WorldWideScience

Sample records for national cogeneration potential

  1. Cogeneration development and market potential in China

    Energy Technology Data Exchange (ETDEWEB)

    Yang, F.; Levine, M.D.; Naeb, J. [Lawrence Berkeley Lab., CA (United States); Xin, D. [State Planning Commission of China, Beijing, BJ (China). Energy Research Inst.

    1996-05-01

    China`s energy production is largely dependent on coal. China currently ranks third in global CO{sub 2} emissions, and rapid economic expansion is expected to raise emission levels even further in the coming decades. Cogeneration provides a cost-effective way of both utilizing limited energy resources and minimizing the environmental impacts from use of fossil fuels. However, in the last 10 years state investments for cogeneration projects in China have dropped by a factor of 4. This has prompted this study. Along with this in-depth analysis of China`s cogeneration policies and investment allocation is the speculation that advanced US technology and capital can assist in the continued growth of the cogeneration industry. This study provides the most current information available on cogeneration development and market potential in China.

  2. CDM potential of bagasse cogeneration in India

    International Nuclear Information System (INIS)

    Purohit, Pallav; Michaelowa, Axel

    2007-01-01

    So far, the cumulative capacity of renewable energy systems such as bagasse cogeneration in India is far below their theoretical potential despite government subsidy programmes. One of the major barriers is the high investment cost of these systems. The Clean Development Mechanism (CDM) provides industrialized countries with an incentive to invest in emission reduction projects in developing countries to achieve a reduction in CO 2 emissions at lowest cost that also promotes sustainable development in the host country. Bagasse cogeneration projects could be of interest under the CDM because they directly displace greenhouse gas emissions while contributing to sustainable rural development. This study assesses the maximum theoretical as well as the realistically achievable CDM potential of bagasse cogeneration in India. Our estimates indicate that there is a vast theoretical potential of CO 2 mitigation by the use of bagasse for power generation through cogeneration process in India. The preliminary results indicate that the annual gross potential availability of bagasse in India is more than 67 million tonnes (MT). The potential of electricity generation through bagasse cogeneration in India is estimated to be around 34 TWh i.e. about 5575 MW in terms of the plant capacity. The annual CER potential of bagasse cogeneration in India could theoretically reach 28 MT. Under more realistic assumptions about diffusion of bagasse cogeneration based on past experiences with the government-run programmes, annual CER volumes by 2012 could reach 20-26 million. The projections based on the past diffusion trend indicate that in India, even with highly favorable assumptions, the dissemination of bagasse cogeneration for power generation is not likely to reach its maximum estimated potential in another 20 years. CDM could help to achieve the maximum utilization potential more rapidly as compared to the current diffusion trend if supportive policies are introduced

  3. Cogeneration

    International Nuclear Information System (INIS)

    Derbentli, Taner

    2006-01-01

    may be done in universities and industry which may serve this purpose. Some of these studies are discussed below. The feasibility studies for cogeneration plants is a field which should be developed.. The hourly, daily, monthly and yearly power and heat demands should be calculated to decide on the correct capacity of the plant. The capacity of the plant may be decided on the electrical power demand or the heat demand. In general it is more economical to base the plant capacity on the electrical power demand. In order to save as much energy as possible, the plant should operate continuously at full load. A study which will survey the cogeneration plants in service today, to determine the annual average fuel utilization efficiency may be a useful guide in sizing new cogeneration plants. It is important to select and size the equipment forming the cogeneration plant so that the sum of the operating and investment costs are minimized. The methodology used for this purpose is called ex ergo economic analysis which is based on the pioneering works of Tsatsaronis, El Sayed and Valero. The use of cogeneration in conjunction with district heating is widely used in northern and eastern Europe. This may well be applied to newly developing residential areas, university campuses and similar complexes. The main obstacle in the application of combined power and district heating is high initial investment costs.Government policies and subsidies in this area may be well worth because of the national savings resulting from the reduction in fuel imports. Micro cogeneration or spread electric power production is becoming more feasible as the technology developers and costs are reduced. The costs of micro cogeneration technologies, such as micro turbines, fuel cells, Stirling cycle engines are starting to become competitive with conventional technologies which cost approximately 500 US dollars per kw today. Another area where research is needed is the use of fuels other than natural gas

  4. Cogeneration

    International Nuclear Information System (INIS)

    Lock, R.H.J.H.

    1990-01-01

    Cogeneration has dominated generation capacity expansion in the 1980s in many regions in a way that was never envisaged in the 1970s. The author of this paper suspects it will continue to play a major role in the 1990s in providing new power supply, though perhaps as a smaller part of a larger and more diverse market to meet new capacity needs than we have seen in the 1980s. When Congress enacted Section 210 of PURPA in 1978, its central goal was to create, through a series of regulatory protections primarily designed to neutralize the monopsony power of the purchasing utility, a quasi-market for cogeneration and certain other small power technologies. This would provide a truer test of their value in the power supply mix than had traditional regulation. However, Congress envisaged these sources as only a small, though potentially efficient, adjunct to traditional utility capacity additions

  5. HTGR-steam cycle/cogeneration plant economic potential

    International Nuclear Information System (INIS)

    1981-05-01

    The cogeneration of heat and electricity provides the potential for improved fuel utilization and corresponding reductions in energy costs. In the evaluation of the cogeneration plant product costs, it is advantageous to develop joint-product cost curves for alternative cogeneration plant models. The advantages and incentives for cogeneration are then presented in a form most useful to evaluate the various energy options. The HTGR-Steam Cycle/Cogeneration (SC/C) system is envisioned to have strong cogeneration potential due to its high-quality steam capability, its perceived nuclear siting advantages, and its projected cost advantages relative to coal. The economic information presented is based upon capital costs developed during 1980 and the economic assumptions identified herein

  6. The Mexican electricity industry - cogeneration potential

    International Nuclear Information System (INIS)

    Monroy, I.L.

    2000-01-01

    A brief history of Mexico's electric power industry is given. Diagrams show (i) the increase in primary energy production from 1990-1998; (ii) energy consumption by sector and (iii) the change in capacity between 1990 and 1998. The projected energy development for 1998-2007 is discussed. The Mexican government has chosen cogeneration to be an important contributor to future energy-efficient power production. Data on installed cogeneration capacity for years 2000 and 2001 are given according to sector

  7. The cogeneration potential of the sugar industry in Vietnam

    International Nuclear Information System (INIS)

    Bhattacharyya, S.C.; Thang, D.N.Q.

    2004-01-01

    Vietnam produces about 15 million tons of sugarcane per year and about five mt of bagasse. There is the potential for cogeneration using bagasse, which can also help overcome power shortages in the country. This paper analyses the potential for cogeneration from the sugar industry in Vietnam under three different scenarios and finds that between 100 and 300 megawatts of power-generating capacity could be supported by the bagasse generated from sugar mills, depending on the technology considered for sugar mills and cogeneration and the possibility of renovation of the existing mills. The paper also assesses the expense of cogeneration and finds it to be a cost-effective option for all types of sugar mill. It is found that the cost savings from cogeneration would more than offset the cost of introducing cogeneration in sugar mills with inefficient cane processing technologies. Sugar mills with modern technologies would have a significant amount of excess power and most of these plants would break-even if they sold excess power at around 4.5 cents per kilowatt hour. The break-even cost and the average production cost are sensitive to the investment cost assumptions. The paper thus suggests that cogeneration from the sugar industry is an attractive option for investors in existing mills or new sugar mills alike. (Author)

  8. An estimation of cogeneration potential by using refinery residuals in Mexico

    International Nuclear Information System (INIS)

    Marin-Sanchez, J.E.; Rodriguez-Toral, M.A.

    2007-01-01

    Electric power generation in Mexico is mainly based on fossil fuels, specifically heavy fuel oil, although the use of natural gas combined cycles (NGCC) is becoming increasingly important. This is the main destination that has promoted growing imports of natural gas, currently accounting for about 20% of the total national annual consumption. Available crude oil is becoming heavier; thus refineries should be able to process it, and to handle greater quantities of refinery residuals. If all refinery residuals are used in cogeneration plants serving petroleum refineries, the high heat/power ratio of refinery needs, leads to the availability of appreciable quantities of electricity that can be exported to the public utility. Thus, in a global perspective, Mexican imports of natural gas may be reduced by cogeneration using refinery residuals. This is not the authors' idea; in fact, PEMEX, the national oil company, has been entitled by the Mexican congress to sell its power leftovers to The Federal Electricity Commission (CFE) in order to use cogeneration in the way described for the years to come. A systematic way of determining the cogeneration potential by using refinery residuals from Mexican refineries is presented here, taking into account residual quantities and composition, from a national perspective, considering expected scenarios for Maya crude content going to local refineries in the years to come. Among different available technologies for cogeneration using refinery residuals, it is believed that the integrated gasification combined cycle (IGCC) would be the best option. Thus, considering IGCC plants supplying heat and power to refineries where it is projected to have refinery residuals for cogeneration, the expected electric power that can be sent to the public utility is quantified, along with the natural gas imports mitigation that may be attained. This in turn would contribute to a necessary fuel diversification policy balancing energy, economy and

  9. Economic potential of natural gas-fired cogeneration in Brazil: two case studies

    Energy Technology Data Exchange (ETDEWEB)

    Szklo, Alexandre Salem; Soares, Jeferson Borghetti; Tolmasquim, Mauricio Tiomno [Rio de Janeiro Federal Univ., Energy Planning Program (COPPE), Rio de Janeiro (Brazil); Cidade Univ., Ilha do Fundao, Rio de Janeiro (Brazil)

    2000-11-01

    Recent restructuring of Brazil's power sector, allied to the expected larger share of natural gas in the nation's grid and the cost reductions of gas-fired power generation technologies, has introduced a set of situations apparently favorable to the expansion of natural gas-fired cogeneration. However, electricity self-generation applications are restricted to specific cases in Brazil. In order to deal with this issue, the COGEN model was developed to assess the economic potential of cogeneration ventures from the standpoint of the investor and guide incentive public policies. This model has been applied to two cases in Brazil -- a chemical plant and a shopping mall -- showing that the highest economic potential for gas-fired cogeneration in Brazil is found in industrial plants faced with high values of loss of load. In the commercial sector, measures reshaping the load curve of enterprises -- such as cold storage --- might be much more interesting than fired cogeneration. (Author)

  10. Technical overview of cogeneration: the hardware, the industries, the potential development

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-12-01

    Because the by-product heat from a power-conversion process is captured for productive use in a cogeneration system, instead of exhausted to the environment as it is in a conventional power plant, cogeneration represents an important energy-conservation technique. By cogenerating, an industrial plant can save the fuel that would have been needed to produce the amount of heat captured. Recognizing the significant energy-savings potential offered by cogeneration, DOE has undertaken a major R, D, and D program to investigate and promote cogeneration in industry. Resource Planning Associates, Inc. (RPA), has been working to accomplish four of the program's objectives: (1) survey current, near state-of-the-art, and future cogeneration equipment, and identify any gaps or deficiencies; (2) characterize the energy requirements of the manufacturing sectors of five of the country's most energy-intensive industries - chemical, petroleum refining, paper and pulp, textiles, and food; (3) identify principal targets for, and barriers to, the increased market development of cogeneration systems; and (4) estimate the potential maximum and the probable energy savings that could be achieved in the five selected industries through cogeneration. In investigating cogeneration hardware, three specific technologies - steam turbines, gas turbines, and diesel engines - were emphasized. It is estimated that the widespread application of cogeneration technology in the five industries studied could result in a maximum potential savings of 2.4 million barrels of oil equivalent per day (or a maximum incremental capacity of 140,000 MWe) by 1985.

  11. Evaluation of the national cogeneration potential as an option for the expansion of the national electric system; Evaluacion del potencial nacional de cogeneracion como opcion en la expansion del sistema electrico nacional

    Energy Technology Data Exchange (ETDEWEB)

    Nieva Gomez, Rolando; Hernandez Galicia, Julio Alberto [Instituto de Investigaciones Electricas, Cuernavaca (Mexico); Portes Mascorro, Enrique; Alvarez Chavez, Jose Maria [Comision Nacional para el Ahorro de Energia (CONAE), Mexico, D. F. (Mexico)

    1997-12-31

    The Comision Nacional para el Ahorro de Energia (CONAE) carried out a study to determine the amount of electric energy available by cogeneration in the industrial sector of our country. This study is based in a survey among the enterprises with the largest fuel consumption belonging to the industrial and commercial sectors and to the petrochemical branch of Petroleos Mexicanos (PEMEX). The results of the study are presented, which show the location of the cogeneration potential by the following estimates: a) The scenario under a potential of 5770 MW to generate annually 4.55 x 107 MWh of electric energy. b) The scenario with a potential of 10819 MW to generate annually 9.47 x 107 Mwh of electric energy [Espanol] La Comision Nacional para el Ahorro de Energia (CONAE) llevo acabo un estudio para determinar la cantidad de energia electrica disponible por cogeneracion en el sector industrial de nuestro pais. El estudio se fundamenta en una encuesta entre las empresas con mayor consumo de combustibles pertenecientes a los sectores industrial y comercial y al ramo petroquimico de Petroleos Mexicanos (PEMEX). Se presentan los resultados del estudio, el cual muestra la ubicacion del potencial de cogeneracion por los siguientes estimados: a) El escenario bajo con un potencial de 5770 MW para producir anualmente 4.55 x 107 Mwh de energia electrica. b) El escenario alto con un potencial de 10819 MW para producir anualmente 9.47 x 107 MWh de energia electrica

  12. Evaluation of the national cogeneration potential as an option for the expansion of the national electric system; Evaluacion del potencial nacional de cogeneracion como opcion en la expansion del sistema electrico nacional

    Energy Technology Data Exchange (ETDEWEB)

    Nieva Gomez, Rolando; Hernandez Galicia, Julio Alberto [Instituto de Investigaciones Electricas, Cuernavaca (Mexico); Portes Mascorro, Enrique; Alvarez Chavez, Jose Maria [Comision Nacional para el Ahorro de Energia (CONAE), Mexico, D. F. (Mexico)

    1998-12-31

    The Comision Nacional para el Ahorro de Energia (CONAE) carried out a study to determine the amount of electric energy available by cogeneration in the industrial sector of our country. This study is based in a survey among the enterprises with the largest fuel consumption belonging to the industrial and commercial sectors and to the petrochemical branch of Petroleos Mexicanos (PEMEX). The results of the study are presented, which show the location of the cogeneration potential by the following estimates: a) The scenario under a potential of 5770 MW to generate annually 4.55 x 107 MWh of electric energy. b) The scenario with a potential of 10819 MW to generate annually 9.47 x 107 Mwh of electric energy [Espanol] La Comision Nacional para el Ahorro de Energia (CONAE) llevo acabo un estudio para determinar la cantidad de energia electrica disponible por cogeneracion en el sector industrial de nuestro pais. El estudio se fundamenta en una encuesta entre las empresas con mayor consumo de combustibles pertenecientes a los sectores industrial y comercial y al ramo petroquimico de Petroleos Mexicanos (PEMEX). Se presentan los resultados del estudio, el cual muestra la ubicacion del potencial de cogeneracion por los siguientes estimados: a) El escenario bajo con un potencial de 5770 MW para producir anualmente 4.55 x 107 Mwh de energia electrica. b) El escenario alto con un potencial de 10819 MW para producir anualmente 9.47 x 107 MWh de energia electrica

  13. Potential of the HTGR hydrogen cogeneration system in Japan

    International Nuclear Information System (INIS)

    Nishihara, Tetsuo; Mouri, Tomoaki; Kunitomi, Kazuhiko

    2007-01-01

    A high temperature gas cooled reactor (HTGR) is one of the next generation nuclear systems. The HTGR hydrogen cogeneration system can produce not only electricity but also hydrogen. Then it has a potential to supply massive low-cost hydrogen without greenhouse gas emission for the future hydrogen society. Japan Atomic Energy Agency (JAEA) has been carried out the design study of the HTGR hydrogen cogeneration system (GTHTR300C). The thermal power of the reactor is 600 MW. The hydrogen production plant utilizes 370 MW and can supply 52,000 m 3 /h (0.4 Bm 3 /y) of hydrogen. Present industrial hydrogen production capacity in Japan is about 18 Bm 3 /y and it will decrease by 15 Bm 3 /y in 2030 due to the aging facilities. On the other hand, the hydrogen demand for fuel cell vehicle (FCV) in 2030 is estimated at 15 Bm 3 /y at a maximum. Since the hydrogen supply may be short after 2030, the additional hydrogen should be produced by clean hydrogen process to reduce greenhouse gas emission. This hydrogen shortage is a potential market for the GTHTR300C. The hydrogen production cost of GTHTR300C is estimated at 20.5 JPY/Nm 3 which has an economic competitiveness against other industrial hydrogen production processes. 38 units of the GTHTR300C can supply a half of this shortage which accounts for the 33% of hydrogen demand for FCV in 2100. According to the increase of hydrogen demand, the GTHTR300C should be constructed after 2030. (author)

  14. Introduction to cogeneration; Introducao a cogeracao

    Energy Technology Data Exchange (ETDEWEB)

    Nogueira, Luiz Augusto Horta; Martins, Andre Luiz Silva [Escola Federal de Engenharia de Itajuba, MG (Brazil)

    1997-07-01

    This work presents a general view of cogeneration. The paper approaches the development of cogeneration, technological aspects, the cogeneration in Brazil, economical aspects, performance of cogeneration systems, viability, costs, cogeneration potentials and technological trends.

  15. Evaluation of potential for cogeneration of electricity and process heat in North Carolina. Final report, June 1, 1978-May 31, 1979

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    The objective of this study was to enable North Carolina to more efficiently utilize available energy than would be possible without additional cogeneration. Effective use of cogeneration can ease the requirement for utility capital and power plant sites and, by reducing fuel usage, can lead to less environmental damage. The study used the National Emissions Data System data bank and the North Carolina Boiler Registry to identify potential candidates for cogeneration and to then ascertain the magnitude of the potential in existing, new, and expanded facilities as a function of cogeneration impediment elimination. The survey uncovered 372 MW of operable cogeneration capacity in North Carolina in 15 plants. An estimate of the potential for expansion of cogeneration by firms presently operating in North Carolina amounted to 130 MW. This estimate was based on current conditions of fuel costs, electricity rates, standby charges, and investment tax credit. Much information is provided concerning industry and utilities in North Carolina, fuel usage by industry, and barriers to cogeneration. Recommendations are summarized.

  16. European energy policy and the potential impact of HTR and nuclear cogeneration

    International Nuclear Information System (INIS)

    Fütterer, Michael A.; Carlsson, Johan; Groot, Sander de; Deffrennes, Marc; Bredimas, Alexandre

    2014-01-01

    This paper first provides an update on the current state of play and the potential future role of nuclear energy in Europe. It then describes the EU energy policy tools in the area of nuclear technology. It explains the three-tier strategy of the European nuclear technology platform and its demonstration initiatives, here specifically for nuclear cogeneration and HTR. The paper closes with an outlook on the boundary conditions at which HTR can become attractive for nuclear cogeneration, not only from an energy policy viewpoint but also economically

  17. European energy policy and the potential impact of HTR and nuclear cogeneration

    Energy Technology Data Exchange (ETDEWEB)

    Fütterer, Michael A., E-mail: michael.fuetterer@ec.europa.eu [European Commission, Joint Research Centre, Institute for Energy and Transport, P.O. Box 2, NL-1755ZG Petten (Netherlands); Carlsson, Johan [European Commission, Joint Research Centre, Institute for Energy and Transport, P.O. Box 2, NL-1755ZG Petten (Netherlands); Groot, Sander de [Nuclear Research and consultancy Group, NL-1755ZG Petten (Netherlands); Deffrennes, Marc [European Commission, DG ENER, L-2530 Luxembourg (Luxembourg); Bredimas, Alexandre [LGI Consulting, 13 rue Marivaux, F-75002 Paris (France)

    2014-05-01

    This paper first provides an update on the current state of play and the potential future role of nuclear energy in Europe. It then describes the EU energy policy tools in the area of nuclear technology. It explains the three-tier strategy of the European nuclear technology platform and its demonstration initiatives, here specifically for nuclear cogeneration and HTR. The paper closes with an outlook on the boundary conditions at which HTR can become attractive for nuclear cogeneration, not only from an energy policy viewpoint but also economically.

  18. The potential of natural gas use including cogeneration in large-sized industry and commercial sector in Peru

    International Nuclear Information System (INIS)

    Gonzales Palomino, Raul; Nebra, Silvia A.

    2012-01-01

    In recent years there have been several discussions on a greater use of natural gas nationwide. Moreover, there have been several announcements by the private and public sectors regarding the construction of new pipelines to supply natural gas to the Peruvian southern and central-north markets. This paper presents future scenarios for the use of natural gas in the large-sized industrial and commercial sectors of the country based on different hypotheses on developments in the natural gas industry, national economic growth, energy prices, technological changes and investment decisions. First, the paper estimates the market potential and characterizes the energy consumption. Then it makes a selection of technological alternatives for the use of natural gas, and it makes an energetic and economic analysis and economic feasibility. Finally, the potential use of natural gas is calculated through nine different scenarios. The natural gas use in cogeneration systems is presented as an alternative to contribute to the installed power capacity of the country. Considering the introduction of the cogeneration in the optimistic–advanced scenario and assuming that all of their conditions would be put into practice, in 2020, the share of the cogeneration in electricity production in Peru would be 9.9%. - Highlights: ► This paper presents future scenarios for the use of natural gas in the large-sized industrial and commercial sectors of Peru. ► The potential use of natural gas is calculated through nine different scenarios.► The scenarios were based on different hypotheses on developments in the natural gas industry, national economic growth, energy prices, technological changes and investment decisions. ► We estimated the market potential and characterized the energy consumption, and made a selection of technological alternatives for the use of natural gas.

  19. Achieving the economic potential for industrial cogeneration in Ontario: A financial perspective on electric utility policy

    International Nuclear Information System (INIS)

    Diemer, S.G.; Cain, S.R.

    1993-01-01

    The impact of private vs public ownership regimes on the magnitude of achievable industrial cogeneration capacity in Ontario is assessed. Estimates of technical and economic potential are presented for several industrial subsectors and heat demand categories, showing that nearly all of the technically feasible 7,600 MW is also economically efficient given a value of power of at least 4 cents/kWh in 1991 dollars. Using financial data and investment criteria specific to the two forms of ownership, the project evaluation model points to a significantly larger quantum of financial (achievable) potential with public rather than private development of industrial cogeneration. At avoided costs and associated buyback rates of 4 and 5 cents/kWh, the achievable cogeneration capacities are ca 2,400 and 7,600 MW under public ownership and 132 and 3,000 MW under private ownership. Ratepayer savings are significant: the full economic potential can be achieved through public ownership at a buyback rate of 5 cents/kWh; under private ownership, a comparable capacity requires a 6 cents buyback rate, reflecting additional ratepayer costs of nearly $600 million annually. 1 fig., 4 tabs

  20. Co-generation potentials of municipal solid waste landfills in Serbia

    Directory of Open Access Journals (Sweden)

    Bošković Goran B.

    2016-01-01

    Full Text Available Waste management in the Republic of Serbia is based on landfilling. As a result of such year-long practice, a huge number of municipal waste landfills has been created where landfill gas has been generated. Landfill gas, which is essentially methane (50-55% and carbon dioxide (40-45% (both GHGs, has a great environmental impact which can be reduced by using landfill gas in cogeneration plants to produce energy. The aim of this paper is to determine economic and environmental benefits from such energy production. For that purpose, the database of cogeneration potentials (CP of 51 landfills in the Republic of Serbia (RS was created. Amount of landfill gas generated at each municipal landfill was calculated by applying a first order decay equation which requires the data about solid waste production and composition and about some landfill characteristics. For all landfills, which have over 100,000 m3 each, a techno-economic analysis about building a CHP plant was conducted. The results have shown, that the total investment in 14 CHP plants with payback period of less than 7 years amounts € 11,721,288. The total nominal power of these plants is 7 MW of electrical power and 7.9 MW of thermal power, and an average payback period is about 61 months. In addition, using landfill biogas as energy source in proposed plants would reduce methane emission for 161,000 tons of CO2 equivalent per year. [Projekat Ministarstva nauke Republike Srbije, br. III 42013: Research of cogeneration potential of municipal and industrial energy power plant in Republic of Serbia and opportunities for rehabilitation of existing and construction of new cogeneration plants

  1. Comparison based on energy and exergy analyses of the potential cogeneration efficiencies for fuel cells and other electricity generation devices

    Energy Technology Data Exchange (ETDEWEB)

    Rosen, M A [Ryerson Polytechnical Inst., Toronto, (CA). Dept. of Mechanical Engineering

    1990-01-01

    Comparisons of the potential cogeneration efficiencies are made, based on energy and exergy analyses, for several devices for electricity generation. The investigation considers several types of fuel cell system (Phosphoric Acid, Alkaline, Solid Polymer Electrolyte, Molten Carbonate and Solid Oxide), and several fossil-fuel and nuclear cogeneration systems based on steam power plants. In the analysis, each system is modelled as a device for which fuel and air enter, and electrical- and thermal-energy products and material and thermal-energy wastes exit. The results for all systems considered indicate that exergy analyses should be used when analysing the cogeneration potential of systems for electricity generation, because they weigh the usefulnesses of heat and electricity on equivalent bases. Energy analyses tend to present overly optimistic views of performance. These findings are particularly significant when large fractions of the heat output from a system are utilized for cogeneration. (author).

  2. Advanced cogeneration and absorption chillers potential for service to Navy bases. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, J.W.; Butcher, T.A.; Leigh, R.W.; McDonald, R.J.; Pierce, B.L.

    1996-04-01

    The US military uses millions of Btu`s of thermal energy to heat, cool and deliver process thermal energy to buildings on military bases, much of which is transmitted through a pipeline system incorporating thousands of miles of pipe. Much of this pipeline system is in disrepair and is nearing the end of its useful life, and the boilers which supply it are old and often inefficient. In 1993, Brookhaven National Laboratory (BNL) proposed to SERDP a three-year effort to develop advanced systems of coupled diesel cogenerators and absorption chillers which would be particularly useful in providing a continuation of the services now provided by increasingly antiquated district systems. In mid-February, 1995, BNL learned that all subsequent funding for our program had been canceled. BNL staff continued to develop the Program Plan and to adhere to the requirements of the Execution Plan, but began to look for ways in which the work could be made relevant to Navy and DoD energy needs even without the extensive development plan formerly envisioned. The entire program was therefore re-oriented to look for ways in which small scale cogeneration and absorption chilling technologies, available through procurement rather than development, could provide some solutions to the problem of deteriorated district heating systems. The result is, we believe, a striking new approach to the provision of building services on military bases: in many cases, serious study should be made of the possibility that the old district heating system should be removed or abandoned, and small-scale cogenerators and absorption chillers should be installed in each building. In the remainder of this Summary, we develop the rationale behind this concept and summarize our findings concerning the conditions under which this course of action would be advisable and the economic benefits which will accrue if it is followed. The details are developed in the succeeding sections of the report.

  3. Electric power plants in cogeneration: a promising potential even in France

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    Implantation of cogeneration power plants has increased in France since two years but stays below other countries such as northern Europe. Technical, economical, legal and financial aspects of cogeneration have been debated during the ''Euroforum'' seminar (June 14-16, 1995). The european association Cogen Europe, created in 1993 with the financial support of the SAVE european program, has analysed the barriers that restrain cogeneration development and their solutions. Advantages of cogeneration are undeniable at any scale (from small engines to huge industrial systems) if efficiency of energy used reaches 85%. Opinions of representatives from different industries implied in cogeneration technology are reported. (J.S.). 1 photo

  4. A potential candidate for the sustainable and reliable domestic energy generation–Thermoelectric cogeneration system

    International Nuclear Information System (INIS)

    Zheng, X.F.; Yan, Y.Y.; Simpson, K.

    2013-01-01

    Due to being solid-state, noiseless and maintenance free, thermoelectric devices have found wide applications in different areas since they were discovered over 180 years ago. The applications are concerned with environment-friendly refrigeration and power generation in transportation tools, industrial utilities, military devices, medical services and space applications. It is utilisation of waste heat in varying applications that make the modules particularly attractive. Nevertheless, despite a few academic papers, there has not been extensive use in the domestic sector. A concept of thermoelectric cogeneration system (‘TCS’) is proposed to highlight the direction for enhancing the sustainability by improving the energy efficiency in domestic sector. Compared to the thermoelectric systems used in other areas which only uses the part of converted energy but wastes the unconverted part by dissipating it into the environment, the system presented here maximally recover the available heat by generating electrical power and producing hot water simultaneously. The viability of this system concept is evaluated on a bench-scale experimental prototype. The outputs of electrical power and hot water have been investigated at different temperature difference. The cost saving potential and cost recovery period have been estimated using the available heat sources in domestic sector. The results intend to provide reference for developing the real-scale domestic thermoelectric cogeneration system and show the potential benefits

  5. Cogeneration in Taiwan

    Energy Technology Data Exchange (ETDEWEB)

    Cotard, E. [International Cogeneration Alliance (United States)

    2000-10-01

    The short article discusses pollution abatement and the potential role of cogeneration in Taiwan. A diagram shows the contributions of various energy sources (coal, oil etc.) from 1979-1999 and the growth of cogeneration between 1979 and 1999. The lack of natural gas or diesel does not help the cause of cogeneration in Taiwan, nor does the structure of the local electricity market. Nevertheless, if the proposed new LNG facilities are built in the North, then the opportunities for cogeneration will be very good.

  6. A study on utilization improvement of cogeneration potential in a complex industrial steam and power plant

    International Nuclear Information System (INIS)

    Mierka, O.; Variny, M.

    2012-01-01

    Efficient cogeneration is widely acknowledged as one of measures reducing primary energy use and emissions of greenhouse gases and other pollutants. This contribution bears on analyses of complex industrial power plants, incorporating the concept of exergetic and exergoecomic balances-a concept that has been rarely utilized in Slovakia up to day. Emphasis is laid on synergic use of marginal and exergoecomic analysis, thus assessing the economics of various complex cogeneration units' operational modes. The whole study, together with resulting recommendations for cogeneration efficiency improvement of the given unit is an excerpt of corresponding author's doctoral thesis. (Authors)

  7. A study on utilization improvement of cogeneration potential in a complex industrial steam and power plant

    International Nuclear Information System (INIS)

    Mierka, O.; Variny, M.

    2012-01-01

    Efficient cogeneration is widely acknowledged as one of measures reducing primary energy use and emissions of greenhouse gases and other pollutants. This contribution bears on analyses of complex industrial power plants, incorporating the concept of exergetic and exergoeconomic balances-a concept that has been rarely utilized in Slovakia up to day. Emphasis is laid on synergic use of marginal and exergoeconomic analysis, thus assessing the economics of various complex cogeneration units' operational modes. The whole study, together with resulting recommendations for cogeneration efficiency improvement of the given unit is an excerpt of corresponding author's doctoral thesis. (Authors)

  8. Economic potential of natural gas-fired cogeneration--analysis of Brazil's chemical industry

    International Nuclear Information System (INIS)

    Szklo, A.S.; Soares, J.B.; Tolmasquim, M.T.

    2004-01-01

    This paper attempts to estimate the technical and economic potential for natural gas-fired cogeneration (NGCHP) in Brazil's chemical industry as well as also analyses the impacts of specific incentive policies on the economic feasibility of this potential. Currently, the NGCHP installed capacity at Brazil's chemical industry is still quite a low figure, although the chemical plants are under heavy pressures to: (1) cut costs; and (2) show a rising awareness of the importance of power service quality, underscored even more heavily by Brazil's recent power crisis. According this study, a natural gas-fired remaining technical potential of 1.4 GW is noted in the Brazilian chemical industry. Financing policies showed to be the stand-alone policy that would be most successful for ensuring the economic feasibility of this technical potential. Nevertheless, this policy proved to be affected by the economic scenario under consideration, which includes world oil prices, electricity tariff and foreign exchange ratio possible paths. Consequently, the key issue is related to the ability to assess which economic scenario is rated as more probable by possible future investors in NGCHP, and then selecting the most appropriate incentive policy

  9. Cogeneration in Australia. Situation and prospects

    International Nuclear Information System (INIS)

    1997-01-01

    This Research Paper is mainly concerned with the status and prospects for cogeneration in Australia. An introductory chapter reviews the fundamentals of cogeneration, covering both technical and institutional aspects. A range of technologies are employed in cogeneration: these technologies and their efficiency and environmental impact effects are discussed in Chapter 2. The economics of cogeneration are a major factor in the profitability of current and potential plants. Potential factors affecting cogeneration economics are discussed .The status of cogeneration in Australia is reviewed for each State and Territory, and includes a number of case studies of existing plants. Government (federal, state, territory) policies that have a significant impact on the attractiveness of cogeneration are reviewed. Finally, the future prospects for cogeneration in Australia, drawing on the preceding chapters and a review of estimated potentials for cogeneration in Australia are presented

  10. Economic potential analysis of cogeneration using natural gas in the selected sectors; Analise do potencial economico de cogeracao a gas natural nos setores selecionados

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    This chapter presents the results of the economic potential of the natural gas cogeneration under topping regime, in the selected sectors of beverage industry, editorial and graphic industries, shopping centers, hospitals and hotels.

  11. Potential contribution of consumer production and cogeneration to peak electricity supply in France over the next decade

    International Nuclear Information System (INIS)

    Timbert, G.; Coiffard, J.

    1991-01-01

    This study revealed considerable potential for the development of independently generated electricity in general and of cogeneration in particular in France; this growth is related to the following factors: increased fuel costs, new price scales for the purchase of independently generated electricity or for the sale of gas produced under the same conditions, development of appropriate financing schemes, modification of the regulatory threshold limiting power sold to the EDF public utility, improved know-how, special investment schemes, tax encouragement

  12. Cogeneration markets in Ontario

    International Nuclear Information System (INIS)

    Poredos, S.

    1993-01-01

    Cogeneration offers a key strategy which supports global competitiveness for Ontario businesses, encourages energy efficiency and environmental protection, and offers natural gas utilities and producers stable long-term incremental markets. By supporting cogeneration projects, electric utilities will benefit from increased flexibility. Natural gas is the fuel of choice for cogeneration, which can in most cases be easily integrated into existing operations. In Ontario, electric demand grew along with the gross domestic product until 1990, but has decreased with the recent economic recession. The provincial utility Ontario Hydro is resizing itself to stabilize total rate increases of 30% over the last three years and supporting reduction of its high debt load. Rate increases are supposed to be limited but this may be difficult to achieve without further cost-cutting measures. Cogeneration opportunities exist with many institutional and industrial customers who are trying to remain globally competitive by cutting operating costs. In general, cogeneration can save 20% or more of total annual energy costs. Due to excess capacity, Ontario Hydro is not willing to purchase electric power, thus only electric load displacement projects are valid at this time. This will reduce overall savings due to economies of scale. In southwestern Ontario, Union Gas Ltd. has been successful in developing 40 MW of electric displacement projects, providing a total load of 5 billion ft 3 of natural gas (50% of which is incremental). Over 3,000 MW of technical cogeneration potential is estimated to exist in the Union Gas franchise area

  13. Co-generation potentials of municipal solid waste landfills in Serbia

    OpenAIRE

    Bošković Goran B.; Josijević Mladen M.; Jovičić Nebojša M.; Babić Milun J.

    2016-01-01

    Waste management in the Republic of Serbia is based on landfilling. As a result of such year-long practice, a huge number of municipal waste landfills has been created where landfill gas has been generated. Landfill gas, which is essentially methane (50-55%) and carbon dioxide (40-45%) (both GHGs), has a great environmental impact which can be reduced by using landfill gas in cogeneration plants to produce energy. The aim of this paper is to determine econo...

  14. Co-generation and reality Potential in Mexico; Potencial de cogeneracion y realidad en Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Comision Nacional para el Ahorro de Energia (CONAE) (Mexico)

    2005-07-01

    This document deals with the Mexican use of co-generation -the efficient use of the energy- through the support offered by the Comision Nacional para el Ahorro de Energia (CONAE), since this is the agency in charge of fomenting the efficient use of energy by means of actions coordinated with diverse dependencies and organizations of the Administracion Publica Federal and with the governments of the federal entities as well as municipalities, social and private sectors. Among the subjects to be dealt are quality of the electrical and thermal energy, types of fuels that can be used in the co-generation project, the present situation of the co-generation in Mexico and the conditions for their development. [Spanish] Este documento analiza el uso de la cogeneracion en Mexico es decir, el uso eficiente de la energia a traves del apoyo que brinda la Comision Nacional para el Ahorro de Energia (CONAE) ya que es el organo encargado de fomentar la eficiencia en el uso de la energia mediante acciones coordinadas con las diversas dependencias y entidades de la Administracion Publica Federal y con los gobiernos de las entidades federativas y los municipios y, a traves de acciones concertadas, con los sectores social y privado. Se trataran temas como calidad de la energia electrica y termica, los tipos de combustibles que pueden utilizarse en el proyecto de cogeneracion, la situacion actual de la cogeneracion en Mexico y las ccondiciones para su desarrollo.

  15. Cogeneration trends in Europe history -- State of the art - Outlook

    International Nuclear Information System (INIS)

    Hunschofsky, H.

    1998-01-01

    Cogeneration, the utilization of heat created while producing electricity from fossil fuels, is by no means a new technology. In 1926, 71 years ago, a brochure from MAN in Germany showed a heat recovery system for diesel engines. Despite the fact that cogeneration has existed for a long time, it took half a century and the first so called ''oil crisis'' in the 1970's for societies to become aware of limited energy resources. Environmental groups gave cogeneration an additional boost in the 1980's. Additionally, governments in the Western European Nations attracted cogeneration investors by not only providing subsidies and tax breaks but also regulating electricity prices. Although there has been much growth in the cogeneration market in the past years, the industry has still not reached its peak in Europe. A variety of studies have shown that there is still significant growth potential in the future: WWF (World Wildlife Fund) published a study in 1996 suggesting a target of 330 Twh of generation will be produced through cogeneration by the year 2005, a tripling of current generation. Due to the EU's belief that cogeneration is an optimal form of generation, it has developed a cogeneration strategy. As part of this strategy, the EC is promoting cogeneration so that it accounts for 20% of all European generation by the year 2010. These factors would give a variety of companies such as equipment suppliers, investment companies, utilities, consultants and energy brokers a wide range of opportunities in Europe. Detailed information and some hints will be given as to how to participate in this fast growing industry. Ways to overcome obstacles in those markets will be shown as well as the pros and cons of different entry strategies

  16. Economic and environmental advantages for the utilization of the industrial potential of cogeneration in Mexico; Ventajas economicas y ambientales para el aprovechamiento del potencial industrial de cogeneracion en Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Leon de los Santos, G [Division de Estudios Posgrado, Facultad de ingenieria, Universidad Nacional Autonoma de Mexico, Mexico, D.F. (Mexico)

    2003-01-15

    Mexico has an industrial cogeneration potential very important, not evaluated or projected within its historical growth. The objective of the present work consist of studying the industrial cogeneration potential that exists in Mexico, as well as the economic and environmental savings that it would be achieved if one took advantage of this potential. As a result of the present work we can conclude that the cogeneration in Mexico offers a theoretical potential middle of 28,000 MWe to the 2007. It is estimated an economic saving potential in the construction of generation infrastructure electrical, for the high stage of its utilization of almost 7000 million dollars and a stage of emissions reduction of 2007- 21.4%, instead of 2007- 0.35%, for the industrial sector of the country. Provided that change the vision of the government of seeing to the cogeneration as a measure of energy saving and substitute it by that of political of complement to the development of the national electrical sector. [Spanish] Mexico tiene un importante potencial de cogeneracion industrial que no ha sido evaluado ni proyectado dentro de su crecimiento historico, por ello, el objetito de este trabajo consiste en estudiar y conocer los ahorros economicos y ambientales que se podrian lograr si se aprovechara dicho potencial. Como resultado, se muestra que la cogeneracion en Mexico ofrece un potencial teorico medio de 28,000 MW e al ano 2007. Se estima tambien un ahorro economico en la construccion de infraestructura de generacion electrica para el escenario alto de su aprovechamiento de casi 7000 mdd, y un escenario de reduccion de emisiones para el sector industrial del pais de un 0.35% a un 21.47% para el ano 2007. Estos pronosticos se pueden lograr, siempre y cunado el gobierno cambie la vision de manejar este tema como una medida de ahorro de energia, y la sustituya por la politica de complemento al desarrollo del sector electrico nacional.

  17. A technical analysis for cogeneration systems with potential applications in twelve California industrial plants. [energy saving heat-electricity utility systems

    Science.gov (United States)

    Moretti, V. C.; Davis, H. S.; Slonski, M. L.

    1978-01-01

    In a study sponsored by the State of California Energy Resources Conservation and Development Commission, 12 industrial plants in five utility districts were surveyed to assess the potential applications of the cogeneration of heat and electricity in California industry. Thermodynamic calculations were made for each plant in determining the energy required to meet the existing electrical and steam demands. The present systems were then compared to conceptual cogeneration systems specified for each plant. Overall energy savings were determined for the cogeneration applications. Steam and gas turbine topping cycle systems were considered as well as bottoming cycle systems. Types of industries studied were: pulp and paper, timber, cement, petroleum refining, enhanced oil recovery, foods processing, steel and glass

  18. District heating and cogeneration in the EU-28: Current situation, potential and proposed energy strategy for its generalisation

    Directory of Open Access Journals (Sweden)

    Enrique Rosales-Asensio

    2016-10-01

    Full Text Available Yearly, EU-28 conventional thermal generating plants reject a greater amount of energy than what ultimately is utilised by residential and commercial loads for heating and hot water. If this waste heat were to be used through district heating networks, given a previous energy valorisation, there would be a noticeable decrease in imported fossil fuels for heating. As a consequence, benefits in the form of an energy efficiency increase, an energy security improvement, and a minimisation of emitted greenhouse gases would occur. Given that it is not expected for heat demand to decrease significantly in the medium term, district heating networks show the greatest potential for the development of cogeneration. However, to make this happen, some barriers that are far from being technological but are mostly institutional and financial need to be removed. The purpose of this review is to provide information on the potential of using waste heat from conventional thermal power plants (subsequently converted into cogeneration plants in district heating networks located in the EU-28. For this, a preliminary assessment is conducted in order to show an estimate of the cost of adopting an energy strategy in which district heating networks are a major player of the energy mix. From this assessment, it is possible to see that even though the energy strategy proposed in this paper, which is based on a dramatic increase in the joint use of district heating networks and cogeneration, is capital-intensive and would require an annual investment of roughly 300 billion euros, its adoption would result in a reduction of yearly fuel expenses in the order of 100 billion euros and a shortening of about 15% of the total final energy consumption, which makes it of paramount interest as an enabler of the legal basis of the “Secure, Clean and Efficient Energy” future enacted by the EU-28 Horizon 2020.

  19. Economic and environmental advantages for the use of the industrial potential of cogeneration in Mexico City; Ventajas economicas y ambientales para el aprovechamiento del potencial industrial de cogeneracion en Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Leon de los Santos, G. [Division de Estudios de Posgrado, Facultad de Ingenieria, UNAM, Mexico, D.F. (Mexico)

    2003-03-01

    Mexico has an industrial cogeneration potential very important, not evaluated or projected within its historical growth. The objective of the present work consist of studying the industrial cogeneration potential that exists in Mexico, as well as the economic and environmental savings that it would be achieved if one took advantage of this potential. As a result of the present work we can conclude that the cogeneration in Mexico offers a theoretical potential middle of 28,000 MWe to the 2007. It is estimated an economic saving potential in the construction of generation infrastructure electrical, for the high stage of its utilization of almost 7000 million of dollars and a stage of emissions reduction of 2007- 21.37% instead of 2007- 0.35% for the industrial sector of the country. These prognoses can be obtained, as long as the government changes vision to handle this subject as a measure of energy saving, and substitute it by the policy of complement the development of the national electrical sector. [Spanish] Mexico tiene un importante potencial de cogeneracion industrial que no ha sido evaluado ni proyectado dentro de su crecimiento historico, por ello, el objetivo de este trabajo consiste en estudiar y conocer los ahorros economicos y ambientales que se podrian lograr si se aprovechara dicho potencial. Como resultado, se muestra que la cogeneracion en Mexico ofrece un potencial teorico medio de 28,000 MWe al ano 2007. Se estima tambien un ahorro economico en la construccion de infraestructura de generacion electrica para el escenario alto de su aprovechamiento de casi 7 000 mdd, y un escenario de reduccion de emisiones para el sector industrial del pais de un 0.35% a un 21.4% para el ano 2007. Estos pronosticos se pueden lograr, siempre y cuando el gobierno cambie la vision de manejar este tema como una medida de ahorro de energia, y la sustituya por la politica de complemento al desarrollo del sector electrico nacional.

  20. Cogeneration Systems; Sistemas de Cogeneracion

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez M, Manuel F; Huante P, Liborio; Romo M, Cesar A [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)

    2006-07-01

    The present article deals on relevant aspects on the subject of cogeneration within the Mexican territorial limits. In the first place it is presented the role of Mexico in terms of its cogeneration potential, the type of service that has obtained from this predominant modality of cogeneration for self-supplying, the most propitious sectors to develop it, its legislations on the matter, the projects made for the implementation of cogeneration plants, as well as the existing cogeneration schemes for its respective optimization proposals. Without leaving out the analysis on the different types of evaluation on the efficiency of cogeneration systems and the aspects to consider for the election of a generation cycle. [Spanish] El presente articulo trata sobre aspectos relevantes en materia de cogeneracion dentro de los limites territoriales de la nacion mexicana. Se muestra en primer lugar el papel de Mexico en terminos de su potencial de cogeneracion, el tipo de servicio que ha obtenido de esta predominantemente (modalidad de cogeneracion para autoabastecimiento), los sectores mas propicios para desarrollarla, sus legislaciones al respecto, los proyectos realizados para la implementacion de plantas de cogeneracion, asi como los esquemas de cogeneracion existentes con sus respectivas propuestas de optimizacion. Sin dejar de lado el analisis sobre los distintos tipos de evaluacion de la eficiencia de sistemas de cogeneracion y los aspectos a considerar para la eleccion de un ciclo de generacion.

  1. HTGR-GT closed-cycle gas turbine: a plant concept with inherent cogeneration (power plus heat production) capability

    International Nuclear Information System (INIS)

    McDonald, C.F.

    1980-04-01

    The high-grade sensible heat rejection characteristic of the high-temperature gas-cooled reactor-gas turbine (HTGR-GT) plant is ideally suited to cogeneration. Cogeneration in this nuclear closed-cycle plant could include (1) bottoming Rankine cycle, (2) hot water or process steam production, (3) desalination, and (4) urban and industrial district heating. This paper discusses the HTGR-GT plant thermodynamic cycles, design features, and potential applications for the cogeneration operation modes. This paper concludes that the HTGR-GT plant, which can potentially approach a 50% overall efficiency in a combined cycle mode, can significantly aid national energy goals, particularly resource conservation

  2. Cogeneration techniques; Les techniques de cogeneration

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-10-01

    This dossier about cogeneration techniques comprises 12 parts dealing successively with: the advantages of cogeneration (examples of installations, electrical and thermal efficiency); the combustion turbine (principle, performances, types); the alternative internal combustion engines (principle, types, rotation speed, comparative performances); the different configurations of cogeneration installations based on alternative engines and based on steam turbines (coal, heavy fuel and natural gas-fueled turbines); the environmental constraints of combustion turbines (pollutants, techniques of reduction of pollutant emissions); the environmental constraints of alternative internal combustion engines (gas and diesel engines); cogeneration and energy saving; the techniques of reduction of pollutant emissions (pollutants, unburnt hydrocarbons, primary and secondary (catalytic) techniques, post-combustion); the most-advanced configurations of cogeneration installations for enhanced performances (counter-pressure turbines, massive steam injection cycles, turbo-chargers); comparison between the performances of the different cogeneration techniques; the tri-generation technique (compression and absorption cycles). (J.S.)

  3. Cogeneration for Brazil

    International Nuclear Information System (INIS)

    Anon.

    2000-01-01

    Almost all the electric power in Brazil comes from large-scale hydroelectric plants: only about 3% comes from cogeneration. But, now that the barriers which discouraged cogeneration are being removed, there will be more and more investment in cogeneration and distributed generation. The circumstances which have brought about these changes are described. It is expected that cogeneration will be responsible for producing 10-15% of Brazil's electricity by 2010 and the demand for cogeneration will reach 11-17 GW. It is concluded that Brazil represents one of the world's most attractive market for cogeneration and distributed generation

  4. CDM Potential in Palm Solid Waste Cogeneration as an Alternative Energy in Aceh Province

    Directory of Open Access Journals (Sweden)

    Mahidin Mahidin

    2013-04-01

    Full Text Available Empty Fruit Bunch (EFB as a solid waste in Crude Palm Oil (CPO industry does not utilized yet as an alternative energy source to generate electricity. It is well known that use of solid wate (biomass as an energy source is part of the Clean Development Mechanism (CDM scheme due to direct reduction of Green House Gases (GHGs emission and provide a direct contribution to sustainable development. Utilization of EFB as a source of energy is very potential to be implemented in Aceh since this province has 25 CPO Mills at the moment which actively produce about 870,000 ton EFB per year. This study is subjected to evaluate the potency of electricity  from EFB theoretically by using primary data (survey data and secondary data. Potency of EFB and number of electricity produced from that EFB are estimated using primary data and direct combustion scenario, respectively. Calculation methods for emission reduction acieved are done by AMS-I.D: Renewable electricity generation to the grid and AMS-III.E: Methane emissions avoided from dumping at a solid waste disposal site. The result of this investigation shows that energy consumption in 25 CPO Mills is 45 GW(eh per year. Evidently, the number of energy/electricity which is potential to be produced by using 75% EFB is 1,047 GWh per year; so that the GHGs emission reduction up to 171,232.21 tCO2e per year.

  5. Cogeneration for small SAGD projects

    Energy Technology Data Exchange (ETDEWEB)

    Albion, Stuart [AMEC BDR Limited (United Kingdom)

    2011-07-01

    As many SAGD projects are being developed in remote locations, the supply of a steady source of power to them becomes an important question. Connecting these remote facilities to a grid can often be difficult and costly. This presentation, by AMEC BDR Limited, promotes the use of cogeneration in small SAGD projects. Cogeneration is the generation of two forms of energy from one fuel source. In this particular case, the energy forms would be electricity and heat. In many SAGD projects, a gas turbine system is used to generate the electricity, while a heat recovery system is utilized to generate steam. The use of cogeneration systems in SAGD projects, as opposed to using separate heat and electricity systems, has the potential to significantly reduce the amount of energy lost, the amount of emissions and power costs, in addition to ensuring that there is a reliable supply of steam and electricity.

  6. Biomass cogeneration: A business assessment

    Science.gov (United States)

    Skelton, J. C.

    1981-11-01

    The biomass cogeneration was reviewed. The business assessment is based in part on discussions with key officials from firms that have adopted biomass cogeneration systems and from organizations such as utilities, state and federal agencies, and banks directly involved in a biomass cogeneration project. The guide is organized into five chapters: biomass cogeneration systems, biomass cogeneration business considerations, biomass cogeneration economics, biomass cogeneration project planning, and case studies.

  7. Mini/micro cogeneration, basis for installation. Dimensioning, accounting and potential. Project report 1; Mini/mikrokraftvarme, forudsaetninger for installation. Dimensionering, afregningsforhold og potentiale. Projektrapport 1

    Energy Technology Data Exchange (ETDEWEB)

    Wit, J. de; Iskov, H.

    2005-11-15

    Cogeneration is quite spread in Denmark. Approx. 50 % of the power supply and 80 % of the district heating supply come from cogeneration. Combined heat and power is produced on both centralized (large) plants and decentralized plants. Decentralized combined heat and power plants (typically based on natural gas) use gas motors or gas turbines for power and heat production. Cogeneration of heat and power saves primary fuels and a directly derived effect from cogeneration is CO{sub 2} emission reduction. If fuels with higher specific CO{sub 2} emission than natural gas (e.g. coal, oil) are substituted, additional CO{sub 2} reduction can be reached. (BA)

  8. The cogeneration in France

    International Nuclear Information System (INIS)

    2006-01-01

    Since the years 90 many measures have been decided by the government in favor of the cogeneration, to implement a juridical, fiscal, technical and economical framework. After a presentation of the three main channels and the advantages of the cogeneration, the author presents these measures. (A.L.B.)

  9. Economic and environmental impact of the utilization of the industrial potential of viable cogeneration for period 1998 - 2007; Impacto economico y ambiental de aprovechamiento del potencial industrial de cogeneracion viable para el periodo 1998 - 2007

    Energy Technology Data Exchange (ETDEWEB)

    Leon de los Santos, Gabriel; Mendoza Gonzslez, Lourdes [Universidad Nacional Autonoma de Mexico, Mexico, D.F. (Mexico)

    2001-07-01

    The utilization of the industrial potential of cogeneration offers a significant contribution to the construction of the electrical infrastructure that the growth of the country will require for the period 1998 - 2007. The conditions of growth of the co-generation potential and their levels of utilization are related to a on isolated growth of the other inter actors of the processes of power supply; As levels of economic viability, economic savings to industry, requirements of additional electrical capacity, growth of the industrial activity, costs, use of fuels, environmental impact. Rates of average growth for period 1998 - 2007 are considered and what levels of economic and environmental benefit offers this development to the industry, to the electrical company and to the country. And to what proportion can contribute the utilization of the industrial potential of electrical cogeneration to the requirements of additional electrical capacity that will require the development of the country during this period. With the rates of viable growth of the co-generation the equivalent reduction of fuel consumption is estimated for the industrial sector, given by the improvement in the generation efficiency and with the change in the proportion of fuels used in Comision Federal de Electricidad (CFE) for this period. Evaluating the emissions of the main fuels avoided with this growth and its repercussion at national level via the CFE, and showing the possible international implications of this reduction. [Spanish] El aprovechamiento del potencial industrial de cogeneracion ofrece una significativa aportacion a la construccion de la infraestructura electrica que el crecimiento del pais requerira para el periodo 1998 -2007. Las condiciones de crecimiento del potencial de cogeneracion y sus niveles de aprovechamiento estan relacionados con un crecimiento o aislado de los demas inter actores de los procesos de abasto energetico; Como niveles de viabilidad economica, ahorros

  10. High-efficiency cogeneration boiler bagasse-ash geochemistry and mineralogical change effects on the potential reuse in synthetic zeolites, geopolymers, cements, mortars, and concretes.

    Science.gov (United States)

    Clark, Malcolm W; Despland, Laure M; Lake, Neal J; Yee, Lachlan H; Anstoetz, Manuela; Arif, Elisabeth; Parr, Jeffery F; Doumit, Philip

    2017-04-01

    Sugarcane bagasse ash re-utilisation has been advocated as a silica-rich feed for zeolites, pozzolans in cements and concretes, and geopolymers. However, many papers report variable success with the incorporation of such materials in these products as the ash can be inconsistent in nature. Therefore, understanding what variables affect the ash quality in real mills and understanding the processes to characterise ashes is critical in predicting successful ash waste utilisation. This paper investigated sugarcane bagasse ash from three sugar mills (Northern NSW, Australia) where two are used for the co-generation of electricity. Data shows that the burn temperatures of the bagasse in the high-efficiency co-generation boilers are much higher than those reported at the temperature measuring points. Silica polymorph transitions indicate the high burn temperatures of ≈1550 °C, produces ash dominated α -quartz rather than expected α-cristobilite and amorphous silica; although α-cristobilite, and amorphous silica are present. Furthermore, burn temperatures must be ≤1700 °C, because of the absence of lechatelierite where silica fusing and globulisation dominates. Consequently, silica-mineralogy changes deactivate the bagasse ash by reducing silica solubility, thus making bagasse ash utilisation in synthetic zeolites, geopolymers, or a pozzolanic material in mortars and concretes more difficult. For the ashes investigated, use as a filler material in cements and concrete has the greatest potential. Reported mill boiler temperatures discrepancies and the physical characteristics of the ash, highlight the importance of accurate temperature monitoring at the combustion seat if bagasse ash quality is to be prioritised to ensure a usable final ash product.

  11. High-efficiency cogeneration boiler bagasse-ash geochemistry and mineralogical change effects on the potential reuse in synthetic zeolites, geopolymers, cements, mortars, and concretes

    Directory of Open Access Journals (Sweden)

    Malcolm W. Clark

    2017-04-01

    Full Text Available Sugarcane bagasse ash re-utilisation has been advocated as a silica-rich feed for zeolites, pozzolans in cements and concretes, and geopolymers. However, many papers report variable success with the incorporation of such materials in these products as the ash can be inconsistent in nature. Therefore, understanding what variables affect the ash quality in real mills and understanding the processes to characterise ashes is critical in predicting successful ash waste utilisation. This paper investigated sugarcane bagasse ash from three sugar mills (Northern NSW, Australia where two are used for the co-generation of electricity. Data shows that the burn temperatures of the bagasse in the high-efficiency co-generation boilers are much higher than those reported at the temperature measuring points. Silica polymorph transitions indicate the high burn temperatures of ≈1550 °C, produces ash dominated α −quartz rather than expected α-cristobilite and amorphous silica; although α-cristobilite, and amorphous silica are present. Furthermore, burn temperatures must be ≤1700 °C, because of the absence of lechatelierite where silica fusing and globulisation dominates. Consequently, silica-mineralogy changes deactivate the bagasse ash by reducing silica solubility, thus making bagasse ash utilisation in synthetic zeolites, geopolymers, or a pozzolanic material in mortars and concretes more difficult. For the ashes investigated, use as a filler material in cements and concrete has the greatest potential. Reported mill boiler temperatures discrepancies and the physical characteristics of the ash, highlight the importance of accurate temperature monitoring at the combustion seat if bagasse ash quality is to be prioritised to ensure a usable final ash product. Keywords: Materials Science, Civil Engineering

  12. Cogeneration plants: SNAM (Italy) initiatives and incentives

    International Nuclear Information System (INIS)

    Pipparelli, M.

    1991-01-01

    First, an overall picture is presented of the extension of the use of cogeneration by the Italian brick industry. The particular suitability and usefulness of this form of energy to the brick industry are pointed out. Then a look is given at the legal and financial incentives which have been built into the National Energy Plan to encourage on-site production by Italian industries. Finally, a review is made of initiatives made by SNAM (the Italian National Methane Distribution Society) to develop a favourable tariff structure for on-site power producers using methane as their energy source, as well as, of the Society's efforts to set up a cogeneration equipment consulting service which would provide advice on cogeneration plant design, operation and maintenance

  13. Global environment and cogeneration

    International Nuclear Information System (INIS)

    Miyahara, Atsushi

    1992-01-01

    The environment problems on global scale have been highlighted in addition to the local problems due to the rapid increase of population, the increase of energy demand and so on. The global environment summit was held in Brazil. Now, global environment problems are the problems for mankind, and their importance seems to increase toward 21st century. In such circumstances, cogeneration can reduce carbon dioxide emission in addition to energy conservation, therefore, attention has been paid as the countermeasure for global environment. The background of global environment problems is explained. As to the effectiveness of cogeneration for global environment, the suitability of city gas to environment, energy conservation, the reduction of carbon dioxide and nitrogen oxides emission are discussed. As for the state of spread of cogeneration, as of March, 1992, those of 2250 MW in terms of power generation capacity have been installed in Japan. It is forecast that cogeneration will increase hereafter. As the future systems of cogeneration, city and industry energy center conception, industrial repowering, multiple house cogeneration and fuel cells are described. (K.I.)

  14. Cogeneration and local authorities; Cogeneration et collectivites territoriales

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    This conference is composed of 15 communications concerning cogeneration systems and applications in local communities. The main themes are: the regulation context and administrative procedures for cogeneration projects in France; legal aspects, risk covering, financing and sellback conditions for cogeneration systems; examples of cogeneration and tri-generation (with refrigeration energy) in different cities, airport, hospitals, campus, combined with the upgrading of district heating systems or municipal waste incineration plants. Impacts on energy savings and air pollution are also discussed

  15. The California cogeneration success story

    International Nuclear Information System (INIS)

    Neiggemann, M.F.

    1992-01-01

    This chapter describes the involvement of Southern California Gas Company(SoCalGas) in the promotion and demonstration of the benefits of cogeneration in California. The topics covered in this chapter are market strategy, cogeneration program objectives, cogeneration program, incentive cofunding, special gas rate, special service priority, special gas pressure and main options, advertising, promotional brochures and handbooks, technical support, program accomplishments, cogeneration outlook, and reasons for success of the program

  16. Cogeneration. Energy efficiency - Micro-cogeneration; La Cogeneration. Efficacite Energetique - Micro-cogeneration

    Energy Technology Data Exchange (ETDEWEB)

    Boudellal, M.

    2010-07-01

    Depletion of natural resources and of non-renewable energy sources, pollution, greenhouse effect, increasing energy needs: energy efficiency is a major topic implying a better use of the available primary energies. In front of these challenges, cogeneration - i.e. the joint production of electricity and heat, and, at a local or individual scale, micro-cogeneration - can appear as interesting alternatives. This book presents in a detailed manner: the present day and future energy stakes; the different types of micro-cogeneration units (internal combustion engines, Stirling engine, fuel cell..), and the available models or the models at the design stage; the different usable fuels (natural gas, wood, biogas..); the optimization rules of a facility; the costs and amortizations; and some examples of facilities. (J.S.)

  17. Thermionic cogeneration burner design

    Science.gov (United States)

    Miskolczy, G.; Goodale, D.; Moffat, A. L.; Morgan, D. T.

    Since thermionic converters receive heat at very high temperatures (approximately 1800 K) and reject heat at moderately high temperatures (approximately 800 K), they are useful for cogeneration applications involving high temperature processes. The electric power from thermionic converters is produced as a high amperage, low-voltage direct current. An ideal cogeneration application would be to utilize the reject heat at the collector temperature and the electricity without power conditioning. A cogeneration application in the edible oil industry fulfills both of these requirements since both direct heat and hydrogen gas are required in the hydrogenation of the oils. In this application, the low-voltage direct current would be used in a hydrogen electrolyzer.

  18. Procedure for cogeneration plant evaluation in Italy

    International Nuclear Information System (INIS)

    Bollettini, U.; Savelli, D.

    1992-01-01

    This paper develops a step-by-step approach to the evaluation of cogeneration plants for on-site power generation. The aim is to allow prospective cogeneration plant owners to build energy/cost efficient plants and to be able to make a proper assessment of eligible financial assistance which may be obtained through the provisions of energy conservation normatives and laws set up by the Italian National Energy Plan. The approach has three principal phases - the verification of the availability of the required human resources able to perform the plant evaluation (engineering, legal and business consultants), an energy/viability audit of any existing energy plant considered for retrofitting and, finally, the identification of the best technical/economic cogeneration alternative. The programmed set of evaluation tasks includes the determination of optimal contracts with ENEL (the Italian National Electricity Board), especially for the case of excess power to be ceded to the national grid, and the making of comparisons with reference cogeneration systems whose relative design/cost data are stored in existing computerized data bases

  19. Evaluating the role of cogeneration for carbon management in Alberta

    International Nuclear Information System (INIS)

    Doluweera, G.H.; Jordaan, S.M.; Moore, M.C.; Keith, D.W.; Bergerson, J.A.

    2011-01-01

    Developing long-term carbon control strategies is important in energy intensive industries such as the oil sands operations in Alberta. We examine the use of cogeneration to satisfy the energy demands of oil sands operations in Alberta in the context of carbon management. This paper evaluates the role of cogeneration in meeting Provincial carbon management goals and discusses the arbitrary characteristics of facility- and product-based carbon emissions control regulations. We model an oil sands operation that operates with and without incorporated cogeneration. We compare CO 2 emissions and associated costs under different carbon emissions control regulations, including the present carbon emissions control regulation of Alberta. The results suggest that incorporating cogeneration into the growing oil sands industry could contribute in the near-term to reducing CO 2 emissions in Alberta. This analysis also shows that the different accounting methods and calculations of electricity offsets could lead to very different levels of incentives for cogeneration. Regulations that attempt to manage emissions on a product and facility basis may become arbitrary and complex as regulators attempt to approximate the effect of an economy-wide carbon price. - Highlights: ► We assess the effectiveness of cogeneration for carbon management in Alberta. ► Cogeneration can offset a significant portion of Alberta's high carbon electricity. ► CO 2 reduction potential of cogeneration may be higher if installed immediately. ► Product based policies should approximate the effect of an economy-wide policy.

  20. Thermal-economic analysis of cogeneration systems

    International Nuclear Information System (INIS)

    Walter, A.C.S.; Bajay, S.V.

    1992-01-01

    Approximately 80 countries produce sugar, and fortuitously alcohol, from sugar cane. In all these countries the cogeneration technology of steam turbines is utilized, although almost always inefficient. The greater potential of cogeneration in Brazil is in sugar and alcohol sector, because of the use of sugar cane bagasse as combustible. This work applies the techniques of simulation and economic analysis to different configuration of plants, to determine power generation and associated costs of each alternative. The application of the same procedure at operating condition of several configurations in transient system permits the determination of production profile of exceeding during one day. (C.M.)

  1. Community Design Parameters and the Performance of Residential Cogeneration Systems

    Directory of Open Access Journals (Sweden)

    Hazem Rashed-Ali

    2012-11-01

    Full Text Available The integration of cogeneration systems in residential and mixed-use communities has the potential of reducing their energy demand and harmful emissions and can thus play asignificant role in increasing their environmental sustainability. This study investigated the impact of selected planning and architectural design parameters on the environmental and economic performances of centralized cogeneration systems integrated into residential communities in U.S.cold climates. Parameters investigated include: 1 density, 2 use mix, 3 street configuration, 4 housing typology, 5 envelope and building systems’ efficiencies, and 6 passive solar energyutilization. The study integrated several simulation tools into a procedure to assess the impact of each design parameter on the cogeneration system performance. This assessment procedure included: developing a base-line model representing typical design characteristics of U.S. residential communities; assessing the cogeneration system’s performance within this model using three performance indicators: percentage of reduction in primary energy use, percentage of reduction in CO2 emissions; and internal rate of return; assessing the impact of each parameter on the system performance through developing 46 design variations of the base-line model representing potential changes in each parameter and calculating the three indicators for each variation; and finally, using a multi-attribute decision analysis methodology to evaluate the relative impact of each parameter on the cogeneration system performance. The study results show that planning parameters had a higher impact on the cogeneration system performance than architectural ones. Also, a significant correlation was found between design characteristics identified as favorable for the cogeneration system performance and those of sustainable residential communities. These include high densities, high use mix, interconnected street networks, and mixing of

  2. Energy saving and CO2-reduction potential of micro-cogeneration in the Netherlands (2010-2030). Update 2008

    International Nuclear Information System (INIS)

    Van Gastel, M.; De Jong, A.; Schlatmann, S.; Bakker, E.J.; Jeeninga, H.; Boerakker, Y.; Seebregts, A.; Menkveld, M.; Van Wolferen, H.; Turkstra, J.W.; Dam, J.; Harmsen, R.; Rooijers, F.; Koot, M.

    2008-05-01

    Various parties have been asked to come to a joint point of view with regard to establishing the potential of micro CHP for energy saving and CO2 emission reduction in the Netherlands from 2010 to 2030, assuming that micro CHP will have a successful market introduction. The result of this memo is a method for determining the technical potential of micro CHP for the reduction of energy use and CO2 emissions. This report is an update of the 2006 report [mk] [nl

  3. Comprehensive Assessment of the Potential for Efficient District Heating and Cooling and for High-Efficient Cogeneration in Austria

    Directory of Open Access Journals (Sweden)

    Richard Büchele

    2016-12-01

    Full Text Available In accordance with the EU Energy Efficiency Directive all Member States have to develop a comprehensive assessment of the potential for high-efficient CHP and efficient district heating and cooling by the end of 2015. This paper describes the approach and methodology used to determine the district heating potentials for Austria. In a first step actual and future heating and cooling demand in the building sector is evaluated using the techno-economic bottom-up model Invert/EE-Lab. Relevant infrastructure probably existing in 2025 is investigated and included into the analysis. Technical potentials for efficient technologies are calculated. After a classification of relevant regions into main and secondary regions a country-level cost-benefit-analysis is performed. The results indicate that there is a reasonable additional potential for district heating by the year 2025 under our central scenario assumptions and within sensitivity scenarios. Only in scenarios with high CO2-price or low gas price, CHP is an economically efficient solution to supply district heat.

  4. Electric power supply: the viability of natural gas cogeneration

    International Nuclear Information System (INIS)

    Paula, C.P. de; Ennes, S.A.W.

    1991-01-01

    The technical and economical aspects of Natural Gas conversion into electricity through cogeneration, analysing the potentials and costs of the power systems connections to downstream processes is related. The insertion impacts of these cogeneration potentials into the Electrical Network are also analysed, with special emphasis on the supply deficit risk reduction. The generation conditions for both auto-sufficiency and exceeding supply to network are determined, regarding the purposes of attendance efficiency improvement and the necessary new service stimulus. (author)

  5. Potential Co-Generation of Electrical Energy from Mill Waste: A Case Study of the Malaysian Furniture Manufacturing Industry

    Directory of Open Access Journals (Sweden)

    Jegatheswaran Ratnasingam

    2016-04-01

    Full Text Available Furniture manufacturing in Malaysia is an established industry driven primarily by the availability of raw materials and labor. However, the industry suffers from the low-recovery rate of its materials, as it produces a substantial amount of waste during the manufacturing process. Although smaller waste fragments, or off-cuts, are recovered for other purposes, the splinters, shavings, and coarse dust have little economic value and are often discarded. Because wood is a well-established source of bioenergy, this study investigated the potential use of mill waste from the furniture-manufacturing industry for electrical energy generation. Waste from the rubberwood, bamboo, and rattan furniture industries was evaluated for its potential electrical energy generation, and the amount was compared with the electrical energy that was consumed by the furniture industry. The study also compared the emission of greenhouse gases from the combustion of these waste materials against fossil fuels used to generate electricity to assess its potential in terms of the environmental benefits. In conclusion, such mill waste could be utilized as substitute for fossil fuel to generate energy in the furniture industry.

  6. Natural gas cogeneration in the residential sector; La cogeneration au gaz naturel en residentiel

    Energy Technology Data Exchange (ETDEWEB)

    Lancelot, C.; Gaudin, S. [Gaz de France, GDF, Dir. de la Recherche, 75 - Paris (France)

    2000-07-01

    The natural gas cogeneration offer is now available and operational in the industrial sector. It is based on technologies of piston engines and gas turbines. Currently, this offer is sufficiently diversified, so much from the point of view of the range of powers available (from 1 MW to more than 40 MW electric) that number of manufacturers. In order to widen the cogeneration market in France to the markets of the commercial and residential sectors, Gaz De France has undertaken a technical economic study to validate the potential of those markets. This study led to work on the assembly of a french die to cogeneration packages of low power (less than 1 MW electric). This step has emerged at the beginning of 1999 with the launching of a commercial offer of cogeneration packages. In margin to this work Gaz De France Research division also initiated a study in order to evaluate the offer of micro cogeneration, products delivering an electric output lower than 10 kW. (authors)

  7. Current experience with central-station nuclear cogeneration plants

    International Nuclear Information System (INIS)

    1981-10-01

    In considering the potential of the HTGR for nuclear cogeneration, a logical element for investigation is the recent history of nuclear cogeneration experience. Little is found in recent literature; however, the twin nuclear cogeneration plant at Midland is nearing completion and this milestone will no doubt be the basis for a number of reports on the unique cogeneration facility and operating experiences with it. Less well known in the US is the Bruce Nuclear Power Development in Ontario, Canada. Originally designed to cogenerate steam for heavy water production, the Bruce facility is the focus of a major initiative to create an energy park on the shores of Lake Huron. To obtain an improved understanding of the status and implications of current nuclear cogeneration experience, GCRA representatives visited the Ontario Hydro offices in Toronto and subsequently toured the Midland site near Midland, Michigan. The primary purpose of this report is to summarize the results of those visits and to develop a series of conclusions regarding the implications for HTGR cogeneration concepts

  8. Cogeneration: One way to use biomass efficiently

    International Nuclear Information System (INIS)

    Gustavsson, L.; Johansson, B.

    1993-01-01

    Cogeneration in district heating systems is the most energy-efficient way to convert biomass into heat and electricity with current or nearly commercial technologies. Methanol produced from biomass and used in vehicles instead of petrol or diesel could reduce carbon dioxide emissions nearly as much per unit of biomass as if the biomass were used to replace natural gas for cogeneration, but at some higher cost per unit of carbon dioxide reduction. The most energy-efficient way to use biomass for cogeneration appears to be combined cycle technology, and the world's first demonstration plant is now being built. Potentially, this technology can be used for electricity production in Swedish district heating systems to provide nearly 20% of current Swedish electricity production, while simultaneously reducing carbon dioxide emissions from the district heating systems by some 55%. The heat costs from cogeneration with biomass are higher than the heat costs from fossil fuel plants at current fuel prices. Biomass can only compete with fossil fuel if other advantages, for example a lower environmental impact are considered. (au) (35 refs.)

  9. Cogeneration plant environmental impacts, Menaggio, Italy. February 21-22, 1991

    International Nuclear Information System (INIS)

    Piancastelli, E.

    1991-01-01

    Separate abstracts were prepared for 28 papers given at the FIRE (Italian Federation for the Rational use of Energy), February, 1991, convention on cogeneration plant environmental impacts. The topics included: Italian and international normatives giving guidelines on methods to evaluate dual-purpose power plant environmental impacts; gas turbine CO, NOx and suspended particulates emission limits; noise pollution limits and abatement measures; ENEL (Italian National Electricity Board) rate structure for auto-producing industries ceding power to the national grid; international research programs on cogeneration; the use of renewable energy sources for cogeneration systems; the function and role of energy managers; and commercialization of compact cogeneration plants for industry

  10. Cogeneration in Italian agricultural industry

    International Nuclear Information System (INIS)

    Bonfitto, E.; Jacoboni, S.

    1991-01-01

    This paper examines the technical, environmental and economical feasibility of an industrial cogeneration system which incorporates combined gas-steam cycles and a biomass/agricultural waste sludge fired fluidized bed combustion system. It cites the suitability of the use of fluidized bed combustion for the combustion of biomass and agricultural waste sludges - high combustion efficiency, uniform and relatively low combustion temperatures (850 C) within the combustion chamber to reduce scaling, reduced nitrogen oxide and micro-pollutant emissions, the possibility to control exhaust gas acidity through the injection of calcium carbonates, the possibility of the contemporaneous feeding of different fuels. Reference is made to test results obtained with an ENEL (Italian National Electricity Board) pilot plant fired by vineyard wastes. Attention is given to an analysis of the fuel's physical-chemical characteristics and the resulting flue gas chemical composition and ash characteristics. Comparisons are made with legal release limits

  11. Reviving manufacturing with a federal cogeneration policy

    International Nuclear Information System (INIS)

    Brown, Marilyn A.; Cox, Matt; Baer, Paul

    2013-01-01

    Improving the energy economics of manufacturing is essential to revitalizing the industrial base of advanced economies. This paper evaluates ex-ante a federal policy option aimed at promoting industrial cogeneration—the production of heat and electricity in a single energy-efficient process. Detailed analysis using the National Energy Modeling System (NEMS) and spreadsheet calculations suggest that industrial cogeneration could meet 18% of U.S. electricity requirements by 2035, compared with its current 8.9% market share. Substituting less efficient utility-scale power plants with cogeneration systems would produce numerous economic and environmental benefits, but would also create an assortment of losers and winners. Multiple perspectives to benefit/cost analysis are therefore valuable. Our results indicate that the federal cogeneration policy would be highly favorable to manufacturers and the public sector, cutting energy bills, generating billions of dollars in electricity sales, making producers more competitive, and reducing pollution. Most traditional utilities, on the other hand, would lose revenues unless their rate recovery procedures are adjusted to prevent the loss of profits due to customer owned generation and the erosion of utility sales. From a public policy perspective, deadweight losses would be introduced by market-distorting federal incentives (ranging annually from $30 to $150 million), but these losses are much smaller than the estimated net social benefits of the federal cogeneration policy. - Highlights: ► Industrial cogeneration could meet 18% of US electricity demand by 2035, vs. 8.9% today. ► The policy would be highly favorable to manufacturers and the public. ► Traditional electric utilities would likely lose revenues. ► Deadweight loss would be introduced by tax incentives. ► The policy’s net social benefits would be much larger.

  12. Urban Integrated Industrial Cogeneration Systems Analysis. Phase II final report

    Energy Technology Data Exchange (ETDEWEB)

    1984-01-01

    Through the Urban Integrated Industrial Cogeneration Systems Analysis (UIICSA), the City of Chicago embarked upon an ambitious effort to identify the measure the overall industrial cogeneration market in the city and to evaluate in detail the most promising market opportunities. This report discusses the background of the work completed during Phase II of the UIICSA and presents the results of economic feasibility studies conducted for three potential cogeneration sites in Chicago. Phase II focused on the feasibility of cogeneration at the three most promising sites: the Stockyards and Calumet industrial areas, and the Ford City commercial/industrial complex. Each feasibility case study considered the energy load requirements of the existing facilities at the site and the potential for attracting and serving new growth in the area. Alternative fuels and technologies, and ownership and financing options were also incorporated into the case studies. Finally, site specific considerations such as development incentives, zoning and building code restrictions and environmental requirements were investigated.

  13. Modelling of the change in national exchange rate model depending on the economic parameters of a natural gas cogeneration system: Turkey case

    International Nuclear Information System (INIS)

    Inan, Aslan; Izgi, Ercan; Ay, Selim

    2009-01-01

    In this paper, to what extent a cogeneration system's fixed and variable costs and profits are affected from the exchange rate model implemented in the country is examined. An autoproductor system, as known, uses a part of its electrical energy production for its own requirements while selling the remaining energy to the regional energy corporation. As a function of the load factor and the fuel cost, the production cost and energy sale income of the system are influenced much by the exchange rate model of the country. A cost analysis of a natural gas cogeneration (autoproductor) system has been performed for the numerical application, based on the monetary program supported by the IMF commenced in January 2000. In order to investigate the effect of the change in exchange rate model (introducing the floating exchange rate model) on the fuel cost, both the characteristics of the IMF program and some various forecasting methods have been utilized

  14. Cogeneration technologies, optimisation and implementation

    CERN Document Server

    Frangopoulos, Christos A

    2017-01-01

    Cogeneration refers to the use of a power station to deliver two or more useful forms of energy, for example, to generate electricity and heat at the same time. This book provides an integrated treatment of cogeneration, including a tour of the available technologies and their features, and how these systems can be analysed and optimised.

  15. Controlling systems of cogeneration blocks

    International Nuclear Information System (INIS)

    Suriansky, J.; Suriansky, J. Ml.; Puskajler, J.

    2007-01-01

    In this article the main parts of cogeneration unit control system are described. Article is aimed on electric power measurement with electricity protection as with temperature system regulation. In conclusion of the article, the control algorithm with perspective of cogeneration solve is indicated. (authors)

  16. The alarming future for cogeneration

    International Nuclear Information System (INIS)

    Koevoet, H.

    2000-01-01

    Low prices and uncertainty in pricing of energy, higher costs for investment and expensive fuels are the most important reasons why the growth of cogeneration capacity in the Netherlands stagnates. The liberalization of the energy market appears to be the malefactor. A brief overview is given of the ECN (Netherlands Energy Research Foundation) report 'Toekomst warmtekrachtkoppeling' (Future of cogeneration)

  17. Development of cogeneration in Spain and financing methods

    International Nuclear Information System (INIS)

    Garcia, G.R.

    1994-01-01

    From 1980 there is in force in Spain a proper legal framework that could be considered a sound support to further cogeneration development. Despite this cogeneration law, a very few schemes were built. In 1986 IDAE, a state company attached to the Spanish Ministry of Industry and Energy, began a Cogeneration Programme focussed to a higher cogeneration utilisation. This programme has three main foundations: Technology dissemination; Technical support; Investment financing. As a result of these activities more than 1000 MW additional power schemes have been ordered all over the country and, as a consequence, cogenerated electricity will be multiplied by three in respect with the previous situation. A 20% of this new capacity has been developed directly by IDAE, that has invested approximately 90 million US Dollar through third party financing technics. The National Energy Plan 1991-2000 established the energy policy actuations in Spain for the present decade, giving importance to cogeneration development. This paper explains the way this development has been achieved, outlining IDAE's engagement to finance combined heat and power schemes through its comprehensive way of performing third party financing systems. (au)

  18. The role of cogeneration systems in sustainability of energy

    International Nuclear Information System (INIS)

    Çakir, Uğur; Çomakli, Kemal; Yüksel, Fikret

    2012-01-01

    Highlights: ► Energy source on the world is tending to run out day by day while the energy need of humanity is increasing simultaneously. ► There are two ways to overcome this problem; one of them is renewable energy sources like solar or wind energy systems. ► The other way is like cogeneration systems. ► Cogeneration system is one of the ways to save the energy and use the energy efficiently. ► A case study is made for a hospital to present the sustainability aspects of cogeneration systems. - Abstract: Cogeneration system (CHP) is one of the ways to save the energy and use the energy efficiently. When compared to separate fossil-fired generation of heat and electricity, CHP may result in a consistent energy conservation (usually ranging from 10% to 30%) while the avoided CO 2 emissions are, as a first approximation, similar to the amount of energy saving. In terms of sustainability, one of the primary considerations is energy efficiency. Sustainable energy is considered as a kind of energy which is renewable and continuous, meaning that the use of such energy can potentially be kept up well into the future without causing harmful repercussions for future generations. In this study, environmental benefits and sustainability aspects of cogeneration systems and importance of those systems to the use of sustainable energy are underlined. To support this idea, first we have referred some scientific studies previously made on cogeneration systems and then we have used our own case study. The case study made on gas engined cogeneration system was applied for a hospital to show the sustainability aspects of cogeneration systems.

  19. A preliminary examination of the economics of cogeneration with fusion plants

    International Nuclear Information System (INIS)

    Hazelrigg, G.A.; Coleman, D.E.

    1983-01-01

    Cogeneration, the process of using reject heat from electric energy generation plants, offers substantial savings in energy consumption and thus is likely to see increased implementation, especially in the form of district heating, over the next few decades. The use of fusion plants for cogeneration offers added advantages of potentially low marginal costs and reduced siting restrictions compared to nuclear and coal plants, and freedom from use of limited fossil fuels. Fusion can thus provide increased economic incentive to the implementation of cogeneration systems. Conversely, cogeneration improves the economics of fusion and thus provides both added incentive for its development and reduced economic requirements on commercial fusion technologies

  20. Steam process cogeneration using nuclear energy

    International Nuclear Information System (INIS)

    Alonso, G.; Ramirez, R.

    2010-10-01

    Use of energy in a sustainable manner is to make processes more efficient. Oil industry requires of electricity and steam for refinery and petrochemical processes, nuclear energy can be a clean energy alternative. Cogeneration is an option to be assessed by Mexico to provide additional value to electricity generation. Mexico is a country with oil resources that requires process heat for gasoline production among other things. With the concern about the climate change and sustain ability policies it is adequate to use cogeneration as a way to optimize energy resources. Currently there is a national program that considers cogeneration for several Mexican refineries, and the first choices are combined cycle plants and thermo power plants using residual oil. This is long term program. The pebble bed modular reactor (PBMR) is a next generation reactors that works with very high temperatures that can be used to produce steam process along with electricity, in this work two different couplings are assessed for the PBMR reactor to produce steam process, the two couplings are compared for using in the Mexican refineries and some conclusions are given. (Author)

  1. Grid integration policies of gas-fired cogeneration in Peninsular Malaysia: Fallacies and counterexamples

    Energy Technology Data Exchange (ETDEWEB)

    Shaaban, M., E-mail: m.shaaban@fke.utm.my [Centre of Electrical Energy Systems, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru (Malaysia); Azit, A.H. [Tenaga Nasional Berhad, Wisma TNB, Jalan Timur, 46200 Petaling Jaya, Selangor (Malaysia); Nor, K.M. [Centre of Electrical Energy Systems, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru (Malaysia)

    2011-09-15

    Despite the abundance of natural gas reserves in Malaysia coupled with serious government thrusts to promote cogeneration, its (cogeneration) development pace lags far off expectations. There are widespread fallacies among potential cogeneration developers and concerned professionals that cogeneration is uncompetitive in Malaysia due to existing policies of subsidized gas prices and grid-connection charges. This paper exposes these fallacies through counterexamples of practical cogeneration system design and evaluation of some segments of the industrial and service sectors in Peninsular Malaysia. The electrical and thermal characteristics of the cogeneration were modeled based on heat rate characteristics at partial loading patterns. A hierarchical mathematical programming approach that uses mixed-integer nonlinear optimization and dynamic programming principle, if necessary, is employed to determine the optimal size of cogeneration and its related auxiliary equipment as well as the optimal operation schedule. Financial assessment is integrated at a later stage to assess the economic viability of the system. Analyses of the cogeneration potential for several facilities of miscellaneous activities were carried out using various gas and electricity prices. Results obtained consistently rebuff the perpetuated fallacies and confirm that there is no real barrier to cogeneration development in Malaysia under current policies of gas prices and electricity tariffs. - Highlights: > Mixed-integer nonlinear programming and dynamic programming are used in the design. > Various loading levels are modeled and hourly operation schedule is determined. > Standby electricity charge has a minimal impact on cogeneration feasibility. > Gas and electricity prices are interrelated and affect cogeneration investment. > Under existing policies, there is no barrier to cogeneration adoption in Malaysia.

  2. Grid integration policies of gas-fired cogeneration in Peninsular Malaysia: Fallacies and counterexamples

    International Nuclear Information System (INIS)

    Shaaban, M.; Azit, A.H.; Nor, K.M.

    2011-01-01

    Despite the abundance of natural gas reserves in Malaysia coupled with serious government thrusts to promote cogeneration, its (cogeneration) development pace lags far off expectations. There are widespread fallacies among potential cogeneration developers and concerned professionals that cogeneration is uncompetitive in Malaysia due to existing policies of subsidized gas prices and grid-connection charges. This paper exposes these fallacies through counterexamples of practical cogeneration system design and evaluation of some segments of the industrial and service sectors in Peninsular Malaysia. The electrical and thermal characteristics of the cogeneration were modeled based on heat rate characteristics at partial loading patterns. A hierarchical mathematical programming approach that uses mixed-integer nonlinear optimization and dynamic programming principle, if necessary, is employed to determine the optimal size of cogeneration and its related auxiliary equipment as well as the optimal operation schedule. Financial assessment is integrated at a later stage to assess the economic viability of the system. Analyses of the cogeneration potential for several facilities of miscellaneous activities were carried out using various gas and electricity prices. Results obtained consistently rebuff the perpetuated fallacies and confirm that there is no real barrier to cogeneration development in Malaysia under current policies of gas prices and electricity tariffs. - Highlights: → Mixed-integer nonlinear programming and dynamic programming are used in the design. → Various loading levels are modeled and hourly operation schedule is determined. → Standby electricity charge has a minimal impact on cogeneration feasibility. → Gas and electricity prices are interrelated and affect cogeneration investment. → Under existing policies, there is no barrier to cogeneration adoption in Malaysia.

  3. Cogenerators stretch the capital markets

    International Nuclear Information System (INIS)

    Robinson, Danielle.

    1993-01-01

    Independent power generation projects are being planned worldwide. But to finance them, the developers are starting to look increasingly for non-bank sources of funds. Key cogeneration finance deals are discussed in this article. (Author)

  4. Incentives for cogeneration in Italy: Logic and implementation

    International Nuclear Information System (INIS)

    Tomassetti, G.

    1992-01-01

    Within the framework of legal and financial incentives made possible through Italian legislation on cogeneration plants for on-site power generation, this paper reviews the planning criteria that went into the formulation of the incentives and the response obtained from small, medium and large industrial firms. The discussion takes into account the following aspects: the optimal timing of retrofits, national energy conservation and environmental policy objectives, energy surcharges, benefits to consumers as compared with those for energy producers, benefits from incentives as a function of cogeneration plant size, and the technical complexity of application requirements for prospective applicants

  5. A new dynamism for the cogeneration of 2000 - from the medium to the mini-cogeneration; Une nouvelle dynamique pour la cogeneration en l'an 2000 - de la moyenne vers le mini-cogeneration

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    In the framework of the Eco-Industries 2000 meeting, the ATEE organized a colloquium on the medium and mini-cogeneration market. This book presents the fourteen papers proposed at this colloquium bringing information on the cogeneration technology for the medium and mini-systems. The state of the art concerning the turbines and examples of dual systems (heating and warm water) are provided. Some economical aspects are also presented with the international and national market, the contracts management with EDF and the investments. (A.L.B.)

  6. An analysis of the legal and market framework for the cogeneration sector in Croatia

    International Nuclear Information System (INIS)

    Loncar, D.; Duic, N.; Bogdan, Z.

    2009-01-01

    Following a strategic orientation towards sustainable development, the Government of the Republic of Croatia has changed its energy legislation and has put forward a framework for the systematic development and increased use of renewable energy sources and cogeneration. This paper focuses on changes in the regulatory context relevant to the cogeneration sector and also analyses the impact of energy market transition on cogeneration viability in municipal district heating, industry, services and the residential sector. Particular attention has been paid to the expected changes of heat, electricity and gas prices. We present a simple model for quantitative prediction of the cogeneration system profitability at different power levels under given national circumstances. Our findings support a need for a strong institutional support for initial penetration of the micro-cogeneration technologies into the Croatian energy system. (author)

  7. Coal fired air turbine cogeneration

    Science.gov (United States)

    Foster-Pegg, R. W.

    Fuel options and generator configurations for installation of cogenerator equipment are reviewed, noting that the use of oil or gas may be precluded by cost or legislation within the lifetime of any cogeneration equipment yet to be installed. A coal fueled air turbine cogenerator plant is described, which uses external combustion in a limestone bed at atmospheric pressure and in which air tubes are sunk to gain heat for a gas turbine. The limestone in the 26 MW unit absorbs sulfur from the coal, and can be replaced by other sorbents depending on types of coal available and stringency of local environmental regulations. Low temperature combustion reduces NOx formation and release of alkali salts and corrosion. The air heat is exhausted through a heat recovery boiler to produce process steam, then can be refed into the combustion chamber to satisfy preheat requirements. All parts of the cogenerator are designed to withstand full combustion temperature (1500 F) in the event of air flow stoppage. Costs are compared with those of a coal fired boiler and purchased power, and it is shown that the increased capital requirements for cogenerator apparatus will yield a 2.8 year payback. Detailed flow charts, diagrams and costs schedules are included.

  8. Dynamics of decentralization: The case of micro cogeneration diffusion in Germany

    International Nuclear Information System (INIS)

    Praetorius, Barbara; Schneider, Lambert

    2005-01-01

    Micro cogeneration is the simultaneous generation of heat and electricity in small units; it is expected to allow for a higher energy efficiency than separate generation. For Germany, the potential of micro cogeneration has been estimated with about 3 GW. Introduced in a larger scale and as part of a general move towards distributed generation, micro cogeneration may contribute to substantial structural changes on electricity and heat markets. We start with an assessment of existing micro cogeneration technologies, including reciprocating engines, Stirling engines and fuel cells, and describe their characteristics and state of development. Based on a model to calculate costs of micro cogeneration operation, we examine their economic feasibility in Germany in a number of typical applications from an operator's and a societal perspective. On this basis, we explore the actual dynamics of its diffusion in Germany. We analyze the interests, attitudes and strategies of actors concerned with implementing micro cogeneration, such as network operators, appliance industry, gas and electricity suppliers, etc. We explore the impacts of their (diverging) interests and strategies and mirror them with the economic potential and institutional setting for micro cogeneration with respect to competition, grid access and transaction costs. We conclude with assessing barriers for and measures to facilitate the diffusion of micro cogeneration in Germany

  9. The co-generation file

    International Nuclear Information System (INIS)

    Signoret, Stephane; Petitot, Pauline; Mary, Olivier; Sredojevic, Alexandre

    2017-01-01

    Whereas co-generation has many benefits (increase of energy efficiency, decrease of greenhouse gas emissions, job creation, integration of renewable energies, local and efficient production of heat and electricity, and so on), as explained in a first article, it has not enough public support in France any longer, notably for installations of more than 1 MW. However, as shown in some examples (a power and heat plant in Aulnay-sous-Bois, a factory in Graulhet), some co-generation installations have been able to take some benefit from the situation in 2015. Besides, some technological development are addressed: new burners to comply with regulations regarding NO_x and CO emissions, new engines able to operate with various gases such as hydrogen or gas produced by biomass gasification. A last article presents a co-generation boiler installed in a medical care home near Roye in the Somme district

  10. Development of a Robust, Highly Efficient Oxygen-Carbon Monoxide Cogeneration System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This small business innovation research is intended to develop a long-life, highly efficient O2-CO cogeneration system to support NASA's endeavors to pursue...

  11. Aeroderivative gas turbines for cogeneration

    International Nuclear Information System (INIS)

    Horner, M.W.; Thames, J.M.

    1988-01-01

    Aircraft jet engine derivative gas turbines have gained acceptance for cogeneration applications through impressive advances in technology and especially in maintainability and reliability. The best advantages of heavy industrial turbines and of reliable commercial airline jet engines have been successfully joined to meet the requirements for industrial cogeneration service. The next generation is under development and offers improved thermal efficiencies, alternate fuel capabilities, low environmental emissions, flexibility of operation and improved competitive system economics. This paper summarizes the current aero-derivative engine features and advantages with various systems, and discusses advanced features under consideration at this time

  12. Cogeneration at FIAT AVIO (Italy)

    International Nuclear Information System (INIS)

    Cantoni, A.

    1991-01-01

    Brief notes are provided on the FIAT (Italy) - Foster Wheeler joint venture to equip about 20 FIAT manufacturing plants with 50 MW(e) combined cycle cogeneration plants which will make use of a gas turbine whose design is based on that of the successful General Electric aeronautic LM 6000 engine. The paper also discusses solutions, e.g., wet and dry methods, being considered for nitrogen ox des control, and cites the need in Italy for the optimization of Government licensing procedures for small and medium sized manufacturing firms opting for on-site power generation through cogeneration plants

  13. National Laboratory of Synchrotron Radiation: technologic potential

    International Nuclear Information System (INIS)

    Silva, C.E.T.G. da; Rodrigues, A.R.D.

    1987-01-01

    The technological or industrial developments based on the accumulated experience by research group of condensed matter physics, in Brazil, are described. The potential of a National Laboratory of Synchrotron Radiation for personnel training, absorption and adaptation of economically important technologies for Brazil, is presented. Examples of cooperations between the Laboratory and some national interprises, and some industrial applications of the synchrotron radiation are done. (M.C.K.) [pt

  14. Experiences Applying Cogeneration Policies in Europe

    International Nuclear Information System (INIS)

    Marin Nortes, M.

    1997-01-01

    This paper starts by giving overview of the development of cogeneration in the European Union. The percentage of electricity produced by cogeneration is about 10%. The difference among the countries are however very big, ranging from 40% in Denmark to 2% in France. This is because the development of cogeneration in a country depends on a number of different factors. Political and regulatory factors are of a major importance. This paper tries to show this and to examinate a number of cogeneration policies in some countries in Europe. In each case, the reasons why or why not cogeneration has been successful will be analysed. (author)

  15. Residential cogeneration systems: review of the current technology

    International Nuclear Information System (INIS)

    Onovwiona, H.I.; Ugursal, V.I.

    2006-01-01

    There is a growing potential for the use of micro-cogeneration systems in the residential sector because they have the ability to produce both useful thermal energy and electricity from a single source of fuel such as oil or natural gas. In cogeneration systems, the efficiency of energy conversion increases to over 80% as compared to an average of 30-35% for conventional fossil fuel fired electricity generation systems. This increase in energy efficiency can result in lower costs and reduction in greenhouse gas emissions when compared to the conventional methods of generating heat and electricity separately. Cogeneration systems and equipment suitable for residential and small-scale commercial applications like hospitals, hotels or institutional buildings are available, and many new systems are under development. These products are used or aimed for meeting the electrical and thermal demands of a building for space and domestic hot water heating, and potentially, absorption cooling. The aim of this paper is to provide an up-to-date review of the various cogeneration technologies suitable for residential applications. The paper considers the various technologies available and under development for residential, i.e. single-family ( e ) and multi-family (10-30kW t ) applications, with focus on single-family applications. Technologies suitable for residential cogeneration systems include reciprocating internal combustion engine, micro-turbine, fuel cell, and reciprocating external combustion Stirling engine based cogeneration systems. The paper discusses the state of development and the performance, environmental benefits, and costs of these technologies. (author)

  16. Cogeneration system simulation/optimization

    International Nuclear Information System (INIS)

    Puppa, B.A.; Chandrashekar, M.

    1992-01-01

    Companies are increasingly turning to computer software programs to improve and streamline the analysis o cogeneration systems. This paper introduces a computer program which originated with research at the University of Waterloo. The program can simulate and optimize any type of layout of cogeneration plant. An application of the program to a cogeneration feasibility study for a university campus is described. The Steam and Power Plant Optimization System (SAPPOS) is a PC software package which allows users to model any type of steam/power plant on a component-by-component basis. Individual energy/steam balances can be done quickly to model any scenario. A typical days per month cogeneration simulation can also be carried out to provide a detailed monthly cash flow and energy forecast. This paper reports that SAPPOS can be used for scoping, feasibility, and preliminary design work, along with financial studies, gas contract studies, and optimizing the operation of completed plants. In the feasibility study presented, SAPPOS is used to evaluate both diesel engine and gas turbine combined cycle options

  17. National and Sectoral GHG Mitigation Potential

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    This paper compares model estimates of national and sectoral GHG mitigation potential across six key OECD GHG-emitting economies: Australia, Canada, the EU, Japan, Mexico and the US. It examines the implications of model structure, baseline and policy assumptions, and assesses GHG mitigation potential estimates across a variety of models, including models that are used to inform climate policy-makers in each of these economies.

  18. Cogeneration: A new opportunity for energy production market

    International Nuclear Information System (INIS)

    Minghetti, E.

    1997-03-01

    Cogeneration or Combined Heat and Power (CHP) is an advantageous technique based on the simultaneous utilisation of electricity and heat produced. For this purpose existing energetic technologies are used. Cogeneration is based on the thermodynamics principle that producing electricity by combustion process means, at the same time, producing waste heat that can be useful utilised. Three main advantages can be lay out in a cogeneration plant: 1. High efficiency (the global efficiency is often around 80-90%). 2. Economic profit (pay back time is usually not longer than 2-4 years). 3. Low pollutant emissions (as a consequence of the high efficiency less fuel is burned for generating the same quantity of electricity). In this report are analysed various aspects of cogeneration (technical and economical) and the conditions influencing is development. Some figures on the european and national situation are also given. Finally are presented the research and development activities carried out by Italian National Agency for new Technology Energy and the Environment Energy Department to improve the efficiency and the competitiveness of this technology

  19. Gas turbine cogeneration plant for textile dyeing plant in Italy

    International Nuclear Information System (INIS)

    Tonetti, P.E.

    1991-01-01

    This paper reports the information (i.e., notes on specific plant component weaknesses and defects, e.g., exchanger tube fouling, improper positioning of temperature probes, incorrect choice of flow valves, etc., and relative remedial actions) gained during a one year cogeneration plant debugging campaign at the Colorama textile dyeing plant in Italy. The cogeneration plant consists of a Solar Saturn MK III gas turbine (1,080 kw at terminals, 500 degrees C exhaust gas temperature); a double (steam and hot water) circuit waste heat boiler contemporaneously producing, with 100 degrees C supply water, 4 tonnes/h steam at 5 bars and 9 cubic meters/h of 20 to 80 degrees C hot water; and a 1,470 kVA generator operating at 3 kV connected by a 3kV/15kV transformer to the national grid. The plant is protected against fire by independent halon fire protection systems, one for the gas turbine plant, the other, for the control room. A modem connects the plant control and monitoring system with the firm which supplied the equipment. The plant operator cites an urgent national requirement for trained cogeneration equipment technical consultants and designers in order to better promote the use of innovative cogeneration technology by Italian industry

  20. Environmental licensing issues for cogeneration plants

    International Nuclear Information System (INIS)

    Lipka, G.S.; Bibbo, R.V.

    1990-01-01

    The siting and licensing of cogeneration and independent power production (IPP) facilities is a complex process involving a number of interrelated engineering, economic, and environmental impact considerations. Important considerations for the siting and licensing of such facilities include air quality control and air quality impacts, water supply and wastewater disposal, and applicable noise criteria and noise impact considerations. Air quality control and air quality impact considerations for power generation facilities are commonly reviewed in the public forum, and most project developers are generally aware of the key air quality licensing issues. These issues include Best Available Control Technology (BACT) demonstration requirements, and air quality modeling requirements. BACT is a case-by-case determination, which causes uncertainty, in that developers have difficulty in projecting the cost of required control systems. Continuing developments in control technology may cause this problem to continue in the 1990's. Air quality modeling can be a problem in hilly terrain or within or near an urban environment, which could delay or preclude permitting of a new cogeneration or IPP facility in such locations. This paper discusses several environmental issues which are less frequently addressed than air quality issues, namely water/wastewater and noise. The design features of typical cogeneration and IPP facilities that affect water supply requirements, wastewater volumes, and noise emissions are discussed. Then, the site selection and impact review process are examined to identify typical constraints and trade-offs that can develop relative to water, wastewater, and noise issues. Trends in permit review requirements for water, wastewater, and noise are examined. Finally, innovative approaches that can be used to resolve potential development constraints for water, wastewater, and noise issues are discussed

  1. Efficient Use of Cogeneration and Fuel Diversification

    Science.gov (United States)

    Kunickis, M.; Balodis, M.; Sarma, U.; Cers, A.; Linkevics, O.

    2015-12-01

    Energy policy of the European Community is implemented by setting various goals in directives and developing support mechanisms to achieve them. However, very often these policies and legislation come into contradiction with each other, for example Directive 2009/28/EC on the promotion of the use of energy from renewable sources and Directive 2012/27/EU on energy efficiency, repealing Directive 2004/8/EC on the promotion of cogeneration based on a useful heat demand. In this paper, the authors attempt to assess the potential conflicts between policy political objectives to increase the share of high-efficiency co-generation and renewable energy sources (RES), based on the example of Riga district heating system (DHS). If a new heat source using biomass is built on the right bank of Riga DHS to increase the share of RES, the society could overpay for additional heat production capacities, such as a decrease in the loading of existing generating units, thereby contributing to an inefficient use of existing capacity. As a result, the following negative consequences may arise: 1) a decrease in primary energy savings (PES) from high-efficiency cogeneration in Riga DHS, 2) an increase in greenhouse gas (GHG) emissions in the Baltic region, 3) the worsening security situation of electricity supply in the Latvian power system, 4) an increase in the electricity market price in the Lithuanian and Latvian price areas of Nord Pool power exchange. Within the framework of the research, calculations of PES and GHG emission volumes have been performed for the existing situation and for the situation with heat source, using biomass. The effect of construction of biomass heat source on power capacity balances and Nord Pool electricity prices has been evaluated.

  2. Tariffs for natural gas, electricity and cogeneration

    International Nuclear Information System (INIS)

    1995-02-01

    The rate of return of the combined generation of heat and power is not only determined by the capital expenditures and the costs of maintenance, control, management and insurances, but also by the fuel costs of the cogeneration installation and the avoided fuel costs in case of separated heat production, the avoided/saved costs of electricity purchase, and the compensation for possible supply to the public grid (sellback). This brochure aims at providing information about the structure of natural gas and electricity tariffs to be able to determine the three last-mentioned expenditures. First, attention is paid to the tariffs of natural gas for large-scale consumers, the tariff for cogeneration, and other tariffs. Next, the structure of the electricity tariffs is dealt with in detail, discussing the accounting system within the electric power sector, including the alterations in the National Basic Tariff and the Regional Basic Tariff (abbreviated in Dutch LBR, respectively RBT) per January 1, 1995, the compensations for large-scale consumers and specific large-scale consumers, electricity sellback tariffs, and compensations for reserve capacity. 7 figs., 5 tabs., 2 appendices, 7 refs

  3. Performance and operational economics estimates for a coal gasification combined-cycle cogeneration powerplant

    Science.gov (United States)

    Nainiger, J. J.; Burns, R. K.; Easley, A. J.

    1982-01-01

    A performance and operational economics analysis is presented for an integrated-gasifier, combined-cycle (IGCC) system to meet the steam and baseload electrical requirements. The effect of time variations in steam and electrial requirements is included. The amount and timing of electricity purchases from sales to the electric utility are determined. The resulting expenses for purchased electricity and revenues from electricity sales are estimated by using an assumed utility rate structure model. Cogeneration results for a range of potential IGCC cogeneration system sizes are compared with the fuel consumption and costs of natural gas and electricity to meet requirements without cogeneration. The results indicate that an IGCC cogeneration system could save about 10 percent of the total fuel energy presently required to supply steam and electrical requirements without cogeneration. Also for the assumed future fuel and electricity prices, an annual operating cost savings of 21 percent to 26 percent could be achieved with such a cogeneration system. An analysis of the effects of electricity price, fuel price, and system availability indicates that the IGCC cogeneration system has a good potential for economical operation over a wide range in these assumptions.

  4. Cogeneration: Key feasibility analysis parameters

    International Nuclear Information System (INIS)

    Coslovi, S.; Zulian, A.

    1992-01-01

    This paper first reviews the essential requirements, in terms of scope, objectives and methods, of technical/economic feasibility analyses applied to cogeneration systems proposed for industrial plants in Italy. Attention is given to the influence on overall feasibility of the following factors: electric power and fuel costs, equipment coefficients of performance, operating schedules, maintenance costs, Italian Government taxes and financial and legal incentives. Through an examination of several feasibility studies that were done on cogeneration proposals relative to different industrial sectors, a sensitivity analysis is performed on the effects of varying the weights of different cost benefit analysis parameters. With the use of statistical analyses, standard deviations are then determined for key analysis parameters, and guidelines are suggested for analysis simplifications

  5. The performance of residential micro-cogeneration coupled with thermal and electrical storage

    Science.gov (United States)

    Kopf, John

    Over 80% of residential secondary energy consumption in Canada and Ontario is used for space and water heating. The peak electricity demands resulting from residential energy consumption increase the reliance on fossil-fuel generation stations. Distributed energy resources can help to decrease the reliance on central generation stations. Presently, distributed energy resources such as solar photovoltaic, wind and bio-mass generation are subsidized in Ontario. Micro-cogeneration is an emerging technology that can be implemented as a distributed energy resource within residential or commercial buildings. Micro-cogeneration has the potential to reduce a building's energy consumption by simultaneously generating thermal and electrical power on-site. The coupling of a micro-cogeneration device with electrical storage can improve the system's ability to reduce peak electricity demands. The performance potential of micro-cogeneration devices has yet to be fully realized. This research addresses the performance of a residential micro-cogeneration device and it's ability to meet peak occupant electrical loads when coupled with electrical storage. An integrated building energy model was developed of a residential micro-cogeneration system: the house, the micro-cogeneration device, all balance of plant and space heating components, a thermal storage device, an electrical storage device, as well as the occupant electrical and hot water demands. This model simulated the performance of a micro-cogeneration device coupled to an electrical storage system within a Canadian household. A customized controller was created in ESP-r to examine the impact of various system control strategies. The economic performance of the system was assessed from the perspective of a local energy distribution company and an end-user under hypothetical electricity export purchase price scenarios. It was found that with certain control strategies the micro-cogeneration system was able to improve the

  6. Cogeneration offers promise - politics permitting

    Energy Technology Data Exchange (ETDEWEB)

    Koprowski, Gene

    1996-12-01

    India`s Prime Minister H D Deve Gowda and the environmental activist Maneka Gandhi clashed recently over a US1.06 billion cogeneration power plant. Gandhi accused Gowda of moving too fast in giving the plant environmental clearance two days after assuming office. The argument, which delayed the start of a new thermal power plant by US-based Cogenetrix, illustrates the hazards of building such projects in Asia. (author)

  7. Klickitat Cogeneration Project : Final Environmental Assessment.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration; Klickitat Energy Partners

    1994-09-01

    To meet BPA`s contractual obligation to supply electrical power to its customers, BPA proposes to acquire power generated by Klickitat Cogeneration Project. BPA has prepared an environmental assessment evaluating the proposed project. Based on the EA analysis, BPA`s proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act of 1969 for the following reasons: (1)it will not have a significant impact land use, upland vegetation, wetlands, water quality, geology, soils, public health and safety, visual quality, historical and cultural resources, recreation and socioeconomics, and (2) impacts to fisheries, wildlife resources, air quality, and noise will be temporary, minor, or sufficiently offset by mitigation. Therefore, the preparation of an environmental impact statement is not required and BPA is issuing this FONSI (Finding of No Significant Impact).

  8. Klickitat Cogeneration Project: Final environmental assessment

    International Nuclear Information System (INIS)

    1994-09-01

    To meet BPA's contractual obligation to supply electrical power to its customers, BPA proposes to acquire power generated by Klickitat Cogeneration Project. BPA has prepared an environmental assessment evaluating the proposed project. Based on the EA analysis, BPA's proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act of 1969 for the following reasons: (1)it will not have a significant impact land use, upland vegetation, wetlands, water quality, geology, soils, public health and safety, visual quality, historical and cultural resources, recreation and socioeconomics, and (2) impacts to fisheries, wildlife resources, air quality, and noise will be temporary, minor, or sufficiently offset by mitigation. Therefore, the preparation of an environmental impact statement is not required and BPA is issuing this FONSI (Finding of No Significant Impact)

  9. Potential of the Kakadu National Park Region

    Energy Technology Data Exchange (ETDEWEB)

    1988-01-01

    The Committee reviewed the potential of the Kakadu National Park region in the Northern Territory with particular reference to the nature of the resources available for exploitation and the impact of utilisation of these resources, particularly mining and tourism. Individual chapters discuss the Park, tourism, mineral resources (particularly the environmental and economic impacts of the Ranger Uranium Mine and the potential impacts of mining the Koongarra and Jabiluka deposits), the town of Jabiru, commercial fishing, other issues (the scientific resource, crocodiles, introduced species and fire), and park management and control (including a review of the role of the Office of the Supervising Scientist for the Alligator Rivers Region). A number of recommendations are made and the dissenting report of three of the Committee's members is included.

  10. Comparative economic evaluation of environmental impact of different cogeneration technologies

    International Nuclear Information System (INIS)

    Patrascu, Roxana; Athanasovici, Victor; Raducanu, Cristian; Minciuc, Eduard; Bitir-Istrate, Ioan

    2004-01-01

    Cogeneration is one of the most powerful technologies for reduction of environmental pollution along with renewable energies. At the Kyoto Conference cogeneration has been identified as being the most important measure for reducing emissions of greenhouse effect gases. It has also been mentioned that cogeneration has a potential of reducing pollution with about 180 million tones per year. In order to promote new cogeneration technologies and evaluate the existing ones it is necessary to know and to be able to quantify in economical terms the environmental issues. When comparing different cogeneration technologies: steam turbine (TA), gas turbine (TG), internal combustion engine (MT), in order to choose the best one, the final decision implies an economic factor, which is even more important if it includes the environmental issues. The environmental impact of different cogeneration technologies is quantified using different criteria: depletion of non-renewable natural resources, eutrofisation, greenhouse effect, acidification etc. Environmental analysis using these criteria can be made using the 'impact with impact' methodology or the global one. The results of such an analysis cannot be quantified economically directly. Therefore there is a need of internalisation of ecological effects within the costs of produced energy: electricity and heat. In the energy production sector the externalizations represent the indirect effects on the environment. They can be materialised within different types of environmental impact: - Different buildings of mines, power plants etc; - Fuel losses during transportation and processing; - Effect of emissions in the air, water and soil. Introduction of the environmental impact costs in the energy price is called internalisation and it can be made using the direct and indirect methods. The paper discusses aspects regarding the emissions of cogeneration systems, the eco-taxes - method of 'internalisation' of environmental

  11. Cogeneration, renewables and reducing greenhouse gas emissions

    International Nuclear Information System (INIS)

    Naughten, B.; Dlugosz, J.

    1996-01-01

    The MENSA model is used to assess the potential role of cogeneration and selected new renewable energy technologies in cost-effectively reducing Greenhouse gas emissions. The model framework for analyzing these issues is introduced, together with an account of relevant aspects of its application. In the discussion of selected new renewable energy technologies, it is shown how microeconomic reform may encourage these technologies and fuels, and thereby reduce sector wide carbon dioxide emissions. Policy scenarios modelled are described and the simulation results are presented. Certain interventions in microeconomic reform may result in economic benefits while also reducing emissions: no regrets' opportunities. Some renewable energy technologies are also shown to be cost-effective in the event that targets and timetables for reducing Greenhouse gas emissions are imposed. However, ad hoc interventions in support of particular renewables options are unlikely to be consistent with a least cost approach to achieving environmental objectives. (author). 5 tabs., 5 figs., 21 refs

  12. High temperature reactors for cogeneration applications

    Energy Technology Data Exchange (ETDEWEB)

    Verfondern, Karl [Forschungszentrum Juelich (Germany). IEK-6; Allelein, Hans-Josef [Forschungszentrum Juelich (Germany). IEK-6; RWTH Aachen (Germany). Lehrstuhl fuer Reaktorsicherheit und -technik (LRST)

    2016-05-15

    There is a large potential for nuclear energy also in the non-electric heat market. Many industrial sectors have a high demand for process heat and steam at various levels of temperature and pressure to be provided for desalination of seawater, district heating, or chemical processes. The future generation of nuclear plants will be capable to enter the wide field of cogeneration of heat and power (CHP), to reduce waste heat and to increase efficiency. This requires an adjustment to multiple needs of the customers in terms of size and application. All Generation-IV concepts proposed are designed for coolant outlet temperatures above 500 C, which allow applications in the low and medium temperature range. A VHTR would even be able to cover the whole temperature range up to approx. 1 000 C.

  13. Modular cogeneration for commercial light industrial sector

    Energy Technology Data Exchange (ETDEWEB)

    Sakhuja, R.

    1984-01-01

    An analysis of gas utilities' efforts to market small cogeneration systems could be helpful to entrepreneurs now venturing into this area. Orders have been placed with Thermo Electron, USA for 15 Tecogen modular cogeneration units. Applications range from an airline catering kitchen to a university swimming pool. 5 figures, 1 table.

  14. Tax issues in structuring effective cogeneration vehicles

    International Nuclear Information System (INIS)

    Yukich, J.M.

    1999-01-01

    A general overview of the Canadian income tax laws under which cogeneration plants will operate was presented. Highlights of some of the more important tax issues associated with cogeneration operations were included. This includes some of the specific rules dealing with the availability of the Manufacturing and Processing tax, credit, capital cost allowance, the Specified Energy Property rules and the tax treatment of Canadian Renewable and Conservation Expenses including the ability of a company to transfer such expenses to shareholders. Since it is expected that future cogeneration plants will have more than one owner, this paper reviewed the various legal structures through which multiple owners can own and run their cogeneration operations. Tax considerations related to the scale of a cogeneration plant were also reviewed

  15. ASPEN simulation of cogeneration plants

    Energy Technology Data Exchange (ETDEWEB)

    Ligang Zheng [CANMET Energy Technology Center, Natural Resources Canada, Nepean, ONT (Canada); Furimsky, E. [IMAG Group, Ottawa, ONT (Canada)

    2003-07-01

    A detailed flow sheet of the combined cycle cogeneration plant fuelled by natural gas was prepared. The model for simulation of this plant was developed using the ASPEN PLUS software. The results generated using this model were compared with the operating data of the commercial plant generating about 43.6 MW of electricity by gas turbine and 28.6 MW of electricity by steam turbine. The electricity is supplied to the grid, whereas the low pressure steam is utilised locally for heating purposes. The key data generated using the ASPEN model are in good agreement with the operating data. (author)

  16. ASPEN simulation of cogeneration plants

    Energy Technology Data Exchange (ETDEWEB)

    Zheng Ligang E-mail: lzheng@nrcan.gc.ca; Furimsky, Edward

    2003-07-01

    A detailed flow sheet of the combined cycle cogeneration plant fuelled by natural gas was prepared. The model for simulation of this plant was developed using the ASPEN PLUS software. The results generated using this model were compared with the operating data of the commercial plant generating about 43.6 MW of electricity by gas turbine and 28.6 MW of electricity by steam turbine. The electricity is supplied to the grid, whereas the low pressure steam is utilised locally for heating purposes. The key data generated using the ASPEN model are in good agreement with the operating data.

  17. ASPEN simulation of cogeneration plants

    International Nuclear Information System (INIS)

    Zheng Ligang; Furimsky, Edward

    2003-01-01

    A detailed flow sheet of the combined cycle cogeneration plant fuelled by natural gas was prepared. The model for simulation of this plant was developed using the ASPEN PLUS software. The results generated using this model were compared with the operating data of the commercial plant generating about 43.6 MW of electricity by gas turbine and 28.6 MW of electricity by steam turbine. The electricity is supplied to the grid, whereas the low pressure steam is utilised locally for heating purposes. The key data generated using the ASPEN model are in good agreement with the operating data

  18. Metamorphoses of cogeneration-based district heating in Romania: A case study

    International Nuclear Information System (INIS)

    Iacobescu, Flavius; Badescu, Viorel

    2011-01-01

    The paper presents the birth and evolution of the cogeneration-based district heating (DH) system in a medium size city in Romania (Targoviste). The evolution of the industrialization degree was the main factor which controlled the population growth and led to a continuous reconfiguration of the DH system. The DH system assisted by cogeneration emerged as a solution in a certain phase of the demographic development of the city. The political and social changes occurring in Romania after 1990 have had important negative consequences on the DH systems in small towns. In Targoviste the DH system survived but in 2001 the solution based on cogeneration became economically inefficient, due to the low technical quality of the existing equipment and the low gas prices, to the procedure of setting the DH tariffs and the service cost at consumer's level and to some bureaucratic problems. Energy policy measures taken at national and local levels in 2003 and 2005 led to the re-establishment of the cogeneration-based district heating in 2005. However, a different technical solution has been adopted. Details about the present (2009) cogeneration-based DH system in Targoviste are presented together with several technical and economical indicators. The main conclusion is that by a proper amendment of the technical solutions, cogeneration could be a viable solution for DH even in case of abrupt social and demographic changes, such as those occurring in Romania after 1990. - Research Highlights: →Birth and evolution of the cogeneration-based district heating system in a medium size city. →The industrialization degree is the main factor which controlled the reconfiguration of the district heating system. →Each stage of the evolution of district heating system has been a technological leap. →Cogeneration is a solution for district heating even in case of abrupt social changes.

  19. District heating and co-generation in Slovenia

    International Nuclear Information System (INIS)

    Hrovatin, Franc; Pecaric, Marko; Perovic, Olgica

    2000-01-01

    Recent development of district heating systems, gasification and co-generation processes in local communities in Slovenia as well as current status, potentials, possibilities and plans for further development in this sphere are presented. The current status presents energy production, distribution and use in district heating systems and in local gas distribution networks. An analysis of the energy and power generated and distributed in district power systems, made with regard to the size of the system, fuel used, type of consumers and the way of production, is given. Growth in different areas of local power systems in the period of last years is included. Potentials in the sphere of electrical energy and heat co-generation were assessed. Some possibilities and experience in heat energy storage are given and trends and plans for further development are introduced. (Authors)

  20. Bio based cogeneration plants in Sweden; Biobaserte kraftvarmeverk i Sverige

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    Cogeneration plants using bio fuel need a certificate in the Swedish electricity certificate system. Since the initiation of the system in 2003 the plants have taken advantage of the possibility of switching from fossil, to bio fuel. However, there is a potential for additional bio power production, provided that there is a market for the produced heating. The certificate system may contribute to an acceleration of investments in new capacities, and the facilitation of increased bio power production.

  1. Cogeneration and the regulatory framework of energy law; Kraft-Waerme-Kopplung und der energiewirtschaftliche Ordnungsrahmen

    Energy Technology Data Exchange (ETDEWEB)

    Cornehl, Angelika Bettina

    2009-06-15

    The present publication shows that the existing regulatory framework poses numerous impediments to cogeneration plants. This holds especially for industrial operators, but also for municipalities. It has prevented cogeneration from developing its full potential both as an element of competition and as a relief for the environment. Unlike industrial cogeneration plants, those serving the public energy supply at least enjoy the privilege of regional monopoly rights. In today's liberalised electricity market, however, this can be a burden for existing municipal plants which were installed under territorial protection and in many cases have incurred high cost levels and become inflexible and lacking in entrepreneurial spirit as a result. On account of its tendency to promote optimal resource input and efficiency, competition promises positive impulses for the use of cogeneration in small-scale heat grids, where high fuel efficiency matters more. A reform of the competition regime in the power economy would eliminate numerous impediments, particularly for industrial cogeneration operators. Good hopes for the future of cogeneration in a liberalised electricity and gas market are also nurtured by cooperative supply concepts and, within the large domain of services, opportunities held out by special contracting offers.

  2. Evolution of Italian environmental normative on cogeneration and application of Law 10/91

    International Nuclear Information System (INIS)

    Piancastelli, E.

    1992-01-01

    From the Proceedings of the FIRE (Italian Federation for the Rational use of Energy), December 12 - 13, 1991, meeting, separate abstracts were prepared for 2 papers. The main topics were: the planning criteria that went into the formulation of the incentives made possible through Italian legislation on cogeneration plants for on-site power generation and the response obtained from small, medium and large industrial firms; the evaluation of cogeneration plants for on-site power generation to allow prospective cogeneration plant owners to build energy/cost efficient plants and to be able to make a proper assessment of eligible financial assistance which may be obtained through the provisions of energy conservation/environmental protection normatives and laws set up by the Italian National Energy Plan; and the determination of optimal contracts with ENEL (the Italian National Electricity Board), especially for the case of excess power to be ceded to the national grid

  3. Tax issues in structuring effective cogeneration vehicles

    International Nuclear Information System (INIS)

    Ebel, S.R.

    1999-01-01

    An overview of the Canadian income tax laws that apply to cogeneration projects was presented. Certain tax considerations could be taken into account in deciding upon ownership and financing structures for cogeneration projects, particularly those that qualify for class 43.1 capital cost allowance treatment. The tax treatment of project revenues and expenses were described. The paper also reviewed the 1999 federal budget proposals regarding the manufacturing and processing tax credit, the capital cost allowance system applicable to cogeneration assets and the treatment of the Canadian renewable conservation expense

  4. Exergoeconomic analysis of small-scale biomass steam cogeneration

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Sotomonte, Cesar Adolfo; Lora, Electo Eduardo Silva [Universidade Federal de Itajuba, MG (Brazil)], e-mails: c.rodriguez32@unifei.edu.br, electo@unifei.edu.br; Venturini, Osvaldo Jose; Escobar, Jose Carlos [Universidad Federal de Itajuba, MG (Brazil)], e-mail: osvaldo@unifei.edu.br

    2010-07-01

    The principal objective of this work is to develop a calculation process, based on the second law of thermodynamics, for evaluating the thermoeconomic potential of a small steam cogeneration plant using waste from pulp processing and/or sawmills as fuel. Four different configurations are presented and assessed. The exergetic efficiency of the cycles that use condensing turbines is found to be around 11%, which has almost 3 percent higher efficiency than cycles with back pressure turbines. The thermoeconomic equations used in this paper estimated the production costs varying the fuel price. The main results show that present cost of technologies in a small-scale steam cycle cogeneration do not justify the implementation of more efficient systems for biomass prices less than 100 R$/t. (author)

  5. 'BACO' code: Cogeneration cycles heat balance

    International Nuclear Information System (INIS)

    Huelamo Martinez, E.; Conesa Lopez, P.; Garcia Kilroy, P.

    1993-01-01

    This paper presents a code, developed by Empresarios Agrupados, sponsored by OCIDE, CSE and ENHER, that, with Electrical Utilities as final users, allows to make combined and cogeneration cycles technical-economical studies. (author)

  6. Performance evaluation of cogeneration power plants

    International Nuclear Information System (INIS)

    Bacone, M.

    2001-01-01

    The free market has changed the criteria for measuring the cogeneration plant performances. Further at the technical-economic parameters, are considered other connected at the profits of the power plant [it

  7. Semi-catalyzed deuterium reactors for co-generation of 3He and synfuels (the CoSCD concept)

    International Nuclear Information System (INIS)

    1980-01-01

    The potential of developing semi-catalyzed deuterium reactors for co-generation of 3 He and synthetic fuels is discussed. Such factors as environmental impact, siting, energy basics, and engineering technology are also discussed

  8. Biomass cogeneration: industry response for energy security and environmental consideration

    International Nuclear Information System (INIS)

    Bacareza-Pacudan, L.; Lacrosse, L.; Pennington, M.; Dale Gonzales, A.

    1999-01-01

    Biomass occurs in abundance in the highly agricultural-based countries of South-East Asia. If these are processed in the wood and agro-processing industries, large volumes of residues are generated. The residue are potential sources of energy which the industries can tap through the use of cogeneration systems, in order to meet their own thermal and electrical requirements. This will reduce the industry's dependence on power from the grid and thus increase their own self-sufficiency in terms of energy. Biomass cogeneration brings the environmental, as well as economic benefits to the industries. It makes use of clean and energy-efficient technologies and utilises biomass as fuels which cause less environment al pollution and the greenhouse effect, as against the use of fossil fuels. A particular mill that embarks on biomass cogeneration is also able to realise, among others, income from the export of excess electricity to the grid. Biomass residue if not used for other purposes have negative values as they need to be disposed of. They can, however, be profit-generating as well. (Author)

  9. Electricity transport regimes: their impact on cogeneration

    Energy Technology Data Exchange (ETDEWEB)

    Cotard, Erwan [COGEN, Europe (Belgium)

    2000-12-01

    In many cases the main product of cogeneration is heat and the surplus electricity is sold to the grid. However, the economics of cogeneration can be influenced by transport networks (transmission and distribution): the structure of network pricing is relatively new. In a recent note from COGEN Europe it was recommended that cogenerators who use only the local distribution system should not pay for the transmission system and that tariffs should be structured in sufficient detail for the advantages of decentralisation to be realised. The article is presented under the sub-headings of (i) why is this important? (the omission of the transmission element reduces the overall price of cogeneration); (ii) the advantages of decentralised cogeneration; (iv) the theory - the different systems (the European Directive on electricity market liberalization); (v) the options for transport fees; (vi) current regimes in some EU states (vii) the case of transborder transport; impact of each system on cogeneration; recommendations to policymakers; (viii) the Netherlands and (ix) the UK.

  10. NOAA C-CAP National Wetland Potential

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The probability rating which covers landcover mapping provides a continuum of wetness from dry to water. The layer is not a wetland classification but provides the...

  11. Exergy analysis of a cogeneration power plant

    International Nuclear Information System (INIS)

    Núñez Bosch, Osvaldo Manuel

    2015-01-01

    In the following study exergetic evaluation of a cogeneration power plant in operation with installed electrical capacity of 24 MW and process heat demand of 190 MW it is performed. The main objective of the research was to determine the influence of the increase in power generation capacity, raising the superheated steam parameters and the number of regenerative heaters on the second law efficiency and irreversibilities in the different components of the plant. To study the power plant was divided into subsystems: steam generator blowdown expander, main steam pipe, steam turbine regenerative heaters, reduction system, deaerator and pumps. The study results show that exergy losses and irreversibilities differ widely from one subsystem to another. In general, the total irreversibility accounted for 70.7% of primary fuel availability. The steam generator subsystem had the highest contribution to the irreversibility of the plant by 54%. It was determined that the increased steam parameters helps reduce the irreversibility and increase the exergetic efficiency of installation. The suppression of the reduction and incorporation of extraction-condensing turbine produce the same effect and helps to reduce power consumption from the national grid. Based on the results recommendations for improving plant efficiency are made. (full text)

  12. Natural gas purchasing for cogeneration projects

    International Nuclear Information System (INIS)

    Kubacki, J. Jr.

    1992-01-01

    This paper reports on the primary cost component for most gas-fired cogeneration or on-site power projects, cost of natural gas. Often gas comprises 50 to 65% of total project costs over the life of the project. Thus it is very important to focus on natural gas sourcing, pricing, transportation and storage. This important task should not be blindly delegated to a gas supplier. The end user must develop a gas strategy that results in the most cost-effective burnertip price. Long-term natural gas supplies are usually source from the three major producing regions: Mod-Continent, Gulf Coast, and Western Canada. A well-reasoned gas strategy must include: determination of transportation and distribution options from the project site to potential gas sources (including direct interconnection of the project to interstate pipelines); acquisition of competitive gas bids from suppliers in appropriate regions; negotiation of potential discounts from interstate pipelines and local distribution companies (LDCs); fine-tuning project economics by, for example, using storage to maximize transportation load factor; and pricing mechanisms that meet economic parameters of the project. This paper uses a hypothetical project in the Midwest to examine the major factors in devising a cost-effective natural gas sourcing

  13. Distributed cogeneration for commercial buildings: Can we make the economics work?

    International Nuclear Information System (INIS)

    Siler-Evans, Kyle; Morgan, M. Granger; Azevedo, Inês Lima

    2012-01-01

    Although the benefits of distributed cogeneration are widely cited, adoption has been slow in the United States. Adoption could be encouraged by making cogeneration more economically attractive, either by increasing the expected returns or decreasing the risks of such investments. We evaluate the expected returns from demand response, capacity markets, regulation markets, accelerated depreciation, pricing CO 2 emissions, and net metering. We find that (1) there is an incentive to overcommit in the capacity market due to lenient non-response penalties, (2) there is significant revenue potential in the regulation market, though demand-side resources are yet to participate, (3) a price on CO 2 emissions will make cogeneration more attractive relative to conventional, utility-supplied energy, and (4) accelerated depreciation is an easy and effective mechanism for improving the economics of cogeneration. We go on to argue that uncertainty in fuel and electricity prices present a significant risk to cogeneration projects, and we evaluate the effectiveness of feed-in tariffs at mitigating these risks. We find that guaranteeing a fixed electricity payment is not effective. A two-part feed-in tariff, with an annual capacity payment and an energy payment that adjusts with fuel costs, can eliminate energy-price risks. - Highlights: ► A case study is used to evaluate strategies for improving the economics of cogeneration. ► Strategies include demand response, capacity and regulation markets, net metering. ► Volatile energy prices present a significant risk to cogeneration projects. ► We explore mitigating energy-price risks with feed-in tariffs.

  14. Towards an intermittency-friendly energy system: Comparing electric boilers and heat pumps in distributed cogeneration

    International Nuclear Information System (INIS)

    Blarke, Morten B.

    2012-01-01

    Highlights: ► We propose an “intermittency-friendly” energy system design. ► We compare intermittency-friendly concepts in distributed cogeneration. ► We investigate a new concept involving a heat pump and intermediate cold storage. ► We find significant improvements in operational intermittency-friendliness. ► Well-designed heat pump concepts are more cost-effective than electric boilers. -- Abstract: Distributed cogeneration has played a key role in the implementation of sustainable energy policies for three decades. However, increasing penetration levels of intermittent renewables is challenging that position. The paradigmatic case of West Denmark indicates that distributed operators are capitulating as wind power penetration levels are moving above 25%; some operators are retiring cogeneration units entirely, while other operators are making way for heat-only boilers. This development is jeopardizing the system-wide energy, economic, and environmental benefits that distributed cogeneration still has to offer. The solution is for distributed operators to adapt their technology and operational strategies to achieve a better co-existence between cogeneration and wind power. Four options for doing so are analysed including a new concept that integrates a high pressure compression heat pump using low-temperature heat recovered from flue gasses in combination with an intermediate cold storage, which enables the independent operation of heat pump and cogenerator. It is found that an electric boiler provides consistent improvements in the intermittency-friendliness of distributed cogeneration. However, well-designed heat pump concepts are more cost-effective than electric boilers, and in future markets where the gas/electricity price ratio is likely to increase, compression heat pumps in combination with intermediate thermal storages represent a superior potential for combining an intermittency-friendly pattern of operation with the efficient use of

  15. Collaborative Potential between National Estuary Programs ...

    Science.gov (United States)

    Estuaries are among the most productive ecosystems in the world, providing unique habitat for freshwater and marine species as well as valuable social and economic benefits. The wealth of ecosystem goods and services from estuaries has led to growth and development of human communities in adjacent areas and an increase in human activities that can adversely affect water quality and critical habitat. Managing for sustainable estuaries requires a balance of environmental concerns with community social and economic values. This has created an opportunity to leverage Environmental Protection Agency (EPA) scientific knowledge and tools with National Estuary Program (NEP) planning and management expertise to address environmental challenges in important estuarine ecosystems. The non-regulatory National Estuary Program (NEP) was outlined in the Clean Water Act to provide stakeholders an opportunity to monitor and manage ‘nationally significant’ estuaries. Currently there are 28 estuaries in the NEP, broadly distributed across the Atlantic, Pacific and Gulf Coasts, and in Puerto Rico. The local NEP management conferences must address a variety of environmental issues, from water quality and natural resources to coastal and watershed development. While the underlying objectives of each NEP are quite similar, each has unique landscapes, land uses, waterbodies, habitats, biological resources, economies and social culture. Consequently, the effects and severity of anthr

  16. CANDU co-generation opportunities

    International Nuclear Information System (INIS)

    Meneley, D.A.; Duffey, R.B.; Pendergast, D.R.

    2000-01-01

    Modern technology makes use of natural energy 'wealth' (uranium) to produce useful energy 'currency' (electricity) that can be used to society's benefit. This energy currency can be further applied to help solve a difficult problem faced by mankind. Within the next few years we must reduce our use of the same fuels which have made many countries wealthy - fossil fuels. Fortunately, electricity can be called upon to produce another currency, namely hydrogen, which has some distinct advantages. Unlike electricity, hydrogen can be stored and can be recovered for later use as fuel. It also is extremely useful in chemical processes and refining. To achieve the objective of reducing greenhouse gas emissions hydrogen must, of course, be produced using a method which does not emit such gases. This paper summarizes four larger studies carried out in Canada in the past few years. From these results we conclude that there are several significant opportunities to use nuclear fission for various co-generation technologies that can lead to more appropriate use of energy resources and to reduced emissions. (author)

  17. FY 2001 report on the survey of the formation promotion subsidy project on the environmentally friendly type energy community. Potential survey of the commercialization of cogeneration using ligneous biomass in Kochi Prefecture; 2001 nendo kankyo chowa gata energy komyuniti keisei sokushin hojo jigyo. Kochi ken mokushitsu kei baiomasu riyo netsuden heikyu jigyoka kanosei chosa itaku gyomu hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-03-01

    Survey/study were conducted of potentiality of the cogeneration business using ligneous biomass in Kami County and the periphery of Kochi Prefecture. In the survey, the following were studied: regional characteristics of the said area, levels of technology of direct combustion/thermochemical conversion, future technical trends, system candidate, grasp/analysis of the resource amount, characteristics of ligneous biomass resource in the said area, analysis of economical efficiency of the procurement of biomass resource, grasp of energy users, etc. As a result, a system was selected of a 1,000kW scale cogeneration of ligneous resource. At the present technology level and under scale conditions, it was found out that the fixed bed direct combustion system was the most profitable in securing the economical realization. As to the system mostly for power generation, however, it was found out that the heat low in unit price of energy production should widely be used because the installation cost of plant is comparatively high. Facilities such as Kochi Medical Center where heat is in great demand throughout the year can expect profit from selling heat, and therefore, those have high potentiality of the commercialization. (NEDO)

  18. Rational use of energy and cogeneration in Argentina; Uso racional de la energia y la cogeneracion en Argentina

    Energy Technology Data Exchange (ETDEWEB)

    Sosa, M.I. [Universidad Nacional de La Plata (GECCU/UNLP), Buenos Aires (Argentina). Fac. de Ingenieria. Sistemas de Generacion de Energia, Cogeneracion, Ciclos Combinados, Uso Racional de la Energia], E-mail: misosa@ing.unlp.edu.ar

    2009-07-01

    In this paper we discuss the energy situation in Argentina and indicates possibilities for the implementation of cogeneration projects in the industrial sector, which would include energy generated by a centralized system, without additional consumption of primary resources. We discuss the physical potential of cogeneration and regulatory barriers that do not assist in its implementation. Mentioned government measures on rational and efficient use of energy.

  19. Life cycle inventory of electricity cogeneration from bagasse in the South African sugar industry

    CSIR Research Space (South Africa)

    Mashoko, L

    2013-01-01

    Full Text Available The South African sugar industry has a potential for cogeneration of steam and electricity using bagasse. The sugar industry has the potential to generate about 960 MW per year from bagasse based on the average of 20 million tons of sugar cane...

  20. Co-Generation and Renewables: Solutions for a Low-Carbon Energy Future

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    Co-generation and renewables: solutions for a low-carbon energy future shows that powerful synergies exist when co-generation and renewables work together. The report documents, for the first time, some of the little-known complementary aspects of the two technologies. It also re-emphasises the stand-alone benefits of each technology. Thus, decision makers can use the report as a 'one-stop shop' when they need credible information on co-generation, renewables and the possible synergies between the two. It also provides answers to policy makers' questions about the potential energy and environmental benefits of an increased policy commitment to both co-generation and renewables. Secure, reliable, affordable and clean energy supplies are fundamental to economic and social stability and development. Energy and environmental decision-makers are faced with major challenges that require action now in order to ensure a more sustainable future. More efficient use of, and cleaner primary energy sources can help to achieve this goal. Co-generation -- also known as combined heat and power (CHP) -- represents a proven, cost-effective and energy-efficient solution for delivering electricity and heat. Renewable sources provide clean and secure fuels for producing electricity and heat.

  1. Gas cogeneration system in Sapporo Therme

    Energy Technology Data Exchange (ETDEWEB)

    Kanematsu, Michihiko

    1988-06-01

    Sapporo Therme is a multi-purpose resort including a hot-water jumbo swimming pool having an area of about 130,000m/sup 2/ and a circumference of 800 m, 13 additional swimming pools with additional sizes, a hot-water slider, 16 types of saunas, an artificial sunbathing system, an athletic system, a restaurant, a cinema, tennis courts, and other outdoor facilities. Sapporo Therme uses a cogeneration system consisting of using LP gas(95% or more propane gas) to drive a 1,200 PS gas engine and supply motive power and lightening. At the same time, the cogeneration system collects gas engine waste heat and combines this heat with that from hot-water and steam boilers to supply hot water to swimming pools, roads, and room heaters. The ratio of waste heat collection rate to power generation efficiency is about 5.0. Sapporo Therme is thus the optimal facilities for cogeneration. (1 figs, 3 photos)

  2. Extra cogeneration step seen boosting output 20%

    Energy Technology Data Exchange (ETDEWEB)

    Burton, P.

    1984-10-08

    Cogenerators can now buy a prototype 6.5 MW, pre-packaged cogeneration system that incorporates an added step to its cycle to reduce fuel use by 21%. Larger, custom-designed systems will be on the market in 1985. Fayette Manufacturing Co. will offer the Kalina Cycle system at a discount price of $8.2 million (1200/kW) until the systems are competitive with conventional units. The system varies from conventional cogeneration systems by adding a distillation step, which permits the use of two fluids for the turbine steam and operates at a higher thermodynamic efficiency, with boiling occuring at high temperature and low pressure. Although theoretically correct, DOE will withhold judgment on the system's efficiency until the first installation is operating.

  3. Cogeneration plant noise: Environmental impacts and abatement

    International Nuclear Information System (INIS)

    De Renzio, M.; Ciocca, B.

    1991-01-01

    In Italy, ever increasing attention to environmental problems has led to legislation requiring cogeneration plant owners to perform environmental impact assessments in order to determine plant conformity with pollution laws. This paper, based on an in-depth analysis of physics fundamentals relevant to the nature and effects of noise, examines the principal sources of noise in industrial cogeneration plants and the intensity and range of the effects of this noise on the local environment. A review is then made of the different methods of noise pollution abatement (e.g., heat and corrosion resistant silencers for gas turbines, varying types and thicknesses of acoustic insulation placed in specific locations) that can be effectively applied to cogeneration plant equipment and housing

  4. Cogeneration plants in Italy: Licensing aspects

    International Nuclear Information System (INIS)

    Buscaglione, A.

    1991-01-01

    This paper focusses on administrative/bureaucratic problems relative to the licensing of cogeneration plants in Italy. The current stumbling block appears to lie in organizational difficulties relative to the coordination of various Government authorized safety committees responsible for the drafting up of suitable legislation governing cogeneration plant fire safety aspects. The author cites the possible environmental benefits in terms of air pollution abatement that could have been had with the timely start-up of a new 7 MW plant (in Lombardia) still awaiting its go-ahead authorization

  5. INCOGEN: Nuclear cogeneration in the Netherlands

    International Nuclear Information System (INIS)

    Heek, A.I. van

    1997-01-01

    A small heat and power cogeneration plant with a pebble bed high temperature reactor (HTR) is discussed. Cogeneration could be a new market for nuclear power and the HTR could be very suitable. The 40 MWth INCOGEN system is presented. Philosophy, layout, characteristics and performance are described. The lower power level, advanced component technologies and inherent safety features are used to obtain a maximally simplified system. Static and dynamic cycle analyses of the energy conversion system are discussed, as well as the behaviour of the reactor cavity cooling system. Although the cost study has not been finished yet, cost reduction trends are indicated. (author)

  6. Potable water cogeneration using nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Alonso, G. [Instituto Nacional de Investigaciones Nucleares, Estado de Mexico (Mexico); Instituto Politecnico Nacional, Escuela Superior de Fisica y Matematicas, D.F. (Mexico); Ramirez, J.R. [Instituto Nacional de Investigaciones Nucleares, Estado de Mexico (Mexico); Valle, E. del [Instituto Politecnico Nacional, Escuela Superior de Fisica y Matematicas, D.F. (Mexico)

    2014-07-01

    Mexico is a country with a diversity of conditions; the Peninsula of Baja California is a semi-arid region with a demand of potable water and electricity where small nuclear power can be used. This part of the country has a low density population, a high pressure over the water resources in the region, and their needs of electricity are small. The SMART reactor will be assessed as co-generator for this region; where five different scenarios of cogeneration of electricity and potable water production are considered, the levelized cost of electricity and potable water are obtained to assess their competitiveness. (author)

  7. GE will finance 614-MW cogeneration plant

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    The General Electric Power Funding Corporation, a unit of GE Capital, will provide up to $870 million in construction and permanent financing, and letters of credit to Cogen Technologies of Houston, Texas. The agreement will fund the construction of a 614-megawatt (MW), combined-cycle cogeneration plant to be built in Linden, New Jersey, and for the purchase of gas properties. The plant will be owned by Cogen Technologies. The financing is one of the largest packages ever for a cogeneration plant, GE said

  8. Cogeneration an opportunity for industrial energy saving

    International Nuclear Information System (INIS)

    Pasha, R.A.; Butt, Z.S.

    2011-01-01

    This paper is about the cogeneration from industrial energy savings opportunities perspective. The energy crisis in these days forces industry to find ways to cope with critical situation. There are several energy savings options which if properly planned and implemented would be beneficial both for industry and community. One way of energy saving is Cogeneration i.e. Combined Heat and Power. The paper will review the basic methods, types and then discuss the suitability of these options for specific industry. It has been identified that generally process industry can get benefits of energy savings. (author)

  9. Assessment of Emerging Renewable Energy-based Cogeneration Systemsfor nZEB Residential Buildings

    DEFF Research Database (Denmark)

    Carmo, Carolina; Dumont, Olivier; Nielsen, Mads P.

    2016-01-01

    Net Zero Energy Buildings (nZEB) imply reduced consumption by means of good insulation, passive strategies and highly efficient energy supply systems. Among others, micro cogeneration systems are considered as one of the system solutions with the highest potential to enable nZEB.These systems...... entail production of electricity and usable thermal energy (heat and/or cooling) to cover the energy demands of residential buildings, high energy efficiency levels and proximity of the energy source to the building. The concept of cogeneration is not new but the interest in smallscale cogeneration...... technologies based on renewable energy sources has increased tremendously in the last decade. A significant amount of experimental and modelling research has recently been presented on emerging technologies. In this paper, four main technologies are assessed: Fuel Cells (FC), Photovoltaic thermal (PV/T), solar...

  10. Technical-Economic Evaluation of a Cogeneration Unit Considering Carbon Emission Savings

    Directory of Open Access Journals (Sweden)

    Ana Christina Ferreira

    2014-06-01

    Full Text Available The support of combined heat and power production systems has gained policy attention, because these are often considered to be less polluting and more efficient than conventional energy conversion systems. As a consequence, the potential market for these energy systems that contribute to reduce greenhouse gas emissions and to enhance energy security on a national level, is shifting from large-scale existing units to small and micro-size emerging technologies. This paper presents a numerical model based on a cost-benefit analysis used to design an optimal cogeneration system for a small-scale building application, considering the Portuguese context and the comparison with the harmonized efficiency reference values for the separate production of electricity and useful heat. The model includes the identification of the objective function terms (i.e., the elements involved in the financial analysis across the system lifetime and the economic evaluation of costs and benefits of the combined heat and power production system. The economic viability of cogeneration systems significantly depends on system technology, client energy requirements and support schemes implemented in the respective countries. A strategic approach is necessary to adequately embed the new technology as a feasible solution in terms of investment and operational costs. Only by matching the energy supply to the needs and expectations of the energy users, it will be possible to improve the market competitiveness of these alternative power production plants. The optimal solution disclosed a positive annual worth, which is higher if the carbon emission savings are monetized. In addition, the optimal system represents a more efficient way to produce useful heat and electricity (i.e. a positive primary energy saving and to reduce gas emissions. A cost-benefit analysis can be applied for the techno-economic evaluation of a CHP system by assessing the monetary socio-environmental costs

  11. CO2 recovery from cogeneration projects

    International Nuclear Information System (INIS)

    Rushing, S.A.

    2001-01-01

    There is a ready market for carbon dioxide for use in industrial processes as well as in food and beverage production. Recovering this gas from flue gas exhausts can provide extra income for cogeneration projects -as well as reducing emissions. (author)

  12. Cogeneration in the former Soviet Union

    International Nuclear Information System (INIS)

    Horak, W.C.

    1997-01-01

    The former Soviet Union made a major commitment to Cogeneration. The scale and nature of this commitment created a system conceptually different from Cogeneration in the west. The differences were both in scale, in political commitment, and in socio economic impact. This paper addresses some of the largest scale Cogeneration programs, the technology, and the residual impact of these programs. The integration of the Cogeneration and nuclear programs is a key focus of the paper. Soviet designed nuclear power plants were designed to produce both electricity and heat for residential and industrial uses. Energy systems used to implement this design approach are discussed. The significant dependence on these units for heat created an urgent need for continued operation during the winter. Electricity and heat are also produced in nuclear weapons production facilities, as well as power plants. The Soviets also had designed, and initiated construction of a number of nuclear power plants open-quotes ATETsclose quotes optimized for production of heat as well as electricity. These were canceled

  13. External financing of projects on cogeneration

    International Nuclear Information System (INIS)

    Contreras Olmedo, D.

    1993-01-01

    The Spanish Institute for Energy Saving and Diversification (IDAE), provides technical advisement and economical support to those industries requiring an improvement in the energy efficiency of their production chain. This paper focusses on administrative procedures to get external financing as one way to undertake the construction of cogeneration plants. Relationships among user, promoter and financier should be developed according to the outlined procedures. (Author)

  14. Improvement of the cogeneration facilities, considering the aspects of financial risks

    International Nuclear Information System (INIS)

    Santos, A.H.M.; Nogueira, L.A.H.; Costa Bortoni, E. da

    1992-01-01

    This paper proposes a methodology to include the tools of the Portfolio Theory in the design of the cogeneration facilities. So, the effects of the risk on the return can be take in account. A computer program was developed to simulate the impacts of the thermal and mechanical (or electrical) loads on energy surplus and the potential risk. (C.M.)

  15. Performance assessment of a micro-cogeneration system under realistic operating conditions

    International Nuclear Information System (INIS)

    Rosato, Antonio; Sibilio, Sergio

    2013-01-01

    Highlights: • Performances of a micro-cogeneration system have been experimentally evaluated. • Cogenerator performances have been compared with those of a traditional system. • Measured data have been analyzed from both energy and exergy points of view. - Abstract: The European Parliament stated that high-efficiency cogeneration is a Community priority given the potential benefits of cogeneration with regard to saving primary energy and reducing emissions. According to this position, the performance of many micro-cogeneration systems have been assessed from an energy and environmental point of view. However, in the most part of cases, the assessments have been performed by using technical data from manufacturers and/or experimental results measured during steady-state operation, without considering the inefficiencies related to the transient periods; in addition, few works have been devoted to analyze the system operation from an exergy-based point of view. In this paper the electric load-following operation of an internal combustion engine based micro-cogeneration unit with 6.0 kW as nominal electric output has been experimentally investigated in electric load-following operation during a 24 h dynamic test with the application of a realistic daily load profile representing the Italian domestic non-HVAC electric demand for a multi-family house of five dwellings. The measured data have been compared with those that would be associated with servicing the building with electricity from the central electric grid and heat from a natural gas fired boiler from an energy, exergy and environmental points of view

  16. Achieving emissions reduction through oil sands cogeneration in Alberta’s deregulated electricity market

    International Nuclear Information System (INIS)

    Ouellette, A.; Rowe, A.; Sopinka, A.; Wild, P.

    2014-01-01

    The province of Alberta faces the challenge of balancing its commitment to reduce CO 2 emissions and the growth of its energy-intensive oil sands industry. Currently, these operations rely on the Alberta electricity system and on-site generation to satisfy their steam and electricity requirements. Most of the on-site generation units produce steam and electricity through the process of cogeneration. It is unclear to what extent new and existing operations will continue to develop cogeneration units or rely on electricity from the Alberta grid to meet their energy requirements in the near future. This study explores the potential for reductions in fuel usage and CO 2 emissions by increasing the penetration of oil sands cogeneration in the provincial generation mixture. EnergyPLAN is used to perform scenario analyses on Alberta’s electricity system in 2030 with a focus on transmission conditions to the oil sands region. The results show that up to 15–24% of CO 2 reductions prescribed by the 2008 Alberta Climate Strategy are possible. Furthermore, the policy implications of these scenarios within a deregulated market are discussed. - Highlights: • High levels of cogeneration in the oil sands significantly reduce the total fuel usage and CO 2 emissions for the province. • Beyond a certain threshold, the emissions reduction intensity per MW of cogeneration installed is reduced. • The cost difference between scenarios is not significant. • Policy which gives an advantage to a particular technology goes against the ideology of a deregulated market. • Alberta will need significant improvements to its transmission system in order for oil sands cogeneration to persist

  17. Cogeneration based on gasified biomass - a comparison of concepts

    Energy Technology Data Exchange (ETDEWEB)

    Olsson, Fredrik

    1999-01-01

    In this report, integration of drying and gasification of biomass into cogeneration power plants, comprising gas turbines, is investigated. The thermodynamic cycles considered are the combined cycle and the humid air turbine cycle. These are combined with either pressurised or near atmospheric gasification, and steam or exhaust gas dryer, in a number of combinations. An effort is made to facilitate a comparison of the different concepts by using, and presenting, similar assumptions and input data for all studied systems. The resulting systems are modelled using the software package ASPEN PLUS{sup TM}, and for each system both the electrical efficiency and the fuel utilisation are calculated. The investigation of integrated gasification combined cycles (IGCC), reveals that systems with pressurised gasification have a potential for electrical efficiencies approaching 45% (LHV). That is 4 - 5 percentage points higher than the corresponding systems with near atmospheric gasification. The type of dryer in the system mainly influences the fuel utilisation, with an advantage of approximately 8 percentage points (LHV) for the steam dryer. The resulting values of fuel utilisation for the IGCC systems are in the range of 78 - 94% (LHV). The results for the integrated gasification humid air turbine systems (IGHAT) indicate that electrical efficiencies close to the IGCC are achievable, provided combustion of the fuel gas in highly humidified air is feasible. Reaching a high fuel utilisation is more difficult for this concept, unless the temperature levels in the district heating network are low. For comparison a conventional cogeneration plant, based on a CFB boiler and a steam turbine (Rankine cycle), is also modelled in ASPEN PLUS{sup TM}. The IGCC and IGHAT show electrical efficiencies in the range of 37 - 45% (LHV), compared with a calculated value of 31% (LHV) for the Rankine cycle cogeneration plant. Apart from the electrical efficiency, also a high value of fuel

  18. Experimental analysis of micro-cogeneration units based on reciprocating internal combustion engine

    Energy Technology Data Exchange (ETDEWEB)

    Possidente, R.; Sibilio, S. [Seconda Universita di Napoli, Dipartimento di Storia e Processi dell' ambiente Antropizzato (DiSPAMA), Borgo San Lorenzo, Aversa, CE (Italy); Roselli, C.; Sasso, M. [Dipartimento di Ingegneria, Universita degli Studi del Sannio, Benevento (Italy)

    2006-07-01

    , MCHP, to the conventional one based on separate 'production'. In the energetic analysis the amount of primary energy savings provided by micro-cogeneration unit has been evaluated for different types of MCHP units and at various working conditions. Furthermore the evaluation of the equivalent CO{sub 2} emissions of the compared systems, MCHP and conventional systems, allows to calculate the MCHP potentials to reduce greenhouse gas emissions. Finally the Simple Pay Back approach has been considered to define the economic feasibility of cogeneration in small size applications with the varying of some economic variables (first cost, gas price, operating hours per year ...). (author)

  19. Robins Air Force Base Solar Cogeneration Facility design

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, B.L.; Bodenschatz, C.A.

    1982-06-01

    A conceptual design and a cost estimate have been developed for a Solar Cogeneration Facility at Robins Air Force Base. This demonstration solar facility was designed to generate and deliver electrical power and process steam to the existing base distribution systems. The facility was to have the potential for construction and operation by 1986 and make use of existing technology. Specific objectives during the DOE funded conceptual design program were to: prepare a Solar Cogeneration Facility (overall System) Specification, select a preferred configuration and develop a conceptual design, establish the performance and economic characteristics of the facility, and prepare a development plan for the demonstration program. The Westinghouse team, comprised of the Westinghouse Advanced Energy Systems Division, Heery and Heery, Inc., and Foster Wheeler Solar Development Corporation, in conjunction with the U.S. Air Force Logistics Command and Georgia Power Company, has selected a conceptual design for the facility that will utilize the latest DOE central receiver technology, effectively utilize the energy collected in the application, operate base-loaded every sunny day of the year, and be applicable to a large number of military and industrial facilities throughout the country. The design of the facility incorporates the use of a Collector System, a Receiver System, an Electrical Power Generating System, a Balance of Facility - Steam and Feedwater System, and a Master Control System.

  20. Energy performance of a micro-cogeneration device during transient and steady-state operation: Experiments and simulations

    International Nuclear Information System (INIS)

    Rosato, Antonio; Sibilio, Sergio

    2013-01-01

    Micro-cogeneration is a well-established technology and its deployment has been considered by the European Community as one of the most effective measure to save primary energy and to reduce greenhouse gas emissions. As a consequence, the estimation of the potential impact of micro-cogeneration devices is necessary to design policy and to energetically, ecologically and economically rank these systems among other potential energy saving and CO 2 -reducing measures. Even if transient behaviour can be very important when the engine is frequently started and stopped and allowed to cool-down in between, for the sake of simplicity mainly static and simplified methods are used for assessing the performance of cogeneration devices, completely neglecting the dynamic response of the units themselves. In the first part of this paper a series of experiments is illustrated and discussed in detail in order to highlight and compare the transient and stationary operation of a natural gas fuelled reciprocating internal combustion engine based cogeneration unit with 6.0 kW as nominal electric output and 11.7 kW as nominal thermal output. The measured performance of the cogeneration device is also compared with the performance of the system calculated on the basis of the efficiency values suggested by the manufacturer in order to highlight and quantify the discrepancy between the two approaches in evaluating the unit operation. Finally the experimental data are also compared with those predicted by a simulation model developed within IEA/ECBCS Annex 42 and experimentally calibrated by the authors in order to assess the model reliability for studying and predicting the performance of the system under different operating scenarios. -- Highlights: ► Transient operation of a cogeneration system has been experimentally investigated. ► Steady-state operation of a cogeneration device has been experimentally evaluated. ► Measured data have been compared with those predicted by a

  1. Qualifying cogeneration in Texas and Louisiana

    International Nuclear Information System (INIS)

    Jenkins, S.C.; Cabe, R.; Stauffaeher, J.J.

    1992-01-01

    This paper reports that cogeneration of electricity and useful thermal energy by industrials along the Gulf Coast grew significantly more rapidly than in other parts of the country during and immediately following World War II as a result of the concentration of chemical and plastics processing facilities there. In 1982, Texas passed its version of PURPA, the Public Utility Regulatory Act (PURA) and designated those non-utility generators from which public utilities must purchase electricity as Qualifying Cogenerators. In 1991, there were nearly 7,500 MW of QF power generated for inside-the-fence use or firm capacity sale to utilities, with the two largest utilities in Texas purchasing over half that amount

  2. Development of Residential SOFC Cogeneration System

    Science.gov (United States)

    Ono, Takashi; Miyachi, Itaru; Suzuki, Minoru; Higaki, Katsuki

    2011-06-01

    Since 2001 Kyocera has been developing 1kW class Solid Oxide Fuel Cell (SOFC) for power generation system. We have developed a cell, stack, module and system. Since 2004, Kyocera and Osaka Gas Co., Ltd. have been developed SOFC residential co-generation system. From 2007, we took part in the "Demonstrative Research on Solid Oxide Fuel Cells" Project conducted by New Energy Foundation (NEF). Total 57 units of 0.7kW class SOFC cogeneration systems had been installed at residential houses. In spite of residential small power demand, the actual electric efficiency was about 40%(netAC,LHV), and high CO2 reduction performance was achieved by these systems. Hereafter, new joint development, Osaka Gas, Toyota Motors, Kyocera and Aisin Seiki, aims early commercialization of residential SOFC CHP system.

  3. Development of Residential SOFC Cogeneration System

    International Nuclear Information System (INIS)

    Ono, Takashi; Miyachi, Itaru; Suzuki, Minoru; Higaki, Katsuki

    2011-01-01

    Since 2001 Kyocera has been developing 1kW class Solid Oxide Fuel Cell (SOFC) for power generation system. We have developed a cell, stack, module and system. Since 2004, Kyocera and Osaka Gas Co., Ltd. have been developed SOFC residential co-generation system. From 2007, we took part in the 'Demonstrative Research on Solid Oxide Fuel Cells' Project conducted by New Energy Foundation (NEF). Total 57 units of 0.7kW class SOFC cogeneration systems had been installed at residential houses. In spite of residential small power demand, the actual electric efficiency was about 40%(netAC,LHV), and high CO2 reduction performance was achieved by these systems. Hereafter, new joint development, Osaka Gas, Toyota Motors, Kyocera and Aisin Seiki, aims early commercialization of residential SOFC CHP system.

  4. Natural gas cogeneration plants: considerations on energy efficiency

    International Nuclear Information System (INIS)

    Arcuri, P.; Florio, G.; Fragiacomo, P.

    1996-01-01

    Cogeneration is one of the most interesting solution to be adopted in order to achieve the goals of the Domestic Energy Plan. Besides the high primary energy savings, remarkable environmental benefits can be obtained. In the article, an energy analysis is carried out on the major cogeneration technologies depending on the parameters which define a generic user tipology. The energy indexes of a cogeneration plant are the shown in charts from which useful information on the achievable performances can be obtained

  5. Cogeneration. Section 2: Products and services

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    This is a directory of suppliers of products and services in the area of cogeneration. The subheadings of this directory include developers and owner operators, system packagers, manufacturers of prime movers, equipment manufacturers, instruments and controls manufacturing, consulting services, appraisal and valuation, computer services, environmental services, feasibility services, hydrology, marketing, measurements, meteorology, regulatory and licensing, research, testing, training and personnel, engineering and construction, operations and maintenance, and insurance, financial and legal services

  6. Efficient Use of Cogeneration and Fuel Diversification

    Directory of Open Access Journals (Sweden)

    Kunickis M.

    2015-12-01

    Full Text Available Energy policy of the European Community is implemented by setting various goals in directives and developing support mechanisms to achieve them. However, very often these policies and legislation come into contradiction with each other, for example Directive 2009/28/EC on the promotion of the use of energy from renewable sources and Directive 2012/27/EU on energy efficiency, repealing Directive 2004/8/EC on the promotion of cogeneration based on a useful heat demand.

  7. Intraday trade is the answer for cogeneration

    International Nuclear Information System (INIS)

    Lomme, J.J.

    2006-01-01

    It is possible for operators of small cogeneration plants to sell electricity on the day-ahead market of the Amsterdam Power Exchange (APX) or through the unbalance market of the Dutch power transmission operator TenneT. However, it is difficult for them to take part in the market. The solution could be a so-called intraday-market, in which electricity trade can be a continuous process, but the question is who will start such a market [nl

  8. Cogeneration: A marketing opportunity for pipelines

    International Nuclear Information System (INIS)

    Ulrich, J.S.

    1992-01-01

    This chapter describes the marketing of dual-purpose power plants by pipeline companies as a long term marketing strategy for natural gas. The author uses case studies to help evaluate a company's attitude toward development of a market for cogeneration facilities. The chapter focuses on strategies for developing markets in the industrial sector and identifying customer groups that are likely to respond in like manner to a marketing strategy

  9. Experience feedback from nuclear cogeneration - 15369

    International Nuclear Information System (INIS)

    Auriault, C.; Fuetterer, M.A.; Baudrand, O.

    2015-01-01

    A consortium of 20 companies currently runs the NC2I-R (Nuclear Cogeneration Industrial Initiative - Research) project as part of the European Union's 7. Framework Programme. The project supports the development of an industrial initiative to demonstrate nuclear cogeneration of heat and power as an effective low-carbon technology for industrial market applications. As part of this project, operational feedback was collected from previous, existing and planned nuclear cogeneration projects in a number of countries with the aim of identifying a most complete set of boundary conditions which led to successful projects in the past. Stakeholders consulted include in particular utilities and end users. The scope encompassed technical and non-technical information (organizational structure, financial aspects, public relations, etc.) and specifically experience in licensing gained from these projects. The information was collected by a questionnaire and additional face-to-face interviews. The questionnaire was formulated to cover 9 categories of in total 56 questions for 36 identified projects: Motivation and initiative, Role of key players, Organizational structure, Technical aspects, Safety and licensing, Financial aspects, Timing, Public relations, General experience feedback. From the 36 identified projects worldwide, 23 from 10 countries have provided feedback on a variety of applications such as district heating, seawater desalination, paper and pulp industry, petrochemical industry, coal gasification or salt processing. This is a surprisingly positive response considering that several of these projects date back to the 1980's and many of them were performed outside Europe. This paper summarizes and analyzes the received information and deduces from there which boundary conditions are favorable for the construction of new nuclear cogeneration projects. (authors)

  10. Gas turbine modular helium reactor in cogeneration

    International Nuclear Information System (INIS)

    Leon de los Santos, G.

    2009-10-01

    This work carries out the thermal evaluation from the conversion of nuclear energy to electric power and process heat, through to implement an outline gas turbine modular helium reactor in cogeneration. Modeling and simulating with software Thermo flex of Thermo flow the performance parameters, based on a nuclear power plant constituted by an helium cooled reactor and helium gas turbine with three compression stages, two of inter cooling and one regeneration stage; more four heat recovery process, generating two pressure levels of overheat vapor, a pressure level of saturated vapor and one of hot water, with energetic characteristics to be able to give supply to a very wide gamma of industrial processes. Obtaining a relationship heat electricity of 0.52 and efficiency of net cogeneration of 54.28%, 70.2 MW net electric, 36.6 MW net thermal with 35% of condensed return to 30 C; for a supplied power by reactor of 196.7 MW; and with conditions in advanced gas turbine of 850 C and 7.06 Mpa, assembly in a shaft, inter cooling and heat recovery in cogeneration. (Author)

  11. An HTR cogeneration system for industrial application

    International Nuclear Information System (INIS)

    Haverkate, B.R.W.; Van Heek, A.I.; Kikstra, J.F.

    1999-01-01

    Because of its favourable characteristics of safety and simplicity the high-temperature reactor (HTR) could become a competitive heat source for a cogeneration unit. The Netherlands is a world leading country in the field of cogeneration. As nuclear energy remains an option for the medium and long term in this country, systems for nuclear cogeneration should be explored and developed. Hence, ECN Nuclear Research is developing a conceptual design of an HTR for Combined generation of Heat and Power (CHP) for the industry in and outside the Netherlands. The design of this small CHP-unit for industrial applications is mainly based on a pre-feasibility study in 1996, performed by a joint working group of five Dutch organisations, in which technical feasibility was shown. The concept that was subject of that study, INCOGEN, used a 40 MW thermal pebble bed HTR and produced a maximum amount of electricity plus low temperature heat. The system has been improved to produce industrial quality heat, and has been renamed ACACIA. The output of this installation is 14 MW electricity and 17 tonnes of steam per hour, with a pressure of 10 bar and a temperature of 220C. The economic characteristics of this installation turned out to be much more favourable using modern cost data. 15 refs

  12. EXERGETIC ANALYSIS OF A COGENERATION POWER PLANT

    Directory of Open Access Journals (Sweden)

    Osvaldo Manuel Nuñez Bosch

    2016-07-01

    Full Text Available Cogeneration power plants connected to industrial processes have a direct impact on the overall efficiency of the plant and therefore on the economic results. Any modification to the thermal outline of these plants must first include an exergetic analysis to compare the benefits it can bring the new proposal. This research is performed to a cogeneration plant in operation with an installed electrical capacity of 24 MW and process heat demand of 190 MW, it shows a study made from the Second Law of Thermodynamics. Exergetic evaluation of each component of the plant was applied and similarly modified cogeneration scheme was evaluated. The results illustrate that the exergy losses and irreversibilities are completely different from one subsystem to another. In general, the total exergy destruction represented 70,7% from the primary fuel exergy. Steam generator was the subsystem with the highest irreversibility of the plant with 54%. It was demonstrated that the increase of the steam parameters lead to reduce exergy destruction and exergy efficiency elevation. The suppression of the reduction system and the adding of an extraction-condensing steam turbine produce the same effect and contribute to drop off the electrical consumption from the grid.

  13. Final report of phase 2 'Mini-cogeneration in the flower bulb industry'; Eindrapportage Fase 2 'Mini-WKK in de bloembollensector'

    Energy Technology Data Exchange (ETDEWEB)

    Koolwijk, E. [Cogen Projects, Driebergen-Rijsenburg (Netherlands); Smailbegovic, N. [SenterNovem, Utrecht (Netherlands)

    2009-09-15

    Phase 2 of the project 'mini-cogeneration in the flower bulb industry' is the sequel to the report 'mini-cogeneration in the flower bulb industry. Use of cogeneration in the cultivation and hot bed of tulip and hyacinth', Addressing the incentivisation of the use of cogeneration in the sector and working toward realizing a number of demonstration projects. To this end it is necessary that potential investors are given insight in the feasibility of cogeneration at their business and that their enthusiasm is kindled for the use of cogeneration. This was done by disseminating information in the flower bulb industry about the opportunities of cogeneration and by informing growers about technique, economy and points of interest. [Dutch] Fase 2 van het project 'Mini- WKK in de bloembollensector' is een vervolg op het rapport 'Mini-wkk in de bloembollensector. Toepassing van wkk bij teelt en broei van tulp en hyacint' en richt zich op het stimuleren van de toepassing van WKK in de sector en toewerken naar realisatie van een aantal demonstratieprojecten. Daartoe is het noodzakelijk dat potentiele investeerders inzicht krijgen over de haalbaarheid van WKK op hun bedrijf en geenthousiasmeerd worden voor het gebruik van WKK. Dit is gedaan door informatie in de bollensector te verspreiden over de mogelijkheden van WKK en telers te informeren over techniek, economie en aandachtspunten.

  14. A novel cogeneration system: A proton exchange membrane fuel cell coupled to a heat transformer

    International Nuclear Information System (INIS)

    Huicochea, A.; Romero, R.J.; Rivera, W.; Gutierrez-Urueta, G.; Siqueiros, J.; Pilatowsky, I.

    2013-01-01

    This study focuses on the potential of a novel cogeneration system which consists of a 5 kW proton exchange membrane fuel cell (PEMFC) and an absorption heat transformer (AHT). The dissipation heat resulting from the operation of the PEMFC would be used to feed the absorption heat transformer, which is integrated to a water purification system. Therefore, the products of the proposed cogeneration system are heat, electricity and distilled water. The study includes a simulation for the PEMFC as well as experimental results obtained with an experimental AHT facility. Based on the simulation results, experimental tests were performed in order to estimate the performance parameters of the overall system. This is possible due to the matching in power and temperatures between the outlet conditions of the simulated fuel cell and the inlet requirements of the AHT. Experimental coefficients of performance are reported for the AHT as well as the overall cogeneration efficiency for the integrated system. The results show that experimental values of coefficient of performance of the AHT and the overall cogeneration efficiency, can reach up to 0.256 and 0.571, respectively. This represents an increment in 12.4% of efficiency, compared to the fuel cell efficiency working individually. This study shows that the combined use of AHT systems with a PEMFC is possible and it is a very feasible project to be developed in the Centro de Investigación en Energía (Centre of Energy Research), México.

  15. DDACE cogeneration systems : 10 case studies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    DDACE Power Systems are experts in green energy power generation and provide solutions that deal with waste and industrial by-products. The company develops practical energy solutions that address environmental and financial concerns facing both industrial and municipal customers. The following 10 case studies are examples of the installations that DDACE Power Systems have completed in recent years: (1) a combined heat and emergency power installation on the roof of a 19 storey apartment building on Bloor Street in Toronto, Ontario. The cogeneration package provides electricity and heat to the entire building, replacing an old diesel generator, (2) a combined heat and emergency power installation at the Villa Colombo extended care facility in Vaughan, Ontario. The cogeneration system provides heat and power to the building, as well as emergency power, (3) emergency standby power with demand response capabilities at Sobeys Distribution Warehouse in Vaughan, Ontario. The primary purpose of the 2.4 MW low emission, natural gas fuelled emergency standby generator is to provide emergency power to the building in the event of a grid failure, (4) a dual fuel combined heat and power installation at the Queensway Carleton Hospital in Ottawa, Ontario that provides electricity, hot water and steam to all areas of the hospital, (5) a tri-generation installation at the Ontario Police College in Aylmer, Ontario which provides power and heat to the building as well as emergency power in the event of a grid failure. An absorption chiller provides cooling in the summer and an exhaust emission control system reduces NOx emissions, (6) a biomass gasification installation at Nexterra Energy in Kamloops, British Columbia. The 239 kW generator is fueled by synthesis gas, (7) biogas utilization at Fepro Farms in Cobden, Ontario for treatment of the facility's waste products. The biogas plant uses cow manure, as well as fats, oil and grease from restaurants to produce electricity and

  16. Rising critical emission of air pollutants from renewable biomass based cogeneration from the sugar industry in India

    International Nuclear Information System (INIS)

    Sahu, S K; Ohara, T; Nagashima, T; Beig, G; Kurokawa, J

    2015-01-01

    In the recent past, the emerging India economy is highly dependent on conventional as well as renewable energy to deal with energy security. Keeping the potential of biomass and its plentiful availability, the Indian government has been encouraging various industrial sectors to generate their own energy from it. The Indian sugar industry has adopted and made impressive growth in bagasse (a renewable biomass, i.e. left after sugercane is crushed) based cogeneration power to fulfil their energy need, as well as to export a big chunk of energy to grid power. Like fossil fuel, bagasse combustion also generates various critical pollutants. This article provides the first ever estimation, current status and overview of magnitude of air pollutant emissions from rapidly growing bagasse based cogeneration technology in Indian sugar mills. The estimated emission from the world’s second largest sugar industry in India for particulate matter, NO X, SO 2 , CO and CO 2 is estimated to be 444 ± 225 Gg yr −1 , 188 ± 95 Gg yr −1 , 43 ± 22 Gg yr −1 , 463 ± 240 Gg yr −1 and 47.4 ± 9 Tg yr −1 , respectively in 2014. The studies also analyze and identify potential hot spot regions across the country and explore the possible further potential growth for this sector. This first ever estimation not only improves the existing national emission inventory, but is also useful in chemical transport modeling studies, as well as for policy makers. (letter)

  17. Techno-economic assessment and optimization of stirling engine micro-cogeneration systems in residential buildings

    Energy Technology Data Exchange (ETDEWEB)

    Alanne, Kari; Soederholm, Niklas; Siren, Kai [Dept. of Energy Technology, Helsinki University of Technology, P.O. Box 4100, 02015 TKK (Finland); Beausoleil-Morrison, Ian [Dept. of Mechanical and Aerospace Engineering, Carleton University, Ottawa (Canada)

    2010-12-15

    Micro-cogeneration offers numerous potential advantages for the supply of energy to residential buildings in the sense of improved energy efficiency and reduced environmental burdens. To realize these benefits, however, such systems must reduce energy costs, primary energy consumption, and CO{sub 2} emissions relative to conventional heating systems. In this paper, we search for optimized strategies for the integration of a Stirling engine-based micro-cogeneration system in residential buildings by comparing the performance of various system configurations and operational strategies with that of a reference system, i.e. hydronic heating and a low temperature gas boiler in standard and passive house constructions located in different climates. The IDA-ICE whole-building simulation program is employed with the Stirling engine micro-cogeneration model that was developed by IEA/ECBCS Annex 42. In this way the dynamic effects of micro-cogeneration devices, such as warm-ups and shutdowns, are accounted for. This study contributes to the research by addressing hourly changes in the fuel mix used for central electricity generation and the utilization of thermal exhaust through heat recovery. Our results suggest that an optimally operated micro-cogeneration system encompassing heat recovery and appropriate thermal storage would result in a 3-5% decrease in primary energy consumption and CO{sub 2} emissions when compared to a conventional hydronic heating system. Moreover, this configuration is capable of delivering annual savings in all the combinations of electricity and fuel price between 0.05 and 0.15 EUR kW h{sup -1}. As can be expected, these results are sensitive to the electrical energy supply mix, building type, and climate. (author)

  18. Evolution of near term PBMR steam and cogeneration applications - HTR2008-58219

    International Nuclear Information System (INIS)

    Kuhr, R. W.; Hannink, R.; Paul, K.; Kriel, W.; Greyvenstein, R.; Young, R.

    2008-01-01

    US and international applications for large onsite cogeneration (steam and power) systems are emerging as a near term market for the PBMR. The South African PBMR demonstration project applies a high temperature (900 deg. C) Brayton cycle for high efficiency power generation. In addition, a number of new applications are being investigated using an intermediate temperature range (700-750 deg. C) with a simplified heat supply system design. This intermediate helium delivery temperature supports conventional steam Rankine cycle designs at higher efficiencies than obtained from water type reactor systems. These designs can be adapted for cogeneration of steam, similar to the design of gas turbine cogeneration plants that supply steam and power at many industrial sites. This temperature range allows use of conventional or readily qualifiable materials and equipment, avoiding some cost premiums associated with more difficult operating conditions. As gas prices and CO 2 values increase, the potential value of a small nuclear reactor with advanced safety characteristics increases dramatically. Because of its smaller scale, the 400-500 MWt PBMR offers the economic advantages of onsite thermal integration (steam, hot water and desalination co-production) and of providing onsite power at cost versus at retail industrial rates avoiding transmission and distribution costs. Advanced safety characteristics of the PBMR support the location of plants adjacent to steam users, district energy systems, desalination plants, and other large commercial and industrial facilities. Additional benefits include price stability, long term security of energy supply and substantial CO 2 reductions. Target markets include existing sites using gas fired boilers and cogeneration units, new projects such as refinery and petrochemical expansions, and coal-to-liquids projects where steam and power represent major burdens on fuel use and CO 2 emissions. Lead times associated with the nuclear licensing

  19. Techno-economic assessment and optimization of Stirling engine micro-cogeneration systems in residential buildings

    International Nuclear Information System (INIS)

    Alanne, Kari; Soederholm, Niklas; Siren, Kai; Beausoleil-Morrison, Ian

    2010-01-01

    Micro-cogeneration offers numerous potential advantages for the supply of energy to residential buildings in the sense of improved energy efficiency and reduced environmental burdens. To realize these benefits, however, such systems must reduce energy costs, primary energy consumption, and CO 2 emissions relative to conventional heating systems. In this paper, we search for optimized strategies for the integration of a Stirling engine-based micro-cogeneration system in residential buildings by comparing the performance of various system configurations and operational strategies with that of a reference system, i.e. hydronic heating and a low temperature gas boiler in standard and passive house constructions located in different climates. The IDA-ICE whole-building simulation program is employed with the Stirling engine micro-cogeneration model that was developed by IEA/ECBCS Annex 42. In this way the dynamic effects of micro-cogeneration devices, such as warm-ups and shutdowns, are accounted for. This study contributes to the research by addressing hourly changes in the fuel mix used for central electricity generation and the utilization of thermal exhaust through heat recovery. Our results suggest that an optimally operated micro-cogeneration system encompassing heat recovery and appropriate thermal storage would result in a 3-5% decrease in primary energy consumption and CO 2 emissions when compared to a conventional hydronic heating system. Moreover, this configuration is capable of delivering annual savings in all the combinations of electricity and fuel price between 0.05 and 0.15 Euro kW h -1 . As can be expected, these results are sensitive to the electrical energy supply mix, building type, and climate.

  20. Implementation of gas district cooling and cogeneration systems in Malaysia; Mise en oeuvre de systemes de gas district cooling et de cogeneration en Malaisie

    Energy Technology Data Exchange (ETDEWEB)

    Haron, S. [Gas District Cooling, M, Sdn Bhd (Malaysia)

    2000-07-01

    With its energy demand in the early 1990's growing at a high rate due to the country's strong economic growth, Malaysia studied various options to improve the efficiency of its energy use. Since its natural gas reserves are almost four times that of its crude oil reserves, efforts were therefore centered on seeking ways to boost the use of natural gas to mitigate the growing domestic energy need. PETRONAS, the national oil company, subsequently studied and chose the District Cooling System using natural gas as the primary source of fuel. The Kuala Lumpur City Center development, which houses the PETRONAS Twin Towers, was subsequently chosen as the first project to use the Gas District Cooling (GDC) System. To acquire the technology and implement this project, PETRONAS created a new subsidiary, Gas District Cooling (Malaysia) Sendirian Berhad (GDC(M)). In the process of improving the plant's efficiency, GDC(M) discovered that the GDC system's efficiency and project economics would be significantly enhanced if its is coupled to a Cogeneration system. Having proven the success of the GDC/Cogeneration system, GDC(M) embarked on a campaign to aggressively promote and seek new opportunities to implement the system, both in Malaysia-and abroad. Apart from enhancing efficiency of energy use, and providing better project economics, the GDC/Cogeneration system also is environment friendly. Today, the GDC/Cogeneration systems is the system of choice for several important developments in Malaysia, which also includes the country's prestigious projects such as the Kuala Lumpur International Airport and the New Federal Government Administrative Center in Putrajaya. (author)

  1. Independent power and cogeneration in Ontario's new competitive electricity market

    International Nuclear Information System (INIS)

    Barnstable, A.G.

    1999-01-01

    The factors influencing the initial market pricing in the early years of Ontario's new electricity market were discussed with particular insight on the potential for near term development of independent power and cogeneration. The major factors influencing prices include: (1) no increase in retail prices, (2) financial restructuring of Ontario Hydro, (3) the Market Power Mitigation Agreement, (4) tighter power plant emissions standards, and (5) an electricity supply and demand balance. Generation competition is not expected to influence market pricing in the early years of the new electricity market. Prices will instead reflect the restructuring decisions of the Ontario government. The decision to have Ontario Power Generation Inc. (OPGI) as a single generator for Ontario Hydro's generation assets will ensure that average spot market pricing in the early market years will be close to a 3.8 c/kWh revenue cap

  2. Cogeneration: a win-win option for Cadbury Nigeria

    International Nuclear Information System (INIS)

    Dayo, Felix; Bogunjoko, S.B.; Sobanwa, A.C.

    2001-01-01

    Like most developing countries, Nigeria is looking to cogeneration as a sustainable and reliable means of overcoming its present unreliable supply of energy. The article focuses on the efforts of the food company Cadbury Nigeria which uses cogeneration for all its steam and power requirements within its own factory. The Company recently decided to upgrade further by switching from liquid fossil fuels to natural gas. Diagrams show the existing system as well as the systems for cogeneration with natural gas. Some of the obstacles to be overcome to improve the viability of cogeneration in developing countries are listed. It is hoped that the outcome of the COP6 meeting to be held in April 2001 will offer encouragement for cogeneration

  3. Cogeneration: a win-win option for Cadbury Nigeria

    Energy Technology Data Exchange (ETDEWEB)

    Dayo, Felix [Triple ' E' Systems Associates Ltd. (Nigeria); Bogunjoko, S.B.; Sobanwa, A.C. [Cadbury Nigeria plc. (Nigeria)

    2001-02-01

    Like most developing countries, Nigeria is looking to cogeneration as a sustainable and reliable means of overcoming its present unreliable supply of energy. The article focuses on the efforts of the food company Cadbury Nigeria which uses cogeneration for all its steam and power requirements within its own factory. The Company recently decided to upgrade further by switching from liquid fossil fuels to natural gas. Diagrams show the existing system as well as the systems for cogeneration with natural gas. Some of the obstacles to be overcome to improve the viability of cogeneration in developing countries are listed. It is hoped that the outcome of the COP6 meeting to be held in April 2001 will offer encouragement for cogeneration.

  4. An HTR cogeneration system for industrial applications

    International Nuclear Information System (INIS)

    Haverkate, B.R.W.; Heek, A.I. van; Kikstra, J.F.

    2001-01-01

    Because of its favourable characteristics of safety and simplicity the high-temperature reactor (HTR) could become a competitive heat source for a cogeneration unit. The Netherlands is a world leading country in the field of cogeneration. As nuclear energy remains an option for the medium and long term in this country, systems for nuclear cogeneration should be explored and developed. Hence, ECN Nuclear Research is developing a conceptual design of an HTR for Combined generation of Heat and Power (CHP) for the industry in and outside the Netherlands. The design of this small CHP-unit for industrial applications is mainly based on a pre-feasibility study in 1996, performed by a joint working group of five Dutch organisations, in which technical feasibility was shown. The concept that was subject of this study, INCOGEN, used a 40 MW thermal pebble bed HTR and produced a maximum amount of electricity plus low temperature heat. The system has been improved to produce industrial quality heat, and has been renamed ACACIA. The output of this installation is 14 MW electricity and 17 tonnes of steam per hour, with a pressure of 10 bar and a temperature of 220 deg. C. The economic characteristics of this installation turned out to be much more favourable using modern data. The research work for this installation is embedded in a programme that has links to the major HTR projects in the world. Accordingly ECN participates in several IAEA Co-ordinated Research Programmes (CRPs). Besides this, ECN is involved in the South African PBMR-project. Finally, ECN participates in the European Concerted Action on Innovative HTR. (author)

  5. Practical design considerations for nuclear cogeneration installations

    International Nuclear Information System (INIS)

    Koupal, J.R.

    1987-01-01

    Dual-purpose nuclear plants, cogeneration electricity and steam, offer significant economic benefits over comparable electricity generating stations. The design of such a nuclear facility requires the resolution of unique technical challenges. This paper reports on experience gained in the detailed design of such a dual-purpose facility with the steam supplied to a chemical plant for process heating. The following topics are discussed: Siting, Radioactivity of Export Steam, Optimization for Load Combinations, Steam Supply Reliability, Steam Transportation, Water Chemistry, Cost Allocation. (author)

  6. High-efficiency Gas Cogeneration – an Assessment of the Support Mechanism

    Directory of Open Access Journals (Sweden)

    Maciej Sołtysik

    2015-09-01

    Full Text Available The development of a single European energy market implies the need to harmonise national laws and the directions of the sector’s growth to EU determinants. One of these elements was the introduction of a system to support the development of high-efficiency cogeneration, including gas cogeneration. Several years of the mechanisms’ performance allows for analysis of the advisability and correctness of the support model format, and assessment of its impact on the sub-sector’s development and the cost of its operation. Against the background of the support system introduction origins, the paper presents results of volumetric and price analyses, trends, and assessment of the balance of property rights and of the mechanism’s effectiveness.

  7. Conceptual design study of a coal gasification combined-cycle powerplant for industrial cogeneration

    Science.gov (United States)

    Bloomfield, H. S.; Nelson, S. G.; Straight, H. F.; Subramaniam, T. K.; Winklepleck, R. G.

    1981-01-01

    A conceptual design study was conducted to assess technical feasibility, environmental characteristics, and economics of coal gasification. The feasibility of a coal gasification combined cycle cogeneration powerplant was examined in response to energy needs and to national policy aimed at decreasing dependence on oil and natural gas. The powerplant provides the steam heating and baseload electrical requirements while serving as a prototype for industrial cogeneration and a modular building block for utility applications. The following topics are discussed: (1) screening of candidate gasification, sulfur removal and power conversion components; (2) definition of a reference system; (3) quantification of plant emissions and waste streams; (4) estimates of capital and operating costs; and (5) a procurement and construction schedule. It is concluded that the proposed powerplant is technically feasible and environmentally superior.

  8. Optimization of a gas turbine cogeneration plant

    International Nuclear Information System (INIS)

    Wallin, J.; Wessman, M.

    1991-11-01

    This work describes an analytical method of optimizing a cogeneration with a gas turbine as prime mover. The method is based on an analytical function. The function describes the total costs of the heat production, described by the heat load duration curve. The total costs consist of the prime costs and fixed costs of the gas turbine and the other heating plants. The parameters of interest at optimization are the heat efficiency produced by the gas turbine and the utilization time of the gas turbine. With todays prices for electricity, fuel and heating as well as maintenance- personnel and investment costs, extremely good conditions are needed to make the gas turbine profitable. Either a raise of the price for the electricity with about 33% is needed or that the ratio of electricity and fuel increases to approx 2.5. High investment subsidies for the gas turbines could make a gas turbine profitable, even with todays electricity- and fuel prices. Besides being a good help when projecting cogeneration plants with a gas turbine as prime mover, the method gives a possibility to optimize the annual operating time for a certain gas turbine when changing the operating conditions. 6 refs

  9. High temperature cogeneration with thermionic burners

    International Nuclear Information System (INIS)

    Fitzpatrick, G.O.; Britt, E.J.; Dick, R.S.

    1981-01-01

    The thermionic cogeneration combustor was conceived to meet industrial requirements for high-temperature direct heat, typically in the form of gas at temperatures from 800 to 1900 K, while at the same time supplying electricity. The thermionic combustor is entirely self-contained, with heat from the combustion region absorbed by the emitters of thermionic converters to be converted to electric power and the high-temperature reject heat from the converters used to preheat the air used for combustion. Depending on the temperature of the process gas produced, energy savings of around 10% with respect to that used to produce the same amount of electricity and heat without cogeneration are possible with present technology, and savings of up to 20% may be possible with advanced converters. Possible thermionic combustor designs currently under investigation include a configuration in which heat is collected by heat pipes lining the periphery of the combustion region, and a fire-tube converter in which combustion occurs within the cylindrical emitter of each converter. Preliminary component tests of these designs have been encouraging

  10. Cogeneration opportunities in the maritime provinces

    International Nuclear Information System (INIS)

    MacPherson, S.W.

    1999-01-01

    With the arrival of natural gas in New Brunswick in November 1999, the province will be faced with new power generation development opportunities in four different categories of power projects. These include industrial self generation (including cogeneration), merchant power plants, power projects to replace aging facilities, and power projects to help meet future environmental needs. New Brunswick's competitive advantage in harnessing the power generation development opportunities lies in the fact that it is close to major electricity markets in Quebec and New England. It also has many available generation sites. The province's many pulp and paper plants with large process steam needs are also ideal candidates for cogeneration. Some of the major competitive advantages of natural gas over coal are its lower operation and maintenance costs, it is thermally more efficient, produces lower emissions to the environment and prices are competitive. One of the suggestions in New Brunswick Power's new restructuring proposal is to unbundle electricity service in the province into generation and transmission and distribution services. Three gas-fired projects have already been proposed for the province. The 284 MW Bayside Power Project at the Courtenay Bay Generating Station is the most advanced

  11. High temperature cogeneration with thermionic burners

    Science.gov (United States)

    Fitzpatrick, G. O.; Britt, E. J.; Dick, R. S.

    The thermionic cogeneration combustor was conceived to meet industrial requirements for high-temperature direct heat, typically in the form of gas at temperatures from 800 to 1900 K, while at the same time supplying electricity. The thermionic combustor is entirely self-contained, with heat from the combustion region absorbed by the emitters of thermionic converters to be converted to electric power and the high-temperature reject heat from the converters used to preheat the air used for combustion. Depending on the temperature of the process gas produced, energy savings of around 10% with respect to that used to produce the same amount of electricity and heat without cogeneration are possible with present technology, and savings of up to 20% may be possible with advanced converters. Possible thermionic combustor designs currently under investigation include a configuration in which heat is collected by heat pipes lining the periphery of the combustion region, and a fire-tube converter in which combustion occurs within the cylindrical emitter of each converter. Preliminary component tests of these designs have been encouraging.

  12. Development of a Novel Efficient Solid-Oxide Hybrid for Co-generation of Hydrogen and Electricity Using Nearby Resources for Local Application

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Greg, G.; Virkar, Anil, V.; Bandopadhyay, Sukumar; Thangamani, Nithyanantham; Anderson, Harlan, U.; Brow, Richard, K.

    2009-06-30

    Developing safe, reliable, cost-effective, and efficient hydrogen-electricity co-generation systems is an important step in the quest for national energy security and minimized reliance on foreign oil. This project aimed to, through materials research, develop a cost-effective advanced technology cogenerating hydrogen and electricity directly from distributed natural gas and/or coal-derived fuels. This advanced technology was built upon a novel hybrid module composed of solid-oxide fuel-assisted electrolysis cells (SOFECs) and solid-oxide fuel cells (SOFCs), both of which were in planar, anode-supported designs. A SOFEC is an electrochemical device, in which an oxidizable fuel and steam are fed to the anode and cathode, respectively. Steam on the cathode is split into oxygen ions that are transported through an oxygen ion-conducting electrolyte (i.e. YSZ) to oxidize the anode fuel. The dissociated hydrogen and residual steam are exhausted from the SOFEC cathode and then separated by condensation of the steam to produce pure hydrogen. The rationale was that in such an approach fuel provides a chemical potential replacing the external power conventionally used to drive electrolysis cells (i.e. solid oxide electrolysis cells). A SOFC is similar to the SOFEC by replacing cathode steam with air for power generation. To fulfill the cogeneration objective, a hybrid module comprising reversible SOFEC stacks and SOFC stacks was designed that planar SOFECs and SOFCs were manifolded in such a way that the anodes of both the SOFCs and the SOFECs were fed the same fuel, (i.e. natural gas or coal-derived fuel). Hydrogen was produced by SOFECs and electricity was generated by SOFCs within the same hybrid system. A stand-alone 5 kW system comprising three SOFEC-SOFC hybrid modules and three dedicated SOFC stacks, balance-of-plant components (including a tailgas-fired steam generator and tailgas-fired process heaters), and electronic controls was designed, though an overall

  13. Evaluation of a Cogeneration Plant with Integrated Fuel Factory; Integrerad braenslefabrik med kraftvaermeanlaeggning - en utvaerdering

    Energy Technology Data Exchange (ETDEWEB)

    Atterhem, Lars

    2002-12-01

    factory has been achieved when it comes to fuel pellets quality and increased power production. The power production increment is estimated to over 40 GWh yearly based on both performance tests and duration curve calculations. The a-value (ratio generated power to heat) for the integrated process is also higher compared to operation of the cogeneration plant only. Another advantage with the combined process is that the cogeneration turbine can be in operation for a longer period during the year compared to cogeneration plant single operation. There is still potential for further improvements and optimisations. The pellets production and also the condensing turbine generation, can for example be maximised during periods with high power prises. There is also a need for further research of optimal temperature levels of the drying process concerning risks of fouling and quality of the dried product. The extracted steam pressure versus temperature level in the dryer can also be optimised to further increase the power generation.

  14. Cogeneration: A new opportunity for energy production market; La cogenerazione: Una nuova opportunita` per il mercato della produzione di energia

    Energy Technology Data Exchange (ETDEWEB)

    Minghetti, E [ENEA, Centro Ricerche Casaccia, Rome (Italy)

    1997-03-01

    Cogeneration or Combined Heat and Power (CHP) is an advantageous technique based on the simultaneous utilisation of electricity and heat produced. For this purpose existing energetic technologies are used. Cogeneration is based on the thermodynamics principle that producing electricity by combustion process means, at the same time, producing waste heat that can be useful utilised. Three main advantages can be lay out in a cogeneration plant: 1. High efficiency (the global efficiency is often around 80-90%). 2. Economic profit (pay back time is usually not longer than 2-4 years). 3. Low pollutant emissions (as a consequence of the high efficiency less fuel is burned for generating the same quantity of electricity). In this report are analysed various aspects of cogeneration (technical and economical) and the conditions influencing is development. Some figures on the european and national situation are also given. Finally are presented the research and development activities carried out by Italian National Agency for new Technology Energy and the Environment Energy Department to improve the efficiency and the competitiveness of this technology.

  15. Analysis of carbon dioxide emission of gas fuelled cogeneration plant

    International Nuclear Information System (INIS)

    Nordin, Adzuieen; Amin, M; Majid, A

    2013-01-01

    Gas turbines are widely used for power generation. In cogeneration system, the gas turbine generates electricity and the exhaust heat from the gas turbine is used to generate steam or chilled water. Besides enhancing the efficiency of the system, the process assists in reducing the emission of CO 2 to the environment. This study analyzes the amount of CO 2 emission by Universiti Teknologi Petronas gas fuelled cogeneration system using energy balance equations. The results indicate that the cogeneration system reduces the CO 2 emission to the environment by 60%. This finding could encourage the power plant owners to install heat recovery systems to their respective plants

  16. Analysis of carbon dioxide emission of gas fuelled cogeneration plant

    Science.gov (United States)

    Nordin, Adzuieen; Amin, M.; Majid, A.

    2013-12-01

    Gas turbines are widely used for power generation. In cogeneration system, the gas turbine generates electricity and the exhaust heat from the gas turbine is used to generate steam or chilled water. Besides enhancing the efficiency of the system, the process assists in reducing the emission of CO2 to the environment. This study analyzes the amount of CO2 emission by Universiti Teknologi Petronas gas fuelled cogeneration system using energy balance equations. The results indicate that the cogeneration system reduces the CO2 emission to the environment by 60%. This finding could encourage the power plant owners to install heat recovery systems to their respective plants.

  17. Regional characteristics relevant to advanced technology cogeneration development. [industrial energy

    Science.gov (United States)

    Manvi, R.

    1981-01-01

    To assist DOE in establishing research and development funding priorities in the area of advanced energy conversion technoloy, researchers at the Jet Propulsion Laboratory studied those specific factors within various regions of the country that may influence cogeneration with advanced energy conversion systems. Regional characteristics of advanced technology cogeneration possibilities are discussed, with primary emphasis given to coal derived fuels. Factors considered for the study were regional industry concentration, purchased fuel and electricity prices, environmental constraints, and other data of interest to industrial cogeneration.

  18. FBC utilization prospects in decentralized cogeneration units in Caucasus region countries

    Directory of Open Access Journals (Sweden)

    Skodras George

    2003-01-01

    Full Text Available Great differences are encountered among Caucasus region countries with respect to energy resources reserves and economic conditions. Thermal power plants consist of obsolete and inefficient units, while the Soviet-type large heating systems in the area collapsed after 1992 and their reconstruction is considered uneconomic. Renovation needs of the power and heat sector, and the potential of Fluidised Bed Combustion implementations in decentralized cogeneration units were investigated, since operating oil and gas power plants exhibit high fuel consumption, low efficiency and poor environmental performance. Results showed significant prospects of Fluidised Bed Combustion utilization in decentralized cogeneration units in the Caucausus region heat and power sector. Their introduction constitutes an economically attractive way to cover power and heat demands and promotes utilization of domestic energy resources in all of three countries, provided that financial difficulties could be confronted.

  19. District heating development, air quality improvement, and cogeneration in Krakow, Poland

    International Nuclear Information System (INIS)

    Manczyk, H.; Leach, M.D.

    1992-01-01

    Krakow, Poland, is served by a district heating system that includes coal-fired electrical and heating plants and distribution networks and by approximately 200,000 residential coal furnaces. Cogeneration facilities were added in the mid-1970s to supply up to 40% of the regional peak electrical demand and to optimize energy extraction from the low-heating-value coal mined in the region. Several difficulties prevent the district from realizing the potential efficiencies of its technology: the poor condition of the distribution network, the lack of consumption control and metering devices, inadequate plant maintenance, and the lack of economic incentives for operator productivity and energy conservation by users. Environmental concerns have caused the local government and international agencies to plan major improvements to the system. This paper discusses the development of the district heating system, coal use in Poland, cogeneration facilities, environmental concerns and pollution control plans, and improvement strategies

  20. Report on energy conservation. Potential feasibility study on energy conservation at the national textile factories (Energy-saving equipment)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    In consideration of the future CDM project, feasibility study was made on the energy conservation/cost reduction in national textile factories in Egypt. In textile factories in Egypt, the steam by oil fueled boiler is used in dyeing, drying and other production processes. In this study, studied were the energy conservation effect, greenhouse effect gas reduction effect and economical efficiency in the case of using electric power/steam by the natural gas fueled cogeneration system. As a result of the study, the energy conservation effect in 6 national textile factories became 13% on average, which equals to the conservation of 15,000 toe per year. The greenhouse effect gas reduction effect also became 13%, which equals to the reduction of approximately 46,000 t-CO2 per year. As to the economical efficiency, the depreciation period of investment became 4.0-8.6 years (5.6 years on average). In the light of the operation period of cogeneration facilities of 15 years, it was indicated that the system was very advantageous. (NEDO)

  1. The potential of the Kakadu National Park Region

    International Nuclear Information System (INIS)

    1988-11-01

    The Committee reviewed the potential of the Kakadu National Park region in the Northern Territory with particular reference to the nature of the resources available for exploitation and the impact of utilisation of these resources, particularly mining and tourism. Individual chapters discuss the Park, tourism, mineral resources (particularly the environmental and economic impacts of the Ranger Uranium Mine and the potential impacts of mining the Koongarra and Jabiluka deposits), the town of Jabiru, commercial fishing, other issues (the scientific resource, crocodiles, introduced species and fire), and park management and control (including a review of the role of the Office of the Supervising Scientist for the Alligator Rivers Region). A number of recommendations are made and the dissenting report of three of the Committee's members is included

  2. Economic feasibility of high-temperature reactors for industrial cogeneration. An investor's perspective

    International Nuclear Information System (INIS)

    Hampe, Jona; Madlener, Reinhard

    2016-01-01

    This paper studies the economic potential of using high-temperature nuclear reactors (HTRs) for cogeneration of industrial process heat and electricity. A reference case HTR is found to deliver cost-competitive process heat with temperatures of ≥200°C, rendering the chemical and pulp and paper industries potential candidates. The reference case investment yields a positive net present value of €304 million. Real options analysis is employed to account for the uncertain environment and the resulting managerial flexibilities of the project. A real option model for optimal investment timing is adapted to HTRs for industrial cogeneration. The value of the option to invest in an HTR is determined at €667 million and the electricity price threshold for an optimal investment at 79 €/MWh. Though the option to invest in an HTR represents a significant value for a utility, the investment should be delayed until the electricity price has reached the threshold value. We also propose a model to calculate the option value of switching between two different operating modes (cogeneration vs. electricity only). For the reference case, this option value turns out to be €85 million. (author)

  3. System of lower cogeneration in the cement industry; Sistema de cogeneracion inferior en la industria del cemento

    Energy Technology Data Exchange (ETDEWEB)

    Romero Paredes, H.; Vazquez, A; Ambriz, J. J.; Fosado, A.; Cedillo, D.; Sanchez, R. [Universidad Autonoma Metropolitana-Iztapalapa (Mexico)

    1999-07-01

    In this paper present work, the design of a cogeneration system was made, taking advantage of the waste thermal flows in a cement manufacturing industry. The costs by concept of energy sources in the cement industry represent between 30 and 60% of the production costs, reason why any diminution in its consumption, will be reflected considerably in the productivity of the company. In order to determine the available capacity of waste energy and to establish the dimension of the cogeneration system it was decided to initially conduct balances of matter and energy of a cement production train. For the evaluation and numerical simulation a case study of a national plant was taken. The analysis takes only into account the rotary kiln, the pre roaster, the gas cooler or conditioner, the cooler of clinker and the separators or dust recuperators. In this study the electrical mills nor the systems that operate all over the plant have been taken in consideration. The results show that in general a high potential of co-generation exists since in some cases the heat losses can reach up to a 50% of the calorific energy input. The capacity of electrical generation by means of a steam turbine when taking advantage of a fraction (in the order of 60%) the residual heat, can be between 200 and 300 watts per kilogram of clinker produced. In conclusion, when recovering by means of appropriate heat exchangers for each one of the mentioned equipment the wasted energy and a network of heat interchange optimized by means of modern technologies an important part of the electrical energy that a cement mill uses can be generated. The method used has been very attractive and with the possibility of applying it to any cement mill and thus evaluate the potentials of energy co-generation. [Spanish] En el presente trabajo, se realizo el diseno de un sistema de cogeneracion aprovechando las corrientes termicas de desecho en una industria de fabricacion de cemento. Los costos por concepto de

  4. Italian cogeneration legislation (Laws 9 ampersand 10): ENEL's (Italy) point of view

    International Nuclear Information System (INIS)

    Pello', P.M.

    1991-01-01

    Referring to recently legislated Italian normatives governing on-site electric power generation by private industry, in particular, to the clauses which regard rate structure in the case of auto-producers ceding power to the national grid controlled by ENEL (the Italian National Electricity Board), this paper determines auto-production economic feasibility limits, based on cogeneration plant annual power production, ceded power quality, type of fuel, and overall operating costs. Some consideration is then given to the long term implications that this legislation, encouraging on-site production on a wide scale, has on ENEL's strategic planning and natural gas marketing in Italy

  5. Mini gas turbines. Study related to energy efficient cogeneration applications for new cogeneration markets. Appendix; Mini gasturbiner. Udredning vedr. energieffektive kraftvarmeapplikationer til nye kraftvarmemarkeder. Appendix

    Energy Technology Data Exchange (ETDEWEB)

    Mikkelsen, J.B.; Weel Hansen, M.; Astrupgaard, N.P.

    2000-12-01

    The aim of the project is to investigate, design and increase the energy efficiency in new cogeneration/cooling systems, which are based on new developed mini gas turbines. Hereby cogeneration can primarily based on natural gas and bio-fuels be spread to new market segments. The appendix presents further details related to gas turbine as burner; cogeneration with recuperation gas turbine; gas turbine for cogeneration/absorption refrigerator; the economic and operational basis used in the study. (EHS)

  6. Cogeneration steam turbines from Siemens: New solutions

    Science.gov (United States)

    Kasilov, V. F.; Kholodkov, S. V.

    2017-03-01

    The Enhanced Platform system intended for the design and manufacture of Siemens AG turbines is presented. It combines organizational and production measures allowing the production of various types of steam-turbine units with a power of up to 250 MWel from standard components. The Enhanced Platform designs feature higher efficiency, improved reliability, better flexibility, longer overhaul intervals, and lower production costs. The design features of SST-700 and SST-900 steam turbines are outlined. The SST-700 turbine is used in backpressure steam-turbine units (STU) or as a high-pressure cylinder in a two-cylinder condensing turbine with steam reheat. The design of an SST-700 single-cylinder turbine with a casing without horizontal split featuring better flexibility of the turbine unit is presented. An SST-900 turbine can be used as a combined IP and LP cylinder (IPLPC) in steam-turbine or combined-cycle power units with steam reheat. The arrangements of a turbine unit based on a combination of SST-700 and SST-900 turbines or SST-500 and SST-800 turbines are presented. Examples of this combination include, respectively, PGU-410 combinedcycle units (CCU) with a condensing turbine and PGU-420 CCUs with a cogeneration turbine. The main equipment items of a PGU-410 CCU comprise an SGT5-4000F gas-turbine unit (GTU) and STU consisting of SST-700 and SST-900RH steam turbines. The steam-turbine section of a PGU-420 cogeneration power unit has a single-shaft turbine unit with two SST-800 turbines and one SST-500 turbine giving a power output of N el. STU = 150 MW under condensing conditions.

  7. Cogeneration steam turbine plant for district heating of Berovo (Macedonia)

    International Nuclear Information System (INIS)

    Armenski, Slave; Dimitrov, Konstantin

    2000-01-01

    A plant for combined heat and electric power production, for central heating of the town Berovo (Macedonia) is proposed. The common reason to use a co-generation unit is the energy efficiency and a significant reduction of environmental pollution. A coal dust fraction from B rik' - Berovo coal mine is the main energy resource for cogeneration steam turbine plant. The heat consumption of town Berovo is analyzed and determined. Based on the energy consumption of a whole power plant, e. i. the plant for combined and simultaneous production of power is proposed. All necessary facilities of cogeneration plant is examined and determined. For proposed cogeneration steam turbine power plant for combined heat and electric production it is determined: heat and electric capacity of the plant, annually heat and electrical quantity production and annually coal consumption, the total investment of the plant, the price of both heat and electric energy as well as the pay back period. (Authors)

  8. Industrial cogeneration optimization program. Final report, September 1979

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Jerry; McWhinney, Jr., Robert T.

    1980-01-01

    This study program is part of the DOE Integrated Industry Cogeneration Program to optimize, evaluate, and demonstrate cogeneration systems, with direct participation of the industries most affected. One objective is to characterize five major energy-intensive industries with respect to their energy-use profiles. The industries are: petroleum refining and related industries, textile mill products, paper and allied products, chemicals and allied products, and food and kindred products. Another objective is to select optimum cogeneration systems for site-specific reference case plants in terms of maximum energy savings subject to given return on investment hurdle rates. Analyses were made that define the range of optimal cogeneration systems for each reference-case plant considering technology applicability, economic factors, and energy savings by type of fuel. This study also provides guidance to other parts of the program through information developed with regard to component development requirements, institutional and regulatory barriers, as well as fuel use and environmental considerations. (MCW)

  9. Cogeneration feasibility study in the Gulf States Utilities service area

    Energy Technology Data Exchange (ETDEWEB)

    1979-12-01

    Sites in the Gulf States Utilities service are considered for cogeneration feasibility studies. The sources of steam considered for the Orange, Texas and Geismar, Lake Charles, and North Baton Rouge, Louisiana sites include oil, coal, HTGR steamers, consolidated nuclear steam system, atmospheric fluidized-bed coal combustion, and coal gasification. Concepts concerning cogeneration fuel systems were categorized by technical applicability as: current technology (pulverized coal-fired boilers and fuel oil-fired boilers), advanced technology under development (HTGR steamers and the CNSS), and advanced technology for future development (atmospheric fluidized-bed boilers and coal gasification). In addition to providing data on cogeneration plant generally useful in the US, the study determined the technical and economic feasibility of steam and electric power cogeneration using coal and nuclear fuels for localized industrial complexes. Details on site selection, plant descriptions, cost estimates, economic analysis, and plant schedule and implementation. (MCW)

  10. Development of a proton exchange membrane fuel cell cogeneration system

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Jenn Jiang; Zou, Meng Lin [Department of Greenergy, National University of Tainan, Tainan 700 (China)

    2010-05-01

    A proton exchange membrane fuel cell (PEMFC) cogeneration system that provides high-quality electricity and hot water has been developed. A specially designed thermal management system together with a microcontroller embedded with appropriate control algorithm is integrated into a PEM fuel cell system. The thermal management system does not only control the fuel cell operation temperature but also recover the heat dissipated by FC stack. The dynamic behaviors of thermal and electrical characteristics are presented to verify the stability of the fuel cell cogeneration system. In addition, the reliability of the fuel cell cogeneration system is proved by one-day demonstration that deals with the daily power demand in a typical family. Finally, the effects of external loads on the efficiencies of the fuel cell cogeneration system are examined. Results reveal that the maximum system efficiency was as high as 81% when combining heat and power. (author)

  11. Sustainability assessment of cogeneration sector development in Croatia

    International Nuclear Information System (INIS)

    Liposcak, Marko; Afgan, Naim H.; Duic, Neven; Graca Carvalho, Maria da

    2006-01-01

    The effective and rational energy generation and supply is one of the main presumptions of sustainable development. Combined heat and power production, or co-generation, has clear environmental advantages by increasing energy efficiency and decreasing carbon emissions. However, higher investment cost and more complicated design and maintenance sometimes-present disadvantages from the economical viability point of view. As in the case of most of economies in transition in Central and Eastern Europe, Croatia has a strong but not very efficient co-generation sector, delivering 12% of the final energy consumption. District heating systems in the country's capital Zagreb and in city of Osijek represent the large share of the overall co-generation capacity. Besides district heating, co-generation in industry sector is also relatively well developed. The paper presents an attempt to assess the sustainability of Croatian co-generation sector future development. The sustainability assessment requires multi-criteria assessment of specific scenarios to be taken into consideration. In this respect three scenarios of Croatian co-generation sector future development are taken into consideration and for each of them environmental, social and economic sustainability indicators are defined and calculated. The assessment of complex relationships between environmental, social and economic aspects of the system is based on the multi-criteria decision-making procedure. The sustainability assessment is based on the General Sustainability Index rating for different cases reflecting different criteria and their priority. The method of sustainability assessment is applied to the Croatian co-generation sector contributing to the evaluation of different strategies and definition of a foundation for policy related to the sustainable future cogeneration sector development

  12. Methodology study: Co-generation feasibility at sawmills

    International Nuclear Information System (INIS)

    Host, J.

    1991-01-01

    This report discussed the various factors that should be studied and evaluated before establishing a cogeneration plant. The results of three case studies and a survey of energy needs in smaller and medium size sawmills are also presented. In general, cogeneration is feasible for supplying electric energy required for processing logs using fuelbark and other residues from the manufacturing process. A rebuilt turbine-generator unit is an initial cost saving alternative that is advantageous throughout the life of the operation

  13. Cogeneration and taxation in a liberalised Nordic power market

    International Nuclear Information System (INIS)

    Jess Olsen, O.; Munksgaard, J.

    1997-01-01

    This report is about the impact of the liberalisation of the Nordic power market on cogeneration of heat and power. Special attention is given to the effects on competition of the entirely different tax regimes in the Nordic countries. Some of the main questions answered in this study are: Which cogeneration technologies are able to compete on a liberalised power market? What are the consequences of different tax structures in the four countries for cross-border competition? Which principles should be applied if a common Nordic tax structure is to be developed? The following countries are included in the study: Denmark, Finland, Norway and Sweden. Today, cogeneration provides a larger contribution to the energy supply in the Nordic countries than elsewhere in the world. Our analysis demonstrates that most cogeneration technologies can compete with the power-only technologies. This is the case with respect to both long- and short-term marginal costs. The main exception is the very expensive straw-fired cogeneration technology. The analysis is extended to include the effects of the existing tax regimes (in 1996) in Denmark, Finland and Sweden as well as of the combines energy/CO 2 -tax that was proposed in 1992 by the European Commission. Each of the four tax regimes preserve the competitiveness of cogeneration within its own regime, i.e. if a given cogeneration technology is competitive without taxes it will remain so in a closed market when either Danish, Finnish, Swedish or European taxes are added. The implication of this is that the same cogeneration technology will be exposed to very different conditions in an open power market with cross-border competition, if the present tax regimes in the Nordic countries are allowed to continue. (EG) Also published in Danish. 15 refs

  14. Biogas cooperation for cogeneration plants; Biogaskooperation fuer Blockheizkraftwerke

    Energy Technology Data Exchange (ETDEWEB)

    Deeg, Thomas [Stadtwerke Schwaebisch Hall GmbH, Schwaebisch Hall (Germany)

    2011-03-15

    Since autumn 2010, via a 7 kilometre long biogas conduit an agricultural biogas plant supplies a cogeneration plant in the residential area Teurershof in Schwaebisch Hall. This enables a conversion of biogas with the highest possible efficiency in thermal energy and electricity. This is due to the attachment of the cogeneration plant in Teurershof to the district heating grid of the city Schwaebisch Hall so that the developing thermal energy completely can be used.

  15. Cogeneration and taxation in a liberalised Nordic power market

    Energy Technology Data Exchange (ETDEWEB)

    Jess Olsen, O.; Munksgaard, J.

    1997-12-31

    This report is about the impact of the liberalisation of the Nordic power market on cogeneration of heat and power. Special attention is given to the effects on competition of the entirely different tax regimes in the Nordic countries. Some of the main questions answered in this study are: Which cogeneration technologies are able to compete on a liberalised power market? What are the consequences of different tax structures in the four countries for cross-border competition? Which principles should be applied if a common Nordic tax structure is to be developed? The following countries are included in the study: Denmark, Finland, Norway and Sweden. Today, cogeneration provides a larger contribution to the energy supply in the Nordic countries than elsewhere in the world. Our analysis demonstrates that most cogeneration technologies can compete with the power-only technologies. This is the case with respect to both long- and short-term marginal costs. The main exception is the very expensive straw-fired cogeneration technology. The analysis is extended to include the effects of the existing tax regimes (in 1996) in Denmark, Finland and Sweden as well as of the combines energy/CO{sub 2}-tax that was proposed in 1992 by the European Commission. Each of the four tax regimes preserve the competitiveness of cogeneration within its own regime, i.e. if a given cogeneration technology is competitive without taxes it will remain so in a closed market when either Danish, Finnish, Swedish or European taxes are added. The implication of this is that the same cogeneration technology will be exposed to very different conditions in an open power market with cross-border competition, if the present tax regimes in the Nordic countries are allowed to continue. (EG) Also published in Danish. 15 refs.

  16. Cogeneration – development and prospect in Polish energy sector

    Directory of Open Access Journals (Sweden)

    Matuszewska Dominika

    2017-01-01

    Full Text Available Next 10-15 years are crucial for condition of Polish energy sector in light of challenges arising mainly from increasing demand for electric energy, need of reducing greenhouse gases emissions and shutdowns of old units. In this situation cogeneration can be one of the most rational way to meet those circumstances. This paper analyzes present development of cogeneration in Poland and its prospect for future.

  17. Energy and cost savings results for advanced technology systems from the Cogeneration Technology Alternatives Study /CTAS/

    Science.gov (United States)

    Sagerman, G. D.; Barna, G. J.; Burns, R. K.

    1979-01-01

    The Cogeneration Technology Alternatives Study (CTAS), a program undertaken to identify the most attractive advanced energy conversion systems for industrial cogeneration applications in the 1985-2000 time period, is described, and preliminary results are presented. Two cogeneration options are included in the analysis: a topping application, in which fuel is input to the energy conversion system which generates electricity and waste heat from the conversion system is used to provide heat to the process, and a bottoming application, in which fuel is burned to provide high temperature process heat and waste heat from the process is used as thermal input to the energy conversion system which generates energy. Steam turbines, open and closed cycle gas turbines, combined cycles, diesel engines, Stirling engines, phosphoric acid and molten carbonate fuel cells and thermionics are examined. Expected plant level energy savings, annual energy cost savings, and other results of the economic analysis are given, and the sensitivity of these results to the assumptions concerning fuel prices, price of purchased electricity and the potential effects of regional energy use characteristics is discussed.

  18. Process heat cogeneration using a high temperature reactor

    International Nuclear Information System (INIS)

    Alonso, Gustavo; Ramirez, Ramon; Valle, Edmundo del; Castillo, Rogelio

    2014-01-01

    Highlights: • HTR feasibility for process heat cogeneration is assessed. • A cogeneration coupling for HTR is proposed and process heat cost is evaluated. • A CCGT process heat cogeneration set up is also assessed. • Technical comparison between both sources of cogeneration is performed. • Economical competitiveness of the HTR for process heat cogeneration is analyzed. - Abstract: High temperature nuclear reactors offer the possibility to generate process heat that could be used in the oil industry, particularly in refineries for gasoline production. These technologies are still under development and none of them has shown how this can be possible and what will be the penalty in electricity generation to have this additional product and if the cost of this subproduct will be competitive with other alternatives. The current study assesses the likeliness of generating process heat from Pebble Bed Modular Reactor to be used for a refinery showing different plant balances and alternatives to produce and use that process heat. An actual practical example is presented to demonstrate the cogeneration viability using the fact that the PBMR is a modular small reactor where the cycle configuration to transport the heat of the reactor to the process plant plays an important role in the cycle efficiency and in the plant economics. The results of this study show that the PBMR would be most competitive when capital discount rates are low (5%), carbon prices are high (>30 US$/ton), and competing natural gas prices are at least 8 US$/mmBTU

  19. Process heat cogeneration using a high temperature reactor

    Energy Technology Data Exchange (ETDEWEB)

    Alonso, Gustavo, E-mail: gustavoalonso3@gmail.com [Instituto Nacional de Investigaciones Nucleares, Carretera Mexico-Toluca s/n, Ocoyoacac, Edo. De Mexico 52750 (Mexico); Instituto Politécnico Nacional, Unidad Profesional Adolfo Lopez Mateos, Ed. 9, Lindavista, D.F. 07300 (Mexico); Ramirez, Ramon [Instituto Nacional de Investigaciones Nucleares, Carretera Mexico-Toluca s/n, Ocoyoacac, Edo. De Mexico 52750 (Mexico); Valle, Edmundo del [Instituto Politécnico Nacional, Unidad Profesional Adolfo Lopez Mateos, Ed. 9, Lindavista, D.F. 07300 (Mexico); Castillo, Rogelio [Instituto Nacional de Investigaciones Nucleares, Carretera Mexico-Toluca s/n, Ocoyoacac, Edo. De Mexico 52750 (Mexico)

    2014-12-15

    Highlights: • HTR feasibility for process heat cogeneration is assessed. • A cogeneration coupling for HTR is proposed and process heat cost is evaluated. • A CCGT process heat cogeneration set up is also assessed. • Technical comparison between both sources of cogeneration is performed. • Economical competitiveness of the HTR for process heat cogeneration is analyzed. - Abstract: High temperature nuclear reactors offer the possibility to generate process heat that could be used in the oil industry, particularly in refineries for gasoline production. These technologies are still under development and none of them has shown how this can be possible and what will be the penalty in electricity generation to have this additional product and if the cost of this subproduct will be competitive with other alternatives. The current study assesses the likeliness of generating process heat from Pebble Bed Modular Reactor to be used for a refinery showing different plant balances and alternatives to produce and use that process heat. An actual practical example is presented to demonstrate the cogeneration viability using the fact that the PBMR is a modular small reactor where the cycle configuration to transport the heat of the reactor to the process plant plays an important role in the cycle efficiency and in the plant economics. The results of this study show that the PBMR would be most competitive when capital discount rates are low (5%), carbon prices are high (>30 US$/ton), and competing natural gas prices are at least 8 US$/mmBTU.

  20. Modelling of a chemisorption refrigeration and power cogeneration system

    International Nuclear Information System (INIS)

    Bao, Huashan; Wang, Yaodong; Roskilly, Anthony Paul

    2014-01-01

    Highlights: • An adsorption cogeneration was proposed and simulated for cooling and electricity. • A dynamic model was built and studied to demonstrate the variability of the system. • A dynamic model included the complex coupling of thermodynamic and chemical kinetic. • Mutual constrains between main components and optimisation methods were discussed. • The highest theoretical COP and exergy efficiency of cogeneration is 0.57 and 0.62. - Abstract: The present work for the first time explores the possibility of a small-scale cogeneration unit by combining solid–gas chemisorption refrigeration cycle and a scroll expander. The innovation in this work is the capability of producing refrigeration and electricity continuously and simultaneously without aggravating the energy scarcity and environmental impact. Individual modelling for each component, which has been validated by experimental data, was firstly investigated in order to identify the proper operation condition for the cogeneration mode achieving 1000 W power output. Subsequently, with the integrated modelling of two components the cogeneration performance was studied to demonstrate the viability of this concept. However, because of the mutual constraint between the chemisorption and the expansion when they link in series, the power output of the cogeneration mode was only around one third of the original expectation under the same condition identified in the individual modelling. Methods of improving the global performance including the selection of reactive mediums were also discussed and would be of referable value for the future practical investigation

  1. Potential National Security Applications of Nuclear Resonance Fluorescence Methods

    International Nuclear Information System (INIS)

    Warren, Glen A.; Peplowski, Patrick N.; Caggiano, Joseph A.

    2009-01-01

    The objective of this report is to document the initial investigation into the possible research issues related to the development of NRF-based national security applications. The report discusses several potential applications ranging from measuring uranium enrichment in UF6 canisters to characterization of gas samples. While these applications are varied, there are only a few research issues that need to be addressed to understand the limitation of NRF in solving these problems. These research issues range from source and detector development to measuring small samples. The next effort is to determine how best to answer the research issues, followed by a prioritization of those questions to ensure that the most important are addressed. These issues will be addressed through either analytical calculations, computer simulations, analysis of previous data or collection of new measurements. It will also be beneficial to conduct a thorough examination of a couple of the more promising applications in order to develop concrete examples of how NRF may be applied in specific situations. The goals are to develop an understanding of whether the application of NRF is limited by technology or physics in addressing national security applications, to gain a motivation to explore those possible applications, and to develop a research roadmap so that those possibilities may be made reality.

  2. Report on achievements in fiscal 1999. Environment harmonizing energy community survey project for Public Yatsushika Hospital area (large-scale cogeneration district heat supplying facility); Koritsu Yatsushika byoin chiku kankyo chowagata energy community chosa jigyo chosa hokokusho. Daikibo cogeneration chiiki netsu kyokyu shisetsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    This survey is intended to utilize cogeneration to promote structuring a system to effectively utilize potential energy in a district. In connection with the total rebuilding plan for Yatsushika Hospital, a proposal was made on a cogeneration district heat supply system that could be introduced to six facilities in total including the hospital, its three ancillary facilities, and two neighboring facilities. The proposal is intended to evaluate energy conservation performance, environmentality, and economic performance of the system, and structure an optimal system. Two gas engines having the same capacity were selected as the driving source of the cogeneration system. The waste heat recovering system adopted the 'hot water plus steam recovery system'. Generators were selected that have high energy saving and overall cogeneration efficiency, power dependence, heat dependence, and waste heat utilization factor. As the countermeasures for heat load that cannot be taken care by the waste heat recovery alone, discussions were given on the cogeneration plus gas-burning absorption type cold-hot water device system (the system 1) and the cogeneration plus heat pump heat storing system (the system 2). As a result, the system 2 was selected as the optimal system because it uses both of LNG and commercial electric power effectively, and has stability against variation in fuel prices and excellent environmentality. (NEDO)

  3. Smart intermittency-friendly cogeneration: Techno-economic performance of innovative double storage concept for integrating compression heat pumps in distributed cogeneration

    DEFF Research Database (Denmark)

    Blarke, Morten

    2011-01-01

    cogeneration plants rather than central power plants are giving way for wind power in the electricity mix. Could intermittent renewables be a threat to the system-wide energy, economic and environmental benefits that distributed cogeneration have to offer? This paper investigates how existing cogeneration...... plants may adapt their plant design and operational strategy to improve the co-existence between cogeneration and intermittent renewables. A novel intermittency-friendly and super-efficient concept in cogeneration is presented that involves integrating a high-pressure compression heat pump using heat...

  4. Cogeneration Technology Alternatives Study (CTAS). Volume 3: Industrial processes

    Science.gov (United States)

    Palmer, W. B.; Gerlaugh, H. E.; Priestley, R. R.

    1980-01-01

    Cogenerating electric power and process heat in single energy conversion systems rather than separately in utility plants and in process boilers is examined in terms of cost savings. The use of various advanced energy conversion systems are examined and compared with each other and with current technology systems for their savings in fuel energy, costs, and emissions in individual plants and on a national level. About fifty industrial processes from the target energy consuming sectors were used as a basis for matching a similar number of energy conversion systems that are considered as candidate which can be made available by the 1985 to 2000 time period. The sectors considered included food, textiles, lumber, paper, chemicals, petroleum, glass, and primary metals. The energy conversion systems included steam and gas turbines, diesels, thermionics, stirling, closed cycle and steam injected gas turbines, and fuel cells. Fuels considered were coal, both coal and petroleum based residual and distillate liquid fuels, and low Btu gas obtained through the on site gasification of coal. An attempt was made to use consistent assumptions and a consistent set of ground rules specified by NASA for determining performance and cost. Data and narrative descriptions of the industrial processes are given.

  5. The choice of equipment mix and parameters for HTGR-based nuclear cogeneration plants

    Energy Technology Data Exchange (ETDEWEB)

    Malevski, A L; Stoliarevski, A Ya; Vladimirov, V T; Larin, E A; Lesnykh, V V; Naumov, Yu V; Fedotov, I L

    1990-07-01

    Improvement of heat and electricity supply systems based on cogeneration is one of the high-priority problems in energy development of the USSR. Fossil fuel consumption for heat supply exceeds now its use for electricity production and amounts to about 30% of the total demands. District heating provides about 80 million t.c.e. of energy resources conserved annually and meets about 50% of heat consumption of the country, including about 30% due to cogeneration. The share of natural gas and liquid fuel in the fuel consumption for district heating is about 70%. The analysis of heat consumption dynamics in individual regions and industrial-urban agglomerations shows the necessity of constructing cogeneration plants with the total capacity of about 60 million kW till the year 2000. However, their construction causes some serious problems. The most important of them are provision of environmentally clean fuels for cogeneration plants and provision of clear air. The limited reserves of oil and natural gas and the growing expenditures on their production require more intensive introduction of nuclear energy in the national energy balance. Possible use of nuclear energy based on light-water reactors for substitution of deficient hydrocarbon fuels is limited by the physical, technical and economic factors and requirements of safety. Further development of nuclear energy in the USSR can be realized on a new technological base with construction of domestic reactors of increased and ultimate safety. The most promising reactors under design are high-temperature gas-cooled reactors (HTGR) of low and medium capacity with the intrinsic property of safety. HTGR of low (about 200-250 MW(th) in a steel vessel), medium (about 500 MW(th) in a steel-concrete vessel) and high (about 1000-2500 MW(th) in a prestressed concrete vessel) are now designed and studied in the country. At outlet helium temperature of 920-1020 K it is possible to create steam turbine installations producing both

  6. The choice of equipment mix and parameters for HTGR-based nuclear cogeneration plants

    International Nuclear Information System (INIS)

    Malevski, A.L.; Stoliarevski, A.Ya.; Vladimirov, V.T.; Larin, E.A.; Lesnykh, V.V.; Naumov, Yu.V.; Fedotov, I.L.

    1990-01-01

    Improvement of heat and electricity supply systems based on cogeneration is one of the high-priority problems in energy development of the USSR. Fossil fuel consumption for heat supply exceeds now its use for electricity production and amounts to about 30% of the total demands. District heating provides about 80 million t.c.e. of energy resources conserved annually and meets about 50% of heat consumption of the country, including about 30% due to cogeneration. The share of natural gas and liquid fuel in the fuel consumption for district heating is about 70%. The analysis of heat consumption dynamics in individual regions and industrial-urban agglomerations shows the necessity of constructing cogeneration plants with the total capacity of about 60 million kW till the year 2000. However, their construction causes some serious problems. The most important of them are provision of environmentally clean fuels for cogeneration plants and provision of clear air. The limited reserves of oil and natural gas and the growing expenditures on their production require more intensive introduction of nuclear energy in the national energy balance. Possible use of nuclear energy based on light-water reactors for substitution of deficient hydrocarbon fuels is limited by the physical, technical and economic factors and requirements of safety. Further development of nuclear energy in the USSR can be realized on a new technological base with construction of domestic reactors of increased and ultimate safety. The most promising reactors under design are high-temperature gas-cooled reactors (HTGR) of low and medium capacity with the intrinsic property of safety. HTGR of low (about 200-250 MW(th) in a steel vessel), medium (about 500 MW(th) in a steel-concrete vessel) and high (about 1000-2500 MW(th) in a prestressed concrete vessel) are now designed and studied in the country. At outlet helium temperature of 920-1020 K it is possible to create steam turbine installations producing both

  7. Energetic analysis of a novel vehicle power and cooling/heating cogeneration energy system using cascade cycles

    International Nuclear Information System (INIS)

    Yue, Chen; Han, Dong; Pu, Wenhao; He, Weifeng

    2015-01-01

    This study proposes and investigates a novel VCES (Vehicle power and cooling/heating Cogeneration Energy System), including a topping vehicle engine subsystem, and a bottoming waste-heat recovery subsystem which uses the zeotropic working fluid. The various grade exhaust and coolant waste-heat of the topping subsystem are cascade recovered by the bottoming subsystem, and slide-temperature thermal match in waste heat recovery heat exchangers and the condenser is considered also, obtaining power output and cooling/heating capacity. Based on the experimental data from an actual vehicle's energy demands and its waste-heat characteristics, the proposed VCES (vehicle cogeneration energy system) model is built and verified. Using ammonia-water as working fluid of the bottoming subsystem, integrated thermodynamic performances of the VCES are discussed through introducing three variables: an ambient temperature, the vehicle's velocity and the number of seated occupants. The influence of above three variables on the proposed VCES′ overall thermodynamic performance is analyzed by comparing it to a conventional VCES, and suitable operation conditions are recommended under cooling and heating conditions. - Highlights: • A novel vehicle cogeneration energy system is proposed. • Slide-temperature thermal match at two levels are considered. • Integration of the topping vehicle engine and bottoming waste heat recovery cycle is designed. • The cogeneration system model is built and verified based on experimental data. • Energy-saving potential of the proposed system is investigated

  8. EFFECTS OF IMPLEMENTATION OF CO-GENERATION IN THE DISTRICT HEATING SYSTEM OF THE FACULTY OF MECHANICAL ENGINEERING IN NIŠ

    Directory of Open Access Journals (Sweden)

    Mladen M Stojiljković

    2010-01-01

    Full Text Available Implementation of co-generation of thermal and electrical energy in district heating systems often results with higher overall energy efficiency of the systems, primary energy savings and environmental benefits. Financial results depend on number of parameters, some of which are very difficult to predict. After introduction of feed-in tariffs for generation of electrical energy in Serbia, better conditions for implementation of co-generation are created, although in district heating systems barriers are still present. In this paper, possibilities and effects of implementation of natural gas fired co-generation engines are examined and presented for the boiler house that is a part of the district heating system owned and operated by the Faculty of Mechanical Engineering in Niš. At the moment, in this boiler house only thermal energy is produced. The boilers are natural gas fired and often operate in low part load regimes. The plant is working only during the heating season. For estimation of effects of implementation of co-generation, referent values are taken from literature or are based on the results of measurements performed on site. Results are presented in the form of primary energy savings and greenhouse gasses emission reduction potentials. Financial aspects are also considered and triangle of costs is shown.

  9. Liberalization: asset or handicap for the cogeneration; Liberalisation: atout ou handicap pour la cogeneration?

    Energy Technology Data Exchange (ETDEWEB)

    Trinh, M. [DIGEC, 75 - Paris (France); Ploix, B.; Laroche, G. [Club Cogeneration ATEE, Association Technique Energie Environnement, ATEE, 94 - Arcueil (France); Roncato, J.P. [Finergaz, 75 - Paris (France); Favre, O. [ELYO, 92 - Nanterre (France); Bernard, A. [Electricite de France, EDF, Dir. Developpement, 75 - Paris (France); Egal, Ch. [COGETERM, 75 - Paris (France); Cotard, E. [COGEN Europe, 75 - Paris (France); Lambinon, C. [Association Francaise des Operateurs Independants de l' Electricite, AFOIE, 75 - Paris (France); Golbach, A. [Fordergemeinschaft Blockheizkraftwerke, Suisse (Switzerland); Crochetet, D. [Gaz de France, GDF, Dir. des Projets de Developpement, 75 - Paris (France); Daverat, Ph. [Bergerat Monnoyeur, 91 - Montlhery (France); Bounakoff, F. [houvenaghel Hennequin Groel, 76 - Fecamp (France)

    2000-07-01

    The new laws on the energies market are going to change the commercial sector of the electric power market in France. The colloquium in two parts ( the 25 and 26 january 2000), constitutes a reflection on the future of this new market. The second part provides papers on the place of the cogeneration in this new market. The positive example of the United States and the negative example of the Germany are analyzed. giving answers to economic, legal, financial and technical problems. (A.L.B.)

  10. Potential role of smil in digitalization of national heritage

    OpenAIRE

    Tošić, Dušan; Filipović, Vladimir; Tuba, Milan; Kratica, Jozef

    2007-01-01

    XML technologies provide that digitalization of national heritage relies on widely accepted standards. Beside the XML standardized way of text and picture digitalization, there is a similar way for multimedia digitalization. Special XML language, called SMIL (Synchronized Multimedia Integration Language) is used for the multimedia digitalization. This language is very convenient for the digitalization of national heritage like the custom national dresses, popu...

  11. Cogeneration and Small Power Production Quarterly Report to the California Public Utilities Commission First Quarter 1984

    Energy Technology Data Exchange (ETDEWEB)

    None

    1984-01-01

    At the end of the First Quarter of 1984, the number of signed contracts and letter agreements for cogeneration and small power production projects was 322, with a total estimated nominal capacity of 2,643 MW. Of these totals, 215 projects, capable of producing 640 MW, are operational. A map indicating the location of operational facilities under contract with PG and E is provided. Developers of cogeneration, solid waste, or biomass projects had signed 110 contracts with a potential of 1,467 MW. In total, 114 contracts and letter agreements had been signed with projects capable of producing 1,508 MW. PG and E also had under active discussion 35 cogeneration projects that could generate a total of 425 MW to 467 MW, and 11 solid waste or biomass projects with a potential of 94 MW to 114 MW. One contract had been signed for a geothermal project, capable of producing 80 MW. There were 7 solar projects with signed contracts and a potential of 37 MW, as well as 5 solar projects under active discussion for 31 MW. Wind farm projects under contract numbered 32, with a generating capability of 848 MW. Also, discussions were being conducted with 18 wind farm projects, totaling 490 MW. There were 101 wind projects of 100 kW or less with signed contracts and a potential of 1 MW, as well as 6 other small wind projects under active discussion. There were 64 hydroelectric projects with signed contracts and a potential of 148 MW, as well as 75 projects under active discussion for 316 MW. In addition, there were 31 hydroelectric projects, with a nominal capacity of 187 MW, that Pg and E was planning to construct.

  12. INCOGEN pre-feasibility study. Nuclear cogeneration

    Energy Technology Data Exchange (ETDEWEB)

    Van Heek, A.I.; De Haas, J.B.M.; Hogenbirk, A.; Klippel, H.T.; Kuijper, J.C.; Schram, R. [Netherlands Energy Research Foundation ECN, Petten (Netherlands); Hoogenboom, J.E.; Valko, J. [Interfaculty Reactor Institute IRI, Delft (Netherlands); Kanij, J.B.W.; Eendebak, B.T.; De Groot, P.C.; De Kler, R.C.F.; Stempniewicz, M.M. [KEMA, Arnhem (Netherlands); Van Dijk, A.B.; Bredman, B.; Van Essen, D.; Holtz, E.; Op `t Veld, R.; Tjemmes, J.G. [Stork Nucon, Amsterdam (Netherlands); Crommelin, G.A.K.; Crommelin-de Jonge, M.T. [eds.] [ROMAWA, Voorschoten (Netherlands)

    1997-09-01

    The Netherlands Programme to Intensify Nuclear Competence (PINK, abbreviated in Dutch) supported the technical and economical evaluation of a direct cycle High Temperature Reactor (HTR) installation for combined heat and power generation. This helium cooled, graphite moderated HTR based on the German HTR-M, is named INCOGEN (Inherently safe Nuclear COGENeration). The INCOGEN reference is a 40 MW HTR design by the US company Longmark Power International (LPI). The energy conversion system comprises a single-shaft helium turbine-compressor (2.3-1.0 MPa) directly coupled with a 16.5 MW generator, a recuperator and low-temperature (150C to 40C) heat exchangers (23 MW). Spherical fuel elements (60 mm diameter) will be added little by little, which keeps the core only marginally critical. Void core volume can accommodate added fuel for several years until defuelling. Analyses of failure scenarios (loss of coolant accident or LOCA, loss of flow accident or LOFA, anticipated transient without scram or ATWS) show no excess of maximum acceptable fuel temperature of 1600C. Scoping analyses indicate no severe graphite fires. Transient analyses of the turbine-compressor system indicate adequate control flexibility. Optimization and endurance testing of the helium turbine-compressor is recommended.

  13. Electricity Cogenerator from Hydrogen and Biogas

    Science.gov (United States)

    Pinate, W.; Chinnasa, P.; Dangphonthong, D.

    2017-09-01

    This research studied about electricity cogenerator from Hydrogen and Biogas and the factors that cause that effecting Hydrogen from Aluminium which was a cylindrical feature. By using a catalyst was NaOH and CaO, it was reacted in distilled water with percentage of Aluminium: the catalyst (NaOH and CaO) and brought to mix with Biogas afterwards, that have been led to electricity from generator 1 kilowatt. The research outcomes were concentration of solutions that caused amount and percent of maximum Hydrogen was to at 10 % wt and 64.73 % which rate of flowing of constant gas 0.56 litter/minute as temperature 97 degree Celsius. After that led Hydrogen was mixed by Biogas next, conducted to electricity from generator and levelled the voltage of generator at 220 Volt. There after the measure of electricity current and found electricity charge would be constant at 3.1 Ampere. And rate of Biogas flowing and Hydrogen, the result was the generator used Biogas rate of flowing was highest 9 litter/minute and the lowest 7.5 litter/minute, which had rate of flowing around 8.2 litter/minute. Total Biogas was used around 493.2 litter or about 0.493 m3 and Hydrogen had rate of flowing was highest 2.5 litter/minute.

  14. Wastewater treatment facilities: Energy efficient improvements and cogeneration

    International Nuclear Information System (INIS)

    Kunkle, R.; Gray, R.; Delzel, D.

    1992-10-01

    The Washington State Energy Office (WSEO) has worked with both the Bonneville Power Administration (BPA) and the US Department of Energy to provide technical and financial assistance to local governments. Based on a recent study conducted by Ecotope for WSEO, local governments spend an estimated $45 million on utility bills statewide. Water and wastewater facilities account for almost a third of this cost. As a result, WSEO decided to focus its efforts on the energy intensive water and wastewater sector. The ultimate goal of this project was to develop mechanisms to incorporate energy efficiency improvements into wastewater treatment facilities in retrofits and during upgrades, remodels, and new construction. Project activities included the following: The review of the existing regulatory environment for treatment system construction, A summary of financing options for efficiency improvements in treatment facilities, A literature review of energy efficiency opportunities in treatment plants, Survey and site visits to characterize existing facilities in Washington State, Estimates of the energy efficiency and cogeneration potential in the sector, and A case study to illustrate the implementation of an efficiency improvement in a treatment facility

  15. Performance investigation of a cogeneration plant with the efficient and compact heat recovery system

    KAUST Repository

    Myat, Aung; Thu, Kyaw; Kim, Young-Deuk; Choon, Ng Kim

    2011-01-01

    This paper presents the performance investigation of a cogeneration plant equipped with an efficient waste heat recovery system. The proposed cogeneration system produces four types of useful energy namely: (i) electricity, (ii) steam, (iii) cooling

  16. The performance of a temperature cascaded cogeneration system producing steam, cooling and dehumidification

    KAUST Repository

    Myat, Aung; Thu, Kyaw; Kim, Youngdeuk; Ng, K. C.

    2013-01-01

    This paper discusses the performance of a temperature-cascaded cogeneration plant (TCCP), equipped with an efficient waste heat recovery system. The TCCP, also called a cogeneration system, produces four types of useful energy-namely, (i

  17. Demystifying the use of cogeneration in mine cooling applications

    Energy Technology Data Exchange (ETDEWEB)

    Del Castillo, D.O. [Hatch, Johannesburg (South Africa)

    2010-07-01

    A study was conducted in 2009 to determine the feasibility of having cogeneration in South African mines using diesel generators for large cooling installations. The study included a cost comparison between a conventional mechanical vapour-compression system and the proposed cogeneration system under different fuel prices and electric power cost scenarios. Both capital and operating costs were considered and the use of gas turbines was also examined. The cogeneration system consisted of four 3.75 MW diesel generators. The exhaust gases and the water from the jacket-coolers were used to drive 4 single-effect LiBr-water absorption refrigeration machines having a cooling capacity of 3.75 MW(R). The study showed that in most cases, cogeneration would not be economically feasible if specifically installed to produce cooling. Cogeneration would only be economically viable if both the power costs were to increase significantly and fuel prices were to drop considerably. The environmental issues associated with the exhaust gases were not addressed in this study. 3 refs., 4 tabs., 4 figs.

  18. Cogeneration feasibility: Otis Elevator Company and Polychrome Corporation. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1982-05-01

    The purpose of this study was to assess the feasibility of cogeneration at Otis Elevator Company and Polychrome Corporation located in Westchester County, New York. Each plant and its associated thermal and electrical load is reviewed. Three basic cycles for the cogeneration are investigated: power only, power generation with waste heat recovery, and combined cycle. Each case was assessed economically, beginning with a screening method to suggest those configurations most likely to be implemented and continuing through an assessment of the regulatory environment for cogeneration and an analysis of rate structures for buy back power, displaced power, and supplementing service. It is concluded that: for a plant designed to supply the combined loads of the two corporations, interconnection costs coupled to the coincidence of load result in unfavorable economics; for separate cogeneration plants, owned and operated by each individual corporation, energy consumption patterns and the current regulatory environment, in particular the existing and proposed cogeneration system rate structures, do not permit viable economics for the proposed plants; but if the proposed cycle were owned and operated by a new entity (neither Otis/Polychrome nor the utility), an economic scheme with marginal financial benefits can be developed and may be worthy of further study. (LEW)

  19. Bio methane in the cogeneration market and heating market. Status quo, potentials and recommendations for an accelerated market penetration; Biomethan im KWK- und Waermemarkt. Status Quo, Potenziale und Handlungsempfehlungen fuer eine beschleunigte Marktdurchdringung

    Energy Technology Data Exchange (ETDEWEB)

    Herr, Michael; Rostek, Sandra [comps.

    2010-07-15

    The current contribution of the German Energy Agency (Berlin, Federal Republic of Germany) reports on the present sale situation of bio methane on the coupled and uncoupled heating market. The contribution clarifies, why the existing support measures do not stimulate the demand for bio methane in the necessary order of magnitude. Without adjustment of the legal framework neither the considerable sales potentials can be established, nor the targets for the development of the biogas feeding can be achieved approximately. The low demand on bio methane led to a planning stop on the producer side. Direct need for action is required.

  20. Assessment of an atmospheric fluidized-bed coal-combustion gas-turbine cogeneration system for industrial application

    Energy Technology Data Exchange (ETDEWEB)

    Graves, R. L.; Holcomb, R. S.; Tallackson, J. R.

    1979-10-01

    This study was initiated to provide information on the future potential industrial market for a cogeneration system consisting of a fluidized-bed coal combustor coupled to a gas-turbine (Brayton cycle) power system that uses air as the working fluid. In assessing the potential applications for the system, the process heat energy consumption by industry is identified, with special detail included on the six most energy-intensive industries. The potential impact on the nation's oil and natural gas consumption that would result from wide-spread utilization of coal for process heat is also estimated. The fraction of industrial process heat that the system could feasibly satisfy from a thermodynamic viewpoint is estimated, and the performance (potential fuel efficiency and heat/power ratio) of the atmospheric fluidized-bed gas-turbine system is calculated. Also treated are several specific case studies of industries in which the system could be incorporated. Major parameters are specified, and flow sheets are derived for systems that would satisfy the heat and power requirements of the process or industry. The overall fuel utilization efficiency, thermal power rating, and potential number of installations are specified for these case studies. The findings of the study indicate that there is a sizable potential market for the system, with over 1000 possible installations disclosed after reviewing only 8 specific industries from 6 major Standard Industrial Classification (SIC) groups. The potential displacement of oil and gas by coal in process heating is shown to be about 1.60 m/sup 3//sec (870,000 bbl/d) of oil and 4590 m/sup 3//sec (14.0 billion ft/sup 3//d) of natural gas for all industries combined. Continued development of the fluidized-bed coal combustor and power system is recommended so that this potential may be at least partially realized.

  1. Tourism potentials of Mole National Park in Northern Ghana

    Directory of Open Access Journals (Sweden)

    Conrad Wuleka Kuuder

    2012-01-01

    Full Text Available Poor access and long distances from major cities/towns have always been major problems debarring the full utilization of nature-related touristic resources. Despite this, some adventuresome tourists still make efforts to such wildlife sanctuaries to have a feel of nature. This study explores tourism exploits at Mole National Park (the largest in Ghana which is located in the northern sector of the country. An inventory of facilities through field visits and observations were ‘exacted’ to identify different types of landforms, species of wildlife, vegetation and culture which were of touristic significance around the Park and also to have an overview of tourists’ “traffic” to the Park. With regard to data collection, the questionnaire method including personal observation were employed to obtain information from the four communities that surround the Park, the Park officials and tourists who visited the facility from April to May, 2011. The results analysed revealed that turn out was comparatively low due to the remote location of the Park including poor accessibility and low income among Ghanaians. Tourism awareness among community members was found to be high. Tourists found the Park impressive in terms of its variety in wildlife and services rendered therein. It was discovered that the Park has a high tourism potential which can be harnessed to attract both domestic and international tourists and bring socio-economic benefits to Ghana. The paper suggests that improvements in road network to and in the Park and stiffer sanctions to curb poaching were major ways to enhance tourism/recreation in the Park and making it sustainable.

  2. Cogeneration and Small Power Production Quarterly Report to the California Public Utilities Commission. Second Quarter 1984

    Energy Technology Data Exchange (ETDEWEB)

    None

    1984-01-01

    At the end of the Second Quarter of 1984, the number of signed contracts and letter agreements for cogeneration and small power production projects was 334, with total estimated nominal capacity of 2,876 MW. Of these totals, 232 projects, capable of producing 678 MW, are operational (Table A). A map indicating the location of operational facilities under contract with PG and E is provided as Figure A. Developers of cogeneration projects had signed 80 contracts with a potential of 1,161 MW. Thirty-three contracts had been signed for solid waste/biomass projects for a total of 298 MW. In total, 118 contracts and letter agreements had been signed with cogeneration, solid waste, and biomass projects capable of producing 1,545 MW. PG and E also had under active discussion 46 cogeneration projects that could generate a total of 688 MW to 770 MW, and 13 solid waste or biomass projects with a potential of 119 MW to 139 MW. One contract had been signed for a geothermal project, capable of producing 80 MW. Two geothermal projects were under active discussion for a total of 2 MW. There were 8 solar projects with signed contracts and a potential of 37 MW, as well as 4 solar projects under active discussion for 31 MW. Wind farm projects under contract numbered 34, with a generating capability of 1,042 MW, Also, discussions were being conducted with 23 wind farm projects, totaling 597 MW. There were 100 wind projects of 100 kW or less with signed contracts and a potential of 1 MW, as well as 7 other small wind projects under active discussion. There were 71 hydroelectric projects with signed contracts and a potential of 151 MW, as well as 76 projects under active discussion for 505 MW. In addition, there were 18 hydroelectric projects, with a nominal capacity of 193 MW, that PG and E was planning to construct. Table B displays the above information. Appendix A displays in tabular form the status reports of the projects as of June 30, 1984.

  3. Twin cities institutional issues study cogenerated hot water district heating

    Energy Technology Data Exchange (ETDEWEB)

    Sundberg, R. E.; Leas, R.; Kolb, J. O.

    1979-01-01

    Community district heating, utilizing hot water produced through electrical/thermal cogeneration, is seen as an integral part of Minnesota's Energy Policy and Conservation Plan. Several studies have been conducted which consider the technical and institutional issues affecting implementation of cogenerated district heating in the Minneapolis and St. Paul Metropolitan Area. The state of the technical art of cogenerated hot water district heating is assumed to be transferable from European experience. Institutional questions relating to such factors as the form of ownership, financing, operation, regulation, and product marketability cannot be transferred from the European experience, and have been the subject of an extensive investigation. The form and function of the Institutional Issues Study, and some of the preliminary conclusions and recommendations resulting from the study are discussed.

  4. Texasgulf solar cogeneration program. Mid-term topical report

    Energy Technology Data Exchange (ETDEWEB)

    1981-02-01

    The status of technical activities of the Texasgulf Solar Cogeneration Program at the Comanche Creek Sulfur Mine is described. The program efforts reported focus on preparation of a system specification, selection of a site-specific configuration, conceptual design, and facility performance. Trade-off studies performed to select the site-specific cogeneration facility configuration that would be the basis for the conceptual design efforts are described. Study areas included solar system size, thermal energy storage, and field piping. The conceptual design status is described for the various subsystems of the Comanche Creek cogeneration facility. The subsystems include the collector, receiver, master control, fossil energy, energy storage, superheat boiler, electric power generation, and process heat subsystems. Computer models for insolation and performance are also briefly discussed. Appended is the system specification. (LEW)

  5. Benefit Analysis of Emergency Standby System Promoted to Cogeneration System

    Directory of Open Access Journals (Sweden)

    Shyi-Wen Wang

    2016-07-01

    Full Text Available Benefit analysis of emergency standby system combined with absorption chiller promoted to cogeneration system is introduced. Economic evaluations of such upgraded projects play a major part in the decisions made by investors. Time-of-use rate structure, fuel cost and system constraints are taken into account in the evaluation. Therefore, the problem is formulated as a mixed-integer programming problem. Using two-stage methodology and modified mixed-integer programming technique, a novel algorithm is developed and introduced here to solve the nonlinear optimization problem. The net present value (NPV method is used to evaluate the annual benefits and years of payback for the cogeneration system. The results indicate that upgrading standby generators to cogeneration systems is profitable and should be encouraged, especially for those utilities with insufficient spinning reserves, and moreover, for those having difficulty constructing new power plants.

  6. Examination on small-sized cogeneration HTGR for developing countries

    International Nuclear Information System (INIS)

    Sakaba, Nariaki; Tachibana, Yukio; Shimakawa, Satoshi; Ohashi, Hirofumi; Sato, Hiroyuki; Yan, Xing; Murakami, Tomoyuki; Ohashi, Kazutaka; Nakagawa, Shigeaki; Goto, Minoru; Ueta, Shohei; Mozumi, Yasuhiro; Imai, Yoshiyuki; Tanaka, Nobuyuki; Okuda, Hiroyuki; Iwatsuki, Jin; Kubo, Shinji; Takada, Shoji; Nishihara, Tetsuo; Kunitomi, Kazuhiko

    2008-03-01

    The small-sized and safe cogeneration High Temperature Gas-cooled Reactor (HTGR) that can be used not only for electric power generation but also for hydrogen production and district heating is considered one of the most promising nuclear reactors for developing countries where sufficient infrastructure such as power grids is not provided. Thus, the small-sized cogeneration HTGR, named High Temperature Reactor 50-Cogeneration (HTR50C), was studied assuming that it should be constructed in developing countries. Specification, equipment configuration, etc. of the HTR50C were determined, and economical evaluation was made. As a result, it was shown that the HTR50C is economically competitive with small-sized light water reactors. (author)

  7. Transient behaviour of small HTR for cogeneration

    International Nuclear Information System (INIS)

    Verkerk, E.C.; Van Heek, A.I.

    2000-01-01

    The Dutch market for combined generation of heat and power identifies a unit size of 40 MW thermal for the conceptual design of a nuclear cogeneration plant. The ACACIA system provides 14 MWe electricity combined with 17 t/h of high temperature steam (220 deg C, 10 bar) with a pebble-bed high temperature reactor directly coupled with a helium compressor and a helium turbine. The design of this small CHP unit that is used for industrial applications is mainly based on a pre-feasibility study in 1996, performed by a joint working group of five Dutch organisations, in which technical feasibility was shown. Thermal hydraulic and reactor physics analyses show favourable control characteristics during normal operation and a benign response to loss of helium coolant and loss of flow conditions. Throughout the response on these highly infrequent conditions, ample margin exists between the highest fuel temperatures and the temperature above which fuel degradation will occur. To come to quantitative statements about the ACACIA transient behaviour, a calculational coupling between the high temperature reactor core analysis code package PANTHER/DIREKT and the thermal hydraulic code RELAP5 for the energy conversion system has been made. This coupling offers a more realistic simulation of the entire system, since it removes the necessity of forcing boundary conditions on the simulation models at the data transfer points. In this paper, the models used for the dynamic components of the energy conversion system are described, and the results of the calculation for two operational transients in order to demonstrate the effects of the interaction between reactor core and its energy conversion system are shown. Several transient cases that are representative as operational transients for an HTR will be discussed, including one representing a load rejection case that shows the functioning of the control system, in particular the bypass valve. Another transient is a load following

  8. Cogeneration applications of biomass gasifier/gas turbine technologies in the cane sugar and alcohol industries

    International Nuclear Information System (INIS)

    Ogden, J.M.; Williams, R.H.; Fulmer, M.E.

    1994-01-01

    Biomass integrated gasifier/gas turbine (BIG/GT) technologies for cogeneration or stand-alone power applications hold forth the promise of being able to produce electricity at lower cost in many instances than most alternatives, including large central-station, coal-fired, steam-electric power plants with fuel gas desulphurization, nuclear power plants, and hydroelectricity power plants. BIG/GT technologies offer environmental benefits as well, including the potential for zero net carbon dioxide emissions, if the biomass feedstock is grown renewably. (author). 77 refs., 9 figs., 16 tabs

  9. Cogeneration handbook for the food processing industry. [Contains glossary

    Energy Technology Data Exchange (ETDEWEB)

    Eakin, D.E.; Fassbender, L.L.; Garrett-Price, B.A.; Moore, N.L.; Fasbender, A.G.; Gorges, H.A.

    1984-03-01

    The decision of whether to cogenerate involves several considerations, including technical, economic, environmental, legal, and regulatory issues. Each of these issues is addressed separately in this handbook. In addition, a chapter is included on preparing a three-phase work statement, which is needed to guide the design of a cogeneration system. In addition, an annotated bibliography and a glossary of terminology are provided. Appendix A provides an energy-use profile of the food processing industry. Appendices B through O provide specific information that will be called out in subsequent chapters.

  10. The Optimal Operation Criteria for a Gas Turbine Cogeneration System

    Directory of Open Access Journals (Sweden)

    Atsushi Akisawa

    2009-04-01

    Full Text Available The study demonstrated the optimal operation criteria of a gas turbine cogeneration system based on the analytical solution of a linear programming model. The optimal operation criteria gave the combination of equipment to supply electricity and steam with the minimum energy cost using the energy prices and the performance of equipment. By the comparison with a detailed optimization result of an existing cogeneration plant, it was shown that the optimal operation criteria successfully provided a direction for the system operation under the condition where the electric power output of the gas turbine was less than the capacity

  11. Cogeneration handbook for the textile industry. [Contains glossary

    Energy Technology Data Exchange (ETDEWEB)

    Garrett-Price, B.A.; Fassbender, L.L.; Moore, N.L.; Fassbender, A.G.; Eakin, D.E.; Gorges, H.A.

    1984-03-01

    The decision of whether to cogenerate involves several considerations, including technical, economic, environmental, legal, and regulatory issues. Each of these issues is addressed separately in this handbook. In addition, a chapter is included on preparing a three-phase work statement, which is needed to guide the design of a cogeneration system. In addition, an annotated bibliography and a glossary of terminology are provided. Appendix A provides an energy-use profile of the textile industry. Appendices B through O provide specific information that will be called out in subsequent chapters.

  12. Cogeneration handbook for the pulp and paper industry. [Contains glossary

    Energy Technology Data Exchange (ETDEWEB)

    Griffin, E.A.; Moore, N.L.; Fassbender, L.L.; Garrett-Price, B.A.; Fassbender, A.G.; Eakin, D.E.; Gorges, H.A.

    1984-03-01

    The decision of whether to cogenerate involves several considerations, including technical, economic, environmental, legal, and regulatory issues. Each of these issues is addressed separately in this handbook. In addition, a chapter is included on preparing a three-phase work statement, which is needed to guide the design of a cogeneration system. In addition, an annotated bibliography and a glossary of terminology are provided. Appendix A provides an energy-use profile of the pulp and paper industry. Appendices B and O provide specific information that will be called out in subsequent chapters.

  13. Cogeneration using small sized series connected units: Feasibility study

    International Nuclear Information System (INIS)

    Tondelli, F.; Bergamini, G.

    1992-01-01

    This paper evidences the technical/economic feasibility of the use of methane fuelled modular cogeneration systems based on small series connected Otto or Diesel cycle engines delivering from 20 to 90 kW of power. Ample reference is made to the successful application of modular cogeneration systems to supply low temperature thermal energy to hospitals, hotels, food processing firms, etc., in Italy. The cost benefit analysis covers many aspects: design, manufacturing, operation, performance, maintenance and safety. Suggestions are also made as to optimum contractual arrangements for equipment service and maintenance, as well as, for the exchange of power with local utilities

  14. Gaz de France and cogeneration: a story which goes on; Gaz de France et la cogeneration: une histoire qui se poursuit

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-09-15

    This document presents the principle of natural gas cogeneration (gas turbine and gas engine) and gives a general overview of the cogeneration market in France since 1991 and up to 2001 (development factors, results). The perspectives and opportunities of cogeneration are analyzed with respect to the development of new technologies like fuel cells (principle, advantages and future) and to the future energy markets. Follows a compilation and an analysis of French regulation texts about cogeneration systems, their connection to the power grid, and the tariffs of electricity re-purchase by Electricite de France (EdF). (J.S.)

  15. Decentralized cogeneration - A solution for Romania? RAEF experience

    International Nuclear Information System (INIS)

    Binig, Alexandru-Valeriu

    2004-01-01

    deficit should be covered using indigenous power generation sources. One could conclude, correlated with the previous discussion on financing investment, that most of the private capital is expected in the power and heat generation sector. New injection points might necessitate network reinforcement (implying additional costs and delays), may have to pass a complicated and lengthy authorizations process, etc. In conclusion, realisation of 'greenfield' large projects is likely to be cumbersome and delayed due mainly to issues related to connection to the grid. But also fuel supply issues, cooling water access, impact on communities, add to the serious siting problems for new greenfield power generation projects. A psychological impact on private investor's appetite is also given by the continuation of erection of Cernavoda 2, (3?) nuclear units, as these are modern, safe, and optimal at dispatching. In conclusion, in Romania, at present, one cannot identify large private power generation projects in advanced development phase. A solution could be decentralized power generation. Combined with covering a heat demand, it leads to distributed cogeneration. It is an EU and worldwide trend. The above, combined with the overall analysis of the experience in Romania and worldwide allow drawing the following conclusions: - Decentralised generation (cogeneration) is a solution to be considered for Romania and for the region; - The national energy strategy must consider it; - Resources should be allocated to it (not necessarily financial), thus contributing to sustainable development; - It must be promoted by appropriate legislative, regulatory fiscal, etc framework; - Periodic exchange of experience among different actors is decisive for avoiding wasting resources; - this is mainly the purpose of the present article; - Private initiative is the main driver and must be encouraged for promoting efficiency and sustainability; - The solution chosen yields better risk management while

  16. 78 FR 43198 - Watson Cogeneration Company; Notice of Filing

    Science.gov (United States)

    2013-07-19

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. TX13-1-000] Watson... Commission's (Commission) Regulations, 18 CFR 36.1, Watson Cogeneration Company filed an application... physical interconnection to the Watson facility; (2) direct SCE and California Independent System Operator...

  17. Performance analysis of a stationary fuel cell thermoelectric cogeneration system

    Energy Technology Data Exchange (ETDEWEB)

    Kuo, J.K.; Hwang, J.J.; Lin, C.H. [Department of Greenergy, National University of Tainan, Tainan, 70005 (China)

    2012-12-15

    The main purpose of our study was to use an experimental method and system dynamic simulation technology to examine a proton exchange membrane fuel cell thermoelectric cogeneration system that provides both high-quality electric power and heated water. In the second part of our study, we experimentally verified the development of key components of the fuel cell and conducted a comprehensive analysis of the subsystems, including the fuel cell module, hydrogen supply subsystem, air supply subsystem, humidifier subsystem, and heat recovery subsystem. Finally, we integrated all of the subsystems into a PEM fuel cell thermoelectric cogeneration system and performed efficiency tests and analysis of power generation, heat recovery, and thermoelectric cogeneration. After comparing this system's efficiency results using simulation and experimentation, we determined that the accuracy of the simulation values when compared to the experimental values was >95%, showing that this system's simulation nearly approached the efficiency of the actual experiment, including more than 53% for power generation efficiency, more than 39% for heat recovery efficiency, and more than 93% for thermoelectric cogeneration combined efficiency. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Stirling based micro co-generation system for single households

    Energy Technology Data Exchange (ETDEWEB)

    Ribberink, J.S.; Zutt, J.G.M.; Rabou, L.P.L.M.; Beckers, G.J.J. [ECN Clean Fossil Fuels, Petten (Netherlands); Baijens, C.A.W.; Luttikholt, J.J.M. [ATAG Verwarming, Lichtenvoorde (Netherlands)

    2000-04-01

    This paper describes the progress made in the ENATEC development program for a free piston Stirling engine based micro co-generation system that serves the supply of up to 1 kW{sub e} and up to 24 kW heat for domestic heating and/or for hot tap water production for single households at overall system efficiencies of 96%. Experiments show that the free piston Stirling engines from Stirling Technology Company run very reliably and controllably, and that the efficiency targets for the 1 kW{sub e} micro co-generation system are feasible. A ceramic foam burner with good heat transfer characteristics and low NOx emissions was developed. A demonstration micro co-generation unit was built and successfully presented. A 1 kW{sub e} free piston Stirling engine for the European market was developed. High efficiencies at full load and at part load, low emissions, low noise, and minimum maintenance make the Stirling engine based micro co-generation system an attractive candidate for the next generation of domestic boilers in Europe. 5 refs.

  19. Co-generation: Increasing energy efficiency in Bosnia and Herzegovina

    Directory of Open Access Journals (Sweden)

    Lekić Alija

    2007-01-01

    Full Text Available The main sources for power generation in Bosnia and Herzegovina are domestic coals, mainly lignite and brown coals, which are relatively characterized with a high content of sulphur (3-5% and incombustibles (˜30%. From the 70’s, use of this type of fuels was not allowed in the city of Sarajevo due to very unfavorable emissions to the atmosphere, during the heating period, and since then Sarajevo has been supplied with natural gas. All the heating installations in the city were reconstructed and adapted. The district heating system Toplane Sarajevo is supplied with electrical energy from the Public electrical distribution network (Elektrodistribucija Sarajevo at low voltage (0.4 kV. The boiler-house Dobrinja III-2 (KDIII-2, from the district heating system of Sarajevo Suburb Dobrinja, which was not in use after the war 1992-1995, had a lot of advantages for the reconstruction into the co-generation plant. The Government of Canton Sarajevo financially supported this proposal. An analysis of co-generations for the district heating system and a selection of most appropriate co-generation systems were made. In the proposed conceptual design, the co-generation KDIII-2 was located in the existing boiler-house KDIII-2, connected with the heating system in Dobrinja. The operating costs of production of electricity and heat were evaluated in the study and compared with the costs of conventional energy supply to the district heating system. This analysis resulted in economic indicators, which showed that this investment was economically viable, and it also determined the payback period of the investment. In this paper results of the mentioned study and an overview of co-generation in Bosnia and Herzegovina are presented.

  20. Potential Market for Satellite Technology in Meeting Telecommunication Needs of Developing Nations

    Science.gov (United States)

    1996-01-01

    A recent study examined the potential for satellite technology to meet the telecommunication needs of developing nations. The growth of these nations depends on their attracting and holding the industrial investments of developed nations. This will not be likely with the antiquated telecommunications infrastructure typical of developing nations. On the contrary, it will require an infrastructure that is compatible with international standards. Most of the developing nations perceive this necessity and are pursuing the necessary upgrades. The rate of replacement, types of technology, services affected, and the terrestrial/satellite mix differ by each nation's priorities and gross national product (GNP).

  1. Thermodynamic analysis and experimental investigation of a Solo V161 Stirling cogeneration unit

    International Nuclear Information System (INIS)

    Rogdakis, E.D.; Antonakos, G.D.; Koronaki, I.P.

    2012-01-01

    In order to investigate the Stirling engine implementation technology, a Solo Stirling Engine V161 cogeneration module has been installed at the Laboratory of Applied Thermodynamics of National Technical University of Athens. A special thermodynamic analysis of the engine's performance has been conducted introducing and utilizing specially designed computing codes along with the thermal balance study of the unit. Measurements were conducted under different operational conditions concerning various heat load stages of the engine, working pressure, as well as electric power production. Analysis of the experimental results has shown that the overall performance of the Stirling unit proved very promising and quite adequate for various areal applications, equally competing with other CHP systems. The performance of the unit experienced significant stability all over the operating range. The power stand ratio 0.35 differentiates Stirling cogeneration units from others that use diverging technologies significantly. The energy savings using a Stirling CHP unit, in respect to the concurrent use of a thermal and an electrical system at the same equivalent power has revealed 36.8%. -- Highlights: ► Thermodynamic analysis of an a-type Stirling engine. ► Development of generated electrical and thermal power of the m-CHP Solo Stirling Unit to engine's load comparison. ► Stirling m-CHP until heat balance analysis. ► Evaluation of the Solo Stirling V161 unit efficiency.

  2. Rainwater harvesting potential sites at margalla hills national park

    International Nuclear Information System (INIS)

    Khalid, B.; Mushtaq, N.; Sial, M.

    2013-01-01

    Life without water is not possible. Adoption of modern lifestyle and increase in population is leading to a water scarce world. The demand of world population cannot be met , which is resulting in increased groundwater abstraction. The world is facing water crisis and Pakistan is no exception. Urban areas of Pakistan are affected badly where extraction is higher while the construction of pavements has disturbed groundwater infiltration. The Federal Capital of Pakistan, Islamabad, is located in Pothohar region of the country and faces severe water shortages, particularly during summers. Extensive drilling by public and private users lowers groundwater table. Satellite imagery of LANDSAT 7 ETM+ and ASTER DEM 30m resolution were used to construct the site suitability map for groundwater recharge of Margalla Hills National Park. Factors considered included land cover, drainage density, elevation and slope. Suitable weight ages were assigned to these factors according to their influence on infiltration in the study area. Groundwater recharge at Margalla Hills National Park will be effective in dealing with water crisis in Islamabad as it will raise groundwater table of the adjacent areas. (author)

  3. Status report on compact gasifier cogeneration units in Germany. Applications of the cogeneration gasifier technology; Stand kleintechnischer Vergaser-BHKW-Anlagen in Deutschland. Einsatz der BHKW-Vergasertechnologie

    Energy Technology Data Exchange (ETDEWEB)

    Zschunke, Tobias; Schuessler, Ingmar; Salomo, Bert [Hochschule Zittau/Goerlitz (Germany); Braekow, Dieter [Foerdergesellschaft Erneuerbare Energien e.V., Berlin (Germany); Treppe, Konrad [Technische Univ. Dresden (Germany). Inst. fuer Verfahrenstechnik und Umwelttechnik

    2010-07-01

    In contrast to biogas, the use of solid biomass with low water content in cogeneration units is lagging several years of development behind. A promising variant is a wood gas engine cogeneration unit. Different energy sources can be combined, e.g. in an Otto engine and a Stirling engine. The authors describe the technology for compact systems. (orig.)

  4. New purchasing conditions for the electricity produced by cogeneration; Nouvelles conditions d`achat de l`electricite produite par cogeneration

    Energy Technology Data Exchange (ETDEWEB)

    Pierret, Ch

    1999-12-31

    This short note summarizes the new conditions of electricity purchase as stipulated in the contracts passed between Electricite de France (EdF) and the independent companies exploiting cogeneration units. These new conditions should allow the continuation of the development of cogeneration units in a power market progressively opened to competition. (J.S.)

  5. New purchasing conditions for the electricity produced by cogeneration; Nouvelles conditions d`achat de l`electricite produite par cogeneration

    Energy Technology Data Exchange (ETDEWEB)

    Pierret, Ch.

    1998-12-31

    This short note summarizes the new conditions of electricity purchase as stipulated in the contracts passed between Electricite de France (EdF) and the independent companies exploiting cogeneration units. These new conditions should allow the continuation of the development of cogeneration units in a power market progressively opened to competition. (J.S.)

  6. The Diversity of Ecotourism Potentials in Kelimutu National Park of Ende Regency

    Directory of Open Access Journals (Sweden)

    Josef A. Gadi Djou

    2016-10-01

    Full Text Available Natural tourist destination management plays a crucial role in materializing three important aspects, namely conservation, participation, and education. As a tourist destination, Kelimutu National Park, possessing a big ecosystem potential, tourist and cultural potentials, is expected to provide economy, culture, and conservation impacts on the society surrounding Kelimutu National Park. The problem of this study is how the variety of ecotourism potential in Kelimutu National Park is able to prosper the surrounding society. To answer this question, the definition of ecotourism, national park, national park ecotourism, and ecotourism potential need to be understood. Several methods used in answering the problems of the study are finding out the location of Kelimutu National Park, collecting qualitative data by conducting library research and participatory observation. The results were conceptually described, supported by tables and pictures.

  7. Assessment of the greenhouse gas emissions from cogeneration and trigeneration systems. Part I: Models and indicators

    International Nuclear Information System (INIS)

    Chicco, Gianfranco; Mancarella, Pierluigi

    2008-01-01

    The diffusion of cogeneration and trigeneration plants as local generation sources could bring significant energy saving and emission reduction of various types of pollutants with respect to the separate production of electricity, heat and cooling power. The advantages in terms of primary energy saving are well established. However, the potential of combined heat and power (CHP) and combined cooling heat and power (CCHP) systems for reducing the emission of hazardous greenhouse gases (GHG) needs to be further investigated. This paper presents and discusses a novel approach, based upon an original indicator called trigeneration CO 2 emission reduction (TCO 2 ER), to assess the emission reduction of CO 2 and other GHGs from CHP and CCHP systems with respect to the separate production. The indicator is defined in function of the performance characteristics of the CHP and CCHP systems, represented with black-box models, and of the GHG emission characteristics from conventional sources. The effectiveness of the proposed approach is shown in the companion paper (Part II: Analysis techniques and application cases) with application to various cogeneration and trigeneration solutions

  8. Adsorption thermal energy storage for cogeneration in industrial batch processes: Experiment, dynamic modeling and system analysis

    International Nuclear Information System (INIS)

    Schreiber, Heike; Graf, Stefan; Lanzerath, Franz; Bardow, André

    2015-01-01

    Adsorption thermal energy storage is investigated for heat supply with cogeneration in industrial batch processes. The feasibility of adsorption thermal energy storage is demonstrated with a lab-scale prototype. Based on these experiments, a dynamic model is developed and successfully calibrated to measurement data. Thereby, a reliable description of the dynamic behavior of the adsorption thermal energy storage unit is achieved. The model is used to study and benchmark the performance of adsorption thermal energy storage combined with cogeneration for batch process energy supply. As benchmark, we consider both a peak boiler and latent thermal energy storage based on a phase change material. Beer brewing is considered as an example of an industrial batch process. The study shows that adsorption thermal energy storage has the potential to increase energy efficiency significantly; primary energy consumption can be reduced by up to 25%. However, successful integration of adsorption thermal storage requires appropriate integration of low grade heat: Preferentially, low grade heat is available at times of discharging and in demand when charging the storage unit. Thus, adsorption thermal energy storage is most beneficial if applied to a batch process with heat demands on several temperature levels. - Highlights: • A highly efficient energy supply for industrial batch processes is presented. • Adsorption thermal energy storage (TES) is analyzed in experiment and simulation. • Adsorption TES can outperform both peak boilers and latent TES. • Performance of adsorption TES strongly depends on low grade heat temperature.

  9. Assessing and optimizing the economic and environmental impacts of cogeneration/district energy systems using an energy equilibrium model

    International Nuclear Information System (INIS)

    Wu, Y.J.; Rosen, M.A.

    1999-01-01

    Energy equilibrium models can be valuable aids in energy planning and decision-making. In such models, supply is represented by a cost-minimizing linear submodel and demand by a smooth vector-valued function of prices. In this paper, we use the energy equilibrium model to study conventional systems and cogeneration-based district energy (DE) systems for providing heating, cooling and electrical services, not only to assess the potential economic and environmental benefits of cogeneration-based DE systems, but also to develop optimal configurations while accounting for such factors as economics and environmental impact. The energy equilibrium model is formulated and solved with software called WATEMS, which uses sequential non-linear programming to calculate the intertemporal equilibrium of energy supplies and demands. The methods of analysis and evaluation for the economic and environmental impacts are carefully explored. An illustrative energy equilibrium model of conventional and cogeneration-based DE systems is developed within WATEMS to compare quantitatively the economic and environmental impacts of those systems for various scenarios. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  10. Analysis of long-time operation of micro-cogeneration unit with fuel cell

    Directory of Open Access Journals (Sweden)

    Patsch Marek

    2015-01-01

    Full Text Available Micro-cogeneration is cogeneration with small performance, with maximal electric power up to 50 kWe. On the present, there are available small micro-cogeneration units with small electric performance, about 1 kWe, which are usable also in single family houses or flats. These micro-cogeneration units operate on principle of conventional combustion engine, Stirling engine, steam engine or fuel cell. Micro-cogeneration units with fuel cells are new progressive developing type of units for single family houses. Fuel cell is electrochemical device which by oxidation-reduction reaction turn directly chemical energy of fuel to electric power, secondary products are pure water and thermal energy. The aim of paper is measuring and evaluation of operation parameters of micro-cogeneration unit with fuel cell which uses natural gas as a fuel.

  11. The effect of Ontario's transmission system policies on cogeneration projects

    International Nuclear Information System (INIS)

    Carr, J.

    1999-01-01

    The impact that the establishment of transmission tariffs would have on the viability of cogeneration projects in Ontario was discussed. The proposal to establish such tariffs on the basis of a 'postage stamp' rate would ensure that all electricity users have access to electricity at the same price. However, this would unfairly penalize short-haul transmission transactions and would possibly result in the inappropriate location of new generation facilities. Electricity users would ultimately be burdened with these inefficiencies. This presentation also discussed another public policy which proposes to determine what parts of the electricity system should have their costs recovered at postage stamp rates. The costs would include not only transmission charges but also distribution and generation costs. The restructuring of Ontario Hydro into the Ontario Power Generation Company (OPGC) and the Ontario Hydro Services Company (OHSC) and its impact on the cogeneration projects was also discussed

  12. Analysis of cogeneration in the present energy framework

    International Nuclear Information System (INIS)

    Conde Lazaro, E.; Ramos Millan, A.; Reina Peral, P.

    2006-01-01

    In this paper, a general vision of cogeneration penetration in the European Union is shown; after this, a case study is included, evaluating as a function of two factors (electricity and emission allowance prices) the suitability of installing, for an industry with a determined thermal demand, two different options. The first one is a gas turbine cogeneration plant generating steam through a heat recovery steam generator (HRSG). The second one consists of installing a natural gas boiler for steam production covering the electricity demand from the grid. The CO 2 emissions from both options are compared regarding different kinds of generation mixes from the electricity grid in the case of using the industrial boiler; taking into account the advantages of using biomass in relation to emissions, a last comparison has been carried out considering a biomass boiler instead of the natural gas boiler. (author)

  13. EVALUATION OF ENERGY COGENERATION FROM SUGAR CANE BAGASSE

    Directory of Open Access Journals (Sweden)

    Hanserth Abreu Elizundia

    2016-01-01

    Full Text Available In this paper were simulated and evaluated five alternatives of cogeneration scheme that promote a higher production of thermal and electrical energies as well as its right management. The first three alternatives are directed to increasing the boiler pressure and a change of steam turbines which are the extraction-condensation type, and then the fourth alternative proposed a boiler change to implement a bubbling fluidized bed and finally in the fifth alternative a scheme of biomass gasification is analyzed. All scheme were analyzed energetic and exergetically. The five cogeneration alternatives were simulated in ASPEN PLUS; they showed that the largest surplus bagasse and electricity are obtained with the scheme of a biomass gasification and the worst results in these parameters were obtained in the alternative that function in low pressure and temperature parameters

  14. The merit of cogeneration: Measuring and rewarding performance

    International Nuclear Information System (INIS)

    Verbruggen, Aviel

    2008-01-01

    Cogeneration or combined heat and power (CHP) is a thermal power generation cycle with the merit of recovering part or all of the heat that is fatally discarded by such cycles. This merit of higher efficiency is subject of rewarding by public authorities. When the EU enacts CHP promotion in a Directive (1997-2004), crucial measurement and qualification issues remain unsolved. CEN (coordinator of the European Bureaus of Standards) contributes in clarifying the measurement of CHP activities, but shortfalls remain, while CEN bypasses the debate on qualifying CHP performance. This article offers appropriate methods for measuring CHP activities based on design characteristics of the plants. The co-generated electric output is a necessary and sufficient indicator of CHP merit and performance. Regulators can extend this indicator, but should avoid the perverse effects of biased external benchmarking as the EU Directive entails

  15. Optimal operation of cogeneration units. State of art and perspective

    International Nuclear Information System (INIS)

    Polimeni, S.

    2001-01-01

    Optimal operation of cogeneration plants and of power plant fueling waste products is a complex challenge as they have to fulfill, beyond the contractual obligation of electric power supply, the constraints of supplying the required thermal energy to the user (for cogeneration units) or to burn completely the by-products of the industrial complex where they are integrated. Electrical power market evolution is pushing such units to a more and more volatile operation caused by uncertain selling price levels. This work intends to pinpoint the state of art in the optimization of these units outlining the important differences among the different size and cycles. The effect of the market liberalization on the automation systems and the optimization algorithms will be discussed [it

  16. Cogeneration in large processing power stations; Cogeneracion en grandes centrales de proceso

    Energy Technology Data Exchange (ETDEWEB)

    Munoz, Jose Manuel [Observatorio Ciudadano de la Energia A. C., (Mexico)

    2004-06-15

    In this communication it is spoken of the cogeneration in large processing power stations with or without electricity surplus, the characteristics of combined cycle power plants and a comparative analysis in a graph entitled Sale price of electricity in combined cycle and cogeneration power plants. The industrial plants, such as refineries, petrochemical, breweries, paper mills and cellulose plants, among others, with steam necessities for their processes, have the technical and economical conditions to cogenerate, that is, to produce steam and electricity simultaneously. In fact, many of such facilities that exist at the moment in any country, count on cogeneration equipment that allows them to obtain their electricity at a very low cost, taking advantage of the existence steam generators that anyway are indispensable to satisfy their demand. In Mexico, given the existing legal frame, the public services of electricity as well as the oil industry are activities of obligatory character for the State. For these reasons, the subject should be part of the agenda of planning of this power sector. The opportunities to which we are referring to, are valid for the small industries, but from the point of view of the national interest, they are more important for the large size facilities and in that rank, the most numerous are indeed in PEMEX, whereas large energy surplus and capacity would result into cogenerations in refineries and petrochemical facilities and they would be of a high value, precisely for the electricity public service, that is, for the Comision Federal de Electricidad (CFE). [Spanish] En esta ponencia se habla de la cogeneracion en grandes centrales de proceso con o sin excedentes de electricidad, las caracteristicas de plantas de ciclo combinado y se muestra el analisis comparativo en una grafica titulada precio de venta de electricidad en plantas de ciclo combinado y de cogeneracion. Las plantas industriales, tales como refinerias, petroquimicas

  17. Natural gas cogeneration plants: considerations on energy efficiency; Valutazioni energetiche di impianti cogenerativi alimentati a metano

    Energy Technology Data Exchange (ETDEWEB)

    Arcuri, P.; Florio, G.; Fragiacomo, P. [Calabria Univ., Arcavacata di Rende (Italy). Dip. di Meccanica

    1996-05-01

    Cogeneration is one of the most interesting solution to be adopted in order to achieve the goals of the Domestic Energy Plan. Besides the high primary energy savings, remarkable environmental benefits can be obtained. In the article, an energy analysis is carried out on the major cogeneration technologies depending on the parameters which define a generic user typology. The energy indexes of a cogeneration plant are the shown in charts from which useful information on the achievable performances can be obtained.

  18. Solar Cogeneration of Electricity and Hot Water at DoD Installations

    Science.gov (United States)

    2014-05-01

    the cogeneration system displaces more energy (the impact is not 4-5X because the GHG intensity factors for offsetting electricity generation and...visibility to Army energy managers. Additional benefits of Cogenra’s solar cogeneration system are the engineering and design jobs at Cogenra’s...certification. Solar cogeneration can help earn LEED points in three areas: Optimizing Energy Efficiency Performance, On-Site Renewable Energy , and

  19. AMBIENT CONDITIONS EFFECTS ON PERFORMANCE OF GAS TURBINE COGENERATION POWER PLANTS

    OpenAIRE

    Necmi Ozdemir*

    2016-01-01

    In this study, the performances of a simple and an air preheated cogeneration cycles in ambient conditions are compared with each other. A computer program written by the author in FORTRAN codes is used for the calculation of the enthalpy and entropy values of the streams, Exergy analysis is done and compared for the simple and the air preheated cogeneration cycles for different ambient conditions. The two cogeneration cycles are evaluated in terms of heat powers and electric, electrical to h...

  20. Firing with wood chips in heating and cogeneration plants

    International Nuclear Information System (INIS)

    Kofman, P.D.

    1992-01-01

    The document was produced for use as detailed teaching material aimed at spreading information on the use of wood chips as fuel for heating and cogeneration plants. It includes information and articles on wood fuels generally, combustion values, chopping machines, suppliers, occupational health hazards connected with the handling of wood chips, measuring amounts, the selection of types, prices, ash, environmental aspects and information on the establishment of a wood-chip fired district heating plant. (AB)

  1. Thermoeconomic analysis of a power/water cogeneration plant

    International Nuclear Information System (INIS)

    Hamed, Osman A.; Al-Washmi, Hamed A.; Al-Otaibi, Holayil A.

    2006-01-01

    Cogeneration plants for simultaneous production of water and electricity are widely used in the Arabian Gulf region. They have proven to be more thermodynamically efficient and economically feasible than single purpose power generation and water production plants. Yet, there is no standard or universally applied methodology for determining unit cost of electric power generation and desalinated water production by dual purpose plants. A comprehensive literature survey to critically assess and evaluate different methods for cost application in power/water cogeneration plants is reported in this paper. Based on this analysis, an in-depth thermoeconomic study is carried out on a selected power/water cogeneration plant that employs a regenerative Rankine cycle. The system incorporates a boiler, back pressure turbine (supplying steam to two MSF distillers), a deaerator and two feed water heaters. The turbine generation is rated at 118 MW, while MSF distiller is rated at 7.7 MIGD at a top brine temperature of 105 deg. C. An appropriate costing procedure based on the available energy accounting method which divides benefits of the cogeneration configuration equitably between electricity generation and water production is used to determine the unit costs of electricity and water. Capital charges of common equipment such as the boiler, deaerator and feed water heaters as well as boiler fuel costs are distributed between power generated and desalinated water according to available energy consumption of the major subsystems. A detailed sensitivity analysis was performed to examine the impact of the variation of fuel cost, load and availability factors in addition to capital recovery factor on electricity and water production costs

  2. Optimum design of cogeneration system for nuclear seawater desalination - 15272

    International Nuclear Information System (INIS)

    Jung, Y.H.; Jeong, Y.H.

    2015-01-01

    A nuclear desalination process, which uses the energy released by nuclear fission, has less environmental impact and is generally cost-competitive with a fossil-fuel desalination process. A reference cogeneration system focused on in this study is the APR-1400 coupled with a MED (multi-effect distillation) process using the thermal vapor compression (TVC) technology. The thermal condition of the heat source is the most crucial factor that determines the desalination performance, i.e. energy consumption or freshwater production, of the MED-TVC process. The MED-TVC process operating at a higher motive steam pressure clearly shows a higher desalination performance. However, this increased performance does not necessarily translate to an advantage over processes operated at lower motive steam pressures. For instance, a higher motive steam pressure will increase the heat cost resulting from larger electricity generation loss, and thus may make this process unfavorable from an economic point of view. Therefore, there exists an optimum design point in the coupling configuration that makes the nuclear cogeneration system the most economical. This study is mainly aimed at investigating this optimum coupling design point of the reference nuclear cogeneration system using corresponding analysis tools. The following tools are used: MEE developed by the MEDRC for desalination performance analysis of the MED-TVC process, DE-TOP and DEEP developed by the IAEA for modeling of coupling configuration and economic evaluation of the nuclear cogeneration system, respectively. The results indicate that steam extraction from the MS exhaust and condensate return to HP FWHTR 5 is the most economical coupling design

  3. Cogeneration technology for the metal-processing sector

    Energy Technology Data Exchange (ETDEWEB)

    Sala, A. [Accenture, Gran Via 45, 48011 Bilbao (Spain); Flores, I.; Sala, J.M.; Millan, J.A.; Gomez, I. [Department of Thermal Engineering, University of the Basque Country, Alda, Urquijo s/n, 48013 Bilbao (Spain); Lopez, L.M. [Department of Mechanical Engineering, University of La Rioja, C/Luis de Ulloa, 20, E 26004 Logrono (La Rioja) (Spain)

    2008-06-15

    Enclosed are the results of a feasibility study for a cogeneration facility at a company manufacturing large ship and off-shore oil-platform chains. The sizing of the main cogeneration equipment has been based on the assumption that the main energy demand is that needed to keep the quench bath at a temperature of 12{sup o}C, thus compensating for the heat input from the chain proper and furnace gases. The main difficulty of the study has been to assess, with the maximum possible assurance and precision, the quench water-flow rate, which at present is cooled down through the cooling towers and in the future through an absorption cooler driven by the waste-heat present in the exhaust gases of a 1000 kW natural-gas engine. To this end, energy audits for each furnace have been carried out, identifying and quantifying each energy flow. As a technique for energy saving and efficiency improvement, cogeneration has been wide spread across all industrial sectors in Spain. (author)

  4. Biomass based optimal cogeneration system for paper industry

    Energy Technology Data Exchange (ETDEWEB)

    Ashok, S.; Jayaraj, S. [National Inst. of Technology, Calicut (India)

    2008-07-01

    A mathematical model of a biomass supported steam turbine cogeneration system was presented. The multi-time interval non-linear model used genetic algorithms to determine optimal operating costs. The cogeneration system consisted of steam boilers; steam headers at different pressure levels; steam turbines operating at different capacities; and other auxiliary devices. System components were modelled separately to determine constraints and costs. Total costs were obtained by summing up costs corresponding to all equipment. Cost functions were fuel cost; grid electricity cost; grid electricity export revenues; start-up costs; and shut-down costs. The non-linear optimization model was formulated by considering equal intervals of 1-hour intervals. A case study of a typical paper industry plant system was considered using coal, black liquor, and groundnut shells. Results of the study showed that the use of groundnut shells as a fuel resulted in a savings of 11.1 per cent of the total monthly operating costs while delivering 48.6 MWh daily to the electricity grid after meeting the plant's total energy requirements. It was concluded that the model can be used to optimize cogeneration systems in paper plants. 14 refs., 3 tabs., 3 figs.

  5. Assessment of biomass cogeneration in the Great Lakes region

    International Nuclear Information System (INIS)

    Burnham, M.; Easterly, J.L.

    1994-01-01

    Many biomass cogeneration facilities have successfully entered into power sales agreements with utilities across the country, often after overcoming various difficulties or barriers. Under a project sponsored by the Great Lakes Regional Biomass Energy Program of the U.S. Department of Energy, DynCorp sm-bullet Meridian has conducted a survey of biomass facilities in the seven Great Lakes states, selecting 10 facilities for case studies with at least one facility in each of the seven states. The purpose of the case studies was to address obstacles that biomass processors face in adding power production to their process heat systems, and to provide examples of successful strategies for entering into power sales agreements with utilities. The case studies showed that the primary incentives for investing in cogeneration and power sales are to reduce operating costs through improved biomass waste management and lower energy expenditures. Common barriers to cogeneration and power sales were high utility stand-by charges for unplanned outages and low utility avoided cost payments due to excess utility generation capacity

  6. Micro cogeneration in residential scale; Bancada de sistema de cogeracao de pequeno porte

    Energy Technology Data Exchange (ETDEWEB)

    Dutra, Jose Carlos Charamba; Primo, Ana Rosa Mendes; Magnani, Fabio Santana; Henriquez, Jorge R. [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil); Moura, Newton Reis de; Campos, Michel Fabianski [PETROBRAS, Rio de Janeiro, RJ (Brazil); Zimmerle, Sergio Ricardo T.S. [Companhia Pernambucana de Gas (COPERGAS), Recife, PE (Brazil)

    2004-07-01

    Cogeneration is very important to spread the use of natural gas in Brazil. Most of the existing cogeneration plants are of considerable size, as used in industries or commercial centers. Places with low demand on electrical or thermal energy (e.g. small industries, blocs of houses, etc.) could also benefit of cogeneration, but there is no available data about micro-cogeneration in Brazil. In order to verify the technical and economical viability of small size systems of cogeneration, FINEP/PETROBRAS/COPERGAS financed a project of micro-cogeneration at the Federal University of Pernambuco (UFPE), involving experiments on a micro turbine and a generator group, both with 30 kW power. The laboratory is also composed by two heat exchangers to regenerate the heat from the micro-turbine and generator group, a single effect absorption chiller, with 10 TR capacity, two thermal storage tanks (for hot and cold water) and a compression split of 5 TR. Data to build performance curves of the equipment will be stored and analyzed, in order to build their performance curves, allowing the overall cogeneration efficiency to be found. Most probable situations of thermal and electric power demands will be simulated. The aim of the simulations is to achieve the optimal situation for micro-cogeneration, which will offer the best efficiency, the lowest cost for buying the equipment and the lowest operational cost. A software was also developed, which optimizes micro-cogeneration systems. (author)

  7. Comments on derivation of an index for evaluating economics of cogeneration systems and its applications

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, R [Indian Inst. of Tech., Bombay (India). Dept. of Mechanical Engineering

    1990-04-01

    Industrial cogeneration systems usually must satisfy a power load and heat loads at different temperatures. The limitations of the economic index proposed by Pak and Suzuki for such cogeneration systems is discussed in this paper. The importance of a rational exergetic basis for evaluation of different grades of energy is emphasised. Thermodynamic criteria, e.g. the exergetic efficiency, relative fuel savings and fuel chargeable to power, are shown to provide useful information regarding cogeneration options. Any assessment scheme for cogeneration schemes must incorporate thermodynamic criteria in addition to economic criteria. (author).

  8. Cogeneration and Small Power Production Quarterly Report to the California Public Utilities Commission Second Quarter 1983

    Energy Technology Data Exchange (ETDEWEB)

    None

    1983-01-01

    In the Second Quarter of 1983, the number of signed contracts and committed projects rose from 223 to 240, with a total estimated nominal capacity of these projects of 1,449 MW. Of this nominal capacity, about 361 MW is operational, and the balance is under contract for development. A map indicating the location of currently operating facilities is provided as Figure A. Of the 240 signed contracts and committed projects, 75 were cogeneration, solid waste, or biomass projects with a potential of 740 MW. PG and E also had under active discussion 32 cogeneration projects that could generate a total of 858 MW to 921 MW, and 10 solid waste/biomass projects with a potential of 113 MW to 121 MW. Two contracts have been signed with geothermal projects, capable of producing 83 MW. There are 6 solar projects with signed contracts and a potential of 36 MW, as well as another solar project under active discussion for 30 MW. Wind farm projects under contract number 19, with a generating capability of 471 MW. Also, discussions are being conducted with 12 wind farm projects, totaling 273 to 278 MW. There are 89 wind projects of 100 kW or less with signed contracts and a potential of almost 1 MW, as well as 10 other projects under active discussion. There are 47 hydroelectric projects with signed contracts and a potential of 110 MW, as well as 65 projects under active discussion for 175 MW. In addition, there are 30 hydroelectric projects, with a nominal capacity of 291 MW, that PG and E is constructing or planning to construct. Table A displays the above information. In tabular form, in Appendix A, are status reports of the projects as of June 30, 1983.

  9. Cogeneration and Small Power Production Quarterly Report to the California Public Utilities Commission Third Quarter 1983

    Energy Technology Data Exchange (ETDEWEB)

    None

    1983-01-01

    In the Third Quarter of 1983, the number of signed contracts and committed projects rose from 240 to 258, with a total estimated nominal capacity of these projects of 1,547 MW. Of this nominal capacity, about 416 MW is operational, and the balance is under contract for development. A map indicating the location of operational facilities under contract with PG and E is provided. Of the 258 signed contracts and committed projects, 83 were cogeneration, solid waste, or biomass projects with a potential of 779 MW. PG and E also had under active discussion 38 cogeneration projects that could generate a total of 797 MW to 848 MW, and 19 solid waste/biomass projects with a potential of 152 MW to 159 MW. Two contracts have been signed with geothermal projects, capable of producing 83 MW. There are 6 solar projects with signed contracts and a potential of 36 MW, as well as 3 solar projects under active discussion for 31 MW. Wind farm projects under contract number 21, with a generating capability of 528 MW. Also, discussions are being conducted with 17 wind farm projects, totaling 257 to 262 MW. There are 94 wind projects of 100 kW or less with signed contracts and a potential of almost 1 MW, as well as 8 other small wind projects under active discussion. There are 50 hydroelectric projects with signed contracts and a potential of 112 MW, as well as 67 projects under active discussion for 175 MW. In addition, there are 31 hydroelectric projects, with a nominal capacity of 185 MW, that PG and E is planning to construct.

  10. A wood-waste fuelled indirectly-fired gas turbine cogeneration plant for sawmill application. Preliminay engineering and financial evaluation. Phase 1

    Energy Technology Data Exchange (ETDEWEB)

    1986-02-01

    The overall objective of this project is to develop a cost-effective wood waste-fired power generation and lumber drying system for Canadian sawmill applications. The system proposed and evaluated in this project is a wood waste-fuelled, indirectly-fired gas turbine cogeneration plant. Research, design and development of the system has been planned to take place in a number of phases. The first phase consists of a preliminary engineering design and financial evaluation of the system and is the subject of this report. This analysis focuses on British Columbia since it is the largest potential market for the sawmill cogeneration system. In order to provide design parameters for the cogeneration system, operational characteristics were compiled for a typical sawmill in the interior of British Columbia. A number of alternative design concepts were reviewed before arriving at the indirect-fired turbine concept selected for development in this project. The general concept involves the use of an open Brayton-cycle gas turbine as the prime mover to generate electrical power, while process heat for the dry-kiln is obtained by waste heat recovery from the turbine exhaust gas. The proposed system has many advantages over a conventional steam based cogeneration system and economic analysis indicates that the system generates very attractive financial returns over a variety of conditions. 7 refs., 8 figs., 8 tabs.

  11. Cogeneration and CO2 emissions. Impact of the low power decentralized cogeneration development on the CO2 emissions in France

    International Nuclear Information System (INIS)

    2004-01-01

    Facing the economic growth leading the increase of the energy demand, the new european organization of the electric Industry and the development of the renewable energies sources, the cogeneration is developing in France. The aim of this study is the impacts of these cogeneration technologies on the raw materials consumption and on the environment. In a first part the energy profile of the buildings, agriculture and Industry sectors are evaluated. Each sector is divided in sectoral parts of specific thermal and electrical needs. In a second part scenario, established in the study, present significant developments of decentralized technologies of simultaneous production of heat and electric power in the range of few kW to 1 MW. (A.L.B.)

  12. Potential Emissions of Tritium in Air from Wells on the Nevada National Security Site

    International Nuclear Information System (INIS)

    Warren, R.

    2012-01-01

    This slide-show discusses the Nevada National Security Site (NNSS) and tritium in the groundwater. It describes the wells and boreholes and potential airflow from these sources. Monitoring of selected wells is discussed and preliminary results are presented

  13. Eco-Tourism Potential and Development within Lake Nakuru National Park and its Catchment.

    OpenAIRE

    2004-01-01

    This report summarises the eco-tourism potentials within Lake Nakuru National Park and its catchment to promote environmental conservation and socio-economic development that involves community participation for poverty alleviation. The area is of immense importance both nationally and internationally with tremendous potential for eco-tourism development. Currently, the Park receives about 200,000 visitors per year, most of whom on average stay only for two nights. In the recent past minimal ...

  14. Can Dutch co-generation survive threats of the liberalisation of the energy markets

    International Nuclear Information System (INIS)

    Battjes, J.J.; Rijkers, F.A.M.

    2000-07-01

    The paper presents an analysis of the effects of liberalisation of the Dutch energy markets on the future development of combined heat and power generation (co-generation) in the Netherlands. First, it reviews the historical growth in co-generation in the Netherlands and the supportive policy measures that have contributed to this growth. Second, the liberalisation process of the Dutch electricity market and the Dutch gas market is described. Subsequently, we discuss the impacts of these new market structures on co-generation by using two scenarios for the Dutch energy markets. Our assessment of the impacts is mainly focused on the cost-effectiveness of co-generation projects. We determine the key aspects that influence the cost-effectiveness of a co-generation project and analyse some of the calculations for different small-scale and large-scale co-generation projects. Based on the results, we conclude that investments in new co-generation plants are unlikely in the short term and the existing plants can barely produce with a positive cash flow. As many parties have an interest in reducing the negative effects of a liberalised energy market on co-generation, approaches are sought to improve the cost-effectiveness of co-generation in the Netherlands. We describe several optional supportive measures for co-generation mainly resulting from the determination of the barriers for co-generation. Moreover, Dutch authorities have already responded to these barriers by preparing policy measures such as investment subsidies and exemption from the energy tax. 2 refs

  15. Impact of support schemes and barriers in Europe on the evolution of cogeneration

    International Nuclear Information System (INIS)

    Moya, José Antonio

    2013-01-01

    This paper analyses the effectiveness of different support measures to promote cogeneration in the European Union. The analysis looks into the average progress of cogeneration between two different periods. The economic effect of the support measures in each country is quantified with the help of a cost–benefit analysis carried out by the Cogeneration Observatory and Dissemination Europe (CODE) project. The scope of this study is necessarily affected by the need to limit the number of projects and support measures. However, there is no evidence of a relationship between the economic advantage offered by support measures and the deployment of cogeneration in the Member States. The study considers the effect of different barriers (reported by the Member States) on the promotion of cogeneration. The individual analyses of the barriers differ widely in quality and depth. When some barriers are reported, there is an increase of the variability of the penetration of cogeneration. This counter-intuitive fact leads us to conclude that there is a lack of consistency in the barriers reported, and a clear need for consistent reporting on barriers. The possible effect of competition between measures supporting combined heat and power and renewable energy sources is also analysed. - Highlights: • Support measures to promote cogeneration are analysed. • The growth of cogeneration in European countries is not aligned with the measures in place. • None of the reported barriers for cogeneration can be considered a clear show-stopper. • The variation in the development of cogeneration when some barriers are reported raises questions about the reporting. • Countries with a high share of cogeneration are sensitive to the continuity or discontinuity of support

  16. Next Generation Nuclear Plant Project Evaluation of Siting a HTGR Co-generation Plant on an Operating Commercial Nuclear Power Plant Site

    International Nuclear Information System (INIS)

    Demick, L.E.

    2011-01-01

    This paper summarizes an evaluation by the Idaho National Laboratory (INL) Next Generation Nuclear Plant (NGNP) Project of siting a High Temperature Gas-cooled Reactor (HTGR) plant on an existing nuclear plant site that is located in an area of significant industrial activity. This is a co-generation application in which the HTGR Plant will be supplying steam and electricity to one or more of the nearby industrial plants.

  17. Next Generation Nuclear Plant Project Evaluation of Siting a HTGR Co-generation Plant on an Operating Commercial Nuclear Power Plant Site

    Energy Technology Data Exchange (ETDEWEB)

    L.E. Demick

    2011-10-01

    This paper summarizes an evaluation by the Idaho National Laboratory (INL) Next Generation Nuclear Plant (NGNP) Project of siting a High Temperature Gas-cooled Reactor (HTGR) plant on an existing nuclear plant site that is located in an area of significant industrial activity. This is a co-generation application in which the HTGR Plant will be supplying steam and electricity to one or more of the nearby industrial plants.

  18. Design features of Beijing Shijingshan 3 x 200 MW cogeneration plant

    International Nuclear Information System (INIS)

    Li, T.X.; Ou, Y.Z.

    1991-01-01

    This paper describes the design feature of Beijing Shijingshan 3 x 200 MW Cogeneration Plant. The design optimized the scheme and system of 200 MW units for heating. The cogeneration plant has achieved comprehensive economic benefit in energy saving and environmental pollution reduction

  19. 77 FR 16205 - National Defense Stockpile Market Impact Committee Request for Public Comments on the Potential...

    Science.gov (United States)

    2012-03-20

    .... The Committee is seeking public comments on the potential market impact of the material research and... Defense Stockpile Market Impact Committee Request for Public Comments on the Potential Market Impact of... National Defense Stockpile Market Impact Committee, co-chaired by the Departments of Commerce and State, is...

  20. 77 FR 42271 - National Defense Stockpile Market Impact Committee Request for Public Comments on the Potential...

    Science.gov (United States)

    2012-07-18

    ... comments on the potential market impact associated with the two material research and development projects... Defense Stockpile Market Impact Committee Request for Public Comments on the Potential Market Impact of... National Defense Stockpile Market Impact Committee, co-chaired by the Departments of Commerce and State, is...

  1. The prospects of development of the market of cogeneration in Europe; Les perspectives de developpement du marche de la cogeneration eu Europe

    Energy Technology Data Exchange (ETDEWEB)

    Cotard, E. [Association Europeenne de Promotion de la Cogeneration, COGEN Europe (Country unknown/Code not available)

    1999-01-01

    Cogeneration or Combined Heat and Power has a high overall efficiency and brings about important environmental advantages in particular in terms of CO{sub 2} emissions. This win-win position is crucial at a time of widespread liberalization in energy markets. However, as shown by the various development rates within the EU, cogeneration is not equally treated across Europe. These differences are not only due to local climates - the development difference can ba as high as over 30% for example between France and The Netherlands. Nevertheless some recent European legislation such as the Gas and the Electricity Directives attempt to harmonize through liberalization. Liberalization should have positive aspects for cogeneration, in particular industrial cogeneration, provided that it is well designed and implemented. (authors)

  2. Small Nuclear Co-generation Plants Based on Shipbuilding Technology

    International Nuclear Information System (INIS)

    Vasyukov, V. I.; Veshnyakov, K. B.; Goryunov, E. V.; Zalugin, V. I.; Panov, Yu. K.; Polunichev, V. I.

    2002-01-01

    The development of nuclear cogeneration plants and power desalination complexes of relatively small power, using proven shipbuilding technology, becomes more and more attractive for solving the power supply problems of remote districts of the Extreme North and the Far East with small and medium power grids and for removing the shortage of fresh water in different world regions. The idea of transportation of the power unit with high degree of readiness to the place of its location with minimum construction and mounting activities at the site is very attractive. Compactness typical of RP based on shipbuilding technology allows to develop floating or ground-based plants at minimum use of water area and territory. Small construction scope at the site under conditions of minimum anthropogenic loads and high ecological indices are important arguments in favor of floating nuclear cogeneration plant based on ship power units against the alternative fossil sources. At present, the activities on floating nuclear cogeneration plant design, which is developed on the basis of floating power unit with two KLT-40S reactor plant, which is a modified option of standard KLT-40-type ship plant for icebreaker fleet in Russia are the most advanced. To date, a detailed design of reactor plant has been developed and approved, design activities on floating power unit are in the stage of completion, the site for its location has been selected and licensing by GAN, Russia, is in progress. Besides OKBM has developed some designs of nuclear cogeneration plants of different power on the basis of integral reactor plants, using the experience of transport and stationary power plants designing. Nuclear cogeneration plant investment analysis showed acceptable social and economical efficiency of the design that creates conditions for commercial construction of floating power units with KLT-40S reactor plan. At the same time the reduction of the design recovering terms, increase of budget income and

  3. Cogeneration of electric energy: The case of pulp and paper mills

    International Nuclear Information System (INIS)

    Harberger, A.C.

    1993-01-01

    Applied welfare economics are utilized to analyze the phenomenon of cogeneration of electricity in the pulp and paper sector. Optimum levels of energy use (and of cogeneration) are defined, and the efficiency costs of various possible deviations from the optimum are shown. An economic analysis is presented of the effects of cost of electricity for the pulp and paper industry, and the impact that cogeneration can have on these costs. The social welfare impacts of cogeneration and electricity subsidies are discussed, together with the issue of crosshauling. It is shown that in Canada a policy focusing on cogeneration without crosshauling leads to optimal results. An added argument against crosshauling involves the implicit transfers involved. These transfers generate benefits for the pulp and paper mills at the expense of the electricity utility and its paying customers or taxpaying public. A strong argument is proposed against allowing of crosshauling

  4. Alternatives to electrical cogeneration: The direct application of steam engines

    International Nuclear Information System (INIS)

    Phillips, W.C.

    1993-01-01

    Although small to medium sized industrial facilities are aware of electrical cogeneration, often they are too small for it to be economically justifiable. The direct application of steam turbine power to equipment formerly powered by electric motors, can allow them to use steam capacity to reduce electrical demand and consumption, bypassing cogeneration. Cogeneration converts the heat energy of steam into circular mechanical motion and then converts the circular mechanical motion into electricity. Each conversion entails a loss of energy due to friction and other conversion losses. A substantial amount of the generated electricity is then converted back into circular motion with electric motors, again incurring energy losses. Directly applying the mechanical motion of turbines eliminates both the motion-to-electricity (generator) and the electricity-to-motion (motor) conversion losses. Excess steam capacity during the summer is not unusual for facilities that use steam to provide winter heating. Similarly, most of these facilities experience a large electrical demand peak during the cooling season due to the electricity needed to operate centrifugal chillers. Steam capacity via a turbine to power the chillers can allow the boilers to operate at a higher loading while reducing electrical consumption and demand precisely those periods when demand reduction is most needed. In facilities where the steam generating capacity is sufficient, air compressors provide an appropriate year-round application for turbine power. This paper is the result of an on-going project by the Energy Division, State of North Carolina, Department of Economic and Community Development, in conjunction with the University of North Carolina at Charlotte. The objective of this project is to educate the operating engineers and managers of small to medium sized manufacturing facilities on the technical application and economic justification of steam turbine power

  5. Assessing the Potential for Renewable Energy on National Forest System Lands

    Energy Technology Data Exchange (ETDEWEB)

    2005-01-01

    This technical report and CD for the U.S. Department of Agriculture, Forest Service (USFS), evaluates the potential for renewable energy resource development on National Forest System (NFS) lands. USFS can use the report findings to consider potential for development of solar and wind energy resources on NFS lands, in land management decisions. The Geographical Information System (GIS) based analysis resulted in the following findings: (1) Ninety-nine National Forest Units have high potential for power production from one or more of these solar and wind energy sources; and (2) Twenty National Forest Units in nine states have high potential for power production from two or more of these solar and wind energy sources.

  6. The cogeneration and small power production manual. 3rd edition

    International Nuclear Information System (INIS)

    Spiewak, S.A.

    1990-01-01

    This book is divided into six sections covering regulations, environmental issues, engineering, contract, financing, and taxes. The edition adds a comprehensive 80-page chapter outlining how to prepare for electric power shortages, including details on rate structure, tariff negotiation, contract-based rates, partial requirement service, supplementary, backup, and interruptible rates, and retail sale of electric power. The engineering section covers optimum cogeneration system design, operational considerations, and energy efficiency. Combustion turbines, diesel engines, gas engines, rotary engines, steam turbines, and electric generators are covered in detail

  7. Regional hospital improves efficiency with co-generation retrofit.

    Science.gov (United States)

    Knutson, D; Anderson, L

    1999-11-01

    Feasibility analysis of the co-generation retrofit of the Red Deer Regional Hospital pointed to a reasonable payback of capital cost and increased efficiency in operation of the facility. Budget restrictions nearly stopped the project from proceeding. Innovative construction procedures proposed by the Facility Management Group, in particular, Mr Keith Metcalfe, Director of Maintenance, allowed a worthwhile project to reach successful completion. We feel that this model can perhaps be used by similar facilities in the future to achieve their energy efficiency goals.

  8. Heating unit of Berovo by co-generation (Macedonia)

    International Nuclear Information System (INIS)

    Armenski, Slave; Dimitrov, Konstantin; Tashevski, Done

    1999-01-01

    A plant for combined heat and electric power production, for central heating of the town Berovo (Macedonia) is proposed. The common reason to use a co-generation unit is the energy efficiency and a significant reduction of environmental pollution. The heat consumption of town Berovo is analyzed and determined. Based on the energy consumption of a whole power plant, e. i. the plant for combined and simultaneous production of power is proposed. The quantity of annually heat and electrical production and annually coal consumption are estimated. (Author)

  9. Cogeneration Power Plants: a Proposed Methodology for Unitary Production Cost

    International Nuclear Information System (INIS)

    Metalli, E.

    2009-01-01

    A new methodology to evaluate unitary energetic production costs in the cogeneration power plants is proposed. This methodology exploits the energy conversion factors fixed by Italian Regulatory Authority for Electricity and Gas. So it allows to settle such unitary costs univocally for a given plant, without assigning them a priori subjective values when there are two or more energy productions at the same time. Moreover the proposed methodology always ensures positive values for these costs, complying with the total generation cost balance equation. [it

  10. Victorian Government pushes cogeneration for SMEs

    International Nuclear Information System (INIS)

    Collins, Richard

    2006-01-01

    The Government of Victoria is very keen to have the boiler technology installed across the state's small to medium enterprises. If only a 10 per cent of the Victorian small to medium enterprises market for new boilers installed the new technology, the potential energy savings could reach over 210,000 GJ. This technology is fairly common in Europe. In the last few years it has been introduced to the Australian market, and it is cheaper than the European models and also it is more efficient at recovering heat

  11. Thermodynamic and economic optimization of a solar-powered Stirling engine for micro-cogeneration purposes

    International Nuclear Information System (INIS)

    Ferreira, Ana C.; Nunes, Manuel L.; Teixeira, José C.F.; Martins, Luís A.S.B.; Teixeira, Senhorinha F.C.F.

    2016-01-01

    Micro-cogeneration systems are a promising technology for improving the energy efficiency near the end user, allowing the optimal use of the primary energy sources and significant reductions in carbon emissions. Its use, still incipient, has a great potential for applications in the residential sector. This study aims to develop a methodology for the thermal-economic optimization of micro cogeneration units using Stirling engine as prime mover and concentrated solar energy as the heat source. The thermal-economic optimization was formulated considering the maximization of the annual worth from the system operation, subjected to the nonlinear thermodynamic and economic constraints. The physical model includes the limitations in the heat transfer processes and losses due to the pumping effects and the costing methodology was defined considering a purchase cost equation representative of each system component. Geometric and operational parameters were selected as decision variables. Numerical simulations were developed in MatLab"® programming language and the Generalized Pattern Search optimization algorithm with MADSPositiveBasis2N was used in the determination of the optimal solution. A positive annual worth for the defined input simulation conditions and the economic analysis disclosed a system, economically attractive, with a payback period of approximately 10 years. - Highlights: • Application of optimization methods to model a renewable powered Stirling engine. • The aim is to optimize design of each plant-component for the best economical outcome. • The objective function is the maximization of annual worth of micro-CHP system. • The optimal solution is sensitive to electricity feed-in-tariffs and fuel prices fluctuations. • The optimal solution is economically attractive, with a payback period of ≈10 years.

  12. Market conditions for wind power and biofuel-based cogeneration

    International Nuclear Information System (INIS)

    1994-07-01

    The aim of this study is to analyze the prerequisites for biofuel-based cogeneration plants and for wind power, with special emphasis on following factors: 1/ The effect on the Swedish energy market of the opening of the power transmission networks for free competition within the electric power supply sector. 2/ A market model for the connection between the prices on fossil fuels, biomass fuels, electric power, and heating on the Swedish market. The analysis is made for three scenarios concerning carbon dioxide/energy taxation and the oil price development. The three scenarios are: A. Constant prices on heating oil and coal., B. An internationally uniform carbon dioxide tax, which successively is raised to SEK 0.40 per kilo carbon dioxide to the year 2010. In the year 2005 this will correspond to a doubling of the present prices on crude oil., C. An unilateral Swedish energy- and carbon dioxide tax of todays model (without exception for electric power generation), with constant import prices on heating oil and coal. The decisive factors for bio-cogeneration are construction- and operation costs, the costs of biofuels, and the sales price on electric power and heat. For wind power it is the construction- and operation costs that settle the conditions. 18 figs, 6 tabs

  13. Waste-to-Energy Cogeneration Project, Centennial Park

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Clay; Mandon, Jim; DeGiulio, Thomas; Baker, Ryan

    2014-04-29

    The Waste-to-Energy Cogeneration Project at Centennial Park has allowed methane from the closed Centennial landfill to export excess power into the the local utility’s electric grid for resale. This project is part of a greater brownfield reclamation project to the benefit of the residents of Munster and the general public. Installation of a gas-to-electric generator and waste-heat conversion unit take methane byproduct and convert it into electricity at the rate of about 103,500 Mwh/year for resale to the local utility. The sale of the electricity will be used to reduce operating budgets by covering the expenses for streetlights and utility bills. The benefits of such a project are not simply financial. Munster’s Waste-to Energy Cogeneration Project at Centennial Park will reduce the community’s carbon footprint in an amount equivalent to removing 1,100 cars from our roads, conserving enough electricity to power 720 homes, planting 1,200 acres of trees, or recycling 2,000 tons of waste instead of sending it to a landfill.

  14. GTHTR300 cost reduction through design upgrade and cogeneration

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Xing L., E-mail: yan.xing@jaea.go.jp; Sato, Hiroyuki; Kamiji, Yu; Imai, Yoshiyuki; Terada, Atsuhiko; Tachibana, Yukio; Kunitomi, Kazuhiko

    2016-09-15

    Japan Atomic Energy Agency began design and development of the Gas Turbine High Temperature Reactor of 300MWe nominal output (GTHTR300) in 2001. The reactor baseline design completed three years later was based on 850 °C core outlet temperature and a direct cycle gas turbine balance of plant. It attained 45.6% net power generation efficiency and 3.5 US¢/kW h cost of electricity. The cost was estimated 20% lower than LWR. The latest design upgrade has incorporated several major technological advances made in the past ten years to both reactor and balance of plant. As described in this paper, these advances have enabled raising the design basis reactor core outlet temperature to 950 °C and increasing power generating efficiency by nearly 5% point. Further implementation of seawater desalination cogeneration is made through employing a newly-proposed multi-stage flash process. Through efficient waste heat recovery of the reactor gas turbine power conversion cycle, a large cost credit is obtained against the conventionally produced water prices. Together, the design upgrade and the cogeneration are shown to reduce the GTHTR300 cost of electricity to under 2.7 US¢/kW h.

  15. Studies on Steam Absorption Chillers Performance at a Cogeneration Plant

    Directory of Open Access Journals (Sweden)

    Abd Majid Mohd Amin

    2014-07-01

    Full Text Available Absorption chillers at cogeneration plants generate chilled water using steam supplied by heat recovery steam generators. The chillers can be of either single-effect or double effect configuration and the coefficient of performance (COP depends on the selection made. The COP varies from 0.7 to 1.2 depending on the types of chillers. Single effect chillers normally have COP in the range of 0.68 to 0.79. Double effect chillers COP are higher and can reach 1.2. However due to factors such as inappropriate operations and maintenance practices, COP could drop over a period of time. In this work the performances of double effect steam absorption chillers at a cogeneration plant were studied. The study revealed that during the period of eleven years of operation the COP of the chillers deteriorated from 1.25 to 0.6. Regression models on the operation data indicated that the state of deterioration was projected to persist. Hence, it would be recommended that the chillers be considered for replacement since they had already undergone a series of costly repairs.

  16. Tariffs for natural gas, heat, electricity and cogeneration in 1998

    International Nuclear Information System (INIS)

    1998-03-01

    The rate of return of the combined generation of heat and power is not only determined by the capital expenditures and the costs of maintenance, control, management and insurance, but also by the fuel costs of the cogeneration installation and the avoided fuel costs in case of separated heat production, the avoided/saved costs of electricity purchase, and the compensation for possible supply to the public grid (sellback). This brochure aims at providing information about the structure of natural gas and electricity tariffs to be able to determine the three last-mentioned expenditures. First, attention is paid to the tariffs of natural gas for large-scale consumers, the tariff for cogeneration and horticulture, and natural gas supply contracts. Next, the structure of the electricity tariffs is dealt with in detail, discussing the accounting system within the electric power sector, the tariffs and compensations for large-scale consumers and specific large-scale consumers, electricity sellback tariffs, and compensations for reserve capacity. Also attention will be paid to tariffs for electricity transport. Finally, several taxes, excises and levies that have a direct or indirect impact on natural gas tariffs, are discussed. 9 refs

  17. Desalination of seawater with nuclear power reactors in cogeneration

    International Nuclear Information System (INIS)

    Flores E, R.M.

    2004-01-01

    The growing demand for energy and hydraulic resources for satisfy the domestic, industrial, agricultural activities, etc. has wakened up the interest to carry out concerning investigations to study the diverse technologies guided to increase the available hydraulic resources, as well as to the search of alternatives of electric power generation, economic and socially profitable. In this sense the possible use of the nuclear energy is examined in cogeneration to obtain electricity and drinkable water for desalination of seawater. The technologies are analysed involved in the nuclear cogeneration (desalination technology, nuclear and desalination-nuclear joining) available in the world. At the same time it is exemplified the coupling of a nuclear reactor and a process of hybrid desalination that today in day the adult offers and economic advantages. Finally, the nuclear desalination is presented as a technical and economically viable solution in regions where necessities of drinkable water are had for the urban, agricultural consumption and industrial in great scale and that for local situations it is possible to satisfy it desalinating seawater. (Author)

  18. Nuclear hydrogen - cogeneration and the transitional pathway to sustainable development

    International Nuclear Information System (INIS)

    Gurbin, G.M.; Talbot, K.H.

    1994-01-01

    The development of the next phase of the Bruce Energy Centre, in cooperation with Ontario Hydro, will see the introduction of a series of integrated energy processes whose end products will have environmental value added. Cogenerated nuclear steam and electricity were selected on the basis of economics, sustainability and carbon emissions. The introduction of hydrogen to combine with CO 2 from alcohol fermentation provided synthetic methanol as a feedstock to refine into ether for the rapidly expanding gasoline fuel additive market, large volumes of O 2 will enhance combustion processes and improve closed-looping of the systems. In the implementation of the commercial development, the first stage will require simultaneous electrolysis, methanol synthesis and additional fermentation capacity. Electricity and steam pricing will be key to viability and an 80-MV 'backup' fossil-fuelled, back pressure turbine cogeneration facility could be introduced in a compatible matter. Successful demonstration of transitional and integrating elements necessary to achieve sustainable development can serve as a model for electric utilities throughout the world. 11 ref., 1 tab., 4 figs

  19. Cogeneration technology alternatives study. Volume 1: Summary report

    Science.gov (United States)

    1980-01-01

    Data and information in the area of advanced energy conversion systems for industrial congeneration applications in the 1985-2000 time period was studied. Six current and thirty-one advanced energy conversion systems were defined and combined with appropriate balance-of-plant equipment. Twenty-six industrial processes were selected from among the high energy consuming industries to serve as a framework for the study. Each conversion system was analyzed as a cogenerator with each industrial plant. Fuel consumption, costs, and environmental intrusion were evaluated and compared to corresponding traditional values. Various cogeneration strategies were analyzed and both topping and bottoming (using industrial by-product heat) applications were included. The advanced energy conversion technologies indicated reduced fuel consumption, costs, and emissions. Typically fuel energy savings of 10 to 25 percent were predicted compared to traditional on-site furnaces and utility electricity. With the variety of industrial requirements, each advanced technology had attractive applications. Overall, fuel cells indicated the greatest fuel energy savings and emission reductions. Gas turbines and combined cycles indicated high overall annual cost savings. Steam turbines and gas turbines produced high estimated returns. In some applications, diesels were most efficient. The advanced technologies used coal-derived fuels, or coal with advanced fluid bed combustion or on-site gasification systems.

  20. Impact of cogeneration on integrated resource planning of Turkey

    International Nuclear Information System (INIS)

    Atikol, U.; Gueven, H.

    2003-01-01

    In most developing countries, difficulties in finding sector-specific data on heat rate and power demands make energy planning a hard task. In some countries, although this data is available, it may be four or five years old. In the present work, a new low-cost method is proposed for developing countries aiming at obtaining such data for the industrial sector quickly. Fifty-two textile factories were selected for a survey to represent the industrial sector. The data were processed and used to generate two scenarios of cogeneration applications in the industrial sector; one sized according to the electrical load of the factories, and the other one according to the thermal load. The costs and primary energy requirements of these programs were compared with that of the nuclear alternative. It was found that the most energy efficient and economical option for Turkey was the cogeneration program, the equipment sizing of which was based on the process heat demand of the industrial sector. Turkey would not only save US$ 72.6-billion by deferring the nuclear program, but it will also reduce the total primary energy demand by 11% in 2020

  1. GTHTR300 cost reduction through design upgrade and cogeneration

    International Nuclear Information System (INIS)

    Yan, Xing L.; Sato, Hiroyuki; Kamiji, Yu; Imai, Yoshiyuki; Terada, Atsuhiko; Tachibana, Yukio; Kunitomi, Kazuhiko

    2014-01-01

    Japan Atomic Energy Agency began design and development of the Gas Turbine High Temperature Reactor of 300MWe nominal output (GTHTR300) in 2001. The reactor baseline design completed three years later was based on 850°C core outlet temperature and a direct cycle gas turbine balance of plant. It attained 45.6% net power generation efficiency and 3.5US¢/KWh cost of electricity. The cost was estimated 20% lower than LWR. The latest design upgrade has incorporated several major technological advances made in the past ten years to both reactor and balance of plant. As described in this paper, these advances have enabled raising the design basis reactor core outlet temperature to 950°C and increasing power generating efficiency by nearly 5% point. Further implementation of seawater desalination cogeneration is made through employing a newly-proposed multi-stage flash process. Through efficient waste heat recovery of the reactor gas turbine power conversion cycle, a large cost credit is obtained against the conventionally produced water prices. Together, the design upgrade and the cogeneration are shown to reduce the GTHTR300 cost of electricity to under 2.7 US¢/KWh. (author)

  2. Modern fluidized bed combustion in Ostrava-Karvina cogeneration plants

    Energy Technology Data Exchange (ETDEWEB)

    Mazac, V. [Energoprojekt Praha, Ostrava (Czechoslovakia); Novacek, A. [Moravskoslezske teplamy, Ostrava (Czechoslovakia); Volny, J. [Templamy Karvina (Czechoslovakia)

    1995-12-01

    The contemporary situation of our environment claims the sensitive approach to solving effective conversion of energy. Limited supplies of noble fuels and their prices evoke the need to use new combustion technologies of accessible fuels in given region without negative ecological influences. Energoproject participates in the preparation of the two projects in Ostrava-Karvin{acute a} black coal field in Czech Republic. The most effective usage of fuel energy is the combined of electricity and heat. If this physical principle is supported by a pressurized fluidized bed combustion (PFBC) one obtains a high electricity/heat ratio integrated steam-gas cycle on the basis of solid fuel. Cogeneration plant Toebovice is the dominant source (600 MW{sub th}) of Ostrava district heating system (1100 MW{sub th}). The high utilization of the installed output and utilization of the clean, compact and efficient of the PFBC technology is the principal but not the single reason for the selection of the Toebovice power plant as the first cogeneration plant for installation of the PFBC in Czech Republic. The boiler will burn black coal from the neighboring coal basin.

  3. HTTR demonstration program for nuclear cogeneration of hydrogen and electricity

    International Nuclear Information System (INIS)

    Sato, Hiroyuki; Sumita, Junya; Terada, Atsuhiko; Ohashi, Hirofumi; Yan, Xing L.; Nishihara, Tetsuo; Tachibana, Yukio; Inagaki, Yoshiyuki

    2015-01-01

    Japan Atomic Energy Agency initiated a High Temperature Engineering Test Reactor (HTTR) demonstration program in accordance with recommendations of a task force established by Ministry of Education, Culture, Sports, Science and Technology according to the Strategic Energy Plan as of April 2014. The demonstration program is designed to complete helium gas turbine and hydrogen production system technologies aiming at commercial plant deployment in 2030s. The program begins with coupling a helium gas turbine in the secondary loop of the HTTR and expands by adding the H 2 plant to a tertiary loop to enable hydrogen cogeneration. Safety standards for coupling the helium gas turbine and H 2 plant to the nuclear reactor will be established through safety review in licensing. A system design and its control method are planned to be validated with a series of test operations using the HTTR-GT/H 2 plant. This paper explains the outline of HTTR demonstration program with a plant concept of the heat application system directed at establishing an HTGR cogeneration system with 950°C reactor outlet temperature for production of power and hydrogen as recommended by the task force. Commercial deployment strategy including a development plan for the helium gas turbine is also presented. (author)

  4. Reductions in energy use and environmental emissions achievable with utility-based cogeneration: Simplified illustrations for Ontario

    International Nuclear Information System (INIS)

    Rosen, M.A.

    1998-01-01

    Significant reductions in energy use and environmental emissions are demonstrated to be achievable when electrical utilities use cogeneration. Simplified illustrations of these reductions are presented for the province of Ontario, based on applying cogeneration to the facilities of the main provincial electrical utility. Three cogeneration illustrations are considered: (i) fuel cogeneration is substituted for fuel electrical generation and fuel heating, (ii) nuclear cogeneration is substituted for nuclear electrical generation and fuel heating, and (iii) fuel cogeneration is substituted for fuel electrical generation and electrical heating. The substitution of cogeneration for separate electrical and heat generation processes for all illustrations considered leads to significant reductions in fuel energy consumption (24-61%), which lead to approximately proportional reductions in emissions. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  5. Performance analysis of a co-generation system using solar energy and SOFC technology

    International Nuclear Information System (INIS)

    Akikur, R.K.; Saidur, R.; Ping, H.W.; Ullah, K.R.

    2014-01-01

    Highlights: • A new concept of a cogeneration system is proposed and investigated. • The system comprises solar collector, PV, SOFC and heat exchanger. • 83.6% Power and heat generation efficiency has been found at fuel cell mode. • 85.1% Efficiency of SOSE has been found at H2 production mode. • The heat to power ratio of SOFC mode has been found about 0.917. - Abstract: Due to the increasing future energy demands and global warming, the renewable alternative energy sources and the efficient power systems have been getting importance over the last few decades. Among the renewable energy technologies, the solar energy coupling with fuel cell technology will be the promising possibilities for the future green energy solutions. Fuel cell cogeneration is an auspicious technology that can potentially reduce the energy consumption and environmental impact associated with serving building electrical and thermal demands. In this study, performance assessment of a co-generation system is presented to deliver electrical and thermal energy using the solar energy and the reversible solid oxide fuel cell. A mathematical model of the co-generation system is developed. To illustrate the performance, the system is considered in three operation modes: a solar-solid oxide fuel cell (SOFC) mode, which is low solar radiation time when the solar photovoltaic (PV) and SOFC are used for electric and heat load supply; a solar-solid oxide steam electrolyzer (SOSE) mode, which is high solar radiation time when PV is used for power supply to the electrical load and to the steam electrolyzer to generate hydrogen (H 2 ); and a SOFC mode, which is the power and heat generation mode of reversible SOFC using the storage H 2 at night time. Also the effects of solar radiation on the system performances and the effects of temperature on RSOFC are analyzed. In this study, 100 kW electric loads are considered and analyzed for the power and heat generation in those three modes to evaluate

  6. INNOVATION POTENTIAL: IMPACT ON THE NATIONAL ECONOMY’S COMPETITIVENESS OF THE EU DEVELOPED COUNTRIES

    Directory of Open Access Journals (Sweden)

    Iryna Lomachynska

    2018-01-01

    Full Text Available The success of the economy of each country is determined by its innovation development. The purpose of the paper is to investigate the essence of innovation potential and its role in providing the national economy’s competitiveness under the conditions of technological changes on the example of the European Union developed countries. The subject of research is the innovation potential of Austria and Germany. Methodology. The study is based on a comparative analysis of approaches to determination and evaluation of innovation potential in specialized economic literature. Analysis and synthesis and the system approach were used to outline the entity of innovation potential, to explore and structure its elements in the context of providing the national economy’s competitiveness. The quality and quantity analysis were used to discover general characteristics of the EU countries’ innovation development, special aspects of the national innovation systems of Austria and Germany, the role of innovation potential in the national economies competitiveness of these countries. The method of mathematical modelling in economics, in particular, regression analysis based on annual data for the period from 1995 to 2015, was applied to assess the impact of innovation potential on the Austria and Germany competitiveness. The absolute value of GDP and the share of export of goods and services in GDP are used as a dependent variable. Elements that characterize the country’s innovation potential were used as independent variables: the share of researchers in R&D of total population, the share of labour force with advanced education of total working-age population with advanced education, expenditure on tertiary education as a percentage of GDP, R&D expenditure as a percentage of GDP, patent applications as a percentage of total population. Results of the survey of theoretical works showed that the most multifaceted and comprehensive approach to determining the

  7. Cogeneration and Small Power Production Quarterly Report to the California Public Utilities Commission Third Quarter - September 1982

    Energy Technology Data Exchange (ETDEWEB)

    None

    1982-09-01

    In the Third Quarter of 1982, the number of signed contracts and committed projects rose from 148 to 173, with a total estimated nominal capacity of these projects of 922 MW. Of this nominal capacity, about 168 MW is operational, and the balance is under contract for development. Of the 173 signed contracts and committed projects, 61 were cogeneration and solid waste projects with a potential of 643 MW. PG and E also had under active discussion 28 cogeneration projects that could generate a total of 968 MW to 1,049 MW, and 10 solid waste projects with a potential of 90 MW to 95 MW. Wind projects under contract number 84, with a generating capability of 85 MW. Also, discussions are being conducted with 17 wind projects, totaling 83 MW. There are 23 hydroelectric projects with signed contracts and a potential of 95 MW, as well as 63 projects under active discussion for 169 MW. In addition, there are 25 hydroelectric projects, with a nominal capacity of 278 MW, that PG and E is constructing or planning to construct. Five contracts have been signed with projects, using other types of electric power generation, capable of producing 100 MW.

  8. Calibration and validation of a model for simulating thermal and electric performance of an internal combustion engine-based micro-cogeneration device

    International Nuclear Information System (INIS)

    Rosato, A.; Sibilio, S.

    2012-01-01

    The growing worldwide demand for more efficient and less polluting forms of energy production has led to a renewed interest in the use of micro-cogeneration technologies in the residential. Among the others technologies, internal combustion engine-based micro-cogeneration devices are a market-ready technology gaining an increasing appeal thanks to their high efficiency, fuel flexibility, low emissions, low noise and vibration. In order to explore and assess the feasibility of using internal combustion engine-based cogeneration systems in the residential sector, an accurate and practical simulation model that can be used to conduct sensitivity and what-if analyses is needed. A residential cogeneration device model has been developed within IEA/ECBCS Annex 42 and implemented into a number of building simulation programs. This model is potentially able to accurately predict the thermal and electrical outputs of the residential cogeneration devices, but it relies almost entirely on empirical data because the model specification uses experimental measurements contained within a performance map to represent the device specific performance characteristics coupled with thermally massive elements to characterize the device's dynamic thermal performance. At the Built Environment Control Laboratory of Seconda Università degli studi di Napoli, an AISIN SEIKI micro-cogeneration device based on natural gas fuelled reciprocating internal combustion engine is available. This unit has been intensively tested in order to calibrate and validate the Annex 42 model. This paper shows in detail the series of experiments conducted for the calibration activity and examines the validity of this model by contrasting simulation predictions to measurements derived by operating the system in electric load following control strategy. The statistical comparison was made both for the whole database and the segregated data by system mode operation. The good agreement found in the predictions of

  9. Potential impact of easing the log export restriction on the Tongass National Forest.

    Science.gov (United States)

    David R. Darr

    1978-01-01

    The potential of higher revenues in the log export market is constrained by possible reductions in prices associated with expanded supplies in the Japanese log market. Expanded log exports from the Tongass National Forest might force adjustments by existing cantmills, even under a partial easing of the export restriction.

  10. Nurturing Quality of Higher Education through National Ranking: A Potential Empowerment Model for Developing Countries

    Science.gov (United States)

    Kusumastuti, Dyah; Idrus, Nirwan

    2017-01-01

    This paper reviews the recently introduced National Higher Education ranking system in Indonesia in order to evaluate its potential as a sustainable model to improve the quality of higher education in the country. It is a scaffold towards an established world-universities ranking system that may prove formidable for a developing country. This…

  11. Exploring biophysical potential and sustainability of wheat cultivation in Uruguay at the national level

    NARCIS (Netherlands)

    Mantel, S.; Engelen, van V.W.P.; Molfino, J.H.; Resink, J.W.

    2000-01-01

    A methodology is presented that explores soil survey information at the national level (1:1 M), generating sustainability indicators for wheat cultivation in Uruguay. Potential yields were calculated for simplified crop production situations under several constraints, such as limitation of water

  12. Peace talks: indexical master tropes and their potential for conflict in the construction of national identity

    Directory of Open Access Journals (Sweden)

    Bogdan STEFANESCU

    2017-07-01

    Full Text Available This paper employs discursive constructivism to delineate four rhetorical paradigms of nationalist discourse and to compare their potential for conflict. It proposes a four-fold typology which sees the intuitive tropes of antithesis and simile, and the counterintuitive metaphor and irony as structuring principles for national self-images. These are four modes of constructing a cultural deixis, that is, a relationship between national self and its cultural other. The paper argues that the frequency and magnitude of nationalistic conflicts may be minimized by the steady and widespread counter-enculturation of the non-conflictual discourses of analogical (simile-based, metaphoric, and ironic nationalisms. This argument is illustrated with examples from modern and recent Romanian history, but may be taken to epitomize the condition of most postcommunist European nations.

  13. Energy conservation through the implementation of cogeneration and grid interconnection

    International Nuclear Information System (INIS)

    Dashash, M. A.

    2007-01-01

    With increasing awareness of energy conservation and environmental protection, the Arab World is moving to further improve energy conversion efficiency. The equivalent of over 2.7 MM bbl is being daily burnt to fuel the thermal power plants that represent 92% of the total Arab power generation. This adds up to close to one billion barrels annually. At a conservative 30$ per barrel, this represents a daily cost of over $81 Million. This paper will introduce two strategies with the ultimate objective to cut-off up to half of the current fuel consumption. Firstly, Cogeneration Technology is able to improve thermal efficiency from the current average of less than 25% to up to 80%. Just 1% improvement in power plant thermal efficiency represents 3 million $/day in fuel cost savings. In addition, a well-designed and operated cogeneration plant will: - Reduce unfriendly emissions by burning less fuel as a result of higher thermal efficiency, - Increase the decentralization of electrical generation, - Improve the reliability of electricity supply. As an example, the Kingdom of Saudi Arabia's experience of implementing cogeneration will be presented, in particular within its hydrocarbon facilities and desalination plants. This will include the existing facilities and the planned and on-going projects. Secondly, by interconnecting the power networks of all the adjacent Arab countries, the following benefits could be reached: - Reduce generation reserves and enhance the system reliability, - Improve the economic efficiency of the electricity power systems, - Provide power exchange and strengthen the supply reliability, - Adopt technological development and use the best modern technologies. At least two factors plead for this direction. On one hand, the four-hour time zone difference from Eastern to Western Arab World makes it easy to exchange power. On the other hand, this will help to reduce the reserve capacity and save on corresponding Capital investment, fuel, and O and M

  14. The ARCHER project (Advanced High-Temperature Reactors for Cogeneration of Heat and Electricity R&D)

    Energy Technology Data Exchange (ETDEWEB)

    Knol, S., E-mail: knol@nrg.eu [Nuclear Research and consultancy Group (NRG), PO Box 25, NL-1755 ZG Petten (Netherlands); Fütterer, M.A. [Joint Research Centre, Institute for Energy, Petten (Netherlands); Roelofs, F. [Nuclear Research and consultancy Group (NRG), PO Box 25, NL-1755 ZG Petten (Netherlands); Kohtz, N. [TÜV Rheinland, Köln (Germany); Laurie, M. [Joint Research Centre, Institute for Transuranium elements, Karlsruhe (Germany); Buckthorpe, D. [UMAN, University of Manchester, Manchester (United Kingdom); Scheuermann, W. [IKE, Stuttgart University, Stuttgart (Germany)

    2016-09-15

    The European HTR R&D project ARCHER (Advanced High-Temperature Reactors for Cogeneration of Heat and Electricity R&D) builds on a solid HTR technology foundation in Europe, established through former national UK and German HTR programs and in European framework programs. ARCHER runs from 2011 to 2015 and targets selected HTR R&D subjects that would specifically support demonstration, with a focus on experimental effort. In line with the R&D and deployment strategy of the European Sustainable Nuclear Energy Technology Platform (SNETP) ARCHER contributes to maintaining, strengthening and expanding the HTR knowledge base in Europe to lay the foundations for demonstration of nuclear cogeneration with HTR systems. The project consortium encompasses conventional and nuclear industry, utilities, Technical Support Organizations, R&D organizations and academia. ARCHER shares results with international partners in the Generation IV International Forum and collaborates directly with related projects in the US, China, Japan, the Republic of Korea and South Africa. The ARCHER project has finished, and the paper comprises an overview of the achievements of the project.

  15. Guidelines to assist rural electric cooperatives to fulfill the requirements of Sections 201 and 210 of PURPA for cogeneration and small power production

    Energy Technology Data Exchange (ETDEWEB)

    1981-02-01

    These guidelines were designed to assist National Rural Electric Cooperative Association staff and consultants involved in the implementation of Sections 201 and 210 of the Public Utilities Regulatory Policies Act (PURPA). The guidelines were structured to meet anticipated use as: a self-contained legal, technical and economic reference manual helpful in dealing with small power producers and cogenerators; a roadmap through some of the less obvious obstacles encountered by utilities interacting with small power producers and cogenerators; a starting point for those utilities who have not yet formulated specific policies and procedures, nor developed rates for purchasing power from small power producers and cogenerators; a discussion vehicle to highlight key issues and increase understanding in workshop presentations to rural electric cooperatives; and an evolutionary tool which can be updated to reflect changes in the law as they occur. The chapters in these Guidelines contain both summary information, such as compliance checklists, and detailed information, such as cost rate calculations, on regulatory requirements, operational considerations, and rate considerations. The appendices contain more specific material, e.g. rural electric cooperative sample policy statements. (LCL)

  16. Survey for making a data book related to the development of new energy technology. Cogeneration; 1999 nendo shin energy gijutsu kaihatsu kankei data shu sakusei chosa hokokusho. Cogeneration

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    This is a report of 'A data book on cogeneration' surveyed by Japan Cogeneration Center under consignment from NEDO. Together with the advance of technology development, policies of new energy technology are being developed toward the introductory promotion in terms of preparation of subsidy system, field test project, advisory project for support of new energy introduction, etc. To promote the project for introducing/promoting new energy more effectively, it is necessary to arrange various data on new energy comprehensively/systematically and to prepare it as the basic data. Out of the technical fields of new energy, this report deals with the cogeneration field and collected/arranged the most up-to-date published data in terms mainly of a list of system, actual samples of introduction, subsidy system, situation of tackling it in each country, etc. The main items of data included in this report are shown below: (1) trend of cogeneration; (2) outline of system; (3) samples of introduction in Japan and abroad; (4) forecast of introduction; (5) policies on cogeneration in Japan; (6) basic technical terms. (NEDO)

  17. Project considerations and design of systems for wheeling cogenerated power

    Energy Technology Data Exchange (ETDEWEB)

    Tessmer, R.G. Jr.; Boyle, J.R.; Fish, J.H. III; Martin, W.A.

    1994-08-01

    Wheeling electric power, the transmission of electricity not owned by an electric utility over its transmission lines, is a term not generally recognized outside the electric utility industry. Investigation of the term`s origin is intriguing. For centuries, wheel has been used to describe an entire machine, not just individual wheels within a machine. Thus we have waterwheel, spinning wheel, potter`s wheel and, for an automobile, wheels. Wheel as a verb connotes transmission or modification of forces and motion in machinery. With the advent of an understanding of electricity, use of the word wheel was extended to be transmission of electric power as well as mechanical power. Today, use of the term wheeling electric power is restricted to utility transmission of power that it doesn`t own. Cogeneration refers to simultaneous production of electric and thermal power from an energy source. This is more efficient than separate production of electricity and thermal power and, in many instances, less expensive.

  18. Co-generation at CERN Beneficial or not?

    CERN Document Server

    Wilhelmsson, M

    1998-01-01

    A co-generation plant for the combined production of electricity and heat has recently been installed on the CERN Meyrin site. This plant consists of: a gas turbine generator set (GT-set), a heat recovery boiler for the connection to the CERN primary heating network, as well as various components for the integration on site. A feasibility study was carried out and based on the argument that the combined use of natural gas -available anyhow for heating purposes- gives an attractively high total efficiency, which will, in a period of time, pay off the investment. This report will explain and update the calculation model, thereby confirming the benefits of the project. The results from the commissioning tests will be taken into account, as well as the benefits to be realized under the condition that the plant can operate undisturbed by technical setbacks which, incidentally, has not been entirely avoided during the first year of test-run and operation.

  19. Case study of McCormick place cogeneration project

    International Nuclear Information System (INIS)

    Overstreet, E.L.

    1994-01-01

    In the authors business of providing district energy services, competition is the key to his being able to have a positive impact on the environment, business stability, and economic activity. In the district energy industry, the competitive options are for property owners to continue to self generate energy to meet their needs, purchase energy from a company that utilizes electricity during off-peak hours to produce chilled water or take advantage of a total solution of purchasing tri-generation energy from Trigen-Peoples District Energy Company. Tri-generation is an innovative technology which involves the simultaneous production of steam, chilled water, and electricity. The McCormick Place cogeneration project calls for producing steam and chilled water (co-) for use by the Metropolitan Pier and Exposition Authority (MPEA). The plant will produce electricity (tri-) to run the production equipment

  20. Cogeneration using a nuclear reactor to generate process heat

    International Nuclear Information System (INIS)

    Alonso, Gustavo; Ramirez, Ramon

    2009-01-01

    Some of the new nuclear reactor technologies (Generation III+) are claiming the production of process heat as an additional value to electricity generation. These technologies are still under development and none of them has shown how this can be possible and what will be the penalty in electricity generation to have this additional product. The current study assess the likeliness of generate process heat from a Pebble Bed Modular Reactor to be used for a refinery showing different plant balance and alternatives to produce and use that process heat. An actual practical example is presented to demonstrate the cogeneration viability using the fact that the PBMR is a modular small reactor and also the challenges that this option has. (author)

  1. Efficiency analysis of a cogeneration and district energy system

    International Nuclear Information System (INIS)

    Rosen, Marc A.; Le, Minh N.; Dincer, Ibrahim

    2005-01-01

    This paper presents an efficiency analysis, accounting for both energy and exergy considerations, of a design for a cogeneration-based district energy system. A case study is considered for the city of Edmonton, Canada, by the utility Edmonton Power. The original concept using central electric chillers, as well as two variations (one considering single-effect and the other double-effect absorption chillers) are examined. The energy- and exergy-based results differ markedly (e.g., overall energy efficiencies are shown to vary for the three configurations considered from 83% to 94%, and exergy efficiencies from 28% to 29%, respectively). For the overall processes, as well as individual subprocesses and selected combinations of subprocesses, the exergy efficiencies are generally found to be more meaningful and indicative of system behaviour than the energy efficiencies

  2. Case study of McCormick place cogeneration project

    Energy Technology Data Exchange (ETDEWEB)

    Overstreet, E.L.

    1994-12-31

    In the authors business of providing district energy services, competition is the key to his being able to have a positive impact on the environment, business stability, and economic activity. In the district energy industry, the competitive options are for property owners to continue to self generate energy to meet their needs, purchase energy from a company that utilizes electricity during off-peak hours to produce chilled water or take advantage of a total solution of purchasing tri-generation energy from Trigen-Peoples District Energy Company. Tri-generation is an innovative technology which involves the simultaneous production of steam, chilled water, and electricity. The McCormick Place cogeneration project calls for producing steam and chilled water (co-) for use by the Metropolitan Pier and Exposition Authority (MPEA). The plant will produce electricity (tri-) to run the production equipment.

  3. Combined cycles and cogeneration with natural gas and alternative fuels

    International Nuclear Information System (INIS)

    Gusso, R.

    1992-01-01

    Since 1985 there has been a sharp increase world-wide in the sales of gas turbines. The main reasons for this are: the improved designs allowing better gas turbine and, thus, combined cycle efficiencies; the good fuel use indices in the the case of cogeneration; the versatility of the gas turbines even with poly-fuel plants; greatly limited exhaust emissions; and lower manufacturing costs and delivery times with respect to conventional plants. This paper after a brief discussion on the evolution in gas turbine applications in the world and in Italy, assesses their use and environmental impacts with fuels other than natural gas. The paper then reviews Italian efforts to develop power plants incorporating combined cycles and the gasification of coal, residual, and other low calorific value fuels

  4. Widespread occurrence and potential for biodegradation of bioactive contaminants in Congaree National Park, USA

    Science.gov (United States)

    Bradley, Paul M.; Battaglin, William A.; Clark, Jimmy M.; Henning, Frank; Hladik, Michelle L.; Iwanowicz, Luke R.; Journey, Celeste A.; Riley, Jeffrey W.; Romanok, Kristin

    2017-01-01

    Organic contaminants with designed molecular bioactivity, such as pesticides and pharmaceuticals, originate from human and agricultural sources, occur frequently in surface waters, and threaten the structure and function of aquatic and terrestrial ecosystems. Congaree National Park in South Carolina (USA) is a vulnerable park unit due to its location downstream of multiple urban and agricultural contaminant sources and its hydrologic setting, being composed almost entirely of floodplain and aquatic environments. Seventy-two water and sediment samples were collected from 16 sites in Congaree National Park during 2013 to 2015, and analyzed for 199 and 81 targeted organic contaminants, respectively. More than half of these water and sediment analytes were not detected or potentially had natural sources. Pharmaceutical contaminants were detected (49 total) frequently in water throughout Congaree National Park, with higher detection frequencies and concentrations at Congaree and Wateree River sites, downstream from major urban areas. Forty-seven organic wastewater indicator chemicals were detected in water, and 36 were detected in sediment, of which approximately half are distinctly anthropogenic. Endogenous sterols and hormones, which may originate from humans or wildlife, were detected in water and sediment samples throughout Congaree National Park, but synthetic hormones were detected only once, suggesting a comparatively low risk of adverse impacts. Assessment of the biodegradation potentials of 8 14C-radiolabeled model contaminants indicated poor potentials for some contaminants, particularly under anaerobic sediments conditions.

  5. Micro-cogeneration units based on Stirling engine for heating and their real operation

    Science.gov (United States)

    Čierny, Jaroslav; Patsch, Marek

    2014-08-01

    This article was deal with micro-cogeneration units based on Stirling engine. We watched problematic of real working Stirling engine. The article also contain hookup of unit constructed at University of Zilina.

  6. Utility-cogenerator game for pricing power sales and wheeling fees

    International Nuclear Information System (INIS)

    Kuwahata, Akeo; Asano, Hiroshi

    1994-01-01

    The authors studied an extensive game model of an electricity market where a cogenerator sells excess electricity to an electric utility or to an end user. They found that a buy-back system (the utility purchases cogenerated power) is as efficient as a cogenerator-customer wheeling system and that these two systems are more desirable than a monopoly system for the regulator. The buy-back rate should be equal to (LP bargaining solution) or less than (Nash bargaining solution) the marginal cost of the electric utility. They also conducted an analysis of a two-period electricity market in which they found that the cogenerator that can supply excess power during peak period obtains the market advantage

  7. First and second law analysis of diesel engine powered cogeneration systems

    International Nuclear Information System (INIS)

    Abusoglu, Aysegul; Kanoglu, Mehmet

    2008-01-01

    In this article, the thermodynamic analysis of the existing diesel engine cogeneration system is performed. All necessary data are obtained from the actual diesel engine cogeneration plant located at Gaziantep, Turkey. The exergy analysis is aimed to evaluate the exergy destruction in each component as well as the exergetic efficiencies. The thermodynamic performance of a 25.32 MW electricity and 8.1 tons/h steam capacity diesel engine cogeneration system at full load conditions is analyzed. The thermal efficiency of the overall plant is found to be 44.2% and the exergetic efficiency is 40.7%. The exergy balance equations developed in this paper may also be utilized in the exergoeconomic analysis to estimate the production costs depending on various input costs in a diesel cogeneration system

  8. High-temperature gas-cooled reactor steam cycle/cogeneration application study update

    International Nuclear Information System (INIS)

    1981-09-01

    Since publication of a report on the application of a High Temperature Gas-Cooled Reactor Steam Cycle/Cogeneration (HTGR-SC/C) plant in December of 1980, progress has continued on application related activities. In particular, a reference plant and an application identification effort has been performed, a variable cogeneration cycle balance-of-plant design was developed and an updated economic analysis was prepared. A reference HTGR-SC/C plant size of 2240 MW(t) was selected, primarily on the basis of 2240 MW(t) being in the mid-range of anticipated application needs and the availability of the design data from the 2240 MW(t) Steam Cycle/Electric generation plant design. A variable cogeneration cycle plant design was developed having the capability of operating at a range of process steam loads between the reference design load (full cogeneration) and the no process steam load condition

  9. 'BACO' code: Cogeneration cycles heat balance; El programa BACO (Balance de Ciclos de Cogeneracion)

    Energy Technology Data Exchange (ETDEWEB)

    Huelamo Martinez, E; Conesa Lopez, P; Garcia Kilroy, P [Empresarios Agrupados, A.I.E., Madrid (Spain)

    1993-12-15

    This paper presents a code, developed by Empresarios Agrupados, sponsored by OCIDE, CSE and ENHER, that, with Electrical Utilities as final users, allows to make combined and cogeneration cycles technical-economical studies. (author)

  10. The marginal costs like reference for the decision of electric energy cogeneration in Brazil

    International Nuclear Information System (INIS)

    Silva, D.B. da; Eduardo, J.H.B.P.

    1987-01-01

    The electric cogeneration question, in a form of optimal utilization of high quality chemical energy in some industrial processes, or a form of employment of any others feedstocks, can be discussed on economics view, with the marginal costs reference, actually in implantation in Brazilian Electrical Sector. In this article, some ideas are presented about the mentioned discussion, in the Brazilian Electric Sector ambient, including analysis of laws and proposed directions for its modifications, looking for the cogeneration activity development in Brazil. (author)

  11. Report on the installations of cogeneration under obligation to buy; Rapport sur les installations de cogeneration sous obligation d'achat

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-01-15

    Facing the problem of the climatic change and the increase of the fossil energies prices, the government policy of the cogeneration development follows many objectives. Among these objectives it is necessary of implement a new tariff of obligation to buy of the electricity from cogeneration and allow the existing installations to reaffirm their obligation to buy contract. The first part of this report defines the necessary conditions to better use the ecological and economical interest of the natural gas cogeneration and shows that these conditions are not favorable in France. The second part preconizes to modify the actual tariff device in order to maintain the existing park to 2015 in acceptable economical and ecological conditions. (A.L.B.)

  12. Report on the installations of cogeneration under obligation to buy; Rapport sur les installations de cogeneration sous obligation d'achat

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-01-15

    Facing the problem of the climatic change and the increase of the fossil energies prices, the government policy of the cogeneration development follows many objectives. Among these objectives it is necessary of implement a new tariff of obligation to buy of the electricity from cogeneration and allow the existing installations to reaffirm their obligation to buy contract. The first part of this report defines the necessary conditions to better use the ecological and economical interest of the natural gas cogeneration and shows that these conditions are not favorable in France. The second part preconizes to modify the actual tariff device in order to maintain the existing park to 2015 in acceptable economical and ecological conditions. (A.L.B.)

  13. A new market risk model for cogeneration project financing---combined heat and power development without a power purchase agreement

    Science.gov (United States)

    Lockwood, Timothy A.

    Federal legislative changes in 2006 no longer entitle cogeneration project financings by law to receive the benefit of a power purchase agreement underwritten by an investment-grade investor-owned utility. Consequently, this research explored the need for a new market-risk model for future cogeneration and combined heat and power (CHP) project financing. CHP project investment represents a potentially enormous energy efficiency benefit through its application by reducing fossil fuel use up to 55% when compared to traditional energy generation, and concurrently eliminates constituent air emissions up to 50%, including global warming gases. As a supplemental approach to a comprehensive technical analysis, a quantitative multivariate modeling was also used to test the statistical validity and reliability of host facility energy demand and CHP supply ratios in predicting the economic performance of CHP project financing. The resulting analytical models, although not statistically reliable at this time, suggest a radically simplified CHP design method for future profitable CHP investments using four easily attainable energy ratios. This design method shows that financially successful CHP adoption occurs when the average system heat-to-power-ratio supply is less than or equal to the average host-convertible-energy-ratio, and when the average nominally-rated capacity is less than average host facility-load-factor demands. New CHP investments can play a role in solving the world-wide problem of accommodating growing energy demand while preserving our precious and irreplaceable air quality for future generations.

  14. Cogeneration, micro turbines and fuel cells: perspectives for distributed generation in Brazil; Cogeracao, microturbinas e celulas a combustivel: perspectivas para geracao distribuida no Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Leite, Marco Antonio Haikal [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES)

    2004-07-01

    Brazil has a large potential to install distributed generation systems, using natural gas or renewable like solar, wind or biomass energy. Regarding urban centers, natural gas fired cogeneration and other distributed energy technologies find economical applications. Cogeneration is defined as the generation of two kinds of useful energy from a single energy source. Usually, electrical energy and thermal energy as steam or hot water are produced. By using the absorption refrigeration cycle, chilled water can also be produced to be used in air conditioned systems, often called tri generation, a good alternative to industries, commercial buildings, shopping centers, hospitals, schools and universities. Micro turbines find utilization whenever natural gas is available, but not electricity, like gas compression installations, unmanned platforms or remote production fields. Fuel cells are used in systems requiring high levels of reliability or wherever the non availability cost is high. This paper describe technical and economical data related to PETROBRAS Research Center (CENPES) 3,200 kW electric energy and 1,000 RT chilled water cogeneration system, 200 kW fuel cell and 30 kW and 60 kW microturbines. (author)

  15. A wood-waste fuelled, indirectly-fired gas turbine cogeneration plant for sawmill application. Phase 1. Preliminary engineering design and financial evaluation

    Energy Technology Data Exchange (ETDEWEB)

    1986-02-01

    Most sawmills generate more than enough wood waste to be potentially self-sufficient in both dry-kiln heat and electricity requirements. It is not generally economically viable to use conventional steam/electricty cogeneration systems at the sawmill scale of operation. As a result, Canadian sawmills are still large consumers of purchased fuels and electricity. The overall objective of this project was to develop a cost-effective wood waste-fired power generation and lumber drying system for sawmill applications. The system proposed and evaluated in this project is a wood waste-fuelled, indirectly-fired gas turbine cogeneration plant. Research, design, and development of the system has been planned to take place in a number of phases. Phase 1 consists of a preliminary engineering design and financial evaluation of the system, the subjects of this report. The results indicate that the proposed indirectly-fired gas turbine cogeneration system is both technically and financially feasible under a variety of conditions. 8 figs., 8 tabs.

  16. Membrane Distillation and Applications for Water Purification in Thermal Cogeneration - A Prestudy

    Energy Technology Data Exchange (ETDEWEB)

    Chuanfeng Liu; Martin, Andrew [Royal Inst. of Technology, Stockholm (Sweden)

    2005-02-01

    Cost-effective, reliable, and energy efficient water treatment systems are an integral part of modern cogeneration facilities. Demineralized water is required for make-up water in district heating networks and in boilers. In addition, increasing attention has been paid to the treatment of flue gas condensate for possible recycling. A number of membrane technologies like reverse osmosis (RO) and electrode ionization (EDI) have been developed for the above applications. Besides these methods, membrane distillation (MD) is promising technology in this context. MD utilizes differences in vapor pressure to purify water via a hydrophobic membrane. The process can utilize district heat supply temperatures or low-grade steam, thus making it attractive for cogeneration applications. This investigation consists of a pre-study to evaluate the viability of membrane distillation as a new water treatment technology in cogeneration plants. Results obtained from the study will be used as an input to follow-on research, which may include the construction of a pilot plant. Target groups for this study include environmental engineers with particular interest in emerging water purification technologies. Specific elements of this work include a literature survey, theoretical considerations of heat and mass transfer, and scale-up of experimental results. Data obtained from the test facility owned by Xzero AB and located at Royal Inst. of Technology was employed for this purpose. Actual water production was found to be lower than the theoretical maximum, illustrating the potential for improvements in MD module design. A case study considering a 10 m{sup 3} pure water/hr system is explored to shed light on commercial-scale aspects. Results show that MD is a promising alternative to RO in existing or new treatment facilities. The most favorable results were obtained for alternatives where either the district heat supply line or low-grade steam (2-3 bar, 200 deg C) are available. Specific

  17. A Feasibility Study to Evaluate Wind Energy Potential on the Navajo Nation

    Energy Technology Data Exchange (ETDEWEB)

    Terry Battiest

    2012-11-30

    The project, A Feasibility Study to Evaluate Wind Energy Potential on the Navajo Nation, is funded under a solicitation issued by the U.S. Department of Energy Tribal Energy Program. Funding provided by the grant allowed the Navajo Nation to measure wind potential at two sites, one located within the boundaries of the Navajo Nation and the other off-reservation during the project period (September 5, 2005 - September 30, 2009). The recipient for the grant award is the Navajo Tribal Utility Authority (NTUA). The grant allowed the Navajo Nation and NTUA manage the wind feasibility from initial site selection through the decision-making process to commit to a site for wind generation development. The grant activities help to develop human capacity at NTUA and help NTUA to engage in renewable energy generation activities, including not only wind but also solar and biomass. The final report also includes information about development activities regarding the sited included in the grant-funded feasibility study.

  18. Potentially inappropriate prescribing and cost outcomes for older people: a national population study.

    LENUS (Irish Health Repository)

    Cahir, Caitriona

    2010-05-01

    Optimization of drug prescribing in older populations is a priority due to the significant clinical and economic costs of drug-related illness. This study aimed to: (i) estimate the prevalence of potentially inappropriate prescribing (PIP) in a national Irish older population using European specific explicit prescribing criteria; (ii) investigate the association between PIP, number of drug classes, gender and age and; (iii) establish the total cost of PIP.

  19. Development of miller cycle gas engine for cogeneration; Developpement d'un moteur a gaz a cycle de Miller destine a la cogeneration

    Energy Technology Data Exchange (ETDEWEB)

    Tsukida, N; Sakakura, A; Murata, Y; Okamoto, K [Tokyo Gas CO., LTD (Japan); Abe, T; Takemoto, T [YANMAR Diesel Engine CO., LTD (Japan)

    2000-07-01

    We have developed a 300 kW gas engine cogeneration system for practical use that uses natural gas. Using a gas engine operated under conditions with an excess air ratio {lambda} = 1 that is able to use a three way catalyst to purify the exhaust gases, we were able to achieve high efficiency through the application of the Miller Cycle, as well as a low NO{sub X} output. In terms of product specifications, we were able to achieve an electrical efficiency of 34.2% and a heat recovery efficiency of 49.3%, making an overall efficiency of 83.5% as a cogeneration system. (authors)

  20. A quantitative analysis of biodiversity and the recreational value of potential national parks in Denmark

    DEFF Research Database (Denmark)

    Larsen, Frank Wugt; Petersen, Anders Højgård; Strange, Niels

    2008-01-01

    Denmark has committed itself to the European 2010 target to halt the loss of biodiversity. Currently, Denmark is in the process of designating larger areas as national parks, and 7 areas (of a possible 32 larger nature areas) have been selected for pilot projects to test the feasibility of establ......Denmark has committed itself to the European 2010 target to halt the loss of biodiversity. Currently, Denmark is in the process of designating larger areas as national parks, and 7 areas (of a possible 32 larger nature areas) have been selected for pilot projects to test the feasibility...... of establishing national parks. In this article, we first evaluate the effectiveness of the a priori network of national parks proposed through expert and political consensus versus a network chosen specifically for biodiversity through quantitative analysis. Second, we analyze the potential synergy between...... preserving biodiversity in terms of species representation and recreational values in selecting a network of national parks. We use the actual distribution of 973 species within these 32 areas and 4 quantitative measures of recreational value. Our results show that the 7 pilot project areas...

  1. Globalization and the marginalization of unskilled labor: potential impacts on health in developed nations.

    Science.gov (United States)

    Ostry, Aleck Samuel

    2009-01-01

    The objective of this investigation was to determine the impacts of economic globalization on labor markets and outline potential pathways for these changes to affect health status in industrialized nations. A systematic review of the economic globalization and health literature revealed that, under the impact of globalization and market deregulation, the past 25 years have witnessed de-industrialization, shifts to nontraditional, insecure work arrangements, and relatively high levels of unemployment in most developed nations. This has occurred in the context of hypermobility of capital, relative immobility of labor, and declining market position for unskilled labor. Such structural changes in the labor markets in conjunction with shifts in educational opportunities and requirements have resulted in the increasing marginalization of unskilled workers from the labor market. Aside from direct effects on health due to the threat and experience of unemployment, and given that income inequality within nations is a main driver of national health status, lowered relative wages for the unskilled will probably affect national health status through increased income inequality.

  2. Estimating the National Carbon Abatement Potential of City Policies: A Data-Driven Approach

    Energy Technology Data Exchange (ETDEWEB)

    O' Shaughnessy, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States); Heeter, Jenny [National Renewable Energy Lab. (NREL), Golden, CO (United States); Keyser, David [National Renewable Energy Lab. (NREL), Golden, CO (United States); Gagnon, Pieter [National Renewable Energy Lab. (NREL), Golden, CO (United States); Aznar, Alexandra [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-10-01

    Cities are increasingly taking actions such as building code enforcement, urban planning, and public transit expansion to reduce emissions of carbon dioxide in their communities and municipal operations. However, many cities lack the quantitative information needed to estimate policy impacts and prioritize city actions in terms of carbon abatement potential and cost effectiveness. This report fills this research gap by providing methodologies to assess the carbon abatement potential of a variety of city actions. The methodologies are applied to an energy use data set of 23,458 cities compiled for the U.S. Department of Energy City Energy Profile tool. The analysis develops a national estimate of the carbon abatement potential of realizable city actions in six specific policy areas encompassing the most commonly implemented city actions. The results of this analysis suggest that, in aggregate, cities could reduce nationwide carbon emissions by about 210 million metric tons of carbon dioxide (MMT CO2) per year in a 'moderate abatement scenario' by 2035 and 480 MMT CO2/year in a 'high abatement scenario' by 2035 through these common actions typically within a city's control in the six policy areas. The aggregate carbon abatement potential of these specific areas equates to a reduction of 3%-7% relative to 2013 U.S. emissions. At the city level, the results suggest the average city could reduce carbon emissions by 7% (moderate) to 19% (high) relative to current city-level emissions. In the context of U.S. climate commitments under the 21st session of the Conference of the Parties (COP21), the estimated national abatement potential of the city actions analyzed in this report equates to about 15%-35% of the remaining carbon abatement necessary to achieve the U.S. COP21 target. Additional city actions outside the scope of this report, such as community choice aggregation (city-level purchasing of renewable energy), zero energy districts, and multi

  3. EARLY ENTRANCE CO-PRODUCTION PLANT - DECENTRALIZED GASIFICATION COGENERATION TRANSPORTATION FUELS AND STEAM FROM AVAILABLE FEEDSTOCKS

    International Nuclear Information System (INIS)

    Unknown

    2001-01-01

    Waste Processors Management, Inc. (WMPI), along with its subcontractors Texaco Power and Gasification, SASOL Technology Ltd., and Nexant Inc. entered into a Cooperative Agreement DE-FC26-00NT40693 with the US Department of Energy (DOE), National Energy Technology Laboratory (NETL) to assess the techno-economic viability of building an Early Entrance Co-Production Plant (EECP) in the US to produce ultra clean Fischer-Tropsch (FT) transportation fuels with either power or steam as the major co-product. The EECP designs emphasize on recovery and gasification of low-cost coal waste (culm) from coal clean operations and will assess blends of the culm and coal or petroleum coke as feedstocks. The project is being carried out in three phases. Phase I involves definition of concept and engineering feasibility study to identify areas of technical, environmental and financial risk. Phase II consists of an experimental testing program designed to validate the coal waste mixture gasification performance. Phase III involves updating the original EECP design, based on results from Phase II, to prepare a preliminary engineering design package and financial plan for obtaining private funding to build a 5,000 BPD coal gasification/liquefaction plant next to an existing co-generation plant in Gilberton, Schuylkill County, Pennsylvania

  4. The benefit of regional diversification of cogeneration investments in Europe. A mean-variance portfolio analysis

    International Nuclear Information System (INIS)

    Westner, Guenther; Madlener, Reinhard

    2010-01-01

    The EU Directive 2004/8/EC, concerning the promotion of cogeneration, established principles on how EU member states can support combined heat and power generation (CHP). Up to now, the implementation of these principles into national law has not been uniform, and has led to the adoption of different promotion schemes for CHP across the EU member states. In this paper, we first give an overview of the promotion schemes for CHP in various European countries. In a next step, we take two standard CHP technologies, combined-cycle gas turbines (CCGT-CHP) and engine-CHP, and apply exemplarily four selected support mechanisms used in the four largest European energy markets: feed-in tariffs in Germany; energy efficiency certificates in Italy; benefits through tax reduction in the UK; and purchase obligations for power from CHP generation in France. For contracting companies, it could be of interest to diversify their investment in new CHP facilities regionally over several countries in order to reduce country and regulatory risk. By applying the Mean-Variance Portfolio (MVP) theory, we derive characteristic return-risk profiles of the selected CHP technologies in different countries. The results show that the returns on CHP investments differ significantly depending on the country, the support scheme, and the selected technology studied. While a regional diversification of investments in CCGT-CHP does not contribute to reducing portfolio risks, a diversification of investments in engine-CHP can decrease the risk exposure. (author)

  5. Feasibility of co-generation of water and electricity by means of the IRIS

    International Nuclear Information System (INIS)

    Vargas E, S.; Alonso V, G.; Gonzalez, J. A.; Xolocostli, V.; Ramirez S, J. R.

    2009-10-01

    The importance to count with resources that allow the development of a country is an important factor. The electricity and the water are factors that in the future will be crucial for the development of any region of the planet. In this work the economic reliability of use of IRIS reactor like a energy source for the electricity production, as well as for the potable water production through the desalination of sea water. Within this study the requirements of these two outlines for different regions from the country are analyzed, nevertheless, chooses the northwest region of the Mexican republic, because, according to estimations realized for the Energy Secretary and the National Commission of the Water, this would present important water requirements and electricity, due to the population increase that is considered for all the country, mainly the built-up zones. Combined to this one is due to consider that the present water demand in some regions of the country present a worrisome over-exploitation of this liquid appraising. The economic evaluation of co-generation that appears in this work though the IRIS reactor, includes different desalination capacities at the moment, using the three more used techniques, obtaining the even costs of water and electricity, as well as net saleable energy and the construction costs as much for the desalination plant and the IRIS reactor. (Author)

  6. The benefit of regional diversification of cogeneration investments in Europe. A mean-variance portfolio analysis

    Energy Technology Data Exchange (ETDEWEB)

    Westner, Guenther; Madlener, Reinhard [E.ON Energy Projects GmbH, Arnulfstrasse 56, 80335 Munich (Germany)

    2010-12-15

    The EU Directive 2004/8/EC, concerning the promotion of cogeneration, established principles on how EU member states can support combined heat and power generation (CHP). Up to now, the implementation of these principles into national law has not been uniform, and has led to the adoption of different promotion schemes for CHP across the EU member states. In this paper, we first give an overview of the promotion schemes for CHP in various European countries. In a next step, we take two standard CHP technologies, combined-cycle gas turbines (CCGT-CHP) and engine-CHP, and apply exemplarily four selected support mechanisms used in the four largest European energy markets: feed-in tariffs in Germany; energy efficiency certificates in Italy; benefits through tax reduction in the UK; and purchase obligations for power from CHP generation in France. For contracting companies, it could be of interest to diversify their investment in new CHP facilities regionally over several countries in order to reduce country and regulatory risk. By applying the Mean-Variance Portfolio (MVP) theory, we derive characteristic return-risk profiles of the selected CHP technologies in different countries. The results show that the returns on CHP investments differ significantly depending on the country, the support scheme, and the selected technology studied. While a regional diversification of investments in CCGT-CHP does not contribute to reducing portfolio risks, a diversification of investments in engine-CHP can decrease the risk exposure. (author)

  7. EARLY ENTRANCE CO-PRODUCTION PLANT - DECENTRALIZED GASIFICATION COGENERATION TRANSPORTATION FUELS AND STEAM FROM AVAILABLE FEEDSTOCKS

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2001-12-01

    Waste Processors Management, Inc. (WMPI), along with its subcontractors Texaco Power & Gasification, SASOL Technology Ltd., and Nexant Inc. entered into a Cooperative Agreement DE-FC26-00NT40693 with the US Department of Energy (DOE), National Energy Technology Laboratory (NETL) to assess the techno-economic viability of building an Early Entrance Co-Production Plant (EECP) in the US to produce ultra clean Fischer-Tropsch (FT) transportation fuels with either power or steam as the major co-product. The EECP designs emphasize on recovery and gasification of low-cost coal waste (culm) from coal clean operations and will assess blends of the culm and coal or petroleum coke as feedstocks. The project is being carried out in three phases. Phase I involves definition of concept and engineering feasibility study to identify areas of technical, environmental and financial risk. Phase II consists of an experimental testing program designed to validate the coal waste mixture gasification performance. Phase III involves updating the original EECP design, based on results from Phase II, to prepare a preliminary engineering design package and financial plan for obtaining private funding to build a 5,000 BPD coal gasification/liquefaction plant next to an existing co-generation plant in Gilberton, Schuylkill County, Pennsylvania.

  8. EARLY ENTRANCE CO-PRODUCTION PLANT - DECENTRALIZED GASIFICATION COGENERATION TRANSPORTATION FUELS AND STEAM FROM AVAILABLE FEEDSTOCKS

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2003-01-01

    Waste Processors Management, Inc. (WMPI), along with its subcontractors Texaco Power & Gasification (now ChevronTexaco), SASOL Technology Ltd., and Nexant Inc. entered into a Cooperative Agreement DE-FC26-00NT40693 with the U. S. Department of Energy (DOE), National Energy Technology Laboratory (NETL) to assess the technoeconomic viability of building an Early Entrance Co-Production Plant (EECP) in the United States to produce ultra clean Fischer-Tropsch (FT) transportation fuels with either power or steam as the major co-product. The EECP design includes recovery and gasification of low-cost coal waste (culm) from physical coal cleaning operations and will assess blends of the culm with coal or petroleum coke. The project has three phases. Phase I is the concept definition and engineering feasibility study to identify areas of technical, environmental and financial risk. Phase II is an experimental testing program designed to validate the coal waste mixture gasification performance. Phase III updates the original EECP design based on results from Phase II, to prepare a preliminary engineering design package and financial plan for obtaining private funding to build a 5,000 barrel per day (BPD) coal gasification/liquefaction plant next to an existing co-generation plant in Gilberton, Schuylkill County, Pennsylvania. The current report covers the period performance from July 1, 2002 through September 30, 2002.

  9. Analysis of Renewable Energy Potential on U. S. National Forest Lands

    Energy Technology Data Exchange (ETDEWEB)

    Zvolanek, E. [Environmental Science Division; Kuiper, J. [Environmental Science Division; Carr, A. [Environmental Science Division; Hlava, K.

    2013-12-13

    In 2005, the National Renewable Energy Laboratory (NREL) completed an assessment of the potential for solar and wind energy development on National Forest System (NFS) public lands managed by the US Department of Agriculture, U.S. Forest Service (USFS). This report provides an update of the analysis in the NREL report, and extends the analysis with additional siting factors for solar and wind energy. It also expands the scope to biomass and geothermal energy resources. Hydropower is acknowledged as another major renewable energy source on NFS lands; however, it was not analyzed in this project primarily because of the substantially different analysis that would be needed to identify suitable locations. Details about each renewable energy production technology included in the study are provided following the report introduction, including how each resource is converted to electrical power, and examples of existing power plants. The analysis approach was to use current and available Geographic Information System (GIS) data to map the distribution of the subject renewable energy resources, major siting factors, and NFS lands. For each major category of renewable energy power production, a set of siting factors were determined, including minimum levels for the renewable energy resources, and details for each of the other siting factors. Phase 1 of the analysis focused on replicating and updating the 2005 NREL analysis, and Phase 2 introduced additional siting factors and energy resources. Source data were converted to a cell-based format that helped create composite maps of locations meeting all the siting criteria. Acreages and potential power production levels for NFS units were tabulated and are presented throughout this report and the accompanying files. NFS units in the southwest United States were found to have the most potentially suitable land for concentrating solar power (CSP), especially in Arizona and New Mexico. In total, about 136,032 acres of NFS lands

  10. Widespread occurrence and potential for biodegradation of bioactive contaminants in Congaree National Park, USA.

    Science.gov (United States)

    Bradley, Paul M; Battaglin, William A; Clark, Jimmy M; Henning, Frank P; Hladik, Michelle L; Iwanowicz, Luke R; Journey, Celeste A; Riley, Jeffrey W; Romanok, Kristin M

    2017-11-01

    Organic contaminants with designed molecular bioactivity, such as pesticides and pharmaceuticals, originate from human and agricultural sources, occur frequently in surface waters, and threaten the structure and function of aquatic and terrestrial ecosystems. Congaree National Park in South Carolina (USA) is a vulnerable park unit due to its location downstream of multiple urban and agricultural contaminant sources and its hydrologic setting, being composed almost entirely of floodplain and aquatic environments. Seventy-two water and sediment samples were collected from 16 sites in Congaree National Park during 2013 to 2015, and analyzed for 199 and 81 targeted organic contaminants, respectively. More than half of these water and sediment analytes were not detected or potentially had natural sources. Pharmaceutical contaminants were detected (49 total) frequently in water throughout Congaree National Park, with higher detection frequencies and concentrations at Congaree and Wateree River sites, downstream from major urban areas. Forty-seven organic wastewater indicator chemicals were detected in water, and 36 were detected in sediment, of which approximately half are distinctly anthropogenic. Endogenous sterols and hormones, which may originate from humans or wildlife, were detected in water and sediment samples throughout Congaree National Park, but synthetic hormones were detected only once, suggesting a comparatively low risk of adverse impacts. Assessment of the biodegradation potentials of 8 14 C-radiolabeled model contaminants indicated poor potentials for some contaminants, particularly under anaerobic sediments conditions. Environ Toxicol Chem 2017;36:3045-3056. Published 2017 Wiley Periodicals Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America. © 2017 SETAC.

  11. Dynamic performance assessment of a residential building-integrated cogeneration system under different boundary conditions. Part II: Environmental and economic analyses

    International Nuclear Information System (INIS)

    Rosato, Antonio; Sibilio, Sergio; Scorpio, Michelangelo

    2014-01-01

    Highlights: • A building-integrated micro-cogeneration system was dynamically simulated. • Simulation data were analyzed from both environmental and economic point of views. • The proposed system was compared with a conventional supply system. • The proposed system reduces the environmental impact under heat-led operation. • The proposed system reduces the operating costs whatever the control logic is. - Abstract: This work examines the performance of a residential building-integrated micro-cogeneration system during the winter by means of a whole building simulation software. The cogeneration unit was coupled with a multi-family house composed of three floors, compliant with the transmittance values of both walls and windows suggested by the Italian Law; a stratified combined tank for both heating purposes and domestic hot water production was also used for storing heat. Simulations were performed considering the transient nature of the building and occupant driven loads as well as the part-load characteristics of the cogeneration unit. This system was described in detail and analyzed from an energy point of view in the companion paper. In this paper the simulation results were evaluated in terms of both carbon dioxide equivalent emissions and operating costs; detailed analyses were performed in order to estimate the influence of the most significant boundary conditions on both environmental and economic performance of the proposed system: in particular, three volumes of the hot water storage, four climatic zones corresponding to four Italian cities, two electric demand profiles, as well as two control strategies micro-cogeneration unit were considered. The assessment of environmental impact was performed by using the standard emission factors approach, neglecting the effects of local pollutants. The operating costs due to both natural gas and electric energy consumption were evaluated in detail, whereas both the capital and maintenance costs were

  12. Integration between electric vehicle charging and micro-cogeneration system

    International Nuclear Information System (INIS)

    Angrisani, Giovanni; Canelli, Michele; Roselli, Carlo; Sasso, Maurizio

    2015-01-01

    Highlights: • The interaction between an MCHP system and EV charging is investigated. • A parametric analysis with respect to daily driving distance of the EV is performed. • Dynamic simulations are carried out considering two different climates. • Two EV charging strategies are analyzed to maximize the self-consumed electricity. • The impact of EVs on electric grid and economic feasibility of MCHP can be improved. - Abstract: In the near future the diffusion of plug-in electric vehicles (EVs) could play an important role in the reduction of emissions and oil dependency associated with the transport sector. However this technology could have a big impact on the electric network because EVs require a considerable amount of electricity. In order to meet the growing load due to the diffusion of EVs, the construction of new infrastructures will be required. The introduction of micro-cogeneration systems could represent a key factor in the reduction of the negative effects on the electric network related to EVs charging. The EVs are often driven during the day and recharged during the night; so the overnight charge of the EVs allows to reduce the amount of electricity exported to the grid. In this way the economic benefits associated with the introduction of micro-cogenerator system (Micro Combined Heat and Power, MCHP), that depend on the economic value of the “produced” electricity, can be improved. At the same time the impact of EVs charge on the electric network can be reduced when electricity is provided by MCHP. In this paper the interaction between an MCHP system, the EV charging and a typical semidetached house is investigated by means of dynamic simulations. The analysis is carried out in two different locations (Torino and Napoli) in order to evaluate the effects of climatic conditions on the system performance. A parametric analysis with respect to the daily driving distance of the EV is carried out in order to highlight the effect of this

  13. Optimal design of modular cogeneration plants for hospital facilities and robustness evaluation of the results

    International Nuclear Information System (INIS)

    Gimelli, A.; Muccillo, M.; Sannino, R.

    2017-01-01

    Highlights: • A specific methodology has been set up based on genetic optimization algorithm. • Results highlight a tradeoff between primary energy savings (TPES) and simple payback (SPB). • Optimized plant configurations show TPES exceeding 18% and SPB of approximately three years. • The study aims to identify the most stable plant solutions through the robust design optimization. • The research shows how a deterministic definition of the decision variables could lead to an overestimation of the results. - Abstract: The widespread adoption of combined heat and power generation is widely recognized as a strategic goal to achieve significant primary energy savings and lower carbon dioxide emissions. In this context, the purpose of this research is to evaluate the potential of cogeneration based on reciprocating gas engines for some Italian hospital buildings. Comparative analyses have been conducted based on the load profiles of two specific hospital facilities and through the study of the cogeneration system-user interaction. To this end, a specific methodology has been set up by coupling a specifically developed calculation algorithm to a genetic optimization algorithm, and a multi-objective approach has been adopted. The results from the optimization problem highlight a clear trade-off between total primary energy savings (TPES) and simple payback period (SPB). Optimized plant configurations and management strategies show TPES exceeding 18% for the reference hospital facilities and multi–gas engine solutions along with a minimum SPB of approximately three years, thereby justifying the European regulation promoting cogeneration. However, designing a CHP plant for a specific energetic, legislative or market scenario does not guarantee good performance when these scenarios change. For this reason, the proposed methodology has been enhanced in order to focus on some innovative aspects. In particular, this study proposes an uncommon and effective approach

  14. Higher-capacity lithium ion battery chemistries for improved residential energy storage with micro-cogeneration

    International Nuclear Information System (INIS)

    Darcovich, K.; Henquin, E.R.; Kenney, B.; Davidson, I.J.; Saldanha, N.; Beausoleil-Morrison, I.

    2013-01-01

    Highlights: • Characterized two novel high capacity electrode materials for Li-ion batteries. • A numerical discharge model was run to characterize Li-ion cell behavior. • Engineering model of Li-ion battery pack developed from cell fundamentals. • ESP-r model integrated micro-cogeneration and high capacity Li-ion storage. • Higher capacity batteries shown to improve micro-cogeneration systems. - Abstract: Combined heat and power on a residential scale, also known as micro-cogeneration, is currently gaining traction as an energy savings practice. The configuration of micro-cogeneration systems is highly variable, as local climate, energy supply, energy market and the feasibility of including renewable type components such as wind turbines or photovoltaic panels are all factors. Large-scale lithium ion batteries for electrical storage in this context can provide cost savings, operational flexibility, and reduced stress on the distribution grid as well as a degree of contingency for installations relying upon unsteady renewables. Concurrently, significant advances in component materials used to make lithium ion cells offer performance improvements in terms of power output, energy capacity, robustness and longevity, thereby enhancing their prospective utility in residential micro-cogeneration installations. The present study evaluates annual residential energy use for a typical Canadian home connected to the electrical grid, equipped with a micro-cogeneration system consisting of a Stirling engine for supplying heat and power, coupled with a nominal 2 kW/6 kW h lithium ion battery. Two novel battery cathode chemistries, one a new Li–NCA material, the other a high voltage Ni-doped lithium manganate, are compared in the residential micro-cogeneration context with a system equipped with the presently conventional LiMn 2 O 4 spinel-type battery

  15. Survey on construction of the database for new energy technology development. Cogeneration; Shin energy gijutsu kaihatsu kankei data shu sakusei chosa. Cogeneration

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    As a part of the activity promoting use of new energy, the data related to cogeneration were systematically compiled. For new energy technology, such various policies for introducing new energy are in promotion with a progress of technological development as preparation of subsidy systems, field test business, and support advisory business for introducing new energy. For further effective promotion, integral systematic compilation of various data, and arrangement as basic data are necessary. Such latest announced data in a cogeneration field were collected and compiled as outline of new energy systems, concrete applications, subsidy systems, and approaches to new energy of various countries. Main data items are as follows: trend of cogeneration, outline of system, domestic and foreign concrete applications, prediction data on the use of new energy, overview of domestic and foreign policies for cogeneration, basic terminology, and tables of main related enterprises and organizations. This database is useful for the present activities promoting use of new energy, and preparation of the future vision. 29 figs., 33 tabs.

  16. South Africa's national REDD+ initiative: assessing the potential of the forestry sector on climate change mitigation

    International Nuclear Information System (INIS)

    Rahlao, Sebataolo; Mantlana, Brian; Winkler, Harald; Knowles, Tony

    2012-01-01

    Reducing emissions from deforestation and forest degradation in developing countries (REDD+) is regarded by its proponents as one of the more efficient and cost effective ways to mitigate climate change. There was further progress toward the implementation of this mechanism at the 16th Conference of Parties (COP) in Cancun in December 2010. Many countries in southern African, including South Africa, have not been integrated (do not participate) into the UN-REDD+ programme, probably due to their low forest cover and national rates of deforestation. This paper discusses the potential contribution of REDD+ activities to the South African Government's pledge of reducing national greenhouse gas (GHG) emissions by 34% below business as usual by 2020. A number of issues such as complex land tenure system, limited forest cover and other conflicting environmental issues present challenges for REDD+ in South Africa. Despite these genuine concerns, REDD+ remains a practical strategy to contribute to climate change mitigation for South Africa. The paper raises the need for development of a variety of emission reduction programmes – not only in the energy sector. The paper also assesses several national options and opportunities towards a working REDD+ mechanism. It concludes by identifying key mechanisms for moving forward to prepare for REDD+ actions in South Africa and raises the urgent need for national dialogue between stakeholders and institutions to evaluate the feasibility of making use of the mechanism in South Africa and the Southern African Development Cooperation (SADC) region. The paper further addresses possible synergies and conflicts between the national climate change and forestry policies towards REDD+ development. It suggests that REDD+ should be part of the national dialogue on policy to respond to climate change and should be integrated into the national flagship programmes that the national climate change white paper seeks to implement. A multiple

  17. Rio Grande Erosion Potential Demonstration - Report for the National Border Technology Program; TOPICAL

    International Nuclear Information System (INIS)

    JEPSEN, RICHARD A.; ROBERTS, JESSE D.; LANGFORD, RICHARD; GAILANI, JOSEPH

    2001-01-01

    This demonstration project is a collaboration among DOE, Sandia National Laboratories, the University of Texas, El Paso (UTEP), the International Boundary and Water Commission (IBWC), and the US Army Corps of Engineers (USACE). Sandia deployed and demonstrated a field measurement technology that enables the determination of erosion and transport potential of sediments in the Rio Grande. The technology deployed was the Mobile High Shear Stress Flume. This unique device was developed by Sandia's Carlsbad Programs for the USACE and has been used extensively in collaborative efforts on near shore and river systems throughout the United States. Since surface water quantity and quality along with human health is an important part of the National Border Technology Program, technologies that aid in characterizing, managing, and protecting this valuable resource from possible contamination sources is imperative

  18. Estimating the National Carbon Abatement Potential of City Policies: A Data- Driven Approach

    Energy Technology Data Exchange (ETDEWEB)

    Eric O’Shaughnessy, Jenny Heeter, David Keyser, Pieter Gagnon, and Alexandra Aznar

    2016-10-01

    Cities are increasingly taking actions such as building code enforcement, urban planning, and public transit expansion to reduce emissions of carbon dioxide in their communities and municipal operations. However, many cities lack the quantitative information needed to estimate policy impacts and prioritize city actions in terms of carbon abatement potential and cost effectiveness. This report fills this research gap by providing methodologies to assess the carbon abatement potential of a variety of city actions. The methodologies are applied to an energy use data set of 23,458 cities compiled for the U.S. Department of Energy’s City Energy Profile tool. The analysis estimates the national carbon abatement potential of the most commonly implemented actions in six specific policy areas. The results of this analysis suggest that, in aggregate, cities could reduce nationwide carbon emissions by about 210 million metric tons of carbon dioxide (MMT CO2) per year in a "moderate abatement scenario" by 2035 and 480 MMT CO2/year in a "high abatement scenario" by 2035 through these common actions typically within a city’s control in the six policy areas. The aggregate carbon abatement potential of these specific areas equates to a reduction of 3%-7% relative to 2013 U.S. emissions. At the city level, the results suggest the average city could reduce carbon emissions by 7% (moderate) to 19% (high) relative to current city-level emissions. City carbon abatement potential is sensitive to national and state policies that affect the carbon intensity of electricity and transportation. Specifically, the U.S. Clean Power Plan and further renewable energy cost reductions could reduce city carbon emissions overall, helping cities achieve their carbon reduction goals.

  19. ASEAN grid-connected biomass residues fired cogeneration plants

    International Nuclear Information System (INIS)

    Adnan, M.F.; Alias, R.

    2006-01-01

    Energy supply is one of the major concerns in the world. With uncertainty in the main oil suppliers, the oil price is expected to remain high due to continuous demand from the world. Since oil is mostly used for electricity and transportation, its shortage would cause major disruptions in our daily activities. Thus to counter this scenario and faster depletion of fossil fuel resources, various measures have been taken to find alternative source of energy such as renewable energy. One of the renewable energy sources is from biomass residues which is aplenty particularly in ASEAN. Through one of the collaboration programme between ASEAN and EC which is The EC-ASEAN Cogeneration Programme, a number of Full-Scale Demonstration Projects (FSDP) using biomass residues have been commissioned and implemented successfully. Four of the FSDPs in Thailand and Malaysia are connected to the grid. These projects have been operating very well and since the fuel is commonly available in this ASEAN region, duplication should not be a problem. Thus, this paper would highlight the success stories in implementing biomass residues grid connected project while enhancing cooperation between ASEAN and EC. (Author)

  20. Restructuring and regulating district heating and cogeneration in transition economies

    International Nuclear Information System (INIS)

    Brendow, Klaus

    2004-01-01

    In summer 2004, the World Energy Council published a Study on 'Regulating district heating and cogeneration in central and eastern Europe'2, prepared by representatives from eleven economies in transition and two Nordic countries. The Task Force analysed twelve regulatory issues, country-by-country, on all internationally comparable basis. Regulatory progress on the road to more efficient, profitable, competitive and service-oriented heat supplies was described. Common concerns were identified: the need for independence of the regulator from policy and industry, improved coordination between central and local regulators and between environmental and energy authorities, access to grids, and a 'fair' sharing of CHP benefits among heat and electricity generation. Looking forward, the Task Force advocated a continued dialogue between decision makers, regulators, regulated industries and customers on: 1)the internalisation of DH/CHP benefits; 2)the future reduction of the density of regulation; 3) Joint implementation; 4)the compensation for public service obligations; 5)the elimination of old debt and stranded investments; 6) DH/CHP taxation; 7)privatisation; 8)the integration of DH/CHP in urban planning. A concluding WEC workshop in Moscow in March 2004 addressed recommendations to policy makers('Moscow Statement'). (Author)

  1. Steam supply and power cogeneration at Yanshan Petrochemical Co., Ltd.

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    For the purpose of reducing greenhouse effect gas emissions, a project was studied for the improvement of cogeneration facilities with steam supply of 600t/h and electric output of 55MW at Beijing Yanshan Petrochemical Co., China. In Plan A, fuel is changed from heavy oil to natural gas, and two heavy oil boilers are replaced with two gas turbines and two exhaust heat recovery steam generators for steam supply of 241t/h per unit and electric output of 136.9MW per unit. In Plan B, the boilers are replaced with three gas turbines and three exhaust heat recovery steam generators for steam supply of 210t/h per unit and electric output of 79.5MW per unit. The initial investment is 700 million yuan {+-} 100 million yuan in Plan A, and 500 million yuan {+-} 100 million yuan in Plan B. The generating cost is 0.403 yuan/kWh in Plan A, and 0.455 yuan/kWh in Plan B. It was concluded that without Plan A, the project will not be economically successful. In Plan A, the energy conservation will be 887,847 toe/y heavy oil equivalent, which increases productivity. Further, the amount of greenhouse effect gas emissions will be 2,747,187 t-CO2/y. (NEDO)

  2. Improving sustainability of bio-cogeneration in horticulture; Verbetering duurzaamheid (bio)WKK in de glastuinbouw

    Energy Technology Data Exchange (ETDEWEB)

    Koolwijk, E.; Peeters, S.; Schlatmann, S. [Energy Matters, Driebergen (Netherlands)

    2011-12-15

    Combined Heat and Power (CHP) generating gas engines have become an inseparable part of greenhouses. An overview is given of the technical developments in CHP that could result in cost effectiveness, clean and sustainable operation of the CHP installation. This can be achieved by improving existing or new cogeneration systems: e.g. increasing the electrical or thermal efficiency and reduce emissions. Also attention is paid to alternatives for the gas engine: gas turbine and fuel cell. Finally, the options and state of affairs concerning biofuels, related techniques and potential use of 'green' CO2 were investigated [Dutch] WKK op basis van gasmotoren is de laatste 10 jaar uitgegroeid tot een onlosmakelijk operationeel onderdeel van de hedendaagse glastuinbouw. Een overzicht wordt gegeven van de technische ontwikkelingen rond WKK die er toe kunnen leiden dat WKK kosteneffectiever/rendabeler, schoner en duurzamer bedreven kan worden. Dit kan onder andere door verbeteringen van de bestaande of nog te plaatsen WKK's: verhogen van het elektrisch of thermisch rendement en verlagen van de emissies. Ook is gekeken naar de mogelijke alternatieven voor de gasmotor: gasturbine en brandstofcel. Tevens wordt ingegaan op de mogelijkheden en stand zaken rond biobrandstoffen, de daarbij behorende technieken en mogelijke toepassing van 'groene' CO2.

  3. Steam generation unit in a simple version of biomass based small cogeneration unit

    Directory of Open Access Journals (Sweden)

    Sornek Krzysztof

    2014-01-01

    Full Text Available The organic Rankine cycle (ORC is a very promising process for the conversion of low or medium temperature heat to electricity in small and micro scale biomass powered systems. Classic ORC is analogous to Clausius–Rankine cycle in a steam power plant, but instead of water it uses low boiling, organic working fluids. Seeking energy and economical optimization of biomass-based ORC systems, we have proposed some modifications e.g. in low boiling fluid circuit construction. Due to the fact that the operation of a micro steam turbine is rather inefficient from the technical and economic point of view, a specially modified air compressor can be used as a steam piston engine. Such engine should be designed to work at low pressure of the working medium. Studies regarding the first version of the prototype installation were focused on the confirmation of applicability of a straw boiler in the prototype ORC power system. The results of the previous studies and the studies described in the paper (on the new cogeneration unit confirmed the high potential of the developed solution. Of course, many further studies have to be carried out.

  4. Efficiency Assessment of Support Mechanisms for Wood-Fired Cogeneration Development in Estonia

    Science.gov (United States)

    Volkova, Anna; Siirde, Andres

    2010-01-01

    There are various support mechanisms for wood-fired cogeneration plants, which include both support for cogeneration development and stimulation for increasing consumption of renewable energy sources. The efficiency of these mechanisms is analysed in the paper. Overview of cogeneration development in Estonia is given with the focus on wood-fired cogeneration. Legislation acts and amendments, related to cogeneration support schemes, were described. For evaluating the efficiency of support mechanisms an indicator - fuel cost factor was defined. This indicator includes the costs related to the chosen fuel influence on the final electricity generation costs without any support mechanisms. The wood fuel cost factors were compared with the fuel cost factors for peat and oil shale. For calculating the fuel cost factors, various data sources were used. The fuel prices data were based on the average cost of fuels in Estonia for the period from 2000 till 2008. The data about operating and maintenance costs, related to the fuel type in the case of comparing wood fuel and oil shale fuel were taken from the CHP Balti and Eesti reports. The data about operating and maintenance costs used for peat and wood fuel comparison were taken from the Tallinn Elektrijaam reports. As a result, the diagrams were built for comparing wood and its competitive fuels. The decision boundary lines were constructed on the diagram for the situation, when no support was provided for wood fuels and for the situations, when various support mechanisms were provided during the last 12 years.

  5. A novel evaluation of heat-electricity cost allocation in cogenerations based on entropy change method

    International Nuclear Information System (INIS)

    Ye, Xuemin; Li, Chunxi

    2013-01-01

    As one of the most significant measures to improve energy utilization efficiency and save energy, cogeneration or combined heat and power (CHP) has been widely applied and promoted with positive motivations in many countries. A rational cost allocation model should indicate the performance of cogenerations and balance the benefits between electricity generation and heat production. Based on the second law of thermodynamics, the present paper proposes an entropy change method for cost allocation by choosing exhaust steam entropy as a datum point, and the new model works in conjunction with entropy change and irreversibility during energy conversion processes. The allocation ratios of heat cost with the present and existing methods are compared for different types of cogenerations. Results show that the allocation ratios with the entropy change method are more rational and the cost allocation model can make up some limitations involved in other approaches. The future energy policies and innovational directions for cogenerations and heat consumers should be developed. - Highlights: • A rational model of cogeneration cost allocation is established. • Entropy change method integrates the relation of entropy change and exergy losses. • The unity of measuring energy quality and quantity is materialized. • The benefits between electricity generation and heat production are balanced

  6. Feasibility of a medium-size central cogenerated energy facility, energy management memorandum

    Science.gov (United States)

    Porter, R. W.

    1982-09-01

    The thermal-economic feasibility was studied of a medium-size central cogenerated energy facility designed to serve five varied industries. Generation options included one dual-fuel diesel and one gas turbine, both with waste heat boilers, and five fired boilers. Fuels included natural gas, and for the fired-boiler cases, also low-sulphur coal and municipal refuse. The fired-boiler cogeneration systems employed back-pressure steam turbines. For coal and refuse, the option of steam only without cogeneration was also assessed. The refuse-fired cases utilized modular incinerators. The options provided for a wide range of steam and electrical capacities. Deficient steam was assumed generated independently in existing equipment. Excess electrical power over that which could be displaced was assumed sold to Commonwealth Edison Company under PURPA (Public Utility Regulator Policies Act). The facility was assumed operated by a mutually owned corporation formed by the cogenerated power users. The economic analysis was predicted on currently applicable energy-investment tax credits and accelerated depreciation for a January 1985 startup date. Based on 100% equity financing, the results indicated that the best alternative was the modular-incinerator cogeneration system.

  7. Feasibility study for retrofitting biogas cogeneration systems to district heating in South Korea.

    Science.gov (United States)

    Chung, Mo; Park, Hwa-Choon

    2015-08-01

    A feasibility study was performed to assess the technical and economic merits of retrofitting biogas-based cogeneration systems to district heating networks. Three district heating plants were selected as candidates for accommodating heat recovery from nearby waste treatment stations, where a massive amount of biogas can be produced on a regular basis. The scenario involves constructing cogeneration systems in each waste treatment station and producing electricity and heat. The amounts of biogas production for each station are estimated based on the monthly treatment capacities surveyed over the most recent years. Heat produced by the cogeneration system is first consumed on site by the waste treatment system to keep the operating temperature at a proper level. If surplus heat is available, it will be transported to the nearest district heating plant. The year-round operation of the cogeneration system was simulated to estimate the electricity and heat production. We considered cost associated with the installation of the cogeneration system and piping as initial investments. Profits from selling electricity and recovering heat are counted as income, while costs associated with buying biogas are expenses. Simple payback periods of 2-10 years were projected under the current economic conditions of South Korea. We found that most of the proposed scenarios can contribute to both energy savings and environmental protection. © The Author(s) 2015.

  8. The impact of small scale cogeneration on the gas demand at distribution level

    International Nuclear Information System (INIS)

    Vandewalle, J.; D’haeseleer, W.

    2014-01-01

    Highlights: • Impact on the gas network of a massive implementation of cogeneration. • Distributed energy resources in a smart grid environment. • Optimisation of cogeneration scheduling. - Abstract: Smart grids are often regarded as an important step towards the future energy system. Combined heat and power (CHP) or cogeneration has several advantages in the context of the smart grid, which include the efficient use of primary energy and the reduction of electrical losses through transmission. However, the role of the gas network is often overlooked in this context. Therefore, this work presents an analysis of the impact of a massive implementation of small scale (micro) cogeneration units on the gas demand at distribution level. This work shows that using generic information in the simulations overestimates the impact of CHP. Furthermore, the importance of the thermal storage tank capacity on the impact on the gas demand is shown. Larger storage tanks lead to lower gas demand peaks and hence a lower impact on the gas distribution network. It is also shown that the use of an economically led controller leads to similar results compared to classical heat led control. Finally, it results that a low sell back tariff for electricity increases the impact of cogeneration on the gas demand peak

  9. Exergy analysis of a circulating fluidized bed boiler cogeneration power plant

    International Nuclear Information System (INIS)

    Gürtürk, Mert; Oztop, Hakan F.

    2016-01-01

    Highlights: • Analysis of energy and exergy for a cogeneration power plant have been performed. • This plant has circulating fluidized bed boiler. • Energy and exergy efficiencies of the boiler are obtained as 84.65% and 29.43%, respectively. • Exergy efficiency of the plant was calculated as 20%. - Abstract: In this study, energy and exergy analysis of a cogeneration power plant have been performed. The steam which is produced by the cogeneration power plant is used for salt production and most important part of the cogeneration power plant is the circulation fluidized bed boiler. Energy and exergy efficiency of the circulation fluidized bed boiler were found as 84.65% and 29.43%, respectively. Exergy destruction of the circulation fluidized bed boiler was calculated as 21789.39 kW and 85.89% of exergy destruction in the plant. The automation system of the cogeneration power plant is insufficient. Exergy efficiency of the plant was calculated as 20%. Also, some design parameters increasing energy losses were determined.

  10. Estimating national crop yield potential and the relevance of weather data sources

    Science.gov (United States)

    Van Wart, Justin

    2011-12-01

    To determine where, when, and how to increase yields, researchers often analyze the yield gap (Yg), the difference between actual current farm yields and crop yield potential. Crop yield potential (Yp) is the yield of a crop cultivar grown under specific management limited only by temperature and solar radiation and also by precipitation for water limited yield potential (Yw). Yp and Yw are critical components of Yg estimations, but are very difficult to quantify, especially at larger scales because management data and especially daily weather data are scarce. A protocol was developed to estimate Yp and Yw at national scales using site-specific weather, soils and management data. Protocol procedures and inputs were evaluated to determine how to improve accuracy of Yp, Yw and Yg estimates. The protocol was also used to evaluate raw, site-specific and gridded weather database sources for use in simulations of Yp or Yw. The protocol was applied to estimate crop Yp in US irrigated maize and Chinese irrigated rice and Yw in US rainfed maize and German rainfed wheat. These crops and countries account for >20% of global cereal production. The results have significant implications for past and future studies of Yp, Yw and Yg. Accuracy of national long-term average Yp and Yw estimates was significantly improved if (i) > 7 years of simulations were performed for irrigated and > 15 years for rainfed sites, (ii) > 40% of nationally harvested area was within 100 km of all simulation sites, (iii) observed weather data coupled with satellite derived solar radiation data were used in simulations, and (iv) planting and harvesting dates were specified within +/- 7 days of farmers actual practices. These are much higher standards than have been applied in national estimates of Yp and Yw and this protocol is a substantial step in making such estimates more transparent, robust, and straightforward. Finally, this protocol may be a useful tool for understanding yield trends and directing

  11. Potential impact of Dare County landfills on Alligator River National Wildlife Refuge

    Science.gov (United States)

    Winger, P.V.; Lasier, P.J.; Augspurger, T.

    2005-01-01

    Runoff of leachate from East Lake and Dare County Construction and Demolition Debris landfills has the potential to impact wildlife resources at Alligator River National Wildlife Refuge, Dare and Hyde Counties, North Carolina. Sediment quality of samples collected in August 2000 at 14 locations down-gradient from the landfills was assessed by measuring metal and organic contaminants in the sediments, chronic toxicity of solid-phase sediment (28-d static-renewal exposures; survival and growth as test endpoints) and acute toxicity of sediment porewater (96-h static exposures) to Hyalella azteca (Crustacea: Amphipoda). In addition, contaminant bioaccumulation from 4 sediments was determined using 28-d exposures of Lumbriculus variegatus (freshwater oligochaete). Although survival was not impaired, length of H. azteca was significantly reduced in sediments from 5 locations. Pore water from 4 locations was acutely toxic to H. azteca. Metals and a few polycyclic aromatic hydrocarbons (PAHs) were bioaccumulated by L. variegatus from the sediments. Several metals and PAHs exceeded sediment quality guidelines, and metals in porewater from several sites exceeded water quality criteria for the protection of aquatic wildlife. Runoff of leachate from the landfills has reduced sediment quality and has the potential to adversely affect wildlife resources at Alligator River National Wildlife Refuge.

  12. Mountain Forests and Sustainable Development: The Potential for Achieving the United Nations' 2030 Agenda

    Directory of Open Access Journals (Sweden)

    Georg Gratzer

    2017-08-01

    Full Text Available The world is facing numerous and severe environmental, social, and economic challenges. To address these, in September 2015 the General Assembly of the United Nations adopted the resolution Transforming our World: The 2030 Agenda for Sustainable Development. The United Nations' 17 sustainable development goals (SDGs and their 169 targets are ambitious, broadly encompassing, and indivisible. They are intended to guide nations and communities toward attaining healthy and peaceful livelihoods free of poverty and hunger. Collectively the goals envision sound and safe environments, where global threats like climate change are successfully combated through both mitigation and adaptation. Agenda 2030 envisages sustainable production patterns with inclusive, effective economies and institutions. It is of specific relevance to mountain communities, where the population is predominantly rural and half of the rural inhabitants experience food insecurity and are often highly dependent on forest resources. Mountain forests also contribute to human welfare well beyond the local community: through functions such as climate and hydrological services provided at regional and global scales, and harvested commodities traded at multiple economic scales. In this introductory essay we argue that sustainable forest management in mountain areas disproportionately contributes to achieving the SDGs. We discuss (1 the potential of mountain forests to help achieve SDGs in mountainous regions and beyond, (2 the potential of the SDGs to help solve severe socioeconomic and ecological problems in forested mountain areas, and (3 challenges and opportunities associated with implementing the SDGs. We base our argumentation also on the 8 papers presented in this Focus Issue of Mountain Research and Development. Together, they establish a clear connection between sustainable use and protection of mountain forests and vital ecosystem services upon which many regions depend. We

  13. Integrated and visual performance evaluation model for thermal systems and its application to an HTGR cogeneration system

    International Nuclear Information System (INIS)

    Qi, Zhang; Yoshikawa, Hidekazu; Ishii, Hirotake; Shimoda, Hiroshi

    2010-01-01

    An integrated and visual model EXCEM-MFM (EXergy, Cost, Energy and Mass - Multilevel Flow Model) has been proposed in this study to comprehensively analyze and evaluate the performances of thermal systems by coupling two models: EXCEM model and MFM. In the EXCEM-MFM model, MFM is used to provide analysis frameworks for exergy, cost, energy and mass four parameters, and EXCEM is used to calculate the flow values of these four parameters for MFM based on the provided framework. In this study, we used the tools and technologies of computer science and software engineering to materialize the model. Moreover, the feasibility and application potential of this proposed EXCEM-MFM model has been demonstrated by the example application of a comprehensive performance study of a typical High Temperature Gas Reactor (HTGR) cogeneration system by taking into account the thermodynamic and economic perspectives. (author)

  14. An economic analysis of small-scale cogeneration using forest biomass and sawmill residuals in northern Ontario

    International Nuclear Information System (INIS)

    Beke, N.L.

    1994-01-01

    The economic feasibility of using biomass for cogeneration in northern Ontario was investigated and the institutional factors that may affect establishment and operation of cogeneration facilities were determined. Two fuel sources for a cogeneration plant were evaluated: forest materials and sawmill residuals. To establish and operate a cogeneration plant, the policies of the Ontario Ministry of Natural Resources and Ontario Hydro needed to be analyzed. Some of the benefits of using sawmill residuals for cogeneration were identified and an inventory of sawmill residuals was compiled. The welfare effects of three pricing schemes for non-utility generated electricity are described using a neoclassical welfare model. This model is further extended to include the effects of subsidizing public utilities and using biomass to generate electricity. A competitive market for electricity generation and relating pricing structure was also examined. The results of the capital budget for the cogeneration facility indicated that by using sawmill residuals and chipped forest biomass as fuel for cogeneration, internal rates of return would be 22.7% and 8.7% and net present values would be $8,659,870 and $1,867,822, respectively. This implied that using sawmill residuals for cogeneration fuel would be both profitable and would help to reduce possible harmful effects that current dumping practices may have on the surrounding ecosystem. 84 refs., 17 figs., 14 tabs

  15. Proceedings of the 7th cogeneration and independent power congress, natural gas purchasing '92, HVAC controls and energy conservation '92, 1992 indoor air quality congress

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This book is covered under the following topics: Cogeneration and IPP Market Developments; Natural Gas Marketing and Deliverability Strategies; Identifying the Sources of IAQ Problems; User-Owner Cogeneration Systems; Strategies for International Power Development; Strategic Fuel Purchasing; Cogeneration and utility Power Plant Compliance Issues; New HVAC Design Trends; IAQ Practical solutions: Case Studies

  16. Presence of renewable sources of energy, cogeneration, energy efficiency and distributed generation in the International Nuclear Information System (INIS)

    International Nuclear Information System (INIS)

    Pares Ferrer, Marianela; Oviedo Rivero, Irayda; Gonzalez Garcia, Alejandro

    2011-01-01

    The International Nuclear Information System (INIS) it was created in 1970 by the International Atomic Energy Agency (OIEA) with the objective of propitiating the exchange of scientific information and technique on the peaceful uses of the energy atomic. INIS processes most of scientific literature and technique in engineering matters nuclear, safeguard and non proliferation and applications in agriculture and health that it generates in the world and it contributes to create a repository of nuclear information for present and future generations. Additionally it includes economic aspects and environmental of other energy sources that facilitate comparative studies for the taking of decisions. The database INIS, is its main informative product and it counts with more than 3 million registrations. One of the services that lends the Center of Administration of the Information and Development of the Energy (CUBAENERGIA), like center INIS in Cuba, is the search of information on the peaceful use of the science and nuclear technology in the Countries Members and the registration of information on their applications in Cuba. More recently, it extends this service to the Renewable Sources application of Energy in the country; as part of the works of administration of the information that it carries out for the National Group of Renewable Energy, Cogeneration, Saving and Energy Efficiency, created in the 2007 and coordinated by the MINBAS with the participation of institutions belonging to Organisms of the Administration Central of the State. In this work the results of a preliminary study are presented on the witnesses in the INIS of the Renewable Sources of Energy, the Cogeneration, Energy Efficiency, and the Distributed Generation. As well as of the application of metric tools to the opposing registrations for the case of the Distributed generation, that which allowed to characterize their historical evolution, the participation for countries in their development and

  17. Energy and cost saving results for advanced technology systems from the Cogeneration Technology Alternatives Study (CTAS)

    Science.gov (United States)

    Sagerman, G. D.; Barna, G. J.; Burns, R. K.

    1979-01-01

    An overview of the organization and methodology of the Cogeneration Technology Alternatives Study is presented. The objectives of the study were to identify the most attractive advanced energy conversion systems for industrial cogeneration applications in the future and to assess the advantages of advanced technology systems compared to those systems commercially available today. Advanced systems studied include steam turbines, open and closed cycle gas turbines, combined cycles, diesel engines, Stirling engines, phosphoric acid and molten carbonate fuel cells and thermionics. Steam turbines, open cycle gas turbines, combined cycles, and diesel engines were also analyzed in versions typical of today's commercially available technology to provide a base against which to measure the advanced systems. Cogeneration applications in the major energy consuming manufacturing industries were considered. Results of the study in terms of plant level energy savings, annual energy cost savings and economic attractiveness are presented for the various energy conversion systems considered.

  18. Optimal energy exchange of an industrial cogeneration in a day-ahead electricity market

    International Nuclear Information System (INIS)

    Yusta, J.M.; De Oliveira-De Jesus, P.M.; Khodr, H.M.

    2008-01-01

    This paper addresses an optimal strategy for the daily energy exchange of a 22-MW combined-cycle cogeneration plant of an industrial factory operating in a liberalized electricity market. The optimization problem is formulated as a Mixed-Integer Linear Programming Problem (MILP) that maximizes the profit from energy exchange of the cogeneration, and is subject to the technical constraints and the industrial demand profile. The integer variables are associated with export or import of electricity whereas the real variables relate to the power output of gas and steam turbines, and to the electricity purchased from or sold to the market. The proposal is applied to a real cogeneration plant in Spain where the detailed cost function of the process is obtained. The problem is solved using a large-scale commercial package and the results are discussed and compared with different predefined scheduling strategies. (author)

  19. Biomass-gasifier steam-injected gas turbine cogeneration for the cane sugar industry

    International Nuclear Information System (INIS)

    Larson, E.D.; Williams, R.H.; Ogden, J.M.; Hylton, M.G.

    1991-01-01

    Steam injection for power and efficiency augmentation in aeroderivative gas turbines has been commercially established for natural gas-fired cogeneration since 1980. Steam-injected gas turbines fired with coal and biomass are being developed. A performance and economic assessment of biomass integrated-gasifier steam-injected gas turbine (BIG/STIG) cogeneration systems is carried out here. A detailed economic case study is presented for the second largest sugar factory in Jamaica, with cane residues as the fuel. BIG/STIG cogeneration units would be attractive investments for sugar producers, who could sell large quantities of excess electricity to the utility, or for the utility, as a low-cost generating option. Worldwide, the cane sugar industry could support some 50,000 MW of BIG/STIG electric generation capacity. The relatively modest development effort required to commercialize the BIG/STIG technology is discussed in a companion paper prepared for this conference

  20. Impact of Ontario electricity industry structure on the viability of cogeneration projects

    International Nuclear Information System (INIS)

    Chuddy, B.

    1999-01-01

    A review of Ontario Hydro's existing market structure and how its move toward a more competitive profile can be advantageous for cogeneration projects was presented. Ontario's existing electric power supply is as follows: 6 fossil fuels stations generate a total of 9, 969 MW of electricity, 23 NUG stations generate 1,541 MW, 3 nuclear stations generate a total of 9,028 MW and 69 hydro-electric stations generates 6,751 MW of electricity. The criteria and characteristics for cogeneration projects were listed. The paper also discussed other topics such as the market price of power, outstanding regulatory issues, market volatility and relative pricing. The prognosis for Ontario cogeneration projects for the early years from 1999-2004 is that for economic reasons, only big projects with large loads of 200 to 800 MW will be considered. In later years, other projects will become economic

  1. Analysis of possible energy efficiency increasing of the cogeneration process in EL-TO Zagreb

    International Nuclear Information System (INIS)

    Stanisa, B.; Krivak, B.

    1996-01-01

    In the erection planing of new generation capacity, besides the profitability, there is need to taken in account the rational consumption of primary energy, and the environmental protection. The main rules could have cogenerations of the heat and power. In power plant EL-TO Zagreb there are analysed generating capacity of the cogeneration process. There is considered reconstruction and revitalisation's of existing generating units, and erections of new one, all in the purpose to meet the growing heat demand. The district heating system is considered from the point as opportunity in energy saving capacity in the cogeneration of heat and power. For the amount of the energy saved there is need for less primary energy to be consumed, and this in finally means that for the some energy demands it has the some effect as the natural energy resources are expanded. (author)

  2. Feasibility studies on cogeneration from industrial wood-processing residues in Ghana

    International Nuclear Information System (INIS)

    Brew-Hammond, A.; Atakora, S.B.

    1999-01-01

    Several feasibility studies have been undertaken on cogeneration from wood-processing industrial residues in Ghana; practically all concluded that it was not economically viable because of the low tariffs for electricity in Ghana (around 3.5 US cents per kWh) at the time. Tariffs have more than doubled since September 1998 and average tariffs for industrial consumers are now around 7-8 US cents/kWh. This paper reviews earlier studies and undertakes a sensitivity analysis to determine effects of the new tariff regime and the investment costs for co-generation projects. More detailed technical and economic feasibility studies are needed to prepare the ground for an investment programme in cogeneration from wood residues. (author)

  3. State Support for Promotion of Electrical Energy Produced in High Efficiency Cogeneration in Romania

    Directory of Open Access Journals (Sweden)

    Mushatescu V.

    2016-12-01

    Full Text Available Romania accumulated a useful experience in supporting high efficient cogeneration through a bonus type scheme. Spreading this experience to other countries that can choose a similar support scheme could lead to important savings and better results in developing this efficient tool. This state aid is operational, targeted to new investments stimulation for cogeneration technologies and replacement or existing plants rehabilitation. Present paper focuses on the results of support scheme after five years of its application: increase of number of producers who benefit of this aid, raising of general efficiency of high efficient cogeneration, important savings of primary energy and CO2 emissions avoided. On the other hand, use of this scheme showed a number of problems (to which this paper proposes adequate solutions on institutional/administrative, investition, technical, economical-financial and social frameworks that influences beneficiaries and/or financiers of state aid.

  4. Feasibility study of a biomass-fired cogeneration plant Groningen, Netherlands

    International Nuclear Information System (INIS)

    Rijk, P.J.; Van Loo, S.; Webb, R.

    1996-06-01

    The feasibility of the title plant is determined for district heating and electricity supply of more than 1,000 houses in Groningen, Netherlands. Also attention is paid to the feasibility of such installations in a planned area of the city. Prices and supply of several biomass resources are dealt with: prunings of parks, public and private gardens, clean wood wastes, wood wastes from forests, wood from newly planted forests, specific energy crops (willows in high densities and short cycles). Prices are calculated, including transport to the gate of the premises where the cogeneration installations is situated. For the conversion attention is paid to both the feasibility of the use of a conventional cogeneration installation (by means of a steam turbine) and the use of a new conversion technique: combined cycle of a gasification installation and a cogeneration installation. 5 figs., 5 ills., 22 tabs., 1 appendix, 33 refs

  5. Impact on energy requirements and emissions of heat pumps and micro-cogenerators participating in demand side management

    International Nuclear Information System (INIS)

    Cooper, Samuel J.G.; Hammond, Geoffrey P.; McManus, Marcelle C.; Rogers, John G.

    2014-01-01

    The potential impacts of participating in demand side management (DSM) on the performance of air source heat pumps (ASHP) and micro-combined heat and power (mCHP) units are considered by this study. As significant consumers and generators of electricity at the distribution level, large numbers of heat pumps and micro-cogenerators would provide considerable scope for participation in DSM systems. However, it is possible that operating regimes which are optimised for grid considerations will not achieve the maximum performance that is possible from the units. Modelling has been conducted to investigate the significance of this effect, considering the case where local distribution constraints are the main driver for demand side interventions. A model of domestic electrical demand has been adapted to consider a neighbourhood of 128 dwellings in order to identify when interventions are necessary. This has been combined with dynamic models of two combustion engine micro-cogenerators, a solid oxide fuel cell micro-cogenerator and two ASHPs. A simple thermal model of each building is combined with a range of user preferences in order to determine the preferred operating profiles of the heating units. The DSM scheme analysed here is likely to have minimal impact on the emissions and energy requirements associated with each heating unit. Its effect is similar to that which occurs without DSM if the control system gain is relaxed such that equivalent thermal comfort is achieved. DSM can reduce the peak electrical demand of the neighbourhood. However, in the scenarios investigated, it is unlikely that the peaks can be reduced sufficiently such that they do not exceed the capacity of the local distribution transformer if ASHPs are used in all dwellings. By using a combination of mCHP units with ASHPs, it is possible to supply heating to all dwellings without exceeding this capacity. In this case, the use of DSM can increase the ratio of ASHPs used. In the context of a low

  6. Fuel strategies for natural gas fired cogeneration and IPP projects

    International Nuclear Information System (INIS)

    Gottlieb, J.W.

    1992-01-01

    This paper as published is the outline of a presentation on managing the risk of varying fuel costs as part of a successful fuel strategy for natural gas fired cogeneration and Independent Power Producer (IPP) projects. So long as the fuel cost that electric utilities recover from their ratepayers differs from the fuel costs incurred by IPP and Qualifying Facility (QF) plant operators, the largest variable cost risk of any QF or IPP will continue to be the cost of fuel. Managing that risk is the mission of any successful fuel procurement strategy. Unfortunately, a quick review of the last 20 years in the oil and gas industry reveals dramatic and substantial changes in price and fuel availability that few, if any, industry experts could have predicted in 1971. Recognizing that the fuel cost risk to a QF or IPP investor also spans a 20 year period, the typical term of a QF or IPP power purchase contract, a successful fuel procurement strategy must consider and address the likelihood of future changes. Due to federal and state regulatory changes made from 1978 to 1989, the current structure of the oil and gas industry appears to provide end-users with the tools to improve the manageability of fuel cost risks. QF and IPP developers can choose the type of service they desire and can negotiate most of the contractual elements of that service. Until electric utilities are allowed to flow through their rates the fuel costs incurred by QFs and IPPs, a thorough analysis of the available fuel procurement options prior to development of a QF or IPP will continue to be absolutely necessary

  7. Proximal potentially seismogenic sources for Sandia National Laboratories, Albuquerque, New Mexico

    International Nuclear Information System (INIS)

    Gibson, J.D.

    1995-01-01

    Recent geologic and geophysical investigations within the Albuquerque Basin have shed light on the potentially seismogenic sources that might affect Sandia National Laboratories, New Mexico (SNL/NM), a multi-disciplinary research and engineering facility of the US Department of Energy (DOE). This paper presents a summary of potentially seismogenic sources for SNL/NM, emphasizing those sources within approximately 8 kilometers (km) of the site. Several significant faults of the central Rio Grande rift transect SNL/NM. Although progress has been made on understanding the geometry and interactions of these faults, little is known of the timing of most recent movement or on recurrent intervals for these faults. Therefore, whether particular faults or fault sections have been active during the Holocene or even the late Pleistocene is undocumented. Although the overall subdued surface expression of many of these faults suggests that they have low to moderate slip rates, the proximity of these faults to critical (e.g., nuclear) and non-critical (e.g., high-occupancy, multistory office/light lab) facilities at SNL/NM requires their careful examination for evaluation of potential seismic hazard

  8. Thermal Efficiency of Cogeneration Units with Multi-Stage Reheating for Russian Municipal Heating Systems

    Directory of Open Access Journals (Sweden)

    Evgeny Lisin

    2016-04-01

    Full Text Available This paper explores the layout of an optimum process for supplying heat to Russian municipal heating systems operating in a market environment. We analyze and compare the standard cogeneration unit design with two-stage reheating of service water coming from controlled extraction locations and layouts that employ three in-line reheaters with heat the supply controlled by a rotary diaphragm and qualitative/quantitative methods (so-called “uncontrolled extraction”. Cogeneration unit designs are benchmarked in terms of their thermal efficiency expressed as a fuel consumption rate. The specific fuel consumption rate on electricity production is viewed as a key parameter of thermal efficiency.

  9. Cogeneration through small and medium sized gas turbines in Italy: Marketing survey

    International Nuclear Information System (INIS)

    Bianchi, A.; Schieppati, P.

    1992-01-01

    In Italy, the use of cogeneration systems by private industrial concerns has greatly increased in the early 90's. The successful technological development of highly efficient low and medium sized gas turbines and the successful application of cogenerated power to a number of industrial processes, favourable legislation and financial incentives on the part of the Italian Government, especially interested in promoting energy conservation and the use of natural gas as an alternative to petroleum, as well as, fast payback periods for such investments are amongst the major regions for the growing demand for this type of power system alternative in Italy

  10. What is the future for gas cogeneration in the French context?

    International Nuclear Information System (INIS)

    Ades, D.

    1996-01-01

    The first part of this work is devoted to the institutional environment which hold the cogeneration success in France. Cogeneration is indeed a future technology but is under-exploited in France. The future communal lines and the conclusions of the study group, suggested to the Cabinet of the European Union in 1995, should meanwhile cope with some difficulties for its development in France. The second part deals more particularly with the customers listening and with their expectations towards the energy suppliers. (O.M.)

  11. Thermionic cogeneration burner assessment study. Third quarterly technical progress report, April-June, 1983

    Energy Technology Data Exchange (ETDEWEB)

    1983-01-01

    The specific tasks of this study are to mathematically model the thermionic cogeneration burner, experimentally confirm the projected energy flows in a thermal mock-up, make a cost estimate of the burner, including manufacturing, installation and maintenance, review industries in general and determine what groups of industries would be able to use the electrical power generated in the process, select one or more industries out of those for an in-depth study, including determination of the performance required for a thermionic cogeneration system to be competitive in that industry. Progress is reported. (WHK)

  12. Unmanned Aircraft Systems: Federal Actions Needed to Ensure Safety and Expand Their Potential Uses Within the National Airspace System

    National Research Council Canada - National Science Library

    Dillingham, Gerald L; Spisak, Teresa; Fallon, Colin; Giebel, Jim; Gilman, Evan; Hooper, David; Khanna, Jamie; Lentini, Patty; Ormond, Josh; Panwar, Manhav

    2008-01-01

    .... Many factors support the potential for expanded use of UASs. For example, the nation's industrial base has expanded to support military operations and the number of trained UAS operators is increasing as personnel return from overseas duty...

  13. Analysis of genuine saving and potential green net national income. Portugal, 1990-2005

    International Nuclear Information System (INIS)

    Mota, Rui Pedro; Domingos, Tiago; Martins, Victor

    2010-01-01

    The context of this paper is the measurement of welfare and weak sustainability (defined as non-declining utility) in dynamic economies, i.e., comprehensive or green accounting. We estimate green net national income (GNNI) and genuine saving (GS) for Portugal, for the years 1990 to 2005, accounting for the disamenity of air pollution emissions, the depreciation of commercial forests and the value of time, discussing the implications of the assumptions underlying the inclusion of these terms in the green accounting model. The influence of short-run cycles is analyzed by estimating GNNI excluding business cycles. Our results suggest that business cycles affect the sustainability message of GNNI. We find that potential GNNI is growing and GS is positive in the analyzed period, thereby not indicating a weak sustainability problem in Portugal, although both depict a trend towards unsustainability. Excluding technological progress there is a contradiction in the sustainability message of GNNI and GS. (author)

  14. Potentialities for the diversification of the energy matrix of the National Center for Applied Electromagnetism

    International Nuclear Information System (INIS)

    Berenguer Ungaro, Mónica Rosario; Yero, Douglas Deás; López Juanes, Pedro; Areas Gilar, Ramón; Prada Sánchez, Jorge; Hernández Rodríguez, Norma Rafaela

    2017-01-01

    The objective of this work is to evaluate the potential for the diversification of the energy matrix of the National Center for Applied Electromagnetism, CNEA. This evaluation were realize through Three steps . In the first step, were determinated the demand for electricity from the CNEA, the electric bill were the source of information. In the second step, were identified the possible locations, for instalation of the solar panels.the third step, were calculated what percentage of the demand for electrical energy the CNEA that could be covered by the generation with this photovoltaic panels . As a result, five possible locations were identified, all on the CNEA roof. With the proposition we can cover between a 35 and 78% of the demand of CNEA electrical energy. It was recommended to continue with the technical-economic study in order to present a project for the search of the financing. (author)

  15. Analysis of genuine saving and potential green net national income. Portugal, 1990-2005

    Energy Technology Data Exchange (ETDEWEB)

    Mota, Rui Pedro; Domingos, Tiago [Environment and Energy Section, DEM, Instituto Superior Tecnico (Portugal); Martins, Victor [Department of Economics, Instituto Superior de Economia e Gestao (Portugal)

    2010-08-15

    The context of this paper is the measurement of welfare and weak sustainability (defined as non-declining utility) in dynamic economies, i.e., comprehensive or green accounting. We estimate green net national income (GNNI) and genuine saving (GS) for Portugal, for the years 1990 to 2005, accounting for the disamenity of air pollution emissions, the depreciation of commercial forests and the value of time, discussing the implications of the assumptions underlying the inclusion of these terms in the green accounting model. The influence of short-run cycles is analyzed by estimating GNNI excluding business cycles. Our results suggest that business cycles affect the sustainability message of GNNI. We find that potential GNNI is growing and GS is positive in the analyzed period, thereby not indicating a weak sustainability problem in Portugal, although both depict a trend towards unsustainability. Excluding technological progress there is a contradiction in the sustainability message of GNNI and GS. (author)

  16. Ground-nesting marine birds and potential for human disturbance in Glacier Bay National Park

    Science.gov (United States)

    Arimitsu, Mayumi L.; Romano, Marc D.; Piatt, John F.; Piatt, John F.; Gende, S.M.

    2004-01-01

    Glacier Bay National Park and Preserve contains a diverse assemblage of marine birds that use the area for nesting, foraging and molting. The abundance and diversity of marine bird species in Glacier Bay is unmatched in the region, due in part to the geomorphic and successional characteristics that result in a wide array of habitat types (Robards and others, 2003). The opportunity for proactive management of these species is unique in Glacier Bay National Park because much of the suitable marine bird nesting habitat occurs in areas designated as wilderness. Ground-nesting marine birds are vulnerable to human disturbance wherever visitors can access nest sites during the breeding season. Human disturbance of nest sites can be significant because intense parental care is required for egg and hatchling survival, and repeated disturbance can result in reduced productivity (Leseberg and others, 2000). Temporary nest desertion by breeding birds in disturbed areas can lead to increased predation on eggs and hatchlings by conspecifics or other predators (Bolduc and Guillemette, 2003). Human disturbance of ground-nesting birds may also affect incubation time and adult foraging success, which in turn can alter breeding success (Verhulst and others, 2001). Furthermore, human activity can potentially cause colony failure when disturbance prevents the initiation of nesting (Hatch, 2002). There is management concern about the susceptibility of breeding birds to disturbance from human activities, but little historical data has been collected on the distribution of ground-nesting marine birds in Glacier Bay. This report summarizes results obtained during two years of a three-year study to determine the distribution of ground-nesting marine birds in Glacier Bay, and the potential for human disturbance of those nesting birds.

  17. Cogeneration of electric power in the sugar and alcohol sectors: registration of the power plants in Sao Paulo, Brazil; Cogeracao de energia eletrica no setor sucroalcooleiro: cadastro das usinas em Sao Paulo

    Energy Technology Data Exchange (ETDEWEB)

    Borges, Gustavo Goncalves [Federacao das Industrias do Estado de Sao Paulo (FIESP), Sao Paulo, SP (Brazil); Moreira, Helemilton Rios; Silva, Edison da [Agencia Reguladora de Saneamento e Energia do Estado de Sao Paulo (ARSESP), SP (Brazil)

    2008-07-01

    One of the major difficult for the planning of co-generation industry of electricity from the sugar cane bagasse is the determination of their true potential. This question comes up, especially in the lack of information about the sugar and ethanol facilities, therefore for the study of potential, we can not just focus on the issue of the cane grinding, but also in technology, the configuration of the power plant and its capacity to export energy. This paper presents a proposal to minimize this difficulty, detailing a solution dedicated to the development of a database for the registration and monitoring of these plants, part of a series of actions regarding in the Understanding Protocol for the promotion of co-generation of bagasse, signed between FIESP and the Government of the State of Sao Paulo. (author)

  18. The benefit of regional diversification of cogeneration investments in Europe: A mean-variance portfolio analysis

    Energy Technology Data Exchange (ETDEWEB)

    Westner, Guenther, E-mail: guenther.westner@eon-energie.co [E.ON Energy Projects GmbH, Arnulfstrasse 56, 80335 Munich (Germany); Madlener, Reinhard, E-mail: rmadlener@eonerc.rwth-aachen.d [Institute for Future Energy Consumer Needs and Behavior (FCN), Faculty of Business and Economics/E.ON Energy Research Center, RWTH Aachen University, Mathieustrasse 6, 52074 Aachen (Germany)

    2010-12-15

    The EU Directive 2004/8/EC, concerning the promotion of cogeneration, established principles on how EU member states can support combined heat and power generation (CHP). Up to now, the implementation of these principles into national law has not been uniform, and has led to the adoption of different promotion schemes for CHP across the EU member states. In this paper, we first give an overview of the promotion schemes for CHP in various European countries. In a next step, we take two standard CHP technologies, combined-cycle gas turbines (CCGT-CHP) and engine-CHP, and apply exemplarily four selected support mechanisms used in the four largest European energy markets: feed-in tariffs in Germany; energy efficiency certificates in Italy; benefits through tax reduction in the UK; and purchase obligations for power from CHP generation in France. For contracting companies, it could be of interest to diversify their investment in new CHP facilities regionally over several countries in order to reduce country and regulatory risk. By applying the Mean-Variance Portfolio (MVP) theory, we derive characteristic return-risk profiles of the selected CHP technologies in different countries. The results show that the returns on CHP investments differ significantly depending on the country, the support scheme, and the selected technology studied. While a regional diversification of investments in CCGT-CHP does not contribute to reducing portfolio risks, a diversification of investments in engine-CHP can decrease the risk exposure. - Research highlights: {yields}Preconditions for CHP investments differ significantly between the EU member states. {yields}Regional diversification of CHP investments can reduce the total portfolio risk. {yields}Risk reduction depends on the chosen CHP technology.

  19. Cogeneration of electricity and organic chemicals using a polymer electrolyte fuel cell

    International Nuclear Information System (INIS)

    Yuan, X.; Ma, Z.; Bueb, H.; Drillet, J.-F.; Hagen, J.; Schmidt, V.M.

    2005-01-01

    Several unsaturated organic alcohols (allyl alcohol, propargyl alcohol, 2-butin-1,4-diol, 2- buten-1,4-diol) and acids (maleic acid, acrylic acid, crotonic acid, acetylendicarboxylic acid) were used as oxidants together with hydrogen as fuel in a polymer electrolyte fuel cell (PEFC). The standard free enthalpies (Δ R G θ ) of the overall fuel cell reactions H 2 /oxidant were calculated to be negative and the equilibrium voltages of such systems are in the range of U 00 = 0.4-0.6 V. In this way, the cogeneration of electric energy and desired hydrogenated products in a fuel cell reactor is apparent. Nafion[reg] 117, as polymer electrolyte, and commercial gas diffusion electrodes (ETEK) with carbon supported Pt were used in a PEFC reactor. The aqueous solutions of unsaturated alcohols and organic acids (c = 1-2 mol dm -3 ) were pumped under ambient pressure through the cathode compartment of the cell whereas hydrogen was fed into the cell at p 0.15 MPa. The open circuit voltages were measured to be in the range of 0.1-0.25 V. Current densities up to 50 mA cm -2 and maximum power densities of around 1 mW cm -2 has been achieved in the case of allyl alcohol, 2-butene-1,4-diol and acrylic acid. HPLC analysis indicates that the double or triple bond in unsaturated alcohols and organic acids is selectively hydrogenated. In addition, the electrochemical behaviour of the alcohols and acids was studied by means of cyclic voltammetry at a smooth polycrystalline Pt electrode in H 2 SO 4 . Reduction reactions were observed at potentials of E < 200 mV versus RHE. It was found that the onset potential for electrochemical hydrogenation of the double and triple bond in the cyclic voltamogram correlates well with the fuel cell performances using these compounds as oxidants

  20. Data book on new energy technology development in FY 1997. Cogeneration; Shin energy gijutsu kaihatsu kankei data shu sakusei chosa. Cogeneration

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    Various policies are being implemented in the field of new energy technology in line with progress in technological development. Examples are about assistance mechanism, field test projects and advisory projects to support the introduction of new energy technology. In order to promote the introduction of new energy efficiently, it is necessary to compile the various information regarding new energy in a comprehensive and systematic way, and formulate a basic data set. Among various new energy technologies, cogeneration is discussed in this report. The latest published data on the respective technologies are compiled particularly regarding their overall systems, examples of introduction, assistance mechanisms and state of implementation in foreign countries. Items included in this report are the trend of cogeneration, outline of system, state of introduction, forecast of introduction, overview of policies, basic terms, and related organizations. 9 figs.

  1. Mapping Soil Erosion Factors and Potential Erosion Risk for the National Park "Central Balkan"

    Science.gov (United States)

    Ilieva, Diliana; Malinov, Ilia

    2014-05-01

    Soil erosion is widely recognised environmental problem. The report aims at presenting the main results from assessment and mapping of the factors of sheet water erosion and the potential erosion risk on the territory of National Park "Central Balkan". For this purpose, the Universal Soil Loss Equation (USLE) was used for predicting soil loss from erosion. The influence of topography (LS-factor) and soil erodibility (K-factor) was assessed using small-scale topographic and soil maps. Rainfall erosivity (R-factor) was calculated from data of rainfalls with amounts exceeding 9.5 mm from 14 hydro-meteorological stations. The values of the erosion factors (R, K and LS) were presented for the areas of forest, sub-alpine and alpine zones. Using the methods of GIS, maps were plotted presenting the area distribution among the classes of the soil erosion factors and the potential risk in the respective zones. The results can be used for making accurate decisions for soil conservation and sustainable land management in the park.

  2. An investigation of the techno-economic impact of internal combustion engine based cogeneration systems on the energy requirements and greenhouse gas emissions of the Canadian housing stock

    International Nuclear Information System (INIS)

    Asaee, S. Rasoul; Ugursal, V. Ismet; Beausoleil-Morrison, Ian

    2015-01-01

    This study provides a techno-economic evaluation of retrofitting internal combustion engine (ICE) based cogeneration systems in the Canadian housing stock (CHS). The study was conducted using the Canadian Hybrid Residential End-Use Energy and GHG Emissions Model (CHREM). CHREM includes close to 17,000 unique house files that are statistically representative of the Canadian housing stock. The cogeneration system performance was evaluated using a high resolution integrated building performance simulation software. It is assumed that the ICE cogeneration system is retrofitted into all houses that currently use a central space heating system and have a suitable basement or crawl space. The GHG emission intensity factor associated with marginal electricity generation in each province is used to estimate the annual GHG emissions reduction due to the cogeneration system retrofit. The results show that cogeneration retrofit yields 13% energy savings in the CHS. While the annual GHG emissions would increase in some provinces due to cogeneration retrofits, the total GHG emissions of the CHS would be reduced by 35%. The economic analysis indicates that ICE cogeneration system retrofits may provide an economically feasible opportunity to approach net/nearly zero energy status for existing Canadian houses. - Highlights: • Techno-economic evaluation ICE cogeneration systems for Canadian housing is reported. • ICE cogeneration retrofit could yield 13% annual energy savings in Canadian housing. • Annual GHG emissions of Canadian housing could decrease by 35% with ICE cogeneration. • But, in some provinces, GHG emissions would increase as a result of ICE cogeneration

  3. Potential for saturated ground-water system contamination at the Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    Stone, R.; Ruggieri, M.R.; Rogers, L.L.; Emerson, D.O.; Buddemeier, R.W.

    1982-01-01

    A program of hydrogeologic investigation has been carried out to determine the likelihood of contaminant movement to the saturated zone from near the ground surface at Lawrence Livermore National Laboratory (LLNL). A companion survey of potential contaminant sources was also conducted at the LLNL. Water samples from selected LLNL wells were analyzed to test the water quality in the uppermost part of the saturated zone, which is from 14 to 48 m (45 to 158 ft) beneath the surface. Only nitrate and tritium were found in concentrations above natural background. In one well, the nitrate was slightly more concentrated than the drinking water limit. The nitrate source has not been found. The tritium in all ground-water samples from wells was found far less concentrated than the drinking water limit. The extent of infiltration of surface water was traced with environmental tritium. The thickness and stratigraphy of the unsaturated zone beneath the LLNL, and nearby area, was determined with specially constructed wells and boreholes. Well hydrograph analysis indicated where infiltration of surface water reached the saturated ground-water system. The investigation indicates that water infiltrating from the surface, through alluvial deposits, reaches the saturated zone along the course of Arroyo Seco, Arroyo Las Positas, and from the depression near the center of the site where seasonal water accumulates. Several potential contaminant sources were identified, and it is likely that contaminants could move from near the ground surface to the saturated zone beneath LLNL. Additional ground-water sampling and analysis will be performed and ongoing investigations will provide estimates of the speed with which potential contaminants can flow laterally in the saturated zone beneath LLNL. 34 references, 61 figures, 16 tables

  4. Cogeneration and District Heating. Best Practices for Municipalities

    International Nuclear Information System (INIS)

    Nuorkivi, A.; Constantinescu, T.

    2005-01-01

    District heating (DH) and cogeneration of heat power (CHP) are well known technologies in the energy business and are often included in municipal policies as well. Some of the major benefits of DH and CHP are less known and the barriers faced by further development of DH and CHP are substantial. The main barriers are institutional. Municipalities can play a powerful role in facilitating local DH and CHP development in order to achieve the economic and environmental benefits of DH and CHP. This report is produced to assist municipalities in promoting efficient and environmental beneficial DH and CHP. The focus of the report is on the economies in transition, where the institutional barriers are acute. The report addresses the issues of organisational framework, price regulation and financing, energy demand, rehabilitation of DH systems and benchmarking of DH and CHP. The municipality may influence the DH development by a number of means. The most important means, discussed in the various chapters of the report, are: (1) City planning impacts on the heat load density. A high density is an important factor for the economics of DH and city planning may promote DH in areas with high density and individual heating modes in the areas with low density; (2) Managing the building stock owned by the municipality to join the DH system and paying for the heating services; (3) Setting strategic goals for the District Heating Enterprise (DHE), which they usually own, regarding the quality and the costs of heating. The DHE shall be given sufficient resources to work towards such goals; (4) Providing guarantees for financing DH rehabilitation and development. The DHE may not have access to commercial credits without municipal guarantees; and, (5) Supporting the DHE management by giving operational independence, supervising the management performance regularly and encouraging the co-operation with other DHEs and equipment manufacturers. Examples provided in the report of

  5. Cogeneration in a plywood factory; Sistema de cogeneracion en una planta maderera

    Energy Technology Data Exchange (ETDEWEB)

    Castelazo Hernandez, Arturo; Mendoza Arcaraz, Alfonso [Ultra Energia, S. A. de C. V. Naucalpan (Mexico)

    1996-12-31

    Cogeneration that is the joint production of two energy manifestations departing from a single energy source, appears as one of the more viable options to achieve the optimum utilization of the finite resources. In the last decades, in which the economic growth of Mexico has been tied to the generation and supply of electric power, the State has functioned as an organizer and director of the national system of electric power generation, although the participation of the private enterprise has been determining. We must take into account that in order to cover the future electricity needs of the national development, it will be required approximately 17 thousand additional MW, for which the private sector, among which the small and medium industry can be highlighted, will have the road opened to generate them, taking advantage of the changes in the Law and Rules for the Public Service of Electric Power, published in the Diario Oficial de la Federacion on December 23, 1992 and on May 31, 1993. In having an optimized co-generation system, the annual cost for the plywood factory for energy (electricity and fuel) will be substantially reduced. The plywood factory requires the installation of a co-generation system that supplies 4.75 MWe and 1,861 KWt (1.6 Gcal/hr). The electric power will be used in the manufacture of NOVOPAN (Plywood) Panels and the thermal energy to heat up the thermal oil utilized in the wood press and for the preparation of the emulsion used in the process. To satisfy the energy requirements two options have been analyzed: Electric power generation with an internal combustion motor using fuel oil as fuel, utilizing the exhaust gases from the motor to preheat the thermal oil in a heat exchanger exhaust gases-thermal oil. Due to the fact that the motor exhaust gases do no contain enough energy to heat up the thermal oil at the desired temperature, a thermal fluid boiler burning wood wastes and tree barks will be used. Electric power generation with a

  6. Cogeneration in a plywood factory; Sistema de cogeneracion en una planta maderera

    Energy Technology Data Exchange (ETDEWEB)

    Castelazo Hernandez, Arturo; Mendoza Arcaraz, Alfonso [Ultra Energia, S. A. de C. V. Naucalpan (Mexico)

    1997-12-31

    Cogeneration that is the joint production of two energy manifestations departing from a single energy source, appears as one of the more viable options to achieve the optimum utilization of the finite resources. In the last decades, in which the economic growth of Mexico has been tied to the generation and supply of electric power, the State has functioned as an organizer and director of the national system of electric power generation, although the participation of the private enterprise has been determining. We must take into account that in order to cover the future electricity needs of the national development, it will be required approximately 17 thousand additional MW, for which the private sector, among which the small and medium industry can be highlighted, will have the road opened to generate them, taking advantage of the changes in the Law and Rules for the Public Service of Electric Power, published in the Diario Oficial de la Federacion on December 23, 1992 and on May 31, 1993. In having an optimized co-generation system, the annual cost for the plywood factory for energy (electricity and fuel) will be substantially reduced. The plywood factory requires the installation of a co-generation system that supplies 4.75 MWe and 1,861 KWt (1.6 Gcal/hr). The electric power will be used in the manufacture of NOVOPAN (Plywood) Panels and the thermal energy to heat up the thermal oil utilized in the wood press and for the preparation of the emulsion used in the process. To satisfy the energy requirements two options have been analyzed: Electric power generation with an internal combustion motor using fuel oil as fuel, utilizing the exhaust gases from the motor to preheat the thermal oil in a heat exchanger exhaust gases-thermal oil. Due to the fact that the motor exhaust gases do no contain enough energy to heat up the thermal oil at the desired temperature, a thermal fluid boiler burning wood wastes and tree barks will be used. Electric power generation with a

  7. Cogenerating a Competency-based HRM Degree: A Model and Some Lessons from Experience.

    Science.gov (United States)

    Wooten, Kevin C.; Elden, Max

    2001-01-01

    A competency-based degree program in human resource management was co-generated by six groups of stakeholders who synthesized competency models using group decision support software. The program focuses on core human resource processes, general business management, strategic decision making and problem solving, change management, and personal…

  8. Upscaling a district heating system based on biogas cogeneration and heat pumps

    NARCIS (Netherlands)

    van Leeuwen, Richard Pieter; Fink, J.; Smit, Gerardus Johannes Maria; de Wit, Jan B.

    2015-01-01

    The energy supply of the Meppel district Nieuwveense landen is based on biogas cogeneration, district heating, and ground source heat pumps. A centrally located combined heat and power engine (CHP) converts biogas from the municipal wastewater treatment facility into electricity for heat pumps and

  9. Termoacu Cogeneration: gas, power and oil; Cogeracao Termoacu: gas, energia e oleo

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Geraldo Jose; Gomes, Cicero Sena Moreira [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2004-07-01

    This paper describes the evolution of a project that involves cogeneration of power and steam for continuous injection in oil wells in the fields of Alto do Rodrigues and Estreito, in Rio Grande do Norte, Brazil. The project combines a PETROBRAS intention for recovering heavy oil in that area with partners intention of generating power to connect in a critical point of the Brazilian Electric System. PETROBRAS studies began in the nineties, when oil wells in that area became old end showed the necessity of some oil recovery technology. In 1999, PETROBRAS and Guaraniana made a partnership for implementation of Termoacu Combined Cycle, that would begin operation as a cogeneration plant for thirteen years, and as combined cycle from that point. The profile of steam injection has been adapted to a new one to comply with the powe r capacity of the Plant, and will operate eight years as a cogeneration plant , four years as a combined cycle with cogeneration and after twelve years as a complete combined cycle with 500 MW of capacity. The project integrates a gas pipeline, a Thermal Power Plant, a Transmission Line to connect to the grid and a Steam Pipeline for steam injection at Estreito and Alto do Rodrigues fields. (author)

  10. Application of information theory for the analysis of cogeneration-system performance

    International Nuclear Information System (INIS)

    Takahashi, Kazuki; Ishizaka, Tadashi

    1998-01-01

    Successful cogeneration system performance depends critically upon the correct estimation of load variation and the accuracy of demand prediction. We need not only aggregated annual heat and electricity demands, but also hourly and monthly patterns in order to evaluate a cogeneration system's performance by computer simulation. These data are usually obtained from the actual measurements of energy demand in existing buildings. However, it is extremely expensive to collect actual energy demand data and store it over a long period for many buildings. However we face the question of whether it is really necessary to survey hourly demands. This paper provides a sensitivity analysis of the influence of demand-prediction error upon the efficiency of cogeneration system, so as to evaluate the relative importance of various demand components. These components are annual energy demand, annual heat-to-electricity ratio, daily load factor and so forth. Our approach employs the concept of information theory to construct a mathematical model. This analysis provides an indication of the relative importances of demand indices, and identifies what may become a good measure of assessing the efficiency of the cogeneration system for planning purposes. (Author)

  11. Stirling engine based micro co-generation system for single households

    Energy Technology Data Exchange (ETDEWEB)

    Ribberink, H.; Zutt, S.; Rabou, L.; Beckers, G. [Netherlands Energy Research Foundation (ECN), Petten (Netherlands); Baijens, K.; Luttikholt, J. [Atag Verwarming BV (Netherlands)

    2000-07-01

    This paper describes the progress made in the ENATEC development program for a free piston Stirling engine based micro co-generation system that serves the supply of up to 1 kW{sub e} and up to 24 kW heat for domestic heating and/or for hot tap water production for single households at overall system efficiencies of 96%: Experiments show that the free piston Stirling engines from Stirling Technology Company run very reliably and controllably, and that the efficiency targets for the 1 kW{sub e} micro co-generation system are feasible. A ceramic foam burner with good heat transfer characteristics and low NOx emissions was developed. A demonstration micro co-generation unit was built and successfully presented. A 1 kW{sub e} free piston Stirling engine for the European market was developed. High efficiencies at full load and at part load, low emissions, low noise, and minimum maintenance make the Stirling engine based micro co-generation system an attractive candidate for the next generation of domestic boilers in Europe. (orig.)

  12. Assessing the economic feasibility of flexible integrated gasification Co-generation facilities

    NARCIS (Netherlands)

    Meerman, J.C.; Ramírez Ramírez, C.A.; Turkenburg, W.C.; Faaij, A.P.C.

    2011-01-01

    This paper evaluated the economic effects of introducing flexibility to state-of-the-art integrated gasification co-generation (IGCG) facilities equipped with CO2 capture. In a previous paper the technical and energetic performances of these flexible IG-CG facilities were evaluated. This paper

  13. Cogeneration : A Regulatory Guide to Leasing, Permitting, and Licensing in Idaho, Montana, Oregon, and Washington.

    Energy Technology Data Exchange (ETDEWEB)

    Deshaye, Joyce; Bloomquist, R. Gordon

    1992-12-01

    This guidebook focuses on cogeneration development. It is one of a series of four guidebooks recently prepared to introduce the energy developer to the federal, state and local agencies that regulate energy facilities in Idaho, Montana, Oregon, and Washington (the Bonneville Power Administration Service Territory). It was prepared specifically to help cogeneration developers obtain the permits, licenses and approvals necessary to construct and operate a cogeneration facility. The regulations, agencies and policies described herein are subject to change. Changes are likely to occur whenever energy or a project becomes a political issue, a state legislature meets, a preexisting popular or valuable land use is thought threatened, elected and appointed officials change, and new directions are imposed on states and local governments by the federal government. Accordingly, cogeneration developers should verify and continuously monitor the status of laws and rules that might affect their plans. Developers are cautioned that the regulations described herein may only be a starting point on the road to obtaining all the necessary permits.

  14. Cogeneration cycles applied to desalination in the Arab World: state of the art

    International Nuclear Information System (INIS)

    Yassin, Jamal Saleh

    2006-01-01

    This paper presents a review of cogeneration cycles applied to water desalination in most of the Arab countries. The scarcity of fresh water resources in many countries around the world, and in particular Gulf countries and north African countries such as Libya and Tunisia forced the local authorities to establish many desalination plants to compensate the water shortage. Some plants are conventional for desalination processes only and others are with cogeneration cycle. The high performance of cogeneration cycles encouraged establishing combined power and desalination plants. The present study is intended to provide an overview of cogeneration cycles in conjunction with desalination technologies under the two main resources of energy, fossils and renewables. Thermal technologies, which utilize fossil resource constitute the mainstay of large-scale desalination in the Arab countries and enjoy a relatively important position worldwide. While the technologies which utilize renewable resources such as solar are getting more attention year by year and still under research and almost for small units.(Author)

  15. Cogeneration: A solution from energetical auditoring. Cogeneracion: hipotesis de solucion en auditorias energeticas

    Energy Technology Data Exchange (ETDEWEB)

    Gomara Martinez, E; Riesco Leal, P

    1993-01-01

    An energetical auditor provides the solutions to avoid environmental problems generated from the consumption of a determined fuel and reduces fuel consumption. One of the solutions is changing the energy source or introducing cogeneration. The author introduces under the point of view of an auditor the reasons to use to generation. (Author)

  16. Global and local emission impact assessment of distributed cogeneration systems with partial-load models

    International Nuclear Information System (INIS)

    Mancarella, Pierluigi; Chicco, Gianfranco

    2009-01-01

    Small-scale distributed cogeneration technologies represent a key resource to increase generation efficiency and reduce greenhouse gas emissions with respect to conventional separate production means. However, the diffusion of distributed cogeneration within urban areas, where air quality standards are quite stringent, brings about environmental concerns on a local level. In addition, partial-load emission worsening is often overlooked, which could lead to biased evaluations of the energy system environmental performance. In this paper, a comprehensive emission assessment framework suitable for addressing distributed cogeneration systems is formulated. Local and global emission impact models are presented to identify upper and lower boundary values of the environmental pressure from pollutants that would be emitted from reference technologies, to be compared to the actual emissions from distributed cogeneration. This provides synthetic information on the relative environmental impact from small-scale CHP sources, useful for general indicative and non-site-specific studies. The emission models are formulated according to an electrical output-based emission factor approach, through which off-design operation and relevant performance are easily accounted for. In particular, in order to address the issues that could arise under off-design operation, an equivalent load model is incorporated within the proposed framework, by exploiting the duration curve of the cogenerator loading and the emissions associated to each loading level. In this way, it is possible to quantify the contribution to the emissions from cogeneration systems that might operate at partial loads for a significant portion of their operation time, as for instance in load-tracking applications. Suitability of the proposed methodology is discussed with respect to hazardous air pollutants such as NO x and CO, as well as to greenhouse gases such as CO 2 . Two case study applications based on the emission

  17. EARLY ENTRANCE CO-PRODUCTION PLANT - DECENTRALIZED GASIFICATION COGENERATION TRANSPORTATION FUELS AND STEAM FROM AVAILABLE FEEDSTOCKS

    International Nuclear Information System (INIS)

    Unknown

    2001-01-01

    Waste Processors Management Inc. (WMPI), along with its subcontractors entered into a cooperative agreement with the USDOE to assess the techno-economic viability of building an Early Entrance Co-Production Plant (EECP) in the US that produces ultra clean Fischer-Tropsch transportation fuels with either power or steam as the major co-product. The EECP will emphasize on reclaiming and gasifying low-cost coal waste and/or its mixture as the primary feedstocks. The project consists of three phases. Phase I objectives include conceptual development, technical assessment, feasibility design and economic evaluation of a Greenfield commercial co-production plant and a site specific demonstration EECP to be located adjacent to the existing WMPI Gilberton Power Station. There is very little foreseen design differences between the Greenfield commercial coproduction plant versus the EECP plant other than: The greenfield commercial plant will be a stand alone FT/power co-production plant, potentially larger in capacity to take full advantage of economy of scale, and to be located in either western Pennsylvania, West Virginia or Ohio, using bituminous coal waste (gob) and Pennsylvania No.8 coal or other comparable coal as the feedstock; The EECP plant, on the other hand, will be a nominal 5000 bpd plant, fully integrated into the Gilbertson Power Company's Cogeneration Plant to take advantage of the existing infrastructure to reduce cost and minimize project risk. The Gilberton EECP plant will be designed to use eastern Pennsylvania anthracite coal waste and/or its mixture as feedstock

  18. Improving the Efficiency of a Nucler Power Plant Using a Thermoelectric Cogeneration System

    Directory of Open Access Journals (Sweden)

    Rauf Terzi

    2018-02-01

    Full Text Available The efficiencies of nuclear power plants are rather poor having the ratio %30 by using the conventional energy/exergy tools. According to that information, large amount of energy is wasted during condensation and thrown out to the environment. Thermoelectric generator (TEG system has a potential to be used as a heat exchanging technology to produce power with a relatively low efficiency (about 5% and it can transform the temperature difference into electricity and generate clean electrical energy. In the present study, we offer a novel system to recover the waste heat from a VVER-1000 nuclear power plant. The heat transfer of the TEG is analyzed numerically with respect to the various temperature ranges and constant mass flow rate of the exhaust steam entering the system. In the analyses, different hot temperature ranges (35ºC, 45ºC and 55ºC and a constant cold temperature (i.e. 18ºC are used for a HZ-20 thermoelectric module and it has been proven that the designed TEG can produce the maximum output power of 76,956 MW for a temperature difference ∆T=37 and the conversion efficiency of 3,854% sits. The TEG is designed for the condenser of a 1000 MW nuclear power plant. It's shown that about 2,0% increasing in the power plant efficiency is expected by using the selected thermoelectric generator in the condensation cycle. Article History: Received: July 15th 2017; Received:  October 17th 2017; Accepted: February 13rd 2018; Available online How to Cite This Article: Terzi, R. and Kurt, E. (2018, Improving the efficiency of a nuclear power plant using a thermoelectric cogeneration system, Int. Journal of Renewable Energy Development, 7(1, 77-84. https://doi.org/10.14710/ijred.7.1.77-84

  19. Tetra-combined cogeneration system. Exergy and thermo economic evaluation; Sistema tetra combinado de cogeracao. Avaliacao exergetica e termoeconomica

    Energy Technology Data Exchange (ETDEWEB)

    Arriola, Domingo Wilson Garagatti [Sao Paulo Univ., SP (Brazil). Escola Politecnica. Dept. de Engenharia Mecanica]. E-mail: wgarriol@usp.br; Oliveira Junior, Silvio de [Instituto de Pesquisas Tecnologicas (IPT), Sao Paulo, SP (Brazil)]. E-mail: olivsilj@ipt.br

    2000-07-01

    This paper presents the description and the exergy and thermo economic evaluation of a new cogeneration system, called tetra-combined cogeneration system, that generates electricity and chilled water (for air conditioning purposes) and eventually steam. This system is composed of a gas turbine, a heat recovery steam generator, a condensation/extraction steam turbine and a hybrid absorption/steam ejection chiller. The exergy and thermo economic performance (exergy based costs of electricity, steam and chilled water production) of this system is compared with the performances of conventional cogeneration systems, pointing out the advantages and disadvantages of this new system. (author)

  20. Tetra-combined cogeneration system. Exergy and thermoeconomic evaluation; Sistema tetra combinado de cogeracao. Avaliacao exergetica e termoeconomica

    Energy Technology Data Exchange (ETDEWEB)

    Arriola, Domingo Wilson Garagatti [Sao Paulo Univ., SP (Brazil). Escola Politecnica. Dept. de Engenharia Mecanica]. E-mail: wgarriol@usp.br; Oliveira Junior, Silvio de [Instituto de Pesquisas Tecnologicas (IPT), Sao Paulo, SP (Brazil)]. E-mail: olivsilj@ipt.br

    2000-07-01

    The description and the exergy and thermo economic evaluation of a new cogeneration system, called tetra-combined cogeneration system, that generates electricity and chilled water (for air conditioning purposes) and eventually steam is presented. This system is composed of a gas turbine, a heat recovery steam generator, a condensation/extraction steam turbine and a hybrid absorption/steam ejection chiller.The exergy and thermo economic performance (exergy based costs of electricity, steam and chilled water production) of this system is compared with the performances of conventional cogeneration systems, pointing out the advantages and disadvantages of this new system. (author)

  1. Public health impact assessment of a proposed cogeneration plant in the Quebec city metropolitan area

    Energy Technology Data Exchange (ETDEWEB)

    Lajoie, P; Bolduc, D; Gauvin, D; Guerrier, P; Gauthier, R [Quebec Public Health Center, Ste-Foy (Canada); Laflamme, P [Laval Univ. (Canada). Dept. of Preventive Medicine

    1996-12-31

    In 1994, public hearings were held in Quebec city concerning a 120 megawatt (MW) gas cogeneration project that was to be coupled with an already existing pulp and paper mill in the downtown area. Cogeneration plants are often described as highly beneficial from the point of view of local environment. It is well known that the burning of natural gas emits far less sulfur dioxide (SO{sub 2}) and particulate matters (PM) than the combustion of oil or coal. The proposed plant would use high pressure vapour from a nearby incinerator plant and natural gas to produce low pressure vapor for the paper mill industry as well as electricity. The cogeneration plant would allow the paper mill to stop burning heavy oil. By using natural gas instead of heavy oil, the new cogeneration-paper mill complex (CPC) is expected to reinforce the recent trend and willingness towards improving downtown air quality. On the other hand, the CPC would emit more CO{sub 2}, due to the production of additional electricity. According to the Rio de Janeiro Agreement ratified in 1988, Canada is committed to stabilize its greenhouse gas emissions by the year 2000. Nevertheless, the cogeneration file is a new option considered by the Quebec Provincial Governement in its last energy triennal plan. However, it must be specified that the Province of Quebec contributes to less than 15 % of the total Canadian CO{sub 2} production although it represents more than 25 % of its population. Furthermore the maximum production of electricity by this file has been set to 250 MW. It is a very small fraction of the total production of electricity in Quebec, which is 200 TW

  2. Public health impact assessment of a proposed cogeneration plant in the Quebec city metropolitan area

    Energy Technology Data Exchange (ETDEWEB)

    Lajoie, P.; Bolduc, D.; Gauvin, D.; Guerrier, P.; Gauthier, R. [Quebec Public Health Center, Ste-Foy (Canada); Laflamme, P. [Laval Univ. (Canada). Dept. of Preventive Medicine

    1995-12-31

    In 1994, public hearings were held in Quebec city concerning a 120 megawatt (MW) gas cogeneration project that was to be coupled with an already existing pulp and paper mill in the downtown area. Cogeneration plants are often described as highly beneficial from the point of view of local environment. It is well known that the burning of natural gas emits far less sulfur dioxide (SO{sub 2}) and particulate matters (PM) than the combustion of oil or coal. The proposed plant would use high pressure vapour from a nearby incinerator plant and natural gas to produce low pressure vapor for the paper mill industry as well as electricity. The cogeneration plant would allow the paper mill to stop burning heavy oil. By using natural gas instead of heavy oil, the new cogeneration-paper mill complex (CPC) is expected to reinforce the recent trend and willingness towards improving downtown air quality. On the other hand, the CPC would emit more CO{sub 2}, due to the production of additional electricity. According to the Rio de Janeiro Agreement ratified in 1988, Canada is committed to stabilize its greenhouse gas emissions by the year 2000. Nevertheless, the cogeneration file is a new option considered by the Quebec Provincial Governement in its last energy triennal plan. However, it must be specified that the Province of Quebec contributes to less than 15 % of the total Canadian CO{sub 2} production although it represents more than 25 % of its population. Furthermore the maximum production of electricity by this file has been set to 250 MW. It is a very small fraction of the total production of electricity in Quebec, which is 200 TW

  3. Modeling of a Cogeneration System with a Micro Gas Turbine Operating at Partial Load Conditions

    Directory of Open Access Journals (Sweden)

    José Carlos Dutra

    2017-06-01

    Full Text Available The integration of absorption chillers in micro-cogeneration systems based on micro-gas turbines can be useful as an appropriate strategy to increase the total system energy efficiency. Since it is an area intensive in technology, it is necessary to develop and use models of simulation, which can predict the behavior of the whole system and of each component individually, at different operating conditions. This work is part of a research project in high efficiency cogeneration systems, whose purpose at this stage is to model a micro-cogeneration system, which is composed of a micro gas turbine, Capstone C30, a compact cross flow finned tube heat exchanger and an absorption chiller. The entire model is composed of specifically interconnected models, developed and validated for each component. The simulation of the microturbine used a thermodynamic analytic model, which contains a procedure used to obtain the micro turbine characteristic performance curves, which is closed with the thermodynamic Brayton cycle model. In the cogeneration system discussed in this paper, the compact heat exchanger was used to heat thermal oil, which drives an absorption chiller. It was designed, characterized and installed in a cogeneration system installed at the Centre d'Innovació Tecnològica en Revalorització Energètica i Refrigeració, Universtat Rovira i Virgili. Its design led to the heat exchanger model, which was coupled with the micro turbine model. Presented in this work is a comparison between the data from the model and the experiments, demonstrating good agreement between both results.

  4. Potential for erroneous interpretation of poisoning outcomes due to changes in National Poison Data System reporting.

    Science.gov (United States)

    Anderson, Bruce; Ke, Xuehua; Klein-Schwartz, Wendy

    2010-08-01

    In 2006, the annual report of poison centers in the United States changed the method of reporting profiles for generic substance categories from all exposures to single-substance exposures only. The objective of this study is to describe the potential impact of this reporting change on longitudinal analysis of outcomes. Generic substance categories with data available for all years of the study were manually extracted from Table 22 of the National Poison Data System (NPDS) annual reports for 2002-2007. For each generic substance category, the following data were extracted for each of the 6 years: total number of substance mentions (2002-2005) or single-substance exposures (2006-2007), reason (unintentional or intentional), pediatric exposures (children age average annual number of reported deaths by substance category decreased by 80.8%, from 2,229 in year 2002-2005 to 428 after the 2006 reporting change (p average annual number of reported major outcomes by substance category dropped by 76.0% (p average number of deaths and major effects by substance category decreased by about 50% from 394 and 4,639 per year during 2002-2005 to 198 deaths (p average rates of reported deaths (61.7 and 35.9%) and major effects (36.3 and 11.2%) for drug categories and nondrug categories, respectively (p change in 2006 will yield inaccurate results if the change in reporting methodology is not taken into account.

  5. Potential challenges facing distributed leadership in health care: evidence from the UK National Health Service.

    Science.gov (United States)

    Martin, Graeme; Beech, Nic; MacIntosh, Robert; Bushfield, Stacey

    2015-01-01

    The discourse of leaderism in health care has been a subject of much academic and practical debate. Recently, distributed leadership (DL) has been adopted as a key strand of policy in the UK National Health Service (NHS). However, there is some confusion over the meaning of DL and uncertainty over its application to clinical and non-clinical staff. This article examines the potential for DL in the NHS by drawing on qualitative data from three co-located health-care organisations that embraced DL as part of their organisational strategy. Recent theorising positions DL as a hybrid model combining focused and dispersed leadership; however, our data raise important challenges for policymakers and senior managers who are implementing such a leadership policy. We show that there are three distinct forms of disconnect and that these pose a significant problem for DL. However, we argue that instead of these disconnects posing a significant problem for the discourse of leaderism, they enable a fantasy of leadership that draws on and supports the discourse. © 2014 The Authors. Sociology of Health & Illness © 2014 Foundation for the Sociology of Health & Illness/John Wiley & Sons Ltd.

  6. Analysis of energy cogeneration incentive politics to a sodium-chlorine Brazilian chemical plant energy cogeneration; Analise de politicas de incentivo a cogeracao de energia numa planta quimica brasileira de soda-cloro

    Energy Technology Data Exchange (ETDEWEB)

    Bastos, J.B.V.; Borschiver, S. [Universidade Federal do Rio de Janeiro (CT/UFRJ), RJ (Brazil). Centro de Tecnologia], E-mail: suzana@eq.ufrj.br; Szklo, A.S. [Universidade Federal do Rio de Janeiro (PPE/COPPE/UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-Graduacao de Engenharia. Programa de Planejamento Energetico], E-mail: szklo@ppe.ufrj.br; Andrade, M.H.S. [Braskem S.A., Rio de Janeiro, RJ (Brazil)], E-mail: marcio.andrade@braskem.com.br

    2010-07-01

    This paper evaluates, from a pont of view of investor and through the use of a simulator, the impact of incentive politics to the cogeneration, from the sugar cane bagasse, at a plant for production of sodium-chlorine.

  7. Cogeneration Technology Alternatives Study (CTAS). Volume 6: Computer data. Part 1: Coal-fired nocogeneration process boiler, section A

    Science.gov (United States)

    Knightly, W. F.

    1980-01-01

    Various advanced energy conversion systems (ECS) are compared with each other and with current technology systems for their savings in fuel energy, costs, and emissions in individual plants and on a national level. About fifty industrial processes from the largest energy consuming sectors were used as a basis for matching a similar number of energy conversion systems that are considered as candidates which can be made available by the 1985 to 2000 time period. The sectors considered included food, textiles, lumber, paper, chemicals, petroleum, glass, and primary metals. The energy conversion systems included steam and gas turbines, diesels, thermionics, stirling, closed cycle and steam injected gas turbines, and fuel cells. Fuels considered were coal, both coal and petroleum based residual and distillate liquid fuels, and low Btu gas obtained through the on-site gasification of coal. Computer generated reports of the fuel consumption and savings, capital costs, economics and emissions of the cogeneration energy conversion systems (ECS's) heat and power matched to the individual industrial processes are presented for coal fired process boilers. National fuel and emissions savings are also reported for each ECS assuming it alone is implemented.

  8. Life cycle optimization model for integrated cogeneration and energy systems applications in buildings

    Science.gov (United States)

    Osman, Ayat E.

    Energy use in commercial buildings constitutes a major proportion of the energy consumption and anthropogenic emissions in the USA. Cogeneration systems offer an opportunity to meet a building's electrical and thermal demands from a single energy source. To answer the question of what is the most beneficial and cost effective energy source(s) that can be used to meet the energy demands of the building, optimizations techniques have been implemented in some studies to find the optimum energy system based on reducing cost and maximizing revenues. Due to the significant environmental impacts that can result from meeting the energy demands in buildings, building design should incorporate environmental criteria in the decision making criteria. The objective of this research is to develop a framework and model to optimize a building's operation by integrating congregation systems and utility systems in order to meet the electrical, heating, and cooling demand by considering the potential life cycle environmental impact that might result from meeting those demands as well as the economical implications. Two LCA Optimization models have been developed within a framework that uses hourly building energy data, life cycle assessment (LCA), and mixed-integer linear programming (MILP). The objective functions that are used in the formulation of the problems include: (1) Minimizing life cycle primary energy consumption, (2) Minimizing global warming potential, (3) Minimizing tropospheric ozone precursor potential, (4) Minimizing acidification potential, (5) Minimizing NOx, SO 2 and CO2, and (6) Minimizing life cycle costs, considering a study period of ten years and the lifetime of equipment. The two LCA optimization models can be used for: (a) long term planning and operational analysis in buildings by analyzing the hourly energy use of a building during a day and (b) design and quick analysis of building operation based on periodic analysis of energy use of a building in a

  9. Securing America’s Future. Realizing the Potential of the Department of Energy’s National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Glauthier, T. J. [TJG Energy Associates, LLC, Bloomberg, VA (United States); Cohon, Jared L. [Carnegie Mellon Univ., Pittsburgh, PA (United States); Augustine, Norman R. [U.S. Dept. of Homeland Security, Washington, DC (United States); Austin, Wanda M. [Aerospace Corporation, El Segundo, CA (United States); Elachi, Charles [California Inst. of Technology (CalTech), Pasadena, CA (United States); Fleury, Paul A. [Yale Univ., New Haven, CT (United States); Hockfield, Susan J. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Meserve, Richard A. [Covington and Burling LLP, Washington, DC (United States); Murray, Cherry A. [Harvard Univ., Cambridge, MA (United States)

    2015-10-23

    The Department of Energy (DOE) laboratories are national assets that have contributed profoundly to the Nation’s security, scientific leadership, and economic competitiveness. In recognition of the continuing and evolving threats to our security and the dramatic increase in global economic and scientific competition, the laboratories are and will continue to be vitally important. Yet, the contributions of the National Laboratories are not inevitable, nor have they realized their full potential. This final report of the Commission to Review the Effectiveness of the National Energy Laboratories recommends ways the laboratories could overcome challenges to more efficiently and effectively accomplish the work for which they are uniquely suited.

  10. Mini-cogeneration in the flower bulb industry. Use of cogeneration in the cultivation and hot bed of tulip and hyacinth; Mini-wkk in de bloembollensector. Toepassing van wkk bij teelt en broei van tulp en hyacint

    Energy Technology Data Exchange (ETDEWEB)

    De Visser, I.; Koolwijk, E. [Cogen Projects, Driebergen-Rijsenburg (Netherlands)

    2008-06-15

    This study shows that by deploying cogeneration, energy savings can be realized in the flower bulb industry. Use of cogeneration at medium-sized to large flower bulb companies is interesting from the viewpoint of finance. [Dutch] Uit de studie blijkt dat met de toepassing van WKK energiebesparing gerealiseerd kan worden in de bollensector. Op de middelgrote tot grote bollenbedrijven is de toepassing van WKK uit financieel oogpunt interessant.

  11. Potential impacts of projected climate change on vegetation management in Hawai`i Volcanoes National Park

    Science.gov (United States)

    Camp, Richard J.; Loh, Rhonda; Berkowitz, S. Paul; Brinck, Kevin W.; Jacobi, James D.; Price, Jonathan; McDaniel, Sierra; Fortini, Lucas B.

    2018-01-01

    Climate change will likely alter the seasonal and annual patterns of rainfall and temperature in Hawai`i. This is a major concern for resource managers at Hawai`i Volcanoes National Park where intensely managed Special Ecological Areas (SEAs), focal sites for managing rare and endangered plants, may no longer provide suitable habitat under future climate. Expanding invasive species’ distributions also may pose a threat to areas where native plants currently predominate. We combine recent climate modeling efforts for the state of Hawai`i with plant species distribution models to forecast changes in biodiversity in SEAs under future climate conditions. Based on this bioclimatic envelope model, we generated projected species range maps for four snapshots in time (2000, 2040, 2070, and 2090) to assess whether the range of 39 native and invasive species of management interest are expected to contract, expand, or remain the same under a moderately warmer and more variable precipitation scenario. Approximately two-thirds of the modeled native species were projected to contract in range, while one-third were shown to increase. Most of the park’s SEAs were projected to lose a majority of the native species modeled. Nine of the 10 modeled invasive species were projected to contract within the park; this trend occurred in most SEAs, including those at low, middle, and high elevations. There was good congruence in the current (2000) distribution of species richness and SEA configuration; however, the congruence between species richness hotspots and SEAs diminished by the end of this century. Over time the projected species-rich hotspots increasingly occurred outside of current SEA boundaries. Our research brought together managers and scientists to increase understanding of potential climate change impacts, and provide needed information to address how plants may respond under future conditions relative to current managed areas.

  12. A spatial modeling approach to identify potential butternut restoration sites in Mammoth Cave National Park

    Science.gov (United States)

    Thompson, L.M.; Van Manen, F.T.; Schlarbaum, S.E.; DePoy, M.

    2006-01-01

    Incorporation of disease resistance is nearly complete for several important North American hardwood species threatened by exotic fungal diseases. The next important step toward species restoration would be to develop reliable tools to delineate ideal restoration sites on a landscape scale. We integrated spatial modeling and remote sensing techniques to delineate potential restoration sites for Butternut (Juglans cinerea L.) trees, a hardwood species being decimated by an exotic fungus, in Mammoth Cave National Park (MCNP), Kentucky. We first developed a multivariate habitat model to determine optimum Butternut habitats within MCNP. Habitat characteristics of 54 known Butternut locations were used in combination with eight topographic and land use data layers to calculate an index of habitat suitability based on Mahalanobis distance (D2). We used a bootstrapping technique to test the reliability of model predictions. Based on a threshold value for the D2 statistic, 75.9% of the Butternut locations were correctly classified, indicating that the habitat model performed well. Because Butternut seedlings require extensive amounts of sunlight to become established, we used canopy cover data to refine our delineation of favorable areas for Butternut restoration. Areas with the most favorable conditions to establish Butternut seedlings were limited to 291.6 ha. Our study provides a useful reference on the amount and location of favorable Butternut habitat in MCNP and can be used to identify priority areas for future Butternut restoration. Given the availability of relevant habitat layers and accurate location records, our approach can be applied to other tree species and areas. ?? 2006 Society for Ecological Restoration International.

  13. Cogeneration Technology Alternatives Study (CTAS). Volume 6: Computer data. Part 2: Residual-fired nocogeneration process boiler

    Science.gov (United States)

    Knightly, W. F.

    1980-01-01

    Computer generated data on the performance of the cogeneration energy conversion system are presented. Performance parameters included fuel consumption and savings, capital costs, economics, and emissions of residual fired process boilers.

  14. Compensating Victims of Violent Crime: Potential Costs and Coverage of a National Program.

    Science.gov (United States)

    Garofalo, James; Sutton, L. Paul

    Data generated from an ongoing national crime victimization survey and details about the circumstances and consequences of personal crimes form the basis for estimating the cost of a national program to compensate victims of violent crime. Victim compensation programs represent an attempt to rectify the neglect of the victim. Uncertainty about the…

  15. Nation

    DEFF Research Database (Denmark)

    Østergaard, Uffe

    2014-01-01

    Nation er et gammelt begreb, som kommer af det latinske ord for fødsel, natio. Nationalisme bygger på forestillingen om, at mennesker har én og kun én national identitet og har ret til deres egen nationalstat. Ordet og forestillingen er kun godt 200 år gammel, og i 1900-tallet har ideologien bredt...

  16. Comparative evaluation of hybrid systems of natural gas cogeneration and sugar cane bagasse; Avaliacao comparativa de sistemas hibridos de cogeracao a gas natutral e bagaco de cana

    Energy Technology Data Exchange (ETDEWEB)

    Zamboni, Leonardo Moneci; Tribess, Arlindo [Sao Paulo Univ., SP (Brazil). Escola Politecnica. Dept. de Engenharia Mecanica]. E-mail: leonardo.zamboni@poli.usp.br; atribess@usp.br

    2006-07-01

    The consumption of electricity in Brazil and mainly in the State of Sao Paulo is increasing gradually. On the other hand, the hydraulic potential is practically exhausted and the government has no resources for such new investments. One solution is the construction of thermo electrical plants with the use of the natural gas and sugar cane bagasse. The natural gas has the advantage of being available in great amount and less pollutant. And the sugar cane bagasse, besides being a by-product of low value, does not cause a global pollution. The work consists of the determination of the best option considering criterion of minimum cost for kWh of energy produced. For such, thermo economic analysis with electricity and steam production costs evaluation in exergetic basis, was accomplished. In the evaluations the consumption of natural gas and the costs of the sugar cane bagasse were varied. The results show that the cogeneration plant with combined cycle using natural gas and burning sugar cane bagasse in the recovery boiler presents the smallest cost of electricity and steam generation (even not being the cycle with larger exergetic efficiency). On the other hand, for a natural gas cost of 140 US$/t and a cost of sugar cane bagasse superior to 10,50 US$/t the cogeneration plant with combined cycle using only natural gas (and, therefore not burning or gasifying sugar cane bagasse) presented the smallest cost of electricity and steam generation. (author)

  17. Application of the Pinch analysis for the design of a cogeneration system in a paper mill; Aplicacion del analisis Pinch para el diseno de un sistema de cogeneracion en una industria papelera

    Energy Technology Data Exchange (ETDEWEB)

    Mani Gonzalez, A. G.; Arriola Medellin, A. [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1997-12-31

    The Pinch Analysis is a set of principles, tools and rules for the design that allow the engineer find the best way to configure the elements of a process. In the last ten years it has been utilized for the design of new processes as well as in the energy optimization of existing processes. In this paper the tools utilized for the integration of a cogeneration system in a process for the production of paper is presented. It is also presented how the combined treatment of the Pinch Analysis and the exergy concept allows to define, before the detailed design, the cogeneration potential, the fuel consumption and the amount of pollutant emissions for different cogeneration schemes. [Espanol] El analisis Pinch es un conjunto de principios, herramientas y reglas de diseno que permiten al ingeniero encontrar la mejor manera de configurar los elementos de un proceso. En los ultimos diez anos se ha utilizado para el diseno de procesos nuevos asi como en la optimacion energetica de procesos existentes. En el presente articulo se presentan las herramientas utilizadas para la integracion de un sistema de cogeneracion en un proceso de produccion de papel. Se muestra tambien como el tratamiento combinado del analisis Pinch y el concepto de energia permite definir, antes del diseno detallado, el potencial de cogeneracion, el consumo de combustible y la cantidad de emisiones contaminantes para diferentes esquemas de cogeneracion.

  18. Application of the Pinch analysis for the design of a cogeneration system in a paper mill; Aplicacion del analisis Pinch para el diseno de un sistema de cogeneracion en una industria papelera

    Energy Technology Data Exchange (ETDEWEB)

    Mani Gonzalez, A G; Arriola Medellin, A [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1998-12-31

    The Pinch Analysis is a set of principles, tools and rules for the design that allow the engineer find the best way to configure the elements of a process. In the last ten years it has been utilized for the design of new processes as well as in the energy optimization of existing processes. In this paper the tools utilized for the integration of a cogeneration system in a process for the production of paper is presented. It is also presented how the combined treatment of the Pinch Analysis and the exergy concept allows to define, before the detailed design, the cogeneration potential, the fuel consumption and the amount of pollutant emissions for different cogeneration schemes. [Espanol] El analisis Pinch es un conjunto de principios, herramientas y reglas de diseno que permiten al ingeniero encontrar la mejor manera de configurar los elementos de un proceso. En los ultimos diez anos se ha utilizado para el diseno de procesos nuevos asi como en la optimacion energetica de procesos existentes. En el presente articulo se presentan las herramientas utilizadas para la integracion de un sistema de cogeneracion en un proceso de produccion de papel. Se muestra tambien como el tratamiento combinado del analisis Pinch y el concepto de energia permite definir, antes del diseno detallado, el potencial de cogeneracion, el consumo de combustible y la cantidad de emisiones contaminantes para diferentes esquemas de cogeneracion.

  19. Nuclear Co-Generating Plants for Powering and Heating to Cleaning the Warsaw's Environment

    International Nuclear Information System (INIS)

    Baurski, J.

    2010-01-01

    In 2009 the Polish Government made a decision to introduce nuclear power to Poland. Two nuclear power plants (NPPs) will be constructed nearly at the same time - the first unit should start operation in 2020, and by 2030 there should be about 6000 MWe added to the national electrical grid. The Commissioner of the Government was nominated to introduce the Polish Nuclear Power Program (PNPP). One of the four vertically integrated - the biggest energy company (PGE - the Polish Energy Group with headquarters in Warsaw) was appointed to prepare investments. These activities are planned in four stages: I. up to 31.12.2010 - The PNPP will be prepared and the program must then be accepted by the Government. II. 2011 - 2013 - Sites will be determined, and the contract for construction of the first NPP will be closed. III. 2014 - 2015 - Technical specifications will be prepared and accepted according the law. IV. 2016 - 2020 - The first NPP in Poland will be constructed. At present, the Government is receiving proposals from some regions of Poland asking that they be chosen for the NPP. One of the obvious locations for the NPP is a 40-kilometer vicinity of Warsaw (1.8 mln inhabitants). The need for both electric power and heat is increasing because of the rapidly growing town. It gives the extremely valuable chance for a very high thermodynamic efficiency of 80% in co-generation instead of 33% (max 36% for EPR-1600) for NPP generated electric power only. The Warsaw heating system has a capacity of 3950 MWt and is the biggest among EU countries. It is the third biggest in the world. Two NPPs, each of 2 x 1000 MWe could be built on the Vistula River up and down the town. In 2005, UE calculated losses caused by gas emissions at 24 mld eur, and the span of human lives was six months shorter in western countries and 8 months shorter in Poland. Warsaw's atmosphere is very polluted also because there are four heat and power generating plants: three coal and one oil -fired. In these

  20. Guideline for implementing Co-generation based on biomass waste from Thai industries

    Energy Technology Data Exchange (ETDEWEB)

    Lybaek, R.

    2005-07-01

    Due to the large-scale industrial development in Thailand the consumption of energy - primarily based on fossil fuels - has increased enormously, even though the economic growth has slowed down since the economic crisis in 1997. It is, therefore, important to reduce the environmental impact of this energy consumption, which can be achieved by energy conservation, higher efficiency in the production of energy, or by the use of different kinds of renewable energy. This thesis seeks to develop new strategies for the use of waste heat as a part of the industrial process heat, which can be supplied to industries by a district-heating network. By substituting process heat - produced by electricity or by boilers using fossil fuel in individual industries - with process heat, produced by a co-generation plant - using the industries own biomass waste as fuel - process heat can be supplied to industries participating in a small scale district heating network. Thus, an Industrial Materials Network can be created, which is environmentally as well as economically beneficial for both industry and society. On the basis of a case study of the industrial area, Navanakorn Industrial Promotion Zone in Thailand, such initiatives for efficient materials and energy uses have been conducted and proved successful, and industries - as well as local and national governmental agencies, NGOs and branch organizations etc. - have shown interest in supporting the implementation of such scheme. In this thesis, a Guideline for large-scale implementation of Industrial Materials Network in Thailand was developed. By following a series of actions, the Guideline defines the initiatives that must be taken in order to ensure correct implementation. Chronologically, the emphasis of the Guideline is on pointing to relevant stakeholders who can pursue the implementation, and then appropriate areas and types of industries for Industrial Materials Network implementation. Thereafter, guidance for the

  1. Study of technical and economic feasibility of a cogeneration system in the tertiary sector; Estudo de viabilidade tecnica-economica de um sistema de cogeracao no setor terciario

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Rodolffo Aquino de; Rocha, Carlos Roberto; Bortoni, Edson da Costa [Universidade Federal de Itajuba (EXCEN/UNIFEI), MG (Brazil). Centro de Excelencia em Eficiencia Energetica

    2008-07-01

    This study aims to examine the technical feasibility and financial cost for a cogeneration system in a company in the tertiary sector. For this, was studied the electromechanical and thermal characteristics of a shopping center, as well as the technologies associated with the proposed cogeneration system. From the modeling of electric and thermal loads it was determined the system of operation for the system and the possible surplus energy generated. For the analysis of economic viability compare operating costs without cogeneration and with the alternative of cogeneration chosen. Among the calculations are the costs of investment and operation of the system. Was encountered the attractiveness of a cogeneration system, which uses natural gas as fuel for alternative engines and, in turn, reject heat to the absorption chillers. The idealized cogeneration system was also evaluated positively with a view to qualification required for participation in policies to encourage the rational use of energy resources. (author)

  2. Cogeneration in air separation cryogenic plants; Cogeracao em plantas criogenicas de separacao de ar

    Energy Technology Data Exchange (ETDEWEB)

    Bastos, Walter N.; Orlando, Alcir F. [Pontificia Univ. Catolica do Rio de Janeiro, RJ (Brazil). Dept. de Engenharia Mecanica]. E-mails: wnovellob@openlink.com.br; afo@mec-puc-rio.br

    2000-07-01

    A thermal and economic study, carried on by using the first and second law of thermodynamics concepts demonstrated the economic feasibility of the cogeneration system, and proposed modifications to be done in the studied cryogenic plant, a typical T-240 NA MPL3 plant. The thermodynamic analysis showed that the second law efficiency of the processes could be improved, together with a 12% electric energy consumption reduction. Four cogeneration schemes were analyzed with both the first and second laws of thermodynamics and, then, the economic analysis was performed. Rankine, Brayton, Otto and Combined gas-steam basic cycles were used in this analysis.The combined gas-steam cycle was shown to be more economically feasible than others. Thermal and electric loads were well balanced, resulting in a higher second law efficiency. Although the initial investment for the modification was higher, the savings resulted to be higher, turning into a higher rate of return of the investment. (author)

  3. Modelling the dynamics of the cogeneration power plant gas-air duct

    Directory of Open Access Journals (Sweden)

    Аnatoliy N. Bundyuk

    2014-12-01

    Full Text Available Introducing into wide practice the cogeneration power plants (or CHP is one of promising directions of the Ukrainian small-scale power engineering development. Thermal and electric energy generation using the same fuel kind can increase the overall plant efficiency. That makes it appropriate to use CHPs at compact residential areas, isolated industrial enterprises constituting one complex with staff housing area, at sports complexes, etc. The gas-air duct of the cogeneration power plant has been considered as an object of the diesel-generator shaft velocity control. The developed GAD mathematical model, served to analyze the CHP dynamic characteristics as acceleration curves obtained under different external disturbances in the MathWorks MATLAB environment. According to the electric power generation technology requirements a convenient transition process type has been selected, with subsequent identification of the diesel-generator shaft rotation speed control law.

  4. The performance of a temperature cascaded cogeneration system producing steam, cooling and dehumidification

    KAUST Repository

    Myat, Aung

    2013-02-01

    This paper discusses the performance of a temperature-cascaded cogeneration plant (TCCP), equipped with an efficient waste heat recovery system. The TCCP, also called a cogeneration system, produces four types of useful energy-namely, (i) electricity, (ii) steam, (iii) cooling and (iv) dehumidification-by utilizing single fuel source. The TCCP comprises a Capstone C-30 micro-turbine that generates nominal capacity of 26 kW of electricity, a compact and efficient waste heat recovery system and a host of waste-heat-activated devices, namely (i) a steam generator, (ii) an absorption chiller, (iii) an adsorption chiller and (iv) a multi-bed desiccant dehumidifier. The performance analysis was conducted under different operation conditions such as different exhaust gas temperatures. It was observed that energy utilization factor could be as high as 70% while fuel energy saving ratio was found to be 28%. © 2013 Desalination Publications.

  5. Mathematical Modelling of a Hybrid Micro-Cogeneration Group Based on a Four Stroke Diesel Engine

    Directory of Open Access Journals (Sweden)

    Apostol Valentin

    2014-06-01

    Full Text Available The paper presents a part of the work conducted in the first stage of a Research Grant called ”Hybrid micro-cogeneration group of high efficiency equipped with an electronically assisted ORC” acronym GRUCOHYB. The hybrid micro-cogeneration group is equipped with a four stroke Diesel engine having a maximum power of 40 kW. A mathematical model of the internal combustion engine is presented. The mathematical model is developed based on the Laws of Thermodynamics and takes into account the real, irreversible processes. Based on the mathematical model a computation program was developed. The results obtained were compared with those provided by the Diesel engine manufacturer. Results show a very high correlation between the manufacturer’s data and the simulation results for an engine running at 100% load. Future developments could involve using an exergetic analysis to show the ability of the ORC to generate electricity from recovered heat

  6. Stepping on the gas for district heating in Germany. Gas and steam turbines for cogeneration; Gas geben fuer Fernwaerme in Deutschland. Gas- und Dampfturbinen fuer die KWK

    Energy Technology Data Exchange (ETDEWEB)

    Bohtz, Christian [Alstom Power, Baden (Switzerland). Marketing and Product Management Gas Business

    2011-07-15

    Measured by its intensive efforts to lower CO{sub 2} emissions Germany is one of the leading countries in the EU. One contribution to this end is to be had from cogeneration. As a provider of cogeneration plants Alstom is working to improve the fuel efficiency as well as the overall efficiency and flexibility of its products. The author explains the technology of gas-fired cogeneration plants and gives three examples of their use.

  7. Fitting in of cogeneration into central heating systems; Inpassing warmte/kracht in cv-systemen

    Energy Technology Data Exchange (ETDEWEB)

    Rulkens, L.J.W. [FD-Bouwzaken, Ministerie van Landbouw, Natuurbeheer en Visserij LNV, Wageningen (Netherlands); Tijs, J.C. [Tijs Energy Systems, Wijk bij Duurstede (Netherlands); Wammes, J.A. [Emicon, Veenendaal (Netherlands)

    1997-02-01

    The choice for the size of a combined heat and power generating unit as well as the hydraulic and control engineering fitting in into existing central heating systems bears some pitfalls in practice. Those problems are inventorized and compiled for the manual `Design rules for the fitting in of cogeneration into central heating systems`. A brief overview is given of the contents of the manual. 3 figs., 3 ills., 1 tab.

  8. Experimental study on a resorption system for power and refrigeration cogeneration

    International Nuclear Information System (INIS)

    Jiang, L.; Wang, L.W.; Liu, C.Z.; Wang, R.Z.

    2016-01-01

    Energy conversion technologies, especially for power generation and refrigeration technologies driven by the low temperature heat, are gathering the momentum recently. This paper presents a novel resorption system for electricity and refrigeration cogeneraion. Compared with adsorption refrigeration system, resorption refrigeration is characterized as safety and simple structure since there is no ammonia liquid in the system. The cogeneration system is mainly composed of three HTS (high temperature salt) unit beds; three LTS (low temperature salts) unit beds, one expander, three ammonia valves, two oil valves, four water valves and connection pipes. Chemical working pair of MnCl 2 –CaCl 2 –NH 3 is selected. Since scroll expander is suitable for small type power generation system, it is chosen for expansion process. 4.8 kg MnCl 2 and 3.9 kg CaCl 2 impregnated in expanded natural graphite treated with sulfuric acid (ENG-TSA) are filled in the cogeneration system. Experimental results show that maximum cooling power 2.98 kW is able to be obtained while maximum shaft power is about 253 W with 82.3 W average value. The cogeneration system can be utilized for the heat source temperature lower than 170 °C. Total energy efficiency increases from 0.293 to 0.417 then decreases to 0.407 while exergy efficiency increases from 0.12 to 0.16. - Highlights: • A resorption system for power and refrigeration cogeneration is established and investigated. • ENG-TSA as the additive improves the heat and mass performance of composite adsorbent. • The highest shaft power and refrigeration power are 253 W and 2.98 kW, respectively. • Total energy efficiency of the system increases from 0.293 to 0.417 then decreases to 0.407.

  9. Efficient production of electricity and water in cogeneration systems. [Desalination plant

    Energy Technology Data Exchange (ETDEWEB)

    Tadros, S.K.

    1981-11-01

    This paper discusses two topping cycle steam turbine cogeneration systems. The water desalination plant selected is the multistage flash evaporator cycle which uses brine recirculation and high temperature additives for scale protection and 233F maximum brine temperature. The paper mentions briefly the impact of future fuel prices on design and factors which would further improve thermal efficiency. The fuel chargeable to power is determined. 6 refs.

  10. Duct burners in heat recovery system for cogeneration and captive power plants

    International Nuclear Information System (INIS)

    Majumdar, J.

    1992-01-01

    Our oil explorations both onshore and offshore have thrown open bright prospects of cogeneration by using natural gas in gas turbine power plants with heat recovery units. Both for co-gen and combined cycle systems, supplementary firing of GT exhaust gas is normally required. Hence, duct burners have significant role for effective contribution towards of efficacy of heat recovery system for gas turbine exhaust gas. This article details on various aspects of duct burners in heat recovery systems. (author)

  11. High efficiency cogeneration in sugar industry: opportunities, obstacles and possible solutions

    International Nuclear Information System (INIS)

    Govinda Rao, R.

    1994-01-01

    The main objective of this paper is to highlight the feasibility of bagasse based cogeneration systems within the framework of the existing laws and policies of the government, and to encourage the private sector and others to come forth to make good use of an extremely good investment climate. The feasible options worked out are based on financing from banks and other financial institutions at market rates. The other major objective is to establish the impediments to implement these projects. (author)

  12. Devising an energy saving technology for a biogas plant as a part of the cogeneration system

    OpenAIRE

    Чайковська, Євгенія Євстафіївна

    2015-01-01

    The paper suggests an operation technology for a biogas plant that allows setting a heating medium temperature at the inlet to the heat exchanger built in a digester and measuring the heating medium temperature at the outlet. An integrated system for assessing the varied temperature of digestion (that is based on mathematical and logical modeling within the cogeneration system) secures a continuous gas outlet, a timely unloading of fermented mash and loading of a fresh matter. For this purpos...

  13. Greenhouse gas emission for co-generation installation - reduction and selling

    International Nuclear Information System (INIS)

    Manev, S.; Stankov, N.; Asenov, A.

    2005-01-01

    According to Kyoto protocol countries which have the availability to buy green house gas emissions from other countries could be made by means of realization of investment project. In this article the authors review the necessary scope of work which have to be done in order particular project for co-generation installation to be realized, according the requirement and their own experience in this field

  14. EARLY ENTRANCE CO-PRODUCTION PLANT--DECENTRALIZED GASIFICATION COGENERATION TRANSPORTATION FUELS AND STEAM FROM AVAILABLE FEEDSTOCKS

    Energy Technology Data Exchange (ETDEWEB)

    John W. Rich

    2001-03-01

    Waste Processors Management, Inc. (WMPI), along with its subcontractors Texaco Power and Gasification (now ChevronTexaco), SASOL Technology Ltd., and Nexant Inc. entered into a Cooperative Agreement with the USDOE, National Energy Technology Laboratory (NETL) to assess the techno-economic viability of building an Early Entrance Co-Production Plant (EECP) in the US to produce ultra clean Fischer-Tropsch (FT) transportation fuels with either power or steam as the major co--product. The EECP design includes recovery and gasification of low-cost coal waste (culm) from physical coal cleaning operations and will assess blends of the culm with coal or petroleum coke. The project has three phases: Phase 1 is the concept definition and engineering feasibility study to identify areas of technical, environmental and financial risk. Phase 2 is an experimental testing program designed to validate the coal waste mixture gasification performance. Phase 3 updates the original EECP design based on results from Phase 2, to prepare a preliminary engineering design package and financial plan for obtaining private funding to build a 5,000 barrel per day (BPD) coal gasification/liquefaction plant next to an existing co-generation plant in Gilberton, Schuylkill County, Pennsylvania. The current report is WMPI's third quarterly technical progress report. It covers the period performance from October 1, 2001 through December 31, 2001.

  15. Cogeneration Technology Alternatives Study (CTAS). Volume 6: Computer data. Part 1: Coal-fired nocogeneration process boiler, section B

    Science.gov (United States)

    Knightly, W. F.

    1980-01-01

    About fifty industrial processes from the largest energy consuming sectors were used as a basis for matching a similar number of energy conversion systems that are considered as candidate which can be made available by the 1985 to 2000 time period. The sectors considered included food, textiles, lumber, paper, chemicals, petroleum, glass, and primary metals. The energy conversion systems included steam and gas turbines, diesels, thermionics, stirling, closed cycle and steam injected gas turbines, and fuel cells. Fuels considered were coal, both coal and petroleum based residual and distillate liquid fuels, and low Btu gas obtained through the on site gasification of coal. Computer generated reports of the fuel consumption and savings, capital costs, economics and emissions of the cogeneration energy conversion systems (ECS's) heat and power matched to the individual industrial processes are presented. National fuel and emissions savings are also reported for each ECS assuming it alone is implemented. Two nocogeneration base cases are included: coal fired and residual fired process boilers.

  16. Analysis of combustion turbine inlet air cooling systems applied to an operating cogeneration power plant

    International Nuclear Information System (INIS)

    Chacartegui, R.; Jimenez-Espadafor, F.; Sanchez, D.; Sanchez, T.

    2008-01-01

    In this work, combustion turbine inlet air cooling (CTIAC) systems are analyzed from an economic outlook, their effects on the global performance parameters and the economic results of the power plant. The study has been carried out on a combined cogeneration system, composed of a General Electric PG 6541 gas turbine and a heat recovery steam generator. The work has been divided into three parts. First, a revision of the present CTIAC technologies is shown, their effects on power plant performance and evaluation of the associated investment and maintenance costs. In a second phase of the work, the cogeneration plant was modelled with the objective of evaluating the power increase and the effects on the generated steam and the thermal oil. The cogeneration power plant model was developed, departing from the recorded operational data of the plant in 2005 and the gas turbine model offered by General Electric, to take into consideration that, in 2000, the gas turbine had been remodelled and the original performance curves should be corrected. The final objective of this model was to express the power plant main variables as a function of the gas turbine intake temperature, pressure and relative humidity. Finally, this model was applied to analyze the economic interest of different intake cooling systems, in different operative ranges and with different cooling capacities

  17. Gas turbine modular helium reactor in cogeneration; Turbina de gas reactor modular con helio en cogeneracion

    Energy Technology Data Exchange (ETDEWEB)

    Leon de los Santos, G. [UNAM, Facultad de Ingenieria, Division de Ingenieria Electrica, Departamento de Sistemas Energeticos, Ciudad Universitaria, 04510 Mexico, D. F. (Mexico)], e-mail: tesgleon@gmail.com

    2009-10-15

    This work carries out the thermal evaluation from the conversion of nuclear energy to electric power and process heat, through to implement an outline gas turbine modular helium reactor in cogeneration. Modeling and simulating with software Thermo flex of Thermo flow the performance parameters, based on a nuclear power plant constituted by an helium cooled reactor and helium gas turbine with three compression stages, two of inter cooling and one regeneration stage; more four heat recovery process, generating two pressure levels of overheat vapor, a pressure level of saturated vapor and one of hot water, with energetic characteristics to be able to give supply to a very wide gamma of industrial processes. Obtaining a relationship heat electricity of 0.52 and efficiency of net cogeneration of 54.28%, 70.2 MW net electric, 36.6 MW net thermal with 35% of condensed return to 30 C; for a supplied power by reactor of 196.7 MW; and with conditions in advanced gas turbine of 850 C and 7.06 Mpa, assembly in a shaft, inter cooling and heat recovery in cogeneration. (Author)

  18. Using in-house expertise in negotiating power sales contracts for industrial cogeneration plants

    International Nuclear Information System (INIS)

    Yott, R.A.

    1992-01-01

    Energy has always been a strategic component of Air Products and Chemicals production costs. In fact, Air Products is among the top consumers of electricity and natural gas in the U.S. Consequently, Air Products has developed a multifaceted Corporate Energy Department. The advent of PURPA in 1978 and the success enjoyed by Air Products in selling industrial gases over the fence to industrial customers as a integral part of their manufacturing system led Air Products into the industrial cogeneration business. This paper briefly summarizes Air Products entry into the industrial cogeneration market and the role that Air Products Energy Department has played in making this new business focus a success. It highlights how Air Products has been able to transfer its in-house expertise in purchasing power to the marketing, bidding, contract negotiation and avoided cost forecasting functions so critical in the successful development of industrial cogeneration opportunities. At Air Products we believe our long association with the utility industry first as a cost-conscious customer and more recently as an electric energy supplier has enhanced our competitive position. The same success story could be repeated at your company if you know what to look for and are not afraid to expand the horizons and responsibilities of your energy department

  19. Feed-in tariff and market electricity price comparison. The case of cogeneration units in Croatia

    International Nuclear Information System (INIS)

    Uran, Vedran; Krajcar, Slavko

    2009-01-01

    In August 2007, the Government of the Republic of Croatia instituted a feed-in tariff system, requiring the Croatian Electricity Market Operator (HROTE) to off-take the electricity produced from renewable energy sources or cogeneration units fueled by natural gas. Analysis of the off-take electricity price range, which depends on the net electrical output and electricity market trends, indicates that it is more cost effective for cogeneration units greater than 1 MW to sell their electricity on the exchange market. This was confirmed by developing a mathematical model to calculate the cost-effectiveness ratio of a cogeneration unit. This ratio represents the relation between the profit spread, i.e. the difference between the profit generated from selling the electricity on the exchange market and the profit made from dispatching the electricity to HROTE, as well as the total investment costs. The model can be applied for changes in certain parameters, such as the net electrical output, volatility and spot electricity price. The Monte Carlo method is used to obtain the most probable cost-effectiveness ratio and average future electricity price. Together with these two economic parameters and market price analysis, it is possible to calculate and calibrate an acceptable off-take electricity price. (author)

  20. Implementation of a cogeneration plant for a food processing facility. A case study

    International Nuclear Information System (INIS)

    Bianco, Vincenzo; De Rosa, Mattia; Scarpa, Federico; Tagliafico, Luca A.

    2016-01-01

    Highlights: • CHP utilization is demonstrated to allow a reduction of primary energy consumption. • The consideration of various investment indexes leads to the determination of different optimal powers. • The choice of a specific investment index to evaluate a CHP is linked to the strategy of the company. - Abstract: The present work presents an investigation regarding the feasibility analysis of a cogeneration plant for a food processing facility with the aim to decrease the cost of energy supply. The monthly electricity and heat consumption profiles are analyzed, in order to understand the consumption profiles, as well as the costs of the current furniture of electricity and gas. Then, a detailed thermodynamic model of the cogeneration cycle is implemented and the investment costs are linked to the thermodynamic variables by means of cost functions. The optimal electricity power of the co-generator is determined with reference to various investment indexes. The analysis highlights that the optimal dimension varies according to the chosen indicator, therefore it is not possible to establish it univocally, but it depends on the financial/economic strategy of the company through the considered investment index.

  1. Thermoeconomic analysis of Biomass Integrated Gasification Gas Turbine Combined Cycle (BIG GT CC) cogeneration plant

    Energy Technology Data Exchange (ETDEWEB)

    Arrieta, Felipe Raul Ponce; Lora, Electo Silva [Escola Federal de Engenharia de Itajuba, MG (Brazil). Nucleo de Estudos de Sistemas Termicos]. E-mails: aponce@iem.efei.br; electo@iem.efei.br; Perez, Silvia Azucena Nebra de [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Mecanica. Dept. de Energia]. E-mail: sanebra@fem. unicamp.br

    2000-07-01

    Using thermoeconomics as a tool to identify the location and magnitude of the real thermodynamic losses (energy waste, or exergy destruction and exergy losses) it is possible to assess the production costs of each product (electric power and heat) and the exergetic and exergoeconomic cost of each flow in a cogeneration plant to assist in decision-marketing procedures concerning to plant design, investment, operation and allocations of research funds. Thermo economic analysis of Biomass Integrated Gasification Gas Turbine Combined Cycle (BIG GT CC) cogeneration plant for its applications in sugar cane mills brings the following results: the global exergetic efficiency is low; the highest irreversibilities occur in the following equipment, by order: scrubber (38%), gas turbine (16%), dryer (12%), gasifier and HRSG (6%); due to the adopted cost distribution methodology, the unit exergetic cost of the heat (4,11) is lower than electricity (4,71); the lower market price of biomass is one of the most sensible parameter in the possible implementation of BIG-GT technology in sugar cane industry; the production costs are 31 US$/MWh and 32 US$/MWh for electricity and heat, respectively. The electricity cost is, after all, competitive with the actual market price. The electricity and heat costs are lower or almost equal than other values reported for actual Rankine cycle cogeneration plants. (author)

  2. A mathematical model for the dynamic simulation of low size cogeneration gas turbines within smart microgrids

    International Nuclear Information System (INIS)

    Bracco, Stefano; Delfino, Federico

    2017-01-01

    Microturbines represent a suitable technology to be adopted in smart microgrids since they are characterized by affordable capital and maintenance costs, high reliability and flexibility, and low environmental impact; moreover, they can be fed by fossil fuels or biofuels. They can operate in cogeneration and trigeneration mode, thus permitting to attain high global efficiency values of the energy conversion system from primary energy to electrical and thermal energy; from the electrical point of view, microturbines can operate connected to the distribution grid but also in islanded mode, thus enabling their use in remote areas without electrification. The paper describes the mathematical model that has been developed to simulate in off-design and transient conditions the operation of a 65 kW_e_l cogeneration microturbine installed within a smart microgrid. The dynamic simulation model is characterized by a flexible architecture that permits to simulate other different size single-shaft microturbines. The paper reports the main equations of the model, focusing on the architecture of the simulator and the microturbine control system; furthermore the most significant results derived from the validation phase are reported too, referring to the microturbine installed in the Smart Polygeneration Microgrid of the Savona Campus at the University of Genoa in Italy. - Highlights: • Dynamic simulation model of a cogeneration microturbine. • Off-design and transient performances of the microturbine. • Simulator validated on the Smart Polygeneration Microgrid at the Savona Campus.

  3. Improving bioethanol production from sugarcane: evaluation of distillation, thermal integration and cogeneration systems

    International Nuclear Information System (INIS)

    Dias, Marina O.S.; Modesto, Marcelo; Ensinas, Adriano V.; Nebra, Silvia A.; Filho, Rubens Maciel; Rossell, Carlos E.V.

    2011-01-01

    Demand for bioethanol has grown considerably over the last years. Even though Brazil has been producing ethanol from sugarcane on a large scale for decades, this industry is characterized by low energy efficiency, using a large fraction of the bagasse produced as fuel in the cogeneration system to supply the process energy requirements. The possibility of selling surplus electricity to the grid or using surplus bagasse as raw material of other processes has motivated investments on more efficient cogeneration systems and process thermal integration. In this work simulations of an autonomous distillery were carried out, along with utilities demand optimization using Pinch Analysis concepts. Different cogeneration systems were analyzed: a traditional Rankine Cycle, with steam of high temperature and pressure (80 bar, 510 o C) and back pressure and condensing steam turbines configuration, and a BIGCC (Biomass Integrated Gasification Combined Cycle), comprised by a gas turbine set operating with biomass gas produced in a gasifier that uses sugarcane bagasse as raw material. Thermoeconomic analyses determining exergy-based costs of electricity and ethanol for both cases were carried out. The main objective is to show the impact that these process improvements can produce in industrial systems, compared to the current situation.

  4. Emission characterization and evaluation of natural gas-fueled cogeneration microturbines and internal combustion engines

    International Nuclear Information System (INIS)

    Canova, Aldo; Chicco, Gianfranco; Genon, Giuseppe; Mancarella, Pierluigi

    2008-01-01

    The increasing diffusion of small-scale energy systems within the distributed generation (DG) paradigm is raising the need for studying the environmental impact due to the different DG solutions in order to assess their sustainability. Addressing the environmental impact calls for building specific models for studying both local and global emissions. In this framework, the adoption of natural gas-fueled DG cogeneration technologies may provide, as a consequence of cogeneration enhanced overall energy efficiency and of natural gas relatively low carbon content, a significant reduction of global impact in terms of CO 2 emissions with respect to the separate production of electricity and heat. However, a comprehensive evaluation of the DG alternatives should take into account as well the impact due to the presence of plants spread over the territory that could increase the local pollution, in particular due to CO and NO x , and thus could worsen the local air quality. This paper provides an overview on the characterization of the emissions from small-scale natural gas-fueled cogeneration systems, with specific reference to the DG technologies nowadays most available in the market, namely, microturbines and internal combustion engines. The corresponding local and global environmental impacts are evaluated by using the emission balance approach. A numerical case study with two representative machines highlights their different emission characteristics, also considering the partial-load emission performance

  5. Comparative analysis of cogeneration power plants optimization based on stochastic method using superstructure and process simulator

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Leonardo Rodrigues de [Instituto Federal do Espirito Santo, Vitoria, ES (Brazil)], E-mail: leoaraujo@ifes.edu.br; Donatelli, Joao Luiz Marcon [Universidade Federal do Espirito Santo (UFES), Vitoria, ES (Brazil)], E-mail: joaoluiz@npd.ufes.br; Silva, Edmar Alino da Cruz [Instituto Tecnologico de Aeronautica (ITA/CTA), Sao Jose dos Campos, SP (Brazil); Azevedo, Joao Luiz F. [Instituto de Aeronautica e Espaco (CTA/IAE/ALA), Sao Jose dos Campos, SP (Brazil)

    2010-07-01

    Thermal systems are essential in facilities such as thermoelectric plants, cogeneration plants, refrigeration systems and air conditioning, among others, in which much of the energy consumed by humanity is processed. In a world with finite natural sources of fuels and growing energy demand, issues related with thermal system design, such as cost estimative, design complexity, environmental protection and optimization are becoming increasingly important. Therefore the need to understand the mechanisms that degrade energy, improve energy sources use, reduce environmental impacts and also reduce project, operation and maintenance costs. In recent years, a consistent development of procedures and techniques for computational design of thermal systems has occurred. In this context, the fundamental objective of this study is a performance comparative analysis of structural and parametric optimization of a cogeneration system using stochastic methods: genetic algorithm and simulated annealing. This research work uses a superstructure, modelled in a process simulator, IPSEpro of SimTech, in which the appropriate design case studied options are included. Accordingly, the cogeneration system optimal configuration is determined as a consequence of the optimization process, restricted within the configuration options included in the superstructure. The optimization routines are written in MsExcel Visual Basic, in order to work perfectly coupled to the simulator process. At the end of the optimization process, the system optimal configuration, given the characteristics of each specific problem, should be defined. (author)

  6. Evaluation of high temperature gas reactor for demanding cogeneration load follow

    International Nuclear Information System (INIS)

    Yan, Xing L.; Sato, Hiroyuki; Tachibana, Yukio; Kunitomi, Kazuhiko; Hino, Ryutaro

    2012-01-01

    Modular nuclear reactor systems are being developed around the world for new missions among which is cogeneration for industries and remote areas. Like existing fossil energy counterpart in these markets, a nuclear plant would need to demonstrate the feasibility of load follow including (1) the reliability to generate power and heat simultaneously and alone and (2) the flexibility to vary cogeneration rates concurrent to demand changes. This article reports the results of JAEA's evaluation on the high temperature gas reactor (HTGR) to perform these duties. The evaluation results in a plant design based on the materials and design codes developed with JAEA's operating test reactor and from additional equipment validation programs. The 600 MWt-HTGR plant generates electricity efficiently by gas turbine and 900degC heat by a topping heater. The heater couples via a heat transport loop to industrial facility that consumes the high temperature heat to yield heat product such as hydrogen fuel, steel, or chemical. Original control methods are proposed to automate transition between the load duties. Equipment challenges are addressed for severe operation conditions. Performance limits of cogeneration load following are quantified from the plant system simulation to a range of bounding events including a loss of either load and a rapid peaking of electricity. (author)

  7. First Study of Helium Gas Purification System as Primary Coolant of Co-Generation Reactor

    International Nuclear Information System (INIS)

    Piping Supriatna

    2009-01-01

    The technological progress of NPP Generation-I on 1950’s, Generation-II, Generation-III recently on going, and Generation-IV which will be implemented on next year 2025, concept of nuclear power technology implementation not only for generate electrical energy, but also for other application which called cogeneration reactor. Commonly the type of this reactor is High Temperature Reactor (HTR), which have other capabilities like Hydrogen production, desalination, Enhanced Oil Recovery (EOR), etc. The cogeneration reactor (HTR) produce thermal output higher than commonly Nuclear Power Plant, and need special Heat Exchanger with helium gas as coolant. In order to preserve heat transfer with high efficiency, constant purity of the gas must be maintained as well as possible, especially contamination from its impurities. In this report has been done study for design concept of HTR primary coolant gas purification system, including methodology by sampling He gas from Primary Coolant and purification by using Physical Helium Splitting Membrane. The examination has been designed in physical simulator by using heater as reactor core. The result of study show that the of Primary Coolant Gas Purification System is enable to be implemented on cogeneration reactor. (author)

  8. Analysis of economic feasibility of sale of surplus electricity in cogeneration: case study

    International Nuclear Information System (INIS)

    Fodra, Marcelo; Esperancini, Maura Seiko Tsutsui

    2010-01-01

    The production of energy in large quantity and at competitive prices is crucial for economic development, which allied to the environmental question, has incentivated the use of renewable sources of energy. One of the most promising sources of renewable energy is the cogeneration from the residues of cane. Currently, the scenario for this kind of energy production is not consolidated, as production prices are not stable, inducing a risky situation for the environment. This work was aimed to study the economic viability of installing a main site for cogeneration of electricity, in a regional sugarcane factory located in the central region of Sao Paulo state that currently uses residues of sugar cane as fuel. The risk factor that was taken into consideration was the price paid for the MWh sold to the Chamber of Commerce of Electricity. The Monte Carlo Method was used to assess the risk factors for the analysis, by using of New Present Value (NPV), in a scenario that uses 20% of the initial investment made by the energy dealer. After the simulations were finished, considering the conditions used in this work, the project tends to be not feasible, as the behavior of the prices of cogenerated MWh are not sufficient for paying the initial investment and the operational costs. (author)

  9. Evaluation of different hedging strategies for commodity price risks of industrial cogeneration plants

    International Nuclear Information System (INIS)

    Palzer, Andreas; Westner, Günther; Madlener, Reinhard

    2013-01-01

    In this paper, we design and evaluate eight different strategies for hedging commodity price risks of industrial cogeneration plants. Price developments are parameterized based on EEX data from 2008 to 2011. The probability distributions derived are used to determine the value-at-risk (VaR) of the individual strategies, which are in a final step combined in a mean-variance portfolio analysis for determining the most efficient hedging strategy. We find that the strategy adopted can have a marked influence on the remaining price risk. Quarter futures are found to be particularly well suited for reducing market price risk. In contrast, spot trading of CO 2 certificates is found to be preferable compared to forward market trading. Finally, portfolio optimization shows that a mix of various hedging strategies can further improve the profitability of a heat-based cogeneration plant. - Highlights: • Evaluation of commodity price risk hedging strategies for industrial cogeneration. • Value-at-risk analysis of eight different hedging strategies. • Mean-variance portfolio analysis for determining the optimal hedging strategy mix. • A mix of hedging strategies further improves profitability of heat-based CHP

  10. FY1999 annual report on the research and development on practical industrial cogeneration technology; 1999 nendo sangyoyo cogeneration jitsuyo gijutsu kaihatsu kenkyu seika

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    The basic plan aims to quicken the practical application of the industrial HBGT (hybrid gas turbine) cogeneration technology and thereby to realize high-efficiency energy utilization for reduction in CO2 emission. For this purpose, a medium-scale HBGT, expected to be high in efficiency and low in polluting, and its components are subjected to assessment tests and endurance tests to prove that there are reliability and soundness in HBGT. Ceramic members are developed which are high in strength at elevated temperatures and in resistance to oxidation, and are subjected to assessment so that they will be further improved in reliability and durability. An HBGT is designed, fabricated, and operated. The engine system is tested for performance, and the performance is improved. It is put to a long-term operation, which is to confirm the presence of soundness and reliability in HBGT as an industrial cogeneration system. Industrial fields in which HBGT will be useful are selected and surveys are conducted to find out how it will function in such selected fields. Problems which HBGT will encounter upon practical application are extracted, and measures for solving them are clarified. Such an HBGT will have a shaft output of approximately 8,000kW, engine thermal efficiency of not less than 34%, and a turbine inlet temperature of approximately 1,250 degrees C. (NEDO)

  11. Gathering straw energy balance for co-generation in sugarcane mills; Balanco energetico do recolhimento da palha para cogeracao de energia em usinas de cana-de-acucar

    Energy Technology Data Exchange (ETDEWEB)

    Veiga, Joao Paulo Soto; Bizzo, Waldir Antonio; Carvalho, Danilo Jose; Berton, Rafael Piatto [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Fac. de Engenharia Mecanica; Linero, Francisco Antonio Barba [Centro de Tecnologia Canavieira (CTC), Piracicaba, SP (Brazil)], E-mails: jpsveiga@fem.unicamp.br, bizzo@fem.unicamp.br, linero@ctc.com.br, liar@fem.unicamp.br, rpberton@fem.unicamp.br

    2012-11-01

    With the requirement and expansion of sugarcane harvest without burning the straw in the field of began to be seen as a potential fuel for co-generation sugarcane mills together bagasse. This study examined the productivity and three ways of gathering and transportation of straw in order to determine the potential energy available in biomass residues and their respective energy consumption on gathering and transport operations. To this were determined parameters for the production of waste per hectare, minimum quantity to be left in the field for maintenance of soil organic carbon and erosion reducing, the amount of straw recovered and milled at the mill, material humidity and diesel and electricity consumption of each step to obtain the final balance of energy recovered. (author)

  12. The national immunisation programme in the Netherlands: current status and potential future developments

    NARCIS (Netherlands)

    Abbink F; Al MJ; Berbers GAM; Binnendijk RS van; Boot HJ; Duynhoven YTHP van; Gageldonk-Lafeber AB van; Greeff SC de; Kimman TG; Meijer LA; Mooi FR; Oosten M van; Plas SM van der; Schouls LM; Soolingen D van; Vermeer-de Bondt PE; Vliet JA van; Melker HE de; Hahne SJM; Boer IM de; CIE

    2005-01-01

    The national immunisation programme in the Netherlands is very effective and safe. To improve the success and effectiveness of the immunisation programme, vaccination of other (age)groups is indicated. Extension of the programme with new target diseases can result in considerable health gain for

  13. Linking community-based and national REDD+ monitoring: a review of the potential

    NARCIS (Netherlands)

    Pratihast, A.K.; Herold, M.; Sy, de V.; Murdiyarso, D.; Skutsch, M.

    2013-01-01

    Countries participating in REDD+ schemes are required to establish a national monitoring system that keeps track of forest carbon changes over time. Community-based monitoring (CBM) can be useful for tracking locally driven forest change activities and their impacts. In this paper, we review some of

  14. Optimal integration of linear Fresnel reflector with gas turbine cogeneration power plant

    International Nuclear Information System (INIS)

    Dabwan, Yousef N.; Mokheimer, Esmail M.A.

    2017-01-01

    Highlights: • A LFR integrated solar gas turbine cogeneration plant (ISGCPP) has been simulated. • The optimally integrated LFR with gas turbine cogeneration plant can achieve an annual solar share of 23%. • Optimal integration of LFR with gas turbine cogeneration system can reduce CO 2 emission by 18%. • Compared to a fully-solar-powered LFR plant, the optimal ISGCPP reduces the LEC by 83%. • ISGCPP reduces the LEC by 50% compared to plants integrated with carbon capture technology. - Abstract: Solar energy is an abundant resource in many countries in the Sunbelt, especially in the middle east, countries, where recent expansion in the utilization of natural gas for electricity generation has created a significant base for introducing integrated solar‐natural gas power plants (ISGPP) as an optimal solution for electricity generation in these countries. ISGPP reduces the need for thermal energy storage in traditional concentrated solar thermal plants and results in dispatchable power on demand at lower cost than stand-alone concentrated thermal power and much cheaper than photovoltaic plants. Moreover, integrating concentrated solar power (CSP) with conventional fossil fuel based thermal power plants is quite suitable for large-scale central electric power generation plants and it can be implemented in the design of new installed plants or during retrofitting of existing plants. The main objective of the present work is to investigate the possible modifications of an existing gas turbine cogeneration plant, which has a gas turbine of 150 MWe electricity generation capacity and produces steam at a rate of 81.4 at 394 °C and 45.88 bars for an industrial process, via integrating it with concentrated solar power system. In this regard, many simulations have been carried out using Thermoflow software to explore the thermo-economic performance of the gas turbine cogeneration plant integrated with LFR concentrated solar power field. Different electricity

  15. State of the art of national landslide databases in Europe and their potential for assessing landslide susceptibility, hazard and risk

    Science.gov (United States)

    Van Den Eeckhaut, Miet; Hervás, Javier

    2012-02-01

    A landslide inventory is the most important information source for quantitative zoning of landslide susceptibility, hazard and risk. It should give insight into the location, date, type, size, activity and causal factors of landslides as well as resultant damage. In Europe, many countries have created or are creating national and/or regional landslide databases (LDBs). Yet little is known on their contents, completeness, format, structure, language use and accessibility, and hence on their ability to perform national or transnational landslide zoning. Therefore, this study presents a detailed analysis of existing national LDBs in the EU member states, EU official candidate and potential candidate countries, and EFTA countries, and their possible use for landslide zoning. These national LDBs were compared with a subset of 22 regional databases. Twenty-two out of 37 contacted European countries currently have national LDBs, and six other countries have only regional LDBs. In total, the national LDBs contain 633,696 landslides, of which 485,004 are located in Italy, while Austria, the Czech Republic, France, Norway, Poland, Slovakia, and the UK also have > 10,000 landslides in their LDBs. National LDBs are generally created in the official language of each country and 58% of them contain other natural hazards (e.g. floods and sinkholes). About 68% of the LDBs contain less than 50% of all landslides in each country, but a positive observation is that 60% of the LDBs are updated at least once a year or after a major event. Most landslide locations are collected with traditional methods such as field surveys, aerial photo interpretation and analysis of historical records. Currently, integration of landslide information from different national LDBs is hampered because of differences in language and classification systems for landslide type and activity. Other problems are that currently only half of the national LDBs have a direct link between spatial and alphanumeric

  16. Assessing transformational change potential: the case of the Tunisian cement Nationally Appropriate Mitigation Action (NAMA)

    DEFF Research Database (Denmark)

    Boodoo, Zyaad; Olsen, Karen Holm

    2018-01-01

    and documentation gathered during field work in Tunisia 2014–2015. The study finds that the NAMA design is not likely to lead to transformational change of the cement sector, since underlying factors accounting for lock-in are not properly tackled. Although the NAMA has enabled new and promising sectoral......To effectively address the root causes of carbon lock-in across developing countries, Nationally Appropriate Mitigation Actions (NAMAs) with transformational change characteristics are being supported by donors and finance mechanisms as a means to achieve ambitious nationally determined...... contributions (NDCs). However, there is still a scarcity of empirical studies on how transformational change policies and actions are designed and supported in practice. This article addresses such a gap in knowledge by combining theoretical insights from the multi-level perspective and transitions management...

  17. NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS (NESHAP) SUBPART H RADIONUCLIDES POTENTIAL TO EMIT CALCULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    EARLEY JN

    2008-07-23

    This document provides an update of the status of stacks on the Hanford Site and the potential radionuclide emissions, i.e., emissions that could occur with no control devices in place. This review shows the calculations that determined whether the total effective dose equivalent (TEDE) received by the maximum public receptor as a result of potential emissions from any one of these stacks would exceed 0.1 millirem/year. Such stacks require continuous monitoring of the effluent, or other monitoring, to meet the requirements of Washington Administrative code (WAC) 246-247-035(1)(a)(ii) and WAC 246-247-075(1), -(2), and -(6). This revised update reviews the potential-to-emit (PTE) calculations of 31 stacks for Fluor Hanford, Inc. Of those 31 stacks, 11 have the potential to cause a TEDE greater than 0.1 mrem/year.

  18. NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS (NESHAP) SUBPART H; RADIONUCLIDES POTENTIAL-TO-EMIT CALCULATIONS

    International Nuclear Information System (INIS)

    EARLEY JN

    2008-01-01

    This document provides an update of the status of stacks on the Hanford Site and the potential radionuclide emissions, i.e., emissions that could occur with no control devices in place. This review shows the calculations that determined whether the total effective dose equivalent (TEDE) received by the maximum public receptor as a result of potential emissions from any one of these stacks would exceed 0.1 millirem/year. Such stacks require continuous monitoring of the effluent, or other monitoring, to meet the requirements of Washington Administrative code (WAC) 246-247-035(1)(a)(ii) and WAC 246-247-075(1), -(2), and -(6). This revised update reviews the potential-to-emit (PTE) calculations of 31 stacks for Fluor Hanford, Inc. Of those 31 stacks, 11 have the potential to cause a TEDE greater than 0.1 mrem/year

  19. Design of a modular cogeneration plant to supply residential buildings; Dimensionierung eines Blockheizkraftwerkes zur Versorgung einer Wohnsiedlung

    Energy Technology Data Exchange (ETDEWEB)

    Marquardt, R.

    2000-03-01

    Excel tables are presented for fast integral calculation of all energetic and monetary parameters required for calculating the economic efficiency of a cogeneration plant. The Excel programming is more detailed than the method of calculation specified in VDI 2067 in that it also provides potential energy savings,carbon dioxide reduction and exergetic calculations. Influencing parameters like technical data, energy consumption data, fuel properties, and the cost structure of electricity and heat supply can be freely chosen so as to enable maximum parameter variation and an analysis of their influence on the result. [German] Mit der vorliegenden Arbeit wurde ein Instrument in Form von Excel-Tabellen erstellt, das eine schnelle integrale Berechnung aller energetischen und monetaeren Ergebnisgroessen ermoeglicht, die beim Einsatz eines BHKW zur Versorgung einer Bedarfsstruktur im Vergleich zu einer konventionellen getrennten Energiebereitstellung von Interesse sind. Die Excel-Programmierung geht dabei ueber die Abbildung des in der VDI 2067 beschriebenen Berechnungsverfahrens hinaus und liefert neben der Berechnung der Waermebereitstellungskosten auch die Ermittlung von Energieeinspar-, CO{sub 2}-Minderungspotentialen sowie eine exergetische Betrachtung der Ergebnisse. Alle auf das Ergebnis einwirkende Parameter wie technische Anlagendaten, Energiebedarfswerte, Brennstoffeigenschaften, Kostenstruktur der Elektrizitaets- und Waermeversorgung u.a. sind prinzipiell frei waehlbar. So wurde sichergestellt, dass eine Variation verschiedener Parameter moeglich ist und deren Einfluss auf das Ergebnis analysiert werden kann. (orig.)

  20. Performance analysis of a combined organic Rankine cycle and vapor compression cycle for power and refrigeration cogeneration

    International Nuclear Information System (INIS)

    Kim, Kyoung Hoon; Perez-Blanco, Horacio

    2015-01-01

    A thermodynamic analysis of cogeneration of power and refrigeration activated by low-grade sensible energy is presented in this work. An organic Rankine cycle (ORC) for power production and a vapor compression cycle (VCC) for refrigeration using the same working fluid are linked in the analysis, including the limiting case of cold production without net electricity production. We investigate the effects of key parameters on system performance such as net power production, refrigeration, and thermal and exergy efficiencies. Characteristic indexes proportional to the cost of heat exchangers or of turbines, such as total number of transfer units (NTU tot ), size parameter (SP) and isentropic volumetric flow ratio (VFR) are also examined. Three important system parameters are selected, namely turbine inlet temperature, turbine inlet pressure, and the flow division ratio. The analysis is conducted for several different working fluids. For a few special cases, isobutane is used for a sensitivity analysis due to its relatively high efficiencies. Our results show that the system has the potential to effectively use low grade thermal sources. System performance depends both on the adopted parameters and working fluid. - Highlights: • Waste heat utilization can reduce emissions of carbon dioxide. • The ORC/VCC cycle can deliver power and/or refrigeration using waste heat. • Efficiencies and size parameters are used for cycle evaluation. • The cycle performance is studied for eight suitable refrigerants. Isobutane is used for a sensitivity analysis. • The work shows that the isobutene cycle is quite promising.