WorldWideScience

Sample records for nasa space shuttle

  1. Holography on the NASA Space Shuttle

    Science.gov (United States)

    Wuerker, R. F.; Heflinger, L. O.; Flannery, J. V.; Kassel, A.; Rollauer, A. M.

    1980-01-01

    The SL-3 flight on the Space Shuttle will carry a 25 mW He-Ne laser holographic recorder for recording the solution growth of triglycine sulfate (TGS) crystals under low-zero gravity conditions. Three hundred holograms (two orthogonal views) will be taken (on SO-253 film) of each growth experiment. Processing and analysis (i.e., reconstructed imagery, holographic schlieren, reverse reference beam microscopy, and stored beam interferometry) of the holographic records will be done at NASA/MSFC. Other uses of the recorder on the Shuttle have been proposed.

  2. Space Shuttle Main Engine Public Test Firing

    Science.gov (United States)

    2000-01-01

    A new NASA Space Shuttle Main Engine (SSME) roars to the approval of more than 2,000 people who came to John C. Stennis Space Center in Hancock County, Miss., on July 25 for a flight-certification test of the SSME Block II configuration. The engine, a new and significantly upgraded shuttle engine, was delivered to NASA's Kennedy Space Center in Florida for use on future shuttle missions. Spectators were able to experience the 'shake, rattle and roar' of the engine, which ran for 520 seconds - the length of time it takes a shuttle to reach orbit.

  3. AMS gets lift on space shuttle Discovery

    CERN Multimedia

    2009-01-01

    AMS-02, the CERN-recognized experiment that will seek dark matter, missing matter and antimatter in Space aboard the International Space Station (ISS), has recently got the green light to be part of the STS-134 NASA mission in 2010. Installation of AMS detectors in the Prévessin experiment hall.In a recent press release, NASA announced that the last or last-but-one mission of the Space Shuttle programme would be the one that will deliver AMS, the Alpha Magnetic Spectrometer, to the International Space Station. The Space Shuttle Discovery is due to lift off in July 2010 from Kennedy Space Center and its mission will include the installation of AMS to the exterior of the space station, using both the shuttle and station arms. "It wasn’t easy to get a lift on the Space Shuttle from the Bush administration," says professor Samuel Ting, spokesperson of the experiment, "since during his administration all the funds for space research w...

  4. International aerospace engineering: NASA shuttle and European Spacelab

    Science.gov (United States)

    Bilstein, R. E.

    1981-01-01

    NASA negotiations and contractual arrangements involving European space research organizations' participation in manned space operations and efforts in building Spacelab for the U.S. Reusable Space Shuttle are discussed. Some of the diplomatic and technical collaboration involved in the international effort is reviewed.

  5. Stennis Holds Last Planned Space Shuttle Engine Test

    Science.gov (United States)

    2009-01-01

    With 520 seconds of shake, rattle and roar on July 29, 2009 NASA's John C. Stennis Space Center marked the end of an era for testing the space shuttle main engines that have powered the nation's Space Shuttle Program for nearly three decades.

  6. Probabilistic risk analysis for the NASA space shuttle: a brief history and current work

    International Nuclear Information System (INIS)

    Pate-Cornell, Elisabeth; Dillon, Robin

    2001-01-01

    While NASA managers have always relied on risk analysis tools for the development and maintenance of space projects, quantitative and especially probabilistic techniques have been gaining acceptance in recent years. In some cases, the studies have been required, for example, to launch the Galileo spacecraft with plutonium fuel, but these successful applications have helped to demonstrate the benefits of these tools. This paper reviews the history of probabilistic risk analysis (PRA) by NASA for the space shuttle program and discusses the status of the on-going development of the Quantitative Risk Assessment System (QRAS) software that performs PRA. The goal is to have within NASA a tool that can be used when needed to update previous risk estimates and to assess the benefits of possible upgrades to the system

  7. NASA study backs SSTO, urges shuttle phaseout

    Science.gov (United States)

    Asker, James R.

    1994-03-01

    A brief discusion of a Congressionally ordered NASA study on how to meet future US Government space launch needs is presented. Three options were examined: (1) improvement ofthe Space Shuttle; (2) development of expendable launch vehicles (ELVs); and (3) development of a single-stage-to-orbit (SSTO), manned vehicle that is reusable with advanced technology. After examining the three options, it was determined that the most economical approach to space access through the year 2030 would be to develop the SSTO vehicle and phase out Space Shuttle operations within 15 years and ELVs within 20 years. Other aspects of the study's findings are briefly covered.

  8. Report of the Space Shuttle Management Independent Review Team

    Science.gov (United States)

    1995-02-01

    At the request of the NASA Administrator a team was formed to review the Space Shuttle Program and propose a new management system that could significantly reduce operating costs. Composed of a group of people with broad and extensive experience in spaceflight and related areas, the team received briefings from the NASA organizations and most of the supporting contractors involved in the Shuttle Program. In addition, a number of chief executives from the supporting contractors provided advice and suggestions. The team found that the present management system has functioned reasonably well despite its diffuse structure. The team also determined that the shuttle has become a mature and reliable system, and--in terms of a manned rocket-propelled space launch system--is about as safe as today's technology will provide. In addition, NASA has reduced shuttle operating costs by about 25 percent over the past 3 years. The program, however, remains in a quasi-development mode and yearly costs remain higher than required. Given the current NASA-contractor structure and incentives, it is difficult to establish cost reduction as a primary goal and implement changes to achieve efficiencies. As a result, the team sought to create a management structure and associated environment that enables and motivates the Program to further reduce operational costs. Accordingly, the review team concluded that the NASA Space Shuttle Program should (1) establish a clear set of program goals, placing a greater emphasis on cost-efficient operations and user-friendly payload integration; (2) redefine the management structure, separating development and operations and disengaging NASA from the daily operation of the space shuttle; and (3) provide the necessary environment and conditions within the program to pursue these goals.

  9. Astronaut exposure to space radiation - Space Shuttle experience

    International Nuclear Information System (INIS)

    Atwell, W.

    1990-01-01

    Space Shuttle astronauts are exposed to both the trapped radiation and the galactic cosmic radiation environments. In addition, the sun periodically emits high-energy particles which could pose a serious threat to flight crews. NASA adheres to federal regulations and recommended exposure limits for radiation protection and has established a radiological health and risk assessment program. Using models of the space radiation environment, a Shuttle shielding model, and an anatomical human model, crew exposure estimates are made for each Shuttle flight. The various models are reviewed. Dosimeters are worn by each astronaut and are flown at several fixed locations to obtain inflight measurements. The dosimetry complement is discussed in detail. A comparison between the premission calculations and measurements is presented. Extrapolation of Shuttle experience to long-duration exposure is explored. 14 refs

  10. Preparing for the High Frontier: The Role and Training of NASA Astronauts in the Post- Space Shuttle Era

    Science.gov (United States)

    2011-01-01

    In May 2010, the National Research Council (NRC) was asked by NASA to address several questions related to the Astronaut Corps. The NRC s Committee on Human Spaceflight Crew Operations was tasked to answer several questions: 1. How should the role and size of the activities managed by the Johnson Space Center Flight Crew Operations Directorate change after space shuttle retirement and completion of the assembly of the International Space Station (ISS)? 2. What are the requirements for crew-related ground-based facilities after the Space Shuttle program ends? 3. Is the fleet of aircraft used for training the Astronaut Corps a cost-effective means of preparing astronauts to meet the requirements of NASA s human spaceflight program? Are there more cost-effective means of meeting these training requirements? Although the future of NASA s human spaceflight program has garnered considerable discussion in recent years and there is considerable uncertainty about what the program will involve in the coming years, the committee was not tasked to address whether human spaceflight should continue or what form it should take. The committee s task restricted it to studying activities managed by the Flight Crew Operations Directorate or those closely related to its activities, such as crew-related ground-based facilities and the training aircraft.

  11. NASA Contingency Shuttle Crew Support (CSCS) Medical Operations

    Science.gov (United States)

    Adams, Adrien

    2010-01-01

    The genesis of the space shuttle began in the 1930's when Eugene Sanger came up with the idea of a recyclable rocket plane that could carry a crew of people. The very first Shuttle to enter space was the Shuttle "Columbia" which launched on April 12 of 1981. Not only was "Columbia" the first Shuttle to be launched, but was also the first to utilize solid fuel rockets for U.S. manned flight. The primary objectives given to "Columbia" were to check out the overall Shuttle system, accomplish a safe ascent into orbit, and to return back to earth for a safe landing. Subsequent to its first flight Columbia flew 27 more missions but on February 1st, 2003 after a highly successful 16 day mission, the Columbia, STS-107 mission, ended in tragedy. With all Shuttle flight successes come failures such as the fatal in-flight accident of STS 107. As a result of the STS 107 accident, and other close-calls, the NASA Space Shuttle Program developed contingency procedures for a rescue mission by another Shuttle if an on-orbit repair was not possible. A rescue mission would be considered for a situation where a Shuttle and the crew were not in immediate danger, but, was unable to return to Earth or land safely. For Shuttle missions to the International Space Station (ISS), plans were developed so the Shuttle crew would remain on board ISS for an extended period of time until rescued by a "rescue" Shuttle. The damaged Shuttle would subsequently be de-orbited unmanned. During the period when the ISS Crew and Shuttle crew are on board simultaneously multiple issues would need to be worked including, but not limited to: crew diet, exercise, psychological support, workload, and ground contingency support

  12. Space Shuttle Status News Conference

    Science.gov (United States)

    2005-01-01

    Richard Gilbech, External Tank "Tiger Team" Lead, begins this space shuttle news conference with detailing the two major objectives of the team. The objectives include: 1) Finding the root cause of the foam loss on STS-114; and 2) Near and long term improvements for the external tank. Wayne Hale, Space Shuttle Program Manager, presents a chart to explain the external tank foam loss during STS-114. He gives a possible launch date for STS-121 after there has been a repair to the foam on the External Tank. He further discusses the changes that need to be made to the surrounding areas of the plant in New Orleans, due to Hurricane Katrina. Bill Gerstemaier, NASA Associate Administrator for Space Operations, elaborates on the testing of the external tank foam loss. The discussion ends with questions from the news media about a fix for the foam, replacement of the tiles, foam loss avoidance, the root cause of foam loss and a possible date for a new external tank to be shipped to NASA Kennedy Space Center.

  13. NASA Shuttle Logistics Depot (NSLD) - The application of ATE

    Science.gov (United States)

    Simpkins, Lorenz G.; Jenkins, Henry C.; Mauceri, A. Jack

    1990-01-01

    The concept of the NASA Shuttle Logistics Depot (NSLD) developed for the Space Shuttle Orbiter Program is described. The function of the NSLD at Cape Canaveral is to perform the acceptance and diagnostic testing of the Shuttle's space-rated line-replaceable units and shop-replaceable units (SRUs). The NSLD includes a comprehensive electronic automatic test station, program development stations, and assorted manufacturing support equipment (including thermal and vibration test equipment, special test equipment, and a card SRU test system). The depot activities also include the establishment of the functions for manufacturing of mechanical parts, soldering, welding, painting, clean room operation, procurement, and subcontract management.

  14. KOVEC studies of radioisotope thermoelectric generator response (In connection with possible NASA space shuttle accident explosion scenarios)

    Energy Technology Data Exchange (ETDEWEB)

    Walton, J.; Weston, A.; Lee, E.

    1984-06-26

    The Department of Energy (DOE) commissioned a study leading to a final report (NUS-4543, Report of the Shuttle Transportation System (STS) Explosion Working Group (EWG), June 8, 1984), concerned with PuO/sub 2/ dispersal should the NASA space shuttle explode during the proposed Galileo and ISPN launches planned for 1986. At DOE's request, LLNL furnished appendices that describe hydrocode KOVEC calculations of potential damage to the Radioisotope Thermoelectric Generators, fueled by PuO/sub 2/, should certain explosion scenarios occur. These appendices are contained in this report.

  15. First-ever evening public engine test of a Space Shuttle Main Engine

    Science.gov (United States)

    2001-01-01

    Thousands of people watch the first-ever evening public engine test of a Space Shuttle Main Engine at NASA's John C. Stennis Space Center. The spectacular test marked Stennis Space Center's 20th anniversary celebration of the first Space Shuttle mission.

  16. Space Shuttle Underside Astronaut Communications Performance Evaluation

    Science.gov (United States)

    Hwu, Shian U.; Dobbins, Justin A.; Loh, Yin-Chung; Kroll, Quin D.; Sham, Catherine C.

    2005-01-01

    The Space Shuttle Ultra High Frequency (UHF) communications system is planned to provide Radio Frequency (RF) coverage for astronauts working underside of the Space Shuttle Orbiter (SSO) for thermal tile inspection and repairing. This study is to assess the Space Shuttle UHF communication performance for astronauts in the shadow region without line-of-sight (LOS) to the Space Shuttle and Space Station UHF antennas. To insure the RF coverage performance at anticipated astronaut worksites, the link margin between the UHF antennas and Extravehicular Activity (EVA) Astronauts with significant vehicle structure blockage was analyzed. A series of near-field measurements were performed using the NASA/JSC Anechoic Chamber Antenna test facilities. Computational investigations were also performed using the electromagnetic modeling techniques. The computer simulation tool based on the Geometrical Theory of Diffraction (GTD) was used to compute the signal strengths. The signal strength was obtained by computing the reflected and diffracted fields along the propagation paths between the transmitting and receiving antennas. Based on the results obtained in this study, RF coverage for UHF communication links was determined for the anticipated astronaut worksite in the shadow region underneath the Space Shuttle.

  17. The space shuttle program technologies and accomplishments

    CERN Document Server

    Sivolella, Davide

    2017-01-01

    This book tells the story of the Space Shuttle in its many different roles as orbital launch platform, orbital workshop, and science and technology laboratory. It focuses on the technology designed and developed to support the missions of the Space Shuttle program. Each mission is examined, from both the technical and managerial viewpoints. Although outwardly identical, the capabilities of the orbiters in the late years of the program were quite different from those in 1981. Sivolella traces the various improvements and modifications made to the shuttle over the years as part of each mission story. Technically accurate but with a pleasing narrative style and simple explanations of complex engineering concepts, the book provides details of many lesser known concepts, some developed but never flown, and commemorates the ingenuity of NASA and its partners in making each Space Shuttle mission push the boundaries of what we can accomplish in space. Using press kits, original papers, newspaper and magazine articles...

  18. Shared visions: Partnership of Rockwell International and NASA Cost Effectiveness Enhancements (CEE) for the space shuttle system integration program

    Science.gov (United States)

    Bejmuk, Bohdan I.; Williams, Larry

    As a result of limited resources and tight fiscal constraints over the past several years, the defense and aerospace industries have experienced a downturn in business activity. The impact of fewer contracts being awarded has placed a greater emphasis for effectiveness and efficiency on industry contractors. It is clear that a reallocation of resources is required for America to continue to lead the world in space and technology. The key to technological and economic survival is the transforming of existing programs, such as the Space Shuttle Program, into more cost efficient programs so as to divert the savings to other NASA programs. The partnership between Rockwell International and NASA and their joint improvement efforts that resulted in significant streamlining and cost reduction measures to Rockwell International Space System Division's work on the Space Shuttle System Integration Contract is described. This work was a result of an established Cost Effectiveness Enhancement (CEE) Team formed initially in Fiscal Year 1991, and more recently expanded to a larger scale CEE Initiative in 1992. By working closely with the customer in agreeing to contract content, obtaining management endorsement and commitment, and involving the employees in total quality management (TQM) and continuous improvement 'teams,' the initial annual cost reduction target was exceeded significantly. The CEE Initiative helped reduce the cost of the Shuttle Systems Integration contract while establishing a stronger program based upon customer needs, teamwork, quality enhancements, and cost effectiveness. This was accomplished by systematically analyzing, challenging, and changing the established processes, practices, and systems. This examination, in nature, was work intensive due to the depth and breadth of the activity. The CEE Initiative has provided opportunities to make a difference in the way Rockwell and NASA work together - to update the methods and processes of the organizations

  19. Shared visions: Partnership of Rockwell International and NASA Cost Effectiveness Enhancements (CEE) for the space shuttle system integration program

    Science.gov (United States)

    Bejmuk, Bohdan I.; Williams, Larry

    1992-01-01

    As a result of limited resources and tight fiscal constraints over the past several years, the defense and aerospace industries have experienced a downturn in business activity. The impact of fewer contracts being awarded has placed a greater emphasis for effectiveness and efficiency on industry contractors. It is clear that a reallocation of resources is required for America to continue to lead the world in space and technology. The key to technological and economic survival is the transforming of existing programs, such as the Space Shuttle Program, into more cost efficient programs so as to divert the savings to other NASA programs. The partnership between Rockwell International and NASA and their joint improvement efforts that resulted in significant streamlining and cost reduction measures to Rockwell International Space System Division's work on the Space Shuttle System Integration Contract is described. This work was a result of an established Cost Effectiveness Enhancement (CEE) Team formed initially in Fiscal Year 1991, and more recently expanded to a larger scale CEE Initiative in 1992. By working closely with the customer in agreeing to contract content, obtaining management endorsement and commitment, and involving the employees in total quality management (TQM) and continuous improvement 'teams,' the initial annual cost reduction target was exceeded significantly. The CEE Initiative helped reduce the cost of the Shuttle Systems Integration contract while establishing a stronger program based upon customer needs, teamwork, quality enhancements, and cost effectiveness. This was accomplished by systematically analyzing, challenging, and changing the established processes, practices, and systems. This examination, in nature, was work intensive due to the depth and breadth of the activity. The CEE Initiative has provided opportunities to make a difference in the way Rockwell and NASA work together - to update the methods and processes of the organizations

  20. Corrosion Protection of Launch Infrastructure and Hardware Through the Space Shuttle Program

    Science.gov (United States)

    Calle, L. M.

    2011-01-01

    Corrosion, the environmentally induced degradation of materials, has been a challenging and costly problem that has affected NASA's launch operations since the inception of the Space Program. Corrosion studies began at NASA's Kennedy Space Center (KSC) in 1966 during the Gemini/Apollo Programs with the evaluation of long-term protective coatings for the atmospheric protection of carbon steel. NASA's KSC Beachside Corrosion Test Site, which has been documented by the American Society of Materials (ASM) as one of the most corrosive, naturally occurring environments in the world, was established at that time. With the introduction of the Space Shuttle in 1981, the already highly corrosive natural conditions at the launch pad were rendered even more severe by the acidic exhaust from the solid rocket boosters. In the years that followed, numerous efforts at KSC identified materials, coatings, and maintenance procedures for launch hardware and equipment exposed to the highly corrosiye environment at the launch pads. Knowledge on materials degradation, obtained by facing the highly corrosive conditions of the Space Shuttle launch environment, as well as limitations imposed by the environmental impact of corrosion control, have led researchers at NASA's Corrosion Technology Laboratory to establish a new technology development capability in the area of corrosion prevention, detection, and mitigation at KSC that is included as one of the "highest priority" technologies identified by NASA's integrated technology roadmap. A historical perspective highlighting the challenges encountered in protecting launch infrastructure and hardware from corrosion during the life of the Space Shuttle program and the new technological advances that have resulted from facing the unique and highly corrosive conditions of the Space Shuttle launch environment will be presented.

  1. Space Shuttle and Space Station Radio Frequency (RF) Exposure Analysis

    Science.gov (United States)

    Hwu, Shian U.; Loh, Yin-Chung; Sham, Catherine C.; Kroll, Quin D.

    2005-01-01

    This paper outlines the modeling techniques and important parameters to define a rigorous but practical procedure that can verify the compliance of RF exposure to the NASA standards for astronauts and electronic equipment. The electromagnetic modeling techniques are applied to analyze RF exposure in Space Shuttle and Space Station environments with reasonable computing time and resources. The modeling techniques are capable of taking into account the field interactions with Space Shuttle and Space Station structures. The obtained results illustrate the multipath effects due to the presence of the space vehicle structures. It's necessary to include the field interactions with the space vehicle in the analysis for an accurate assessment of the RF exposure. Based on the obtained results, the RF keep out zones are identified for appropriate operational scenarios, flight rules and necessary RF transmitter constraints to ensure a safe operating environment and mission success.

  2. Aerospace News: Space Shuttle Commemoration. Volume 2, No. 7

    Science.gov (United States)

    2011-01-01

    The complex space shuttle design was comprised of four components: the external tank, two solid rocket boosters (SRB), and the orbiter vehicle. Six orbiters were used during the life of the program. In order of introduction into the fleet, they were: Enterprise (a test vehicle), Columbia, Challenger, Discovery, Atlantis and Endeavour. The space shuttle had the unique ability to launch into orbit, perform on-orbit tasks, return to earth and land on a runway. It was an orbiting laboratory, International Space Station crew delivery and supply replenisher, satellite launcher and payload delivery vehicle, all in one. Except for the external tank, all components of the space shuttle were designed to be reusable for many flights. ATK s reusable solid rocket motors (RSRM) were designed to be flown, recovered, and the metal components reused 20 times. Following each space shuttle launch, the SRBs would parachute into the ocean and be recovered by the Liberty Star and Freedom Star recovery ships. The recovered boosters would then be received at the Cape Canaveral Air Force Station Hangar AF facility for disassembly and engineering post-flight evaluation. At Hangar AF, the RSRM field joints were demated and the segments prepared to be returned to Utah by railcar. The segments were then shipped to ATK s facilities in Clearfield for additional evaluation prior to washout, disassembly and refurbishment. Later the refurbished metal components would be transported to ATK s Promontory facilities to begin a new cycle. ATK s RSRMs were manufactured in Promontory, Utah. During the Space Shuttle Program, ATK supported NASA s Marshall Space Flight Center whose responsibility was for all propulsion elements on the program, including the main engines and solid rocket motors. On launch day for the space shuttle, ATK s Launch Site Operations employees at Kennedy Space Center (KSC) provided lead engineering support for ground operations and NASA s chief engineer. It was ATK s responsibility

  3. HAL/S programmer's guide. [for space shuttle program

    Science.gov (United States)

    Newbold, P. M.; Hotz, R. L.

    1974-01-01

    This programming language was developed for the flight software of the NASA space shuttle program. HAL/S is intended to satisfy virtually all of the flight software requirements of the space shuttle. To achieve this, HAL/s incorporates a wide range of features, including applications-oriented data types and organizations, real time control mechanisms, and constructs for systems programming tasks. As the name indicates, HAL/S is a dialect of the original HAL language previously developed. Changes have been incorporated to simplify syntax, curb excessive generality, or facilitate flight code emission.

  4. Space shuttle crew training at CERN

    CERN Multimedia

    Paola Catapano

    From 13 to 16 October, the crew of NASA Space Shuttle mission STS-134 came to CERN for a special physics training programme. Invited here by Samuel Ting, they will deliver the Alpha Magnetic Spectrometer (AMS) detector to the International Space Station (ISS).   The STS134 crew in the Lodge at the Aiguille du Midi wearing CERN fleeces. From left to right: Captain Mark Kelly, US Navy; Pilot Gregory Johnson, USAF ret.; Mission Specialist Andrew Feustel; Mission Specialist Mike Fincke, USAF, Mission Specialist Gregory Chamitoff and Mission Specialist Roberto Vittori, ESA and Italian Air Force. Headed by Commander Mark Kelly, a US Navy captain, the crew included pilot Gregory Johnson, a US Air Force (USAF) colonel, and mission specialists Mike Fincke (also a USAF Colonel), Andrew Feustel, and Gregory Chamitoff of NASA, as well as Colonel Roberto Vittori of the European Space Agency (ESA). Two flight directors, Gary Horlache and Derek Hassmann of NASA, and the engineer responsible for the Ext...

  5. Anomaly Analysis: NASA's Engineering and Safety Center Checks Recurring Shuttle Glitches

    Science.gov (United States)

    Morring, Frank, Jr.

    2004-01-01

    The NASA Engineering and Safety Center (NESC), set up in the wake of the Columbia accident to backstop engineers in the space shuttle program, is reviewing hundreds of recurring anomalies that the program had determined don't affect flight safety to see if in fact they might. The NESC is expanding its support to other programs across the agency, as well. The effort, which will later extend to the International Space Station (ISS), is a principal part of the attempt to overcome the normalization of deviance--a situation in which organizations proceeded as if nothing was wrong in the face of evidence that something was wrong--cited by sociologist Diane Vaughn as contributing to both space shuttle disasters.

  6. TRW Ships NASA's Chandra X-ray Observatory To Kennedy Space Center

    Science.gov (United States)

    1999-04-01

    Two U.S. Air Force C-5 Galaxy transport planes carrying the observatory and its ground support equipment landed at Kennedy's Space Shuttle Landing Facility at 2:40 p.m. EST this afternoon. REDONDO BEACH, CA.--(Business Wire)--Feb. 4, 1999--TRW has shipped NASA's Chandra X-ray Observatory ("Chandra") to the Kennedy Space Center (KSC), in Florida, in preparation for a Space Shuttle launch later this year. The 45-foot-tall, 5-ton science satellite will provide astronomers with new information on supernova remnants, the surroundings of black holes, and other celestial phenomena that produce vast quantities of X-rays. Cradled safely in the cargo hold of a tractor-trailer rig called the Space Cargo Transportation System (SCTS), NASA's newest space telescope was ferried on Feb. 4 from Los Angeles International Airport to KSC aboard an Air Force C-5 Galaxy transporter. The SCTS, an Air Force container, closely resembles the size and shape of the Shuttle cargo bay. Over the next few months, Chandra will undergo final tests at KSC and be mated to a Boeing-provided Inertial Upper Stage for launch aboard Space Shuttle Columbia. A launch date for the Space Shuttle STS-93 mission is expected to be announced later this week. The third in NASA's family of Great Observatories that includes the Hubble Space Telescope and the TRW-built Compton Gamma Ray observatory, Chandra will use the world's most powerful X-ray telescope to allow scientists to "see" and monitor cosmic events that are invisible to conventional optical telescopes. Chandra's X-ray images will yield new insight into celestial phenomena such as the temperature and extent of gas clouds that comprise clusters of galaxies and the superheating of gas and dust particles as they swirl into black holes. A TRW-led team that includes the Eastman Kodak Co., Raytheon Optical Systems Inc., and Ball Aerospace & Technologies Corp. designed and built the Chandra X-ray Observatory for NASA's Marshall Space Flight Center. The

  7. The Role and Training of NASA Astronauts in the Post-Shuttle Era

    Science.gov (United States)

    2011-01-01

    In May 2010 the National Research Council (NRC) was asked by NASA to address several questions related to the Astronaut Corps. The NRC's Committee on Human Spaceflight Crew Operations was tasked to: 1. How should the role and size of the activities managed by the Johnson Space Center Flight Crew Operations Directorate change following space shuttle retirement and completion of the assembly of the International Space Station (ISS)? 2. What are the requirements for crew-related ground-based facilities after the Space Shuttle program ends? 3. Is the fleet of aircraft used for training the Astronaut Corps a cost-effective means of preparing astronauts to meet the requirements of NASA's human spaceflight program? Are there more cost-effective means of meeting these training requirements? Although the future of NASA's human spaceflight program has garnered considerable discussion in recent years, and there is considerable uncertainty about what that program will involve in the coming years, the committee was not tasked to address whether or not human spaceflight should continue, or what form it should take. The committee's task restricted it to studying those activities managed by the Flight Crew Operations Directorate, or those closely related to its activities, such as crew-related ground-based facilities and the training aircraft.

  8. Quantitative risk analysis of a space shuttle subsystem

    International Nuclear Information System (INIS)

    Frank, M.V.

    1989-01-01

    This paper reports that in an attempt to investigate methods for risk management other than qualitative analysis techniques, NASA has funded pilot study quantitative risk analyses for space shuttle subsystems. The authors performed one such study of two shuttle subsystems with McDonnell Douglas Astronautics Company. The subsystems were the auxiliary power units (APU) on the orbiter, and the hydraulic power units on the solid rocket booster. The technology and results of the APU study are presented in this paper. Drawing from a rich in-flight database as well as from a wealth of tests and analyses, the study quantitatively assessed the risk of APU-initiated scenarios on the shuttle during all phases of a flight mission. Damage states of interest were loss of crew/vehicle, aborted mission, and launch scrub. A quantitative risk analysis approach to deciding on important items for risk management was contrasted with the current NASA failure mode and effects analysis/critical item list approach

  9. The Space Shuttle and expendable launch systems - A U.S. commercial customer perspective

    Science.gov (United States)

    Savage, M.; Chagnon, R.

    1985-10-01

    The development of space transportation systems for commercial satellite launches is reviewed. A comparison of the Ariane system with the Space Shuttle is presented. The performance capability, reliability, and availability of the two systems are analyzed; the Ariane 4 is capable of launching payloads of 1900-4200 kg into transfer orbits and is better positioned than the Shuttle to handle commercial payloads greater than 1900 kg. The insurance costs, and spacecraft and launcher integration complexity for the two systems are discussed. The launch cost and postponement penalties are studied. NASA's launch cost is based on the length or mass of the payload multiplied by the fixed Shuttle cost, with Ariane attempting to keep prices $1-3 million lower, in order to be competitive with the Shuttle. NASA offers one free postponement and penalties as high as 55 percent; Ariane's penalties range from 6-18 percent of the launch price. The need for lower prices, an easier integration process, customer convience, and less severe postponement and reflight policies in order for the space transportation systems to be commercially useful, is discussed.

  10. The new Space Shuttle Transportation System (STS) - Problem, performance, supportability, and programmatic trending program

    Science.gov (United States)

    Crawford, J. L.; Rodney, G. A.

    1989-01-01

    This paper describes the NASA Space Shuttle Trend Analysis program. The four main areas of the program - problem/reliability, performance, supportability, and programmatic trending - are defined, along with motivation for these areas, the statistical methods used, and illustrative Space Shuttle applications. Also described is the NASA Safety, Reliability, Maintainability and Quality Assurance (SRM&QA) Management Information Center, used to focus management attention on key near-term launch concerns and long-range mission trend issues. Finally, the computer data bases used to support the program and future program enhancements are discussed.

  11. Biological and Medical Experiments on the Space Shuttle, 1981 - 1985

    Science.gov (United States)

    Halstead, Thora W. (Editor); Dufour, Patricia A. (Editor)

    1986-01-01

    This volume is the first in a planned series of reports intended to provide a comprehensive record of all the biological and medical experiments and samples flown on the Space Shuttle. Experiments described have been conducted over a five-year period, beginning with the first plant studies conducted on STS-2 in November 1981, and extending through STS 61-C, the last mission to fly before the tragic Challenger accident of January 1986. Experiments were sponsored within NASA not only by the Life Sciences Division of the Office of Space Science and Applications, but also by the Shuttle Student Involvement Program (SSIP) and the Get Away Special (GAS) Program. Independent medical studies were conducted as well on the Shuttle crew under the auspices of the Space Biomedical Research Institute at Johnson Space Center. In addition, cooperative agreements between NASA and foreign government agencies led to a number of independent experiments and also paved the way for the joint US/ESA Spacelab 1 mission and the German (DFVLR) Spacelab D-1. Experiments included: (1) medically oriented studies of the crew aimed at identifying, preventing, or treating health problems due to space travel; (2) projects to study morphological, physiological, or behavioral effects of microgravity on animals and plants; (3) studies of the effects of microgravity on cells and tissues; and (4) radiation experiments monitoring the spacecraft environment with chemical or biological dosimeters or testing radiation effects on simple organisms and seeds.

  12. Modal Testing of Seven Shuttle Cargo Elements for Space Station

    Science.gov (United States)

    Kappus, Kathy O.; Driskill, Timothy C.; Parks, Russel A.; Patterson, Alan (Technical Monitor)

    2001-01-01

    From December 1996 to May 2001, the Modal and Control Dynamics Team at NASA's Marshall Space Flight Center (MSFC) conducted modal tests on seven large elements of the International Space Station. Each of these elements has been or will be launched as a Space Shuttle payload for transport to the International Space Station (ISS). Like other Shuttle payloads, modal testing of these elements was required for verification of the finite element models used in coupled loads analyses for launch and landing. The seven modal tests included three modules - Node, Laboratory, and Airlock, and four truss segments - P6, P3/P4, S1/P1, and P5. Each element was installed and tested in the Shuttle Payload Modal Test Bed at MSFC. This unique facility can accommodate any Shuttle cargo element for modal test qualification. Flexure assemblies were utilized at each Shuttle-to-payload interface to simulate a constrained boundary in the load carrying degrees of freedom. For each element, multiple-input, multiple-output burst random modal testing was the primary approach with controlled input sine sweeps for linearity assessments. The accelerometer channel counts ranged from 252 channels to 1251 channels. An overview of these tests, as well as some lessons learned, will be provided in this paper.

  13. History of Space Shuttle Rendezvous

    Science.gov (United States)

    Goodman, John L.

    2011-01-01

    This technical history is intended to provide a technical audience with an introduction to the rendezvous and proximity operations history of the Space Shuttle Program. It details the programmatic constraints and technical challenges encountered during shuttle development in the 1970s and over thirty years of shuttle missions. An overview of rendezvous and proximity operations on many shuttle missions is provided, as well as how some shuttle rendezvous and proximity operations systems and flight techniques evolved to meet new programmatic objectives. This revised edition provides additional information on Mercury, Gemini, Apollo, Skylab, and Apollo/Soyuz. Some chapters on the Space Shuttle have been updated and expanded. Four special focus chapters have been added to provide more detailed information on shuttle rendezvous. A chapter on the STS-39 mission of April/May 1991 describes the most complex deploy/retrieve mission flown by the shuttle. Another chapter focuses on the Hubble Space Telescope servicing missions. A third chapter gives the reader a detailed look at the February 2010 STS-130 mission to the International Space Station. The fourth chapter answers the question why rendezvous was not completely automated on the Gemini, Apollo, and Space Shuttle vehicles.

  14. Concepts and embodiment design of a reentry recumbent seating system for the NASA Space Shuttle

    Science.gov (United States)

    Mcmillan, Scott; Looby, Brent; Devany, Chris; Chudej, Chris; Brooks, Barry

    1993-01-01

    This report deals with the generation of a recumbent seating system which will be used by NASA to shuttle astronauts from the Russian space station Mir. We begin by examining the necessity for designing a special couch for the returning astronauts. Next, we discuss the operating conditions and constraints of the recumbent seating system and provide a detailed function structure. After working through the conceptual design process, we came up with ten alternative designs which are presented in the appendices. These designs were evaluated and weighted to systematically determine the best choice for embodiment design. A detailed discussion of all components of the selected system follows with design calculations for the seat presented in the appendices. The report concludes with an evaluation of the resulting design and recommendations for further development.

  15. Functional Requirements for Onboard Management of Space Shuttle Consumables. Volume 2

    Science.gov (United States)

    Graf, P. J.; Herwig, H. A.; Neel, L. W.

    1973-01-01

    This report documents the results of the study "Functional Requirements for Onboard Management of Space Shuttle Consumables." The study was conducted for the Mission Planning and Analysis Division of the NASA Lyndon B. Johnson Space Center, Houston, Texas, between 3 July 1972 and 16 November 1973. The overall study program objective was two-fold. The first objective was to define a generalized consumable management concept which is applicable to advanced spacecraft. The second objective was to develop a specific consumables management concept for the Space Shuttle vehicle and to generate the functional requirements for the onboard portion of that concept. Consumables management is the process of controlling or influencing the usage of expendable materials involved in vehicle subsystem operation. The report consists of two volumes. Volume I presents a description of the study activities related to general approaches for developing consumable management, concepts for advanced spacecraft applications, and functional requirements for a Shuttle consumables management concept. Volume II presents a detailed description of the onboard consumables management concept proposed for use on the Space Shuttle.

  16. Food packages for Space Shuttle

    Science.gov (United States)

    Fohey, M. F.; Sauer, R. L.; Westover, J. B.; Rockafeller, E. F.

    1978-01-01

    The paper reviews food packaging techniques used in space flight missions and describes the system developed for the Space Shuttle. Attention is directed to bite-size food cubes used in Gemini, Gemini rehydratable food packages, Apollo spoon-bowl rehydratable packages, thermostabilized flex pouch for Apollo, tear-top commercial food cans used in Skylab, polyethylene beverage containers, Skylab rehydratable food package, Space Shuttle food package configuration, duck-bill septum rehydration device, and a drinking/dispensing nozzle for Space Shuttle liquids. Constraints and testing of packaging is considered, a comparison of food package materials is presented, and typical Shuttle foods and beverages are listed.

  17. Space Shuttle RTOS Bayesian Network

    Science.gov (United States)

    Morris, A. Terry; Beling, Peter A.

    2001-01-01

    With shrinking budgets and the requirements to increase reliability and operational life of the existing orbiter fleet, NASA has proposed various upgrades for the Space Shuttle that are consistent with national space policy. The cockpit avionics upgrade (CAU), a high priority item, has been selected as the next major upgrade. The primary functions of cockpit avionics include flight control, guidance and navigation, communication, and orbiter landing support. Secondary functions include the provision of operational services for non-avionics systems such as data handling for the payloads and caution and warning alerts to the crew. Recently, a process to selection the optimal commercial-off-the-shelf (COTS) real-time operating system (RTOS) for the CAU was conducted by United Space Alliance (USA) Corporation, which is a joint venture between Boeing and Lockheed Martin, the prime contractor for space shuttle operations. In order to independently assess the RTOS selection, NASA has used the Bayesian network-based scoring methodology described in this paper. Our two-stage methodology addresses the issue of RTOS acceptability by incorporating functional, performance and non-functional software measures related to reliability, interoperability, certifiability, efficiency, correctness, business, legal, product history, cost and life cycle. The first stage of the methodology involves obtaining scores for the various measures using a Bayesian network. The Bayesian network incorporates the causal relationships between the various and often competing measures of interest while also assisting the inherently complex decision analysis process with its ability to reason under uncertainty. The structure and selection of prior probabilities for the network is extracted from experts in the field of real-time operating systems. Scores for the various measures are computed using Bayesian probability. In the second stage, multi-criteria trade-off analyses are performed between the scores

  18. Review of Issues Associated with Safe Operation and Management of the Space Shuttle Program

    Science.gov (United States)

    Johnstone, Paul M.; Blomberg, Richard D.; Gleghorn, George J.; Krone, Norris J.; Voltz, Richard A.; Dunn, Robert F.; Donlan, Charles J.; Kauderer, Bernard M.; Brill, Yvonne C.; Englar, Kenneth G.; hide

    1996-01-01

    At the request of the President of the United States through the Office of Science and Technology Policy (OSTP), the NASA Administrator tasked the Aerospace Safety Advisory Panel with the responsibility to identify and review issues associated with the safe operation and management of the Space Shuttle program arising from ongoing efforts to improve and streamline operations. These efforts include the consolidation of operations under a single Space Flight Operations Contract (SFOC), downsizing the Space Shuttle workforce and reducing costs of operations and management. The Panel formed five teams to address the potentially significant safety impacts of the seven specific topic areas listed in the study Terms of Reference. These areas were (in the order in which they are presented in this report): Maintenance of independent safety oversight; implementation plan for the transition of Shuttle program management to the Lead Center; communications among NASA Centers and Headquarters; transition plan for downsizing to anticipated workforce levels; implementation of a phased transition to a prime contractor for operations; Shuttle flight rate for Space Station assembly; and planned safety and performance upgrades for Space Station assembly. The study teams collected information through briefings, interviews, telephone conversations and from reviewing applicable documentation. These inputs were distilled by each team into observations and recommendations which were then reviewed by the entire Panel.

  19. Upgrading the Space Shuttle.

    Science.gov (United States)

    1999-01-01

    Motors, Honda , Toyota , and Nissan ). By learning from and applying the technologies developed elsewhere, NASA could greatly leverage its funding for...assessing risks to the shuttle. The committee believes that this tool has the potential to be very helpful in assessing and comparing the impact of...environmental regulations). Figure 2-2 shows how the S&PU budget compared to the total shuttle budget during four different years since 1985

  20. Space Shuttle - A personal view

    Science.gov (United States)

    Mark, H.

    1977-01-01

    A typical flight profile for the Space Shuttle is reviewed, and the operation of the Spacelab, as well as deployment of a satellite from the Shuttle, is considered. Selection of crews for a Space Shuttle mission, which may include as many as four payload specialists, is also discussed. Since medical requirements and flight training standards need not be as high for payload specialists as for the three members of the flight crew, the Shuttle may provide an opportunity for many scientists to perform experiments in space. Investigations of the critical opalescence of fluids and laser holography are proposed for Shuttle missions; X-ray astronomy is another likely candidate for inclusion in the program.

  1. Space Shuttle Launch Probability Analysis: Understanding History so We Can Predict the Future

    Science.gov (United States)

    Cates, Grant R.

    2014-01-01

    The Space Shuttle was launched 135 times and nearly half of those launches required 2 or more launch attempts. The Space Shuttle launch countdown historical data of 250 launch attempts provides a wealth of data that is important to analyze for strictly historical purposes as well as for use in predicting future launch vehicle launch countdown performance. This paper provides a statistical analysis of all Space Shuttle launch attempts including the empirical probability of launch on any given attempt and the cumulative probability of launch relative to the planned launch date at the start of the initial launch countdown. This information can be used to facilitate launch probability predictions of future launch vehicles such as NASA's Space Shuttle derived SLS. Understanding the cumulative probability of launch is particularly important for missions to Mars since the launch opportunities are relatively short in duration and one must wait for 2 years before a subsequent attempt can begin.

  2. Research pressure instrumentation for NASA Space Shuttle main engine, modification no. 5

    Science.gov (United States)

    Anderson, P. J.; Nussbaum, P.; Gustafson, G.

    1984-01-01

    Research concerning the development of pressure instrumentation for the space shuttle main engine is reported. The following specific topics were addressed: (1) transducer design and materials, (2) silicon piezoresistor characterization at cryogenic temperatures, (3) chip mounting characterization, and (4) frequency response optimization.

  3. Microdosimetry measurements with the RME-III on the space shuttle

    International Nuclear Information System (INIS)

    Hardy, K.; Golightly, M.J.; Atwell, W.; Quam, W.

    1994-01-01

    Since December 1988 (STS-27) the USAF Armstrong Laboratory, in conjunction with the NASA Space Radiation Analysis Group, has been conducting microdosimetry measurements on selected high-altitude, high-inclination Space Shuttle mission with the RME-III. The RME-III is a portable, self-contained, active dosimeter system featuring a three-channel tissue equivalent proportional counter (TEPC) which measures particle fluence and computes dose and dose equivalent at operator selected time intervals. The total accumulated absorbed dose and dose equivalent are displayed real time, while the data and the time of the interval dose readings are stored in memory modules for later analysis. Analysis of the time-resolved data permits correlation of the radiation exposure with geographic position, altitude, and spacecraft shielding and orientation. The RME-III has flown on 15 Shuttle missions to date and measurements are in good agreement with other dosimetry measurements made on the Shuttle

  4. Space Shuttle Endeavour launch

    Science.gov (United States)

    1992-01-01

    A smooth countdown culminated in a picture-perfect launch as the Space Shuttle Endeavour (STS-47) climbed skyward atop a ladder of billowing smoke. Primary payload for the plarned seven-day flight was Spacelab-J science laboratory. The second flight of Endeavour marks a number of historic firsts: the first space flight of an African-American woman, the first Japanese citizen to fly on a Space Shuttle, and the first married couple to fly in space.

  5. Research pressure instrumentation for NASA Space Shuttle main engine, modification no. 6

    Science.gov (United States)

    Anderson, P. J.; Johnson, R. L.

    1984-01-01

    Research concerning the utilization of silicon piezoresistive strain sensing technology for space shuttle main engine applications is reported. The following specific topics were addressed: (1) transducer design and materials, (2) silicon piezoresistor characterization at cryogenic temperatures, (3) chip mounting characterization, and (4) frequency response optimization.

  6. Ecological Impacts of the Space Shuttle Program at John F. Kennedy Space Center, Florida

    Science.gov (United States)

    Hall, Carlton R.; Schmalzer, Paul A.; Breininger, David R.; Duncan, Brean W.; Drese, John H.; Scheidt, Doug A.; Lowers, Russ H.; Reyier, Eric A.; Holloway-Adkins, Karen G.; Oddy, Donna M.; hide

    2014-01-01

    The Space Shuttle Program was one of NASAs first major undertakings to fall under the environmental impact analysis and documentation requirements of the National Environmental Policy Act of 1969 (NEPA). Space Shuttle Program activities at John F. Kennedy Space Center (KSC) and the associated Merritt Island National Wildlife Refuge (MINWR) contributed directly and indirectly to both negative and positive ecological trends in the region through the long-term, stable expenditure of resources over the 40 year program life cycle. These expenditures provided support to regional growth and development in conjunction with other sources that altered land use patterns, eliminated and modified habitats, and contributed to cultural eutrophication of the Indian River Lagoon. At KSC, most Space Shuttle Program related actions were conducted in previously developed facilities and industrial areas with the exception of the construction of the shuttle landing facility (SLF) and the space station processing facility (SSPF). Launch and operations impacts were minimal as a result of the low annual launch rate. The majority of concerns identified during the NEPA process such as potential weather modification, acid rain off site, and local climate change did not occur. Launch impacts from deposition of HCl and particulates were assimilated as a result of the high buffering capacity of the system and low launch and loading rates. Metals deposition from exhaust deposition did not display acute impacts. Sub-lethal effects are being investigated as part of the Resource Conservation and Recovery Act (RCRA) regulatory process. Major positive Space Shuttle Program effects were derived from the adequate resources available at the Center to implement the numerous environmental laws and regulations designed to enhance the quality of the environment and minimize impacts from human activities. This included reduced discharges of domestic and industrial wastewater, creation of stormwater management

  7. Artificial intelligence techniques for scheduling Space Shuttle missions

    Science.gov (United States)

    Henke, Andrea L.; Stottler, Richard H.

    1994-01-01

    Planning and scheduling of NASA Space Shuttle missions is a complex, labor-intensive process requiring the expertise of experienced mission planners. We have developed a planning and scheduling system using combinations of artificial intelligence knowledge representations and planning techniques to capture mission planning knowledge and automate the multi-mission planning process. Our integrated object oriented and rule-based approach reduces planning time by orders of magnitude and provides planners with the flexibility to easily modify planning knowledge and constraints without requiring programming expertise.

  8. Economic Analysis on the Space Transportation Architecture Study (STAS) NASA Team

    Science.gov (United States)

    Shaw, Eric J.

    1999-01-01

    The National Aeronautics and Space Administration (NASA) performed the Space Transportation Architecture Study (STAS) to provide information to support end-of-the-decade decisions on possible near-term US Government (USG) investments in space transportation. To gain a clearer understanding of the costs and benefits of the broadest range of possible space transportation options, six teams, five from aerospace industry companies and one internal to NASA, were tasked to answer three primary questions: a) If the Space Shuttle system should be replaced; b) If so, when the replacement should take place and how the transition should be implemented; and c) If not, what is the upgrade strategy to continue safe and affordable flight of the Space Shuttle beyond 2010. The overall goal of the Study was "to develop investment options to be considered by the Administration for the President's FY2001 budget to meet NASA's future human space flight requirements with significant reductions in costs." This emphasis on government investment, coupled with the participation by commercial f'trms, required an unprecedented level of economic analysis of costs and benefits from both industry and government viewpoints. This paper will discuss the economic and market models developed by the in-house NASA Team to analyze space transportation architectures, the results of those analyses, and how those results were reflected in the conclusions and recommendations of the STAS NASA Team. Copyright 1999 by the American Institute of Aeronautics and Astronautics, Inc. No copyright is asserted in the United States under Title 17, U.$. Code. The U.S. Government has a royalty-free license to exercise all rights under the copyright claimed herein for Governmental purposes. All other rights are reserved by the copyright owner.

  9. Mission Operations Directorate - Success Legacy of the Space Shuttle Program (Overview of the Evolution and Success Stories from MOD During the Space Shuttle program)

    Science.gov (United States)

    Azbell, Jim A.

    2011-01-01

    In support of the Space Shuttle Program, as well as NASA's other human space flight programs, the Mission Operations Directorate (MOD) at the Johnson Space Center has become the world leader in human spaceflight operations. From the earliest programs - Mercury, Gemini, Apollo - through Skylab, Shuttle, ISS, and our Exploration initiatives, MOD and its predecessors have pioneered ops concepts and emphasized a history of mission leadership which has added value, maximized mission success, and built on continual improvement of the capabilities to become more efficient and effective. This paper provides specific examples that illustrate how MOD's focus on building and contributing value with diverse teams has been key to their successes both with the US space industry and the broader international community. This paper will discuss specific examples for the Plan, Train, Fly, and Facilities aspects within MOD. This paper also provides a discussion of the joint civil servant/contractor environment and the relative badge-less society within MOD. Several Shuttle mission related examples have also been included that encompass all of the aforementioned MOD elements and attributes, and are used to show significant MOD successes within the Shuttle Program. These examples include the STS-49 Intelsat recovery and repair, the (post-Columbia accident) TPS inspection process and the associated R-Bar Pitch Maneuver for ISS missions, and the STS-400 rescue mission preparation efforts for the Hubble Space Telescope repair mission. Since their beginning, MOD has consistently demonstrated their ability to evolve and respond to an ever changing environment, effectively prepare for the expected and successfully respond to the unexpected, and develop leaders, expertise, and a culture that has led to mission and Program success.

  10. The HYTHIRM Project: Flight Thermography of the Space Shuttle During the Hypersonic Re-entry

    Science.gov (United States)

    Horvath, Thomas J.; Tomek, Deborah M.; Berger, Karen T.; Zalameda, Joseph N.; Splinter, Scott C.; Krasa, Paul W.; Schwartz, Richard J.; Gibson, David M.; Tietjen, Alan B.; Tack, Steve

    2010-01-01

    This report describes a NASA Langley led endeavor sponsored by the NASA Engineering Safety Center, the Space Shuttle Program Office and the NASA Aeronautics Research Mission Directorate to demonstrate a quantitative thermal imaging capability. A background and an overview of several multidisciplinary efforts that culminated in the acquisition of high resolution calibrated infrared imagery of the Space Shuttle during hypervelocity atmospheric entry is presented. The successful collection of thermal data has demonstrated the feasibility of obtaining remote high-resolution infrared imagery during hypersonic flight for the accurate measurement of surface temperature. To maximize science and engineering return, the acquisition of quantitative thermal imagery and capability demonstration was targeted towards three recent Shuttle flights - two of which involved flight experiments flown on Discovery. In coordination with these two Shuttle flight experiments, a US Navy NP-3D aircraft was flown between 26-41 nautical miles below Discovery and remotely monitored surface temperature of the Orbiter at Mach 8.4 (STS-119) and Mach 14.7 (STS-128) using a long-range infrared optical package referred to as Cast Glance. This same Navy aircraft successfully monitored the Orbiter Atlantis traveling at approximately Mach 14.3 during its return from the successful Hubble repair mission (STS-125). The purpose of this paper is to describe the systematic approach used by the Hypersonic Thermodynamic Infrared Measurements team to develop and implement a set of mission planning tools designed to establish confidence in the ability of an imaging platform to reliably acquire, track and return global quantitative surface temperatures of the Shuttle during entry. The mission planning tools included a pre-flight capability to predict the infrared signature of the Shuttle. Such tools permitted optimization of the hardware configuration to increase signal-to-noise and to maximize the available

  11. Application of a Near Infrared Imaging System for Thermographic Imaging of the Space Shuttle during Hypersonic Re-Entry

    Science.gov (United States)

    Zalameda, Joseph N.; Tietjen, Alan B.; Horvath, Thomas J.; Tomek, Deborah M.; Gibson, David M.; Taylor, Jeff C.; Tack, Steve; Bush, Brett C.; Mercer, C. David; Shea, Edward J.

    2010-01-01

    High resolution calibrated near infrared (NIR) imagery was obtained of the Space Shuttle s reentry during STS-119, STS-125, and STS-128 missions. The infrared imagery was collected using a US Navy NP-3D Orion aircraft using a long-range infrared optical package referred to as Cast Glance. The slant ranges between the Space Shuttle and Cast Glance were approximately 26-41 nautical miles at point of closest approach. The Hypersonic Thermodynamic Infrared Measurements (HYTHIRM) project was a NASA Langley led endeavor sponsored by the NASA Engineering Safety Center, the Space Shuttle Program Office and the NASA Aeronautics Research Mission Directorate to demonstrate a quantitative thermal imaging capability. HYTHIRM required several mission tools to acquire the imagery. These tools include pre-mission acquisition simulations of the Shuttle trajectory in relationship to the Cast Glance aircraft flight path, radiance modeling to predict the infrared response of the Shuttle, and post mission analysis tools to process the infrared imagery to quantitative temperature maps. The spatially resolved global thermal measurements made during the Shuttle s hypersonic reentry provides valuable flight data for reducing the uncertainty associated with present day ground-to-flight extrapolation techniques and current state-of-the-art empirical boundary-layer transition or turbulent heating prediction methods. Laminar and turbulent flight data is considered critical for the development of turbulence models supporting NASA s next-generation spacecraft. This paper will provide the motivation and details behind the use of an upgraded NIR imaging system used onboard a Navy Cast Glance aircraft and describe the characterizations and procedures performed to obtain quantitative temperature maps. A brief description and assessment will be provided of the previously used analog NIR camera along with image examples from Shuttle missions STS-121, STS-115, and solar tower test. These thermal

  12. Space Shuttle Guidance, Navigation, and Rendezvous Knowledge Capture Reports. Revision 1

    Science.gov (United States)

    Goodman, John L.

    2011-01-01

    This document is a catalog and readers guide to lessons learned, experience, and technical history reports, as well as compilation volumes prepared by United Space Alliance personnel for the NASA/Johnson Space Center (JSC) Flight Dynamics Division.1 It is intended to make it easier for future generations of engineers to locate knowledge capture documentation from the Shuttle Program. The first chapter covers observations on documentation quality and research challenges encountered during the Space Shuttle and Orion programs. The second chapter covers the knowledge capture approach used to create many of the reports covered in this document. These chapters are intended to provide future flight programs with insight that could be used to formulate knowledge capture and management strategies. The following chapters contain descriptions of each knowledge capture report. The majority of the reports concern the Space Shuttle. Three are included that were written in support of the Orion Program. Most of the reports were written from the years 2001 to 2011. Lessons learned reports concern primarily the shuttle Global Positioning System (GPS) upgrade and the knowledge capture process. Experience reports on navigation and rendezvous provide examples of how challenges were overcome and how best practices were identified and applied. Some reports are of a more technical history nature covering navigation and rendezvous. They provide an overview of mission activities and the evolution of operations concepts and trajectory design. The lessons learned, experience, and history reports would be considered secondary sources by historians and archivists.

  13. Humans in Space: Summarizing the Medico-Biological Results of the Space Shuttle Program

    Science.gov (United States)

    Risin, Diana; Stepaniak, P. C.; Grounds, D. J.

    2011-01-01

    As we celebrate the 50th anniversary of Gagarin's flight that opened the era of Humans in Space we also commemorate the 30th anniversary of the Space Shuttle Program (SSP) which was triumphantly completed by the flight of STS-135 on July 21, 2011. These were great milestones in the history of Human Space Exploration. Many important questions regarding the ability of humans to adapt and function in space were answered for the past 50 years and many lessons have been learned. Significant contribution to answering these questions was made by the SSP. To ensure the availability of the Shuttle Program experiences to the international space community NASA has made a decision to summarize the medico-biological results of the SSP in a fundamental edition that is scheduled to be completed by the end of 2011 beginning 2012. The goal of this edition is to define the normal responses of the major physiological systems to short-duration space flights and provide a comprehensive source of information for planning, ensuring successful operational activities and for management of potential medical problems that might arise during future long-term space missions. The book includes the following sections: 1. History of Shuttle Biomedical Research and Operations; 2. Medical Operations Overview Systems, Monitoring, and Care; 3. Biomedical Research Overview; 4. System-specific Adaptations/Responses, Issues, and Countermeasures; 5. Multisystem Issues and Countermeasures. In addition, selected operational documents will be presented in the appendices. The chapters are written by well-recognized experts in appropriate fields, peer reviewed, and edited by physicians and scientists with extensive expertise in space medical operations and space-related biomedical research. As Space Exploration continues the major question whether humans are capable of adapting to long term presence and adequate functioning in space habitats remains to be answered We expect that the comprehensive review of

  14. Study of extraterrestrial disposal of radioactive wastes. Part 1: Space transportation and destination considerations for extraterrestrial disposal of radioactive wastes. [feasibility of using space shuttle

    Science.gov (United States)

    Thompson, R. L.; Ramler, J. R.; Stevenson, S. M.

    1974-01-01

    A feasibility study of extraterrestrial disposal of radioactive waste is reported. This report covers the initial work done on only one part of the NASA study, that evaluates and compares possible space destinations and space transportation systems. The currently planned space shuttle was found to be more cost effective than current expendable launch vehicles by about a factor of 2. The space shuttle requires a third stage to perform the waste disposal missions. Depending on the particular mission, this third stage could be either a reusable space tug or an expendable stage such as a Centaur.

  15. HAL/SM language specification. [programming languages and computer programming for space shuttles

    Science.gov (United States)

    Williams, G. P. W., Jr.; Ross, C.

    1975-01-01

    A programming language is presented for the flight software of the NASA Space Shuttle program. It is intended to satisfy virtually all of the flight software requirements of the space shuttle. To achieve this, it incorporates a wide range of features, including applications-oriented data types and organizations, real time control mechanisms, and constructs for systems programming tasks. It is a higher order language designed to allow programmers, analysts, and engineers to communicate with the computer in a form approximating natural mathematical expression. Parts of the English language are combined with standard notation to provide a tool that readily encourages programming without demanding computer hardware expertise. Block diagrams and flow charts are included. The semantics of the language is discussed.

  16. Web-based Weather Expert System (WES) for Space Shuttle Launch

    Science.gov (United States)

    Bardina, Jorge E.; Rajkumar, T.

    2003-01-01

    The Web-based Weather Expert System (WES) is a critical module of the Virtual Test Bed development to support 'go/no go' decisions for Space Shuttle operations in the Intelligent Launch and Range Operations program of NASA. The weather rules characterize certain aspects of the environment related to the launching or landing site, the time of the day or night, the pad or runway conditions, the mission durations, the runway equipment and landing type. Expert system rules are derived from weather contingency rules, which were developed over years by NASA. Backward chaining, a goal-directed inference method is adopted, because a particular consequence or goal clause is evaluated first, and then chained backward through the rules. Once a rule is satisfied or true, then that particular rule is fired and the decision is expressed. The expert system is continuously verifying the rules against the past one-hour weather conditions and the decisions are made. The normal procedure of operations requires a formal pre-launch weather briefing held on Launch minus 1 day, which is a specific weather briefing for all areas of Space Shuttle launch operations. In this paper, the Web-based Weather Expert System of the Intelligent Launch and range Operations program is presented.

  17. Can molecular diffusion explain Space Shuttle plume spreading?

    Science.gov (United States)

    Meier, R. R.; Plane, John M. C.; Stevens, Michael H.; Paxton, L. J.; Christensen, A. B.; Crowley, G.

    2010-04-01

    The satellite-borne Global Ultraviolet Imager (GUVI) has produced more than 20 images of NASA Space Shuttle main engine plumes in the lower thermosphere. These reveal atomic hydrogen and, by inference, water vapor transport over hemispherical-scale distances with speeds much faster than expected from models of thermospheric wind motions. Furthermore, the hydrogen plumes expand rapidly. We find rates that exceed the horizontal diffusion speed at nominal plume altitudes of 104-112 km. Kelley et al. (2009) have proposed a 2-D turbulence mechanism to explain the observed spreading rates (and rapid advection) of the plumes. But upon further investigation, we conclude that H atom diffusion can indeed account for the observed expansion rates by recognizing that vertical diffusion quickly conveys atoms to higher altitudes where horizontal diffusion is much more rapid. We also find evidence for H atom production directly during the Shuttle's main engine burn.

  18. Life science payloads planning study. [for space shuttle orbiters and spacelab

    Science.gov (United States)

    Nelson, W. G.; Wells, G. W.

    1977-01-01

    Preferred approaches and procedures were defined for integrating the space shuttle life sciences payload from experiment solicitation through final data dissemination at mission completion. The payloads operations plan was refined and expended to include current information. The NASA-JSC facility accommodations were assessed, and modifications recommended to improve payload processing capability. Standard format worksheets were developed to permit rapid location of experiment requirements and a Spacelab mission handbook was developed to assist potential life sciences investigators at academic, industrial, health research, and NASA centers. Practical, cost effective methods were determined for accommodating various categories of live specimens during all mission phases.

  19. STS-62 Space Shuttle mission report

    Science.gov (United States)

    Fricke, Robert W., Jr.

    1994-01-01

    The STS-62 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Redesigned Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSHE) systems performance during the sixty-first flight of the Space Shuttle Program and sixteenth flight of the Orbiter vehicle Columbia (OV-102). In addition to the Orbiter, the flight vehicle consisted of an ET designated as ET-62; three SSME's which were designated as serial numbers 2031, 2109, and 2029 in positions 1, 2, and 3, respectively; and two SRB's which were designated BI-064. The RSRM's that were installed in each SRB were designated as 360L036A (lightweight) for the left SRB, and 36OWO36B (welterweight) for the right SRB. This STS-62 Space Shuttle Program Mission Report fulfills the Space Shuttle Program requirement as documented in NSTS 07700, Volume 8, Appendix E. That document requires that each major organizational element supporting the Program report the results of its hardware evaluation and mission performance plus identify all related in-flight anomalies. The primary objectives of the STS-62 mission were to perform the operations of the United States Microgravity Payload-2 (USMP-2) and the Office of Aeronautics and Space Technology-2 (OAST-2) payload. The secondary objectives of this flight were to perform the operations of the Dexterous End Effector (DEE), the Shuttle Solar Backscatter Ultraviolet/A (SSBUV/A), the Limited Duration Space Environment Candidate Material Exposure (LDCE), the Advanced Protein Crystal Growth (APCG), the Physiological Systems Experiments (PSE), the Commercial Protein Crystal Growth (CPCG), the Commercial Generic Bioprocessing Apparatus (CGBA), the Middeck Zero-Gravity Dynamics Experiment (MODE), the Bioreactor Demonstration System (BDS), the Air Force Maui Optical Site Calibration Test (AMOS), and the Auroral Photography Experiment (APE-B).

  20. Space Shuttle: Human Capital Challenges Require Management Attention

    National Research Council Canada - National Science Library

    2000-01-01

    .... NASA budget data shows that, since 1995, shuttle workforce levels have decreased from about 3,000 to about 1,800 full time equivalent employees NASA based its downsizing efforts on optimistic programmatic assumptions...

  1. Fundamental plant biology enabled by the space shuttle.

    Science.gov (United States)

    Paul, Anna-Lisa; Wheeler, Ray M; Levine, Howard G; Ferl, Robert J

    2013-01-01

    The relationship between fundamental plant biology and space biology was especially synergistic in the era of the Space Shuttle. While all terrestrial organisms are influenced by gravity, the impact of gravity as a tropic stimulus in plants has been a topic of formal study for more than a century. And while plants were parts of early space biology payloads, it was not until the advent of the Space Shuttle that the science of plant space biology enjoyed expansion that truly enabled controlled, fundamental experiments that removed gravity from the equation. The Space Shuttle presented a science platform that provided regular science flights with dedicated plant growth hardware and crew trained in inflight plant manipulations. Part of the impetus for plant biology experiments in space was the realization that plants could be important parts of bioregenerative life support on long missions, recycling water, air, and nutrients for the human crew. However, a large part of the impetus was that the Space Shuttle enabled fundamental plant science essentially in a microgravity environment. Experiments during the Space Shuttle era produced key science insights on biological adaptation to spaceflight and especially plant growth and tropisms. In this review, we present an overview of plant science in the Space Shuttle era with an emphasis on experiments dealing with fundamental plant growth in microgravity. This review discusses general conclusions from the study of plant spaceflight biology enabled by the Space Shuttle by providing historical context and reviews of select experiments that exemplify plant space biology science.

  2. Advanced Health Management System for the Space Shuttle Main Engine

    Science.gov (United States)

    Davidson, Matt; Stephens, John; Rodela, Chris

    2006-01-01

    Pratt & Whitney Rocketdyne, Inc., in cooperation with NASA-Marshall Space Flight Center (MSFC), has developed a new Advanced Health Management System (AHMS) controller for the Space Shuttle Main Engine (SSME) that will increase the probability of successfully placing the shuttle into the intended orbit and increase the safety of the Space Transportation System (STS) launches. The AHMS is an upgrade o the current Block II engine controller whose primary component is an improved vibration monitoring system called the Real-Time Vibration Monitoring System (RTVMS) that can effectively and reliably monitor the state of the high pressure turbomachinery and provide engine protection through a new synchronous vibration redline which enables engine shutdown if the vibration exceeds predetermined thresholds. The introduction of this system required improvements and modification to the Block II controller such as redesigning the Digital Computer Unit (DCU) memory and the Flight Accelerometer Safety Cut-Off System (FASCOS) circuitry, eliminating the existing memory retention batteries, installation of the Digital Signal Processor (DSP) technology, and installation of a High Speed Serial Interface (HSSI) with accompanying outside world connectors. Test stand hot-fire testing along with lab testing have verified successful implementation and is expected to reduce the probability of catastrophic engine failures during the shuttle ascent phase and improve safely by about 23% according to the Quantitative Risk Assessment System (QRAS), leading to a safer and more reliable SSME.

  3. Analysis of launch site processing effectiveness for the Space Shuttle 26R payload

    Science.gov (United States)

    Flores, Carlos A.; Heuser, Robert E.; Pepper, Richard E., Jr.; Smith, Anthony M.

    1991-01-01

    A trend analysis study has been performed on problem reports recorded during the Space Shuttle 26R payload's processing cycle at NASA-Kennedy, using the defect-flow analysis (DFA) methodology; DFA gives attention to the characteristics of the problem-report 'population' as a whole. It is established that the problem reports contain data which distract from pressing problems, and that fully 60 percent of such reports were caused during processing at NASA-Kennedy. The second major cause of problem reports was design defects.

  4. Use of personal, real time in-cabin dosimetry on space shuttle flights

    International Nuclear Information System (INIS)

    Angelo, J.A. Jr.; Madonna, R.G.; Quam, W.; Warren, J.; Dockter, M.

    1984-01-01

    The use of real time dosimeters onboard the Space Shuttle is described. Data taken during STS-8 with a small gamma ray counter (HRM-III) and a neutron/proton dosimeter (the Pocket Rem Meter [PRM]) are presented. The data agree with NASA predictions for gamma ray background and neutron-proton dosage received for the STS-8 mission. 1 figure, 1 table

  5. Linking the space shuttle and space stations early docking technologies from concept to implementation

    CERN Document Server

    Shayler, David J

    2017-01-01

    How could the newly authorized space shuttle help in the U.S. quest to build a large research station in Earth orbit? As a means of transporting goods, the shuttle could help supply the parts to the station. But how would the two entitles be physically linked? Docking technologies had to constantly evolve as the designs of the early space stations changed. It was hoped the shuttle would make missions to the Russian Salyut and American Skylab stations, but these were postponed until the Mir station became available, while plans for getting a new U. S. space station underway were stalled. In Linking the Space Shuttle and Space Stations, the author delves into the rich history of the Space Shuttle and its connection to these early space stations, culminating in the nine missions to dock the shuttle to Mir. By 1998, after nearly three decades of planning and operations, shuttle missions to Mir had resulted in: • A proven system to link up the space shuttle to a space station • Equipment and hands-on experienc...

  6. Introduction of the Space Shuttle Columbia Accident, Investigation Details, Findings and Crew Survival Investigation Report

    Science.gov (United States)

    Chandler, Michael

    2010-01-01

    As the Space Shuttle Program comes to an end, it is important that the lessons learned from the Columbia accident be captured and understood by those who will be developing future aerospace programs and supporting current programs. Aeromedical lessons learned from the Accident were presented at AsMA in 2005. This Panel will update that information, closeout the lessons learned, provide additional information on the accident and provide suggestions for the future. To set the stage, an overview of the accident is required. The Space Shuttle Columbia was returning to Earth with a crew of seven astronauts on 1Feb, 2003. It disintegrated along a track extending from California to Louisiana and observers along part of the track filmed the breakup of Columbia. Debris was recovered from Littlefield, Texas to Fort Polk, Louisiana, along a 567 statute mile track; the largest ever recorded debris field. The Columbia Accident Investigation Board (CAIB) concluded its investigation in August 2003, and released their findings in a report published in February 2004. NASA recognized the importance of capturing the lessons learned from the loss of Columbia and her crew and the Space Shuttle Program managers commissioned the Spacecraft Crew Survival Integrated Investigation Team (SCSIIT) to accomplish this. Their task was to perform a comprehensive analysis of the accident, focusing on factors and events affecting crew survival, and to develop recommendations for improving crew survival, including the design features, equipment, training and procedures intended to protect the crew. NASA released the Columbia Crew Survival Investigation Report in December 2008. Key personnel have been assembled to give you an overview of the Space Shuttle Columbia accident, the medical response, the medico-legal issues, the SCSIIT findings and recommendations and future NASA flight surgeon spacecraft accident response training. Educational Objectives: Set the stage for the Panel to address the

  7. The last of NASA's original pilot astronauts expanding the space frontier in the late sixties

    CERN Document Server

    Shayler, David J

    2017-01-01

    Resulting from the authors’ deep research into these two pre-Shuttle astronaut groups, many intriguing and untold stories behind the selection process are revealed in the book. The often extraordinary backgrounds and personal ambitions of these skilled pilots, chosen to continue NASA’s exploration and knowledge of the space frontier, are also examined. In April 1966 NASA selected 19 pilot astronauts whose training was specifically targeted to the Apollo lunar landing missions and the Earth-orbiting Skylab space station. Three years later, following the sudden cancellation of the USAF’s highly classified Manned Orbiting Laboratory (MOL) project, seven military astronauts were also co-opted into NASA’s space program. This book represents the final chapter by the authors in the story of American astronaut selections prior to the era of the Space Shuttle. Through personal interviews and original NASA documentation, readers will also gain a true insight into a remarkable age of space travel as it unfolded ...

  8. Quantum Shuttle in Phase Space

    DEFF Research Database (Denmark)

    Novotny, Tomas; Donarini, Andrea; Jauho, Antti-Pekka

    2003-01-01

    Abstract: We present a quantum theory of the shuttle instability in electronic transport through a nanostructure with a mechanical degree of freedom. A phase space formulation in terms of the Wigner function allows us to identify a crossover from the tunneling to the shuttling regime, thus...

  9. STS-61 Space Shuttle mission report

    Science.gov (United States)

    Fricke, Robert W., Jr.

    1994-02-01

    The STS-61 Space Shuttle Program Mission Report summarizes the Hubble Space Telescope (HST) servicing mission as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Redesigned Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the fifty-ninth flight of the Space Shuttle Program and fifth flight of the Orbiter vehicle Endeavour (OV-105). In addition to the Orbiter, the flight vehicle consisted of an ET designated as ET-60; three SSME's which were designated as serial numbers 2019, 2033, and 2017 in positions 1, 2, and 3, respectively; and two SRB's which were designated BI-063. The RSRM's that were installed in each SRB were designated as 360L023A (lightweight) for the left SRB, and 360L023B (lightweight) for the right SRB. This STS-61 Space Shuttle Program Mission Report fulfills the Space Shuttle Program requirement as documented in NSTS 07700, Volume 8, Appendix E. That document requires that each major organizational element supporting the Program report the results of its hardware evaluation and mission performance plus identify all related in-flight anomalies. The primary objective of the STS-61 mission was to perform the first on-orbit servicing of the Hubble Space Telescope. The servicing tasks included the installation of new solar arrays, replacement of the Wide Field/Planetary Camera I (WF/PC I) with WF/PC II, replacement of the High Speed Photometer (HSP) with the Corrective Optics Space Telescope Axial Replacement (COSTAR), replacement of rate sensing units (RSU's) and electronic control units (ECU's), installation of new magnetic sensing systems and fuse plugs, and the repair of the Goddard High Resolution Spectrometer (GHRS). Secondary objectives were to perform the requirements of the IMAX Cargo Bay Camera (ICBC), the IMAX Camera, and the Air Force Maui Optical Site (AMOS) Calibration Test.

  10. Correlation of Space Shuttle Landing Performance with Post-Flight Cardiovascular Dysfunction

    Science.gov (United States)

    McCluskey, R.

    2004-01-01

    Introduction: Microgravity induces cardiovascular adaptations resulting in orthostatic intolerance on re-exposure to normal gravity. Orthostasis could interfere with performance of complex tasks during the re-entry phase of Shuttle landings. This study correlated measures of Shuttle landing performance with post-flight indicators of orthostatic intolerance. Methods: Relevant Shuttle landing performance parameters routinely recorded at touchdown by NASA included downrange and crossrange distances, airspeed, and vertical speed. Measures of cardiovascular changes were calculated from operational stand tests performed in the immediate post-flight period on mission commanders from STS-41 to STS-66. Stand test data analyzed included maximum standing heart rate, mean increase in maximum heart rate, minimum standing systolic blood pressure, and mean decrease in standing systolic blood pressure. Pearson correlation coefficients were calculated with the null hypothesis that there was no statistically significant linear correlation between stand test results and Shuttle landing performance. A correlation coefficient? 0.5 with a pcorrelations between landing performance and measures of post-flight cardiovascular dysfunction. Discussion: There was no evidence that post-flight cardiovascular stand test data correlated with Shuttle landing performance. This implies that variations in landing performance were not due to space flight-induced orthostatic intolerance.

  11. Eye-Head Coordination in 31 Space Shuttle Astronauts during Visual Target Acquisition.

    Science.gov (United States)

    Reschke, Millard F; Kolev, Ognyan I; Clément, Gilles

    2017-10-27

    Between 1989 and 1995, NASA evaluated how increases in flight duration of up to 17 days affected the health and performance of Space Shuttle astronauts. Thirty-one Space Shuttle pilots participating in 17 space missions were tested at 3 different times before flight and 3 different times after flight, starting within a few hours of return to Earth. The astronauts moved their head and eyes as quickly as possible from the central fixation point to a specified target located 20°, 30°, or 60° off center. Eye movements were measured with electro-oculography (EOG). Head movements were measured with a triaxial rate sensor system mounted on a headband. The mean time to visually acquire the targets immediately after landing was 7-10% (30-34 ms) slower than mean preflight values, but results returned to baseline after 48 hours. This increase in gaze latency was due to a decrease in velocity and amplitude of both the eye saccade and head movement toward the target. Results were similar after all space missions, regardless of length.

  12. Application of Digital Radiography to Weld Inspection for the Space Shuttle External Fuel Tank

    Science.gov (United States)

    Ussery, Warren

    2009-01-01

    This slide presentation reviews NASA's use of digital radiography to inspect the welds of the external tanks used to hold the cryogenic fuels for the Space Shuttle Main Engines. NASA has had a goal of replacing a significant portion of film used to inspect the welds, with digital radiography. The presentation reviews the objectives for converting to a digital system from film, the characteristics of the digital system, the Probability of detection study, the qualification and implementation of the system.

  13. Designing astrophysics missions for NASA's Space Launch System

    Science.gov (United States)

    Stahl, H. Philip; Hopkins, Randall C.; Schnell, Andrew; Smith, David Alan; Jackman, Angela; Warfield, Keith R.

    2016-10-01

    Large space telescope missions have always been limited by their launch vehicle's mass and volume capacities. The Hubble Space Telescope was specifically designed to fit inside the Space Shuttle and the James Webb Space Telescope was specifically designed to fit inside an Ariane 5. Astrophysicists desire even larger space telescopes. NASA's "Enduring Quests Daring Visions" report calls for an 8- to 16-m Large UV-Optical-IR (LUVOIR) Surveyor mission to enable ultrahigh-contrast spectroscopy and coronagraphy. Association of Universities for Research in Astronomy's "From Cosmic Birth to Living Earth" report calls for a 12-m class High-Definition Space Telescope to pursue transformational scientific discoveries. NASA's "Planning for the 2020 Decadal Survey" calls for a Habitable Exoplanet Imaging (HabEx) and an LUVOIR as well as Far-IR and an X-ray Surveyor missions. Packaging larger space telescopes into existing launch vehicles is a significant engineering complexity challenge that drives cost and risk. NASA's planned Space Launch System (SLS), with its 8- or 10-m diameter fairings and ability to deliver 35 to 45 mt of payload to Sun-Earth-Lagrange-2, mitigates this challenge by fundamentally changing the design paradigm for large space telescopes. This paper introduces the mass and volume capacities of the planned SLS, provides a simple mass allocation recipe for designing large space telescope missions to this capacity, and gives three specific mission concept implementation examples: a 4-m monolithic off-axis telescope, an 8-m monolithic on-axis telescope, and a 12-m segmented on-axis telescope.

  14. The space telescope: A study of NASA, science, technology, and politics

    Science.gov (United States)

    Smith, Robert William

    1989-01-01

    Scientific, technological, economic, and political aspects of NASA efforts to orbit a large astronomical telescope are examined in a critical historical review based on extensive interviews with participants and analysis of published and unpublished sources. The scientific advantages of large space telescopes are explained; early plans for space observatories are summarized; the history of NASA and its major programs is surveyed; the redesign of the original Large Space Telescope for Shuttle deployability is discussed; the impact of the yearly funding negotiations with Congress on the development of the final Hubble Space Telescope (HST) is described; and the implications of the HST story for the future of large space science projects are explored. Drawings, photographs, a description of the HST instruments and systems, and lists of the major contractors and institutions participating in the HST program are provided.

  15. NASA Aerosciences Activities to Support Human Space Flight

    Science.gov (United States)

    LeBeau, Gerald J.

    2011-01-01

    The Lyndon B. Johnson Space Center (JSC) has been a critical element of the United State's human space flight program for over 50 years. It is the home to NASA s Mission Control Center, the astronaut corps, and many major programs and projects including the Space Shuttle Program, International Space Station Program, and the Orion Project. As part of JSC's Engineering Directorate, the Applied Aeroscience and Computational Fluid Dynamics Branch is charted to provide aerosciences support to all human spacecraft designs and missions for all phases of flight, including ascent, exo-atmospheric, and entry. The presentation will review past and current aeroscience applications and how NASA works to apply a balanced philosophy that leverages ground testing, computational modeling and simulation, and flight testing, to develop and validate related products. The speaker will address associated aspects of aerodynamics, aerothermodynamics, rarefied gas dynamics, and decelerator systems, involving both spacecraft vehicle design and analysis, and operational mission support. From these examples some of NASA leading aerosciences challenges will be identified. These challenges will be used to provide foundational motivation for the development of specific advanced modeling and simulation capabilities, and will also be used to highlight how development activities are increasing becoming more aligned with flight projects. NASA s efforts to apply principles of innovation and inclusion towards improving its ability to support the myriad of vehicle design and operational challenges will also be briefly reviewed.

  16. Space Shuttle Program (SSP) Shock Test and Specification Experience for Reusable Flight Hardware Equipment

    Science.gov (United States)

    Larsen, Curtis E.

    2012-01-01

    As commercial companies are nearing a preliminary design review level of design maturity, several companies are identifying the process for qualifying their multi-use electrical and mechanical components for various shock environments, including pyrotechnic, mortar firing, and water impact. The experience in quantifying the environments consists primarily of recommendations from Military Standard-1540, Product Verification Requirement for Launch, Upper Stage, and Space Vehicles. Therefore, the NASA Engineering and Safety Center (NESC) formed a team of NASA shock experts to share the NASA experience with qualifying hardware for the Space Shuttle Program (SSP) and other applicable programs and projects. Several team teleconferences were held to discuss past experience and to share ideas of possible methods for qualifying components for multiple missions. This document contains the information compiled from the discussions

  17. Potential large missions enabled by NASA's space launch system

    Science.gov (United States)

    Stahl, H. Philip; Hopkins, Randall C.; Schnell, Andrew; Smith, David A.; Jackman, Angela; Warfield, Keith R.

    2016-07-01

    Large space telescope missions have always been limited by their launch vehicle's mass and volume capacities. The Hubble Space Telescope (HST) was specifically designed to fit inside the Space Shuttle and the James Webb Space Telescope (JWST) is specifically designed to fit inside an Ariane 5. Astrophysicists desire even larger space telescopes. NASA's "Enduring Quests Daring Visions" report calls for an 8- to 16-m Large UV-Optical-IR (LUVOIR) Surveyor mission to enable ultra-high-contrast spectroscopy and coronagraphy. AURA's "From Cosmic Birth to Living Earth" report calls for a 12-m class High-Definition Space Telescope to pursue transformational scientific discoveries. NASA's "Planning for the 2020 Decadal Survey" calls for a Habitable Exoplanet Imaging (HabEx) and a LUVOIR as well as Far-IR and an X-Ray Surveyor missions. Packaging larger space telescopes into existing launch vehicles is a significant engineering complexity challenge that drives cost and risk. NASA's planned Space Launch System (SLS), with its 8 or 10-m diameter fairings and ability to deliver 35 to 45-mt of payload to Sun-Earth-Lagrange-2, mitigates this challenge by fundamentally changing the design paradigm for large space telescopes. This paper reviews the mass and volume capacities of the planned SLS, discusses potential implications of these capacities for designing large space telescope missions, and gives three specific mission concept implementation examples: a 4-m monolithic off-axis telescope, an 8-m monolithic on-axis telescope and a 12-m segmented on-axis telescope.

  18. Understanding the cost bases of Space Shuttle pricing policies for commercial and foreign customers

    Science.gov (United States)

    Stone, Barbara A.

    1984-01-01

    The principles and underlying cost bases of the 1977 and 1982 Space Shuttle Reimbursement Policies are compared and contrasted. Out-of-pocket cost recovery has been chosen as the base of the price for the 1986-1988 time period. With this cost base, it is NASA's intent to recover the total cost of consumables and the launch and flight operations costs added by commercial and foreign customers over the 1986-1988 time period. Beyond 1988, NASA intends to return to its policy of full cost recovery.

  19. Human interactions in space: ISS vs. Shuttle/Mir

    Science.gov (United States)

    Kanas, N. A.; Salnitskiy, V. P.; Ritsher, J. B.; Gushin, V. I.; Weiss, D. S.; Saylor, S. A.; Kozerenko, O. P.; Marmar, C. R.

    2006-07-01

    This paper compares findings from two NASA-funded studies of international long-duration missions to the Mir space station (Shuttle/Mir) and to the International Space Station (ISS). American and Russian crewmembers and mission control personnel participated. Issues examined included changes in mood and group social climate over time, displacement of group tension to outside monitoring personnel, cultural differences, and leadership roles. Findings were based on the completion of a weekly questionnaire that included items from the Profile of Mood States, the Group Environment Scale, and the Work Environment Scale. An examination of issues investigated in both studies revealed much similarity in findings. There was little support for the presence of changes in levels of mood and group climate over time, and no evidence for a "3rd quarter phenomenon". Both studies also provided evidence for the displacement of negative emotions to outside personnel in both crewmembers and mission control personnel. There were similar patterns of differences between Americans and Russians and between crewmembers and mission control personnel. Finally, in both studies, the support role of the leader was related to group cohesion among crewmembers, and both the task and support roles of the leader were related to cohesion among mission control personnel. Thus, in these four areas, the ISS study substantially replicated the findings from the earlier Shuttle/Mir study, suggesting that common psychosocial issues affect people engaged in on-orbit space missions.

  20. Meals in orbit. [Space Shuttle food service planning

    Science.gov (United States)

    1980-01-01

    Space foods which will be available to the Space Shuttle crew are discussed in view of the research and development of proper nutrition in space that began with the pastelike tube meals of the Mercury and Gemini astronauts. The variety of food types proposed for the Space Shuttle crew which include thermostabilized, intermediate moisture, rehydratable, irradiated, freeze-dried and natural forms are shown to be a result of the successive improvements in the Apollo, Skylab and Apollo Soyuz test project flights. The Space Shuttle crew will also benefit from an increase of caloric content (3,000 cal./day), the convenience of a real oven and a comfortable dining and kitchen area.

  1. Space Shuttle 750 psi Helium Regulator Application on Mars Science Laboratory Propulsion

    Science.gov (United States)

    Mizukami, Masashi; Yankura, George; Rust, Thomas; Anderson, John R.; Dien, Anthony; Garda, Hoshang; Bezer, Mary Ann; Johnson, David; Arndt, Scott

    2009-01-01

    The Mars Science Laboratory (MSL) is NASA's next major mission to Mars, to be launched in September 2009. It is a nuclear powered rover designed for a long duration mission, with an extensive suite of science instruments. The descent and landing uses a unique 'skycrane' concept, where a rocket-powered descent stage decelerates the vehicle, hovers over the ground, lowers the rover to the ground on a bridle, then flies a safe distance away for disposal. This descent stage uses a regulated hydrazine propulsion system. Performance requirements for the pressure regulator were very demanding, with a wide range of flow rates and tight regulated pressure band. These indicated that a piloted regulator would be needed, which are notoriously complex, and time available for development was short. Coincidentally, it was found that the helium regulator used in the Space Shuttle Orbiter main propulsion system came very close to meeting MSL requirements. However, the type was out of production, and fabricating new units would incur long lead times and technical risk. Therefore, the Space Shuttle program graciously furnished three units for use by MSL. Minor modifications were made, and the units were carefully tuned to MSL requirements. Some of the personnel involved had built and tested the original shuttle units. Delta qualification for MSL application was successfully conducted on one of the units. A pyrovalve slam start and shock test was conducted. Dynamic performance analyses for the new application were conducted, using sophisticated tools developed for Shuttle. Because the MSL regulator is a refurbished Shuttle flight regulator, it will be the only part of MSL which has physically already been in space.

  2. Space Shuttle Orbiter Endeavour STS-47 Launch

    Science.gov (United States)

    1992-01-01

    A smooth countdown culminated in a picture-perfect launch as the Space Shuttle Orbiter Endeavour (STS-47) climbed skyward atop a ladder of billowing smoke on September 12, 1992. The primary payload for the plarned seven-day flight was the Spacelab-J science laboratory. The second flight of Endeavour marks a number of historic firsts: the first space flight of an African-American woman, the first Japanese citizen to fly on a Space Shuttle, and the first married couple to fly in space.

  3. Shuttle Transportation System Case-Study Development

    Science.gov (United States)

    Ransom, Khadijah

    2012-01-01

    A case-study collection was developed for NASA's Space Shuttle Program. Using lessons learned and documented by NASA KSC engineers, analysts, and contractors, decades of information related to processing and launching the Space Shuttle was gathered into a single database. The goal was to provide educators with an alternative means to teach real-world engineering processes and to enhance critical thinking, decision making, and problem solving skills. Suggested formats were created to assist both external educators and internal NASA employees to develop and contribute their own case-study reports to share with other educators and students. Via group project, class discussion, or open-ended research format, students will be introduced to the unique decision making process related to Shuttle missions and development. Teaching notes, images, and related documents will be made accessible to the public for presentation of Space Shuttle reports. Lessons investigated included the engine cutoff (ECO) sensor anomaly which occurred during mission STS-114. Students will be presented with general mission infom1ation as well as an explanation of ECO sensors. The project will conclude with the design of a website that allows for distribution of information to the public as well as case-study report submissions from other educators online.

  4. Simulation of Shuttle launch G forces and acoustic loads using the NASA Ames Research Center 20G centrifuge

    Science.gov (United States)

    Shaw, T. L.; Corliss, J. M.; Gundo, D. P.; Mulenburg, G. M.; Breit, G. A.; Griffith, J. B.

    1994-01-01

    The high cost and long times required to develop research packages for space flight can often be offset by using ground test techniques. This paper describes a space shuttle launch and reentry simulating using the NASA Ames Research Center's 20G centrifuge facility. The combined G-forces and acoustic environment during shuttle launch and landing were simulated to evaluate the effect on a payload of laboratory rates. The launch G force and acoustic profiles are matched to actual shuttle launch data to produce the required G-forces and acoustic spectrum in the centrifuge test cab where the rats were caged on a free-swinging platform. For reentry, only G force is simulated as the aero-acoustic noise is insignificant compared to that during launch. The shuttle G-force profiles of launch and landing are achieved by programming the centrifuge drive computer to continuously adjust centrifuge rotational speed to obtain the correct launch and landing G forces. The shuttle launch acoustic environment is simulated using a high-power, low-frequency audio system. Accelerometer data from STS-56 and microphone data from STS-1 through STS-5 are used as baselines for the simulations. This paper provides a description of the test setup and the results of the simulation with recommendations for follow-on simulations.

  5. STS-102 Astronaut Thomas Views International Space Station Through Shuttle Window

    Science.gov (United States)

    2001-01-01

    STS-102 astronaut and mission specialist, Andrew S.W. Thomas, gazes through an aft window of the Space Shuttle Orbiter Discovery as it approaches the docking bay of the International Space Station (ISS). Launched March 8, 2001, STS-102's primary cargo was the Leonardo, the Italian Space Agency-built Multipurpose Logistics Module (MPLM). The Leonardo MPLM is the first of three such pressurized modules that will serve as the ISS's moving vans, carrying laboratory racks filled with equipment, experiments, and supplies to and from the Station aboard the Space Shuttle. The cylindrical module is approximately 21-feet long and 15- feet in diameter, weighing almost 4.5 tons. It can carry up to 10 tons of cargo in 16 standard Space Station equipment racks. Of the 16 racks the module can carry, 5 can be furnished with power, data, and fluid to support refrigerators or freezers. In order to function as an attached station module as well as a cargo transport, the logistics module also includes components that provide life support, fire detection and suppression, electrical distribution, and computer functions. NASA's 103rd overall mission and the 8th Space Station Assembly Flight, STS-102 mission also served as a crew rotation flight. It delivered the Expedition Two crew to the Station and returned the Expedition One crew back to Earth.

  6. Materials in NASA's Space Launch System: The Stuff Dreams are Made of

    Science.gov (United States)

    May, Todd A.

    2012-01-01

    Mr. Todd May, Program Manager for NASA's Space Launch System, will showcase plans and progress the nation s new super-heavy-lift launch vehicle, which is on track for a first flight to launch an Orion Multi-Purpose Crew Vehicle around the Moon in 2017. Mr. May s keynote address will share NASA's vision for future human and scientific space exploration and how SLS will advance those plans. Using new, in-development, and existing assets from the Space Shuttle and other programs, SLS will provide safe, affordable, and sustainable space launch capabilities for exploration payloads starting at 70 metric tons (t) and evolving through 130 t for entirely new deep-space missions. Mr. May will also highlight the impact of material selection, development, and manufacturing as they contribute to reducing risk and cost while simultaneously supporting the nation s exploration goals.

  7. Orbital Fitness: An Overview of Space Shuttle Cardiopulmonary Exercise Physiology Findings

    Science.gov (United States)

    Moore, Alan D.

    2011-01-01

    Limited observations regarding the cardiopulmonary responses to aerobic exercise had been conducted during short-duration spaceflight before the Space Shuttle program. This presentation focuses on the findings regarding changes observed in the cardiopulmonary exercise responses during and following Shuttle flights. During flight, maximum oxygen uptake (VO2max) remained unchanged as did the maximum work rate achievable during cycle exercise testing conducted during the last full flight day. Immediately following flight, the ubiquitous finding, confirmed by investigations conducted during the Spacelab Life Sciences missions 1 and 2 and by NASA Detailed Supplemental Objective studies, indicated that VO2max was reduced; however, the reduction in VO2max was transient and returned to preflight levels within 7 days following return. Studies regarding the influence of aerobic exercise countermeasures performed during flight on postflight performance were mostly limited to the examination of the heart rate (HR) response to submaximal exercise testing on landing day. These studies revealed that exercise HR was elevated in individuals who performed little to no exercise during their missions as compared to individuals who performed regular exercise. In addition, astronauts who performed little to no aerobic exercise during flight demonstrated an increased HR and lowered pulse pressure response to the standard stand test on landing day, indicating a decrease in orthostatic function in these individuals. With regard to exercise modality, four devices were examined during the Shuttle era: two treadmills, a cycle ergometer, and a rowing device. Although there were limited investigations regarding the use of these devices for exercise training aboard the Shuttle, there was no clear consensus reached regarding which proved to be a "superior" device. Each device had a unique operational or physiologic limitation associated with its use. In conclusion, exercise research conducted

  8. Space Shuttle GN and C Development History and Evolution

    Science.gov (United States)

    Zimpfer, Douglas; Hattis, Phil; Ruppert, John; Gavert, Don

    2011-01-01

    Completion of the final Space Shuttle flight marks the end of a significant era in Human Spaceflight. Developed in the 1970 s, first launched in 1981, the Space Shuttle embodies many significant engineering achievements. One of these is the development and operation of the first extensive fly-by-wire human space transportation Guidance, Navigation and Control (GN&C) System. Development of the Space Shuttle GN&C represented first time inclusions of modern techniques for electronics, software, algorithms, systems and management in a complex system. Numerous technical design trades and lessons learned continue to drive current vehicle development. For example, the Space Shuttle GN&C system incorporated redundant systems, complex algorithms and flight software rigorously verified through integrated vehicle simulations and avionics integration testing techniques. Over the past thirty years, the Shuttle GN&C continued to go through a series of upgrades to improve safety, performance and to enable the complex flight operations required for assembly of the international space station. Upgrades to the GN&C ranged from the addition of nose wheel steering to modifications that extend capabilities to control of the large flexible configurations while being docked to the Space Station. This paper provides a history of the development and evolution of the Space Shuttle GN&C system. Emphasis is placed on key architecture decisions, design trades and the lessons learned for future complex space transportation system developments. Finally, some of the interesting flight operations experience is provided to inform future developers of flight experiences.

  9. Cardiovascular Aspects of Space Shuttle Flights: At the Heart of Three Decades of American Spaceflight Experience

    Science.gov (United States)

    Charles, John B.; Platts, S. H.

    2011-01-01

    The advent of the Space Shuttle era elevated cardiovascular deconditioning from a research topic in gravitational physiology to a concern with operational consequences during critical space mission phases. NASA has identified three primary cardiovascular risks associate with short-duration (less than 18 d) spaceflight: orthostatic intolerance; decreased maximal oxygen uptake; and cardiac arrhythmias. Orthostatic hypotension (OH) was observed postflight in Mercury astronauts, studied in Gemini and Apollo astronauts, and tracked as it developed in-flight during Skylab missions. A putative hypotensive episode in the pilot during an early shuttle landing, and well documented postflight hypotension in a quarter of crewmembers, catalyzed NASA's research effort to understand its mechanisms and develop countermeasures. Shuttle investigations documented the onset of OH, tested mechanistic hypotheses, and demonstrated countermeasures both simple and complex. Similarly, decreased aerobic capacity in-flight threatened both extravehicular activity and post-landing emergency egress. In one study, peak oxygen uptake and peak power were significantly decreased following flights. Other studies tested hardware and protocols for aerobic conditioning that undergird both current practice on long-duration International Space Station (ISS) missions and plans for interplanetary expeditions. Finally, several studies suggest that cardiac arrhythmias are of less concern during short-duration spaceflight than during long-duration spaceflight. Duration of the QT interval was unchanged and the frequency of premature atrial and ventricular contractions was actually shown to decrease during extravehicular activity. These investigations on short-duration Shuttle flights have paved the way for research aboard long-duration ISS missions and beyond. Efforts are already underway to study the effects of exploration class missions to asteroids and Mars.

  10. Potential Large Decadal Missions Enabled by Nasas Space Launch System

    Science.gov (United States)

    Stahl, H. Philip; Hopkins, Randall C.; Schnell, Andrew; Smith, David Alan; Jackman, Angela; Warfield, Keith R.

    2016-01-01

    Large space telescope missions have always been limited by their launch vehicle's mass and volume capacities. The Hubble Space Telescope (HST) was specifically designed to fit inside the Space Shuttle and the James Webb Space Telescope (JWST) is specifically designed to fit inside an Ariane 5. Astrophysicists desire even larger space telescopes. NASA's "Enduring Quests Daring Visions" report calls for an 8- to 16-m Large UV-Optical-IR (LUVOIR) Surveyor mission to enable ultra-high-contrast spectroscopy and coronagraphy. AURA's "From Cosmic Birth to Living Earth" report calls for a 12-m class High-Definition Space Telescope to pursue transformational scientific discoveries. NASA's "Planning for the 2020 Decadal Survey" calls for a Habitable Exoplanet Imaging (HabEx) and a LUVOIR as well as Far-IR and an X-Ray Surveyor missions. Packaging larger space telescopes into existing launch vehicles is a significant engineering complexity challenge that drives cost and risk. NASA's planned Space Launch System (SLS), with its 8 or 10-m diameter fairings and ability to deliver 35 to 45-mt of payload to Sun-Earth-Lagrange-2, mitigates this challenge by fundamentally changing the design paradigm for large space telescopes. This paper reviews the mass and volume capacities of the planned SLS, discusses potential implications of these capacities for designing large space telescope missions, and gives three specific mission concept implementation examples: a 4-m monolithic off-axis telescope, an 8-m monolithic on-axis telescope and a 12-m segmented on-axis telescope.

  11. Space Shuttle critical function audit

    Science.gov (United States)

    Sacks, Ivan J.; Dipol, John; Su, Paul

    1990-01-01

    A large fault-tolerance model of the main propulsion system of the US space shuttle has been developed. This model is being used to identify single components and pairs of components that will cause loss of shuttle critical functions. In addition, this model is the basis for risk quantification of the shuttle. The process used to develop and analyze the model is digraph matrix analysis (DMA). The DMA modeling and analysis process is accessed via a graphics-based computer user interface. This interface provides coupled display of the integrated system schematics, the digraph models, the component database, and the results of the fault tolerance and risk analyses.

  12. Supporting Multiple Programs and Projects at NASA's Kennedy Space Center

    Science.gov (United States)

    Stewart, Camiren L.

    2014-01-01

    With the conclusion of the shuttle program in 2011, the National Aeronautics and Space Administration (NASA) had found itself at a crossroads for finding transportation of United States astronauts and experiments to space. The agency would eventually hand off the taxiing of American astronauts to the International Space Station (ISS) that orbits in Low Earth Orbit (LEO) about 210 miles above the earth under the requirements of the Commercial Crew Program (CCP). By privatizing the round trip journey from Earth to the ISS, the space agency has been given the additional time to focus funding and resources to projects that operate beyond LEO; however, adding even more stress to the agency, the premature cancellation of the program that would succeed the Shuttle Program - The Constellation Program (CxP) -it would inevitably delay the goal to travel beyond LEO for a number of years. Enter the Space Launch System (SLS) and the Orion Multipurpose Crew Vehicle (MPCV). Currently, the SLS is under development at NASA's Marshall Spaceflight Center in Huntsville, Alabama, while the Orion Capsule, built by government contractor Lockheed Martin Corporation, has been assembled and is currently under testing at the Kennedy Space Center (KSC) in Florida. In its current vision, SLS will take Orion and its crew to an asteroid that had been captured in an earlier mission in lunar orbit. Additionally, this vehicle and its configuration is NASA's transportation to Mars. Engineers at the Kennedy Space Center are currently working to test the ground systems that will facilitate the launch of Orion and the SLS within its Ground Services Development and Operations (GSDO) Program. Firing Room 1 in the Launch Control Center (LCC) has been refurbished and outfitted to support the SLS Program. In addition, the Spaceport Command and Control System (SCCS) is the underlying control system for monitoring and launching manned launch vehicles. As NASA finds itself at a junction, so does all of its

  13. Proceedings of the NASA/Florida Institute of Technology Environmental Engineering Conference on Nitrogen Tetroxide. [with emphasis on space shuttle

    Science.gov (United States)

    Rhodes, E. L.

    1978-01-01

    Methods of reducing the user hazards of nitrogen tetroxide, a hypergolic oxidizer are discussed. Kennedy Space Center developments in N2O4 control for the space shuttle are featured. Other areas covered are life support equipment and transportation.

  14. From the Shuttle to the Lab, NPS Alumni Look for Solutions to Today’s Space Challenges

    OpenAIRE

    Naval Postgraduate School Public Affairs Office

    2011-01-01

    Naval Postgraduate School alumni and former astronauts Kent Rominger and Ken Reightler have seen time change a lot of things. The shuttle program is at its end, their days as astronauts with NASA are behind them, and they are now part of the ever-evolving commercial space industry. But the thing that hasn’t changed – the one certainty of space travel and exploration – there will always be challenges that need solutions.

  15. Social and Cultural Issues During Shuttle/Mir Space Missions

    Science.gov (United States)

    Kanas, Nick; Salnitskiy, Vyacheslav; Grund, Ellen M.; Gushin, Vadim; Weiss, Daniel S.; Kozerenko, Olga; Sled, Alexander; Marmar, Charles R.

    2000-07-01

    A number of interpersonal issues relevant to manned space missions have been identified from the literature. These include crew tension, cohesion, leadership, language and cultural factors, and displacement. Ground-based studies by others and us have clarified some of the parameters of these issues and have indicated ways in which they could be studied during actual space missions. In this paper, we summarize some of our findings related to social and cultural issues from a NASA-funded study conducted during several Shuttle/Mir space missions. We used standardized mood and group climate measures that were completed on a weekly basis by American and Russian crew and mission control subjects who participated in these missions. Our results indicated that American subjects reported more dissatisfaction with their interpersonal environment than their Russian counterparts, especially American astronauts. Mission control personnel were more dysphoric than crewmembers, but both groups were signficantly less dysphoric than other work groups on Earth. Countermeasures based on our findings are discussed which can be applied to future multicultural space missions.

  16. NASA Johnson Space Center Usability Testing and Analysis Facility (WAF) Overview

    Science.gov (United States)

    Whitmore, M.

    2004-01-01

    The Usability Testing and Analysis Facility (UTAF) is part of the Space Human Factors Laboratory at the NASA Johnson Space Center in Houston, Texas. The facility provides support to the Office of Biological and Physical Research, the Space Shuttle Program, the International Space Station Program, and other NASA organizations. In addition, there are ongoing collaborative research efforts with external businesses and universities. The UTAF provides human factors analysis, evaluation, and usability testing of crew interfaces for space applications. This includes computer displays and controls, workstation systems, and work environments. The UTAF has a unique mix of capabilities, with a staff experienced in both cognitive human factors and ergonomics. The current areas of focus are: human factors applications in emergency medical care and informatics; control and display technologies for electronic procedures and instructions; voice recognition in noisy environments; crew restraint design for unique microgravity workstations; and refinement of human factors processes. This presentation will provide an overview of ongoing activities, and will address how the projects will evolve to meet new space initiatives.

  17. The use of the Space Shuttle for land remote sensing

    Science.gov (United States)

    Thome, P. G.

    1982-01-01

    The use of the Space Shuttle for land remote sensing will grow significantly during the 1980's. The main use will be for general land cover and geological mapping purposes by worldwide users employing specialized sensors such as: high resolution film systems, synthetic aperture radars, and multispectral visible/IR electronic linear array scanners. Because these type sensors have low Space Shuttle load factors, the user's preference will be for shared flights. With this strong preference and given the present prognosis for Space Shuttle flight frequency as a function of orbit inclination, the strongest demand will be for 57 deg orbits. However, significant use will be made of lower inclination orbits. Compared with freeflying satellites, Space Shuttle mission investment requirements will be significantly lower. The use of the Space Shuttle for testing R and D land remote sensors will replace the free-flying satellites for most test programs.

  18. Space station interior design: Results of the NASA/AIA space station interior national design competition

    Science.gov (United States)

    Haines, R. F.

    1975-01-01

    The results of the NASA/AIA space station interior national design competition held during 1971 are presented in order to make available to those who work in the architectural, engineering, and interior design fields the results of this design activity in which the interiors of several space shuttle size modules were designed for optimal habitability. Each design entry also includes a final configuration of all modules into a complete space station. A brief history of the competition is presented with the competition guidelines and constraints. The first place award entry is presented in detail, and specific features from other selected designs are discussed. This is followed by a discussion of how some of these design features might be applied to terrestrial as well as space situations.

  19. Aboard the Space Shuttle.

    Science.gov (United States)

    Steinberg, Florence S.

    This 32-page pamphlet contains color photographs and detailed diagrams which illustrate general descriptive comments about living conditions aboard the space shuttle. Described are details of the launch, the cabin, the condition of weightlessness, food, sleep, exercise, atmosphere, personal hygiene, medicine, going EVA (extra-vehicular activity),…

  20. Pulse-echo ultrasonic inspection system for in-situ nondestructive inspection of Space Shuttle RCC heat shields.

    Energy Technology Data Exchange (ETDEWEB)

    Roach, Dennis Patrick; Walkington, Phillip D.; Rackow, Kirk A.

    2005-06-01

    The reinforced carbon-carbon (RCC) heat shield components on the Space Shuttle's wings must withstand harsh atmospheric reentry environments where the wing leading edge can reach temperatures of 3,000 F. Potential damage includes impact damage, micro cracks, oxidation in the silicon carbide-to-carbon-carbon layers, and interlaminar disbonds. Since accumulated damage in the thick, carbon-carbon and silicon-carbide layers of the heat shields can lead to catastrophic failure of the Shuttle's heat protection system, it was essential for NASA to institute an accurate health monitoring program. NASA's goal was to obtain turnkey inspection systems that could certify the integrity of the Shuttle heat shields prior to each mission. Because of the possibility of damaging the heat shields during removal, the NDI devices must be deployed without removing the leading edge panels from the wing. Recently, NASA selected a multi-method approach for inspecting the wing leading edge which includes eddy current, thermography, and ultrasonics. The complementary superposition of these three inspection techniques produces a rigorous Orbiter certification process that can reliably detect the array of flaws expected in the Shuttle's heat shields. Sandia Labs produced an in-situ ultrasonic inspection method while NASA Langley developed the eddy current and thermographic techniques. An extensive validation process, including blind inspections monitored by NASA officials, demonstrated the ability of these inspection systems to meet the accuracy, sensitivity, and reliability requirements. This report presents the ultrasonic NDI development process and the final hardware configuration. The work included the use of flight hardware and scrap heat shield panels to discover and overcome the obstacles associated with damage detection in the RCC material. Optimum combinations of custom ultrasonic probes and data analyses were merged with the inspection procedures needed to

  1. Development of an Electromechanical Ground Support System for NASA's Payload Transfer Operations: A Case Study of Multidisciplinary Work in the Space Shuttle Program

    Directory of Open Access Journals (Sweden)

    Felix A. Soto Toro

    2013-04-01

    Full Text Available Space shuttle Atlantis was launched from Kennedy Space Center on July 8, 2011 and landed on July 21, 2011, the final flight of the 30-year Shuttle Program. The development and support of the Space Transportation System (STS had required intensive coordination by scientists and engineers from multiple program disciplines. This paper presents a case study of a typical multidisciplinary effort that was proposed in the late 1990

  2. Shuttle Ground Support Equipment (GSE) T-0 Umbilical to Space Shuttle Program (SSP) Flight Elements Consultation

    Science.gov (United States)

    Wilson, Timmy R.; Kichak, Robert A.; McManamen, John P.; Kramer-White, Julie; Raju, Ivatury S.; Beil, Robert J.; Weeks, John F.; Elliott, Kenny B.

    2009-01-01

    The NASA Engineering and Safety Center (NESC) was tasked with assessing the validity of an alternate opinion that surfaced during the investigation of recurrent failures at the Space Shuttle T-0 umbilical interface. The most visible problem occurred during the Space Transportation System (STS)-112 launch when pyrotechnics used to separate Solid Rocket Booster (SRB) Hold-Down Post (HDP) frangible nuts failed to fire. Subsequent investigations recommended several improvements to the Ground Support Equipment (GSE) and processing changes were implemented, including replacement of ground-half cables and connectors between flights, along with wiring modifications to make critical circuits quad-redundant across the interface. The alternate opinions maintained that insufficient data existed to exonerate the design, that additional data needed to be gathered under launch conditions, and that the interface should be further modified to ensure additional margin existed to preclude failure. The results of the assessment are contained in this report.

  3. A Dynamic Risk Model for Evaluation of Space Shuttle Abort Scenarios

    Science.gov (United States)

    Henderson, Edward M.; Maggio, Gaspare; Elrada, Hassan A.; Yazdpour, Sabrina J.

    2003-01-01

    The Space Shuttle is an advanced manned launch system with a respectable history of service and a demonstrated level of safety. Recent studies have shown that the Space Shuttle has a relatively low probability of having a failure that is instantaneously catastrophic during nominal flight as compared with many US and international launch systems. However, since the Space Shuttle is a manned. system, a number of mission abort contingencies exist to primarily ensure the safety of the crew during off-nominal situations and to attempt to maintain the integrity of the Orbiter. As the Space Shuttle ascends to orbit it transverses various intact abort regions evaluated and planned before the flight to ensure that the Space Shuttle Orbiter, along with its crew, may be returned intact either to the original launch site, a transoceanic landing site, or returned from a substandard orbit. An intact abort may be initiated due to a number of system failures but the highest likelihood and most challenging abort scenarios are initiated by a premature shutdown of a Space Shuttle Main Engine (SSME). The potential consequences of such a shutdown vary as a function of a number of mission parameters but all of them may be related to mission time for a specific mission profile. This paper focuses on the Dynamic Abort Risk Evaluation (DARE) model process, applications, and its capability to evaluate the risk of Loss Of Vehicle (LOV) due to the complex systems interactions that occur during Space Shuttle intact abort scenarios. In addition, the paper will examine which of the Space Shuttle subsystems are critical to ensuring a successful return of the Space Shuttle Orbiter and crew from such a situation.

  4. A waning of technocratic faith - NASA and the politics of the Space Shuttle decision, 1967-1972

    Science.gov (United States)

    Launius, R. D.

    1992-01-01

    This paper analyzes the decision to build the Space Shuttle as part of a broader public policy trend away from a deference to technical experts and toward greater politicization of traditionally apolitical issues. At the beginning of the 1960s U.S. leaders had a strong faith in the ability of technology to solve most problems. By 1970 this commitment to technological answers had waned and a resurgence of the right of elected officials to control technical matters was gaining currency. The lengthy and bitter Shuttle decision-making process was part of a much broader shift in the formation of public policy, played out in other arenas as well, aimed at the reemergence of direct political management of technological and scientific affairs by politicians.

  5. NASA Johnson Space Center Usability Testing and Analysis facility (UTAF) Overview

    Science.gov (United States)

    Whitmore, Mihriban; Holden, Kritina L.

    2005-01-01

    The Usability Testing and Analysis Facility (UTAF) is part of the Space Human Factors Laboratory at the NASA Johnson Space Center in Houston, Texas. The facility performs research for NASA's HumanSystems Integration Program, under the HumanSystems Research and Technology Division. Specifically, the UTAF provides human factors support for space vehicles, including the International Space Station, the Space Shuttle, and the forthcoming Crew Exploration Vehicle. In addition, there are ongoing collaborative research efforts with external corporations and universities. The UTAF provides human factors analysis, evaluation, and usability testing of crew interfaces for space applications. This includes computer displays and controls, workstation systems, and work environments. The UTAF has a unique mix of capabilities, with a staff experienced in both cognitive human factors and ergonomics. The current areas of focus are: human factors applications in emergency medical care and informatics; control and display technologies for electronic procedures and instructions; voice recognition in noisy environments; crew restraint design for unique microgravity workstations; and refinement of human factors processes and requirements. This presentation will provide an overview of ongoing activities, and will address how the UTAF projects will evolve to meet new space initiatives.

  6. Proceedings of the Space Shuttle Environmental Assessment Workshop on Stratospheric Effects

    Science.gov (United States)

    Potter, A. E. (Compiler)

    1977-01-01

    Various aspects of the potential environmental impact of space shuttle exhaust are explored. Topics include: (1) increased ultraviolet radiation levels in the biosphere due to destruction of atmospheric ozone; (2) climatic changes due to aerosol particles affecting the planetary albedo; (3) space shuttle propellants (including alternate formulations); and (4) measurement of space shuttle exhaust products.

  7. Coupled Loads Analysis of the Modified NASA Barge Pegasus and Space Launch System Hardware

    Science.gov (United States)

    Knight, J. Brent

    2015-01-01

    A Coupled Loads Analysis (CLA) has been performed for barge transport of Space Launch System hardware on the recently modified NASA barge Pegasus. The barge re-design was facilitated with detailed finite element analyses by the ARMY Corps of Engineers - Marine Design Center. The Finite Element Model (FEM) utilized in the design was also used in the subject CLA. The Pegasus FEM and CLA results are presented as well as a comparison of the analysis process to that of a payload being transported to space via the Space Shuttle. Discussion of the dynamic forcing functions is included as well. The process of performing a dynamic CLA of NASA hardware during marine transport is thought to be a first and can likely support minimization of undue conservatism.

  8. Computer graphics aid mission operations. [NASA missions

    Science.gov (United States)

    Jeletic, James F.

    1990-01-01

    The application of computer graphics techniques in NASA space missions is reviewed. Telemetric monitoring of the Space Shuttle and its components is discussed, noting the use of computer graphics for real-time visualization problems in the retrieval and repair of the Solar Maximum Mission. The use of the world map display for determining a spacecraft's location above the earth and the problem of verifying the relative position and orientation of spacecraft to celestial bodies are examined. The Flight Dynamics/STS Three-dimensional Monitoring System and the Trajectroy Computations and Orbital Products System world map display are described, emphasizing Space Shuttle applications. Also, consideration is given to the development of monitoring systems such as the Shuttle Payloads Mission Monitoring System and the Attitude Heads-Up Display and the use of the NASA-Goddard Two-dimensional Graphics Monitoring System during Shuttle missions and to support the Hubble Space Telescope.

  9. A passion for space adventures of a pioneering female NASA flight controller

    CERN Document Server

    Dyson, Marianne J

    2016-01-01

    Marianne J. Dyson recounts for us a time when women were making the first inroads into space flight control, a previously male-dominated profession. The story begins with the inspiration of the Apollo 11 landing on the Moon and follows the challenges of pursuing a science career as a woman in the 70s and 80s, when it was far from an easy path.  Dyson relates the first five space shuttle flights from the personal perspective of mission planning and operations in Houston at the Johnson Space Center, based almost exclusively on original sources such as journals and NASA weekly activity reports. The book’s historical details about astronaut and flight controller training exemplify both the humorous and serious aspects of space operations up through the Challenger disaster, including the almost unknown fire in Mission Control during STS-5 that nearly caused an emergency entry of the shuttle.  From an insider with a unique perspective and credentials to match, this a must-read for anyone interested in the worki...

  10. An approach to developing the market for space shuttle payloads: Business/public policy issues and international marketing considerations

    Science.gov (United States)

    Krebs, W. A. W.

    1974-01-01

    The business and public policies were assessed that were determined to be important for NASA to consider in the design of a program for stimulating use of the space transportation system (STS) among potential users in the U.S. private sector and in foreign countries, in preparation for operations of the space shuttle in the early 1980's. Salient factors related to international cooperation in space are identified for special consideration in the development of user potential of the STS.

  11. Space Shuttle Communications Coverage Analysis for Thermal Tile Inspection

    Science.gov (United States)

    Kroll, Quin D.; Hwu, Shian U.; Upanavage, Matthew; Boster, John P.; Chavez, Mark A.

    2009-01-01

    The space shuttle ultra-high frequency Space-to-Space Communication System has to provide adequate communication coverage for astronauts who are performing thermal tile inspection and repair on the underside of the space shuttle orbiter (SSO). Careful planning and quantitative assessment are necessary to ensure successful system operations and mission safety in this work environment. This study assesses communication systems performance for astronauts who are working in the underside, non-line-of-sight shadow region on the space shuttle. All of the space shuttle and International Space Station (ISS) transmitting antennas are blocked by the SSO structure. To ensure communication coverage at planned inspection worksites, the signal strength and link margin between the SSO/ISS antennas and the extravehicular activity astronauts, whose line-of-sight is blocked by vehicle structure, was analyzed. Investigations were performed using rigorous computational electromagnetic modeling techniques. Signal strength was obtained by computing the reflected and diffracted fields along the signal propagation paths between transmitting and receiving antennas. Radio frequency (RF) coverage was determined for thermal tile inspection and repair missions using the results of this computation. Analysis results from this paper are important in formulating the limits on reliable communication range and RF coverage at planned underside inspection and repair worksites.

  12. A proposed change to the NASA strategy for servicing space assets

    Science.gov (United States)

    Levin, George C.

    1989-01-01

    Given the limitations of the present Shuttle manifest, it is necessary for NASA to consider revision of its previous strategy for servicing satellites. This is particularly important in a period of tight budgets, when space assets will be difficult to replace. Therefore on-orbit assets take on additional value and keeping these assets operational will take on added importance. The key to maintaining these assets will be the long term strategy of developing a remote servicing capability which is space based and has a minimum reliance on the Shuttle. Such a strategy will require that the users of this servicing system design serviceable spacecraft at a high level and that these assets be located in or be capable of reaching orbits that are accessible to or compatible with the proposed servicing infrastructure. The infrastructure required to support this type of remote servicing architecture and the development of the necessary systems, tools, and procedures required to support a remote servicing architecture of this type are addressed.

  13. NASA Applications and Lessons Learned in Reliability Engineering

    Science.gov (United States)

    Safie, Fayssal M.; Fuller, Raymond P.

    2011-01-01

    Since the Shuttle Challenger accident in 1986, communities across NASA have been developing and extensively using quantitative reliability and risk assessment methods in their decision making process. This paper discusses several reliability engineering applications that NASA has used over the year to support the design, development, and operation of critical space flight hardware. Specifically, the paper discusses several reliability engineering applications used by NASA in areas such as risk management, inspection policies, components upgrades, reliability growth, integrated failure analysis, and physics based probabilistic engineering analysis. In each of these areas, the paper provides a brief discussion of a case study to demonstrate the value added and the criticality of reliability engineering in supporting NASA project and program decisions to fly safely. Examples of these case studies discussed are reliability based life limit extension of Shuttle Space Main Engine (SSME) hardware, Reliability based inspection policies for Auxiliary Power Unit (APU) turbine disc, probabilistic structural engineering analysis for reliability prediction of the SSME alternate turbo-pump development, impact of ET foam reliability on the Space Shuttle System risk, and reliability based Space Shuttle upgrade for safety. Special attention is given in this paper to the physics based probabilistic engineering analysis applications and their critical role in evaluating the reliability of NASA development hardware including their potential use in a research and technology development environment.

  14. Wings In Orbit: Scientific and Engineering Legacies of the Space Shuttle

    Science.gov (United States)

    Hale, N. Wayne (Editor); Lulla, Kamlesh (Editor); Lane, Helen W. (Editor); Chapline, Gail (Editor)

    2010-01-01

    This Space Shuttle book project reviews Wings In Orbit-scientific and engineering legacies of the Space Shuttle. The contents include: 1) Magnificent Flying Machine-A Cathedral to Technology; 2) The Historical Legacy; 3) The Shuttle and its Operations; 4) Engineering Innovations; 5) Major Scientific Discoveries; 6) Social, Cultural, and Educational Legacies; 7) Commercial Aerospace Industries and Spin-offs; and 8) The Shuttle continuum, Role of Human Spaceflight.

  15. Space Shuttle dosimetry measurements with RME-III

    International Nuclear Information System (INIS)

    Hardy, K.A.; Golightly, M.J.; Hardy, A.C.; Atwell, W.; Quam, W.

    1991-10-01

    A description of the radiation monitoring equipment (RME-III) dosimetry instrument and the results obtained from six Space Shuttle flights are presented. The RME-III is a self-contained, active (real-time), portable dosimeter system developed for the USAF and adapted for utilization in measuring the ionizing radiation environment on the Space Shuttle. This instrument was developed to incorporate the capabilities of two earlier radiation instruments into a single unit and to minimize crew interaction times with longer battery life and expanded memory capacity. Flight data has demonstrated that the RME-III can be used to accurately assess dose from various sources of exposure, such as that encountered in the complex radiation environment of space

  16. The flights before the flight - An overview of shuttle astronaut training

    Science.gov (United States)

    Sims, John T.; Sterling, Michael R.

    1989-01-01

    Space shuttle astronaut training is centered at NASA's Johnson Space Center in Houston, Texas. Each astronaut receives many different types of training from many sources. This training includes simulator training in the Shuttle Mission Simulator, in-flight simulator training in the Shuttle Training Aircraft, Extravehicular Activity training in the Weightless Environment Training Facility and a variety of lectures and briefings. Once the training program is completed each shuttle flight crew is well-prepared to perform the normal operations required for their flight and deal with any shuttle system malfunctions that might occur.

  17. Seismic excitation by space shuttles

    Science.gov (United States)

    Kanamori, H.; Mori, J.; Sturtevant, B.; Anderson, D.L.; Heaton, T.

    1992-01-01

    Shock waves generated by the space shuttles Columbia (August 13, 1989), Atlantis (April 11, 1991) and Discovery (September 18, 1991) on their return to Edwards Air Force Base, California, were recorded by TERRAscope (Caltech's broadband seismic network), the Caltech-U.S.G.S Southern California Seismic Network (SCSN), and the University of Southern California (USC) Los Angeles Basin Seismic Network. The spatial pattern of the arrival times exhibits hyperbolic shock fronts from which the path, velocity and altitude of the space shuttle could be determined. The shock wave was acoustically coupled to the ground, converted to a seismic wave, and recorded clearly at the broadband TERRAscope stations. The acoustic coupling occurred very differently depending on the conditions of the Earth's surface surrounding the station. For a seismic station located on hard bedrock, the shock wave (N wave) was clearly recorded with little distortion. Aside from the N wave, very little acoustic coupling of the shock wave energy to the ground occurred at these sites. The observed N wave record was used to estimate the overpressure of the shock wave accurately; a pressure change of 0.5 to 2.2 mbars was obtained. For a seismic station located close to the ocean or soft sedimentary basins, a significant amount of shock wave energy was transferred to the ground through acoustic coupling of the shock wave and the oceanic Rayleigh wave. A distinct topography such as a mountain range was found effective to couple the shock wave energy to the ground. Shock wave energy was also coupled to the ground very effectively through large man made structures such as high rise buildings and offshore oil drilling platforms. For the space shuttle Columbia, in particular, a distinct pulse having a period of about 2 to 3 seconds was observed, 12.5 s before the shock wave, with a broadband seismograph in Pasadena. This pulse was probably excited by the high rise buildings in downtown Los Angeles which were

  18. Macro Level Simulation Model Of Space Shuttle Processing

    Science.gov (United States)

    2000-01-01

    The contents include: 1) Space Shuttle Processing Simulation Model; 2) Knowledge Acquisition; 3) Simulation Input Analysis; 4) Model Applications in Current Shuttle Environment; and 5) Model Applications for Future Reusable Launch Vehicles (RLV's). This paper is presented in viewgraph form.

  19. A History of Space Shuttle Main Engine (SSME) Redline Limits Management

    Science.gov (United States)

    Arnold, Thomas M.

    2011-01-01

    The Space Shuttle Main Engine (SSME) has several "redlines", which are operational limits designated to preclude a catastrophic shutdown of the SSME. The Space Shuttle Orbiter utilizes a combination of hardware and software to enable or disable the automated redline shutdown capability. The Space Shuttle is launched with the automated SSME redline limits enabled, but there are many scenarios which may result in the manual disabling of the software by the onboard crew. The operational philosophy for manually enabling and disabling the redline limits software has evolved continuously throughout the history of the Space Shuttle Program, due to events such as SSME hardware changes and updates to Space Shuttle contingency abort software. In this paper, the evolution of SSME redline limits management will be fully reviewed, including the operational scenarios which call for manual intervention, and the events that triggered changes to the philosophy. Following this review, improvements to the management of redline limits for future spacecraft will be proposed.

  20. Benefits of NASA to the USA and Humanity

    Science.gov (United States)

    Duarte, Alberto

    2017-01-01

    During his 28+ as a NASA employee, Mr. Duarte has had the privilege to work in several programs and projects (Space Shuttle Main Engine; Advanced Solid Rocket Booster; X-33; X-34; X-36; External Tank for the Space Shuttle; Space Shuttle missions and others) related to the NASA aerospace exploration program. At the VIII version of F-AIR COLOMBIA, the organizers want to have Colombian born aerospace professionals with experience in aerospace matters to contribute as panelists for this years theme, Benefits of Space Development for A Country. For more than 50 years NASA has lead the world in exploration through continuous advancement in science and innovative technologies. The results have been not only of a service to the nation but to humankind, as well. Those remarkable developments have resulted in positive impact in social and economic growth, enhancements in academics and educational horizons, creation of numerous investment opportunities for large corporations and small business, and a more comprehensive understanding of the universe. NASA has layout path for space exploration and has been of inspiration for scientist, academics and students. Benefits of NASA to the USA and Humanity, will provide a relevant contribution to the theme and objectives of this national event in Colombia.

  1. The NASA Human Space Flight Supply Chain, Current and Future

    Science.gov (United States)

    Zapata, Edgar

    2007-01-01

    The current NASA Human Space Flight transportation system, the Space Shuttle, is scheduled for final flight in 2010. The Exploration initiative will create a new capability with a combination of existing systems and new flight and ground elements. To fully understand and act on the implications of such change it is necessary to understand what, how, when and where such changes occur and more importantly, how all these interact. This paper presents Human Space Flight, with an emphasis on KSC Launch and Landing, as a Supply Chain of both information and materials. A supply chain methodology for understanding the flow of information and materials is presented. Further, modeling and simulation projects funded by the Exploration initiative to understand the NASA Exploration Supply Chain are explained. Key concepts and their purpose, including the Enterprise, Locations, Physical and Organizational Functional Units, Products, and Resources, are explained. It is shown that the art, science and perspective of Supply Chain Management is not only applicable to such a government & contractor operation, it is also an invaluable approach for understanding, focusing improvement and growth. It is shown that such commercial practice applies to Human Space Flight and is invaluable towards one day creating routine, affordable access to and from space.

  2. Grooming the Shuttle for cost-effective access to space

    Science.gov (United States)

    Moore, J. W.

    1985-01-01

    An assessment is made of the performance of the Space Shuttle-based Space Transportation System (STS) from the initial flights in 1981 to the present, which has involved the launching of 12 satellites and the retrieval of two. It is expected that the STS will soon be able to schedule 24 routine missions/year, upon the achievement of full operational status for the full fleet of four Space Shuttles and the completion of support facilities at both the Kennedy Space Center and Vandenberg Air Force Base. The prospects for space industrialization efforts based on STS are noted.

  3. NASA Kennedy Space Center: Contributions to Sea Turtle Science and Conservation

    Science.gov (United States)

    Provancha, Jane A.; Phillips, Lynne V.; Mako, Cheryle L.

    2018-01-01

    The National Aeronautics and Space Administration (NASA) is a United States (US) federal agency that oversees US space exploration and aeronautical research. NASA's primary launch site, Kennedy Space Center (KSC) is located along the east coast of Florida, on Cape Canaveral and the western Atlantic Ocean. The natural environment within KSC's large land boundaries, not only functions as an extensive safety buffer-area, it performs simultaneously as a wildlife refuge and a national seashore. In the early 1960s, NASA was developing KSC for rocket launches and the US was establishing an awareness of, and commitment to protecting the environment. The US began creating regulations that required the consideration of the environment when taking action on federal land or with federal funds. The timing of the US Endangered Species Act (1973), the US National Environmental Policy Act (1972), coincided with the planning and implementation of the US Space Shuttle Program. This resulted in the first efforts to evaluate the impacts of space launch operation operations on waterways, air quality, habitats, and wildlife. The first KSC fauna and flora baseline studies were predominantly performed by University of Central Florida (then Florida Technological University). Numerous species of relative importance were observed and sea turtles were receiving regulatory review and protection as surveys by Dr. L Ehrhart (UCF) from 1973-1978 described turtles nesting along the KSC beaches and foraging in the KSC lagoon systems. These data were used in the first NASA Environmental Impact Statement for the Space Transportation System (shuttle program) in 1980. In 1982, NASA began a long term ecological monitoring program with contracted scientists on site. This included efforts to track sea turtle status and trends at KSC and maintain protective measures for these species. Many studies and collaborations have occurred on KSC over these last 45 years with agencies (USFWS, NOAA, NAVY), students

  4. Surface chloride salt formation on Space Shuttle exhaust alumina

    Science.gov (United States)

    Cofer, W. R., III; Pellett, G. L.; Sebacher, D. I.; Wakelyn, N. T.

    1984-01-01

    Aluminum oxide samples from the exhaust of Space Shuttle launches STS-1, STS-4, STS-5, and STS-6 were collected from surfaces on or around the launch pad complex and chemically analyzed. The results indicate that the particulate solid-propellant rocket motor (SRM) alumina was heavily chlorided. Concentrations of water-soluble aluminum (III) ion were large, suggesting that the surface of the SRM alumina particles was rendered soluble by prior reactions with HCl and H2O in the SRM exhaust cloud. These results suggest that Space Shuttle exhaust alumina particles are good sites for nucleation and condensation of atmospheric water. Laboratory experiments conducted at 220 C suggest that partial surface chloriding of alumina may occur in hot Space Shuttle exhaust plumes.

  5. The Ascent Study - Understanding the Market Environment for the Follow-on to the Space Shuttle

    Science.gov (United States)

    Webber, Derek

    2002-01-01

    The ASCENT Study - Understanding the Market Environment for the Follow-on to NASA's Marshall Space Flight Center in Huntsville, Alabama, awarded a contract (base plus option amounting to twenty months of analysis) to Futron Corporation in June 2001 to investigate the market environment, and explore the price elasticity attributes, relevant for the introduction of the Second Generation Reusable Launch Vehicle (the follow-on to the Space Shuttle) in the second decade of this century. This work is known as the ASCENT Study (Analysis of Space Concepts Enabled by New Transportation) and data collection covering a total of 42 different sectors took place during 2001. Modeling and forecasting activities for 26 of these markets (all of them international in nature) have been taking place throughout 2002, and the final results of the ASCENT Study, which include 20 year forecasts, are due by the end of January, 2003. This paper describes the markets being analyzed for the ASCENT Study, and includes some preliminary findings in terms of launch vehicle demand during the next 20 years, broken down by mass class and mission type. Amongst these markets are the potential public space travel opportunities. When completed, the final report of the ASCENT Study is expected to represent a significant reference document for all business development, financing and planning activities in the space industry for some time to come. One immediate use will be as a key factor in determining the cargo capability and launch rates to be used for designing the follow-on to the Space Shuttle. The Study will also provide NASA with a quantified indication of the extent to which the lower cost to orbit, made possible by a new class of launch vehicle, will bring into being new markets.

  6. Space Experiment Module (SEM)

    Science.gov (United States)

    Brodell, Charles L.

    1999-01-01

    The Space Experiment Module (SEM) Program is an education initiative sponsored by the National Aeronautics and Space Administration (NASA) Shuttle Small Payloads Project. The program provides nationwide educational access to space for Kindergarten through University level students. The SEM program focuses on the science of zero-gravity and microgravity. Within the program, NASA provides small containers or "modules" for students to fly experiments on the Space Shuttle. The experiments are created, designed, built, and implemented by students with teacher and/or mentor guidance. Student experiment modules are flown in a "carrier" which resides in the cargo bay of the Space Shuttle. The carrier supplies power to, and the means to control and collect data from each experiment.

  7. Radiation dosimetry for the space shuttle program

    International Nuclear Information System (INIS)

    Jones, K.L.; Richmond, R.G.; Cash, B.L.

    1985-01-01

    Radiation measurements aboard the Space Shuttle are made to record crew doses for medical records, to verify analytical shielding calculations used in dose predictions and to provide dosimetry support for radiation sensitive payloads and experiments. Low cost systems utilizing thermoluminescent dosimeters, nuclear track detectors and activation foils have been developed to fulfill these requirements. Emphasis has been placed on mission planning and dose prediction. As a result, crew doses both inside the orbiter and during extra-vehicular activities have been reasonable low. Brief descriptions of the space radiation environment, dose prediction models, and radiation measurement systems are provided, along with a summary of the results for the first fourteen Shuttle flights

  8. Space Shuttle and Hypersonic Entry

    Science.gov (United States)

    Campbell, Charles H.; Gerstenmaier, William H.

    2014-01-01

    Fifty years of human spaceflight have been characterized by the aerospace operations of the Soyuz, of the Space Shuttle and, more recently, of the Shenzhou. The lessons learned of this past half decade are important and very significant. Particularly interesting is the scenario that is downstream from the retiring of the Space Shuttle. A number of initiatives are, in fact, emerging from in the aftermath of the decision to terminate the Shuttle program. What is more and more evident is that a new era is approaching: the era of the commercial usage and of the commercial exploitation of space. It is probably fair to say, that this is the likely one of the new frontiers of expansion of the world economy. To make a comparison, in the last 30 years our economies have been characterized by the digital technologies, with examples ranging from computers, to cellular phones, to the satellites themselves. Similarly, the next 30 years are likely to be characterized by an exponential increase of usage of extra atmospheric resources, as a result of more economic and efficient way to access space, with aerospace transportation becoming accessible to commercial investments. We are witnessing the first steps of the transportation of future generation that will drastically decrease travel time on our Planet, and significantly enlarge travel envelope including at least the low Earth orbits. The Steve Jobs or the Bill Gates of the past few decades are being replaced by the aggressive and enthusiastic energy of new entrepreneurs. It is also interesting to note that we are now focusing on the aerospace band, that lies on top of the aeronautical shell, and below the low Earth orbits. It would be a mistake to consider this as a known envelope based on the evidences of the flights of Soyuz, Shuttle and Shenzhou. Actually, our comprehension of the possible hypersonic flight regimes is bounded within really limited envelopes. The achievement of a full understanding of the hypersonic flight

  9. Friction Plug Weld Repair for the Space Shuttle External Tank

    Science.gov (United States)

    Hartley, Paula J.; McCool, A. (Technical Monitor)

    2000-01-01

    Lockheed Martin Space Systems, Michoud Operations in New Orleans, LA is the manufacturer of the External Fuel Tanks (ET) for the Space Transportation System (STS). The ET contains and delivers the propellants used by the Orbiters three main engines. Additionally, it also serves as the structural backbone for the Orbiter and the two Solid Rocket Boosters (SRB), which combined, constitute the STS. In 1994, NASA established that in order to launch the International Space Station, the performance of the STS must be improved. One option was to reduce the weight of the ET, which would enable sufficient increase in performance. With the development of the Weldalite(R) series of Al-Cu-Li alloys in the late 1980's, Lockheed Martin was postured to replace the current A12219 fuel tanks with the high strength, light weight A12195 alloy. With the use of A12195 and some component redesign, the weight of the Super Lightweight (SLWT) ET was reduced by approximately 7,000 pounds, which added as much capability to the Space Shuttle. Since June 1998, seven STS missions have been successful with the use of the SLWT ET's.

  10. Shuttle performance enhancement using an uprated OMS engine

    Science.gov (United States)

    Mallini, Charles J.; Boyd, William C.

    1988-01-01

    The NASA Space Shuttle's Orbital Maneuvering Engine (OME) has been investigated as the basis for an enhancement of Shuttle operational flexibility. The Johnson Space Center has given attention to an upgrading of the OME through the use of a gas generator-driven turbopump to raise engine specific impulse. Hardware tests have demonstrated the projected performance gains, which will yield an enhanced, intact ascent-abort capability, as well an an improved on-orbit payload and altitude capability. Attention is given to the application of these capabilities to the Hubble Space Telescope's deployment.

  11. NASA Shuttle Radar Topography Mission Swath Image Data V003

    Data.gov (United States)

    National Aeronautics and Space Administration — The NASA SRTM data sets result from a collaborative effort by the National Aeronautics and Space Administration (NASA) and the National Geospatial-Intelligence...

  12. The space shuttle payload planning working groups: Volume 9: Materials processing and space manufacturing

    Science.gov (United States)

    1973-01-01

    The findings and recommendations of the Materials Processing and Space Manufacturing group of the space shuttle payload planning activity are presented. The effects of weightlessness on the levitation processes, mixture stability, and control over heat and mass transport in fluids are considered for investigation. The research and development projects include: (1) metallurgical processes, (2) electronic materials, (3) biological applications, and (4)nonmetallic materials and processes. Additional recommendations are provided concerning the allocation of payload space, acceptance of experiments for flight, flight qualification, and private use of the space shuttle.

  13. Standards and Specifications for Ground Processing of Space Vehicles: From an Aviation-Based Shuttle Project to Global Application

    Science.gov (United States)

    Ingalls, John; Cipolletti, John

    2011-01-01

    Proprietary or unique designs and operations are expected early in any industry's development, and often provide a competitive early market advantage. However, there comes a time when a product or industry requires standardization for the whole industry to advance...or survive. For the space industry, that time has come. Here, we will focus on standardization of ground processing for space vehicles and their ground systems. With the retirement of the Space Shuttle, and emergence of a new global space race, affordability and sustainability are more important now than ever. The growing commercialization of the space industry and current global economic environment are driving greater need for efficiencies to save time and money. More RLV's (Reusable Launch Vehicles) are being developed for the gains of reusability not achievable with traditional ELV's (Expendable Launch Vehicles). More crew/passenger vehicles are also being developed. All of this calls for more attention needed for ground processing-repeatedly before launch and after landing/recovery. RLV's should provide more efficiencies than ELV's, as long as MRO (Maintenance, Repair, and Overhaul) is well-planned-even for the unplanned problems. NASA's Space Shuttle is a primary example of an RLV which was supposed to thrive on reusability savings with efficient ground operations, but lessons learned show that costs were (and still are) much greater than expected. International standards and specifications can provide the commonality needed to simplify design and manufacturing as well as to improve safety, quality, maintenance, and operability. There are standards organizations engaged in the space industry, but ground processing is one of the areas least addressed. Challenges are encountered due to various factors often not considered during development. Multiple vehicle elements, sites, customers, and contractors pose various functional and integration difficulties. Resulting technical publication structures

  14. Assembling and supplying the ISS the space shuttle fulfills its mission

    CERN Document Server

    Shayler, David J

    2017-01-01

    The creation and utilization of the International Space Station (ISS) is a milestone in space exploration. But without the Space Shuttle, it would have remained an impossible dream. Assembling and Supplying the ISS is the story of how, between 1998 and 2011, the Shuttle became the platform which enabled the construction and continued operation of the primary scientific research facility in Earth orbit. Fulfilling an objective it had been designed to complete decades before, 37 Shuttle missions carried the majority of the hardware needed to build the ISS and then acted as a ferry and supply train for early resident crews to the station. Building upon the decades of development and experience described in the companion volume Linking the Space Shuttle and Space Stations: Early Docking Technologies from Concept to Implementation, this book explores • a purpose-built hardware processing facility • challenging spacewalking objectives • extensive robotic operations • undocking a unmanned orbiter The experie...

  15. A Shuttle Derived Vehicle launch system

    Science.gov (United States)

    Tewell, J. R.; Buell, D. N.; Ewing, E. S.

    1982-01-01

    This paper describes a Shuttle Derived Vehicle (SDV) launch system presently being studied for the NASA by Martin Marietta Aerospace which capitalizes on existing Shuttle hardware elements to provide increased accommodations for payload weight, payload volume, or both. The SDV configuration utilizes the existing solid rocket boosters, external tank and the Space Shuttle main engines but replaces the manned orbiter with an unmanned, remotely controlled cargo carrier. This cargo carrier substitution more than doubles the performance capability of the orbiter system and is realistically achievable for minimal cost. The advantages of the SDV are presented in terms of performance and economics. Based on these considerations, it is concluded that an unmanned SDV offers a most attractive complement to the present Space Transportation System.

  16. Probabilistic Analysis of Space Shuttle Body Flap Actuator Ball Bearings

    Science.gov (United States)

    Oswald, Fred B.; Jett, Timothy R.; Predmore, Roamer E.; Zaretsky, Erwin V.

    2008-01-01

    A probabilistic analysis, using the 2-parameter Weibull-Johnson method, was performed on experimental life test data from space shuttle actuator bearings. Experiments were performed on a test rig under simulated conditions to determine the life and failure mechanism of the grease lubricated bearings that support the input shaft of the space shuttle body flap actuators. The failure mechanism was wear that can cause loss of bearing preload. These tests established life and reliability data for both shuttle flight and ground operation. Test data were used to estimate the failure rate and reliability as a function of the number of shuttle missions flown. The Weibull analysis of the test data for the four actuators on one shuttle, each with a 2-bearing shaft assembly, established a reliability level of 96.9 percent for a life of 12 missions. A probabilistic system analysis for four shuttles, each of which has four actuators, predicts a single bearing failure in one actuator of one shuttle after 22 missions (a total of 88 missions for a 4-shuttle fleet). This prediction is comparable with actual shuttle flight history in which a single actuator bearing was found to have failed by wear at 20 missions.

  17. Assessment of the NASA Space Shuttle Program's Problem Reporting and Corrective Action System

    Science.gov (United States)

    Korsmeryer, D. J.; Schreiner, J. A.; Norvig, Peter (Technical Monitor)

    2001-01-01

    This paper documents the general findings and recommendations of the Design for Safety Programs Study of the Space Shuttle Programs (SSP) Problem Reporting and Corrective Action (PRACA) System. The goals of this Study were: to evaluate and quantify the technical aspects of the SSP's PRACA systems, and to recommend enhancements addressing specific deficiencies in preparation for future system upgrades. The Study determined that the extant SSP PRACA systems accomplished a project level support capability through the use of a large pool of domain experts and a variety of distributed formal and informal database systems. This operational model is vulnerable to staff turnover and loss of the vast corporate knowledge that is not currently being captured by the PRACA system. A need for a Program-level PRACA system providing improved insight, unification, knowledge capture, and collaborative tools was defined in this study.

  18. Design criteria and candidate electrical power systems for a reusable Space Shuttle booster.

    Science.gov (United States)

    Merrifield, D. V.

    1972-01-01

    This paper presents the results of a preliminary study to establish electrical power requirements, investigate candidate power sources, and select a representative power generation concept for the NASA Space Shuttle booster stage. Design guidelines and system performance requirements are established. Candidate power sources and combinations thereof are defined and weight estimates made. The selected power source concept utilizes secondary silver-zinc batteries, engine-driven alternators with constant speed drive, and an airbreathing gas turbine. The need for cost optimization, within safety, reliability, and performance constraints, is emphasized as being the most important criteria in design of the final system.

  19. NASA Space Environments Technical Discipline Team Space Weather Activities

    Science.gov (United States)

    Minow, J. I.; Nicholas, A. C.; Parker, L. N.; Xapsos, M.; Walker, P. W.; Stauffer, C.

    2017-12-01

    The Space Environment Technical Discipline Team (TDT) is a technical organization led by NASA's Technical Fellow for Space Environments that supports NASA's Office of the Chief Engineer through the NASA Engineering and Safety Center. The Space Environments TDT conducts independent technical assessments related to the space environment and space weather impacts on spacecraft for NASA programs and provides technical expertise to NASA management and programs where required. This presentation will highlight the status of applied space weather activities within the Space Environment TDT that support development of operational space weather applications and a better understanding of the impacts of space weather on space systems. We will first discuss a tool that has been developed for evaluating space weather launch constraints that are used to protect launch vehicles from hazardous space weather. We then describe an effort to better characterize three-dimensional radiation transport for CubeSat spacecraft and processing of micro-dosimeter data from the International Space Station which the team plans to make available to the space science community. Finally, we will conclude with a quick description of an effort to maintain access to the real-time solar wind data provided by the Advanced Composition Explorer satellite at the Sun-Earth L1 point.

  20. Shuttle Discovery Landing at Edwards

    Science.gov (United States)

    1989-01-01

    The STS-29 Space Shuttle Discovery mission lands at NASA's then Ames-Dryden Flight Research Facility, Edwards AFB, California, early Saturday morning, 18 March 1989. Touchdown was at 6:35:49 a.m. PST and wheel stop was at 6:36:40 a.m. on runway 22. Controllers chose the concrete runway for the landing in order to make tests of braking and nosewheel steering. The STS-29 mission was very successful, completing the launch of a Tracking and Data Relay communications satellite, as well as a range of scientific experiments. Discovery's five-man crew was led by Commander Michael L. Coats, and included pilot John E. Blaha and mission specialists James P. Bagian, Robert C. Springer, and James F. Buchli. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout

  1. A Decade of Friction Stir Welding R and D at NASA's Marshall Space Flight Center and a Glance into the Future

    Science.gov (United States)

    Ding, Jeff; Carter, Bob; Lawless, Kirby; Nunes, Arthur; Russell, Carolyn; Suites, Michael; Schneider, Judy

    2006-01-01

    Welding at NASA's Marshall Space Flight Center (MSFC), Huntsville, Alabama, has taken a new direction through the last 10 years. Fusion welding processes, namely variable polarity plasma arc (VPPA) and tungsten inert gas (TIG) were once the corner stone of welding development in the Space Flight Center's welding laboratories, located in the part of MSFC know as National Center for Advanced Manufacturing (NCM). Developed specifically to support the Shuttle Program's External Tank and later International Space Station manufacturing programs, was viewed as the paragon of welding processes for joining aluminum alloys. Much has changed since 1994, however, when NASA's Jeff Ding brought the FSW process to the NASA agency. Although, at that time, FSW was little more than a "lab curiosity", NASA researchers started investigating where the FSW process would best fit NASA manufacturing programs. A laboratory FSW system was procured and the first welds were made in fall of 1995. The small initial investment NASA made into the first FSW system has certainly paid off for the NASA agency in terms of cost savings, hardware quality and notoriety. FSW is now a part of Shuttle External Tank (ET) production and the preferred weld process for the manufacturing of components for the new Crew Launch Vehicle (CLV) and Heavy Lift Launch Vehicle (HLLV) that will take this country back to the moon. It is one of the solid state welding processes being considered for on-orbit space welding and repair, and is of considerable interest for Department of Defense @OD) manufacturing programs. MSFC involvement in these and other programs makes NASA a driving force in this country's development of FSW and other solid state welding technologies. Now, a decade later, almost the entire on-going welding R&D at MSFC now focuses on FSW and other more advanced solid state welding processes.

  2. Mentoring Undergraduate Students through the Space Shuttle Hitchhiker GoldHELOX Project

    Science.gov (United States)

    Moody, J. Ward; Barnes, Jonathan; Roming, Peter; Durfee, Dallin; Campbell, Branton; Turley, Steve; Eastman, Paul

    2015-01-01

    In the late 1980s a team of four BYU undergraduate students designed a space-based telescope to image the sun in soft x-rays from 171-181 Angstroms to gain information on microflares and their relation to the corona-chromosphere transition region. The telescope used a near-normal incidence multi-layered mirror imaging onto film through a micro-channel plate. The system was capable of 1.0 sec time resolution and 2.5 arcsec spatial resolution. Aided by a NASA grant in 1991, a system was built and successfully tested in 1998 at Marshall Space Flight Center. Originally designed to be deployed from a Get-Away-Special (GAS) canister in the bay of a space shuttle, the good results of this test elevated GoldHelox to greater-priority Hitchhiker status. Even so technical and procedural difficulties delayed a launch until after 2003. Unfortunately after the Columbia re-entry break-up in February 2003, the Hitchhiker program was cancelled and the GoldHelox project ended.Well over 200 undergraduate students worked on GoldHelox. Many of these have since earned advanced degrees in a variety of technical fields. Several have gone on to work in the space industry, becoming NASA scientists and engineers with one becoming a PI on the Swift satellite. The broad range of talent on the team has included students majoring in physics, astronomy, mechanical engineering, electrical engineering, manufacturing engineering, design engineering, business and even English majors who have written technical and public relations documents. We report on lessons learned and the pitfalls and successes of this unique mentoring experience.

  3. Behavioral Health and Performance Operations During the Space Shuttle Program

    Science.gov (United States)

    Beven, G.; Holland, A.; Moomaw, R.; Sipes, W.; Vander Ark, S.

    2011-01-01

    Prior to the Columbia STS 107 disaster in 2003, the Johnson Space Center s Behavioral Health and Performance Group (BHP) became involved in Space Shuttle Operations on an as needed basis, occasionally acting as a consultant and primarily addressing crew-crew personality conflicts. The BHP group also assisted with astronaut selection at every selection cycle beginning in 1991. Following STS 107, an event that spawned an increased need of behavioral health support to STS crew members and their dependents, BHP services to the Space Shuttle Program were enhanced beginning with the STS 114 Return to Flight mission in 2005. These services included the presence of BHP personnel at STS launches and landings for contingency support, a BHP briefing to the entire STS crew at L-11 months, a private preflight meeting with the STS Commander at L-9 months, and the presence of a BHP consultant at the L-1.5 month Family Support Office briefing to crew and family members. The later development of an annual behavioral health assessment of all active astronauts also augmented BHP s Space Shuttle Program specific services, allowing for private meetings with all STS crew members before and after each mission. The components of each facet of these BHP Space Shuttle Program support services will be presented, along with valuable lessons learned, and with recommendations for BHP involvement in future short duration space missions

  4. The Evolution of the Rendezvous Profile During the Space Shuttle Program

    Science.gov (United States)

    Summa, William R.

    2010-01-01

    The rendezvous and proximity operations approach design techniques for space shuttle missions has changed significantly during the life of the program in response to new requirements that were not part of the original mission design. The flexibility of the shuttle onboard systems design and the mission planning process has allowed the program to meet these requirements. The design of the space shuttle and the shift from docking to grappling with a robotic ann prevented use of legacy Apollo rendezvous techniques. Over the life of the shuttle program the rendezvous profile has evolved due to several factors, including lowering propellant consumption and increasing flexibility in mission planning. Many of the spacecraft that the shuttle rendezvoused with had unique requirements that drove the creation of mission-unique proximity operations. The dockings to the Russian Mir space station and International Space Station (ISS) required further evolution of rendezvous and proximity operations techniques and additional sensors to enhance crew situational awareness. After the Columbia accident, a Rendezvous Pitch Maneuver (RPM) was added to allow tile photography from ISS. Lessons learned from these rendezvous design changes are applicable to future vehicle designs and operations concepts.

  5. The space shuttle program from challenge to achievement: Space exploration rolling on tires

    Science.gov (United States)

    Felder, G. L.

    1985-01-01

    The Space Shuttle Transportation System is the first space program to employ the pneumatic tire as a part of space exploration. For aircraft tires, this program establishes new expectations as to what constitutes acceptable performance within a set of tough environmental and operational conditions. Tire design, stresses the usual low weight, high load, high speed, and excellent air retention features but at extremes well outside industry standards. Tires will continue to be an integral part of the Shuttle's landing phase in the immediate future since they afford a unique combination of directional control, braking traction, flotation and shock absorption not available by other systems.

  6. Fractional Consumption of Liquid Hydrogen and Liquid Oxygen During the Space Shuttle Program

    Science.gov (United States)

    Partridge, Jonathan K.

    2011-01-01

    The Space Shuttle uses the propellants, liquid hydrogen and liquid oxygen, to meet part of the propulsion requirements from ground to orbit. The Kennedy Space Center procured over 25 million kilograms of liquid hydrogen and over 250 million kilograms of liquid oxygen during the 3D-year Space Shuttle Program. Because of the cryogenic nature of the propellants, approximately 55% of the total purchased liquid hydrogen and 30% of the total purchased liquid oxygen were used in the Space Shuttle Main Engines. The balance of the propellants were vaporized during operations for various purposes. This paper dissects the total consumption of liqUid hydrogen and liqUid oxygen and determines the fraction attributable to each of the various processing and launch operations that occurred during the entire Space Shuttle Program at the Kennedy Space Center.

  7. Space Medicine: Shuttle - Space Station Crew Health and Safety Challenges for Exploration

    Science.gov (United States)

    Dervay, Joseph

    2010-01-01

    This slide presentation combines some views of the shuttle take off, and the shuttle and space station on orbit, and some views of the underwater astronaut training , with a general discussion of Space Medicine. It begins with a discussion of the some of the physiological issues of space flight. These include: Space Motion Sickness (SMS), Cardiovascular, Neurovestibular, Musculoskeletal, and Behavioral/Psycho-social. There is also discussion of the space environment and the issues that are posed including: Radiation, Toxic products and propellants, Habitability, Atmosphere, and Medical events. Included also is a discussion of the systems and crew training. There are also artists views of the Constellation vehicles, the planned lunar base, and extended lunar settlement. There are also slides showing the size of earth in perspective to the other planets, and the sun and the sun in perspective to other stars. There is also a discussion of the in-flight changes that occur in neural feedback that produces postural imbalance and loss of coordination after return.

  8. Space Shuttle main engine product improvement

    Science.gov (United States)

    Lucci, A. D.; Klatt, F. P.

    1985-01-01

    The current design of the Space Shuttle Main Engine has passed 11 certification cycles, amassed approximately a quarter million seconds of engine test time in 1200 tests and successfully launched the Space Shuttle 17 times of 51 engine launches through May 1985. Building on this extensive background, two development programs are underway at Rocketdyne to improve the flow of hot gas through the powerhead and evaluate the changes to increase the performance margins in the engine. These two programs, called Phase II+ and Technology Test Bed Precursor program are described. Phase II+ develops a two-tube hot-gas manifold that improves the component environment. The Precursor program will evaluate a larger throat main combustion chamber, conduct combustion stability testing of a baffleless main injector, fabricate an experimental weld-free heat exchanger tube, fabricate and test a high pressure oxidizer turbopump with an improved inlet, and develop and test methods for reducing temperature transients at start and shutdown.

  9. Engineering report. Part 2: NASA wheel and brake material tradeoff study for space shuttle type environmental requirements

    Science.gov (United States)

    Bok, L. D.

    1973-01-01

    The study included material selection and trade-off for the structural components of the wheel and brake optimizing weight vs cost and feasibility for the space shuttle type application. Analytical methods were used to determine section thickness for various materials, and a table was constructed showing weight vs. cost trade-off. The wheel and brake were further optimized by considering design philosophies that deviate from standard aircraft specifications, and designs that best utilize the materials being considered.

  10. The Road from the NASA Access to Space Study to a Reusable Launch Vehicle

    Science.gov (United States)

    Powell, Richard W.; Cook, Stephen A.; Lockwood, Mary Kae

    1998-01-01

    NASA is cooperating with the aerospace industry to develop a space transportation system that provides reliable access-to-space at a much lower cost than is possible with today's launch vehicles. While this quest has been on-going for many years it received a major impetus when the U.S. Congress mandated as part of the 1993 NASA appropriations bill that: "In view of budget difficulties, present and future..., the National Aeronautics and Space Administration shall ... recommend improvements in space transportation." NASA, working with other organizations, including the Department of Transportation, and the Department of Defense identified three major transportation architecture options that were to be evaluated in the areas of reliability, operability and cost. These architectural options were: (1) retain and upgrade the Space Shuttle and the current expendable launch vehicles; (2) develop new expendable launch vehicles using conventional technologies and transition to these new vehicles beginning in 2005; and (3) develop new reusable vehicles using advanced technology, and transition to these vehicles beginning in 2008. The launch needs mission model was based on 1993 projections of civil, defense, and commercial payload requirements. This "Access to Space" study concluded that the option that provided the greatest potential for meeting the cost, operability, and reliability goals was a rocket-powered single-stage-to-orbit fully reusable launch vehicle (RLV) fleet designed with advanced technologies.

  11. Space Shuttle Probabilistic Risk Assessment (SPRA) Iteration 3.2

    Science.gov (United States)

    Boyer, Roger L.

    2010-01-01

    The Shuttle is a very reliable vehicle in comparison with other launch systems. Much of the risk posed by Shuttle operations is related to fundamental aspects of the spacecraft design and the environments in which it operates. It is unlikely that significant design improvements can be implemented to address these risks prior to the end of the Shuttle program. The model will continue to be used to identify possible emerging risk drivers and allow management to make risk-informed decisions on future missions. Potential uses of the SPRA in the future include: - Calculate risk impact of various mission contingencies (e.g. late inspection, crew rescue, etc.). - Assessing the risk impact of various trade studies (e.g. flow control valves). - Support risk analysis on mission specific events, such as in flight anomalies. - Serve as a guiding star and data source for future NASA programs.

  12. Photogrammetry Measurements During a Tanking Test on the Space Shuttle External Tank, ET-137

    Science.gov (United States)

    Littell, Justin D.; Schmidt, Tim; Tyson, John; Oliver, Stanley T.; Melis, Matthew E.; Ruggeri, Charles

    2012-01-01

    On November 5, 2010, a significant foam liberation threat was observed as the Space Shuttle STS-133 launch effort was scrubbed because of a hydrogen leak at the ground umbilical carrier plate. Further investigation revealed the presence of multiple cracks at the tops of stringers in the intertank region of the Space Shuttle External Tank. As part of an instrumented tanking test conducted on December 17, 2010, a three dimensional digital image correlation photogrammetry system was used to measure radial deflections and overall deformations of a section of the intertank region. This paper will describe the experimental challenges that were overcome in order to implement the photogrammetry measurements for the tanking test in support of STS-133. The technique consisted of configuring and installing two pairs of custom stereo camera bars containing calibrated cameras on the 215-ft level of the fixed service structure of Launch Pad 39-A. The cameras were remotely operated from the Launch Control Center 3.5 miles away during the 8 hour duration test, which began before sunrise and lasted through sunset. The complete deformation time history was successfully computed from the acquired images and would prove to play a crucial role in the computer modeling validation efforts supporting the successful completion of the root cause analysis of the cracked stringer problem by the Space Shuttle Program. The resulting data generated included full field fringe plots, data extraction time history analysis, section line spatial analyses and differential stringer peak ]valley motion. Some of the sample results are included with discussion. The resulting data showed that new stringer crack formation did not occur for the panel examined, and that large amounts of displacement in the external tank occurred because of the loads derived from its filling. The measurements acquired were also used to validate computer modeling efforts completed by NASA Marshall Space Flight Center (MSFC).

  13. Photometric analysis of a space shuttle water venting

    Science.gov (United States)

    Viereck, R. A.; Murad, E.; Pike, C. P.; Kofsky, I. L.; Trowbridge, C. A.; Rall, D. L. A.; Satayesh, A.; Berk, A.; Elgin, J. B.

    1991-01-01

    Presented here is a preliminary interpretation of a recent experiment conducted on Space Shuttle Discovery (Mission STS 29) in which a stream of liquid supply water was vented into space at twilight. The data consist of video images of the sunlight-scattering water/ice particle cloud that formed, taken by visible light-sensitive intensified cameras both onboard the spacecraft and at the AMOS ground station near the trajectory's nadir. This experiment was undertaken to study the phenomenology of water columns injected into the low-Earth orbital environment, and to provide information about the lifetime of ice particles that may recontact Space Shuttle orbits later. The findings about the composition of the cloud have relevance to ionospheric plasma depletion experiments and to the dynamics of the interaction of orbiting spacecraft with the environment.

  14. Space Shuttle Program (SSP) Dual Docked Operations (DDO)

    Science.gov (United States)

    Sills, Joel W., Jr.; Bruno, Erica E.

    2016-01-01

    This document describes the concept definition, studies, and analysis results generated by the Space Shuttle Program (SSP), International Space Station (ISS) Program (ISSP), and Mission Operations Directorate for implementing Dual Docked Operations (DDO) during mated Orbiter/ISS missions. This work was performed over a number of years. Due to the ever increasing visiting vehicle traffic to and from the ISS, it became apparent to both the ISSP and the SSP that there would arise occasions where conflicts between a visiting vehicle docking and/or undocking could overlap with a planned Space Shuttle launch and/or during docked operations. This potential conflict provided the genesis for evaluating risk mitigations to gain maximum flexibility for managing potential visiting vehicle traffic to and from the ISS and to maximize launch and landing opportunities for all visiting vehicles.

  15. Status of NASA's Space Launch System

    Science.gov (United States)

    Honeycutt, John; Lyles, Garry

    2016-01-01

    NASA's Space Launch System (SLS) continued to make significant progress in 2015 and 2016, completing hardware and testing that brings NASA closer to a new era of deep space exploration. Programmatically, SLS completed Critical Design Review (CDR) in 2015. A team of independent reviewers concluded that the vehicle design is technically and programmatically ready to move to Design Certification Review (DCR) and launch readiness in 2018. Just five years after program start, every major element has amassed development and flight hardware and completed key tests that will lead to an accelerated pace of manufacturing and testing in 2016 and 2017. Key to SLS' rapid progress has been the use of existing technologies adapted to the new launch vehicle. The existing fleet of RS-25 engines is undergoing adaptation tests to prove it can meet SLS requirements and environments with minimal change. The four-segment shuttle-era booster has been modified and updated with a fifth propellant segment, new insulation, and new avionics. The Interim Cryogenic Upper Stage is a modified version of an existing upper stage. The first Block I SLS configuration will launch a minimum of 70 metric tons (t) of payload to low Earth orbit (LEO). The vehicle architecture has a clear evolutionary path to more than 100t and, ultimately, to 130t. Among the program's major 2015-2016 accomplishments were two booster qualification hotfire tests, a series of RS-25 adaptation hotfire tests, manufacturing of most of the major components for both core stage test articles and first flight tank, delivery of the Pegasus core stage barge, and the upper stage simulator. Renovations to the B-2 test stand for stage green run testing was completed at NASA Stennis Space Center. This year will see the completion of welding for all qualification and flight EM-1 core stage components and testing of flight avionics, completion of core stage structural test stands, casting of the EM-1 solid rocket motors, additional testing

  16. NASA Shuttle Radar Topography Mission Combined Image Data Set V003

    Data.gov (United States)

    National Aeronautics and Space Administration — The NASA SRTM data sets result from a collaborative effort by the National Aeronautics and Space Administration (NASA) and the National Geospatial-Intelligence...

  17. NASA Shuttle Radar Topography Mission Global 3 arc second V003

    Data.gov (United States)

    National Aeronautics and Space Administration — The NASA SRTM data sets result from a collaborative effort by the National Aeronautics and Space Administration (NASA) and the National Geospatial-Intelligence...

  18. NASA Shuttle Radar Topography Mission Global 30 arc second V002

    Data.gov (United States)

    National Aeronautics and Space Administration — The NASA SRTM data sets result from a collaborative effort by the National Aeronautics and Space Administration (NASA) and the National Geospatial-Intelligence...

  19. NASA Shuttle Radar Topography Mission Global 1 arc second V003

    Data.gov (United States)

    National Aeronautics and Space Administration — The NASA SRTM data sets result from a collaborative effort by the National Aeronautics and Space Administration (NASA) and the National Geospatial-Intelligence...

  20. Model-Based Testability Assessment and Directed Troubleshooting of Shuttle Wiring Systems

    Science.gov (United States)

    Deb, Somnath; Domagala, Chuck; Shrestha, Roshan; Malepati, Venkatesh; Cavanaugh, Kevin; Patterson-Hine, Ann; Sanderfer, Dwight; Cockrell, Jim; Norvig, Peter (Technical Monitor)

    2000-01-01

    We have recently completed a pilot study on the Space shuttle wiring system commissioned by the Wiring Integrity Research (WIRe) team at NASA Ames Research Center, As the space shuttle ages, it is experiencing wiring degradation problems including arcing, chaffing insulation breakdown and broken conductors. A systematic and comprehensive test process is required to thoroughly test and quality assure (QA) the wiring systems. The NASA WIRe team recognized the value of a formal model based analysis for risk-assessment and fault coverage analysis. However. wiring systems are complex and involve over 50,000 wire segments. Therefore, NASA commissioned this pilot study with Qualtech Systems. Inc. (QSI) to explore means of automatically extracting high fidelity multi-signal models from wiring information database for use with QSI's Testability Engineering and Maintenance System (TEAMS) tool.

  1. NASA Imaging for Safety, Science, and History

    Science.gov (United States)

    Grubbs, Rodney; Lindblom, Walt; Bowerman, Deborah S. (Technical Monitor)

    2002-01-01

    Since its creation in 1958 NASA has been making and documenting history, both on Earth and in space. To complete its missions NASA has long relied on still and motion imagery to document spacecraft performance, see what can't be seen by the naked eye, and enhance the safety of astronauts and expensive equipment. Today, NASA is working to take advantage of new digital imagery technologies and techniques to make its missions more safe and efficient. An HDTV camera was on-board the International Space Station from early August, to mid-December, 2001. HDTV cameras previously flown have had degradation in the CCD during the short duration of a Space Shuttle flight. Initial performance assessment of the CCD during the first-ever long duration space flight of a HDTV camera and earlier flights is discussed. Recent Space Shuttle launches have been documented with HDTV cameras and new long lenses giving clarity never before seen with video. Examples and comparisons will be illustrated between HD, highspeed film, and analog video of these launches and other NASA tests. Other uses of HDTV where image quality is of crucial importance will also be featured.

  2. NASA's Space Launch System Development Status

    Science.gov (United States)

    Lyles, Garry

    2014-01-01

    Development of the National Aeronautics and Space Administration's (NASA's) Space Launch System (SLS) heavy lift rocket is shifting from the formulation phase into the implementation phase in 2014, a little more than 3 years after formal program establishment. Current development is focused on delivering a vehicle capable of launching 70 metric tons (t) into low Earth orbit. This "Block 1" configuration will launch the Orion Multi-Purpose Crew Vehicle (MPCV) on its first autonomous flight beyond the Moon and back in December 2017, followed by its first crewed flight in 2021. SLS can evolve to a130t lift capability and serve as a baseline for numerous robotic and human missions ranging from a Mars sample return to delivering the first astronauts to explore another planet. Benefits associated with its unprecedented mass and volume include reduced trip times and simplified payload design. Every SLS element achieved significant, tangible progress over the past year. Among the Program's many accomplishments are: manufacture of core stage test barrels and domes; testing of Solid Rocket Booster development hardware including thrust vector controls and avionics; planning for RS- 25 core stage engine testing; and more than 4,000 wind tunnel runs to refine vehicle configuration, trajectory, and guidance. The Program shipped its first flight hardware - the Multi-Purpose Crew Vehicle Stage Adapter (MSA) - to the United Launch Alliance for integration with the Delta IV heavy rocket that will launch an Orion test article in 2014 from NASA's Kennedy Space Center. The Program successfully completed Preliminary Design Review in 2013 and will complete Key Decision Point C in 2014. NASA has authorized the Program to move forward to Critical Design Review, scheduled for 2015 and a December 2017 first launch. The Program's success to date is due to prudent use of proven technology, infrastructure, and workforce from the Saturn and Space Shuttle programs, a streamlined management

  3. Space Shuttle Atlantis is on Launch Pad 39B

    Science.gov (United States)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- Atop the mobile launcher platform, Space Shuttle Atlantis arrives on Launch Pad 39B after rollout from the Vehicle Assembly Building. Seen on either side of the orbiters tail are the tail service masts. They support the fluid, gas and electrical requirements of the orbiters liquid oxygen and liquid hydrogen aft umbilicals. The Shuttle is targeted for launch no earlier than July 12 on mission STS-104, the 10th flight to the International Space Station. The payload on the 11- day mission is the Joint Airlock Module, which will allow astronauts and cosmonauts in residence on the Station to perform future spacewalks without the presence of a Space Shuttle. The module, which comprises a crew lock and an equipment lock, will be connected to the starboard (right) side of Node 1 Unity. Atlantis will also carry oxygen and nitrogen storage tanks, vital to operation of the Joint Airlock, on a Spacelab Logistics Double Pallet in the payload bay. The tanks, to be installed on the perimeter of the Joint Module during the missions spacewalks, will support future spacewalk operations and experiments plus augment the resupply system for the Stations Service Module.

  4. NASA Space Radiation Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory is a NASA funded facility, delivering heavy ion beams to a target area where scientists...

  5. Image Analysis Based on Soft Computing and Applied on Space Shuttle During the Liftoff Process

    Science.gov (United States)

    Dominquez, Jesus A.; Klinko, Steve J.

    2007-01-01

    Imaging techniques based on Soft Computing (SC) and developed at Kennedy Space Center (KSC) have been implemented on a variety of prototype applications related to the safety operation of the Space Shuttle during the liftoff process. These SC-based prototype applications include detection and tracking of moving Foreign Objects Debris (FOD) during the Space Shuttle liftoff, visual anomaly detection on slidewires used in the emergency egress system for the Space Shuttle at the laJlIlch pad, and visual detection of distant birds approaching the Space Shuttle launch pad. This SC-based image analysis capability developed at KSC was also used to analyze images acquired during the accident of the Space Shuttle Columbia and estimate the trajectory and velocity of the foam that caused the accident.

  6. A Comparison Between Orion Automated and Space Shuttle Rendezvous Techniques

    Science.gov (United States)

    Ruiz, Jose O,; Hart, Jeremy

    2010-01-01

    The Orion spacecraft will replace the space shuttle and will be the first human spacecraft since the Apollo program to leave low earth orbit. This vehicle will serve as the cornerstone of a complete space transportation system with a myriad of mission requirements necessitating rendezvous to multiple vehicles in earth orbit, around the moon and eventually beyond . These goals will require a complex and robust vehicle that is, significantly different from both the space shuttle and the command module of the Apollo program. Historically, orbit operations have been accomplished with heavy reliance on ground support and manual crew reconfiguration and monitoring. One major difference with Orion is that automation will be incorporated as a key element of the man-vehicle system. The automated system will consist of software devoted to transitioning between events based on a master timeline. This effectively adds a layer of high level sequencing that moves control of the vehicle from one phase to the next. This type of automated control is not entirely new to spacecraft since the shuttle uses a version of this during ascent and entry operations. During shuttle orbit operations however many of the software modes and hardware switches must be manually configured through the use of printed procedures and instructions voiced from the ground. The goal of the automation scheme on Orion is to extend high level automation to all flight phases. The move towards automation represents a large shift from current space shuttle operations, and so these new systems will be adopted gradually via various safeguards. These include features such as authority-to-proceed, manual down modes, and functional inhibits. This paper describes the contrast between the manual and ground approach of the space shuttle and the proposed automation of the Orion vehicle. I will introduce typical orbit operations that are common to all rendezvous missions and go on to describe the current Orion automation

  7. To orbit and back again how the space shuttle flew in space

    CERN Document Server

    Sivolella, Davide

    2014-01-01

    The question may be simple, but the answer is not as easy to give. This book describes the structures and systems used each time the Shuttle was launched, and then follows an imaginary mission, explaining how those structures and systems were used in orbital operations and the return to Earth. Details of how anomalous events were dealt with on individual missions are also provided, as are the recollections of those who built and flew the Shuttle. Highly illustrated with many diagrams, photographs and technical drawings, To Orbit and Back Again • focuses on the engineering aspects of the Shuttle • describes the systems and subsystems in clear, non-technical terms • brings to the fore the design work behind the Space Shuttle and the mission itself.    .

  8. Research study on antiskid braking systems for the space shuttle

    Science.gov (United States)

    Auselmi, J. A.; Weinberg, L. W.; Yurczyk, R. F.; Nelson, W. G.

    1973-01-01

    A research project to investigate antiskid braking systems for the space shuttle vehicle was conducted. System from the Concorde, Boeing 747, Boeing 737, and Lockheed L-1011 were investigated. The characteristics of the Boeing 737 system which caused it to be selected are described. Other subjects which were investigated are: (1) trade studies of brake control concepts, (2) redundancy requirements trade study, (3) laboratory evaluation of antiskid systems, and (4) space shuttle hardware criteria.

  9. Space Shuttle RCS Oxidizer Leak Repair for STS-26

    Science.gov (United States)

    Delventhal, R. A.; Faget, N. M.

    1989-01-01

    Following propellant loading of the Space Shuttle's reaction control system (RCS) for mission STS 26, an oxidizer leak was detected in the left orbital maneuvering system (OMS) pod, where the RCS is located. Subsequent investigation determined that the leak was isolated at a mechanical Dynatube fitting near the RCS nitrogen tetroxide tank. An intense effort was initiated to design, fabricate, and qualify a sealing device to stop the oxidizer leak externally so that the Space Shuttle launch could proceed. It was discovered that sealing devices called clamshells were widely used throughout the petrochemical and power generation industries to stop leaks developed in large diameter pipes which carry steam or other hazardous fluids. These clamshells are available in different diameters and strengths and are placed around the pipe at the location of the leak. A sealing compound is then injected under high pressure into the clamshell to stop the leak. This technology was scaled down and applied to the problem of stopping the leak on the Orbiter, which was on a half-inch diameter line in a nearly inaccessible location. Many obstacles had to be overcome such as determining that the sealing material would be compatible with the nitrogen tetroxide and ensuring that the clamshell would actually fit around the Dynatube fitting without interfering with other lines which were in close proximity. The effort at the NASA Johnson Space Center included materials compatibility testing of several sealants, design of a clamshell to fit in the confined compartment, and manufacture and qualification of the flight hardware. A clamshell was successfully placed around the Dynatube fitting on the Orbiter and the oxidizer leak was terminated. Then it was decided to apply this technology further and design clamshells for other mechanical fittings onboard the Orbiter and develop sealing compounds which will be compatible with fuels such as monomethyl hydrazine (MMH). The potential exists for

  10. Life sciences payloads analyses and technical program planning studies. [project planning of space missions of space shuttles in aerospace medicine and space biology

    Science.gov (United States)

    1976-01-01

    Contractural requirements, project planning, equipment specifications, and technical data for space shuttle biological experiment payloads are presented. Topics discussed are: (1) urine collection and processing on the space shuttle, (2) space processing of biochemical and biomedical materials, (3) mission simulations, and (4) biomedical equipment.

  11. Space shuttle booster multi-engine base flow analysis

    Science.gov (United States)

    Tang, H. H.; Gardiner, C. R.; Anderson, W. A.; Navickas, J.

    1972-01-01

    A comprehensive review of currently available techniques pertinent to several prominent aspects of the base thermal problem of the space shuttle booster is given along with a brief review of experimental results. A tractable engineering analysis, capable of predicting the power-on base pressure, base heating, and other base thermal environmental conditions, such as base gas temperature, is presented and used for an analysis of various space shuttle booster configurations. The analysis consists of a rational combination of theoretical treatments of the prominent flow interaction phenomena in the base region. These theories consider jet mixing, plume flow, axisymmetric flow effects, base injection, recirculating flow dynamics, and various modes of heat transfer. Such effects as initial boundary layer expansion at the nozzle lip, reattachment, recompression, choked vent flow, and nonisoenergetic mixing processes are included in the analysis. A unified method was developed and programmed to numerically obtain compatible solutions for the various flow field components in both flight and ground test conditions. Preliminary prediction for a 12-engine space shuttle booster base thermal environment was obtained for a typical trajectory history. Theoretical predictions were also obtained for some clustered-engine experimental conditions. Results indicate good agreement between the data and theoretical predicitons.

  12. AI mass spectrometers for space shuttle health monitoring

    Science.gov (United States)

    Adams, F. W.

    1991-01-01

    The facility Hazardous Gas Detection System (HGDS) at Kennedy Space Center (KSC) is a mass spectrometer based gas analyzer. Two instruments make up the HGDS, which is installed in a prime/backup arrangement, with the option of using both analyzers on the same sample line, or on two different lines simultaneously. It is used for monitoring the Shuttle during fuel loading, countdown, and drainback, if necessary. The use of complex instruments, operated over many shifts, has caused problems in tracking the status of the ground support equipment (GSE) and the vehicle. A requirement for overall system reliability has been a major force in the development of Shuttle GSE, and is the ultimate driver in the choice to pursue artificial intelligence (AI) techniques for Shuttle and Advanced Launch System (ALS) mass spectrometer systems. Shuttle applications of AI are detailed.

  13. Results of investigations on the 0.004-scale model 74-0 of the configuration 4 (modified) space shuttle vehicle orbiter in the NASA/MSFC 14-by-14-inch trisonic wind tunnel (oa131)

    Science.gov (United States)

    Nichols, M. E.

    1975-01-01

    The results of an oil flow boundary-layer visualization wind tunnel test of an 0.004-scale model of the Space Shuttle Vehicle Orbiter in the NASA/Marshall Space Flight Center 14-by-14-inch Trisonic Wind Tunnel are presented. The model was tested at Mach numbers from 0.60 through 2.75, at angles-of-attack from 0 through 25 degrees, and at unit Reynolds numbers from 5.0 to 7.0 million per foot. The test program involved still and motion picture photography of oil-paint flow patterns on the orbiter, during and immediately after tunnel flow, to determine areas of boundary layer separation and regions of potential auxiliary power unit exhaust recirculation during transonic and low supersonic re-entry flight.

  14. NASA's Corrosion Technology Laboratory at the Kennedy Space Center: Anticipating, Managing, and Preventing Corrosion

    Science.gov (United States)

    Calle, Luz Marina

    2015-01-01

    The marine environment at NASAs Kennedy Space Center (KSC) has been documented by ASM International (formerly American Society for Metals) as the most corrosive in North America. With the introduction of the Space Shuttle in 1981, the already highly corrosive conditions at the launch pads were rendered even more severe by the highly corrosive hydrochloric acid (HCl) generated by the solid rocket boosters (SRBs). Numerous failures at the launch pads are caused by corrosion. The structural integrity of ground infrastructure and flight hardware is critical to the success, safety, cost, and sustainability of space missions. NASA has over fifty years of experience dealing with unexpected failures caused by corrosion and has developed expertise in corrosion control in the launch and other environments. The Corrosion Technology Laboratory at KSC evolved, from what started as an atmospheric exposure test site near NASAs launch pads, into a capability that provides technical innovations and engineering services in all areas of corrosion for NASA, external partners, and customers.This paper provides a chronological overview of NASAs role in anticipating, managing, and preventing corrosion in highly corrosive environments. One important challenge in managing and preventing corrosion involves the detrimental impact on humans and the environment of what have been very effective corrosion control strategies. This challenge has motivated the development of new corrosion control technologies that are more effective and environmentally friendly. Strategies for improved corrosion protection and durability can have a huge impact on the economic sustainability of human spaceflight operations.

  15. Insurance and indemnification implications of future space projects

    Science.gov (United States)

    O'Brien, John E.

    1987-01-01

    NASA options regarding insurance and indemnification policies as they relate to NASA customers and contractors are described. The foundation for the discussion is the way in which NASA is planning to return the Space Shuttle fleet to safe flight as well as current U.S. policy concerning future uses of the Shuttle fleet. Issues discussed include: the nature of the Shuttle manifest; the policy regarding property damage or destruction; insurance against liability to third parties; the reduction of the scope of the risk to be insured; NASA as the insurer; a sharing arrangement between the user and NASA; and contractors and subcontractors involved in Shuttle operations.

  16. Use of Shuttle Heritage Hardware in Space Launch System (SLS) Application-Structural Assessment

    Science.gov (United States)

    Aggarwal, Pravin; Booker, James N.

    2018-01-01

    NASA is moving forward with the development of the next generation system of human spaceflight to meet the Nation's goals of human space exploration. To meet these goals, NASA is aggressively pursuing the development of an integrated architecture and capabilities for safe crewed and cargo missions beyond low-Earth orbit. Two important tenets critical to the achievement of NASA's strategic objectives are Affordability and Safety. The Space Launch System (SLS) is a heavy-lift launch vehicle being designed/developed to meet these goals. The SLS Block 1 configuration (Figure 1) will be used for the first Exploration Mission (EM-1). It utilizes existing hardware from the Space Shuttle inventory, as much as possible, to save cost and expedite the schedule. SLS Block 1 Elements include the Core Stage, "Heritage" Boosters, Heritage Engines, and the Integrated Spacecraft and Payload Element (ISPE) consisting of the Launch Vehicle Stage Adapter (LVSA), the Multi-Purpose Crew Vehicle (MPCV) Stage Adapter (MSA), and an Interim Cryogenic Propulsion Stage (ICPS) for Earth orbit escape and beyond-Earth orbit in-space propulsive maneuvers. When heritage hardware is used in a new application, it requires a systematic evaluation of its qualification. In addition, there are previously-documented Lessons Learned (Table -1) in this area cautioning the need of a rigorous evaluation in any new application. This paper will exemplify the systematic qualification/assessment efforts made to qualify the application of Heritage Solid Rocket Booster (SRB) hardware in SLS. This paper describes the testing and structural assessment performed to ensure the application is acceptable for intended use without having any adverse impact to Safety. It will further address elements such as Loads, Material Properties and Manufacturing, Testing, Analysis, Failure Criterion and Factor of Safety (FS) considerations made to reach the conclusion and recommendation.

  17. NASA's Space Launch System: Developing the World's Most Powerful Solid Booster

    Science.gov (United States)

    Priskos, Alex

    2016-01-01

    NASA's Journey to Mars has begun. Indicative of that challenge, this will be a multi-decadal effort requiring the development of technology, operational capability, and experience. The first steps are under way with more than 15 years of continuous human operations aboard the International Space Station (ISS) and development of commercial cargo and crew transportation capabilities. NASA is making progress on the transportation required for deep space exploration - the Orion crew spacecraft and the Space Launch System (SLS) heavy-lift rocket that will launch Orion and large components such as in-space stages, habitat modules, landers, and other hardware necessary for deep-space operations. SLS is a key enabling capability and is designed to evolve with mission requirements. The initial configuration of SLS - Block 1 - will be capable of launching more than 70 metric tons (t) of payload into low Earth orbit, greater mass than any other launch vehicle in existence. By enhancing the propulsion elements and larger payload fairings, future SLS variants will launch 130 t into space, an unprecedented capability that simplifies hardware design and in-space operations, reduces travel times, and enhances the odds of mission success. SLS will be powered by four liquid fuel RS-25 engines and two solid propellant five-segment boosters, both based on space shuttle technologies. This paper will focus on development of the booster, which will provide more than 75 percent of total vehicle thrust at liftoff. Each booster is more than 17 stories tall, 3.6 meters (m) in diameter and weighs 725,000 kilograms (kg). While the SLS booster appears similar to the shuttle booster, it incorporates several changes. The additional propellant segment provides additional booster performance. Parachutes and other hardware associated with recovery operations have been deleted and the booster designated as expendable for affordability reasons. The new motor incorporates new avionics, new propellant

  18. Transition in the Human Exploration of Space at NASA

    Science.gov (United States)

    Koch, Carla A.; Cabana, Robert

    2011-01-01

    NASA is taking the next step in human exploration, beyond low Earth orbit. We have been going to low Earth orbit for the past 50 years and are using this experience to work with commercial companies to perform this function. This will free NASA resources to develop the systems necessary to travel to a Near Earth Asteroid, the Moon, Lagrange Points, and eventually Mars. At KSC, we are positioning ourselves to become a multi-user launch complex and everything we are working on is bringing us closer to achieving this goal. A vibrant multi-use spaceport is to the 21st Century what the airport was to the 20th Century - an invaluable transportation hub that supports government needs while promoting economic development and commercial markets beyond Earth's atmosphere. This past year saw the end of Shuttle, but the announcements of NASA's crew module, Orion, and heavy-lift rocket, the SLS, as well as the establishment of the Commercial Crew Program. We have a busy, but very bright future ahead of us and KSC is looking forward to playing an integral part in the next era of human space exploration. The future is SLS, 21st Century Ground Systems Program, and the Commercial Crew Program; and the future is here.

  19. Industrial Engineering Lifts Off at Kennedy Space Center

    Science.gov (United States)

    Barth, Tim

    1998-01-01

    When the National Aeronautics and Space Administration (NASA) began the Space Shuttle Program, it did not have an established industrial engineering (IE) capability for several probable reasons. For example, it was easy for some managers to dismiss IE principles as being inapplicable at NASA's John F. Kennedy Space Center (KSC). When NASA was formed by the National Aeronautics and Space Act of 1958, most industrial engineers worked in more traditional factory environments. The primary emphasis early in the shuttle program, and during previous human space flight programs such as Mercury and Apollo, was on technical accomplishments. Industrial engineering is sometimes difficult to explain in NASA's highly technical culture. IE is different in many ways from other engineering disciplines because it is devoted to process management and improvement, rather than product design. Images of clipboards and stopwatches still come to the minds of many people when the term industrial engineering is mentioned. The discipline of IE has only recently begun to gain acceptance and understanding in NASA. From an IE perspective today, the facilities used for flight hardware processing at KSC are NASA's premier factories. The products of these factories are among the most spectacular in the world: safe and successful launches of shuttles and expendable vehicles that carry tremendous payloads into space.

  20. Man in space - A time for perspective. [crew performance on Space Shuttle-Spacelab program

    Science.gov (United States)

    Winter, D. L.

    1975-01-01

    Factors affecting crew performances in long-term space flights are examined with emphasis on the Space Shuttle-Spacelab program. Biomedical investigations carried out during four Skylab missions indicate that initially rapid changes in certain physiological parameters, notably in cardiovascular response and red-blood-cell levels, lead to an adapted condition. Calcium loss remains a potential problem. Space Shuttle environmental control and life-support systems are described together with technology facilitating performance of mission objectives in a weightless environment. It is concluded that crew requirements are within the physical and psychological capability of astronauts, but the extent to which nonastronaut personnel will be able to participate without extensive training and pre-conditioning remains to be determined.

  1. Transition From NASA Space Communication Systems to Commerical Communication Products

    Science.gov (United States)

    Ghazvinian, Farzad; Lindsey, William C.

    1994-01-01

    Transitioning from twenty-five years of space communication system architecting, engineering and development to creating and marketing of commercial communication system hardware and software products is no simple task for small, high-tech system engineering companies whose major source of revenue has been the U.S. Government. Yet, many small businesses are faced with this onerous and perplexing task. The purpose of this talk/paper is to present one small business (LinCom) approach to taking advantage of the systems engineering expertise and knowledge captured in physical neural networks and simulation software by supporting numerous National Aeronautics and Space Administration (NASA) and the Department of Defense (DoD) projects, e.g., Space Shuttle, TDRSS, Space Station, DCSC, Milstar, etc. The innovative ingredients needed for a systems house to transition to a wireless communication system products house that supports personal communication services and networks (PCS and PCN) development in a global economy will be discussed. Efficient methods for using past government sponsored space system research and development to transition to VLSI communication chip set products will be presented along with notions of how synergy between government and industry can be maintained to benefit both parties.

  2. Complex Decision-Making Applications for the NASA Space Launch System

    Science.gov (United States)

    Lyles, Garry; Flores, Tim; Hundley, Jason; Feldman, Stuart; Monk, Timothy

    2012-01-01

    The Space Shuttle program is ending and elements of the Constellation Program are either being cancelled or transitioned to new NASA exploration endeavors. The National Aeronautics and Space Administration (NASA) has worked diligently to select an optimum configuration for the Space Launch System (SLS), a heavy lift vehicle that will provide the foundation for future beyond low earth orbit (LEO) large-scale missions for the next several decades. Thus, multiple questions must be addressed: Which heavy lift vehicle will best allow the agency to achieve mission objectives in the most affordable and reliable manner? Which heavy lift vehicle will allow for a sufficiently flexible exploration campaign of the solar system? Which heavy lift vehicle configuration will allow for minimizing risk in design, test, build and operations? Which heavy lift vehicle configuration will be sustainable in changing political environments? Seeking to address these questions drove the development of an SLS decision-making framework. From Fall 2010 until Spring 2011, this framework was formulated, tested, fully documented, and applied to multiple SLS vehicle concepts at NASA from previous exploration architecture studies. This was a multistep process that involved performing figure of merit (FOM)-based assessments, creating Pass/Fail gates based on draft threshold requirements, performing a margin-based assessment with supporting statistical analyses, and performing sensitivity analysis on each. This paper discusses the various methods of this process that allowed for competing concepts to be compared across a variety of launch vehicle metrics. The end result was the identification of SLS launch vehicle candidates that could successfully meet the threshold requirements in support of the SLS Mission Concept Review (MCR) milestone.

  3. Structural Continuum Modeling of Space Shuttle External Tank Foam Insulation

    Science.gov (United States)

    Steeve, Brian; Ayala, Sam; Purlee, T. Eric; Shaw, Phillip

    2006-01-01

    This document is a viewgraph presentation reporting on work in modeling the foam insulation of the Space Shuttle External Tank. An analytical understanding of foam mechanics is required to design against structural failure. The Space Shuttle External Tank is covered primarily with closed cell foam to: Prevent ice, Protect structure from ascent aerodynamic and engine plume heating, and Delay break-up during re-entry. It is important that the foam does not shed unacceptable debris during ascent environment. Therefore a modeling of the foam insulation was undertaken.

  4. NASA Shuttle Radar Topography Mission Global 1 arc second number V003

    Data.gov (United States)

    National Aeronautics and Space Administration — The NASA SRTM data sets result from a collaborative effort by the National Aeronautics and Space Administration (NASA) and the National Geospatial-Intelligence...

  5. NASA Shuttle Radar Topography Mission Global 3 arc second number V003

    Data.gov (United States)

    National Aeronautics and Space Administration — The NASA SRTM data sets result from a collaborative effort by the National Aeronautics and Space Administration (NASA) and the National Geospatial-Intelligence...

  6. Space Shuttle Orbiter logistics - Managing in a dynamic environment

    Science.gov (United States)

    Renfroe, Michael B.; Bradshaw, Kimberly

    1990-01-01

    The importance and methods of monitoring logistics vital signs, logistics data sources and acquisition, and converting data into useful management information are presented. With the launch and landing site for the Shuttle Orbiter project at the Kennedy Space Center now totally responsible for its own supportability posture, it is imperative that logistics resource requirements and management be continually monitored and reassessed. Detailed graphs and data concerning various aspects of logistics activities including objectives, inventory operating levels, customer environment, and data sources are provided. Finally, some lessons learned from the Shuttle Orbiter project and logistics options which should be considered by other space programs are discussed.

  7. Space shuttle configuration accounting functional design specification

    Science.gov (United States)

    1974-01-01

    An analysis is presented of the requirements for an on-line automated system which must be capable of tracking the status of requirements and engineering changes and of providing accurate and timely records. The functional design specification provides the definition, description, and character length of the required data elements and the interrelationship of data elements to adequately track, display, and report the status of active configuration changes. As changes to the space shuttle program levels II and III configuration are proposed, evaluated, and dispositioned, it is the function of the configuration management office to maintain records regarding changes to the baseline and to track and report the status of those changes. The configuration accounting system will consist of a combination of computers, computer terminals, software, and procedures, all of which are designed to store, retrieve, display, and process information required to track proposed and proved engineering changes to maintain baseline documentation of the space shuttle program levels II and III.

  8. Space Shuttle Main Propulsion System Anomaly Detection: A Case Study

    Data.gov (United States)

    National Aeronautics and Space Administration — The space shuttle main engine (SSME) is part of the Main Propnlsion System (MPS) which is an extremely complex system containing several sub-systems and components,...

  9. First haemorheological experiment on NASA space shuttle 'Discovery' STS 51-C: aggregation of red cells.

    Science.gov (United States)

    Dintenfass, L; Osman, P D; Jedrzejczyk, H

    1985-01-01

    The 'secret' D.O.D. Mission on flight STS 51-C also carried nearly 100 kg of automated instrumentation of the Australian experiment on aggregation of red cells ("ARC"). The automated Slit-Capillary Photo Viscometer contained blood samples from subjects with history of coronary heart disease, cancer of the colon, insulin-dependent diabetes, etc., as well as normals. The experiment ran for nine hours, according to the program of its microcomputers. When shuttle landed and instrumentation recovered and opened in the presence of NASA quality control officers, it was obvious that experiment was a success. Tentative and preliminary results can be summarized as follows: red cells did not change shape under zero gravity; red cells do aggregate under zero gravity, although the size of aggregates is smaller than on the ground; the morphology of aggregates of red cells appears to be of rouleaux type under zero gravity, notwithstanding the fact that pathological blood was used. These results will have to be confirmed in the future flights. The background and history of development of the project are described, and put into context of our general haemorheological studies.

  10. Studies and analyses of the space shuttle main engine. Failure information propagation model data base and software

    Science.gov (United States)

    Tischer, A. E.

    1987-01-01

    The failure information propagation model (FIPM) data base was developed to store and manipulate the large amount of information anticipated for the various Space Shuttle Main Engine (SSME) FIPMs. The organization and structure of the FIPM data base is described, including a summary of the data fields and key attributes associated with each FIPM data file. The menu-driven software developed to facilitate and control the entry, modification, and listing of data base records is also discussed. The transfer of the FIPM data base and software to the NASA Marshall Space Flight Center is described. Complete listings of all of the data base definition commands and software procedures are included in the appendixes.

  11. NASA Space Sounds API

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA has released a series of space sounds via sound cloud. We have abstracted away some of the hassle in accessing these sounds, so that developers can play with...

  12. 75 FR 4875 - NASA Commercial Space Committee; Meeting

    Science.gov (United States)

    2010-01-29

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (10-014)] NASA Commercial Space Committee... and Space Administration announces a meeting of the Commercial Space Committee to the NASA Advisory Council. DATES: Tuesday, February 16, 2010, 10 a.m.-5 p.m., Eastern. ADDRESSES: NASA Headquarters, 300 E...

  13. Shuttle Columbia Post-landing Tow - with Reflection in Water

    Science.gov (United States)

    1982-01-01

    A rare rain allowed this reflection of the Space Shuttle Columbia as it was towed 16 Nov. 1982, to the Shuttle Processing Area at NASA's Ames-Dryden Flight Research Facility (from 1976 to 1981 and after 1994, the Dryden Flight Research Center), Edwards, California, following its fifth flight in space. Columbia was launched on mission STS-5 11 Nov. 1982, and landed at Edwards Air Force Base on concrete runway 22. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines withtwo solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials

  14. NASA's Internal Space Weather Working Group

    Science.gov (United States)

    St. Cyr, O. C.; Guhathakurta, M.; Bell, H.; Niemeyer, L.; Allen, J.

    2011-01-01

    Measurements from many of NASA's scientific spacecraft are used routinely by space weather forecasters, both in the U.S. and internationally. ACE, SOHO (an ESA/NASA collaboration), STEREO, and SDO provide images and in situ measurements that are assimilated into models and cited in alerts and warnings. A number of years ago, the Space Weather laboratory was established at NASA-Goddard, along with the Community Coordinated Modeling Center. Within that organization, a space weather service center has begun issuing alerts for NASA's operational users. NASA's operational user community includes flight operations for human and robotic explorers; atmospheric drag concerns for low-Earth orbit; interplanetary navigation and communication; and the fleet of unmanned aerial vehicles, high altitude aircraft, and launch vehicles. Over the past three years we have identified internal stakeholders within NASA and formed a Working Group to better coordinate their expertise and their needs. In this presentation we will describe this activity and some of the challenges in forming a diverse working group.

  15. NASA's Contribution to Global Space Geodesy Networks

    Science.gov (United States)

    Bosworth, John M.

    1999-01-01

    The NASA Space Geodesy program continues to be a major provider of space geodetic data for the international earth science community. NASA operates high performance Satellite Laser Ranging (SLR), Very Long Baseline Interferometry (VLBI) and Global Positioning System (GPS) ground receivers at well over 30 locations around the world and works in close cooperation with space geodetic observatories around the world. NASA has also always been at the forefront in the quest for technical improvement and innovation in the space geodesy technologies to make them even more productive, accurate and economical. This presentation will highlight the current status of NASA's networks; the plans for partnerships with international groups in the southern hemisphere to improve the geographic distribution of space geodesy sites and the status of the technological improvements in SLR and VLBI that will support the new scientific thrusts proposed by interdisciplinary earth scientists. In addition, the expanding role of the NASA Space geodesy data archive, the CDDIS will be described.

  16. Computer science: Key to a space program renaissance. The 1981 NASA/ASEE summer study on the use of computer science and technology in NASA. Volume 2: Appendices

    Science.gov (United States)

    Freitas, R. A., Jr. (Editor); Carlson, P. A. (Editor)

    1983-01-01

    Adoption of an aggressive computer science research and technology program within NASA will: (1) enable new mission capabilities such as autonomous spacecraft, reliability and self-repair, and low-bandwidth intelligent Earth sensing; (2) lower manpower requirements, especially in the areas of Space Shuttle operations, by making fuller use of control center automation, technical support, and internal utilization of state-of-the-art computer techniques; (3) reduce project costs via improved software verification, software engineering, enhanced scientist/engineer productivity, and increased managerial effectiveness; and (4) significantly improve internal operations within NASA with electronic mail, managerial computer aids, an automated bureaucracy and uniform program operating plans.

  17. Liquid hydrogen production and economics for NASA Kennedy Space Center

    Science.gov (United States)

    Block, D. L.

    1985-12-01

    Detailed economic analyses for the production of liquid hydrogen used to power the Space Shuttle are presented. The hydrogen production and energy needs of the NASA Kennedy Space Center are reviewed, and steam reformation, polygeneration, and electrolysis for liquid hydrogen production are examined on an equal economic basis. The use of photovoltaics as an electrolysis power source is considered. The 1985 present worth is calculated based on life cycle costs over a 21-year period beginning with full operation in 1990. Two different sets of escalation, inflation, and discount rates are used, with revenue credit being given for energy or other products of the hydrogen production process. The results show that the economic analyses are very dependent on the escalation rates used. The least net present value is found for steam reformation of natural gas, while the best net present value is found for the electrolysis process which includes the phasing of photovoltaics.

  18. Marshall Space Flight Center - Launching the Future of Science and Exploration

    Science.gov (United States)

    Shivers, Alisa; Shivers, Herbert

    2010-01-01

    Topics include: NASA Centers around the country, launching a legacy (Explorer I), Marshall's continuing role in space exploration, MSFC history, lifting from Earth, our next mission STS 133, Space Shuttle propulsion systems, Space Shuttle facts, Space Shuttle and the International Space Station, technologies/materials originally developed for the space program, astronauts come from all over, potential future missions and example technologies, significant accomplishments, living and working in space, understanding our world, understanding worlds beyond, from exploration to innovation, inspiring the next generation, space economy, from exploration to opportunity, new program assignments, NASA's role in education, and images from deep space including a composite of a galaxy with a black hole, Sagittarius A, Pillars of Creation, and an ultra deep field

  19. Area Students Get a Call from Orbiting Space Shuttle Discovery

    OpenAIRE

    Naval Postgraduate School Public Affairs Office

    2010-01-01

    More than 1,000 students, parents and members of the NPS community packed King Auditorium Saturday morning where they received a call from the Space Shuttle Discovery orbiting more than 200 miles into space — part of the NPS Centennial’s Education Downlink STS-131, Teaching from Space event.

  20. HAL/S programmer's guide. [for space shuttle project

    Science.gov (United States)

    Newbold, P. M.; Hotz, R. L.

    1974-01-01

    The structure and symbology of the HAL/S programming language are described; this language is to be used among the flight software for the space shuttle project. The data declaration, input/output statements, and replace statements are also discussed.

  1. Complex Decision-Making Applications for the NASA Space Launch System

    Science.gov (United States)

    Lyles, Garry; Flores, Tim; Hundley, Jason; Monk, Timothy; Feldman, Stuart

    2012-01-01

    The Space Shuttle program is ending and elements of the Constellation Program are either being cancelled or transitioned to new NASA exploration endeavors. NASA is working diligently to select an optimum configuration for the Space Launch System (SLS), a heavy lift vehicle that will provide the foundation for future beyond LEO large ]scale missions for the next several decades. Thus, multiple questions must be addressed: Which heavy lift vehicle will best allow the agency to achieve mission objectives in the most affordable and reliable manner? Which heavy lift vehicle will allow for a sufficiently flexible exploration campaign of the solar system? Which heavy lift vehicle configuration will allow for minimizing risk in design, test, build and operations? Which heavy lift vehicle configuration will be sustainable in changing political environments? Seeking to address these questions drove the development of an SLS decisionmaking framework. From Fall 2010 until Spring 2011, this framework was formulated, tested, fully documented, and applied to multiple SLS vehicle concepts at NASA from previous exploration architecture studies. This was a multistep process that involved performing FOM-based assessments, creating Pass/Fail gates based on draft threshold requirements, performing a margin-based assessment with supporting statistical analyses, and performing sensitivity analysis on each. This paper discusses the various methods of this process that allowed for competing concepts to be compared across a variety of launch vehicle metrics. The end result was the identification of SLS launch vehicle candidates that could successfully meet the threshold requirements in support of the SLS Mission Concept Review (MCR) milestone.

  2. Space Shuttle Rudder Speed Brake Actuator-A Case Study Probabilistic Fatigue Life and Reliability Analysis

    Science.gov (United States)

    Oswald, Fred B.; Savage, Michael; Zaretsky, Erwin V.

    2015-01-01

    The U.S. Space Shuttle fleet was originally intended to have a life of 100 flights for each vehicle, lasting over a 10-year period, with minimal scheduled maintenance or inspection. The first space shuttle flight was that of the Space Shuttle Columbia (OV-102), launched April 12, 1981. The disaster that destroyed Columbia occurred on its 28th flight, February 1, 2003, nearly 22 years after its first launch. In order to minimize risk of losing another Space Shuttle, a probabilistic life and reliability analysis was conducted for the Space Shuttle rudder/speed brake actuators to determine the number of flights the actuators could sustain. A life and reliability assessment of the actuator gears was performed in two stages: a contact stress fatigue model and a gear tooth bending fatigue model. For the contact stress analysis, the Lundberg-Palmgren bearing life theory was expanded to include gear-surface pitting for the actuator as a system. The mission spectrum of the Space Shuttle rudder/speed brake actuator was combined into equivalent effective hinge moment loads including an actuator input preload for the contact stress fatigue and tooth bending fatigue models. Gear system reliabilities are reported for both models and their combination. Reliability of the actuator bearings was analyzed separately, based on data provided by the actuator manufacturer. As a result of the analysis, the reliability of one half of a single actuator was calculated to be 98.6 percent for 12 flights. Accordingly, each actuator was subsequently limited to 12 flights before removal from service in the Space Shuttle.

  3. Tactile display landing safety and precision improvements for the Space Shuttle

    Science.gov (United States)

    Olson, John M.

    A tactile display belt using 24 electro-mechanical tactile transducers (tactors) was used to determine if a modified tactile display system, known as the Tactile Situation Awareness System (TSAS) improved the safety and precision of a complex spacecraft (i.e. the Space Shuttle Orbiter) in guided precision approaches and landings. The goal was to determine if tactile cues enhance safety and mission performance through reduced workload, increased situational awareness (SA), and an improved operational capability by increasing secondary cognitive workload capacity and human-machine interface efficiency and effectiveness. Using both qualitative and quantitative measures such as NASA's Justiz Numerical Measure and Synwork1 scores, an Overall Workload (OW) measure, the Cooper-Harper rating scale, and the China Lake Situational Awareness scale, plus Pre- and Post-Flight Surveys, the data show that tactile displays decrease OW, improve SA, counteract fatigue, and provide superior warning and monitoring capacity for dynamic, off-nominal, high concurrent workload scenarios involving complex, cognitive, and multi-sensory critical scenarios. Use of TSAS for maintaining guided precision approaches and landings was generally intuitive, reduced training times, and improved task learning effects. Ultimately, the use of a homogeneous, experienced, and statistically robust population of test pilots demonstrated that the use of tactile displays for Space Shuttle approaches and landings with degraded vehicle systems, weather, and environmental conditions produced substantial improvements in safety, consistency, reliability, and ease of operations under demanding conditions. Recommendations for further analysis and study are provided in order to leverage the results from this research and further explore the potential to reduce the risk of spaceflight and aerospace operations in general.

  4. Space Radiation Research at NASA

    Science.gov (United States)

    Norbury, John

    2016-01-01

    The harmful effects of space radiation on astronauts is one of the most important limiting factors for human exploration of space beyond low Earth orbit, including a journey to Mars. This talk will present an overview of space radiation issues that arise throughout the solar system and will describe research efforts at NASA aimed at studying space radiation effects on astronauts, including the experimental program at the NASA Space Radiation Laboratory at Brookhaven National Laboratory. Recent work on galactic cosmic ray simulation at ground based accelerators will also be presented. The three major sources of space radiation, namely geomagnetically trapped particles, solar particle events and galactic cosmic rays will be discussed as well as recent discoveries of the harmful effects of space radiation on the human body. Some suggestions will also be given for developing a space radiation program in the Republic of Korea.

  5. NASA Shuttle Radar Topography Mission Global 3 arc second sub-sampled V003

    Data.gov (United States)

    National Aeronautics and Space Administration — The NASA SRTM data sets result from a collaborative effort by the National Aeronautics and Space Administration (NASA) and the National Geospatial-Intelligence...

  6. NASA Shuttle Radar Topography Mission Water Body Data Shapefiles & Raster Files V003

    Data.gov (United States)

    National Aeronautics and Space Administration — The NASA SRTM data sets result from a collaborative effort by the National Aeronautics and Space Administration (NASA) and the National Geospatial-Intelligence...

  7. Cost prediction model for various payloads and instruments for the Space Shuttle Orbiter

    Science.gov (United States)

    Hoffman, F. E.

    1984-01-01

    The following cost parameters of the space shuttle were undertaken: (1) to develop a cost prediction model for various payload classes of instruments and experiments for the Space Shuttle Orbiter; and (2) to show the implications of various payload classes on the cost of: reliability analysis, quality assurance, environmental design requirements, documentation, parts selection, and other reliability enhancing activities.

  8. 2009 Space Shuttle Probabilistic Risk Assessment Overview

    Science.gov (United States)

    Hamlin, Teri L.; Canga, Michael A.; Boyer, Roger L.; Thigpen, Eric B.

    2010-01-01

    Loss of a Space Shuttle during flight has severe consequences, including loss of a significant national asset; loss of national confidence and pride; and, most importantly, loss of human life. The Shuttle Probabilistic Risk Assessment (SPRA) is used to identify risk contributors and their significance; thus, assisting management in determining how to reduce risk. In 2006, an overview of the SPRA Iteration 2.1 was presented at PSAM 8 [1]. Like all successful PRAs, the SPRA is a living PRA and has undergone revisions since PSAM 8. The latest revision to the SPRA is Iteration 3. 1, and it will not be the last as the Shuttle program progresses and more is learned. This paper discusses the SPRA scope, overall methodology, and results, as well as provides risk insights. The scope, assumptions, uncertainties, and limitations of this assessment provide risk-informed perspective to aid management s decision-making process. In addition, this paper compares the Iteration 3.1 analysis and results to the Iteration 2.1 analysis and results presented at PSAM 8.

  9. The Real Time Interactive Display Environment (RTIDE), a display building tool developed by Space Shuttle flight controllers

    Science.gov (United States)

    Kalvelage, Thomas A.

    1989-01-01

    NASA's Mission Control Center, located at Johnson Space Center, is incrementally moving from a centralized architecture to a distributed architecture. Starting with STS-29, some host-driven console screens will be replaced with graphics terminals driven by workstations. These workstations will be supplied realtime data first by the Real Time Data System (RTDS), a system developed inhouse, and then months later (in parallel with RTDS) by interim and subsequently operational versions of the Mission Control Center Upgrade (MCCU) software package. The Real Time Interactive Display Environment (RTIDE) was built by Space Shuttle flight controllers to support the rapid development of multiple new displays to support Shuttle flights. RTIDE is a display building tool that allows non-programmers to define object-oriented, event-driven, mouseable displays. Particular emphasis was placed on upward compatibility between RTIDE versions, ability to acquire data from different data sources, realtime performance, ability to modularly upgrade RTIDE, machine portability, and a clean, powerful user interface. The operational and organizational factors that drove RTIDE to its present form, the actual design itself, simulation and flight performance, and lessons learned in the process are discussed.

  10. Which Way is Up? Lessons Learned from Space Shuttle Sensorimotor Research

    Science.gov (United States)

    Wood, S. J.; Reschke, M. F.; Harm, D. L.; Paloski, W. H.; Bloomberg, J. J.

    2011-01-01

    The Space Shuttle Program provided the opportunity to examine sensorimotor adaptation to space flight in unprecedented numbers of astronauts, including many over multiple missions. Space motion sickness (SMS) severity was highly variable across crewmembers. SMS generally lasted 2-3 days in-flight with approximately 1/3 of crewmembers experiencing moderate to severe symptoms, and decreased incidence in repeat flyers. While SMS has proven difficult to predict from susceptibility to terrestrial analogs, symptoms were alleviated by medications, restriction of early activities, maintaining familiar orientation with respect to the visual environment and maintaining contact cues. Adaptive changes were also reflected by the oculomotor and perceptual disturbances experienced early inflight and by the perceptual and motor coordination problems experienced during re-entry and landing. According to crew self-reports, systematic head movements performed during reentry, as long as paced within one's threshold for motion tolerance, facilitated the early readaptation process. The Shuttle provided early postflight crew access to document the initial performance decrements and time course of recovery. These early postflight measurements were critical to inform the program of risks associated with extending the duration of Shuttle missions. Neurological postflight deficits were documented using a standardized subjective rating by flight surgeons. Computerized dynamic posturography was also implemented as a quantitative means of assessing sensorimotor function to support crew return-to-duty assessments. Towards the end of the Shuttle Program, more emphasis has been placed on mapping physiological changes to functional performance. Future commercial flights will benefit from pre-mission training including exposures to launch and entry G transitions and sensorimotor adaptability assessments. While SMS medication usage will continue to be refined, non-pharmacological countermeasures (e

  11. Artificial Neural Network Test Support Development for the Space Shuttle PRCS Thrusters

    Science.gov (United States)

    Lehr, Mark E.

    2005-01-01

    A significant anomaly, Fuel Valve Pilot Seal Extrusion, is affecting the Shuttle Primary Reaction Control System (PRCS) Thrusters, and has caused 79 to fail. To help address this problem, a Shuttle PRCS Thruster Process Evaluation Team (TPET) was formed. The White Sands Test Facility (WSTF) and Boeing members of the TPET have identified many discrete valve current trace characteristics that are predictive of the problem. However, these are difficult and time consuming to identify and trend by manual analysis. Based on this exhaustive analysis over months, 22 thrusters previously delivered by the Depot were identified as high risk for flight failures. Although these had only recently been installed, they had to be removed from Shuttles OV103 and OV104 for reprocessing, by directive of the Shuttle Project Office. The resulting impact of the thruster removal, replacement, and valve replacement was significant (months of work and hundreds of thousands of dollars). Much of this could have been saved had the proposed Neural Network (NN) tool described in this paper been in place. In addition to the significant benefits to the Shuttle indicated above, the development and implementation of this type of testing will be the genesis for potential Quality improvements across many areas of WSTF test data analysis and will be shared with other NASA centers. Future tests can be designed to incorporate engineering experience via Artificial Neural Nets (ANN) into depot level acceptance of hardware. Additionally, results were shared with a NASA Engineering and Safety Center (NESC) Super Problem Response Team (SPRT). There was extensive interest voiced among many different personnel from several centers. There are potential spin-offs of this effort that can be directly applied to other data acquisition systems as well as vehicle health management for current and future flight vehicles.

  12. A monograph of the National Space Transportation System Office (NSTSO) integration activities conducted at the NASA Lyndon B. Johnson Space Center for the EASE/ACCESS payload flown on STS 61-B

    Science.gov (United States)

    Chassay, Charles

    1987-01-01

    The integration process of activities conducted at the NASA Lyndon B. Johnson Space Center (JSC) for the Experimental Assembly of Structures in Extravehicular activity (EASE)/Assembly Concept for Construction of Erectable Space Structures (ACCESS) payload is provided as a subset to the standard payload integration process used by the NASA Space Transportation System (STS) to fly payloads on the Space Shuttle. The EASE/ACCESS payload integration activities are chronologically reviewed beginning with the initiation of the flight manifesting and integration process. The development and documentation of the EASE/ACCESS integration requirements are also discussed along with the implementation of the mission integration activities and the engineering assessments supporting the flight integration process. In addition, the STS management support organizations, the payload safety process leading to the STS 61-B flight certification, and the overall EASE/ACCESS integration schedule are presented.

  13. Development of a large scale Chimera grid system for the Space Shuttle Launch Vehicle

    Science.gov (United States)

    Pearce, Daniel G.; Stanley, Scott A.; Martin, Fred W., Jr.; Gomez, Ray J.; Le Beau, Gerald J.; Buning, Pieter G.; Chan, William M.; Chiu, Ing-Tsau; Wulf, Armin; Akdag, Vedat

    1993-01-01

    The application of CFD techniques to large problems has dictated the need for large team efforts. This paper offers an opportunity to examine the motivations, goals, needs, problems, as well as the methods, tools, and constraints that defined NASA's development of a 111 grid/16 million point grid system model for the Space Shuttle Launch Vehicle. The Chimera approach used for domain decomposition encouraged separation of the complex geometry into several major components each of which was modeled by an autonomous team. ICEM-CFD, a CAD based grid generation package, simplified the geometry and grid topology definition by provoding mature CAD tools and patch independent meshing. The resulting grid system has, on average, a four inch resolution along the surface.

  14. Purpose, Principles, and Challenges of the NASA Engineering and Safety Center

    Science.gov (United States)

    Gilbert, Michael G.

    2016-01-01

    NASA formed the NASA Engineering and Safety Center in 2003 following the Space Shuttle Columbia accident. It is an Agency level, program-independent engineering resource supporting NASA's missions, programs, and projects. It functions to identify, resolve, and communicate engineering issues, risks, and, particularly, alternative technical opinions, to NASA senior management. The goal is to help ensure fully informed, risk-based programmatic and operational decision-making processes. To date, the NASA Engineering and Safety Center (NESC) has conducted or is actively working over 600 technical studies and projects, spread across all NASA Mission Directorates, and for various other U.S. Government and non-governmental agencies and organizations. Since inception, NESC human spaceflight related activities, in particular, have transitioned from Shuttle Return-to-Flight and completion of the International Space Station (ISS) to ISS operations and Orion Multi-purpose Crew Vehicle (MPCV), Space Launch System (SLS), and Commercial Crew Program (CCP) vehicle design, integration, test, and certification. This transition has changed the character of NESC studies. For these development programs, the NESC must operate in a broader, system-level design and certification context as compared to the reactive, time-critical, hardware specific nature of flight operations support.

  15. Research reports: 1990 NASA/ASEE Summer faculty fellowship program

    International Nuclear Information System (INIS)

    Freeman, L.M.; Chappell, C.R.; Six, F.; Karr, G.R.

    1990-10-01

    Reports on the research projects performed under the NASA/ASEE Summer faculty fellowship program are presented. The program was conducted by The University of Alabama and MSFC during the period from June 4, 1990 through August 10, 1990. Some of the topics covered include: (1) Space Shuttles; (2) Space Station Freedom; (3) information systems; (4) materials and processes; (4) Space Shuttle main engine; (5) aerospace sciences; (6) mathematical models; (7) mission operations; (8) systems analysis and integration; (9) systems control; (10) structures and dynamics; (11) aerospace safety; and (12) remote sensing

  16. 76 FR 64122 - NASA Advisory Committee; Renewal of NASA's International Space Station Advisory Committee Charter

    Science.gov (United States)

    2011-10-17

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (11-095)] NASA Advisory Committee; Renewal of NASA's International Space Station Advisory Committee Charter AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of renewal and amendment of the Charter of the International...

  17. Space Shuttle Program Primary Avionics Software System (PASS) Success Legacy - Quality and Reliability Date

    Science.gov (United States)

    Orr, James K.; Peltier, Daryl

    2010-01-01

    Thsi slide presentation reviews the avionics software system on board the space shuttle, with particular emphasis on the quality and reliability. The Primary Avionics Software System (PASS) provides automatic and fly-by-wire control of critical shuttle systems which executes in redundant computers. Charts given show the number of space shuttle flights vs time, PASS's development history, and other charts that point to the reliability of the system's development. The reliability of the system is also compared to predicted reliability.

  18. NASA Johnson Space Center Small Business Innovation Research (SBIR) Successes, Infusion and Commercializations and Potential International Partnering Opportunities

    Science.gov (United States)

    Packard, Kathryn; Goodman, Doug; Whittington, James

    2016-01-01

    The NASA Small Business Innovation Research (SBIR) Program has served as a beneficial funding vehicle to both US small technology businesses and the Federal Agencies that participate in the program. This paper, to the extent possible, while observing Intellectual Property (IP) laws, will discuss the many SBIR and STTR (SBIR Technology Transfer) successes in the recent history of the NASA Johnson Space Center (JSC). Many of the participants of the International Conference on Environmental Systems (ICES) have based their research and papers on technologies that were made possible by SBIR/STTR awards and post award funding. Many SBIR/STTR successes have flown on Space Shuttle missions, Space X Dragons, and other spacecraft. SBIR/STTR technologies are currently infused on the International Space Station (ISS) and satellites, one of which was a NASA/JAXA (Japanese Space Agency) joint venture. Many of these companies have commercialized their technologies and grown as businesses while helping the economy through the creation of new jobs. In addition, this paper will explore the opportunity for international partnership with US SBIR/STTR companies as up to 49% of the makeup of the company is not required to be American owned. Although this paper will deal with technical achievements, it does not purport to be technical in nature. It will address the many requests for information on successes and opportunities within NASA SBIR and the virtually untapped potential of international partnering.

  19. Development of polyisocyanurate pour foam formulation for space shuttle external tank thermal protection system

    Science.gov (United States)

    Harvey, James A.; Butler, John M.; Chartoff, Richard P.

    1988-01-01

    Four commercially available polyisocyanurate polyurethane spray-foam insulation formulations are used to coat the external tank of the space shuttle. There are several problems associated with these formulations. For example, some do not perform well as pourable closeout/repair systems. Some do not perform well at cryogenic temperatures (poor adhesion to aluminum at liquid nitrogen temperatures). Their thermal stability at elevated temperatures is not adequate. A major defect in all the systems is the lack of detailed chemical information. The formulations are simply supplied to NASA and Martin Marietta, the primary contractor, as components; Part A (isocyanate) and Part B (poly(s) and additives). Because of the lack of chemical information the performance behavior data for the current system, NASA sought the development of a non-proprietary room temperature curable foam insulation. Requirements for the developed system were that it should exhibit equal or better thermal stability both at elevated and cryogenic temperatures with better adhesion to aluminum as compared to the current system. Several formulations were developed that met these requirements, i.e., thermal stability, good pourability, and good bonding to aluminum.

  20. Does the NASA Constellation Architecture Offer Opportunities to Achieve Multiple Additional Goals in Space?

    Science.gov (United States)

    Thronson, Harley; Lester, Daniel

    2008-01-01

    Every major NASA human spaceflight program in the last four decades has been modified to achieve goals in space not incorporated within the original design goals: the Apollo Applications Program, Skylab, Space Shuttle, and International Space Station. Several groups in the U.S. have been identifying major future science goals, the science facilities necessary to investigate them, as well as possible roles for augmented versions of elements of NASA's Constellation program. Specifically, teams in the astronomy community have been developing concepts for very capable missions to follow the James Webb Space Telescope that could take advantage of - or require - free-space operations by astronauts and/or robots. Taking as one example, the Single-Aperture Far-InfraRed (SAFIR) telescope with a 10+ m aperture proposed for operation in the 2020 timeframe. According to current NASA plans, the Ares V launch vehicle (or a variant) will be available about the same time, as will the capability to transport astronauts to the vicinity of the Moon via the Orion Crew Exploration Vehicle and associated systems. [As the lunar surface offers no advantages - and major disadvantages - for most major optical systems, the expensive system for landing and operating on the lunar surface is not required.] Although as currently conceived, SAFIR and other astronomical missions will operate at the Sun-Earth L2 location, it appears trivial to travel for servicing to the more accessible Earth-Moon L1,2 locations. Moreover, as the recent Orbital Express and Automated Transfer Vehicle Missions have demonstrated, future robotic capabilities should offer capabilities that would (remotely) extend human presence far beyond the vicinity of the Earth.

  1. NASA's Corrosion Technology Laboratory at the Kennedy Space Center: Anticipating, Managing, and Preventing Corrosion

    Science.gov (United States)

    Calle, Luz Marina

    2014-01-01

    Corrosion is the degradation of a material that results from its interaction with the environment. The marine environment at NASAs Kennedy Space Center (KSC) has been documented by ASM International (formerly American Society for Metals) as the most corrosive in the United States. With the introduction of the Space Shuttle in 1981, the already highly corrosive conditions at the launch pads were rendered even more severe by the 70 tons of highly corrosive hydrochloric acid that were generated by the solid rocket boosters. Numerous failures at the launch pads are caused by corrosion.The structural integrity of ground infrastructure and flight hardware is critical to the success, safety, cost, and sustainability of space missions. As a result of fifty years of experience with launch and ground operations in a natural marine environment that is highly corrosive, NASAs Corrosion Technology Laboratory at KSC is a major source of corrosion control expertise in the launch and other environments. Throughout its history, the Laboratory has evolved from what started as an atmospheric exposure facility near NASAs launch pads into a world-wide recognized capability that provides technical innovations and engineering services in all areas of corrosion for NASA and external customers.This presentation will provide a historical overview of the role of NASAs Corrosion Technology in anticipating, managing, and preventing corrosion. One important challenge in managing and preventing corrosion involves the detrimental impact on humans and the environment of what have been very effective corrosion control strategies. This challenge has motivated the development of new corrosion control technologies that are more effective and environmentally friendly. Strategies for improved corrosion protection and durability can have a huge impact on the economic sustainability of human spaceflight operations.

  2. Space shuttle booster separation motor design

    Science.gov (United States)

    Smith, G. W.; Chase, C. A.

    1976-01-01

    The separation characteristics of the space shuttle solid rocket boosters (SRBs) are introduced along with the system level requirements for the booster separation motors (BSMs). These system requirements are then translated into specific motor requirements that control the design of the BSM. Each motor component is discussed including its geometry, material selection, and fabrication process. Also discussed is the propellant selection, grain design, and performance capabilities of the motor. The upcoming test program to develop and qualify the motor is outlined.

  3. Bone Loss in Space: Shuttle/MIR Experience and Bed Rest Countermeasure Program

    Science.gov (United States)

    Shackelford, L. C.; LeBlanc, A.; Feiveson, A.; Oganov, V.

    1999-01-01

    Loss of bone mineral during space flight was documented in the 1970's Skylab missions. The USSR space program made similar observations in the 1980's. The Institute of Biomedical Problems in Moscow and NASA JSC in 1989 began to collect pre- and post-flight bone mineral density (BMD) using Hologic QDR 1000 DEXA scanners transferred from JSC to Moscow and Star City. DEXA whole body, hip, and lumbar spine scans were performed prior to and during the first week after return from 4- to 6-month missions (plus one 8-month mission and one 14- month mission) on the Mir space station. These data documented the extent and regional nature of bone loss during long duration space flight. Of the 18 cosmonauts participating in this study between 1990 and 1995, seven flew two missions. BMD scans prior to the second flight compared to the first mission preflight scans indicated that recovery was possibly delayed or incomplete. Because of these findings, NASA and IBMP initiated the study "Bone Mineral Loss and Recovery After Shuttle/Mir Flights" in 1995 to evaluate bone recovery during a 3-year post-flight period. All of the 14 participants thus far evaluated lost bone in at least one region of the spine and lower extremities during flight. Of the 14, only one to date has exhibited full return to baseline BNM values in all regions. The current study will continue until the last participant has reached full bone recovery in all regions, has reached a plateau, or until three years after the flight (2001 for the last mission of the program). Bone mineral density losses in space and difficulty in returning to baseline indicate a need for countermeasure development. In late 1996 NASA JSC and Baylor College of Medicine were approved to conduct two countermeasure studies during 17 weeks of bed rest. In 1997 the studies were begun in the bed rest facility established by NASA, Baylor College of Medicine, and The Methodist Hospital in Houston. To date, three bed rest controls, five resistive

  4. Space shuttle main engine vibration data base

    Science.gov (United States)

    Lewallen, Pat

    1986-01-01

    The Space Shuttle Main Engine Vibration Data Base is described. Included is a detailed description of the data base components, the data acquisition process, the more sophisticated software routines, and the future data acquisition methods. Several figures and plots are provided to illustrate the various output formats accessible to the user. The numerous vibration data recall and analysis capabilities available through automated data base techniques are revealed.

  5. NASA Space Biology Plant Research for 2010-2020

    Science.gov (United States)

    Levine, H. G.; Tomko, D. L.; Porterfield, D. M.

    2012-01-01

    The U.S. National Research Council (NRC) recently published "Recapturing a Future for Space Exploration: Life and Physical Sciences Research for a New Era" (http://www.nap.edu/catalog.php?record id=13048), and NASA completed a Space Biology Science Plan to develop a strategy for implementing its recommendations ( http://www.nasa.gov/exploration/library/esmd documents.html). The most important recommendations of the NRC report on plant biology in space were that NASA should: (1) investigate the roles of microbial-plant systems in long-term bioregenerative life support systems, and (2) establish a robust spaceflight program of research analyzing plant growth and physiological responses to the multiple stimuli encountered in spaceflight environments. These efforts should take advantage of recently emerged analytical technologies (genomics, transcriptomics, proteomics, metabolomics) and apply modern cellular and molecular approaches in the development of a vigorous flight-based and ground-based research program. This talk will describe NASA's strategy and plans for implementing these NRC Plant Space Biology recommendations. New research capabilities for Plant Biology, optimized by providing state-of-the-art automated technology and analytical techniques to maximize scientific return, will be described. Flight experiments will use the most appropriate platform to achieve science results (e.g., ISS, free flyers, sub-orbital flights) and NASA will work closely with its international partners and other U.S. agencies to achieve its objectives. One of NASA's highest priorities in Space Biology is the development research capabilities for use on the International Space Station and other flight platforms for studying multiple generations of large plants. NASA will issue recurring NASA Research Announcements (NRAs) that include a rapid turn-around model to more fully engage the biology community in designing experiments to respond to the NRC recommendations. In doing so, NASA

  6. Lubrication of Space Shuttle Main Engine Turbopump Bearings

    Science.gov (United States)

    Gibson, Howard; Munafo, Paul (Technical Monitor)

    2001-01-01

    The Space Shuttle has three main engines that are used for propulsion into orbit. These engines are fed propellants by four turbopumps on each engine. A main element in the turbopump is the bearings supporting the rotor that spins the turbine blades and the pump impeller. These bearings are required to spin at very high speeds, support radial and thrust loads, and have high wear resistance without the benefit of lubrication. The liquid hydrogen and oxygen propellants flow through the bearings to cool the surfaces. The volatile nature of the propellants excludes any conventional means of lubrication. Lubrication for these bearings is provided by the ball separator inside the bearing. The separator is a composite material that supplies a transfer film of lubrication to the rings and balls. New separator materials and lubrication schemes have been investigated at Marshall Space Flight Center in a bearing test rig with promising results. Hybrid bearings with silicon nitride balls have also been evaluated. The use of hybrid, silicon nitride ball bearings in conjunction -with better separator materials has shown excellent results. The work that Marshall has done is being utilized in turbopumps flying on the space shuttle fleet and will be utilized in future space travel. This result of this work is valuable for all aerospace and commercial applications where high-speed bearings are used.

  7. NASA Space Technology Roadmaps and Priorities: Restoring NASA's Technological Edge and Paving the Way for a New Era in Space

    Science.gov (United States)

    2012-01-01

    Success in executing future NASA space missions will depend on advanced technology developments that should already be underway. It has been years since NASA has had a vigorous, broad-based program in advanced space technology development, and NASA's technology base is largely depleted. As noted in a recent National Research Council report on the U.S. civil space program: Future U.S. leadership in space requires a foundation of sustained technology advances that can enable the development of more capable, reliable, and lower-cost spacecraft and launch vehicles to achieve space program goals. A strong advanced technology development foundation is needed also to enhance technology readiness of new missions, mitigate their technological risks, improve the quality of cost estimates, and thereby contribute to better overall mission cost management. Yet financial support for this technology base has eroded over the years. The United States is now living on the innovation funded in the past and has an obligation to replenish this foundational element. NASA has developed a draft set of technology roadmaps to guide the development of space technologies under the leadership of the NASA Office of the Chief Technologist. The NRC appointed the Steering Committee for NASA Technology Roadmaps and six panels to evaluate the draft roadmaps, recommend improvements, and prioritize the technologies within each and among all of the technology areas as NASA finalizes the roadmaps. The steering committee is encouraged by the initiative NASA has taken through the Office of the Chief Technologist (OCT) to develop technology roadmaps and to seek input from the aerospace technical community with this study.

  8. Theory and Observations of Plasma Waves Excited Space Shuttle OMS Burns in the Ionosphere

    Science.gov (United States)

    Bernhardt, P. A.; Pfaff, R. F.; Schuck, P. W.; Hunton, D. E.; Hairston, M. R.

    2010-12-01

    Measurements of artificial plasma turbulence were obtained during two Shuttle Exhaust Ionospheric Turbulence Experiments (SEITE) conducted during the flights of the Space Shuttle (STS-127 and STS-129). Based on computer modeling at the NRL PPD and Laboratory for Computational Physics & Fluid Dynamics (LCP), two dedicated burns of the Space Shuttle Orbital Maneuver Subsystem (OMS) engines were scheduled to produce 200 to 240 kg exhaust clouds that passed over the Air Force Research Laboratory (AFRL) Communications, Navigation, and Outage Forecast System (C/NOFS) satellite. This operation required the coordination by the DoD Space Test Program (STP), the NASA Flight Dynamics Officer (FDO), the C/NOFS payload operations, and the C/NOFS instrument principal investigators. The first SEITE mission used exhaust from a 12 Second OMS burn to deposit 1 Giga-Joules of energy into the upper atmosphere at a range of 230 km from C/NOFS. The burn was timed so C/NOFS could fly though the center of the exhaust cloud at a range of 87 km above the orbit of the Space Shuttle. The first SEITE experiment is important because is provided plume detection by ionospheric plasma and electric field probes for direct sampling of irregularities that can scatter radar signals. Three types of waves were detected by C/NOFS during and after the first SEITE burn. With the ignition and termination of the pair of OMS engines, whistler mode signals were recorded at C/NOFS. Six seconds after ignition, a large amplitude electromagnetic pulse reached the satellite. This has been identified as a fast magnetosonic wave propagating across magnetic field lines to reach the electric field (VEFI) sensors on the satellite. Thirty seconds after the burn, the exhaust cloud reach C/NOFS and engulfed the satellite providing very strong electric field turbulence along with enhancements in electron and ion densities. Kinetic modeling has been used to track the electric field turbulence to an unstable velocity

  9. Scanning electron microscope observations of brine shrimp larvae from space shuttle experiments

    Science.gov (United States)

    DeBell, L.; Paulsen, A.; Spooner, B.

    1992-01-01

    Brine shrimp are encysted as gastrula stage embryos, and may remain dehydrated and encysted for years without compromising their viability. This aspect of brine shrimp biology is desirable for studying development of animals during space shuttle flight, as cysts placed aboard a spacecraft may be rehydrated at the convenience of an astronaut, guaranteeing that subsequent brine shrimp development occurs only on orbit and not on the pad during launch delays. Brine shrimp cysts placed in 5 ml syringes were rehydrated with salt water and hatched during a 9 day space shuttle mission. Subsequent larvae developed to the 8th larval stage in the sealed syringes. We studied the morphogenesis of the brine shrimp larvae and found the larvae from the space shuttle experiments similar in rate of growth and extent of development, to larvae grown in sealed syringes on the ground. Extensive differentiation and development of embryos and larvae can occur in a microgravity environment.

  10. Results of a jet plume effects test on Rockwell International integrated space shuttle vehicle using a vehicle 5 configuration 0.02-scale model (88-OTS) in the 11 by 11 foot leg of the NASA/Ames Research Center unitary plan wind tunnel (IA19), volume 1

    Science.gov (United States)

    Nichols, M. E.

    1975-01-01

    Results are presented of jet plume effects test IA19 using a vehicle 5 configuration integrated space shuttle vehicle 0.02-scale model in the NASA/Ames Research Center 11 x 11-foot leg of the unitary plan wind tunnel. The jet plume power effects on the integrated vehicle static pressure distribution were determined along with elevon, main propulsion system nozzle, and solid rocket booster nozzle effectiveness and elevon hinge moments.

  11. Ariane: NASA's European rival

    Science.gov (United States)

    The successful test launch of two three-quarter ton satellites in the European Space Agency's (ESA) Ariane rocket last June firmly placed ESA in competition with NASA for the lucrative and growing satellite launching market. Under the auspices of the private (but largely French-government financed) Arianespace company, ESA is already attracting customers to its three-stage rocket by offering low costs.According to recent reports [Nature, 292, pp. 785 and 788, 1981], Arianespace has been able to win several U.S. customers away from NASA, including Southern Pacific Communications, Western Union, RCA, Satellite Television Corporation, and GTE. Nature [292, 1981] magazine in an article entitled ‘More Trouble for the Hapless Shuttle’ suggests that it will be possible for Ariane to charge lower prices for a launch than NASA, even with the space shuttle.

  12. 78 FR 77502 - NASA International Space Station Advisory Committee; Meeting

    Science.gov (United States)

    2013-12-23

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (13-154)] NASA International Space Station Advisory Committee; Meeting AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of..., the National Aeronautics and Space Administration announces a meeting of the NASA International Space...

  13. Does NASA's Constellation Architecture Offer Opportunities to Achieve Multiple Additional Goals in Space?

    Science.gov (United States)

    Thronson, Harley; Lester, Daniel F.

    2008-01-01

    Every major NASA human spaceflight program in the last four decades has been modified to achieve goals in space not incorporated within the original design goals: the Apollo Applications Program, Skylab, Space Shuttle, and International Space Station. Several groups in the US have been identifying major future science goals, the science facilities necessary to investigate them, as well as possible roles for augmented versions of elements of NASA's Constellation program. Specifically, teams in the astronomy community have been developing concepts for very capable missions to follow the James Webb Space Telescope that could take advantage of - or require - free-space operations by astronauts and/or robots. Taking as one example, the Single-Aperture Far-InfraRed (SAFIR) telescope with a approx. 10+ m aperture proposed for operation in the 2020 timeframe. According to current NASA plans, the Ares V launch vehicle (or a variant) will be available about the same time, as will the capability to transport astronauts to the vicinity of the Moon via the Orion Crew Exploration Vehicle and associated systems. [As the lunar surface offers no advantages - and major disadvantages - for most major optical systems, the expensive system for landing and operating on the lunar surface is not required.] Although as currently conceived, SAFIR and other astronomical missions will operate at the Sun-Earth L2 location, it appears trivial to travel for servicing to the more accessible Earth-Moon L1,2 locations. Moreover. as the recent Orbital Express and Automated Transfer Vehicle missions have demonstrated, future robotic capabilities should offer capabilities that would (remotely) extend human presence far beyond the vicinity of the Earth. In addition to multiplying the value of NASA's architecture for future human spaceflight to achieve the goals multiple major stakeholders. if humans one day travel beyond the Earth-Moon system - say, to Mars - technologies and capabilities for operating

  14. 75 FR 16197 - NASA Advisory Council; Space Operations Committee; Meeting

    Science.gov (United States)

    2010-03-31

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-036)] NASA Advisory Council; Space..., the National Aeronautics and Space Administration announces a meeting of the NASA Advisory Council Space Operations Committee. DATES: Tuesday, April 13, 2010, 3-5 p.m. CDT. ADDRESSES: NASA Johnson Space...

  15. HAL/S programmer's guide. [space shuttle flight software language

    Science.gov (United States)

    Newbold, P. M.; Hotz, R. L.

    1974-01-01

    HAL/S is a programming language developed to satisfy the flight software requirements for the space shuttle program. The user's guide explains pertinent language operating procedures and described the various HAL/S facilities for manipulating integer, scalar, vector, and matrix data types.

  16. Training for life science experiments in space at the NASA Ames Research Center

    Science.gov (United States)

    Rodrigues, Annette T.; Maese, A. Christopher

    1993-01-01

    As this country prepares for exploration to other planets, the need to understand the affects of long duration exposure to microgravity is evident. The National Aeronautics and Space Administration (NASA) Ames Research Center's Space Life Sciences Payloads Office is responsible for a number of non-human life sciences payloads on NASA's Space Shuttle's Spacelab. Included in this responsibility is the training of those individuals who will be conducting the experiments during flight, the astronauts. Preparing a crew to conduct such experiments requires training protocols that build on simple tasks. Once a defined degree of performance proficiency is met for each task, these tasks are combined to increase the complexity of the activities. As tasks are combined into in-flight operations, they are subjected to time constraints and the crew enhances their skills through repetition. The science objectives must be completely understood by the crew and are critical to the overall training program. Completion of the in-flight activities is proof of success. Because the crew is exposed to the background of early research and plans for post-flight analyses, they have a vested interest in the flight activities. The salient features of this training approach is that it allows for flexibility in implementation, consideration of individual differences, and a greater ability to retain experiment information. This training approach offers another effective alternative training tool to existing methodologies.

  17. INSPACE CHEMICAL PROPULSION SYSTEMS AT NASA's MARSHALL SPACE FLIGHT CENTER: HERITAGE AND CAPABILITIES

    Science.gov (United States)

    McRight, P. S.; Sheehy, J. A.; Blevins, J. A.

    2005-01-01

    NASA s Marshall Space Flight Center (MSFC) is well known for its contributions to large ascent propulsion systems such as the Saturn V rocket and the Space Shuttle external tank, solid rocket boosters, and main engines. This paper highlights a lesser known but very rich side of MSFC-its heritage in the development of in-space chemical propulsion systems and its current capabilities for spacecraft propulsion system development and chemical propulsion research. The historical narrative describes the flight development activities associated with upper stage main propulsion systems such as the Saturn S-IVB as well as orbital maneuvering and reaction control systems such as the S-IVB auxiliary propulsion system, the Skylab thruster attitude control system, and many more recent activities such as Chandra, the Demonstration of Automated Rendezvous Technology (DART), X-37, the X-38 de-orbit propulsion system, the Interim Control Module, the US Propulsion Module, and multiple technology development activities. This paper also highlights MSFC s advanced chemical propulsion research capabilities, including an overview of the center s Propulsion Systems Department and ongoing activities. The authors highlight near-term and long-term technology challenges to which MSFC research and system development competencies are relevant. This paper concludes by assessing the value of the full range of aforementioned activities, strengths, and capabilities in light of NASA s exploration missions.

  18. Space astronomy and astrophysics program by NASA

    Science.gov (United States)

    Hertz, Paul L.

    2014-07-01

    The National Aeronautics and Space Administration recently released the NASA Strategic Plan 20141, and the NASA Science Mission Directorate released the NASA 2014 Science Plan3. These strategic documents establish NASA's astrophysics strategic objectives to be (i) to discover how the universe works, (ii) to explore how it began and evolved, and (iii) to search for life on planets around other stars. The multidisciplinary nature of astrophysics makes it imperative to strive for a balanced science and technology portfolio, both in terms of science goals addressed and in missions to address these goals. NASA uses the prioritized recommendations and decision rules of the National Research Council's 2010 decadal survey in astronomy and astrophysics2 to set the priorities for its investments. The NASA Astrophysics Division has laid out its strategy for advancing the priorities of the decadal survey in its Astrophysics 2012 Implementation Plan4. With substantial input from the astrophysics community, the NASA Advisory Council's Astrophysics Subcommittee has developed an astrophysics visionary roadmap, Enduring Quests, Daring Visions5, to examine possible longer-term futures. The successful development of the James Webb Space Telescope leading to a 2018 launch is an Agency priority. One important goal of the Astrophysics Division is to begin a strategic mission, subject to the availability of funds, which follows from the 2010 decadal survey and is launched after the James Webb Space Telescope. NASA is studying a Wide Field Infrared Survey Telescope as its next large astrophysics mission. NASA is also planning to partner with other space agencies on their missions as well as increase the cadence of smaller Principal Investigator led, competitively selected Astrophysics Explorers missions.

  19. 77 FR 41203 - NASA International Space Station Advisory Committee; Meeting

    Science.gov (United States)

    2012-07-12

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 12-057] NASA International Space Station Advisory Committee; Meeting AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of..., the National Aeronautics and Space Administration announces an open meeting of the NASA International...

  20. 77 FR 2765 - NASA International Space Station Advisory Committee; Meeting

    Science.gov (United States)

    2012-01-19

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (12-003)] NASA International Space Station Advisory Committee; Meeting AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of..., the National Aeronautics and Space Administration announces an open meeting of the NASA International...

  1. 77 FR 66082 - NASA International Space Station Advisory Committee; Meeting

    Science.gov (United States)

    2012-11-01

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 12-090] NASA International Space Station Advisory Committee; Meeting AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of..., the National Aeronautics and Space Administration announces an open meeting of the NASA International...

  2. Shuttle user analysis (study 2.2). Volume 3: Business risk and value of operations in space (BRAVO). Part 5: Analysis of GSFC Earth Observation Satellite (EOS) system mission model using BRAVO techniques

    Science.gov (United States)

    1975-01-01

    Cost comparisons were made between three modes of operation (expend, ground refurbish, and space resupply) for the Earth Observation System (EOS-B) to furnish data to NASA on alternative ways to use the shuttle/EOS. Results of the analysis are presented in tabular form.

  3. Launch Processing System. [for Space Shuttle

    Science.gov (United States)

    Byrne, F.; Doolittle, G. V.; Hockenberger, R. W.

    1976-01-01

    This paper presents a functional description of the Launch Processing System, which provides automatic ground checkout and control of the Space Shuttle launch site and airborne systems, with emphasis placed on the Checkout, Control, and Monitor Subsystem. Hardware and software modular design concepts for the distributed computer system are reviewed relative to performing system tests, launch operations control, and status monitoring during ground operations. The communication network design, which uses a Common Data Buffer interface to all computers to allow computer-to-computer communication, is discussed in detail.

  4. Platelet injectors for Space Shuttle orbit maneuvering engine

    Science.gov (United States)

    Kahl, R. C.; Labotz, R. J.; Bassham, L. B.

    1974-01-01

    The Space Shuttle Orbit Maneuvering Subsystem Rocket Engine employs a platelet element injector concept. This injector has demonstrated 316-sec vacuum specific impulse performance under simulated altitude conditions when tested with a milled slot/electroformed nickel close-out regenerative chamber and a full 71 area ratio nozzle. To date, over 300 altitude engine tests and 300 stability bomb tests have demonstrated stable, erosion free operation with this concept to test durations of 150 seconds. The injector and chamber also meet the reusable requirements of the shuttle with a cycle life capability in excess of 1000 cycles. An extensive altitude restart program has also demonstrated OMS-engine operation over large variations in the burn and coast times with helium saturated propellants.

  5. New NASA Technologies for Space Exploration

    Science.gov (United States)

    Calle, Carlos I.

    2015-01-01

    NASA is developing new technologies to enable planetary exploration. NASA's Space Launch System is an advance vehicle for exploration beyond LEO. Robotic explorers like the Mars Science Laboratory are exploring Mars, making discoveries that will make possible the future human exploration of the planet. In this presentation, we report on technologies being developed at NASA KSC for planetary exploration.

  6. NASA Space Weather Center Services: Potential for Space Weather Research

    Science.gov (United States)

    Zheng, Yihua; Kuznetsova, Masha; Pulkkinen, Antti; Taktakishvili, A.; Mays, M. L.; Chulaki, A.; Lee, H.; Hesse, M.

    2012-01-01

    The NASA Space Weather Center's primary objective is to provide the latest space weather information and forecasting for NASA's robotic missions and its partners and to bring space weather knowledge to the public. At the same time, the tools and services it possesses can be invaluable for research purposes. Here we show how our archive and real-time modeling of space weather events can aid research in a variety of ways, with different classification criteria. We will list and discuss major CME events, major geomagnetic storms, and major SEP events that occurred during the years 2010 - 2012. Highlights of major tools/resources will be provided.

  7. Rocket Science: The Shuttle's Main Engines, though Old, Are not Forgotten in the New Exploration Initiative

    Science.gov (United States)

    Covault, Craig

    2005-01-01

    The Space Shuttle Main Engine (SSME), developed 30 years ago, remains a strong candidate for use in the new Exploration Initiative as part of a shuttle-derived heavy-lift expendable booster. This is because the Boeing-Rocket- dyne man-rated SSME remains the most highly efficient liquid rocket engine ever developed. There are only enough parts for 12-15 existing SSMEs, however, so one NASA option is to reinitiate SSME production to use it as a throw-away, as opposed to a reusable, powerplant for NASA s new heavy-lift booster.

  8. Ergonomic Evaluation of Space Shuttle Light-Weight Seat Lever Position and Operation

    Science.gov (United States)

    Maida, J.; Rajulu, Sudhakar L.; Bond, Robert L. (Technical Monitor)

    2000-01-01

    During a Shuttle flight in the early part of 1999, one of the crewmembers was unable to operate the backrest lever for the light-weight seat in microgravity. It is essential that the crewmembers are able to adjust this back-rest lever, which is titled forward 2 degrees from vertical during launch and then moved backwards to 10 degrees aft of vertical upon reaching orbit. This adjustment is needed to cushion the crewmembers during an inadvertent crash landing situation. The original Shuttle seats, which had seat controls located on the front left and right sides of the seat, were replaced recently with the new light-weight seats. The controls for these new, seats were moved to the night side with one control at the front and the other at the back. While it was uncertain whether the problem encountered was unique to that crewmember or not it was clear to the personnel responsible for maintaining the Shuttle seats that not knowing the cause of the problem posed a safety concern for NASA. Hence the Anthropometry and Biomechanics Facility (ABF) of the Johnson Space Center was requested to perform an evaluation of the seat controls and provide NASA with appropriate recommendations on whether the seat lever positions and operations should be modified. The ABF designed an experiment to investigate the amount of pull force exerted by subjects, wearing an unpressurized or pressurized crew launch escape suit, when controls were placed in the front and back (on the right side) of the light-weight seat. Single-axis load cells were attached to the seat levers, which measured the maximum static pull forces that were exerted by the subjects. Twelve subjects, six male and six female, participated in this study. Each subject was asked to perform the pull test at least three times for each combination of lever position and suit pressure conditions. The results from this study showed that as a whole (or in general), the subjects were able to pull on the lever at the back position with

  9. Advanced Vacuum Plasma Spray (VPS) for a Robust, Longlife and Safe Space Shuttle Main Engine (SSME)

    Science.gov (United States)

    Holmes, Richard R.; Elam, Sandra K.; McKechnie, Timothy N.; Power, Christopher A.

    2010-01-01

    In 1984, the Vacuum Plasma Spray Lab was built at NASA/Marshall Space Flight Center for applying durable, protective coatings to turbine blades for the space shuttle main engine (SSME) high pressure fuel turbopump. Existing turbine blades were cracking and breaking off after five hot fire tests while VPS coated turbine blades showed no wear or cracking after 40 hot fire tests. Following that, a major manufacturing problem of copper coatings peeling off the SSME Titanium Main Fuel Valve Housing was corrected with a tenacious VPS copper coating. A patented VPS process utilizing Functional Gradient Material (FGM) application was developed to build ceramic lined metallic cartridges for space furnace experiments, safely containing gallium arsenide at 1260 degrees centigrade. The VPS/FGM process was then translated to build robust, long life, liquid rocket combustion chambers for the space shuttle main engine. A 5K (5,000 Lb. thrust) thruster with the VPS/FGM protective coating experienced 220 hot firing tests in pristine condition with no wear compared to the SSME which showed blanching (surface pulverization) and cooling channel cracks in less than 30 of the same hot firing tests. After 35 of the hot firing tests, the injector face plates disintegrated. The VPS/FGM process was then applied to spraying protective thermal barrier coatings on the face plates which showed 50% cooler operating temperature, with no wear after 50 hot fire tests. Cooling channels were closed out in two weeks, compared to one year for the SSME. Working up the TRL (Technology Readiness Level) to establish the VPS/FGM process as viable technology, a 40K thruster was built and is currently being tested. Proposed is to build a J-2X size liquid rocket engine as the final step in establishing the VPS/FGM process TRL for space flight.

  10. Launch Vehicle Demonstrator Using Shuttle Assets

    Science.gov (United States)

    Threet, Grady E., Jr.; Creech, Dennis M.; Philips, Alan D.; Water, Eric D.

    2011-01-01

    The Marshall Space Flight Center Advanced Concepts Office (ACO) has the leading role for NASA s preliminary conceptual launch vehicle design and performance analysis. Over the past several years the ACO Earth-to-Orbit Team has evaluated thousands of launch vehicle concept variations for a multitude of studies including agency-wide efforts such as the Exploration Systems Architecture Study (ESAS), Constellation, Heavy Lift Launch Vehicle (HLLV), Heavy Lift Propulsion Technology (HLPT), Human Exploration Framework Team (HEFT), and Space Launch System (SLS). NASA plans to continue human space exploration and space station utilization. Launch vehicles used for heavy lift cargo and crew will be needed. One of the current leading concepts for future heavy lift capability is an inline one and a half stage concept using solid rocket boosters (SRB) and based on current Shuttle technology and elements. Potentially, the quickest and most cost-effective path towards an operational vehicle of this configuration is to make use of a demonstrator vehicle fabricated from existing shuttle assets and relying upon the existing STS launch infrastructure. Such a demonstrator would yield valuable proof-of-concept data and would provide a working test platform allowing for validated systems integration. Using shuttle hardware such as existing RS-25D engines and partial MPS, propellant tanks derived from the External Tank (ET) design and tooling, and four-segment SRB s could reduce the associated upfront development costs and schedule when compared to a concept that would rely on new propulsion technology and engine designs. There are potentially several other additional benefits to this demonstrator concept. Since a concept of this type would be based on man-rated flight proven hardware components, this demonstrator has the potential to evolve into the first iteration of heavy lift crew or cargo and serve as a baseline for block upgrades. This vehicle could also serve as a demonstration

  11. Analysis and test for space shuttle propellant dynamics (1/10th scale model test results). Volume 1: Technical discussion

    Science.gov (United States)

    Berry, R. L.; Tegart, J. R.; Demchak, L. J.

    1979-01-01

    Space shuttle propellant dynamics during ET/Orbiter separation in the RTLS (return to launch site) mission abort sequence were investigated in a test program conducted in the NASA KC-135 "Zero G" aircraft using a 1/10th-scale model of the ET LOX Tank. Low-g parabolas were flown from which thirty tests were selected for evaluation. Data on the nature of low-g propellant reorientation in the ET LOX tank, and measurements of the forces exerted on the tank by the moving propellent will provide a basis for correlation with an analytical model of the slosh phenomenon.

  12. Thermal stresses in the space shuttle orbiter: Analysis versus test

    International Nuclear Information System (INIS)

    Grooms, H.R.; Gibson, W.F. Jr.; Benson, P.L.

    1984-01-01

    Significant temperature differences occur between the internal structure and the outer skin of the Space Shuttle Orbiter as it returns from space. These temperature differences cause important thermal stresses. A finite element model containing thousands of degrees of freedom is used to predict these stresses. A ground test was performed to verify the prediction method. The analysis and test results compare favorably. (orig.)

  13. Documentation and archiving of the Space Shuttle wind tunnel test data base. Volume 1: Background and description

    Science.gov (United States)

    Romere, Paul O.; Brown, Steve Wesley

    1995-01-01

    Development of the space shuttle necessitated an extensive wind tunnel test program, with the cooperation of all the major wind tunnels in the United States. The result was approximately 100,000 hours of space shuttle wind tunnel testing conducted for aerodynamics, heat transfer, and structural dynamics. The test results were converted into Chrysler DATAMAN computer program format to facilitate use by analysts, a very cost effective method of collecting the wind tunnel test results from many test facilities into one centralized location. This report provides final documentation of the space shuttle wind tunnel program. The two-volume set covers evolution of space shuttle aerodynamic configurations and gives wind tunnel test data, titles of wind tunnel data reports, sample data sets, and instructions for accessing the digital data base.

  14. 77 FR 67028 - NASA Advisory Council; Commercial Space Committee; Meeting

    Science.gov (United States)

    2012-11-08

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 12-093] NASA Advisory Council; Commercial..., the National Aeronautics and Space Administration (NASA) announces a meeting of the Commercial Space Committee of the NASA Advisory Council (NAC). This Committee reports to the NAC. The [[Page 67029

  15. 76 FR 3673 - NASA Advisory Council; Space Operations Committee; Meeting.

    Science.gov (United States)

    2011-01-20

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (11-005)] NASA Advisory Council; Space..., the National Aeronautics and Space Administration announces a meeting of the NASA Advisory Council.... ADDRESSES: NASA Headquarters, 300 E Street, SW., Room 7C61, Washington, DC 20546. FOR FURTHER INFORMATION...

  16. Space Images for NASA/JPL

    Science.gov (United States)

    Boggs, Karen; Gutheinz, Sandy C.; Watanabe, Susan M.; Oks, Boris; Arca, Jeremy M.; Stanboli, Alice; Peez, Martin; Whatmore, Rebecca; Kang, Minliang; Espinoza, Luis A.

    2010-01-01

    Space Images for NASA/JPL is an Apple iPhone application that allows the general public to access featured images from the Jet Propulsion Laboratory (JPL). A back-end infrastructure stores, tracks, and retrieves space images from the JPL Photojournal Web server, and catalogs the information into a streamlined rating infrastructure.

  17. A Compendium of Wind Statistics and Models for the NASA Space Shuttle and Other Aerospace Vehicle Programs

    Science.gov (United States)

    Smith, O. E.; Adelfang, S. I.

    1998-01-01

    The wind profile with all of its variations with respect to altitude has been, is now, and will continue to be important for aerospace vehicle design and operations. Wind profile databases and models are used for the vehicle ascent flight design for structural wind loading, flight control systems, performance analysis, and launch operations. This report presents the evolution of wind statistics and wind models from the empirical scalar wind profile model established for the Saturn Program through the development of the vector wind profile model used for the Space Shuttle design to the variations of this wind modeling concept for the X-33 program. Because wind is a vector quantity, the vector wind models use the rigorous mathematical probability properties of the multivariate normal probability distribution. When the vehicle ascent steering commands (ascent guidance) are wind biased to the wind profile measured on the day-of-launch, ascent structural wind loads are reduced and launch probability is increased. This wind load alleviation technique is recommended in the initial phase of vehicle development. The vehicle must fly through the largest load allowable versus altitude to achieve its mission. The Gumbel extreme value probability distribution is used to obtain the probability of exceeding (or not exceeding) the load allowable. The time conditional probability function is derived from the Gumbel bivariate extreme value distribution. This time conditional function is used for calculation of wind loads persistence increments using 3.5-hour Jimsphere wind pairs. These increments are used to protect the commit-to-launch decision. Other topics presented include the Shuttle Shuttle load-response to smoothed wind profiles, a new gust model, and advancements in wind profile measuring systems. From the lessons learned and knowledge gained from past vehicle programs, the development of future launch vehicles can be accelerated. However, new vehicle programs by their very

  18. 78 FR 10213 - NASA Advisory Council; Commercial Space Committee; Meeting

    Science.gov (United States)

    2013-02-13

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 13-012] NASA Advisory Council; Commercial..., the National Aeronautics and Space Administration (NASA) announces a meeting of the Commercial Space Committee of the NASA Advisory Council (NAC). This Committee reports to the NAC. The meeting will be held...

  19. 77 FR 38678 - NASA Advisory Council; Commercial Space Committee; Meeting

    Science.gov (United States)

    2012-06-28

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (12-052)] NASA Advisory Council; Commercial..., the National Aeronautics and Space Administration (NASA) announces a meeting of the Commercial Space Committee of the NASA Advisory Council (NAC). This Committee reports to the NAC. The meeting will be held...

  20. 78 FR 42111 - NASA Advisory Council; Commercial Space Committee; Meeting

    Science.gov (United States)

    2013-07-15

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (13-080)] NASA Advisory Council; Commercial..., the National Aeronautics and Space Administration (NASA) announces a meeting of the Commercial Space Committee of the NASA Advisory Council (NAC). This Committee reports to the NAC. The meeting will be held...

  1. Space shuttle wheels and brakes

    Science.gov (United States)

    Carsley, R. B.

    1985-01-01

    The Space Shuttle Orbiter wheels were subjected to a combination of tests which are different than any previously conducted in the aerospace industry. The major testing difference is the computer generated dynamic landing profiles used during the certification process which subjected the wheels and tires to simulated landing loading conditions. The orbiter brakes use a unique combination of carbon composite linings and beryllium heat sink to minimize weight. The development of a new lining retention method was necessary in order to withstand the high temperature generated during the braking roll. As with many programs, the volume into which this hardware had to fit was established early in the program, with no provisions made for growth to offset the continuously increasing predicted orbiter landing weight.

  2. Human interactions during Shuttle/Mir space missions

    Science.gov (United States)

    Kanas, N.; Salnitskiy, V.; Grund, E. M.; Weiss, D. S.; Gushin, V.; Kozerenko, O.; Sled, A.; Marmar, C. R.

    2001-01-01

    To improve the interpersonal climate of crewmembers involved with long-duration space missions, it is important to understand the factors affecting their interactions with each other and with members of mission control. This paper will present findings from a recently completed NASA-funded study during the Shuttle/Mir program which evaluated in-group/out-group displacement of negative emotions; changes in tension, cohesion, and leader support over time; and cultural differences. In-flight data were collected from 5 astronauts, 8 cosmonauts, and 42 American and 16 Russian mission control personnel who signed informed consent. Subjects completed a weekly questionnaire that assessed their mood and perception of their work group's interpersonal climate using questions from well-known, standardized measures (Profile of Mood States, Group and Work Environment Scales) and a critical incident log. There was strong evidence for the displacement of tension and dysphoric emotions from crewmembers to mission control personnel and from mission control personnel to management. There was a perceived decrease in commander support during the 2nd half of the missions, and for American crewmembers a novelty effect was found on several subscales during the first few months on-orbit. There were a number of differences between American and Russian responses which suggested that the former were less happy with their interpersonal environment than the latter. Mission control personnel reported more tension and dysphoria than crewmembers, although both groups scored better than other work groups on Earth. Nearly all reported critical incidents came from ground subjects, with Americans and Russians showing important differences in response frequencies.

  3. Thrust imbalance of solid rocket motor pairs on Space Shuttle flights

    Science.gov (United States)

    Foster, W. A., Jr.; Shu, P. H.; Sforzini, R. H.

    1986-01-01

    This analysis extends the investigation presented at the 17th Joint Propulsion Conference in 1981 to include fifteen sets of Space Shuttle flight data. The previous report dealt only with static test data and the first flight pair. The objective is to compare the authors' previous theoretical analysis of thrust imbalance with actual Space Shuttle performance. The theoretical prediction method, which involves a Monte Carlo technique, is reviewed briefly as are salient features of the flight instrumentation system and the statistical analysis. A scheme for smoothing flight data is discussed. The effects of changes in design parameters are discussed with special emphasis on the filament wound motor case being developed to replace the steel case. Good agreement between the predictions and the flight data is demonstrated.

  4. NASTRAN analysis of the 1/8-scale space shuttle dynamic model

    Science.gov (United States)

    Bernstein, M.; Mason, P. W.; Zalesak, J.; Gregory, D. J.; Levy, A.

    1973-01-01

    The space shuttle configuration has more complex structural dynamic characteristics than previous launch vehicles primarily because of the high model density at low frequencies and the high degree of coupling between the lateral and longitudinal motions. An accurate analytical representation of these characteristics is a primary means for treating structural dynamics problems during the design phase of the shuttle program. The 1/8-scale model program was developed to explore the adequacy of available analytical modeling technology and to provide the means for investigating problems which are more readily treated experimentally. The basic objectives of the 1/8-scale model program are: (1) to provide early verification of analytical modeling procedures on a shuttle-like structure, (2) to demonstrate important vehicle dynamic characteristics of a typical shuttle design, (3) to disclose any previously unanticipated structural dynamic characteristics, and (4) to provide for development and demonstration of cost effective prototype testing procedures.

  5. The NASA Advanced Space Power Systems Project

    Science.gov (United States)

    Mercer, Carolyn R.; Hoberecht, Mark A.; Bennett, William R.; Lvovich, Vadim F.; Bugga, Ratnakumar

    2015-01-01

    The goal of the NASA Advanced Space Power Systems Project is to develop advanced, game changing technologies that will provide future NASA space exploration missions with safe, reliable, light weight and compact power generation and energy storage systems. The development effort is focused on maturing the technologies from a technology readiness level of approximately 23 to approximately 56 as defined in the NASA Procedural Requirement 7123.1B. Currently, the project is working on two critical technology areas: High specific energy batteries, and regenerative fuel cell systems with passive fluid management. Examples of target applications for these technologies are: extending the duration of extravehicular activities (EVA) with high specific energy and energy density batteries; providing reliable, long-life power for rovers with passive fuel cell and regenerative fuel cell systems that enable reduced system complexity. Recent results from the high energy battery and regenerative fuel cell technology development efforts will be presented. The technical approach, the key performance parameters and the technical results achieved to date in each of these new elements will be included. The Advanced Space Power Systems Project is part of the Game Changing Development Program under NASAs Space Technology Mission Directorate.

  6. ATLAS Physicist in Space

    CERN Multimedia

    Bengt Lund-Jensen

    2007-01-01

    On December 9, the former ATLAS physicist Christer Fuglesang was launched into space onboard the STS-116 Space Shuttle flight from Kennedy Space Center in Florida. Christer worked on the development of the accordion-type liquid argon calorimeter and SUSY simulations in what eventually became ATLAS until summer 1992 when he became one out of six astronaut trainees with the European Space Agency (ESA). His selection out of a very large number of applicants from all over the ESA member states involved a number of tests in order to choose the most suitable candidates. As ESA astronaut Christer trained with the Russian Soyuz programme in Star City outside of Moscow from 1993 until 1996, when he moved to Houston to train for space shuttle missions with NASA. Christer belonged to the backup crew for the Euromir95 mission. After additional training in Russia, Christer qualified as ‘Soyuz return commander’ in 1998. Christer rerouting cables during his second space walk. (Photo: courtesy NASA) During...

  7. 76 FR 40753 - NASA Advisory Council; Commercial Space; Meeting

    Science.gov (United States)

    2011-07-11

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (11-061)] NASA Advisory Council; Commercial...: In accordance with the Federal Advisory Committee Act, Public Law 92-463, as amended, the National Aeronautics and Space Administration announces a meeting of the Commercial Space Committee of the NASA...

  8. Using the Shuttle In Situ Window and Radiator Data for Meteoroid Measurements

    Science.gov (United States)

    Matney, Mark

    2015-01-01

    Every time NASA's Space Shuttle flew in orbit, it was exposed to the natural meteoroid and artificial debris environment. NASA Johnson Space Center maintains a database of impact cratering data of 60 Shuttle missions flown since the mid-1990's that were inspected after flight. These represent a total net exposure time to the space environment of 2 years. Impact damage was recorded on the windows and radiators, and in many cases information on the impactor material was determined by later analysis of the crater residue. This information was used to segregate damage caused by natural meteoroids and artificial space debris. The windows represent a total area of 3.565 sq m, and were capable of resolving craters down to about 10 micrometers in size. The radiators represent a total area of 119.26 sq m, and saw damage from objects up to approximately 1 mm in diameter. These data were used extensively in the development of NASA's ORDEM 3.0 Orbital Debris Environment Model, and gives a continuous picture of the orbital debris environment in material type and size ranging from about 10 micrometers to 1 mm. However, the meteoroid data from the Shuttles have never been fully analyzed. For the orbital debris work, special "as flown" files were created that tracked the pointing of the surface elements and their shadowing by structure (such as the ISS during docking). Unfortunately, such files for the meteoroid environment have not yet been created. This talk will introduce these unique impact data and describe how they were used for orbital debris measurements. We will then discuss some simple first-order analyses of the meteoroid data, and point the way for future analyses.

  9. Microparticle impacts in space: Results from Solar Max and shuttle witness plate inspections

    Science.gov (United States)

    Mckay, David S.

    1989-01-01

    The Solar Maximum Satellite developed electronic problems after operating successfully in space for several years. Astronauts on Space Shuttle mission STS-41C retrieved the satellite into the orbiter cargo bay, replaced defective components, and re-deployed the repaired satellite into orbit. The defective components were returned to Earth for study. The space-exposed surfaces were examined. The approach and objectives were to: document morphology of impact; find and analyze projectile residue; classify impact by origin; determine flux distribution; and determine implications for space exposure. The purpose of the shuttle witness plate experiment was to detect impacts from PAM D2 solid rocket motor; determine flux and size distribution of particles; and determine abrasion effects on various conditions. Results are given for aluminum surfaces, copper surfaces, stainless steel surfaces, Inconel surfaces, and quartz glass surfaces.

  10. Voice loops as coordination aids in space shuttle mission control.

    Science.gov (United States)

    Patterson, E S; Watts-Perotti, J; Woods, D D

    1999-01-01

    Voice loops, an auditory groupware technology, are essential coordination support tools for experienced practitioners in domains such as air traffic management, aircraft carrier operations and space shuttle mission control. They support synchronous communication on multiple channels among groups of people who are spatially distributed. In this paper, we suggest reasons for why the voice loop system is a successful medium for supporting coordination in space shuttle mission control based on over 130 hours of direct observation. Voice loops allow practitioners to listen in on relevant communications without disrupting their own activities or the activities of others. In addition, the voice loop system is structured around the mission control organization, and therefore directly supports the demands of the domain. By understanding how voice loops meet the particular demands of the mission control environment, insight can be gained for the design of groupware tools to support cooperative activity in other event-driven domains.

  11. NASA's current activities in free space optical communications

    Science.gov (United States)

    Edwards, Bernard L.

    2017-11-01

    NASA and other space agencies around the world are currently developing free space optical communication systems for both space-to-ground links and space-to-space links. This paper provides an overview of NASA's current activities in free space optical communications with a focus on Near Earth applications. Activities to be discussed include the Lunar Laser Communication Demonstration, the Laser Communications Relay Demonstration, and the commercialization of the underlying technology. The paper will also briefly discuss ongoing efforts and studies for Deep Space optical communications. Finally the paper will discuss the development of international optical communication standards within the Consultative Committee for Space Data Systems.

  12. 75 FR 17437 - NASA Advisory Council; Commercial Space Committee; Meeting

    Science.gov (United States)

    2010-04-06

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (10-039)] NASA Advisory Council; Commercial... Committee of the NASA Advisory Council. DATES: Monday, April 26, 2010, 1:30 p.m.-6 p.m. CDT. ADDRESSES: NASA Johnson Space Center, Gilruth Conference Center, 2101 NASA Parkway, Houston, TX 77058. FOR FURTHER...

  13. 77 FR 52067 - NASA Advisory Council; Commercial Space Committee; Meeting

    Science.gov (United States)

    2012-08-28

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [12-069] NASA Advisory Council; Commercial Space.... DATES: Tuesday, September 18, 2012, 11:45 a.m.-5:30 p.m.; Local Time. ADDRESSES: NASA Ames Research Center (ARC), The Showroom, Building M-3, NASA Ames Conference Center, 500 Severyns Road, NASA Research...

  14. Hubble Servicing Challenges Drive Innovation of Shuttle Rendezvous Techniques

    Science.gov (United States)

    Goodman, John L.; Walker, Stephen R.

    2009-01-01

    Hubble Space Telescope (HST) servicing, performed by Space Shuttle crews, has contributed to what is arguably one of the most successful astronomy missions ever flown. Both nominal and contingency proximity operations techniques were developed to enable successful servicing, while lowering the risk of damage to HST systems, and improve crew safety. Influencing the development of these techniques were the challenges presented by plume impingement and HST performance anomalies. The design of both the HST and the Space Shuttle was completed before the potential of HST contamination and structural damage by shuttle RCS jet plume impingement was fully understood. Relative navigation during proximity operations has been challenging, as HST was not equipped with relative navigation aids. Since HST reached orbit in 1990, proximity operations design for servicing missions has evolved as insight into plume contamination and dynamic pressure has improved and new relative navigation tools have become available. Servicing missions have provided NASA with opportunities to gain insight into servicing mission design and development of nominal and contingency procedures. The HST servicing experiences and lessons learned are applicable to other programs that perform on-orbit servicing and rendezvous, both human and robotic.

  15. There's Enough Space for Everyone

    Science.gov (United States)

    Schumacher, Daniel M.

    2010-01-01

    Only a few fortunate people have the opportunity to go into space and experience the wonders of our universe first-hand. But thanks to social media and virtual worlds, many unique opportunities exist for us to learn, explore and experience what s out there from wherever we are. NASA and Marshall Space Flight Center (MSFC) are making this even easier to do. From blogs to Twitter messages, from Facebook pages to Flickr Photo sites, NASA is leveraging social media to share never-before-seen footage and inside information on spaceflight, scientific discoveries and other space activities. Over the last year, Marshall has reached more than half-a-million viewers through its high-profile, real-time blogs. Through its Watching a Launch blog, visitors were invited to take the "virtual" rides of their lives as they received a first-hand account of seeing a powerful shuttle launch - up close and personal. Through the Shuttle Ferry Flight blog, they got to experience the Shuttle Atlantis journey home to Kennedy Space Center as it rode "piggyback" on a modified Boeing 747 airplane. This year, Marshall s Flickr photo galleries have been visited over 700,000 times, Ares rocket videos have been viewed on iTunes, YouTube, TeacherTube and NASA Web sites more than 1.2 million times, and Marshall s Facebook Page has over 2,800 "friends" who regularly follow NASA. Social media tools have been a powerful way to reach and inspire the public, but NASA has also used these tools effectively to promote education and outreach. From events such as the Great Moonbuggy Race to the Student Launch Initiative, Marshall has used social networks to interest, excite and engage students. This presentation shares some of NASA s experiences on what has worked . . . and what hasn't . . . and seeks to spread the message that through social media "there's enough space for everyone."

  16. 75 FR 28821 - NASA Advisory Council; Commercial Space Committee; Meeting

    Science.gov (United States)

    2010-05-24

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-060)] NASA Advisory Council; Commercial... Committee of the NASA Advisory Council. DATES: Thursday, June 17, 2010, 1 p.m.-4 p.m., EDST. ADDRESSES: NASA... Space Administration, Washington, DC 20546. Phone 202- 358-1686, fax: 202-358-3878, [email protected]nasa...

  17. The Shuttle Cost and Price model

    Science.gov (United States)

    Leary, Katherine; Stone, Barbara

    1983-01-01

    The Shuttle Cost and Price (SCP) model was developed as a tool to assist in evaluating major aspects of Shuttle operations that have direct and indirect economic consequences. It incorporates the major aspects of NASA Pricing Policy and corresponds to the NASA definition of STS operating costs. An overview of the SCP model is presented and the cost model portion of SCP is described in detail. Selected recent applications of the SCP model to NASA Pricing Policy issues are presented.

  18. Wings in Orbit: Scientific and Engineering Legacies of the Space Shuttle, 1971-2010

    Science.gov (United States)

    Hale, Wayne (Editor); Lane, Helen (Editor); Chapline, Gail (Editor); Lulla, Kamlesh (Editor)

    2011-01-01

    The Space Shuttle is an engineering marvel perhaps only exceeded by the station itself. The shuttle was based on the technology of the 1960s and early 1970s. It had to overcome significant challenges to make it reusable. Perhaps the greatest challenges were the main engines and the Thermal Protection System. The program has seen terrible tragedy in its 3 decades of operation, yet it has also seen marvelous success. One of the most notable successes is the Hubble Space Telescope, a program that would have been a failure without the shuttle's capability to rendezvous, capture, repair, as well as upgrade. Now Hubble is a shining example of success admired by people around the world. As the program comes to a close, it is important to capture the legacy of the shuttle for future generations. That is what "Wings In Orbit" does for space fans, students, engineers, and scientists. This book, written by the men and women who made the program possible, will serve as an excellent reference for building future space vehicles. We are proud to have played a small part in making it happen. Our journey to document the scientific and engineering accomplishments of this magnificent winged vehicle began with an audacious proposal: to capture the passion of those who devoted their energies to its success while answering the question "What are the most significant accomplishments?" of the longestoperating human spaceflight program in our nation s history. This is intended to be an honest, accurate, and easily understandable account of the research and innovation accomplished during the era.

  19. Observations of Local ISM Emission with the Berkeley EUV/FUV Shuttle Telescope

    Science.gov (United States)

    Martin, C.; Bowyer, S.

    1984-01-01

    The Berkeley extreme ultraviolet/far ultraviolet shuttle telescope (BEST) will be launched on the Space Shuttle as part of the NASA UVX project. The Berkeley spectrometer will make observations of the cosmic diffuse background in the 600 to 1900 A band, with a spectral resolution of 10 A. The sensitivity and spectral resolution of the instrument make it ideal for the study of components of the interstellar medium in the 10 to the 4th power to 10 to the 6th power K range.

  20. Use of an expert system data analysis manager for space shuttle main engine test evaluation

    Science.gov (United States)

    Abernethy, Ken

    1988-01-01

    The ability to articulate, collect, and automate the application of the expertise needed for the analysis of space shuttle main engine (SSME) test data would be of great benefit to NASA liquid rocket engine experts. This paper describes a project whose goal is to build a rule-based expert system which incorporates such expertise. Experiential expertise, collected directly from the experts currently involved in SSME data analysis, is used to build a rule base to identify engine anomalies similar to those analyzed previously. Additionally, an alternate method of expertise capture is being explored. This method would generate rules inductively based on calculations made using a theoretical model of the SSME's operation. The latter rules would be capable of diagnosing anomalies which may not have appeared before, but whose effects can be predicted by the theoretical model.

  1. NASA TEERM Hexavalent Chrome Alternatives Projects

    Science.gov (United States)

    Kessel, Kurt; Rothgeb, Matt

    2011-01-01

    This slide presentation reviews the NASA project to select an alternative to hexavalent chrome in the aerospace industry. Included is a recent historic testing and research that the Agency has performed on (1) the external tank, (2) the shuttle orbiter, (3) the Shuttle Rocket Booster, and (4) the Space Shuttle Main Engine. Other related Technology Evaluation for Environmental Risk Mitigation (TEERM) projects are reviewed. The Phase I process of the project performed testing of alternatives the results are shown in a chart for different coating systems. International collaboration was also reviewed. Phase II involves further testing of pretreatment and primers for 6 and 12 months of exposure to conditions at Launch Pad and the beach. Further test were performed to characterize the life cycle corrosion of the space vehicles. A new task is described as a joint project with the Department of Defense to identify a Hex Chrome Free Coatings for Electronics.

  2. NASA/BAE SYSTEMS SpaceWire Effort

    Science.gov (United States)

    Rakow, Glenn Parker; Schnurr, Richard G.; Kapcio, Paul

    2003-01-01

    This paper discusses the state of the NASA and BAE SYSTEMS developments of SpaceWire. NASA has developed intellectual property that implements SpaceWire in Register Transfer Level (RTL) VHDL for a SpaceWire link and router. This design has been extensively verified using directed tests from the SpaceWire Standard and design specification, as well as being randomly tested to flush out hard to find bugs in the code. The high level features of the design will be discussed, including the support for multiple time code masters, which will be useful for the James Webb Space Telescope electrical architecture. This design is now ready to be targeted to FPGA's and ASICs. Target utilization and performance information will be presented for Spaceflight worthy FPGA's and a discussion of the ASIC implementations will be addressed. In particular, the BAE SYSTEMS ASIC will be highlighted which will be implemented on their .25micron rad-hard line. The chip will implement a 4-port router with the ability to tie chips together to make larger routers without external glue logic. This part will have integrated LVDS drivers/receivers, include a PLL and include skew control logic. It will be targeted to run at greater than 300 MHz and include the implementation for the proposed SpaceWire transport layer. The need to provide a reliable transport mechanism for SpaceWire has been identified by both NASA And ESA, who are attempting to define a transport layer standard that utilizes a low overhead, low latency connection oriented approach that works end-to-end. This layer needs to be implemented in hardware to prevent bottlenecks.

  3. The Impact of Space Commercialization on Space Agencies: the Case of NASA

    Science.gov (United States)

    Zervos, Vasilis

    2002-01-01

    The purpose of this paper is to examine the hypothesis that commercialisation of space results in inefficient contracting policies by the space agencies, using the US NASA as a case study. Though commercialisation is seen by many as a way to reduce costs in space programmes, as the space industry is seen as a decreasing costs industry, this is not a problem-free process. Commercialisation of space has affected the US and European space industries and policies in two major ways. The first is that the public sector actively encourages mergers and acquisitions of major contractors, confined, however, within the geographical borders of the US and Europe. This follows largely from the perceived benefits of economies of size when competing in global commercial markets. The second is the formation of an increasing number of public-private partnerships (PPPs) in space programmes and a more `cosy' relationship between the two within a public-assistance strategic trade theoretic framework. As ESA's contracting policy of `juste retour' is marked by limited competition, the paper focuses on the case of NASA, which is expected to be more pro- competitive, to examine the impact of commercialisation. With the use of quantitative methods based on time series econometric analysis, the paper shows that NASA's contracting policy, results in increasingly less competition and more rent-favouring contracting. This is attributed to the decreasing number of major contractors in conjunction with the preferential treatment of the domestic space industry (`Buy American'). The results of the paper verify that the support of the domestic space industry in commercial and public space markets results in inefficient contracting policies, with NASA facing the conflicting tasks of a stated policy of enhancing competition and efficiency in contracting, as well as, supporting the competitiveness of the domestic space industry. The paper concludes with an analysis and assessment of solutions to this

  4. Space Transportation and the Computer Industry: Learning from the Past

    Science.gov (United States)

    Merriam, M. L.; Rasky, D.

    2002-01-01

    Since the space shuttle began flying in 1981, NASA has made a number of attempts to advance the state of the art in space transportation. In spite of billions of dollars invested, and several concerted attempts, no replacement for the shuttle is expected before 2010. Furthermore, the cost of access to space has dropped very slowly over the last two decades. On the other hand, the same two decades have seen dramatic progress in the computer industry. Computational speeds have increased by about a factor of 1000 and available memory, disk space, and network bandwidth has seen similar increases. At the same time, the cost of computing has dropped by about a factor of 10000. Is the space transportation problem simply harder? Or is there something to be learned from the computer industry? In looking for the answers, this paper reviews the early history of NASA's experience with supercomputers and NASA's visionary course change in supercomputer procurement strategy.

  5. Challenges of Integrating NASA's Space Communications Networks

    Science.gov (United States)

    Reinert, Jessica; Barnes, Patrick

    2013-01-01

    The transition to new technology, innovative ideas, and resistance to change is something that every industry experiences. Recent examples of this shift are changing to using robots in the assembly line construction of automobiles or the increasing use of robotics for medical procedures. Most often this is done with cost-reduction in mind, though ease of use for the customer is also a driver. All industries experience the push to increase efficiency of their systems; National Aeronautics and Space Administration (NASA) and the commercial space industry are no different. NASA space communication services are provided by three separately designed, developed, maintained, and operated communications networks known as the Deep Space Network (DSN), Near Earth Network (NEN) and Space Network (SN). The Space Communications and Navigation (SCaN) Program is pursuing integration of these networks and has performed a variety of architecture trade studies to determine what integration options would be the most effective in achieving a unified user mission support organization, and increase the use of common operational equipment and processes. The integration of multiple, legacy organizations and existing systems has challenges ranging from technical to cultural. The existing networks are the progeny of the very first communication and tracking capabilities implemented by NASA and the Jet Propulsion Laboratory (JPL) more than 50 years ago and have been customized to the needs of their respective user mission base. The technical challenges to integrating the networks are many, though not impossible to overcome. The three distinct networks provide the same types of services, with customizable data rates, bandwidth, frequencies, and so forth. The differences across the networks have occurred in effort to satisfy their user missions' needs. Each new requirement has made the networks more unique and harder to integrate. The cultural challenges, however, have proven to be a

  6. Challenges of Integrating NASAs Space Communication Networks

    Science.gov (United States)

    Reinert, Jessica M.; Barnes, Patrick

    2013-01-01

    The transition to new technology, innovative ideas, and resistance to change is something that every industry experiences. Recent examples of this shift are changing to using robots in the assembly line construction of automobiles or the increasing use of robotics for medical procedures. Most often this is done with cost-reduction in mind, though ease of use for the customer is also a driver. All industries experience the push to increase efficiency of their systems; National Aeronautics and Space Administration (NASA) and the commercial space industry are no different. NASA space communication services are provided by three separately designed, developed, maintained, and operated communications networks known as the Deep Space Network (DSN), Near Earth Network (NEN) and Space Network (SN). The Space Communications and Navigation (SCaN) Program is pursuing integration of these networks and has performed a variety of architecture trade studies to determine what integration options would be the most effective in achieving a unified user mission support organization, and increase the use of common operational equipment and processes. The integration of multiple, legacy organizations and existing systems has challenges ranging from technical to cultural. The existing networks are the progeny of the very first communication and tracking capabilities implemented by NASA and the Jet Propulsion Laboratory (JPL) more than 50 years ago and have been customized to the needs of their respective user mission base. The technical challenges to integrating the networks are many, though not impossible to overcome. The three distinct networks provide the same types of services, with customizable data rates, bandwidth, frequencies, and so forth. The differences across the networks have occurred in effort to satisfy their user missions' needs. Each new requirement has made the networks more unique and harder to integrate. The cultural challenges, however, have proven to be a

  7. Space Shuttle solid rocket booster

    Science.gov (United States)

    Hardy, G. B.

    1979-01-01

    Details of the design, operation, testing and recovery procedures of the reusable solid rocket boosters (SRB) are given. Using a composite PBAN propellant, they will provide the primary thrust (six million pounds maximum at 20 s after ignition) within a 3 g acceleration constraint, as well as thrust vector control for the Space Shuttle. The drogues were tested to a load of 305,000 pounds, and the main parachutes to 205,000. Insulation in the solid rocket motor (SRM) will be provided by asbestos-silica dioxide filled acrylonitrile butadiene rubber ('asbestos filled NBR') except in high erosion areas (principally in the aft dome), where a carbon-filled ethylene propylene diene monomer-neopreme rubber will be utilized. Furthermore, twenty uses for the SRM nozzle will be allowed by its ablative materials, which are principally carbon cloth and silica cloth phenolics.

  8. Liftoff of Space Shuttle Columbia on mission STS-93

    Science.gov (United States)

    1999-01-01

    The fiery launch of Space Shuttle Columbia lights up the night sky on its successful liftoff from Launch Pad 39-B on mission STS-93. Liftoff occurred at 12:31 a.m. EDT. STS-93 is a five-day mission primarily to release the Chandra X-ray Observatory, which will allow scientists from around the world to study some of the most distant, powerful and dynamic objects in the universe. The crew numbers five: Commander Eileen M. Collins, Pilot Jeffrey S. Ashby, and Mission Specialists Stephen A. Hawley (Ph.D.), Catherine G. Coleman (Ph.D.) and Michel Tognini of France, with the Centre National d'Etudes Spatiales (CNES). Collins is the first woman to serve as commander of a Shuttle mission. The target landing date is July 27, 1999, at 11:20 p.m. EDT.

  9. Return from space: from the International Space Station to CERN

    CERN Multimedia

    2012-01-01

    On 16 May 2011, the space shuttle Endeavour took off for the last time from Cape Canaveral in Florida with six astronauts on board. Their mission (code-named STS-134) was to install the Alpha Magnetic Spectrometer (AMS), the dark matter and antimatter detector designed at CERN, on the International Space Station. Since then, AMS has been sending data to CERN from space.   On Wednesday 25 July do not miss a rare opportunity to meet the mission’s six astronauts at CERN: Mark E. Kelly, commander (NASA) Greg H. Johnson, pilot (NASA) and the mission’s specialists: Michael Fincke (NASA) Roberto Vittori (ESA and ASI) Andrew J. Feustel (NASA) Greg Chamitoff (NASA) 4:20 pm: the event will kick off with a photo and autograph session at the Globe of Science and Innovation. 5 pm: lecture given by the astronauts for CERN personnel and summer students in the Main Auditorium. (Seats reserved for the summer students - contact: summer.student.info@cern.ch). ...

  10. NASA GSFC Space Weather Center - Innovative Space Weather Dissemination: Web-Interfaces, Mobile Applications, and More

    Science.gov (United States)

    Maddox, Marlo; Zheng, Yihua; Rastaetter, Lutz; Taktakishvili, A.; Mays, M. L.; Kuznetsova, M.; Lee, Hyesook; Chulaki, Anna; Hesse, Michael; Mullinix, Richard; hide

    2012-01-01

    The NASA GSFC Space Weather Center (http://swc.gsfc.nasa.gov) is committed to providing forecasts, alerts, research, and educational support to address NASA's space weather needs - in addition to the needs of the general space weather community. We provide a host of services including spacecraft anomaly resolution, historical impact analysis, real-time monitoring and forecasting, custom space weather alerts and products, weekly summaries and reports, and most recently - video casts. There are many challenges in providing accurate descriptions of past, present, and expected space weather events - and the Space Weather Center at NASA GSFC employs several innovative solutions to provide access to a comprehensive collection of both observational data, as well as space weather model/simulation data. We'll describe the challenges we've faced with managing hundreds of data streams, running models in real-time, data storage, and data dissemination. We'll also highlight several systems and tools that are utilized by the Space Weather Center in our daily operations, all of which are available to the general community as well. These systems and services include a web-based application called the Integrated Space Weather Analysis System (iSWA http://iswa.gsfc.nasa.gov), two mobile space weather applications for both IOS and Android devices, an external API for web-service style access to data, google earth compatible data products, and a downloadable client-based visualization tool.

  11. 75 FR 39974 - NASA Advisory Council; Space Operations Committee; Meeting

    Science.gov (United States)

    2010-07-13

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (10-074)] NASA Advisory Council; Space... Committee of the NASA Advisory Council. DATES: Wednesday, July 28, 2010, 2-5 p.m. EDT. ADDRESSES: Doubletree..., Washington, DC 20546, 202/358-1507, [email protected]nasa.gov . SUPPLEMENTARY INFORMATION: The agenda for the...

  12. NASA's Space Launch System Takes Shape

    Science.gov (United States)

    Askins, Bruce; Robinson, Kimberly F.

    2017-01-01

    Major hardware and software for NASA's Space Launch System (SLS) began rolling off assembly lines in 2016, setting the stage for critical testing in 2017 and the launch of a major new capability for deep space human exploration. SLS continues to pursue a 2018 first launch of Exploration Mission 1 (EM-1). At NASA's Michoud Assembly Facility near New Orleans, LA, Boeing completed welding of structural test and flight liquid hydrogen tanks, and engine sections. Test stands for core stage structural tests at NASA's Marshall Space Flight Center, Huntsville, AL. neared completion. The B2 test stand at NASA's Stennis Space Center, MS, completed major structural renovation to support core stage green run testing in 2018. Orbital ATK successfully test fired its second qualification solid rocket motor in the Utah desert and began casting the motor segments for EM-1. Aerojet Rocketdyne completed its series of test firings to adapt the heritage RS-25 engine to SLS performance requirements. Production is under way on the first five new engine controllers. NASA also signed a contract with Aerojet Rocketdyne for propulsion of the RL10 engines for the Exploration Upper Stage. United Launch Alliance delivered the structural test article for the Interim Cryogenic Propulsion Stage to MSFC for tests and construction was under way on the flight stage. Flight software testing at MSFC, including power quality and command and data handling, was completed. Substantial progress is planned for 2017. Liquid oxygen tank production will be completed at Michoud. Structural testing at Marshall will get under way. RS-25 hotfire testing will verify the new engine controllers. Core stage horizontal integration will begin. The core stage pathfinder mockup will arrive at the B2 test stand for fit checks and tests. EUS will complete preliminary design review. This paper will discuss the technical and programmatic successes and challenges of 2016 and look ahead to plans for 2017.

  13. 75 FR 5630 - NASA Advisory Council; Space Operations Committee; Meeting

    Science.gov (United States)

    2010-02-03

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-017)] NASA Advisory Council; Space... Committee of the NASA Advisory Council. DATES: Wednesday, February 17, 2010, 9 a.m.-12 p.m. EST. ADDRESSES: NASA Headquarters, 300 E Street, SW., Washington, DC 20456, Room 2U22. FOR FURTHER INFORMATION CONTACT...

  14. The NASA Space Life Sciences Training Program: Accomplishments Since 2013

    Science.gov (United States)

    Rask, Jon; Gibbs, Kristina; Ray, Hami; Bridges, Desireemoi; Bailey, Brad; Smith, Jeff; Sato, Kevin; Taylor, Elizabeth

    2017-01-01

    The NASA Space Life Sciences Training Program (SLSTP) provides undergraduate students entering their junior or senior years with professional experience in space life science disciplines. This challenging ten-week summer program is held at NASA Ames Research Center. The primary goal of the program is to train the next generation of scientists and engineers, enabling NASA to meet future research and development challenges in the space life sciences. Students work closely with NASA scientists and engineers on cutting-edge research and technology development. In addition to conducting hands-on research and presenting their findings, SLSTP students attend technical lectures given by experts on a wide range of topics, tour NASA research facilities, participate in leadership and team building exercises, and complete a group project. For this presentation, we will highlight program processes, accomplishments, goals, and feedback from alumni and mentors since 2013. To date, 49 students from 41 different academic institutions, 9 staffers, and 21 mentors have participated in the program. The SLSTP is funded by Space Biology, which is part of the Space Life and Physical Sciences Research and Application division of NASA's Human Exploration and Operations Mission Directorate. The SLSTP is managed by the Space Biology Project within the Science Directorate at Ames Research Center.

  15. NASA Space Science Resource Catalog

    Science.gov (United States)

    Teays, T.

    2000-05-01

    The NASA Office of Space Science Resource Catalog provides a convenient online interface for finding space science products for use in classrooms, science museums, planetariums, and many other venues. Goals in developing this catalog are: (1) create a cataloging system for all NASA OSS education products, (2) develop a system for characterizing education products which is meaningful to a large clientele, (3) develop a mechanism for evaluating products, (4) provide a user-friendly interface to search and access the data, and (5) provide standardized metadata and interfaces to other cataloging and library systems. The first version of the catalog is being tested at the spring 2000 conventions of the National Science Teachers Association (NSTA) and the National Council of Teachers of Mathematics (NCTM) and will be released in summer 2000. The catalog may be viewed at the Origins Education Forum booth.

  16. Folic acid content in thermostabilized and freeze-dried space shuttle foods

    Science.gov (United States)

    Lane, H. W.; Nillen, J. L.; Kloeris, V. L.

    1995-01-01

    This study was designed to determine whether freeze-dried and thermostabilized foods on a space shuttle contain adequate folate and to investigate any effects of freeze-drying on folacin. Frozen vegetables were analyzed after three states of processing: thawed; cooked; and rehydrated. Thermostabilized items were analyzed as supplied with no further processing. Measurable folate decreased in some freeze-dried vegetables and increased in others. Folacin content of thermostabilized food items was comparable with published values. We concluded that although the folacin content of some freeze-dried foods was low, adequate folate is available from the shuttle menu to meet RDA guidelines.

  17. NASA X-Ray Observatory Completes Tests Under Harsh Simulated Space Conditions

    Science.gov (United States)

    1998-07-01

    NASA's most powerful X-ray observatory has successfully completed a month-long series of tests in the extreme heat, cold, and airless conditions it will encounter in space during its five-year mission to shed new light on some of the darkest mysteries of the universe. The Advanced X-ray Astrophysics Facility was put through the rigorous testing as it was alternately heated and cooled in a special vacuum chamber at TRW Space and Electronics Group in Redondo Beach, Calif., NASA's prime contractor for the observatory. "Successful completion of thermal vacuum testing marks a significant step in readying the observatory for launch aboard the Space Shuttle in January," said Fred Wojtalik, manager of the Observatory Projects Office at NASA's Marshall Space Flight Center in Huntsville, Ala. "The observatory is a complex, highly sophisticated, precision instrument," explained Wojtalik. "We are pleased with the outcome of the testing, and are very proud of the tremendous team of NASA and contractor technicians, engineers and scientists that came together and worked hard to meet this challenging task." Testing began in May after the observatory was raised into the 60-foot thermal vacuum chamber at TRW. Testing was completed on June 20. During the tests the Advanced X-ray Astrophysics Facility was exposed to 232 degree heat and 195 degree below zero Fahrenheit cold. During four temperature cycles, all elements of the observatory - the spacecraft, telescope, and science instruments - were checked out. Computer commands directing the observatory to perform certain functions were sent from test consoles at TRW to all Advanced X-ray Astrophysics Facility components. A team of contractor and NASA engineers and scientists monitored and evaluated the results. Commands were also sent from, and test data monitored at, the Advanced X-ray Astrophysics Facility Operations Control Center in Cambridge, Mass., as part of the test series. The observatory will be managed and controlled from

  18. A contribution towards establishing more comfortable space weather to cope with increased human space passengers for ISS shuttles

    Science.gov (United States)

    Kalu, A.

    Space Weather is a specialized scienctific descipline in Meteorology which has recently emerged from man's continued research efforts to create a familiar spacecraft environment which is physiologically stable and life sustaining for astronauts and human passengers in distant space travels. As the population of human passengers in space shuttles rapidly increases, corresponding research on sustained micro-climate of spacecrafts is considered necessary and timely. This is because existing information is not meant for a large population in spacecrafts. The paper therefore discusses the role of meteorology (specifically micrometeorology) in relation to internal communication, spacecraft instrumentation and physiologic comfort of astronauts and space passengers (the later may not necessarily be trained astronauts, but merely business men or tourist space travellers for business transactions in the International Space Station (ISS)). It is recognized that me eorology which is a fundamental science amongt multidiscplinary sciences has been found to be vital in space travels and communication. Space weather therefore appears in slightly different format where temperature and humidity changes and variability within the spacecraft exert very significant influences on the efficiency of astronauts and the effectiveness of the various delicate instrument gadgets aimed at reducing the frequency of computer failures and malfunction of other instruments on which safety of the spacecraft depends. Apart from the engineering and technological problems which space scientists must have to overcome when human population in space shuttles increases as we now expect, based on evidence from successful missions to ISS, the maint enace of physiologic comfort state of astronauts, which, as far as scientifically possible, should be as near as possible to their Earth-Atmosphere condition. This is one of the most important and also most difficult conditions to attain. It demands a mor e

  19. Results of investigations of an 0.010-scale 140A/B configuration (model 72-OTS) of the Rockwell International space shuttle orbiter in the NASA/Langley Research Center unitary plan wind tunnel

    Science.gov (United States)

    Petrozzi, M. T.; Milam, M. D.

    1975-01-01

    Experimental aerodynamic investigations were conducted in the NASA/Langley unitary plan wind tunnel on a sting mounted 0.010-scale outer mold line model of the 140A/B configuration of the Rockwell International Space Shuttle Vehicle. The primary test objectives were to obtain: (1) six component force and moment data for the mated vehicle at subsonic and transonic conditions, (2) effects of configuration build-up, (3) effects of protuberances, ET/orbiter fairings and attach structures, and (4) elevon deflection effects on wing bending moment. Six component aerodynamic force and moment data and base and balance cavity pressures were recorded over Mach numbers of 1.6, 2.0, 2.5, 2.86, 3.9, and 4.63 at a nominal Reynolds number of 20 to the 6th power per foot. Selected configurations were tested at angles of attack and sideslip from -10 deg to +10 deg. For all configurations involving the orbiter, wing bending, and torsion coefficients were measured on the right wing.

  20. Feasibility of using neutron radiography to inspect the Space Shuttle solid rocket booster aft skirt, forward skirt and frustum. Part 1: Summary report

    Science.gov (United States)

    Barton, J. P.; Bader, J. W.; Brenizer, J. S.; Hosticka, B.

    1992-01-01

    The space shuttle's solid rocket boosters (SRB) include components made primarily of aluminum that are parachuted back for retrieval from the ocean and refurbished for repeated usage. Nondestructive inspection methods used on these aging parts to reduce the risk of unforeseen problems include x-ray, ultrasonics, and eddy current. Neutron radiography tests on segments of an SRB component show that entrapped moisture and naturally occurring aluminum corrosion can be revealed by neutron radiography even if present in only small amounts. Voids in sealant can also be evaluated. Three alternatives are suggested to follow-up this study: (1) take an SRB component to an existing neutron radiography system; (2) take an existing mobile neutron radiography system to the NASA site; or (3) plan a dedicated system custom designed for NASA applications.

  1. Space Shuttle Boundary Layer Transition Flight Experiment Ground Testing Overview

    Science.gov (United States)

    Berger, Karen T.; Anderson, Brian P.; Campbell, Charles H.

    2014-01-01

    In support of the Boundary Layer Transition (BLT) Flight Experiment (FE) Project in which a manufactured protuberance tile was installed on the port wing of Space Shuttle Orbiter Discovery for STS-119, STS- 128, STS-131 and STS-133 as well as Space Shuttle Orbiter Endeavour for STS-134, a significant ground test campaign was completed. The primary goals of the test campaign were to provide ground test data to support the planning and safety certification efforts required to fly the flight experiment as well as validation for the collected flight data. These test included Arcjet testing of the tile protuberance, aerothermal testing to determine the boundary layer transition behavior and resultant surface heating and planar laser induced fluorescence (PLIF) testing in order to gain a better understanding of the flow field characteristics associated with the flight experiment. This paper provides an overview of the BLT FE Project ground testing. High-level overviews of the facilities, models, test techniques and data are presented, along with a summary of the insights gained from each test.

  2. NASA Self-Assessment of Space Radiation Research

    Science.gov (United States)

    Cucinotta, Francis A.

    2010-01-01

    Space exploration involves unavoidable exposures to high-energy galactic cosmic rays whose penetration power and associated secondary radiation makes radiation shielding ineffective and cost prohibitive. NASA recognizing the possible health dangers from cosmic rays notified the U.S. Congress as early as 1959 of the need for a dedicated heavy ion accelerator to study the largely unknown biological effects of galactic cosmic rays on astronauts. Information and scientific tools to study radiation health effects expanded over the new decades as NASA exploration programs to the moon and preparations for Mars exploration were carried out. In the 1970 s through the early 1990 s a more than 3-fold increase over earlier estimates of fatal cancer risks from gamma-rays, and new knowledge of the biological dangers of high LET radiation were obtained. Other research has increased concern for degenerative risks to the central nervous system and other tissues at lower doses compared to earlier estimates. In 1996 a review by the National Academy of Sciences Space Science Board re-iterated the need for a dedicated ground-based accelerator facility capable of providing up to 2000 research hours per year to reduce uncertainties in risks projections and develop effective mitigation measures. In 1998 NASA appropriated funds for construction of a dedicated research facility and the NASA Space Radiation Laboratory (NSRL) opened for research in October of 2003. This year marks the 8th year of NSRL research were about 1000 research hours per year have been utilized. In anticipation of the approaching ten year milestone, funded investigators and selected others are invited to participate in a critical self-assessment of NSRL research progress towards NASA s goals in space radiation research. A Blue and Red Team Assessment format has been integrated into meeting posters and special plenary sessions to allow for a critical debate on the progress of the research and major gaps areas. Blue

  3. NASA Space Radiation Program Integrative Risk Model Toolkit

    Science.gov (United States)

    Kim, Myung-Hee Y.; Hu, Shaowen; Plante, Ianik; Ponomarev, Artem L.; Sandridge, Chris

    2015-01-01

    NASA Space Radiation Program Element scientists have been actively involved in development of an integrative risk models toolkit that includes models for acute radiation risk and organ dose projection (ARRBOD), NASA space radiation cancer risk projection (NSCR), hemocyte dose estimation (HemoDose), GCR event-based risk model code (GERMcode), and relativistic ion tracks (RITRACKS), NASA radiation track image (NASARTI), and the On-Line Tool for the Assessment of Radiation in Space (OLTARIS). This session will introduce the components of the risk toolkit with opportunity for hands on demonstrations. The brief descriptions of each tools are: ARRBOD for Organ dose projection and acute radiation risk calculation from exposure to solar particle event; NSCR for Projection of cancer risk from exposure to space radiation; HemoDose for retrospective dose estimation by using multi-type blood cell counts; GERMcode for basic physical and biophysical properties for an ion beam, and biophysical and radiobiological properties for a beam transport to the target in the NASA Space Radiation Laboratory beam line; RITRACKS for simulation of heavy ion and delta-ray track structure, radiation chemistry, DNA structure and DNA damage at the molecular scale; NASARTI for modeling of the effects of space radiation on human cells and tissue by incorporating a physical model of tracks, cell nucleus, and DNA damage foci with image segmentation for the automated count; and OLTARIS, an integrated tool set utilizing HZETRN (High Charge and Energy Transport) intended to help scientists and engineers study the effects of space radiation on shielding materials, electronics, and biological systems.

  4. The Logistic Path from the International Space Station to the Moon and Beyond

    Science.gov (United States)

    Watson, J. K.; Dempsey, C. A.; Butina, A. J., Sr.

    2005-01-01

    The period from the loss of the Space Shuttle Columbia in February 2003 to resumption of Space Shuttle flights, planned for May 2005, has presented significant challenges to International Space Station (ISS) maintenance operations. Sharply curtailed upmass capability has forced NASA to revise its support strategy and to undertake maintenance activities that have significantly expanded the envelope of the ISS maintenance concept. This experience has enhanced confidence in the ability to continue to support ISS in the period following the permanent retirement of the Space Shuttle fleet in 2010. Even greater challenges face NASA with the implementation of the Vision for Space Exploration that will introduce extended missions to the Moon beginning in the period of 2015 - 2020 and ultimately see human missions to more distant destinations such as Mars. The experience and capabilities acquired through meeting the maintenance challenges of ISS will serve as the foundation for the maintenance strategy that will be employed in support of these future missions.

  5. Status of NASA's Stirling Space Power Converter Program

    International Nuclear Information System (INIS)

    Dudenhoefer, J.E.; Winter, J.M.

    1994-01-01

    An overview is presented of the NASA Lewis Research Center Free-Piston Stirling Space Power Converter Technology Program. This work is being conducted under NASA's Civil Space Technology Initiative. The goal of the CSTI High Capacity Power Element is to develop the technology base needed to meet the long duration, high capacity power requirements for future NASA space initiatives. Efforts are focused upon increasing system power output and system thermal and electric energy conversion efficiency at least fivefold over current SP-100 technology, and on achieving systems that are compatible with space nuclear reactors. This paper will discuss Stirling experience in Space Power Converters. Fabrication is nearly completed for the 1050 K Component Test Power Converter (CTPC); results of motoring tests of the cold end (525 K), are presented. The success of these and future designs is dependent upon supporting research and technology efforts including heat pipes, bearings, superalloy joining technologies, high efficiency alternators, life and reliability testing and predictive methodologies. This paper provides an update of progress in some of these technologies leading off with a discussion of free-piston Stirling experience in space

  6. Investigation of electrodynamic stabilization and control of long orbiting tethers. [space shuttle payloads

    Science.gov (United States)

    Arnold, D. A.; Dobrowolny, M.

    1981-01-01

    An algorithm for using electric currents to control pendular oscillations induced by various perturbing forces on the Skyhook wire is considered. Transverse and vertical forces on the tether; tether instability modes and causes during retrieval by space shuttle; simple and spherical pendulum motion and vector damping; and current generation and control are discussed. A computer program for numerical integration of the in-plane and out-of-plane displacements of the tether vs time was developed for heuristic study. Some techniques for controlling instabilities during payload retrieval and methods for employing the tether for launching satellites from the space shuttle are considered. Derivations and analyses of a general nature used in all of the areas studied are included.

  7. Information management system: A summary discussion. [for use in the space shuttle sortie, modular space station and TDR satellite

    Science.gov (United States)

    Sayers, R. S.

    1972-01-01

    An information management system is proposed for use in the space shuttle sortie, the modular space station, the tracking data relay satellite and associated ground support systems. Several different information management functions, including data acquisition, transfer, storage, processing, control and display are integrated in the system.

  8. The Legacy of Space Shuttle Flight Software

    Science.gov (United States)

    Hickey, Christopher J.; Loveall, James B.; Orr, James K.; Klausman, Andrew L.

    2011-01-01

    The initial goals of the Space Shuttle Program required that the avionics and software systems blaze new trails in advancing avionics system technology. Many of the requirements placed on avionics and software were accomplished for the first time on this program. Examples include comprehensive digital fly-by-wire technology, use of a digital databus for flight critical functions, fail operational/fail safe requirements, complex automated redundancy management, and the use of a high-order software language for flight software development. In order to meet the operational and safety goals of the program, the Space Shuttle software had to be extremely high quality, reliable, robust, reconfigurable and maintainable. To achieve this, the software development team evolved a software process focused on continuous process improvement and defect elimination that consistently produced highly predictable and top quality results, providing software managers the confidence needed to sign each Certificate of Flight Readiness (COFR). This process, which has been appraised at Capability Maturity Model (CMM)/Capability Maturity Model Integration (CMMI) Level 5, has resulted in one of the lowest software defect rates in the industry. This paper will present an overview of the evolution of the Primary Avionics Software System (PASS) project and processes over thirty years, an argument for strong statistical control of software processes with examples, an overview of the success story for identifying and driving out errors before flight, a case study of the few significant software issues and how they were either identified before flight or slipped through the process onto a flight vehicle, and identification of the valuable lessons learned over the life of the project.

  9. HAL/S - The programming language for Shuttle

    Science.gov (United States)

    Martin, F. H.

    1974-01-01

    HAL/S is a higher order language and system, now operational, adopted by NASA for programming Space Shuttle on-board software. Program reliability is enhanced through language clarity and readability, modularity through program structure, and protection of code and data. Salient features of HAL/S include output orientation, automatic checking (with strictly enforced compiler rules), the availability of linear algebra, real-time control, a statement-level simulator, and compiler transferability (for applying HAL/S to additional object and host computers). The compiler is described briefly.

  10. Astronaut Anna Fisher in NBS Training For Hubble Space Telescope

    Science.gov (United States)

    1980-01-01

    The Hubble Space Telescope (HST) is a cooperative program of the European Space Agency (ESA) and the National Aeronautical and Space Administration (NASA) to operate a long-lived space-based observatory. It was the flagship mission of NASA's Great Observatories program. The HST program began as an astronomical dream in the 1940s. During the 1970s and 1980s, the HST was finally designed and built becoming operational in the 1990s. The HST was deployed into a low-Earth orbit on April 25, 1990 from the cargo bay of the Space Shuttle Discovery (STS-31). The design of the HST took into consideration its length of service and the necessity of repairs and equipment replacement by making the body modular. In doing so, subsequent shuttle missions could recover the HST, replace faulty or obsolete parts and be re-released. Marshall Space Flight Center's (MSFC's) Neutral Buoyancy Simulator (NBS) served as the test center for shuttle astronauts training for Hubble related missions. Shown is astronaut Anna Fisher training on a mock-up of a modular section of the HST for an axial scientific instrument change out.

  11. Integrated source and channel encoded digital communication system design study. [for space shuttles

    Science.gov (United States)

    Huth, G. K.

    1976-01-01

    The results of several studies Space Shuttle communication system are summarized. These tasks can be divided into the following categories: (1) phase multiplexing for two- and three-channel data transmission, (2) effects of phase noise on the performance of coherent communication links, (3) analysis of command system performance, (4) error correcting code tradeoffs, (5) signal detection and angular search procedure for the shuttle Ku-band communication system, and (6) false lock performance of Costas loop receivers.

  12. Investigations of the 0.020-scale 88-OTS Integrated Space Shuttle Vehicle Jet-Plume Model in the NASA/Ames Research Center 11 by11-Foot Unitary Plan Wind Tunnel (IA80). Volume 1

    Science.gov (United States)

    Nichols, M. E.

    1976-01-01

    The results are documented of jet plume effects wind tunnel test of the 0.020-scale 88-OTS launch configuration space shuttle vehicle model in the 11 x 11 foot leg of the NASA/Ames Research Center Unitary Plan Wind Tunnel. This test involved cold gas main propulsion system (MPS) and solid rocket motor (SRB) plume simulations at Mach numbers from 0.6 to 1.4. Integrated vehicle surface pressure distributions, elevon and rudder hinge moments, and wing and vertical tail root bending and torsional moments due to MPS and SRB plume interactions were determined. Nozzle power conditions were controlled per pretest nozzle calibrations. Model angle of attack was varied from -4 deg to +4 deg; model angle of sideslip was varied from -4 deg to +4 deg. Reynolds number was varied for certain test conditions and configurations, with the nominal freestream total pressure being 14.69 psia. Plotted force and pressure data are presented.

  13. Development of Lead Free Energy Absorber for Space Shuttle Blast Container

    Science.gov (United States)

    Balles, Donald; Ingram, Thomas; Novak, Howard; Schricker, Albert

    1999-01-01

    The Space Shuttle is connected to the mobile launch platform (MLP) by four aft skirt hold down studs on each solid rocket booster (SRB). Prior to lift-off, the frangible nuts inside the aft skirt blast containers are severed into two nut halves by two pyrotechnic booster cartridges. This action releases the Space Shuttle and allows the hold down studs to eject through the aft skirt bore and then down into the MLP. USBI has been tasked to upgrade the blast container for two specific reasons: (1) To eliminate lead for environmental concerns, and (2) To reduce the chance of nut recontact with the holddown stud. Nut recontact with the stud has been identified as a likely contributor to stud hang-ups. This upgrade will replace the lead liner with a unique open cell aluminum foam material, that has commercial and military uses. The aluminum foam used as an energy absorber is a proven design in many other aerospace/defense applications. Additional benefits of using the open cell, energy absorbent aluminum foam in place of the solid lead liner are: (1) Lead handling / exposure and possible contamination, along with hazardous waste disposal, will be eliminated; (2) Approximately 200 lbs. weight savings will be contributed to each Space Shuttle flight by using aluminum foam instead of lead; (3) The new aluminum liner is designed to catch all shrapnel from frangible nuts, thus virtually eliminating chance of debris exiting the HDP and causing potential damage to the vehicle; (4) Using the lighter aluminum liner instead of lead, allows for easier assembly and disassembly of blast container elements, which also improves safety, operator handling, and the efficiency of operations.

  14. Use of tissue equivalent proportional counters to characterize radiation quality on the space shuttle

    International Nuclear Information System (INIS)

    Braby, L.A.; Conroy, T.J.; Elegy, D.C.; Brackenbush, L.W.

    1992-04-01

    Tissue equivalent proportional counters (TEPC) are essentially cavity ionization chambers operating at low pressure and with gas gain. A small, battery powered, TEPC spectrometer, which records lineal energy spectra at one minute intervals, has been used on several space shuttle missions. The data it has collected clearly show the South Atlantic anomaly and indicate a mean quality factor somewhat higher than expected. An improved type of instrument has been developed with sufficient memory to record spectra at 10 second intervals, and with increased resolution for low LET events. This type of instrument will be used on most future space shuttle flights and in some international experiments

  15. Design and Development of the Space Shuttle Tail Service Masts

    Science.gov (United States)

    Dandage, S. R.; Herman, N. A.; Godfrey, S. E.; Uda, R. T.

    1977-01-01

    The successful launch of a space shuttle vehicle depends on the proper operation of two tail service masts (TSMs). Reliable TSM operation is assured through a comprehensive design, development, and testing program. The results of the concept verification test (CVT) and the resulting impact on prototype TSM design are presented. The design criteria are outlined, and the proposed prototype TSM tests are described.

  16. Space shuttle with common fuel tank for liquid rocket booster and main engines (supertanker space shuttle)

    Science.gov (United States)

    Thorpe, Douglas G.

    1991-01-01

    An operation and schedule enhancement is shown that replaces the four-body cluster (Space Shuttle Orbiter (SSO), external tank, and two solid rocket boosters) with a simpler two-body cluster (SSO and liquid rocket booster/external tank). At staging velocity, the booster unit (liquid-fueled booster engines and vehicle support structure) is jettisoned while the remaining SSO and supertank continues on to orbit. The simpler two-bodied cluster reduces the processing and stack time until SSO mate from 57 days (for the solid rocket booster) to 20 days (for the liquid rocket booster). The areas in which liquid booster systems are superior to solid rocket boosters are discussed. Alternative and future generation vehicles are reviewed to reveal greater performance and operations enhancements with more modifications to the current methods of propulsion design philosophy, e.g., combined cycle engines, and concentric propellant tanks.

  17. Results of flutter test OS7 obtained using the 0.14-scale space shuttle orbiter fin/rudder model number 55-0 in the NASA LaRC 16-foot transonic dynamics wind tunnel

    Science.gov (United States)

    Berthold, C. L.

    1977-01-01

    A 0.14-scale dynamically scaled model of the space shuttle orbiter vertical tail was tested in a 16-foot transonic dynamic wind tunnel to determine flutter, buffet, and rudder buzz boundaries. Mach numbers between .5 and 1.11 were investigated. Rockwell shuttle model 55-0 was used for this investigation. A description of the test procedure, hardware, and results of this test is presented.

  18. The Challenges of Integrating NASA's Human, Budget, and Data Capital within the Constellation Program's Exploration Launch Projects Office

    Science.gov (United States)

    Kidd, Luanne; Morris, Kenneth B.; Self, Timothy A.

    2007-01-01

    The U.S. Vision for Space Exploration directs NASA to retire the Space Shuttle in 2010 and replace it with safe, reliable, and cost-effective space transportation systems for crew and cargo travel to the Moon, Mars, and beyond. Such emerging space transportation initiatives face massive organizational challenges, including building and nurturing an experienced, dedicated team with the right skills for the required tasks; allocating and tracking the fiscal capital invested in achieving technical progress against an integrated master schedule; and turning generated data into useful knowledge that equips the team to design and develop superior products for customers and stakeholders. It has been more than 30 years since the Space Shuttle was designed; therefore, the current aerospace workforce has limited experience with developing new designs for human-rated spaceflight hardware. To accomplish these activities, NASA is using a wide range of state-of-the-art information technology tools that connect its diverse, decentralized teams and provide timely, accurate information for decision makers. In addition, business professionals are assisting technical managers with planning, tracking, and forecasting resource use against an integrated master schedule that horizontally and vertically interlinks hardware elements and milestone events. Furthermore, NASA is employing a wide variety of strategies to ensure that it has the motivated and qualified staff it needs for the tasks ahead. This paper discusses how NASA's Exploration Launch Projects Office, which is responsible for delivering these new launch vehicles, integrates its resources to create an engineering business environment that promotes mission success, which is defined by replacing the Space Shuttle by 2014 and returning to the Moon by 2020.

  19. Space Internet Architectures and Technologies for NASA Enterprises

    Science.gov (United States)

    Bhasin, Kul; Hayden, Jeffrey L.

    2001-01-01

    NASA's future communications services will be supplied through a space communications network that mirrors the terrestrial Internet in its capabilities and flexibility. The notional requirements for future data gathering and distribution by this Space Internet have been gathered from NASA's Earth Science Enterprise (ESE), the Human Exploration and Development in Space (HEDS), and the Space Science Enterprise (SSE). This paper describes a communications infrastructure for the Space Internet, the architectures within the infrastructure, and the elements that make up the architectures. The architectures meet the requirements of the enterprises beyond 2010 with Internet 'compatible technologies and functionality. The elements of an architecture include the backbone, access, inter-spacecraft and proximity communication parts. From the architectures, technologies have been identified which have the most impact and are critical for the implementation of the architectures.

  20. 78 FR 49296 - NASA International Space Station Advisory Committee; Meeting

    Science.gov (United States)

    2013-08-13

    .... Greg Mann, Office of International and Interagency Relations, (202) 358-5140, NASA Headquarters... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 13-091] NASA International Space Station... meeting. SUMMARY: In accordance with the Federal Advisory Committee Act, Public Law 92-463, as amended...

  1. Leadership in Space: Selected Speeches of NASA Administrator Michael Griffin, May 2005 - October 2008

    Science.gov (United States)

    Griffin, Michael

    2008-01-01

    Speech topics include: Leadership in Space; Space Exploration: Real and Acceptable Reasons; Why Explore Space?; Space Exploration: Filling up the Canvas; Continuing the Voyage: The Spirit of Endeavour; Incorporating Space into Our Economic Sphere of Influence; The Role of Space Exploration in the Global Economy; Partnership in Space Activities; International Space Cooperation; National Strategy and the Civil Space Program; What the Hubble Space Telescope Teaches Us about Ourselves; The Rocket Team; NASA's Direction; Science and NASA; Science Priorities and Program Management; NASA and the Commercial Space Industry; NASA and the Business of Space; American Competitiveness: NASA's Role & Everyone's Responsibility; Space Exploration: A Frontier for American Collaboration; The Next Generation of Engineers; System Engineering and the "Two Cultures" of Engineering; Generalship of Engineering; NASA and Engineering Integrity; The Constellation Architecture; Then and Now: Fifty Years in Space; The Reality of Tomorrow; and Human Space Exploration: The Next 50 Years.

  2. Space shuttle main propulsion pressurization system probabilistic risk assessment

    International Nuclear Information System (INIS)

    Plastiras, J.K.

    1989-01-01

    This paper reports that, in post-Challenger discussions with Congressional Committees and the National Research Council Risk Management Oversight Panel, criticism was levied against NASA because of the inability to prioritize the 1300+ single point failures. In the absence of a ranking it was difficult to determine where special effort was needed in failure evaluation, in design improvement, in management review of problems, and in flight readiness reviews. The belief was that the management system was overwhelmed by the quantity of critical hardware items that were on the Critical Items List (CIL) and that insufficient attention was paid to the items that required it. Congressional staff members from Congressman Markey's committee who have oversight responsibilities in the nuclear industry, and specifically over the nuclear power supplies for NASA's Galileo and Ulysses missions, felt very strongly that the addition of Probabilistic Risk Assessment (PRA) to the existing Failure Mode Effects Analysis/Hazard Analysis (FMEA/HA) methods was exceedingly important. Specifically, the Markey committee recognized that the inductive, qualitative component-oriented FMEA could be supplemented by the deductive, quantitative systems-oriented PRA. Furthermore, they felt that the PRA approach had matured to the extent that it could be used to assess risk, even with limited shuttle-specific failure data. NASA responded with arguments that the FMEA/HA had illuminated all significant failure modes satisfactorily and that no failure rate data base was available to support the PRA approach

  3. NASA's Next Generation Space Geodesy Program

    Science.gov (United States)

    Merkowitz, S. M.; Desai, S. D.; Gross, R. S.; Hillard, L. M.; Lemoine, F. G.; Long, J. L.; Ma, C.; McGarry, J. F.; Murphy, D.; Noll, C. E.; hide

    2012-01-01

    Requirements for the ITRF have increased dramatically since the 1980s. The most stringent requirement comes from critical sea level monitoring programs: a global accuracy of 1.0 mm, and 0.1mm/yr stability, a factor of 10 to 20 beyond current capability. Other requirements for the ITRF coming from ice mass change, ground motion, and mass transport studies are similar. Current and future satellite missions will have ever-increasing measurement capability and will lead to increasingly sophisticated models of these and other changes in the Earth system. Ground space geodesy networks with enhanced measurement capability will be essential to meeting the ITRF requirements and properly interpreting the satellite data. These networks must be globally distributed and built for longevity, to provide the robust data necessary to generate improved models for proper interpretation of the observed geophysical signals. NASA has embarked on a Space Geodesy Program with a long-range goal to build, deploy and operate a next generation NASA Space Geodetic Network (SGN). The plan is to build integrated, multi-technique next-generation space geodetic observing systems as the core contribution to a global network designed to produce the higher quality data required to maintain the Terrestrial Reference Frame and provide information essential for fully realizing the measurement potential of the current and coming generation of Earth Observing spacecraft. Phase 1 of this project has been funded to (1) Establish and demonstrate a next-generation prototype integrated Space Geodetic Station at Goddard's Geophysical and Astronomical Observatory (GGAO), including next-generation SLR and VLBI systems along with modern GNSS and DORIS; (2) Complete ongoing Network Design Studies that describe the appropriate number and distribution of next-generation Space Geodetic Stations for an improved global network; (3) Upgrade analysis capability to handle the next-generation data; (4) Implement a modern

  4. Operating Deflection Shapes for the Space Shuttle Partial Stack Rollout

    Science.gov (United States)

    Buehrle, Ralph D.; Kappus, Kathy

    2005-01-01

    In November of 2003 a rollout test was performed to gain a better understanding of the dynamic environment for the Space Shuttle during transportation from the Vehicle Assembly Building to the launch pad. This was part of a study evaluating the methodology for including the rollout dynamic loads in the Space Shuttle fatigue life predictions. The rollout test was conducted with a partial stack consisting of the Crawler Transporter, Mobile Launch Platform, and the Solid Rocket Boosters with an interconnecting crossbeam. Instrumentation included over 100 accelerometers. Data was recorded for steady state speeds, start-ups and stops, and ambient wind excitations with the vehicle at idle. This paper will describe the operating deflection shape analysis performed using the measured acceleration response data. The response data for the steady state speed runs were dominated by harmonics of the forcing frequencies, which were proportional to the vehicle speed. Assuming a broadband excitation for the wind, analyses of the data sets with the vehicle at idle were used to estimate the natural frequencies and corresponding mode shapes. Comparisons of the measured modal properties with numerical predictions are presented.

  5. Documentation and archiving of the Space Shuttle wind tunnel test data base. Volume 2: User's Guide to the Archived Data Base

    Science.gov (United States)

    Romere, Paul O.; Brown, Steve Wesley

    1995-01-01

    Development of the Space Shuttle necessitated an extensive wind tunnel test program, with the cooperation of all the major wind tunnels in the United States. The result was approximately 100,000 hours of Space Shuttle wind tunnel testing conducted for aerodynamics, heat transfer, and structural dynamics. The test results were converted into Chrysler DATAMAN computer program format to facilitate use by analysts, a very cost effective method of collecting the wind tunnel test results from many test facilities into one centralized location. This report provides final documentation of the Space Shuttle wind tunnel program. The two-volume set covers the evolution of Space Shuttle aerodynamic configurations and gives wind tunnel test data, titles of wind tunnel data reports, sample data sets, and instructions for accessing the digital data base.

  6. Functional requirements for onboard management of space shuttle consumables, volume 1

    Science.gov (United States)

    Graf, P. J.; Herwig, H. A.; Neel, L. W.

    1973-01-01

    A study was conducted to determine the functional requirements for onboard management of space shuttle consumables. A generalized consumable management concept was developed for application to advanced spacecraft. The subsystems and related consumables selected for inclusion in the consumables management system are: (1) propulsion, (2) power generation, and (3) environmental and life support.

  7. Precise orbit determination for the shuttle radar topography mission using a new generation of GPS receiver

    Science.gov (United States)

    Bertiger, W.; Bar-Sever, Y.; Desai, S.; Duncan, C.; Haines, B.; Kuang, D.; Lough, M.; Reichert, A.; Romans, L.; Srinivasan, J.; hide

    2000-01-01

    The BlackJack family of GPS receivers has been developed at JPL to satisfy NASA's requirements for high-accuracy, dual-frequency, Y-codeless GPS receivers for NASA's Earth science missions. In this paper we will present the challenges that were overcome to meet this accuracy requirement. We will discuss the various reduced dynamic strategies, Space Shuttle dynamic models, and our tests for accuracy that included a military Y-code dual-frequency receiver (MAGR).

  8. Space shuttle general purpose computers (GPCs) (current and future versions)

    Science.gov (United States)

    1988-01-01

    Current and future versions of general purpose computers (GPCs) for space shuttle orbiters are represented in this frame. The two boxes on the left (AP101B) represent the current GPC configuration, with the input-output processor at far left and the central processing unit (CPU) at its side. The upgraded version combines both elements in a single unit (far right, AP101S).

  9. Nitrogen Oxygen Recharge System for the International Space Station

    Science.gov (United States)

    Williams, David E.; Dick, Brandon; Cook, Tony; Leonard, Dan

    2009-01-01

    The International Space Station (ISS) requires stores of Oxygen (O2) and Nitrogen (N2) to provide for atmosphere replenishment, direct crew member usage, and payload operations. Currently, supplies of N2/O2 are maintained by transfer from the Space Shuttle. Following Space Shuttle is retirement in 2010, an alternate means of resupplying N2/O2 to the ISS is needed. The National Aeronautics and Space Administration (NASA) has determined that the optimal method of supplying the ISS with O2/N2 is using tanks of high pressure N2/O2 carried to the station by a cargo vehicle capable of docking with the ISS. This paper will outline the architecture of the system selected by NASA and will discuss some of the design challenges associated with this use of high pressure oxygen and nitrogen in the human spaceflight environment.

  10. Optical Fiber Assemblies for Space Flight from the NASA Goddard Space Flight Center, Photonics Group

    Science.gov (United States)

    Ott, Melanie N.; Thoma, William Joe; LaRocca, Frank; Chuska, Richard; Switzer, Robert; Day, Lance

    2009-01-01

    The Photonics Group at NASA Goddard Space Flight Center in the Electrical Engineering Division of the Advanced Engineering and Technologies Directorate has been involved in the design, development, characterization, qualification, manufacturing, integration and anomaly analysis of optical fiber subsystems for over a decade. The group supports a variety of instrumentation across NASA and outside entities that build flight systems. Among the projects currently supported are: The Lunar Reconnaissance Orbiter, the Mars Science Laboratory, the James Webb Space Telescope, the Express Logistics Carrier for the International Space Station and the NASA Electronic Parts. and Packaging Program. A collection of the most pertinent information gathered during project support over the past year in regards to space flight performance of optical fiber components is presented here. The objective is to provide guidance for future space flight designs of instrumentation and communication systems.

  11. NASA's In-Space Manufacturing Project: A Roadmap for a Multimaterial Fabrication Laboratory in Space

    Science.gov (United States)

    Prater, Tracie; Werkheiser, Niki; Ledbetter, Frank

    2017-01-01

    Human space exploration to date has been limited to low Earth orbit and the moon. The International Space Station (ISS) provides a unique opportunity for NASA to partner with private industry for development and demonstration of the technologies needed to support exploration initiatives. One challenge that is critical to sustainable and safer exploration is the ability to manufacture and recycle materials in space. This paper provides an overview of NASA's in-space manufacturing (ISM) project, its past and current activities (2014-2017), and how technologies under development will ultimately culminate in a multimaterial fabrication laboratory ("ISM FabLab") to be deployed on the International Space Station in the early 2020s. ISM is a critical capability for the long endurance missions NASA seeks to undertake in the coming decades. An unanticipated failure that can be adapted for in low earth orbit, through a resupply launch or a return to earth, may instead result in a loss of mission while in transit to Mars. To have a suite of functional ISM capabilities that are compatible with NASA's exploration timeline, ISM must be equipped with the resources necessary to develop these technologies and deploy them for testing prior to the scheduled de-orbit of ISS in 2024. The presentation provides a broad overview of ISM projects activities culminating with the Fabrication Laboratory for ISS. In 2017, the in-space manufacturing project issued a broad agency announcement for this capability. Requirements of the Fabrication Laboratory as stated in the solicitation will be discussed. The FabLab will move NASA and private industry significantly closer to changing historical paradigms for human spaceflight where all materials used in space are launched from earth. While the current ISM FabLab will be tested on ISS, future systems are eventually intended for use in a deep space habitat or transit vehicle. The work of commercial companies funded under NASA's Small Business

  12. Accommodation of practical constraints by a linear programming jet select. [for Space Shuttle

    Science.gov (United States)

    Bergmann, E.; Weiler, P.

    1983-01-01

    An experimental spacecraft control system will be incorporated into the Space Shuttle flight software and exercised during a forthcoming mission to evaluate its performance and handling qualities. The control system incorporates a 'phase space' control law to generate rate change requests and a linear programming jet select to compute jet firings. Posed as a linear programming problem, jet selection must represent the rate change request as a linear combination of jet acceleration vectors where the coefficients are the jet firing times, while minimizing the fuel expended in satisfying that request. This problem is solved in real time using a revised Simplex algorithm. In order to implement the jet selection algorithm in the Shuttle flight control computer, it was modified to accommodate certain practical features of the Shuttle such as limited computer throughput, lengthy firing times, and a large number of control jets. To the authors' knowledge, this is the first such application of linear programming. It was made possible by careful consideration of the jet selection problem in terms of the properties of linear programming and the Simplex algorithm. These modifications to the jet select algorithm may by useful for the design of reaction controlled spacecraft.

  13. Two X-38 Ship Demonstrators in Development at NASA Johnson Space Flight Center

    Science.gov (United States)

    1999-01-01

    This photo shows two X-38 Crew Return Vehicle technology demonstrators under development at NASA's Johnson Space Flight Center, Houston, Texas. The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily 'old' technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle

  14. Space shuttle launch vehicle performance trajectory, exchange ratios, and dispersion analysis

    Science.gov (United States)

    Toelle, R. G.; Blackwell, D. L.; Lott, L. N.

    1973-01-01

    A baseline space shuttle performance trajectory for Mission 3A launched from WTR has been generated. Design constraints of maximum dynamic pressure, longitudinal acceleration, and delivered payload were satisfied. Payload exchange ratios are presented with explanation on use. Design envelopes of dynamic pressure, SRB staging point, aerodynamic heating and flight performance reserves are calculated and included.

  15. INFINITY at NASA Stennis Space Center

    Science.gov (United States)

    2010-01-01

    Flags are planted on the roof of the new INFINITY at NASA Stennis Space Center facility under construction just west of the Mississippi Welcome Center at exit 2 on Interstate 10. Stennis and community leaders celebrated the 'topping out' of the new science center Nov. 17, marking a construction milestone for the center. The 72,000-square-foot science and education center will feature space and Earth galleries to showcase the science that underpins the missions of the agencies at Stennis Space Center. The center is targeted to open in 2012.

  16. 75 FR 11200 - NASA Advisory Council; Commercial Space Committee; Meeting

    Science.gov (United States)

    2010-03-10

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (10-025)] NASA Advisory Council; Commercial... Committee of the NASA Advisory Council. DATES: Tuesday, March 30, 2010, 1 p.m.-5 p.m., EST. ADDRESSES: NASA... Administration, Washington, DC, 20546. Phone 202-358-1686, fax: 202-358-3878, [email protected]nasa.gov...

  17. 75 FR 53349 - NASA Advisory Council; Commercial Space Committee; Meeting

    Science.gov (United States)

    2010-08-31

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-098)] NASA Advisory Council; Commercial... Committee of the NASA Advisory Council. DATES: Tuesday September 14, 8 a.m. to 12 noon CDT. ADDRESSES: NASA..., Washington, DC 20546. Phone 202- 358-1686, fax: 202-358-3878, [email protected]nasa.gov . SUPPLEMENTARY...

  18. Wicked problems in space technology development at NASA

    Science.gov (United States)

    Balint, Tibor S.; Stevens, John

    2016-01-01

    Technological innovation is key to enable future space exploration missions at NASA. Technology development, however, is not only driven by performance and resource considerations, but also by a broad range of directly or loosely interconnected factors. These include, among others, strategy, policy and politics at various levels, tactics and programmatics, interactions between stakeholders, resource requirements, performance goals from component to system level, mission infusion targets, portfolio execution and tracking, and technology push or mission pull. Furthermore, at NASA, these influences occur on varying timescales and at diverse geographic locations. Such a complex and interconnected system could impede space technology innovation in this examined segment of the government environment. Hence, understanding the process through NASA's Planning, Programming, Budget and Execution cycle could benefit strategic thinking, planning and execution. Insights could be gained through suitable models, for example assessing the key drivers against the framework of Wicked Problems. This paper discusses NASA specific space technology innovation and innovation barriers in the government environment through the characteristics of Wicked Problems; that is, they do not have right or wrong solutions, only improved outcomes that can be reached through authoritative, competitive, or collaborative means. We will also augment the Wicked Problems model to account for the temporally and spatially coupled, and cyclical nature of this NASA specific case, and propose how appropriate models could improve understanding of the key influencing factors. In turn, such understanding may subsequently lead to reducing innovation barriers, and stimulating technology innovation at NASA. Furthermore, our approach can be adopted for other government-directed environments to gain insights into their structures, hierarchies, operational flow, and interconnections to facilitate circular dialogs towards

  19. NASA scheduling technologies

    Science.gov (United States)

    Adair, Jerry R.

    1994-01-01

    This paper is a consolidated report on ten major planning and scheduling systems that have been developed by the National Aeronautics and Space Administration (NASA). A description of each system, its components, and how it could be potentially used in private industry is provided in this paper. The planning and scheduling technology represented by the systems ranges from activity based scheduling employing artificial intelligence (AI) techniques to constraint based, iterative repair scheduling. The space related application domains in which the systems have been deployed vary from Space Shuttle monitoring during launch countdown to long term Hubble Space Telescope (HST) scheduling. This paper also describes any correlation that may exist between the work done on different planning and scheduling systems. Finally, this paper documents the lessons learned from the work and research performed in planning and scheduling technology and describes the areas where future work will be conducted.

  20. Failure mode and effects analysis (FMEA) for the Space Shuttle solid rocket motor

    Science.gov (United States)

    Russell, D. L.; Blacklock, K.; Langhenry, M. T.

    1988-01-01

    The recertification of the Space Shuttle Solid Rocket Booster (SRB) and Solid Rocket Motor (SRM) has included an extensive rewriting of the Failure Mode and Effects Analysis (FMEA) and Critical Items List (CIL). The evolution of the groundrules and methodology used in the analysis is discussed and compared to standard FMEA techniques. Especially highlighted are aspects of the FMEA/CIL which are unique to the analysis of an SRM. The criticality category definitions are presented and the rationale for assigning criticality is presented. The various data required by the CIL and contribution of this data to the retention rationale is also presented. As an example, the FMEA and CIL for the SRM nozzle assembly is discussed in detail. This highlights some of the difficulties associated with the analysis of a system with the unique mission requirements of the Space Shuttle.

  1. Creating the Deep Space Environment for Testing the James Webb Space Telescope at NASA Johnson Space Center's Chamber A

    Science.gov (United States)

    Homan, Jonathan L.; Cerimele, Mary P.; Montz, Michael E.; Bachtel, Russell; Speed, John; O'Rear, Patrick

    2013-01-01

    Chamber A is the largest thermal vacuum chamber at the Johnson Space Center and is one of the largest space environment chambers in the world. The chamber is 19.8 m (65 ft.) in diameter and 36.6 m (120 ft.) tall and is equipped with cryogenic liquid nitrogen panels (shrouds) and gaseous helium shrouds to create a simulated space environment. It was originally designed and built in the mid 1960 s to test the Apollo Command and Service Module and several manned tests were conducted on that spacecraft, contributing to the success of the program. The chamber has been used since that time to test spacecraft active thermal control systems, Shuttle DTO, DOD, and ESA hardware in simulated Low Earth Orbit (LEO) conditions. NASA is now moving from LEO towards exploration of locations with environments approaching those of deep space. Therefore, Chamber A has undergone major modifications to enable it to simulate these deeper space environments. Environmental requirements were driven, and modifications were funded by the James Webb Space Telescope program, and this telescope, which will orbit Solar/Earth L2, will be the first test article to benefit from the chamber s new capabilities. To accommodate JWST, the Chamber A high vacuum system has been modernized, additional LN2 shrouds have been installed, the liquid nitrogen system has been modified to minimize dependency on electrical power and increase its reliability, a new helium shroud/refrigeration system has been installed to create a colder more stable and uniform heat sink, and the controls have been updated to increase the level of automation and improve operator interfaces. Testing of these major modifications was conducted in August of 2012 and this initial test was very successful, with all major systems exceeding their performance requirements. This paper will outline the changes in overall environmental requirements, discuss the technical design data that was used in the decisions leading to the extensive

  2. NASA's Space Launch System: Deep-Space Delivery for Smallsats

    Science.gov (United States)

    Robinson, Kimberly F.; Norris, George

    2017-01-01

    Designed for human exploration missions into deep space, NASA's Space Launch System (SLS) represents a new spaceflight infrastructure asset, enabling a wide variety of unique utilization opportunities. While primarily focused on launching the large systems needed for crewed spaceflight beyond Earth orbit, SLS also offers a game-changing capability for the deployment of small satellites to deep-space destinations, beginning with its first flight. Currently, SLS is making rapid progress toward readiness for its first launch in two years, using the initial configuration of the vehicle, which is capable of delivering 70 metric tons (t) to Low Earth Orbit (LEO). On its first flight test of the Orion spacecraft around the moon, accompanying Orion on SLS will be small-satellite secondary payloads, which will deploy in cislunar space. The deployment berths are sized for "6U" CubeSats, and on EM-1 the spacecraft will be deployed into cislunar space following Orion separate from the SLS Interim Cryogenic Propulsion Stage. Payloads in 6U class will be limited to 14 kg maximum mass. Secondary payloads on EM-1 will be launched in the Orion Stage Adapter (OSA). Payload dispensers will be mounted on specially designed brackets, each attached to the interior wall of the OSA. For the EM-1 mission, a total of fourteen brackets will be installed, allowing for thirteen payload locations. The final location will be used for mounting an avionics unit, which will include a battery and sequencer for executing the mission deployment sequence. Following the launch of EM-1, deployments of the secondary payloads will commence after sufficient separation of the Orion spacecraft to the upper stage vehicle to minimize any possible contact of the deployed CubeSats to Orion. Currently this is estimated to require approximately 4 hours. The allowed deployment window for the CubeSats will be from the time the upper stage disposal maneuvers are complete to up to 10 days after launch. The upper stage

  3. The Ergonomics of Human Space Flight: NASA Vehicles and Spacesuits

    Science.gov (United States)

    Reid, Christopher R.; Rajulu, Sudhakar

    2014-01-01

    Space...the final frontier...these are the voyages of the starship...wait, wait, wait...that's not right...let's try that again. NASA is currently focusing on developing multiple strategies to prepare humans for a future trip to Mars. This includes (1) learning and characterizing the human system while in the weightlessness of low earth orbit on the International Space Station and (2) seeding the creation of commercial inspired vehicles by providing guidance and funding to US companies. At the same time, NASA is slowly leading the efforts of reestablishing human deep space travel through the development of the Multi-Purpose Crew Vehicle (MPCV) known as Orion and the Space Launch System (SLS) with the interim aim of visiting and exploring an asteroid. Without Earth's gravity, current and future human space travel exposes humans to micro- and partial gravity conditions, which are known to force the body to adapt both physically and physiologically. Without the protection of Earth's atmosphere, space is hazardous to most living organisms. To protect themselves from these difficult conditions, Astronauts utilize pressurized spacesuits for both intravehicular travel and extravehicular activities (EVAs). Ensuring a safe living and working environment for space missions requires the creativity of scientists and engineers to assess and mitigate potential risks through engineering designs. The discipline of human factors and ergonomics at NASA is critical in making sure these designs are not just functionally designed for people to use, but are optimally designed to work within the capacities specific to the Astronaut Corps. This lecture will review both current and future NASA vehicles and spacesuits while providing an ergonomic perspective using case studies that were and are being carried out by the Anthropometry and Biomechanics Facility (ABF) at NASA's Johnson Space Center.

  4. NASA's Next Generation Space Geodesy Network

    Science.gov (United States)

    Desai, S. D.; Gross, R. S.; Hilliard, L.; Lemoine, F. G.; Long, J. L.; Ma, C.; McGarry, J. F.; Merkowitz, S. M.; Murphy, D.; Noll, C. E.; hide

    2012-01-01

    NASA's Space Geodesy Project (SGP) is developing a prototype core site for a next generation Space Geodetic Network (SGN). Each of the sites in this planned network co-locate current state-of-the-art stations from all four space geodetic observing systems, GNSS, SLR, VLBI, and DORIS, with the goal of achieving modern requirements for the International Terrestrial Reference Frame (ITRF). In particular, the driving ITRF requirements for this network are 1.0 mm in accuracy and 0.1 mm/yr in stability, a factor of 10-20 beyond current capabilities. Development of the prototype core site, located at NASA's Geophysical and Astronomical Observatory at the Goddard Space Flight Center, started in 2011 and will be completed by the end of 2013. In January 2012, two operational GNSS stations, GODS and GOON, were established at the prototype site within 100 m of each other. Both stations are being proposed for inclusion into the IGS network. In addition, work is underway for the inclusion of next generation SLR and VLBI stations along with a modern DORIS station. An automated survey system is being developed to measure inter-technique vectorties, and network design studies are being performed to define the appropriate number and distribution of these next generation space geodetic core sites that are required to achieve the driving ITRF requirements. We present the status of this prototype next generation space geodetic core site, results from the analysis of data from the established geodetic stations, and results from the ongoing network design studies.

  5. Docking Offset Between the Space Shuttle and the International Space Station and Resulting Impacts to the Transfer of Attitude Reference and Control

    Science.gov (United States)

    Helms, W. Jason; Pohlkamp, Kara M.

    2011-01-01

    The Space Shuttle does not dock at an exact 90 degrees to the International Space Station (ISS) x-body axis. This offset from 90 degrees, along with error sources within their respective attitude knowledge, causes the two vehicles to never completely agree on their attitude, even though they operate as a single, mated stack while docked. The docking offset can be measured in flight when both vehicles have good attitude reference and is a critical component in calculations to transfer attitude reference from one vehicle to another. This paper will describe how the docking offset and attitude reference errors between both vehicles are measured and how this information would be used to recover Shuttle attitude reference from ISS in the event of multiple failures. During STS-117, ISS on-board Guidance, Navigation and Control (GNC) computers began having problems and after several continuous restarts, the systems failed. The failure took the ability for ISS to maintain attitude knowledge. This paper will also demonstrate how with knowledge of the docking offset, the contingency procedure to recover Shuttle attitude reference from ISS was reversed in order to provide ISS an attitude reference from Shuttle. Finally, this paper will show how knowledge of the docking offset can be used to speed up attitude control handovers from Shuttle to ISS momentum management. By taking into account the docking offset, Shuttle can be commanded to hold a more precise attitude which better agrees with the ISS commanded attitude such that start up transients with the ISS momentum management controllers are reduced. By reducing start-up transients, attitude control can be transferred from Shuttle to ISS without the use of ISS thrusters saving precious on-board propellant, crew time and minimizing loads placed upon the mated stack.

  6. NASA universities advanced space design program, focus on nuclear engineering

    International Nuclear Information System (INIS)

    Lyon, W.F. III; George, J.A.; Alred, J.W.; Peddicord, K.L.

    1987-01-01

    In January 1985, the National Aeronautics and Space Administration (NASA), in affiliation with the Universities Space Research Association (USRA), inaugurated the NASA Universities Advanced Space Design Program. The purpose of the program was to encourage participating universities to utilize design projects for the senior and graduate level design courses that would focus on topics relevant to the nation's space program. The activities and projects being carried out under the NASA Universities Advanced Space Design Program are excellent experiences for the participants. This program is a well-conceived, well-planned effort to achieve the maximum benefit out of not only the university design experience but also of the subsequent summer programs. The students in the university design classes have the opportunity to investigate dramatic and new concepts, which at the same time have a place in a program of national importance. This program could serve as a very useful model for the development of university interaction with other federal agencies

  7. Leadership issues with multicultural crews on the international space station: Lessons learned from Shuttle/Mir

    Science.gov (United States)

    Kanas, Nick; Ritsher, Jennifer

    2005-05-01

    In isolated and confined environments, two important leadership roles have been identified: the task/instrumental role (which focuses on work goals and operational needs), and the supportive/expressive role (which focuses on morale goals and emotional needs). On the International Space Station, the mission commander should be familiar with both of these aspects of leadership. In previous research involving a 135-day Mir space station simulation in Moscow and a series of on-orbit Mir space station missions during the Shuttle/Mir program, both these leadership roles were studied. In new analyses of the Shuttle/Mir data, we found that for crewmembers, the supportive role of the commander (but not the task role) related positively with crew cohesion. For mission control personnel on the ground, both the task and supportive roles of their leader were related positively to mission control cohesion. The implications of these findings are discussed in terms of leadership on board the International Space Station.

  8. 2005 NASA Seal/Secondary Air System Workshop, Volume 1

    Science.gov (United States)

    Steinetz, Bruce M. (Editor); Hendricks, Robert C. (Editor)

    2006-01-01

    The 2005 NASA Seal/Secondary Air System workshop covered the following topics: (i) Overview of NASA s new Exploration Initiative program aimed at exploring the Moon, Mars, and beyond; (ii) Overview of the NASA-sponsored Propulsion 21 Project; (iii) Overview of NASA Glenn s seal project aimed at developing advanced seals for NASA s turbomachinery, space, and reentry vehicle needs; (iv) Reviews of NASA prime contractor, vendor, and university advanced sealing concepts including tip clearance control, test results, experimental facilities, and numerical predictions; and (v) Reviews of material development programs relevant to advanced seals development. Turbine engine studies have shown that reducing high-pressure turbine (HPT) blade tip clearances will reduce fuel burn, lower emissions, retain exhaust gas temperature margin, and increase range. Several organizations presented development efforts aimed at developing faster clearance control systems and associated technology to meet future engine needs. The workshop also covered several programs NASA is funding to develop technologies for the Exploration Initiative and advanced reusable space vehicle technologies. NASA plans on developing an advanced docking and berthing system that would permit any vehicle to dock to any on-orbit station or vehicle. Seal technical challenges (including space environments, temperature variation, and seal-on-seal operation) as well as plans to develop the necessary "androgynous" seal technologies were reviewed. Researchers also reviewed tests completed for the shuttle main landing gear door seals.

  9. Space Shuttle Orbiter - Leading edge structural design/analysis and material allowables

    Science.gov (United States)

    Johnson, D. W.; Curry, D. M.; Kelly, R. E.

    1986-01-01

    Reinforced Carbon-Carbon (RCC), a structural composite whose development was targeted for the high temperature reentry environments of reusable space vehicles, has successfully demonstrated that capability on the Space Shuttle Orbiter. Unique mechanical properties, particularly at elevated temperatures up to 3000 F, make this material ideally suited for the 'hot' regions of multimission space vehicles. Design allowable characterization testing, full-scale development and qualification testing, and structural analysis techniques will be presented herein that briefly chart the history of the RCC material from infancy to eventual multimission certification for the Orbiter. Included are discussions pertaining to the development of the design allowable data base, manipulation of the test data into usable forms, and the analytical verification process.

  10. Random Vibration of Space Shuttle Weather Protection Systems

    Directory of Open Access Journals (Sweden)

    Isaac Elishakoff

    1995-01-01

    Full Text Available The article deals with random vibrations of the space shuttle weather protection systems. The excitation model represents a fit to the measured experimental data. The cross-spectral density is given as a convex combination of three exponential functions. It is shown that for the type of loading considered, the Bernoulli-Euler theory cannot be used as a simplified approach, and the structure will be more properly modeled as a Timoshenko beam. Use of the simple Bernoulli-Euler theory may result in an error of about 50% in determining the mean-square value of the bending moment in the weather protection system.

  11. Space Shuttle OMS engine valve technology. [Orbital Maneuvering System

    Science.gov (United States)

    Wichmann, H.

    1974-01-01

    Valve technology program to determine shutoff valve concepts suitable for the Orbital Maneuvering System (OMS) engine of the Space Shuttle. The tradeoff studies selected the electric torque motor operated dual poppet and ball valves as the most desirable valve concepts for the OMS Engine Shutoff Valve. A prototype of one of these concepts was built and subjected to a design verification program. A number of unique features were designed to include the required contamination insensitivity, operating fluid compatibility, decontamination capability, minimum maintenance requirement and long service life capability.

  12. NASA Pathways Co-op Tour Johnson Space Center Fall 2013

    Science.gov (United States)

    Masood, Amir; Osborne-Lee, Irwin W.

    2013-01-01

    This report outlines the tasks and objectives completed during a co-operative education tour with National Aeronautics and Space Association (NASA) at the Johnson Space Center in Houston, Texas. I worked for the Attitude & Pointing group of the Flight Dynamics Division within the Mission Operations Directorate at Johnson Space Center. NASA's primary mission is to support and expand the various ongoing space exploration programs and any research and development activities associated with it. My primary project required me to develop and a SharePoint web application for my group. My secondary objective was to become familiar with the role of my group which was primarily to provide spacecraft attitude and line of sight determination, including Tracking and Data Relay Satellite (TDRS) communications coverage for various NASA, International, and commercial partner spacecraft. My projects required me to become acquainted with different software systems, fundamentals of aerospace engineering, project management, and develop essential interpersonal communication skills. Overall, I accomplished multiple goals which included laying the foundations for an updated SharePoint which will allow for an organized platform to communicate and share data for group members and external partners. I also successfully learned about the operations of the Attitude & Pointing Group and how it contributes to the Missions Operations Directorate and NASA's Space Program as a whole

  13. The Evolution of Failure Analysis at NASA's Kennedy Space Center and the Lessons Learned

    Science.gov (United States)

    Long, Victoria S.; Wright, M. Clara; McDanels, Steve

    2015-01-01

    The United States has had four manned launch programs and three station programs since the era of human space flight began in 1961. The launch programs, Mercury, Gemini, Apollo, and Shuttle, and the station programs, Skylab, Shuttle-Mir, and the International Space Station (ISS), have all been enormously successful, not only in advancing the exploration of space, but also in advancing related technologies. As each subsequent program built upon the successes of previous programs, they similarly learned from their predecessors' failures. While some failures were spectacular and captivated the attention of the world, most only held the attention of the dedicated men and women working to make the missions succeed.

  14. On the performance of the HAL/S-FC compiler. [for space shuttles

    Science.gov (United States)

    Martin, F. H.

    1975-01-01

    The HAL/S compilers which will be used in the space shuttles are described. Acceptance test objectives and procedures are described, the raw results are presented and analyzed, and conclusions and observations are drawn. An appendix is included containing an illustrative set of compiler listings and results for one of the test cases.

  15. Status and plans of NASA's Materials Science and Manufacturing in Space (MS/MS) program

    Science.gov (United States)

    Armstrong, W. O.; Bredt, J. H.

    1972-01-01

    A description is given of a research and development program on the space shuttle mission designed to prepare the way for possible commercial manufacturing operations on permanently orbiting space stations.

  16. Space Environmental Effects (SEE) Testing Capability: NASA/Marshall Space Flight Center

    Science.gov (United States)

    DeWittBurns, H.; Crave, Paul; Finckenor, Miria; Finchum, Charles; Nehls, Mary; Schneider, Todd; Vaughn, Jason

    2012-01-01

    Understanding the effects of the space environment on materials and systems is fundamental and essential for mission success. If not properly understood and designed for, the space environment can lead to materials degradation, reduction of functional lifetime, and system failure. Ground based testing is critical in predicting performance NASA/MSFC's expertise and capabilities make up the most complete SEE testing capability available.

  17. International Cooperation in the Field of International Space Station (ISS) Payload Safety

    Science.gov (United States)

    Heimann, Timothy; Larsen, Axel M.; Rose, Summer; Sgobba, Tommaso

    2005-01-01

    In the frame of the International Space Station (ISS) Program cooperation, in 1998, the European Space Agency (ESA) approached the National Aeronautics and Space Administration (NASA) with the unique concept of a Payload Safety Review Panel (PSRP) "franchise" based at the European Space Technology Center (ESTEC), where the panel would be capable of autonomously reviewing flight hardware for safety. This paper will recount the course of an ambitious idea as it progressed into a fully functional reality. It will show how a panel initially conceived at NASA to serve a national programme has evolved into an international safety cooperation asset. The PSRP established at NASA began reviewing ISS payloads approximately in late 1994 or early 1995 as an expansion of the pre-existing Shuttle Program PSRP. This paper briefly describes the fundamental Shuttle safety process and the establishment of the safety requirements for payloads intending to use the Space Transportation System and International Space Station (ISS). The paper will also offer some historical statistics about the experiments that completed the payload safety process for Shuttle and ISS. The paper 1 then presents the background of ISS agreements and international treaties that had to be taken into account when establishing the ESA PSRP. The detailed franchising model will be expounded upon, followed by an outline of the cooperation charter approved by the NASA Associate Administrator, Office of Space Flight, and ESA Director of Manned Spaceflight and Microgravity. The resulting ESA PSRP implementation and its success statistics to date will then be addressed. Additionally the paper presents the ongoing developments with the Japan Aerospace Exploration Agency. The discussion will conclude with ideas for future developments, such to achieve a fully integrated international system of payload safety panels for ISS.

  18. A Year of Progress: NASA's Space Launch System Approaches Critical Design Review

    Science.gov (United States)

    Askins, Bruce; Robinson, Kimberly

    2015-01-01

    NASA's Space Launch System (SLS) made significant progress on the manufacturing floor and on the test stand in 2014 and positioned itself for a successful Critical Design Review in mid-2015. SLS, the world's only exploration-class heavy lift rocket, has the capability to dramatically increase the mass and volume of human and robotic exploration. Additionally, it will decrease overall mission risk, increase safety, and simplify ground and mission operations - all significant considerations for crewed missions and unique high-value national payloads. Development now is focused on configuration with 70 metric tons (t) of payload to low Earth orbit (LEO), more than double the payload of the retired Space Shuttle program or current operational vehicles. This "Block 1" design will launch NASA's Orion Multi-Purpose Crew Vehicle (MPCV) on an uncrewed flight beyond the Moon and back and the first crewed flight around the Moon. The current design has a direct evolutionary path to a vehicle with a 130t lift capability that offers even more flexibility to reduce planetary trip times, simplify payload design cycles, and provide new capabilities such as planetary sample returns. Every major element of SLS has successfully completed its Critical Design Review and now has hardware in production or testing. In fact, the SLS MPCV-to-Stage-Adapter (MSA) flew successfully on the Exploration Flight Test (EFT) 1 launch of a Delta IV and Orion spacecraft in December 2014. The SLS Program is currently working toward vehicle Critical Design Review in mid-2015. This paper will discuss these and other technical and programmatic successes and challenges over the past year and provide a preview of work ahead before the first flight of this new capability.

  19. Application of regression analysis to creep of space shuttle materials

    International Nuclear Information System (INIS)

    Rummler, D.R.

    1975-01-01

    Metallic heat shields for Space Shuttle thermal protection systems must operate for many flight cycles at high temperatures in low-pressure air and use thin-gage (less than or equal to 0.65 mm) sheet. Available creep data for thin sheet under those conditions are inadequate. To assess the effects of oxygen partial pressure and sheet thickness on creep behavior and to develop constitutive creep equations for small sets of data, regression techniques are applied and discussed

  20. Control of an experiment to measure acoustic noise in the space shuttle

    Science.gov (United States)

    Cameron, Charles B.

    1989-06-01

    The potential use of a general-purpose controller to measure acoustic vibration autonomously in the Space Shuttle Cargo Bay during launch is described. The experimental package will be housed in a Shuttle Get Away Special (GAS) canister. The control functions were implemented with software written largely in the C programming language. An IBM MS DOS computer and C cross-compiler were used to generate Z-80 assembly language code, assemble and link this code, and then transfer it to EPROM for use in the experiment's controller. The software is written in a modular fashion to permit adapting it easily to other applications. The software combines the experimental control functions with a menu-driven, diagnostic subsystem to ensure that the software will operate in practice as it does in theory and under test. The experiment uses many peripheral devices controlled by the software described here. These devices include: (1) a solid-state data recorder; (2) a bubble memory storage module; (3) a real-time clock; (4) an RS-232C serial interface; (5) a power control subsystem; (6) a matched filter subsystem to detect activation of the Space Shuttle's auxillary power units five minutes prior to launch; (7) a launch detection subsystem based on vibrational and barometric sensors; (8) analog-to-digital converters; and (9) a heater subsystem. The matched filter design is discussed in detail and the results of a computer simulation of the performance of its most critical sub-circuit are presented.

  1. The Final Count Down: A Review of Three Decades of Flight Controller Training Methods for Space Shuttle Mission Operations

    Science.gov (United States)

    Dittermore, Gary; Bertels, Christie

    2011-01-01

    Operations of human spaceflight systems is extremely complex; therefore, the training and certification of operations personnel is a critical piece of ensuring mission success. Mission Control Center (MCC-H), at the Lyndon B. Johnson Space Center in Houston, Texas, manages mission operations for the Space Shuttle Program, including the training and certification of the astronauts and flight control teams. An overview of a flight control team s makeup and responsibilities during a flight, and details on how those teams are trained and certified, reveals that while the training methodology for developing flight controllers has evolved significantly over the last thirty years the core goals and competencies have remained the same. In addition, the facilities and tools used in the control center have evolved. Changes in methodology and tools have been driven by many factors, including lessons learned, technology, shuttle accidents, shifts in risk posture, and generational differences. Flight controllers share their experiences in training and operating the space shuttle. The primary training method throughout the program has been mission simulations of the orbit, ascent, and entry phases, to truly train like you fly. A review of lessons learned from flight controller training suggests how they could be applied to future human spaceflight endeavors, including missions to the moon or to Mars. The lessons learned from operating the space shuttle for over thirty years will help the space industry build the next human transport space vehicle.

  2. Creating the Deep Space Environment for Testing the James Webb Space Telescope (JWST) at NASA Johnson Space Center's Chamber A

    Science.gov (United States)

    Homan, Jonathan L.; Cerimele, Mary P.; Montz, Michael E.; Bachtel, Russell; Speed, John; O'Rear, Patrick

    2013-01-01

    Chamber A is the largest thermal vacuum chamber at the Johnson Space Center and is one of the largest space environment chambers in the world. The chamber is 19.8 m (65 ft) in diameter and 36.6 m (120 ft) tall and is equipped with cryogenic liquid nitrogen panels (shrouds) and gaseous helium shrouds to create a simulated space environment. It was originally designed and built in the mid 1960 s to test the Apollo Command and Service Module and several manned tests were conducted on that spacecraft, contributing to the success of the program. The chamber has been used since that time to test spacecraft active thermal control systems, Shuttle DTO, DOD, and ESA hardware in simulated Low Earth Orbit (LEO) conditions. NASA is now moving from LEO towards exploration of locations with environments approaching those of deep space. Therefore, Chamber A has undergone major modifications to enable it to simulate these deeper space environments. Environmental requirements were driven, and modifications were funded by the James Webb Space Telescope program, and this telescope which will orbit Solar/Earth L2, will be the first test article to benefit from the chamber s new capabilities. To accommodate JWST, the Chamber A high vacuum system has been modernized, additional LN2 shrouds have been installed, the liquid nitrogen system has been modified to remove dependency on electrical power and increase its reliability, a new helium shroud/refrigeration system has been installed to create a colder more stable and uniform heat sink, and the controls have been updated to increase the level of automation and improve operator interfaces. Testing of these major modifications was conducted in August of 2012 and this initial test was very successful, with all major systems exceeding their performance requirements. This paper will outline the changes in overall environmental requirements, discuss the technical design data that was used in the decisions leading to the extensive modifications

  3. Forecast of space shuttle flight requirements for launch of commercial communications satellites

    Science.gov (United States)

    1977-01-01

    The number of communication satellites required over the next 25 years to support domestic and regional communication systems for telephony, telegraphy and other low speed data; video teleconferencing, new data services, direct TV broadcasting; INTELSAT; and maritime and aeronautical services was estimated to determine the number of space shuttle flights necessary for orbital launching.

  4. 75 FR 39973 - NASA Advisory Council; Commercial Space Committee; Meeting

    Science.gov (United States)

    2010-07-13

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (10-076)] NASA Advisory Council; Commercial... Committee to the NASA Advisory Council. DATES: Thursday, July 29, 2010, 9 a.m.-12 p.m., Eastern. ADDRESSES: NASA Headquarters, 300 E Street, SW., PRC/Room 9H40, Washington, DC 20546. FOR FURTHER INFORMATION...

  5. 76 FR 3674 - NASA Advisory Council; Commercial Space Committee; Meeting

    Science.gov (United States)

    2011-01-20

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (11-006)] NASA Advisory Council; Commercial... Committee to the NASA Advisory Council. DATES: Tuesday, February 8, 2011, 2 p.m.-3:30 p.m., Local Time. ADDRESSES: NASA Headquarters, 300 E Street, SW., Glennan Conference Center, Room 1Q39, Washington, DC 20546...

  6. Networking at NASA. Johnson Space Center

    Science.gov (United States)

    Garman, John R.

    1991-01-01

    A series of viewgraphs on computer networks at the Johnson Space Center (JSC) are given. Topics covered include information resource management (IRM) at JSC, the IRM budget by NASA center, networks evolution, networking as a strategic tool, the Information Services Directorate charter, and SSC network requirements, challenges, and status.

  7. Operational environments for electrical power wiring on NASA space systems

    Science.gov (United States)

    Stavnes, Mark W.; Hammoud, Ahmad N.; Bercaw, Robert W.

    1994-01-01

    Electrical wiring systems are used extensively on NASA space systems for power management and distribution, control and command, and data transmission. The reliability of these systems when exposed to the harsh environments of space is very critical to mission success and crew safety. Failures have been reported both on the ground and in flight due to arc tracking in the wiring harnesses, made possible by insulation degradation. This report was written as part of a NASA Office of Safety and Mission Assurance (Code Q) program to identify and characterize wiring systems in terms of their potential use in aerospace vehicles. The goal of the program is to provide the information and guidance needed to develop and qualify reliable, safe, lightweight wiring systems, which are resistant to arc tracking and suitable for use in space power applications. This report identifies the environments in which NASA spacecraft will operate, and determines the specific NASA testing requirements. A summary of related test programs is also given in this report. This data will be valuable to spacecraft designers in determining the best wiring constructions for the various NASA applications.

  8. Results of an investigation to determine local flow characteristics at the air data probe locations using an 0.030-scale model (45-0) of the space shuttle vehicle orbiter configuration 140A/B (modified) in the NASA Ames Research Center unitary plan wind tunnel (OA161, A, B, C), volume 1

    Science.gov (United States)

    Nichols, M. E.

    1976-01-01

    Results are presented of wind tunnel test 0A161 of a 0.030-scale model 45-0 of the configuration 140A/B (modified) space shuttle vehicle orbiter in the NASA Ames Research Center Unitary Plan Wind Tunnel facilities. The purpose of this test was to determine local total and static pressure environments for the air data probe locations and relative effectiveness of alternate flight-test probe configurations. Testing was done in the Mach number range from 0.30 to 3.5. Angle of attack was varied from -8 to 25 degrees while sideslip varied between -8 and 8 degrees.

  9. Cryogenic explosion environment modeling and testing of space shuttle and light-weight radioisotope heater unit interactions

    International Nuclear Information System (INIS)

    Johnson, E.W.

    1985-10-01

    In order to assess the risk to the world's populace in the event of a Space Shuttle accident when radioisotope-containing heat sources are on board, testing of that system must be performed to determine release point, environments required, and the size distribution of the released fuel. To evaluate the performance of the Light-Weight Radioisotope Heater Unit (LWRHU) (101 of these 1-W items are placed on the Galileo spacecraft which will be launched from the Space Shuttle), some high-velocity impact and flyer plate testing was carried out. The results showed that a bare urania-fueled LWRHU clad (approximately 1-mm thick platinum-30 wt % rhodium alloy) will withstand 1100 m/s flyer plate (3.5-mm thick aluminum) impacts and 330 m/s impacts upon the Space Shuttle floor (approximately 12-mm thick aluminum) without rupture or fuel release. Velocities in the order of 600 m/s on a steel surface will cause clad failure with fuel release. The fuel breakup patterns were characterized as to quantity in a specific size range. These data were employed in the formal Safety Analysis Report for the LWRHU to support the planned 1986 Galileo launch. 19 figs

  10. Utilization of Space Shuttle External Tank materials by melting and powder metallurgy

    Science.gov (United States)

    Chern, T. S.

    1985-01-01

    The Crucible Melt Extraction Process was demonstrated to convert scraps of aluminum alloy 2219, used in the Space Shuttle External Tank, into fibers. The cast fibers were then consolidated by cold welding. The X-ray diffraction test of the cast fibers was done to examine the crystallinity and oxide content of the fibers. The compressive stress-strain behavior of the consolidated materials was also examined. Two conceptual schemes which would adapt the as-developed Crucible Melt Extraction Process to the microgravity condition in space were finally proposed.

  11. Next Generation NASA Initiative for Space Geodesy

    Science.gov (United States)

    Merkowitz, S. M.; Desai, S.; Gross, R. S.; Hilliard, L.; Lemoine, F. G.; Long, J. L.; Ma, C.; McGarry J. F.; Murphy, D.; Noll, C. E.; hide

    2012-01-01

    Space geodesy measurement requirements have become more and more stringent as our understanding of the physical processes and our modeling techniques have improved. In addition, current and future spacecraft will have ever-increasing measurement capability and will lead to increasingly sophisticated models of changes in the Earth system. Ground-based space geodesy networks with enhanced measurement capability will be essential to meeting these oncoming requirements and properly interpreting the sate1!ite data. These networks must be globally distributed and built for longevity, to provide the robust data necessary to generate improved models for proper interpretation ofthe observed geophysical signals. These requirements have been articulated by the Global Geodetic Observing System (GGOS). The NASA Space Geodesy Project (SGP) is developing a prototype core site as the basis for a next generation Space Geodetic Network (SGN) that would be NASA's contribution to a global network designed to produce the higher quality data required to maintain the Terrestrial Reference Frame and provide information essential for fully realizing the measurement potential of the current and coming generation of Earth Observing spacecraft. Each of the sites in the SGN would include co-located, state of-the-art systems from all four space geodetic observing techniques (GNSS, SLR, VLBI, and DORIS). The prototype core site is being developed at NASA's Geophysical and Astronomical Observatory at Goddard Space Flight Center. The project commenced in 2011 and is scheduled for completion in late 2013. In January 2012, two multiconstellation GNSS receivers, GODS and GODN, were established at the prototype site as part of the local geodetic network. Development and testing are also underway on the next generation SLR and VLBI systems along with a modern DORIS station. An automated survey system is being developed to measure inter-technique vector ties, and network design studies are being

  12. In-Space Manufacturing at NASA Marshall Space Flight Center: Enabling Technologies for Exploration

    Science.gov (United States)

    Bean, Quincy; Johnston, Mallory; Ordonez, Erick; Ryan, Rick; Prater, Tracie; Werkeiser, Niki

    2015-01-01

    NASA Marshall Space Flight Center is currently engaged in a number of in-space manufacturing(ISM)activities that have the potential to reduce launch costs, enhance crew safety, and provide the capabilities needed to undertake long duration spaceflight safely and sustainably.

  13. Advancing Innovation Through Collaboration: Implementation of the NASA Space Life Sciences Strategy

    Science.gov (United States)

    Davis, Jeffrey R.; Richard, Elizabeth E.

    2010-01-01

    On October 18, 2010, the NASA Human Health and Performance center (NHHPC) was opened to enable collaboration among government, academic and industry members. Membership rapidly grew to 90 members (http://nhhpc.nasa.gov ) and members began identifying collaborative projects as detailed in this article. In addition, a first workshop in open collaboration and innovation was conducted on January 19, 2011 by the NHHPC resulting in additional challenges and projects for further development. This first workshop was a result of the SLSD successes in running open innovation challenges over the past two years. In 2008, the NASA Johnson Space Center, Space Life Sciences Directorate (SLSD) began pilot projects in open innovation (crowd sourcing) to determine if these new internet-based platforms could indeed find solutions to difficult technical problems. From 2008 to 2010, the SLSD issued 34 challenges, 14 externally and 20 internally. The 14 external challenges were conducted through three different vendors: InnoCentive, Yet2.com and TopCoder. The 20 internal challenges were conducted using the InnoCentive platform, customized to NASA use, and promoted as NASA@Work. The results from the 34 challenges involved not only technical solutions that were reported previously at the 61st IAC, but also the formation of new collaborative relationships. For example, the TopCoder pilot was expanded by the NASA Space Operations Mission Directorate to the NASA Tournament Lab in collaboration with Harvard Business School and TopCoder. Building on these initial successes, the NHHPC workshop in January of 2011, and ongoing NHHPC member discussions, several important collaborations have been developed: (1) Space Act Agreement between NASA and GE for collaborative projects (2) NASA and academia for a Visual Impairment / Intracranial Hypertension summit (February 2011) (3) NASA and the DoD through the Defense Venture Catalyst Initiative (DeVenCI) for a technical needs workshop (June 2011) (4

  14. NASA's Commercial Crew Program, The Next Step in U.S. Space Transportation

    Science.gov (United States)

    Mango, Edward J.; Thomas, Rayelle E.

    2013-01-01

    The Commercial Crew Program (CCP) is leading NASA's efforts to develop the next U.S. capability for crew transportation and rescue services to and from the International Space Station (ISS) by the mid-decade timeframe. The outcome of this capability is expected to stimulate and expand the U.S. space transportation industry. NASA is relying on its decades of human space flight experience to certify U.S. crewed vehicles to the ISS and is doing so in a two phase certification approach. NASA Certification will cover all aspects of a crew transportation system, including development, test, evaluation, and verification; program management and control; flight readiness certification; launch, landing, recovery, and mission operations; sustaining engineering and maintenance/upgrades. To ensure NASA crew safety, NASA Certification will validate technical and performance requirements, verify compliance with NASA requirements, validate the crew transportation system operates in appropriate environments, and quantify residual risks.

  15. Solid state laser technology - A NASA perspective

    Science.gov (United States)

    Allario, F.

    1985-01-01

    NASA's program for developing solid-state laser technology and applying it to the Space Shuttle and Space Platform is discussed. Solid-state lasers are required to fulfill the Earth Observation System's requirements. The role of the Office of Aeronautics and Space Technology in developing a NASA tunable solid-state laser program is described. The major goals of the program involve developing a solid-state pump laser in the green, using AlGaAs array technology, pumping a Nd:YAG/SLAB crystal or glass, and fabricating a lidar system, with either a CO2 laser at 10.6 microns or a Nd:YAG laser at 1.06 microns, to measure tropospheric winds to an accuracy of + or - 1 m/s and a vertical resolution of 1 km. The procedures to be followed in order to visualize this technology plan include: (1) material development and characterization, (2) laser development, and (3) implementation of the lasers.

  16. NASA Strategy to Safely Live and Work in the Space Radiation Environment

    Science.gov (United States)

    Cucinotta, Francis; Wu, Honglu; Corbin, Barbara; Sulzman, Frank; Kreneck, Sam

    2007-01-01

    This viewgraph document reviews the radiation environment that is a significant potential hazard to NASA's goals for space exploration, of living and working in space. NASA has initiated a Peer reviewed research program that is charged with arriving at an understanding of the space radiation problem. To this end NASA Space Radiation Laboratory (NSRL) was constructed to simulate the harsh cosmic and solar radiation found in space. Another piece of the work was to develop a risk modeling tool that integrates the results from research efforts into models of human risk to reduce uncertainties in predicting risk of carcinogenesis, central nervous system damage, degenerative tissue disease, and acute radiation effects acute radiation effects.

  17. Robotic end-effector for rewaterproofing shuttle tiles

    Science.gov (United States)

    Manouchehri, Davoud; Hansen, Joseph M.; Wu, Cheng M.; Yamamoto, Brian S.; Graham, Todd

    1992-11-01

    This paper summarizes work by Rockwell International's Space Systems Division's Robotics Group at Downey, California. The work is part of a NASA-led team effort to automate Space Shuttle rewaterproofing in the Orbiter Processing Facility at the Kennedy Space Center and the ferry facility at the Ames-Dryden Flight Research Facility. Rockwell's effort focuses on the rewaterproofing end-effector, whose function is to inject hazardous dimethylethyloxysilane into thousands of ceramic tiles on the underside of the orbiter after each flight. The paper has five sections. First, it presents background on the present manual process. Second, end-effector requirements are presented, including safety and interface control. Third, a design is presented for the five end-effector systems: positioning, delivery, containment, data management, and command and control. Fourth, end-effector testing and integrating to the total system are described. Lastly, future applications for this technology are discussed.

  18. Thermal math model analysis of FRSI test article subjected to cold soak and entry environments. [Flexible Reuseable Surface Insulation in Space Shuttle Orbiter

    Science.gov (United States)

    Gallegos, J. J.

    1978-01-01

    A multi-objective test program was conducted at the NASA/JSC Radiant Heat Test Facility in which an aluminum skin/stringer test panel insulated with FRSI (Flexible Reusable Surface Insulation) was subjected to 24 simulated Space Shuttle Orbiter ascent/entry heating cycles with a cold soak in between in the 10th and 20th cycles. A two-dimensional thermal math model was developed and utilized to predict the thermal performance of the FRSI. Results are presented which indicate that the modeling techniques and property values have been proven adequate in predicting peak structure temperatures and entry thermal responses from both an ambient and cold soak condition of an FRSI covered aluminum structure.

  19. Business Context of Space Tourism

    Science.gov (United States)

    Schmitt, Harrison H.

    2003-01-01

    Broadly speaking, two types of potential commercial activity in space can be defined. First, there are those activities that represent an expansion and improvement on services with broad existing commercial foundations such as telecommunications. The second type of potential commercial activity in space is one that may offer a type of service with few or any existing commercial foundations such as space-based remote sensing. Space tourism clearly belongs in the first category of potential commercial activity in space. Roles in cooperation with the private sector that might be considered for NASA include 1) acceleration of the ``Professional-in Space'' initiative, 2) research and technology developments related to a) a ``Tourist Destination Module'' for the Space Station, b) an ``Extra Passengers Module'' for the payload bay of the Space Shuttle, and c) a ``Passenger-rated Expendable Launch Vehicle,'' 3) definition of criteria for qualifying candidate space tourists, and 4) initiatives to protect space tourism from unreasonable tort litigation. As baseline information for establishing fees, the cost of a possible tourist flight should be fully and objectively delineated. If it is correct that the marginal cost of each Space Shuttle flight to Earth-orbit is about $100 million and the effective Shuttle payload is about 50,000 pounds, then the marginal cost would be roughly $2,000 per pound.

  20. The Application of Principal Component Analysis Using Fixed Eigenvectors to the Infrared Thermographic Inspection of the Space Shuttle Thermal Protection System

    Science.gov (United States)

    Cramer, K. Elliott; Winfree, William P.

    2006-01-01

    The Nondestructive Evaluation Sciences Branch at NASA s Langley Research Center has been actively involved in the development of thermographic inspection techniques for more than 15 years. Since the Space Shuttle Columbia accident, NASA has focused on the improvement of advanced NDE techniques for the Reinforced Carbon-Carbon (RCC) panels that comprise the orbiter s wing leading edge. Various nondestructive inspection techniques have been used in the examination of the RCC, but thermography has emerged as an effective inspection alternative to more traditional methods. Thermography is a non-contact inspection method as compared to ultrasonic techniques which typically require the use of a coupling medium between the transducer and material. Like radiographic techniques, thermography can be used to inspect large areas, but has the advantage of minimal safety concerns and the ability for single-sided measurements. Principal Component Analysis (PCA) has been shown effective for reducing thermographic NDE data. A typical implementation of PCA is when the eigenvectors are generated from the data set being analyzed. Although it is a powerful tool for enhancing the visibility of defects in thermal data, PCA can be computationally intense and time consuming when applied to the large data sets typical in thermography. Additionally, PCA can experience problems when very large defects are present (defects that dominate the field-of-view), since the calculation of the eigenvectors is now governed by the presence of the defect, not the good material. To increase the processing speed and to minimize the negative effects of large defects, an alternative method of PCA is being pursued when a fixed set of eigenvectors is used to process the thermal data from the RCC materials. These eigen vectors can be generated either from an analytic model of the thermal response of the material under examination, or from a large cross section of experimental data. This paper will provide the

  1. A study of space shuttle plumes in the lower thermosphere

    Science.gov (United States)

    Meier, R. R.; Stevens, Michael H.; Plane, John M. C.; Emmert, J. T.; Crowley, G.; Azeem, I.; Paxton, L. J.; Christensen, A. B.

    2011-12-01

    During the space shuttle main engine burn, some 350 t of water vapor are deposited at between 100 and 115 km. Subsequent photodissociation of water produces large plumes of atomic hydrogen that can expand rapidly and extend for thousands of kilometers. From 2002 to 2007, the Global Ultraviolet Imager (GUVI) on NASA's Thermosphere Ionosphere, Mesosphere, Energetics and Dynamics (TIMED) satellite imaged many of these hydrogen plumes at Lyman α (121.567 nm) while viewing in the nadir. The images reveal rapid plume expansion and occasional very fast transport to both north and south polar regions. Some plumes persist for up to 6 d. Near-simultaneous direct detections of water vapor were made with the Sounding of the Atmosphere with Broadband Emission Radiometry (SABER) instrument, also on TIMED. We compare the spreading of the hydrogen plume with a two-dimensional model that includes photodissociation as well as both vertical and horizontal diffusion. Molecular diffusion appears to be sufficient to account for the horizontal expansion, although wind shears and turbulent mixing may also contribute. We compare the bulk motion of the observed plumes with wind climatologies derived from satellite observations. The plumes can move much faster than predictions of wind climatologies. But dynamical processes not contained in wind climatologies, such as the quasi-two-day wave, can account for at least some of the high speed observations. The plume phenomena raise a number of important questions about lower thermospheric and mesospheric processes, ranging from dynamics and chemistry to polar mesospheric cloud formation and climatology.

  2. Space shuttle solid rocket booster cost-per-flight analysis technique

    Science.gov (United States)

    Forney, J. A.

    1979-01-01

    A cost per flight computer model is described which considers: traffic model, component attrition, hardware useful life, turnaround time for refurbishment, manufacturing rates, learning curves on the time to perform tasks, cost improvement curves on quantity hardware buys, inflation, spares philosophy, long lead, hardware funding requirements, and other logistics and scheduling constraints. Additional uses of the model include assessing the cost per flight impact of changing major space shuttle program parameters and searching for opportunities to make cost effective management decisions.

  3. Hardware interface unit for control of shuttle RMS vibrations

    Science.gov (United States)

    Lindsay, Thomas S.; Hansen, Joseph M.; Manouchehri, Davoud; Forouhar, Kamran

    1994-01-01

    Vibration of the Shuttle Remote Manipulator System (RMS) increases the time for task completion and reduces task safety for manipulator-assisted operations. If the dynamics of the manipulator and the payload can be physically isolated, performance should improve. Rockwell has developed a self contained hardware unit which interfaces between a manipulator arm and payload. The End Point Control Unit (EPCU) is built and is being tested at Rockwell and at the Langley/Marshall Coupled, Multibody Spacecraft Control Research Facility in NASA's Marshall Space Flight Center in Huntsville, Alabama.

  4. International Cooperation in the Field of International Space Station (ISS) Payload Safety

    Science.gov (United States)

    Grayson, C.; Sgobba, T.; Larsen, A.; Rose, S.; Heimann, T.; Ciancone, M.; Mulhern, V.

    2005-12-01

    In the frame of the International Space Station (ISS) Program cooperation, in 1998 the European Space Agency (ESA) approached the National Aeronautics and Space Administration (NASA) with the unique concept of a Payload Safety Review Panel (PSRP) "franchise" based at the European Space Technology Center (ESTEC), where the panel would be capable of autonomously reviewing flight hardware for safety. This paper will recount the course of an ambitious idea as it progressed into a fully functional reality. It will show how a panel initially conceived at NASA to serve a national programme has evolved into an international safety cooperation asset. The PSRP established at NASA began reviewing ISS payloads approximately in late 1994 or early 1995 as an expansion of the pre- existing Shuttle Program PSRP. This paper briefly describes the fundamental Shuttle safety process and the establishment of the safety requirements for payloads intending to use the Space Transportation System and ISS. The paper will also offer some historical statistics about the experiments that completed the payload safety process for Shuttle and ISS. The paper then presents the background of ISS agreements and international treaties that had to be considered when establishing the ESA PSRP. The paper will expound upon the detailed franchising model, followed by an outline of the cooperation charter approved by the NASA Associate Administrator, Office of Space Flight, and ESA Director of Manned Spaceflight and Microgravity. The paper will then address the resulting ESA PSRP implementation and its success statistics to date. Additionally, the paper presents ongoing developments with the Japan Aerospace Exploration Agency (JAXA). The discussion will conclude with ideas for future developments, such to achieve a fully integrated international system of payload safety panels for ISS.

  5. The Tethered Balloon Current Generator - A space shuttle-tethered subsatellite for plasma studies and power generation

    Science.gov (United States)

    Williamson, P. R.; Banks, P. M.

    1976-01-01

    The objectives of the Tethered Balloon Current Generator experiment are to: (1) generate relatively large regions of thermalized, field-aligned currents, (2) produce controlled-amplitude Alfven waves, (3) study current-driven electrostatic plasma instabilities, and (4) generate substantial amounts of power or propulsion through the MHD interaction. A large balloon (a diameter of about 30 m) will be deployed with a conducting surface above the space shuttle at a distance of about 10 km. For a generally eastward directed orbit at an altitude near 400 km, the balloon, connected to the shuttle by a conducting wire, will be positive with respect to the shuttle, enabling it to collect electrons. At the same time, the shuttle will collect positive ions and, upon command, emit an electron beam to vary current flow in the system.

  6. Shuttle Topography Data Inform Solar Power Analysis

    Science.gov (United States)

    2013-01-01

    The next time you flip on a light switch, there s a chance that you could be benefitting from data originally acquired during the Space Shuttle Program. An effort spearheaded by Jet Propulsion Laboratory (JPL) and the National Geospatial-Intelligence Agency (NGA) in 2000 put together the first near-global elevation map of the Earth ever assembled, which has found use in everything from 3D terrain maps to models that inform solar power production. For the project, called the Shuttle Radar Topography Mission (SRTM), engineers at JPL designed a 60-meter mast that was fitted onto Shuttle Endeavour. Once deployed in space, an antenna attached to the end of the mast worked in combination with another antenna on the shuttle to simultaneously collect data from two perspectives. Just as having two eyes makes depth perception possible, the SRTM data sets could be combined to form an accurate picture of the Earth s surface elevations, the first hight-detail, near-global elevation map ever assembled. What made SRTM unique was not just its surface mapping capabilities but the completeness of the data it acquired. Over the course of 11 days, the shuttle orbited the Earth nearly 180 times, covering everything between the 60deg north and 54deg south latitudes, or roughly 80 percent of the world s total landmass. Of that targeted land area, 95 percent was mapped at least twice, and 24 percent was mapped at least four times. Following several years of processing, NASA released the data to the public in partnership with NGA. Robert Crippen, a member of the SRTM science team, says that the data have proven useful in a variety of fields. "Satellites have produced vast amounts of remote sensing data, which over the years have been mostly two-dimensional. But the Earth s surface is three-dimensional. Detailed topographic data give us the means to visualize and analyze remote sensing data in their natural three-dimensional structure, facilitating a greater understanding of the features

  7. Preflight and postflight microbiological results from 25 space shuttle crews

    Science.gov (United States)

    Pierson, Duane L.; Bassinger, Virginia J.; Molina, Thomas C.; Gunter, Emelie G.; Groves, Theron O.; Cioletti, Louis J.; Mishra, S. K.

    1993-01-01

    Clinical-microbiological investigations are an important aspect of the crew health stabilization program. To ensure that space crews have neither active nor latent infections, clinical specimens, including throat and nasal swabs and urine samples, are collected at 10 days (L-10) and 2days (L-2) before launch, and immediately after landing (L+0). All samples are examined for the presence of bacteria and fungi. In addition, fecal samples are collected at L-10 and examined for bacteria, fungi and parasites. This paper describes clinical-microbiological findings from 144 astronauts participating in 25 Space Shuttle missions spanning Space Transportation System (STS)-26 to STS-50. The spectrum of microbiological findings from the specimens included 25 bacterial and 11 fungal species. Among the bacteria isolated most frequently were Staphylococcus aureus, Enterobacter aerogenes, Enterococcus faecalis, Escherichia coli, Proteus mirabilis and Streptococcus agalactiae. Candida albicans was the most frequently isolated fungal pathogen.

  8. Artificial intelligence - NASA. [robotics for Space Station

    Science.gov (United States)

    Erickson, J. D.

    1985-01-01

    Artificial Intelligence (AI) represents a vital common space support element needed to enable the civil space program and commercial space program to perform their missions successfully. It is pointed out that advances in AI stimulated by the Space Station Program could benefit the U.S. in many ways. A fundamental challenge for the civil space program is to meet the needs of the customers and users of space with facilities enabling maximum productivity and having low start-up costs, and low annual operating costs. An effective way to meet this challenge may involve a man-machine system in which artificial intelligence, robotics, and advanced automation are integrated into high reliability organizations. Attention is given to the benefits, NASA strategy for AI, candidate space station systems, the Space Station as a stepping stone, and the commercialization of space.

  9. Future NASA mission applications of space nuclear power

    International Nuclear Information System (INIS)

    Bennett, G.L.; Mankins, J.; McConnell, D.G.; Reck, G.M.

    1990-01-01

    Recent studies sponsored by NASA show a continuing need for space nuclear power. A recently completed study considered missions such as a Jovian grand tour, a Uranus or Neptune orbiter and probe, and a Pluto flyby that can only be done with nuclear power. There are studies for missions beyond the outer boundaries of the solar system at distances of 100 to 1000 astronomical units. The NASA 90-day study on the space exploration initiative identified a need for nuclear reactors to power lunar surface bases and radioisotope power sources for use in lunar or Martian rovers, as well as considering options for advanced, nuclear propulsion systems for human missions to Mars

  10. Developing a Fault Management Guidebook for Nasa's Deep Space Robotic Missions

    Science.gov (United States)

    Fesq, Lorraine M.; Jacome, Raquel Weitl

    2015-01-01

    NASA designs and builds systems that achieve incredibly ambitious goals, as evidenced by the Curiosity rover traversing on Mars, the highly complex International Space Station orbiting our Earth, and the compelling plans for capturing, retrieving and redirecting an asteroid into a lunar orbit to create a nearby a target to be investigated by astronauts. In order to accomplish these feats, the missions must be imbued with sufficient knowledge and capability not only to realize the goals, but also to identify and respond to off-nominal conditions. Fault Management (FM) is the discipline of establishing how a system will respond to preserve its ability to function even in the presence of faults. In 2012, NASA released a draft FM Handbook in an attempt to coalesce the field by establishing a unified terminology and a common process for designing FM mechanisms. However, FM approaches are very diverse across NASA, especially between the different mission types such as Earth orbiters, launch vehicles, deep space robotic vehicles and human spaceflight missions, and the authors were challenged to capture and represent all of these views. The authors recognized that a necessary precursor step is for each sub-community to codify its FM policies, practices and approaches in individual, focused guidebooks. Then, the sub-communities can look across NASA to better understand the different ways off-nominal conditions are addressed, and to seek commonality or at least an understanding of the multitude of FM approaches. This paper describes the development of the "Deep Space Robotic Fault Management Guidebook," which is intended to be the first of NASA's FM guidebooks. Its purpose is to be a field-guide for FM practitioners working on deep space robotic missions, as well as a planning tool for project managers. Publication of this Deep Space Robotic FM Guidebook is expected in early 2015. The guidebook will be posted on NASA's Engineering Network on the FM Community of Practice

  11. National Space Transportation System telemetry distribution and processing, NASA-JFK Space Center/Cape Canaveral

    Science.gov (United States)

    Jenkins, George

    1986-01-01

    Prelaunch, launch, mission, and landing distribution of RF and hardline uplink/downlink information between Space Shuttle Orbiter/cargo elements, tracking antennas, and control centers at JSC, KSC, MSFC, GSFC, ESMC/RCC, and Sunnyvale are presented as functional block diagrams. Typical mismatch problems encountered during spacecraft-to-project control center telemetry transmissions are listed along with new items for future support enhancement.

  12. EPCOT, NASA and plant pathogens in space.

    Science.gov (United States)

    White, R

    1996-01-01

    Cooperative work between NASA and Walt Disney World's EPCOT Land Pavilion is described. Joint efforts include research about allelopathy in multi-species plant cropping in CELSS, LEDs as light sources in hydroponic systems, and the growth of plant pathogens in space.

  13. Liquid Hydrogen Consumption During Space Shuttle Program

    Science.gov (United States)

    Partridge, Jonathan K.

    2011-01-01

    This slide presentation reviews the issue of liquid hydrogen consumption and the points of its loss in prior to the shuttle launch. It traces the movement of the fuel from the purchase to the on-board quantity and the loss that results in 54.6 of the purchased quantity being on board the Shuttle.

  14. The National Aeronautics and Space Administration (NASA)/Goddard Space Flight Center (GSFC) sounding-rocket program

    Science.gov (United States)

    Guidotti, J. G.

    1976-01-01

    An overall introduction to the NASA sounding rocket program as managed by the Goddard Space Flight Center is presented. The various sounding rockets, auxiliary systems (telemetry, guidance, etc.), launch sites, and services which NASA can provide are briefly described.

  15. Incipient failure detection of space shuttle main engine turbopump bearings using vibration envelope detection

    Science.gov (United States)

    Hopson, Charles B.

    1987-01-01

    The results of an analysis performed on seven successive Space Shuttle Main Engine (SSME) static test firings, utilizing envelope detection of external accelerometer data are discussed. The results clearly show the great potential for using envelope detection techniques in SSME incipient failure detection.

  16. 77 FR 4370 - NASA Advisory Council; Commercial Space Committee; Meeting

    Science.gov (United States)

    2012-01-27

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (12-006)] NASA Advisory Council; Commercial... meeting. SUMMARY: In accordance with the Federal Advisory Committee Act, Public Law 92-463, as amended, the National Aeronautics and Space Administration announces a meeting of the Commercial Space...

  17. 77 FR 20852 - NASA Advisory Council; Commercial Space Committee; Meeting

    Science.gov (United States)

    2012-04-06

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (12-027)] NASA Advisory Council; Commercial... Meeting. SUMMARY: In accordance with the Federal Advisory Committee Act, Public Law 92-463, as amended, the National Aeronautics and Space Administration announces a meeting of the Commercial Space...

  18. Engineering and Safety Partnership Enhances Safety of the Space Shuttle Program (SSP)

    Science.gov (United States)

    Duarte, Alberto

    2007-01-01

    Project Management must use the risk assessment documents (RADs) as tools to support their decision making process. Therefore, these documents have to be initiated, developed, and evolved parallel to the life of the project. Technical preparation and safety compliance of these documents require a great deal of resources. Updating these documents after-the-fact not only requires substantial increase in resources - Project Cost -, but this task is also not useful and perhaps an unnecessary expense. Hazard Reports (HRs), Failure Modes and Effects Analysis (FMEAs), Critical Item Lists (CILs), Risk Management process are, among others, within this category. A positive action resulting from a strong partnership between interested parties is one way to get these documents and related processes and requirements, released and updated in useful time. The Space Shuttle Program (SSP) at the Marshall Space Flight Center has implemented a process which is having positive results and gaining acceptance within the Agency. A hybrid Panel, with equal interest and responsibilities for the two larger organizations, Safety and Engineering, is the focal point of this process. Called the Marshall Safety and Engineering Review Panel (MSERP), its charter (Space Shuttle Program Directive 110 F, April 15, 2005), and its Operating Control Plan emphasizes the technical and safety responsibilities over the program risk documents: HRs; FMEA/CILs; Engineering Changes; anomalies/problem resolutions and corrective action implementations, and trend analysis. The MSERP has undertaken its responsibilities with objectivity, assertiveness, dedication, has operated with focus, and has shown significant results and promising perspectives. The MSERP has been deeply involved in propulsion systems and integration, real time technical issues and other relevant reviews, since its conception. These activities have transformed the propulsion MSERP in a truly participative and value added panel, making a

  19. Intentional Collaboration & Innovation Spaces at NASA

    Science.gov (United States)

    Scott, David W.

    2014-01-01

    Collaboration and Innovation (C&I) are extremely popular terms in corporate jargon, and institutions with reputations for creativity often have clever and fun spaces set aside for hatching ideas and developing products or services. In and of themselves, a room full of "collaboration furniture" and electronics can't make C&I happen, any more than oil makes a gas or diesel engine run. As with the engine, though, quality lubrication is a huge factor in the smooth operation, power, and longevity of C&I activity. This paper describes spaces deliberately set up at numerous NASA field centers to support collaborative and creative thinking and processes. (Sometimes support is not so much a matter of doing things to spark discussion as it is removing constraints imposed by traditional settings and making information sharing as easy as possible.) Some spaces are rooms or suites dedicated to C&I, with significant electronic support and/or intentional lack thereof (to emphasize the human element). Others are small, comfortable "roosting places" that invite conversations of opportunity. Descriptions include the sponsoring organization, underlying goals and philosophies, lessons learned, and opportunities to excel. There is discussion about how such areas might interconnect within centers, across NASA, and with external entities using current technology and what tools and approaches may be in our future.

  20. Space shuttle prototype check valve development

    Science.gov (United States)

    Tellier, G. F.

    1976-01-01

    Contaminant-resistant seal designs and a dynamically stable prototype check valve for the orbital maneuvering and reaction control helium pressurization systems of the space shuttle were developed. Polymer and carbide seal models were designed and tested. Perfluoroelastomers compatible with N2O4 and N2H4 types were evaluated and compared with Teflon in flat and captive seal models. Low load sealing and contamination resistance tests demonstrated cutter seal superiority over polymer seals. Ceramic and carbide materials were evaluated for N2O4 service using exposure to RFNA as a worst case screen; chemically vapor deposited tungsten carbide was shown to be impervious to the acid after 6 months immersion. A unique carbide shell poppet/cutter seat check valve was designed and tested to demonstrate low cracking pressure ( 2.0 psid), dynamic stability under all test bench flow conditions, contamination resistance (0.001 inch CRES wires cut with 1.5 pound seat load) and long life of 100,000 cycles (leakage 1.0 scc/hr helium from 0.1 to 400 psig).

  1. NASA Ames Sustainability Initiatives: Aeronautics, Space Exploration, and Sustainable Futures

    Science.gov (United States)

    Grymes, Rosalind A.

    2015-01-01

    In support of the mission-specific challenges of aeronautics and space exploration, NASA Ames produces a wealth of research and technology advancements with significant relevance to larger issues of planetary sustainability. NASA research on NexGen airspace solutions and its development of autonomous and intelligent technologies will revolutionize both the nation's air transporation systems and have applicability to the low altitude flight economy and to both air and ground transporation, more generally. NASA's understanding of the Earth as a complex of integrated systems contributes to humanity's perception of the sustainability of our home planet. Research at NASA Ames on closed environment life support systems produces directly applicable lessons on energy, water, and resource management in ground-based infrastructure. Moreover, every NASA campus is a 'city'; including an urbanscape and a workplace including scientists, human relations specialists, plumbers, engineers, facility managers, construction trades, transportation managers, software developers, leaders, financial planners, technologists, electricians, students, accountants, and even lawyers. NASA is applying the lessons of our mission-related activities to our urbanscapes and infrastructure, and also anticipates a leadership role in developing future environments for living and working in space.

  2. Variable Coding and Modulation Experiment Using NASA's Space Communication and Navigation Testbed

    Science.gov (United States)

    Downey, Joseph A.; Mortensen, Dale J.; Evans, Michael A.; Tollis, Nicholas S.

    2016-01-01

    National Aeronautics and Space Administration (NASA)'s Space Communication and Navigation Testbed on the International Space Station provides a unique opportunity to evaluate advanced communication techniques in an operational system. The experimental nature of the Testbed allows for rapid demonstrations while using flight hardware in a deployed system within NASA's networks. One example is variable coding and modulation, which is a method to increase data-throughput in a communication link. This paper describes recent flight testing with variable coding and modulation over S-band using a direct-to-earth link between the SCaN Testbed and the Glenn Research Center. The testing leverages the established Digital Video Broadcasting Second Generation (DVB-S2) standard to provide various modulation and coding options. The experiment was conducted in a challenging environment due to the multipath and shadowing caused by the International Space Station structure. Performance of the variable coding and modulation system is evaluated and compared to the capacity of the link, as well as standard NASA waveforms.

  3. H2O2 space shuttle APU

    Science.gov (United States)

    1975-01-01

    A cryogenic H2-O2 auxiliary power unit (APU) was developed and successfully demonstrated. It has potential application as a minimum weight alternate to the space shuttle baseline APU because of its (1) low specific propellant consumption and (2) heat sink capabilities that reduce the amount of expendable evaporants. A reference system was designed with the necessary heat exchangers, combustor, turbine-gearbox, valves, and electronic controls to provide 400 shp to two aircraft hydraulic pumps. Development testing was carried out first on the combustor and control valves. This was followed by development of the control subsystem including the controller, the hydrogen and oxygen control valves, the combustor, and a turbine simulator. The complete APU system was hot tested for 10 hr with ambient and cryogenic propellants. Demonstrated at 95 percent of design power was 2.25 lb/hp-hr. At 10 percent design power, specific propellant consumption was 4 lb/hp-hr with space simulated exhaust and 5.2 lb/hp-hr with ambient exhaust. A 10 percent specific propellant consumption improvement is possible with some seal modifications. It was demonstrated that APU power levels could be changed by several hundred horsepower in less than 100 msec without exceeding allowable turbine inlet temperatures or turbine speed.

  4. Hubble Space Telescope: Should NASA Proceed with a Servicing Mission?

    National Research Council Canada - National Science Library

    Morgan, Daniel

    2006-01-01

    The National Aeronautics and Space Administration (NASA) estimates that without a servicing mission to replace key components, the Hubble Space Telescope will cease scientific operations in 2008 instead of 2010...

  5. Food and waste management biotechnology for the space shuttle

    Science.gov (United States)

    Murray, R. W.; Schelkopf, J. D.; Hunt, S. R.; Sauer, R. L.

    1979-01-01

    Space-crew facilities for preparation, eating, personal hygiene and waste management are contained in one small area of the Shuttle Orbiter Mid-Deck, all the functional systems being interconnected. The paper discusses three major systems: (1) the Galley, which includes the personal hygiene station and food packages; (2) the Waste Collector, which includes provisions for male and female users, urine, feces and emesis collection in both a normal and contigency mode of operation; and (3) Biowaste Monitoring, which includes mass measurement and sampling. The technology improvement continues by assuring that the Orbiter systems have sufficient design flexibility to permit later improvements in operation and in function.

  6. NASA Space Life Sciences

    Science.gov (United States)

    Hayes, Judith

    2009-01-01

    This slide presentation reviews the requirements that NASA has for the medical service of a crew returning to earth after long duration space flight. The scenarios predicate a water landing. Two scenarios are reviewed that outline the ship-board medical operations team and the ship board science reseach team. A schedule for the each crew upon landing is posited for each of scenarios. The requirement for a heliport on board the ship is reviewed and is on the requirement for a helicopter to return the Astronauts to the Baseline Data Collection Facility (BDCF). The ideal is to integrate the medical and science requirements, to minimize the risks and Inconveniences to the returning astronauts. The medical support that is required for all astronauts returning from long duration space flight (30 days or more) is reviewed. The personnel required to support the team is outlined. The recommendations for medical operations and science research for crew support are stated.

  7. Actuation and system design and evaluation OMS engine shutoff valve, Volume 1. [space shuttles

    Science.gov (United States)

    Dunn, V. B.

    1975-01-01

    A technology program was conducted to identify and verify the optimum valve and actuation system concept for the Space Shuttle Orbit Maneuvering System engine. Of major importance to the valve and actuation system selection was the ten-year, 100-mission, 10,000-cycle life requirement, while maintaining high reliability, low leakage, and low weight. Valve and actuation system concepts were comparatively evaluated against past valve failure reports and potential failure modes due to the shuttle mission profile to aid in the selection of the most optimum concept for design, manufacture and verification testing. Two valve concepts were considered during the preliminary design stage; i.e., the moving seat and lifting ball. Two actuation systems were manufactured and tested. Test results demonstrate the viability of a lifting ball concept as well as the applicability of an ac motor actuation system to best meet the requirements of the shuttle mission.

  8. NASA Space Launch System Operations Outlook

    Science.gov (United States)

    Hefner, William Keith; Matisak, Brian P.; McElyea, Mark; Kunz, Jennifer; Weber, Philip; Cummings, Nicholas; Parsons, Jeremy

    2014-01-01

    The National Aeronautics and Space Administration's (NASA) Space Launch System (SLS) Program, managed at the Marshall Space Flight Center (MSFC), is working with the Ground Systems Development and Operations (GSDO) Program, based at the Kennedy Space Center (KSC), to deliver a new safe, affordable, and sustainable capability for human and scientific exploration beyond Earth's orbit (BEO). Larger than the Saturn V Moon rocket, SLS will provide 10 percent more thrust at liftoff in its initial 70 metric ton (t) configuration and 20 percent more in its evolved 130-t configuration. The primary mission of the SLS rocket will be to launch astronauts to deep space destinations in the Orion Multi- Purpose Crew Vehicle (MPCV), also in development and managed by the Johnson Space Center. Several high-priority science missions also may benefit from the increased payload volume and reduced trip times offered by this powerful, versatile rocket. Reducing the lifecycle costs for NASA's space transportation flagship will maximize the exploration and scientific discovery returned from the taxpayer's investment. To that end, decisions made during development of SLS and associated systems will impact the nation's space exploration capabilities for decades. This paper will provide an update to the operations strategy presented at SpaceOps 2012. It will focus on: 1) Preparations to streamline the processing flow and infrastructure needed to produce and launch the world's largest rocket (i.e., through incorporation and modification of proven, heritage systems into the vehicle and ground systems); 2) Implementation of a lean approach to reach-back support of hardware manufacturing, green-run testing, and launch site processing and activities; and 3) Partnering between the vehicle design and operations communities on state-of-the-art predictive operations analysis techniques. An example of innovation is testing the integrated vehicle at the processing facility in parallel, rather than

  9. Space Product Development: Bringing the Benefits of Space Down to Earth

    Science.gov (United States)

    Allen, Rosalie W.; Tygielski, Andrew; Gabris, Edward A.

    1997-01-01

    The newly developed microgravity Research Program Office was created to consolidate and integrate NASA's microgravity research efforts, comprised of the microgravity Science and Applications Program and Space Product Development Program. This resulted in an integrated agency program serving the science and industrial research communities, providing leadership, management, direction and overview of all agency microgravity research activities. This paper provides an overview of NASA's microgravity Research Program, with particular emphasis on the Space Product Development Program activities, the potential economic impact and quality of life improvements resulting from this research, and future plans for commercial microgravity research in space. The goal of the Space Product Development Program is to facilitate the use of space for commercial products and services. The unique attributes of space are exploited to conduct industry driven research in the areas of crystallography, bio-systems, agriculture, electronic and non-electronic materials. Industry uses the knowledge gained from focused space research to create new products and processes, to gain economic competitive advantages, to create new jobs and improve the quality of life on earth. The objectives of the program are implemented through NASA's Commercial Space Centers, non-profit consortia of industry, academia and government, that provide the mechanism for communication and technical expert exchange between NASA and industry. Over 200 commercial research activities have been conducted by the Commercial Space Centers and their industrial affiliates over the last four and one-half years during Space Shuttle mission, as well as sounding rocket flights. The results of this research will have a significant impact on competitive products, jobs and quality of life improvements.

  10. Recent Successes and Future Plans for NASA's Space Communications and Navigation Testbed on the International Space Station

    Science.gov (United States)

    Reinhart, Richard C.; Sankovic, John M.; Johnson, Sandra K.; Lux, James P.; Chelmins, David T.

    2014-01-01

    Flexible and extensible space communications architectures and technology are essential to enable future space exploration and science activities. NASA has championed the development of the Space Telecommunications Radio System (STRS) software defined radio (SDR) standard and the application of SDR technology to reduce the costs and risks of using SDRs for space missions, and has developed an on-orbit testbed to validate these capabilities. The Space Communications and Navigation (SCaN) Testbed (previously known as the Communications, Navigation, and Networking reConfigurable Testbed (CoNNeCT)) is advancing SDR, on-board networking, and navigation technologies by conducting space experiments aboard the International Space Station. During its first year(s) on-orbit, the SCaN Testbed has achieved considerable accomplishments to better understand SDRs and their applications. The SDR platforms and software waveforms on each SDR have over 1500 hours of operation and are performing as designed. The Ka-band SDR on the SCaN Testbed is NASAs first space Ka-band transceiver and is NASA's first Ka-band mission using the Space Network. This has provided exciting opportunities to operate at Ka-band and assist with on-orbit tests of NASA newest Tracking and Data Relay Satellites (TDRS). During its first year, SCaN Testbed completed its first on-orbit SDR reconfigurations. SDR reconfigurations occur when implementing new waveforms on an SDR. SDR reconfigurations allow a radio to change minor parameters, such as data rate, or complete functionality. New waveforms which provide new capability and are reusable across different missions provide long term value for reconfigurable platforms such as SDRs. The STRS Standard provides guidelines for new waveform development by third parties. Waveform development by organizations other than the platform provider offers NASA the ability to develop waveforms itself and reduce its dependence and costs on the platform developer. Each of these

  11. A densitometric analysis of IIaO film flown aboard the space shuttle transportation system STS #3, 7, and 8

    Science.gov (United States)

    Hammond, Ernest C., Jr.

    1989-01-01

    Since the United States of America is moving into an age of reusable space vehicles, both electronic and photographic materials will continue to be an integral part of the recording techniques available. Film as a scientifically viable recording technique in astronomy is well documented. There is a real need to expose various types of films to the Shuttle environment. Thus, the main objective was to look at the subtle densitometric changes of canisters of IIaO film that was placed aboard the Space Shuttle 3 (STS-3).

  12. Public views evening engine test of a Space Shuttle Main Engine

    Science.gov (United States)

    2001-01-01

    Over the past year, more than 20,000 people came to Stennis Space Center to witness the 'shake, rattle and roar' of one of the world's most sophisticated engines. Stennis Space Center in south Mississippi is NASA's lead center for rocket propulsion testing. StenniSphere, the visitor center for Stennis Space Center, hosted more than 250,000 visitors in its first year of operation. Of those visitors, 26.4 percent were from Louisiana.

  13. Waste management in space: a NASA symposium. Special issue

    Science.gov (United States)

    Wydeven, T. (Principal Investigator)

    1991-01-01

    This special issue contains papers from the NASA Symposium on Waste Processing for Advanced Life Support, which was held at NASA Ames Research Center on September 11-13, 1990. Specialists in waste management from academia, government, and industry convened to exchange ideas and advise NASA in developing effective methods for waste management in a Controlled Ecological Life Support System (CELSS). Innovative and well-established methods were presented to assist in developing and managing wastes in closed systems for future long-duration space missions, especially missions to Mars.

  14. Ground Robotic Hand Applications for the Space Program study (GRASP)

    Science.gov (United States)

    Grissom, William A.; Rafla, Nader I. (Editor)

    1992-01-01

    This document reports on a NASA-STDP effort to address research interests of the NASA Kennedy Space Center (KSC) through a study entitled, Ground Robotic-Hand Applications for the Space Program (GRASP). The primary objective of the GRASP study was to identify beneficial applications of specialized end-effectors and robotic hand devices for automating any ground operations which are performed at the Kennedy Space Center. Thus, operations for expendable vehicles, the Space Shuttle and its components, and all payloads were included in the study. Typical benefits of automating operations, or augmenting human operators performing physical tasks, include: reduced costs; enhanced safety and reliability; and reduced processing turnaround time.

  15. Hydrogen disposal investigation for the Space Shuttle launch complex at Vandenberg Air Force Base

    Science.gov (United States)

    Breit, Terry J.; Elliott, George

    1987-01-01

    The concern of an overpressure condition on the aft end of the Space Shuttle caused by ignition of unburned hydrogen being trapped in the Space Shuttle Main Engine exhaust duct at the Vandenberg AFB launch complex has been investigated for fifteen months. Approximately twenty-five concepts have been reviewed, with four concepts being thoroughly investigated. The four concepts investigated were hydrogen burnoff ignitors (ignitors located throughout the exhaust duct to continuously ignite any unburned hydrogen), jet mixing (utilizing large volumes of high pressure air to ensure complete combustion of the hydrogen), steam inert (utilizing flashing hot water to inert the duct with steam) and open duct concept (design an open duct or above grade J-deflector to avoid trapping hydrogen gas). Extensive studies, analyses and testing were performed at six test sites with technical support from twenty-two major organizations. In December 1986, the Air Force selected the steam inert concept to be utilized at the Vandenberg launch complex and authorized the design effort.

  16. Modal survey testing of the Lidar In-space Technology Experiment (LITE) - A Space Shuttle payload

    Science.gov (United States)

    Anderson, J. B.; Coleman, A. D.; Driskill, T. C.; Lindell, M. C.

    This paper presents the results of the modal survey test of the Lidar In-space Technology Experiment (LITE), a Space Shuttle payload mounted in a Spacelab flight single pallet. The test was performed by the Dynamics Test Branch at Marshall Space Flight Center, AL and run in two phases. In the first phase, an unloaded orthogrid connected to the pallet with 52 tension struts was tested. This test included 73 measurement points in three directions. In the second phase, the pallet was integrated with mass simulators mounted on the flight support structure to represent the dynamics (weight and center of gravity) of the various components comprising the LITE experiment and instrumented at 213 points in 3 directions. The test article was suspended by an air bag system to simulate a free-free boundary condition. This paper presents the results obtained from the testing and analytical model correlation efforts. The effect of the suspension system on the test article is also discussed.

  17. Study of solid rocket motor for space shuttle booster, volume 2, book 1

    Science.gov (United States)

    1972-01-01

    The technical requirements for the solid propellant rocket engine to be used with the space shuttle orbiter are presented. The subjects discussed are: (1) propulsion system definition, (2) solid rocket engine stage design, (3) solid rocket engine stage recovery, (4) environmental effects, (5) manrating of the solid rocket engine stage, (6) system safety analysis, and (7) ground support equipment.

  18. NASA Astronauts on Soyuz: Experience and Lessons for the Future

    Science.gov (United States)

    2010-01-01

    The U. S., Russia, and, China have each addressed the question of human-rating spacecraft. NASA's operational experience with human-rating primarily resides with Mercury, Gemini, Apollo, Space Shuttle, and International Space Station. NASA s latest developmental experience includes Constellation, X38, X33, and the Orbital Space Plane. If domestic commercial crew vehicles are used to transport astronauts to and from space, Soyuz is another example of methods that could be used to human-rate a spacecraft and to work with commercial spacecraft providers. For Soyuz, NASA's normal assurance practices were adapted. Building on NASA's Soyuz experience, this report contends all past, present, and future vehicles rely on a range of methods and techniques for human-rating assurance, the components of which include: requirements, conceptual development, prototype evaluations, configuration management, formal development reviews (safety, design, operations), component/system ground-testing, integrated flight tests, independent assessments, and launch readiness reviews. When constraints (cost, schedule, international) limit the depth/breadth of one or more preferred assurance means, ways are found to bolster the remaining areas. This report provides information exemplifying the above safety assurance model for consideration with commercial or foreign-government-designed spacecraft. Topics addressed include: U.S./Soviet-Russian government/agency agreements and engineering/safety assessments performed with lessons learned in historic U.S./Russian joint space ventures

  19. An overview of Space Shuttle anthropometry and biomechanics research with emphasis on STS/Mir recumbent seat system design

    Science.gov (United States)

    Klute, Glenn K.; Stoycos, Lara E.

    1994-01-01

    The Anthropometry and Biomechanics Laboratory (ABL) at JSC conducts multi-disciplinary research focusing on maximizing astronaut intravehicular (IVA) and extravehicular (EVA) capabilities to provide the most effective work conditions for manned space flight and exploration missions. Biomechanics involves the measurement and modeling of the strength characteristics of the human body. Current research for the Space Shuttle Program includes the measurement of torque wrench capability during weightlessness, optimization of foot restraint, and hand hold placement, measurements of the strength and dexterity of the pressure gloved hand to improve glove design, quantification of the ability to move and manipulate heavy masses (6672 N or 1500 lb) in weightlessness, and verification of the capability of EVA crewmembers to perform Hubble Space Telescope repair tasks. Anthropometry is the measurement and modeling of the dimensions of the human body. Current research for the Space Shuttle Program includes the measurement of 14 anthropometric parameters of every astronaut candidate, identification of EVA finger entrapment hazards by measuring the dimensions of the gloved hand, definition of flight deck reach envelopes during launch and landing accelerations, and measurement of anthropometric design parameters for the recumbent seat system required for the Shuttle/Mir mission (STS-71, Spacelab M) scheduled for Jun. 1995.

  20. Characterization of Space Shuttle Thermal Protection System (TPS) Materials for Return-to-Flight following the Shuttle Columbia Accident Investigation

    Science.gov (United States)

    Wingard, Doug

    2006-01-01

    During the Space Shuttle Columbia Accident Investigation, it was determined that a large chunk of polyurethane insulating foam (= 1.67 lbs) on the External Tank (ET) came loose during Columbia's ascent on 2-1-03. The foam piece struck some of the protective Reinforced Carbon-Carbon (RCC) panels on the leading edge of Columbia's left wing in the mid-wing area. This impact damaged Columbia to the extent that upon re-entry to Earth, superheGed air approaching 3,000 F caused the vehicle to break up, killing all seven astronauts on board. A paper after the Columbia Accident Investigation highlighted thermal analysis testing performed on External Tank TPS materials (1). These materials included BX-250 (now BX-265) rigid polyurethane foam and SLA-561 Super Lightweight Ablator (highly-filled silicone rubber). The large chunk of foam from Columbia originated fiom the left bipod ramp of the ET. The foam in this ramp area was hand-sprayed over the SLA material and various fittings, allowed to dry, and manually shaved into a ramp shape. In Return-to-Flight (RTF) efforts following Columbia, the decision was made to remove the foam in the bipod ramp areas. During RTF efforts, further thermal analysis testing was performed on BX-265 foam by DSC and DMA. Flat panels of foam about 2-in. thick were sprayed on ET tank material (aluminum alloys). The DSC testing showed that foam material very close to the metal substrate cured more slowly than bulk foam material. All of the foam used on the ET is considered fully cured about 21 days after it is sprayed. The RTF culminated in the successful launch of Space Shuttle Discovery on 7-26-05. Although the flight was a success, there was another serious incident of foam loss fiom the ET during Shuttle ascent. This time, a rather large chunk of BX-265 foam (= 0.9 lbs) came loose from the liquid hydrogen (LH2) PAL ramp, although the foam did not strike the Shuttle Orbiter containing the crew. DMA testing was performed on foam samples taken fiom

  1. Observation of the exhaust plume from the space shuttle main engines using the microwave limb sounder

    Directory of Open Access Journals (Sweden)

    H. C. Pumphrey

    2011-01-01

    Full Text Available A space shuttle launch deposits 700 tonnes of water in the atmosphere. Some of this water is released into the upper mesosphere and lower thermosphere where it may be directly detected by a limb sounding satellite instrument. We report measurements of water vapour plumes from shuttle launches made by the Microwave Limb Sounder (MLS on the Aura satellite. Approximately 50%–65% of shuttle launches are detected by MLS. The signal appears at a similar level across the upper 10 km of the MLS limb scan, suggesting that the bulk of the observed water is above the top of the scan. Only a small fraction at best of smaller launches (Ariane 5, Proton are detected. We conclude that the sensitivity of MLS is only just great enough to detect a shuttle sized launch, but that a suitably designed instrument of the same general type could detect the exhausts from a large proportion of heavy-lift launches.

  2. NASA rocket launches student project into space

    OpenAIRE

    Crumbley, Liz

    2005-01-01

    A project that began in 2002 will culminate at sunrise on Tuesday, March 15, when a team of Virginia Tech engineering students watch a payload section they designed lift off aboard a sounding rocket from a launch pad at NASA's Wallops Island Flight Facility and travel 59 miles into space.

  3. Dossier space travel. Nuclear fuel shuttle; Dossier ruimtevaart. Splijtstofshuttle

    Energy Technology Data Exchange (ETDEWEB)

    Klomp, H.

    2011-03-11

    The space shuttle will be making its last flight this year, but a successor has not yet been arranged. All alternatives that were reviewed by the American government in the last decades have in common that they use chemical combustion as means of propulsion. A serious next step in human spaceflight requires a more sturdy propulsion system: atomic explosions. [Dutch] De spaceshuttle maakt dit jaar zijn laatste vlucht, maar een opvolger is er nog niet. Alle alternatieven die de Amerikaanse overheid de afgelopen decennia de revue heeft laten passeren, hebben gemeen dat ze als stuwmiddel gebruikmaken van chemische verbranding. Voor een serieuze stap voorwaarts in de bemande ruimtevaart is een steviger voortstuwingssysteem nodig: atoomexplosies.

  4. Computerized Machine for Cutting Space Shuttle Thermal Tiles

    Science.gov (United States)

    Ramirez, Luis E.; Reuter, Lisa A.

    2009-01-01

    A report presents the concept of a machine aboard the space shuttle that would cut oversized thermal-tile blanks to precise sizes and shapes needed to replace tiles that were damaged or lost during ascent to orbit. The machine would include a computer-controlled jigsaw enclosed in a clear acrylic shell that would prevent escape of cutting debris. A vacuum motor would collect the debris into a reservoir and would hold a tile blank securely in place. A database stored in the computer would contain the unique shape and dimensions of every tile. Once a broken or missing tile was identified, its identification number would be entered into the computer, wherein the cutting pattern associated with that number would be retrieved from the database. A tile blank would be locked into a crib in the machine, the shell would be closed (proximity sensors would prevent activation of the machine while the shell was open), and a "cut" command would be sent from the computer. A blade would be moved around the crib like a plotter, cutting the tile to the required size and shape. Once the tile was cut, an astronaut would take a space walk for installation.

  5. Images of Earth and Space: The Role of Visualization in NASA Science

    Science.gov (United States)

    1996-01-01

    Fly through the ocean at breakneck speed. Tour the moon. Even swim safely in the boiling sun. You can do these things and more in a 17 minute virtual journey through Earth and space. The trek is by way of colorful scientific visualizations developed by the NASA/Goddard Space Flight Center's Scientific Visualization Studio and the NASA HPCC Earth and Space Science Project investigators. Various styles of electronic music and lay-level narration provide the accompaniment.

  6. NASA Crew and Cargo Launch Vehicle Development Approach Builds on Lessons from Past and Present Missions

    Science.gov (United States)

    Dumbacher, Daniel L.

    2006-01-01

    The United States (US) Vision for Space Exploration, announced in January 2004, outlines the National Aeronautics and Space Administration's (NASA) strategic goals and objectives, including retiring the Space Shuttle and replacing it with new space transportation systems for missions to the Moon, Mars, and beyond. The Crew Exploration Vehicle (CEV) that the new human-rated Crew Launch Vehicle (CLV) lofts into space early next decade will initially ferry astronauts to the International Space Station (ISS) Toward the end of the next decade, a heavy-lift Cargo Launch Vehicle (CaLV) will deliver the Earth Departure Stage (EDS) carrying the Lunar Surface Access Module (LSAM) to low-Earth orbit (LEO), where it will rendezvous with the CEV launched on the CLV and return astronauts to the Moon for the first time in over 30 years. This paper outlines how NASA is building these new space transportation systems on a foundation of legacy technical and management knowledge, using extensive experience gained from past and ongoing launch vehicle programs to maximize its design and development approach, with the objective of reducing total life cycle costs through operational efficiencies such as hardware commonality. For example, the CLV in-line configuration is composed of a 5-segment Reusable Solid Rocket Booster (RSRB), which is an upgrade of the current Space Shuttle 4- segment RSRB, and a new upper stage powered by the liquid oxygen/liquid hydrogen (LOX/LH2) J-2X engine, which is an evolution of the J-2 engine that powered the Apollo Program s Saturn V second and third stages in the 1960s and 1970s. The CaLV configuration consists of a propulsion system composed of two 5-segment RSRBs and a 33- foot core stage that will provide the LOX/LED needed for five commercially available RS-68 main engines. The J-2X also will power the EDS. The Exploration Launch Projects, managed by the Exploration Launch Office located at NASA's Marshall Space Flight Center, is leading the design

  7. A Bioinformatics Facility for NASA

    Science.gov (United States)

    Schweighofer, Karl; Pohorille, Andrew

    2006-01-01

    Building on an existing prototype, we have fielded a facility with bioinformatics technologies that will help NASA meet its unique requirements for biological research. This facility consists of a cluster of computers capable of performing computationally intensive tasks, software tools, databases and knowledge management systems. Novel computational technologies for analyzing and integrating new biological data and already existing knowledge have been developed. With continued development and support, the facility will fulfill strategic NASA s bioinformatics needs in astrobiology and space exploration. . As a demonstration of these capabilities, we will present a detailed analysis of how spaceflight factors impact gene expression in the liver and kidney for mice flown aboard shuttle flight STS-108. We have found that many genes involved in signal transduction, cell cycle, and development respond to changes in microgravity, but that most metabolic pathways appear unchanged.

  8. Shuttle SBUV (SSBUV) Solar Spectral Irradiance V008

    Data.gov (United States)

    National Aeronautics and Space Administration — The Shuttle Solar Backscatter Ultraviolet (SSBUV) level-2 irradiance data are available for eight space shuttle missions flown between 1989 and 1996. SSBUV, a...

  9. Adaptive Coding and Modulation Experiment With NASA's Space Communication and Navigation Testbed

    Science.gov (United States)

    Downey, Joseph; Mortensen, Dale; Evans, Michael; Briones, Janette; Tollis, Nicholas

    2016-01-01

    National Aeronautics and Space Administration (NASA)'s Space Communication and Navigation Testbed is an advanced integrated communication payload on the International Space Station. This paper presents results from an adaptive coding and modulation (ACM) experiment over S-band using a direct-to-earth link between the SCaN Testbed and the Glenn Research Center. The testing leverages the established Digital Video Broadcasting Second Generation (DVB-S2) standard to provide various modulation and coding options, and uses the Space Data Link Protocol (Consultative Committee for Space Data Systems (CCSDS) standard) for the uplink and downlink data framing. The experiment was conducted in a challenging environment due to the multipath and shadowing caused by the International Space Station structure. Several approaches for improving the ACM system are presented, including predictive and learning techniques to accommodate signal fades. Performance of the system is evaluated as a function of end-to-end system latency (round-trip delay), and compared to the capacity of the link. Finally, improvements over standard NASA waveforms are presented.

  10. Object oriented fault diagnosis system for space shuttle main engine redlines

    Science.gov (United States)

    Rogers, John S.; Mohapatra, Saroj Kumar

    1990-01-01

    A great deal of attention has recently been given to Artificial Intelligence research in the area of computer aided diagnostics. Due to the dynamic and complex nature of space shuttle red-line parameters, a research effort is under way to develop a real time diagnostic tool that will employ historical and engineering rulebases as well as a sensor validity checking. The capability of AI software development tools (KEE and G2) will be explored by applying object oriented programming techniques in accomplishing the diagnostic evaluation.

  11. A study of space shuttle energy management, approach and landing analysis

    Science.gov (United States)

    Morth, R.

    1973-01-01

    The steering system of the space shuttle vehicle is presented for the several hundred miles of flight preceding landing. The guidance scheme is characterized by a spiral turn to dissipate excess potential energy (altitude) prior to a standard straight-in final approach. In addition, the system features pilot oriented control, drag brakes, phugoid damping, and a navigational capacity founded upon an inertial measurement unit and an on-board computer. Analytic formulas are used to calculate, represent, and insure the workability of the system's specifications

  12. TDRSS S-shuttle unique receiver equipment

    Science.gov (United States)

    Weinberg, A.; Schwartz, J. J.; Spearing, R.

    1985-01-01

    Beginning with STS-9, the Tracking and Date Relay Satellite system (TDRSS) will start providing S- and Ku-band communications and tracking support to the Space Shuttle and its payloads. The most significant element of this support takes place at the TDRSS White Sands Ground Terminal, which processes the Shuttle return link S- and Ku-band signals. While Ku-band hardware available to other TDRSS users is also applied to Ku-Shuttle, stringent S-Shuttle link margins have precluded the application of the standard TDRSS S-band processing equipment to S-Shuttle. It was therfore found necessary to develop a unique S-Shuttle Receiver that embodies state-of-the-art digital technology and processing techniques. This receiver, developed by Motorola, Inc., enhances link margins by 1.5 dB relative to the standard S-band equipment and its bit error rate performance is within a few tenths of a dB of theory. An overview description of the Space Shuttle Receiver Equipment (SSRE) is presented which includes the presentation of block diagrams and salient design features. Selected, measured performance results are also presented.

  13. Space Rose Pleases the Senses

    Science.gov (United States)

    2002-01-01

    International Flavors and Fragrances (IFF), Inc., discovered a new scent by flying a miniature rose plant aboard NASA's Space Shuttle Discovery Flight STS-95. IFF and the Wisconsin Center for Space Automation and Robotics (WCSAR) partnered to fly the rose plant in the commercial plant research facility, ASTROCULTURE(TM), for reduced-gravity environment research. IFF commercialized the space rose note, which is now a fragrance ingredient in a perfume developed by Shiseido Cosmetics (America), Ltd. In addition to providing a light crisp scent, the oil from the space rose can also serve as a flavor enhancer. ASTROCULTURE(TM) is a trademark of the Wisconsin Center for Space Automation and Robotics.

  14. 75 FR 51852 - NASA International Space Station Advisory Committee; Meeting

    Science.gov (United States)

    2010-08-23

    .... Donald Miller, Office of International and Interagency Relations, (202) 358-1527, National Aeronautics... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-090)] NASA International Space Station... meeting. SUMMARY: In accordance with the Federal Advisory Committee Act, Public Law 92-463, as amended...

  15. The JOVE initiative - A NASA/university Joint Venture in space science

    Science.gov (United States)

    Six, F.; Chappell, R.

    1990-01-01

    The JOVE (NASA/university Joint Venture in space science) initiative is a point program between NASA and institutions of higher education whose aim is to bring about an extensive merger between these two communities. The project is discussed with emphasis on suggested contributions of partnership members, JOVE process timeline, and project schedules and costs. It is suggested that NASA provide a summer resident research associateship (one ten week stipend); scientific on-line data from space missions; an electronic network and work station, providing a link to the data base and to other scientists; matching student support, both undergraduate and graduate; matching summer salary for up to three faculty participants; and travel funds. The universities will be asked to provide research time for faculty participants, matching student support, matching summer salary for faculty participants, an instructional unit in space science, and an outreach program to pre-college students.

  16. Space Missions for Automation and Robotics Technologies (SMART) Program

    Science.gov (United States)

    Cliffone, D. L.; Lum, H., Jr.

    1985-01-01

    NASA is currently considering the establishment of a Space Mission for Automation and Robotics Technologies (SMART) Program to define, develop, integrate, test, and operate a spaceborne national research facility for the validation of advanced automation and robotics technologies. Initially, the concept is envisioned to be implemented through a series of shuttle based flight experiments which will utilize telepresence technologies and real time operation concepts. However, eventually the facility will be capable of a more autonomous role and will be supported by either the shuttle or the space station. To ensure incorporation of leading edge technology in the facility, performance capability will periodically and systematically be upgraded by the solicitation of recommendations from a user advisory group. The facility will be managed by NASA, but will be available to all potential investigators. Experiments for each flight will be selected by a peer review group. Detailed definition and design is proposed to take place during FY 86, with the first SMART flight projected for FY 89.

  17. Space shuttle orbital maneuvering engine platelet injector program

    Science.gov (United States)

    1975-01-01

    A platelet-face injector for the fully reusable orbit maneuvering system OMS on the space shuttle was evaluated as a means of obtaining additional design margin and low cost. Performance, heat transfer, and combustion stability were evaluated over the anticipated range of OMS operating conditions. The effects of acoustic cavity configuration on combustion stability, including cavity depth, open area, inlet contour, and other parameters, were investigated using sea level bomb tests. Prototype injector and chamber behavior was evaluated for a variety of conditions; these tests examined the effects of film cooling, helium saturated propellants, chamber length, inlet conditions, and operating point, on performance, heat transfer and engine transient behavior. Helium bubble ingestion into both propellant circuits was investigated, as was chugging at low pressure operation, and hot and cold engine restart with and without a purge.

  18. Space shuttle OMS helium regulator design and development

    Science.gov (United States)

    Wichmann, H.; Kelly, T. L.; Lynch, R.

    1974-01-01

    Analysis, design, fabrication and design verification testing was conducted on the technological feasiblity of the helium pressurization regulator for the space shuttle orbital maneuvering system application. A prototype regulator was fabricated which was a single-stage design featuring the most reliable and lowest cost concept. A tradeoff study on regulator concepts indicated that a single-stage regulator with a lever arm between the valve and the actuator section would offer significant weight savings. Damping concepts were tested to determine the amount of damping required to restrict actuator travel during vibration. Component design parameters such as spring rates, effective area, contamination cutting, and damping were determined by test prior to regulator final assembly. The unit was subjected to performance testing at widely ranging flow rates, temperatures, inlet pressures, and random vibration levels. A test plan for propellant compatibility and extended life tests is included.

  19. Tissue grown in space in NASA Bioreactor

    Science.gov (United States)

    2001-01-01

    Dr. Lisa E. Freed of the Massachusetts Institute of Technology and her colleagues have reported that initially disc-like specimens tend to become spherical in space, demonstrating that tissues can grow and differentiate into distinct structures in microgravity. The Mir Increment 3 (Sept. 16, 1996 - Jan. 22, 1997) samples were smaller, more spherical, and mechanically weaker than Earth-grown control samples. These results demonstrate the feasibility of microgravity tissue engineering and may have implications for long human space voyages and for treating musculoskeletal disorders on earth. Final samples from Mir and Earth appeared histologically cartilaginous throughout their entire cross sections (5-8 mm thick), with the exception of fibrous outer capsules. Constructs grown on Earth (A) appeared to have a more organized extracellular matrix with more uniform collagen orientation as compared with constructs grown on Mir (B), but the average collagen fiber diameter was similar in the two groups (22 +- 2 nm) and comparable to that previously reported for developing articular cartilage. Randomly oriented collagen in Mir samples would be consistent with previous reports that microgravity disrupts fibrillogenesis. These are transmission electron micrographs of constructs from Mir (A) and Earth (B) groups at magnifications of x3,500 and x120,000 (Inset). The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Credit: Proceedings of the National Academy of Sciences.

  20. Nanomaterials Work at NASA-Johnson Space Center

    Science.gov (United States)

    Arepalli, Sivaram

    2005-01-01

    Nanomaterials activities at NASA-Johnson Space Center focus on single wall carbon nanotube production, characterization and their applications for aerospace. Nanotubes are produced by arc and laser methods and the growth process is monitored by in-situ diagnostics using time resolved passive emission and laser induced fluorescence of the active species. Parametric study of both these processes are conducted to monitor the effect of production parameters including temperature, buffer gas, flow rate, pressure, laser fluence and arc current. Characterization of the nanotube material is performed using the NASA-JSC protocol developed by combining analytical techniques of SEM, TEM, UV-VIS-NIR absorption, Raman, and TGA. Efforts at JSC over the past five years in composites have centered on structural polymernanotube systems. Recent activities broadened this focus to multifunctional materials, supercapacitors, fuel cells, regenerable CO2 absorbers, electromagnetic shielding, radiation dosimetry and thermal management systems of interest for human space flight. Preliminary tests indicate improvement of performance in most of these applications because of the large surface area as well as high conductivity exhibited by SWCNTs.

  1. NASA's Space Launch System: An Enabling Capability for International Exploration

    Science.gov (United States)

    Creech, Stephen D.; May, Todd A.; Robinson, Kimberly F.

    2014-01-01

    As the program moves out of the formulation phase and into implementation, work is well underway on NASA's new Space Launch System, the world's most powerful launch vehicle, which will enable a new era of human exploration of deep space. As assembly and testing of the rocket is taking place at numerous sites around the United States, mission planners within NASA and at the agency's international partners continue to evaluate utilization opportunities for this ground-breaking capability. Developed with the goals of safety, affordability, and sustainability in mind, the SLS rocket will launch the Orion Multi-Purpose Crew Vehicle (MPCV), equipment, supplies, and major science missions for exploration and discovery. NASA is developing this new capability in an austere economic climate, a fact which has inspired the SLS team to find innovative solutions to the challenges of designing, developing, fielding, and operating the largest rocket in history, via a path that will deliver an initial 70 metric ton (t) capability in December 2017 and then continuing through an incremental evolutionary strategy to reach a full capability greater than 130 t. SLS will be enabling for the first missions of human exploration beyond low Earth in almost half a century, and from its first crewed flight will be able to carry humans farther into space than they have ever voyaged before. In planning for the future of exploration, the International Space Exploration Coordination Group, representing 12 of the world's space agencies, has created the Global Exploration Roadmap, which outlines paths toward a human landing on Mars, beginning with capability-demonstrating missions to the Moon or an asteroid. The Roadmap and corresponding NASA research outline the requirements for reference missions for these destinations. SLS will offer a robust way to transport international crews and the air, water, food, and equipment they would need for such missions.

  2. NASA FDL: Accelerating Artificial Intelligence Applications in the Space Sciences.

    Science.gov (United States)

    Parr, J.; Navas-Moreno, M.; Dahlstrom, E. L.; Jennings, S. B.

    2017-12-01

    NASA has a long history of using Artificial Intelligence (AI) for exploration purposes, however due to the recent explosion of the Machine Learning (ML) field within AI, there are great opportunities for NASA to find expanded benefit. For over two years now, the NASA Frontier Development Lab (FDL) has been at the nexus of bright academic researchers, private sector expertise in AI/ML and NASA scientific problem solving. The FDL hypothesis of improving science results was predicated on three main ideas, faster results could be achieved through sprint methodologies, better results could be achieved through interdisciplinarity, and public-private partnerships could lower costs We present select results obtained during two summer sessions in 2016 and 2017 where the research was focused on topics in planetary defense, space resources and space weather, and utilized variational auto encoders, bayesian optimization, and deep learning techniques like deep, recurrent and residual neural networks. The FDL results demonstrate the power of bridging research disciplines and the potential that AI/ML has for supporting research goals, improving on current methodologies, enabling new discovery and doing so in accelerated timeframes.

  3. In-Space Propulsion Technology Products for NASA's Future Science and Exploration Missions

    Science.gov (United States)

    Anderson, David J.; Pencil, Eric; Peterson, Todd; Dankanich, John; Munk, Michelle M.

    2011-01-01

    Since 2001, the In-Space Propulsion Technology (ISPT) project has been developing and delivering in-space propulsion technologies that will enable or enhance NASA robotic science missions. These in-space propulsion technologies are applicable, and potentially enabling, for future NASA flagship and sample return missions currently being considered, as well as having broad applicability to future competed mission solicitations. The high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance for lower cost was completed in 2009. Two other ISPT technologies are nearing completion of their technology development phase: 1) NASA's Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; and 2) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures; guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells; aerothermal effect models: and atmospheric models for Earth, Titan, Mars and Venus. This paper provides status of the technology development, applicability, and availability of in-space propulsion technologies that have recently completed their technology development and will be ready for infusion into NASA s Discovery, New Frontiers, Science Mission Directorate (SMD) Flagship, and Exploration technology demonstration missions

  4. The AGI-ASU-NASA Triad Program for K-12 Earth and Space Science Education

    Science.gov (United States)

    Pacheco, H. A.; Semken, S. C.; Taylor, W.; Benbow, A. E.

    2011-12-01

    The NASA Triad program of the American Geological Institute (AGI) and Arizona State University School of Earth and Space Exploration (ASU SESE) is a three-part effort to promote Earth and space science literacy and STEM education at the national level, funded by NASA through a cooperative agreement starting in 2010. NASA Triad comprises (1) infusion of NASA STEM content into AGI's secondary Earth science curricula; (2) national lead teacher professional development workshops; and (3) an online professional development guide for teachers running NASA STEM workshops. The Triad collaboration draws on AGI's inquiry-based curriculum and teacher professional-development resources and workforce-building programs; ASU SESE's spectrum of research in Mars and Moon exploration, astrobiology, meteoritics, Earth systems, and cyberlearning; and direct access to NASA facilities and dynamic education resources. Triad milestones to date include integration of NASA resources into AGI's print and online curricula and two week-long, national-scale, teacher-leader professional development academies in Earth and space sciences presented at ASU Dietz Museum in Tempe and NASA Johnson Space Flight Center in Houston. Robust front-end and formative assessments of these program components, including content gains, teacher-perceived classroom relevance, teacher-cohort lesson development, and teacher workshop design, have been conducted. Quantitative and qualitative findings from these assessment activities have been applied to identify best and most effective practices, which will be disseminated nationally and globally through AGI and NASA channels.

  5. Z-2 Prototype Space Suit Development

    Science.gov (United States)

    Ross, Amy; Rhodes, Richard; Graziosi, David; Jones, Bobby; Lee, Ryan; Haque, Bazle Z.; Gillespie, John W., Jr.

    2014-01-01

    NASA's Z-2 prototype space suit is the highest fidelity pressure garment from both hardware and systems design perspectives since the Space Shuttle Extravehicular Mobility Unit (EMU) was developed in the late 1970's. Upon completion the Z-2 will be tested in the 11 foot human-rated vacuum chamber and the Neutral Buoyancy Laboratory (NBL) at the NASA Johnson Space Center to assess the design and to determine applicability of the configuration to micro-, low- (asteroid), and planetary- (surface) gravity missions. This paper discusses the 'firsts' that the Z-2 represents. For example, the Z-2 sizes to the smallest suit scye bearing plane distance for at least the last 25 years and is being designed with the most intensive use of human models with the suit model.

  6. Space Shuttle Orbiter oxygen partial pressure sensing and control system improvements

    Science.gov (United States)

    Frampton, Robert F.; Hoy, Dennis M.; Kelly, Kevin J.; Walleshauser, James J.

    1992-01-01

    A program aimed at developing a new PPO2 oxygen sensor and a replacement amplifier for the Space Shuttle Orbiter is described. Experimental design methodologies used in the test and modeling process made it possible to enhance the effectiveness of the program and to reduce its cost. Significant cost savings are due to the increased lifetime of the basic sensor cell, the maximization of useful sensor life through an increased amplifier gain adjustment capability, the use of streamlined production processes for the manufacture of the assemblies, and the refurbishment capability of the replacement sensor.

  7. Exploring the architectural trade space of NASAs Space Communication and Navigation Program

    Science.gov (United States)

    Sanchez, M.; Selva, D.; Cameron, B.; Crawley, E.; Seas, A.; Seery, B.

    NASAs Space Communication and Navigation (SCaN) Program is responsible for providing communication and navigation services to space missions and other users in and beyond low Earth orbit. The current SCaN architecture consists of three independent networks: the Space Network (SN), which contains the TDRS relay satellites in GEO; the Near Earth Network (NEN), which consists of several NASA owned and commercially operated ground stations; and the Deep Space Network (DSN), with three ground stations in Goldstone, Madrid, and Canberra. The first task of this study is the stakeholder analysis. The goal of the stakeholder analysis is to identify the main stakeholders of the SCaN system and their needs. Twenty-one main groups of stakeholders have been identified and put on a stakeholder map. Their needs are currently being elicited by means of interviews and an extensive literature review. The data will then be analyzed by applying Cameron and Crawley's stakeholder analysis theory, with a view to highlighting dominant needs and conflicting needs. The second task of this study is the architectural tradespace exploration of the next generation TDRSS. The space of possible architectures for SCaN is represented by a set of architectural decisions, each of which has a discrete set of options. A computational tool is used to automatically synthesize a very large number of possible architectures by enumerating different combinations of decisions and options. The same tool contains models to evaluate the architectures in terms of performance and cost. The performance model uses the stakeholder needs and requirements identified in the previous steps as inputs, and it is based in the VASSAR methodology presented in a companion paper. This paper summarizes the current status of the MIT SCaN architecture study. It starts by motivating the need to perform tradespace exploration studies in the context of relay data systems through a description of the history NASA's space communicati

  8. Logistics: An integral part of cost efficient space operations

    Science.gov (United States)

    Montgomery, Ann D.

    1996-01-01

    The logistics of space programs and its history within NASA are discussed, with emphasis on manned space flight and the Space Shuttle program. The lessons learned and the experience gained during these programs are reported on. Key elements of logistics are highlighted, and the problems and issues that can be expected to arise in relation to the support of long-term space operations and future space programs, are discussed. Such missions include the International Space Station program and the reusable launch vehicle. Possible solutions to the problems identified are outlined.

  9. NASA Space Flight Program and Project Management Handbook

    Science.gov (United States)

    Blythe, Michael P.; Saunders, Mark P.; Pye, David B.; Voss, Linda D.; Moreland, Robert J.; Symons, Kathleen E.; Bromley, Linda K.

    2014-01-01

    This handbook is a companion to NPR 7120.5E, NASA Space Flight Program and Project Management Requirements and supports the implementation of the requirements by which NASA formulates and implements space flight programs and projects. Its focus is on what the program or project manager needs to know to accomplish the mission, but it also contains guidance that enhances the understanding of the high-level procedural requirements. (See Appendix C for NPR 7120.5E requirements with rationale.) As such, it starts with the same basic concepts but provides context, rationale, guidance, and a greater depth of detail for the fundamental principles of program and project management. This handbook also explores some of the nuances and implications of applying the procedural requirements, for example, how the Agency Baseline Commitment agreement evolves over time as a program or project moves through its life cycle.

  10. Space shuttle/food system study. Volume 2, Appendix F: Flight food and primary packaging

    Science.gov (United States)

    1974-01-01

    The analysis and selection of food items and primary packaging, the development of menus, the nutritional analysis of diet, and the analyses of alternate food mixes and contingency foods is reported in terms of the overall food system design for space shuttle flight. Stowage weights and cubic volumes associated with each alternate mix were also evaluated.

  11. Space shuttle operations integration plan

    Science.gov (United States)

    1975-01-01

    The Operations Integration Plan is presented, which is to provide functional definition of the activities necessary to develop and integrate shuttle operating plans and facilities to support flight, flight control, and operations. It identifies the major tasks, the organizations responsible, their interrelationships, the sequence of activities and interfaces, and the resultant products related to operations integration.

  12. Importance Of Quality Control in Reducing System Risk, a Lesson Learned From The Shuttle and a Recommendation for Future Launch Vehicles

    Science.gov (United States)

    Safie, Fayssal M.; Messer, Bradley P.

    2006-01-01

    This paper presents lessons learned from the Space Shuttle return to flight experience and the importance of these lessons learned in the development of new the NASA Crew Launch Vehicle (CLV). Specifically, the paper discusses the relationship between process control and system risk, and the importance of process control in improving space vehicle flight safety. It uses the External Tank (ET) Thermal Protection System (TPS) experience and lessons learned from the redesign and process enhancement activities performed in preparation for Return to Flight after the Columbia accident. The paper also, discusses in some details, the Probabilistic engineering physics based risk assessment performed by the Shuttle program to evaluate the impact of TPS failure on system risk and the application of the methodology to the CLV.

  13. Progress update of NASA's free-piston Stirling space power converter technology project

    Science.gov (United States)

    Dudenhoefer, James E.; Winter, Jerry M.; Alger, Donald

    1992-01-01

    A progress update is presented of the NASA LeRC Free-Piston Stirling Space Power Converter Technology Project. This work is being conducted under NASA's Civil Space Technology Initiative (CSTI). The goal of the CSTI High Capacity Power Element is to develop the technology base needed to meet the long duration, high capacity power requirements for future NASA space initiatives. Efforts are focused upon increasing system power output and system thermal and electric energy conversion efficiency at least five fold over current SP-100 technology, and on achieving systems that are compatible with space nuclear reactors. This paper will discuss progress toward 1050 K Stirling Space Power Converters. Fabrication is nearly completed for the 1050 K Component Test Power Converter (CTPC); results of motoring tests of the cold end (525 K), are presented. The success of these and future designs is dependent upon supporting research and technology efforts including heat pipes, bearings, superalloy joining technologies, high efficiency alternators, life and reliability testing, and predictive methodologies. This paper will compare progress in significant areas of component development from the start of the program with the Space Power Development Engine (SPDE) to the present work on CTPC.

  14. Shuttle Ku-band bent-pipe implementation considerations. [for Space Shuttle digital communication systems

    Science.gov (United States)

    Batson, B. H.; Seyl, J. W.; Huth, G. K.

    1977-01-01

    This paper describes an approach for relay of data-modulated subcarriers from Shuttle payloads through the Shuttle Ku-band communications subsystem (and subsequently through a tracking and data relay satellite system to a ground terminal). The novelty is that a channel originally provided for baseband digital data is shown to be suitable for this purpose; the resulting transmission scheme is referred to as a narrowband bent-pipe scheme. Test results demonstrating the validity of the narrowband bent-pipe mode are presented, and limitations on system performance are described.

  15. Solar water heater for NASA's Space Station

    Science.gov (United States)

    Somers, Richard E.; Haynes, R. Daniel

    1988-01-01

    The feasibility of using a solar water heater for NASA's Space Station is investigated using computer codes developed to model the Space Station configuration, orbit, and heating systems. Numerous orbit variations, system options, and geometries for the collector were analyzed. Results show that a solar water heater, which would provide 100 percent of the design heating load and would not impose a significant impact on the Space Station overall design is feasible. A heat pipe or pumped fluid radial plate collector of about 10-sq m, placed on top of the habitat module was found to be well suited for satisfying water demand of the Space Station. Due to the relatively small area required by a radial plate, a concentrator is unnecessary. The system would use only 7 to 10 percent as much electricity as an electric water-heating system.

  16. Building on 50 Years of Systems Engineering Experience for a New Era of Space Exploration

    Science.gov (United States)

    Dumbacher, Daniel L.; Lyles, Garry M.; McConnaughey, Paul K.

    2008-01-01

    Over the past 50 years, the National Aeronautics and Space Administration (NASA) has delivered space transportation solutions for America's complex missions, ranging from scientific payloads that expand knowledge, such as the Hubble Space Telescope, to astronauts and lunar rovers destined for voyages to the Moon. Currently, the venerable Space Shuttle, which has been in service since 1981, provides the United States (US) capability for both crew and heavy cargo to low-Earth orbit to construct the International Space Station, before the Shuttle is retired in 2010. In the next decade, NASA will replace this system with a duo of launch vehicles: the Ares I crew launch vehicle and the Ares V cargo launch vehicle. The goals for this new system include increased safety and reliability coupled with lower operations costs that promote sustainable space exploration for decades to come. The Ares I will loft the Orion crew exploration vehicle, while the heavy-lift Ares V will carry the Altair lunar lander, as well as the equipment and supplies needed to construct a lunar outpost for a new generation of human and robotic space pioneers. NASA's Marshall Space Flight Center manages the Shuttle's propulsion elements and is managing the design and development of the Ares rockets, along with a host of other engineering assignments in the field of scientific space exploration. Specifically, the Marshall Center's Engineering Directorate houses the skilled workforce and unique facilities needed to build capable systems upon the foundation laid by the Mercury, Gemini, Apollo, and Shuttle programs. This paper will provide details of the in-house systems engineering and vehicle integration work now being performed for the Ares I and planned for the Ares V. It will give an overview of the Ares I system-level testing activities, such as the ground vibration testing that will be conducted in the Marshall Center's Dynamic Test Stand to verify the integrated vehicle stack's structural

  17. 76 FR 52016 - NASA International Space Station Advisory Committee and the Aerospace Safety Advisory Panel; Meeting

    Science.gov (United States)

    2011-08-19

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (11-074)] NASA International Space Station Advisory Committee and the Aerospace Safety Advisory Panel; Meeting AGENCY: National Aeronautics and Space... meeting of the NASA International Space Station Advisory Committee and the Aerospace Safety Advisory Panel...

  18. Cold Flow Determination of the Internal Flow Environment Around the Submerged TVC Nozzle for the Space Shuttle SRM

    Science.gov (United States)

    Whitesides, R. H.; Ghosh, A.; Jenkins, S. L.; Bacchus, D. L.

    1989-01-01

    A series of subscale cold flow tests was performed to quantify the gas flow characteristics at the aft end of the Space Shuttle Solid Rocket Motor. This information was used to support the analyses of the redesigned nozzle/case joint. A portion of the thermal loads at the joint are due to the circumferential velocities and pressure gradients caused primarily by the gimbaling of the submerged nose TVC nozzle. When the nozzle centerline is vectored with respect to the motor centerline, asymmetries are set up in the flow field under the submerged nozzle and immediately adjacent to the nozzle/case joint. Specific program objectives included: determination of the effects of nozzle gimbal angle and propellant geometry on the circumferential flow field; measurement of the static pressure and gas velocities in the vicinity of the nozzle/case joint; use of scaling laws to apply the subscale cold flow data to the full scale SRM; and generation of data for use in validation of 3-D computational fluid dynamic, CFD, models of the SRM flow field. These tests were conducted in the NASA Marshall Space Flight Center Airflow Facility with a 7.5 percent scale model of the aft segment of the SRM. Static and dynamic pressures were measured in the model to quantify the flow field. Oil flow data was also acquired to obtain qualitative visual descriptions of the flow field. Nozzle gimbal angles of 0, 3.5, and 7 deg were used with propellant grain configurations corresponding to motor burn times of 0, 9, 19, and 114 seconds. This experimental program was successful in generating velocity and pressure gradient data for the flow field around the submerged nose nozzle of the Space Shuttle SRM at various burn times and gimbal angles. The nature of the flow field adjacent to the nozzle/case joint was determined with oil droplet streaks, and the velocity and pressure gradients were quantified with pitot probes and wall static pressure measurements. The data was applied to the full scale SRM thru

  19. Shuttle on-orbit contamination and environmental effects

    Science.gov (United States)

    Leger, L. J.; Jacobs, S.; Ehlers, H. K. F.; Miller, E.

    1985-01-01

    Ensuring the compatibility of the space shuttle system with payloads and payload measurements is discussed. An extensive set of quantitative requirements and goals was developed and implemented by the space shuttle program management. The performance of the Shuttle system as measured by these requirements and goals was assessed partly through the use of the induced environment contamination monitor on Shuttle flights 2, 3, and 4. Contamination levels are low and generally within the requirements and goals established. Additional data from near-term payloads and already planned contamination measurements will complete the environment definition and allow for the development of contamination avoidance procedures as necessary for any payload.

  20. Overview of NASA's Space Solar Power Technology Advanced Research and Development Program

    Science.gov (United States)

    Howell, Joe; Mankins, John C.; Davis, N. Jan (Technical Monitor)

    2001-01-01

    Large solar power satellite (SPS) systems that might provide base load power into terrestrial markets were examined extensively in the 1970s by the US Department of Energy (DOE) and the National Aeronautics and Space Administration (NASA). Following a hiatus of about 15 years, the subject of space solar power (SSP) was reexamined by NASA from 1995-1997 in the 'fresh look' study, and during 1998 in an SSP 'concept definition study', and during 1999-2000 in the SSP Exploratory Research and Technology (SERT) program. As a result of these efforts, during 2001, NASA has initiated the SSP Technology Advanced Research and Development (STAR-Dev) program based on informed decisions. The goal of the STAR-Dev program is to conduct preliminary strategic technology research and development to enable large, multi-megawatt to gigawatt-class space solar power (SSP) systems and wireless power transmission (WPT) for government missions and commercial markets (in-space and terrestrial). Specific objectives include: (1) Release a NASA Research Announcement (NRA) for SSP Projects; (2) Conduct systems studies; (3) Develop Component Technologies; (4) Develop Ground and Flight demonstration systems; and (5) Assess and/or Initiate Partnerships. Accomplishing these objectives will allow informed future decisions regarding further SSP and related research and development investments by both NASA management and prospective external partners. In particular, accomplishing these objectives will also guide further definition of SSP and related technology roadmaps including performance objectives, resources and schedules; including 'multi-purpose' applications (commercial, science, and other government).

  1. The NASA research and technology program on space power: A key element of the Space Exploration Initiative

    Science.gov (United States)

    Bennett, Gary L.; Brandhorst, Henry W., Jr.; Atkins, Kenneth L.

    1991-01-01

    In July 1989, President Bush announced his space exploration initiative of going back to the Moon to stay and then going to Mars. Building upon its ongoing research and technology base, NASA has established an exploration technology program to develop the technologies needed for piloted missions to the Moon and Mars. A key element for the flights and for the planned bases is power. The NASA research and technology program on space power encompasses power sources, energy storage, and power management.

  2. Freeing Space for NASA: Incorporating a Lossless Compression Algorithm into NASA's FOSS System

    Science.gov (United States)

    Fiechtner, Kaitlyn; Parker, Allen

    2011-01-01

    NASA's Fiber Optic Strain Sensing (FOSS) system can gather and store up to 1,536,000 bytes (1.46 megabytes) per second. Since the FOSS system typically acquires hours - or even days - of data, the system can gather hundreds of gigabytes of data for a given test event. To store such large quantities of data more effectively, NASA is modifying a Lempel-Ziv-Oberhumer (LZO) lossless data compression program to compress data as it is being acquired in real time. After proving that the algorithm is capable of compressing the data from the FOSS system, the LZO program will be modified and incorporated into the FOSS system. Implementing an LZO compression algorithm will instantly free up memory space without compromising any data obtained. With the availability of memory space, the FOSS system can be used more efficiently on test specimens, such as Unmanned Aerial Vehicles (UAVs) that can be in flight for days. By integrating the compression algorithm, the FOSS system can continue gathering data, even on longer flights.

  3. NASA IDEAS to Improve Instruction in Astronomy and Space Science

    Science.gov (United States)

    Malphrus, B.; Kidwell, K.

    1999-12-01

    The IDEAS to Improve Instructional Competencies in Astronomy and Space Science project is intended to develop and/or enhance teacher competencies in astronomy and space sciences of teacher participants (Grades 5-12) in Kentucky. The project is being implemented through a two-week summer workshop, a series of five follow-up meetings, and an academic year research project. The resources of Kentucky's only Radio Astronomy Observatory- the Morehead Radio Telescope (MRT), Goldstone Apple Valley Radio Telescope (GAVRT) (via remote observing using the Internet), and the Kentucky Department of Education regional service centers are combined to provide a unique educational experience. The project is designed to improve science teacher's instructional methodologies by providing pedagogical assistance, content training, involving the teachers and their students in research in radio astronomy, providing access to the facilities of the Morehead Astrophysical Observatory, and by working closely with a NASA-JOVE research astronomer. Participating teachers will ultimately produce curriculum units and research projects, the results of which will be published on the WWW. A major goal of this project is to share with teachers and ultimately students the excitement and importance of scientific research. The project represents a partnership of five agencies, each matching the commitment both financially and/or personnel. This project is funded by the NASA IDEAS initiative administered by the Space Telescope Science Institute and the National Air and Space Administration (NASA).

  4. NASA space geodesy program: Catalogue of site information

    Science.gov (United States)

    Bryant, M. A.; Noll, C. E.

    1993-01-01

    This is the first edition of the NASA Space Geodesy Program: Catalogue of Site Information. This catalogue supersedes all previous versions of the Crustal Dynamics Project: Catalogue of Site Information, last published in May 1989. This document is prepared under the direction of the Space Geodesy and Altimetry Projects Office (SGAPO), Code 920.1, Goddard Space Flight Center. SGAPO has assumed the responsibilities of the Crustal Dynamics Project, which officially ended December 31, 1991. The catalog contains information on all NASA supported sites as well as sites from cooperating international partners. This catalog is designed to provde descriptions and occupation histories of high-accuracy geodetic measuring sites employing space-related techniques. The emphasis of the catalog has been in the past, and continues to be with this edition, station information for facilities and remote locations utilizing the Satellite Laser Ranging (SLR), Lunar Laser Ranging (LLR), and Very Long Baseline Interferometry (VLBI) techniques. With the proliferation of high-quality Global Positioning System (GPS) receivers and Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS) transponders, many co-located at established SLR and VLBI observatories, the requirement for accurate station and localized survey information for an ever broadening base of scientists and engineers has been recognized. It is our objective to provide accurate station information to scientific groups interested in these facilities.

  5. From 2001 to 1994: Political environment and the design of NASA's Space Station system

    Science.gov (United States)

    Fries, Sylvia Doughty

    1988-01-01

    The U.S. civilian space station, a hope of numerous NASA engineers since before the agency was founded in 1958 and promoted by NASA as the country's 'next logical step' into space, provides an excellent case study of the way public-sector research and development agencies continuously redefine new technologies in the absence of the market discipline that governs private-sector technological development. The number of space station design studies conducted since 1959, both internally by NASA or contracted by the agency to the aerospace industry, easily exceeds a hundred. Because of this, three clearly distinguishable examples are selected from the almost thirty-year history of space station design in NASA. Together these examples illustrate the difficulty of defining a new technological system in the public sector as that system becomes increasingly subject, for its development, to the vagaries of federal research and development politics.

  6. A History of Welding on the Space Shuttle Main Engine (1975 to 2010)

    Science.gov (United States)

    Zimmerman, Frank R.; Russell, Carolyn K.

    2010-01-01

    The Space Shuttle Main Engine (SSME) is a high performance, throttleable, liquid hydrogen fueled rocket engine. High thrust and specific impulse (Isp) are achieved through a staged combustion engine cycle, combined with high combustion pressure (approx.3000psi) generated by the two-stage pump and combustion process. The SSME is continuously throttleable from 67% to 109% of design thrust level. The design criteria for this engine maximize performance and weight, resulting in a 7,800 pound rocket engine that produces over a half million pounds of thrust in vacuum with a specific impulse of 452/sec. It is the most reliable rocket engine in the world, accumulating over one million seconds of hot-fire time and achieving 100% flight success in the Space Shuttle program. A rocket engine with the unique combination of high reliability, performance, and reusability comes at the expense of manufacturing simplicity. Several innovative design features and fabrication techniques are unique to this engine. This is as true for welding as any other manufacturing process. For many of the weld joints it seemed mean cheating physics and metallurgy to meet the requirements. This paper will present a history of the welding used to produce the world s highest performance throttleable rocket engine.

  7. Space Life Sciences at NASA: Spaceflight Health Policy and Standards

    Science.gov (United States)

    Davis, Jeffrey R.; House, Nancy G.

    2006-01-01

    In January 2005, the President proposed a new initiative, the Vision for Space Exploration. To accomplish the goals within the vision for space exploration, physicians and researchers at Johnson Space Center are establishing spaceflight health standards. These standards include fitness for duty criteria (FFD), permissible exposure limits (PELs), and permissible outcome limits (POLs). POLs delineate an acceptable maximum decrement or change in a physiological or behavioral parameter, as the result of exposure to the space environment. For example cardiovascular fitness for duty standards might be a measurable clinical parameter minimum that allows successful performance of all required duties. An example of a permissible exposure limit for radiation might be the quantifiable limit of exposure over a given length of time (e.g. life time radiation exposure). An example of a permissible outcome limit might be the length of microgravity exposure that would minimize bone loss. The purpose of spaceflight health standards is to promote operational and vehicle design requirements, aid in medical decision making during space missions, and guide the development of countermeasures. Standards will be based on scientific and clinical evidence including research findings, lessons learned from previous space missions, studies conducted in space analog environments, current standards of medical practices, risk management data, and expert recommendations. To focus the research community on the needs for exploration missions, NASA has developed the Bioastronautics Roadmap. The Bioastronautics Roadmap, NASA's approach to identification of risks to human space flight, revised baseline was released in February 2005. This document was reviewed by the Institute of Medicine in November 2004 and the final report was received in October 2005. The roadmap defines the most important research and operational needs that will be used to set policy, standards (define acceptable risk), and

  8. Sixth Annual NASA Ames Space Science and Astrobiology Jamboree

    Science.gov (United States)

    Hollingsworth, Jeffery; Howell, Steve; Fonda, Mark; Dateo, Chris; Martinez, Christine M.

    2018-01-01

    Welcome to the Sixth Annual NASA Ames Research Center, Space Science and Astrobiology Jamboree at NASA Ames Research Center (ARC). The Space Science and Astrobiology Division consists of over 60 Civil Servants, with more than 120 Cooperative Agreement Research Scientists, Post-Doctoral Fellows, Science Support Contractors, Visiting Scientists, and many other Research Associates. Within the Division there is engagement in scientific investigations over a breadth of disciplines including Astrobiology, Astrophysics, Exobiology, Exoplanets, Planetary Systems Science, and many more. The Division's personnel support NASA spacecraft missions (current and planned), including SOFIA, K2, MSL, New Horizons, JWST, WFIRST, and others. Our top-notch science research staff is spread amongst three branches in five buildings at ARC. Naturally, it can thus be difficult to remain abreast of what fellow scientific researchers pursue actively, and then what may present and/or offer regarding inter-Branch, intra-Division future collaborative efforts. In organizing this annual jamboree, the goals are to offer a wholesome, one-venue opportunity to sense the active scientific research and spacecraft mission involvement within the Division; and to facilitate communication and collaboration amongst our research scientists. Annually, the Division honors one senior research scientist with a Pollack Lecture, and one early career research scientist with an Outstanding Early Career Space Scientist Lecture. For the Pollack Lecture, the honor is bestowed upon a senior researcher who has made significant contributions within any area of research aligned with space science and/or astrobiology. This year we are pleased to honor Linda Jahnke. With the Early Career Lecture, the honor is bestowed upon an early-career researcher who has substantially demonstrated great promise for significant contributions within space science, astrobiology, and/or, in support of spacecraft missions addressing such

  9. Radiation Test Results on COTS and non-COTS Electronic Devices for NASA-JSC Space Flight Projects

    Science.gov (United States)

    Allums, Kimberly K.; O'Neill, P. M.; Reddell, B. D.; Nguyen, K. V.; Bailey, C. R.

    2012-01-01

    This presentation reports the results of recent proton and heavy ion Single Event Effect (SEE) testing on a variety of COTS and non-COTs electronic devices and assemblies tested for the Space Shuttle, International Space Station (ISS) and Multi-Purpose Crew Vehicle (MPCV).

  10. NASA's astrophysics archives at the National Space Science Data Center

    Science.gov (United States)

    Vansteenberg, M. E.

    1992-01-01

    NASA maintains an archive facility for Astronomical Science data collected from NASA's missions at the National Space Science Data Center (NSSDC) at Goddard Space Flight Center. This archive was created to insure the science data collected by NASA would be preserved and useable in the future by the science community. Through 25 years of operation there are many lessons learned, from data collection procedures, archive preservation methods, and distribution to the community. This document presents some of these more important lessons, for example: KISS (Keep It Simple, Stupid) in system development. Also addressed are some of the myths of archiving, such as 'scientists always know everything about everything', or 'it cannot possibly be that hard, after all simple data tech's do it'. There are indeed good reasons that a proper archive capability is needed by the astronomical community, the important question is how to use the existing expertise as well as the new innovative ideas to do the best job archiving this valuable science data.

  11. Overview of Additive Manufacturing Initiatives at NASA Marshall Space Flight Center

    Science.gov (United States)

    Clinton, R. G., Jr.

    2018-01-01

    NASA's In Space Manufacturing Initiative (ISM) includes: The case for ISM - why; ISM path to exploration - results from the 3D Printing In Zero-G Technology Demonstration - ISM challenges; In space Robotic Manufacturing and Assembly (IRMA); Additive construction. Additively Manufacturing (AM) development for liquid rocket engine space flight hardware. MSFC standard and specification for additively manufactured space flight hardware. Summary.

  12. Continuous Improvements to East Coast Abort Landings for Space Shuttle Aborts

    Science.gov (United States)

    Butler, Kevin D.

    2003-01-01

    Improvement initiatives in the areas of guidance, flight control, and mission operations provide increased capability for successful East Coast Abort Landings (ECAL). Automating manual crew procedures in the Space Shuttle's onboard guidance allows faster and more precise commanding of flight control parameters needed for successful ECALs. Automation also provides additional capability in areas not possible with manual control. Operational changes in the mission concept allow for the addition of new landing sites and different ascent trajectories that increase the regions of a successful landing. The larger regions of ECAL capability increase the safety of the crew and Orbiter.

  13. Review of NASA approach to space radiation risk assessments for Mars exploration.

    Science.gov (United States)

    Cucinotta, Francis A

    2015-02-01

    Long duration space missions present unique radiation protection challenges due to the complexity of the space radiation environment, which includes high charge and energy particles and other highly ionizing radiation such as neutrons. Based on a recommendation by the National Council on Radiation Protection and Measurements, a 3% lifetime risk of exposure-induced death for cancer has been used as a basis for risk limitation by the National Aeronautics and Space Administration (NASA) for low-Earth orbit missions. NASA has developed a risk-based approach to radiation exposure limits that accounts for individual factors (age, gender, and smoking history) and assesses the uncertainties in risk estimates. New radiation quality factors with associated probability distribution functions to represent the quality factor's uncertainty have been developed based on track structure models and recent radiobiology data for high charge and energy particles. The current radiation dose limits are reviewed for spaceflight and the various qualitative and quantitative uncertainties that impact the risk of exposure-induced death estimates using the NASA Space Cancer Risk (NSCR) model. NSCR estimates of the number of "safe days" in deep space to be within exposure limits and risk estimates for a Mars exploration mission are described.

  14. A Mobile Communications Space Link Between the Space Shuttle Orbiter and the Advanced Communications Technology Satellite

    Science.gov (United States)

    Fink, Patrick; Arndt, G. D.; Bondyopadhyay, P.; Shaw, Roland

    1994-01-01

    A communications experiment is described as a link between the Space Shuttle Orbiter (SSO) and the Advanced Communications Technology Satellite (ACTS). Breadboarding for this experiment has led to two items with potential for commercial application: a 1-Watt Ka-band amplifier and a Ka-band, circularly polarized microstrip antenna. Results of the hybrid Ka-band amplifier show gain at 30 dB and a saturated output power of 28.5 dBm. A second version comprised of MMIC amplifiers is discussed. Test results of the microstrip antenna subarray show a gain of approximately 13 dB and excellent circular polarization.

  15. A shuttle and space station manipulator system for assembly, docking, maintenance cargo handling and spacecraft retrieval (preliminary design). Volume 1: Management summary

    Science.gov (United States)

    1972-01-01

    A preliminary design is established for a general purpose manipulator system which can be used interchangeably on the shuttle and station and can be transferred back and forth between them. Control of the manipulator is accomplished by hard wiring from internal control stations in the shuttle or station. A variety of shuttle and station manipulator operations are considered including servicing the Large Space Telescope; however, emphasis is placed on unloading modules from the shuttle and assembling the space station. Simulation studies on foveal stereoscopic viewing and manipulator supervisory computer control have been accomplished to investigate the feasibility of their use in the manipulator system. The basic manipulator system consists of a single 18.3 m long, 7 degree of freedom (DOF), electrically acutated main boom with an auxiliary 3 DOF electrically actuated, extendible 18.3 m maximum length, lighting, and viewing boom. A 3 DOF orientor assembly is located at the tip of the viewing boom to provide camera pan, tilt, and roll.

  16. Environmental Impact Analysis Process. Environmental Impact Statement Space Shuttle Program Vandenberg AFB, California

    Science.gov (United States)

    1978-01-01

    MAIMIEOIR, NATIUM L FEATURES TO BE ALTERED: Nost applicable. EMISSIONS: .• Operational: Space Shuttle main eagin. and SolidRocket Roast r exhaust. 414...symptom. (50) (2) From animal studies" (a) Bobwhite quail and domestic chicken eggs displayed a 50 percent mortality rate upon a single 15-minute exposure...t In another planned study (as opposed to casual observation) chicken eggs were exposed to about 30 sonic booms per day during incubation; median

  17. Ablative overlays for Space Shuttle leading edge ascent heat protection

    Science.gov (United States)

    Strauss, E. L.

    1975-01-01

    Ablative overlays were evaluated via a plasma-arc simulation of the ascent pulse on the leading edge of the Space Shuttle Orbiter. Overlay concepts included corkboard, polyisocyanurate foam, low-density Teflon, epoxy, and subliming salts. Their densities ranged from 4.9 to 81 lb per cu ft, and the thicknesses varied from 0.107 to 0.330 in. Swept-leading-edge models were fabricated from 30-lb per cu ft silicone-based ablators. The overlays were bonded to maintain the surface temperature of the base ablator below 500 F during ascent. Foams provided minimum-weight overlays, and subliming salts provided minimum-thickness overlays. Teflon left the most uniform surface after ascent heating.

  18. Acoustic Modeling and Analysis for the Space Shuttle Main Propulsion System Liner Crack Investigation

    Science.gov (United States)

    Casiano, Matthew J.; Zoladz, Tom F.

    2004-01-01

    Cracks were found on bellows flow liners in the liquid hydrogen feedlines of several space shuttle orbiters in 2002. An effort to characterize the fluid environment upstream of the space shuttle main engine low-pressure fuel pump was undertaken to help identify the cause of the cracks and also provide quantitative environments and loads of the region. Part of this effort was to determine the duct acoustics several inches upstream of the low-pressure fuel pump in the region of a bellows joint. A finite element model of the complicated geometry was made using three-dimensional fluid elements. The model was used to describe acoustics in the complex geometry and played an important role in the investigation. Acoustic mode shapes and natural frequencies of the liquid hydrogen in the duct and in the cavity behind the flow liner were determined. Forced response results were generated also by applying an edgetone-like forcing to the liner slots. Studies were conducted for state conditions and also conditions assuming two-phase entrapment in the backing cavity. Highly instrumented single-engine hot fire data confirms the presence of some of the predicted acoustic modes.

  19. HSI in NASA: From Research to Implementation

    Science.gov (United States)

    Whitmore, Mihriban; Plaga, John A.

    2016-01-01

    As NASA plans to send human explorers beyond low Earth orbit, onward to Mars and other destinations in the solar system, there will be new challenges to address in terms of HSI. These exploration missions will be quite different from the current and past missions such as Apollo, Shuttle, and International Space Station. The exploration crew will be more autonomous from ground mission control with delayed, and at times, no communication. They will have limited to no resupply for much longer mission durations. Systems to deliver and support extended human habitation at these destinations are extremely complex and unique, presenting new opportunities to employ HSI practices. In order to have an effective and affordable HSI implementation, both research and programmatic efforts are required. Currently, the HSI-related research at NASA is primarily in the area of space human factors and habitability. The purpose is to provide human health and performance countermeasures, knowledge, technologies, and tools to enable safe, reliable, and productive human space exploration beyond low Earth orbit, and update standards, requirements, and processes to verify and validate these requirements. In addition, HSI teams are actively engaged in technology development and demonstration efforts to influence the mission architecture and next-generation vehicle design. Finally, appropriate HSI references have been added to NASA' s systems engineering documentation, and an HSI Practitioner's Guide has been published to help design engineers consider HSI early and continuously in the acquisition process. These current and planned HSI-related activities at NASA will be discussed in this panel.

  20. Automated space processing payloads study. Volume 3: Equipment development resource requirements. [instrument packages and the space shuttles

    Science.gov (United States)

    1975-01-01

    Facilities are described on which detailed preliminary design was undertaken and which may be used on early space shuttle missions in the 1979-1982 time-frame. The major hardware components making up each facility are identified, and development schedules for the major hardware items and the payload buildup are included. Cost data for the facilities, and the assumptions and ground rules supporting these data are given along with a recommended listing of supporting research and technology needed to ensure confidence in the ability to achieve successful development of the equipment and technology.

  1. The Faster, Better, Cheaper Approach to Space Missions: An Engineering Management Assessment

    Science.gov (United States)

    Hamaker, Joseph W.

    1999-01-01

    NASA was chartered as an independent civilian space agency in 1958 following the Soviet Union's dramatic launch of the Sputnik 1 (1957). In his state of the union address in May of 1961, President Kennedy issued to the fledging organization his famous challenge for a manned lunar mission by the end of the decade. The Mercury, Gemini and Apollo programs that followed put the utmost value on high quality, low risk (as low as possible within the context of space flight), quick results, all with little regard for cost. These circumstances essentially melded NASAs culture as an organization capable of great technological achievement but at extremely high cost. The Space Shuttle project, the next major agency endeavor, was put under severe annual budget constraints in the 1970's. NASAs response was to hold to the high quality standards, low risk and annual cost and let schedule suffer. The result was a significant delay in the introduction of the Shuttle as well as overall total cost growth. By the early 1990's, because NASA's budget was declining, the number of projects was also declining. Holding the same cost and schedule productivity levels as before was essentially causing NASA to price itself out of business. In 1992, the helm of NASA was turned over to a new Administrator. Dan Goldin's mantra was "faster, better, cheaper" and his enthusiasm and determination to change the NASA culture was not to be ignored. This research paper documents the various implementations of "faster, better, cheaper" that have been attempted, analyzes their impact and compares the cost performance of these new projects to previous NASA benchmarks. Fundamentally, many elements of "faster, better, cheaper" are found to be working well, especially on smaller projects. Some of the initiatives are found to apply only to smaller or experimental projects however, so that extrapolation to "flagship" projects may be problematic.

  2. In-Space Propulsion Technology Products Ready for Infusion on NASA's Future Science Missions

    Science.gov (United States)

    Anderson, David J.; Pencil, Eric; Peterson, Todd; Dankanich, John; Munk, Michele M.

    2012-01-01

    Since 2001, the In-Space Propulsion Technology (ISPT) program has been developing and delivering in-space propulsion technologies that will enable or enhance NASA robotic science missions. These in-space propulsion technologies are applicable, and potentially enabling, for future NASA flagship and sample return missions currently being considered. They have a broad applicability to future competed mission solicitations. The high-temperature Advanced Material Bipropellant Rocket (AMBR) engine, providing higher performance for lower cost, was completed in 2009. Two other ISPT technologies are nearing completion of their technology development phase: 1) NASA s Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; and 2) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures; guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells; aerothermal effect models; and atmospheric models for Earth, Titan, Mars and Venus. This paper provides status of the technology development, applicability, and availability of in-space propulsion technologies that have recently completed their technology development and will be ready for infusion into NASA s Discovery, New Frontiers, SMD Flagship, or technology demonstration missions.

  3. Mechanical and thermal design of an experiment aboard the space shuttle: the Spacelab spectrometer

    International Nuclear Information System (INIS)

    Besson, J.

    1985-01-01

    The spectrometer designed by ONERA and IASB (Belgium Space Aeronomy Institute) to measure atmospheric trace constituents was flown aboard Spacelab 1 during the 9 th mission of the American Space Shuttle from November 28 to December 8, 1983. After a brief summary of the history of the project related to Spacelab, the mechanical and thermal design of the spectrometer is described. Some methods, calculations and characteristic tests are detailed as examples. The behaviour of the experiment during the mission and the results of the post-flight tests are shortly analyzed in order to prepare the qualification for a reflight [fr

  4. NASA Space Radiation Risk Project: Overview and Recent Results

    Science.gov (United States)

    Blattnig, Steve R.; Chappell, Lori J.; George, Kerry A.; Hada, Megumi; Hu, Shaowen; Kidane, Yared H.; Kim, Myung-Hee Y.; Kovyrshina, Tatiana; Norman, Ryan B.; Nounu, Hatem N.; hide

    2015-01-01

    The NASA Space Radiation Risk project is responsible for integrating new experimental and computational results into models to predict risk of cancer and acute radiation syndrome (ARS) for use in mission planning and systems design, as well as current space operations. The project has several parallel efforts focused on proving NASA's radiation risk projection capability in both the near and long term. This presentation will give an overview, with select results from these efforts including the following topics: verification, validation, and streamlining the transition of models to use in decision making; relative biological effectiveness and dose rate effect estimation using a combination of stochastic track structure simulations, DNA damage model calculations and experimental data; ARS model improvements; pathway analysis from gene expression data sets; solar particle event probabilistic exposure calculation including correlated uncertainties for use in design optimization.

  5. NASA's Aerosol Sampling Experiment Summary

    Science.gov (United States)

    Meyer, Marit E.

    2016-01-01

    In a spacecraft cabin environment, the size range of indoor aerosols is much larger and they persist longer than on Earth because they are not removed by gravitational settling. A previous aerosol experiment in 1991 documented that over 90 of the mass concentration of particles in the NASA Space Shuttle air were between 10 m and 100 m based on measurements with a multi-stage virtual impactor and a nephelometer (Liu et al. 1991). While the now-retired Space Shuttle had short duration missions (less than two weeks), the International Space Station (ISS) has been continually inhabited by astronauts for over a decade. High concentrations of inhalable particles on ISS are potentially responsible for crew complaints of respiratory and eye irritation and comments about 'dusty' air. Air filtration is the current control strategy for airborne particles on the ISS, and filtration modeling, performed for engineering and design validation of the air revitalization system in ISS, predicted that PM requirements would be met. However, aerosol monitoring has never been performed on the ISS to verify PM levels. A flight experiment is in preparation which will provide data on particulate matter in ISS ambient air. Particles will be collected with a thermophoretic sampler as well as with passive samplers which will extend the particle size range of sampling. Samples will be returned to Earth for chemical and microscopic analyses, providing the first aerosol data for ISS ambient air.

  6. Application of the Chimera overlapped grid scheme to simulation of Space Shuttle ascent flows

    Science.gov (United States)

    Buning, Pieter G.; Parks, Steven J.; Chan, William M.; Renze, Kevin J.

    1992-01-01

    Several issues relating to the application of Chimera overlapped grids to complex geometries and flowfields are discussed. These include the addition of geometric components with different grid topologies, gridding for intersecting pieces of geometry, and turbulence modeling in grid overlap regions. Sample results are presented for transonic flow about the Space Shuttle launch vehicle. Comparisons with wind tunnel and flight measured pressures are shown.

  7. International cooperation and competition in space - A current perspective

    Science.gov (United States)

    Pedersen, K. S.

    1983-01-01

    International cooperative efforts undertaken by NASA are evaluated and consideration is given to the proposed space station. The Shuttle RMS and Spacelab were constructed through efforts of Canadian and European companies and the ESA. Landsat, with its widely dispersed technology and data, has encouraged international access to its capabilities and start-up of follow-on programs in other countries. Space station planning is proceeding with a view to worldwide utilization of space and to the commitment and resources other nations are willing to place in the station. It is conceded that administrative difficulties will arise if the space station is a completely international effort guided by NASA. Additionally, concern will be present for technology leaks, national security implications on the space station, and reasonably fulfilling the benefits expected by those who become partners in the construction and operation of the station.

  8. Technology requirements to be addressed by the NASA Lewis Research Center Cryogenic Fluid Management Facility program

    Science.gov (United States)

    Aydelott, J. C.; Rudland, R. S.

    1985-01-01

    The NASA Lewis Research Center is responsible for the planning and execution of a scientific program which will provide advance in space cryogenic fluid management technology. A number of future space missions were identified that require or could benefit from this technology. These fluid management technology needs were prioritized and a shuttle attached reuseable test bed, the cryogenic fluid management facility (CFMF), is being designed to provide the experimental data necessary for the technology development effort.

  9. Latent Virus Reactivation in Space Shuttle Astronauts

    Science.gov (United States)

    Mehta, S. K.; Crucian, B. E.; Stowe, R. P.; Sams, C.; Castro, V. A.; Pierson, D. L.

    2011-01-01

    Latent virus reactivation was measured in 17 astronauts (16 male and 1 female) before, during, and after short-duration Space Shuttle missions. Blood, urine, and saliva samples were collected 2-4 months before launch, 10 days before launch (L-10), 2-3 hours after landing (R+0), 3 days after landing (R+14), and 120 days after landing (R+120). Epstein-Barr virus (EBV) DNA was measured in these samples by quantitative polymerase chain reaction. Varicella-zoster virus (VZV) DNA was measured in the 381 saliva samples and cytomegalovirus (CMV) DNA in the 66 urine samples collected from these subjects. Fourteen astronauts shed EBV DNA in 21% of their saliva samples before, during, and after flight, and 7 astronauts shed VZV in 7.4% of their samples during and after flight. It was interesting that shedding of both EBV and VZV increased during the flight phase relative to before or after flight. In the case of CMV, 32% of urine samples from 8 subjects contained DNA of this virus. In normal healthy control subjects, EBV shedding was found in 3% and VZV and CMV were found in less than 1% of the samples. The circadian rhythm of salivary cortisol measured before, during, and after space flight did not show any significant difference between flight phases. These data show that increased reactivation of latent herpes viruses may be associated with decreased immune system function, which has been reported in earlier studies as well as in these same subjects (data not reported here).

  10. Innovative Partnerships Program Accomplishments: 2009-2010 at NASA's Kennedy Space Center

    Science.gov (United States)

    Makufka, David

    2010-01-01

    This document reports on the accomplishments of the Innovative Partnerships Program during the two years of 2009 and 2010. The mission of the Innovative Partnerships Program is to provide leveraged technology alternatives for mission directorates, programs, and projects through joint partnerships with industry, academia, government agencies, and national laboratories. As outlined in this accomplishments summary, the IPP at NASA's Kennedy Space Center achieves this mission via two interdependent goals: (1) Infusion: Bringing external technologies and expertise into Kennedy to benefit NASA missions, programs, and projects (2) Technology Transfer: Spinning out space program technologies to increase the benefits for the nation's economy and humanity

  11. The Challenges of Integrating NASA's Human, Budget, and Data Capital within the Constellation Program's Exploration Launch Projects Office

    Science.gov (United States)

    Kidd, Luanne; Morris, Kenneth B.; Self, Tim

    2006-01-01

    The U.S. Vision for Space Exploration directs NASA to retire the Space Shuttle in 2010 and replace it with safe, reliable, and cost-effective space transportation systems for crew and cargo travel to the Moon, Mars, and beyond. Such emerging space transportation initiatives face massive organizational challenges, including building and nurturing an experienced, dedicated team with the right skills for the required tasks; allocating and tracking the fiscal capital invested in achieving technical progress against an integrated master schedule; and turning generated data into usehl knowledge that equips the team to design and develop superior products for customers and stakeholders. This paper discusses how NASA's Exploration Launch Projects Office, which is responsible for delivering these new launch vehicles, integrates these resources to create an engineering business environment that promotes mission success.

  12. Space shuttle/food system study. Volume 2, appendix E: Alternate flight systems analysis

    Science.gov (United States)

    1974-01-01

    The functional requirements of stowage, preparation, serving, consumption, and cleanup were applied to each of the five food mixes selected for study in terms of the overall design of the space shuttle food system. The analysis led to a definition of performance requirements for each food mix, along with a definition of equipment to meet those requirements. Weight and volume data for all five systems, in terms of food and packaging, support equipment, and galley installation penalties, are presented.

  13. Phased Array Ultrasonic Evaluation of Space Shuttle Main Engine (SSME) Nozzle Weld

    Science.gov (United States)

    James, Steve; Engel, J.; Kimbrough, D.; Suits, M.; Hopson, George (Technical Monitor)

    2001-01-01

    This viewgraph presentation gives an overview of the phased array ultrasonic evaluation of the Space Shuttle Main Engine (SSME) nozzle weld. Details are given on the nondestructive testing evaluation approach, conventional shear wave and phased array techniques, and an x-ray versus phased array risk analysis. The field set-up was duplicated to the greatest extent possible in the laboratory and the phased array ultrasonic technique was developed and validated prior to weld evaluation. Results are shown for the phased array ultrasonic evaluation and conventional ultrasonic evaluation results.

  14. Thin film heat flux sensor for Space Shuttle Main Engine turbine environment

    Science.gov (United States)

    Will, Herbert

    1991-01-01

    The Space Shuttle Main Engine (SSME) turbine environment stresses engine components to their design limits and beyond. The extremely high temperatures and rapid temperature cycling can easily cause parts to fail if they are not properly designed. Thin film heat flux sensors can provide heat loading information with almost no disturbance of gas flows or of the blade. These sensors can provide steady state and transient heat flux information. A thin film heat flux sensor is described which makes it easier to measure small temperature differences across very thin insulating layers.

  15. Base pressure and heat transfer tests of the 0.0225-scale space shuttle plume simulation model (19-OTS) in yawed flight conditions in the NASA-Lewis 10x10-foot supersonic wind tunnel (test IH83)

    Science.gov (United States)

    Foust, J. W.

    1979-01-01

    Wind tunnel tests were performed to determine pressures, heat transfer rates, and gas recovery temperatures in the base region of a rocket firing model of the space shuttle integrated vehicle during simulated yawed flight conditions. First and second stage flight of the space shuttle were simulated by firing the main engines in conjunction with the SRB rocket motors or only the SSME's into the continuous tunnel airstream. For the correct rocket plume environment, the simulated altitude pressures were halved to maintain the rocket chamber/altitude pressure ratio. Tunnel freestream Mach numbers from 2.2 to 3.5 were simulated over an altitude range of 60 to 130 thousand feet with varying angle of attack, yaw angle, nozzle gimbal angle and SRB chamber pressure. Gas recovery temperature data derived from nine gas temperature probe runs are presented. The model configuration, instrumentation, test procedures, and data reduction are described.

  16. Boundary Layer Transition Protuberance Tests at NASA JSC Arc-Jet Facility

    Science.gov (United States)

    Larin, Max E.; Marichalar, Jeremiah J.; Kinder, Gerald R.; Campbell, Charles H.; Riccio, Joseph R.; Nguyen, Tien Q.; Del Papa, Steven V.; Pulsonetti, Maria V.

    2010-01-01

    A series of tests conducted recently at the NASA JSC arc -jet test facility demonstrated that a protruding tile material can survive the exposure to the high enthalpy flows characteristic of the Space Shuttle Orbiter re-entry environments. The tests provided temperature data for the protuberance and the surrounding smooth tile surfaces, as well as the tile bond line. The level of heating needed to slump the protuberance material was achieved. Protuberance failure mode was demonstrated.

  17. Space shuttle SRM field joint: Review paper

    Directory of Open Access Journals (Sweden)

    S. Mohammad Gharouni

    2014-09-01

    Full Text Available Due to Challenger space shuttle accident in 1986, significant research has been done concerning structural behavior of field joints in solid rocket boosters (SRB. The structural deformations between the clevis inner leg and the tang (male-to-female parts of joint, the sealing of the O-ring to prevent the hot gas in joints, has been neglected causing the failure of the vehicle. Redesigning the field joint in SRB engine by accurate analysis of dynamic and thermal loads and by design of insulator and good O-ring, the leakiness of combustion hot gases was eliminated. Some parts of field joint such as capture feature (CF and its third O-ring, J-leg insulator and shim were added to redesigned field joint. Also, some adjustments in sealing system and pins were done to promote the efficiency of the field joint. Due to different experimental analysis on assembled field joints with default imperfections, redesigned joints operated well. These redesigned field joints are commonly used in aerospace and mechanical structures. This paper investigates the original and the redesigned field joints with additional explanations of different parts of the redesigned joints.

  18. NASA's Space Launch Transitions: From Design to Production

    Science.gov (United States)

    Askins, Bruce; Robinson, Kimberly

    2016-01-01

    NASA's Space Launch System (SLS) successfully completed its Critical Design Review (CDR) in 2015, a major milestone on the journey to an unprecedented era of exploration for humanity. CDR formally marked the program's transition from design to production phase just four years after the program's inception and the first such milestone for a human launch vehicle in 40 years. While challenges typical of a complex development program lie ahead, CDR evaluators concluded that the design is technically and programmatically sound and ready to press forward to Design Certification Review (DCR) and readiness for launch of Exploration Mission 1 (EM-1) in the 2018 timeframe. SLS is prudently based on existing propulsion systems, infrastructure and knowledge with a clear, evolutionary path as required by mission needs. In its initial configuration, designated Block I, SLS will a minimum of 70 metric tons (t) of payload to low Earth orbit (LEO). It can evolve to a 130 t payload capacity by upgrading its engines, boosters, and upper stage, dramatically increasing the mass and volume of human and robotic exploration while decreasing mission risk, increasing safety, and simplifying ground and mission operations. CDR was the central programmatic accomplishment among many technical accomplishments that will be described in this paper. The government/industry SLS team successfully test fired a flight-like five-segment solid rocket motor, as well as seven hotfire development tests of the RS-25 core stage engine. The majority of the major test article and flight barrels, rings, and domes for the core stage liquid oxygen, liquid hydrogen, engine section, intertank, and forward skirt were manufactured at NASA's Michoud Assembly Facility. Renovations to the B-2 test stand for stage green run testing were completed at NASA Stennis Space Center. Core stage test stands are rising at NASA Marshall Space Flight Center. The modified Pegasus barge for core stage transportation from manufacturing

  19. Life Sciences Data Archives (LSDA) in the Post-Shuttle Era

    Science.gov (United States)

    Fitts, Mary A.; Johnson-Throop, Kathy; Havelka, Jacque; Thomas, Diedre

    2010-01-01

    Now, more than ever before, NASA is realizing the value and importance of their intellectual assets. Principles of knowledge management-the systematic use and reuse of information, experience, and expertise to achieve a specific goal-are being applied throughout the agency. LSDA is also applying these solutions, which rely on a combination of content and collaboration technologies, to enable research teams to create, capture, share, and harness knowledge to do the things they do well, even better. In the early days of spaceflight, space life sciences data were collected and stored in numerous databases, formats, media-types and geographical locations. These data were largely unknown/unavailable to the research community. The Biomedical Informatics and Health Care Systems Branch of the Space Life Sciences Directorate at JSC and the Data Archive Project at ARC, with funding from the Human Research Program through the Exploration Medical Capability Element, are fulfilling these requirements through the systematic population of the Life Sciences Data Archive. This project constitutes a formal system for the acquisition, archival and distribution of data for HRP-related experiments and investigations. The general goal of the archive is to acquire, preserve, and distribute these data and be responsive to inquiries for the science communities. Information about experiments and data, as well as non-attributable human data and data from other species' are available on our public Web site http://lsda.jsc.nasa.gov. The Web site also includes a repository for biospecimens, and a utilization process. NASA has undertaken an initiative to develop a Shuttle Data Archive repository. The Shuttle program is nearing its end in 2010 and it is critical that the medical and research data related to the Shuttle program be captured, retained, and usable for research, lessons learned, and future mission planning. Communities of practice are groups of people who share a concern or a passion

  20. Space shuttle/food system study. Package feasibility study, modifications 3S, 4C and 5S

    Science.gov (United States)

    1974-01-01

    An optimum feeding system for the space shuttle was presented. This system consisted of all rehydratable type foods which were enclosed in a 4 in. x 4 in. x 1 in. flexible package. A feasibility follow-on study was conducted, and two acceptable, feasible prototypes for this package are described.