods are presented in this paper. 10 figs

  1. Post Irradiation Capabilities at the Idaho National Laboratory

    International Nuclear Information System (INIS)

    Schulthess, J.L.; Rosenberg, K.E.

    2011-01-01

    The U.S. Department of Energy (DOE), Office of Nuclear Energy (NE) oversees the efforts to ensure nuclear energy remains a viable option for the United States. A significant portion of these efforts are related to post-irradiation examinations (PIE) of highly activated fuel and materials that are subject to the extreme environment inside a nuclear reactor. As the lead national laboratory, Idaho National Laboratory (INL) has a rich history, experience, workforce and capabilities for performing PIE. However, new advances in tools and techniques for performing PIE now enable understanding the performance of fuels and materials at the nano-scale and smaller level. Examination at this level is critical since this is the scale at which irradiation damage occurs. The INL is on course to adopt these advanced tools and techniques to develop a comprehensive nuclear fuels and materials characterization capability that is unique in the world. Because INL has extensive PIE capabilities currently in place, a strong foundation exist to build upon as new capabilities are implemented and work load increases. In the recent past, INL has adopted significant capability to perform advanced PIE characterization. Looking forward, INL is planning for the addition of two facilities that will be built to meet the stringent demands of advanced tools and techniques for highly activated fuels and materials characterization. Dubbed the Irradiated Materials Characterization Laboratory (IMCL) and Advanced Post Irradiation Examination Capability, these facilities are next generation PIE laboratories designed to perform the work of PIE that cannot be performed in current DOE facilities. In addition to physical capabilities, INL has recently added two significant contributors to the Advanced Test Reactor-National Scientific User Facility (ATR-NSUF), Oak Ridge National Laboratory and University of California, Berkeley.

  2. NNSA Master Asset Map - Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Billie, Gepetta S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-01-01

    This report gives information on the following topics related to Sandia National Laboratories: site leadership's vision, condition, footprint management, major gaps and risks, and proposed investment plan.

  3. 77 FR 8890 - Clarks River National Wildlife Refuge, KY; Draft Comprehensive Conservation Plan and...

    Science.gov (United States)

    2012-02-15

    ... boundaries would be based on importance of the habitat for target management species. We would offer....fws.gov planning under ``Draft Documents.'' Comments on the Draft CCP/EA may be submitted to the above..., advancement, management, conservation, and protection of fish and wildlife resources. Approximately 74 percent...

  4. Argonne Research Library | Argonne National Laboratory

    Science.gov (United States)

    Argonne Argonne Research Library The Argonne Research Library supports the scientific and technical research needs of Argonne National Laboratory employees. Our library catalog is available via the Research questions or concerns, please contact us at librarians@anl.gov. Contact the Library Argonne Research Library

  5. Oak Ridge National Laboratory Institutional Plan, FY 1995--FY 2000

    Energy Technology Data Exchange (ETDEWEB)

    1994-11-01

    This report discusses the institutional plan for Oak Ridge National Laboratory for the next five years (1995-2000). Included in this report are the: laboratory director`s statement; laboratory mission, vision, and core competencies; laboratory plan; major laboratory initiatives; scientific and technical programs; critical success factors; summaries of other plans; and resource projections.

  6. Universities and national laboratory roles in nuclear engineering

    International Nuclear Information System (INIS)

    Sackett, J.I.

    1991-01-01

    Nuclear Engineering Education is being significantly challenged in the United States. The decline in enrollment generally and the reduction of the number of nuclear engineering departments has been well documented. These declines parallel a lack of new construction for nuclear power plants and a decline in research and development to support new plant design. Precisely at a time when innovation is is needed to deal with many issues facing nuclear power, the number of qualified people to do so is being reduced. It is important that the University and National Laboratory Communities cooperate to address these issues. The Universities must increasingly identify challenges facing nuclear power that demand innovative solutions and pursue them. To be drawn into the technology the best students must see a future, a need and identify challenges that they can meet. The University community can provide that vision with help from the National Laboratories. It has been a major goal within the reactor development program at Argonne National Laboratory to establish the kind of program that can help accomplish this

  7. Pacific Northwest National Laboratory FY96 Annual Self-Evaluation Report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    Pacific Northwest National Laboratory (PNNL) research and development efforts are concentrated on DOE`s environmental quality mission and the scientific research required to support that mission. The Laboratory also supports the energy resources and national security missions in areas where an overlap between our core competencies and DOE`s goals exists. Fiscal year 1996 saw the Laboratory focus its efforts on the results necessary for us to meet DOE`s most important needs and expectations. Six Critical Outcomes were established in partnership with DOE. The Laboratory met or exceeded performance expectations in most areas, including these outcomes and the implementation of the Laboratory`s Integrated Assessment Program. We believe our overall performance for this evaluation period has been outstanding. A summary of results and key issues is provided.

  8. Final Environmental Impact Statement/Environmental Impact Report for continued operation of Lawrence Livermore National Laboratory and Sandia National Laboratories, Livermore

    International Nuclear Information System (INIS)

    1992-08-01

    This Environmental Impact Statement/Environmental Impact Report (EIS/EIR) is prepared pursuant to the National Environmental Policy Act (NEPA) and the California Environmental Quality Act (CEQA). This document analyzes the potential environmental impacts of the proposed action: continued operation, including near-term (within 5 to 10 years) proposed projects, of Lawrence Livermore National Laboratory (LLNL) and Sandia National Laboratories, Livermore (SNL, Livermore). Additionally, this document analyzes a no action alternative involving continuing operations at FY 1992 funding levels without further growth, a modification of operations alternative to reduce adverse environmental impacts of operations or facilities, and a shutdown and decommissioning alternative of UC discontinuing its management of LLNL after the current contract expires on September 30, 1992. This document assesses the environmental impacts of the Laboratories' operations on air and water quality, geological and ecological systems, occupational and public health risks, prehistoric and historic resources, endangered species, floodplains and wetlands, socioeconomic resources, hazardous waste management, site contamination, and other environmental issues. The EIS/EIR is divided into five volumes and two companion reports. This volume contains the Final EIS/EIR technical appendices which provide technical support for the analyses in Volume 1 and also provide additional information and references

  9. Site environmental report for 2011. Sandia National Laboratories, California

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L. [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2012-05-01

    Sandia National Laboratories, California (SNL/CA) is a government-owned/contractoroperated laboratory. Sandia Corporation, a wholly-owned subsidiary of Lockheed Martin Corporation, manages and operates the laboratory for the Department of Energy’s National Nuclear Security Administration (NNSA). The NNSA Sandia Site Office administers the contract and oversees contractor operations at the site. This Site Environmental Report for 2011 was prepared in accordance with DOE Order 231.1B, Environment, Safety and Health Reporting (DOE 2011d). The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2011. General site and environmental program information is also included.

  10. Site Environmental Report for 2012 Sandia National Laboratories California

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L. [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2013-05-01

    Sandia National Laboratories, California (SNL/CA) is a government-owned/contractor-operated laboratory. Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, manages and operates the laboratory for the Department of Energy’s National Nuclear Security Administration (NNSA). The NNSA Sandia Field Office administers the contract and oversees contractor operations at the site. This Site Environmental Report for 2012 was prepared in accordance with DOE Order 231.1B, Environment, Safety and Health Reporting (DOE 2011d). The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2012. General site and environmental program information is also included.

  11. Charter of the Sandia National Laboratories Sandia Postdoctoral Development (SPD) Association.

    Energy Technology Data Exchange (ETDEWEB)

    McBride, Amber Alane Fisher; McBride, Amber Alane Fisher; Rodgers, Theron; Dong, Wen; Juan, Pierre-Alexandre; Barkholtz, Heather; Alley, William Morgan; Wolk, Benjamin Matthew; Vane, Zachary Phillips; Priye, Aashish; Ball, Cameron Scott; McBride, Amber Alane Fisher

    2017-03-01

    The SNL SPD Association represents all personnel that are classified as Postdoctoral Appointees at Sandia National Laboratories. The purpose of the SNL SPD Association is to address the needs and concerns of Postdoctoral Appointees within Sandia National Laboratories.

  12. 1994 Site Environmental Report Sandia National Laboratories Albuquerque, New Mexico

    International Nuclear Information System (INIS)

    Shyr, L.J.; Wiggins, T.; White, B.B.

    1995-09-01

    This 1994 report contains data from routine radiological and nonradiological environmental monitoring activities. Summaries of significant environmental compliance programs in progress, such as National Environmental Policy Act documentation, environmental permits, environmental restoration, and various waste management programs for Sandia National Laboratories in Albuquerque, New Mexico, are included. The maximum off-site dose impact from air emissions was calculated to be 1.5 x 10 -4 millirem. The total population within a 50-mile radius of Sandia National Laboratories/New Mexico received an estimated collective dose of 0.012 person-rem during 1994 from the laboratories' operations. This report is prepared for the U.S. Department of Energy in compliance with DOE Order 5400.1

  13. Targets development at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Smith, M.L.; Hebron, D.; Derzon, M.; Olson, R.; Alberts, T.

    1997-01-01

    For many years, Sandia National Laboratories under contract to the Department of Energy has produced targets designed to understand complex ion beam and z-pinch plasma physics. This poster focuses on the features of target designs that make them suitable for Z-pinch plasma physics applications. Precision diagnostic targets will prove critical in understanding the plasma physics model needed for future ion beam and z-pinch design. Targets are designed to meet specific physics needs; in this case the authors have fabricated targets to maximize information about the end-on versus side-on x-ray emission and z-pinch hohlraum development. In this poster, they describe the fabrication and characterization techniques. They include discussion of current targets under development as well as target fabrication capabilities. Advanced target designs are fabricated by Sandia National Laboratories in cooperation with General Atomics of San Diego, CA and W.J. Schafer Associates, Inc. of Livermore, CA

  14. Challenges and Opportunities To Achieve 50% Energy Savings in Homes. National Laboratory White Papers

    Energy Technology Data Exchange (ETDEWEB)

    Bianchi, Marcus V.A. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2011-07-01

    This report summarizes the key opportunities, gaps, and barriers identified by researchers from four national laboratories (Lawrence Berkeley National Laboratory, National Renewable Energy Laboratory, Oak Ridge National Laboratory, and Pacific Northwest National Laboratory) that must be addressed to achieve the longer term 50% saving goal for Building America to ensure coordination with the Building America industry teams who are focusing their research on systems to achieve the near-term 30% savings goal. Although new construction was included, the focus of the effort was on deep energy retrofits of existing homes.

  15. The DOE/NOAA meteorological program at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    George, D.H.

    1996-01-01

    The National Oceanic and Atmospheric Administration (NOAA) Air Resources Laboratory (ARL) has recently upgraded the U.S. Department of Energy's (DOE's) Idaho National Engineering Laboratory (INEL) Meteorological Measuring Network. This has allowed the entire service system to be modernized

  16. Serving the Nation for Fifty Years: 1952 - 2002 Lawrence Livermore National Laboratory [LLNL], Fifty Years of Accomplishments

    Science.gov (United States)

    2002-01-01

    For 50 years, Lawrence Livermore National Laboratory has been making history and making a difference. The outstanding efforts by a dedicated work force have led to many remarkable accomplishments. Creative individuals and interdisciplinary teams at the Laboratory have sought breakthrough advances to strengthen national security and to help meet other enduring national needs. The Laboratory's rich history includes many interwoven stories -- from the first nuclear test failure to accomplishments meeting today's challenges. Many stories are tied to Livermore's national security mission, which has evolved to include ensuring the safety, security, and reliability of the nation's nuclear weapons without conducting nuclear tests and preventing the proliferation and use of weapons of mass destruction. Throughout its history and in its wide range of research activities, Livermore has achieved breakthroughs in applied and basic science, remarkable feats of engineering, and extraordinary advances in experimental and computational capabilities. From the many stories to tell, one has been selected for each year of the Laboratory's history. Together, these stories give a sense of the Laboratory -- its lasting focus on important missions, dedication to scientific and technical excellence, and drive to made the world more secure and a better place to live.

  17. Challenges and Opportunities To Achieve 50% Energy Savings in Homes: National Laboratory White Papers

    Energy Technology Data Exchange (ETDEWEB)

    Bianchi, M. V. A.

    2011-07-01

    In 2010, researchers from four of the national laboratories involved in residential research (Lawrence Berkeley National Laboratory, National Renewable Energy Laboratory, Oak Ridge National Laboratory, and Pacific Northwest National Laboratory) were asked to prepare papers focusing on the key longer term research challenges, market barriers, and technology gaps that must be addressed to achieve the longer term 50% saving goal for Building America to ensure coordination with the Building America industry teams who are focusing their research on systems to achieve the near-term 30% savings goal. Although new construction was included, the focus of the effort was on deep energy retrofits of existing homes. This report summarizes the key opportunities, gaps, and barriers identified in the national laboratory white papers.

  18. Safeguards Knowledge Management & Retention at U.S. National Laboratories.

    Energy Technology Data Exchange (ETDEWEB)

    Haddal, Risa [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jones, Rebecca [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bersell, Bridget [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Frazar, Sarah [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Burbank, Roberta [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Stevens, Rebecca [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Cain, Ron [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kirk, Bernadette [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Morell, Sean [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-09-01

    In 2017, four U.S. National Laboratories collaborated on behalf of DOE/NNSA to explore the safeguards knowledge retention problem, identify possible approaches, and develop a strategy to address it. The one-year effort consisted of four primary tasks. First, the project sought to identify critical safeguards information at risk of loss. Second, a survey and workshop were conducted to assess nine U.S. National Laboratories' efforts to determine current safeguards knowledge retention practices and challenges, and identify best practices. Third, specific tools were developed to identify and predict critical safeguards knowledge gaps and how best to recruit in order to fill those gaps. Finally, based on findings from the first three tasks and research on other organizational approaches to address similar issues, a strategy was developed on potential knowledge retention methods, customized HR policies, and best practices that could be implemented across the National Laboratory Complex.

  19. Mathematics and Computer Science | Argonne National Laboratory

    Science.gov (United States)

    Extreme Computing Data-Intensive Science Applied Mathematics Science & Engineering Applications Software Extreme Computing Data-Intensive Science Applied Mathematics Science & Engineering Opportunities For Employees Staff Directory Argonne National Laboratory Mathematics and Computer Science Tools

  20. Power Management Controls, Ernest Orlando Lawrence Berkeley National Laboratory; Power Management Controls, Ernest Orlando Lawrence Berkeley National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Westerberg, Emil [Dalarna Univ., Borlaenge (Sweden). Graphic Art Technology

    2002-12-01

    This report describes the work that is being conducted on power management controls at Berkeley National Laboratory. We can see a significant increasing amount of electronic equipment in our work places and in our every day life. Today's modern society depends on a constant energy flow. The future's increasing need of energy will burden our economy as well as our environment. The project group at Berkeley National Laboratory is working with leading manufacturers of office equipment. The goal is to agree on how interfaces for power management should be presented on office equipment. User friendliness and a more consistent power management interface is the project focus. The project group's role is to analyze data that is relevant to power management, as well as to coordinate communication and discussions among the involved parties.

  1. Idaho National Laboratory - Nuclear Research Center

    International Nuclear Information System (INIS)

    Zaidi, M.K.

    2005-01-01

    Full text: The Idaho National Laboratory is committed to the providing international nuclear leadership for the 21st Century, developing and demonstrating compiling national security technologies, and delivering excellence in science and technology as one of the United States Department of Energy's (DOE) multiprogram national laboratories. INL runs three major programs - Nuclear, Security and Science. nuclear programs covers the Advanced test reactor, Six Generation technology concepts selected for R and D, Targeting tumors - Boron Neutron capture therapy. Homeland security - Homeland Security establishes the Control System Security and Test Center, Critical Infrastructure Test Range evaluates technologies on a scalable basis, INL conducts high performance computing and visualization research and science - INL facility established for Geocentrifuge Research, Idaho Laboratory, a Utah company achieved major milestone in hydrogen research and INL uses extremophile bacteria to ease bleaching's environmental cost. To provide leadership in the education and training, INL has established an Institute of Nuclear Science and Engineering (Inset). The institute will offer a four year degree based on a newly developed curriculum - two year of basic science course work and two years of participation in project planning and development. The students enrolled in this program can continue to get a masters or a doctoral degree. This summer Inset is the host for the training of the first international group selected by the World Nuclear University (WNU) - 75 fellowship holders and their 30 instructors from 40 countries. INL has been assigned to provide future global leadership in the field of nuclear science and technology. Here, at INL, we keep safety first above all things and our logo is 'Nuclear leadership synonymous with safety leadership'

  2. Sandia National Laboratories: Pathfinder Radar ISR and Synthetic Aperture

    Science.gov (United States)

    Radar (SAR) Systems Sandia National Laboratories Exceptional service in the national interest ; Technology Defense Systems & Assessments About Defense Systems & Assessments Program Areas Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  3. Oak Ridge National Laboratory institutional plan, FY 1996--FY 2001

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-01

    This report discusses the institutional plan for Oak Ridge National Laboratory for the next five years. Included in the report are: laboratory director`s statement; laboratory mission, vision, and core competencies; laboratory strategic plan; major laboratory initiatives; scientific and technical programs; critical success factors; summaries of other plans; resource projections; appendix which contains data for site and facilities, user facility, science and mathematic education and human resources; and laboratory organization chart.

  4. Pacific Northwest National Laboratory institutional plan: FY 1996--2001

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-01-01

    This report contains the operation and direction plan for the Pacific Northwest National Laboratory of the US Department of Energy. The topics of the plan include the laboratory mission and core competencies, the laboratory strategic plan; the laboratory initiatives in molecular sciences, microbial biotechnology, global environmental change, complex modeling of physical systems, advanced processing technology, energy technology development, and medical technologies and systems; core business areas, critical success factors, and resource projections.

  5. Applied programs at Brookhaven National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    1991-09-01

    This document overviews the areas of current research at Brookhaven National Laboratory. Technology transfer and the user facilities are discussed. Current topics are presented in the areas of applied physics, chemical science, material science, energy efficiency and conservation, environmental health and mathematics, biosystems and process science, oceanography, and nuclear energy. (GHH)

  6. Vortex rope instabilities in a model of conical draft tube

    Science.gov (United States)

    Skripkin, Sergey; Tsoy, Mikhail; Kuibin, Pavel; Shtork, Sergey

    2017-10-01

    We report on experimental studies of the formation of vortex ropes in a laboratory simplified model of hydroturbine draft tube. Work is focused on the observation of various flow patterns at the different rotational speed of turbine runner at fixed flow rate. The measurements involve high-speed visualization and pressure pulsations recordings. Draft tube wall pressure pulsations are registered by pressure transducer for different flow regimes. Vortex rope precession frequency were calculated using FFT transform. The experiments showed interesting features of precessing vortex rope like twin spiral and formation of vortex ring.

  7. Vortex rope instabilities in a model of conical draft tube

    Directory of Open Access Journals (Sweden)

    Skripkin Sergey

    2017-01-01

    Full Text Available We report on experimental studies of the formation of vortex ropes in a laboratory simplified model of hydroturbine draft tube. Work is focused on the observation of various flow patterns at the different rotational speed of turbine runner at fixed flow rate. The measurements involve high-speed visualization and pressure pulsations recordings. Draft tube wall pressure pulsations are registered by pressure transducer for different flow regimes. Vortex rope precession frequency were calculated using FFT transform. The experiments showed interesting features of precessing vortex rope like twin spiral and formation of vortex ring.

  8. High energy laser facilities at Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    Holmes, N.C.

    1981-06-01

    High energy laser facilities at Lawrence Livermore National Laboratory are described, with special emphasis on their use for equation of state investigations using laser-generated shockwaves. Shock wave diagnostics now in use are described. Future Laboratory facilities are also discussed

  9. Oak Ridge National Laboratory site data for safety-analysis report

    International Nuclear Information System (INIS)

    Fitzpatrick, F.C.

    1982-12-01

    The Oak Ridge National Laboratory site data contained herein were compiled in support of the United States Department of Energy (USDOE) Oak Ridge Operations Office Order OR 5481.1. That order sets forth assignment of responsibilities for safety analysis and review responsibilities and provides guidance relative to the content and format of safety analysis reports. The information presented in this document is intended for use by reference in individual safety analysis reports where applicable to support accident analyses or the establishment of design bases of significance to safety, and it is applicable only to Oak Ridge National Laboratory facilities in Bethel and Melton Valleys. This information includes broad descriptions of the site characteristics, radioactive waste handling and monitoring practices, and the organization and operating policies at Oak Ridge National Laboratory. The historical background of the Laboratory is discussed briefly and the overall physical situation of the facilities is described in the following paragraphs

  10. Oak Ridge National Laboratory site data for safety-analysis report

    Energy Technology Data Exchange (ETDEWEB)

    Fitzpatrick, F.C.

    1982-12-01

    The Oak Ridge National Laboratory site data contained herein were compiled in support of the United States Department of Energy (USDOE) Oak Ridge Operations Office Order OR 5481.1. That order sets forth assignment of responsibilities for safety analysis and review responsibilities and provides guidance relative to the content and format of safety analysis reports. The information presented in this document is intended for use by reference in individual safety analysis reports where applicable to support accident analyses or the establishment of design bases of significance to safety, and it is applicable only to Oak Ridge National Laboratory facilities in Bethel and Melton Valleys. This information includes broad descriptions of the site characteristics, radioactive waste handling and monitoring practices, and the organization and operating policies at Oak Ridge National Laboratory. The historical background of the Laboratory is discussed briefly and the overall physical situation of the facilities is described in the following paragraphs.

  11. Argonne National Laboratory 1986 publications

    International Nuclear Information System (INIS)

    Kopta, J.A.; Springer, C.J.

    1987-12-01

    This report is a bibliography of scientific and technical 1986 publications of Argonne National Laboratory. Some are ANL contributions to outside organizations' reports published in 1986. This compilation, prepared by the Technical Information Services Technical Publications Section (TPS), lists all nonrestricted 1986 publications submitted to TPS by the Laboratory's Divisions. Author indexes list ANL authors only. If a first author is not an ANL employee, an asterisk in the bibliographic citation indicates the first ANL author. The report is divided into seven parts: Journal Articles -- Listed by first author; ANL Reports -- Listed by report number; ANL and non-ANL Unnumbered Reports -- Listed by report number; Non-ANL Numbered Reports -- Listed by report number; Books and Book Chapters -- Listed by first author; Conference Papers -- Listed by first author; and Complete Author Index

  12. Argonne National Laboratory 1986 publications

    Energy Technology Data Exchange (ETDEWEB)

    Kopta, J.A.; Springer, C.J.

    1987-12-01

    This report is a bibliography of scientific and technical 1986 publications of Argonne National Laboratory. Some are ANL contributions to outside organizations' reports published in 1986. This compilation, prepared by the Technical Information Services Technical Publications Section (TPS), lists all nonrestricted 1986 publications submitted to TPS by the Laboratory's Divisions. Author indexes list ANL authors only. If a first author is not an ANL employee, an asterisk in the bibliographic citation indicates the first ANL author. The report is divided into seven parts: Journal Articles -- Listed by first author; ANL Reports -- Listed by report number; ANL and non-ANL Unnumbered Reports -- Listed by report number; Non-ANL Numbered Reports -- Listed by report number; Books and Book Chapters -- Listed by first author; Conference Papers -- Listed by first author; and Complete Author Index.

  13. Location | Frederick National Laboratory for Cancer Research

    Science.gov (United States)

    The Frederick National Laboratory for Cancer Research campus is located 50 miles northwest of Washington, D.C., and 50 miles west of Baltimore, Maryland, in Frederick, Maryland. Satellite locations include leased and government facilities extending s

  14. 77 FR 48995 - Draft National Toxicology Program (NTP) Monograph on Developmental Effects and Pregnancy Outcomes...

    Science.gov (United States)

    2012-08-15

    ... Program (NTP) Monograph on Developmental Effects and Pregnancy Outcomes Associated With Cancer... the panel completes its peer review of the draft monograph. Topic: Peer review of the draft NTP Monograph on Developmental Effects and Pregnancy Outcomes Associated with Cancer Chemotherapy Use during...

  15. Final Environmental Impact Statement and Environmental Impact Report for continued operation of Lawrence Livermore National Laboratory and Sandia National Laboratories, Livermore

    International Nuclear Information System (INIS)

    1992-08-01

    This Environmental Impact Statement/Environmental Impact Report (EIS/EIR) is prepared pursuant to the National Environmental Policy Act (NEPA) and the California Environmental Quality Act (CEQA). This document analyzes the potential environmental impacts of the proposed action: continued operation, including near-term (within 5 to 10 years) proposed projects, of Lawrence Livermore National Laboratory (LLNL) and Sandia National Laboratories, Livermore (SNL, Livermore). Additionally, this document analyzes a no action alternative involving continuing operations at FY 1992 funding levels without further growth, a modification of operations alternative to reduce adverse environmental impacts of operations or facilities, and a shutdown and decommissioning alternative of UC discontinuing its management of LLNL after the current contract expires on September 30, 1992. This document assesses the environmental impacts of the Laboratories' operations on air and water quality, geological and ecological systems, occupational and public health risks, prehistoric and historic resources, endangered species, floodplains and wetlands, socioeconomic resources, hazardous waste management, site contamination, and other environmental issues. The EIS/EIR is divided into five volumes and two companion reports. This volume contains copies of the written comments and transcripts of individual statements at the public hearing and the responses to them

  16. Oak Ridge National Laboratory Review

    Energy Technology Data Exchange (ETDEWEB)

    Krause, C.; Pearce, J.; Zucker, A. (eds.)

    1992-01-01

    This report presents brief descriptions of the following programs at Oak Ridge National Laboratory: The effects of pollution and climate change on forests; automation to improve the safety and efficiency of rearming battle tanks; new technologies for DNA sequencing; ORNL probes the human genome; ORNL as a supercomputer research center; paving the way to superconcrete made with polystyrene; a new look at supercritical water used in waste treatment; and small mammals as environmental monitors.

  17. National Storage Laboratory: a collaborative research project

    Science.gov (United States)

    Coyne, Robert A.; Hulen, Harry; Watson, Richard W.

    1993-01-01

    The grand challenges of science and industry that are driving computing and communications have created corresponding challenges in information storage and retrieval. An industry-led collaborative project has been organized to investigate technology for storage systems that will be the future repositories of national information assets. Industry participants are IBM Federal Systems Company, Ampex Recording Systems Corporation, General Atomics DISCOS Division, IBM ADSTAR, Maximum Strategy Corporation, Network Systems Corporation, and Zitel Corporation. Industry members of the collaborative project are funding their own participation. Lawrence Livermore National Laboratory through its National Energy Research Supercomputer Center (NERSC) will participate in the project as the operational site and provider of applications. The expected result is the creation of a National Storage Laboratory to serve as a prototype and demonstration facility. It is expected that this prototype will represent a significant advance in the technology for distributed storage systems capable of handling gigabyte-class files at gigabit-per-second data rates. Specifically, the collaboration expects to make significant advances in hardware, software, and systems technology in four areas of need, (1) network-attached high performance storage; (2) multiple, dynamic, distributed storage hierarchies; (3) layered access to storage system services; and (4) storage system management.

  18. Argonne National Laboratory: An example of a US nuclear research centre

    International Nuclear Information System (INIS)

    Bhattacharyya, S.

    2001-01-01

    The nuclear era was ushered in 1942 with the demonstration of a sustained nuclear chain reaction in Chicago Pile 1 facility. The USA then set up five large national multi disciplinary laboratories for developing nuclear technology for civilian use and three national laboratories for military applications. Reactor development, including prototype construction, was the main focus of the Argonne National Laboratory. More than 100 power reactors operating in the USA have benefited from R and D in the national laboratories. However, currently the support for nuclear power has waned. With the end of the cold war there has also been a need to change the mission of laboratories involved in military applications. For all laboratories of the Department of Energy (DOE) the mission, which was clearly focused earlier on high risk, high payoff long term R and D has now become quite diffused with a number of near term programmes. Cost and mission considerations have resulted in shutting down of many large facilities as well as auxiliary facilities. Erosion of infrastructure has also resulted in reduced opportunities for research which means dwindling of interest in nuclear science and engineering among the younger generation. The current focus of nuclear R and D in the DOE laboratories is on plant life extension, deactivation and decommissioning, spent fuel management and waste management. Advanced aspects include space nuclear applications and nuclear fusion R and D. At the Argonne National Laboratory, major initiatives for the future would be in the areas of science, energy, environment and non-proliferation technologies. International collaboration would be useful mechanisms to achieve cost effective solutions for major developmental areas. These include reactor operation and safety, repositories for high level nuclear waste, reactor system decommissioning, large projects like a nuclear fusion reactor and advanced power reactors. The IAEA could have a positive role in these

  19. A woman like you: Women scientists and engineers at Brookhaven National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Benkovitz, Carmen; Bernholc, Nicole; Cohen, Anita; Eng, Susan; Enriquez-Leder, Rosario; Franz, Barbara; Gorden, Patricia; Hanson, Louise; Lamble, Geraldine; Martin, Harriet; Mastrangelo, Iris; McLane, Victoria; Villela, Maria-Alicia; Vivirito, Katherine; Woodhead, Avril

    1991-01-01

    This publication by the women in Science and Engineering introduces career possibilities in science and engineering. It introduces what work and home life are like for women who have already entered these fields. Women at Brookhaven National Laboratory work in a variety of challenging research roles -- from biologist and environmental scientist to safety engineer, from patent lawyer to technician. Brookhaven National Laboratory is a multi-program laboratory which carries out basic and applied research in the physical, biomedical and environmental sciences and in selected energy technologies. The Laboratory is managed by Associated University, Inc., under contract with the US Department of Energy. Brookhaven and the other national laboratories, because of their enormous research resources, can play a critical role in a education and training of the workforce.

  20. Argonne National Laboratory as an interface between physics and industry

    International Nuclear Information System (INIS)

    Sachs, R.G.

    1976-01-01

    Application of physics to industry requires the involvement of many other disciplines, including chemistry, material sciences, and many other fields of engineering; and the national laboratories in the United States have a mix of such disciplines particularly conducive to such transfer. They have participated in one of the most striking transfers of physics to industry in history, namely, the development of the nuclear power industry. Scientific feasibility of nuclear power was established when the first chain reaction was demonstrated at the Metallurgical Laboratory. Argonne National Laboratory as the successor to the Metallurgical Laboratory has played a major role in transferring the results of this physics experiment to industry, especially in demonstrating engineering feasibility of nuclear power. Major developments in industrial instrumentation have taken place in parallel with the development of nuclear energy, and many of these developments are applicable to other industrial systems as well. The responsibilities of the national laboratories have recently been extended into many energy technologies other than nuclear, offering them the opportunity to serve as an interface for transfer of physics into many new industries. A number of examples are cited. (author)

  1. Draft Genome Sequence of Campylobacter jejuni 11168H

    Science.gov (United States)

    Macdonald, Sarah E.; Gundogdu, Ozan; Dorrell, Nick; Wren, Brendan W.; Blake, Damer

    2017-01-01

    ABSTRACT Campylobacter jejuni is the most prevalent cause of food-borne gastroenteritis in the developed world. The reference and original sequenced strain C. jejuni NCTC11168 has low levels of motility compared to clinical isolates. Here, we describe the draft genome of the laboratory derived hypermotile variant named 11168H. PMID:28153902

  2. Mobile robotics research at Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Morse, W.D.

    1998-09-01

    Sandia is a National Security Laboratory providing scientific and engineering solutions to meet national needs for both government and industry. As part of this mission, the Intelligent Systems and Robotics Center conducts research and development in robotics and intelligent machine technologies. An overview of Sandia`s mobile robotics research is provided. Recent achievements and future directions in the areas of coordinated mobile manipulation, small smart machines, world modeling, and special application robots are presented.

  3. Radioactive waste isolation in salt: Peer review of the Golder Associates draft test plan for in situ testing in an exploratory shaft in salt

    International Nuclear Information System (INIS)

    Hambley, D.F.; Mraz, D.Z.; Unterberter, R.R.

    1987-01-01

    This report documents the peer review conducted by Argonne National Laboratory of a document entitled ''Draft Test Plan for In Situ Testing in an Exploratory Shaft in Salt,'' prepared for Battelle Memorial Institute's Office of Nuclear Waste Isolation by Golder Associates, Inc. In general, the peer review panelists found the test plan to be technically sound, although some deficiencies were identified. Recommendations for improving the test plan are presented in this review report. A microfiche copy of the following unpublished report is attached to the inside back cover of this report: ''Draft Test Plan for In Situ Testing in an Exploratory Shaft in Salt,'' prepared by Golder Associates, Inc., for Office of Nuclear Waste Isolation, Battelle Memorial Institute, Columbus, Ohio (March 1985)

  4. Panel drafts position on U.S. science budget

    Science.gov (United States)

    The AGU panel charged with writing the Union position on the U.S. fiscal 1993 budget met at AGU Headquarters on February 27 to draft their statement and hear from representatives of federal science agencies. The panel's position statement is expected to be completed by the end of March, pending approval by the AGU Council.AGU has drafted positions on the U.S. science budget since 1990. This year's panel includes Terry E. Tullis (chair), Brown University; H. Frank Eden, General Electric Astro Space; Thomas E. Pyle, Joint Oceanographic Institutions, Inc.; Thomas Potemra, Johns Hopkins Applied Physics Laboratory; David W. Simpson, Incorporated Research Institutions for Seismology; Steven W. Squyres, Cornell University; and Eric F. Wood, Princeton University.

  5. LANMAS alpha configured for Sandia National Laboratories and Paducah Gaseous Diffusion Plant

    International Nuclear Information System (INIS)

    Woychick, M.R.; Bracey, J.T.; Kern, E.A.; Alvarado, A.

    1993-07-01

    Los Alamos National Laboratory and the Westinghouse Hanford Company have been working jointly for the past 2 years to develop LANMAS (Local Area Network Material Accountability System), the next generation of a US Department of Energy nuclear material accountability system. LANMAS is being designed to reflect the broad-based needs of the US Department of Energy's Material Control ampersand Accountability and Nuclear Materials Management communities, and its developers believe that significant cost savings can be achieved by implementing LANMAS complex-wide, where feasible. LANMAS is being designed so that it is transportable to appropriate US Department of Energy sites. To accomplish this, LANMAS will be configurable to local site work culture. Many US Department of Energy sites are interested in the LANMAS project, and several have participated in its development; some have committed resources. The original LANMAS project team included representatives from the Hanford Site and Los Alamos. As of June 1993, the following sites have also supported the project: Sandia National Laboratory Albuquerque; Sandia National Laboratory Livermore; Paducah Gaseous Diffusion Plant; Lawrence Livermore National Laboratory; Bettis Atomic Power Laboratory; and Knolls Atomic Power Laboratory. In addition, LANMAS is being targeted as a candidate for the US Department of Energy Complex 21, a project designed to restructure the nation's nuclear weapons complex

  6. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement. Volume 2, Part A

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    This document analyzes at a programmatic level the potential environmental consequences over the next 40 years of alternatives related to the transportation, receipt, processing, and storage of spent nuclear fuel under the responsibility of the US Department of Energy. It also analyzes the site-specific consequences of the Idaho National Engineering Laboratory sitewide actions anticipated over the next 10 years for waste and spent nuclear fuel management and environmental restoration. For programmatic spent nuclear fuel management this document analyzes alternatives of no action, decentralization, regionalization, centralization and the use of the plans that existed in 1992/1993 for the management of these materials. For the Idaho National Engineering Laboratory, this document analyzes alternatives of no action, ten-year plan, minimum and maximum and maximum treatment, storage, and disposal of US Department of Energy wastes.

  7. Computer Assisted Drafting (CNC) Drawings. Drafting Module 6. Instructor's Guide.

    Science.gov (United States)

    Missouri Univ., Columbia. Instructional Materials Lab.

    This Missouri Vocational Instruction Management System instructor's drafting guide has been keyed to the drafting competency profile developed by state industry and education professionals. This unit contains information on computer-assisted drafting drawings. The guide contains a cross-reference table of instructional materials and 20 worksheets.…

  8. Mozambique's journey toward accreditation of the National Tuberculosis Reference Laboratory.

    Science.gov (United States)

    Viegas, Sofia O; Azam, Khalide; Madeira, Carla; Aguiar, Carmen; Dolores, Carolina; Mandlaze, Ana P; Chongo, Patrina; Masamha, Jessina; Cirillo, Daniela M; Jani, Ilesh V; Gudo, Eduardo S

    2017-01-01

    Internationally-accredited laboratories are recognised for their superior test reliability, operational performance, quality management and competence. In a bid to meet international quality standards, the Mozambique National Institute of Health enrolled the National Tuberculosis Reference Laboratory (NTRL) in a continuous quality improvement process towards ISO 15189 accreditation. Here, we describe the road map taken by the NTRL to achieve international accreditation. The NTRL adopted the Strengthening Laboratory Management Toward Accreditation (SLMTA) programme as a strategy to implement a quality management system. After SLMTA, the Mozambique National Institute of Health committed to accelerate the NTRL's process toward accreditation. An action plan was designed to streamline the process. Quality indicators were defined to benchmark progress. Staff were trained to improve performance. Mentorship from an experienced assessor was provided. Fulfilment of accreditation standards was assessed by the Portuguese Accreditation Board. Of the eight laboratories participating in SLMTA, the NTRL was the best-performing laboratory, achieving a 53.6% improvement over the SLMTA baseline conducted in February 2011 to the Stepwise Laboratory Quality Improvement Process Towards Accreditation (SLIPTA) assessment in June 2013. During the accreditation assessment in September 2014, 25 minor nonconformities were identified and addressed. In March 2015, the NTRL received Portuguese Accreditation Board recognition of technical competency for fluorescence smear microscopy, and solid and liquid culture. The NTRL is the first laboratory in Mozambique to achieve ISO 15189 accreditation. From our experience, accreditation was made possible by institutional commitment, strong laboratory leadership, staff motivation, adequate infrastructure and a comprehensive action plan.

  9. Batteries and Energy Storage | Argonne National Laboratory

    Science.gov (United States)

    Skip to main content Argonne National Laboratory Toggle Navigation Toggle Search Energy Batteries Security User Facilities Science Work with Us Energy Batteries and Energy Storage Energy Systems Modeling Transportation SPOTLIGHT Batteries and Energy Storage Argonne's all- encompassing battery research program spans

  10. Neutron Scattering Activity at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Bourke, M.A.M.

    2015-01-01

    The nondestructive and bulk penetrating aspects of neutron scattering techniques make them well suited to the study of materials from the nuclear energy sector (particularly those which are radioactive). This report provides a summary of the facility, LANSCE, which is used at Los Alamos National laboratory for these studies. It also provides a brief description of activities related to line broadening studies of radiation damage and recent imaging and offers observations about the outlook for future activity. The work alluded to below was performed during the period of the CRP by researchers that included but were not limited to; Sven Vogel and Don Brown of Los Alamos National Laboratory; and Anton Tremsin of the University of California, Berkeley. (author)

  11. Oak Ridge National Laboratory Institutional Plan, FY 1991--FY 1996

    Energy Technology Data Exchange (ETDEWEB)

    1991-02-01

    The Oak Ridge National Laboratory -- one of DOE's major multiprogram laboratories -- focuses its resources on energy research and development (R D). To be able to meet these R D challenges, the Laboratory must achieve excellence in its operations relative to environmental, safety, and health (ES H) protection and to restore its aging facility infrastructure. ORNL's missions are carried out in compliance with all applicable ES H regulations. The Laboratory conducts applied R D in energy technologies -- in conservation; fission; magnetic fusion; health and environmental protection; waste management; renewable resources; and fossil energy. Experimental and theoretical research is undertaken to investigate fundamental problems in physical, chemical, materials, computational, biomedical, earth, and environmental sciences; to advance scientific knowledge; and to support energy technology R D. ORNL designs, builds, and operates unique research facilities for the benefit of university, industrial, and national laboratory researchers. The Laboratory serves as a catalyst in bringing national and international research elements together for important scientific and technical collaborations. ORNL helps to prepare the scientific and technical work force of the future by offering innovative and varied learning and R D experiences at the Laboratory for students and faculty from preschool level through postdoctoral candidates. The transfer of science and technology to US industries and universities is an integral component of ORNL's R D missions. ORNL also undertakes research and development for non-DOE sponsors when such work is synergistic with DOE mission. 66 figs., 55 tabs.

  12. Oak Ridge National Laboratory Institutional Plan, FY 1991--FY 1996

    International Nuclear Information System (INIS)

    1991-02-01

    The Oak Ridge National Laboratory -- one of DOE's major multiprogram laboratories -- focuses its resources on energy research and development (R ampersand D). To be able to meet these R ampersand D challenges, the Laboratory must achieve excellence in its operations relative to environmental, safety, and health (ES ampersand H) protection and to restore its aging facility infrastructure. ORNL's missions are carried out in compliance with all applicable ES ampersand H regulations. The Laboratory conducts applied R ampersand D in energy technologies -- in conservation; fission; magnetic fusion; health and environmental protection; waste management; renewable resources; and fossil energy. Experimental and theoretical research is undertaken to investigate fundamental problems in physical, chemical, materials, computational, biomedical, earth, and environmental sciences; to advance scientific knowledge; and to support energy technology R ampersand D. ORNL designs, builds, and operates unique research facilities for the benefit of university, industrial, and national laboratory researchers. The Laboratory serves as a catalyst in bringing national and international research elements together for important scientific and technical collaborations. ORNL helps to prepare the scientific and technical work force of the future by offering innovative and varied learning and R ampersand D experiences at the Laboratory for students and faculty from preschool level through postdoctoral candidates. The transfer of science and technology to US industries and universities is an integral component of ORNL's R ampersand D missions. ORNL also undertakes research and development for non-DOE sponsors when such work is synergistic with DOE mission. 66 figs., 55 tabs

  13. National Environmental Policy Act (NEPA) Compliance Guide, Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, R.P. [Hansen Environmental Consultants, Englewood, CO (United States)

    1995-08-01

    This report contains a comprehensive National Environmental Policy Act (NEPA) Compliance Guide for the Sandia National Laboratories. It is based on the Council on Environmental Quality (CEQ) NEPA regulations in 40 CFR Parts 1500 through 1508; the US Department of Energy (DOE) N-EPA implementing procedures in 10 CFR Part 102 1; DOE Order 5440.1E; the DOE ``Secretarial Policy Statement on the National Environmental Policy Act`` of June 1994- Sandia NEPA compliance procedures-, and other CEQ and DOE guidance. The Guide includes step-by-step procedures for preparation of Environmental Checklists/Action Descriptions Memoranda (ECL/ADMs), Environmental Assessments (EAs), and Environmental Impact Statements (EISs). It also includes sections on ``Dealing With NEPA Documentation Problems`` and ``Special N-EPA Compliance Issues.``

  14. Argonne National Laboratory Annual Report of Laboratory Directed Research and Development program activities FY 2011.

    Energy Technology Data Exchange (ETDEWEB)

    (Office of The Director)

    2012-04-25

    As a national laboratory Argonne concentrates on scientific and technological challenges that can only be addressed through a sustained, interdisciplinary focus at a national scale. Argonne's eight major initiatives, as enumerated in its strategic plan, are Hard X-ray Sciences, Leadership Computing, Materials and Molecular Design and Discovery, Energy Storage, Alternative Energy and Efficiency, Nuclear Energy, Biological and Environmental Systems, and National Security. The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel technical concepts, enhance the Laboratory's research and development (R and D) capabilities, and pursue its strategic goals. projects are selected from proposals for creative and innovative R and D studies that require advance exploration before they are considered to be sufficiently developed to obtain support through normal programmatic channels. Among the aims of the projects supported by the LDRD Program are the following: establishment of engineering proof of principle, assessment of design feasibility for prospective facilities, development of instrumentation or computational methods or systems, and discoveries in fundamental science and exploratory development.

  15. Argonne National Laboratory Annual Report of Laboratory Directed Research and Development program activities FY 2010.

    Energy Technology Data Exchange (ETDEWEB)

    (Office of The Director)

    2012-04-25

    As a national laboratory Argonne concentrates on scientific and technological challenges that can only be addressed through a sustained, interdisciplinary focus at a national scale. Argonne's eight major initiatives, as enumerated in its strategic plan, are Hard X-ray Sciences, Leadership Computing, Materials and Molecular Design and Discovery, Energy Storage, Alternative Energy and Efficiency, Nuclear Energy, Biological and Environmental Systems, and National Security. The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel technical concepts, enhance the Laboratory's research and development (R and D) capabilities, and pursue its strategic goals. projects are selected from proposals for creative and innovative R and D studies that require advance exploration before they are considered to be sufficiently developed to obtain support through normal programmatic channels. Among the aims of the projects supported by the LDRD Program are the following: establishment of engineering proof of principle, assessment of design feasibility for prospective facilities, development of instrumentation or computational methods or systems, and discoveries in fundamental science and exploratory development.

  16. Inertial confinement fusion at the Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Lindman, E.; Baker, D.; Barnes, C.; Bauer, B.; Beck, J.B.

    1997-01-01

    The Los Alamos National Laboratory is contributing to the resolution of key issues in the US Inertial-Confinement-Fusion Program and plans to play a strong role in the experimental program at the National Ignition Facility when it is completed

  17. 75 FR 22162 - Draft NIJ Duty Holster Retention Standard for Law Enforcement

    Science.gov (United States)

    2010-04-27

    ...In an effort to obtain comments from interested parties, the U.S. Department of Justice, Office of Justice Programs, National Institute of Justice will make available to the general public two draft documents: (1) A draft standard entitled, ``NIJ Duty Holster Retention Standard for Law Enforcement'' and (2) a draft companion document entitled, ``NIJ Duty Holster Retention Certification Program Requirements.'' The opportunity to provide comments on these two documents is open to industry technical representatives, law enforcement agencies and organizations, research, development and scientific communities, and all other stakeholders and interested parties. Those individuals wishing to obtain and provide comments on the draft documents under consideration are directed to the following Web site: http://www.justnet.org.

  18. Computational geomechanics and applications at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Arguello, Jose Guadalupe Jr.

    2010-01-01

    Sandia National Laboratories (SNL) is a multi-program national laboratory in the business of national security, whose primary mission is nuclear weapons (NW). It is a prime contractor to the USDOE, operating under the NNSA and is one of the three NW national laboratories. It has a long history of involvement in the area of geomechanics, starting with the some of the earliest weapons tests at Nevada. Projects in which geomechanics support (in general) and computational geomechanics support (in particular) are at the forefront at Sandia, range from those associated with civilian programs to those in the defense programs. SNL has had significant involvement and participation in the Waste Isolation Pilot Plant (low-level defense nuclear waste), the Yucca Mountain Project (formerly proposed for commercial spent fuel and high-level nuclear waste), and the Strategic Petroleum Reserve (the nation's emergency petroleum store). In addition, numerous industrial partners seek-out our computational/geomechanics expertise, and there are efforts in compressed air and natural gas storage, as well as in CO 2 Sequestration. Likewise, there have also been collaborative past efforts in the areas of compactable reservoir response, the response of salt structures associated with reservoirs, and basin modeling for the Oil and Gas industry. There are also efforts on the defense front, ranging from assessment of vulnerability of infrastructure to defeat of hardened targets, which require an understanding and application of computational geomechanics. Several examples from some of these areas will be described and discussed to give the audience a flavor of the type of work currently being performed at Sandia in the general area of geomechanics.

  19. The integral fast reactor fuels reprocessing laboratory at Argonne National Laboratory, Illinois

    International Nuclear Information System (INIS)

    Wolson, R.D.; Tomczuk, Z.; Fischer, D.F.; Slawecki, M.A.; Miller, W.E.

    1986-09-01

    The processing of Integral Fast Reactor (IFR) metal fuel utilizes pyrochemical fuel reprocessing steps. These steps include separation of the fission products from uranium and plutonium by electrorefining in a fused salt, subsequent concentration of uranium and plutonium for reuse, removal, concentration, and packaging of the waste material. Approximately two years ago a facility became operational at Argonne National Laboratory-Illinois to establish the chemical feasibility of proposed reprocessing and consolidation processes. Sensitivity of the pyroprocessing melts to air oxidation necessitated operation in atmosphere-controlled enclosures. The Integral Fast Reactor Fuels Reprocessing Laboratory is described

  20. 78 FR 54476 - Availability of Draft National Toxicology Program Technical Reports; Request for Comments; Notice...

    Science.gov (United States)

    2013-09-04

    ... glycidamide. The draft TRs should be available by September 20, 2013, at http://ntp.niehs.nih.gov/go/36051... attendance and comment. Information about the meeting and registration are available at http://ntp.niehs.nih... Time (EDT). Document Availability: Draft TRs should be available by September 20, 2013, at http://ntp...

  1. Argonne National Laboratory institutional plan FY 2002 - FY 2007

    International Nuclear Information System (INIS)

    Beggs, S. D.

    2001-01-01

    The national laboratory system provides a unique resource for addressing the national needs inherent in the mission of the Department of Energy. Argonne, which grew out of Enrico Fermi's pioneering work on the development of nuclear power, was the first national laboratory and, in many ways, has set the standard for those that followed. As the Laboratory's new director, I am pleased to present the Argonne National Laboratory Institutional Plan for FY 2002 through FY 2007 on behalf of the extraordinary group of scientists, engineers, technicians, administrators, and others who re responsible for the Laboratory's distinguished record of achievement. Like our sister DOE laboratories, Argonne uses a multifaceted approach to advance U.S. R and D priorities. First, we assemble interdisciplinary teams of scientists and engineers to address complex problems. For example, our initiative in Functional Genomics will bring together biologists, computer scientists, environmental scientists, and staff of the Advanced Photon Source to develop complete maps of cellular function. Second, we cultivate specific core competencies in science and technology; this Institutional Plan discusses the many ways in which our core competencies support DOE's four mission areas. Third, we serve the scientific community by designing, building, and operating world-class user facilities, such as the Advanced Photon Source, the Intense Pulsed Neutron Source, and the Argonne Tandem-Linac Accelerator System. This Plan summarizes the visions, missions, and strategic plans for the Laboratory's existing major user facilities, and it explains our approach to the planned Rare Isotope Accelerator. Fourth, we help develop the next generation of scientists and engineers through educational programs, many of which involve bright young people in research. This Plan summarizes our vision, objectives, and strategies in the education area, and it gives statistics on student and faculty participation. Finally, we

  2. Sandia National Laboratories analysis code data base

    Science.gov (United States)

    Peterson, C. W.

    1994-11-01

    Sandia National Laboratories' mission is to solve important problems in the areas of national defense, energy security, environmental integrity, and industrial technology. The laboratories' strategy for accomplishing this mission is to conduct research to provide an understanding of the important physical phenomena underlying any problem, and then to construct validated computational models of the phenomena which can be used as tools to solve the problem. In the course of implementing this strategy, Sandia's technical staff has produced a wide variety of numerical problem-solving tools which they use regularly in the design, analysis, performance prediction, and optimization of Sandia components, systems, and manufacturing processes. This report provides the relevant technical and accessibility data on the numerical codes used at Sandia, including information on the technical competency or capability area that each code addresses, code 'ownership' and release status, and references describing the physical models and numerical implementation.

  3. Sandia National Laboratories analysis code data base

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, C.W.

    1994-11-01

    Sandia National Laboratories, mission is to solve important problems in the areas of national defense, energy security, environmental integrity, and industrial technology. The Laboratories` strategy for accomplishing this mission is to conduct research to provide an understanding of the important physical phenomena underlying any problem, and then to construct validated computational models of the phenomena which can be used as tools to solve the problem. In the course of implementing this strategy, Sandia`s technical staff has produced a wide variety of numerical problem-solving tools which they use regularly in the design, analysis, performance prediction, and optimization of Sandia components, systems and manufacturing processes. This report provides the relevant technical and accessibility data on the numerical codes used at Sandia, including information on the technical competency or capability area that each code addresses, code ``ownership`` and release status, and references describing the physical models and numerical implementation.

  4. EPA Releases Draft Policy to Reduce Animal Testing for Skin Sensitization

    Science.gov (United States)

    The document, Draft Interim Science Policy: Use of Alternative Approaches for Skin Sensitization as a Replacement for Laboratory Animal Testing, describes the science behind the non-animal alternatives that can now be used to identify skin sensitization.

  5. Final Environmental Impact Statement and Environmental Impact Report for continued operation of Lawrence Livermore National Laboratory and Sandia National Laboratories, Livermore

    International Nuclear Information System (INIS)

    1992-08-01

    This Environmental Impact Statement/Environmental Impact Report (EIS/EIR) is prepared pursuant to the National Environmental Policy Act (NEPA) and the California Environmental Quality Act (CEQA). This document analyzes the potential environmental impacts of the proposed action: continued operation, including near-term (within 5 to 10 years) proposed projects, of Lawrence Livermore National Laboratory (LLNL) and Sandia National Laboratories, Livermore (SNL, Livermore). Additionally, this document analyzes a no action alternative involving continuing operations at FY 1992 funding levels without further growth, a modification of operations alternative to reduce adverse environmental impacts of operations or facilities, and a shutdown and decommissioning alternative of UC discontinuing its management of LLNL after the current contract expires on September 30, 1992. This document assesses the environmental impacts of the Laboratories' operations on air and water quality, geological and ecological systems, occupational and public health risks, prehistoric and historic resources, endangered species, floodplains and wetlands, socioeconomic resources, hazardous waste management, site contamination, and other environmental issues. The EIS/EIR is divided into five volumes and two companion reports. This volume contains the Final EIS/EIR, which in part relies on the detailed information in the appendices, and comprehensively discusses the proposed action, the alternatives, and the existing conditions and impacts of the proposed action and the alternatives

  6. Quality of Control of Clinical-Biochemical Laboratories – Serbian Case

    Directory of Open Access Journals (Sweden)

    Vinko Peric

    2014-06-01

    Full Text Available In the last 20 years in medical laboratories, numerous activities regarding quality and accreditation system were taken. Approach to this problem in European countries is different, so the task of the Accreditation Work Group of the Confederation of European societies for clinical chemistry (EC 4 to help the efforts to harmonize this issue. External quality control in clinical-chemical laboratories imposed the need for the implementation of quality management system. »Good laboratory practice« and its principles were adopted by nominated bodies, both international and national. In the beginning, the standard ISO 9001 was applied for certification and for accreditation EN 45001 and ISO Guide 25, which are prepared for testing and calibration laboratories. Standard ISO 17025 is the successor of the previous documents and for now it is a reference for mentioned laboratories. Accreditation Work Group of the Confederation of European societies for clinical chemistry (EC 4 made an amendment of the requirements for medical laboratories, which this standard describes. Standard draft ISO 15189 was adopted on February 2003 as a final version with requirements for medical laboratories.

  7. DECOMMISSIONING THE HIGH PRESSURE TRITIUM LABORATORY AT LOS ALAMOS NATIONAL LABORATORY

    International Nuclear Information System (INIS)

    Peifer, M.J.; Rendell, K.; Hearnsberger, D.W.

    2003-01-01

    In May 0f 2000, the Cerro Grande wild land fire burned approximately 48,000 acres in and around Los Alamos. In addition to the many buildings that were destroyed in the town site, many structures were also damaged and destroyed within the 43 square miles that comprise the Los Alamos National Laboratory (LANL). A special Act of Congress provided funding to remove Laboratory structures that were damaged by the fire, or that could be threatened by subsequent catastrophic wild land fires. The High Pressure Tritium Laboratory (HPTL) is located at Technical Area (TA) 33, building 86 in the far southeast corner of the Laboratory property. It is immediately adjacent to Bandelier National Park. Because it was threatened by both the Cerro Grande fire in 2000, and the 16,000- acre Dome fire in 1996, the former tritium processing facility was placed on the list of facilities scheduled for Decontamination and Decommissioning under the Cerro Grande Rehabilitation Project. The work was performed through the Facilities and Waste Operations (FWO) Division and is integrated with other Laboratory D and D efforts. The primary demolition contractor was Clauss Construction of San Diego, California. Earth Tech Global Environmental Services of San Antonio, Texas was sub-contracted to Clauss Construction, and provided radiological decontamination support to the project. Although the forty-seven year old facility had been in a state of safe-shutdown since operations ceased in 1990, a significant amount of tritium remained in the rooms where process systems were located. Tritium was the only radiological contaminant associated with this facility. Since no specific regulatory standards have been set for the release of volumetrically contaminated materials, concentration guidelines were derived in order to meet other established regulatory criteria. A tritium removal system was developed for this project with the goal of reducing the volume of tritium concentrated in the concrete of the

  8. Sea-ice Thickness and Draft Statistics from Submarine ULS, Moored ULS, and a Coupled Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set consists of estimates of mean values of sea-ice thickness and sea-ice draft in meters computed from three different input data sets: sea ice draft from...

  9. DESALINATION AND WATER TREATMENT RESEARCH AT SANDIA NATIONAL LABORATORIES.

    Energy Technology Data Exchange (ETDEWEB)

    Rigali, Mark J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Miller, James E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Altman, Susan J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Biedermann, Laura [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brady, Patrick Vane. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kuzio, Stephanie P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Nenoff, Tina M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rempe, Susan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-11-01

    Water is the backbone of our economy - safe and adequate supplies of water are vital for agriculture, industry, recreation, and human consumption. While our supply of water today is largely safe and adequate, we as a nation face increasing water supply challenges in the form of extended droughts, demand growth due to population increase, more stringent health-based regulation, and competing demands from a variety of users. To meet these challenges in the coming decades, water treatment technologies, including desalination, will contribute substantially to ensuring a safe, sustainable, affordable, and adequate water supply for the United States. This overview documents Sandia National Laboratories' (SNL, or Sandia) Water Treatment Program which focused on the development and demonstration of advanced water purification technologies as part of the larger Sandia Water Initiative. Projects under the Water Treatment Program include: (1) the development of desalination research roadmaps (2) our efforts to accelerate the commercialization of new desalination and water treatment technologies (known as the 'Jump-Start Program),' (3) long range (high risk, early stage) desalination research (known as the 'Long Range Research Program'), (4) treatment research projects under the Joint Water Reuse & Desalination Task Force, (5) the Arsenic Water Technology Partnership Program, (6) water treatment projects funded under the New Mexico Small Business Administration, (7) water treatment projects for the National Energy Technology Laboratory (NETL) and the National Renewable Energy Laboratory (NREL), (8) Sandia- developed contaminant-selective treatment technologies, and finally (9) current Laboratory Directed Research and Development (LDRD) funded desalination projects.

  10. Idaho National Laboratory 2013-2022 Ten-Year Site Plan

    Energy Technology Data Exchange (ETDEWEB)

    Calvin Ozaki; Sheryl L. Morton; Elizabeth A. Connell; William T. Buyers; Craig L. Jacobson; Charles T. Mullen; Christopher P. Ischay; Ernest L. Fossum; Robert D. Logan

    2011-06-01

    The Idaho National Laboratory (INL) Ten-Year Site Plan (TYSP) describes the strategy for accomplishing the long-term objective of transforming the laboratory to meet Department of Energy (DOE) national nuclear research and development (R&D) goals, as outlined in DOE strategic plans. The plan links R&D mission goals and INL core capabilities with infrastructure requirements (single- and multi-program), establishs the 10-year end-state vision for INL complexes, and identifies and prioritizes infrastructure needs and capability gaps. The TYSP serves as the basis for documenting and justifying infrastructure investments proposed as part of the FY 2013 budget formulation process.

  11. Sandia National Laboratories embraces ISDN

    Energy Technology Data Exchange (ETDEWEB)

    Tolendino, L.F.; Eldridge, J.M.

    1994-08-01

    Sandia National Laboratories (Sandia), a multidisciplinary research and development laboratory located on Kirtland Air Force Base, has embraced Integrated Services Digital Network technology as an integral part of its communication network. Sandia and the Department of Energy`s Albuquerque Operations Office have recently completed the installation of a modernized and expanded telephone system based, on the AT&T 5ESS telephone switch. Sandia is committed to ISDN as an integral part of data communication services, and it views ISDN as one part of a continuum of services -- services that range from ISDN`s asynchronous and limited bandwidth Ethernet (250--1000 Kbps) through full bandwidth Ethernet, FDDI, and ATM at Sonet rates. Sandia has demonstrated this commitment through its use of ISDN data features to support critical progmmmatic services such as access to corporate data base systems. In the future, ISDN will provide enhanced voice, data communication, and video services.

  12. National NIF Diagnostic Program Interim Management Plan

    International Nuclear Information System (INIS)

    Warner, B

    2002-01-01

    The National Ignition Facility (NIF) has the mission of supporting Stockpile Stewardship and Basic Science research in high-energy-density plasmas. To execute those missions, the facility must provide diagnostic instrumentation capable of observing and resolving in time events and radiation emissions characteristic of the plasmas of interest. The diagnostic instrumentation must conform to high standards of operability and reliability within the NIF environment. These exacting standards, together with the facility mission of supporting a diverse user base, has led to the need for a central organization charged with delivering diagnostic capability to the NIF. The National NIF Diagnostics Program (NNDP) has been set up under the aegis of the NIF Director to provide that organization authority and accountability to the wide user community for NIF. The funds necessary to perform the work of developing diagnostics for NIF will be allocated from the National NIF Diagnostics Program to the participating laboratories and organizations. The participating laboratories and organizations will design, build, and commission the diagnostics for NIF. Restricted availability of funding has had an adverse impact, unforeseen at the time of the original decision to projectize NIF Core Diagnostics Systems and Cryogenic Target Handing Systems, on the planning and initiation of these efforts. The purpose of this document is to provide an interim project management plan describing the organizational structure and management processes currently in place for NIF Core Diagnostics Systems. Preparation of a Program Execution Plan for NIF Core Diagnostics Systems has been initiated and a current draft is provided as Attachment 1 to this document. The National NIF Diagnostics Program Interim Management Plan provides a summary of primary design criteria and functional requirements, current organizational structure, tracking and reporting procedures, and current planning estimates of project scope

  13. Pacific Northwest National Laboratory institutional plan FY 1998--2002

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    Pacific Northwest National Laboratory`s core mission is to deliver environmental science and technology in the service of the nation and humanity. Through basic research the lab creates fundamental knowledge of natural, engineered, and social systems that is the basis for both effective environmental technology and sound public policy. They solve legacy environmental problems by delivering technologies that remedy existing environmental hazards, they address today`s environmental needs with technologies that prevent pollution and minimize waste, and they are laying the technical foundation for tomorrow`s inherently clean energy and industrial processes. The lab also applies their capabilities to meet selected national security, energy, and human health needs; strengthen the US economy; and support the education of future scientists and engineers. The paper summarizes individual research activities under each of these areas.

  14. A data automation system at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Betts, S.E.; Schneider, C.M.; Pickrell, M.M.

    2001-01-01

    Idaho National Engineering and Environmental Laboratory (INEEL) has developed an automated computer program, Data Review Expert System (DRXS), for reviewing nondestructive assay (NDA) data. DRXS significantly reduces the data review time needed to meet characterization requirements for the Waste Isolation Pilot Plant (WIPP). Los Alamos National Laboratory (LANL) is in the process of developing a computer program, Software System Logic for Intelligent Certification (SSLIC), to automate other tasks associa ted with characterization of Transuranic Waste (TRU) samples. LANL has incorporated a version of DRXS specific to LANL's isotopic data into SSLIC. This version of SSLIC was audited by the National Transuranic Program on October, 24, 2001. This paper will present the results of the audit, and discuss future plans for SSLIC including the integration on the INEELLANL developed Rule Editor.

  15. Ergonomic assessments of three Idaho National Engineering Laboratory cafeterias

    Energy Technology Data Exchange (ETDEWEB)

    Ostrom, L.T.; Romero, H.A.; Gilbert, B.G.; Wilhelmsen, C.A.

    1993-01-01

    The Idaho National Engineering Laboratory is a Department of Energy facility that performs a variety of engineering and research projects. EG G Idaho is the prime contractor for the laboratory and, as such, performs the support functions in addition to technical, research, and development functions. As a part of the EG G Idaho Industrial Hygiene Initiative, ergonomic assessments were conducted at three Idaho National Engineering Laboratory Cafeterias. The purposes of the assessments were to determine whether ergonomic problems existed in the work places and, if so, to make recommendations to improve the work place and task designs. The study showed there were ergonomic problems in all three cafeterias assessed. The primary ergonomic stresses observed included wrist and shoulder stress in the dish washing task, postural stress in the dish washing and food preparation tasks, and back stress in the food handling tasks.

  16. Ergonomic assessments of three Idaho National Engineering Laboratory cafeterias

    Energy Technology Data Exchange (ETDEWEB)

    Ostrom, L.T.; Romero, H.A.; Gilbert, B.G.; Wilhelmsen, C.A.

    1993-05-01

    The Idaho National Engineering Laboratory is a Department of Energy facility that performs a variety of engineering and research projects. EG&G Idaho is the prime contractor for the laboratory and, as such, performs the support functions in addition to technical, research, and development functions. As a part of the EG&G Idaho Industrial Hygiene Initiative, ergonomic assessments were conducted at three Idaho National Engineering Laboratory Cafeterias. The purposes of the assessments were to determine whether ergonomic problems existed in the work places and, if so, to make recommendations to improve the work place and task designs. The study showed there were ergonomic problems in all three cafeterias assessed. The primary ergonomic stresses observed included wrist and shoulder stress in the dish washing task, postural stress in the dish washing and food preparation tasks, and back stress in the food handling tasks.

  17. Sandia National Laboratories: Fabrication, Testing and Validation

    Science.gov (United States)

    digital and analog elements. * Cadence Process-Design Kit. Structured ASIC Sandia National Laboratories demonstrate complex multilevel devices such as micro-mass-analysis systems up to 25 microns thick and novel possible to fabricate a wide very large variety of useful devices. Micro-Mass-Analysis Systems Applications

  18. Proceedings of the National Renewable Energy Laboratory Wind Energy Systems Engineering Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Dykes, K.

    2014-12-01

    The second National Renewable Energy Laboratory (NREL) Wind Energy Systems Engineering Workshop was held in Broomfield, Colorado, from January 29 to February 1, 2013. The event included a day-and-a-half workshop exploring a wide variety of topics related to system modeling and design of wind turbines and plants. Following the workshop, 2 days of tutorials were held at NREL, showcasing software developed at Sandia National Laboratories, the National Aeronautics and Space Administration's Glenn Laboratories, and NREL. This document provides a brief summary of the various workshop activities and includes a review of the content and evaluation results from attendees.

  19. Computer technology forecasting at the National Laboratories

    International Nuclear Information System (INIS)

    Peskin, A.M.

    1980-01-01

    The DOE Office of ADP Management organized a group of scientists and computer professionals, mostly from their own national laboratories, to prepare an annually updated technology forecast to accompany the Department's five-year ADP Plan. The activities of the task force were originally reported in an informal presentation made at the ACM Conference in 1978. This presentation represents an update of that report. It also deals with the process of applying the results obtained at a particular computing center, Brookhaven National Laboratory. Computer technology forecasting is a difficult and hazardous endeavor, but it can reap considerable advantage. The forecast performed on an industry-wide basis can be applied to the particular needs of a given installation, and thus give installation managers considerable guidance in planning. A beneficial side effect of this process is that it forces installation managers, who might otherwise tend to preoccupy themselves with immediate problems, to focus on longer term goals and means to their ends

  20. Post Irradiation Capabilities at the Idaho National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Schulthess, J.L.

    2011-08-01

    The U.S. Department of Energy (DOE) Office of Nuclear Energy (NE) oversees the research, development, and demonstration activities that ensure nuclear energy remains a viable energy option for the United States. Fuel and material development through fabrication, irradiation, and characterization play a significant role in accomplishing the research needed to support nuclear energy. All fuel and material development requires the understanding of irradiation effects on the fuel performance and relies on irradiation experiments ranging from tests aimed at targeted scientific questions to integral effects under representative and prototypic conditions. The DOE recently emphasized a solution-driven, goal-oriented, science-based approach to nuclear energy development. Nuclear power systems and materials were initially developed during the latter half of the 20th century and greatly facilitated by the United States ability and willingness to conduct large-scale experiments. Fifty-two research and test reactors with associated facilities for performing fabrication and pre and post irradiation examinations were constructed at what is now Idaho National Laboratory (INL), another 14 at Oak Ridge National Laboratory (ORNL), and a few more at other national laboratory sites. Building on the scientific advances of the last several decades, our understanding of fundamental nuclear science, improvements in computational platforms, and other tools now enable technological advancements with less reliance on large-scale experimentation.

  1. Post Irradiation Capabilities at the Idaho National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Schulthess, J.L.; Robert D. Mariani; Rory Kennedy; Doug Toomer

    2011-08-01

    The U.S. Department of Energy (DOE) Office of Nuclear Energy (NE) oversees the research, development, and demonstration activities that ensure nuclear energy remains a viable energy option for the United States. Fuel and material development through fabrication, irradiation, and characterization play a significant role in accomplishing the research needed to support nuclear energy. All fuel and material development requires the understanding of irradiation effects on the fuel performance and relies on irradiation experiments ranging from tests aimed at targeted scientific questions to integral effects under representative and prototypic conditions. The DOE recently emphasized a solution-driven, goal-oriented, science-based approach to nuclear energy development. Nuclear power systems and materials were initially developed during the latter half of the 20th century and greatly facilitated by the United States’ ability and willingness to conduct large-scale experiments. Fifty-two research and test reactors with associated facilities for performing fabrication and pre and post irradiation examinations were constructed at what is now Idaho National Laboratory (INL), another 14 at Oak Ridge National Laboratory (ORNL), and a few more at other national laboratory sites. Building on the scientific advances of the last several decades, our understanding of fundamental nuclear science, improvements in computational platforms, and other tools now enable technological advancements with less reliance on large-scale experimentation.

  2. 78 FR 37795 - Draft NOAA Procedures for Government to Government Consultation With Federally Recognized Indian...

    Science.gov (United States)

    2013-06-24

    ... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration RIN 0648-XC726 Draft NOAA... Oceanic and Atmospheric Administration (NOAA), Commerce. ACTION: Notice; request for comments. SUMMARY: NOAA announces the availability of and request for comments on the Draft NOAA Procedures for Government...

  3. Basic Drafting. Revised.

    Science.gov (United States)

    Schertz, Karen

    This introductory module on drafting includes the technical content and tasks necessary for a student to be employed in an entry-level drafting occupation. The module contains 18 instructional units that cover the following topics: introduction to drafting; tools and equipment; supplies and materials; sketching; scales; drawing format; lettering;…

  4. Ernest Orlando Lawrence Berkeley National Laboratory institutional plan, FY 1996--2001

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    The FY 1996--2001 Institutional Plan provides an overview of the Ernest Orlando Lawrence Berkeley National Laboratory mission, strategic plan, core business areas, critical success factors, and the resource requirements to fulfill its mission in support of national needs in fundamental science and technology, energy resources, and environmental quality. The Laboratory Strategic Plan section identifies long-range conditions that will influence the Laboratory, as well as potential research trends and management implications. The Core Business Areas section identifies those initiatives that are potential new research programs representing major long-term opportunities for the Laboratory, and the resources required for their implementation. It also summarizes current programs and potential changes in research program activity, science and technology partnerships, and university and science education. The Critical Success Factors section reviews human resources; work force diversity; environment, safety, and health programs; management practices; site and facility needs; and communications and trust. The Resource Projections are estimates of required budgetary authority for the Laboratory`s ongoing research programs. The Institutional Plan is a management report for integration with the Department of Energy`s strategic planning activities, developed through an annual planning process. The plan identifies technical and administrative directions in the context of the national energy policy and research needs and the Department of Energy`s program planning initiatives. Preparation of the plan is coordinated by the Office of Planning and Communications from information contributed by the Laboratory`s scientific and support divisions.

  5. Los Alamos National Laboratory Human and Intellectual Capital for Sustaining Nuclear Deterrence

    Energy Technology Data Exchange (ETDEWEB)

    McAlpine, Bradley [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-04-01

    This paper provides an overview of the current human and intellectual capital at Los Alamos National Laboratory, through specific research into the statistics and demographics as well as numerous personal interviews at all levels of personnel. Based on this information, a series of recommendations are provided to assist Los Alamos National Laboratory in ensuring the future of the human and intellectual capital for the nuclear deterrence mission. While the current human and intellectual capital is strong it stands on the precipice and action must be taken to ensure Los Alamos National Laboratory maintains leadership in developing and sustaining national nuclear capabilities. These recommendations may be applicable to other areas of the nuclear enterprise, including the Air Force, after further research and study.

  6. Los Alamos National Laboratory Human and Intellectual Capital for Sustaining Nuclear Deterrence

    International Nuclear Information System (INIS)

    McAlpine, Bradley

    2015-01-01

    This paper provides an overview of the current human and intellectual capital at Los Alamos National Laboratory, through specific research into the statistics and demographics as well as numerous personal interviews at all levels of personnel. Based on this information, a series of recommendations are provided to assist Los Alamos National Laboratory in ensuring the future of the human and intellectual capital for the nuclear deterrence mission. While the current human and intellectual capital is strong it stands on the precipice and action must be taken to ensure Los Alamos National Laboratory maintains leadership in developing and sustaining national nuclear capabilities. These recommendations may be applicable to other areas of the nuclear enterprise, including the Air Force, after further research and study.

  7. Pacific Northwest National Laboratory Institutional Plan FY 2001-2005

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, Darrell R.; Pearson, Erik W.

    2000-12-29

    The Pacific Northwest National Laboratory Institutional Plan for FY 2001-2005 sets forth the laboratory's mission, roles, technical capabilities, and laboratory strategic plan. In the plan, major initiatives also are proposed and the transitioning initiatives are discussed. The Programmatic Strategy section details our strategic intent, roles, and research thrusts in each of the U.S. Department of Energy's mission areas. The Operations/Infrastructure Strategic Plan section includes information on the laboratory's human resources; environment, safety, and health management; safeguards and security; site and facilities management; information resources management; managaement procatices and standards; and communications and trust.

  8. Pacific Northwest National Laboratory Institutional Plan FY 2000-2004

    Energy Technology Data Exchange (ETDEWEB)

    Pearson, Erik W.

    2000-03-01

    The Pacific Northwest National Laboratory Institutional Plan for FY 2000-2004 sets forth the laboratory's mission, roles, technical capabilities, and laboratory strategic plan. In the plan, major initiatives also are proposed and the transitioning initiatives are discussed. The Programmatic Strategy section details our strategic intent, roles, and research thrusts in each of the U.S. Department of Energy's mission areas. The Operations/Infrastructure Strategic Plan section includes information on the laboratory's human resources; environment, safety, and health management; safeguards and security; site and facilities management; information resources management; management practices and standards; and communications and trust.

  9. Federal Facilities Compliance Act, Draft Site Treatment Plan: Background Volume, Part 2, Volume 1

    International Nuclear Information System (INIS)

    1994-01-01

    This Draft Site Treatment Plan was prepared by Ames Laboratory to meet the requirements of the Federal Facilities Compliance Act. Topics discussed include: purpose and scope of the plan; site history and mission; draft plant organization; waste minimization; waste characterization; preferred option selection process; technology for treating low-level radioactive wastes and TRU wastes; future generation of mixed waste streams; funding; and process for evaluating disposal issues in support of the site treatment plan

  10. Nuclear physics and heavy element research at Lawrence Livermore National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Stoyer, Mark A; Ahle, L E; Becker, J A; Bernshein, L A; Bleuel, D L; Burke, J T; Dashdorj, D; Henderson, R A; Hurst, A M; Kenneally, Jacqueline M; Lesher, S R; Moody, K J; Nelson, S L; Norman, E B; Pedretti, M; Scielzo, N D; Shaughnessy, D A; Sheets, S A; Stoeffl, W; Stoyer, N J [Lawrence Livermore National Laboratory, University of California, Livermore (United States)

    2009-12-31

    This paper highlights some of the current basic nuclear physics research at Lawrence Livermore National Laboratory (LLNL). The work at LLNL concentrates on investigating nuclei at the extremes. The Experimental Nuclear Physics Group performs research to improve our understanding of nuclei, nuclear reactions, nuclear decay processes and nuclear astrophysics; an expertise utilized for important laboratory national security programs and for world-class peer-reviewed basic research.

  11. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement

    International Nuclear Information System (INIS)

    1994-06-01

    This volume contains the following attachments: transportation of Naval spent nuclear fuel; description of Naval spent nuclear receipt and handling at the Expended Core Facility at the Idaho National Engineering Laboratory; comparison of storage in new water pools versus dry container storage; description of storage of Naval spent nuclear fuel at servicing locations; description of receipt, handling, and examination of Naval spent nuclear fuel at alternate DOE facilities; analysis of normal operations and accident conditions; and comparison of the Naval spent nuclear fuel storage environmental assessment and this environmental impact statement

  12. Site characteristics of Argonne National Laboratory in Illinois

    International Nuclear Information System (INIS)

    Chang, Y.W.

    1995-01-01

    This report reviews the geology and topography of the Argonne National Laboratory, near Lemont, Illinois. It describes the thickness and stratigraphy of soils, glacial till, and bedrock in and adjacent to the laboratory and support facilities. Seismic surveys were also conducted through the area to help determine the values of seismic wave velocities in the glacial till which is important in determining the seismic hazard of the area. Borehole log descriptions are summarized along with information on area topography

  13. National Research Council Research Associateships Program with Methane Hydrates Fellowships Program/National Energy Technology Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Basques, Eric O. [National Academy of Sciences, Washington, DC (United States)

    2014-03-20

    This report summarizes work carried out over the period from July 5, 2005-January 31, 2014. The work was carried out by the National Research Council Research Associateships Program of the National Academies, under the US Department of Energy's National Energy Technology Laboratory (NETL) program. This Technical Report consists of a description of activity from 2005 through 2014, broken out within yearly timeframes, for NRC/NETL Associateships researchers at NETL laboratories which includes individual tenure reports from Associates over this time period. The report also includes individual tenure reports from associates over this time period. The report also includes descriptions of program promotion efforts, a breakdown of the review competitions, awards offered, and Associate's activities during their tenure.

  14. On-site laboratory support of Oak Ridge National Laboratory environmental restoration field activities

    International Nuclear Information System (INIS)

    Burn, J.L.E.

    1995-07-01

    A remedial investigation/feasibility study has been undertaken at Oak Ridge National Laboratory (ORNL). Bechtel National, Inc. and partners CH2M Hill, Ogden Environmental and Energy Services, and PEER Consultants are contracted to Lockheed Martin Energy Systems, performing this work for ORNL's Environmental Restoration (ER) Program. An on-site Close Support Laboratory (CSL) established at the ER Field Operations Facility has evolved into a laboratory where quality analytical screening results can be provided rapidly (e.g., within 24 hours of sampling). CSL capabilities include three basic areas: radiochemistry, chromatography, and wet chemistry. Radiochemical analyses include gamma spectroscopy, tritium and carbon-14 screens using liquid scintillation analysis, and gross alpha and beta counting. Cerenkov counting and crown-ether-based separation are the two rapid methods used for radiostrontium determination in water samples. By extending count times where appropriate, method detection limits can match those achieved by off-site contract laboratories. Volatile organic compounds are detected by means of gas chromatography using either headspace or purge and trap sample introduction (based on EPA 601/602). Ionic content of water samples is determined using ion chromatography and alkalinity measurement. Ion chromatography is used to quantify both anions (based on EPA 300) and cations. Wet chemistry procedures performed at the CSL include alkalinity, pH (water and soil), soil resistivity, and dissolved/suspended solids. Besides environmental samples, the CSL routinely screens health and safety and waste management samples. The cost savings of the CSL are both direct and indirect

  15. Accelerator timing at Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    Oerter, B.; Conkling, C.R.

    1995-01-01

    Accelerator timing at Brookhaven National Laboratory has evolved from multiple coaxial cables transmitting individual pulses in the original Alternating Gradient Synchrotron (AGS) design, to serial coded transmission as the AGS Booster was added. With the implementation of this technology, the Super Cycle Generator (SCG) which synchronizes the AGS, Booster, LINAC, and Tandem accelerators was introduced. This paper will describe the timing system being developed for the Relativistic Heavy Ion Collider (RHIC)

  16. CENELEC Project Report Smart House Roadmap (draft)

    NARCIS (Netherlands)

    Hartog, F.T.H. den; Suters, T.; Parsons, J.; Faller, J.

    2010-01-01

    This CENELEC project report has been drafted by a project team and steering group of representatives of interested parties and is to be endorsed on 2010-11-23. Neither the national members of CENELEC nor the CEN-CENELEC Management Centre can be held accountable for the technical content of this

  17. Interim Report of the Commission to Review the Effectiveness of the National Energy Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Cohon, Jared L. [Carnegie Mellon Univ., Pittsburgh, PA (United States); Glauthier, T. J. [TJG Energy Associates, LLC., Bloomberg, VA (United States); Augustine, Norman R. [U.S. Dept. of Homeland Security, Washington, DC (United States); Austin, Wanda M. [Aerospace Corporation, El Segundo, CA (United States); Elachi, Charles [California Inst. of Technology (CalTech), Pasadena, CA (United States); Fleury, Paul A. [Yale Univ., New Haven, CT (United States); Hockfield, Susan J. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Meserve, Richard A. [Covington and Burling LLP, Washington, DC (United States); Murray, Cherry A. [Harvard Univ., Cambridge, MA (United States)

    2015-02-27

    The Commission to Review the Effectiveness of the National Energy Laboratories was charged by Congress in January 2014 to evaluate the mission, capabilities, size, performance, governance, and agency oversight of the 17 Department of Energy (DOE) laboratories. Given the incredibly broad scope and aggressive timeline (the original deadline was February 2015), the Secretary of Energy and Congress agreed to split the task into two phases. This interim report contains the preliminary observations and recommendations gleaned from Phase 1 of the study, which consisted of a literature review; visits to five of the National Laboratories; semi-structured interviews with staff from across the National Laboratories, DOE, other Federal agencies, companies, other non-governmental organizations, and additional interested parties; and presentations at monthly public Commission meetings. The Commission notes that the purpose of the National Laboratories is to provide critical capabilities and facilities in service of DOE’s mission and the needs of the broader national and international science and technology (S&T) community, including other Federal agencies, academia, and private industry. The National Laboratories are successfully fulfilling that mission today. While the Commission believes significant improvements can be made to many aspects of DOE management and governance of the laboratories, those issues do not detract from the National Laboratories’ remarkable contributions to the American public. In Phase 2 the Commission will focus on ways to make the process of carrying out their missions more efficient and effective.

  18. Los Alamos National Laboratory scientific interactions with the Former Soviet Union

    International Nuclear Information System (INIS)

    White, P.C.

    1995-01-01

    The Los Alamos National Laboratory has a wide-ranging set of scientific interactions with technical institutes in the Former Soviet Union (FSU). Many of these collaborations, especially those in pure science, began long before the end of the Cold War and the breakup of the Soviet Union. This overview will, however, focus for the most part on those activities that were initiated in the last few years. This review may also serve both to indicate the broad spectrum of US government interests that are served, at least in part, through these laboratory initiatives, and to suggest ways in which additional collaborations with the FSU may be developed to serve similar mutual interests of the countries involved. While most of the examples represent programs carried out by Los Alamos, they are also indicative of similar efforts by Lawrence Livermore National Laboratory and Sandia National Laboratories. There are indeed other Department of Energy (DOE) laboratories, and many of them have active collaborative programs with FSU institutes. However, the laboratories specifically identified above are those with special nuclear weapons responsibilities, and thus have unique technical capabilities to address certain issues of some importance to the continuing interests of the United States and the states of the Former Soviet Union. Building on pre-collapse scientific collaborations and contacts, Los Alamos has used the shared language of science to build institutional and personal relationships and to pursue common interests. It is important to understand that Los Alamos, and the other DOE weapons laboratories are federal institutions, working with federal funds, and thus every undertaking has a definite relationship to some national objective. The fertile areas for collaboration are obviously those where US and Russian interests coincide

  19. Mozambique’s journey toward accreditation of the National Tuberculosis Reference Laboratory

    Directory of Open Access Journals (Sweden)

    Sofia O. Viegas

    2017-03-01

    Full Text Available Background: Internationally-accredited laboratories are recognised for their superior test reliability, operational performance, quality management and competence. In a bid to meet international quality standards, the Mozambique National Institute of Health enrolled the National Tuberculosis Reference Laboratory (NTRL in a continuous quality improvement process towards ISO 15189 accreditation. Here, we describe the road map taken by the NTRL to achieve international accreditation. Methods: The NTRL adopted the Strengthening Laboratory Management Toward Accreditation (SLMTA programme as a strategy to implement a quality management system. After SLMTA, the Mozambique National Institute of Health committed to accelerate the NTRL’s process toward accreditation. An action plan was designed to streamline the process. Quality indicators were defined to benchmark progress. Staff were trained to improve performance. Mentorship from an experienced assessor was provided. Fulfilment of accreditation standards was assessed by the Portuguese Accreditation Board. Results: Of the eight laboratories participating in SLMTA, the NTRL was the best-performing laboratory, achieving a 53.6% improvement over the SLMTA baseline conducted in February 2011 to the Stepwise Laboratory Quality Improvement Process Towards Accreditation (SLIPTA assessment in June 2013. During the accreditation assessment in September 2014, 25 minor nonconformities were identified and addressed. In March 2015, the NTRL received Portuguese Accreditation Board recognition of technical competency for fluorescence smear microscopy, and solid and liquid culture. The NTRL is the first laboratory in Mozambique toachieve ISO 15189 accreditation. Conclusions: From our experience, accreditation was made possible by institutional commitment, strong laboratory leadership, staff motivation, adequate infrastructure and a comprehensive action plan.

  20. Mozambique’s journey toward accreditation of the National Tuberculosis Reference Laboratory

    Science.gov (United States)

    Madeira, Carla; Aguiar, Carmen; Dolores, Carolina; Mandlaze, Ana P.; Chongo, Patrina; Masamha, Jessina

    2017-01-01

    Background Internationally-accredited laboratories are recognised for their superior test reliability, operational performance, quality management and competence. In a bid to meet international quality standards, the Mozambique National Institute of Health enrolled the National Tuberculosis Reference Laboratory (NTRL) in a continuous quality improvement process towards ISO 15189 accreditation. Here, we describe the road map taken by the NTRL to achieve international accreditation. Methods The NTRL adopted the Strengthening Laboratory Management Toward Accreditation (SLMTA) programme as a strategy to implement a quality management system. After SLMTA, the Mozambique National Institute of Health committed to accelerate the NTRL’s process toward accreditation. An action plan was designed to streamline the process. Quality indicators were defined to benchmark progress. Staff were trained to improve performance. Mentorship from an experienced assessor was provided. Fulfilment of accreditation standards was assessed by the Portuguese Accreditation Board. Results Of the eight laboratories participating in SLMTA, the NTRL was the best-performing laboratory, achieving a 53.6% improvement over the SLMTA baseline conducted in February 2011 to the Stepwise Laboratory Quality Improvement Process Towards Accreditation (SLIPTA) assessment in June 2013. During the accreditation assessment in September 2014, 25 minor nonconformities were identified and addressed. In March 2015, the NTRL received Portuguese Accreditation Board recognition of technical competency for fluorescence smear microscopy, and solid and liquid culture. The NTRL is the first laboratory in Mozambique to achieve ISO 15189 accreditation. Conclusions From our experience, accreditation was made possible by institutional commitment, strong laboratory leadership, staff motivation, adequate infrastructure and a comprehensive action plan. PMID:28879162

  1. Frontiers: Research highlights 1946-1996 [50th Anniversary Edition. Argonne National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    This special edition of 'Frontiers' commemorates Argonne National Laboratory's 50th anniversary of service to science and society. America's first national laboratory, Argonne has been in the forefront of U.S. scientific and technological research from its beginning. Past accomplishments, current research, and future plans are highlighted.

  2. BROOKHAVEN NATIONAL LABORATORY SITE ENVIRONMENTAL REPORT FOR CALENDAR YEAR 1994.

    Energy Technology Data Exchange (ETDEWEB)

    NAIDU,J.R.; ROYCE,B.A.

    1995-05-01

    This report documents the results of the Environmental Monitoring Program at Brookhaven National Laboratory and presents summary information about environmental compliance for 1994. To evaluate the effect of Brookhaven National Laboratory's operations on the local environment, measurements of direct radiation, and a variety of radionuclides and chemical compounds in ambient air, soil, sewage effluent, surface water, groundwater, fauna and vegetation were made at the Brookhaven National Laboratory site and at sites adjacent to the Laboratory. Brookhaven National Laboratory's compliance with all applicable guides, standards, and limits for radiological and nonradiological emissions and effluents to the environment were evaluated. Among the permitted facilities, two instances of pH exceedances were observed at recharge basins, possibly related to rain-water run-off to these recharge basins. Also, the discharge from the Sewage Treatment Plant to the Peconic River exceeded. on ten occasions, one each for fecal coliform and 5-day Biochemical Oxygen Demand (avg.) and eight for ammonia nitrogen. The ammonia and Biochemical Oxygen Demand exceedances were attributed to the cold winter and the routine cultivation of the sand filter beds which resulted in the hydraulic overloading of the filter beds and the possible destruction of nitrifying bacteria. The on-set of warm weather and increased aeration of the filter beds via cultivation helped to alleviate this condition. The discharge of fecal coliform may also be linked to this occurrence, in that the increase in fecal coliform coincided with the increased cultivation of the sand filter beds. The environmental monitoring data has identified site-specific contamination of groundwater and soil. These areas are subject to Remedial Investigation/Feasibility Studies under the Inter Agency Agreement. Except for the above, the environmental monitoring data has continued to demonstrate that compliance was achieved with

  3. 2016 Annual Site Environmental Report Sandia National Laboratories/New Mexico.

    Energy Technology Data Exchange (ETDEWEB)

    Salas, Angela Maria [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Griffith, Stacy R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-07-01

    Sandia National Laboratories (SNL) is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s (DOE’s), National Nuclear Security Administration (NNSA). The DOE/NNSA Sandia Field Office administers the contract and oversees contractor operations at SNL, New Mexico. This Annual Site Environmental Report (ASER) summarizes data and the compliance status of sustainability, environmental protection, and monitoring programs at SNL/NM during calendar year 2016. Major environmental programs include air quality, water quality, groundwater protection, terrestrial and ecological surveillance, waste management, pollution prevention, environmental restoration, oil and chemical spill prevention, and implementation of the National Environmental Policy Act. This ASER is prepared in accordance with and required by DOE O 231.1B, Admin Change 1, Environment, Safety, and Health Reporting.

  4. 76 FR 62087 - Draft Conservation Plan and Draft Environmental Assessment; Dunes Sagebrush Lizard, Texas

    Science.gov (United States)

    2011-10-06

    ...] Draft Conservation Plan and Draft Environmental Assessment; Dunes Sagebrush Lizard, Texas AGENCY: Fish... draft Texas Conservation Plan for the Dunes Sagebrush Lizard (TCP). The draft TCP will function as a... the Applicant for the dunes sagebrush lizard (Sceloporus arenicolus) throughout its range in Texas...

  5. The University of New Mexico/Sandia National Laboratories small-angle scattering laboratory

    International Nuclear Information System (INIS)

    Rieker, T.P.; Hubbard, P.F.

    1998-01-01

    The University of New Mexico/Sandia National Laboratories small-angle scattering laboratory provides a wide q-range, 3x10 -4 Angstrom -1 -1 , for the structural analysis of materials on length scales from a few angstrom to ∼0.1 μm. The wide q-range is accomplished by combining data from a Bonse-Hart spectrometer (3x10 -4 Angstrom -1 -2 Angstrom -1 ) and a 5 m pinhole (3x10 -3 Angstrom -1 -1 ) instrument. Automation of the data acquisition systems along with a variety of sample environments and sample changers yields flexible, high throughput instruments. copyright 1998 American Institute of Physics

  6. Overview of theory and simulations in the Heavy Ion Fusion Science Virtual National Laboratory

    Science.gov (United States)

    Friedman, Alex

    2007-07-01

    The Heavy Ion Fusion Science Virtual National Laboratory (HIFS-VNL) is a collaboration of Lawrence Berkeley National Laboratory, Lawrence Livermore National Laboratory, and Princeton Plasma Physics Laboratory. These laboratories, in cooperation with researchers at other institutions, are carrying out a coordinated effort to apply intense ion beams as drivers for studies of the physics of matter at extreme conditions, and ultimately for inertial fusion energy. Progress on this endeavor depends upon coordinated application of experiments, theory, and simulations. This paper describes the state of the art, with an emphasis on the coordination of modeling and experiment; developments in the simulation tools, and in the methods that underly them, are also treated.

  7. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement

    International Nuclear Information System (INIS)

    1994-06-01

    Two types of projects in the spent nuclear fuel and environmental restoration and waste management activities at the Idaho National Engineering Laboratory (INEL) are described. These are: foreseeable proposed projects where some funding for preliminary planning and/or conceptual design may already be authorized, but detailed design or planning will not begin until the Department of Energy (DOE) has determined that the requirements of the National Environmental Policy Act process for the project have been completed; planned or ongoing projects not yet completed but whose National Environmental Policy Act documentation is already completed or is expected to be completed before the Record of Decision for this Envirorunental Impact Statement (EIS) is issued. The section on project summaries describe the projects (both foreseeable proposed and ongoing).They provide specific information necessary to analyze the environmental impacts of these projects. Chapter 3 describes which alternative(s) each project supports. Summaries are included for (a) spent nuclear fuel projects, (b) environmental remediation projects, (c) the decontamination and decommissioning of surplus INEL facilities, (d) the construction, upgrade, or replacement of existing waste management facilities, (e) infrastructure projects supporting waste management activities, and (f) research and development projects supporting waste management activities

  8. 75 Breakthroughs by the U.S. Department of Energy's National Laboratories; Breakthroughs 2017

    Energy Technology Data Exchange (ETDEWEB)

    None

    2017-01-01

    Born at a time when the world faced a dire threat, the National Laboratory System protects America through science and technology. For more than 75 years, the Department of Energy’s national laboratories have solved important problems in science, energy and national security. Partnering with industry and academia, the laboratories also drive innovation to advance economic competitiveness and ensure our nation’s future prosperity. Over the years, America's National Laboratories have been changing and improving the lives of millions of people and this expertise continues to keep our nation at the forefront of science and technology in a rapidly changing world. This network of Department of Energy Laboratories has grown into 17 facilities across the country. As this list of breakthroughs attests, Laboratory discoveries have spawned industries, saved lives, generated new products, fired the imagination and helped to reveal the secrets of the universe.

  9. Pacific Northwest National Laboratory Annual Site Environmental Report for Calendar Year 2013

    Energy Technology Data Exchange (ETDEWEB)

    Duncan, Joanne P. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Sackschewsky, Michael R. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Tilden, Harold T. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Barnett, J. Matthew [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Su-Coker, Jennifer [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Ballinger, Marcel Y. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Fritz, Brad G. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Stoetzel, Gregory A. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Lowry, Kami L. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Moon, Thomas W. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Becker, James M. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Mendez, Keith M. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Raney, Elizabeth A. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Chamness, Michele A. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Larson, Kyle B. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)

    2014-09-30

    Pacific Northwest National Laboratory (PNNL), one of the U.S. Department of Energy (DOE) Office of Science’s 10 national laboratories, provides innovative science and technology development in the areas of energy and the environment, fundamental and computational science, and national security. DOE’s Pacific Northwest Site Office (PNSO) is responsible for oversight of PNNL at its Campus in Richland, Washington, as well as its facilities in Sequim, Seattle, and North Bonneville, Washington, and Corvallis and Portland, Oregon.

  10. 75 FR 54381 - Charles M. Russell National Wildlife Refuge and UL Bend National Wildlife Refuge, MT

    Science.gov (United States)

    2010-09-07

    ... DEPARTMENT OF THE INTERIOR Fish and Wildlife Service [FWS-R6-R-2010-N078; 60138-1261-6CCP-S3] Charles M. Russell National Wildlife Refuge and UL Bend National Wildlife Refuge, MT AGENCY: Fish and Wildlife Service, Interior. ACTION: Notice of availability: Draft comprehensive conservation plan and draft...

  11. 31 CFR 500.406 - Drafts under irrevocable letters of credit; documentary drafts.

    Science.gov (United States)

    2010-07-01

    ... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false Drafts under irrevocable letters of credit; documentary drafts. 500.406 Section 500.406 Money and Finance: Treasury Regulations Relating to... ASSETS CONTROL REGULATIONS Interpretations § 500.406 Drafts under irrevocable letters of credit...

  12. 31 CFR 515.406 - Drafts under irrevocable letters of credit; documentary drafts.

    Science.gov (United States)

    2010-07-01

    ... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false Drafts under irrevocable letters of credit; documentary drafts. 515.406 Section 515.406 Money and Finance: Treasury Regulations Relating to... CONTROL REGULATIONS Interpretations § 515.406 Drafts under irrevocable letters of credit; documentary...

  13. Final Environmental Impact Statement and Environmental Impact Report for continued operation of Lawrence Livermore National Laboratory and Sandia National Laboratories, Livermore

    International Nuclear Information System (INIS)

    1992-08-01

    The US Department of Energy (DOE) and the Regents of the University of California (UC) propose the continued operation, including near-term proposed projects, of the Lawrence Livermore National Laboratory (LLNL). In addition, DOE proposes the continued operation, including near-term proposed projects, of Sandia National Laboratories, Livermore (SNL, Livermore). Continued operation plus proposed projects at the two Laboratories is needed so that the research and development missions established by Congress and the President can continue to be supported. As provided and encouraged by the National Environmental Policy Act (NEPA) and the California Environmental Quality Act (CEQA), DOE and UC have prepared this document as a joint Environmental Impact Statement (EIS) and Environmental Impact Report (EIR) to analyze the impacts of the proposed action. In addition, this document discusses a no action alternative for continuing operations at FY 1992 funding levels without further growth, a modification of operations alternative focused on specific adverse environmental impacts of operations or facilities, and a shutdown and decommissioning alternative. This document also examines the alternative of UC discontinuing its management of LLNL after the current contract expires on September 30, 1992. The environmental documentation process provides information to the public, government agencies, and decision makers about the environmental impacts of implementing the proposed and alternative actions. In addition, this environmental documentation identifies alternatives and possible ways to reduce or prevent environmental impacts. A list of the issues raised through the EIS/EIR scoping process is presented

  14. Environmental Survey preliminary report, Argonne National Laboratory, Argonne, Illinois

    International Nuclear Information System (INIS)

    1988-11-01

    This report presents the preliminary findings of the first phase of the Environmental Survey of the United States Department of Energy's (DOE) Argonne National Laboratory (ANL), conducted June 15 through 26, 1987. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. The team includes outside experts supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with ANL. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. The on-site phase of the Survey involves the review of existing site environmental data, observations of the operations carried on at ANL, and interviews with site personnel. The Survey team developed a Sampling and Analysis (S ampersand A) Plan to assist in further assessing certain of the environmental problems identified during its on-site activities. The S ampersand A Plan will be executed by the Oak Ridge National Laboratory (ORNL). When completed, the S ampersand A results will be incorporated into the Argonne National Laboratory Environmental Survey findings for inclusion in the Environmental Survey Summary Report. 75 refs., 24 figs., 60 tabs

  15. Environmental Survey preliminary report, Argonne National Laboratory, Argonne, Illinois

    Energy Technology Data Exchange (ETDEWEB)

    1988-11-01

    This report presents the preliminary findings of the first phase of the Environmental Survey of the United States Department of Energy's (DOE) Argonne National Laboratory (ANL), conducted June 15 through 26, 1987. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. The team includes outside experts supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with ANL. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. The on-site phase of the Survey involves the review of existing site environmental data, observations of the operations carried on at ANL, and interviews with site personnel. The Survey team developed a Sampling and Analysis (S A) Plan to assist in further assessing certain of the environmental problems identified during its on-site activities. The S A Plan will be executed by the Oak Ridge National Laboratory (ORNL). When completed, the S A results will be incorporated into the Argonne National Laboratory Environmental Survey findings for inclusion in the Environmental Survey Summary Report. 75 refs., 24 figs., 60 tabs.

  16. The Risoe National Laboratory, Denmark

    International Nuclear Information System (INIS)

    Majborn, B.

    2001-01-01

    The Risoe National Laboratory of Denmark started as a nuclear research centre, under the Atomic Energy Commission in 1955, with research reactors, an accelerator and related facilities. The research component, aimed at the introduction of nuclear power plants in Denmark, was wound up in 1985 with the country deciding to forego nuclear power in its energy planning. From 1993 the centre is under the jurisdiction of the Ministry of Research with three main areas of work: i) research on high international level; ii) train researchers; and iii) provide service to industry. The centre is funded up to 53% by the Danish Government and 47% by contract earnings. Some areas of current research include: i) materials science; ii) optics and sensor systems; iii) plant production and ecology; and iv) systems analysis. The nuclear component of the research centre is related to the operation of the nuclear facilities and for maintaining national expertise in nuclear safety and radiation protection. (author)

  17. Drafting method of electricity and electron design

    International Nuclear Information System (INIS)

    Gungbon, Junchun

    1989-11-01

    This book concentrates on drafting of electricity and electron design. It deals with The meaning of electricity and electron drafting JIS standard regulation the types of drafting and line and letter, basics drafting with projection drafting method, plan projection and development elevation, Drafting method of shop drawing, practical method of design and drafting, Design and drafting of technic and illustration, Connection diagram, Drafting of wiring diagram for light and illumination, Drafting of development connection diagram for sequence control, Drafting of logic circuit sign of flow chart and manual, drafting for a electron circuit diagram and Drawing of PC board.

  18. Oak Ridge National Laboratory Review: Volume 24, No. 2, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Krause, C. (ed.)

    1991-01-01

    The Oak Ridge National Laboratory (ORNL) is a multiprogram, multipurpose laboratory that conducts research in the physical, chemical, and life sciences; in fusion, fission, and fossil energy; and in energy conservation and other energy-related technologies. This review outlines some current endeavors of the lab. A state of the laboratory presentation is given by director, Alvin Trivelpiece. Research of single crystals for welding is described. The Science Alliance, a partnership between ORNL and the University of Tennessee, is chronicled. And several incites into distinguished personnel at the laboratory are given. (GHH)

  19. Oak Ridge National Laboratory Review: Volume 24, No. 2, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Krause, C. [ed.

    1991-12-31

    The Oak Ridge National Laboratory (ORNL) is a multiprogram, multipurpose laboratory that conducts research in the physical, chemical, and life sciences; in fusion, fission, and fossil energy; and in energy conservation and other energy-related technologies. This review outlines some current endeavors of the lab. A state of the laboratory presentation is given by director, Alvin Trivelpiece. Research of single crystals for welding is described. The Science Alliance, a partnership between ORNL and the University of Tennessee, is chronicled. And several incites into distinguished personnel at the laboratory are given. (GHH)

  20. Laboratory modeling of flow regimes in a draft tube of Francis hydro-turbine

    Directory of Open Access Journals (Sweden)

    Shtork Sergey

    2017-01-01

    Full Text Available The paper reports on some results of the experimental study of flow and pressure pulsations in a laboratory model of the draft tube (DT of Francis-99 hydro-turbine over a broad range of operating regimes. Velocity distributions at the model inlet varied within 866 modes of the turbine load conditions, including those with maximum coherent pressure pulsations on the model walls. The contact and non-contact methods were used to measure pressure pulsations on the model walls using acoustic sensors and to measure the averaged velocity distribution with a laser Doppler anemometer “LAD-06i”. Analysis of the results have showed that in the model cone there are flow modes with forming of precessing vortex cores, accompanied by a sharp increase in the amplitude of coherent pressure pulsations on the wall and the velocity field rearrangement. It is shown that the vortex core starts forming with an increase in the integral parameter of swirl up to S>0.5. A novelty of the work is the combination of the rapid prototyping (3-d printing of the inflow swirl generators and computerized measurement techniques that makes it possible to acquire rapidly a large amount of experimental data for a variety of designs and operating conditions. The results can provide insight into the effect of various design and operating parameters on the flow physics, as well as serve for verification of the numerical simulations.

  1. DOE Los Alamos National Laboratory – PV Feasibility Assessment, 2015 Update, NREL Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Dean, Jesse [National Renewable Energy Lab. (NREL), Golden, CO (United States); Witt, Monica Rene [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-04-06

    This report summarizes solar and wind potential for Los Alamos National Laboratory (LANL). This report is part of the “Los Alamos National Laboratory and Los Alamos County Renewable Generation” study.

  2. Idaho National Engineering Laboratory waste area groups 1--7 and 10 Technology Logic Diagram

    International Nuclear Information System (INIS)

    O'Brien, M.C.; Meservey, R.H.; Little, M.; Ferguson, J.S.; Gilmore, M.C.

    1993-09-01

    The Technology Logic Diagram was developed to provide technical alternatives for environmental restoration projects at the Idaho National Engineering Laboratory. The diagram (three volumes) documents suggested solutions to the characterization, retrieval, and treatment phases of cleanup activities at contaminated sites within 8 of the laboratory's 10 waste area groups. Contaminated sites at the laboratory's Naval Reactor Facility and Argonne National Laboratory-West are not included in this diagram

  3. The laboratory efficiencies initiative: partnership for building a sustainable national public health laboratory system.

    Science.gov (United States)

    Ridderhof, John C; Moulton, Anthony D; Ned, Renée M; Nicholson, Janet K A; Chu, May C; Becker, Scott J; Blank, Eric C; Breckenridge, Karen J; Waddell, Victor; Brokopp, Charles

    2013-01-01

    Beginning in early 2011, the Centers for Disease Control and Prevention and the Association of Public Health Laboratories launched the Laboratory Efficiencies Initiative (LEI) to help public health laboratories (PHLs) and the nation's entire PHL system achieve and maintain sustainability to continue to conduct vital services in the face of unprecedented financial and other pressures. The LEI focuses on stimulating substantial gains in laboratories' operating efficiency and cost efficiency through the adoption of proven and promising management practices. In its first year, the LEI generated a strategic plan and a number of resources that PHL directors can use toward achieving LEI goals. Additionally, the first year saw the formation of a dynamic community of practitioners committed to implementing the LEI strategic plan in coordination with state and local public health executives, program officials, foundations, and other key partners.

  4. National radioactive waste repository draft EIS. 2 volumes

    International Nuclear Information System (INIS)

    2002-01-01

    Most Australians benefit either directly or indirectly from the medical, industrial and scientific use of radioactive materials. This use produces a small amount of radioactive waste, including low level and short-lived intermediate level radioactive waste such as lightly contaminated soil, plastic, paper, laboratory equipment, smoke detectors, exit signs and gauges.This waste is temporarily stored at more than 100 urban and rural locations around Australia, much of it in buildings that were neither designed nor located for the long-term storage of radioactive material and that are nearing or have reached capacity. Storage locations include hospitals, research institutions, and industry and government stores. Storing such waste in many locations in non-purpose built facilities potentially poses greater risk to the environment and people than disposing of the material in a national, purpose-built repository where the material can be safely managed and monitored. The objectives of the national repository are to: 1. strengthen Australia's radioactive waste management arrangements by promoting the safe and environmentally sound management of low level and short-lived intermediate level radioactive waste 2. provide safe containment of these wastes until the radioactivity has decayed to background levels. To meet these objectives, it is proposed to construct a national near-surface repository at either the preferred site on the Woomera Prohibited Area (WPA) or either of the two nearby alternative sites. The facility is not intended for the disposal of radioactive ores from mining. A national store for long-lived intermediate level waste will not be co-located with the national repository, and would be subject to a separate environmental assessment process.One preferred and two alternative sites have been selected for the national repository, following an extensive site selection process. All three sites are located in northern South Australia in a region known as central

  5. 76 FR 34097 - Notice of Availability of the Draft Environmental Impact Statement, Including a Draft...

    Science.gov (United States)

    2011-06-10

    ... Impact Statement, Including a Draft Programmatic Agreement, for the Clark, Lincoln, and White Pine...) has prepared a Draft Environmental Impact Statement (EIS) and a Draft Programmatic Agreement (PA.... 100 N., Nephi Beaver Library, 55 W. Center St., Beaver. The Draft EIS describes and analyzes SNWA's...

  6. Shape optimization of draft tubes for Agnew microhydro turbines

    International Nuclear Information System (INIS)

    Shojaeefard, Mohammad Hasan; Mirzaei, Ammar; Babaei, Ali

    2014-01-01

    Highlights: • The draft tube of Agnew microhydro turbine was optimized. • Pareto optimal solutions were determined by neural networks and NSGA-II algorithm. • The pressure recovery factor increases with height and angle over design ranges. • The loss coefficient reaches the minimum values at angles about 2 o . • Swirl of the incoming flow has great influence on the optimization results. - Abstract: In this study, the shape optimization of draft tubes utilized in Agnew type microhydro turbines has been discussed. The design parameters of the draft tube such as the cone angle and the height above the tailrace are considered in defining an optimization problem whose goal is to maximize the pressure recovery factor and minimize the energy loss coefficient of flow. The design space is determined by considering the experimental constraints and parameterized by the method of face-centered uniform ascertain distribution. The numerical simulations are performed using the boundary conditions found from laboratory tests and the obtained results are analyzed to create and validate a feed-forward neural network model, which is implemented as a surrogate model. The optimal Pareto solutions are finally determined using the NSGA-II evolutionary algorithm and compared for different inlet conditions. The results predict that the high swirl of the incoming flow drastically reduces the performance of the draft tube

  7. The evolution of Interior Intrusion Detection Technology at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Graham, R.H.; Workhoven, R.M.

    1987-07-01

    Interior Intrusion Detection Technology began at Sandia National Laboratories (SNL) in 1975 as part of the Fixed Facilities Physical Protection Research and Development program sponsored by the US Department of Energy in connection with their nuclear safeguards effort. This paper describes the evolution of Interior Intrusion Detection Technology at Sandia National Laboratories from the beginning of the Interior Sensor Laboratory to the present. This Laboratory was established in 1976 to evaluate commercial interior intrusion sensors and to assist in site-specific intrusion detection system designs. Examples of special test techniques and new test equipment that were developed at the Lab are presented, including the Sandia Intruder Motion Simulator (SIMS), the Sensor and Environment Monitor (SEM), and the Sandia Interior Robot (SIR). We also discuss new sensors and unique sensor combinations developed when commercial sensors were unavailable and the future application of expert systems

  8. 2013 Los Alamos National Laboratory Hazardous Waste Minimization Report

    Energy Technology Data Exchange (ETDEWEB)

    Salzman, Sonja L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); English, Charles J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-08-24

    Waste minimization and pollution prevention are inherent goals within the operating procedures of Los Alamos National Security, LLC (LANS). The US Department of Energy (DOE) and LANS are required to submit an annual hazardous waste minimization report to the New Mexico Environment Department (NMED) in accordance with the Los Alamos National Laboratory (LANL or the Laboratory) Hazardous Waste Facility Permit. The report was prepared pursuant to the requirements of Section 2.9 of the LANL Hazardous Waste Facility Permit. This report describes the hazardous waste minimization program (a component of the overall Waste Minimization/Pollution Prevention [WMin/PP] Program) administered by the Environmental Stewardship Group (ENV-ES). This report also supports the waste minimization and pollution prevention goals of the Environmental Programs Directorate (EP) organizations that are responsible for implementing remediation activities and describes its programs to incorporate waste reduction practices into remediation activities and procedures. LANS was very successful in fiscal year (FY) 2013 (October 1-September 30) in WMin/PP efforts. Staff funded four projects specifically related to reduction of waste with hazardous constituents, and LANS won four national awards for pollution prevention efforts from the National Nuclear Security Administration (NNSA). In FY13, there was no hazardous, mixedtransuranic (MTRU), or mixed low-level (MLLW) remediation waste generated at the Laboratory. More hazardous waste, MTRU waste, and MLLW was generated in FY13 than in FY12, and the majority of the increase was related to MTRU processing or lab cleanouts. These accomplishments and analysis of the waste streams are discussed in much more detail within this report.

  9. Lawrence Livermore National Laboratory laser-fusion program

    International Nuclear Information System (INIS)

    Ahlstrom, H.G.

    1982-01-01

    The goals of the Laser-Fusion Program at Lawrence Livermore National Laboratory are to produce well-diagnosed, high-gain, laser-driven fusion explosions in the laboratory and to exploit this capability for both military applications and for civilian energy production. In the past year we have made significant progress both theoretically and experimentally in our understanding of the laser interaction with both directly coupled and radiation-driven implosion targets and their implosion dynamics. We have made significant developments in fabricating the target structures. Data from the target experiments are producing important near-term physics results. We have also continued to develop attractive reactor concepts which illustrate ICF's potential as an energy producer

  10. The Process of Legal Drafting Regulation in the Development of the Nuclear Power Plant in Indonesia

    OpenAIRE

    Mardha, Amil

    2009-01-01

    THE PROCESS OF LEGAL DRAFTING REGULATION IN THE DEVELOPMENT OF THE NUCLEAR POWER PLANT IN INDONESIA. In Indonesia, the process of legal drafting to establish the regulation is based on the Act No. 10 Year 2004 on the Establishment of Legislation. The process shall comply with the constitutional and institutional requirements of national political and legal system. In drafting the development of the regulation of nuclear energy, BAPETEN has been involving some other agencies or other related g...

  11. General Drafting. Technical Manual.

    Science.gov (United States)

    Department of the Army, Washington, DC.

    The manual provides instructional guidance and reference material in the principles and procedures of general drafting and constitutes the primary study text for personnel in drafting as a military occupational specialty. Included is information on drafting equipment and its use; line weights, conventions and formats; lettering; engineering charts…

  12. 1995 Site environmental report Sandia National Laboratories, Albuquerque, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Shyr, L.J.; Duncan, D. [eds.; Sanchez, R.

    1996-09-01

    This 1995 report contains data from routine radiological and non-radiological environmental monitoring activities. Summaries of significant environmental compliance programs in progress, such as National Environmental Policy Act documentation, environmental permits, environmental restoration and various waste management programs at Sandia National Laboratories in Albuquerque, New Mexico, are included.

  13. 1995 Site environmental report Sandia National Laboratories, Albuquerque, New Mexico

    International Nuclear Information System (INIS)

    Shyr, L.J.; Duncan, D.; Sanchez, R.

    1996-09-01

    This 1995 report contains data from routine radiological and non-radiological environmental monitoring activities. Summaries of significant environmental compliance programs in progress, such as National Environmental Policy Act documentation, environmental permits, environmental restoration and various waste management programs at Sandia National Laboratories in Albuquerque, New Mexico, are included

  14. Low Energy Accelerator Laboratory Technical Area 53, Los Alamos National Laboratory. Environmental assessment

    International Nuclear Information System (INIS)

    1995-04-01

    This Environmental Assessment (EA) analyzes the potential environmental impacts that would be expected to occur if the Department of Energy (DOE) were to construct and operate a small research and development laboratory building at Technical Area (TA) 53 at the Los Alamos National Laboratory (LANL), Los Alamos, New Mexico. DOE proposes to construct a small building to be called the Low Energy Accelerator Laboratory (LEAL), at a previously cleared, bladed, and leveled quarter-acre site next to other facilities housing linear accelerator research activities at TA-53. Operations proposed for LEAL would consist of bench-scale research, development, and testing of the initial section of linear particle accelerators. This initial section consists of various components that are collectively called an injector system. The anticipated life span of the proposed development program would be about 15 years

  15. Tiger Team assessment of the Idaho National Engineering Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, Edward S.; Keating, John J.

    1991-08-01

    The Management Subteam conducted a management assessment of Environment, Safety, and Health (ES H) programs and their implementation of Idaho National Engineering Laboratory (INEL). The objectives of the assessment were to: (1) evaluate the effectiveness of existing management functions and processes in terms of ensuring environmental compliance, and the health and safety of workers and the general public; and (2) identify probable root causes for ES H findings and concerns. Organizations reviewed were DOE-Headquarters: DOE Field Offices, Chicago (CH) and Idaho (ID); Argonne Area Offices, East (AAO-E) and West (AAO-W); Radiological and Environmental Sciences Laboratory (RESL); Argonne National Laboratory (ANL); EG G Idaho, Inc. (EG G); Westinghouse Idaho Nuclear Company, Inc. (WINCO); Rockwell-INEL; MK-Ferguson of Idaho Company (MK-FIC); and Protection Technology of Idaho, Inc. (PTI). The scope of the assessment covered the following ES H management issues: policies and procedures; roles, responsibilities, and authorities; management commitment; communication; staff development, training, and certification; recruitment; compliance management; conduct of operations; emergency planning and preparedness; quality assurance; self assessment; oversight activities; and cost plus award fee processes.

  16. Radioactive target and source development at Argonne National Laboratory

    International Nuclear Information System (INIS)

    Greene, J.P.; Ahmad, I.; Thomas, G.E.

    1992-01-01

    An increased demand for low-level radioactive targets has created the need for a laboratory dedicated to the production of these foils. A description is given of the radioactive target produced as well as source development work being performed at the Physics Division target facility of Argonne National Laboratory (ANL). Highlights include equipment used and the techniques employed. In addition, some examples of recent source preparation are given as well as work currently in progress

  17. Lawrence Livermore National Laboratory Environmental Report 2014

    Energy Technology Data Exchange (ETDEWEB)

    Jones, H. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bertoldo, N. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Blake, R. G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Buscheck, W. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Byrne, J. G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Cerruti, S. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bish, C. B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Fratanduono, M. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Grayson, A. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); MacQueen, D. H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Montemayor, W. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ottaway, H. L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Paterson, L. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Revelli, M. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rosene, C. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Swanson, K. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Terrill, A. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wegrecki, A. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wilson, K. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Woollett, J. S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-09-29

    The purposes of the Lawrence Livermore National Laboratory Environmental Report 2014 are to record Lawrence Livermore National Laboratory’s (LLNL’s) compliance with environmental standards and requirements, describe LLNL’s environmental protection and remediation programs, and present the results of environmental monitoring at the two LLNL sites—the Livermore Site and Site 300. The report is prepared for the U.S. Department of Energy (DOE) by LLNL’s Environmental Functional Area. Submittal of the report satisfies requirements under DOE Order 231.1B, “Environment, Safety and Health Reporting,” and DOE Order 458.1, “Radiation Protection of the Public and Environment.”

  18. Lawrence Livermore National Laboratory Environmental Report 2015

    Energy Technology Data Exchange (ETDEWEB)

    Rosene, C. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Jones, H. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-09-22

    The purposes of the Lawrence Livermore National Laboratory Environmental Report 2015 are to record Lawrence Livermore National Laboratory’s (LLNL’s) compliance with environmental standards and requirements, describe LLNL’s environmental protection and remediation programs, and present the results of environmental monitoring at the two LLNL sites—the Livermore Site and Site 300. The report is prepared for the U.S. Department of Energy (DOE) by LLNL’s Environmental Functional Area. Submittal of the report satisfies requirements under DOE Order 231.1B, “Environment, Safety and Health Reporting,” and DOE Order 458.1, “Radiation Protection of the Public and Environment.”

  19. National Renewable Energy Laboratory 2001 Information Resources Catalog

    Energy Technology Data Exchange (ETDEWEB)

    2002-03-01

    The National Renewable Energy Laboratory's (NREL) eighth annual Information Resources Catalog can help keep you up-to-date on the research, development, opportunities, and available technologies in energy efficiency and renewable energy. The catalog includes five main sections with entries grouped according to subject area.

  20. National Laboratory of Ionizing Radiation Metrology - Brazilian CNEN

    International Nuclear Information System (INIS)

    1992-01-01

    The activities of the Brazilian National Laboratory of Ionizing Radiations Metrology are described. They include research and development of metrological techniques and procedures, the calibration of area radiation monitors, clinical dosemeters and other instruments and the preparation and standardization of reference radioactive sources. 4 figs., 13 tabs

  1. Testing activities at the National Battery Test Laboratory

    Science.gov (United States)

    Hornstra, F.; Deluca, W. H.; Mulcahey, T. P.

    The National Battery Test Laboratory (NBTL) is an Argonne National Laboratory facility for testing, evaluating, and studying advanced electric storage batteries. The facility tests batteries developed under Department of Energy programs and from private industry. These include batteries intended for future electric vehicle (EV) propulsion, electric utility load leveling (LL), and solar energy storage. Since becoming operational, the NBTL has evaluated well over 1400 cells (generally in the form of three- to six-cell modules, but up to 140-cell batteries) of various technologies. Performance characterization assessments are conducted under a series of charge/discharge cycles with constant current, constant power, peak power, and computer simulated dynamic load profile conditions. Flexible charging algorithms are provided to accommodate the specific needs of each battery under test. Special studies are conducted to explore and optimize charge procedures, to investigate the impact of unique load demands on battery performance, and to analyze the thermal management requirements of battery systems.

  2. 2016 Los Alamos National Laboratory Hazardous Waste Minimization Report

    Energy Technology Data Exchange (ETDEWEB)

    Salzman, Sonja L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); English, Charles Joe [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-12-02

    Waste minimization and pollution prevention are goals within the operating procedures of Los Alamos National Security, LLC (LANS). The US Department of Energy (DOE), inclusive of the National Nuclear Security Administration (NNSA) and the Office of Environmental Management, and LANS are required to submit an annual hazardous waste minimization report to the New Mexico Environment Department (NMED) in accordance with the Los Alamos National Laboratory (LANL or the Laboratory) Hazardous Waste Facility Permit. The report was prepared pursuant to the requirements of Section 2.9 of the LANL Hazardous Waste Facility Permit. This report describes the hazardous waste minimization program, which is a component of the overall Pollution Prevention (P2) Program, administered by the Environmental Stewardship Group (EPC-ES). This report also supports the waste minimization and P2 goals of the Associate Directorate of Environmental Management (ADEM) organizations that are responsible for implementing remediation activities and describes its programs to incorporate waste reduction practices into remediation activities and procedures. This report includes data for all waste shipped offsite from LANL during fiscal year (FY) 2016 (October 1, 2015 – September 30, 2016). LANS was active during FY2016 in waste minimization and P2 efforts. Multiple projects were funded that specifically related to reduction of hazardous waste. In FY2016, there was no hazardous, mixed-transuranic (MTRU), or mixed low-level (MLLW) remediation waste shipped offsite from the Laboratory. More non-remediation hazardous waste and MLLW was shipped offsite from the Laboratory in FY2016 compared to FY2015. Non-remediation MTRU waste was not shipped offsite during FY2016. These accomplishments and analysis of the waste streams are discussed in much more detail within this report.

  3. Strengthening national health laboratories in sub-Saharan Africa: a decade of remarkable progress.

    Science.gov (United States)

    Alemnji, G A; Zeh, C; Yao, K; Fonjungo, P N

    2014-04-01

    Efforts to combat the HIV/AIDS pandemic have underscored the fragile and neglected nature of some national health laboratories in Africa. In response, national and international partners and various governments have worked collaboratively over the last several years to build sustainable laboratory capacities within the continent. Key accomplishments reflecting this successful partnership include the establishment of the African-based World Health Organization Regional Office for Africa (WHO-AFRO) Stepwise Laboratory Quality Improvement Process Towards Accreditation (SLIPTA); development of the Strengthening Laboratory Management Toward Accreditation (SLMTA) training programme; and launching of a Pan African-based institution, the African Society for Laboratory Medicine (ASLM). These platforms continue to serve as the foundations for national health laboratory infrastructure enhancement, capacity development and overall quality system improvement. Further targeted interventions should encourage countries to aim at integrated tiered referral networks, promote quality system improvement and accreditation, develop laboratory policies and strategic plans, enhance training and laboratory workforce development and a retention strategy, create career paths for laboratory professionals and establish public-private partnerships. Maintaining the gains and ensuring sustainability will require concerted action by all stakeholders with strong leadership and funding from African governments and from the African Union. Published 2014. This article is a U.S. Government work and is in the public domain in the U.S.A.

  4. Oak Ridge National Laboratory Waste Management Plan

    International Nuclear Information System (INIS)

    1991-12-01

    The goal of the Oak Ridge National Laboratory (ORNL) Waste Management Program is the protection of workers, the public, and the environment. A vital aspect of this goal is to comply with all applicable state, federal, and DOE requirements. Waste management requirements for DOE radioactive wastes are detailed in DOE Order 5820.2A, and the ORNL Waste Management Program encompasses all elements of this order. The requirements of this DOE order and other appropriate DOE orders, along with applicable Tennessee Department of Environment and Conservation (TDEC) and US Environmental Protection Agency (EPA) rules and regulations, provide the principal source of regulatory guidance for waste management operations at ORNL. The objective of the Oak Ridge National Laboratory Waste Management Plan is to compile and to consolidate information annually on how the ORNL Waste Management is to compile and to consolidate information annually on how the ORNL Waste Management Program is conducted, which waste management facilities are being used to manage wastes, what forces are acting to change current waste management systems, what activities are planned for the forthcoming fiscal year (FY), and how all of the activities are documented

  5. Securing America’s Future. Realizing the Potential of the Department of Energy’s National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Glauthier, T. J. [TJG Energy Associates, LLC, Bloomberg, VA (United States); Cohon, Jared L. [Carnegie Mellon Univ., Pittsburgh, PA (United States); Augustine, Norman R. [U.S. Dept. of Homeland Security, Washington, DC (United States); Austin, Wanda M. [Aerospace Corporation, El Segundo, CA (United States); Elachi, Charles [California Inst. of Technology (CalTech), Pasadena, CA (United States); Fleury, Paul A. [Yale Univ., New Haven, CT (United States); Hockfield, Susan J. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Meserve, Richard A. [Covington and Burling LLP, Washington, DC (United States); Murray, Cherry A. [Harvard Univ., Cambridge, MA (United States)

    2015-10-23

    The Department of Energy (DOE) laboratories are national assets that have contributed profoundly to the Nation’s security, scientific leadership, and economic competitiveness. In recognition of the continuing and evolving threats to our security and the dramatic increase in global economic and scientific competition, the laboratories are and will continue to be vitally important. Yet, the contributions of the National Laboratories are not inevitable, nor have they realized their full potential. This final report of the Commission to Review the Effectiveness of the National Energy Laboratories recommends ways the laboratories could overcome challenges to more efficiently and effectively accomplish the work for which they are uniquely suited.

  6. 78 FR 47007 - National Environmental Policy Act; Santa Susana Field Laboratory

    Science.gov (United States)

    2013-08-02

    ... project Web site address listed below. http://www.nasa.gov/agency/nepa/news/SSFL.html . ADDRESSES...; Santa Susana Field Laboratory AGENCY: National Aeronautics and Space Administration (NASA). ACTION... Environmental Cleanup Activities for the NASA-administered portion of the Santa Susana Field Laboratory (SSFL...

  7. Los Alamos National Laboratory accelerated tru waste workoff strategies

    International Nuclear Information System (INIS)

    Kosiewicz, S.T.; Triay, I.R.; Rogers, P.Z.; Christensen, D.V.

    1997-01-01

    During 1996, the Los Alamos National Laboratory (LANL) developed two transuranic (TRU) waste workoff strategies that were estimated to save $270 - 340M through accelerated waste workoff and the elimination of a facility. The planning effort included a strategy to assure that LANL would have a significant quantity (3000+ drums) of TRU waste certified for shipment to the Waste Isolation Pilot Plant (WIPP) beginning in April of 1998, when WIPP was projected to open. One of the accelerated strategies can be completed in less than ten years through a Total Optimization of Parameters Scenario (open-quotes TOPSclose quotes). open-quotes TOPSclose quotes fully utilizes existing LANL facilities and capabilities. For this scenario, funding was estimated to be unconstrained at $23M annually to certify and ship the legacy inventory of TRU waste at LANL. With open-quotes TOPSclose quotes the inventory is worked off in about 8.5 years while shipping 5,000 drums per year at a total cost of $196M. This workoff includes retrieval from earthen cover and interim storage costs. The other scenario envisioned funding at the current level with some increase for TRUPACT II loading costs, which total $16M annually. At this funding level, LANL estimates it will require about 17 years to work off the LANL TRU legacy waste while shipping 2,500 drums per year to WIPP. The total cost will be $277M. This latter scenario decreases the time for workoff by about 19 years from previous estimates and saves an estimated $190M. In addition, the planning showed that a $70M facility for TRU waste characterization was not needed. After the first draft of the LANL strategies was written, Congress amended the WIPP Land Withdrawal Act (LWA) to accelerate the opening of WIPP to November 1997. Further, the No Migration Variance requirement for the WIPP was removed. This paper discusses the LANL strategies as they were originally developed. 1 ref., 3 figs., 2 tabs

  8. Sandia National Laboratories, California Environmental Management System Program Manual.

    Energy Technology Data Exchange (ETDEWEB)

    2009-04-01

    The Sandia National Laboratories, California (SNL/CA) Environmental Management System (EMS) Program Manual documents the elements of the site EMS Program. The SNL/CA EMS Program conforms to the International Standard on Environmental Management Systems, ISO 14001:2004 and Department of Energy (DOE) Order 450.1. Sandia National Laboratories, California (SNL/CA) has maintained functional environmental programs to assist with regulatory compliance for more than 30 years. During 2005, these existing programs were rolled into a formal environmental management system (EMS) that expands beyond the traditional compliance focus to managing and improving environmental performance and stewardship practices for all site activities. An EMS is a set of inter-related elements that represent a continuing cycle of planning, implementing, evaluating, and improving processes and actions undertaken to achieve environmental policy and goals. The SNL/CA EMS Program conforms to the International Standard for Environmental Management Systems, ISO 14001:2004 (ISO 2004). The site received ISO 14001 certification in September 2006. SNL/CA's EMS Program is applicable to the Sandia, Livermore site only. Although SNL/CA operates as one organizational division of the overall Sandia National Laboratories, the EMS Program is site-specific, with site-specific objectives and targets. SNL/CA (Division 8000) benefits from the organizational structure as it provides corporate level policies, procedures, and standards, and established processes that connect to and support elements of the SNL/CA EMS Program. Additionally, SNL/CA's EMS Program benefits from two corporate functional programs (Facilities Energy Management and Fleet Services Environmental programs) that maintain responsibility for energy management and fleet services for all Sandia locations. Each EMS element is further enhanced with site-specific processes and standards. Division 8000 has several groups operating at Sandia

  9. Sandia National Laboratories, California Environmental Management System program manual.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2012-03-01

    The Sandia National Laboratories, California (SNL/CA) Environmental Management System (EMS) Program Manual documents the elements of the site EMS Program. The SNL/CA EMS Program conforms to the International Standard on Environmental Management Systems, ISO 14001:2004and Department of Energy (DOE) Order 436.1. Sandia National Laboratories, California (SNL/CA) has maintained functional environmental programs to assist with regulatory compliance for more than 30 years. During 2005, these existing programs were rolled into a formal environmental management system (EMS) that expands beyond the traditional compliance focus to managing and improving environmental performance and stewardship practices for all site activities. An EMS is a set of inter-related elements that represent a continuing cycle of planning, implementing, evaluating, and improving processes and actions undertaken to achieve environmental policy and goals. The SNL/CA EMS Program conforms to the International Standard for Environmental Management Systems, ISO 14001:2004 (ISO 2004). The site first received ISO 14001 certification in September 2006 and recertification in 2009. SNL/CA's EMS Program is applicable to the Sandia, Livermore site only. Although SNL/CA operates as one organizational division of the overall Sandia National Laboratories, the EMS Program is site-specific, with site-specific objectives and targets. SNL/CA (Division 8000) benefits from the organizational structure as it provides corporate level policies, procedures, and standards, and established processes that connect to and support elements of the SNL/CA EMS Program. Additionally, SNL/CA's EMS Program benefits from two corporate functional programs (Facilities Energy and Water Resource Management and Fleet Services programs) that maintain responsibility for energy management and fleet services for all Sandia locations. Each EMS element is further enhanced with site-specific processes and standards. Division 8000 has

  10. Sandia National Laboratories, California Environmental Management System Program Manual.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2011-04-01

    The Sandia National Laboratories, California (SNL/CA) Environmental Management System (EMS) Program Manual documents the elements of the site EMS Program. The SNL/CA EMS Program conforms to the International Standard on Environmental Management Systems, ISO 14001:2004and Department of Energy (DOE) Order 450.1. Sandia National Laboratories, California (SNL/CA) has maintained functional environmental programs to assist with regulatory compliance for more than 30 years. During 2005, these existing programs were rolled into a formal environmental management system (EMS) that expands beyond the traditional compliance focus to managing and improving environmental performance and stewardship practices for all site activities. An EMS is a set of inter-related elements that represent a continuing cycle of planning, implementing, evaluating, and improving processes and actions undertaken to achieve environmental policy and goals. The SNL/CA EMS Program conforms to the International Standard for Environmental Management Systems, ISO 14001:2004 (ISO 2004). The site received ISO 14001 certification in September 2006. SNL/CA's EMS Program is applicable to the Sandia, Livermore site only. Although SNL/CA operates as one organizational division of the overall Sandia National Laboratories, the EMS Program is site-specific, with site-specific objectives and targets. SNL/CA (Division 8000) benefits from the organizational structure as it provides corporate level policies, procedures, and standards, and established processes that connect to and support elements of the SNL/CA EMS Program. Additionally, SNL/CA's EMS Program benefits from two corporate functional programs (Facilities Energy Management and Fleet Services programs) that maintain responsibility for energy management and fleet services for all Sandia locations. Each EMS element is further enhanced with site-specific processes and standards. Division 8000 has several groups operating at Sandia National Laboratories

  11. Submarine Upward Looking Sonar Ice Draft Profile Data and Statistics

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set consists of upward looking sonar draft data collected by submarines in the Arctic Ocean. It includes data from both U.S. Navy and Royal Navy...

  12. [Information system of the national network of public health laboratories in Peru (Netlab)].

    Science.gov (United States)

    Vargas-Herrera, Javier; Segovia-Juarez, José; Garro Nuñez, Gladys María

    2015-01-01

    Clinical laboratory information systems produce improvements in the quality of information, reduce service costs, and diminish wait times for results, among other things. In the construction process of this information system, the National Institute of Health (NIH) of Peru has developed and implemented a web-based application to communicate to health personnel (laboratory workers, epidemiologists, health strategy managers, physicians, etc.) the results of laboratory tests performed at the Peruvian NIH or in the laboratories of the National Network of Public Health Laboratories which is called NETLAB. This article presents the experience of implementing NETLAB, its current situation, perspectives of its use, and its contribution to the prevention and control of diseases in Peru.

  13. Critical experiments at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Harms, G.A.; Ford, J.T.; Barber, A.D.

    2011-01-01

    Sandia National Laboratories (SNL) has conducted radiation effects testing for the Department of Energy (DOE) and other contractors supporting the DOE since the 1960's. Over this period, the research reactor facilities at Sandia have had a primary mission to provide appropriate nuclear radiation environments for radiation testing and qualification of electronic components and other devices. The current generation of reactors includes the Annular Core Research Reactor (ACRR), a water-moderated pool-type reactor, fueled by elements constructed from UO2-BeO ceramic fuel pellets, and the Sandia Pulse Reactor III (SPR-III), a bare metal fast burst reactor utilizing a uranium-molybdenum alloy fuel. The SPR-III is currently defueled. The SPR Facility (SPRF) has hosted a series of critical experiments. A purpose-built critical experiment was first operated at the SPRF in the late 1980's. This experiment, called the Space Nuclear Thermal Propulsion Critical Experiment (CX), was designed to explore the reactor physics of a nuclear thermal rocket motor. This experiment was fueled with highly-enriched uranium carbide fuel in annular water-moderated fuel elements. The experiment program was completed and the fuel for the experiment was moved off-site. A second critical experiment, the Burnup Credit Critical Experiment (BUCCX) was operated at Sandia in 2002. The critical assembly for this experiment was based on the assembly used in the CX modified to accommodate low-enriched pin-type fuel in water moderator. This experiment was designed as a platform in which the reactivity effects of specific fission product poisons could be measured. Experiments were carried out on rhodium, an important fission product poison. The fuel and assembly hardware for the BUCCX remains at Sandia and is available for future experimentation. The critical experiment currently in operation at the SPRF is the Seven Percent Critical Experiment (7uPCX). This experiment is designed to provide benchmark

  14. Critical experiments at Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Harms, G.A.; Ford, J.T.; Barber, A.D., E-mail: gaharms@sandia.gov [Sandia National Laboratories, Albuquerque, NM (United States)

    2011-07-01

    Sandia National Laboratories (SNL) has conducted radiation effects testing for the Department of Energy (DOE) and other contractors supporting the DOE since the 1960's. Over this period, the research reactor facilities at Sandia have had a primary mission to provide appropriate nuclear radiation environments for radiation testing and qualification of electronic components and other devices. The current generation of reactors includes the Annular Core Research Reactor (ACRR), a water-moderated pool-type reactor, fueled by elements constructed from UO2-BeO ceramic fuel pellets, and the Sandia Pulse Reactor III (SPR-III), a bare metal fast burst reactor utilizing a uranium-molybdenum alloy fuel. The SPR-III is currently defueled. The SPR Facility (SPRF) has hosted a series of critical experiments. A purpose-built critical experiment was first operated at the SPRF in the late 1980's. This experiment, called the Space Nuclear Thermal Propulsion Critical Experiment (CX), was designed to explore the reactor physics of a nuclear thermal rocket motor. This experiment was fueled with highly-enriched uranium carbide fuel in annular water-moderated fuel elements. The experiment program was completed and the fuel for the experiment was moved off-site. A second critical experiment, the Burnup Credit Critical Experiment (BUCCX) was operated at Sandia in 2002. The critical assembly for this experiment was based on the assembly used in the CX modified to accommodate low-enriched pin-type fuel in water moderator. This experiment was designed as a platform in which the reactivity effects of specific fission product poisons could be measured. Experiments were carried out on rhodium, an important fission product poison. The fuel and assembly hardware for the BUCCX remains at Sandia and is available for future experimentation. The critical experiment currently in operation at the SPRF is the Seven Percent Critical Experiment (7uPCX). This experiment is designed to provide

  15. The evolution of interior intrusion detection technology at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Graham, R.H.; Workhoven, R.M.

    1987-07-01

    Interior Intrusion Detection Technology began at Sandia National Laboratories (SNL) in 1975 as part of the Fixed Facilities Physical Protection Research and Development program sponsored by the US Department of Energy in connection with their nuclear safeguards effort. This paper describes the evolution of Interior Intrusion Detection Technology at Sandia National Laboratories from the beginning of the Interior Sensor Laboratory to the present. This Laboratory was established in 1976 to evaluate commercial interior intrusion sensors and to assist in site-specific intrusion detection system designs. Examples of special test techniques and new test equipment that were developed at the Lab are presented, including the Sandia Intruder Motion Simulator (SIMS), the Sensor and Environment Monitor (SEM), and the Sandia Interior Robot (SIR). We also discuss new sensors and unique sensor combination developed when commercial sensors were unavailable and the future application of expert systems. 5 refs

  16. The evolution of interior intrusion detection technology at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Graham, R.H.; Workhoven, R.M.

    1987-01-01

    Interior Intrusion Detection Technology began at Sandia National Laboratories (SNL) in 1975 as part of the Fixed Facilities Physical Protection Research and Development program sponsored by the U.S. Department of Energy in connection with their nuclear safeguards effort. This paper describes the evolution of Interior Intrusion Detection Technology at Sandia National Laboratories from the beginning of the Interior Sensor Laboratory to the present. This Laboratory was established in 1976 to evaluate commercial interior intrusion sensors and to assist in site-specific intrusion detection system designs. Examples of special test techniques and new test equipment that were developed at the Lab are presented, including the Sandia Intruder Motion Simulator (SIMS), the Sensor and Environment Monitor (SEM), and the Sandia Interior Robot (SIR). The authors also discuss new sensors and unique sensor combinations developed when commercial sensors were unavailable and the future application of expert systems

  17. The pressing energy innovation challenge of the US National Laboratories

    Science.gov (United States)

    Anadon, Laura Diaz; Chan, Gabriel; Bin-Nun, Amitai Y.; Narayanamurti, Venkatesh

    2016-10-01

    Accelerating the development and deployment of energy technologies is a pressing challenge. Doing so will require policy reform that improves the efficacy of public research organizations and strengthens the links between public and private innovators. With their US$14 billion annual budget and unique mandates, the US National Laboratories have the potential to critically advance energy innovation, yet reviews of their performance find several areas of weak organizational design. Here, we discuss the challenges the National Laboratories face in engaging the private sector, increasing their contributions to transformative research, and developing culture and management practices to better support innovation. We also offer recommendations for how policymakers can address these challenges.

  18. Overview of the Los Alamos National Laboratory Inertial Confinement Fusion Program

    International Nuclear Information System (INIS)

    Harris, D.B.

    1991-01-01

    The Los Alamos Inertial Confinement Fusion (ICF) Program is focused on preparing for a National Ignition Facility. Target physics research is addressing specific issues identified for the Ignition Facility target, and materials experts are developing target fabrication techniques necessary for the advanced targets. We are also working with Lawrence Livermore National Laboratory on the design of the National Ignition Facility target chamber. Los Alamos is also continuing to develop the KrF laser-fusion driver for ICF. We are modifying the Aurora laser to higher intensity and shorter pulses and are working with the Naval Research Laboratory on the development of the Nike KrF laser. 9 refs., 1 fig., 2 tabs

  19. A review and evaluation of the Draft EPA standard (40 CFR 191)

    International Nuclear Information System (INIS)

    Ortiz, N.R.; Chu, M.S.Y.; Siegel, M.D.; Wahi, K.K.

    1984-01-01

    The Environmental Protection Agency's proposed rule for the management and disposal of high-level waste (Draft Standard, 40 CFR 191), was reviewed and analyzed using the risk assessment methodology developed at Sandia National Laboratories. The methodology was exercised on hypothetical repository systems in basalt, bedded salt, and tuff. Among the issues addressed were achievability, release limits, uncertainty, and compliance. The proposed release limits were also analyzed in terms of their relationship to the health effects. The uncertainty in the input parameters of the deterministic models was taken into account in calculating releases to the accessible environment. Extentions to an existing compliance-assessment methodolog are suggested that would allow one to incorporate the uncertainty associated with the frequency of occurrence of scenarios. The results indicate that, in general, the standards are achievable and the release limits are sufficiently conservative

  20. Oak Ridge National Laboratory Waste Management Plan

    International Nuclear Information System (INIS)

    1992-12-01

    The objective of the Oak Ridge National Laboratory Waste Management Plan is to compile and to consolidate information annually on how the ORNL Waste Management Program is conducted, which waste management facilities are being used to manage wastes, what forces are acting to change current waste management systems, what activities are planned for the forthcoming fiscal year (FY), and how all of the activities are documented

  1. Oak Ridge National Laboratory Waste Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-01

    The objective of the Oak Ridge National Laboratory Waste Management Plan is to compile and to consolidate information annually on how the ORNL Waste Management Program is conducted, which waste management facilities are being used to manage wastes, what forces are acting to change current waste management systems, what activities are planned for the forthcoming fiscal year (FY), and how all of the activities are documented.

  2. Safety overview of the National Ignition Facility

    International Nuclear Information System (INIS)

    Brereton, S.J.; McLouth, L.; Odell, B.; Singh, M.; Tobin, M.; Trent, M.

    1996-01-01

    The National Ignition Facility (NIF) is a proposed US Department of Energy inertial confinement laser fusion facility. The candidate sites for locating the NIF are: Los Alamos National Laboratory, Sandia National Laboratory, the Nevada Test Site, and Lawrence Livermore National Laboratory (LLNL), the preferred site. The NIF will operate by focusing 192 laser beams onto a tiny deuterium- tritium target located at the center of a spherical target chamber. The NIF mission is to achieve inertial confinement fusion (ICF) ignition, access physical conditions in matter of interest to nuclear weapons physics, provide an above ground simulation capability for nuclear weapons effects testing, and contribute to the development of inertial fusion for electrical power production. The NIF has been classified as a radiological, low hazard facility on the basis of a preliminary hazards analysis and according to the DOE methodology for facility classification. This requires that a safety analysis be prepared under DOE Order 5481.1B, Safety Analysis and Review System. A draft Preliminary Safety Analysis Report (PSAR) has been written, and this will be finalized later in 1996. This paper summarizes the safety issues associated with the operation of the NIF. It provides an overview of the hazards, estimates maximum routine and accidental exposures for the preferred site of LLNL, and concludes that the risks from NIF operations are low

  3. Math and science education programs from the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    1991-01-01

    This booklet reviews math and science education programs at the Idaho National Engineering Laboratory (INEL). The programs can be categorized into six groups: teacher programs; science laboratories for students; student programs; education outreach programs; INEL Public Affairs Office; and programs for college faculty and students

  4. National NIF Diagnostic Program Fiscal Year 2002 Second Quarter Report

    International Nuclear Information System (INIS)

    MacGowan, B

    2002-01-01

    Since October 2001 the development of the facility diagnostics for NIF has been funded by the NIF Director through the National NIF Diagnostic Program (NNDP). The current emphasis of the NNDP is on diagnostics for the early NIF quad scheduled to be available for experiment commissioning in FY03. During the past six months the NNDP has set in place processes for funding diagnostics, developing requirements for diagnostics, design reviews and monthly status reporting. Those processes are described in an interim management plan for diagnostics (National NIF Diagnostic Program Interim Plan, NIF-008 13 15, April 2002) and a draft Program Execution Plan (Program Execution Plan for the National NlF Diagnostic Program, NIF-0072083, October 2001) and documents cited therein. Work has been funded at Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Naval Research Laboratory (NRL), Sandia National Laboratories (SNL), Bechtel Nevada at Los Alamos and Santa Barbara. There are no major technical risks with the early diagnostics. The main concerns relate to integration of the diagnostics into the facility, all such issues are being worked. This report is organized to show the schedule and budget status and a summary of Change Control Board actions for the past six months. The following sections then provide short descriptions of the status of each diagnostic. Where design reviews or requirements documents are cited, the documents are available on the Diagnostics file server or on request

  5. Sandia National Laboratories Institutional Plan FY1994--1999

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-01

    This report presents a five year plan for the laboratory. This plan takes advantage of the technical strengths of the lab and its staff to address issues of concern to the nation on a scope much broader than Sandia`s original mission, while maintaining the general integrity of the laboratory. The plan proposes initiatives in a number of technologies which overlap the needs of its customers and the strengths of its staff. They include: advanced manufacturing technology; electronics; information and computational technology; transportation energy technology and infrastructure; environmental technology; energy research and technology development; biomedical systems engineering; and post-cold war defense imperatives.

  6. Recent package testing successes at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Ludwig, S.B.; Singley, P.T.; Michelhaugh, R.D.; Hawk, M.B.; Shappert, L.B.

    2004-01-01

    Oak Ridge National Laboratory (ORNL)'s history of testing of radioactive material packages dates back to the early 1960s, and includes the testing of hundreds of different packages of all shapes and sizes. This paper provides an overview of ORNL's new Packaging Research Facility (PRF) at the National Transportation Research Center (NTRC), and describes recent package testing successes conducted at the NTRC from September 2002 to September 2003

  7. The Role of a National Biocontainment Laboratory in Emergencies.

    Science.gov (United States)

    Le Duc, James W; Ksiazek, Thomas G

    2015-01-01

    Over a decade ago, the National Institutes of Health awarded partial support for the construction and operation of 2 National Biocontainment Laboratories, with the condition that they would be available to assist in the event of public health emergencies-although how a biocontainment facility located on an academic campus might contribute was not defined. Here we offer examples of how one of these laboratories has contributed to a coordinated response to 2 recent international public health emergencies. Essential assets for success include highly trained and experienced staff, access to reference pathogens and reagents, cutting-edge knowledge of the field, appropriate biocontainment facilities, robust biosafety and biosecurity programs, and availability of modern instrumentation. The ability to marry the strengths of academia in basic and applied research with access to appropriate biocontainment facilities while drawing on a highly skilled cadre of experienced experts has proven extremely valuable in the response to recent national emergencies and will continue to do so in the future. Areas where additional planning and preparation are needed have also been identified through these experiences.

  8. Radioactive waste isolation in salt: Peer review of the Office of Nuclear Waste Isolation's draft report on an issues hierarchy and data needs for site characterization

    International Nuclear Information System (INIS)

    Harrison, W.; Fenster, D.F.; Ditmars, J.D.; Paddock, R.A.; Rote, D.M.; Hambley, D.F.; Seitz, M.G.; Hull, A.B.

    1986-12-01

    At the request of the Salt Repository Project (SRPO), Argonne National Laboratory conducted an independent peer review of a report by the Battelle Office of Nuclear Waste Isolation entitled ''Salt Repository Project Issues Hierarchy and Data Needs for Site Characterization (Draft).'' This report provided a logical structure for evaluating the outstanding questions (issues) related to selection and licensing of a site as a high-level waste repository. It also provided a first estimate of the information and data necessary to answer or resolve those questions. As such, this report is the first step in developing a strategy for site characterization. Microfiche copies of ''Draft Issues Hierarchy, Resolution Strategy, and Information Needs for Site Characterization and Environmental/Socioeconomic Evaluation - July, 1986'' and ''Issues Hierarchy and Data Needs for Site Characterization - February, 1985'' are included in the back pocket of this report

  9. 10 CFR 51.74 - Distribution of draft environmental impact statement and supplement to draft environmental impact...

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Distribution of draft environmental impact statement and supplement to draft environmental impact statement; news releases. 51.74 Section 51.74 Energy NUCLEAR... Impact Statements § 51.74 Distribution of draft environmental impact statement and supplement to draft...

  10. 60 years of great science [Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    None

    2003-01-01

    This issue highlights Oak Ridge National Laboratory's contributions in more than 30 areas of research and related activities during the past 60 years and provides glimpses of current activities that are carrying on this heritage.

  11. Mississippi Curriculum Framework for Drafting and Design Technology (Program CIP: 48.0102--Architectural Drafting Technology) (Program CIP: 48.0101--General Drafting). Postsecondary Programs.

    Science.gov (United States)

    Mississippi Research and Curriculum Unit for Vocational and Technical Education, State College.

    This document, which is intended for use by community and junior colleges throughout Mississippi, contains curriculum frameworks for the two course sequences of the state's postsecondary-level drafting and design technology program: architectural drafting technology and drafting and design technology. Presented first are a program description and…

  12. Nuclear Plant Analyzer development at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Laats, E.T.

    1986-10-01

    The Nuclear Plant Analyzer (NPA) is a state-of-the-art safety analysis and engineering tool being used to address key nuclear power plant safety issues. Under the sponsorship of the US Nuclear Regulatory Commission (NRC), the NPA has been developed to integrate the NRC's computerized reactor behavior simulation codes such as RELAP5, TRAC-BWR and TRAC-PWR, with well-developed computer color graphics programs and large repositories of reactor design and experimental data. An important feature of the NPA is the capability to allow an analyst to redirect a RELAP5 or TRAC calculation as it progresses through its simulated scenario. The analyst can have the same power plant control capabilities as the operator of an actual plant. The NPA resides on the dual Control Data Corporation Cyber 176 mainframe computers at the Idaho National Engineering Laboratory and Cray-1S computers at the Los Alamos National Laboratory (LANL) and Kirtland Air Force Weapons Laboratory (KAFWL)

  13. 78 FR 69462 - National Nanotechnology Initiative Strategic Plan; National Science and Technology Council...

    Science.gov (United States)

    2013-11-19

    ... OFFICE OF SCIENCE AND TECHNOLOGY POLICY OFFICE National Nanotechnology Initiative Strategic Plan; National Science and Technology Council; National Nanotechnology Coordination Office AGENCY: Executive... Science, Engineering, and Technology Subcommittee requests public comments on the draft 2014 National...

  14. Brookhaven National Laboratory moves to the fast lane

    CERN Multimedia

    2006-01-01

    "The U.S. Department of Energy's energy sciences network (ESnet) continues to roll out its next-generation architecture on schedule with the March 14 completion of the Long Island Metropolitan Area Network, connecting Brookhaven National Laboratory (BNL) to the ESnet point of presente (PO) 60 miles away in New York City." (1 page)

  15. Role of the laboratory for laser energetics in the National Ignition Facility Project

    International Nuclear Information System (INIS)

    Soures, J.M.; Loucks, S.J.; McCrory, R.L.

    1996-01-01

    The National Ignition Facility (NIF) is a 192-beam, 1.8-MJ (ultraviolet) laser facility that is currently planned to start operating in 2002. The NIF mission is to provide data critical to this Nation's science-based stockpile stewardship (SBSS) program and to advance the understanding of inertial confinement fusion and assess its potential as an energy source. The NIF project involves a collaboration among the Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Sandia National Laboratory (SNL), and the University of Rochester's Laboratory for Laser Energetics (UR/LLE). In this paper, the role of the University of Rochester in the research, development, and planning required to assure the success of the NIF will be presented. The principal roles of the UR/LLE in the NIF are (1) validation of the direct-drive approach to NIF using the OMEGA 60-beam, 40-kJ UV laser facility; (2) support of indirect-drive physics experiments using OMEGA in collaboration with LLNL and LANL; (3) development of plasma diagnostics for NIF; (4) development of beam-smoothing techniques; and (5) development of thin-film coatings for NIF and cryogenic-fuel-layer targets for eventual application to NIF. 3 refs., 6 figs

  16. Wildland Fire Management Plan for Brookhaven National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Green,T.

    2009-10-23

    This Wildland Fire Management Plan (FMP) for Brookhaven National Lab (BNL) updates the 2003 plan incorporating changes necessary to comply with DOE Order 450.1 and DOE P 450.4, Federal Wildland Fire Management Policy and Program Review; Wildland and Prescribed Fire Management Policy and implementation Procedures Reference Guide. This current plan incorporates changes since the original draft of the FMP that result from new policies on the national level. This update also removes references and dependence on the U.S. Fish & Wildlife Service and Department of the Interior, fully transitioning Wildland Fire Management responsibilities to BNL. The Department of Energy policy for managing wildland fires requires that all areas, managed by the DOE and/or its various contractors, that can sustain fire must have a FMP that details fire management guidelines for operational procedures associated with wild fire, operational, and prescribed fires. Fire management plans provide guidance on fire preparedness, fire prevention, wildfire suppression, and the use of controlled, 'prescribed' fires and mechanical means to control the amount of available combustible material. Values reflected in the BNL Wildland FMP include protecting life and public safety; Lab properties, structures and improvements; cultural and historical sites; neighboring private and public properties; and endangered, threatened, and species of concern. Other values supported by the plan include the enhancement of fire-dependent ecosystems at BNL. This FMP will be reviewed periodically to ensure the fire program advances and evolves with the missions of the DOE and BNL. This Fire Management Plan is presented in a format that coverers all aspects specified by DOE guidance documents which are based on the national template for fire management plans adopted under the National Fire Plan. The DOE is one of the signatory agencies on the National Fire Plan. This FMP is to be used and implemented for the

  17. Idaho national laboratory - a nuclear research center

    International Nuclear Information System (INIS)

    Zaidi Mohammed, K.

    2006-01-01

    Full text: The Idaho National Laboratory (INL) is committed to providing international nuclear leadership for the 21st Century, developing and demonstrating compelling national security technologies, and delivering excellence in science and technology as one of the United States Department of Energy's (DOE) multi program national laboratories. INL runs three major programs - Nuclear, Security and Science. Nuclear programs covers the Advanced test reactor, Six Generation IV technology concepts selected for Rand D, targeting tumors - Boron Neutron Capture therapy. Homeland Security establishes the Control System Security and Test Center, Critical Infrastructure Test Range evaluates technologies on a scalable basis, INL conducts high performance computing and visualization research and science. To provide leadership in the education and training, INL has established an Institute of Nuclear Science and Engineering (INSE) under the Center for Advanced Energy Studies (CAES) and the Idaho State University (ISU). INSE will offer a four year degree based on a newly developed curriculum - two year of basic science course work and two years of participation in project planning and development. The students enrolled in this program can continue to get a masters or a doctoral degree. This summer INSE is the host for the training of the first international group selected by the World Nuclear University (WNU) - 75 fellowship holders and their 30 instructors from 40 countries. INL has been assigned to provide future global leadership in the field of nuclear science and technology. Here, at INL, we keep safety first above all things and our logo is 'Nuclear leadership synonymous with safety leadership'. (author)

  18. Tiger Team assessment of the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    1991-08-01

    The Management Subteam conducted a management assessment of Environment, Safety, and Health (ES ampersand H) programs and their implementation of Idaho National Engineering Laboratory (INEL). The objectives of the assessment were to: (1) evaluate the effectiveness of existing management functions and processes in terms of ensuring environmental compliance, and the health and safety of workers and the general public; and (2) identify probable root causes for ES ampersand H findings and concerns. Organizations reviewed were DOE-Headquarters: DOE Field Offices, Chicago (CH) and Idaho (ID); Argonne Area Offices, East (AAO-E) and West (AAO-W); Radiological and Environmental Sciences Laboratory (RESL); Argonne National Laboratory (ANL); EG ampersand G Idaho, Inc. (EG ampersand G); Westinghouse Idaho Nuclear Company, Inc. (WINCO); Rockwell-INEL; MK-Ferguson of Idaho Company (MK-FIC); and Protection Technology of Idaho, Inc. (PTI). The scope of the assessment covered the following ES ampersand H management issues: policies and procedures; roles, responsibilities, and authorities; management commitment; communication; staff development, training, and certification; recruitment; compliance management; conduct of operations; emergency planning and preparedness; quality assurance; self assessment; oversight activities; and cost plus award fee processes

  19. Argonne National Laboratory research offers clues to Alzheimer's plaques

    CERN Multimedia

    2003-01-01

    Researchers from Argonne National Laboratory and the University of Chicago have developed methods to directly observe the structure and growth of microscopic filaments that form the characteristic plaques found in the brains of those with Alzheimer's Disease (1 page).

  20. Environmental Assessment for the vacuum process laboratory (VPL) relocation at the Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    1992-04-01

    This Environmental Assessment (EA) evaluates the potential environmental impacts of relocating a vacuum process laboratory (VPL) from Building 321 to Building 2231 at Lawrence Livermore National Laboratory (LLNL). The VPL provides the latest technology in the field of vacuum deposition of coatings onto various substrates for several weapons-related and energy-related programs at LLNL. Operations within the VPL at LLNL will not be expanded nor reduced by the relocation. No significant environmental impacts are expected as a result of the relocation of the VPL

  1. A woman like you: Women scientists and engineers at Brookhaven National Laboratory. Careers in action

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-31

    This publication by the women in Science and Engineering introduces career possibilities in science and engineering. It introduces what work and home life are like for women who have already entered these fields. Women at Brookhaven National Laboratory work in a variety of challenging research roles -- from biologist and environmental scientist to safety engineer, from patent lawyer to technician. Brookhaven National Laboratory is a multi-program laboratory which carries out basic and applied research in the physical, biomedical and environmental sciences and in selected energy technologies. The Laboratory is managed by Associated University, Inc., under contract with the US Department of Energy. Brookhaven and the other national laboratories, because of their enormous research resources, can play a critical role in a education and training of the workforce.

  2. Lab Plays Central Role in Groundbreaking National Clinical Trial in Precision Medicine | Frederick National Laboratory for Cancer Research

    Science.gov (United States)

    The Molecular Characterization Laboratory at the Frederick National Laboratory for Cancer Research lies at the heart of an ambitious new approach for testing cancer drugs that will use the newest tools of precision medicine to select the best treatme

  3. Point-Counterpoint: The FDA Has a Role in Regulation of Laboratory-Developed Tests.

    Science.gov (United States)

    Caliendo, Angela M; Hanson, Kimberly E

    2016-04-01

    Since the Food and Drug Administration (FDA) released its draft guidance on the regulation of laboratory-developed tests (LDTs) in October 2014, there has been a flurry of responses from commercial and hospital-based laboratory directors, clinicians, professional organizations, and diagnostic companies. The FDA defines an LDT as an "in vitrodiagnostic device that is intended for clinical use and is designed, manufactured, and used within a single laboratory." The draft guidance outlines a risk-based approach, with oversight of high-risk and moderate-risk tests being phased in over 9 years. High-risk tests would be regulated first and require premarket approval. Subsequently, moderate-risk tests would require a 510(k) premarket submission to the FDA and low-risk tests would need only to be registered. Oversight discretion would be exercised for LDTs focused on rare diseases (defined as fewer than 4,000 tests, not cases, per year nationally) and unmet clinical needs (defined as those tests for which there is no alternative FDA-cleared or -approved test). There was an open comment period followed by a public hearing in early January of 2015, and we are currently awaiting the final decision regarding the regulation of LDTs. Given that LDTs have been developed by many laboratories and are essential for the diagnosis and monitoring of an array of infectious diseases, changes in their regulation will have far-reaching implications for clinical microbiology laboratories. In this Point-Counterpoint, Angela Caliendo discusses the potential benefits of the FDA guidance for LDTs whereas Kim Hanson discusses the concerns associated with implementing the guidance and why these regulations may not improve clinical care. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  4. Periodic Table of Elements: Los Alamos National Laboratory

    Science.gov (United States)

    metal buttons (photo courtesy Lawrence Berkeley National Laboratory) Neptunium metal buttons (photo Configuration: [Rn]7s25f46d1 Oxidation States: 7, 6, 5, 4, 3, 2 History Named for the planet Neptune (named bombarding uranium with neutrons followed by beta decay would lead to the formation of element 93. In 1934

  5. Argonne National Laboratory annual report of Laboratory Directed Research and Development Program Activities FY 2009.

    Energy Technology Data Exchange (ETDEWEB)

    Office of the Director

    2010-04-09

    I am pleased to submit Argonne National Laboratory's Annual Report on its Laboratory Directed Research and Development (LDRD) activities for fiscal year 2009. Fiscal year 2009 saw a heightened focus by DOE and the nation on the need to develop new sources of energy. Argonne scientists are investigating many different sources of energy, including nuclear, solar, and biofuels, as well as ways to store, use, and transmit energy more safely, cleanly, and efficiently. DOE selected Argonne as the site for two new Energy Frontier Research Centers (EFRCs) - the Institute for Atom-Efficient Chemical Transformations and the Center for Electrical Energy Storage - and funded two other EFRCs to which Argonne is a major partner. The award of at least two of the EFRCs can be directly linked to early LDRD-funded efforts. LDRD has historically seeded important programs and facilities at the lab. Two of these facilities, the Advanced Photon Source and the Center for Nanoscale Materials, are now vital contributors to today's LDRD Program. New and enhanced capabilities, many of which relied on LDRD in their early stages, now help the laboratory pursue its evolving strategic goals. LDRD has, since its inception, been an invaluable resource for positioning the Laboratory to anticipate, and thus be prepared to contribute to, the future science and technology needs of DOE and the nation. During times of change, LDRD becomes all the more vital for facilitating the necessary adjustments while maintaining and enhancing the capabilities of our staff and facilities. Although I am new to the role of Laboratory Director, my immediate prior service as Deputy Laboratory Director for Programs afforded me continuous involvement in the LDRD program and its management. Therefore, I can attest that Argonne's program adhered closely to the requirements of DOE Order 413.2b and associated guidelines governing LDRD. Our LDRD program management continually strives to be more efficient. In

  6. Argonne National Laboratory annual report of Laboratory Directed Research and Development Program Activities FY 2009

    International Nuclear Information System (INIS)

    2010-01-01

    I am pleased to submit Argonne National Laboratory's Annual Report on its Laboratory Directed Research and Development (LDRD) activities for fiscal year 2009. Fiscal year 2009 saw a heightened focus by DOE and the nation on the need to develop new sources of energy. Argonne scientists are investigating many different sources of energy, including nuclear, solar, and biofuels, as well as ways to store, use, and transmit energy more safely, cleanly, and efficiently. DOE selected Argonne as the site for two new Energy Frontier Research Centers (EFRCs) - the Institute for Atom-Efficient Chemical Transformations and the Center for Electrical Energy Storage - and funded two other EFRCs to which Argonne is a major partner. The award of at least two of the EFRCs can be directly linked to early LDRD-funded efforts. LDRD has historically seeded important programs and facilities at the lab. Two of these facilities, the Advanced Photon Source and the Center for Nanoscale Materials, are now vital contributors to today's LDRD Program. New and enhanced capabilities, many of which relied on LDRD in their early stages, now help the laboratory pursue its evolving strategic goals. LDRD has, since its inception, been an invaluable resource for positioning the Laboratory to anticipate, and thus be prepared to contribute to, the future science and technology needs of DOE and the nation. During times of change, LDRD becomes all the more vital for facilitating the necessary adjustments while maintaining and enhancing the capabilities of our staff and facilities. Although I am new to the role of Laboratory Director, my immediate prior service as Deputy Laboratory Director for Programs afforded me continuous involvement in the LDRD program and its management. Therefore, I can attest that Argonne's program adhered closely to the requirements of DOE Order 413.2b and associated guidelines governing LDRD. Our LDRD program management continually strives to be more efficient. In addition to

  7. Customer satisfaction assessment at the Pacific Northwest National Laboratory; TOPICAL

    International Nuclear Information System (INIS)

    DN Anderson; ML Sours

    2000-01-01

    The Pacific Northwest National Laboratory (PNNL) is developing and implementing a customer satisfaction assessment program (CSAP) to assess the quality of research and development provided by the laboratory. This report presents the customer survey component of the PNNL CSAP. The customer survey questionnaire is composed of two major sections: Strategic Value and Project Performance. Both sections contain a set of questions that can be answered with a 5-point Likert scale response. The strategic value section consists of five questions that are designed to determine if a project directly contributes to critical future national needs. The project Performance section consists of nine questions designed to determine PNNL performance in meeting customer expectations. A statistical model for customer survey data is developed and this report discusses how to analyze the data with this model. The properties of the statistical model can be used to establish a gold standard or performance expectation for the laboratory, and then to assess progress. The gold standard is defined using laboratory management input-answers to four questions, in terms of the information obtained from the customer survey: (1) What should the average Strategic Value be for the laboratory project portfolio? (2) What Strategic Value interval should include most of the projects in the laboratory portfolio? (3) What should average Project Performance be for projects with a Strategic Value of about 2? (4) What should average Project Performance be for projects with a Strategic Value of about 4? To be able to provide meaningful answers to these questions, the PNNL customer survey will need to be fully implemented for several years, thus providing a link between management perceptions of laboratory performance and customer survey data

  8. Assessment of Energy Efficiency Project Financing Alternatives for Brookhaven National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, W. D.; Hail, John C.; Sullivan, Gregory P.

    2000-02-14

    This document provides findings and recommendations that resulted from an assessment of the Brookhaven National Laboratory by a team from Pacific Northwest National Laboratory to assess the site's potential for various alternative financing options as a means to implement energy-efficiency improvements. The assessment looked for life-cycle cost-effective energy-efficiency improvement opportunities, and through a series of staff interviews, evaluated the various methods by which these opportunities may be financed, while considering availability of funds, staff, and available financing options. This report summarizes the findings of the visit and the resulting recommendations.

  9. Real-time laboratory exercises to test contingency plans for classical swine fever: experiences from two national laboratories

    DEFF Research Database (Denmark)

    Koenen, K.; Uttenthal, Åse; Meindl-Böhmer, A.

    2007-01-01

    In order to adequately and efficiently handle outbreaks of contagious diseases such as classical swine fever (CSF), foot and mouth disease or highly pathogenic avian influenza, competent authorities and the laboratories involved have to be well prepared and must be in possession of functioning....... It is essential that these plans are established during ‘peace-time’ and are reviewed regularly. This paper provides suggestions on how to perform laboratory exercises to test preparedness and describes the experiences of two national reference laboratories for CSF. The major lesson learnt was the importance...

  10. Brookhaven National Laboratory site report for calendar year 1988

    Energy Technology Data Exchange (ETDEWEB)

    Miltenberger, R.P.; Royce, B.A.; Naidu, J.R.

    1989-06-01

    Brookhaven National Laboratory (BNL) is managed by Associated Universities Inc. (AUI). AUI was formed in 1946 by a group of nine universities whose purpose was to create and manage a laboratory in the Northeast in order to advance scientific research in areas of interest to universities, industry, and government. On January 31, 1947, the contract for BNL was approved by the Manhattan District of the Army Corps of Engineers and BNL was established on the former Camp Upton army camp. 54 refs., 21 figs., 78 tabs.

  11. Brookhaven National Laboratory site report for calendar year 1988

    International Nuclear Information System (INIS)

    Miltenberger, R.P.; Royce, B.A.; Naidu, J.R.

    1989-06-01

    Brookhaven National Laboratory (BNL) is managed by Associated Universities Inc. (AUI). AUI was formed in 1946 by a group of nine universities whose purpose was to create and manage a laboratory in the Northeast in order to advance scientific research in areas of interest to universities, industry, and government. On January 31, 1947, the contract for BNL was approved by the Manhattan District of the Army Corps of Engineers and BNL was established on the former Camp Upton army camp. 54 refs., 21 figs., 78 tabs

  12. Laboratory Directed Research and Development Program FY2004

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Todd C.

    2005-03-22

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Goals that are codified in DOE's September 2003 Strategic Plan, with a primary focus on Advancing Scientific Understanding. For that goal, the Fiscal Year (FY) 2004 LDRD projects support every one of the eight strategies described in the plan. In addition, LDRD efforts support the goals of Investing in America's Energy Future (six of the fourteen strategies), Resolving the Environmental Legacy (four of the eight strategies), and Meeting National Security Challenges (unclassified fundamental research that supports stockpile safety and nonproliferation programs). The LDRD supports Office of Science strategic plans, including the 20 year Scientific Facilities Plan and the draft Office of Science Strategic Plan. The research also

  13. Environmental Monitoring Plan, Sandia National Laboratories, Livermore

    International Nuclear Information System (INIS)

    Holland, R.C.

    1992-06-01

    This Environmental Monitoring Plan was written to fulfill the requirements of DOE Order 5400.1 and DOE Environmental Regulatory Guide DOE/EH 0173T. This Plan documents the background, organizational structure, and methods used for effluent monitoring and environmental surveillance at Sandia National Laboratories, Livermore. The design, rationale, and historical results of the environmental monitoring system are discussed in detail. Throughout the Plan, recommendations for improvements to the monitoring system are made. 61 refs

  14. Environmental report 1997, Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    Lentzner, H.L.; Morris, J.C.; Harrach, R.J.

    1998-01-01

    This report summarizes the environmental program activities at the Lawrence Livermore National Laboratory (LLNL) for 1997. This report accurately summarizes the results of environmental monitoring, compliance, impacts assessment, and the restoration program at LLNL. It features individual chapters on monitoring of air, sewage, surface water, ground water, soil and sediment, vegetation and foodstuff, and environmental radiation. It also contains chapters on site overview, environmental program information, radiological dose assessment, and quality assurance

  15. Materials accounting at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Erkkila, B.H.; Roberts, N.J.

    1989-01-01

    This presentation gives an overview of the accounting system used at the Los Alamos National Laboratory by the Los Alamos Nuclear Material Accounting and Safeguards System (MASS). This system processes accounting data in real time for bulk materials, discrete items, and materials undergoing dynamic processing. The following topics are covered in this chapter: definitions; nuclear material storage; nuclear material storage; computer system; measurement control program; inventory differences; and current programs and future plans

  16. Radiographic testing at Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    Bossi, R.H.

    1982-01-01

    Radiographic testing is a nondestructive inspection technique which uses penetrating radiation. The Nondestructive Evaluation (NDE) Section at Lawrence Livermore National Laboratory has a broad spectrum of equipment and techniques for radiographic testing. These resources include low-energy vacuum systems, low- and mid-energy cabinet and cell radiographic systems, high-energy linear accelerators, portable x-ray machines and radioisotopes for radiographic inspections. For diagnostic testing the NDE Section also has real-time and flash radiographic equipment

  17. The Brookhaven National Laboratory Accelerator Test Facility

    International Nuclear Information System (INIS)

    Batchelor, K.

    1992-01-01

    The Brookhaven National Laboratory Accelerator Test Facility comprises a 50 MeV traveling wave electron linear accelerator utilizing a high gradient, photo-excited, raidofrequency electron gun as an injector and an experimental area for study of new acceleration methods or advanced radiation sources using free electron lasers. Early operation of the linear accelerator system including calculated and measured beam parameters are presented together with the experimental program for accelerator physics and free electron laser studies

  18. Environmental report 1996, Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    Lentzner, H.L.; Napolitano, M.M.; Harrach, R.J.

    1997-01-01

    This report summarizes the environmental program activities at the Lawrence Livermore National Laboratory (LLNL) for 1996. This report accurately summarizes the results of environmental monitoring, compliance, impacts assessment, and the restoration program at LLNL. It features individual chapters on monitoring of air, sewage, surface water, ground water, soil and sediment, vegetation and foodstuff, and environmental radiation. It also contains chapters on site overview, environmental program information, radiological dose assessment, and quality assurance

  19. 78 FR 73555 - Deepwater Horizon Oil Spill; Draft Programmatic and Phase III Early Restoration Plan and Draft...

    Science.gov (United States)

    2013-12-06

    ... Environmental Impact Statement (Draft Phase III ERP/PEIS). The Draft Phase III ERP/PEIS considers programmatic... programmatic restoration alternatives. The Draft Phase III ERP/PEIS evaluates these restoration alternatives... the Framework Agreement. The Draft Phase III ERP/PEIS also evaluates the environmental consequences of...

  20. List of selected publications 1982. Risoe National Laboratory

    International Nuclear Information System (INIS)

    1983-12-01

    The list comprises a selection of scientific and technical publications of Risoe National Laboratory and its staff during 1982. Journal articles, conference papers, and reports are included. The publications are arranged in the following broad subject categories: Energy Supply and Supporting Technology, Environmental and Safety Research, Materials Research, Biotechnology and Radiation Research, Technical and Administrative Services, General. (author)

  1. List of selected publications 1983. Risoe National Laboratory

    International Nuclear Information System (INIS)

    1985-09-01

    The list comprises a selection of scientific and technical publications of Risoe National Laboratory and its staff during 1983. Journal articles, conference papers, and reports are included. The publications are arranged in the following broad subject categories: Energy Supply and Supporting Technology, Environmental and Safety Research, Materials Research, Biotechnology and Tradiation Research, Technical Support, General. (author)

  2. List of selected publications 1981. Risoe National Laboratory

    International Nuclear Information System (INIS)

    1982-07-01

    The list comprises a selection of scientific and technical publications of Risoe National Laboratory and its staff during 1981. Journal articles, conference papers, and reports are included. The publications are arranged in the following broad subject categories: Energy Supply, Environmental and Safety Reseach, Materials Research, Biotechnology and Radiation Research,Experimental Methods and Analyses, Major Research Facilities, General. (author)

  3. Transport Energy Impact Analysis; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    Gonder, J.

    2015-05-13

    Presented at the Sustainable Transportation Energy Pathways Spring 2015 Symposium on May 13, 2015, this presentation by Jeff Gonder of the National Renewable Energy Laboratory (NREL) provides information about NREL's transportation energy impact analysis of connected and automated vehicles.

  4. Developing the Sandia National Laboratories transportation infrastructure for isotope products and wastes

    International Nuclear Information System (INIS)

    Trennel, A.J.

    1997-11-01

    The US Department of Energy (DOE) plans to establish a medical isotope project that would ensure a reliable domestic supply of molybdenum-99 ( 99 Mo) and related medical isotopes (Iodine-125, Iodine-131, and Xenon-133). The Department's plan for production will modify the Annular Core Research Reactor (ACRR) and associated hot cell facility at Sandia National Laboratories (SNL)/New Mexico and the Chemistry and Metallurgy Research facility at Los Alamos National Laboratory (LANL). Transportation activities associated with such production is discussed

  5. LEGAL DRAFTING IN CROATIA - CASE STUDY

    Directory of Open Access Journals (Sweden)

    Dario Đerđa

    2017-01-01

    Full Text Available This paper highlights the importance of legal drafting and its essential elements, which has not drawn a lot of attention in the Republic of Croatia so far. The paper emphasises the importance of proportionality in the simplicity and legal distinctness of a legal text in the process of drafting for the purpose of its clarity. The paper also presents objective requirements necessary for quality legal drafting, as well as subjective qualities of the drafters. With the purpose of drawing attention to imperfections in the legal drafting in Croatia, some defi ciencies are presented in the process of drafting and amending of the Utility Services Act. The process of drafting and amending of this Act is a good example of the way how legal drafting should not be done. It contains a lot of defi ciencies and failures that are the result of legal drafting mistakes. At the end, authors expect that the adoption of the Uniform methodology and nomotechnical rules for the drafting of acts enacted by Parliament should contribute to the higher quality of legal texts and to their full adjustment to the general requirements of legal certainty and rule of law.

  6. Laboratory services series: the utilization of scientific glassblowing in a national research and development laboratory

    International Nuclear Information System (INIS)

    Farnham, R.M.; Poole, R.W.

    1976-04-01

    Glassblowing services at a national research and development laboratory provide unique equipment tailored for specific research efforts, small-scale process items for flowsheet demonstrations, and solutions for unusual technical problems such as glass-ceramic unions. Facilities, equipment, and personnel necessary for such services are described

  7. Nuclear energy related capabilities at Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Pickering, Susan Y. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-02-01

    Sandia National Laboratories' technology solutions are depended on to solve national and global threats to peace and freedom. Through science and technology, people, infrastructure, and partnerships, part of Sandia's mission is to meet the national needs in the areas of energy, climate and infrastructure security. Within this mission to ensure clean, abundant, and affordable energy and water is the Nuclear Energy and Fuel Cycle Programs. The Nuclear Energy and Fuel Cycle Programs have a broad range of capabilities, with both physical facilities and intellectual expertise. These resources are brought to bear upon the key scientific and engineering challenges facing the nation and can be made available to address the research needs of others. Sandia can support the safe, secure, reliable, and sustainable use of nuclear power worldwide by incorporating state-of-the-art technologies in safety, security, nonproliferation, transportation, modeling, repository science, and system demonstrations.

  8. EPA scientific integrity policy draft

    Science.gov (United States)

    Showstack, Randy

    2011-08-01

    The U.S. Environmental Protection Agency (EPA) issued its draft scientific integrity policy on 5 August. The draft policy addresses scientific ethical standards, communications with the public, the use of advisory committees and peer review, and professional development. The draft policy was developed by an ad hoc group of EPA senior staff and scientists in response to a December 2010 memorandum on scientific integrity from the White House Office of Science and Technology Policy. The agency is accepting public comments on the draft through 6 September; comments should be sent to osa.staff@epa.gov. For more information, see http://www.epa.gov/stpc/pdfs/draft-scientific-integrity-policy-aug2011.pdf.

  9. 78 FR 5492 - Draft Environmental Impact Statement for Merced Wild and Scenic River Comprehensive Management...

    Science.gov (United States)

    2013-01-25

    ... DEPARTMENT OF THE INTERIOR National Park Service [NPS-PWR-PWRO-11522; PX.P0131800B.00.1] Draft Environmental Impact Statement for Merced Wild and Scenic River Comprehensive Management Plan, Yosemite National Park, Madera and Mariposa Counties, CA AGENCY: National Park Service, Interior. ACTION: Notice of...

  10. Sandia National Laboratories, California proposed CREATE facility environmental baseline survey.

    Energy Technology Data Exchange (ETDEWEB)

    Catechis, Christopher Spyros

    2013-10-01

    Sandia National Laboratories, Environmental Programs completed an environmental baseline survey (EBS) of 12.6 acres located at Sandia National Laboratories/California (SNL/CA) in support of the proposed Collaboration in Research and Engineering for Advanced Technology and Education (CREATE) Facility. The survey area is comprised of several parcels of land within SNL/CA, County of Alameda, California. The survey area is located within T 3S, R 2E, Section 13. The purpose of this EBS is to document the nature, magnitude, and extent of any environmental contamination of the property; identify potential environmental contamination liabilities associated with the property; develop sufficient information to assess the health and safety risks; and ensure adequate protection for human health and the environment related to a specific property.

  11. Idaho National Laboratory Annual Report FY 2013 LDRD Project Summaries

    Energy Technology Data Exchange (ETDEWEB)

    Dena Tomchak

    2014-03-01

    The FY 2013 LDRD Annual Report is a compendium of the diverse research performed to develop and ensure the INL’s technical capabilities support the current and future DOE missions and national research priorities. LDRD is essential to INL—it provides a means for the Laboratory to maintain scientific and technical vitality while funding highly innovative, high-risk science and technology research and development (R&D) projects. The program enhances technical capabilities at the Laboratory, providing scientific and engineering staff with opportunities to explore proof-of-principle ideas, advanced studies of innovative concepts, and preliminary technical analyses. Established by Congress in 1991, the LDRD Program proves its benefit each year through new programs, intellectual property, patents, copyrights, national and international awards, and publications.

  12. Gran Sasso National Laboratory: Outreach and communication activities

    Science.gov (United States)

    Antolini, R.; Di Giovanni, A.; Galeota, M.; Sebastiani, S.

    2010-01-01

    Due to its fascinating structures, the Gran Sasso National Laboratory (LNGS) offers huge opportunities for communication and outreach activities conceived for students and general public. A great effort is devoted to the organisation of the "OPEN DAY", in which the scientific staff of Gran Sasso introduces non expert people to the main relevant research topics of the laboratory through interactive demonstrations and particle detectors. In particular, a portable cosmic rays telescope has been realized: the detector is used by LNGS team in pubblic events as well as to promote the scientific activities of the Laboratory. In order to point out the importance of the scientific culture for young people, LNGS is involved in the organisation of several training courses for students and teachers focused on the improvement of the knowledge on modern physics topics. Since May 2008 is operating in Teramo the "Galileium", an interactive museum for physics and astrophysics.

  13. FORENSIC DNA BANKING LEGISLATION IN DEVELOPING COUNTRIES: PRIVACY AND CONFIDENTIALITY CONCERNS REGARDING A DRAFT FROM TURKISH LEGISLATION.

    Science.gov (United States)

    Ilgili, Önder; Arda, Berna

    This paper presents and analyses, in terms of privacy and confidentiality, the Turkish Draft Law on National DNA Database prepared in 2004, and concerning the use of DNA analysis for forensic objectives and identity verification in Turkey. After a short introduction including related concepts, we evaluate the draft law and provide articles about confidentiality. The evaluation reminded us of some important topics at international level for the developing countries. As a result, the need for sophisticated legislations about DNA databases, for solutions to issues related to the education of employees, and the technological dependency to other countries emerged as main challenges in terms of confidentiality for the developing countries. As seen in the Turkish Draft Law on National DNA Database, the protection of the fundamental rights and freedoms requires more care during the legislative efforts.

  14. Developments of Spent Nuclear Fuel Pyroprocessing Technology at Idaho National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Michael F. Simpson

    2012-03-01

    This paper summarizes research in used fuel pyroprocessing that has been published by Idaho National Laboratory over the last decade. It includes work done both on treatment of Experimental Breeder Reactor-II and development of advanced technology for potential scale-up and commercialization. Collaborations with universities and other laboratories is included in the cited work.

  15. Material Transfer Agreement (MTA) | Frederick National Laboratory for Cancer Research

    Science.gov (United States)

    Material Transfer Agreements are appropriate for exchange of materials into or out of the Frederick National Laboratory for research or testing purposes, with no collaborative research by parties involving the materials.

  16. Business plan in brief. Draft

    International Nuclear Information System (INIS)

    1994-06-01

    Competition is revolutionizing the electricity industry, and utilities may never be the same. In the past two decades, government deregulation has transformed the airline, cable television, natural gas, and telecommunications industries. Now, with the passage of new laws which have spurred the growth of independent power and opened up transmission access, the electric utility industry has become the laboratory for change. Here in the Northwest, dramatic changes in the electric industry mean that the Bonneville Power Administration (BPA) is facing real competition. Our customers have more choices than they had in the past. BPA's draft Business Plan is a direct response to this changing environment. The plan presents how we propose to adapt to the new competitive marketplace. This is a summary of the plan and some of the important issues it raises for regional discussion. The draft plan contains much more detail on all the topics mentioned here. Business Plan is BPA's first attempt to integrate the long-term strategic plans of the various parts of the agency with a strategic financial plan. Change is evident throughout the plan--change in our operating environment, in our strategic direction, in our customer and constituent relationships, and in BPA itself as an organization

  17. 76 FR 59423 - Drakes Bay Oyster Company Special-Use Permit, Draft Environmental Impact Statement, Point Reyes...

    Science.gov (United States)

    2011-09-26

    ... commercial production, harvesting, processing, and sale of shellfish at Point Reyes National Seashore. The... Bay Oyster Company Special-Use Permit, Draft Environmental Impact Statement, Point Reyes National... Drakes Bay Oyster Company Special-use permit in Drakes Estero, Point Reyes National Seashore, California...

  18. Aqueous Nitrate Recovery Line at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Finstad, Casey Charles [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-06-15

    This powerpoint is part of the ADPSM Plutonium Engineering Lecture Series, which is an opportunity for new hires at LANL to get an overview of work done at TA55. It goes into detail about the aqueous nitrate recovery line at Los Alamos National Laboratory.

  19. 78 FR 24154 - Notice of Availability of a National Animal Health Laboratory Network Reorganization Concept Paper

    Science.gov (United States)

    2013-04-24

    ...] Notice of Availability of a National Animal Health Laboratory Network Reorganization Concept Paper AGENCY... available a concept paper that describes a revised structure for the National Animal Health Laboratory... biological threats to the nation's food animals. The concept paper we are making available for comment...

  20. Final environmental impact statement. Proton--Proton Storage Accelerator Facility (ISABELLE), Brookhaven National Laboratory, Upton, New York

    International Nuclear Information System (INIS)

    1978-08-01

    An Environmental Impact Statement for a proposed research facility (ISABELLE) to be built at Brookhaven National Laboratory (BNL) is presented. It was prepared by the Department of Energy (DOE) following guidelines issued for such analyses. In keeping with DOE policy, this statement presents a concise and issues-oriented analysis of the significant environmental effects associated with the proposed action. ISABELLE is a proposed physics research facility where beams of protons collide providing opportunities to study high energy interactions. The facility would provide two interlaced storage ring proton accelerators, each with an energy up to 400 GeV intersecting in six experimental areas. The rings are contained in a tunnel with a circumference of 3.8 km (2.3 mi). The facility will occupy 250 ha (625 acres) in the NW corner of the existing BNL site. A draft Environmental Impact Statement for this proposed facility was issued for public review and comment by DOE on February 21, 1978. The principal areas of concern expressed were in the areas of radiological impacts and preservation of cultural values. After consideration of these comments, appropriate actions were taken and the text of the statement has been amended to reflect the comments. The text was annotated to indicate the origin of the comment. The Appendices contain a glossary of terms and listings of metric prefixes and conversions and symbols and abbreviations

  1. 75 FR 9953 - Definition and Requirements for a Nationally Recognized Testing Laboratory (NRTL); Extension of...

    Science.gov (United States)

    2010-03-04

    ...] Definition and Requirements for a Nationally Recognized Testing Laboratory (NRTL); Extension of the Office of Management and Budget's (OMB) Approval of Information Collection (Paperwork) Requirements AGENCY... its Regulation on the Definition and Requirements for a Nationally Recognized Testing Laboratory (29...

  2. National Renewable Energy Laboratory 2005 Research Review

    Energy Technology Data Exchange (ETDEWEB)

    Brown, H.; Gwinner, D.; Miller, M.; Pitchford, P.

    2006-06-01

    Science and technology are at the heart of everything we do at the National Renewable Energy Laboratory, as we pursue innovative, robust, and sustainable ways to produce energy--and as we seek to understand and illuminate the physics, chemistry, biology, and engineering behind alternative energy technologies. This year's Research Review highlights the Lab's work in the areas of alternatives fuels and vehicles, high-performing commercial buildings, and high-efficiency inverted, semi-mismatched solar cells.

  3. Idaho National Laboratory Quarterly Event Performance Analysis FY 2013 4th Quarter

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Lisbeth A. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2013-11-01

    This report is published quarterly by the Idaho National Laboratory (INL) Performance Assurance Organization. The Department of Energy Occurrence Reporting and Processing System (ORPS) as prescribed in DOE Order 232.2 “Occurrence Reporting and Processing of Operations Information” requires a quarterly analysis of events, both reportable and not reportable for the previous twelve months. This report is the analysis of occurrence reports and deficiency reports (including not reportable events) identified at the Idaho National Laboratory (INL) during the period of October 2012 through September 2013.

  4. Ernest Orlando Lawrence Berkeley National Laboratory Institutional Plan FY 2000-2004

    Energy Technology Data Exchange (ETDEWEB)

    Chartock, Mike (ed.); Hansen, Todd (ed.)

    1999-08-01

    The FY 2000-2004 Institutional Plan provides an overview of the Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab, the Laboratory) mission, strategic plan, initiatives, and the resources required to fulfill its role in support of national needs in fundamental science and technology, energy resources, and environmental quality. To advance the Department of Energy's ongoing efforts to define the Integrated Laboratory System, the Berkeley Lab Institutional Plan reflects the strategic elements of our planning efforts. The Institutional Plan is a management report that supports the Department of Energy's mission and programs and is an element of the Department of Energy's strategic management planning activities, developed through an annual planning process. The Plan supports the Government Performance and Results Act of 1993 and complements the performance-based contract between the Department of Energy and the Regents of the University of California. It identifies technical and administrative directions in the context of the national energy policy and research needs and the Department of Energy's program planning initiatives. Preparation of the plan is coordinated by the Office of Planning and Communications from information contributed by Berkeley Lab's scientific and support divisions.

  5. Remediating the past and preparing for the future at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Sanders, T.L.

    1996-01-01

    Sandia National Laboratories is one of the nation's largest multiprogram research, development, test, and evaluation (RDT ampersand E) facilities, with headquarters in Albuquerque, New Mexico, a laboratory in Livermore, California, and a test range near Tonopah, Nevada. Smaller testing facilities are also operated at other locations. Established in 1945, Sandia is currently operated for the U.S. Department of Energy by Lockheed-Martin's energy and environment sector. Sandia's responsibility is research and development for national security programs in defense, energy, and environment, with primary emphasis on nuclear weapons research and development. This article describes Sandia's program of remedial action which aims to use technology to reduce costs of decommissioning and decontamination, positioning itself for future opportunities

  6. Status report on the Advanced Photon Source Project at Argonne National Laboratory

    International Nuclear Information System (INIS)

    Huebner, R.H. Sr.

    1989-01-01

    The Advanced Photon Source at Argonne National Laboratory is designed as a national synchrotron radiation user facility which will provide extremely bright, highly energetic x-rays for multidisciplinary research. When operational, the Advanced Photon Source will accelerate positrons to a nominal energy of 7 GeV. The positrons will be manipulated by insertion devices to produce x-rays 10,000 times brighter than any currently available for research. Accelerator components, insertion devices, optical elements, and optical-element cooling schemes have been and continue to be the subjects of intensive research and development. A call for Letters of Intent from prospective users of the Advanced Photon Source has resulted in a substantial response from industrial, university, and national laboratory researchers

  7. Verification Survey of the Building 315 Zero Power Reactor-6 Facility, Argonne National Laboratory-East, Argonne, Illinois

    International Nuclear Information System (INIS)

    W. C. Adams

    2007-01-01

    Oak Ridge Institute for Science and Education (ORISE) conducted independent verification radiological survey activities at Argonne National Laboratory's Building 315, Zero Power Reactor-6 facility in Argonne, Illinois. Independent verification survey activities included document and data reviews, alpha plus beta and gamma surface scans, alpha and beta surface activity measurements, and instrumentation comparisons. An interim letter report and a draft report, documenting the verification survey findings, were submitted to the DOE on November 8, 2006 and February 22, 2007, respectively (ORISE 2006b and 2007). Argonne National Laboratory-East (ANL-E) is owned by the U.S. Department of Energy (DOE) and is operated under a contract with the University of Chicago. Fundamental and applied research in the physical, biomedical, and environmental sciences are conducted at ANL-E and the laboratory serves as a major center of energy research and development. Building 315, which was completed in 1962, contained two cells, Cells 5 and 4, for holding Zero Power Reactor (ZPR)-6 and ZPR-9, respectively. These reactors were built to increase the knowledge and understanding of fast reactor technology. ZPR-6 was also referred to as the Fast Critical Facility and focused on fast reactor studies for civilian power production. ZPR-9 was used for nuclear rocket and fast reactor studies. In 1967, the reactors were converted for plutonium use. The reactors operated from the mid-1960's until 1982 when they were both shut down. Low levels of radioactivity were expected to be present due to the operating power levels of the ZPR's being restricted to well below 1,000 watts. To evaluate the presence of radiological contamination, DOE characterized the ZPRs in 2001. Currently, the Melt Attack and Coolability Experiments (MACE) and Melt Coolability and Concrete Interaction (MCCI) Experiments are being conducted in Cell 4 where the ZPR-9 is located (ANL 2002 and 2006). ANL has performed final

  8. The Fiftieth Anniversary of Brookhaven National Laboratory: A Turbulent Time

    Science.gov (United States)

    Bond, Peter D.

    2018-03-01

    The fiftieth anniversary year of Brookhaven National Laboratory was momentous, but for reasons other than celebrating its scientific accomplishments. Legacy environmental contamination, community unrest, politics, and internal Department of Energy issues dominated the year. It was the early days of perhaps the most turbulent time in the lab's history. The consequences resulted in significant changes at the lab, but in addition they brought a change to contracts to manage the Department of Energy laboratories.

  9. 78 FR 64493 - Juneau Hydropower, Inc.; Notice of Subsequent Draft License Application (DLA) and Draft...

    Science.gov (United States)

    2013-10-29

    ... Hydropower, Inc.; Notice of Subsequent Draft License Application (DLA) and Draft Preliminary Draft... Hydropower, Inc. e. Name of Project: Sweetheart Lake Hydroelectric Project. f. Location: At the confluence of..., Business Manager, Juneau Hydropower, Inc., P.O. Box 22775, Juneau, AK 99802; 907-789-2775, email: duff...

  10. 78 FR 7460 - Stakeholder Meeting on the Nationally Recognized Testing Laboratory Program

    Science.gov (United States)

    2013-02-01

    ...] Stakeholder Meeting on the Nationally Recognized Testing Laboratory Program AGENCY: Occupational Safety and Health Administration (OSHA), Labor. ACTION: Notice of stakeholder meeting. SUMMARY: OSHA invites interested parties to attend an informal stakeholder meeting concerning Nationally Recognized Testing...

  11. Technical Service Agreement (TSA) | Frederick National Laboratory for Cancer Research

    Science.gov (United States)

    Frederick National Laboratory for Cancer Research (FNLCR) scientists provide services and solutions to collaborators through the Technical Services Program, whose portfolio includes more than 200 collaborations with more than 80 partners. The Frederi

  12. Site Environmental Report for 2010 Sandia National Laboratories, California.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2011-06-01

    Sandia National Laboratories, California (SNL/CA) is a government-owned/contractor-operated laboratory. Sandia Corporation, a Lockheed Martin Company, manages and operates the laboratory for the Department of Energy's National Nuclear Security Administration (NNSA). The NNSA Sandia Site Office administers the contract and oversees contractor operations at the site. This Site Environmental Report for 2010 was prepared in accordance with DOE Order 231.1A (DOE 2004a). The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2010. General site and environmental program information is also included. The Site Environmental Report is divided into ten chapters. Chapter 1, the Executive Summary, highlights compliance and monitoring results obtained in 2010. Chapter 2 provides a brief introduction to SNL/CA and the existing environment found on site. Chapter 3 summarizes SNL/CA's compliance activities with the major environmental requirements applicable to site operations. Chapter 4 presents information on environmental management, performance measures, and environmental programs. Chapter 5 presents the results of monitoring and surveillance activities in 2010. Chapter 6 discusses quality assurance. Chapters 7 through 9 provide supporting information for the report and Chapter 10 is the report distribution list.

  13. Site environmental report for 2009 : Sandia National Laboratories, California.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2010-06-01

    Sandia National Laboratories, California (SNL/CA) is a government-owned/contractor-operated laboratory. Sandia Corporation, a Lockheed Martin Company, operates the laboratory for the Department of Energy's National Nuclear Security Administration (NNSA). The NNSA Sandia Site Office oversees operations at the site, using Sandia Corporation as a management and operating contractor. This Site Environmental Report for 2009 was prepared in accordance with DOE Order 231.1A (DOE 2004a). The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2009. General site and environmental program information is also included. The Site Environmental Report is divided into ten chapters. Chapter 1, the Executive Summary, highlights compliance and monitoring results obtained in 2009. Chapter 2 provides a brief introduction to SNL/CA and the existing environment found on site. Chapter 3 summarizes SNL/CA's compliance activities with the major environmental requirements applicable to site operations. Chapter 4 presents information on environmental management, performance measures, and environmental programs. Chapter 5 presents the results of monitoring and surveillance activities in 2009. Chapter 6 discusses quality assurance. Chapters 7 through 9 provide supporting information for the report and Chapter 10 is the report distribution list.

  14. Privatisation, human rights and security: Reflections on the Draft ...

    African Journals Online (AJOL)

    User

    the Draft protocol). See also Michie A “The provisional application of arms control treaties” ... often does no more than create weak and ineffective systems. Nonetheless ... environment must be balanced against other interests. This is ...... the flag of the state or an aircraft registered in the state or committed by their nationals.

  15. Use of the Multi-Agency Radiological Laboratory Analytical Protocols Manual (MARLAP) for site cleanup activities

    International Nuclear Information System (INIS)

    Griggs, J.

    1999-01-01

    MARLAP is being developed as a multi-agency guidance manual for project managers and radioanalytical laboratories. The document uses a performance based approach and will provide guidance and a framework to assure that laboratory radioanalytical data meets the specific project or program needs and requirements. MARLAP supports a wide range of data collection activities including site characterization and compliance demonstration activities. Current participants include: US Environmental Protection Agency (EPA), US Department of Energy (DOE), US Nuclear Regulatory Commission (NRC), US Department of Defense (DoD), US National Institutes of Standards and Technology (NIST), US Geologic Survey (USGS), US Food and Drug Administration (FDA), Commonwealth of Kentucky, and the State of California. MARLAP is the radioanalytical laboratory counterpart to the Multi-Agency Radiological Survey and Site Investigation Manual (MARSSIM). MARLAP is currently in a preliminary draft stage. (author)

  16. Amchitka Island Environmental Analysis at Idaho National Laboratory

    International Nuclear Information System (INIS)

    Gracy Elias; W. F. Bauer; J.G. Eisenmenger; C.C. Jensen; B.K. Schuetz; T. C. Sorensen; B.M. White; A. L. Freeman; M. E. McIlwain

    2005-01-01

    The Idaho National Laboratory (INL) provided support to Consortium for Risk Evaluation with Stakeholder Participation (CRESP) in their activities which is supported by the Department of Energy (DOE) to assess the impact of past nuclear testing at Amchitka Island on the ecosystem of the island and surrounding ocean. INL participated in this project in three phases, Phase 1, Phase 2 and Phase 3

  17. Risoe National Laboratory. List of selected publications 1980

    International Nuclear Information System (INIS)

    1981-12-01

    The list comprises a selection of scientific and technical publications of Risoe National Laboratory and its staff during 1980. Journal articles, conference papers, and reports are included. The publications are arranged in the following broad subject categories: Reactor Safety and Technology, The Nuclear Fuel Cycle, Environmental and General Safety Research, Materials Research, and Radiation Technology, Agricultural Research, Non-Nuclear Research, General. (author)

  18. Risoe National Laboratory. List of selected publications 1979

    International Nuclear Information System (INIS)

    1980-11-01

    The list comprises a selection of scientific and technical publications of Risoe National Laboratory and its staff during 1979. Journal articles, conference papers, and reports are included. The publications are arranged in the following broad subject categories: Reactor Safety and Technology, The Nuclear Fuel Cycle, Environmental and General Safety Research, Materials Research, Radiation Technology, Agricultural Research, Non-Nuclear Energy Research, General. (author)

  19. List of selected publications 1978 Risoe National Laboratory

    International Nuclear Information System (INIS)

    1979-09-01

    The list comprises a selection of scientific and technical publications of Risoe National Laboratory and its staff during 1978. Journal articles, conference papers, and reports are included. The publications are arranged in the following broad subject categories: Reactor Safety Technology, The Nuclear Fuel Cycle, Environmental and General Safety Research, Materials Research, Radiation Technology, Agricultural Research, Non-Nuclear Energy Research, General. (author)

  20. Idaho National Engineering Laboratory decontamination and decommissioning summary

    International Nuclear Information System (INIS)

    Chapin, J.A.

    1981-01-01

    Topics covered concern the decontamination and decommissioning (D and D) work performed at the Idaho National Engineering Laboratory (INEL) during FY 1979 and include both operations and development projects. Briefly presented are the different types of D and D projects planned and the D and D projects completed. The problems encountered on these projects and the development program recommended are discussed

  1. 76 FR 65752 - International Space Station (ISS) National Laboratory Advisory Committee; Charter Renewal

    Science.gov (United States)

    2011-10-24

    ... International and Interagency Relations, (202) 358-0550, National Aeronautics and Space Administration... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (11-104)] International Space Station (ISS... National Laboratory Advisory Committee is in the public interest in connection with the performance of...

  2. 76 FR 70456 - Decision To Evaluate a Petition To Designate a Class of Employees From Sandia National Laboratory...

    Science.gov (United States)

    2011-11-14

    ... Employees From Sandia National Laboratory, Albuquerque, NM, To Be Included in the Special Exposure Cohort... evaluate a petition to designate a class of employees from Sandia National Laboratory, Albuquerque, New... revision as warranted by the evaluation, is as follows: Facility: Sandia National Laboratory. Location...

  3. Sandia National Laboratories, California Environmental Management System program manual.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2013-04-01

    The Sandia National Laboratories, California (SNL/CA) Environmental Management System (EMS) Program Manual documents the elements of the site EMS Program. The SNL/CA EMS Program conforms to the International Standard on Environmental Management Systems, ISO 14001:2004 and Department of Energy (DOE) Order 436.1.

  4. Sandia National Laboratories, California Environmental Management System program manual

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2014-04-01

    The Sandia National Laboratories, California (SNL/CA) Environmental Management System (EMS) Program Manual documents the elements of the site EMS Program. The SNL/CA EMS Program conforms to the International Standard on Environmental Management Systems, ISO 14001:2004 and Department of Energy (DOE) Order 436.1.

  5. Draft genome sequence of the intestinal parasite Blastocystis subtype 4-isolate WR1

    NARCIS (Netherlands)

    Wawrzyniak, Ivan; Courtine, Damien; Osman, Marwan; Hubans-Pierlot, Christine; Cian, Amandine; Nourrisson, Céline; Chabe, Magali; Poirier, Philippe; Bart, Aldert; Polonais, Valérie; Delgado-Viscogliosi, Pilar; El Alaoui, Hicham; Belkorchia, Abdel; van Gool, Tom; Tan, Kevin S. W.; Ferreira, Stéphanie; Viscogliosi, Eric; Delbac, Frédéric

    2015-01-01

    (ST1-ST17) described to date. Only the whole genome of a human ST7 isolate was previously sequenced. Here we report the draft genome sequence of Blastocystis ST4-WR1 isolated from a laboratory rodent at Singapore. (C) 2015 The Authors. Published by Elsevier Inc

  6. 78 FR 16294 - Draft Environmental Impact Statement for Restoration of the Mariposa Grove of Giant Sequoias...

    Science.gov (United States)

    2013-03-14

    ... Environmental Impact Statement for Restoration of the Mariposa Grove of Giant Sequoias, Yosemite National Park, Madera, and Mariposa Counties, CA AGENCY: National Park Service, Interior. ACTION: Notice of availability... the Mariposa Grove of giant sequoias in Yosemite National Park. This Draft EIS presents three...

  7. Geology and mineral resources of the Florence, Beaufort, Rocky Mount, and Norfolk 10 x 20 NTMS quadrangles. National Uranium Resource Evaluation program

    International Nuclear Information System (INIS)

    Harris, W.B.

    1982-08-01

    This document provides geologic and mineral resources data for previously-issued Savannah River Laboratory hydrogeochemical and stream sediment reports of the Beaufort, Florence, Norfolk, and Rocky Mount 1 0 x 2 0 National Topographic Map Series quadrangles in the southeastern United States. This report is issued in draft form, without detailed technical and copy editing. This was done to make the report available to the public before the end of the National Uranium Resource Evaluation program

  8. National CW GeV Electron Microtron laboratory

    International Nuclear Information System (INIS)

    1982-12-01

    Rising interest in the nuclear physics community in a CW GeV electron accelerator reflects the growing importance of high-resolution short-range nuclear physics to future advances in the field. To meet this need, Argonne National Laboratory proposes to build a CW GeV Electron Microtron (GEM) laboratory as a national user facility. The microtron accelerator has been chosen as the technology to generate the electron beams required for the research discussed because of the advantages of superior beam quality, low capital and operating costs and capability of furnishing beams of several energies and intensities simultaneously. A complete technical description of the conceptual design for a six-sided CW microtron (hexatron) is presented. The hexatron and three experimental areas will be housed in a well-shielded complex of existing buildings that provide all utilities and services required for an advanced accelerator and an active research program at a savings of $30 to 40 million. Beam lines have been designed to accommodate the transport of polarized beams to each area. The total capital cost of the facility will be $78.6 million and the annual budget for accelerator operations will be $12.1 million. Design and construction of the facility will require four and one half years. Staged construction with a 2 GeV phase costing $65.9 million is also discussed

  9. Management of citation verification requests for multiple projects at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Crawford, C.S.

    1995-01-01

    Sandia National Laboratories' (SNL) Technical Library is now responsible for providing citation verification management support for all references cited in technical reports issued by the Nuclear Waste Management (NWM) Program. This paper dancing how this process is managed for the Yucca Mountain Site Characterization (YWP), Waste Isolation Pilot Plant (WIPP), Idaho National Engineering Laboratory (INEL), and Greater Confinement Disposal (GCD) projects. Since technical reports are the main product of these projects, emphasis is placed on meeting the constantly evolving needs of these customers in a timely and cost-effective manner

  10. Science with multiply-charged ions at Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    Jones, K.W.; Johnson, B.M.; Meron, M.; Thieberger, P.

    1987-01-01

    The production of multiply-charged heavy ions at Brookhaven National Laboratory and their use in different types of experiments are discussed. The main facilities that are used are the Double MP Tandem Van de Graaff and the National Synchrotron Light Source. The capabilities of a versatile Atomic Physics Facility based on a combination of the two facilities and a possible new heavy-ion storage ring are summarized. It is emphasized that the production of heavy ions and the relevant science necessitates very flexible and diverse apparatus

  11. 78 FR 53151 - The Applicability of Good Laboratory Practice in Premarket Device Submissions: Questions and...

    Science.gov (United States)

    2013-08-28

    ...] The Applicability of Good Laboratory Practice in Premarket Device Submissions: Questions and Answers... availability of the draft guidance entitled ``The Applicability of Good Laboratory Practice in Premarket Device... applicability of good laboratory practice (GLP) to nonclinical laboratory studies conducted in support of...

  12. Materials Science Division HVEM-Tandem Facility at Argonne National Laboratory

    International Nuclear Information System (INIS)

    Taylor, A.

    1981-10-01

    The ANL-Materials Science Division High Voltage Electron Microscope-Tandem Facility is a unique national research facility available to scientists from industry, universities, and other national laboratories, following a peer evaluation of their research proposals by the Facility Steering Committee. The principal equipment consists of a Kratos EM7 1.2-MV high voltage electron microscope, a 300-kV Texas Nuclear ion accelerator, and a National Electrostatics 2-MV Tandem accelerator. Ions from both accelerators are transmitted into the electron microscope through the ion-beam interface. Recent work at the facility is summarized

  13. Neutron generator production mission in a national laboratory.

    Energy Technology Data Exchange (ETDEWEB)

    Pope, Larry E.

    2007-08-01

    In the late 1980's the Department of Energy (DOE) faced a future budget shortfall. By the spring of 1991, the DOE had decided to manage this problem by closing three production plants and moving production capabilities to other existing DOE sites. As part of these closings, the mission assignment for fabrication of War Reserve (WR) neutron generators (NGs) was transferred from the Pinellas Plant (PP) in Florida to Sandia National Laboratories, New Mexico (SNL/NM). The DOE directive called for the last WR NG to be fabricated at the PP before the end of September 1994 and the first WR NG to be in bonded stores at SNL/NM by October 1999. Sandia National Laboratories successfully managed three significant changes to project scope and schedule and completed their portion of the Reconfiguration Project on time and within budget. The PP was closed in October 1995. War Reserve NGs produced at SNL/NM were in bonded stores by October 1999. The costs of the move were recovered in just less than five years of NG production at SNL/NM, and the annual savings today (in 1995 dollars) is $47 million.

  14. Neutron radiography at the Risoe National Laboratory

    International Nuclear Information System (INIS)

    Domanus, J.C.; Gade-Nielsen, P.; Knudsen, P.; Olsen, J.

    1981-11-01

    In this report six papers are collected which will be presented at the First World Conference on Neutron Radiography in San Diego, U.S.A., 7 - 10 December 1981. They are preceded by a short description of the activities of Risoe National Laboratory in the field of post-irradiation examination of nuclear fuel. One of the nondestructive methods used for this examination is neutron radiography. In the six conference papers different aspects of neutron radiography performed at Risoe are presented. (author)

  15. The Dalian National Laboratory for Clean Energy.

    Science.gov (United States)

    Zhang, Tao; Li, Can; Bao, Xinhe

    2012-05-01

    The Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences conducts fundamental and applied research towards chemistry and chemical engineering, with strong competence in the development of new technologies. The research in this special issue, containing 19 papers, features some of the DICP's best work on sustainable energy, use of environmental resources, and advanced materials within the framework of the Dalian National Laboratory for Clean Energy (DNL). Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. 75 FR 63519 - Notice of Availability of Draft Environmental Assessment and Draft Finding of No Significant...

    Science.gov (United States)

    2010-10-15

    ... reduced for certain environmental resource areas (i.e., for transportation, public and occupational health... NUCLEAR REGULATORY COMMISSION [NRC-2009-0435] Notice of Availability of Draft Environmental... of Availability of Draft Environmental Assessment and Draft Finding of No Significant Impact; Notice...

  17. Signal and Image Processing Research at the Lawrence Livermore National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, R S; Poyneer, L A; Kegelmeyer, L M; Carrano, C J; Chambers, D H; Candy, J V

    2009-06-29

    Lawrence Livermore National Laboratory is a large, multidisciplinary institution that conducts fundamental and applied research in the physical sciences. Research programs at the Laboratory run the gamut from theoretical investigations, to modeling and simulation, to validation through experiment. Over the years, the Laboratory has developed a substantial research component in the areas of signal and image processing to support these activities. This paper surveys some of the current research in signal and image processing at the Laboratory. Of necessity, the paper does not delve deeply into any one research area, but an extensive citation list is provided for further study of the topics presented.

  18. 75 FR 30423 - Draft Comprehensive Conservation Plan and Environmental Assessment; Canaan Valley National...

    Science.gov (United States)

    2010-06-01

    ... Mountain salamander and Indiana bat. Its dominant habitats include wet meadows, peatlands, shrub and... refuge revenue sharing payments, and continuing our role in land conservation partnerships. The draft CCP... wetland complex as a Research Natural Area. The hunt program would remain the same as alternative A...

  19. Radiological NESHAP Annual Report CY 2015 Sandia National Laboratories New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Evelo, Stacie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-05-01

    This report provides a summary of the radionuclide releases from the United States (U.S.) Department of Energy (DOE) National Nuclear Security Administration facilities at Sandia National Laboratories, New Mexico (SNL/NM) during Calendar Year (CY) 2015, including the data, calculations, and supporting documentation for demonstrating compliance with 40 Code of Federal Regulation (CFR) 61.

  20. The national strategy for an ecologic transition towards a sustainable development (SNTEDD) - Preliminary draft 2014-2020

    International Nuclear Information System (INIS)

    2014-01-01

    After having outlined that the ecologic transition is a requirement for economy and society, this document presents the nine main lines of the French national strategy for an ecologic transition towards a sustainable development. These main lines as well as the associated priorities (two to five priorities are associated with each main line) are discussed. Objectives and related public initiatives (plan, drafts, bill projects) are also mentioned. The nine main lines are: to develop sustainable and resilient territories, to commit to a circular and low-carbon economy, to prevent and to reduce environmental, social and land inequities, to invent new economic and financial models, to support the ecologic evolution of economic activities, to direct knowledge production, research and innovation towards ecologic transition, to teach, train and heighten awareness for ecologic transition, to mobilize actors at all levels, and to promote sustainable development at the European and world levels

  1. Environmental site characterization and remediation at Lawrence Livermore National Laboratory Site 300

    International Nuclear Information System (INIS)

    Lamarre, A.L.; Ferry, R.A.

    1992-04-01

    Lawrence Livermore National Laboratory (LLNL) is a research and development laboratory owned by the US Department of Energy (DOE) and operated by the University of California. The Laboratory operates its Site 300 test facility in support of DOE's national defense programs. In support of activities, at the 300 Site numerous industrial fluids are used and various process or rinse waters and solid wastes are produced. Some of these materials are hazardous by current standards. HE rinse waters were previously discharged to inlined lagoons; they now are discharged to a permitted Class II surface impoundment Solid wastes have been deposited in nine landfills. Waste HE compounds are destroyed by open burning at a burn pit facility. As a result of these practices, environmental contaminants have been released to the soil and ground water

  2. Keeping the Momentum and Nuclear Forensics at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Steiner, Robert Ernest; Dion, Heather M.; Dry, Donald E.; Kinman, William Scott; LaMont, Stephen Philip; Podlesak, David; Tandon, Lav

    2016-01-01

    LANL has 70 years of experience in nuclear forensics and supports the community through a wide variety of efforts and leveraged capabilities: Expanding the understanding of nuclear forensics, providing training on nuclear forensics methods, and developing bilateral relationships to expand our understanding of nuclear forensic science. LANL remains highly supportive of several key organizations tasked with carrying forth the Nuclear Security Summit messages: IAEA, GICNT, and INTERPOL. Analytical chemistry measurements on plutonium and uranium matrices are critical to numerous programs including safeguards accountancy verification measurements. Los Alamos National Laboratory operates capable actinide analytical chemistry and material science laboratories suitable for nuclear material and environmental forensic characterization. Los Alamos National Laboratory uses numerous means to validate and independently verify that measurement data quality objectives are met. Numerous LANL nuclear facilities support the nuclear material handling, preparation, and analysis capabilities necessary to evaluate samples containing nearly any mass of an actinide (attogram to kilogram levels).

  3. Keeping the Momentum and Nuclear Forensics at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Steiner, Robert Ernest [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dion, Heather M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dry, Donald E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kinman, William Scott [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); LaMont, Stephen Philip [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Podlesak, David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Tandon, Lav [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-07-22

    LANL has 70 years of experience in nuclear forensics and supports the community through a wide variety of efforts and leveraged capabilities: Expanding the understanding of nuclear forensics, providing training on nuclear forensics methods, and developing bilateral relationships to expand our understanding of nuclear forensic science. LANL remains highly supportive of several key organizations tasked with carrying forth the Nuclear Security Summit messages: IAEA, GICNT, and INTERPOL. Analytical chemistry measurements on plutonium and uranium matrices are critical to numerous programs including safeguards accountancy verification measurements. Los Alamos National Laboratory operates capable actinide analytical chemistry and material science laboratories suitable for nuclear material and environmental forensic characterization. Los Alamos National Laboratory uses numerous means to validate and independently verify that measurement data quality objectives are met. Numerous LANL nuclear facilities support the nuclear material handling, preparation, and analysis capabilities necessary to evaluate samples containing nearly any mass of an actinide (attogram to kilogram levels).

  4. A new matrix for scoring the functionality of national laboratory networks in Africa: introducing the LABNET scorecard.

    Science.gov (United States)

    Ondoa, Pascale; Datema, Tjeerd; Keita-Sow, Mah-Sere; Ndihokubwayo, Jean-Bosco; Isadore, Jocelyn; Oskam, Linda; Nkengasong, John; Lewis, Kim

    2016-01-01

    Functional national laboratory networks and systems are indispensable to the achievement of global health security targets according to the International Health Regulations. The lack of indicators to measure the functionality of national laboratory network has limited the efficiency of past and current interventions to enhance laboratory capacity in resource-limited-settings. We have developed a matrix for the assessment of national laboratory network functionality and progress thereof, with support from the African Society of Laboratory Medicine and the Association of Public Health Laboratories. The laboratory network (LABNET) scorecard was designed to: (1) Measure the status of nine overarching core capabilities of laboratory network required to achieve global health security targets, as recommended by the main normative standards; (2) Complement the World Health Organization joint external evaluation tool for the assessment of health system preparedness to International Health Regulations (2005) by providing detailed information on laboratory systems; and (3) Serve as a clear roadmap to guide the stepwise implementation of laboratory capability to prevent, detect and act upon infectious threats. The application of the LABNET scorecard under the coordination of the African Society of Laboratory Medicine and the Association of Public Health Laboratories could contribute to the design, monitoring and evaluation of upcoming Global Health Security Agenda-supported laboratory capacity building programmes in sub Saharan-Africa and other resource-limited settings, and inform the development of national laboratory policies and strategic plans. Endorsement by the World Health Organization Regional Office for Africa is foreseen.

  5. Surface Water Data at Los Alamos National Laboratory 2006 Water Year

    Energy Technology Data Exchange (ETDEWEB)

    R.P. Romero, D. Ortiz, G. Kuyumjian

    2007-08-01

    The principal investigators collected and computed surface water discharge data from 44 stream-gaging stations that cover most of Los Alamos National Laboratory and one at Bandelier National Monument. Also included are discharge data from three springs--two that flow into Canon de Valle and one that flows into Water Canyon--and peak flow data for 44 stations.

  6. DEMONSTRATION BULLETIN: IN SITU ELECTROKINETIC EXTRACTION SYSTEM - SANDIA NATIONAL LABORATORIES

    Science.gov (United States)

    Sandia National Laboratories (SNL) has developed an in situ soil remediation system that uses electrokinetic principles to remediate hexavalent chromium-contaminated unsaturated or partially saturated soils. The technology involves the in situ application of direct current to the...

  7. Storage and disposition of weapons usable fissile materials (FMD) PEIS: Blending of U-233 to <12% or <5% enrichment at the Idaho National Engineering Laboratory. Data report, Draft: Version 1

    International Nuclear Information System (INIS)

    Shaber, E.L.

    1995-08-01

    Uranium-233 (U-233), a uranium isotope, is a fissionable material capable of fueling nuclear reactors or being utilized in the manufacturing of nuclear weapons. As such, it is controlled as a special nuclear material. The Idaho National Engineering Laboratory (INEL) and Oak Ridge National Laboratory (ORNL) currently store the Department of Energy's (DOE's) supply of unirradiated U-233 fuel materials. Irradiated U-233 is covered by the national spent nuclear fuel (SNF) program and is not in the scope of this report. The U-233 stored at ORNL is relatively pure uranium oxide in the form of powder or monolithic solids. This material is currently stored in stainless steel canisters of variable lengths measuring about 3 inches in diameter. The ORNL material enrichment varies with some material containing considerable amounts of U-235. The INEL material is fuel from the Light Water Breeder Reactor (LWBR) Program and consists of enriched uranium and thorium oxides in zircaloy cladding. The DOE inventory of U-233 contains trace quantities of U-232, and daughter products from the decay of U-232 and U-233, resulting in increased radioactivity over time. These increased levels of radioactivity generally result in the need for special handling considerations

  8. Idaho National Engineering Laboratory site development plan

    International Nuclear Information System (INIS)

    1994-09-01

    This plan briefly describes the 20-year outlook for the Idaho National Engineering Laboratory (INEL). Missions, workloads, worker populations, facilities, land, and other resources necessary to fulfill the 20-year site development vision for the INEL are addressed. In addition, the plan examines factors that could enhance or deter new or expanded missions at the INEL. And finally, the plan discusses specific site development issues facing the INEL, possible solutions, resources required to resolve these issues, and the anticipated impacts if these issues remain unresolved

  9. Sandia National Laboratories/New Mexico Environmental Information Document - Volume II

    Energy Technology Data Exchange (ETDEWEB)

    GUERRERO, JOSEPH V.; KUZIO, KENNETH A.; JOHNS, WILLIAM H.; BAYLISS, LINDA S.; BAILEY-WHITE, BRENDA E.

    1999-09-01

    This Sandia National Laboratories/New Mexico Environmental Information Document (EID) compiles information on the existing environment, or environmental baseline, for SNUNM. Much of the information is drawn from existing reports and databases supplemented by new research and data. The SNL/NM EID, together with the Sandia National Laboratories/New Mexico Facilities and Safety Information Document, provide a basis for assessing the environment, safety, and health aspects of operating selected facilities at SNL/NM. The environmental baseline provides a record of the existing physical, biological, and socioeconomic environment at SNL/NLM prior to being altered (beneficially or adversely) by proposed programs or projects. More specifically, the EID provides information on the following topics: Geology; Land Use; Hydrology and Water Resources; Air Quality and Meteorology; Ecology; Noise and Vibration; Cultural Resources; Visual Resources; Socioeconomic and Community Services; Transportation; Material Management; Waste Management; and Regulatory Requirements.

  10. Sandia National Laboratories/New Mexico Environmental Information Document - Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    BAYLISS, LINDA S.; GUERRERO, JOSEPH V.; JOHNS, WILLIAM H.; KUZIO, KENNETH A.; BAILEY-WHITE, BRENDA E.

    1999-09-01

    This Sandia National Laboratories/New Mexico Environmental Information Document (EID) compiles information on the existing environment, or environmental baseline, for SNUNM. Much of the information is drawn from existing reports and databases supplemented by new research and data. The SNL/NM EID, together with the Sandia National Laboratories/New Mexico Facilities and Safety Information Document, provide a basis for assessing the environment, safety, and health aspects of operating selected facilities at SNL/NM. The environmental baseline provides a record of the existing physical, biological, and socioeconomic environment at SNL/NLM prior to being altered (beneficially or adversely) by proposed programs or projects. More specifically, the EID provides information on the following topics: Geology; Land Use; Hydrology and Water Resources; Air Quality and Meteorology; Ecology; Noise and Vibration; Cultural Resources; Visual Resources; Socioeconomic and Community Services; Transportation; Material Management; Waste Management; and Regulatory Requirements.

  11. Laboratory Evaluation of Air Flow Measurement Methods for Residential HVAC Returns for New Instrument Standards

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Iain [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Stratton, Chris [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-08-01

    This project improved the accuracy of air flow measurements used in commissioning California heating and air conditioning systems in Title 24 (Building and Appliance Efficiency Standards), thereby improving system performance and efficiency of California residences. The research team at Lawrence Berkeley National Laboratory addressed the issue that typical tools used by contractors in the field to test air flows may not be accurate enough to measure return flows used in Title 24 applications. The team developed guidance on performance of current diagnostics as well as a draft test method for use in future evaluations. The study team prepared a draft test method through ASTM International to determine the uncertainty of air flow measurements at residential heating ventilation and air conditioning returns and other terminals. This test method, when finalized, can be used by the Energy Commission and other entities to specify required accuracy of measurement devices used to show compliance with standards.

  12. The national laboratory business role in energy technology research and development. Panel Discussion

    International Nuclear Information System (INIS)

    Sackett, John; Sullivan, Charles J.; Aumeier, Steve; Sanders, Tom; Johnson, Shane; Bennett, Ralph

    2001-01-01

    Full text of publication follows: Energy issues will play a pivotal role in the economic and political future of the United States. For reasons of both available supply and environmental concerns, development and deployment of new energy technologies is critical. Nuclear technology is important, but economic, political, and technical challenges must be overcome if it is to play a significant role. This session will address business opportunities for national laboratories to contribute to the development and implementation of a national energy strategy, concentrating on the role of nuclear technology. Panelists have been selected from the national laboratories, the U.S. Department of Energy, and state regulators. (authors)

  13. NWTC Helps Guide U.S. Offshore R&D; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-07-01

    The National Wind Technology Center (NWTC) at the National Renewable Energy Laboratory (NREL) is helping guide our nation's research-and-development effort in offshore renewable energy, which includes: Design, modeling, and analysis tools; Device and component testing; Resource characterization; Economic modeling and analysis; Grid integration.

  14. Tiger Team assessment of the Idaho National Engineering Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    McKenzie, Barbara J.; West, Stephanie G.; Jones, Olga G.; Kerr, Dorothy A.; Bieri, Rita A.; Sanderson, Nancy L.

    1991-08-01

    The purpose of the Safety and Health (S H) Subteam assessment was to determine the effectiveness of representative safety and health programs at the Idaho National Engineering Laboratory (INEL) site. Four Technical Safety Appraisal (TSA) Teams were assembled for this purpose by the US Department of Energy (DOE), Deputy Assistant Secretary for Safety and Quality Assurance, Office of Safety Appraisals (OSA). Team No. 1 reviewed EG G Idaho, Inc. (EG G Idaho) and the Department of Energy Field Office, Idaho (ID) Fire Department. Team No. 2 reviewed Argonne National Laboratory-West (ANL-W). Team No. 3 reviewed selected contractors at the INEL; specifically, Morrison Knudsen-Ferguson of Idaho Company (MK-FIC), Protection Technology of Idaho, Inc. (PTI), Radiological and Environmental Sciences Laboratory (RESL), and Rockwell-INEL. Team No. 4 provided an Occupational Safety and Health Act (OSHA)-type compliance sitewide assessment of INEL. The S H Subteam assessment was performed concurrently with assessments conducted by Environmental and Management Subteams. Performance was appraised in the following technical areas: Organization and Administration, Quality Verification, Operations, Maintenance, Training and Certification, Auxiliary Systems, Emergency Preparedness, Technical Support, Packaging and Transportation, Nuclear Criticality Safety, Security/Safety Interface, Experimental Activities, Site/Facility Safety Review, Radiological Protection, Personnel Protection, Worker Safety and Health (OSHA) Compliance, Fire Protection, Aviation Safety, Medical Services, and Firearms Safety.

  15. Tiger Team assessment of the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    1991-08-01

    This report documents the Tiger Team Assessment of the Idaho National Engineering Laboratory (INEL) located in Idaho Falls, Idaho. INEL is a multiprogram, laboratory site of the US Department of Energy (DOE). Overall site management is provided by the DOE Field Office, Idaho; however, the DOE Field Office, Chicago has responsibility for the Argonne National Laboratory-West facilities and operations through the Argonne Area Office. In addition, the Idaho Branch Office of the Pittsburgh Naval Reactors Office has responsibility for the Naval Reactor Facility (NRF) at the INEL. The assessment included all DOE elements having ongoing program activities at the site except for the NRF. In addition, the Safety and Health Subteam did not review the Westinghouse Idaho Nuclear Company, Inc. facilities and operations. The Tiger Team Assessment was conducted from June 17 to August 2, 1991, under the auspices of the Office of Special Projects, Office of the Assistant Secretary for Environment, Safety and Health, Headquarters, DOE. The assessment was comprehensive, encompassing environmental, safety, and health (ES ampersand H) disciplines; management; and contractor and DOE self-assessments. Compliance with applicable federal, state, and local regulations; applicable DOE Orders; best management practices; and internal INEL site requirements was assessed. In addition, an evaluation of the adequacy and effectiveness of the DOE and the site contractors management of ES ampersand H/quality assurance programs was conducted

  16. Tiger Team assessment of the Idaho National Engineering Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    1991-08-01

    This report documents the Tiger Team Assessment of the Idaho National Engineering Laboratory (INEL) located in Idaho Falls, Idaho. INEL is a multiprogram, laboratory site of the US Department of Energy (DOE). Overall site management is provided by the DOE Field Office, Idaho; however, the DOE Field Office, Chicago has responsibility for the Argonne National Laboratory-West facilities and operations through the Argonne Area Office. In addition, the Idaho Branch Office of the Pittsburgh Naval Reactors Office has responsibility for the Naval Reactor Facility (NRF) at the INEL. The assessment included all DOE elements having ongoing program activities at the site except for the NRF. In addition, the Safety and Health Subteam did not review the Westinghouse Idaho Nuclear Company, Inc. facilities and operations. The Tiger Team Assessment was conducted from June 17 to August 2, 1991, under the auspices of the Office of Special Projects, Office of the Assistant Secretary for Environment, Safety and Health, Headquarters, DOE. The assessment was comprehensive, encompassing environmental, safety, and health (ES H) disciplines; management; and contractor and DOE self-assessments. Compliance with applicable federal, state, and local regulations; applicable DOE Orders; best management practices; and internal INEL site requirements was assessed. In addition, an evaluation of the adequacy and effectiveness of the DOE and the site contractors management of ES H/quality assurance programs was conducted.

  17. Tiger Team assessment of the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    1991-08-01

    The purpose of the Safety and Health (S ampersand H) Subteam assessment was to determine the effectiveness of representative safety and health programs at the Idaho National Engineering Laboratory (INEL) site. Four Technical Safety Appraisal (TSA) Teams were assembled for this purpose by the US Department of Energy (DOE), Deputy Assistant Secretary for Safety and Quality Assurance, Office of Safety Appraisals (OSA). Team No. 1 reviewed EG ampersand G Idaho, Inc. (EG ampersand G Idaho) and the Department of Energy Field Office, Idaho (ID) Fire Department. Team No. 2 reviewed Argonne National Laboratory-West (ANL-W). Team No. 3 reviewed selected contractors at the INEL; specifically, Morrison Knudsen-Ferguson of Idaho Company (MK-FIC), Protection Technology of Idaho, Inc. (PTI), Radiological and Environmental Sciences Laboratory (RESL), and Rockwell-INEL. Team No. 4 provided an Occupational Safety and Health Act (OSHA)-type compliance sitewide assessment of INEL. The S ampersand H Subteam assessment was performed concurrently with assessments conducted by Environmental and Management Subteams. Performance was appraised in the following technical areas: Organization and Administration, Quality Verification, Operations, Maintenance, Training and Certification, Auxiliary Systems, Emergency Preparedness, Technical Support, Packaging and Transportation, Nuclear Criticality Safety, Security/Safety Interface, Experimental Activities, Site/Facility Safety Review, Radiological Protection, Personnel Protection, Worker Safety and Health (OSHA) Compliance, Fire Protection, Aviation Safety, Medical Services, and Firearms Safety

  18. 76 FR 14017 - Call for Comments on the Draft Report of the Adult Immunization Working Group to the National...

    Science.gov (United States)

    2011-03-15

    ... and recommendations could be found on the Web at http://www.hhs.gov/nvpo/nvac/subgroups/adultimmunization . The Web address where the draft report and recommendations can be found is http://www.hhs.gov...) The draft report and recommendations are available on the Web at http://www.hhs.gov/nvpo/nvac...

  19. A new matrix for scoring the functionality of national laboratory networks in Africa: introducing the LABNET scorecard

    Directory of Open Access Journals (Sweden)

    Pascale Ondoa

    2016-10-01

    Full Text Available Background: Functional national laboratory networks and systems are indispensable to the achievement of global health security targets according to the International Health Regulations. The lack of indicators to measure the functionality of national laboratory network has limited the efficiency of past and current interventions to enhance laboratory capacity in resourcelimited-settings. Scorecard for laboratory networks: We have developed a matrix for the assessment of national laboratory network functionality and progress thereof, with support from the African Society of Laboratory Medicine and the Association of Public Health Laboratories. The laboratory network (LABNET scorecard was designed to: (1 Measure the status of nine overarching core capabilities of laboratory network required to achieve global health security targets, as recommended by the main normative standards; (2 Complement the World Health Organization joint external evaluation tool for the assessment of health system preparedness to International Health Regulations (2005 by providing detailed information on laboratory systems; and (3 Serve as a clear roadmap to guide the stepwise implementation of laboratory capability to prevent, detect and act upon infectious threats. Conclusions: The application of the LABNET scorecard under the coordination of the African Society of Laboratory Medicine and the Association of Public Health Laboratories could contribute to the design, monitoring and evaluation of upcoming Global Health Security Agenda-supported laboratory capacity building programmes in sub Saharan-Africa and other resource-limited settings, and inform the development of national laboratory policies and strategic plans. Endorsement by the World Health Organization Regional Office for Africa is foreseen.

  20. Institutional Plan, FY 1993--1998, Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    1993-01-01

    This document presents the plans and goals of the Idaho National Engineering Laboratory for FY 1993--1998. Areas discussed in this document include: INEL strategic view; initiatives; scientific and technical programs; environmental, safety, and health management, technology transfer, science and math education, and community affairs; human resources; site and facilities; and resource projections

  1. Commercialization of Los Alamos National Laboratory technologies via small businesses. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Brice, R.; Carton, D.; Rhyne, T. [and others

    1997-06-01

    Appendices are presented from a study performed on a concept model system for the commercialization of Los Alamos National Laboratory technologies via small businesses. Topics include a summary of information from the joint MCC/Los Alamos technology conference; a comparison of New Mexico infrastructure to other areas; a typical licensing agreement; technology screening guides; summaries of specific DOE/UC/Los Alamos documents; a bibliography; the Oak Ridge National Laboratory TCRD; The Ames Center for Advanced Technology Development; Los Alamos licensing procedures; presentation of slides from monthly MCC/Los Alamos review meetings; generalized entrepreneurship model; and a discussion on receiving equity for technology.

  2. Oklahoma's Mobile Computer Graphics Laboratory.

    Science.gov (United States)

    McClain, Gerald R.

    This Computer Graphics Laboratory houses an IBM 1130 computer, U.C.C. plotter, printer, card reader, two key punch machines, and seminar-type classroom furniture. A "General Drafting Graphics System" (GDGS) is used, based on repetitive use of basic coordinate and plot generating commands. The system is used by 12 institutions of higher education…

  3. Buried waste remote survey of the Idaho National Engineering Laboratory subsurface disposal area

    International Nuclear Information System (INIS)

    Richardson, B.S.; Noakes, M.W.; Griebenow, B.E.; Josten, N.E.

    1991-01-01

    Burial site characterization is an important first step in the restoration of subsurface disposal sites. Testing and demonstration of technology for remote buried waste site characterization were performed at the Idaho National Engineering Laboratory (INEL) by a team from five US Department of Energy (DOE) laboratories. The US Army's Soldier Robot Interface Project (SRIP) vehicle, on loan to the Oak Ridge National Laboratory (ORNL), was used as a remotely operated sensor platform. The SRIP was equipped with an array of sensors including terrain conductivity meter, magnetometer, ground-penetrating radar (GPR), organic vapor detector, gamma-based radar detector, and spectrum analyzer. The testing and demonstration were successfully completed and provided direction for future work in buried waste site characterization

  4. Malignant melanoma among employees of Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    Austin, D.F.; Reynolds, P.J.; Snyder, M.A.; Biggs, M.W.; Stubbs, H.A.

    1981-01-01

    19 cases of malignant melanoma (MM) were observed during 1972-77 among approximately 5100 employees of the Lawrence Livermore National Laboratory, where high energy physics research is conducted. This number was significantly higher (p -6 ) than that expected in a comparable age/race/sex/geographical segment of the population of the San Francisco Bay area. That excess seemed to occur only among laboratory employees and not among the surrounding community, which suggests that an occupational factor is responsible. Preliminary case-comparison findings suggest that MM risk is not associated with length of employment at the laboratory nor with type of monitored radiation exposure. Although the data did not support an association between MM incidence and all scientific job classifications combined, an excess relative risk was observed among chemists. The reasons for the MM excess have not been identified. (author)

  5. Idaho National Engineering Laboratory installation roadmap assumptions document

    International Nuclear Information System (INIS)

    1993-05-01

    This document is a composite of roadmap assumptions developed for the Idaho National Engineering Laboratory (INEL) by the US Department of Energy Idaho Field Office and subcontractor personnel as a key element in the implementation of the Roadmap Methodology for the INEL Site. The development and identification of these assumptions in an important factor in planning basis development and establishes the planning baseline for all subsequent roadmap analysis at the INEL

  6. Wellness Center use at Los Alamos National Laboratory: a descriptive study

    Energy Technology Data Exchange (ETDEWEB)

    Wiggs, L.D.; Wilkinson, G.S.; Weber, C.

    1985-10-01

    This study describes employee participation during the first six months of the Los Alamos National Laboratory's corporate Wellness Program. We describe temporal patterns of use, preferred activities, frequency of use, and characteristics of employees participating in Wellness activities. Characteristics of Wellness participants are compared with characteristics of the Laboratory population. During this period the Wellness Center, a multi-use facility that houses Wellness Program activities, had 17,352 visits. Employees visiting the Wellness Center were typical of the Laboratory population in their racial and ethnic characteristics, but different in their sex and age composition. Wellness participants were younger and more likely to be female than the Laboratory population. 6 refs., 19 tabs.

  7. Sandia National Laboratories Institutional Plan: FY 1996--2001

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    Sandia`s Institutional Plan is by necessity a large document. As their missions have grown and diversified over the past decades, the variety of technical and site activities has increased. The programs and activities described here cover an enormous breadth of scientific and technological effort--from the creation of new materials to the development of a Sandia-wide electronic communications system. Today, there are three major themes that greatly influence this work. First, every federally funded institution is being challenged to find ways to become more cost effective, as the US seeks to reduce the deficit and achieve a balanced federal spending plan. Sandia is evaluating its business and operational processes to reduce the overall costs. Second, in response to the Galvin Task Force`s report ``Alternative Futures for the Department of Energy National Laboratories``, Sandia and the Department of Energy are working jointly to reduce the burden of administrative and compliance activities in order to devote more of the total effort to their principal research and development missions. Third, they are reevaluating the match between their missions and the programs they will emphasize in the future. They must demonstrate that Sandia`s roles--in national security, energy security, environmental integrity, and national scientific and technology agenda support--fit their special capabilities and skills and thus ensure their place in these missions for the longer planning horizon. The following areas are covered here: Sandia`s mission; laboratory directives; programmatic activities; technology partnerships and commercialization; Sandia`s resources; and protecting resources and the community.

  8. Low-level radioactive waste management at Argonne National Laboratory-East

    International Nuclear Information System (INIS)

    Rock, C.M.; Shearer, T.L.; Nelson, R.A.

    1997-01-01

    This paper is an overview of the low-level radioactive waste management practices and treatment systems at Argonne National Laboratory - East (ANL-E). It addresses the systems, processes, types of waste treated, and the status and performance of the systems. ANL-E is a Department of Energy laboratory that is engaged in a variety of research projects, some of which generate radioactive waste, in addition a significant amount of radioactive waste remains from previous projects and decontamination and decommissioning of facilities where this work was performed

  9. Dr. Praveen Chaudhari named director of Brookhaven National Laboratory

    CERN Multimedia

    2003-01-01

    "Brookhaven Science Associates announced today the selection of Dr. Praveen Chaudhari as Director of the U.S. Department of Energy's Brookhaven National Laboratory. Dr. Chaudhari, who will begin his new duties on April 1, joins Brookhaven Lab after 36 years of distinguished service at IBM as a scientist and senior manager of research" (1 page).

  10. Tiger Team assessment of the Brookhaven National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    1990-06-01

    This report documents the results of the Department of Energy's (DOE's) Tiger Team Assessment conducted at Brookhaven National Laboratory (BNL) in Upton, New York, between March 26 and April 27, 1990. The BNL is a multiprogram laboratory operated by the Associated Universities, Inc., (AUI) for DOE. The purpose of the assessment was to provide the status of environment, safety, and health (ES H) programs at the laboratory. The scope of the assessment included a review of management systems and operating procedures and records; observations of facility operations; and interviews at the facilities. Subteams in four areas performed the review: ES H, Occupational Safety and Health, and Management and Organization. The assessment was comprehensive, covering all areas of ES H activities and waste management operations. Compliance with applicable Federal, State, and local regulations; applicable DOE Orders; and internal BNL requirements was assessed. In addition, the assessment included an evaluation of the adequacy and effectiveness of the DOE and the site contractor, Associated Universities, Inc. (AUI), management, organization, and administration of the ES H programs at BNL. This volume contains appendices.

  11. Tiger Team assessment of the Brookhaven National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    1990-06-01

    This report documents the results of the Department of Energy's (DOE's) Tiger Team Assessment conducted at Brookhaven National Laboratory (BNL) in Upton, New York, between March 26 and April 27, 1990. The BNL is a multiprogram laboratory operated by the Associated Universities, Inc., (AUI) for DOE. The purpose of the assessment was to provide the status of environment, safety, and health (ES H) programs at the Laboratory. The scope of the assessment included a review of management systems and operating procedures and records; observations of facility operations; and interviews at the facilities. Subteams in four areas performed the review: ES H, Occupational Safety and Health, and Management and Organization. The assessment was comprehensive, covering all areas of ES H activities and waste management operations. Compliance with applicable Federal, State, and local regulations; applicable DOE Orders; and internal BNL requirements was assessed. In addition, the assessment included an evaluation of the adequacy and effectiveness of the DOE and the site contractor, Associated Universities, Inc. (AUI), management, organization, and administration of the ES H programs at BNL.

  12. Performance testing of radiobioassay laboratories: in-vivo measurements, pilot study report

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, A.V.; Fisher, D.R.; Reece, W.D.; MacLellan, J.A.

    1986-10-01

    This document describes a project to evaluate the in-vivo counting performance criteria of draft ANSI Standard N13.30, Performance Criteria for Radiobioassay. The draft ANSI Standard provides guidance to in-vivo counting facilities regarding the precision and accuracy of measurements for certain categories of commonly assayed radionuclides and critical regions of the body. The draft ANSI Standard was evaluated by conducting an intercomparison test involving a number of whole-body counting facilities. The testing involved three types of measurements: chest counting for detection of radioactive materials in the lung, whole-body counting for detection of uniformly distributed activity, and neck counting for detection of radioactive material concentrated in the thyroid. Results of the first-round intercomparison test are presented in this report. The appropriateness of the draft Standard performance criteria was judged by the measurement results reported by participating in-vivo counting facilities. The intercomparison testing showed that some laboratories had difficulty meeting the performance criteria specified in the draft ANSI Standard N13.30.

  13. Performance testing of radiobioassay laboratories: in-vivo measurements, pilot study report

    International Nuclear Information System (INIS)

    Robinson, A.V.; Fisher, D.R.; Reece, W.D.; MacLellan, J.A.

    1986-10-01

    This document describes a project to evaluate the in-vivo counting performance criteria of draft ANSI Standard N13.30, Performance Criteria for Radiobioassay. The draft ANSI Standard provides guidance to in-vivo counting facilities regarding the precision and accuracy of measurements for certain categories of commonly assayed radionuclides and critical regions of the body. The draft ANSI Standard was evaluated by conducting an intercomparison test involving a number of whole-body counting facilities. The testing involved three types of measurements: chest counting for detection of radioactive materials in the lung, whole-body counting for detection of uniformly distributed activity, and neck counting for detection of radioactive material concentrated in the thyroid. Results of the first-round intercomparison test are presented in this report. The appropriateness of the draft Standard performance criteria was judged by the measurement results reported by participating in-vivo counting facilities. The intercomparison testing showed that some laboratories had difficulty meeting the performance criteria specified in the draft ANSI Standard N13.30

  14. Hazardous air pollutant emissions from process units in the synthetic organic chemical manufacturing industry: Background information for proposed standards. Volume 1A. National impacts assessment. Draft report

    International Nuclear Information System (INIS)

    1992-11-01

    A draft rule for the regulation of emissions of organic hazardous air pollutants (HAP's) from chemical processes of the synthetic organic chemical manufacturing industry (SOCMI) is being proposed under the authority of Sections 112, 114, 116, and 301 of the Clean Air Act, as amended in 1990. The volume of the Background Information Document presents the results of the national impacts assessment for the proposed rule

  15. Ice Draft and Ice Velocity Data in the Beaufort Sea, 1990-2003

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set provides measurement of sea ice draft (m) and the movement of sea ice (cm/s) over the continental shelf of the Eastern Beaufort Sea. The data set spans...

  16. 75 FR 81643 - Hydropower Resource Assessment at Existing Reclamation Facilities-Draft Report

    Science.gov (United States)

    2010-12-28

    ... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Hydropower Resource Assessment at Existing... period for review of the Hydropower Resource Assessment at Existing Reclamation Facilities Draft Report... sustainable, affordable hydropower for our national electricity supplies. Reclamation has 476 dams and 8,116...

  17. Decommissioning of surplus facilities at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Stout, D.S.

    1995-01-01

    Decommissioning Buildings 3 and 4 South at Technical Area 21, Los Alamos National Laboratory, involves the decontamination, dismantlement, and demolition of two enriched-uranium processing buildings containing process equipment and ductwork holdup. The Laboratory has adopted two successful management strategies to implement this project: Rather than characterize an entire site, upfront, investigators use the ''observational approach,'' in which they collect only enough data to begin decommissioning activities and then determine appropriate procedures for further characterization as the work progresses. Project leaders augment work packages with task hazard analyses to fully define specific tasks and inform workers of hazards; all daily work activities are governed by specific work procedures and hazard analyses

  18. ALPI project at Legnaro National Laboratory

    International Nuclear Information System (INIS)

    Fortuna, G.; Pengo, R.; Bassato, G.; Facco, A.; Favaron, P.; Palmieri, V.; Porcellato, A.M.; Rosa, M.; Tiveron, B.

    1988-01-01

    The conceptual design of a superconducting (linac) booster (named ALPI PROJECT) for the 17 MV XTU-TANDEM of Laboratori Nazionali di Legnaro has been recently accepted by the National Institute of Nuclear Physics as one of the leading projects to be funded in the next five year plan. Money for resonator and cryostat prototypes is already available and the building is going to be funded next January. The project aims at a machine capable of accelerating all the stable isotopes up to Uranium at energies above the Coulomb barrier of very possible ion-ion interaction with beam quality comparable to that of d.c. accelerators. At LNL the advantage of coupling the linac postaccelerator to the 17 MV XTU Tandem is taken which is able to produce even the very heavy beams with reliable intensity and velocities β ≥ 0.04 which can be matched by superconducting resonators feasible with the present available technology. As accelerating structures in the ALPI project straight line quarter wave resonators (QWR) have been chosen on the basis of their intrinsic mechanical stability and broad velocity acceptance (two gap resonator) particularly important for a national facility like ALPI which is expected to produce as many different beams as possible. Lead has been chosen as superconductor on the basis of the following considerations: (i) lead technology being much more applied for QWR resonators than the Nb one can be easier and faster introduced in a Nuclear Physics Laboratory without any experience in the field; (ii) the performances of SUNYLAC have demonstrated that their initial goal of reaching accelerating gradient of 3 MV/m is feasible; (iii) the difficulty in fabricating the OFHC copper base of the resonators (number of EB welds, joints) is relatively modest if compared with the solutions involving Nb as superconductor. 7 references, 3 figures

  19. Competency Reference for Computer Assisted Drafting.

    Science.gov (United States)

    Oregon State Dept. of Education, Salem. Div. of Vocational Technical Education.

    This guide, developed in Oregon, lists competencies essential for students in computer-assisted drafting (CAD). Competencies are organized in eight categories: computer hardware, file usage and manipulation, basic drafting techniques, mechanical drafting, specialty disciplines, three dimensional drawing/design, plotting/printing, and advanced CAD.…

  20. Sandia National Laboratories Institutional Plan: FY 1999-2004

    Energy Technology Data Exchange (ETDEWEB)

    Garber, D.P.

    1999-01-06

    This Institutional Plan is the most comprehensive yearly "snapshot" available of Sandia National Laboratories' major programs, facilities, human resources, and budget. The document also includes overviews of our missions, organization, capabilities, planning functions, milestones, and accomplishments. The document's purpose is to provide the above information to the US Department of Energy, key congressional committees, Sandia management, and other present and potential customers. Chapter 2 presents information about Sandia's mission and summarizes our recent revision of Sandia's Strategic Plan. Chapter 3 presents an overview of Sandia's strategic objectives, chapter 4 lists laboratory goals and milestones for FY 1999, and chapter 5 presents our accomplishments during FY 1998. Chapters 3 through 5 are organized around our eight strategic objectives. The four primary objectives cover nuclear weapons responsibilities, nonproliferation and materials control, energy and critical infrastructures, and emerging national security threats. The major programmatic initiatives are presented in chapter 7. However, the programmatic descriptions in chapter 6 and the Associated funding tables in chapter 9 continue to be presented by DOE Budget and Reporting Code, as in previous Sandia institutional plans. As an aid to the reader, the four primary strategic objectives in chapter 3 are cross-referenced to the program information in chapter 6.

  1. Oak Ridge National Laboratory institutional plan, FY 1990--FY 1995

    Energy Technology Data Exchange (ETDEWEB)

    1989-11-01

    The Oak Ridge National Laboratory is one of DOE's major multiprogram energy laboratories. ORNL's program missions are (1) to conduct applied research and engineering development in support of DOE's programs in fusion, fission, fossil, renewables (biomass), and other energy technologies, and in the more efficient conversion and use of energy (conservation) and (2) to perform basic scientific research in selected areas of the physical and life sciences. These missions are to be carried out in compliance with environmental, safety, and health regulations. Transfer of science and technology is an integral component of our missions. A complementary mission is to apply the Laboratory's resources to other nationally important tasks when such work is synergistic with the program missions. Some of the issues addressed include education, international competitiveness, hazardous waste research and development, and selected defense technologies. In addition to the R D missions, ORNL performs important service roles for DOE; these roles include designing, building, and operating user facilities for the benefit of university and industrial researchers and supplying radioactive and stable isotopes that are not available from private industry. Scientific and technical efforts in support of the Laboratory's missions cover a spectrum of activities. In fusion, the emphasis is on advanced studies of toroidal confinement, plasma heating, fueling systems, superconducting magnets, first-wall and blanket materials, and applied plasma physics. 69 figs., 49 tabs.

  2. List of Selected Publications 1983. Risø National Laboratory

    DEFF Research Database (Denmark)

    Risø National Laboratory, Roskilde

    The list comprises a selection of scientific and technical publications of Risø National Laboratory and its staff during 1983. Journal articles, conference papers, and reports are included. The publications are arranged in the following broad subject categories: Energy Supply and Supporting...... Technology, Environmental and Safety Research, Materials Research, Biotechnology and Radiation Research, Technical Support, General....

  3. Idaho National Laboratory FY12 Greenhouse Gas Report

    Energy Technology Data Exchange (ETDEWEB)

    Kimberly Frerichs

    2013-03-01

    A greenhouse gas (GHG) inventory is a systematic approach to account for the production and release of certain gases generated by an institution from various emission sources. The gases of interest are those that climate science has identified as related to anthropogenic global climate change. This document presents an inventory of GHGs generated during Fiscal Year (FY) 2012 by Idaho National Laboratory (INL), a Department of Energy (DOE) sponsored entity, located in southeastern Idaho.

  4. Guidelines and Recommendations for Laboratory Analysis in the Diagnosis and Management of Diabetes Mellitus

    Science.gov (United States)

    Arnold, Mark; Bakris, George L.; Bruns, David E.; Horvath, Andrea Rita; Kirkman, M. Sue; Lernmark, Ake; Metzger, Boyd E.; Nathan, David M.

    2011-01-01

    BACKGROUND Multiple laboratory tests are used to diagnose and manage patients with diabetes mellitus. The quality of the scientific evidence supporting the use of these tests varies substantially. APPROACH An expert committee compiled evidence-based recommendations for the use of laboratory testing for patients with diabetes. A new system was developed to grade the overall quality of the evidence and the strength of the recommendations. Draft guidelines were posted on the Internet and presented at the 2007 Arnold O. Beckman Conference. The document was modified in response to oral and written comments, and a revised draft was posted in 2010 and again modified in response to written comments. The National Academy of Clinical Biochemistry and the Evidence-Based Laboratory Medicine Committee of the American Association for Clinical Chemistry jointly reviewed the guidelines, which were accepted after revisions by the Professional Practice Committee and subsequently approved by the Executive Committee of the American Diabetes Association. CONTENT In addition to long-standing criteria based on measurement of plasma glucose, diabetes can be diagnosed by demonstrating increased blood hemoglobin A1c (HbA1c) concentrations. Monitoring of glycemic control is performed by self-monitoring of plasma or blood glucose with meters and by laboratory analysis of HbA1c. The potential roles of noninvasive glucose monitoring, genetic testing, and measurement of autoantibodies, urine albumin, insulin, proinsulin, C-peptide, and other analytes are addressed. SUMMARY The guidelines provide specific recommendations that are based on published data or derived from expert consensus. Several analytes have minimal clinical value at present, and their measurement is not recommended. PMID:21617108

  5. U.S. Department of Energy, Sandia National Laboratories: Printing Case Study

    Science.gov (United States)

    The U.S. Department of Energy, Sandia National Laboratories (SNL), New Mexico quantified the costs associated with individual desktop printing devices, for comparison with costs associated with using networked copiers as printers

  6. The draft Mission Plan Amendment

    International Nuclear Information System (INIS)

    Gale, R.W.

    1987-01-01

    The draft Mission Plan Amendment provides an opportunity for States and Indian Tribes and other involved parties to participate in a process that no other nation affords its citizens. More than just a comment period on a Department of Energy document, the amendment that is to be submitted later this year will lay before Congress, the documentary basis on which to make decisions about the scope and timing of the high-level waste program in what Secretary Herrington has called a ''crossroads'' years. The Amendment will distill the view of the participants and also preset them to Congress as an integral part of the document. After four years of effort, the Nation is being afforded an opportunity to ask itself again whether the Act passed in 1982 is working and remains the best way to protect the public interest

  7. Stabilization of mixed waste at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Boehmer, A.M.; Gillins, R.L.; Larsen, M.M.

    1989-01-01

    EG and G Idaho, Inc. has initiated a program to develop safe, efficient, cost-effective treatment methods for the stabilization of some of the hazardous and mixed wastes generated at the Idaho National Engineering Laboratory. Laboratory-scale testing has shown that extraction procedure toxic wastes can be successfully stabilized by solidification, using various binders to produce nontoxic, stable waste forms for safe, long-term disposal as either landfill waste or low-level radioactive waste, depending upon the radioactivity content. This paper presents the results of drum-scale solidification testing conducted on hazardous, low-level incinerator flyash generated at the Waste Experimental Reduction Facility. The drum-scale test program was conducted to verify that laboratory-scale results could be successfully adapted into a production operation

  8. Feed additives : annual report 2011 of the National Reference Laboratory

    NARCIS (Netherlands)

    Driessen, J.J.M.; Beek, W.M.J.; Jong, de J.

    2012-01-01

    This report describes the activities employed by RIKILT regarding the functions as: - the National Reference Laboratory (NRL) for feed additives; - advice regarding temporary use exemptions, other advice and support of EL&I. This report also presents the activities by the NRL to keep up

  9. Biosafety and Biosecurity: A Relative Risk-Based Framework for Safer, More Secure, and Sustainable Laboratory Capacity Building.

    Science.gov (United States)

    Dickmann, Petra; Sheeley, Heather; Lightfoot, Nigel

    2015-01-01

    Laboratory capacity building is characterized by a paradox between endemicity and resources: countries with high endemicity of pathogenic agents often have low and intermittent resources (water, electricity) and capacities (laboratories, trained staff, adequate regulations). Meanwhile, countries with low endemicity of pathogenic agents often have high-containment facilities with costly infrastructure and maintenance governed by regulations. The common practice of exporting high biocontainment facilities and standards is not sustainable and concerns about biosafety and biosecurity require careful consideration. A group at Chatham House developed a draft conceptual framework for safer, more secure, and sustainable laboratory capacity building. The draft generic framework is guided by the phrase "LOCAL - PEOPLE - MAKE SENSE" that represents three major principles: capacity building according to local needs (local) with an emphasis on relationship and trust building (people) and continuous outcome and impact measurement (make sense). This draft generic framework can serve as a blueprint for international policy decision-making on improving biosafety and biosecurity in laboratory capacity building, but requires more testing and detailing development.

  10. Biosafety and Biosecurity: A relative risk-based framework for safer, more secure and sustainable laboratory capacity building

    Directory of Open Access Journals (Sweden)

    Petra eDickmann

    2015-10-01

    Full Text Available Background: Laboratory capacity building is characterized by a paradox between endemicity and resources: Countries with high endemicity of pathogenic agents often have low and intermittent resources (water, electricity and capacities (laboratories, trained staff, adequate regulations. Meanwhile, countries with low endemicity of pathogenic agents often have high containment facilities with costly infrastructure and maintenance governed by regulations. The common practice of exporting high biocontainment facilities and standards is not sustainable and concerns about biosafety and biosecurity require careful consideration. Methods: A group at Chatham House developed a draft conceptual framework for safer, more secure and sustainable laboratory capacity building. Results: The draft generic framework is guided by the phrase ‘LOCAL – PEOPLE – MAKE SENSE’ that represents three major principles: capacity building according to local needs (local with an emphasis on relationship and trust-building (people and continuous outcome and impact measurement (make sense. Conclusions: This draft generic framework can serve as a blueprint for international policy decision-making on improving biosafety and biosecurity in laboratory capacity building, but requires more testing and detailing development.

  11. Applying the National Industrial Security Program (NISP) in the laboratory environment

    International Nuclear Information System (INIS)

    Bruckner, D.G.

    1995-01-01

    With continuing changes in the world safeguards and security environment the effectiveness of many laboratory operations depends on correctly assessing the risk to its programs and developing protection technologies, research and concepts of operations being employed by the scientific community. This paper explores the opportunities afforded by the National Industrial Security Program (NISP) to uniformly and simply protect Laboratory security assets, sensitive and classified information and matter, during all aspects of a laboratory program. The developments in information systems, program security, physical security and access controls suggest an industrial security approach. This paper's overall objective is to indicate that the Laboratory environment is particularly well suited to take advantage being pursued by NISP and the performance objectives of the new DOE orders

  12. Minutes of the first, second, and third meeting of the Panel for Continuing Review and Assessment of the ORNL Hydrofracture Technique (WMPORMOD), August 6--7, 1985; November 5-6, 1985; October 6, 1986, Oak Ridge National Laboratory, Oak Ridge, Tennessee: [Quarterly progress report, October--December 22, 1986

    International Nuclear Information System (INIS)

    1986-01-01

    The open session began at 0945 with a brief discussion by Dr. Steven H. Stow of desirable clarifications in several areas of the text appearing in chapter 9 of the Management of Radioactive Waste at the Oak Ridge National Laboratory: A Technical Review (National Academy Press, 1985). The ORNL staff points were well taken, and generally consistent with the understandings of the panel members who had drafted the report sections. Material was then presented by ORNL staff included Review of information collected since the October 1984 briefing, Plans for Deep Monitoring Well Groundwater Sampling and Monitoring, Plans for the Knox Reconnaissance Well, Waste Sampling and Analysis, Regulatory Interfaces and the Permitting Process, and Alternatives to Hydrofracture. Each of the presentations was summarized in a handout

  13. Geology and mineral resources of the Florence, Beaufort, Rocky Mount, and Norfolk 1/sup 0/ x 2/sup 0/ NTMS quadrangles. National Uranium Resource Evaluation program

    Energy Technology Data Exchange (ETDEWEB)

    Harris, W.B.

    1982-08-01

    This document provides geologic and mineral resources data for previously-issued Savannah River Laboratory hydrogeochemical and stream sediment reports of the Beaufort, Florence, Norfolk, and Rocky Mount 1/sup 0/ x 2/sup 0/ National Topographic Map Series quadrangles in the southeastern United States. This report is issued in draft form, without detailed technical and copy editing. This was done to make the report available to the public before the end of the National Uranium Resource Evaluation program.

  14. Radiation chemistry at the Metallurgical Laboratory, Manhattan Project, University of Chicago (1942-1947) and the Argonne National Laboratory, Argonne, IL (1947-1984)

    International Nuclear Information System (INIS)

    Gordon, S.

    1989-01-01

    The events in radiation chemistry which occurred in the Manhattan Project Laboratory and Argonne National Laboratory during World War II are reviewed. Research programmes from then until the present day are presented, with emphasis on pulse radiolysis studies. (UK)

  15. Draft genome sequence of the intestinal parasite Blastocystis subtype 4-isolate WR1

    Directory of Open Access Journals (Sweden)

    Ivan Wawrzyniak

    2015-06-01

    Full Text Available The intestinal protistan parasite Blastocystis is characterized by an extensive genetic variability with 17 subtypes (ST1–ST17 described to date. Only the whole genome of a human ST7 isolate was previously sequenced. Here we report the draft genome sequence of Blastocystis ST4-WR1 isolated from a laboratory rodent at Singapore.

  16. 76 FR 50212 - Site-Wide Environmental Impact Statement for Sandia National Laboratories, New Mexico (SNL/NM)

    Science.gov (United States)

    2011-08-12

    ... Environmental Impact Statement for Sandia National Laboratories, New Mexico (DOE/EIS-0281-SA-04), DOE/NNSA... Environmental Impact Statement for Sandia National Laboratories, New Mexico for the Installation of a Petawatt..., New Mexico Final Supplement Analysis for the Site-Wide Environmental Impact Statement (2006 SNL/NM...

  17. Using the H Index to Assess Impact of DOE National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Springer, Everett P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-13

    The most readily accessible elements of the Emerald Matrix by quantitative measures are the knowledge and economy related measures. In this paper, the H Index for an institution will be used to assess STE impact, which is in the knowledge generation element. The H Index was developed by Hirsch (2005) as a measure of an individual’s scientific impact. The H Index is defined as the number of publications that have been cited h or more times for a given author. It has been generalized to organizations. Doing so leads to a complication in that H index scales with the number of publications. Although this may not be problematic when comparing individual researchers, it systematically favors larger institutions. Molinari and Molinari (2008) proposed an alternative index (hm) designed to assess organizational impact. It transforms the H Index for an organization into an impact index by removing a factor dependent on the number of publications. The hm provides another approach to compare institutions provided that differences in the citation patterns associated with fields of study are addressed. Kinney (2007) used the Molinari and Molinari (2008) approach to compare various scientific institutions in nonbiomedical research areas. Kinney (2007) used the Thomson Reuters Web of Science (WoS) as the source and used publications in nonbiomedical research areas, which is very important because the research areas of universities are much broader than say a DOE national laboratory. Also there are differences in citation rates for the various research fields that make comparisons between individuals or organizations difficult. The results from Kinney (2007) are given in Table 1 and indicate that the DOE national laboratories compare favorably with the selected universities in terms of impact (hm) in the research areas used in Kinney’s analysis. This report will compare hm for DOE national laboratories using an approach similar to Kinney (2007) providing a measure of impact of

  18. NPDES Draft Permit for City of New Town Water Treatment Plant in North Dakota

    Science.gov (United States)

    Under National Pollutant Discharge Elimination System draft permit number ND0031151, The City of New Town Water Treatment Plant is authorized to discharge from its wastewater treatment facility in Mountrail County, North Dakota.

  19. Quality assurance consideration for cement-based grout technology programs at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    McDaniel, E.W.; Tallent, O.K.; Sams, T.L.; Delzer, D.B.

    1987-01-01

    Oak Ridge National Laboratory has developed and is continuing to refine a method of immobilizing low-level radioactive liquid wastes by mixing them with cementitious dry-solid blends. A quality assurance program is vital to the project because Nuclear Regulatory Commission (NRC), Environmental Protection Agency (EPA) and state environmental regulations must be demonstrably met (the work must be defensible in a court of law). The end result of quality assurance (QA) is, by definition, a product of demonstrable quality. In the laboratory, this entails traceability, repeatability, and credibility. This paper describes the application of QA in grout technology development at Oak Ridge National Laboratory

  20. National survey on intra-laboratory turnaround time for some most common routine and stat laboratory analyses in 479 laboratories in China.

    Science.gov (United States)

    Fei, Yang; Zeng, Rong; Wang, Wei; He, Falin; Zhong, Kun; Wang, Zhiguo

    2015-01-01

    To investigate the state of the art of intra-laboratory turnaround time (intra-TAT), provide suggestions and find out whether laboratories accredited by International Organization for Standardization (ISO) 15189 or College of American Pathologists (CAP) will show better performance on intra-TAT than non-accredited ones. 479 Chinese clinical laboratories participating in the external quality assessment programs of chemistry, blood gas, and haematology tests organized by the National Centre for Clinical Laboratories in China were included in our study. General information and the median of intra-TAT of routine and stat tests in last one week were asked in the questionnaires. The response rate of clinical biochemistry, blood gas, and haematology testing were 36% (479/1307), 38% (228/598), and 36% (449/1250), respectively. More than 50% of laboratories indicated that they had set up intra-TAT median goals and almost 60% of laboratories declared they had monitored intra-TAT generally for every analyte they performed. Among all analytes we investigated, the intra-TAT of haematology analytes was shorter than biochemistry while the intra-TAT of blood gas analytes was the shortest. There were significant differences between median intra-TAT on different days of the week for routine tests. However, there were no significant differences in median intra-TAT reported by accredited laboratories and non-accredited laboratories. Many laboratories in China are aware of intra-TAT control and are making effort to reach the target. There is still space for improvement. Accredited laboratories have better status on intra-TAT monitoring and target setting than the non-accredited, but there are no significant differences in median intra-TAT reported by them.