WorldWideScience

Sample records for nasa safety institute

  1. NASA's Software Safety Standard

    Science.gov (United States)

    Ramsay, Christopher M.

    2007-01-01

    NASA relies more and more on software to control, monitor, and verify its safety critical systems, facilities and operations. Since the 1960's there has hardly been a spacecraft launched that does not have a computer on board that will provide command and control services. There have been recent incidents where software has played a role in high-profile mission failures and hazardous incidents. For example, the Mars Orbiter, Mars Polar Lander, the DART (Demonstration of Autonomous Rendezvous Technology), and MER (Mars Exploration Rover) Spirit anomalies were all caused or contributed to by software. The Mission Control Centers for the Shuttle, ISS, and unmanned programs are highly dependant on software for data displays, analysis, and mission planning. Despite this growing dependence on software control and monitoring, there has been little to no consistent application of software safety practices and methodology to NASA's projects with safety critical software. Meanwhile, academia and private industry have been stepping forward with procedures and standards for safety critical systems and software, for example Dr. Nancy Leveson's book Safeware: System Safety and Computers. The NASA Software Safety Standard, originally published in 1997, was widely ignored due to its complexity and poor organization. It also focused on concepts rather than definite procedural requirements organized around a software project lifecycle. Led by NASA Headquarters Office of Safety and Mission Assurance, the NASA Software Safety Standard has recently undergone a significant update. This new standard provides the procedures and guidelines for evaluating a project for safety criticality and then lays out the minimum project lifecycle requirements to assure the software is created, operated, and maintained in the safest possible manner. This update of the standard clearly delineates the minimum set of software safety requirements for a project without detailing the implementation for those

  2. 2011 NASA Range Safety Annual Report

    Science.gov (United States)

    Dumont, Alan G.

    2012-01-01

    Welcome to the 2011 edition of the NASA Range Safety Annual Report. Funded by NASA Headquarters, this report provides a NASA Range Safety overview for current and potential range users. As is typical with odd year editions, this is an abbreviated Range Safety Annual Report providing updates and links to full articles from the previous year's report. It also provides more complete articles covering new subject areas, summaries of various NASA Range Safety Program activities conducted during the past year, and information on several projects that may have a profound impact on the way business will be done in the future. Specific topics discussed and updated in the 2011 NASA Range Safety Annual Report include a program overview and 2011 highlights; Range Safety Training; Range Safety Policy revision; Independent Assessments; Support to Program Operations at all ranges conducting NASA launch/flight operations; a continuing overview of emerging range safety-related technologies; and status reports from all of the NASA Centers that have Range Safety responsibilities. Every effort has been made to include the most current information available. We recommend this report be used only for guidance and that the validity and accuracy of all articles be verified for updates. Once again the web-based format was used to present the annual report. We continually receive positive feedback on the web-based edition and hope you enjoy this year's product as well. As is the case each year, contributors to this report are too numerous to mention, but we thank individuals from the NASA Centers, the Department of Defense, and civilian organizations for their contributions. In conclusion, it has been a busy and productive year. I'd like to extend a personal Thank You to everyone who contributed to make this year a successful one, and I look forward to working with all of you in the upcoming year.

  3. NASA Aviation Safety Reporting System (ASRS)

    Science.gov (United States)

    Connell, Linda J.

    2017-01-01

    The NASA Aviation Safety Reporting System (ASRS) collects, analyzes, and distributes de-identified safety information provided through confidentially submitted reports from frontline aviation personnel. Since its inception in 1976, the ASRS has collected over 1.4 million reports and has never breached the identity of the people sharing their information about events or safety issues. From this volume of data, the ASRS has released over 6,000 aviation safety alerts concerning potential hazards and safety concerns. The ASRS processes these reports, evaluates the information, and provides selected de-identified report information through the online ASRS Database at http:asrs.arc.nasa.gov. The NASA ASRS is also a founding member of the International Confidential Aviation Safety Systems (ICASS) group which is a collection of other national aviation reporting systems throughout the world. The ASRS model has also been replicated for application to improving safety in railroad, medical, fire fighting, and other domains. This presentation will discuss confidential, voluntary, and non-punitive reporting systems and their advantages in providing information for safety improvements.

  4. The NASA Astrobiology Institute: early history and organization

    Science.gov (United States)

    Blumberg, Baruch S.

    2003-01-01

    The NASA Astrobiology Institute (NAI) was established as a means to advance the field of astrobiology by providing a multidisciplinary, multi-institution, science-directed program, executed by universities, research institutes, and NASA and other government laboratories. The scientific community and NASA defined the science content at several workshops as summarized in the NASA Astrobiology Roadmap. Teams were chosen nationwide, following the recommendations of external review groups, and the research program began in 1998. There are now 16 national Teams and five international affiliated and associated astrobiology institutions. The NAI has attracted an outstanding group of scientific groups and individuals. The Institute facilitates the involvement of the scientists in its scientific and management vision. Its goal is to support basic research and allow the scientists the freedom to select their projects and alter them as indicated by new research. Additional missions include the education of the public, the involvement of students who will be the astrobiologists of future generations, and the development of a culture of collaboration in NAI, a "virtual institute," spread across many sites nationally and internationally.

  5. NASA Virtual Institutes: International Bridges for Space Exploration

    Science.gov (United States)

    Schmidt, Gregory K.

    2016-01-01

    NASA created the first virtual institute, the NASA Astrobiology Institute (NAI), in 2009 with an aim toward bringing together geographically disparate and multidisciplinary teams toward the goal of answering broad questions in the then-new discipline of astrobiology. With the success of the virtual institute model, NASA then created the NASA Lunar Science Institute (NLSI) in 2008 to address questions of science and human exploration of the Moon, and then the NASA Aeronautics Research Institute (NARI) in 2012 which addresses key questions in the development of aeronautics technologies. With the broadening of NASA's human exploration targets to include Near Earth Asteroids and the moons of Mars as well as the Moon, the NLSI morphed into the Solar System Exploration Research Virtual Institute (SSERVI) in 2012. SSERVI funds domestic research teams to address broad questions at the intersection of science and human exploration, with the underlying principle that science enables human exploration, and human exploration enables science. Nine domestic teams were funded in 2014 for a five-year period to address a variety of different topics, and nine international partners (with more to come) also work with the U.S. teams on a variety of topics of mutual interest. The result is a robust and productive research infrastructure that is not only scientifically productive but can respond to strategic topics of domestic and international interest, and which develops a new generation of researchers. This is all accomplished with the aid of virtual collaboration technologies which enable scientific research at a distance. The virtual institute model is widely applicable to a range of space science and exploration problems.

  6. The NASA Aviation Safety Program: Overview

    Science.gov (United States)

    Shin, Jaiwon

    2000-01-01

    In 1997, the United States set a national goal to reduce the fatal accident rate for aviation by 80% within ten years based on the recommendations by the Presidential Commission on Aviation Safety and Security. Achieving this goal will require the combined efforts of government, industry, and academia in the areas of technology research and development, implementation, and operations. To respond to the national goal, the National Aeronautics and Space Administration (NASA) has developed a program that will focus resources over a five year period on performing research and developing technologies that will enable improvements in many areas of aviation safety. The NASA Aviation Safety Program (AvSP) is organized into six research areas: Aviation System Modeling and Monitoring, System Wide Accident Prevention, Single Aircraft Accident Prevention, Weather Accident Prevention, Accident Mitigation, and Synthetic Vision. Specific project areas include Turbulence Detection and Mitigation, Aviation Weather Information, Weather Information Communications, Propulsion Systems Health Management, Control Upset Management, Human Error Modeling, Maintenance Human Factors, Fire Prevention, and Synthetic Vision Systems for Commercial, Business, and General Aviation aircraft. Research will be performed at all four NASA aeronautics centers and will be closely coordinated with Federal Aviation Administration (FAA) and other government agencies, industry, academia, as well as the aviation user community. This paper provides an overview of the NASA Aviation Safety Program goals, structure, and integration with the rest of the aviation community.

  7. The NASA Electronic Parts and Packaging (NEPP) Program - Presentation to Korean Aerospace Research Institute

    Science.gov (United States)

    LaBel, Kenneth A.; Sampson, Michael J.

    2016-01-01

    This presentation will provide basic information about NASA's Electronic Parts and Packaging Program (NEPP), for sharing with representatives of the South Korean Aerospace Research Institute (KARI) as part of a larger presentation by Headquarters Office of Safety and Mission Assurance. The NEPP information includes mission and goals, history of the program, basic focus areas, strategies, deliverables and some examples of current tasks.

  8. Introducing NASA's Solar System Exploration Research Virtual Institute

    Science.gov (United States)

    Pendleton, Yvonne

    The Solar System Exploration Research Virtual Institute (SSERVI) is focused on the Moon, near Earth asteroids, and the moons of Mars. Comprised of competitively selected teams across the U.S., a growing number of international partnerships around the world, and a small central office located at NASA Ames Research Center, the institute advances collaborative research to bridge science and exploration goals. As a virtual institute, SSERVI brings unique skills and collaborative technologies for enhancing collaborative research between geographically disparate teams. SSERVI is jointly funded through the NASA Science Mission Directorate and the NASA Human Exploration and Operations Mission Directorate. Current U.S. teams include: Dr. Jennifer L. Heldmann, NASA Ames Research Center, Moffett Field, CA; Dr. William Farrell, NASA Goddard Space Flight Center, Greenbelt, MD; Prof. Carlé Pieters, Brown University, Providence, RI; Prof. Daniel Britt, University of Central Florida, Orlando, FL; Prof. Timothy Glotch, Stony Brook University, Stony Brook, NY; Dr. Mihaly Horanyi, University of Colorado, Boulder, CO; Dr. Ben Bussey, Johns Hopkins Univ. Applied Physics Laboratory, Laurel, MD; Dr. David A. Kring, Lunar and Planetary Institute, Houston, TX; and Dr. William Bottke, Southwest Research Institute, Boulder, CO. Interested in becoming part of SSERVI? SSERVI Cooperative Agreement Notice (CAN) awards are staggered every 2.5-3yrs, with award periods of five-years per team. SSERVI encourages those who wish to join the institute in the future to engage current teams and international partners regarding potential collaboration, and to participate in focus groups or current team activities now. Joining hand in hand with international partners is a winning strategy for raising the tide of Solar System science around the world. Non-U.S. science organizations can propose to become either Associate or Affiliate members on a no-exchange-of-funds basis. Current international partners

  9. The Evolution of System Safety at NASA

    Science.gov (United States)

    Dezfuli, Homayoon; Everett, Chris; Groen, Frank

    2014-01-01

    The NASA system safety framework is in the process of change, motivated by the desire to promote an objectives-driven approach to system safety that explicitly focuses system safety efforts on system-level safety performance, and serves to unify, in a purposeful manner, safety-related activities that otherwise might be done in a way that results in gaps, redundancies, or unnecessary work. An objectives-driven approach to system safety affords more flexibility to determine, on a system-specific basis, the means by which adequate safety is achieved and verified. Such flexibility and efficiency is becoming increasingly important in the face of evolving engineering modalities and acquisition models, where, for example, NASA will increasingly rely on commercial providers for transportation services to low-earth orbit. A key element of this objectives-driven approach is the use of the risk-informed safety case (RISC): a structured argument, supported by a body of evidence, that provides a compelling, comprehensible and valid case that a system is or will be adequately safe for a given application in a given environment. The RISC addresses each of the objectives defined for the system, providing a rational basis for making informed risk acceptance decisions at relevant decision points in the system life cycle.

  10. 78 FR 77501 - NASA Aerospace Safety Advisory Panel; Meeting

    Science.gov (United States)

    2013-12-23

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: 13-153] NASA Aerospace Safety Advisory Panel; Meeting AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of Meeting...

  11. NASA Aviation Safety Program Systems Analysis/Program Assessment Metrics Review

    Science.gov (United States)

    Louis, Garrick E.; Anderson, Katherine; Ahmad, Tisan; Bouabid, Ali; Siriwardana, Maya; Guilbaud, Patrick

    2003-01-01

    The goal of this project is to evaluate the metrics and processes used by NASA's Aviation Safety Program in assessing technologies that contribute to NASA's aviation safety goals. There were three objectives for reaching this goal. First, NASA's main objectives for aviation safety were documented and their consistency was checked against the main objectives of the Aviation Safety Program. Next, the metrics used for technology investment by the Program Assessment function of AvSP were evaluated. Finally, other metrics that could be used by the Program Assessment Team (PAT) were identified and evaluated. This investigation revealed that the objectives are in fact consistent across organizational levels at NASA and with the FAA. Some of the major issues discussed in this study which should be further investigated, are the removal of the Cost and Return-on-Investment metrics, the lack of the metrics to measure the balance of investment and technology, the interdependencies between some of the metric risk driver categories, and the conflict between 'fatal accident rate' and 'accident rate' in the language of the Aviation Safety goal as stated in different sources.

  12. Systems Analysis of NASA Aviation Safety Program: Final Report

    Science.gov (United States)

    Jones, Sharon M.; Reveley, Mary S.; Withrow, Colleen A.; Evans, Joni K.; Barr, Lawrence; Leone, Karen

    2013-01-01

    A three-month study (February to April 2010) of the NASA Aviation Safety (AvSafe) program was conducted. This study comprised three components: (1) a statistical analysis of currently available civilian subsonic aircraft data from the National Transportation Safety Board (NTSB), the Federal Aviation Administration (FAA), and the Aviation Safety Information Analysis and Sharing (ASIAS) system to identify any significant or overlooked aviation safety issues; (2) a high-level qualitative identification of future safety risks, with an assessment of the potential impact of the NASA AvSafe research on the National Airspace System (NAS) based on these risks; and (3) a detailed, top-down analysis of the NASA AvSafe program using an established and peer-reviewed systems analysis methodology. The statistical analysis identified the top aviation "tall poles" based on NTSB accident and FAA incident data from 1997 to 2006. A separate examination of medical helicopter accidents in the United States was also conducted. Multiple external sources were used to develop a compilation of ten "tall poles" in future safety issues/risks. The top-down analysis of the AvSafe was conducted by using a modification of the Gibson methodology. Of the 17 challenging safety issues that were identified, 11 were directly addressed by the AvSafe program research portfolio.

  13. NASA's Aviation Safety and Modeling Project

    Science.gov (United States)

    Chidester, Thomas R.; Statler, Irving C.

    2006-01-01

    The Aviation Safety Monitoring and Modeling (ASMM) Project of NASA's Aviation Safety program is cultivating sources of data and developing automated computer hardware and software to facilitate efficient, comprehensive, and accurate analyses of the data collected from large, heterogeneous databases throughout the national aviation system. The ASMM addresses the need to provide means for increasing safety by enabling the identification and correcting of predisposing conditions that could lead to accidents or to incidents that pose aviation risks. A major component of the ASMM Project is the Aviation Performance Measuring System (APMS), which is developing the next generation of software tools for analyzing and interpreting flight data.

  14. Implementing Software Safety in the NASA Environment

    Science.gov (United States)

    Wetherholt, Martha S.; Radley, Charles F.

    1994-01-01

    Until recently, NASA did not consider allowing computers total control of flight systems. Human operators, via hardware, have constituted the ultimate safety control. In an attempt to reduce costs, NASA has come to rely more and more heavily on computers and software to control space missions. (For example. software is now planned to control most of the operational functions of the International Space Station.) Thus the need for systematic software safety programs has become crucial for mission success. Concurrent engineering principles dictate that safety should be designed into software up front, not tested into the software after the fact. 'Cost of Quality' studies have statistics and metrics to prove the value of building quality and safety into the development cycle. Unfortunately, most software engineers are not familiar with designing for safety, and most safety engineers are not software experts. Software written to specifications which have not been safety analyzed is a major source of computer related accidents. Safer software is achieved step by step throughout the system and software life cycle. It is a process that includes requirements definition, hazard analyses, formal software inspections, safety analyses, testing, and maintenance. The greatest emphasis is placed on clearly and completely defining system and software requirements, including safety and reliability requirements. Unfortunately, development and review of requirements are the weakest link in the process. While some of the more academic methods, e.g. mathematical models, may help bring about safer software, this paper proposes the use of currently approved software methodologies, and sound software and assurance practices to show how, to a large degree, safety can be designed into software from the start. NASA's approach today is to first conduct a preliminary system hazard analysis (PHA) during the concept and planning phase of a project. This determines the overall hazard potential of

  15. Assessment of the NASA Astrobiology Institute

    Science.gov (United States)

    2008-01-01

    Astrobiology is a scientific discipline devoted to the study of life in the universe--its origins, evolution, distribution, and future. It brings together the physical and biological sciences to address some of the most fundamental questions of the natural world: How do living systems emerge? How do habitable worlds form and how do they evolve? Does life exist on worlds other than Earth? As an endeavor of tremendous breadth and depth, astrobiology requires interdisciplinary investigation in order to be fully appreciated and examined. As part of a concerted effort to undertake such a challenge, the NASA Astrobiology Institute (NAI) was established in 1998 as an innovative way to develop the field of astrobiology and provide a scientific framework for flight missions. Now that the NAI has been in existence for almost a decade, the time is ripe to assess its achievements. At the request of NASA's Associate Administrator for the Science Mission Directorate (SMD), the Committee on the Review of the NASA Astrobiology Institute undertook the assignment to determine the progress made by the NAI in developing the field of astrobiology. It must be emphasized that the purpose of this study was not to undertake a review of the scientific accomplishments of NASA's Astrobiology program, in general, or of the NAI, in particular. Rather, the objective of the study is to evaluate the success of the NAI in achieving its stated goals of: 1. Conducting, supporting, and catalyzing collaborative interdisciplinary research; 2. Training the next generation of astrobiology researchers; 3. Providing scientific and technical leadership on astrobiology investigations for current and future space missions; 4. Exploring new approaches, using modern information technology, to conduct interdisciplinary and collaborative research among widely distributed investigators; and 5. Supporting outreach by providing scientific content for use in K-12 education programs, teaching undergraduate classes, and

  16. Proceedings of the Second NASA Aviation Safety Program Weather Accident Prevention Review

    Science.gov (United States)

    Martzaklis, K. Gus (Compiler)

    2003-01-01

    The Second NASA Aviation Safety Program (AvSP) Weather Accident Prevention (WxAP) Annual Project Review held June 5-7, 2001, in Cleveland, Ohio, presented the NASA technical plans and accomplishments to the aviation community. NASA-developed technologies presented included an Aviation Weather Information System with associated digital communications links, electronic atmospheric reporting technologies, forward-looking turbulence warning systems, and turbulence mitigation procedures. The meeting provided feedback and insight from the aviation community of diverse backgrounds and assisted NASA in steering its plans in the direction needed to meet the national safety goal of 80-percent reduction of aircraft accidents by 2007. The proceedings of the review are enclosed.

  17. Institute for safety technology

    International Nuclear Information System (INIS)

    1991-01-01

    In the area of nuclear reactor safety studies, the Institute for Safety Technology (STI) concentrated its efforts in analysing experimentally and numerically phenomena which characterize highly-improbable but very severe accidents either for light water or for sodium cooled reactors. In the STI nuclear isle, three new laboratories for waste (PETRA), fusion (ETHEL) and safeguards, (PERLA) activities are approaching completion and have made substantial progress in their licensing procedure. The Institute started activities in the non-nuclear safety research area only a few years ago and has been able this year to present its first significant experimental and theoretical results in the areas of runaway reactions, accidental release of products and their deflagration/detonation. Concerning Reference Methods for the Evaluation of Structure Reliability a better understanding was gained of the nonlinear cyclic and dynamic behaviour of materials and structures by performing experiments and developing constitutive and structural member models leading to the computer simulation of complete structures

  18. NASA safety standard for lifting devices and equipment

    Science.gov (United States)

    1990-09-01

    NASA's minimum safety requirements are established for the design, testing, inspection, maintenance, certification, and use of overhead and gantry cranes (including top running monorail, underhung, and jib cranes), mobile cranes, derrick hoists, and special hoist supported personnel lifting devices (these do not include elevators, ground supported personnel lifts, or powered platforms). Minimum requirements are also addressed for the testing, inspection, and use of Hydra-sets, hooks, and slings. Safety standards are thoroughly detailed.

  19. NASA's aviation safety research and technology program

    Science.gov (United States)

    Fichtl, G. H.

    1977-01-01

    Aviation safety is challenged by the practical necessity of compromising inherent factors of design, environment, and operation. If accidents are to be avoided these factors must be controlled to a degree not often required by other transport modes. The operational problems which challenge safety seem to occur most often in the interfaces within and between the design, the environment, and operations where mismatches occur due to ignorance or lack of sufficient understanding of these interactions. Under this report the following topics are summarized: (1) The nature of operating problems, (2) NASA aviation safety research, (3) clear air turbulence characterization and prediction, (4) CAT detection, (5) Measurement of Atmospheric Turbulence (MAT) Program, (6) Lightning, (7) Thunderstorm gust fronts, (8) Aircraft ground operating problems, (9) Aircraft fire technology, (10) Crashworthiness research, (11) Aircraft wake vortex hazard research, and (12) Aviation safety reporting system.

  20. Purpose, Principles, and Challenges of the NASA Engineering and Safety Center

    Science.gov (United States)

    Gilbert, Michael G.

    2016-01-01

    NASA formed the NASA Engineering and Safety Center in 2003 following the Space Shuttle Columbia accident. It is an Agency level, program-independent engineering resource supporting NASA's missions, programs, and projects. It functions to identify, resolve, and communicate engineering issues, risks, and, particularly, alternative technical opinions, to NASA senior management. The goal is to help ensure fully informed, risk-based programmatic and operational decision-making processes. To date, the NASA Engineering and Safety Center (NESC) has conducted or is actively working over 600 technical studies and projects, spread across all NASA Mission Directorates, and for various other U.S. Government and non-governmental agencies and organizations. Since inception, NESC human spaceflight related activities, in particular, have transitioned from Shuttle Return-to-Flight and completion of the International Space Station (ISS) to ISS operations and Orion Multi-purpose Crew Vehicle (MPCV), Space Launch System (SLS), and Commercial Crew Program (CCP) vehicle design, integration, test, and certification. This transition has changed the character of NESC studies. For these development programs, the NESC must operate in a broader, system-level design and certification context as compared to the reactive, time-critical, hardware specific nature of flight operations support.

  1. NASA Engineering Safety Center NASA Aerospace Flight Battery Systems Working Group 2007 Proactive Task Status

    Science.gov (United States)

    Manzo, Michelle A.

    2007-01-01

    In 2007, the NASA Engineering Safety Center (NESC) chartered the NASA Aerospace Flight Battery Systems Working Group to bring forth and address critical battery-related performance/manufacturing issues for NASA and the aerospace community. A suite of tasks identifying and addressing issues related to Ni-H2 and Li-ion battery chemistries was submitted and selected for implementation. The current NESC funded are: (1) Wet Life of Ni-H2 Batteries (2) Binding Procurement (3) NASA Lithium-Ion Battery Guidelines (3a) Li-Ion Performance Assessment (3b) Li-Ion Guidelines Document (3b-i) Assessment of Applicability of Pouch Cells for Aerospace Missions (3b-ii) High Voltage Risk Assessment (3b-iii) Safe Charge Rates for Li-Ion Cells (4) Availability of Source Material for Li-Ion Cells (5) NASA Aerospace Battery Workshop This presentation provides a brief overview of the tasks in the 2007 plan and serves as an introduction to more detailed discussions on each of the specific tasks.

  2. NASA Imaging for Safety, Science, and History

    Science.gov (United States)

    Grubbs, Rodney; Lindblom, Walt; Bowerman, Deborah S. (Technical Monitor)

    2002-01-01

    Since its creation in 1958 NASA has been making and documenting history, both on Earth and in space. To complete its missions NASA has long relied on still and motion imagery to document spacecraft performance, see what can't be seen by the naked eye, and enhance the safety of astronauts and expensive equipment. Today, NASA is working to take advantage of new digital imagery technologies and techniques to make its missions more safe and efficient. An HDTV camera was on-board the International Space Station from early August, to mid-December, 2001. HDTV cameras previously flown have had degradation in the CCD during the short duration of a Space Shuttle flight. Initial performance assessment of the CCD during the first-ever long duration space flight of a HDTV camera and earlier flights is discussed. Recent Space Shuttle launches have been documented with HDTV cameras and new long lenses giving clarity never before seen with video. Examples and comparisons will be illustrated between HD, highspeed film, and analog video of these launches and other NASA tests. Other uses of HDTV where image quality is of crucial importance will also be featured.

  3. NASA's Solar System Exploration Research Virtual Institute: Merging Science and Exploration

    Science.gov (United States)

    Pendleton, Y. J.; Schmidt, G. K.; Bailey, B. E.; Minafra, J. A.

    2016-01-01

    NASA's Solar System Exploration Research Virtual Institute (SSERVI) represents a close collaboration between science, technology and exploration, and was created to enable a deeper understanding of the Moon and other airless bodies. SSERVI is supported jointly by NASA's Science Mission Directorate and Human Exploration and Operations Mission Directorate. The institute currently focuses on the scientific aspects of exploration as they pertain to the Moon, Near Earth Asteroids (NEAs) and the moons of Mars, but the institute goals may expand, depending on NASA's needs, in the future. The 9 initial teams, selected in late 2013 and funded from 2014-2019, have expertise across the broad spectrum of lunar, NEA, and Martian moon sciences. Their research includes various aspects of the surface, interior, exosphere, near-space environments, and dynamics of these bodies. NASA anticipates a small number of additional teams to be selected within the next two years, with a Cooperative Agreement Notice (CAN) likely to be released in 2016. Calls for proposals are issued every 2-3 years to allow overlap between generations of institute teams, but the intent for each team is to provide a stable base of funding for a five year period. SSERVI's mission includes acting as a bridge between several groups, joining together researchers from: 1) scientific and exploration communities, 2) multiple disciplines across a wide range of planetary sciences, and 3) domestic and international communities and partnerships. The SSERVI central office is located at NASA Ames Research Center in Mountain View, CA. The administrative staff at the central office forms the organizational hub for the domestic and international teams and enables the virtual collaborative environment. Interactions with geographically dispersed teams across the U.S., and global partners, occur easily and frequently in a collaborative virtual environment. This poster will provide an overview of the 9 current US teams and

  4. NASA's Solar System Exploration Research Virtual Institute: Merging Science and Exploration

    Science.gov (United States)

    Pendleton, Yvonne J.

    2016-10-01

    Established in 2013, through joint funding from the NASA Science Mission Directorate (SMD) and Human Exploration and Operations Mission Directorate (HEOMD), NASA's Solar System Exploration Research Virtual Institute (SSERVI) is focused on science at the intersection of these two enterprises. Addressing questions of value to the human exploration program that also represent important research relevant to planetary science, SSERVI creates a bridge between HEOMD and SMD. The virtual institute model reduces travel costs, but its primary virtue is the ability to join together colleagues who bring the right expertise, techniques and tools, regardless of their physical location, to address multi-faceted problems, at a deeper level than could be achieved through the typical period of smaller research grants. In addition, collaboration across team lines and international borders fosters the creation of new knowledge, especially at the intersections of disciplines that might not otherwise overlap.SSERVI teams investigate the Moon, Near-Earth Asteroids, and the moons of Mars, addressing questions fundamental to these target bodies and their near space environments. The institute is currently composed of nine U.S. teams of 30-50 members each, distributed geographically across the United States, ten international partners, and a Central Office located at NASA Ames Research Center in Silicon Valley, CA. U.S. teams are competitively selected through peer-reviewed proposals submitted to NASA every 2-3 years, in response to a Cooperative Agreement Notice (CAN). The current teams were selected under CAN-1, with funding for five years (2014-2019). A smaller, overlapping set of teams are expected to be added in 2017 in response to CAN-2, thereby providing continuity and a firm foundation for any directional changes NASA requires as the CAN-1 teams end their term. This poster describes the research areas and composition of the institute to introduce SSERVI to the broader planetary

  5. 77 FR 25179 - Patient Safety Organizations: Voluntary Relinquishment From Surgical Safety Institute

    Science.gov (United States)

    2012-04-27

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Agency for Healthcare Research and Quality Patient Safety... voluntary relinquishment from the Surgical Safety Institute of its status as a Patient Safety Organization (PSO). The Patient Safety and Quality Improvement Act of 2005 (Patient Safety Act) authorizes the...

  6. National Institute for Occupational Safety and Health

    Science.gov (United States)

    ... Submit Search The CDC The National Institute for Occupational Safety and Health (NIOSH) Note: Javascript is disabled or is not ... and Events NIOSH Contact Information Related Federal Agencies Occupational Safety and Health Administration Mine Safety and Health Administration Follow NIOSH ...

  7. Institute for Safety Research. Annual report 1992

    International Nuclear Information System (INIS)

    Weiss, F.P.; Boehmert, J.

    1993-11-01

    The Institute is concerned with evaluating the design based safety and increasing the operational safety of technical systems which include serious sources of danger. It is further occupied with methods of mitigating the effects of incidents and accidents. For all these goals the institute does research work in the following fields: modelling and simulation of thermofluid dynamics and neutron kinetics in cases of accidents; two-phase measuring techniques; safety-related analyses and characterizing of mechanical behaviours of material; measurements and calculations of radiation fields; process and plant diagnostics; development and application of methods of decision analysis. This annual report gives a survey of projects and scientific contributions (e.g. Single rod burst tests with ZrNb1 cladding), lists publications, institute seminars and workshops, names the personal staff and describes the organizational structure. (orig./HP)

  8. Final Report of the NASA Office of Safety and Mission Assurance Agile Benchmarking Team

    Science.gov (United States)

    Wetherholt, Martha

    2016-01-01

    To ensure that the NASA Safety and Mission Assurance (SMA) community remains in a position to perform reliable Software Assurance (SA) on NASAs critical software (SW) systems with the software industry rapidly transitioning from waterfall to Agile processes, Terry Wilcutt, Chief, Safety and Mission Assurance, Office of Safety and Mission Assurance (OSMA) established the Agile Benchmarking Team (ABT). The Team's tasks were: 1. Research background literature on current Agile processes, 2. Perform benchmark activities with other organizations that are involved in software Agile processes to determine best practices, 3. Collect information on Agile-developed systems to enable improvements to the current NASA standards and processes to enhance their ability to perform reliable software assurance on NASA Agile-developed systems, 4. Suggest additional guidance and recommendations for updates to those standards and processes, as needed. The ABT's findings and recommendations for software management, engineering and software assurance are addressed herein.

  9. NASA System Safety Handbook. Volume 2: System Safety Concepts, Guidelines, and Implementation Examples

    Science.gov (United States)

    Dezfuli, Homayoon; Benjamin, Allan; Everett, Christopher; Feather, Martin; Rutledge, Peter; Sen, Dev; Youngblood, Robert

    2015-01-01

    This is the second of two volumes that collectively comprise the NASA System Safety Handbook. Volume 1 (NASASP-210-580) was prepared for the purpose of presenting the overall framework for System Safety and for providing the general concepts needed to implement the framework. Volume 2 provides guidance for implementing these concepts as an integral part of systems engineering and risk management. This guidance addresses the following functional areas: 1.The development of objectives that collectively define adequate safety for a system, and the safety requirements derived from these objectives that are levied on the system. 2.The conduct of system safety activities, performed to meet the safety requirements, with specific emphasis on the conduct of integrated safety analysis (ISA) as a fundamental means by which systems engineering and risk management decisions are risk-informed. 3.The development of a risk-informed safety case (RISC) at major milestone reviews to argue that the systems safety objectives are satisfied (and therefore that the system is adequately safe). 4.The evaluation of the RISC (including supporting evidence) using a defined set of evaluation criteria, to assess the veracity of the claims made therein in order to support risk acceptance decisions.

  10. 76 FR 52016 - NASA International Space Station Advisory Committee and the Aerospace Safety Advisory Panel; Meeting

    Science.gov (United States)

    2011-08-19

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (11-074)] NASA International Space Station Advisory Committee and the Aerospace Safety Advisory Panel; Meeting AGENCY: National Aeronautics and Space... meeting of the NASA International Space Station Advisory Committee and the Aerospace Safety Advisory Panel...

  11. The NASA Aviation Safety Reporting System

    Science.gov (United States)

    1983-01-01

    This is the fourteenth in a series of reports based on safety-related incidents submitted to the NASA Aviation Safety Reporting System by pilots, controllers, and, occasionally, other participants in the National Aviation System (refs. 1-13). ASRS operates under a memorandum of agreement between the National Aviation and Space Administration and the Federal Aviation Administration. The report contains, first, a special study prepared by the ASRS Office Staff, of pilot- and controller-submitted reports related to the perceived operation of the ATC system since the 1981 walkout of the controllers' labor organization. Next is a research paper analyzing incidents occurring while single-pilot crews were conducting IFR flights. A third section presents a selection of Alert Bulletins issued by ASRS, with the responses they have elicited from FAA and others concerned. Finally, the report contains a list of publications produced by ASRS with instructions for obtaining them.

  12. NASA System Safety Handbook. Volume 1; System Safety Framework and Concepts for Implementation

    Science.gov (United States)

    Dezfuli, Homayoon; Benjamin, Allan; Everett, Christopher; Smith, Curtis; Stamatelatos, Michael; Youngblood, Robert

    2011-01-01

    System safety assessment is defined in NPR 8715.3C, NASA General Safety Program Requirements as a disciplined, systematic approach to the analysis of risks resulting from hazards that can affect humans, the environment, and mission assets. Achievement of the highest practicable degree of system safety is one of NASA's highest priorities. Traditionally, system safety assessment at NASA and elsewhere has focused on the application of a set of safety analysis tools to identify safety risks and formulate effective controls.1 Familiar tools used for this purpose include various forms of hazard analyses, failure modes and effects analyses, and probabilistic safety assessment (commonly also referred to as probabilistic risk assessment (PRA)). In the past, it has been assumed that to show that a system is safe, it is sufficient to provide assurance that the process for identifying the hazards has been as comprehensive as possible and that each identified hazard has one or more associated controls. The NASA Aerospace Safety Advisory Panel (ASAP) has made several statements in its annual reports supporting a more holistic approach. In 2006, it recommended that "... a comprehensive risk assessment, communication and acceptance process be implemented to ensure that overall launch risk is considered in an integrated and consistent manner." In 2009, it advocated for "... a process for using a risk-informed design approach to produce a design that is optimally and sufficiently safe." As a rationale for the latter advocacy, it stated that "... the ASAP applauds switching to a performance-based approach because it emphasizes early risk identification to guide designs, thus enabling creative design approaches that might be more efficient, safer, or both." For purposes of this preface, it is worth mentioning three areas where the handbook emphasizes a more holistic type of thinking. First, the handbook takes the position that it is important to not just focus on risk on an individual

  13. Safety and Mission Assurance: A NASA Perspective

    Science.gov (United States)

    Higginbotham, Scott A.

    2016-01-01

    Manned spaceflight is an incredibly complex and inherently risky human endeavor. As the result of the lessons learned through years of triumph and tragedy, the National Aeronautics and Space Administration (NASA) has embraced a comprehensive and integrated approach to the challenge of ensuring safety and mission success. This presentation will provide an overview of some of the techniques employed in this effort, with a focus on the processing operations performed at the Kennedy Space Center (KSC).

  14. Forschungszentrum Rossendorf, Institute of Safety Research. Annual report 2004

    International Nuclear Information System (INIS)

    Weiss, F.P.; Rindelhardt, U.

    2005-01-01

    The Institute of Safety Research (ISR) is one of the six Research Institutes of Forschungszentrum Rossendorf e.V. (FZR e.V.) which is a member institution of the Wissenschaftsgemeinschaft Gottfried Wilhelm Leibniz (Leibniz Association). Together with the Institute of Radiochemistry, ISR constitutes the research programme ''Safety and Environment'' which is one from three scientific programmes of FZR. In the framework of this research programme, the institute is responsible for the two subprogrammes ''Plant and Reactor Safety'' and ''Thermal Fluid Dynamics'', respectively. We also provide minor contributions to the sub-programme ''Radio-Ecology''. Moreover, with the development of a pulsed photo-neutron source at the radiation source ELBE (Electron linear accelerator for beams of high brilliance and low emittance), we are involved in a networking project carried out by the FZR Institute of Nuclear and Hadron Physics, the Physics Department of TU Dresden, and ISR. (orig.)

  15. "NASA's Solar System Exploration Research Virtual Institute"; - Expanded Goals and New Teams

    Science.gov (United States)

    Daou, D.; Schmidt, G. K.; Pendleton, Y.; Bailey, B. E.

    2014-04-01

    The NASA Solar System Exploration Research Virtual Institute (SSERVI) has been pursuing international partnerships since its inception as the NASA Lunar Science Institute (NLSI), in order to both leverage the science being done by its domestic member institutions as well as to help lunar science and exploration become a greater global endeavor. The international partners of the Institute have pursued a broad program of lunar science stimulated by scientific partnerships enabled by the SSERVI community. Furthermore, regional partnerships have been formed such as the new pan-European lunar science consortium, which promises both new scientific approaches and mission concepts. International partner membership requires long-term commitment from both the partner and SSERVI, together with tangible and specific plans for scientific interaction that will produce results of mutual benefit to both the institute's U.S. Teams and the international partner. International partners are invited to participate in all aspects of the Institute's activities and programs, on a basis of no exchange of funds. Through these activities, SSERVI researchers and international partners participate in sharing ideas, information, and data arising from their respective research efforts, and contribute to the training of young scientists. This talk will present an overview of the Institute and the international nodes. We will also discuss the various processes to become a SSERVI partner as well as the opportunities available for collaborations with the SSERVI national teams.

  16. Development of Risk Assessment Matrix for NASA Engineering and Safety Center

    Science.gov (United States)

    Malone, Roy W., Jr.; Moses, Kelly

    2004-01-01

    This paper describes a study, which had as its principal goal the development of a sufficiently detailed 5 x 5 Risk Matrix Scorecard. The purpose of this scorecard is to outline the criteria by which technical issues can be qualitatively and initially prioritized. The tool using this score card has been proposed to be one of the information resources the NASA Engineering and Safety Center (NESC) takes into consideration when making decisions with respect to incoming information on safety concerns across the entire NASA agency. The contents of this paper discuss in detail each element of the risk matrix scorecard, definitions for those elements and the rationale behind the development of those definitions. This scorecard development was performed in parallel with the tailoring of the existing Futron Corporation Integrated Risk Management Application (IRMA) software tool. IRMA was tailored to fit NESC needs for evaluating incoming safety concerns and was renamed NESC Assessment Risk Management Application (NAFMA) which is still in developmental phase.

  17. Forschungszentrum Rossendorf, Institute of Safety Research. Annual report 2004

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, F.P.; Rindelhardt, U. (eds.)

    2005-07-01

    The Institute of Safety Research (ISR) is one of the six Research Institutes of Forschungszentrum Rossendorf e.V. (FZR e.V.) which is a member institution of the Wissenschaftsgemeinschaft Gottfried Wilhelm Leibniz (Leibniz Association). Together with the Institute of Radiochemistry, ISR constitutes the research programme ''Safety and Environment'' which is one from three scientific programmes of FZR. In the framework of this research programme, the institute is responsible for the two subprogrammes ''Plant and Reactor Safety'' and ''Thermal Fluid Dynamics'', respectively. We also provide minor contributions to the sub-programme ''Radio-Ecology''. Moreover, with the development of a pulsed photo-neutron source at the radiation source ELBE (Electron linear accelerator for beams of high brilliance and low emittance), we are involved in a networking project carried out by the FZR Institute of Nuclear and Hadron Physics, the Physics Department of TU Dresden, and ISR. (orig.)

  18. The Armstrong Institute: An Academic Institute for Patient Safety and Quality Improvement, Research, Training, and Practice.

    Science.gov (United States)

    Pronovost, Peter J; Holzmueller, Christine G; Molello, Nancy E; Paine, Lori; Winner, Laura; Marsteller, Jill A; Berenholtz, Sean M; Aboumatar, Hanan J; Demski, Renee; Armstrong, C Michael

    2015-10-01

    Academic medical centers (AMCs) could advance the science of health care delivery, improve patient safety and quality improvement, and enhance value, but many centers have fragmented efforts with little accountability. Johns Hopkins Medicine, the AMC under which the Johns Hopkins University School of Medicine and the Johns Hopkins Health System are organized, experienced similar challenges, with operational patient safety and quality leadership separate from safety and quality-related research efforts. To unite efforts and establish accountability, the Armstrong Institute for Patient Safety and Quality was created in 2011.The authors describe the development, purpose, governance, function, and challenges of the institute to help other AMCs replicate it and accelerate safety and quality improvement. The purpose is to partner with patients, their loved ones, and all interested parties to end preventable harm, continuously improve patient outcomes and experience, and eliminate waste in health care. A governance structure was created, with care mapped into seven categories, to oversee the quality and safety of all patients treated at a Johns Hopkins Medicine entity. The governance has a Patient Safety and Quality Board Committee that sets strategic goals, and the institute communicates these goals throughout the health system and supports personnel in meeting these goals. The institute is organized into 13 functional councils reflecting their behaviors and purpose. The institute works daily to build the capacity of clinicians trained in safety and quality through established programs, advance improvement science, and implement and evaluate interventions to improve the quality of care and safety of patients.

  19. Legitimacy and Reputation in the Institutional Field of Food Safety

    DEFF Research Database (Denmark)

    Merkelsen, Henrik

    2013-01-01

    The overall objective of this study is to examine how the institutional context of food safety affects and is affected by concerns for legitimacy and reputation. The paper employs a neo-institutional approach to analyzing the institutional field of food safety in a case study of a multinational...... food service provider where a tension between conflicting institutional logics implied a reputational challenge. The study shows how food safety as a well-defined operational risk is transformed into a high-priority reputational risk and how actors in the field of food safety are caught in a state...... of mutual distrust, partly as a consequence of an intense politicization of food risk over the past years and partly as a result of their respective concerns for legitimacy. The study points to how the field of food safety is colonized by a reputational logic that is paradoxically reproduced by actors...

  20. "NASA's Solar System Exploration Research Virtual Institute" - Expanded Goals and More Partners

    Science.gov (United States)

    Daou, D.; Schmidt, G.; Pendleton, Y.; Bailey, B.; Morrison, D.

    2015-10-01

    The NASA Solar System Exploration Research Virtual Institute (SSERVI) has been pursuing international partnerships since its inceptionas the NASA Lunar Science Institute (NLSI), in order to both leverage the science being done by its domestic member institutions as well as to help lunar science and exploration become a greater global endeavor. The international partners of the I nstitute have pursued a broad program of lunar science stimulated by scientific partnerships enabled by the SSERVI community. Furthermore, regional partnerships have been formed such as the new pan- European lunar science consortium, which promises both new scientific approaches and mission concepts.International partner membership requires longterm commitment from both the partner and SSERVI, together with tangible and specific plans for scientific interaction that will produce results of mutual benefit to both the institute's U.S. Teams and the international partner.International partners are invited to participate in all aspects of the Institute's activities and programs, on a basis of no exchange of funds. Through these activities, SSERVI researchers and international partners participate in sharing ideas, information, and data arising from their respective research efforts, and contribute to the training of young scientists.This talk will present an overview of the Institute and the international nodes. We will also discuss the various processes to become a SSERVI partner as well as the opportunities available for collaborations with the SSERVI national teams.

  1. First NASA Aviation Safety Program Weather Accident Prevention Project Annual Review

    Science.gov (United States)

    Colantonio, Ron

    2000-01-01

    The goal of this Annual Review was to present NASA plans and accomplishments that will impact the national aviation safety goal. NASA's WxAP Project focuses on developing the following products: (1) Aviation Weather Information (AWIN) technologies (displays, sensors, pilot decision tools, communication links, etc.); (2) Electronic Pilot Reporting (E-PIREPS) technologies; (3) Enhanced weather products with associated hazard metrics; (4) Forward looking turbulence sensor technologies (radar, lidar, etc.); (5) Turbulence mitigation control system designs; Attendees included personnel from various NASA Centers, FAA, National Weather Service, DoD, airlines, aircraft and pilot associations, industry, aircraft manufacturers and academia. Attendees participated in discussion sessions aimed at collecting aviation user community feedback on NASA plans and R&D activities. This CD is a compilation of most of the presentations presented at this Review.

  2. NASA Aviation Safety Program Weather Accident Prevention/weather Information Communications (WINCOMM)

    Science.gov (United States)

    Feinberg, Arthur; Tauss, James; Chomos, Gerald (Technical Monitor)

    2002-01-01

    Weather is a contributing factor in approximately 25-30 percent of general aviation accidents. The lack of timely, accurate and usable weather information to the general aviation pilot in the cockpit to enhance pilot situational awareness and improve pilot judgment remains a major impediment to improving aviation safety. NASA Glenn Research Center commissioned this 120 day weather datalink market survey to assess the technologies, infrastructure, products, and services of commercial avionics systems being marketed to the general aviation community to address these longstanding safety concerns. A market survey of companies providing or proposing to provide graphical weather information to the general aviation cockpit was conducted. Fifteen commercial companies were surveyed. These systems are characterized and evaluated in this report by availability, end-user pricing/cost, system constraints/limits and technical specifications. An analysis of market survey results and an evaluation of product offerings were made. In addition, recommendations to NASA for additional research and technology development investment have been made as a result of this survey to accelerate deployment of cockpit weather information systems for enhancing aviation safety.

  3. 77 FR 40622 - Mine Safety and Health Research Advisory Committee, National Institute for Occupational Safety...

    Science.gov (United States)

    2012-07-10

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Centers for Disease Control and Prevention Mine Safety and Health Research Advisory Committee, National Institute for Occupational Safety and Health (MSHRAC, NIOSH..., oxygen supply partnership, safety culture, occupational health and safety management systems, preventing...

  4. 29 CFR 1960.35 - National Institute for Occupational Safety and Health.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 9 2010-07-01 2010-07-01 false National Institute for Occupational Safety and Health. 1960.35 Section 1960.35 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH... § 1960.35 National Institute for Occupational Safety and Health. (a) The Director of the National...

  5. New Institutional Theory and a Culture of Safety in Agriculture.

    Science.gov (United States)

    Janssen, Brandi; Nonnenmann, Matthew W

    2017-01-01

    Health and safety professionals often call for an improved safety culture in agriculture. Such a shift would result in agricultural practices that prioritize safe work habits and see safety as both an effective means to improve production and a goal worth pursuing in its own right. This article takes an anthropological approach and demonstrates the potential for new institutional theory to conceptualize broader cultural change in agriculture. New institutional theory examines the roles of organizations and the ways that they inform and support broad social institutions. Using preliminary data from the agricultural lending industry in Iowa and integrated poultry production in Texas, this article considers the ability of these organizations to contribute to systemic change and an improved culture of safety in agriculture.

  6. Increasing NASA SSC Range Safety by Developing the Framework to Monitor Airspace and Enforce Restrictions

    Data.gov (United States)

    National Aeronautics and Space Administration — The NASA John C. Stennis Space Center (SSC) Office of Safety and Mission Assurance (SMA) has a safety concern associated with unauthorized aircraft entering...

  7. The 1988 progress report of the Nuclear Safety and Protection Institut

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    The 1988 progress report of the Nuclear Safety and Protection Institut (CEA, France). The Institute's fields of action involve: The activities and technical safety of the nuclear power plants, the environmental and human radiation protection which includes technical, health and medical aspects, the nuclear materials compatibility and control and the accident intervention actions. The 1988 Institute activities are characterized by the continuity of the previous technical safety directives, by the improvement of the nuclear risk communication and of the international cooperation [fr

  8. Forschungszentrum Rossendorf, Institute of Safety Research. Annual report 1999

    International Nuclear Information System (INIS)

    Weiss, F.P.; Rindelhardt, U.

    2000-02-01

    The work of the institute is directed to the assessment and enhancement of the safety of large technical plants and to the increase of the effectiveness and environmental sustainability of those facilities. Subjects of investigations are equally nuclear plants and installations of process industries. To achieve the above mentioned goals, the institute is engaged in two scientific fields, i.e. thermo-fluiddynamics including magneto-hydrodynamics (MHD) and materials/components safety. (orig.)

  9. Proceedings of Twenty-Seventh Annual Institute on Mining Health, Safety and Research

    Energy Technology Data Exchange (ETDEWEB)

    Bockosh, G.R. [ed.] [Pittsburgh Research Center, US Dept. of Energy (United States); Langton, J. [ed.] [Mine Safety and Health Administration, US Dept. of Labor (United States); Karmis, M. [ed.] [Virginia Polytechnic Institute and State University. Dept. of Mining and Minerals Engineering, Blacksburg (United States)

    1996-12-31

    This Proceedings contains the presentations made during the program of the Twenty-Seventh Annual Institute on Mining Health, Safety and Research held at Virginia Polytechnic Institute and State University, Blacksburg, Virginia, on August 26-28, 1996. The Twenty-Seventh Annual Institute on Mining, Health, Safety and Research was the latest in a series of conferences held at Virginia Polytechnic Institute and State University, cosponsored by the Mine Safety and Health Administration, United States Department of Labor, and the Pittsburgh Research Center, United States Department of Energy (formerly part of the Bureau of Mines, U. S. Department of Interior). The Institute provides an information forum for mine operators, managers, superintendents, safety directors, engineers, inspectors, researchers, teachers, state agency officials, and others with a responsible interest in the important field of mining health, safety and research. In particular, the Institute is designed to help mine operating personnel gain a broader knowledge and understanding of the various aspects of mining health and safety, and to present them with methods of control and solutions developed through research. Selected papers have been processed separately for inclusion in the Energy Science and Technology database.

  10. Nuclear-safety institution in France: emergence and development

    International Nuclear Information System (INIS)

    Vallet, B.M.

    1986-01-01

    This research work examines the social construction of the nuclear-safety institution in France, and the concurrent increased focus on the nuclear-risk issue. Emphasis on risk and safety, as primarily technical issues, can partly be seen as a strategy. Employed by power elites in the nuclear technostructure, this diverts emphasis away from controversial and normative questions regarding the political and social consequences of technology to questions of technology that appear to be absolute to the technology itself. Nuclear safety, which started from a preoccupation with risk related to the nuclear energy research and development process, is examined using the analytic concept of field. As a social arena patterned to achieve specific tasks, this field is dominated by a body of state engineers recognized to have high-level scientific and administrative competences. It is structured by procedures and administrative hierarchies as well as by technical rules, norms, and standards. These are formalized and rationalized through technical, economic, political, and social needs; over time; they consolidate the field into an institution. The study documents the nuclear-safety institution as an integral part of the nuclear technostructure, which has historically used the specificity of its expertise as a buffer against outside interference

  11. Evolution of System Safety at NASA as Related to Defense-in-Depth

    Science.gov (United States)

    Dezfuli, Homayoon

    2015-01-01

    Presentation given at the Defense-in-Depth Inter-Agency Workshop on August 26, 2015 in Rockville, MD by Homayoon Dezfuli. The presentation addresses the evolution of system safety at NASA as related to Defense-in-Depth.

  12. Helmholtz-Zentrum Dresden-Rossendorf, Institute of Safety Research. Annual report 2010

    International Nuclear Information System (INIS)

    Gerbeth, Gunter; Schaefer, Frank

    2011-01-01

    The Institute of Safety Research (ISR) was over the past 20 years one of the six Research Institutes of Forschungszentrum Dresden-Rossendorf e.V. (FZD), which in 2010 belonged to the Wissenschaftsgemeinschaft Gottfried Wilhelm Leibniz. Together with the Institutes of Radiochemistry and Radiation Physics, ISR implements the research programme ''Nuclear Safety Research'' (NSR), which was during last years one of the three scientific programmes of FZD. NSR involves two main topics, i.e. ''Safety Research for Radioactive Waste Disposal'' and ''Safety Research for Nuclear Reactors''. The research of ISR aims at assessing and enhancing the safety of current and future reactors, the development of advanced simulation tools including their validation against experimental data, and the development of the appropriate measuring techniques for multi-phase flows and liquid metals.

  13. Recent Experiences of the NASA Engineering and Safety Center (NESC) GN and C Technical Discipline Team (TDT)

    Science.gov (United States)

    Dennehy, Cornelius J.

    2010-01-01

    The NASA Engineering and Safety Center (NESC), initially formed in 2003, is an independently funded NASA Program whose dedicated team of technical experts provides objective engineering and safety assessments of critical, high risk projects. The GN&C Technical Discipline Team (TDT) is one of fifteen such discipline-focused teams within the NESC organization. The TDT membership is composed of GN&C specialists from across NASA and its partner organizations in other government agencies, industry, national laboratories, and universities. This paper will briefly define the vision, mission, and purpose of the NESC organization. The role of the GN&C TDT will then be described in detail along with an overview of how this team operates and engages in its objective engineering and safety assessments of critical NASA projects. This paper will then describe selected recent experiences, over the period 2007 to present, of the GN&C TDT in which they directly performed or supported a wide variety of NESC assessments and consultations.

  14. Helmholtz-Zentrum Dresden-Rossendorf, Institute of Safety Research. Annual report 2010

    Energy Technology Data Exchange (ETDEWEB)

    Gerbeth, Gunter; Schaefer, Frank (eds.)

    2011-07-01

    The Institute of Safety Research (ISR) was over the past 20 years one of the six Research Institutes of Forschungszentrum Dresden-Rossendorf e.V. (FZD), which in 2010 belonged to the Wissenschaftsgemeinschaft Gottfried Wilhelm Leibniz. Together with the Institutes of Radiochemistry and Radiation Physics, ISR implements the research programme ''Nuclear Safety Research'' (NSR), which was during last years one of the three scientific programmes of FZD. NSR involves two main topics, i.e. ''Safety Research for Radioactive Waste Disposal'' and ''Safety Research for Nuclear Reactors''. The research of ISR aims at assessing and enhancing the safety of current and future reactors, the development of advanced simulation tools including their validation against experimental data, and the development of the appropriate measuring techniques for multi-phase flows and liquid metals.

  15. 77 FR 27776 - Safety and Occupational Health Study Section (SOHSS), National Institute for Occupational Safety...

    Science.gov (United States)

    2012-05-11

    ... Occupational Health Study Section (SOHSS), National Institute for Occupational Safety and Health (NIOSH) In... Services Office, CDC, pursuant to Public Law 92-463. Purpose: The Safety and Occupational Health Study... standard grants review and funding cycles pertaining to research issues in occupational safety and health...

  16. 76 FR 18220 - Safety and Occupational Health Study Section (SOHSS), National Institute for Occupational Safety...

    Science.gov (United States)

    2011-04-01

    ... Occupational Health Study Section (SOHSS), National Institute for Occupational Safety and Health (NIOSH) In... Services Office, CDC, pursuant to Public Law 92-463. Purpose: The Safety and Occupational Health Study... standard grants review and funding cycles pertaining to research issues in occupational safety and health...

  17. 78 FR 40743 - Mine Safety and Health Research Advisory Committee, National Institute for Occupational Safety...

    Science.gov (United States)

    2013-07-08

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Centers for Disease Control and Prevention Mine Safety and Health Research Advisory Committee, National Institute for Occupational Safety and Health (MSHRAC, NIOSH... Director, NIOSH, on priorities in mine safety and health research, including grants and contracts for such...

  18. 75 FR 12554 - Mine Safety and Health Research Advisory Committee, National Institute for Occupational Safety...

    Science.gov (United States)

    2010-03-16

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Centers for Disease Control and Prevention Mine Safety and Health Research Advisory Committee, National Institute for Occupational Safety and Health (MSHRAC, NIOSH... priorities in mine safety and health research, including grants and contracts for such research, 30 U.S.C...

  19. 75 FR 26266 - Safety and Occupational Health Study Section (SOHSS), National Institute for Occupational Safety...

    Science.gov (United States)

    2010-05-11

    ... Occupational Health Study Section (SOHSS), National Institute for Occupational Safety and Health (NIOSH) In...) Public Law 92-463. Purpose: The Safety and Occupational Health Study Section will review, discuss, and... cycles pertaining to research issues in occupational safety and health, and allied areas. It is the...

  20. The European Nuclear Safety Training and Tutoring Institute

    International Nuclear Information System (INIS)

    2012-01-01

    The European Nuclear Safety Training and Tutoring Institute, ENSTTI, is an initiative of European Technical Safety Organizations (TSO) in order to provide vocational training and tutoring in the methods and practices required to perform assessment in nuclear safety, nuclear security and radiation protection. ENSTTI calls on TSOs' expertise to maximize the transmission of safety and security knowledge, practical experience and culture. Training, tutoring and courses for specialists are achieved through practical lectures, working group and technical visits and lead to a certificate after knowledge testing. ENSTTI contributes to the harmonization of nuclear safety and security practices and to the networking of today and future nuclear safety experts in Europe and beyond. (A.C.)

  1. A National Institute of Radiation Protection and Nuclear Safety?

    International Nuclear Information System (INIS)

    Hartley, B.M.

    1993-01-01

    The practice of radiation protection within Australia is fragmented on a number of different levels. Each state has its own radiation protection organisation. Within the Commonwealth there is also a large number of bodies which deal with different aspects of radiation protection or nuclear safety. There is also an interest in occupational radiation protection by Departments responsible for Occupational Health and Safety. It is estimated that this fragmentation affects the practice of radiation protection at a State level and also the role which Australia can play internationally. The establishment of a National Institute of Radiation Protection and Nuclear Safety is therefore proposed. Possible structures and organizational arrangements for such an institute are discussed. 4 refs., 4 tabs., 3 figs

  2. Forschungszentrum Rossendorf. Institute of Safety Research. Annual report 1998

    International Nuclear Information System (INIS)

    Weiss, F.P.; Rindelhardt, U.

    1999-07-01

    The Institute of Safety Research is one of the five scientific institutes of Forschungszentrum Rossendorf e.V. The Forschungszentrum Rossendorf is a member of the 'Wissenschaftsgemeinschaft Gottfried Wilhelm Leibniz' und is funded by the Federal Ministry of Education and Research and by the Saxon Ministry of Science and Arts with 50% each. The research work of the institute aims at the assessment and increase of the safety and environmental sustainability of technical plants. The emphasis is put on the development and validation of mathematical and physical models for process and plant analysis, and of techniques for process and components monitoring. Subject of investigations are equally nuclear plants and installations of process industries. (orig.)

  3. 78 FR 12065 - National Institute for Occupational Safety and Health Personal Protective Technology for...

    Science.gov (United States)

    2013-02-21

    ... Institute for Occupational Safety and Health Personal Protective Technology for Pesticide Handlers: Stakeholder Meeting AGENCY: The National Institute for Occupational Safety and Health (NIOSH) of the Centers...: Notice of public meeting. SUMMARY: The National Institute for Occupational Safety and Health (NIOSH) of...

  4. 75 FR 44967 - National Institute for Occupational Safety and Health

    Science.gov (United States)

    2010-07-30

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institute for Occupational Safety and Health... Occupational Safety and Health (NIOSH), Department of Health and Human Services (HHS). ACTION: Notice. SUMMARY... Occupational Safety and Health (NIOSH), 4676 Columbia Parkway, MS C-46, Cincinnati, OH 45226, Telephone 877-222...

  5. Systematic impact of institutional pressures on safety climate in the construction industry.

    Science.gov (United States)

    He, Qinghua; Dong, Shuang; Rose, Timothy; Li, Heng; Yin, Qin; Cao, Dongping

    2016-08-01

    This paper explores how three types of institutional pressure (i.e., coercive, mimetic and normative pressures) systematically impact on the safety climate of construction projects. These impacts are empirically tested by survey data collected from 186 questionnaires of construction companies operating in Shanghai, China. The results, obtained by partial least squares analysis, show that organizational management commitment to safety and employee involvement is positively related to all three institutional pressures, while the perception of responsibility for safety and health is significantly influenced by coercive and mimetic pressure. However, coercive and normative pressures have no significant effect on the applicability of safety rules and work practices, revealing the importance of external organizational pressures in improving project safety climate from a systematic view. The findings also provide insights into the use of institutional forces to facilitate the improvement of safety climate in the construction industry. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. NASA/Max Planck Institute Barium Ion Cloud Project.

    Science.gov (United States)

    Brence, W. A.; Carr, R. E.; Gerlach, J. C.; Neuss, H.

    1973-01-01

    NASA and the Max Planck Institute for Extraterrestrial Physics (MPE), Munich, Germany, conducted a cooperative experiment involving the release and study of a barium cloud at 31,500 km altitude near the equatorial plane. The release was made near local magnetic midnight on Sept. 21, 1971. The MPE-built spacecraft contained a canister of 16 kg of Ba CuO mixture, a two-axis magnetometer, and other payload instrumentation. The objectives of the experiment were to investigate the interaction of the ionized barium cloud with the ambient medium and to deduce the properties of electric fields in the proximity of the release. An overview of the project is given to briefly summarize the organization, responsibilities, objectives, instrumentation, and operational aspects of the project.

  7. NASA's Solar System Exploration Research Virtual Institute: Building Collaboration Through International Partnerships

    Science.gov (United States)

    Gibbs, K. E.; Schmidt, G. K.

    2017-01-01

    The NASA Solar System Exploration Research Virtual Institute (SSERVI) is a virtual institute focused on re-search at the intersection of science and exploration, training the next generation of lunar scientists, and community development. As part of the SSERVI mission, we act as a hub for opportunities that engage the larger scientific and exploration communities in order to form new interdisciplinary, research-focused collaborations. This talk will describe the international partner re-search efforts and how we are engaging the international science and exploration communities through workshops, conferences, online seminars and classes, student exchange programs and internships.

  8. The Role and Quality of Software Safety in the NASA Constellation Program

    Science.gov (United States)

    Layman, Lucas; Basili, Victor R.; Zelkowitz, Marvin V.

    2010-01-01

    In this study, we examine software safety risk in the early design phase of the NASA Constellation spaceflight program. Obtaining an accurate, program-wide picture of software safety risk is difficult across multiple, independently-developing systems. We leverage one source of safety information, hazard analysis, to provide NASA quality assurance managers with information regarding the ongoing state of software safety across the program. The goal of this research is two-fold: 1) to quantify the relative importance of software with respect to system safety; and 2) to quantify the level of risk presented by software in the hazard analysis. We examined 154 hazard reports created during the preliminary design phase of three major flight hardware systems within the Constellation program. To quantify the importance of software, we collected metrics based on the number of software-related causes and controls of hazardous conditions. To quantify the level of risk presented by software, we created a metric scheme to measure the specificity of these software causes. We found that from 49-70% of hazardous conditions in the three systems could be caused by software or software was involved in the prevention of the hazardous condition. We also found that 12-17% of the 2013 hazard causes involved software, and that 23-29% of all causes had a software control. Furthermore, 10-12% of all controls were software-based. There is potential for inaccuracy in these counts, however, as software causes are not consistently scoped, and the presence of software in a cause or control is not always clear. The application of our software specificity metrics also identified risks in the hazard reporting process. In particular, we found a number of traceability risks in the hazard reports may impede verification of software and system safety.

  9. Learning from Fukushima: Institutional Isomorphism as Constraining and Contributing Nuclear Safety

    International Nuclear Information System (INIS)

    Ylönen, M.

    2016-01-01

    This paper is an analysis of the international institutional isomorphic pressures and lessons learned from the Fukushima accident. The recent upgrading of nuclear safety requirements at the international and national level, as well as harmonisation attempts of nuclear reactor safety by the Western European Nuclear Regulators’ Association (WENRA), show serious efforts to improve nuclear safety and implement lessons learned from the Fukushima accident. After Fukushima new requirements for the new nuclear power plants were set, such as preparedness for natural hazards, multiple failure and core melt situations. In addition, improvement of safety culture was emphasised, as well as strengthening of independence of the regulatory body from external pressures, and increasing of independence between different levels of defence in depth safety. However, learning from accidents is often affected by institutional factors, which may both contribute and hamper safety and learning.

  10. 78 FR 64504 - Safety and Occupational Health Study Section (SOHSS), National Institute for Occupational Safety...

    Science.gov (United States)

    2013-10-29

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Centers for Disease Control and Prevention Safety and Occupational Health Study Section (SOHSS), National Institute for Occupational Safety and Health (NIOSH or..., Number 177, Pages 56235-56236. Contact Person for More Information: Price Connor, Ph.D., NIOSH Health...

  11. Forschungszentrum Rossendorf, Institute for Safety Research. Annual report 1995

    International Nuclear Information System (INIS)

    Weiss, F.P.; Rindelhardt, U.

    1996-09-01

    The scientific work of the Institute of Safety Research covers a wide range of safety related investigations. During 1995 important results on thermo-fluid dynamic single effects, thermalhydraulics and neutron kinetics for accident analysis, materials safety, simulation of radiation and particle transport, mechanical integrity of technical systems and process monitoring, risk management for waste deposits, magneto-hydrodynamics of conductive fluids, and of renewable energies were reached. The annual report presents also lists of publications, conference contributions, meetings, and workshops. (DG)

  12. Anomaly Analysis: NASA's Engineering and Safety Center Checks Recurring Shuttle Glitches

    Science.gov (United States)

    Morring, Frank, Jr.

    2004-01-01

    The NASA Engineering and Safety Center (NESC), set up in the wake of the Columbia accident to backstop engineers in the space shuttle program, is reviewing hundreds of recurring anomalies that the program had determined don't affect flight safety to see if in fact they might. The NESC is expanding its support to other programs across the agency, as well. The effort, which will later extend to the International Space Station (ISS), is a principal part of the attempt to overcome the normalization of deviance--a situation in which organizations proceeded as if nothing was wrong in the face of evidence that something was wrong--cited by sociologist Diane Vaughn as contributing to both space shuttle disasters.

  13. Paul Scherrer Institut annual report 1995. Annex IV: PSI nuclear energy and safety

    Energy Technology Data Exchange (ETDEWEB)

    Birchley, J.; Roesel, R.; Doesburg, R. van [eds.] [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1996-09-01

    Nuclear energy research in Switzerland is concentrated at PSI`s Department F4. It is explicitly mentioned in the Institute`s official charter and commands about one fifth of the Institute`s federal resources. Presently, PSI invests approx. 200 py/a in nuclear energy research, one third of this being externally funded; the share of external funding in investment costs totals approx. 50%. This funding is provided by the Swiss utilities and the NAGRA, the Safety Authority (HSK) and the former National Fund for Energy Research (NEFF). PSI`s activities in nuclear research concentrate on three main areas: safety of operating plants, safety features of future reactor concepts and waste management. 7% of personnel are invested in addressing global aspects of energy. (author) figs., tabs., refs.

  14. 78 FR 78362 - National Institute for Occupational Safety and Health Personal; Notice of public meeting in...

    Science.gov (United States)

    2013-12-26

    ... Institute for Occupational Safety and Health Personal; Notice of public meeting in Endicott, New York AGENCY: The National Institute for Occupational Safety and Health (NIOSH) of the Centers for Disease Control.... SUMMARY: The National Institute for Occupational Safety and Health (NIOSH) of the Centers for Disease...

  15. Forschungszentrum Rossendorf, Institute of Safety Research. Annual report 2003

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The work of the institute is directed to the assessment and enhancement of the safety of technical plants and to the increase of the efficiency and environmental sustainability of those facilities. Subjects of investigation are equally nuclear plants and installations of process industries. To achieve the goals mentioned, the institute is mainly engaged in the scientific fields of thermal fluid dynamics including magneto-hydrodynamics (MHD) and materials sciences. In 2003, the ISR worked on the following main scientific projects. Sub-programme: Plant and Rector Safety. Project: accident analysis of nuclear reactors, safety of materials and components, particle and radiation transport, safety and efficiency of chemical processes. Sub-programme: Thermal Fluid Dynamics. Project: magneto-hydrodynamics, thermal fluid dynamics of multiphase systems. Considerable progress could also be achieved in the CFD simulation of two-phase flows. New approaches for the forces acting on steam bubbles in a water flow could be developed and implemented into the CFX code in close cooperation with the CFX developer ANSYS/CFX. The qualified models allow to simulate the evolution of bubble size specific radial void distribution profiles along the flow path. These theoretical studies and the related experiments at the Rossendorf TOPFLOW test facility represent an important part of the German CFD network that aims at the improvement of thermal hydraulic calculation methods in reactor safety. (orig.)

  16. Forschungszentrum Rossendorf, Institute of Safety Research. Annual report 2003

    International Nuclear Information System (INIS)

    2004-01-01

    The work of the institute is directed to the assessment and enhancement of the safety of technical plants and to the increase of the efficiency and environmental sustainability of those facilities. Subjects of investigation are equally nuclear plants and installations of process industries. To achieve the goals mentioned, the institute is mainly engaged in the scientific fields of thermal fluid dynamics including magneto-hydrodynamics (MHD) and materials sciences. In 2003, the ISR worked on the following main scientific projects. Sub-programme: Plant and Rector Safety. Project: accident analysis of nuclear reactors, safety of materials and components, particle and radiation transport, safety and efficiency of chemical processes. Sub-programme: Thermal Fluid Dynamics. Project: magneto-hydrodynamics, thermal fluid dynamics of multiphase systems. Considerable progress could also be achieved in the CFD simulation of two-phase flows. New approaches for the forces acting on steam bubbles in a water flow could be developed and implemented into the CFX code in close cooperation with the CFX developer ANSYS/CFX. The qualified models allow to simulate the evolution of bubble size specific radial void distribution profiles along the flow path. These theoretical studies and the related experiments at the Rossendorf TOPFLOW test facility represent an important part of the German CFD network that aims at the improvement of thermal hydraulic calculation methods in reactor safety. (orig.)

  17. Training Presentation for NASA Civil Helicopter Safety Website

    Science.gov (United States)

    Iseler, Laura

    2002-01-01

    NASA civil helicopter safety News & Updates include the following: Mar. 2002. The Air Medical Operations Survey has been completed! Check it out! Also accessible via the Mission pages under Air Medical Mission. Air Medical and Law Enforcement Mission pages have been added. They are accessible via the Mission pages. The Public Use, Personal, Offshore, Law Enforcement, External Load, Business and Gyro accident pages (accessable via the Mission page) have been updated. Feb. 2002. A Words of Wisdom section has been added. You can access it by clicking the Library button. A link to a Corporate Accident Response Plan has been added to the Accident page. The AMs, Aerial Application and Instruction accident pages (accessable via the Mission page) have been updated. Jan. 2002. A new searchable safety article database has been added. You can access it by clicking the Library button. The 2001 accident summaries have been updated and the statistics have been compiled - check it out by clicking the accident tab to the left. Dec. 2001. Please read the FAA Administrator's memo regarding the latest FBI warning. 3ee the FAA column - Fall 2001 Read it now!

  18. Institutional glovebox safety committee (IGSC) annual report FY2010

    Energy Technology Data Exchange (ETDEWEB)

    Cournoyer, Michael E [Los Alamos National Laboratory; Roybal, Richard F [Los Alamos National Laboratory; Lee, Roy J [Los Alamos National Laboratory

    2011-01-04

    The Institutional Glovebox Safety Committee (IGSC) was chartered to minimize and/or prevent glovebox operational events. Highlights of the IGSC's third year are discussed. The focus of this working committee is to address glovebox operational and safety issues and to share Lessons Learned, best practices, training improvements, and glovebox glove breach and failure data. Highlights of the IGSC's third year are discussed. The results presented in this annual report are pivotal to the ultimate focus of the glovebox safety program, which is to minimize work-related injuries and illnesses. This effort contributes to the LANL Continuous Improvement Program by providing information that can be used to improve glovebox operational safety.

  19. Recent Experiences of the NASA Engineering and Safety Center (NESC) Guidance Navigation and Control (GN and C) Technical Discipline Team (TDT)

    Science.gov (United States)

    Dennehy, Cornelius J.

    2011-01-01

    The NASA Engineering and Safety Center (NESC) is an independently funded NASA Program whose dedicated team of technical experts provides objective engineering and safety assessments of critical, high risk projects. NESC's strength is rooted in the diverse perspectives and broad knowledge base that add value to its products, affording customers a responsive, alternate path for assessing and preventing technical problems while protecting vital human and national resources. The Guidance Navigation and Control (GN&C) Technical Discipline Team (TDT) is one of fifteen such discipline-focused teams within the NESC organization. The TDT membership is composed of GN&C specialists from across NASA and its partner organizations in other government agencies, industry, national laboratories, and universities. This paper will briefly define the vision, mission, and purpose of the NESC organization. The role of the GN&C TDT will then be described in detail along with an overview of how this team operates and engages in its objective engineering and safety assessments of critical NASA.

  20. Understanding Risk Tolerance and Building an Effective Safety Culture

    Science.gov (United States)

    Loyd, David

    2018-01-01

    Estimates range from 65-90 percent of catastrophic mishaps are due to human error. NASA's human factors-related mishaps causes are estimated at approximately 75 percent. As much as we'd like to error-proof our work environment, even the most automated and complex technical endeavors require human interaction... and are vulnerable to human frailty. Industry and government are focusing not only on human factors integration into hazardous work environments, but also looking for practical approaches to cultivating a strong Safety Culture that diminishes risk. Industry and government organizations have recognized the value of monitoring leading indicators to identify potential risk vulnerabilities. NASA has adapted this approach to assess risk controls associated with hazardous, critical, and complex facilities. NASA's facility risk assessments integrate commercial loss control, OSHA (Occupational Safety and Health Administration) Process Safety, API (American Petroleum Institute) Performance Indicator Standard, and NASA Operational Readiness Inspection concepts to identify risk control vulnerabilities.

  1. Survey and analysis of radiation safety management systems at medical institutions. Initial report. Radiation protection supervisor, radiation safety organization, and education and training

    International Nuclear Information System (INIS)

    Ohba, Hisateru; Ogasawara, Katsuhiko; Aburano, Tamio

    2005-01-01

    In this study, a questionnaire survey was carried out to determine the actual situation of radiation safety management systems in Japanese medical institutions with nuclear medicine facilities. The questionnaire consisted of questions concerning the Radiation Protection Supervisor license, safety management organizations, and problems related to education and training in safety management. Analysis was conducted according to region, type of establishment, and number of beds. The overall response rate was 60%, and no significant difference in response rate was found among regions. Medical institutions that performed nuclear medicine practices without a radiologist participating accounted for 10% of the total. Medical institutions where nurses gave patients intravenous injections of radiopharmaceuticals as part of the nuclear medicine practices accounted for 28% of the total. Of these medical institutions, 59% provided education and training in safety management for nurses. The rate of acquisition of Radiation Protection Supervisor licenses was approximately 70% for radiological technologists and approximately 20% for physicians (regional difference, p=0.02). The rate of medical institutions with safety management organizations was 71% of the total. Among the medical institutions (n=208) without safety management organizations, approximately 56% had 300 beds or fewer. In addition, it became clear that 35% of quasi-public organizations and 44% of private organizations did not provide education and training in safety management (p<0.001, according to establishment). (author)

  2. Technical and institutional safety features of nuclear power plants in Brazil

    International Nuclear Information System (INIS)

    Rosa, L.P.

    1986-01-01

    This work reports technical, political and institutional safety features of nuclear power plants in Brazil. It is mainly concerned with reactor accidents and personnel safety. The three mile Island and Chernobyl accidents are also discussed and taken as examples. (A.C.A.S.)

  3. Report to NASA Committee on Aircraft Operating Problems Relative to Aviation Safety Engineering and Research Activities

    Science.gov (United States)

    1963-01-01

    The following report highlights some of the work accomplished by the Aviation Safety Engineering and Research Division of the Flight Safety Foundations since the last report to the NASA Committee on Aircraft Operating Problems on 22 May 1963. The information presented is in summary form. Additional details may be provided upon request of the reports themselves may be obtained from AvSER.

  4. Safety management of radioisotopes and others in educational institutions

    International Nuclear Information System (INIS)

    1981-01-01

    Radioisotopes are extensively used in the fields of research in various educational institutions. While considerable progress has been seen in the safety management of RI utilization, such accidents as the loss of radioisotopes and radioactive contamination occurred. Under the situation, the safety management of RIs and others in RI-using facilities provided by the law has been examined by the ad hoc committee. A report by the committee is described as follows: need for a RI safety management organization, defining the responsibility of the chief technicians handling radiation, need for the practices of using RIs, etc. in education and traininng, planned RI-handling facilities, cautions for the loss of RIs and the contamination, centralization in RI safety management, improvement of remuneration for the chief technicians handling radiation, occasional restudy on the safety management of RIs, etc. (J.P.N.)

  5. Institutional failure: are safety management systems the answer?

    Energy Technology Data Exchange (ETDEWEB)

    Waddington, J.G.; Lafortune, J.F. [International Safety Research, Ottawa, Ontario (Canada); Duffey, R.B. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)

    2009-07-01

    In spite of an overwhelming number of safety management programs, incidents and accidents that could seemingly, in hindsight, have been prevented, still occur. Institutional failure is seen as a major contributor in almost all cases. With the anticipated significant increase in the number of nuclear plants around the world, a drastic step in the way we manage safety is deemed essential to further reduce the currently already very low rate of accidents to levels that will not cause undue public concern and threaten the success of the nuclear 'renaissance'. To achieve this, many industries have already started implementing a Safety Management System (SMS) approach, aimed at harmonizing, rationalizing and integrating management processes, safety culture and operational risk assessment. This paper discusses the origins and the nature of SMS based in part on the experience of the aviation industry, and shows how SMS is poised to be the next generation in the way the nuclear industry manages safety. It also discusses the need for better direct measures of risk to demonstrate the success of SMS implementation. (author)

  6. Institutional failure: are safety management systems the answer?

    International Nuclear Information System (INIS)

    Waddington, J.G.; Lafortune, J.F.; Duffey, R.B.

    2009-01-01

    In spite of an overwhelming number of safety management programs, incidents and accidents that could seemingly, in hindsight, have been prevented, still occur. Institutional failure is seen as a major contributor in almost all cases. With the anticipated significant increase in the number of nuclear plants around the world, a drastic step in the way we manage safety is deemed essential to further reduce the currently already very low rate of accidents to levels that will not cause undue public concern and threaten the success of the nuclear 'renaissance'. To achieve this, many industries have already started implementing a Safety Management System (SMS) approach, aimed at harmonizing, rationalizing and integrating management processes, safety culture and operational risk assessment. This paper discusses the origins and the nature of SMS based in part on the experience of the aviation industry, and shows how SMS is poised to be the next generation in the way the nuclear industry manages safety. It also discusses the need for better direct measures of risk to demonstrate the success of SMS implementation. (author)

  7. NASA's Solar System Exploration Research Virtual Institute: Science and Technology for Lunar Exploration

    Science.gov (United States)

    Schmidt, Greg; Bailey, Brad; Gibbs, Kristina

    2015-01-01

    The NASA Solar System Exploration Research Virtual Institute (SSERVI) is a virtual institute focused on research at the intersection of science and exploration, training the next generation of lunar scientists, and development and support of the international community. As part of its mission, SSERVI acts as a hub for opportunities that engage the larger scientific and exploration communities in order to form new interdisciplinary, research-focused collaborations. The nine domestic SSERVI teams that comprise the U.S. complement of the Institute engage with the international science and exploration communities through workshops, conferences, online seminars and classes, student exchange programs and internships. SSERVI represents a close collaboration between science, technology and exploration enabling a deeper, integrated understanding of the Moon and other airless bodies as human exploration moves beyond low Earth orbit. SSERVI centers on the scientific aspects of exploration as they pertain to the Moon, Near Earth Asteroids (NEAs) and the moons of Mars, with additional aspects of related technology development, including a major focus on human exploration-enabling efforts such as resolving Strategic Knowledge Gaps (SKGs). The Institute focuses on interdisciplinary, exploration-related science focused on airless bodies targeted as potential human destinations. Areas of study represent the broad spectrum of lunar, NEA, and Martian moon sciences encompassing investigations of the surface, interior, exosphere, and near-space environments as well as science uniquely enabled from these bodies. This research profile integrates investigations of plasma physics, geology/geochemistry, technology integration, solar system origins/evolution, regolith geotechnical properties, analogues, volatiles, ISRU and exploration potential of the target bodies. New opportunities for both domestic and international partnerships are continually generated through these research and

  8. 34 CFR 668.49 - Institutional fire safety policies and fire statistics.

    Science.gov (United States)

    2010-07-01

    ... 34 Education 3 2010-07-01 2010-07-01 false Institutional fire safety policies and fire statistics... fire statistics. (a) Additional definitions that apply to this section. Cause of fire: The factor or...; however, it does not include indirect loss, such as business interruption. (b) Annual fire safety report...

  9. 78 FR 51729 - Board of Scientific Counselors, National Institute for Occupational Safety and Health (BSC, NIOSH)

    Science.gov (United States)

    2013-08-21

    ... Scientific Counselors, National Institute for Occupational Safety and Health (BSC, NIOSH) In accordance with... demonstrations relating to occupational safety and health and to mine health. The Board of Scientific Counselors shall provide guidance to the Director, National Institute for Occupational Safety and Health on...

  10. New Developments At The Science Archives Of The NASA Exoplanet Science Institute

    Science.gov (United States)

    Berriman, G. Bruce

    2018-06-01

    The NASA Exoplanet Science Institute (NExScI) at Caltech/IPAC is the science center for NASA's Exoplanet Exploration Program and as such, NExScI operates three scientific archives: the NASA Exoplanet Archive (NEA) and Exoplanet Follow-up Observation Program Website (ExoFOP), and the Keck Observatory Archive (KOA).The NASA Exoplanet Archive supports research and mission planning by the exoplanet community by operating a service that provides confirmed and candidate planets, numerous project and contributed data sets and integrated analysis tools. The ExoFOP provides an environment for exoplanet observers to share and exchange data, observing notes, and information regarding the Kepler, K2, and TESS candidates. KOA serves all raw science and calibration observations acquired by all active and decommissioned instruments at the W. M. Keck Observatory, as well as reduced data sets contributed by Keck observers.In the coming years, the NExScI archives will support a series of major endeavours allowing flexible, interactive analysis of the data available at the archives. These endeavours exploit a common infrastructure based upon modern interfaces such as JuypterLab and Python. The first service will enable reduction and analysis of precision radial velocity data from the HIRES Keck instrument. The Exoplanet Archive is developing a JuypterLab environment based on the HIRES PRV interactive environment. Additionally, KOA is supporting an Observatory initiative to develop modern, Python based pipelines, and as part of this work, it has delivered a NIRSPEC reduction pipeline. The ensemble of pipelines will be accessible through the same environments.

  11. Report on a NASA astrobiology institute-funded workshop without walls: stellar stoichiometry.

    Science.gov (United States)

    Desch, Steven J; Young, Patrick A; Anbar, Ariel D; Hinkel, Natalie; Pagano, Michael; Truitt, Amanda; Turnbull, Margaret

    2014-04-01

    We report on the NASA Astrobiology Institute-funded Workshop Without Walls entitled "Stellar Stoichiometry," hosted by the "Follow the Elements" team at Arizona State University in April 2013. We describe several innovative practices we adopted that made effective use of the Workshop Without Walls videoconferencing format, including use of information technologies, assignment of scientific tasks before the workshop, and placement of graduate students in positions of authority. A companion article will describe the scientific results arising from the workshop. Our intention here is to suggest best practices for future Workshops Without Walls.

  12. Institute for Environment, Health and Safety

    International Nuclear Information System (INIS)

    Loos, M.

    2007-01-01

    The article describes the key activities of the Institute for Environment, Health and Safety of the Belgian Nuclear Research Centre SCK-CEN. Through the performance of experiments, the development of models and the integration of human sciences in our R and D, propose new durable methods, computer codes and measuring instruments for radiation protection, management and disposal of radioactive waste and dismantling of nuclear installations. These developments belong to the disciplines environmental chemistry, radiobiology and radioecology and include the transfer of radio nuclides in the geosphere and biosphere, as also the behaviour of micro-organisms in space

  13. Road safety knowledge and policy : a historical institutional analysis of the Netherlands.

    NARCIS (Netherlands)

    Bax, C. Leroy, P. & Hagenzieker, M.P.

    2014-01-01

    This paper explores the institutional development of Dutch road safety policy over the last century and the role of knowledge therein. After a theoretical exploration of the concept of institutionalization, the article sketches an overview of the institutionalization of road safety policy in the

  14. Use of New Communication Technologies to Change NASA Safety Culture: Incorporating the Use of Blogs as a Fundamental Communications Tool

    Science.gov (United States)

    Huls, Dale thomas

    2005-01-01

    The purpose of this paper is to explore an innovative approach to culture change at NASA that goes beyond reorganizations, management training, and a renewed emphasis on safety. Over the last five years, a technological social revolution has been emerging from the internet. Blogs (aka web logs) are transforming traditional communication and information sharing outlets away from established information sources such as the media. The Blogosphere has grown from zero blogs in 1999 to approximately 4.5 million as of November 2004 and is expected to double in 2005. Blogs have demonstrated incredible effectiveness and efficiency with regards to affecting major military and political events. Consequently, NASA should embrace the new information paradigm presented by blogging. NASA can derive exceptional benefits from the new technology as follows: 1) Personal blogs can overcome the silent safety culture by giving voice to concerns or questions that are not well understood or seemingly inconsequential to the NASA community at-large without the pressure of formally raising a potential false alarm. Since blogs can be open to Agency-wide participation, an incredible amount of resources from an extensive pool of experience can focus on a single issue, concern, or problem and quickly vetted, discussed and assessed for feasibility, significance, and criticality. The speed for which this could be obtained cannot be matched through any other process or procedure currently in use. 2) Through official NASA established blogs, lessons learned can be a real-time two way process that is formed and implemented from the ground level. Data mining of official NASA blogs and personal blogs of NASA personnel can identify hot button issues and concerns to senior management. 3) NASA blogs could function as a natural ombudsman for the NASA community. Through the recognition of issues being voiced by the community and taking a proactive stance on those issues, credibility within NASA Management

  15. Forschungszentrum Rossendorf. Institute of Safety Research. Report. January 1998 - June 1999

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, F P; Rindelhardt, U [eds.

    1999-09-01

    The Institute of Safety Research is one of the five scientific institutes of Forschungszentrum Rossendorf e.V. The Forschungszentrum Rossendorf is a member of the 'Wissenschaftsgemeinschaft Gottfried Wilhelm Leibniz' and is funded by the Federal Ministry of Education and Research and by the Saxon Ministry of Science and Arts with 50% each. The research work of the institute aims at the assessment and increase of the safety and environmental sustainability of technical plants. The emphasis is put on the development and validation of mathematical and physical models for process and plant analysis, and of techniques for process and components monitoring. Subject of investigations are equally nuclear plants and installations of process industries. To analyse the thermo-fluiddynamics of normal plant operation and of the behaviour during accidents, physical models and computer codes are developed for multi-phase and multi-component flows, and for the space and time dependent heat release (neutron kinetics, chemical kinetics). (orig.)

  16. Forschungszentrum Rossendorf. Institute of Safety Research. Report. January 1998 - June 1999

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, F.P.; Rindelhardt, U. [eds.

    1999-09-01

    The Institute of Safety Research is one of the five scientific institutes of Forschungszentrum Rossendorf e.V. The Forschungszentrum Rossendorf is a member of the 'Wissenschaftsgemeinschaft Gottfried Wilhelm Leibniz' and is funded by the Federal Ministry of Education and Research and by the Saxon Ministry of Science and Arts with 50% each. The research work of the institute aims at the assessment and increase of the safety and environmental sustainability of technical plants. The emphasis is put on the development and validation of mathematical and physical models for process and plant analysis, and of techniques for process and components monitoring. Subject of investigations are equally nuclear plants and installations of process industries. To analyse the thermo-fluiddynamics of normal plant operation and of the behaviour during accidents, physical models and computer codes are developed for multi-phase and multi-component flows, and for the space and time dependent heat release (neutron kinetics, chemical kinetics). (orig.)

  17. Forschungszentrum Rossendorf, Institute of Safety Research. Annual report 1996

    International Nuclear Information System (INIS)

    Weiss, F.P.; Rindelhardt, U.

    1997-08-01

    The research of the institute aims at the safety assessment of the design of nuclear and chemical facilities, the development of accident management procedures, and the increase of operational safety by improved plant surveillance. Physical models and computer codes are developed for multiphase/multicomponent flows and for the space and time dependent power release in nuclear and chemical reactors to be able to analyse the thermo-fluiddynamic phenomena during assumed accident scenarios. Emphasis is particularly focussed on spatial flow phenomena and the time dependent change of flow patterns. Sustainable void fraction probes and tomographic systems are developed to measure those parameters of two phase flows that characterize the exchange of pulse, energy and mass between the phases and components. The research related to materials safety is directed to the behaviour of components exposed to neutron and gamma radiation. The susceptibility to irradiation induced embrittlement and the behaviour of annealed material during reirradiation are investigated by fracture mechanical methods in dependence on the materials composition. The work on process and plant diagnostics makes available basic methods for early failure detection and operational monitoring which are important means of accident prevention. Recent initiatives of the institute are concerned with the transport of pollutants in the geosphere. Particularly, codes are developed for the simulation of physical and chemical processes during the transport of pollutants in unsaturated zones of the soil. (orig.)

  18. Forschungszentrum Rossendorf, Institute of Safety Research. Annual report 1996

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, F P; Rindelhardt, U [eds.

    1997-08-01

    The research of the institute aims at the safety assessment of the design of nuclear and chemical facilities, the development of accident management procedures, and the increase of operational safety by improved plant surveillance. Physical models and computer codes are developed for multiphase/multicomponent flows and for the space and time dependent power release in nuclear and chemical reactors to be able to analyse the thermo-fluiddynamic phenomena during assumed accident scenarios. Emphasis is particulary focussed on spatial flow phenomena and the time dependent change of flow patterns. Sustainable void fraction probes and tomographic systems are developed to measure those parameters of two phase flows that characterize the exchange of pulse, energy and mass between the phases and components. The research related to materials safety is directed to the behaviour of components exposed to neutron and gamma radiation. The susceptibility to irradiation induced embrittlement and the behaviour of annealed material during reirradiation are investigated by fracture mechanical methods in dependence on the materials composition. The work on process and plant diagnostics makes available basic methods for early failure detection and operational monitoring which are important means of accident prevention. Recent initiatives of the institute are concerned with the transport of pollutants in the geosphere. Particularly, codes are developed for the simulation of physical and chemical processes during the transport of pollutants in unsaturated zones of the soil. (orig.)

  19. 29 CFR 1902.6 - Consultation with the National Institute for Occupational Safety and Health.

    Science.gov (United States)

    2010-07-01

    ... Safety and Health. 1902.6 Section 1902.6 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL... Occupational Safety and Health. The Assistant Secretary will consult, as appropriate, with the Director of the National Institute for Occupational Safety and Health with regard to plans submitted by the States under...

  20. Institutional implications of establishing safety goals for nuclear power plants

    International Nuclear Information System (INIS)

    Morris, F.A.; Hooper, R.L.

    1983-07-01

    The purpose of this project is to anticipate and address institutional problems that may arise from the adoption of NRC's proposed Policy Statement on Safety Goals for Nuclear Power Plants. The report emphasizes one particular category of institutional problems: the possible use of safety goals as a basis for legal challenges to NRC actions, and the resolution of such challenges by the courts. Three types of legal issues are identified and analyzed. These are, first, general legal issues such as access to the legal system, burden of proof, and standard of proof. Second is the particular formulation of goals. Involved here are such questions as sustainable rationale, definitions, avoided issues, vagueness of time and space details, and degree of conservatism. Implementation brings up the third set of issues which include interpretation and application, linkage to probabilistic risk assessment, consequences as compared to events, and the use of results

  1. Institutional Response to Ohio's Campus Safety Initiatives: A Post-Virginia Tech Analysis

    Science.gov (United States)

    Jackson, Natalie Jo

    2009-01-01

    The purpose of this study was to examine how institutions of higher education were responding to unprecedented state involvement in campus safety planning and policymaking in the aftermath of the Virginia Tech tragedy. Focused on Ohio, a state in which a state-level task force was convened and charged to promulgate campus safety recommendations…

  2. NASA Engineering and Safety Center (NESC) Enhanced Melamine (ML) Foam Acoustic Test (NEMFAT)

    Science.gov (United States)

    McNelis, Anne M.; Hughes, William O.; McNelis, Mark E.

    2014-01-01

    The NASA Engineering and Safety Center (NESC) funded a proposal to achieve initial basic acoustic characterization of ML (melamine) foam, which could serve as a starting point for a future, more comprehensive acoustic test program for ML foam. A project plan was developed and implemented to obtain acoustic test data for both normal and enhanced ML foam. This project became known as the NESC Enhanced Melamine Foam Acoustic Test (NEMFAT). This document contains the outcome of the NEMFAT project.

  3. Control system of labour safety measures in the higher educational institution

    Directory of Open Access Journals (Sweden)

    O. G. Feoktistova

    2015-01-01

    Full Text Available The article examines a system of labour safety measures control. With the introduction of the integrated system of management the competitive ability of production and organization, the effectiveness of its activity rise, and sinnergicheskiy effect is also reached and the savings of all forms of resources are ensured. Objectives and methods of control system of labour safety measures in enterprises are developed, including in the educational institutions.

  4. International R&M/Safety Cooperation Lessons Learned Between NASA and JAXA

    Science.gov (United States)

    Fernandez, Rene; Havenhill, Maria T.; Zampino, Edward J.; Kiefer, Dwayne E.

    2013-01-01

    Presented are a number of important experiences gained and lessons learned from the collaboration of the National Aeronautics and Space Administration (NASA) and the Japanese Aerospace Exploration Agency (JAXA) on the CoNNeCT (Communications, Navigation, and Networking re-Configurable Testbed) project. Both space agencies worked on the CoNNeCT Project to design, assemble, test, integrate, and launch a communications testbed facility mounted onto the International Space Station (ISS) truss. At the 2012 RAMS, two papers about CoNNeCT were presented: one on Ground Support Equipment Reliability & System Safety, and the other one on combined application of System Safety & Reliability for the flight system. In addition to the logistics challenges present when two organizations are on the opposite side of the world, there is also a language barrier. The language barrier encompasses not only the different alphabet, it encompasses the social interactions; these were addressed by techniques presented in the paper. The differences in interpretation and application of Spaceflight Requirements will be discussed in this paper. Although many, but definitely not all, of JAXA's Spaceflight Requirements were inspired by NASA, there were significant and critically important differences in how they were interpreted and applied. This paper intends to summarize which practices worked and which did not for an international collaborative effort so that future missions may benefit from our experiences. The CoNNeCT flight system has been successfully assembled, integrated, tested, shipped, launched and installed on the ISS without incident. This demonstrates that the steps taken to facilitate international understanding, communication, and coordination were successful and warrant discussion as lessons learned.

  5. Paul Scherrer Institut annual report 1995. Annex IV: PSI nuclear energy and safety

    International Nuclear Information System (INIS)

    Birchley, J.; Roesel, R.; Doesburg, R. van

    1996-01-01

    Nuclear energy research in Switzerland is concentrated at PSI's Department F4. It is explicitly mentioned in the Institute's official charter and commands about one fifth of the Institute's federal resources. Presently, PSI invests approx. 200 py/a in nuclear energy research, one third of this being externally funded; the share of external funding in investment costs totals approx. 50%. This funding is provided by the Swiss utilities and the NAGRA, the Safety Authority (HSK) and the former National Fund for Energy Research (NEFF). PSI's activities in nuclear research concentrate on three main areas: safety of operating plants, safety features of future reactor concepts and waste management. 7% of personnel are invested in addressing global aspects of energy. (author) figs., tabs., refs

  6. Public education in safe use of artificial UV radiation sources by the consumer safety institute in the Netherlands

    International Nuclear Information System (INIS)

    Bruggers, J.H.A.

    1987-01-01

    The Consumer Safety Institute in the Netherlands is a national institute which operates entirely in the field of home safety. Its main aim exists in reducing the possibility and severity of accidents happening in and around the home, at school and recreational areas. To attain this aim the institute is active in research, handling consumer complaints, education, and advising. To inform and educate consumers about product safety, special leaflets and brochures are published. One of these brochures deals with safety and safe use of artificial UV radiation sources, e.g. UV lamps, UV couches etc. This brochure about suntanning equipment and safety was published recently

  7. Implementation of radiation safety program in a medical institution

    International Nuclear Information System (INIS)

    Palanca, Elena D.

    1999-01-01

    A medical institution that utilizes radiation for the diagnosis and treatment of diseases of malignancies develops and implements a radiation safety program to keep occupational exposures of radiation workers and exposures of non-radiation workers and the public to the achievable and a more achievable minimum, to optimize the use of radiation, and to prevent misadministration. The hospital radiation safety program is established by a core medical radiation committee composed of trained radiation safety officers and head of authorized users of radioactive materials and radiation machines from the different departments. The radiation safety program sets up procedural guidelines of the safe use of radioactive material and of radiation equipment. It offers regular training to radiation workers and radiation safety awareness courses to hospital staff. The program has a comprehensive radiation safety information system or radsis that circularizes the radiation safety program in the hospital. The radsis keeps the drafted and updated records of safety guides and policies, radioactive material and equipment inventory, personnel dosimetry reports, administrative, regulatory and licensing activity document, laboratory procedures, emergency procedures, quality assurance and quality control program process, physics and dosimetry procedures and reports, personnel and hospital staff training program. The medical radiation protection committee is tasked to oversee the actual implementation of the radiation safety guidelines in the different radiation facilities in the hospital, to review personnel exposures, incident reports and ALARA actions, operating procedures, facility inspections and audit reports, to evaluate the existing radiation safety procedures, to make necessary changes to these procedures, and make modifications of course content of the training program. The effective implementation of the radiation safety program provides increased confidence that the physician and

  8. An Overview of the NASA Aviation Safety Program Propulsion Health Monitoring Element

    Science.gov (United States)

    Simon, Donald L.

    2000-01-01

    The NASA Aviation Safety Program (AvSP) has been initiated with aggressive goals to reduce the civil aviation accident rate, To meet these goals, several technology investment areas have been identified including a sub-element in propulsion health monitoring (PHM). Specific AvSP PHM objectives are to develop and validate propulsion system health monitoring technologies designed to prevent engine malfunctions from occurring in flight, and to mitigate detrimental effects in the event an in-flight malfunction does occur. A review of available propulsion system safety information was conducted to help prioritize PHM areas to focus on under the AvSP. It is noted that when a propulsion malfunction is involved in an aviation accident or incident, it is often a contributing factor rather than the sole cause for the event. Challenging aspects of the development and implementation of PHM technology such as cost, weight, robustness, and reliability are discussed. Specific technology plans are overviewed including vibration diagnostics, model-based controls and diagnostics, advanced instrumentation, and general aviation propulsion system health monitoring technology. Propulsion system health monitoring, in addition to engine design, inspection, maintenance, and pilot training and awareness, is intrinsic to enhancing aviation propulsion system safety.

  9. Use of New Communication Technologies to Change NASA Safety Culture: Incorporating the Use of Blogs as a Fundamental Communications Tool

    Science.gov (United States)

    Huls, Dale Thomas

    2005-12-01

    Blogs are an increasingly dominant new communication function on the internet. The power of this technology has forced media, corporations and government organizations to begin to incorporate blogging into their normal business practices. Blogs could be a key component to overcoming NASA's "silent safety culture." As a communications tool, blogs are used to establish trust primarily through the use of a personal voice style of writing. Dissenting voices can be raised and thoroughly vetted via a diversity of participation and experience without peer pressure or fear of retribution. Furthermore, the benefits of blogging as a technical resource to enhance safety are also discussed. The speed and self-vetting nature of blogging can allow managers and decision-makers to make more informed and therefore potentially better decisions with regard to technical and safety issues. Consequently, it is recommended that NASA utilize this new technology as an agent for cultural change.

  10. The NASA Ames Research Center Institutional Scientific Collection: History, Best Practices and Scientific Opportunities

    Science.gov (United States)

    Rask, Jon C.; Chakravarty, Kaushik; French, Alison; Choi, Sungshin; Stewart, Helen

    2017-01-01

    The NASA Ames Life Sciences Institutional Scientific Collection (ISC), which is composed of the Ames Life Sciences Data Archive (ALSDA) and the Biospecimen Storage Facility (BSF), is managed by the Space Biosciences Division and has been operational since 1993. The ALSDA is responsible for archiving information and animal biospecimens collected from life science spaceflight experiments and matching ground control experiments. Both fixed and frozen spaceflight and ground tissues are stored in the BSF within the ISC. The ALSDA also manages a Biospecimen Sharing Program, performs curation and long-term storage operations, and makes biospecimens available to the scientific community for research purposes via the Life Science Data Archive public website (https:lsda.jsc.nasa.gov). As part of our best practices, a viability testing plan has been developed for the ISC, which will assess the quality of archived samples. We expect that results from the viability testing will catalyze sample use, enable broader science community interest, and improve operational efficiency of the ISC. The current viability test plan focuses on generating disposition recommendations and is based on using ribonucleic acid (RNA) integrity number (RIN) scores as a criteria for measurement of biospecimen viablity for downstream functional analysis. The plan includes (1) sorting and identification of candidate samples, (2) conducting a statiscally-based power analysis to generate representaive cohorts from the population of stored biospecimens, (3) completion of RIN analysis on select samples, and (4) development of disposition recommendations based on the RIN scores. Results of this work will also support NASA open science initiatives and guides development of the NASA Scientific Collections Directive (a policy on best practices for curation of biological collections). Our RIN-based methodology for characterizing the quality of tissues stored in the ISC since the 1980s also creates unique

  11. NASA LWS Institute GIC Working Group: GIC science, engineering and applications readiness

    Science.gov (United States)

    Pulkkinen, A. A.; Thomson, A. W. P.; Bernabeu, E.

    2016-12-01

    In recognition of the rapidly growing interest on the topic, this paper is based on the findings of the very first NASA Living With a Star (LWS) Institute Working Group that was specifically targeting the GIC issue. The new LWS Institutes program element was launched 2014 and the concept is built around small working group style meetings that focus on well defined problems that demand intense, direct interactions between colleagues in neighboring disciplines to facilitate the development of a deeper understanding of the variety of processes that link the solar activity to Earth's environment. The LWS Institute Geomagnetically Induced Currents (GIC) Working Group (WG) led by A. Pulkkinen (NASA GSFC) and co-led by E. Bernabeu (PJM) and A. Thomson (BGS) was selected competitively as the pilot activity for the new LWS element. The GIC WG was tasked to 1) identify, advance, and address the open scientific and engineering questions pertaining to GIC, 2) advance predictive modeling of GIC, 3) advocate and act as a catalyst to identify resources for addressing the multidisciplinary topic of GIC. In this paper, we target the goal 1) of the GIC WG. More specifically, the goal of this paper is to review the current status and future challenges pertaining to science, engineering and applications of the GIC problem. Science is understood here as the basic space and Earth sciences research that allow improved understanding and physics-based modeling of physical processes behind GIC. Engineering in turn is understood here as the "impact" aspect of GIC. The impact includes any physical effects GIC may have on the performance of the manmade infrastructure. Applications is understood as the models, tools and activities that can provide actionable information to entities such as power systems operators for mitigating the effects of GIC and government for managing any potential consequences from GIC impact to critical infrastructure. In this sense, applications can be considered as

  12. Establishment of Management System for Korea Institute of Nuclear Safety

    Energy Technology Data Exchange (ETDEWEB)

    Han, Soon-Kyoo; Ha, Jong-Tae; Chung, Ku-Young; Lee, Je-Hang; Kim, Kyung-Im [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2015-05-15

    In order to optimize of nuclear safety regulation in the rapidly changing nuclear safety environment, Korea government determined that the existing safety standards needed to be reviewed from Integrated Regulatory Review Service(IRRS) team of International Atomic Energy Agency(IAEA). For optimizations of nuclear safety regulation, the reviews were performed by IAEA IRRS team from July 10-22, 2011. In the results of 2011 IRRS mission, 12 suggestion and 10 recommendation were found. To confirm follow-up measures, IRRS follow-up mission would be also performed by IRRS team 18-24 months later after the mission was over. In order to prepare the IRRS follow-up mission, the establishment of MS of Korea Institute of Nuclear Safety(KINS) had been initiated by reflecting the 4 found supplement items in module 4 and IAEA GS-R-3 requirements. As a result of the initiation, MS of KINS was established. To introduce the MS of KINS and gather another suggestions for its enhancement, the MS was considered as a theme.

  13. Paul Scherrer Institut annual report 1994. Annex IV: PSI nuclear energy and safety research progress report 1994

    Energy Technology Data Exchange (ETDEWEB)

    Williams, T; Kallfelz, J M; Mathews, D [eds.; Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1995-10-01

    Nuclear energy research in Switzerland is concentrated at PSI. It is explicitly mentioned in the Institute`s official charter and commands about one fifth of the Institute`s federal resources. Presently, PSI invests approx. 200 py/a in nuclear energy research, one third of this being externally funded; the share of external funding in investment costs totals approx. 50%. This funding is provided by the Swiss utilities and the NAGRA, the Safety Authority (HSK) and the former National Fund for Energy Research (NEFF). PSI`s activities in nuclear research concentrate on three main areas: safety of operating plants, safety features of future reactor concepts and waste management. 7% of personnel are invested in addressing global aspects of energy. (author) figs., tabs., refs.

  14. Legal status of minister's notices and technology standards of 'Korea institute of nuclear safety'(KINS) to regulate nuclear safety

    International Nuclear Information System (INIS)

    Jung, S. K.; Jung, M. M.; Kim, S. W.; Jang, K. H.; Oh, B. J.

    2003-01-01

    Concerning nuclear safety or technology standards, each of 'notices' issued by minister of science and technology(MOST) empowered by law of its regulation is obviously forceful as a law, if not all. But the standards made by the chief of Korea institute of nuclear safety(KINS) to meet the tasks entrusted to KINS by MOST is only conditionally forceful as a law, that is, on the condition that law or regulation empowered the chief of KINS to make nuclear safety and/or technology standards

  15. Food safety knowledge, attitudes and practices of institutional food-handlers in Ghana

    Directory of Open Access Journals (Sweden)

    Fortune Akabanda

    2017-01-01

    Full Text Available Abstract Background In large scale cooking, food is handled by many individuals, thereby increasing the chances of food contamination due to improper handling. Deliberate or accidental contamination of food during large scale production might endanger the health of consumers, and have very expensive repercussions on a country. The purpose of this study was to evaluate the food safety knowledge, attitudes, and practices among institutional food- handlers in Ghana. Methods The study was conducted using a descriptive, cross-sectional survey of 29 institutions by conducting face to face interview and administration of questionnaire to two hundred and thirty-five (235 institutional food-handlers. The questionnaire was peer-reviewed and pilot tested in three institutions in the Upper East Region of Ghana, before the final version was distributed to food-handlers. The questionnaire was structured into five distinctive parts to collect information on (i demographic characteristics, (ii employees’ work satisfaction, (iii knowledge on food safety, (iv attitudes towards food safety and (v food hygiene practices. Results Majority of the food-handlers were between 41–50 years (39.1%. Female respondents were (76.6%. In our study, the food-handlers were knowledgeable about hygienic practices, cleaning and sanitation procedures. Almost all of the food-handlers were aware of the critical role of general sanitary practices in the work place, such as hand washing (98.7% correct answers, using gloves (77.9%, proper cleaning of the instruments/utensils (86.4% and detergent use (72.8%. On disease transmission, the results indicates that 76.2% of the food- handlers did not know that Salmonella is a food borne pathogens and 70.6% did not know that hepatitis A is a food borne pathogen. However, 81.7% handlers agreed that typhoid fever is transmitted by food and 87.7% agreed that bloody diarrhea is transmitted by food. Logistic regression analysis testing four models

  16. 76 FR 28790 - Board of Scientific Counselors, National Institute for Occupational Safety and Health (BSC, NIOSH)

    Science.gov (United States)

    2011-05-18

    ... Hearing Loss Prevention; Personal Protective Technologies; Health Hazard Evaluations; Construction Safety... Scientific Counselors, National Institute for Occupational Safety and Health (BSC, NIOSH) In accordance with... relating to occupational safety and health and to mine health. The Board of Scientific Counselors shall...

  17. Food safety knowledge, attitudes and practices of institutional food-handlers in Ghana.

    Science.gov (United States)

    Akabanda, Fortune; Hlortsi, Eli Hope; Owusu-Kwarteng, James

    2017-01-06

    In large scale cooking, food is handled by many individuals, thereby increasing the chances of food contamination due to improper handling. Deliberate or accidental contamination of food during large scale production might endanger the health of consumers, and have very expensive repercussions on a country. The purpose of this study was to evaluate the food safety knowledge, attitudes, and practices among institutional food- handlers in Ghana. The study was conducted using a descriptive, cross-sectional survey of 29 institutions by conducting face to face interview and administration of questionnaire to two hundred and thirty-five (235) institutional food-handlers. The questionnaire was peer-reviewed and pilot tested in three institutions in the Upper East Region of Ghana, before the final version was distributed to food-handlers. The questionnaire was structured into five distinctive parts to collect information on (i) demographic characteristics, (ii) employees' work satisfaction, (iii) knowledge on food safety, (iv) attitudes towards food safety and (v) food hygiene practices. Majority of the food-handlers were between 41-50 years (39.1%). Female respondents were (76.6%). In our study, the food-handlers were knowledgeable about hygienic practices, cleaning and sanitation procedures. Almost all of the food-handlers were aware of the critical role of general sanitary practices in the work place, such as hand washing (98.7% correct answers), using gloves (77.9%), proper cleaning of the instruments/utensils (86.4%) and detergent use (72.8%). On disease transmission, the results indicates that 76.2% of the food- handlers did not know that Salmonella is a food borne pathogens and 70.6% did not know that hepatitis A is a food borne pathogen. However, 81.7% handlers agreed that typhoid fever is transmitted by food and 87.7% agreed that bloody diarrhea is transmitted by food. Logistic regression analysis testing four models showed statistically significant differences

  18. 78 FR 11651 - Board of Scientific Counselors, National Institute for Occupational Safety and Health (BSC, NIOSH)

    Science.gov (United States)

    2013-02-19

    ... Scientific Counselors, National Institute for Occupational Safety and Health (BSC, NIOSH) In accordance with..., research, experiments, and demonstrations relating to occupational safety and health and to mine health... Occupational Safety and Health on research and prevention programs. Specifically, the Board shall provide...

  19. 77 FR 47850 - Board of Scientific Counselors, National Institute for Occupational Safety and Health (BSC, NIOSH)

    Science.gov (United States)

    2012-08-10

    ... Scientific Counselors, National Institute for Occupational Safety and Health (BSC, NIOSH) In accordance with..., research, experiments, and demonstrations relating to occupational safety and health and to mine health... Occupational Safety and Health on research and prevention programs. Specifically, the Board shall provide...

  20. NASA's computer science research program

    Science.gov (United States)

    Larsen, R. L.

    1983-01-01

    Following a major assessment of NASA's computing technology needs, a new program of computer science research has been initiated by the Agency. The program includes work in concurrent processing, management of large scale scientific databases, software engineering, reliable computing, and artificial intelligence. The program is driven by applications requirements in computational fluid dynamics, image processing, sensor data management, real-time mission control and autonomous systems. It consists of university research, in-house NASA research, and NASA's Research Institute for Advanced Computer Science (RIACS) and Institute for Computer Applications in Science and Engineering (ICASE). The overall goal is to provide the technical foundation within NASA to exploit advancing computing technology in aerospace applications.

  1. 75 FR 51818 - National Institute for Occupational Safety and Health; Final Effect of Designation of a Class of...

    Science.gov (United States)

    2010-08-23

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institute for Occupational Safety and Health...: National Institute for Occupational Safety and Health (NIOSH), Department of Health and Human Services (HHS... a number of work days aggregating at least 250 work days, occurring either solely under this...

  2. 75 FR 74733 - National Institute for Occupational Safety and Health; Final Effect of Designation of a Class of...

    Science.gov (United States)

    2010-12-01

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institute for Occupational Safety and Health...: National Institute for Occupational Safety and Health (NIOSH), Department of Health and Human Services (HHS... aggregating at least 250 work days, occurring either solely under this employment, or in combination with work...

  3. 75 FR 51816 - National Institute for Occupational Safety and Health; Final Effect of Designation of a Class of...

    Science.gov (United States)

    2010-08-23

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institute for Occupational Safety and Health...: National Institute for Occupational Safety and Health (NIOSH), Department of Health and Human Services (HHS... number of work days aggregating at least 250 work days, occurring either solely under this employment or...

  4. Safety considerations of new critical assembly for the Research Reactor Institute, Kyoto University

    International Nuclear Information System (INIS)

    Umeda, Iwao; Matsuoka, Naomi; Harada, Yoshihiko; Miyamoto, Keiji; Kanazawa, Takashi

    1975-01-01

    The new critical assembly type of nuclear reactor having three cores for the first time in the world was completed successfully at the Research Reactor Institute of Kyoto University in autumn of 1974. It is called KUCA (Kyoto University Critical Assembly). Safety of the critical assembly was considered sufficiently in consequence of discussions between the researchers of the institute and the design group of our company, and then many bright ideas were created through the discussions. This paper is described the new safety design of main equipments - oil pressure type center core drive mechanism, removable water overflow mechanism, core division mechanism, control rod drive mechansim, protection instrumentation system and interlock key system - for the critical assembly. (author)

  5. 76 FR 62409 - National Institute for Occupational Safety and Health; Final Effect of Designation of a Class of...

    Science.gov (United States)

    2011-10-07

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institute for Occupational Safety and Health...: National Institute for Occupational Safety and Health (NIOSH), Department of Health and Human Services (HHS..., from January 1, 1961 through June 30, 1970, for a number of work days aggregating at least 250 work...

  6. Hydrogen safety

    International Nuclear Information System (INIS)

    Frazier, W.R.

    1991-01-01

    The NASA experience with hydrogen began in the 1950s when the National Advisory Committee on Aeronautics (NACA) research on rocket fuels was inherited by the newly formed National Aeronautics and Space Administration (NASA). Initial emphasis on the use of hydrogen as a fuel for high-altitude probes, satellites, and aircraft limited the available data on hydrogen hazards to small quantities of hydrogen. NASA began to use hydrogen as the principal liquid propellant for launch vehicles and quickly determined the need for hydrogen safety documentation to support design and operational requirements. The resulting NASA approach to hydrogen safety requires a joint effort by design and safety engineering to address hydrogen hazards and develop procedures for safe operation of equipment and facilities. NASA also determined the need for rigorous training and certification programs for personnel involved with hydrogen use. NASA's current use of hydrogen is mainly for large heavy-lift vehicle propulsion, which necessitates storage of large quantities for fueling space shots and for testing. Future use will involve new applications such as thermal imaging

  7. NASA Spinoff Article: Automated Procedures To Improve Safety on Oil Rigs

    Science.gov (United States)

    Garud, Sumedha

    2013-01-01

    On May 11th, 2013, two astronauts emerged from the interior of the International Space Station (ISS) and worked their way toward the far end of spacecraft. Over the next 51/2 hours, the two replaced an ammonia pump that had developed a significant leak a few days before. On the ISS, ammonia serves the vital role of cooling components-in this case, one of the station's eight solar arrays. Throughout the extravehicular activity (EVA), the astronauts stayed in constant contact with mission control: every movement, every action strictly followed a carefully planned set of procedures to maximize crew safety and the chances of success. Though the leak had come as a surprise, NASA was prepared to handle it swiftly thanks in part to the thousands of procedures that have been written to cover every aspect of the ISS's operations. The ISS is not unique in this regard: Every NASA mission requires well-written procedures-or detailed lists of step-by-step instructions-that cover how to operate equipment in any scenario, from normal operations to the challenges created by malfunctioning hardware or software. Astronauts and mission control train and drill extensively in procedures to ensure they know what the proper procedures are and when they should be used. These procedures used to be exclusively written on paper, but over the past decade, NASA has transitioned to digital formats. Electronic-based documentation simplifies storage and use, allowing astronauts and flight controllers to find instructions more quickly and display them through a variety of media. Electronic procedures are also a crucial step toward automation: once instructions are digital, procedure display software can be designed to assist in authoring, reviewing, and even executing them.

  8. China's approach to nuclear safety — From the perspective of policy and institutional system

    International Nuclear Information System (INIS)

    Mu, Ruimin; Zuo, Jian; Yuan, Xueliang

    2015-01-01

    Nuclear energy plays an important role in the energy sector in the world. It has achieved a rapid development during the past six decades and contributes to over 11% of the world's electricity supply. On the other side, nuclear accidents have triggered substantial debates with a growing public concern on nuclear facilities. Followed by the Fukushima nuclear accident, some developed countries decided to shut down the existing nuclear power plants or to abandon plans to build new ones. Given this background, accelerating the development of nuclear power on the basis of safety in China will make it a bellwether for other countries. China assigns the top priority to the nuclear safety in nuclear energy development and has maintained a good record in this field. The policy and institutional system provide the necessary guarantee for the nuclear energy development and safety management. Furthermore, China's approach to nuclear safety provides a benchmark for the safe development and utilization of nuclear power. This research draws an overall picture of the nuclear energy development and nuclear safety in China from the policy and institutional perspective. - Highlights: • China's Approach to Nuclear Safety. • Policy and Institutional System for Nuclear Energy Development. • A Benchmark for the Peaceful and Safe Utilization of Nuclear Power. • Further Efforts for Specific Laws and Administrative System

  9. Safety and Mission Assurance Knowledge Management Retention

    Science.gov (United States)

    Johnson, Teresa A.

    2006-01-01

    This viewgraph presentation reviews the issues surrounding the management of knowledge in regards to safety and mission assurance. The JSC workers who were hired in the 1960's are slated to retire in the next two to three years. The experiences and knowledge of these NASA workers must be identified, and disseminated. This paper reviews some of the strategies that the S&MA is developing to capture that valuable institutional knowledge.

  10. Does lean management improve patient safety culture? An extensive evaluation of safety culture in a radiotherapy institute.

    Science.gov (United States)

    Simons, Pascale A M; Houben, Ruud; Vlayen, Annemie; Hellings, Johan; Pijls-Johannesma, Madelon; Marneffe, Wim; Vandijck, Dominique

    2015-02-01

    The importance of a safety culture to maximize safety is no longer questioned. However, achieving sustainable culture improvements are less evident. Evidence is growing for a multifaceted approach, where multiple safety interventions are combined. Lean management is such an integral approach to improve safety, quality and efficiency and therefore, could be expected to improve the safety culture. This paper presents the effects of lean management activities on the patient safety culture in a radiotherapy institute. Patient safety culture was evaluated over a three year period using triangulation of methodologies. Two surveys were distributed three times, workshops were performed twice, data from an incident reporting system (IRS) was monitored and results were explored using structured interviews with professionals. Averages, chi-square, logistical and multi-level regression were used for analysis. The workshops showed no changes in safety culture, whereas the surveys showed improvements on six out of twelve dimensions of safety climate. The intention to report incidents not reaching patient-level decreased in accordance with the decreasing number of reports in the IRS. However, the intention to take action in order to prevent future incidents improved (factorial survey presented β: 1.19 with p: 0.01). Due to increased problem solving and improvements in equipment, the number of incidents decreased. Although the intention to report incidents not reaching patient-level decreased, employees experienced sustained safety awareness and an increased intention to structurally improve. The patient safety culture improved due to the lean activities combined with an organizational restructure, and actual patient safety outcomes might have improved as well. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Amendment of the Order of 2 November 1976 setting up an Institute for Protection and Nuclear Safety (29 October 1981)

    International Nuclear Information System (INIS)

    1981-01-01

    The Institute for Protection and Nuclear Safety was set up within the Atomic Energy Commission by an Order of 2 November 1976 now amended by this new Order, which specifies that, in connection with nuclear safety, the Institute provides direct technical support to the Central Service for the Safety of Nuclear Installations. (NEA) [fr

  12. Software Safety Risk in Legacy Safety-Critical Computer Systems

    Science.gov (United States)

    Hill, Janice L.; Baggs, Rhoda

    2007-01-01

    Safety Standards contain technical and process-oriented safety requirements. Technical requirements are those such as "must work" and "must not work" functions in the system. Process-Oriented requirements are software engineering and safety management process requirements. Address the system perspective and some cover just software in the system > NASA-STD-8719.13B Software Safety Standard is the current standard of interest. NASA programs/projects will have their own set of safety requirements derived from the standard. Safety Cases: a) Documented demonstration that a system complies with the specified safety requirements. b) Evidence is gathered on the integrity of the system and put forward as an argued case. [Gardener (ed.)] c) Problems occur when trying to meet safety standards, and thus make retrospective safety cases, in legacy safety-critical computer systems.

  13. The NASA Commercial Crew Program (CCP) Mission Assurance Process

    Science.gov (United States)

    Canfield, Amy

    2016-01-01

    In 2010, NASA established the Commercial Crew Program in order to provide human access to the International Space Station and low earth orbit via the commercial (non-governmental) sector. A particular challenge to NASA has been how to determine the commercial providers transportation system complies with Programmatic safety requirements. The process used in this determination is the Safety Technical Review Board which reviews and approves provider submitted Hazard Reports. One significant product of the review is a set of hazard control verifications. In past NASA programs, 100 percent of these safety critical verifications were typically confirmed by NASA. The traditional Safety and Mission Assurance (SMA) model does not support the nature of the Commercial Crew Program. To that end, NASA SMA is implementing a Risk Based Assurance (RBA) process to determine which hazard control verifications require NASA authentication. Additionally, a Shared Assurance Model is also being developed to efficiently use the available resources to execute the verifications. This paper will describe the evolution of the CCP Mission Assurance process from the beginning of the Program to its current incarnation. Topics to be covered include a short history of the CCP; the development of the Programmatic mission assurance requirements; the current safety review process; a description of the RBA process and its products and ending with a description of the Shared Assurance Model.

  14. Assessment report of the Radiation protection and Nuclear Safety Institute (IRSN)

    International Nuclear Information System (INIS)

    2011-03-01

    After having recalled and commented the three main missions of the IRSN (an expertise capacity, a mission of research, a mission of public information and training), this report analyzes and comments the governance of the institute: a very much structured pyramidal organisation based on a quality approach, a human resource management policy adapted to short and middle term needs, patrimony and estate policy, financial and budgetary policy, personnel hygiene and safety policy. It analyzes and comments the different relationship and partnership maintained by the IRSN with institutions and companies. Strengths and weaknesses are outlined and some recommendations are proposed

  15. NASA Aerospace Flight Battery Program: Generic Safety, Handling and Qualification Guidelines for Lithium-Ion (Li-Ion) Batteries; Availability of Source Materials for Lithium-Ion (Li-Ion) Batteries; Maintaining Technical Communications Related to Aerospace Batteries (NASA Aerospace Battery Workshop). Volume 1, Part 1

    Science.gov (United States)

    Manzo, Michelle A.; Brewer, Jeffrey C.; Bugga, Ratnakumar V.; Darcy, Eric C.; Jeevarajan, Judith A.; McKissock, Barbara I.; Schmitz, Paul C.

    2010-01-01

    This NASA Aerospace Flight Battery Systems Working Group was chartered within the NASA Engineering and Safety Center (NESC). The Battery Working Group was tasked to complete tasks and to propose proactive work to address battery related, agency-wide issues on an annual basis. In its first year of operation, this proactive program addressed various aspects of the validation and verification of aerospace battery systems for NASA missions. Studies were performed, issues were discussed and in many cases, test programs were executed to generate recommendations and guidelines to reduce risk associated with various aspects of implementing battery technology in the aerospace industry. This document contains Part 1 - Volume I: Generic Safety, Handling and Qualification Guidelines for Lithium-Ion (Li-Ion) Batteries, Availability of Source Materials for Lithium-Ion (Li-Ion) Batteries, and Maintaining Technical Communications Related to Aerospace Batteries (NASA Aerospace Battery Workshop).

  16. The Evolution of the NASA Commercial Crew Program Mission Assurance Process

    Science.gov (United States)

    Canfield, Amy C.

    2016-01-01

    In 2010, the National Aeronautics and Space Administration (NASA) established the Commercial Crew Program (CCP) in order to provide human access to the International Space Station and low Earth orbit via the commercial (non-governmental) sector. A particular challenge to NASA has been how to determine that the Commercial Provider's transportation system complies with programmatic safety requirements. The process used in this determination is the Safety Technical Review Board which reviews and approves provider submitted hazard reports. One significant product of the review is a set of hazard control verifications. In past NASA programs, 100% of these safety critical verifications were typically confirmed by NASA. The traditional Safety and Mission Assurance (S&MA) model does not support the nature of the CCP. To that end, NASA S&MA is implementing a Risk Based Assurance process to determine which hazard control verifications require NASA authentication. Additionally, a Shared Assurance Model is also being developed to efficiently use the available resources to execute the verifications.

  17. 76 FR 65729 - Board of Scientific Counselors, National Institute for Occupational Safety and Health (BSC, NIOSH)

    Science.gov (United States)

    2011-10-24

    ... Recommendations for Respiratory Diseases, Hearing Loss Prevention, Personal Protective Technologies, and Health... Scientific Counselors, National Institute for Occupational Safety and Health (BSC, NIOSH) In accordance with..., and demonstrations relating to occupational safety and health and to mine health. The Board of...

  18. Forschungszentrum Rossendorf, Institute of Safety Research. Annual report 1997

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, F P; Rindelhardt, U [eds.

    1998-10-01

    The research work of the institute aims at the assessment and increase of the safety of technical facilities. Subject of the investigation are equally nuclear plants and installations of process industries. To analyse thermo-fluiddynamic phenomena of accident scenarios physical models and computer codes are developed as well for multi-phase and multi-component flows as for the time and space dependent power release (neutron kinetics in light water reactors, reaction kinetics of exothermic chemical reactions). Emphasis is put on the description of spatial flows and the transient evolution of flow patterns. (orig.)

  19. EUMENES, a computer software for managing the radiation safety program information at an institutional level

    International Nuclear Information System (INIS)

    Hernandez Saiz, Alejandro; Cornejo Diaz, Nestor; Valdes Ramos, Maryzury; Martinez Gonzalez, Alina; Gonzalez Rodriguez, Niurka; Vergara Gil, Alex

    2008-01-01

    The correct application of national and international regulations in the field of Radiological Safety requires the implementation of Radiation Safety Programs appropriate to the developed practice. These Programs demand the preparation and keeping of an important number of records and data, the compliance with working schedules, systematic quality controls, audits, delivery of information to the Regulatory Authority, the execution of radiological assessments, etc. Therefore, it is unquestionable the necessity and importance of having a computer tool to support the management of the information related to the Radiation Safety Program in any institution. The present work describes a computer program that allows the efficient management of these data. Its design was based on the IAEA International Basic Safety Standards recommendations and on the requirements of the Cuban national standards, with the objective of being flexible enough to be applied in most of the institutions using ionizing radiations. The most important records of Radiation Safety Programs were incorporated and reports can be generated by the users. An additional tools-module allows the user to access to a radionuclide data library, and to carry out different calculations of interest in radiological protection. The program has been developed in Borland Delphi and manages Microsoft Access databases. It is a user friendly code that aims to support the optimization of Radiation Safety Programs. The program contributes to save resources and time, as the generated information is electronically kept and transmitted. The code has different security access levels according to the user responsibility at the institution and also provides for the analysis of the introduced data, in a quick and efficient way, as well as to notice deadlines, the exceeding of reference levels and situations that require attention. (author)

  20. Measuring patient safety culture in maternal and child health institutions in China: a qualitative study.

    Science.gov (United States)

    Wang, Yuanyuan; Liu, Weiwei; Shi, Huifeng; Liu, Chaojie; Wang, Yan

    2017-07-12

    Patient safety culture (PSC) plays a critical role in ensuring safe and quality care. Extensive PSC studies have been undertaken in hospitals. However, little is known about PSC in maternal and child health (MCH) institutions in China, which provide both population-based preventive services as well as individual care for patients. This study aimed to develop a theoretical framework for conceptualising PSC in MCH institutions in China. The study was undertaken in six MCH institutions (three in Hebei and three in Beijing). Participants (n=118) were recruited through stratified purposive sampling: 20 managers/administrators, 59 care providers and 39 patients. In-depth interviews were conducted with the participants. The interview data were coded using both inductive (based on the existing PSC theory developed by the Agency for Healthcare Research and Quality) and deductive (open coding arising from data) approaches. A PSC framework was formulated through axial coding that connected initial codes and selective coding that extracted a small number of themes. The interviewees considered patient safety in relation to six aspects: safety and security in public spaces, safety of medical services, privacy and information security, financial security, psychological safety and gap in services. A 12-dimensional PSC framework was developed, containing 69 items. While the existing PSC theory was confirmed by this study, some new themes emerged from the data. Patients expressed particular concerns about psychological safety and financial security. Defensive medical practices emerged as a PSC dimension that is associated with not only medical safety but also financial security and psychological safety. Patient engagement was also valued by the interviewees, especially the patients, as part of PSC. Although there are some common features in PSC across different healthcare delivery systems, PSC can also be context specific. In MCH settings in China, the meaning of 'patient safety

  1. Probabilistic Risk Assessment Procedures Guide for NASA Managers and Practitioners (Second Edition)

    Science.gov (United States)

    Stamatelatos,Michael; Dezfuli, Homayoon; Apostolakis, George; Everline, Chester; Guarro, Sergio; Mathias, Donovan; Mosleh, Ali; Paulos, Todd; Riha, David; Smith, Curtis; hide

    2011-01-01

    Probabilistic Risk Assessment (PRA) is a comprehensive, structured, and logical analysis method aimed at identifying and assessing risks in complex technological systems for the purpose of cost-effectively improving their safety and performance. NASA's objective is to better understand and effectively manage risk, and thus more effectively ensure mission and programmatic success, and to achieve and maintain high safety standards at NASA. NASA intends to use risk assessment in its programs and projects to support optimal management decision making for the improvement of safety and program performance. In addition to using quantitative/probabilistic risk assessment to improve safety and enhance the safety decision process, NASA has incorporated quantitative risk assessment into its system safety assessment process, which until now has relied primarily on a qualitative representation of risk. Also, NASA has recently adopted the Risk-Informed Decision Making (RIDM) process [1-1] as a valuable addition to supplement existing deterministic and experience-based engineering methods and tools. Over the years, NASA has been a leader in most of the technologies it has employed in its programs. One would think that PRA should be no exception. In fact, it would be natural for NASA to be a leader in PRA because, as a technology pioneer, NASA uses risk assessment and management implicitly or explicitly on a daily basis. NASA has probabilistic safety requirements (thresholds and goals) for crew transportation system missions to the International Space Station (ISS) [1-2]. NASA intends to have probabilistic requirements for any new human spaceflight transportation system acquisition. Methods to perform risk and reliability assessment in the early 1960s originated in U.S. aerospace and missile programs. Fault tree analysis (FTA) is an example. It would have been a reasonable extrapolation to expect that NASA would also become the world leader in the application of PRA. That was

  2. Safety culture of complex risky systems: the Nuclear Engineering Institute case study

    International Nuclear Information System (INIS)

    Obadia, Isaac Jose; Vidal, Mario Cesar Rodriguez; Melo, Paulo Fernando F. Frutuoso e

    2002-01-01

    Analysis of industrial accidents have demonstrated that safe and reliable operation of complex industrial processes that use risky technology and/or hazard material depends not only on technical factors but on human and organizational factors as well. After the Chernobyl nuclear accident in 1986, the International Atomic Energy Agency established the safety culture concept and started a safety culture enhancement program within nuclear organizations worldwide. The Nuclear Engineering Institute, IEN, is a research and technological development unit of the Brazilian Nuclear Energy Commission, CNEN, characterized as a nuclear and radioactive installation where processes presenting risks to operators and to the environment are executed. In 1999, IEN started a management change program, aiming to achieve excellence of performance, based on the Model of Excellence of the National Quality Award. IEN's safety culture project is based on IAEA methodology and has been incorporated to the organizational management process. This work presents IEN's safety culture project; the results obtained on the initial safety culture assessment and the following project actions. (author)

  3. Air Breathing Propulsion Controls and Diagnostics Research at NASA Glenn Under NASA Aeronautics Research Mission Programs

    Science.gov (United States)

    Garg, Sanjay

    2015-01-01

    The Intelligent Control and Autonomy Branch (ICA) at NASA (National Aeronautics and Space Administration) Glenn Research Center (GRC) in Cleveland, Ohio, is leading and participating in various projects in partnership with other organizations within GRC and across NASA, the U.S. aerospace industry, and academia to develop advanced controls and health management technologies that will help meet the goals of the NASA Aeronautics Research Mission Directorate (ARMD) Programs. These efforts are primarily under the various projects under the Advanced Air Vehicles Program (AAVP), Airspace Operations and Safety Program (AOSP) and Transformative Aeronautics Concepts Program (TAC). The ICA Branch is focused on advancing the state-of-the-art of aero-engine control and diagnostics technologies to help improve aviation safety, increase efficiency, and enable operation with reduced emissions. This paper describes the various ICA research efforts under the NASA Aeronautics Research Mission Programs with a summary of motivation, background, technical approach, and recent accomplishments for each of the research tasks.

  4. Peer training of safety-related skills to institutional staff: benefits for trainers and trainees.

    OpenAIRE

    van Den Pol, R A; Reid, D H; Fuqua, R W

    1983-01-01

    A peer training program, in which experienced staff trained new staff, was evaluated as a method for teaching and maintaining safety-related caregiver skills in an institutional setting for the developmentally disabled. Three sets of safety-type skills were assessed in simulated emergency situations: responding to facility fires, managing aggressive attacks by residents, and assisting residents during convulsive seizures. Using a multiple-baseline research design, results indicated that the p...

  5. The 10 years of history on the Korea Institute of Nuclear Safety

    International Nuclear Information System (INIS)

    2000-02-01

    This book reports the 10 years of history of Korea Institute of Nuclear Safety which is divided into three part. The first part includes summary, beginning and launching of KINS and establishment and development of KINS. The second deals with inspection safety on nuclear power facilities, protection of radiation and surveillance for environment, safe criterion and development of safe regulation and providing assistance of safe regulation. The third part mentions direction of safe regulation on nuclear power, long term vision and innovation of management, future for KINS. It has appendixes such as a chronological table current condition of budget and human resources.

  6. Annual report for FY 2012 on the activities of radiation safety in Nuclear Science Research Institute etc. April 1, 2012 - March 31, 2013

    International Nuclear Information System (INIS)

    2014-02-01

    This annual report describes the activities in the 2012 fiscal year of Department of Radiation Protection in Nuclear Science Research Institute, Safety Section in Takasaki Advanced Radiation Research Institute, Safety Section in Kansai Photon Science Institute, Operation Safety Administration Section in Aomori Research and Development Center and Safety Section in Naka Fusion Institute. The activities described are environmental monitoring, radiation protection practices in workplaces, individual monitoring, maintenance of monitoring instruments, and research and development of radiation protection. At these institutes the occupational exposures did not exceed the dose limits. The radioactive gaseous and liquid discharges from the facilities were well below the prescribed limits. The radiological situations at the institutes in Tokai, Aomori and Naka have been affected by the Fukushima Dai-ichi nuclear power plant accident in March 2011. The research and development activities produced certain results in the fields of radiation protection technique. The radiation protection experts in the institutes actively participated in the projects after the Fukushima nuclear power plant accident. (author)

  7. Annual report for FY 2012 on the activities of radiation safety in Nuclear Science Research Institute etc. April 1, 2012 - March 31, 2013

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-02-15

    This annual report describes the activities in the 2012 fiscal year of Department of Radiation Protection in Nuclear Science Research Institute, Safety Section in Takasaki Advanced Radiation Research Institute, Safety Section in Kansai Photon Science Institute, Operation Safety Administration Section in Aomori Research and Development Center and Safety Section in Naka Fusion Institute. The activities described are environmental monitoring, radiation protection practices in workplaces, individual monitoring, maintenance of monitoring instruments, and research and development of radiation protection. At these institutes the occupational exposures did not exceed the dose limits. The radioactive gaseous and liquid discharges from the facilities were well below the prescribed limits. The radiological situations at the institutes in Tokai, Aomori and Naka have been affected by the Fukushima Dai-ichi nuclear power plant accident in March 2011. The research and development activities produced certain results in the fields of radiation protection technique. The radiation protection experts in the institutes actively participated in the projects after the Fukushima nuclear power plant accident. (author)

  8. Paul Scherrer Institut annual report 1994. Annex IV: PSI nuclear energy and safety research progress report 1994

    International Nuclear Information System (INIS)

    Williams, T.; Kallfelz, J.M.; Mathews, D.

    1995-01-01

    Nuclear energy research in Switzerland is concentrated at PSI. It is explicitly mentioned in the Institute's official charter and commands about one fifth of the Institute's federal resources. Presently, PSI invests approx. 200 py/a in nuclear energy research, one third of this being externally funded; the share of external funding in investment costs totals approx. 50%. This funding is provided by the Swiss utilities and the NAGRA, the Safety Authority (HSK) and the former National Fund for Energy Research (NEFF). PSI's activities in nuclear research concentrate on three main areas: safety of operating plants, safety features of future reactor concepts and waste management. 7% of personnel are invested in addressing global aspects of energy. (author) figs., tabs., refs

  9. NASA tire/runway friction projects

    Science.gov (United States)

    Yager, Thomas J.

    1995-01-01

    The paper reviews several aspects of NASA Langley Research Center's tire/runway friction evaluations directed towards improving the safety and economy of aircraft ground operations. The facilities and test equipment used in implementing different aircraft tire friction studies and other related aircraft ground performance investigations are described together with recent workshop activities at NASA Wallops Flight Facility. An overview of the pending Joint NASA/Transport Canada/FM Winter Runway Friction Program is given. Other NASA ongoing studies and on-site field tests are discussed including tire wear performance and new surface treatments. The paper concludes with a description of future research plans.

  10. Institutional Oversight of Occupational Health and Safety for Research Programs Involving Biohazards.

    Science.gov (United States)

    Dyson, Melissa C; Carpenter, Calvin B; Colby, Lesley A

    2017-06-01

    Research with hazardous biologic materials (biohazards) is essential to the progress of medicine and science. The field of microbiology has rapidly advanced over the years, partially due to the development of new scientific methods such as recombinant DNA technology, synthetic biology, viral vectors, and the use of genetically modified animals. This research poses a potential risk to personnel as well as the public and the environment. Institutions must have appropriate oversight and take appropriate steps to mitigate the risks of working with these biologic hazards. This article will review responsibilities for institutional oversight of occupational health and safety for research involving biologic hazards.

  11. Reporter Concerns in 300 Mode-Related Incident Reports from NASA's Aviation Safety Reporting System

    Science.gov (United States)

    McGreevy, Michael W.

    1996-01-01

    A model has been developed which represents prominent reporter concerns expressed in the narratives of 300 mode-related incident reports from NASA's Aviation Safety Reporting System (ASRS). The model objectively quantifies the structure of concerns which persist across situations and reporters. These concerns are described and illustrated using verbatim sentences from the original narratives. Report accession numbers are included with each sentence so that concerns can be traced back to the original reports. The results also include an inventory of mode names mentioned in the narratives, and a comparison of individual and joint concerns. The method is based on a proximity-weighted co-occurrence metric and object-oriented complexity reduction.

  12. Annual report for FY 2010 on the activities of radiation safety in Nuclear Science Research Institute etc. April 1, 2010 - March 31, 2011

    International Nuclear Information System (INIS)

    2012-03-01

    This annual report describes the activities of Radiation Protection Sector in Department of Radiation Protection in Nuclear Science Research Institute, Safety Section in Takasaki Advanced Radiation Research Institute, Safety Section in Kansai Photon Science Institute, Operation Safety Administration Section in Aomori Research and Development Center and Safety Section in Naka Fusion Institute. The activities described are environmental monitoring, radiation protection in workplaces, individual monitoring, maintenance of monitoring instruments, and research and development of radiation protection. At these institutes the occupational exposures did not exceed the dose limits. The radioactive gaseous and liquid discharges from the facilities were well below the prescribed limits. The research and development activities obtained certain results in the fields of operational radiation protection technique and the construction of calibration fields for neutron beams. The institutes in Tokai, Takasaki, Aomori and Naka were suffered from the Great East Japan Earthquake and the nuclear power plant accident which followed the earthquake. (author)

  13. Preliminary Results Obtained in Integrated Safety Analysis of NASA Aviation Safety Program Technologies

    Science.gov (United States)

    2005-01-01

    This is a listing of recent unclassified RTO technical publications for January 1, 2005 through March 31, 2005 processed by the NASA Center for AeroSpace Center available on the NASA Aeronautics and Space Database. Contents include 1) Electronic Information Management; 2) Decision Support to Combined Joint Task Force and Component Commanders; 3) RTO Technical Publications : A Quarterly Listing (December 2004); 4) The Role of Humans in Intelligent and Automated Systems.

  14. 75 FR 65018 - National Institute for Occupational Safety and Health; Designation of a Class of Employees for...

    Science.gov (United States)

    2010-10-21

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institute for Occupational Safety and Health... Occupational Safety and Health (NIOSH), Department of Health and Human Services (HHS). ACTION: Notice. SUMMARY... aggregating at least 250 work days, occurring either solely under this employment, or in combination with work...

  15. 75 FR 57024 - National Institute for Occupational Safety and Health; Designation of a Class of Employees for...

    Science.gov (United States)

    2010-09-17

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institute for Occupational Safety and Health... Occupational Safety and Health (NIOSH), Department of Health and Human Services (HHS). ACTION: Notice. SUMMARY... number of work days aggregating at least 250 work days, occurring either solely under this employment or...

  16. 75 FR 32783 - National Institute for Occupational Safety and Health; Designation of a Class of Employees for...

    Science.gov (United States)

    2010-06-09

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institute for Occupational Safety and Health... Occupational Safety and Health (NIOSH), Department of Health and Human Services (HHS). ACTION: Notice. SUMMARY... aggregating at least 250 work days, occurring either solely under this employment or in combination with work...

  17. Joint NASA/USAF Airborne Field Mill Program - Operation and safety considerations during flights of a Lear 28 airplane in adverse weather

    Science.gov (United States)

    Fisher, Bruce D.; Phillips, Michael R.; Maier, Launa M.

    1992-01-01

    A NASA Langley Research Center Learjet 28 research airplane was flown in various adverse weather conditions in the vicinity of the NASA Kennedy Space Center from 1990-1992 to measure airborne electric fields during the Joint NASA/USAF Airborne Field Mill Program. The objective of this program was to characterize the electrical activity in various weather phenomena common to the NASA-Kennedy area in order to refine Launch Commit Criteria for natural and triggered lightning. The purpose of the program was to safely relax the existing launch commit criteria, thereby increasing launch availability and reducing the chance for weather holds and delays. This paper discusses the operational conduct of the flight test, including environmental/safety considerations, aircraft instrumentation and modification, test limitations, flight procedures, and the procedures and responsibilities of the personnel in the ground station. Airborne field mill data were collected for all the Launch Commit Criteria during two summer and two winter deployments. These data are now being analyzed.

  18. NASA Risk Management Handbook. Version 1.0

    Science.gov (United States)

    Dezfuli, Homayoon; Benjamin, Allan; Everett, Christopher; Maggio, Gaspare; Stamatelatos, Michael; Youngblood, Robert; Guarro, Sergio; Rutledge, Peter; Sherrard, James; Smith, Curtis; hide

    2011-01-01

    The purpose of this handbook is to provide guidance for implementing the Risk Management (RM) requirements of NASA Procedural Requirements (NPR) document NPR 8000.4A, Agency Risk Management Procedural Requirements [1], with a specific focus on programs and projects, and applying to each level of the NASA organizational hierarchy as requirements flow down. This handbook supports RM application within the NASA systems engineering process, and is a complement to the guidance contained in NASA/SP-2007-6105, NASA Systems Engineering Handbook [2]. Specifically, this handbook provides guidance that is applicable to the common technical processes of Technical Risk Management and Decision Analysis established by NPR 7123.1A, NASA Systems Engineering Process and Requirements [3]. These processes are part of the \\Systems Engineering Engine. (Figure 1) that is used to drive the development of the system and associated work products to satisfy stakeholder expectations in all mission execution domains, including safety, technical, cost, and schedule. Like NPR 7123.1A, NPR 8000.4A is a discipline-oriented NPR that intersects with product-oriented NPRs such as NPR 7120.5D, NASA Space Flight Program and Project Management Requirements [4]; NPR 7120.7, NASA Information Technology and Institutional Infrastructure Program and Project Management Requirements [5]; and NPR 7120.8, NASA Research and Technology Program and Project Management Requirements [6]. In much the same way that the NASA Systems Engineering Handbook is intended to provide guidance on the implementation of NPR 7123.1A, this handbook is intended to provide guidance on the implementation of NPR 8000.4A. 1.2 Scope and Depth This handbook provides guidance for conducting RM in the context of NASA program and project life cycles, which produce derived requirements in accordance with existing systems engineering practices that flow down through the NASA organizational hierarchy. The guidance in this handbook is not meant

  19. NASA Accident Precursor Analysis Handbook, Version 1.0

    Science.gov (United States)

    Groen, Frank; Everett, Chris; Hall, Anthony; Insley, Scott

    2011-01-01

    Catastrophic accidents are usually preceded by precursory events that, although observable, are not recognized as harbingers of a tragedy until after the fact. In the nuclear industry, the Three Mile Island accident was preceded by at least two events portending the potential for severe consequences from an underappreciated causal mechanism. Anomalies whose failure mechanisms were integral to the losses of Space Transportation Systems (STS) Challenger and Columbia had been occurring within the STS fleet prior to those accidents. Both the Rogers Commission Report and the Columbia Accident Investigation Board report found that processes in place at the time did not respond to the prior anomalies in a way that shed light on their true risk implications. This includes the concern that, in the words of the NASA Aerospace Safety Advisory Panel (ASAP), "no process addresses the need to update a hazard analysis when anomalies occur" At a broader level, the ASAP noted in 2007 that NASA "could better gauge the likelihood of losses by developing leading indicators, rather than continue to depend on lagging indicators". These observations suggest a need to revalidate prior assumptions and conclusions of existing safety (and reliability) analyses, as well as to consider the potential for previously unrecognized accident scenarios, when unexpected or otherwise undesired behaviors of the system are observed. This need is also discussed in NASA's system safety handbook, which advocates a view of safety assurance as driving a program to take steps that are necessary to establish and maintain a valid and credible argument for the safety of its missions. It is the premise of this handbook that making cases for safety more experience-based allows NASA to be better informed about the safety performance of its systems, and will ultimately help it to manage safety in a more effective manner. The APA process described in this handbook provides a systematic means of analyzing candidate

  20. Operational safety experience at 14 MW research reactor from Institute for Nuclear Research Pitesti

    International Nuclear Information System (INIS)

    Ciocanescu, M.

    2007-01-01

    The main challenges identified in TRIGA Research Reactor operated in Institute for Nuclear Research in Pitesti, Romania, are in fact similar with challenges of many other research reactors in the world, those are: Ageing of work forces and knowledge management; Maintaining an enhanced technical and scientific competences; Ensuring adequate financial and human resources; Enhancing excellence in management; Ensuring confidence of stakeholders and public; Ageing of equipment and systems.To ensure safety availability of TRIGA Research Reactor in INR Pitesti, the financial resources were secured and a large refurbishment programme and modernization was undertaking by management of institute. This programme concern the modernization of reactor control and safety systems, primary cooling system instrumentation, radiation protection and releases monitoring with new spectrometric computerized abilities, ventilation filtering system and cooling towers. The expected life extension of the reactor will be about 15 years

  1. Occupational safety training and practices in selected vocational training institutions and workplaces in Kampala, Uganda.

    Science.gov (United States)

    Kintu, Denis; Kyakula, Michael; Kikomeko, Joseph

    2015-01-01

    Several industrial accidents, some of them fatal, have been reported in Uganda. Causes could include training gaps in vocational training institutions (VTIs) and workplaces. This study investigated how occupational safety training in VTIs and workplaces is implemented. The study was carried out in five selected VTIs and workplaces in Kampala. Data were collected from instructors, workshop technicians, students, workshop managers, production supervisors, machine operators and new technicians in the workplaces. A total of 35 respondents participated in the study. The results revealed that all curricula in VTIs include a component of safety but little is practiced in VTI workshops; in workplaces no specific training content was followed and there were no regular consultations between VTIs and industry on safety skills requirements, resulting in a mismatch in safety skills training. The major constraints to safety training include inadequate funds to purchase safety equipment and inadequate literature on safety.

  2. Food Safety Attitude of Culinary Arts Based Students in Public and Private Higher Learning Institutions (IPT)

    Science.gov (United States)

    Patah, Mohd Onn Rashdi Abd; Issa, Zuraini Mat; Nor, Khamis Mohammad

    2009-01-01

    Food safety issue is not new in Malaysia as problems such as unsafe food handling, doubtful food preparation, food poisoning outbreaks in schools and education institutions and spreading of infectious food borne illness has been discussed by the public more often than before. The purpose of this study is to examine the food safety knowledge and…

  3. NASA Occupant Protection Standards Development

    Science.gov (United States)

    Somers, Jeffrey; Gernhardt, Michael; Lawrence, Charles

    2012-01-01

    Historically, spacecraft landing systems have been tested with human volunteers, because analytical methods for estimating injury risk were insufficient. These tests were conducted with flight-like suits and seats to verify the safety of the landing systems. Currently, NASA uses the Brinkley Dynamic Response Index to estimate injury risk, although applying it to the NASA environment has drawbacks: (1) Does not indicate severity or anatomical location of injury (2) Unclear if model applies to NASA applications. Because of these limitations, a new validated, analytical approach was desired. Leveraging off of the current state of the art in automotive safety and racing, a new approach was developed. The approach has several aspects: (1) Define the acceptable level of injury risk by injury severity (2) Determine the appropriate human surrogate for testing and modeling (3) Mine existing human injury data to determine appropriate Injury Assessment Reference Values (IARV). (4) Rigorously Validate the IARVs with sub-injurious human testing (5) Use validated IARVs to update standards and vehicle requirement

  4. Results From the John Glenn Biomedical Engineering Consortium. A Success Story for NASA and Northeast Ohio

    Science.gov (United States)

    Nall, Marsha M.; Barna, Gerald J.

    2009-01-01

    The John Glenn Biomedical Engineering Consortium was established by NASA in 2002 to formulate and implement an integrated, interdisciplinary research program to address risks faced by astronauts during long-duration space missions. The consortium is comprised of a preeminent team of Northeast Ohio institutions that include Case Western Reserve University, the Cleveland Clinic, University Hospitals Case Medical Center, The National Center for Space Exploration Research, and the NASA Glenn Research Center. The John Glenn Biomedical Engineering Consortium research is focused on fluid physics and sensor technology that addresses the critical risks to crew health, safety, and performance. Effectively utilizing the unique skills, capabilities and facilities of the consortium members is also of prime importance. Research efforts were initiated with a general call for proposals to the consortium members. The top proposals were selected for funding through a rigorous, peer review process. The review included participation from NASA's Johnson Space Center, which has programmatic responsibility for NASA's Human Research Program. The projects range in scope from delivery of prototype hardware to applied research that enables future development of advanced technology devices. All of the projects selected for funding have been completed and the results are summarized. Because of the success of the consortium, the member institutions have extended the original agreement to continue this highly effective research collaboration through 2011.

  5. Remodeling Strategic Staff Safety and Security Risks Management in Nigerian Tertiary Institutions

    Directory of Open Access Journals (Sweden)

    Sunday S. AKPAN

    2015-10-01

    Full Text Available This paper examined safety and security risk management in tertiary institutions in Nigeria. The frequent attacks at workplace, especially schools, have placed safety and security in the front burner of discussion in both business and political circles. This therefore, forms the imperative for the conduct of this study. The work adopted a cross sectional survey research design and collected data from respondents who are security personnel of the University of Uyo. Analysis of data was done with simple percentage statistics while the research hypotheses were tested with mean and simple regression and correlation statistics. The findings of the study revealed that assassination, kidnappings and bombings were principal risk incidents threatening the safety and security of staff in University of Uyo. A significant positive relationship was found between the funding of security management and workers’ performance. It was discovered specifically that employment screening, regular training of security personnel, regular safety and security meetings and strategic security policy formation were the main strategies for managing safety and security in University of Uyo. The paper concluded that safety and security management and control involves every worker (management and staff of University of Uyo. It was recommended, among others, that management should be more committed to safety and security management in the University by means of making safety and security issues an integral part of University’s strategic plan and also by adopting the management line model – one form of management structure-where safety and security are located, with other general management responsibilities. This way, the resurgent cases of kidnapping, hired assassination, etc. would be reduced if not completely eradicated in the University.

  6. Update on NASA Microelectronics Activities

    Science.gov (United States)

    Label, Kenneth A.; Sampson, Michael J.; Casey, Megan; Lauenstein, Jean-Marie

    2017-01-01

    Mission Statement: The NASA Electronic Parts and Packaging (NEPP) Program provides NASA's leadership for developing and maintaining guidance for the screening, qualification, test. and usage of EEE parts by NASA as well as in collaboration with other government Agencies and industry. NASA Space Technology Mission Directorate (STMD) "STMD rapidly develops, demonstrates, and infuses revolutionary, high-payoff technologies through transparent, collaborative partnerships, expanding the boundaries of the aerospace enterprise." Mission Statement: The Space Environments Testing Management Office (SETMO) will identify, prioritize, and manage a select suite of Agency key capabilities/assets that are deemed to be essential to the future needs of NASA or the nation, including some capabilities that lack an adequate business base over the budget horizon. NESC mission is to perform value-added independent testing, analysis, and assessments of NASA's high-risk projects to ensure safety and mission success. NASA Space Environments and Avionics Fellows as well as Radiation and EEE Parts Community of Practice (CoP) leads.

  7. Paul Scherrer Institut annual report 1996. Annex IV: PSI nuclear energy and safety research

    International Nuclear Information System (INIS)

    Birchley, J.; Roesel, R.; Wellner, A.

    1997-01-01

    The department 'Nuclear Energy and Safety Research' (F4) at PSI carries the responsibility of performing the essential nuclear energy research in Switzerland. This research is part of the remit of PSI and follows government directive; about one-fifth of the Institute's Federal budget is allocated to this task. Currently about 190 persons are working in this field. Approximately 45% of the salary and investment costs (5.5 million CHF in the budget period 1996/97) are externally funded. This funding is provided primarily by the Swiss Utilities, the NAGRA and the safety authority HSK. The activities in nuclear research concentrate on three main domains: safety and safety related problems of operating plants, safety features of future reactor and fuel cycle concepts and waste management; another 4% of staff are addressing broader aspects of energy. At the end of 1996, a policy evaluation with the laboratory heads took place in order to redefine the direction of F4 activities. (author) figs., tabs., refs

  8. Obtaining Valid Safety Data for Software Safety Measurement and Process Improvement

    Science.gov (United States)

    Basili, Victor r.; Zelkowitz, Marvin V.; Layman, Lucas; Dangle, Kathleen; Diep, Madeline

    2010-01-01

    We report on a preliminary case study to examine software safety risk in the early design phase of the NASA Constellation spaceflight program. Our goal is to provide NASA quality assurance managers with information regarding the ongoing state of software safety across the program. We examined 154 hazard reports created during the preliminary design phase of three major flight hardware systems within the Constellation program. Our purpose was two-fold: 1) to quantify the relative importance of software with respect to system safety; and 2) to identify potential risks due to incorrect application of the safety process, deficiencies in the safety process, or the lack of a defined process. One early outcome of this work was to show that there are structural deficiencies in collecting valid safety data that make software safety different from hardware safety. In our conclusions we present some of these deficiencies.

  9. The hot cell laboratories for material investigations of the Institute for Safety Research

    Energy Technology Data Exchange (ETDEWEB)

    Viehrig, H W

    1998-10-01

    Special facilities for handling and testing of irradiated specimens are necessary, to perform the investigation of activated material. The Institute for Safety Research has two hot cell laboratories: - the preparation laboratory and - the materials testing laboratory. This report is intended to give an overview of the available facilities and developed techniques in the laboratories. (orig.)

  10. NASA's Big Data Task Force

    Science.gov (United States)

    Holmes, C. P.; Kinter, J. L.; Beebe, R. F.; Feigelson, E.; Hurlburt, N. E.; Mentzel, C.; Smith, G.; Tino, C.; Walker, R. J.

    2017-12-01

    Two years ago NASA established the Ad Hoc Big Data Task Force (BDTF - https://science.nasa.gov/science-committee/subcommittees/big-data-task-force), an advisory working group with the NASA Advisory Council system. The scope of the Task Force included all NASA Big Data programs, projects, missions, and activities. The Task Force focused on such topics as exploring the existing and planned evolution of NASA's science data cyber-infrastructure that supports broad access to data repositories for NASA Science Mission Directorate missions; best practices within NASA, other Federal agencies, private industry and research institutions; and Federal initiatives related to big data and data access. The BDTF has completed its two-year term and produced several recommendations plus four white papers for NASA's Science Mission Directorate. This presentation will discuss the activities and results of the TF including summaries of key points from its focused study topics. The paper serves as an introduction to the papers following in this ESSI session.

  11. Analysis of general aviation single-pilot IFR incident data obtained from the NASA Aviation Safety Reporting System

    Science.gov (United States)

    Bergeron, H. P.

    1983-01-01

    An analysis of incident data obtained from the NASA Aviation Safety Reporting System (ASRS) has been made to determine the problem areas in general aviation single-pilot IFR (SPIFR) operations. The Aviation Safety Reporting System data base is a compilation of voluntary reports of incidents from any person who has observed or been involved in an occurrence which was believed to have posed a threat to flight safety. This paper examines only those reported incidents specifically related to general aviation single-pilot IFR operations. The frequency of occurrence of factors related to the incidents was the criterion used to define significant problem areas and, hence, to suggest where research is needed. The data was cataloged into one of five major problem areas: (1) controller judgment and response problems, (2) pilot judgment and response problems, (3) air traffic control (ATC) intrafacility and interfacility conflicts, (4) ATC and pilot communication problems, and (5) IFR-VFR conflicts. In addition, several points common to all or most of the problems were observed and reported. These included human error, communications, procedures and rules, and work load.

  12. NASA's Earth Science Data Systems Standards Endorsement Process

    National Research Council Canada - National Science Library

    Ullman, Richard E; Enloe, Yonsook

    2005-01-01

    Starting in January 2004, NASA instituted a set of internal working groups to develop ongoing recommendations for the continuing broad evolution of Earth Science Data Systems development and management within NASA...

  13. Semantic-Web Technology: Applications at NASA

    Science.gov (United States)

    Ashish, Naveen

    2004-01-01

    We provide a description of work at the National Aeronautics and Space Administration (NASA) on building system based on semantic-web concepts and technologies. NASA has been one of the early adopters of semantic-web technologies for practical applications. Indeed there are several ongoing 0 endeavors on building semantics based systems for use in diverse NASA domains ranging from collaborative scientific activity to accident and mishap investigation to enterprise search to scientific information gathering and integration to aviation safety decision support We provide a brief overview of many applications and ongoing work with the goal of informing the external community of these NASA endeavors.

  14. Inquiry relating to safety due to modification of usage of nuclear fuel material (establishment of waste safety testing facility) in Tokai Laboratory, Japan Atomic Energy Research Institute

    International Nuclear Information System (INIS)

    1979-01-01

    Application was made to the director of the Science and Technology Agency (STA) for the license relating to the modification of usage of nuclear fuel material (the establishment of waste safety testing facility) from the director of the Japan Atomic Energy Research Institute on November 30, 1978. After passing through the safety evaluation in the Nuclear Safety Bureau of STA, inquiry was conducted to the head of the Atomic Energy Safety Commission (AESC) on June 6, 1979, from the director of the STA. The head of AESC directed to conduct the safety examination to the head of the Nuclear Fuel Safety Examination Specialist Committee on June 7, 1979. The content of the modification of usage of nuclear fuel material is the establishment of waste safety testing facility to study and test the safety relating to the treatment and disposal of high level radioactive liquid wastes due to the reprocessing of spent fuel. As for the results of the safety examination, the siting of the waste safety testing facility which is located in the Tokai Laboratory, Japan Atomic Energy Research Institute (JAERI), and the test plan of the glass solidification of high level radioactive liquid are presented as the outline of the study plan. The building, main equipments including six cells, the isolation room and the glove box, the storage, and the disposal facilities for gas, liquid and solid wastes are explained as the outline of the facilities. Concerning the items from the viewpoint of safety, aseismatic design, slightly vacuum operation, shielding, decay heat removal, fire protection, explosion protection, criticality management, radiation management and environmental effect were evaluated, and the safety was confirmed. (Nakai, Y.)

  15. Software system safety

    Science.gov (United States)

    Uber, James G.

    1988-01-01

    Software itself is not hazardous, but since software and hardware share common interfaces there is an opportunity for software to create hazards. Further, these software systems are complex, and proven methods for the design, analysis, and measurement of software safety are not yet available. Some past software failures, future NASA software trends, software engineering methods, and tools and techniques for various software safety analyses are reviewed. Recommendations to NASA are made based on this review.

  16. Cause for Concern: A Mixed-Methods Study of Campus Safety and Security Practices in United States-Mexico Border Institutions of Higher Education

    Science.gov (United States)

    Holmes, Ryan Clevis

    2014-01-01

    Campus safety has been a source of concern since the 1990s. However, in 2007, the tragedy at the Virginia Polytechnic and State University sent a sense of alarm through many institutions of higher education. Immediately following this tragedy, institutions across the country began to evaluate and question their safety and security practices. While…

  17. An Overview of the NASA Aviation Safety Program (AVSP) Systemwide Accident Prevention (SWAP) Human Performance Modeling (HPM) Element

    Science.gov (United States)

    Foyle, David C.; Goodman, Allen; Hooley, Becky L.

    2003-01-01

    An overview is provided of the Human Performance Modeling (HPM) element within the NASA Aviation Safety Program (AvSP). Two separate model development tracks for performance modeling of real-world aviation environments are described: the first focuses on the advancement of cognitive modeling tools for system design, while the second centers on a prescriptive engineering model of activity tracking for error detection and analysis. A progressive implementation strategy for both tracks is discussed in which increasingly more complex, safety-relevant applications are undertaken to extend the state-of-the-art, as well as to reveal potential human-system vulnerabilities in the aviation domain. Of particular interest is the ability to predict the precursors to error and to assess potential mitigation strategies associated with the operational use of future flight deck technologies.

  18. NASA Standards Inform Comfortable Car Seats

    Science.gov (United States)

    2014-01-01

    NASA developed standards, which included the neutral body posture (NBP), to specify ways to design flight systems that support human health and safety. Nissan Motor Company, with US offices in Franklin, Tennessee, turned to NASA's NBP research for the development of a new driver's seat. The 2013 Altima now features the new seat, and the company plans to incorporate the seats in upcoming vehicles.

  19. NASA Technologies for Product Identification

    Science.gov (United States)

    Schramm, Fred, Jr.

    2006-01-01

    Since 1975 bar codes on products at the retail counter have been accepted as the standard for entering product identity for price determination. Since the beginning of the 21st century, the Data Matrix symbol has become accepted as the bar code format that is marked directly on a part, assembly or product that is durable enough to identify that item for its lifetime. NASA began the studies for direct part marking Data Matrix symbols on parts during the Return to Flight activities after the Challenger Accident. Over the 20 year period that has elapsed since Challenger, a mountain of studies, analyses and focused problem solutions developed by and for NASA have brought about world changing results. NASA Technical Standard 6002 and NASA Handbook 6003 for Direct Part Marking Data Matrix Symbols on Aerospace Parts have formed the basis for most other standards on part marking internationally. NASA and its commercial partners have developed numerous products and methods that addressed the difficulties of collecting part identification in aerospace operations. These products enabled the marking of Data Matrix symbols in virtually every situation and the reading of symbols at great distances, severe angles, under paint and in the dark without a light. Even unmarkable delicate parts now have a process to apply a chemical mixture called NanocodesTM that can be converted to a Data Matrix. The accompanying intellectual property is protected by 10 patents, several of which are licensed. Direct marking Data Matrix on NASA parts virtually eliminates data entry errors and the number of parts that go through their life cycle unmarked, two major threats to sound configuration management and flight safety. NASA is said to only have people and stuff with information connecting them. Data Matrix is one of the most significant improvements since Challenger to the safety and reliability of that connection. This presentation highlights the accomplishments of NASA in its efforts to develop

  20. NASA Guidelines for Promoting Scientific and Research Integrity

    Science.gov (United States)

    Kaminski, Amy P.; Neogi, Natasha A.

    2017-01-01

    This guidebook provides an overarching summary of existing policies, activities, and guiding principles for scientific and research integrity with which NASA's workforce and affiliates must conform. This document addresses NASA's obligations as both a research institution and as a funder of research, NASA's use of federal advisory committees, NASA's public communication of research results, and professional development of NASA's workforce. This guidebook is intended to provide a single resource for NASA researchers, NASA research program administrators and project managers, external entities who do or might receive funding from NASA for research or technical projects, evaluators of NASA research proposals, NASA advisory committee members, NASA communications specialists, and members of the general public so that they can understand NASA's commitment to and expectations for scientific and integrity across the agency.

  1. The Crucial Role of Additive Manufacturing at NASA

    Science.gov (United States)

    Vickers, John

    2016-01-01

    At NASA, the first steps of the Journey to Mars are well underway with the development of NASA's next generation launch system and investments in research and technologies that should increase the affordability, capability, and safety of exploration activities. Additive Manufacturing presents a disruptive opportunity for NASA to design and manufacture hardware with new materials at dramatically reduced cost and schedule. Opportunities to incorporate additive manufacturing align very well with NASA missions and with most NASA programs related to space, science, and aeronautics. The Agency also relies on many partnerships with other government agencies, industry and academia.

  2. Development and Pilot Testing of a Food Safety Curriculum for Managers and Staff of Residential Childcare Institutions (RCCIs)

    Science.gov (United States)

    Pivarnik, Lori F.; Patnoad, Martha S.; Nyachuba, David; McLandsborough, Lynne; Couto, Stephen; Hagan, Elsina E.; Breau, Marti

    2013-01-01

    Food safety training materials, targeted for residential childcare institution (RCCI) staff of facilities of 20 residents or less, were developed, piloted, and evaluated. The goal was to assist in the implementation of a Hazard Analysis Critical Control Points (HACCP)-based food safety plan as required by Food and Nutrition Service/United States…

  3. NASA aviation safety reporting system

    Science.gov (United States)

    1981-01-01

    Aviation safety reports that relate to loss of control in flight, problems that occur as a result of similar sounding alphanumerics, and pilot incapacitation are presented. Problems related to the go around maneuver in air carrier operations, and bulletins (and FAA responses to them) that pertain to air traffic control systems and procedures are included.

  4. 78 FR 21607 - National Institute for Occupational Safety and Health Partnership Opportunity on a Research...

    Science.gov (United States)

    2013-04-11

    ... Institute for Occupational Safety and Health Partnership Opportunity on a Research Project To Evaluate the... disposable (single use) gown submitted; (3) A minimum of 200 ``new'' (unprocessed, unused, unwashed) reusable... performance criteria for single-use and reusable isolation gowns. The research objective is to evaluate...

  5. The NASA risk management program

    International Nuclear Information System (INIS)

    Buchbinder, B.; Philipson, L.L.

    1989-01-01

    This paper reports that the NASA Risk Management Program has been established to ensure the appropriate application of risk-based procedures in support of the elimination, reduction, or acceptance of significant safety risks of concern in NASA. The term appropriate is emphasized, in that the particular procedures applied to each given risk are to reflect its character and prioritized importance, the technological and economic feasibility of its treatment. A number of key documents have been produced in support of this implementation. Databases, risk analysis tools, and risk communication procedures requisite to the execution of the risk management functions also are being developed or documented. Several risk management applications have been made and a comprehensive application to a major new NASA program is underway. This paper summarizes the development and current status of the NASA Risk Management Program. Some principal actions that have been carried out in NASA in consonance with the program are noted particularly, and views are presented on the program's likely future directions

  6. Disseminating NASA-based science through NASA's Universe of Learning: Girls STEAM Ahead

    Science.gov (United States)

    Marcucci, E.; Meinke, B. K.; Smith, D. A.; Ryer, H.; Slivinski, C.; Kenney, J.; Arcand, K.; Cominsky, L.

    2017-12-01

    The Girls STEAM Ahead with NASA (GSAWN) initiative partners the NASA's Universe of Learning (UoL) resources with public libraries to provide NASA-themed activities for girls and their families. The program expands upon the legacy program, NASA Science4Girls and Their Families, in celebration of National Women's History Month. Program resources include hands-on activities for engaging girls, such as coding experiences and use of remote telescopes, complementary exhibits, and professional development for library partner staff. The science-institute-embedded partners in NASA's UoL are uniquely poised to foster collaboration between scientists with content expertise and educators with pedagogy expertise. The thematic topics related to NASA Astrophysics enable audiences to experience the full range of NASA scientific and technical disciplines and the different career skills each requires. For example, an activity may focus on understanding exoplanets, methods of their detection, and characteristics that can be determined remotely. The events focus on engaging underserved and underrepresented audiences in Science, Technology, Engineering, and Mathematics (STEM) via use of research-based best practices, collaborations with libraries, partnerships with local and national organizations (e.g. National Girls Collaborative Project or NGCP), and remote engagement of audiences. NASA's UoL collaborated with another NASA STEM Activation partner, NASA@ My Library, to announce GSAWN to their extensive STAR_Net network of libraries. This partnership between NASA SMD-funded Science learning and literacy teams has included NASA@ My Library hosting a professional development webinar featuring a GSAWN activity, a newsletter and blog post about the program, and plans for future exhibit development. This presentation will provide an overview of the program's progress to engage girls and their families through the development and dissemination of NASA-based science programming.

  7. Space Weather Impacts to Conjunction Assessment: A NASA Robotic Orbital Safety Perspective

    Science.gov (United States)

    Ghrist, Richard; Ghrist, Richard; DeHart, Russel; Newman, Lauri

    2013-01-01

    National Aeronautics and Space Administration (NASA) recognizes the risk of on-orbit collisions from other satellites and debris objects and has instituted a process to identify and react to close approaches. The charter of the NASA Robotic Conjunction Assessment Risk Analysis (CARA) task is to protect NASA robotic (unmanned) assets from threats posed by other space objects. Monitoring for potential collisions requires formulating close-approach predictions a week or more in the future to determine analyze, and respond to orbital conjunction events of interest. These predictions require propagation of the latest state vector and covariance assuming a predicted atmospheric density and ballistic coefficient. Any differences between the predicted drag used for propagation and the actual drag experienced by the space objects can potentially affect the conjunction event. Therefore, the space environment itself, in particular how space weather impacts atmospheric drag, is an essential element to understand in order effectively to assess the risk of conjunction events. The focus of this research is to develop a better understanding of the impact of space weather on conjunction assessment activities: both accurately determining the current risk and assessing how that risk may change under dynamic space weather conditions. We are engaged in a data-- ]mining exercise to corroborate whether or not observed changes in a conjunction event's dynamics appear consistent with space weather changes and are interested in developing a framework to respond appropriately to uncertainty in predicted space weather. In particular, we use historical conjunction event data products to search for dynamical effects on satellite orbits from changing atmospheric drag. Increased drag is expected to lower the satellite specific energy and will result in the satellite's being 'later' than expected, which can affect satellite conjunctions in a number of ways depending on the two satellites' orbits

  8. Reliability and Failure in NASA Missions: Blunders, Normal Accidents, High Reliability, Bad Luck

    Science.gov (United States)

    Jones, Harry W.

    2015-01-01

    NASA emphasizes crew safety and system reliability but several unfortunate failures have occurred. The Apollo 1 fire was mistakenly unanticipated. After that tragedy, the Apollo program gave much more attention to safety. The Challenger accident revealed that NASA had neglected safety and that management underestimated the high risk of shuttle. Probabilistic Risk Assessment was adopted to provide more accurate failure probabilities for shuttle and other missions. NASA's "faster, better, cheaper" initiative and government procurement reform led to deliberately dismantling traditional reliability engineering. The Columbia tragedy and Mars mission failures followed. Failures can be attributed to blunders, normal accidents, or bad luck. Achieving high reliability is difficult but possible.

  9. 14 CFR 1274.934 - Safety.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Safety. 1274.934 Section 1274.934... FIRMS Other Provisions and Special Conditions § 1274.934 Safety. Safety July 2002 NASA's safety priority... shall act responsibly in matters of safety and shall take all reasonable safety measures in performing...

  10. The Alsep Data Recovery Focus Group of NASA's Solar System Exploration Research Virtual Institute

    Science.gov (United States)

    Nagihara, S.; Lewis, L. R.; Nakamura, Y.; Williams, D. R.; Taylor, P. T.; Hills, H. K.; Kiefer, W. S.; Neal, C. R.; Schmidt, G. K.

    2014-12-01

    Astronauts on Apollo 12, 14, 15, 16, and 17 deployed instruments on the Moon for 14 geophysical experiments (passive & active seismic, heat flow, magnetics, etc.) from 1969 to 1972. These instruments were called Apollo Lunar Surface Experiments Packages (ALSEPs). ALSEPs kept transmitting data to the Earth until September 1977. When the observation program ended in 1977, a large portion of these data were not delivered to the National Space Science Data Center for permanent archive. In 2010, for the purpose of searching, recovering, preserving, and analyzing the data that were not previously archived, NASA's then Lunar Science Institute formed the ALSEP Data Recovery Focus Group. The group consists of current lunar researchers and those involved in the ALSEP design and data analysis in the 1960s and 1970s. Among the data not previously archived were the 5000+ 7-track open-reel tapes that recorded raw data from all the ALSEP instruments from April 1973 to February 1976 ('ARCSAV tapes'). These tapes went missing in the decades after Apollo. One of the major achievements of the group so far is that we have found 450 ARCSAV tapes from April to June 1975 and that we are extracting data from them. There are 3 other major achievements by the group. First, we have established a web portal at the Lunar and Planetary Institute, where ~700 ALSEP-related documents, totaling ~40,000 pages, have been digitally scanned and cataloged. Researchers can search and download these documents at www.lpi.usra.edu/ lunar/ALSEP/. Second, we have been retrieving notes and reports left behind by the now deceased/retired ALSEP investigators at their home institutions. Third, we have been re-analyzing the ALSEP data using the information from the recently recovered metadata (instrument calibration data, operation logs, etc.). Efforts are ongoing to get these data permanently archived in the Planetary Data System (PDS).

  11. Range Flight Safety Requirements

    Science.gov (United States)

    Loftin, Charles E.; Hudson, Sandra M.

    2018-01-01

    The purpose of this NASA Technical Standard is to provide the technical requirements for the NPR 8715.5, Range Flight Safety Program, in regards to protection of the public, the NASA workforce, and property as it pertains to risk analysis, Flight Safety Systems (FSS), and range flight operations. This standard is approved for use by NASA Headquarters and NASA Centers, including Component Facilities and Technical and Service Support Centers, and may be cited in contract, program, and other Agency documents as a technical requirement. This standard may also apply to the Jet Propulsion Laboratory or to other contractors, grant recipients, or parties to agreements to the extent specified or referenced in their contracts, grants, or agreements, when these organizations conduct or participate in missions that involve range flight operations as defined by NPR 8715.5.1.2.2 In this standard, all mandatory actions (i.e., requirements) are denoted by statements containing the term “shall.”1.3 TailoringTailoring of this standard for application to a specific program or project shall be formally documented as part of program or project requirements and approved by the responsible Technical Authority in accordance with NPR 8715.3, NASA General Safety Program Requirements.

  12. Batteries at NASA - Today and Beyond

    Science.gov (United States)

    Reid, Concha M.

    2015-01-01

    NASA uses batteries for virtually all of its space missions. Batteries can be bulky and heavy, and some chemistries are more prone to safety issues than others. To meet NASA's needs for safe, lightweight, compact and reliable batteries, scientists and engineers at NASA develop advanced battery technologies that are suitable for space applications and that can satisfy these multiple objectives. Many times, these objectives compete with one another, as the demand for more and more energy in smaller packages dictates that we use higher energy chemistries that are also more energetic by nature. NASA partners with companies and universities, like Xavier University of Louisiana, to pool our collective knowledge and discover innovative technical solutions to these challenges. This talk will discuss a little about NASA's use of batteries and why NASA seeks more advanced chemistries. A short primer on battery chemistries and their chemical reactions is included. Finally, the talk will touch on how the work under the Solid High Energy Lithium Battery (SHELiB) grant to develop solid lithium-ion conducting electrolytes and solid-state batteries can contribute to NASA's mission.

  13. 76 FR 65750 - Aerospace Safety Advisory Panel; Charter Renewal

    Science.gov (United States)

    2011-10-24

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (11-105)] Aerospace Safety Advisory Panel... and amendment of the charter of the NASA Aerospace Safety Advisory Panel. SUMMARY: Pursuant to... determined that a renewal and amendment of the charter of the NASA Aerospace Safety Advisory Panel is in the...

  14. 76 FR 40733 - National Institute for Occupational Safety and Health, (NIOSH), World Trade Center Health Program...

    Science.gov (United States)

    2011-07-11

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Centers for Disease Control and Prevention National Institute for Occupational Safety and Health, (NIOSH), World Trade Center Health Program Science/Technical Advisory Committee (WTCHP-STAC) Correction: This notice was published in the Federal Register on June 23...

  15. 48 CFR 1823.7001 - NASA solicitation provisions and contract clauses.

    Science.gov (United States)

    2010-10-01

    ..., RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Safety and Health 1823.7001 NASA... official(s) responsible for matters of safety and occupational health, determines that the application of... containing the provision at 1852.223-70. This provision may be modified to identify specific information that...

  16. NASA Aerospace Flight Battery Program: Generic Safety, Handling and Qualification Guidelines for Lithium-Ion (Li-Ion) Batteries; Availability of Source Materials for Lithium-Ion (Li-Ion) Batteries; Maintaining Technical Communications Related to Aerospace Batteries (NASA Aerospace Battery Workshop). Volume 2, Part 1

    Science.gov (United States)

    Manzo, Michelle A.; Brewer, Jeffrey C.; Bugga, Ratnakumar V.; Darcy, Eric C.; Jeevarajan, Judith A.; McKissock, Barbara I.; Schmitz, Paul C.

    2010-01-01

    This NASA Aerospace Flight Battery Systems Working Group was chartered within the NASA Engineering and Safety Center (NESC). The Battery Working Group was tasked to complete tasks and to propose proactive work to address battery related, agency-wide issues on an annual basis. In its first year of operation, this proactive program addressed various aspects of the validation and verification of aerospace battery systems for NASA missions. Studies were performed, issues were discussed and in many cases, test programs were executed to generate recommendations and guidelines to reduce risk associated with various aspects of implementing battery technology in the aerospace industry. This report contains the Appendices to the findings from the first year of the program's operations.

  17. Safety-related subject fields, institutions, associations, inspection boards and authorities

    International Nuclear Information System (INIS)

    Cebulla, E.

    1986-01-01

    The chapter outlines the various branches of industry where safety plays an important role, adapting the scheme applied by the Federal German Labour Office. The various sections of this chapter deal with legal provisions and relevant institutions, with natural and man-made hazards, with industrial systems requiring inspection and surveillance, with agriculture and forestry including animal husbandry, with manufacturing branches, the building industry, traffic and transport, with the services sector, househoulds, leisure and sports, and with establishments and activities where the handling of radioactive substances is a major source of hazards (e.g. in the medical field, for which a particularly extensive literature index is given). Aspects of power supply industries and water pollution prevention are discussed where appropriate. (DG) [de

  18. Patient safety in organizational culture as perceived by leaderships of hospital institutions with different types of administration

    Directory of Open Access Journals (Sweden)

    Natasha Dejigov Monteiro da Silva

    2016-06-01

    Full Text Available Abstract OBJECTIVE To identify the perceptions of leaderships toward patient safety culture dimensions in the routine of hospitals with different administrative profiles: government, social and private organizations, and make correlations among participating institutions regarding dimensions of patient safety culture used. METHOD A quantitative cross-sectional study that used the Self Assessment Questionnaire 30 translated into Portuguese. The data were processed by analysis of variance (ANOVA in addition to descriptive statistics, with statistical significance set at p-value ≤ 0.05. RESULTS According to the participants' perceptions, the significant dimensions of patient safety culture were 'patient safety climate' and 'organizational learning', with 81% explanatory power. Mean scores showed that among private organizations, higher values were attributed to statements; however, the correlation between dimensions was stronger among government hospitals. CONCLUSION Different hospital organizations present distinct values for each dimension of patient safety culture and their investigation enables professionals to identify which dimensions need to be introduced or improved to increase patient safety.

  19. Researches in radiation protection and safety at Moscow engineering physics institute

    International Nuclear Information System (INIS)

    Kramer-Ageev, E.A.; Lebedev, L.A.

    1994-01-01

    Department of Radiation Physics of Moscow Engineering Physics Institute is a research and teaching institution in the field of radiation protection, dosimetry, shielding and in radioecology. The scientific activity which has been doing at the department for many years includes the following directions: 1. Development of mathematical models and computational methods for an evaluation of external and internal exposure of people living on contaminated areas. Recently the computational model for forecast of internal irradiation via food chains was linked with computer geographical information systems. 2. Development of techniques and instruments for the measurements of radioactive contamination of soil, air, water and agricultural products. Department has special laboratory for this. 3. Application of computational methods to the problem of nuclear medicine. The whole body spectrometry and radiation 'coding' are used as an efficient methods of obtaining information on the radionuclides location in the human body. 4. Application of computational methods to the problem of radiation safety at nuclear power plants. It allows one to calculate radiation fields in shielding and the characteristics of nuclear wastes. (author)

  20. NASA Office of Small and Disadvantaged Business Utilization

    Science.gov (United States)

    2001-01-01

    The Office of Small and Disadvantaged Business Utilization (OSDBU) within NASA promotes the utilization of small, disadvantaged, and women-owned small businesses in compliance with Federal laws, regulations, and policies. We assist such firms in obtaining contracts and subcontracts with NASA and its prime contractors. The OSDBU also facilitates the participation of small businesses in NASA's technology transfer and commercialization activities. Our driving philosophy is to consider small businesses as our products. Our customers are the NASA Enterprises, Field Centers, Functional Staff Offices, major prime contractors, and other large institutions. We hone the skills of our products to make them marketable to our customers in the performance of NASA missions.

  1. Workshop on Sustainable Infrastructure with NASA Science Mission Directorate and NASA's Office of Infrastructure Representatives

    Science.gov (United States)

    Rosenzweig, Cynthia; Brown, Molly

    2009-01-01

    NASA conducted a workshop in July 2009 to bring together their experts in the climate science and climate impacts domains with their institutional stewards. The workshop serves as a pilot for how a federal agency can start to: a) understand current and future climate change risks, b) develop a list of vulnerable institutional capabilities and assets, and c) develop next steps so flexible adaptation strategies can be developed and implemented. 63 attendees (26 scientists and over 30 institutional stewards) participated in the workshop, which extended across all or part of three days.

  2. Institutional and scientific co-operation, networking and capacity building in the field of food safety and quality

    NARCIS (Netherlands)

    Boekel, van M.A.J.S.; Meerdink, G.; Banati, D.; Marvin, H.J.P.; Kuiper, H.A.; Houtman, C.B.

    2002-01-01

    This paper explains the situation in Hungary and The Netherlands regarding scientific co-operation, networking and capacity building in the field of food quality and safety. Specific details are given about institutional co-operation including exchanges between staff and students, collaborative

  3. The Living Universe: NASA and the Development of Astrobiology

    Science.gov (United States)

    Dick, Steven J.; Strick, James E.

    2004-01-01

    In the opening weeks of 1998 a news article in the British journal Nature reported that NASA was about to enter biology in a big way. A "virtual" Astrobiology Institute was gearing up for business, and NASA administrator Dan Goldin told his external advisory council that he would like to see spending on the new institute eventually reach $100 million per year. "You just wait for the screaming from the physical scientists (when that happens)," Goldin was quoted as saying. Nevertheless, by the time of the second Astrobiology Science Conference in 2002, attended by seven hundred scientists from many disciplines, NASA spending on astrobiology had reached nearly half that amount and was growing at a steady pace. Under NASA leadership numerous institutions around the world applied the latest scientific techniques in the service of astrobiology's ambitious goal: the study of what NASA's 1996 Strategic Plan termed the "living universe." This goal embraced nothing less than an understanding of the origin, history, and distribution of life in the universe, including Earth. Astrobiology, conceived as a broad interdisciplinary research program, held the prospect of being the science for the twenty-first century which would unlock the secrets to some of the great questions of humanity. It is no surprise that these age-old questions should continue into the twenty-first century. But that the effort should be spearheaded by NASA was not at all obvious to those - inside and outside the agency - who thought NASA's mission was human spaceflight, rather than science, especially biological science. NASA had, in fact, been involved for four decades in "exobiology," a field that embraced many of the same questions but which had stagnated after the 1976 Viking missions to Mars. In this volume we tell the colorful story of the rise of the discipline of exobiology, how and why it morphed into astrobiology at the end of the twentieth century, and why NASA was the engine for both the

  4. NASA Airborne Astronomy Ambassadors (AAA) Professional Development and NASA Connections

    Science.gov (United States)

    Backman, D. E.; Clark, C.; Harman, P. K.

    2017-12-01

    NASA's Airborne Astronomy Ambassadors (AAA) program is a three-part professional development (PD) experience for high school physics, astronomy, and earth science teachers. AAA PD consists of: (1) blended learning via webinars, asynchronous content learning, and in-person workshops, (2) a STEM immersion experience at NASA Armstrong's B703 science research aircraft facility in Palmdale, California, and (3) ongoing opportunities for connection with NASA astrophysics and planetary science Subject Matter Experts (SMEs). AAA implementation in 2016-18 involves partnerships between the SETI Institute and seven school districts in northern and southern California. AAAs in the current cohort were selected by the school districts based on criteria developed by AAA program staff working with WestEd evaluation consultants. The selected teachers were then randomly assigned by WestEd to a Group A or B to support controlled testing of student learning. Group A completed their PD during January - August 2017, then participated in NASA SOFIA science flights during fall 2017. Group B will act as a control during the 2017-18 school year, then will complete their professional development and SOFIA flights during 2018. A two-week AAA electromagnetic spectrum and multi-wavelength astronomy curriculum aligned with the Science Framework for California Public Schools and Next Generation Science Standards was developed by program staff for classroom delivery. The curriculum (as well as the AAA's pre-flight PD) capitalizes on NASA content by using "science snapshot" case studies regarding astronomy research conducted by SOFIA. AAAs also interact with NASA SMEs during flight weeks and will translate that interaction into classroom content. The AAA program will make controlled measurements of student gains in standards-based learning plus changes in student attitudes towards STEM, and observe & record the AAAs' implementation of curricular changes. Funded by NASA: NNX16AC51

  5. Nuclear-power-safety reporting system: feasibility analysis

    International Nuclear Information System (INIS)

    Finlayson, F.C.; Ims, J.

    1983-04-01

    The US Nuclear Regulatory Commission (NRC) is evaluating the possibility of instituting a data gathering system for identifying and quantifying the factors that contribute to the occurrence of significant safety problems involving humans in nuclear power plants. This report presents the results of a brief (6 months) study of the feasibility of developing a voluntary, nonpunitive Nuclear Power Safety Reporting System (NPSRS). Reports collected by the system would be used to create a data base for documenting, analyzing and assessing the significance of the incidents. Results of The Aerospace Corporation study are presented in two volumes. This document, Volume I, contains a summary of an assessment of the Aviation Safety Reporting System (ASRS). The FAA-sponsored, NASA-managed ASRS was found to be successful, relatively low in cost, generally acceptable to all facets of the aviation community, and the source of much useful data and valuable reports on human factor problems in the nation's airways. Several significant ASRS features were found to be pertinent and applicable for adoption into a NPSRS

  6. GSFC Safety and Mission Assurance Organization

    Science.gov (United States)

    Kelly, Michael P.

    2010-01-01

    This viewgraph presentation reviews NASA Goddard Space Flight Center's approach to safety and mission assurance. The contents include: 1) NASA GSFC Background; 2) Safety and Mission Assurance Directorate; 3) The Role of SMA-D and the Technical Authority; 4) GSFC Mission assurance Requirements; 5) GSFC Systems Review Office (SRO); 6) GSFC Supply Chain Management Program; and 7) GSFC ISO9001/AS9100 Status Brief.

  7. Bayesian Inference for NASA Probabilistic Risk and Reliability Analysis

    Science.gov (United States)

    Dezfuli, Homayoon; Kelly, Dana; Smith, Curtis; Vedros, Kurt; Galyean, William

    2009-01-01

    This document, Bayesian Inference for NASA Probabilistic Risk and Reliability Analysis, is intended to provide guidelines for the collection and evaluation of risk and reliability-related data. It is aimed at scientists and engineers familiar with risk and reliability methods and provides a hands-on approach to the investigation and application of a variety of risk and reliability data assessment methods, tools, and techniques. This document provides both: A broad perspective on data analysis collection and evaluation issues. A narrow focus on the methods to implement a comprehensive information repository. The topics addressed herein cover the fundamentals of how data and information are to be used in risk and reliability analysis models and their potential role in decision making. Understanding these topics is essential to attaining a risk informed decision making environment that is being sought by NASA requirements and procedures such as 8000.4 (Agency Risk Management Procedural Requirements), NPR 8705.05 (Probabilistic Risk Assessment Procedures for NASA Programs and Projects), and the System Safety requirements of NPR 8715.3 (NASA General Safety Program Requirements).

  8. NASA Technology Applications Team: Commercial applications of aerospace technology

    Science.gov (United States)

    1994-01-01

    The Research Triangle Institute (RTI) Team has maintained its focus on helping NASA establish partnerships with U.S. industry for dual use development and technology commercialization. Our emphasis has been on outcomes, such as licenses, industry partnerships and commercialization of technologies, that are important to NASA in its mission of contributing to the improved competitive position of U.S. industry. The RTI Team has been successful in the development of NASA/industry partnerships and commercialization of NASA technologies. RTI ongoing commitment to quality and customer responsiveness has driven our staff to continuously improve our technology transfer methodologies to meet NASA's requirements. For example, RTI has emphasized the following areas: (1) Methodology For Technology Assessment and Marketing: RTI has developed and implemented effective processes for assessing the commercial potential of NASA technologies. These processes resulted from an RTI study of best practices, hands-on experience, and extensive interaction with the NASA Field Centers to adapt to their specific needs. (2) Effective Marketing Strategies: RTI surveyed industry technology managers to determine effective marketing tools and strategies. The Technology Opportunity Announcement format and content were developed as a result of this industry input. For technologies with a dynamic visual impact, RTI has developed a stand-alone demonstration diskette that was successful in developing industry interest in licensing the technology. And (3) Responsiveness to NASA Requirements: RTI listened to our customer (NASA) and designed our processes to conform with the internal procedures and resources at each NASA Field Center and the direction provided by NASA's Agenda for Change. This report covers the activities of the Research Triangle Institute Technology Applications Team for the period 1 October 1993 through 31 December 1994.

  9. A NASA-wide approach toward cost-effective, high-quality software through reuse

    Science.gov (United States)

    Scheper, Charlotte O. (Editor); Smith, Kathryn A. (Editor)

    1993-01-01

    NASA Langley Research Center sponsored the second Workshop on NASA Research in Software Reuse on May 5-6, 1992 at the Research Triangle Park, North Carolina. The workshop was hosted by the Research Triangle Institute. Participants came from the three NASA centers, four NASA contractor companies, two research institutes and the Air Force's Rome Laboratory. The purpose of the workshop was to exchange information on software reuse tool development, particularly with respect to tool needs, requirements, and effectiveness. The participants presented the software reuse activities and tools being developed and used by their individual centers and programs. These programs address a wide range of reuse issues. The group also developed a mission and goals for software reuse within NASA. This publication summarizes the presentations and the issues discussed during the workshop.

  10. Annual report 2012. Institute of Resource Ecology

    International Nuclear Information System (INIS)

    Brendler, Vinzenz

    2013-01-01

    The Institute of Resource Ecology (IRE) is one of the currently eight institutes of the Helmholtz-Zentrum Dresden-Rossendorf (HZDR). The research activities are fully integrated into the program ''Nuclear Safety Research'' of the Helmholtz Association and focused on the topics ''Safety of Nuclear Waste Disposal'' and ''Safety Research for Nuclear Reactors''. With the integration of the division of ''Reactor Safety'' from the former ''Institute of Safety Research'' nuclear research at HZDR is now mainly concentrated within this institute. In addition, various activities have been started investigating chemical and environmental aspects of processing and recycling of strategic metals, namely rare earth elements. Here, a knowledge transfer from the nuclear to the non-nuclear community, branching thermodynamics and spectroscopy, has been established. This also strengthens links to the recently established ''Helmholtz-Institute Freiberg for Resource Technology''.

  11. Annual report 2012. Institute of Resource Ecology

    Energy Technology Data Exchange (ETDEWEB)

    Brendler, Vinzenz [ed.

    2013-09-01

    The Institute of Resource Ecology (IRE) is one of the currently eight institutes of the Helmholtz-Zentrum Dresden-Rossendorf (HZDR). The research activities are fully integrated into the program ''Nuclear Safety Research'' of the Helmholtz Association and focused on the topics ''Safety of Nuclear Waste Disposal'' and ''Safety Research for Nuclear Reactors''. With the integration of the division of ''Reactor Safety'' from the former ''Institute of Safety Research'' nuclear research at HZDR is now mainly concentrated within this institute. In addition, various activities have been started investigating chemical and environmental aspects of processing and recycling of strategic metals, namely rare earth elements. Here, a knowledge transfer from the nuclear to the non-nuclear community, branching thermodynamics and spectroscopy, has been established. This also strengthens links to the recently established ''Helmholtz-Institute Freiberg for Resource Technology''.

  12. NASA Earth Systems, Technology and Energy Education for Minority University and Research Education Program Promotes Climate Literacy by Engaging Students at Minority Serving Institutions in STEM

    Science.gov (United States)

    Murray, B.; Alston, E. J.; Chambers, L. H.; Bynum, A.; Montgomery, C.; Blue, S.; Kowalczak, C.; Leighton, A.; Bosman, L.

    2017-12-01

    NASA Earth Systems, Technology and Energy Education for Minority University Research & Education Program - MUREP (ESTEEM) activities enhance institutional capacity of minority serving institutions (MSIs) related to Earth System Science, Technology and energy education; in turn, increasing access of underrepresented groups to science careers and opportunities. ESTEEM is a competitive portfolio that has been providing funding to institutions across the United States for 10 years. Over that time 76 separate activities have been funded. Beginning in 2011 ESTEEM awards focused on MSIs and public-school districts with high under-represented enrollment. Today ESTEEM awards focus on American Indian/Alaska Native serving institutions (Tribal Colleges and Universities), the very communities most severely in need of ability to deal with climate adaptation and resiliency. ESTEEM engages a multi-faceted approach to address economic and cultural challenges facing MSI communities. PIs (Principal Investigators) receive support from a management team at NASA, and are supported by a larger network, the ESTEEM Cohort, which connects regularly through video calls, virtual video series and in-person meetings. The cohort acts as a collective unit to foster interconnectivity and knowledge sharing in both physical and virtual settings. ESTEEM partners with NASA's Digital Learning Network (DLNTM) in a unique non-traditional model to leverage technical expertise. DLN services over 10,000 participants each year through interactive web-based synchronous and asynchronous events. These events allow for cost effective (no travel) engagement of multiple, geographically dispersed audiences to share local experiences with one another. Events allow PIs to grow their networks, technical base, professional connections, and develop a sense of community, encouraging expansion into larger and broader interactions. Over 256 connections, beyond the 76 individual members, exist within the cohort. PIs report

  13. Engaging Students and Teachers in Immersive Learning Experiences Alongside NASA Scientists and With Support from Institutional Partnerships

    Science.gov (United States)

    Jones, A. P.; Bleacher, L.; Glotch, T. D.; Heldmann, J. L.; Bleacher, J. E.; Young, K. E.; Selvin, B.; Firstman, R.; Lim, D. S. S.; Johnson, S. S.; Kobs-Nawotniak, S. E.; Hughes, S. S.

    2015-12-01

    The Remote, In Situ, and Synchrotron Studies for Science and Exploration (RIS4E) and Field Investigations to Enable Solar System Science and Exploration (FINESSE) teams of NASA's Solar System Exploration Research Virtual Institute conduct research that will help us more safely and effectively explore the Moon, Near Earth Asteroids, and the moons of Mars. These teams are committed to making their scientific research accessible and to using their research as a lens through which students and teachers can better understand the process of science. In partnership with the Alan Alda Center for Communicating Science at Stony Brook University, in spring of 2015 the RIS4E team offered a semester-long course on science journalism that culminated in a 10-day reporting trip to document scientific fieldwork in action during the 2015 RIS4E field campaign on the Big Island of Hawaii. Their work is showcased on ReportingRIS4E.com. The RIS4E science journalism course is helping to prepare the next generation of science journalists to accurately represent scientific research in a way that is appealing and understandable to the public. It will be repeated in 2017. Students and teachers who participate in FINESSE Spaceward Bound, a program offered in collaboration with the Idaho Space Grant Consortium, conduct science and exploration research in Craters of the Moon National Monument and Preserve. Side-by-side with NASA researchers, they hike through lava flows, operate field instruments, participate in science discussions, and contribute to scientific publications. Teachers learn about FINESSE science in the field, and bring it back to their classrooms with support from educational activities and resources. The second season of FINESSE Spaceward Bound is underway in 2015. We will provide more information about the RIS4E and FINESSE education programs and discuss the power of integrating educational programs within scientific programs, the strength institutional partnerships can

  14. Perceptions of safety culture vary across the intensive care units of a single institution.

    Science.gov (United States)

    Huang, David T; Clermont, Gilles; Sexton, J Bryan; Karlo, Crystal A; Miller, Rachel G; Weissfeld, Lisa A; Rowan, Kathy M; Angus, Derek C

    2007-01-01

    To determine whether safety culture factors varied across the intensive care units (ICUs) of a single hospital, between nurses and physicians, and to explore ICU nursing directors' perceptions of their personnel's attitudes. Cross-sectional surveys using the Safety Attitudes Questionnaire-ICU version, a validated, aviation industry-based safety culture survey instrument. It assesses culture across six factors: teamwork climate, perceptions of management, safety climate, stress recognition, job satisfaction, and work environment. Four ICUs in one tertiary care hospital. All ICU personnel. We conducted the survey from January 1 to April 1, 2003, and achieved a 70.2% response rate (318 of 453). We calculated safety culture factor mean and percent-positive scores (percentage of respondents with a mean score of > or =75 on a 0-100 scale for which 100 is best) for each ICU. We compared mean ICU scores by ANOVA and percent-positive scores by chi-square. Mean and percent-positive scores by job category were modeled using a generalized estimating equations approach and compared using Wald statistics. We asked ICU nursing directors to estimate their personnel's mean scores and generated ratios of their estimates to the actual scores.Overall, factor scores were low to moderate across all factors (range across ICUs: 43.4-74.9 mean scores, 8.6-69.4 percent positive). Mean and percent-positive scores differed significantly (p safety culture variation exists across ICUs of a single hospital. ICU nursing directors tend to overestimate their personnel's attitudes, particularly for teamwork. Culture assessments based on institutional level analysis or director opinion may be flawed.

  15. Technical and institutional safety features of nuclear power plants in Brazil. Aspectos tecnicos e institucionais da seguranca dos reatores nucleares no Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Rosa, L P [Sociedade Brasileira de Fisica, Rio de Janeiro, RJ (Brazil)

    1986-01-01

    This work reports technical, political and institutional safety features of nuclear power plants in Brazil. It is mainly concerned with reactor accidents and personnel safety. The three mile Island and Chernobyl accidents are also discussed and taken as examples. (A.C.A.S.).

  16. Air Traffic Management Research at NASA

    Science.gov (United States)

    Farley, Todd

    2012-01-01

    The U.S. air transportation system is the most productive in the world, moving far more people and goods than any other. It is also the safest system in the world, thanks in part to its venerable air traffic control system. But as demand for air travel continues to grow, the air traffic control systems aging infrastructure and labor-intensive procedures are impinging on its ability to keep pace with demand. And that impinges on the growth of our economy. Part of NASA's current mission in aeronautics research is to invent new technologies and procedures for ATC that will enable our national airspace system to accommodate the increasing demand for air transportation well into the next generation while still maintaining its excellent record for safety. It is a challenging mission, as efforts to modernize have, for decades, been hamstrung by the inability to assure safety to the satisfaction of system operators, system regulators, and/or the traveling public. In this talk, we'll provide a brief history of air traffic control, focusing on the tension between efficiency and safety assurance, and we'll highlight some new NASA technologies coming down the pike.

  17. NASA's Universe of Learning: Engaging Learners in Discovery

    Science.gov (United States)

    Cominsky, L.; Smith, D. A.; Lestition, K.; Greene, M.; Squires, G.

    2016-12-01

    NASA's Universe of Learning is one of 27 competitively awarded education programs selected by NASA's Science Mission Directorate (SMD) to enable scientists and engineers to more effectively engage with learners of all ages. The NASA's Universe of Learning program is created through a partnership between the Space Telescope Science Institute, Chandra X-ray Center, IPAC at Caltech, Jet Propulsion Laboratory Exoplanet Exploration Program, and Sonoma State University. The program will connect the scientists, engineers, science, technology and adventure of NASA Astrophysics with audience needs, proven infrastructure, and a network of over 500 partners to advance the objectives of SMD's newly restructured education program. The multi-institutional team will develop and deliver a unified, consolidated suite of education products, programs, and professional development offerings that spans the full spectrum of NASA Astrophysics, including the Exoplanet Exploration theme. Program elements include enabling educational use of Astrophysics mission data and offering participatory experiences; creating multimedia and immersive experiences; designing exhibits and community programs; providing professional development for pre-service educators, undergraduate instructors, and informal educators; and, producing resources for special needs and underserved/underrepresented audiences. This presentation will provide an overview of the program and process for mapping discoveries to products and programs for informal, lifelong, and self-directed learning environments.

  18. Operational environments for electrical power wiring on NASA space systems

    Science.gov (United States)

    Stavnes, Mark W.; Hammoud, Ahmad N.; Bercaw, Robert W.

    1994-01-01

    Electrical wiring systems are used extensively on NASA space systems for power management and distribution, control and command, and data transmission. The reliability of these systems when exposed to the harsh environments of space is very critical to mission success and crew safety. Failures have been reported both on the ground and in flight due to arc tracking in the wiring harnesses, made possible by insulation degradation. This report was written as part of a NASA Office of Safety and Mission Assurance (Code Q) program to identify and characterize wiring systems in terms of their potential use in aerospace vehicles. The goal of the program is to provide the information and guidance needed to develop and qualify reliable, safe, lightweight wiring systems, which are resistant to arc tracking and suitable for use in space power applications. This report identifies the environments in which NASA spacecraft will operate, and determines the specific NASA testing requirements. A summary of related test programs is also given in this report. This data will be valuable to spacecraft designers in determining the best wiring constructions for the various NASA applications.

  19. Implementation of Programmatic Quality and the Impact on Safety

    Science.gov (United States)

    Huls, Dale Thomas; Meehan, Kevin

    2005-01-01

    The purpose of this paper is to discuss the implementation of a programmatic quality assurance discipline within the International Space Station Program and the resulting impact on safety. NASA culture has continued to stress safety at the expense of quality when both are extremely important and both can equally influence the success or failure of a Program or Mission. Although safety was heavily criticized in the media after Colimbiaa, strong case can be made that it was the failure of quality processes and quality assurance in all processes that eventually led to the Columbia accident. Consequently, it is possible to have good quality processes without safety, but it is impossible to have good safety processes without quality. The ISS Program quality assurance function was analyzed as representative of the long-term manned missions that are consistent with the President s Vision for Space Exploration. Background topics are as follows: The quality assurance organizational structure within the ISS Program and the interrelationships between various internal and external organizations. ISS Program quality roles and responsibilities with respect to internal Program Offices and other external organizations such as the Shuttle Program, JSC Directorates, NASA Headquarters, NASA Contractors, other NASA Centers, and International Partner/participants will be addressed. A detailed analysis of implemented quality assurance responsibilities and functions with respect to NASA Headquarters, the JSC S&MA Directorate, and the ISS Program will be presented. Discussions topics are as follows: A comparison of quality and safety resources in terms of staffing, training, experience, and certifications. A benchmark assessment of the lessons learned from the Columbia Accident Investigation (CAB) Report (and follow-up reports and assessments), NASA Benchmarking, and traditional quality assurance activities against ISS quality procedures and practices. The lack of a coherent operational

  20. Autonomous Warplanes: NASA Rovers Lead the Way

    Science.gov (United States)

    2016-04-01

    Warplanes NASA Rovers Lead the Way Michael R. Schroer Major, Air National Guard Wright Flyer No. 54 Air University Press Air Force Research Institute...between most airports across the continent proved an excellent further education in aviation. Piloting a business jet on a weeklong, 11- hop trek across...Research con- ducted by the National Aeronautics and Space Administration ( NASA ) offers useful lessons for the development of future military RPAs

  1. The NASA Engineering and Safety Center (NESC) GN and C Technical Discipline Team (TDT): Its Purpose, Practices and Experiences

    Science.gov (United States)

    Dennehy, Cornelius J.

    2008-01-01

    This paper will briefly define the vision, mission, and purpose of the NESC organization. The role of the GN&C TDT will then be described in detail along with an overview of how this team operates and engages in its objective engineering and safety assessments of critical NASA projects. This paper will then describe key issues and findings from several of the recent GN&C-related independent assessments and consultations performed and/or supported by the NESC GN&C TDT. Among the examples of the GN&C TDT s work that will be addressed in this paper are the following: the Space Shuttle Orbiter Repair Maneuver (ORM) assessment, the ISS CMG failure root cause assessment, the Demonstration of Autonomous Rendezvous Technologies (DART) spacecraft mishap consultation, the Phoenix Mars lander thruster-based controllability consultation, the NASA in-house Crew Exploration Vehicle (CEV) Smart Buyer assessment and the assessment of key engineering considerations for the Design, Development, Test & Evaluation (DDT&E) of robust and reliable GN&C systems for human-rated spacecraft.

  2. The Interagency Nuclear Safety Review Panel's Galileo safety evaluation report

    International Nuclear Information System (INIS)

    Nelson, R.C.; Gray, L.B.; Huff, D.A.

    1989-01-01

    The safety evaluation report (SER) for Galileo was prepared by the Interagency Nuclear Safety Review Panel (INSRP) coordinators in accordance with Presidential directive/National Security Council memorandum 25. The INSRP consists of three coordinators appointed by their respective agencies, the Department of Defense, the Department of Energy (DOE), and the National Aeronautics and Space Administration (NASA). These individuals are independent of the program being evaluated and depend on independent experts drawn from the national technical community to serve on the five INSRP subpanels. The Galileo SER is based on input provided by the NASA Galileo Program Office, review and assessment of the final safety analysis report prepared by the Office of Special Applications of the DOE under a memorandum of understanding between NASA and the DOE, as well as other related data and analyses. The SER was prepared for use by the agencies and the Office of Science and Technology Policy, Executive Office of the Present for use in their launch decision-making process. Although more than 20 nuclear-powered space missions have been previously reviewed via the INSRP process, the Galileo review constituted the first review of a nuclear power source associated with launch aboard the Space Transportation System

  3. NASA-Langley Research Center's Aircraft Condition Analysis and Management System Implementation

    Science.gov (United States)

    Frye, Mark W.; Bailey, Roger M.; Jessup, Artie D.

    2004-01-01

    This document describes the hardware implementation design and architecture of Aeronautical Radio Incorporated (ARINC)'s Aircraft Condition Analysis and Management System (ACAMS), which was developed at NASA-Langley Research Center (LaRC) for use in its Airborne Research Integrated Experiments System (ARIES) Laboratory. This activity is part of NASA's Aviation Safety Program (AvSP), the Single Aircraft Accident Prevention (SAAP) project to develop safety-enabling technologies for aircraft and airborne systems. The fundamental intent of these technologies is to allow timely intervention or remediation to improve unsafe conditions before they become life threatening.

  4. NASA Astronauts on Soyuz: Experience and Lessons for the Future

    Science.gov (United States)

    2010-01-01

    The U. S., Russia, and, China have each addressed the question of human-rating spacecraft. NASA's operational experience with human-rating primarily resides with Mercury, Gemini, Apollo, Space Shuttle, and International Space Station. NASA s latest developmental experience includes Constellation, X38, X33, and the Orbital Space Plane. If domestic commercial crew vehicles are used to transport astronauts to and from space, Soyuz is another example of methods that could be used to human-rate a spacecraft and to work with commercial spacecraft providers. For Soyuz, NASA's normal assurance practices were adapted. Building on NASA's Soyuz experience, this report contends all past, present, and future vehicles rely on a range of methods and techniques for human-rating assurance, the components of which include: requirements, conceptual development, prototype evaluations, configuration management, formal development reviews (safety, design, operations), component/system ground-testing, integrated flight tests, independent assessments, and launch readiness reviews. When constraints (cost, schedule, international) limit the depth/breadth of one or more preferred assurance means, ways are found to bolster the remaining areas. This report provides information exemplifying the above safety assurance model for consideration with commercial or foreign-government-designed spacecraft. Topics addressed include: U.S./Soviet-Russian government/agency agreements and engineering/safety assessments performed with lessons learned in historic U.S./Russian joint space ventures

  5. Aviation Safety Reporting System: Process and Procedures

    Science.gov (United States)

    Connell, Linda J.

    1997-01-01

    The Aviation Safety Reporting System (ASRS) was established in 1976 under an agreement between the Federal Aviation Administration (FAA) and the National Aeronautics and Space Administration (NASA). This cooperative safety program invites pilots, air traffic controllers, flight attendants, maintenance personnel, and others to voluntarily report to NASA any aviation incident or safety hazard. The FAA provides most of the program funding. NASA administers the program, sets its policies in consultation with the FAA and aviation community, and receives the reports submitted to the program. The FAA offers those who use the ASRS program two important reporting guarantees: confidentiality and limited immunity. Reports sent to ASRS are held in strict confidence. More than 350,000 reports have been submitted since the program's beginning without a single reporter's identity being revealed. ASRS removes all personal names and other potentially identifying information before entering reports into its database. This system is a very successful, proof-of-concept for gathering safety data in order to provide timely information about safety issues. The ASRS information is crucial to aviation safety efforts both nationally and internationally. It can be utilized as the first step in safety by providing the direction and content to informed policies, procedures, and research, especially human factors. The ASRS process and procedures will be presented as one model of safety reporting feedback systems.

  6. Annual report 2012. Institute of Resource Ecology

    Energy Technology Data Exchange (ETDEWEB)

    Brendler, Vinzenz (ed.)

    2013-09-01

    The Institute of Resource Ecology (IRE) is one of the currently eight institutes of the Helmholtz-Zentrum Dresden-Rossendorf (HZDR). The research activities are fully integrated into the program ''Nuclear Safety Research'' of the Helmholtz Association and focused on the topics ''Safety of Nuclear Waste Disposal'' and ''Safety Research for Nuclear Reactors''. With the integration of the division of ''Reactor Safety'' from the former ''Institute of Safety Research'' nuclear research at HZDR is now mainly concentrated within this institute. In addition, various activities have been started investigating chemical and environmental aspects of processing and recycling of strategic metals, namely rare earth elements. Here, a knowledge transfer from the nuclear to the non-nuclear community, branching thermodynamics and spectroscopy, has been established. This also strengthens links to the recently established ''Helmholtz-Institute Freiberg for Resource Technology''.

  7. NASA Announces 2009 Astronomy and Astrophysics Fellows

    Science.gov (United States)

    2009-02-01

    WASHINGTON -- NASA has selected fellows in three areas of astronomy and astrophysics for its Einstein, Hubble, and Sagan Fellowships. The recipients of this year's post-doctoral fellowships will conduct independent research at institutions around the country. "The new fellows are among the best and brightest young astronomers in the world," said Jon Morse, director of the Astrophysics Division in NASA's Science Mission Directorate in Washington. "They already have contributed significantly to studies of how the universe works, the origin of our cosmos and whether we are alone in the cosmos. The fellowships will serve as a springboard for scientific leadership in the years to come, and as an inspiration for the next generation of students and early career researchers." Each fellowship provides support to the awardees for three years. The fellows may pursue their research at any host university or research center of their choosing in the United States. The new fellows will begin their programs in the fall of 2009. "I cannot tell you how much I am looking forward to spending the next few years conducting research in the U.S., thanks to the fellowships," said Karin Oberg, a graduate student in Leiden, The Netherlands. Oberg will study the evolution of water and ices during star formation when she starts her fellowship at the Smithsonian Astrophysical Observatory in Cambridge, Mass. People Who Read This Also Read... Milky Way's Super-efficient Particle Accelerators Caught in The Act Cosmic Heavyweights in Free-for-all Galaxies Coming of Age in Cosmic Blobs Cassiopeia A Comes Alive Across Time and Space A diverse group of 32 young scientists will work on a wide variety of projects, such as understanding supernova hydrodynamics, radio transients, neutron stars, galaxy clusters and the intercluster medium, supermassive black holes, their mergers and the associated gravitational waves, dark energy, dark matter and the reionization process. Other research topics include

  8. Fire Safety Trianing in Health Care Institutions.

    Science.gov (United States)

    American Hospital Association, Chicago, IL.

    The manual details the procedures to be followed in developing and implementing a fire safety plan. The three main steps are first, to organize; second, to set up a procedure and put it in writing; and third, to train and drill employees and staff. Step 1 involves organizing a safety committee, appointing a fire marshall, and seeking help from…

  9. Research reports: 1989 NASA/ASEE Summer faculty fellowship program

    International Nuclear Information System (INIS)

    Karr, G.R.; Six, R.; Freeman, L.M.

    1989-12-01

    For the twenty-fifth consecutive year, a NASA/ASEE Summer Faculty Fellowship Program was conducted at the Marshall Space Flight Center (MSFC). The basic objectives of the programs are: (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of the participants' institutions; and (4) to contribute to the research objectives of the NASA Centers. The Faculty Fellows spent ten weeks at MSFC engaged in a research project compatible with their interests and background and worked in collaboration with a NASA/MSFC colleague

  10. How trust in institutions and organizations builds general consumer confidence in the safety of food: A decomposition of effects

    NARCIS (Netherlands)

    Jonge, de J.; Trijp, van J.C.M.; Lans, van der I.A.; Renes, R.J.; Frewer, L.J.

    2008-01-01

    This paper investigates the relationship between general consumer confidence in the safety of food and consumer trust in institutions and organizations. More specifically, using a decompositional regression analysis approach, the extent to which the strength of the relationship between trust and

  11. Diagnosis and prognosis of the source term by the French Safety Institut during an emergency on a PWR

    International Nuclear Information System (INIS)

    Chauliac, C.; Janot, L.; Jouzier, A.; Rague, B.

    1992-01-01

    The French approach for the diagnosis and the prognosis of the source term during an accident on a PWR is presented and the tools which have been developed to implement this approach at the Institute for Nuclear Protection and Safety (IPSN) are described. (author). 2 refs, 3 figs

  12. NASA Occupational Health Program FY98 Self-Assessment

    Science.gov (United States)

    Brisbin, Steven G.

    1999-01-01

    The NASA Functional Management Review process requires that each NASA Center conduct self-assessments of each functional area. Self-Assessments were completed in June 1998 and results were presented during this conference session. During FY 97 NASA Occupational Health Assessment Team activities, a decision was made to refine the NASA Self-Assessment Process. NASA Centers were involved in the ISO registration process at that time and wanted to use the management systems approach to evaluate their occupational health programs. This approach appeared to be more consistent with NASA's management philosophy and would likely confer status needed by Senior Agency Management for the program. During FY 98 the Agency Occupational Health Program Office developed a revised self-assessment methodology based on the Occupational Health and Safety Management System developed by the American Industrial Hygiene Association. This process was distributed to NASA Centers in March 1998 and completed in June 1998. The Center Self Assessment data will provide an essential baseline on the status of OHP management processes at NASA Centers. That baseline will be presented to Enterprise Associate Administrators and DASHO on September 22, 1998 and used as a basis for discussion during FY 99 visits to NASA Centers. The process surfaced several key management system elements warranting further support from the Lead Center. Input and feedback from NASA Centers will be essential to defining and refining future self assessment efforts.

  13. FAA/NASA Joint University Program for Air Transportation Research 1994-1995

    Science.gov (United States)

    Remer, J. H.

    1998-01-01

    The Joint University Program for Air Transportation Research (JUP) is a coordinated set of three grants co-sponsored by the Federal Aviation Administration (FAA) and the National Aeronautics and Space Administration (NASA). Under JUP, three institutions: the Massachusetts Institute of Technology, Princeton, and Ohio Universities receive research grants and collaborate with FAA and NASA in defining and performing civil aeronautics research in a multitude of areas. Some of these disciplines are artificial intelligence, control theory, atmospheric hazards, navigation, avionics, human factors, flight dynamics, air traffic management, and electronic communications.

  14. 76 FR 9351 - Patient Safety Organizations: Voluntary Delisting From West Virginia Center for Patient Safety

    Science.gov (United States)

    2011-02-17

    ... Patient Safety, a component entity of West Virginia Hospital Association, West Virginia Medical Institute (WVMI), and West Virginia State Medical. Association (WVSMA), of its status as a Patient Safety... Patient Safety, a component entity of West Virginia Hospital Association, West Virginia Medical Institute...

  15. The NASA Astrobiology Roadmap

    Science.gov (United States)

    Des Marais, David J.; Allamandola, Louis J.; Benner, Steven A.; Boss, Alan P.; Deamer, David; Falkowski, Paul G.; Farmer, Jack D.; Hedges, S. Blair; Jakosky, Bruce M.; Knoll, Andrew H.; hide

    2003-01-01

    The NASA Astrobiology Roadmap provides guidance for research and technology development across the NASA enterprises that encompass the space, Earth, and biological sciences. The ongoing development of astrobiology roadmaps embodies the contributions of diverse scientists and technologists from government, universities, and private institutions. The Roadmap addresses three basic questions: How does life begin and evolve, does life exist elsewhere in the universe, and what is the future of life on Earth and beyond? Seven Science Goals outline the following key domains of investigation: understanding the nature and distribution of habitable environments in the universe, exploring for habitable environments and life in our own solar system, understanding the emergence of life, determining how early life on Earth interacted and evolved with its changing environment, understanding the evolutionary mechanisms and environmental limits of life, determining the principles that will shape life in the future, and recognizing signatures of life on other worlds and on early Earth. For each of these goals, Science Objectives outline more specific high-priority efforts for the next 3-5 years. These 18 objectives are being integrated with NASA strategic planning.

  16. NASA Safety Standard: Guidelines and Assessment Procedures for Limiting Orbital Debris

    Science.gov (United States)

    1995-01-01

    Collision with orbital debris is a hazard of growing concern as historically accepted practices and procedures have allowed man-made objects to accumulate in orbit. To limit future debris generation, NASA Management Instruction (NMI) 1700.8, 'Policy to Limit Orbital Debris Generation,' was issued in April of 1993. The NMI requires each program to conduct a formal assessment of the potential to generate orbital debris. This document serves as a companion to NMI 1700.08 and provides each NASA program with specific guidelines and assessment methods to assure compliance with the NMI. Each main debris assessment issue (e.g., Post Mission Disposal) is developed in a separate chapter.

  17. Application of space and aviation technology to improve the safety and reliability of nuclear power plant operations. Final report

    International Nuclear Information System (INIS)

    1980-04-01

    This report investigates various technologies that have been developed and utilized by the aerospace community, particularly the National Aeronautics and Space Administration (NASA) and the aviation industry, that would appear to have some potential for contributing to improved operational safety and reliability at commercial nuclear power plants of the type being built and operated in the United States today. The main initiator for this study, as well as many others, was the accident at the Three Mile Island (TMI) nuclear power plant in March 1979. Transfer and application of technology developed by NASA, as well as other public and private institutions, may well help to decrease the likelihood of similar incidents in the future

  18. NASA's Additive Manufacturing Development Materials Science to Technology Infusion - Connecting the Digital Dots

    Science.gov (United States)

    Vickers, John

    2017-01-01

    At NASA, the first steps of the Journey to Mars are well underway with the development of NASA's next generation launch system and investments in research and technologies that should increase the affordability, capability, and safety of exploration activities. Additive Manufacturing presents a disruptive opportunity for NASA to design and manufacture hardware with new materials at dramatically reduced cost and schedule. Opportunities to incorporate additive manufacturing align very well with NASA missions and with most NASA programs related to space, science, and aeronautics. The Agency also relies on many partnerships with other government agencies, industry and academia.

  19. Sharing NASA's Scientific Explorations with Communities Across the Country: A Study of Public Libraries Collaborating with NASA STEM Experts

    Science.gov (United States)

    Dusenbery, P.; LaConte, K.; Holland, A.; Harold, J. B.; Johnson, A.; Randall, C.; Fitzhugh, G.

    2017-12-01

    NASA research programs are helping humanity understand the origin and evolution of galaxies, stars, and planets, how our Sun varies and impacts the heliosphere, and defining the conditions necessary to support life beyond Earth. As places that offer their services for free, public libraries have become the "public square" by providing a place where members of a community can gather for information, educational programming, and policy discussions. Libraries are also developing new ways to engage their patrons in STEM learning. The Space Science Institute's (SSI) National Center for Interactive Learning (NCIL) was funded by NASA`s Science Mission Directorate (SMD) to develop and implement a project called NASA@ My Library: A National Earth and Space Science Initiative That Connects NASA, Public Libraries and Their Communities. NCIL's STAR Library Network (STAR_Net) is providing important leverage to expand its community of practice that serves both librarians and STEM professionals. Seventy-five libraries were selected through a competitive application process to receive NASA STEM Facilitation Kits, NASA STEM Backpacks for circulation, financial resources, training, and partnership opportunities. Initial survey data from the 75 NASA@ My Library partners showed that, while they are actively providing programming, few STEM programs connected with NASA science and engineering. With the launch of the initiative - including training, resources, and STEM-related event opportunities - all 75 libraries are engaged in offering NASA-focused programs, including with NASA subject matter experts. This talk will highlight the impacts the initiative is having on both public library partners and many others across the country.

  20. Continuous Risk Management at NASA

    Science.gov (United States)

    Hammer, Theodore F.; Rosenberg, Linda

    1999-01-01

    NPG 7120.5A, "NASA Program and Project Management Processes and Requirements" enacted in April, 1998, requires that "The program or project manager shall apply risk management principles..." The Software Assurance Technology Center (SATC) at NASA GSFC has been tasked with the responsibility for developing and teaching a systems level course for risk management that provides information on how to comply with this edict. The course was developed in conjunction with the Software Engineering Institute at Carnegie Mellon University, then tailored to the NASA systems community. This presentation will briefly discuss the six functions for risk management: (1) Identify the risks in a specific format; (2) Analyze the risk probability, impact/severity, and timeframe; (3) Plan the approach; (4) Track the risk through data compilation and analysis; (5) Control and monitor the risk; (6) Communicate and document the process and decisions. This risk management structure of functions has been taught to projects at all NASA Centers and is being successfully implemented on many projects. This presentation will give project managers the information they need to understand if risk management is to be effectively implemented on their projects at a cost they can afford.

  1. Spacecraft Fire Safety Research at NASA Glenn Research Center

    Science.gov (United States)

    Meyer, Marit

    2016-01-01

    Appropriate design of fire detection systems requires knowledge of both the expected fire signature and the background aerosol levels. Terrestrial fire detection systems have been developed based on extensive study of terrestrial fires. Unfortunately there is no corresponding data set for spacecraft fires and consequently the fire detectors in current spacecraft were developed based upon terrestrial designs. In low gravity, buoyant flow is negligible which causes particles to concentrate at the smoke source, increasing their residence time, and increasing the transport time to smoke detectors. Microgravity fires have significantly different structure than those in 1-g which can change the formation history of the smoke particles. Finally the materials used in spacecraft are different from typical terrestrial environments where smoke properties have been evaluated. It is critically important to detect a fire in its early phase before a flame is established, given the fixed volume of air on any spacecraft. Consequently, the primary target for spacecraft fire detection is pyrolysis products rather than soot. Experimental investigations have been performed at three different NASA facilities which characterize smoke aerosols from overheating common spacecraft materials. The earliest effort consists of aerosol measurements in low gravity, called the Smoke Aerosol Measurement Experiment (SAME), and subsequent ground-based testing of SAME smoke in 55-gallon drums with an aerosol reference instrument. Another set of experiments were performed at NASAs Johnson Space Center White Sands Test Facility (WSTF), with additional fuels and an alternate smoke production method. Measurements of these smoke products include mass and number concentration, and a thermal precipitator was designed for this investigation to capture particles for microscopic analysis. The final experiments presented are from NASAs Gases and Aerosols from Smoldering Polymers (GASP) Laboratory, with selected

  2. Aerospace Safety Advisory Panel

    Science.gov (United States)

    1999-01-01

    This report covers the activities of the Aerospace Safety Advisory Panel (ASAP) for calendar year 1998-a year of sharp contrasts and significant successes at NASA. The year opened with the announcement of large workforce cutbacks. The slip in the schedule for launching the International Space Station (ISS) created a five-month hiatus in Space Shuttle launches. This slack period ended with the successful and highly publicized launch of the STS-95 mission. As the year closed, ISS assembly began with the successful orbiting and joining of the Functional Cargo Block (FGB), Zarya, from Russia and the Unity Node from the United States. Throughout the year, the Panel maintained its scrutiny of NASA's safety processes. Of particular interest were the potential effects on safety of workforce reductions and the continued transition of functions to the Space Flight Operations Contractor. Attention was also given to the risk management plans of the Aero-Space Technology programs, including the X-33, X-34, and X-38. Overall, the Panel concluded that safety is well served for the present. The picture is not as clear for the future. Cutbacks have limited the depth of talent available. In many cases, technical specialties are 'one deep.' The extended hiring freeze has resulted in an older workforce that will inevitably suffer significant departures from retirements in the near future. The resulting 'brain drain' could represent a future safety risk unless appropriate succession planning is started expeditiously. This and other topics are covered in the section addressing workforce. The major NASA programs are also limited in their ability to plan property for the future. This is of particular concern for the Space Shuttle and ISS because these programs are scheduled to operate well into the next century. In the case of the Space Shuttle, beneficial and mandatory safety and operational upgrades are being delayed because of a lack of sufficient present funding. Likewise, the ISS has

  3. Current Situation in Occupational Health and Safety Education in Higher Education Institutions of Turkey

    Directory of Open Access Journals (Sweden)

    Osman SİVRİKAYA

    2016-10-01

    Full Text Available During recent years, “the occupational health and safety” topic, which has gained importance in different countries in the world, has got attention in Turkey as well. The importance of human life and health is being increased in the world especially in the developed countries. As a result of this, in order to prevent the work accidents involving death or personal injury in the work life, the importance of the “occupational health and safety” is increasing gradually. In Turkey, the regulation studies are being carried out on this topic with the successive regulations especially during recent years. The application aspect of the topic, which is related to employers on the occasion of legal liabilities in accordance with the regulations, and for the graduates who are seeking for a job and especially want to be occupational safety specialists, it is popular from the point of view to be hope for a job. However, due to the difficulties to follow the rapidly changing developments, efficient awareness about the topic is not possible. It is possible that to get true and current information about the topic is possible by showing necessary sensitivity about occupational health and safety education. The graduates from different departments wonder the topics such as what is “occupational health and safety” education and “what kind of an education is necessary to become an occupational safety specialist”. Hence, in this article, by giving current information about occupational health and safety education and their content in the higher education institutions in Turkey, the points, which have had improvements compared to the past, are considered, and certain suggestions are presented to have better occupational health and safety education.

  4. Prediction of Safety Incidents

    Data.gov (United States)

    National Aeronautics and Space Administration — Safety incidents, including injuries, property damage and mission failures, cost NASA and contractors thousands of dollars in direct and indirect costs. This project...

  5. Safety evaluation report related to the renewal of the operating license for the Worcester Polytechnic Institute open-pool training reactor, Docket No. 50-134

    International Nuclear Information System (INIS)

    1982-12-01

    This Safety Evaluation Report for the application filed by the Worcester Polytechnic Institute (WPI) for a renewal of Operating License R-61 to continue to operate the WPI 10-kW open-pool training reactor has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is owned and operated by the Worcester Polytechnic Institute and is located on the WPI campus in Worcester, Worcester County, Massachusetts. The staff concludes that the reactor facility can continue to be operated by WPI without endangering the health and safety of the public

  6. Institutional Strength in Depth

    International Nuclear Information System (INIS)

    Weightman, M.

    2016-01-01

    Much work has been undertaken in order to identify, learn and implement the lessons from the TEPCO Fukushima Daiichi nuclear accident. These have mainly targeted on engineering or operational lessons. Less attention has been paid to the institutional lessons, although there have been some measures to improve individual peer reviews, particularly by the World Association of Nuclear Operators, and the authoritative IAEA report published in 2015 brought forward several important lessons for regulators and advocated a system approach. The report noted that one of the contributing factors the accident was the tendency of stakeholders not to challenge. Additionally, it reported deficiencies in the regulatory authority and system. Earlier, the root cause of the accident was identified by a Japanese independent parliamentary report as being cultural and institutional. The sum total of the institutions, the safety system, was ineffective. While it is important to address the many technical and operational lessons these may not necessary address this more fundamental lesson, and may not serve to provide robust defences against human or institutional failings over a wide variety of possible events and combinations. The overall lesson is that we can have rigorous and comprehensive safety standards and other tools in place to deliver high levels of safety, but ultimately what is important is the ability of the nuclear safety system to ensure that the relevant institutions diligently and effectively apply those standards and tools — to be robust and resilient. This has led to the consideration of applying the principles of the strength in depth philosophy to a nuclear safety system as a way of providing a framework for developing, assessing, reviewing and improving the system. At an IAEA conference in October 2013, a model was presented for a robust national nuclear safety system based on strength in depth philosophy. The model highlighted three main layers: industry, the

  7. Safety Evaluation Report, related to the renewal of the operating license for the critical experiment facility of the Rensselaer Polytechnic Institute (Docket No. 50-225)

    International Nuclear Information System (INIS)

    1983-10-01

    This Safety Evaluation Report for the application filed by the Rensselaer Polytechnic Institute (RPI) for a renewal of operating license CX-22 to continue to operate a critical experiment facility has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is owned and operated by Rensselaer Polytechnic Institute and is located at a site in the city of Schenectady, New York. The staff concludes that this critical facility can continue to be operated by RPI without endangering the health and safety of the public

  8. Institute for Computational Mechanics in Propulsion (ICOMP)

    Science.gov (United States)

    Keith, Theo G., Jr. (Editor); Balog, Karen (Editor); Povinelli, Louis A. (Editor)

    2001-01-01

    The Institute for Computational Mechanics in Propulsion (ICOMP) was formed to develop techniques to improve problem-solving capabilities in all aspects of computational mechanics related to propulsion. ICOMP is operated by the Ohio Aerospace Institute (OAI) and funded via numerous cooperative agreements by the NASA Glenn Research Center in Cleveland, Ohio. This report describes the activities at ICOMP during 1999, the Institute's fourteenth year of operation.

  9. Safety: Preventive Medicine.

    Science.gov (United States)

    Kotula, John R.; Digenakis, Anthony

    1985-01-01

    Underscores the need for community colleges to practice safety within the institutions and to instruct students in workplace safety procedures and requirements. Reviews Occupational Safety and Health Act (OSHA) regulations and their impact on industry and education. Looks at the legal responsibilities of colleges for safety. (DMM)

  10. NASA Langley Research Center outreach in astronautical education

    Science.gov (United States)

    Duberg, J. E.

    1976-01-01

    The Langley Research Center has traditionally maintained an active relationship with the academic community, especially at the graduate level, to promote the Center's research program and to make graduate education available to its staff. Two new institutes at the Center - the Joint Institute for Acoustics and Flight Sciences, and the Institute for Computer Applications - are discussed. Both provide for research activity at the Center by university faculties. The American Society of Engineering Education Summer Faculty Fellowship Program and the NASA-NRC Postdoctoral Resident Research Associateship Program are also discussed.

  11. The NASA Astrobiology Roadmap.

    Science.gov (United States)

    Des Marais, David J; Nuth, Joseph A; Allamandola, Louis J; Boss, Alan P; Farmer, Jack D; Hoehler, Tori M; Jakosky, Bruce M; Meadows, Victoria S; Pohorille, Andrew; Runnegar, Bruce; Spormann, Alfred M

    2008-08-01

    The NASA Astrobiology Roadmap provides guidance for research and technology development across the NASA enterprises that encompass the space, Earth, and biological sciences. The ongoing development of astrobiology roadmaps embodies the contributions of diverse scientists and technologists from government, universities, and private institutions. The Roadmap addresses three basic questions: how does life begin and evolve, does life exist elsewhere in the universe, and what is the future of life on Earth and beyond? Seven Science Goals outline the following key domains of investigation: understanding the nature and distribution of habitable environments in the universe, exploring for habitable environments and life in our own Solar System, understanding the emergence of life, determining how early life on Earth interacted and evolved with its changing environment, understanding the evolutionary mechanisms and environmental limits of life, determining the principles that will shape life in the future, and recognizing signatures of life on other worlds and on early Earth. For each of these goals, Science Objectives outline more specific high priority efforts for the next three to five years. These eighteen objectives are being integrated with NASA strategic planning.

  12. Institutional aspects of radioactive waste management

    International Nuclear Information System (INIS)

    Strohl, P.

    1996-01-01

    Rules and regulations in force, the work of specialized agencies and the control exercised by regulatory authorities in the area of radioactive waste management need to emphasised in public information programmes. Radioactive waste management is a well-regulated area, with government institutions aiming for long-term safety, in particular for the final disposal of wastes, and imposing strict obligations on the nuclear industry. The issue of public perception of the problems involved with the long-term safety of radioactive waste management is sensitive. Given the complexity of this issue, and the public's legitimate doubts regarding the continued efficiency of long- or very long-term waste management policies, public information specialists must seek to reassure. The major factors that need to be made clear to the public are the following: our capacity to master long-term risks will depend upon the quality of the decisions taken today; experience has shown that the functioning of institutional mechanisms is generally efficient and permanent when their purpose is to protect society's vital interests; a well-informed public, together with other factors can contribute to the maintenance of these; the importance of the 'passive' safety of technological systems, as well as institutional instruments with respect to guaranteeing long-term safety, must be underlined; institutional instruments, although indispensable with regard to long-term safety, should only be considered as making a contribution of relative importance and of limited duration, and this must be made clear. Public information policies should therefore underline the relative contribution of institutional instruments, as well as their limited duration, in the safety of long-term radioactive waste management. (authors)

  13. Introduction to NASA Symposium on Productivity and Quality

    Science.gov (United States)

    Braunstein, David

    1984-01-01

    The discussions will concentrate on white-collar organizational issues common to large organizations. The program will address a number of management issues for improving our nation's productivity and quality, and therefore its competitive position. executives have contributed their time to share /their experience with you. In addition, the American Institute of Astronautics & Aeronautics corporate members have helped to organize the sessions. I am most grateful for this support. The NASA Administrator has set the goal for NASA to become a leader in productivity and quality.

  14. Nuclear Safety Project

    International Nuclear Information System (INIS)

    1978-11-01

    The 13th semi-annual report 1/78 is a description of work within the Nuclear Safety Project performed in the first six months of 1978 in the nuclear safety field by KFK institutes and departments and by external institutions on behalf of KfK. It includes for each individual research activity short summaries on - work completed, - essential results, - plans for the near future. (orig./RW) [de

  15. Year 3 LUNAR Annual Report to the NASA Lunar Science Institute

    OpenAIRE

    Burns, Jack; Lazio, Joseph

    2012-01-01

    The Lunar University Network for Astrophysics Research (LUNAR) is a team of researchers and students at leading universities, NASA centers, and federal research laboratories undertaking investigations aimed at using the Moon as a platform for space science. LUNAR research includes Lunar Interior Physics & Gravitation using Lunar Laser Ranging (LLR), Low Frequency Cosmology and Astrophysics (LFCA), Planetary Science and the Lunar Ionosphere, Radio Heliophysics, and Exploration Science. The LUN...

  16. NASA Perspective and Modeling of Thermal Runaway Propagation Mitigation in Aerospace Batteries

    Science.gov (United States)

    Shack, P.; Iannello, C.; Rickman, S.; Button, R.

    2014-01-01

    NASA has traditionally sought to reduce the likelihood of a single cell thermal runaway (TR) in their aerospace batteries to an absolute minimum by employing rigorous screening program of the cells. There was generally a belief that TR propagation resulting in catastrophic failure of the battery was a forgone conclusion for densely packed aerospace lithium-ion batteries. As it turns out, this may not be the case. An increasing number of purportedly TR propagation-resistant batteries are appearing among NASA partners in the commercial sector and the Department of Defense. In the recent update of the battery safety standard (JSC 20793) to address this paradigm shift, the NASA community included requirements for assessing TR severity and identifying simple, low-cost severity reduction measures. Unfortunately, there are no best-practice guidelines for this work in the Agency, so the first project team attempting to meet these requirements would have an undue burden placed upon them. A NASA engineering Safety Center (NESC) team set out to perform pathfinding activities for meeting those requirements. This presentation will provide contextual background to this effort, as well as initial results in attempting to model and simulate TR heat transfer and propagation within battery designs.

  17. Recent Progress on Sonic Boom Research at NASA

    Science.gov (United States)

    Loubeau, Alexandra

    2012-01-01

    Sonic boom research conducted at NASA through the Supersonics Project of the Fundamental Aeronautics Program is oriented toward understanding the potential impact of sonic boom noise on communities from new low-boom supersonic aircraft designs. Encompassing research in atmospheric propagation, structural response, and human response, NASA research contributes to knowledge in key areas needed to support development of a new noise-based standard for supersonic aircraft certification. Partnerships with several industry, government, and academic institutions have enabled the recent execution of several acoustic field studies on sonic booms. An overview of recent activities funded by NASA includes: focus boom model development and experimental validation, field experiments of structural transmission of sonic booms into large buildings, and low boom community response testing.

  18. A Framework for Assessment of Aviation Safety Technology Portfolios

    Science.gov (United States)

    Jones, Sharon M.; Reveley, Mary S.

    2014-01-01

    The programs within NASA's Aeronautics Research Mission Directorate (ARMD) conduct research and development to improve the national air transportation system so that Americans can travel as safely as possible. NASA aviation safety systems analysis personnel support various levels of ARMD management in their fulfillment of system analysis and technology prioritization as defined in the agency's program and project requirements. This paper provides a framework for the assessment of aviation safety research and technology portfolios that includes metrics such as projected impact on current and future safety, technical development risk and implementation risk. The paper also contains methods for presenting portfolio analysis and aviation safety Bayesian Belief Network (BBN) output results to management using bubble charts and quantitative decision analysis techniques.

  19. The safety of influenza vaccines in children: An Institute for Vaccine Safety white paper.

    Science.gov (United States)

    Halsey, Neal A; Talaat, Kawsar R; Greenbaum, Adena; Mensah, Eric; Dudley, Matthew Z; Proveaux, Tina; Salmon, Daniel A

    2015-12-30

    Most influenza vaccines are generally safe, but influenza vaccines can cause rare serious adverse events. Some adverse events, such as fever and febrile seizures, are more common in children than adults. There can be differences in the safety of vaccines in different populations due to underlying differences in genetic predisposition to the adverse event. Live attenuated vaccines have not been studied adequately in children under 2 years of age to determine the risks of adverse events; more studies are needed to address this and several other priority safety issues with all influenza vaccines in children. All vaccines intended for use in children require safety testing in the target age group, especially in young children. Safety of one influenza vaccine in children should not be extrapolated to assumed safety of all influenza vaccines in children. The low rates of adverse events from influenza vaccines should not be a deterrent to the use of influenza vaccines because of the overwhelming evidence of the burden of disease due to influenza in children. Copyright © 2016. Published by Elsevier Ltd.

  20. Continuous Risk Management: A NASA Program Initiative

    Science.gov (United States)

    Hammer, Theodore F.; Rosenberg, Linda

    1999-01-01

    NPG 7120.5A, "NASA Program and Project Management Processes and Requirements" enacted in April, 1998, requires that "The program or project manager shall apply risk management principles..." The Software Assurance Technology Center (SATC) at NASA GSFC has been tasked with the responsibility for developing and teaching a systems level course for risk management that provides information on how to comply with this edict. The course was developed in conjunction with the Software Engineering Institute at Carnegie Mellon University, then tailored to the NASA systems community. This presentation will briefly discuss the six functions for risk management: (1) Identify the risks in a specific format; (2) Analyze the risk probability, impact/severity, and timeframe; (3) Plan the approach; (4) Track the risk through data compilation and analysis; (5) Control and monitor the risk; (6) Communicate and document the process and decisions.

  1. Technology and Tool Development to Support Safety and Mission Assurance

    Science.gov (United States)

    Denney, Ewen; Pai, Ganesh

    2017-01-01

    The Assurance Case approach is being adopted in a number of safety-mission-critical application domains in the U.S., e.g., medical devices, defense aviation, automotive systems, and, lately, civil aviation. This paradigm refocuses traditional, process-based approaches to assurance on demonstrating explicitly stated assurance goals, emphasizing the use of structured rationale, and concrete product-based evidence as the means for providing justified confidence that systems and software are fit for purpose in safely achieving mission objectives. NASA has also been embracing assurance cases through the concepts of Risk Informed Safety Cases (RISCs), as documented in the NASA System Safety Handbook, and Objective Hierarchies (OHs) as put forth by the Agency's Office of Safety and Mission Assurance (OSMA). This talk will give an overview of the work being performed by the SGT team located at NASA Ames Research Center, in developing technologies and tools to engineer and apply assurance cases in customer projects pertaining to aviation safety. We elaborate how our Assurance Case Automation Toolset (AdvoCATE) has not only extended the state-of-the-art in assurance case research, but also demonstrated its practical utility. We have successfully developed safety assurance cases for a number of Unmanned Aircraft Systems (UAS) operations, which underwent, and passed, scrutiny both by the aviation regulator, i.e., the FAA, as well as the applicable NASA boards for airworthiness and flight safety, flight readiness, and mission readiness. We discuss our efforts in expanding AdvoCATE capabilities to support RISCs and OHs under a project recently funded by OSMA under its Software Assurance Research Program. Finally, we speculate on the applicability of our innovations beyond aviation safety to such endeavors as robotic, and human spaceflight.

  2. Institut Laue Langevin. Complementary safety evaluation in the light of the Fukushima accident

    International Nuclear Information System (INIS)

    2011-01-01

    This report proposes a complementary safety evaluation of Laue Langevin Institute (ILL) in Grenoble, one of the French basic nuclear installations (BNI, in French INB) in the light of the Fukushima accident. This evaluation takes the following risks into account: risks of flooding, earthquake, loss of power supply and loss of cooling, in addition to operational management of accident situations. It presents some characteristics of the installation (location, operator, industrial environment, installation characteristics), reports a macroscopic safety study focused of installation structures, systems and components, evaluates the seismic risk (installation sizing, margin evaluation, reinforcement propositions, possible ground acceleration levels, reactivity, cooling and confinement control), evaluates the flooding risk (installation sizing, margin evaluation), briefly examines other extreme natural phenomena (extreme meteorological conditions related to flooding, earthquake with flooding). It analyzes the risk of a loss of power supply and of cooling (loss of external and internal electric sources, loss of the ultimate cooling system). It analyzes the management of severe accidents: core cooling management, confinement management after fuel damage, cooling management of irradiated fuel element in pool, cliff effect for these three types of accident. It discusses the conditions of the use of subcontractors. In conclusion, reinforcement and strengthening measures are proposed and discussed

  3. Research Institute for Technical Careers

    Science.gov (United States)

    Glenn, Ronald L.

    1996-01-01

    The NASA research grant to Wilberforce University enabled us to establish the Research Institute for Technical Careers (RITC) in order to improve the teaching of science and engineering at Wilberforce. The major components of the research grant are infrastructure development, establishment of the Wilberforce Intensive Summer Experience (WISE), and Joint Research Collaborations with NASA Scientists. (A) Infrastructure Development. The NASA grant has enabled us to improve the standard of our chemistry laboratory and establish the electronics, design, and robotics laboratories. These laboratories have significantly improved the level of instruction at Wilberforce University. (B) Wilberforce Intensive Summer Experience (WISE). The WISE program is a science and engineering bridge program for prefreshman students. It is an intensive academic experience designed to strengthen students' knowledge in mathematics, science, engineering, computing skills, and writing. (C) Joint Collaboration. Another feature of the grant is research collaborations between NASA Scientists and Wilberforce University Scientists. These collaborations have enabled our faculty and students to conduct research at NASA Lewis during the summer and publish research findings in various journals and scientific proceedings.

  4. Nuclear Safety Project

    International Nuclear Information System (INIS)

    1983-12-01

    The semiannual progress report 1983/1 is a description of work within the Nuclear Safety Project performed in the first six month of 1983 in the nuclear safety field by KfK institutes and departments and by external institutions on behalf of KfK. The chosen kind of this report is that of short summaries, containing the topics work performed, results obtained and plans for future work. (orig./RW) [de

  5. Nuclear safety project

    International Nuclear Information System (INIS)

    Anon.

    1980-11-01

    The 17th semi-annual report 1980/1 is a description of work within the Nuclear Safety Project performed in the first six months of 1980 in the nuclear safety field by KfK institutes and departments and by external institutions on behalf of KfK. The chosen kind of this report is that of short summaries, containing the topics - work performed, results obtained, plans for future work. (orig.) [de

  6. Uncertainty in safety : new techniques for the assessment and optimisation of safety in process industry

    NARCIS (Netherlands)

    Rouvroye, J.L.; Nieuwenhuizen, J.K.; Brombacher, A.C.; Stavrianidis, P.; Spiker, R.Th.E.; Pyatt, D.W.

    1995-01-01

    At this moment there is no standardised method for the assessment for safety in the process industry. Many companies and institutes use qualitative techniques for safety analysis while other companies and institutes use quantitative techniques. The authors of this paper will compare different

  7. Reevaluation of the NOAA/CMDL carbon monoxide reference scale and comparisons with CO reference gases at NASA-Langley and the Fraunhofer Institut

    Science.gov (United States)

    Novelli, P. C.; Collins, J. E., Jr.; Myers, R. C.; Sachse, G. W.; Scheel, H. E.

    1994-01-01

    The carbon monoxide (CO) reference scale created by the National Oceanic and Atmospheric Administration/Climate Monitoring and Diagnostics Laboratory (NOAA/CMDL) is used to quantify measurements of CO in the atmosphere, calibrate standards of other laboratories and to otherwise provide reference gases to the community measuring atmospheric CO. This reference scale was created based upon a set of primary standards prepared by gravimetric methods at CMDL and has been propagated to a set of working standards. In this paper we compare CO mixing ratios assigned to the working standards by three approaches: (1) calibration against the original gravimetric standards, (2) calibration using only working standards as the reference gas, and (3) calibration against three new gravimetric standards prepared to CMDL. The agreement between these values was typically better than 1%. The calibration histories of CMDL working standards are reviewed with respect to expected rates of CO change in the atmosphere. Using a Monte Carlo approach to simulate the effect of drifting standards on calculated mixing ratios, we conclude that the error solely associated with the maintenance of standards will limit the ability to detect small CO changes in the atmosphere. We also report results of intercalibration experiments conducted between CMDL and the Diode Laser Sensor Group (DACOM) at the NASA Langley Research Center (Hampton, Virginia), and CMDL and the Fraunhofer-Institut (Garmisch-Partenkirchen, Germany). Each laboratory calibrated several working standards for CO using their reference gases, and these results were compared to calibrations conducted by CMDL. The intercomparison of eight standards (CO concentrations between approximately 100 and approximately 165 ppb) by CMDL and NASA agreed to better than +/- 2%. The calibration of six standards (CO concentrations between approximately 50 and approximately 210 ppb) by CMDL and the Fraunhofer-Institut agreed to within +/- 2% for four

  8. Implementing the 2009 Institute of Medicine recommendations on resident physician work hours, supervision, and safety

    Science.gov (United States)

    Blum, Alexander B; Shea, Sandra; Czeisler, Charles A; Landrigan, Christopher P; Leape, Lucian

    2011-01-01

    Long working hours and sleep deprivation have been a facet of physician training in the US since the advent of the modern residency system. However, the scientific evidence linking fatigue with deficits in human performance, accidents and errors in industries from aeronautics to medicine, nuclear power, and transportation has mounted over the last 40 years. This evidence has also spawned regulations to help ensure public safety across safety-sensitive industries, with the notable exception of medicine. In late 2007, at the behest of the US Congress, the Institute of Medicine embarked on a year-long examination of the scientific evidence linking resident physician sleep deprivation with clinical performance deficits and medical errors. The Institute of Medicine’s report, entitled “Resident duty hours: Enhancing sleep, supervision and safety”, published in January 2009, recommended new limits on resident physician work hours and workload, increased supervision, a heightened focus on resident physician safety, training in structured handovers and quality improvement, more rigorous external oversight of work hours and other aspects of residency training, and the identification of expanded funding sources necessary to implement the recommended reforms successfully and protect the public and resident physicians themselves from preventable harm. Given that resident physicians comprise almost a quarter of all physicians who work in hospitals, and that taxpayers, through Medicare and Medicaid, fund graduate medical education, the public has a deep investment in physician training. Patients expect to receive safe, high-quality care in the nation’s teaching hospitals. Because it is their safety that is at issue, their voices should be central in policy decisions affecting patient safety. It is likewise important to integrate the perspectives of resident physicians, policy makers, and other constituencies in designing new policies. However, since its release

  9. NASA's Great Observatories Celebrate International Year of Astronomy

    Science.gov (United States)

    2009-11-01

    A never-before-seen view of the turbulent heart of our Milky Way galaxy is being unveiled by NASA on Nov. 10. This event will commemorate the 400 years since Galileo first turned his telescope to the heavens in 1609. In celebration of this International Year of Astronomy, NASA is releasing images of the galactic center region as seen by its Great Observatories to more than 150 planetariums, museums, nature centers, libraries, and schools across the country. The sites will unveil a giant, 6-foot-by-3-foot print of the bustling hub of our galaxy that combines a near-infrared view from the Hubble Space Telescope, an infrared view from the Spitzer Space Telescope, and an X-ray view from the Chandra X-ray Observatory into one multiwavelength picture. Experts from all three observatories carefully assembled the final image from large mosaic photo surveys taken by each telescope. This composite image provides one of the most detailed views ever of our galaxy's mysterious core. Participating institutions also will display a matched trio of Hubble, Spitzer, and Chandra images of the Milky Way's center on a second large panel measuring 3 feet by 4 feet. Each image shows the telescope's different wavelength view of the galactic center region, illustrating not only the unique science each observatory conducts, but also how far astronomy has come since Galileo. The composite image features the spectacle of stellar evolution: from vibrant regions of star birth, to young hot stars, to old cool stars, to seething remnants of stellar death called black holes. This activity occurs against a fiery backdrop in the crowded, hostile environment of the galaxy's core, the center of which is dominated by a supermassive black hole nearly four million times more massive than our Sun. Permeating the region is a diffuse blue haze of X-ray light from gas that has been heated to millions of degrees by outflows from the supermassive black hole as well as by winds from massive stars and by stellar

  10. NASA's Commercial Crew Program, The Next Step in U.S. Space Transportation

    Science.gov (United States)

    Mango, Edward J.; Thomas, Rayelle E.

    2013-01-01

    The Commercial Crew Program (CCP) is leading NASA's efforts to develop the next U.S. capability for crew transportation and rescue services to and from the International Space Station (ISS) by the mid-decade timeframe. The outcome of this capability is expected to stimulate and expand the U.S. space transportation industry. NASA is relying on its decades of human space flight experience to certify U.S. crewed vehicles to the ISS and is doing so in a two phase certification approach. NASA Certification will cover all aspects of a crew transportation system, including development, test, evaluation, and verification; program management and control; flight readiness certification; launch, landing, recovery, and mission operations; sustaining engineering and maintenance/upgrades. To ensure NASA crew safety, NASA Certification will validate technical and performance requirements, verify compliance with NASA requirements, validate the crew transportation system operates in appropriate environments, and quantify residual risks.

  11. Adaptive Flight Control Research at NASA

    Science.gov (United States)

    Motter, Mark A.

    2008-01-01

    A broad overview of current adaptive flight control research efforts at NASA is presented, as well as some more detailed discussion of selected specific approaches. The stated objective of the Integrated Resilient Aircraft Control Project, one of NASA s Aviation Safety programs, is to advance the state-of-the-art of adaptive controls as a design option to provide enhanced stability and maneuverability margins for safe landing in the presence of adverse conditions such as actuator or sensor failures. Under this project, a number of adaptive control approaches are being pursued, including neural networks and multiple models. Validation of all the adaptive control approaches will use not only traditional methods such as simulation, wind tunnel testing and manned flight tests, but will be augmented with recently developed capabilities in unmanned flight testing.

  12. NASA Schedule Management Handbook

    Science.gov (United States)

    2011-01-01

    The purpose of schedule management is to provide the framework for time-phasing, resource planning, coordination, and communicating the necessary tasks within a work effort. The intent is to improve schedule management by providing recommended concepts, processes, and techniques used within the Agency and private industry. The intended function of this handbook is two-fold: first, to provide guidance for meeting the scheduling requirements contained in NPR 7120.5, NASA Space Flight Program and Project Management Requirements, NPR 7120.7, NASA Information Technology and Institutional Infrastructure Program and Project Requirements, NPR 7120.8, NASA Research and Technology Program and Project Management Requirements, and NPD 1000.5, Policy for NASA Acquisition. The second function is to describe the schedule management approach and the recommended best practices for carrying out this project control function. With regards to the above project management requirements documents, it should be noted that those space flight projects previously established and approved under the guidance of prior versions of NPR 7120.5 will continue to comply with those requirements until project completion has been achieved. This handbook will be updated as needed, to enhance efficient and effective schedule management across the Agency. It is acknowledged that most, if not all, external organizations participating in NASA programs/projects will have their own internal schedule management documents. Issues that arise from conflicting schedule guidance will be resolved on a case by case basis as contracts and partnering relationships are established. It is also acknowledged and understood that all projects are not the same and may require different levels of schedule visibility, scrutiny and control. Project type, value, and complexity are factors that typically dictate which schedule management practices should be employed.

  13. Nuclear safety project

    International Nuclear Information System (INIS)

    1982-06-01

    The Annual Report 1981 is a detailed description (in German language) of work within the Nuclear Safety Project performed in 1981 in the nuclear safety field by KfK institutes and departments and by external institutes on behalf of KfK. It includes for each individual research activity short summaries in English language on - work completed - results obtained - plans for future work. This report was compiled by the project management. (orig.) [de

  14. NASA Conjunction Assessment Organizational Approach and the Associated Determination of Screening Volume Sizes

    Science.gov (United States)

    Newman, Lauri K.; Hejduk, Matthew D.

    2015-01-01

    NASA is committed to safety of flight for all of its operational assets Performed by CARA at NASA GSFC for robotic satellites Focus of this briefing Performed by TOPO at NASA JSC for human spaceflight he Conjunction Assessment Risk Analysis (CARA) was stood up to offer this service to all NASA robotic satellites Currently provides service to 70 operational satellites NASA unmanned operational assets Other USG assets (USGS, USAF, NOAA) International partner assets Conjunction Assessment (CA) is the process of identifying close approaches between two orbiting objects; sometimes called conjunction screening The Joint Space Operations Center (JSpOC) a USAF unit at Vandenberg AFB, maintains the high accuracy catalog of space objects, screens CARA-supported assets against the catalog, performs OD tasking, and generates close approach data.

  15. Participation of the research institutes in the safety aspects of the Laguna Verde nuclear power plant

    International Nuclear Information System (INIS)

    Sanchez G, J.

    1991-01-01

    The main activities undertaken by two research institutes of Mexico, the Instituto de Investigaciones Electricas and the Instituto Nacional de Investigaciones Nucleares, related to the safety of the Laguna Verde Nuclear Power Plant, are described. Among these activities, the development of a system for data acquisition and analysis during pre-operational tests, the design and construction of a full-scope simulator, the in-core fuel management and the establishment of an equipment qualification laboratory, stand out. It is considered that there exists a large potential for further participation. (author)

  16. NASA SMD Airborne Science Capabilities for Development and Testing of New Instruments

    Science.gov (United States)

    Fladeland, Matthew

    2015-01-01

    The SMD NASA Airborne Science Program operates and maintains a fleet of highly modified aircraft to support instrument development, satellite instrument calibration, data product validation and earth science process studies. This poster will provide an overview of aircraft available to NASA researchers including performance specifications and modifications for instrument support, processes for requesting aircraft time and developing cost estimates for proposals, and policies and procedures required to ensure safety of flight.

  17. Overview of NASA Finesse (Field Investigations to Enable Solar System Science and Exploration) Science and Exploration Project

    Science.gov (United States)

    Heldmann, J. L.; Lim, D.S.S.; Hughes, S.; Nawotniak, S. Kobs; Garry, B.; Sears, D.; Neish, C.; Osinski, G. R.; Hodges, K.; Downs, M.; hide

    2016-01-01

    NASA's FINESSE (Field Investigations to Enable Solar System Science and Exploration) project was selected as a research team by NASA's Solar System Exploration Research Virtual Institute (SSERVI). SSERVI is a joint Institute supported by NASA's Science Mission Directorate (SMD) and Human Exploration and Operations Mission Directorate (HEOMD). As such, FINESSE is focused on a science and exploration field-based research program to generate strategic knowledge in preparation for human and robotic exploration of other planetary bodies including our Moon, Mars moons Phobos and Deimos, and near-Earth asteroids. FINESSE embodies the philosophy that "science enables exploration and exploration enables science".

  18. NIOSH (National Institute for Occupational Safety and Health) Testimony on the safety of nuclear facility workers by P. J. Bierbaum on April 22, 1985

    International Nuclear Information System (INIS)

    1985-01-01

    The testimony concerned the National Institute for Occupational Safety and Health (NIOSH) activities related to the health and safety of workers employed at nuclear facilities. Three NIOSH studies were noted, including an evaluation in progress at the Feed Materials Production Center in Fernald, Ohio, a study of radiation exposure at the Goodyear Atomic Corporation (GAC) in Piketon, Ohio, and a study of deaths from cancer at the Portsmouth Naval Shipyard in Kittery, Maine. In the first study the union representatives at the FMPC had several health and safety issues that they wanted NIOSH to evaluate. Additional requests have been made by the union at this facility in relation to reported uranium releases from the site. NIOSH recommended that all potentially exposed workers undergo bioassay testing to determine lung burdens of uranium. At GAC workers requested an evaluation because of exposure to radiation from uranium hexafluoride. Total mortality for radiation workers was significantly below that expected, including cancer deaths, even those from leukemia. Total mortality for nonradiation-exposed workers indicated an increase in the number of deaths due to leukemia. In a further study a significantly increased risk for workers whose cumulative lifetime exposure was at least 1.00 rem was noted for malignancies of the trachea, bronchus, or lung

  19. The evolution of the role of the Philippine Nuclear Research Institute in the national nuclear and radiation safety regime

    International Nuclear Information System (INIS)

    Dela Rosa, A.M.

    2007-01-01

    The Philippine Nuclear Research Institute (PNRI), formerly the Philippine Atomic Energy Commission (PAEC) was created by law in 1958 with a dual mandate namely, to promote the peaceful applications of nuclear energy, and to regulate the safe utilization of nuclear energy. Through its almost 50 years of existence, the PNRI has assumed different roles and functions. As the premier national nuclear research institution the PNRI initiates R and D work in various applications, establishes nuclear and radiation facilities, and undertakes human resource development not only for its staff but also for the prospective users of nuclear energy. At the same time, the PNRI exercises regulatory control over radioactive materials in the country including the regulatory control over the construction of the first Philippine nuclear power plant in the late 1970's and early 1980's. Presently, the PNRI still exercises the dual mandate of promoting and regulating the peaceful and safe use of radioactive materials. In these evolving roles of the Institute, both management and the staff are committed to excellence in nuclear science and to nuclear safety. Initiatives are underway to create a separate nuclear regulatory body from the developmental agency to enable the country to conform with international safety standards and to prepare for the future re-introduction of nuclear power in the Philippine energy mix. A strong regulatory agency and an equally strong technical and scientific support organization are necessary for a successful and safe nuclear energy program. (author)

  20. Solar System Exploration Research Virtual Institute: Year Three Annual Report 2016

    Science.gov (United States)

    Pendleton, Yvonne; Schmidt, Greg; Kring, David; Horanyi, Mihaly; Heldmann, Jennifer; Glotch, Timothy; Rivkin, Andy; Farrell, William; Pieters, Carle; Bottke, William; hide

    2016-01-01

    NASA's Solar System Exploration Research Virtual Institute (SSERVI) is pleased to present the 2016 Annual Report. Each year brings new scientific discoveries, technological breakthroughs, and collaborations. The integration of basic research and development, industry and academic partnerships, plus the leveraging of existing technologies, has further opened a scientific window into human exploration. SSERVI sponsorship by the NASA Science Mission Directorate (SMD) and Human Exploration and Operations Mission Directorate (HEOMD) continues to enable the exchange of insights between the human exploration and space science communities, paving a clearer path for future space exploration. SSERVI provides a unique environment for scientists and engineers to interact within multidisciplinary research teams. As a virtual institute, the best teaming arrangements can be made irrespective of the geographical location of individuals or laboratory facilities. The interdisciplinary science that ensues from virtual and in-person interactions, both within the teams and across team lines, provides answers to questions that many times cannot be foreseen. Much of this research would not be accomplished except for the catalyzing, collaborative environment enabled by SSERVI. The SSERVI Central Office, located at NASA Ames Research Center in Silicon Valley, California, provides the leadership, guidance and technical support that steers the virtual institute. At the start of 2016, our institute had nine U.S. teams, each mid-way through their five-year funding cycle, plus nine international partnerships. However, by the end of the year we were well into the selection of four new domestic teams, selected through NASA's Cooperative Agreement Notice (CAN) process, and a new international partnership. Understanding that human and robotic exploration is most successful as an international endeavor, international partnerships collaborate with SSERVI domestic teams on a no-exchange of funds basis

  1. The 2004 NASA Faculty Fellowship Program Research Reports

    Science.gov (United States)

    Pruitt, J. R.; Karr, G.; Freeman, L. M.; Hassan, R.; Day, J. B. (Compiler)

    2005-01-01

    This is the administrative report for the 2004 NASA Faculty Fellowship Program (NFFP) held at the George C. Marshall Space Flight Center (MSFC) for the 40th consecutive year. The NFFP offers science and engineering faculty at U.S. colleges and universities hands-on exposure to NASA s research challenges through summer research residencies and extended research opportunities at participating NASA research Centers. During this program, fellows work closely with NASA colleagues on research challenges important to NASA's strategic enterprises that are of mutual interest to the fellow and the Center. The nominal starting and .nishing dates for the 10-week program were June 1 through August 6, 2004. The program was sponsored by NASA Headquarters, Washington, DC, and operated under contract by The University of Alabama, The University of Alabama in Huntsville, and Alabama A&M University. In addition, promotion and applications are managed by the American Society for Engineering Education (ASEE) and assessment is completed by Universities Space Research Association (USRA). The primary objectives of the NFFP are to: Increase the quality and quantity of research collaborations between NASA and the academic community that contribute to the Agency s space aeronautics and space science mission. Engage faculty from colleges, universities, and community colleges in current NASA research and development. Foster a greater public awareness of NASA science and technology, and therefore facilitate academic and workforce literacy in these areas. Strengthen faculty capabilities to enhance the STEM workforce, advance competition, and infuse mission-related research and technology content into classroom teaching. Increase participation of underrepresented and underserved faculty and institutions in NASA science and technology.

  2. Battery Separator Characterization and Evaluation Procedures for NASA's Advanced Lithium-Ion Batteries

    Science.gov (United States)

    Baldwin, Richard S.; Bennet, William R.; Wong, Eunice K.; Lewton, MaryBeth R.; Harris, Megan K.

    2010-01-01

    To address the future performance and safety requirements for the electrical energy storage technologies that will enhance and enable future NASA manned aerospace missions, advanced rechargeable, lithium-ion battery technology development is being pursued within the scope of the NASA Exploration Technology Development Program s (ETDP's) Energy Storage Project. A critical cell-level component of a lithium-ion battery which significantly impacts both overall electrochemical performance and safety is the porous separator that is sandwiched between the two active cell electrodes. To support the selection of the optimal cell separator material(s) for the advanced battery technology and chemistries under development, laboratory characterization and screening procedures were established to assess and compare separator material-level attributes and associated separator performance characteristics.

  3. Medicaid managed care for mental health services: the survival of safety net institutions in rural settings.

    Science.gov (United States)

    Willging, Cathleen E; Waitzkin, Howard; Nicdao, Ethel

    2008-09-01

    Few accounts document the rural context of mental health safety net institutions (SNIs), especially as they respond to changing public policies. Embedded in wider processes of welfare state restructuring, privatization has transformed state Medicaid systems nationwide. We carried out an ethnographic study in two rural, culturally distinct regions of New Mexico to assess the effects of Medicaid managed care (MMC) and the implications for future reform. After 160 interviews and participant observation at SNIs, we analyzed data through iterative coding procedures. SNIs responded to MMC by nonparticipation, partnering, downsizing, and tapping into alternative funding sources. Numerous barriers impaired access under MMC: service fragmentation, transportation, lack of cultural and linguistic competency, Medicaid enrollment, stigma, and immigration status. By privatizing Medicaid and contracting with for-profit managed care organizations, the state placed additional responsibilities on "disciplined" providers and clients. Managed care models might compromise the rural mental health safety net unless the serious gaps and limitations are addressed in existing services and funding.

  4. NASA Bluetooth Wireless Communications

    Science.gov (United States)

    Miller, Robert D.

    2007-01-01

    NASA has been interested in wireless communications for many years, especially when the crew size of the International Space Station (ISS) was reduced to two members. NASA began a study to find ways to improve crew efficiency to make sure the ISS could be maintained with limited crew capacity and still be a valuable research testbed in Low-Earth Orbit (LEO). Currently the ISS audio system requires astronauts to be tethered to the audio system, specifically a device called the Audio Terminal Unit (ATU). Wireless communications would remove the tether and allow astronauts to freely float from experiment to experiment without having to worry about moving and reconnecting the associated cabling or finding the space equivalent of an extension cord. A wireless communication system would also improve safety and reduce system susceptibility to Electromagnetic Interference (EMI). Safety would be improved because a crewmember could quickly escape a fire while maintaining communications with the ground and other crewmembers at any location. In addition, it would allow the crew to overcome the volume limitations of the ISS ATU. This is especially important to the Portable Breathing Apparatus (PBA). The next generation of space vehicles and habitats also demand wireless attention. Orion will carry up to six crewmembers in a relatively small cabin. Yet, wireless could become a driving factor to reduce launch weight and increase habitable volume. Six crewmembers, each tethered to a panel, could result in a wiring mess even in nominal operations. In addition to Orion, research is being conducted to determine if Bluetooth is appropriate for Lunar Habitat applications.

  5. NASA's National Center for Advanced Manufacturing

    Science.gov (United States)

    Vickers, John

    2003-01-01

    NASA has designated the Principal Center Assignment to the Marshall Space Flight Center (MSFC) for implementation of the National Center for Advanced Manufacturing (NCAM). NCAM is NASA s leading resource for the aerospace manufacturing research, development, and innovation needs that are critical to the goals of the Agency. Through this initiative NCAM s people work together with government, industry, and academia to ensure the technology base and national infrastructure are available to develop innovative manufacturing technologies with broad application to NASA Enterprise programs, and U.S. industry. Educational enhancements are ever-present within the NCAM focus to promote research, to inspire participation and to support education and training in manufacturing. Many important accomplishments took place during 2002. Through NCAM, NASA was among five federal agencies involved in manufacturing research and development (R&D) to launch a major effort to exchange information and cooperate directly to enhance the payoffs from federal investments. The Government Agencies Technology Exchange in Manufacturing (GATE-M) is the only active effort to specifically and comprehensively address manufacturing R&D across the federal government. Participating agencies include the departments of Commerce (represented by the National Institute of Standards and Technology), Defense, and Energy, as well as the National Science Foundation and NASA. MSFC s ongoing partnership with the State of Louisiana, the University of New Orleans, and Lockheed Martin Corporation at the Michoud Assembly Facility (MAF) progressed significantly. Major capital investments were initiated for world-class equipment additions including a universal friction stir welding system, composite fiber placement machine, five-axis machining center, and ten-axis laser ultrasonic nondestructive test system. The NCAM consortium of five universities led by University of New Orleans with Mississippi State University

  6. Integrating gender medicine into the workplace health and safety policy in the scientific research institutions: a mandatory task.

    Science.gov (United States)

    Giammarioli, Anna Maria; Siracusano, Alessandra; Sorrentino, Eugenio; Bettoni, Monica; Malorni, Walter

    2012-01-01

    Gender medicine is a multi-faceted field of investigation integrating various aspects of psycho-social and biological sciences but it mainly deals with the impact of the gender on human physiology, pathophysiology, and clinical features of diseases. In Italy, the Decree Law 81/2008 recently introduced the gender issue in the risk assessment at the workplaces. This review briefly describes our current knowledge on gender medicine and on the Italian legislation in risk management. Public or private scientific institutions should be the first to pay attention to the safety of their workers, who are simultaneously subjected to biological, chemical and physical agents. Main tasks of risk management in scientific research institutions are here analyzed and discussed in a gender perspective.

  7. Integrating gender medicine into the workplace health and safety policy in the scientific research institutions: a mandatory task

    Directory of Open Access Journals (Sweden)

    Anna Maria Giammarioli

    2012-01-01

    Full Text Available BACKGROUND: Gender medicine is a multi-faceted field of investigation integrating various aspects of psycho-social and biological sciences but it mainly deals with the impact of the gender on human physiology, pathophysiology, and clinical features of diseases. In Italy, the Decree Law 81/2008 recently introduced the gender issue in the risk assessment at the workplaces. AIMS: This review briefly describes our current knowledge on gender medicine and on the Italian legislation in risk management. CONCLUSIONS: Public or private scientific institutions should be the first to pay attention to the safety of their workers, who are simultaneously subjected to biological, chemical and physical agents. Main tasks of risk management in scientific research institutions are here analyzed and discussed in a gender perspective.

  8. Overview of NASA's Universe of Learning: An Integrated Astrophysics STEM Learning and Literacy Program

    Science.gov (United States)

    Smith, Denise; Lestition, Kathleen; Squires, Gordon; Biferno, Anya A.; Cominsky, Lynn; Manning, Colleen; NASA's Universe of Learning Team

    2018-01-01

    NASA's Universe of Learning creates and delivers science-driven, audience-driven resources and experiences designed to engage and immerse learners of all ages and backgrounds in exploring the universe for themselves. The project is the result of a unique partnership between the Space Telescope Science Institute, Caltech/IPAC, Jet Propulsion Laboratory, Smithsonian Astrophysical Observatory, and Sonoma State University, and is one of 27 competitively-selected cooperative agreements within the NASA Science Mission Directorate STEM Activation program. The NASA's Universe of Learning team draws upon cutting-edge science and works closely with Subject Matter Experts (scientists and engineers) from across the NASA Astrophysics Physics of the Cosmos, Cosmic Origins, and Exoplanet Exploration themes. Together we develop and disseminate data tools and participatory experiences, multimedia and immersive experiences, exhibits and community programs, and professional learning experiences that meet the needs of our audiences, with attention to underserved and underrepresented populations. In doing so, scientists and educators from the partner institutions work together as a collaborative, integrated Astrophysics team to support NASA objectives to enable STEM education, increase scientific literacy, advance national education goals, and leverage efforts through partnerships. Robust program evaluation is central to our efforts, and utilizes portfolio analysis, process studies, and studies of reach and impact. This presentation will provide an overview of NASA's Universe of Learning, our direct connection to NASA Astrophysics, and our collaborative work with the NASA Astrophysics science community.

  9. NASA Workshop on Hybrid (Mixed-Actuator) Spacecraft Attitude Control

    Science.gov (United States)

    Dennehy, Cornelius J.; Kunz, Nans

    2014-01-01

    At the request of the Science Mission Directorate Chief Engineer, the NASA Technical Fellow for Guidance, Navigation & Control assembled and facilitated a workshop on Spacecraft Hybrid Attitude Control. This multi-Center, academic, and industry workshop, sponsored by the NASA Engineering and Safety Center (NESC), was held in April 2013 to unite nationwide experts to present and discuss the various innovative solutions, techniques, and lessons learned regarding the development and implementation of the various hybrid attitude control system solutions investigated or implemented. This report attempts to document these key lessons learned with the 16 findings and 9 NESC recommendations.

  10. 76 FR 23339 - Aerospace Safety Advisory Panel; Meeting

    Science.gov (United States)

    2011-04-26

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (11-043)] Aerospace Safety Advisory Panel; Meeting AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of meeting... Register of April 6, 2011, announcing a meeting of the Aerospace Safety Advisory Panel (ASAP) to take place...

  11. Criteria for the Research Institute for Fragrance Materials, Inc. (RIFM) safety evaluation process for fragrance ingredients.

    Science.gov (United States)

    Api, A M; Belsito, D; Bruze, M; Cadby, P; Calow, P; Dagli, M L; Dekant, W; Ellis, G; Fryer, A D; Fukayama, M; Griem, P; Hickey, C; Kromidas, L; Lalko, J F; Liebler, D C; Miyachi, Y; Politano, V T; Renskers, K; Ritacco, G; Salvito, D; Schultz, T W; Sipes, I G; Smith, B; Vitale, D; Wilcox, D K

    2015-08-01

    The Research Institute for Fragrance Materials, Inc. (RIFM) has been engaged in the generation and evaluation of safety data for fragrance materials since its inception over 45 years ago. Over time, RIFM's approach to gathering data, estimating exposure and assessing safety has evolved as the tools for risk assessment evolved. This publication is designed to update the RIFM safety assessment process, which follows a series of decision trees, reflecting advances in approaches in risk assessment and new and classical toxicological methodologies employed by RIFM over the past ten years. These changes include incorporating 1) new scientific information including a framework for choosing structural analogs, 2) consideration of the Threshold of Toxicological Concern (TTC), 3) the Quantitative Risk Assessment (QRA) for dermal sensitization, 4) the respiratory route of exposure, 5) aggregate exposure assessment methodology, 6) the latest methodology and approaches to risk assessments, 7) the latest alternatives to animal testing methodology and 8) environmental risk assessment. The assessment begins with a thorough analysis of existing data followed by in silico analysis, identification of 'read across' analogs, generation of additional data through in vitro testing as well as consideration of the TTC approach. If necessary, risk management may be considered. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Selecting of key safety parameters in reactor nuclear safety supervision

    International Nuclear Information System (INIS)

    He Fan; Yu Hong

    2014-01-01

    The safety parameters indicate the operational states and safety of research reactor are the basis of nuclear safety supervision institution to carry out effective supervision to nuclear facilities. In this paper, the selecting of key safety parameters presented by the research reactor operating unit to National Nuclear Safety Administration that can express the research reactor operational states and safety when operational occurrence or nuclear accident happens, and the interrelationship between them are discussed. Analysis shows that, the key parameters to nuclear safety supervision of research reactor including design limits, operational limits and conditions, safety system settings, safety limits, acceptable limits and emergency action level etc. (authors)

  13. An analysis of the awareness and performance of radiation workers' radiation/radioactivity protection in medical institutions : Focused on Busan regional medical institutions

    International Nuclear Information System (INIS)

    Park, Cheol Koo; Hwang, Chul Hwan; Kim, Dong Hyun

    2017-01-01

    The purpose of this study was to investigate safety management awareness and behavioral investigation of radiation/radioactivity performance defenses of radiation workers' in medical institutions. Data collection consisted of 267 radiation workers working in medical institutions using structured questionnaires. As a result, it was analyzed that radiation safety management awareness and performance were high in 40s, 50s group and higher education group. The analysis according to the radiation safety management knowledge was analyzed that the 'Know very well' group had higher scores on awareness and performance scores. The analysis according to the degree of safety management effort showed the high awareness scale and the performance scale in the group 'Receiving various education or studying the safety management contents through book'. The correlations between the sub-factors showed the highest positive correlation between perceived practician and personal perspective and perceived by patient and patient's caretaker perspective. Therefore, radiation safety management for workers, patients, and patient's caretaker should be conducted through continuous education of radiation safety management through various routes of radiation workers working at medical institutions

  14. Nuclear safety project

    International Nuclear Information System (INIS)

    1984-11-01

    The semiannual progress report 1984/1 is a description of work within the Nuclear Safety Project performed in the first six month of 1984 in the nuclear safety field by KfK institutes and departements and by external institutions on behalf of KfK. The chosen kind of this report is that of short summaries, containing the topics work performed, results obtained and plans for future work. This report was compiled by the project management. (orig./RW) [de

  15. Project Nuclear Safety

    International Nuclear Information System (INIS)

    1981-11-01

    The semiannual progress report 1981/1 is a description of work within the Nuclear Safety Project performed in the first six month of 1981 in the nuclear safety field by KfK institutes and departments and by external institutions on behalf of KfK. The chosen kind of this report is that of short summaries, containing the topics, work performed, results obtained, plans for future work. This report was compiled by the project management. (orig.) [de

  16. NASA Langley's Formal Methods Research in Support of the Next Generation Air Transportation System

    Science.gov (United States)

    Butler, Ricky W.; Munoz, Cesar A.

    2008-01-01

    This talk will provide a brief introduction to the formal methods developed at NASA Langley and the National Institute for Aerospace (NIA) for air traffic management applications. NASA Langley's formal methods research supports the Interagency Joint Planning and Development Office (JPDO) effort to define and develop the 2025 Next Generation Air Transportation System (NGATS). The JPDO was created by the passage of the Vision 100 Century of Aviation Reauthorization Act in Dec 2003. The NGATS vision calls for a major transformation of the nation s air transportation system that will enable growth to 3 times the traffic of the current system. The transformation will require an unprecedented level of safety-critical automation used in complex procedural operations based on 4-dimensional (4D) trajectories that enable dynamic reconfiguration of airspace scalable to geographic and temporal demand. The goal of our formal methods research is to provide verification methods that can be used to insure the safety of the NGATS system. Our work has focused on the safety assessment of concepts of operation and fundamental algorithms for conflict detection and resolution (CD&R) and self- spacing in the terminal area. Formal analysis of a concept of operations is a novel area of application of formal methods. Here one must establish that a system concept involving aircraft, pilots, and ground resources is safe. The formal analysis of algorithms is a more traditional endeavor. However, the formal analysis of ATM algorithms involves reasoning about the interaction of algorithmic logic and aircraft trajectories defined over an airspace. These trajectories are described using 2D and 3D vectors and are often constrained by trigonometric relations. Thus, in many cases it has been necessary to unload the full power of an advanced theorem prover. The verification challenge is to establish that the safety-critical algorithms produce valid solutions that are guaranteed to maintain separation

  17. Human resource development program for nuclear safety and security in Tokyo Institute of Technology

    International Nuclear Information System (INIS)

    Han, Chi Young; Sagara, Hiroshi; Nagasaka, Hideo

    2014-01-01

    The Academy for Global Nuclear Safety and Security Agent was established at Tokyo Institute of Technology in 2011, to develop global nuclear human resources in the field of 3S (Safety, Security, and Safeguards) as a Program for Leading Graduate Schools supported by MEXT (Ministry of Education, Culture, Sports, Science and Technology). New courses of nuclear safety and security were developed in addition to the existing nuclear engineering program; 1) Environmental Dynamics of Radioactive Nuclides; Numerical simulation of the environmental dispersion of radioactive materials released from hypothetical nuclear accidents and evaluation of the public exposure are performed, by using a computer-based emergency response system, to have students predict the environmental dispersion of radionuclides and radiological consequence by nuclear accidents. 2) Measurement of Environmental Radiation; Students acquire hands-on experiences measuring environmental radiation contamination caused by the nuclear accident in Fukushima with multiple types of radiation detectors. Environmental samples are collected and analyzed for isotope identification and its spatial distribution. 3) Simulation of Severe Nuclear Accidents; The evaluation results of Fukushima accident progression are discussed as well as typical sever accidents that threaten the integrity of reactor vessel. Students simulate BWR (Boiling Water Cooled Reactor) transients, design basis accidents, and severe accidents by using simulators. 4) Nuclear Security Training; Design of physical protection systems, its fundamental physics, and regulatory frameworks are covered and students gain the practical experiences by use of intrusion detection systems at JAEA (Japan Atomic Energy Agency), and by numerical simulation of hydro-dynamics of structure material and nuclear material criticality at the university. (author)

  18. NASA-FAA-NOAA Partnering Strategy

    Science.gov (United States)

    Colantonio, Ron

    2003-01-01

    This viewgraph presentation provides an overview of NASA-FAA (Federal Aviation Administration) and NOAA (National Oceanic and Atmospheric Administration) collaboration efforts particularly in the area of aviation and aircraft safety. Five technology areas are being jointly by these agencies: (1) aviation weather information; (2) weather products; (3) automet technologies; (4) forward looking weather sensors and (5) turbulence controls and mitigation systems. Memorandum of Agreements (MOU) between these agencies are reviewed. A general review of the pros and pitfalls of inter-agency collaborations is also presented.

  19. NASA Satellite Observations: A Unique Asset for the Study of the Environment and Implications for Public Health

    Science.gov (United States)

    Estes Sue M.

    2010-01-01

    This slide presentation highlights how satellite observation systems are assets for studying the environment in relation to public health. It includes information on current and future satellite observation systems, NASA's public health and safety research, surveillance projects, and NASA's public health partners.

  20. NASA/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1991

    International Nuclear Information System (INIS)

    Tiwari, S.N.

    1991-09-01

    In a series of collaborations between NASA research and development centers and nearby universities, engineering faculty members spent 10 weeks working with professional peers on research. The Summer Faculty Program Committee of the American Society of Engineering Education supervises the programs. The objects were the following: (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate and exchange ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of the participants' institutions; and (4) to contribute to the research objectives of the NASA center

  1. Annual report 90. Institute for advanced materials

    International Nuclear Information System (INIS)

    1991-01-01

    The Annual Report 1990 of the Institute for Advanced Materials of the JRC highlights the Scientific Technical Achievements and presents in the Annex the Institute's Competence and Facilities available to industry for services and research under contract. The Institute executed in 1990 the R and D programme on advanced materials of the JRC and contributed to the programmes: reactor safety, radio-active waste management, fusion technology and safety, nuclear fuel and actinide research. The supplementary programme: Operation of the High Flux Reactor is presented in condensed form. A full report is published separately

  2. 78 FR 40146 - Patient Safety Organizations: Voluntary Relinquishment From Northern Metropolitan Patient Safety...

    Science.gov (United States)

    2013-07-03

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Agency for Healthcare Research and Quality Patient Safety Organizations: Voluntary Relinquishment From Northern Metropolitan Patient Safety Institute AGENCY: Agency for Healthcare Research and Quality (AHRQ), HHS. ACTION: Notice of Delisting. SUMMARY: The Patient Safety and...

  3. Safety First

    Science.gov (United States)

    Taft, Darryl

    2011-01-01

    Ned Miller does not take security lightly. As director of campus safety and emergency management at the Des Moines Area Community College (DMACC), any threat requires serious consideration. As community college administrators adopt a more proactive approach to campus safety, many institutions are experimenting with emerging technologies, including…

  4. COOPERATION BETWEEN INSTITUTIONS OF PUBLIC ORDER AND SAFETY FROM BIHOR (ROMANIA AND HAJDU-BIHAR (HUNGARY: A CASE STUDY

    Directory of Open Access Journals (Sweden)

    Bucur Catalin-Adrian

    2012-07-01

    Full Text Available The forms and degree of cooperation between public order and safety on both sides of the border took on different forms from country to country, from one region to another. Some countries have a very extensive inter-institutional cooperation and substantial, while in other countries relations are characterized by a deep division, competition and lack of communication. To understand existing forms of cooperation, and how best practices can be transferred to some Member States it is necessary to understand the existing diversity across the European Union. This paper focuses on presenting several cooperation projects with direct reference to public order and safety activities implemented in Bihor - Hajdu-Bihar euroregion, within the CBC Programme Hungary-Romania 2004 and especially the project "Mirror network for operative and operational data trasfer", a joint project of cooperation in the public order and safety in Bihor - Hajdu-Bihar Euroregion. This paper is part of the doctoral thesis on Integrate perspective on companies sector, coordinated by professor Ph.D. Alina Bn#259;dulescu from University of Oradea, Faculty of Economics.

  5. SAFETY

    CERN Multimedia

    Niels Dupont

    2013-01-01

    CERN Safety rules and Radiation Protection at CMS The CERN Safety rules are defined by the Occupational Health & Safety and Environmental Protection Unit (HSE Unit), CERN’s institutional authority and central Safety organ attached to the Director General. In particular the Radiation Protection group (DGS-RP1) ensures that personnel on the CERN sites and the public are protected from potentially harmful effects of ionising radiation linked to CERN activities. The RP Group fulfils its mandate in collaboration with the CERN departments owning or operating sources of ionising radiation and having the responsibility for Radiation Safety of these sources. The specific responsibilities concerning "Radiation Safety" and "Radiation Protection" are delegated as follows: Radiation Safety is the responsibility of every CERN Department owning radiation sources or using radiation sources put at its disposition. These Departments are in charge of implementing the requi...

  6. Latest Changes to NASA's Laser Communication Relay Demonstration Project

    Science.gov (United States)

    Edwards, Bernard L.; Israel, David J.; Vithlani, Seema K.

    2018-01-01

    Over the last couple of years, NASA has been making changes to the Laser Communications Relay Demonstration Project (LCRD), a joint project between NASA's Goddard Space Flight Center (GSFC), the Jet Propulsion Laboratory, California Institute of Technology (JPL), and the Massachusetts Institute of Technology Lincoln Laboratory (MIT/LL). The changes made makes LCRD more like a future Earth relay system that has both high speed optical and radio frequency links. This will allow LCRD to demonstrate a more detailed concept of operations for a future operational mission critical Earth relay. LCRD is expected to launch in June 2019 and is expected to be followed a couple of years later with a prototype user terminal on the International Space Station. LCRD's architecture will allow it to serve as a testbed in space and this paper will provide an update of its planned capabilities and experiments.

  7. Implementing the 2009 Institute of Medicine recommendations on resident physician work hours, supervision, and safety.

    Science.gov (United States)

    Blum, Alexander B; Shea, Sandra; Czeisler, Charles A; Landrigan, Christopher P; Leape, Lucian

    2011-01-01

    Long working hours and sleep deprivation have been a facet of physician training in the US since the advent of the modern residency system. However, the scientific evidence linking fatigue with deficits in human performance, accidents and errors in industries from aeronautics to medicine, nuclear power, and transportation has mounted over the last 40 years. This evidence has also spawned regulations to help ensure public safety across safety-sensitive industries, with the notable exception of medicine. In late 2007, at the behest of the US Congress, the Institute of Medicine embarked on a year-long examination of the scientific evidence linking resident physician sleep deprivation with clinical performance deficits and medical errors. The Institute of Medicine's report, entitled "Resident duty hours: Enhancing sleep, supervision and safety", published in January 2009, recommended new limits on resident physician work hours and workload, increased supervision, a heightened focus on resident physician safety, training in structured handovers and quality improvement, more rigorous external oversight of work hours and other aspects of residency training, and the identification of expanded funding sources necessary to implement the recommended reforms successfully and protect the public and resident physicians themselves from preventable harm. Given that resident physicians comprise almost a quarter of all physicians who work in hospitals, and that taxpayers, through Medicare and Medicaid, fund graduate medical education, the public has a deep investment in physician training. Patients expect to receive safe, high-quality care in the nation's teaching hospitals. Because it is their safety that is at issue, their voices should be central in policy decisions affecting patient safety. It is likewise important to integrate the perspectives of resident physicians, policy makers, and other constituencies in designing new policies. However, since its release, discussion of the

  8. Assessing the perceived level of institutional support for the second victim after a patient safety event.

    Science.gov (United States)

    Joesten, Leroy; Cipparrone, Nancy; Okuno-Jones, Susan; DuBose, Edwin R

    2015-06-01

    The objective of this study was to establish a baseline of perceived availability of institutional support services or interventions and experiences following an adverse patient safety event (PSE) in a 650-bed children and adult community teaching hospital. Investigators queried associates about their experiences after a PSE, what institutional support services or interventions they perceived to be available, and how helpful used services were. The investigators used an online modified version of a PSE survey developed by several health related organizations in Boston. One hundred twenty evaluable surveys were analyzed. Sixty-eight percent of respondents were nurses, 99% of whom were female. Only 10% to 30% of respondents reported that various support services or interventions were actively offered, and 30% to 60% indicated that they were not available. Respondents reported having experienced several distressing symptoms after a PSE, most notably, troubling memories (56%) and worry about lawsuits (37%). Less than 32% "agreed" or "strongly agreed" that they could report concerns without fear of retribution or punitive action. More respondents experienced support from clinical colleagues (64%) than from their manager or department chair (38%). These results validate a need by associates for emotional support after a PSE and that associates' perception of available formal institutional support services or interventions is low.

  9. NASA Earth Science Education Collaborative

    Science.gov (United States)

    Schwerin, T. G.; Callery, S.; Chambers, L. H.; Riebeek Kohl, H.; Taylor, J.; Martin, A. M.; Ferrell, T.

    2016-12-01

    The NASA Earth Science Education Collaborative (NESEC) is led by the Institute for Global Environmental Strategies with partners at three NASA Earth science Centers: Goddard Space Flight Center, Jet Propulsion Laboratory, and Langley Research Center. This cross-organization team enables the project to draw from the diverse skills, strengths, and expertise of each partner to develop fresh and innovative approaches for building pathways between NASA's Earth-related STEM assets to large, diverse audiences in order to enhance STEM teaching, learning and opportunities for learners throughout their lifetimes. These STEM assets include subject matter experts (scientists, engineers, and education specialists), science and engineering content, and authentic participatory and experiential opportunities. Specific project activities include authentic STEM experiences through NASA Earth science themed field campaigns and citizen science as part of international GLOBE program (for elementary and secondary school audiences) and GLOBE Observer (non-school audiences of all ages); direct connections to learners through innovative collaborations with partners like Odyssey of the Mind, an international creative problem-solving and design competition; and organizing thematic core content and strategically working with external partners and collaborators to adapt and disseminate core content to support the needs of education audiences (e.g., libraries and maker spaces, student research projects, etc.). A scaffolded evaluation is being conducted that 1) assesses processes and implementation, 2) answers formative evaluation questions in order to continuously improve the project; 3) monitors progress and 4) measures outcomes.

  10. X-38 vehicle #131R arrives at NASA Dryden via NASA'S Super Guppy transport aircraft

    Science.gov (United States)

    2000-01-01

    NASA's Super Guppy transport aircraft landed at Edwards Air Force Base, Calif. on July 11, 2000, to deliver the latest version of the X-38 drop vehicle to Dryden. The X-38s are intended as prototypes for a possible 'crew lifeboat' for the International Space Station. The X-38 vehicle 131R will demonstrate a huge 7,500 square-foot parafoil that will that will enable the potential crew return vehicle to land on the length of a football field after returning from space. The crew return vehicle is intended to serve as a possible emergency transport to carry a crew to safety in the event of problems with the International Space Station. The Super Guppy evolved from the 1960s-vintage Pregnant Guppy, used for transporting outsized sections of the Apollo moon rocket. The Super Guppy was modified from 1950s-vintage Boeing C-97. NASA acquired its Super Guppy from the European Space Agency in 1997.

  11. Investments by NASA to build planetary protection capability

    Science.gov (United States)

    Buxbaum, Karen; Conley, Catharine; Lin, Ying; Hayati, Samad

    NASA continues to invest in capabilities that will enable or enhance planetary protection planning and implementation for future missions. These investments are critical to the Mars Exploration Program and will be increasingly important as missions are planned for exploration of the outer planets and their icy moons. Since the last COSPAR Congress, there has been an opportunity to respond to the advice of NRC-PREVCOM and the analysis of the MEPAG Special Regions Science Analysis Group. This stimulated research into such things as expanded bioburden reduction options, modern molecular assays and genetic inventory capability, and approaches to understand or avoid recontamination of spacecraft parts and samples. Within NASA, a portfolio of PP research efforts has been supported through the NASA Office of Planetary Protection, the Mars Technology Program, and the Mars Program Office. The investment strategy focuses on technology investments designed to enable future missions and reduce their costs. In this presentation we will provide an update on research and development supported by NASA to enhance planetary protection capability. Copyright 2008 California Institute of Technology. Government sponsorship acknowledged.

  12. 78 FR 20359 - NASA Advisory Council; Technology and Innovation Committee; Meeting

    Science.gov (United States)

    2013-04-04

    ... ethics briefing. DATES: Thursday, April 18, 2013, 8:00 a.m. to 3:15 p.m., Local Time. ADDRESSES: NASA... information (number, country, expiration date); employer/affiliation information (name of institution, address...

  13. Research reports: The 1980 NASA/ASEE Summer Faculty Fellowship Program. [aeronautical research and development

    Science.gov (United States)

    Barfield, B. F. (Editor); Kent, M. I. (Editor); Dozier, J. (Editor); Karr, G. (Editor)

    1980-01-01

    The Summer Faculty Fellowship Research Program objectives are: to further the professional knowledge of qualified engineering and science faculty members; to stimulate an exchange of ideas between participants and NASA; to enrich and refresh the research and teaching activities of participants and institutions; and to contribute to the research objectives at the NASA centers. The Faculty Fellows engaged in research projects commensurate with their interests and background and worked in collaboration with a NASA/MSFC colleague.

  14. The NASA computer science research program plan

    Science.gov (United States)

    1983-01-01

    A taxonomy of computer science is included, one state of the art of each of the major computer science categories is summarized. A functional breakdown of NASA programs under Aeronautics R and D, space R and T, and institutional support is also included. These areas were assessed against the computer science categories. Concurrent processing, highly reliable computing, and information management are identified.

  15. Aerospace Safety Advisory Panel Annual Report for 1999

    Science.gov (United States)

    Blomberg, Richard D.

    2000-01-01

    This report covers the activities of the Aerospace Safety Advisory Panel (ASAP) for the calendar year 1999.This was a year of notable achievements and significant frustrations. Both the Space Shuttle and International Space Station (ISS) programs were delayed.The Space Shuttle prudently postponed launches after the occurrence of a wiring short during ascent of the STS-93 mission. The ISS construction schedule slipped as a result of the Space Shuttle delays and problems the Russians experienced in readying the Service Module and its launch vehicle. Each of these setbacks was dealt with in a constructive way. The STS-93 short circuit led to detailed wiring inspections and repairs on all four orbiters as well as analysis of other key subsystems for similar types of hidden damage. The ISS launch delays afforded time for further testing, training, development, and contingency planning. The safety consciousness of the NASA and contractor workforces, from hands-on labor to top management, continues high. Nevertheless, workforce issues remain among the most serious safety concerns of the Panel. Cutbacks and reorganizations over the past several years have resulted in problems related to workforce size, critical skills, and the extent of on-the-job experience. These problems have the potential to impact safety as the Space Shuttle launch rate increases to meet the demands of the ISS and its other customers. As with last year's report, these work- force-related issues were considered of sufficient import to place them first in the material that follows. Some of the same issues of concern for the Space Shuttle and ISS arose in a review of the launch vehicle for the Terra mission that the Panel was asked by NASA to undertake. Other areas the Panel was requested to assess included the readiness of the Inertial Upper Stage for the deployment of the Chandra X-ray Observatory and the possible safety impact of electromagnetic effects on the Space Shuttle. The findings and

  16. Social Trust, Safety and the Choice of Tourist Destination

    DEFF Research Database (Denmark)

    Jensen, Susanne; Svendsen, Gert Tinggaard

    2016-01-01

    Does social trust influence safety and tourists’ destination choice? Our claim is that the roots of safety may take two forms: either formal institutions or informal institutions. Formal institutions concern how society can build up control mechanisms through the legal system, police authority...... and military. The problem is that high visibility of police and military in public spaces may give the tourist the impression of an unsafe and insecure destination. Instead, social trust through self-enforcements of social norms for behaviour may be important because the informal institutions guarantee...... the safety of tourists (and locals) without signalling a problem with safety. Building social trust may further enhance the feeling of safety and thereby attract even more tourists. Thus, our trust-safety theory may guide the active use of social trust by tourist officials and policy makers....

  17. Safety evaluation methods applied at the Technical department of the Institute for radiation protection and nuclear safety

    International Nuclear Information System (INIS)

    Crabol, B.

    1990-12-01

    Institute of radiation protection and nuclear safety (IPSN) has established a Technical emergency center (CTC) for nuclear facilities with the aim to supply the public with technical data analysis of incidents, mainly, all the predicted consequences of radioactive release into the environment. From technical point of view, the functioning of CTC relies on the work of two units, one in charge of the state of accident installation, and the second responsible for evaluation of radiological environmental effects. The latter is concerned with the meteorological situation, it relies sometimes on local, and sometimes on national weather forecast in order to compile data needed for calculating atmospheric transport at the and in the vicinity of the affected site, and further in the region and across the borders. For this analysis the Unit possesses operational computer codes. The code (SIROCCO) can take into account the kinetics of particulates and all the time dependent meteorological conditions. This calculation model can either treat the dispersed isotopes or isotope chains (rare gases, cesium isotopes, iodine isotopes...). One version of this code enables calculation of the consequences at medium and long distances using the methods of Meteorologie Nationale [fr

  18. Institute for Computational Mechanics in Propulsion (ICOMP). 10

    Science.gov (United States)

    Keith, Theo G., Jr. (Editor); Balog, Karen (Editor); Povinelli, Louis A. (Editor)

    1996-01-01

    The Institute for Computational Mechanics in Propulsion (ICOMP) is operated by the Ohio Aerospace Institute (OAI) and funded under a cooperative agreement by the NASA Lewis Research Center in Cleveland, Ohio. The purpose of ICOMP is to develop techniques to improve problem-solving capabilities in all aspects of computational mechanics related to propulsion. This report describes the activities at ICOUP during 1995.

  19. Design for safety: theoretical framework of the safety aspect of BIM system to determine the safety index

    Directory of Open Access Journals (Sweden)

    Ai Lin Evelyn Teo

    2016-12-01

    Full Text Available Despite the safety improvement drive that has been implemented in the construction industry in Singapore for many years, the industry continues to report the highest number of workplace fatalities, compared to other industries. The purpose of this paper is to discuss the theoretical framework of the safety aspect of a proposed BIM System to determine a Safety Index. An online questionnaire survey was conducted to ascertain the current workplace safety and health situation in the construction industry and explore how BIM can be used to improve safety performance in the industry. A safety hazard library was developed based on the main contributors to fatal accidents in the construction industry, determined from the formal records and existing literature, and a series of discussions with representatives from the Workplace Safety and Health Institute (WSH Institute in Singapore. The results from the survey suggested that the majority of the firms have implemented the necessary policies, programmes and procedures on Workplace Safety and Health (WSH practices. However, BIM is still not widely applied or explored beyond the mandatory requirement that building plans should be submitted to the authorities for approval in BIM format. This paper presents a discussion of the safety aspect of the Intelligent Productivity and Safety System (IPASS developed in the study. IPASS is an intelligent system incorporating the buildable design concept, theory on the detection, prevention and control of hazards, and the Construction Safety Audit Scoring System (ConSASS. The system is based on the premise that safety should be considered at the design stage, and BIM can be an effective tool to facilitate the efforts to enhance safety performance. IPASS allows users to analyse and monitor key aspects of the safety performance of the project before the project starts and as the project progresses.

  20. Science Outreach at NASA's Marshall Space Flight Center

    Science.gov (United States)

    Lebo, George

    2002-07-01

    At the end of World War II Duane Deming, an internationally known economist enunciated what later came to be called "Total Quality Management" (TQM). The basic thrust of this economic theory called for companies and governments to identify their customers and to do whatever was necessary to meet their demands and to keep them satisfied. It also called for companies to compete internally. That is, they were to build products that competed with their own so that they were always improving. Unfortunately most U.S. corporations failed to heed this advice. Consequently, the Japanese who actively sought Deming's advice and instituted it in their corporate planning, built an economy that outstripped that of the U.S. for the next three to four decades. Only after U.S. corporations reorganized and fashioned joint ventures which incorporated the tenets of TQM with their Japanese competitors did they start to catch up. Other institutions such as the U.S. government and its agencies and schools face the same problem. While the power of the U.S. government is in no danger of being usurped, its agencies and schools face real problems which can be traced back to not heeding Deming's advice. For example, the public schools are facing real pressure from private schools and home school families because they are not meeting the needs of the general public, Likewise, NASA and other government agencies find themselves shortchanged in funding because they have failed to convince the general public that their missions are important. In an attempt to convince the general public that its science mission is both interesting and important, in 1998 the Science Directorate at NASA's Marshall Space Flight Center (MSFC) instituted a new outreach effort using the interact to reach the general public as well as the students. They have called it 'Science@NASA'.

  1. Forschungszentrum Rossendorf, Institute for Safety Research. Annual report 1994

    International Nuclear Information System (INIS)

    Weiss, F.P.; Rindelhardt, U.

    1995-06-01

    Striving for the assessment and enhancement of design based safety, for improving operational safety, and for risk management IFS is engaged in the following methodical fields: - Experimental and theoretical thermo-fluiddynamics, - 3-dimensional neutron kinetics, - characterization of the mechanical behaviour of aged materials and microstructural analysis, -transport calculations of particle and radiation fields, - early failure diagnostics of processes and plants, - hazard ranking of non-nuclear waste deposits and support of the selection of appropriate remediation procedures by means of decision analysis. In 1994, special efforts were directed to the extension of experimental facilities needed for radioactive materials testing and for two phase flow investigations. Moreover, first research projects on the safety of VVER reactors could successfully be finished. (orig./HP)

  2. National Nuclear Research Institute (NNRI) - Annual Report 2015

    International Nuclear Information System (INIS)

    2015-01-01

    The 2015 report of the National Nuclear Research Institute (NNRI) of the Ghana Atomic Energy Commission (GAEC) lists various programmes undertaken by the Institute under the following headings: Water resources programme, Energy Research programme, Environmental and Health Safety Programme, Digital Instrumentation programme, Nuclear Applications and Materals programme and Radiation Occupational safety programme. Also, included are abstracts of publications and technical reports.

  3. NASA Applications and Lessons Learned in Reliability Engineering

    Science.gov (United States)

    Safie, Fayssal M.; Fuller, Raymond P.

    2011-01-01

    Since the Shuttle Challenger accident in 1986, communities across NASA have been developing and extensively using quantitative reliability and risk assessment methods in their decision making process. This paper discusses several reliability engineering applications that NASA has used over the year to support the design, development, and operation of critical space flight hardware. Specifically, the paper discusses several reliability engineering applications used by NASA in areas such as risk management, inspection policies, components upgrades, reliability growth, integrated failure analysis, and physics based probabilistic engineering analysis. In each of these areas, the paper provides a brief discussion of a case study to demonstrate the value added and the criticality of reliability engineering in supporting NASA project and program decisions to fly safely. Examples of these case studies discussed are reliability based life limit extension of Shuttle Space Main Engine (SSME) hardware, Reliability based inspection policies for Auxiliary Power Unit (APU) turbine disc, probabilistic structural engineering analysis for reliability prediction of the SSME alternate turbo-pump development, impact of ET foam reliability on the Space Shuttle System risk, and reliability based Space Shuttle upgrade for safety. Special attention is given in this paper to the physics based probabilistic engineering analysis applications and their critical role in evaluating the reliability of NASA development hardware including their potential use in a research and technology development environment.

  4. How safe is the safety paradigm?

    NARCIS (Netherlands)

    O.A. Arah (Onyebuchi); N.S. Klazinga (Niek)

    2004-01-01

    textabstractThis paper reviews safety initiatives in the health systems of the UK, Canada, Australia, and the US. Initiatives to tackle safety shortcomings involve public-private collaborations. Patient safety agencies (to institute learning, action and safety culture), adverse

  5. Periodic safety review of the HTR-10 safety analysis

    International Nuclear Information System (INIS)

    Chen Fubing; Zheng Yanhua; Shi Lei; Li Fu

    2015-01-01

    Designed by the Institute of Nuclear and New Energy Technology (INET) of Tsinghua University, the 10 MW High Temperature Gas-cooled Reactor-Test Module (HTR-10) is the first modular High Temperature Gas-cooled Reactor (HTGR) in China. According to the nuclear safety regulations of China, the periodic safety review (PSR) of the HTR-10 was initiated by INET after approved by the National Nuclear Safety Administration (NNSA) of China. Safety analysis of the HTR-10 is one of the key safety factors of the PSR. In this paper, the main contents in the review of safety analysis are summarized; meanwhile, the internal evaluation on the review results is presented by INET. (authors)

  6. An historical summary of advisory boards for aerospace medicine at NASA.

    Science.gov (United States)

    Doarn, Charles R

    2013-03-01

    Over the past 50 years, the National Aeronautics and Space Administration (NASA) has interacted with numerous advisory committees. These committees include those established by NASA, the National Academy of Sciences, the Institute of Medicine, or through Congressional oversight. Such groups have had a relatively passive role while providing sage advice on a variety of important issues. While these groups cover a wide range of disciplines, the focus of this paper is on those that impacted aerospace medicine and human spaceflight from NASA's beginning to the present time. The intent is to provide an historical narrative of the committees, their purpose, their outcome, and how they influenced the development of aerospace medicine within NASA. Aerospace medicine and life sciences have been closely aligned and intertwined from NASA's beginning. While several committees overlap life sciences within NASA, life sciences will not be presented unless it is in direct reference to aerospace medicine. This paper provides an historical summary chronicling those individuals and the groups they led when aerospace medicine was emerging as a discipline for human spaceflight beginning in 1957.

  7. NASA's EOSDIS, Trust and Certification

    Science.gov (United States)

    Ramapriyan, H. K.

    2017-01-01

    NASA's Earth Observing System Data and Information System (EOSDIS) has been in operation since August 1994, managing most of NASA's Earth science data from satellites, airborne sensors, filed campaigns and other activities. Having been designated by the Federal Government as a project responsible for production, archiving and distribution of these data through its Distributed Active Archive Centers (DAACs), the Earth Science Data and Information System Project (ESDIS) is responsible for EOSDIS, and is legally bound by the Office of Management and Budgets circular A-130, the Federal Records Act. It must follow the regulations of the National Institute of Standards and Technologies (NIST) and National Archive and Records Administration (NARA). It must also follow the NASA Procedural Requirement 7120.5 (NASA Space Flight Program and Project Management). All these ensure that the data centers managed by ESDIS are trustworthy from the point of view of efficient and effective operations as well as preservation of valuable data from NASA's missions. Additional factors contributing to this trust are an extensive set of internal and external reviews throughout the history of EOSDIS starting in the early 1990s. Many of these reviews have involved external groups of scientific and technological experts. Also, independent annual surveys of user satisfaction that measure and publish the American Customer Satisfaction Index (ACSI), where EOSDIS has scored consistently high marks since 2004, provide an additional measure of trustworthiness. In addition, through an effort initiated in 2012 at the request of NASA HQ, the ESDIS Project and 10 of 12 DAACs have been certified by the International Council for Science (ICSU) World Data System (WDS) and are members of the ICSUWDS. This presentation addresses questions such as pros and cons of the certification process, key outcomes and next steps regarding certification. Recently, the ICSUWDS and Data Seal of Approval (DSA) organizations

  8. Flightdeck Automation Problems (FLAP) Model for Safety Technology Portfolio Assessment

    Science.gov (United States)

    Ancel, Ersin; Shih, Ann T.

    2014-01-01

    NASA's Aviation Safety Program (AvSP) develops and advances methodologies and technologies to improve air transportation safety. The Safety Analysis and Integration Team (SAIT) conducts a safety technology portfolio assessment (PA) to analyze the program content, to examine the benefits and risks of products with respect to program goals, and to support programmatic decision making. The PA process includes systematic identification of current and future safety risks as well as tracking several quantitative and qualitative metrics to ensure the program goals are addressing prominent safety risks accurately and effectively. One of the metrics within the PA process involves using quantitative aviation safety models to gauge the impact of the safety products. This paper demonstrates the role of aviation safety modeling by providing model outputs and evaluating a sample of portfolio elements using the Flightdeck Automation Problems (FLAP) model. The model enables not only ranking of the quantitative relative risk reduction impact of all portfolio elements, but also highlighting the areas with high potential impact via sensitivity and gap analyses in support of the program office. Although the model outputs are preliminary and products are notional, the process shown in this paper is essential to a comprehensive PA of NASA's safety products in the current program and future programs/projects.

  9. NASA Education: Yesterday's Dream...Today's Vision...Tomorrow's Hope

    Science.gov (United States)

    Winterton, Joyce L.

    2010-01-01

    For 50 years, NASA's journeys into air and space have developed humankind's understanding of the universe, advanced technology breakthroughs, enhanced air travel safety and security, and expanded the frontiers of scientific research. These accomplishments share a common genesis: education. Education is a fundamental element of NASA's activities, reflecting a balanced and diverse portfolio of: Elementary and Secondary Education, Higher Education, e-Education, Informal Education, and Minority University Research and Education Programs (MUREP). Previous experience has shown that implementing exciting and compelling NASA missions are critical to inspiring the next generation of explorers, innovators, and leaders. Through partnerships with the Agency's Mission Directorates, other federal agencies, private industries, scientific research, and education/academic organizations, NASA's unique mission and education initiatives (content, people, and facilities) are helping to spark student interest and to guide them toward careers in science, technology, engineering, and mathematics (STEM). NASA continues to inspire the next generation of explorers, innovators, and future leaders through its educational investments, which are designed to: (1) Strengthen NASA and the Nation's future workforce -- NASA will identify and develop the critical skills and capabilities needed to ensure achievement of exploration, science, and aeronautics. (2) Attract and retain students in STEM disciplines through a progression of educational opportunities for students, teachers, and faculty -- To compete effectively for the minds, imaginations, and career ambitions of America's young people, NASA will focus on engaging and retaining students in STEM education programs to encourage their pursuit of educational disciplines critical to NASA's future engineering, scientific, and technical missions. 3. Engage Americans in NASA's mission -- NASA will build strategic partnerships and links between formal

  10. A Review of NASA Human Research Program's Scientific Merit Processes: Letter Report

    Science.gov (United States)

    Pawelczyk, James A. (Editor); Strawbridge, Larisa M. (Editor); Schultz, Andrea M. (Editor); Liverman, Catharyn T. (Editor)

    2012-01-01

    At the request of the National Aeronautics and Space Administration (NASA), the Institute of Medicine (IOM) convened the Committee on the Review of NASA Human Research Program's (HRP's) Scientific Merit Assessment Processes in December 2011. The committee was asked to evaluate the scientific merit assessment processes that are applied to directed research tasks2 funded through the HRP and to determine best practices from similar assessment processes that are used in other federal agencies. This letter report and its recommendations are the product of a 10-member ad hoc committee, which included individuals who had previously conducted research under the HRP, were familiar with the HRP s research portfolio and operations, had specific knowledge of peer review processes, or were familiar with scientific merit assessment processes used in other organizations and federal agencies, such as the Canadian Institutes of Health Research (CIHR); National Institutes of Health (NIH); National Science Foundation (NSF); and U.S. Departments of Agriculture (USDA), Defense (DOD), and Transportation.

  11. Changing the Safety and Mission Assurance (S and MA) Paradigm

    Science.gov (United States)

    Malone, Roy W.; Safie, Fayssal M.

    2010-01-01

    This slide presentation reviews the change in the work and impact of the Safety and Mission Assurance directorate at Marshall Space Flight Center. It reviews the background and the reasons given for a strong Safety & Mission Assurance presence in all planning for space flight. This was pointed out by the Rogers Commission Report after the Space Challenger accident, by the Columbia Accident Investigation Board (CAIB) and by a 2006 NASA Exploration Safety Study (NESS) Team. The overall objective of the work in this area was to improve and maintain S&MA expertise and skills. Training for this work was improved and the S&MA organization was reorganized. This has resulted in a paradigm shift for NASA's safety efforts, which is described. The presentation then reviews the impact of the new S&MA work in the Ares I design and development.

  12. NASA Space Environments Technical Discipline Team Space Weather Activities

    Science.gov (United States)

    Minow, J. I.; Nicholas, A. C.; Parker, L. N.; Xapsos, M.; Walker, P. W.; Stauffer, C.

    2017-12-01

    The Space Environment Technical Discipline Team (TDT) is a technical organization led by NASA's Technical Fellow for Space Environments that supports NASA's Office of the Chief Engineer through the NASA Engineering and Safety Center. The Space Environments TDT conducts independent technical assessments related to the space environment and space weather impacts on spacecraft for NASA programs and provides technical expertise to NASA management and programs where required. This presentation will highlight the status of applied space weather activities within the Space Environment TDT that support development of operational space weather applications and a better understanding of the impacts of space weather on space systems. We will first discuss a tool that has been developed for evaluating space weather launch constraints that are used to protect launch vehicles from hazardous space weather. We then describe an effort to better characterize three-dimensional radiation transport for CubeSat spacecraft and processing of micro-dosimeter data from the International Space Station which the team plans to make available to the space science community. Finally, we will conclude with a quick description of an effort to maintain access to the real-time solar wind data provided by the Advanced Composition Explorer satellite at the Sun-Earth L1 point.

  13. The 2017 Total Solar Eclipse: Through the Eyes of NASA

    Science.gov (United States)

    Mayo, Louis; NASA Goddard Heliophysics Education Consortium

    2017-10-01

    The August 21st, 2017 Total Solar Eclipse Across America provided a unique opportunity to teach event-based science to nationwide audiences. NASA spent over three years planning space and Earth science education programs for informal audiences, undergraduate institutions, and life long learners to bring this celestial event to the public through the eyes of NASA. This talk outlines how NASA used its unique assets including mission scientists and engineers, space based assets, citizen science, educational technology, science visualization, and its wealth of science and technology partners to bring the eclipse to the country through multimedia, cross-discipline science activities, curricula, and media programing. Audience reach, impact, and lessons learned are detailed. Plans for similar events in 2018 and beyond are outlined.

  14. An analysis of the awareness and performance of radiation workers' radiation/radioactivity protection in medical institutions : Focused on Busan regional medical institutions

    Energy Technology Data Exchange (ETDEWEB)

    Park, Cheol Koo [Dept. of Radiological Science, Graduate School of Catholic University of Pusan, Busan (Korea, Republic of); Hwang, Chul Hwan [Dept. of Radiation Oncology, Pusan National University Hospital, Busan (Korea, Republic of); Kim, Dong Hyun [Dept. of Radiological Science, College of Health Sciences, Catholic University of Pusan, Busan (Korea, Republic of)

    2017-03-15

    The purpose of this study was to investigate safety management awareness and behavioral investigation of radiation/radioactivity performance defenses of radiation workers' in medical institutions. Data collection consisted of 267 radiation workers working in medical institutions using structured questionnaires. As a result, it was analyzed that radiation safety management awareness and performance were high in 40s, 50s group and higher education group. The analysis according to the radiation safety management knowledge was analyzed that the 'Know very well' group had higher scores on awareness and performance scores. The analysis according to the degree of safety management effort showed the high awareness scale and the performance scale in the group 'Receiving various education or studying the safety management contents through book'. The correlations between the sub-factors showed the highest positive correlation between perceived practician and personal perspective and perceived by patient and patient's caretaker perspective. Therefore, radiation safety management for workers, patients, and patient's caretaker should be conducted through continuous education of radiation safety management through various routes of radiation workers working at medical institutions.

  15. NASA Software Engineering Benchmarking Study

    Science.gov (United States)

    Rarick, Heather L.; Godfrey, Sara H.; Kelly, John C.; Crumbley, Robert T.; Wifl, Joel M.

    2013-01-01

    To identify best practices for the improvement of software engineering on projects, NASA's Offices of Chief Engineer (OCE) and Safety and Mission Assurance (OSMA) formed a team led by Heather Rarick and Sally Godfrey to conduct this benchmarking study. The primary goals of the study are to identify best practices that: Improve the management and technical development of software intensive systems; Have a track record of successful deployment by aerospace industries, universities [including research and development (R&D) laboratories], and defense services, as well as NASA's own component Centers; and Identify candidate solutions for NASA's software issues. Beginning in the late fall of 2010, focus topics were chosen and interview questions were developed, based on the NASA top software challenges. Between February 2011 and November 2011, the Benchmark Team interviewed a total of 18 organizations, consisting of five NASA Centers, five industry organizations, four defense services organizations, and four university or university R and D laboratory organizations. A software assurance representative also participated in each of the interviews to focus on assurance and software safety best practices. Interviewees provided a wealth of information on each topic area that included: software policy, software acquisition, software assurance, testing, training, maintaining rigor in small projects, metrics, and use of the Capability Maturity Model Integration (CMMI) framework, as well as a number of special topics that came up in the discussions. NASA's software engineering practices compared favorably with the external organizations in most benchmark areas, but in every topic, there were ways in which NASA could improve its practices. Compared to defense services organizations and some of the industry organizations, one of NASA's notable weaknesses involved communication with contractors regarding its policies and requirements for acquired software. One of NASA's strengths

  16. 10 years Institute for Reactor Development

    International Nuclear Information System (INIS)

    1975-05-01

    Ten years ago the Institute of Reactor Development was founded. This report contains a review about the research work of the institute in these past ten years. The work was mainly performed within the framework of the Fast Breeder Project, the Nuclear Safety Project and Computer Aided Design. Especially the following topics are discussed: design studies for different fast breeder reactors, development works for fast breeders, investigations of central safety problems of sodium cooled breeder reactors (such as local and integral coolant disturbances and hypothetical accident analysis), special questions of light water reactor safety (such as dynamic stresses in pressure suppression systems and fuel rod behaviour under loss of coolant conditions), and finally computer application in various engineering fields. (orig.) [de

  17. NASA Activity Update for the 2013 Unmanned Vehicle Systems International (UVSI) Yearbook

    Science.gov (United States)

    Bauer, Jeffrey E.

    2013-01-01

    This year s report offers a high level perspective on some of the UAS related activities in which NASA is involved, both internal and external to the agency. Internally, NASA issued UAS operational policy on certification of NASA UAS and aircrew. A team of NASA UAS experts and operators analyzed all current procedures and best practices to design the policy. An update to the agencies Aircraft Operations Management Manual incorporated a new chapter to address UAS planning, preflight operations, flight operations, flight crew requirements, airworthiness and flight safety reviews. NASA UAS are classified into three categories based on weight and airspeed. Aircrews, including observers, are classified by how they interface with the UAS, and the policy defines qualifications, training, and currency. The NASA flight readiness approval process identifies risks and mitigations in order to reduce the likelihood and/or consequence of the risk to an acceptable level. The UAS operations process incorporates all aspects of airworthiness, flight standards and range safety exactly the same processes used for NASA manned aircraft operations. NASA has two internal organizations that routinely operate UAS. The Science Mission Directorate utilizes UAS as part of its Airborne Science Program and is the most frequent operator of NASA UAS in both national and international airspace. The Aeronautics Research Mission Directorate conducts UAS flight operations in addition to conducting research important to the UAS community. This past year the Science Mission Directorate supported the Hurricane and Severe Storm Sentimental (HS3) Mission with two NASA Global Hawk platforms. HS3 is a five-year mission specifically targeted to investigate the processes that underlie hurricane formation. During the 2012 portion of this mission the Global Hawk overflew hurricanes Leslie and Nadine in the Atlantic Ocean completing 6 flights and accumulating more than 148 flight hours. Another multi-year mission

  18. Institutional plan -- Institute of Nuclear Power Operations, 1993

    International Nuclear Information System (INIS)

    1993-01-01

    The US nuclear electric utility industry established the Institute of Nuclear Power Operations (INPO) in 1979 to promote the highest levels of safety and reliability -- to promote excellence -- in the operation of its nuclear plants. After its formation, the Institute grew from a handful of on-loan personnel in late 1979 to an established work force of more than 400 permanent and on-loan personnel. INPO's early years were marked by growth and evolution of its programs and organization. The Institute now focuses primarily on the effectiveness and enhancement of established programs and activities. For INPO to carry out its role, it must have the support of its members and participants and a cooperative but independent relationship with the NRC. A basis for that support and cooperation is an understanding of INPO's role. This Institutional Plan is intended to provide that understanding by defining the Institute's role and its major programs. This plan considers the existing and projected needs of the industry and the overall environment in which INPO and its members and participants operate

  19. International Cooperation in the Field of International Space Station (ISS) Payload Safety

    Science.gov (United States)

    Grayson, C.; Sgobba, T.; Larsen, A.; Rose, S.; Heimann, T.; Ciancone, M.; Mulhern, V.

    2005-12-01

    In the frame of the International Space Station (ISS) Program cooperation, in 1998 the European Space Agency (ESA) approached the National Aeronautics and Space Administration (NASA) with the unique concept of a Payload Safety Review Panel (PSRP) "franchise" based at the European Space Technology Center (ESTEC), where the panel would be capable of autonomously reviewing flight hardware for safety. This paper will recount the course of an ambitious idea as it progressed into a fully functional reality. It will show how a panel initially conceived at NASA to serve a national programme has evolved into an international safety cooperation asset. The PSRP established at NASA began reviewing ISS payloads approximately in late 1994 or early 1995 as an expansion of the pre- existing Shuttle Program PSRP. This paper briefly describes the fundamental Shuttle safety process and the establishment of the safety requirements for payloads intending to use the Space Transportation System and ISS. The paper will also offer some historical statistics about the experiments that completed the payload safety process for Shuttle and ISS. The paper then presents the background of ISS agreements and international treaties that had to be considered when establishing the ESA PSRP. The paper will expound upon the detailed franchising model, followed by an outline of the cooperation charter approved by the NASA Associate Administrator, Office of Space Flight, and ESA Director of Manned Spaceflight and Microgravity. The paper will then address the resulting ESA PSRP implementation and its success statistics to date. Additionally, the paper presents ongoing developments with the Japan Aerospace Exploration Agency (JAXA). The discussion will conclude with ideas for future developments, such to achieve a fully integrated international system of payload safety panels for ISS.

  20. International Cooperation in the Field of International Space Station (ISS) Payload Safety

    Science.gov (United States)

    Heimann, Timothy; Larsen, Axel M.; Rose, Summer; Sgobba, Tommaso

    2005-01-01

    In the frame of the International Space Station (ISS) Program cooperation, in 1998, the European Space Agency (ESA) approached the National Aeronautics and Space Administration (NASA) with the unique concept of a Payload Safety Review Panel (PSRP) "franchise" based at the European Space Technology Center (ESTEC), where the panel would be capable of autonomously reviewing flight hardware for safety. This paper will recount the course of an ambitious idea as it progressed into a fully functional reality. It will show how a panel initially conceived at NASA to serve a national programme has evolved into an international safety cooperation asset. The PSRP established at NASA began reviewing ISS payloads approximately in late 1994 or early 1995 as an expansion of the pre-existing Shuttle Program PSRP. This paper briefly describes the fundamental Shuttle safety process and the establishment of the safety requirements for payloads intending to use the Space Transportation System and International Space Station (ISS). The paper will also offer some historical statistics about the experiments that completed the payload safety process for Shuttle and ISS. The paper 1 then presents the background of ISS agreements and international treaties that had to be taken into account when establishing the ESA PSRP. The detailed franchising model will be expounded upon, followed by an outline of the cooperation charter approved by the NASA Associate Administrator, Office of Space Flight, and ESA Director of Manned Spaceflight and Microgravity. The resulting ESA PSRP implementation and its success statistics to date will then be addressed. Additionally the paper presents the ongoing developments with the Japan Aerospace Exploration Agency. The discussion will conclude with ideas for future developments, such to achieve a fully integrated international system of payload safety panels for ISS.

  1. EMS helicopter incidents reported to the NASA Aviation Safety Reporting System

    Science.gov (United States)

    Connell, Linda J.; Reynard, William D.

    1993-01-01

    The objectives of this evaluation were to: Identify the types of safety-related incidents reported to the Aviation Safety Reporting System (ASRS) in Emergency Medical Service (EMS) helicopter operations; Describe the operational conditions surrounding these incidents, such as weather, airspace, flight phase, time of day; and Assess the contribution to these incidents of selected human factors considerations, such as communication, distraction, time pressure, workload, and flight/duty impact.

  2. How safe is the safety paradigm?

    NARCIS (Netherlands)

    Arah, O. A.; Klazinga, N. S.

    2004-01-01

    This paper reviews safety initiatives in the health systems of the UK, Canada, Australia, and the US. Initiatives to tackle safety shortcomings involve public-private collaborations. Patient safety agencies (to institute learning, action and safety culture), adverse event reporting and, to a lesser

  3. Report of the workshop on Aviation Safety/Automation Program

    Science.gov (United States)

    Morello, Samuel A. (Editor)

    1990-01-01

    As part of NASA's responsibility to encourage and facilitate active exchange of information and ideas among members of the aviation community, an Aviation Safety/Automation workshop was organized and sponsored by the Flight Management Division of NASA Langley Research Center. The one-day workshop was held on October 10, 1989, at the Sheraton Beach Inn and Conference Center in Virginia Beach, Virginia. Participants were invited from industry, government, and universities to discuss critical questions and issues concerning the rapid introduction and utilization of advanced computer-based technology into the flight deck and air traffic controller workstation environments. The workshop was attended by approximately 30 discipline experts, automation and human factors researchers, and research and development managers. The goal of the workshop was to address major issues identified by the NASA Aviation Safety/Automation Program. Here, the results of the workshop are documented. The ideas, thoughts, and concepts were developed by the workshop participants. The findings, however, have been synthesized into a final report primarily by the NASA researchers.

  4. 14 CFR 1232.105 - Implementation procedures by NASA field installations.

    Science.gov (United States)

    2010-01-01

    ... animal subjects that are submitted by NASA investigators. All decisions shall be based on the response of..., is or may be a threat to the health or safety of the animals. If program or facility deficiencies are... program or facilities that would affect the AAALAC accreditation status; (ii) Any change in the...

  5. Who's Got the Bridge? - Towards Safe, Robust Autonomous Operations at NASA Langley's Autonomy Incubator

    Science.gov (United States)

    Allen, B. Danette; Cross, Charles D.; Motter, Mark A.; Neilan, James H.; Qualls, Garry D.; Rothhaar, Paul M.; Tran, Loc; Trujillo, Anna C.; Crisp, Vicki K.

    2015-01-01

    NASA aeronautics research has made decades of contributions to aviation. Both aircraft and air traffic management (ATM) systems in use today contain NASA-developed and NASA sponsored technologies that improve safety and efficiency. Recent innovations in robotics and autonomy for automobiles and unmanned systems point to a future with increased personal mobility and access to transportation, including aviation. Automation and autonomous operations will transform the way we move people and goods. Achieving this mobility will require safe, robust, reliable operations for both the vehicle and the airspace and challenges to this inevitable future are being addressed now in government labs, universities, and industry. These challenges are the focus of NASA Langley Research Center's Autonomy Incubator whose R&D portfolio includes mission planning, trajectory and path planning, object detection and avoidance, object classification, sensor fusion, controls, machine learning, computer vision, human-machine teaming, geo-containment, open architecture design and development, as well as the test and evaluation environment that will be critical to prove system reliability and support certification. Safe autonomous operations will be enabled via onboard sensing and perception systems in both data-rich and data-deprived environments. Applied autonomy will enable safety, efficiency and unprecedented mobility as people and goods take to the skies tomorrow just as we do on the road today.

  6. NASA Goddard Space Flight Center Supply Chain Management Program

    Science.gov (United States)

    Kelly, Michael P.

    2011-01-01

    This slide presentation reviews the working of the Supplier Assessment Program at NASA Goddard Space Flight Center. The program supports many GSFC projects to ensure suppliers are aware of and are following the contractual requirements, to provide an independent assessment of the suppliers' processes, and provide suppliers' safety and mission assurance organizations information to make the changes within their organization.

  7. 75 FR 73946 - Worker Safety and Health Program: Safety Conscious Work Environment

    Science.gov (United States)

    2010-11-30

    ... Environment AGENCY: Office of the General Counsel, Department of Energy (DOE). ACTION: Notice of denial of... Nuclear Regulatory Commission's ``Safety-Conscious Work Environment'' guidelines as a model. DOE published.... Second, not only would instituting a ``Safety-Conscious Work Environment'' by regulation be redundant...

  8. The NASA Plan: To award eight percent of prime and subcontracts to socially and economically disadvantaged businesses

    Science.gov (United States)

    1990-01-01

    It is NASA's intent to provide small disadvantaged businesses, including women-owned, historically black colleges and universities and minority education institutions the maximum practicable opportunity to receive a fair proportion of NASA prime and subcontracted awards. Annually, NASA will establish socioeconomic procurement goals including small disadvantaged business goals, with a target of reaching the eight percent level by the end of FY 1994. The NASA Associate Administrators, who are responsible for the programs at the various NASA Centers, will be held accountable for full implementation of the socioeconomic procurement plans. Various aspects of this plan, including its history, are discussed.

  9. Radiation safety

    International Nuclear Information System (INIS)

    1996-04-01

    Most of the ionizing radiation that people are exposed to in day-to-day activities comes from natural, rather than manmade, sources. The health effects of radiation - both natural and artificial - are relatively well understood and can be effectively minimized through careful safety measures and practices. The IAEA, together with other international and expert organizations, is helping to promote and institute Basic Safety Standards on an international basis to ensure that radiation sources and radioactive materials are managed for both maximum safety and human benefit

  10. The First National Student Conference: NASA University Research Centers at Minority Institutions

    Science.gov (United States)

    Daso, Endwell O. (Editor); Mebane, Stacie (Editor)

    1997-01-01

    The conference includes contributions from 13 minority universities with NASA University Research Centers. Topics discussed include: leadership, survival strategies, life support systems, food systems, simulated hypergravity, chromium diffusion doping, radiation effects on dc-dc converters, metal oxide glasses, crystal growth of Bil3, science and communication on wheels, semiconductor thin films, numerical solution of random algebraic equations, fuzzy logic control, spatial resolution of satellite images, programming language development, nitric oxide in the thermosphere and mesosphere, high performance polyimides, crossover control in genetic algorithms, hyperthermal ion scattering, etc.

  11. Aligning institutional priorities: engaging house staff in a quality improvement and safety initiative to fulfill Clinical Learning Environment Review objectives and electronic medical record Meaningful Use requirements.

    Science.gov (United States)

    Flanagan, Meghan R; Foster, Carolyn C; Schleyer, Anneliese; Peterson, Gene N; Mandell, Samuel P; Rudd, Kristina E; Joyner, Byron D; Payne, Thomas H

    2016-02-01

    House staff quality improvement projects are often not aligned with training institution priorities. House staff are the primary users of inpatient problem lists in academic medical centers, and list maintenance has significant patient safety and financial implications. Improvement of the problem list is an important objective for hospitals with electronic health records under the Meaningful Use program. House staff surveys were used to create an electronic problem list manager (PLM) tool enabling efficient problem list updating. Number of new problems added and house staff perceptions of the problem list were compared before and after PLM intervention. The PLM was used by 654 house staff after release. Surveys demonstrated increased problem list updating (P = .002; response rate 47%). Mean new problems added per day increased from 64 pre-PLM to 125 post-PLM (P house staff in institutional quality and safety initiatives with tangible institutional benefits. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Airline Safety and Economy

    Science.gov (United States)

    1993-01-01

    This video documents efforts at NASA Langley Research Center to improve safety and economy in aircraft. Featured are the cockpit weather information needs computer system, which relays real time weather information to the pilot, and efforts to improve techniques to detect structural flaws and corrosion, such as the thermal bond inspection system.

  13. Advice of the French institute of radiation protection and nuclear safety about the 'Clay 2005' file

    International Nuclear Information System (INIS)

    2005-01-01

    The French institute of radiation protection and nuclear safety (IRSN) presents in this document its evaluation of the 'Clay 2005' file made by the ANDRA and which aims at demonstrating the feasibility of a disposal facility for high level and long living rad-wastes in the argillite formation of the Bure site. The critical points of the safety have been considered more thoroughly, together with the uncertainties concerning some important data and phenomena in relation with the confining properties of such a disposal facility. The basic geologic data gathered by the ANDRA about the Callovo-Oxfordian clay formation of the Bure site are sufficient to confirm the favorable intrinsic properties of this formation with respect to the confinement of wastes. The main possible disturbances of internal and external origin (thermal, hydrological, mechanical, chemical, climatic change, earthquakes, erosion..) would have no redhibitory impact on the overall confining capacity of the facility. The design safety principles retained for the exploitation of the facility and the post-closure safety aspects are globally satisfactory. Therefore, the IRSN considers the disposal of rad-wastes in the Callovo-Oxfordian argilite formation as feasible but in the case of a continuation of this project, several complementary informations would have to be supplied in particular concerning: the possible fracturing of the host and surrounding formations, the possibility of localized inhomogeneous fluid flows inside the surrounding formations, the improvement of our knowledge about the changes of the mechanical, physical and chemical properties of the site rocks and of concretes with time, the dimensioning of the metallic components of the facility (shafts, containers..), and the efficiency of the ventilation system with respect to the explosion risks inside B-type waste alveoles. (J.S.)

  14. The NASA Space Life Sciences Training Program: Accomplishments Since 2013

    Science.gov (United States)

    Rask, Jon; Gibbs, Kristina; Ray, Hami; Bridges, Desireemoi; Bailey, Brad; Smith, Jeff; Sato, Kevin; Taylor, Elizabeth

    2017-01-01

    The NASA Space Life Sciences Training Program (SLSTP) provides undergraduate students entering their junior or senior years with professional experience in space life science disciplines. This challenging ten-week summer program is held at NASA Ames Research Center. The primary goal of the program is to train the next generation of scientists and engineers, enabling NASA to meet future research and development challenges in the space life sciences. Students work closely with NASA scientists and engineers on cutting-edge research and technology development. In addition to conducting hands-on research and presenting their findings, SLSTP students attend technical lectures given by experts on a wide range of topics, tour NASA research facilities, participate in leadership and team building exercises, and complete a group project. For this presentation, we will highlight program processes, accomplishments, goals, and feedback from alumni and mentors since 2013. To date, 49 students from 41 different academic institutions, 9 staffers, and 21 mentors have participated in the program. The SLSTP is funded by Space Biology, which is part of the Space Life and Physical Sciences Research and Application division of NASA's Human Exploration and Operations Mission Directorate. The SLSTP is managed by the Space Biology Project within the Science Directorate at Ames Research Center.

  15. Northeast Utilities' participation in the Kaman/NASA wind power program

    Science.gov (United States)

    Lotker, M.

    1975-01-01

    The role of Northeast Utilities in the Kaman/NASA large wind generator study is reviewed. The participation falls into four principal areas: (1) technical assistance; (2) economic analysis; (3) applications; and (4) institutional and legal. A model for the economic viability of wind power is presented.

  16. Seminar series on Safety matters

    CERN Multimedia

    HSE

    2010-01-01

    The HSE - Occupational Health & Safety and Environmental Protection - Unit is starting a seminar series on Safety matters. The aim is to invite colleagues from Universities, Industries or Government Agencies to share their experience. The seminars will take place in intervals of several months. Part of the Seminars will be held in the form of a Forum where participants can discuss and share views with persons who manage, teach or research Safety matters elsewhere. You are invited to the first Safety Seminar on 22nd September 2010 at 10h00 in building 40 S2 A1 "Salle Andersson" L’Ecole Polytechnique Fédérale de Lausanne (EPFL) will present the way safety is managed in their research institution. Some aspects of research in physics and chemical laboratories will also be presented. The seminar will be given by Dr Thierry Meyer, Head of OHS at FSB-EPFL and Dr Amela Groso, responsible for the safety of the physics institutes

  17. Collaborative Aerospace Research and Fellowship Program at NASA Glenn Research Center

    Science.gov (United States)

    Heyward, Ann O.; Kankam, Mark D.

    2004-01-01

    During the summer of 2004, a 10-week activity for university faculty entitled the NASA-OAI Collaborative Aerospace Research and Fellowship Program (CFP) was conducted at the NASA Glenn Research Center in collaboration with the Ohio Aerospace Institute (OAI). This is a companion program to the highly successful NASA Faculty Fellowship Program and its predecessor, the NASA-ASEE Summer Faculty Fellowship Program that operated for 38 years at Glenn. The objectives of CFP parallel those of its companion, viz., (1) to further the professional knowledge of qualified engineering and science faculty,(2) to stimulate an exchange of ideas between teaching participants and employees of NASA, (3) to enrich and refresh the research and teaching activities of participants institutions, and (4) to contribute to the research objectives of Glenn. However, CFP, unlike the NASA program, permits faculty to be in residence for more than two summers and does not limit participation to United States citizens. Selected fellows spend 10 weeks at Glenn working on research problems in collaboration with NASA colleagues and participating in related activities of the NASA-ASEE program. This year's program began officially on June 1, 2004 and continued through August 7, 2004. Several fellows had program dates that differed from the official dates because university schedules vary and because some of the summer research projects warranted a time extension beyond the 10 weeks for satisfactory completion of the work. The stipend paid to the fellows was $1200 per week and a relocation allowance of $1000 was paid to those living outside a 50-mile radius of the Center. In post-program surveys from this and previous years, the faculty cited numerous instances where participation in the program has led to new courses, new research projects, new laboratory experiments, and grants from NASA to continue the work initiated during the summer. Many of the fellows mentioned amplifying material, both in

  18. Workplace Safety and Health Topics: Industries and Occupations

    Science.gov (United States)

    ... Submit Search The CDC The National Institute for Occupational Safety and Health (NIOSH) Note: Javascript is disabled or is not ... September 6, 2017 Content source: National Institute for Occupational Safety and Health Education and Information Division Email Recommend Tweet YouTube ...

  19. Aviation Safety/Automation Program Conference

    Science.gov (United States)

    Morello, Samuel A. (Compiler)

    1990-01-01

    The Aviation Safety/Automation Program Conference - 1989 was sponsored by the NASA Langley Research Center on 11 to 12 October 1989. The conference, held at the Sheraton Beach Inn and Conference Center, Virginia Beach, Virginia, was chaired by Samuel A. Morello. The primary objective of the conference was to ensure effective communication and technology transfer by providing a forum for technical interchange of current operational problems and program results to date. The Aviation Safety/Automation Program has as its primary goal to improve the safety of the national airspace system through the development and integration of human-centered automation technologies for aircraft crews and air traffic controllers.

  20. Stennis Space Center observes 2009 Safety and Health Day

    Science.gov (United States)

    2009-01-01

    Sue Smith, a medical clinic employee at NASA's John C. Stennis Space Center, takes the temperature of colleague Karen Badon during 2009 Safety and Health Day activities Oct. 22. Safety Day activities included speakers, informational sessions and a number of displays on safety and health issues. Astronaut Dominic Gorie also visited the south Mississippi rocket engine testing facility during the day to address employees and present several Silver Snoopy awards for outstanding contributions to flight safety and mission success. The activities were part of an ongoing safety and health emphasis at Stennis.

  1. Comprehensive School Safety Initiative Report

    Science.gov (United States)

    National Institute of Justice, 2014

    2014-01-01

    The National Institute of Justice (NIJ) developed the Comprehensive School Safety Initiative in consultation with federal partners and Congress. It is a research-focused initiative designed to increase the safety of schools nationwide through the development of knowledge regarding the most effective and sustainable school safety interventions and…

  2. Idaho Safety Manual.

    Science.gov (United States)

    Idaho State Dept. of Education, Boise. Div. of Vocational Education.

    This manual is intended to help teachers, administrators, and local school boards develop and institute effective safety education as a part of all vocational instruction in the public schools of Idaho. This guide is organized in 13 sections that cover the following topics: introduction to safety education, legislation, levels of responsibility,…

  3. NASA-STD-7009 Guidance Document for Human Health and Performance Models and Simulations

    Science.gov (United States)

    Walton, Marlei; Mulugeta, Lealem; Nelson, Emily S.; Myers, Jerry G.

    2014-01-01

    Rigorous verification, validation, and credibility (VVC) processes are imperative to ensure that models and simulations (MS) are sufficiently reliable to address issues within their intended scope. The NASA standard for MS, NASA-STD-7009 (7009) [1] was a resultant outcome of the Columbia Accident Investigation Board (CAIB) to ensure MS are developed, applied, and interpreted appropriately for making decisions that may impact crew or mission safety. Because the 7009 focus is engineering systems, a NASA-STD-7009 Guidance Document is being developed to augment the 7009 and provide information, tools, and techniques applicable to the probabilistic and deterministic biological MS more prevalent in human health and performance (HHP) and space biomedical research and operations.

  4. Technical safety Organisations (TSO) contribute to European Nuclear Safety

    International Nuclear Information System (INIS)

    Repussard, J.

    2010-01-01

    Nuclear safety and radiation protection rely on science to achieve high level prevention objectives, through the analysis of safety files proposed by the licensees. The necessary expertise needs to be exercised so as to ensure adequate independence from nuclear operators, appropriate implementation of state of the art knowledge, and a broad spectrum of analysis, adequately ranking the positive and negative points of the safety files. The absence of a Europe-wide nuclear safety regime is extremely costly for an industry which has to cope with a highly competitive and open international environment, but has to comply with fragmented national regulatory systems. Harmonization is therefore critical, but such a goal is difficult to achieve. Only a gradual policy, made up of planned steps in each of the three key dimensions of the problem (energy policy at EU level, regulatory harmonization, consolidation of Europe-wide technical expertise capability) can be successful to achieve the required integration on the basis of the highest safety levels. TSO's contribute to this consolidation, with the support of the EC, in the fields of research (EURATOM-Programmes), of experience feedback analysis (European Clearinghouse), of training and knowledge management (European Training and Tutoring Institute, EUROSAFE). The TSO's network, ETSON, is becoming a formal organisation, able to enter into formal dialogue with EU institutions. However, nuclear safety nevertheless remains a world wide issue, requiring intensive international cooperation, including on TSO issues. (author)

  5. Overview of research potential of Institute for Nuclear Research

    International Nuclear Information System (INIS)

    Ciocanescu, Marin

    2007-01-01

    The main organizations involved in nuclear power production in Romania, under supervision of Presidency, Prime Minister and Parliament are: CNCAN (National Commission for Nuclear Activities Control), Nuclear Agency, Ministry of Economy and Commerce, ANDRAD (Waste Management Agency), SNN (Nuclearelectrica National Society), RAAN (Romanian Authority for Nuclear Activities), ICN (Institute for Nuclear Research - Pitesti), SITON (Center of Design and Engineering for Nuclear Projects- Bucharest); ROMAG-PROD (Heavy Water Plant), CNE-PROD (Cernavoda Nuclear Power Plant - Production Unit), CNE-INVEST (Cernavoda Nuclear Power Plant -Investments Unit), FCN (Nuclear Fuel Factory). The Institute for Nuclear Research, Pitesti INR, Institute for Nuclear Research, Pitesti is endowed with a TRIGA Reactor, Hot Cells, Materials Laboratories, Nuclear Fuel, Nuclear Safety Laboratories, Nuclear Fuel, Nuclear Safety. Waste management. Other research centers and laboratories implied in nuclear activities are: ICIT, National Institute for cryogenics and isotope technologies at Rm Valcea Valcea. with R and D activity devoted to heavy water technologies, IFIN, Institute for nuclear physics and engineering, Bucharest, as well as the educational institutions involved in atomic energy applications and University research, Politechnical University Bucharest, University of Bucharest, University of Pitesti, etc. The INR activity outlined, i.e. the nuclear power research as a scientific and technical support for the Romanian nuclear power programme, mainly dedicated to the existing NPP in the country (CANDU). Focused with priority are: - Nuclear Safety (behavior of plant materials, components, installations during accident conditions and integrity investigations); - Radioactive Waste Management Radioactive; - Radioprotection; Product and services supply for NPP. INR Staff numbers 320 R and D qualified and experienced staff, 240 personnel in devices and prototype workshops and site support

  6. The NASA Ames Life Sciences Data Archive: Biobanking for the Final Frontier

    Science.gov (United States)

    Rask, Jon; Chakravarty, Kaushik; French, Alison J.; Choi, Sungshin; Stewart, Helen J.

    2017-01-01

    The NASA Ames Institutional Scientific Collection involves the Ames Life Sciences Data Archive (ALSDA) and a biospecimen repository, which are responsible for archiving information and non-human biospecimens collected from spaceflight and matching ground control experiments. The ALSDA also manages a biospecimen sharing program, performs curation and long-term storage operations, and facilitates distribution of biospecimens for research purposes via a public website (https:lsda.jsc.nasa.gov). As part of our best practices, a tissue viability testing plan has been developed for the repository, which will assess the quality of samples subjected to long-term storage. We expect that the test results will confirm usability of the samples, enable broader science community interest, and verify operational efficiency of the archives. This work will also support NASA open science initiatives and guides development of NASA directives and policy for curation of biological collections.

  7. Automated tools for safety-critical software

    International Nuclear Information System (INIS)

    Lapassat, A.M.

    1993-01-01

    The regulatory (DSIN), the utilities (EDF, CEA..) and the CEA-Institute for Protection and Nuclear Safety (IPSN) work together at the French nuclear safety. This paper presents a tool, called CLAIRE, for simulation and tests of different nuclear safety system. (TEC)

  8. Introduction to NASA's Academy of Aerospace Quality

    OpenAIRE

    Smith, Alice; Smith, Jeffrey

    2016-01-01

    The NASA Academy of Aerospace Quality (AAQ) is an internet-based public domain forum of quality assurance-related educational modules for students and faculty at academic institutions targeting those involved in aerospace research, technology development, and payload design and development including Cube Sats, Small Sats, Nano Sats, Rockets and High Altitude Balloons. The target users are university project and research teams but the academy has also been used by K-12 teams, independent space...

  9. The Role of Probabilistic Design Analysis Methods in Safety and Affordability

    Science.gov (United States)

    Safie, Fayssal M.

    2016-01-01

    For the last several years, NASA and its contractors have been working together to build space launch systems to commercialize space. Developing commercial affordable and safe launch systems becomes very important and requires a paradigm shift. This paradigm shift enforces the need for an integrated systems engineering environment where cost, safety, reliability, and performance need to be considered to optimize the launch system design. In such an environment, rule based and deterministic engineering design practices alone may not be sufficient to optimize margins and fault tolerance to reduce cost. As a result, introduction of Probabilistic Design Analysis (PDA) methods to support the current deterministic engineering design practices becomes a necessity to reduce cost without compromising reliability and safety. This paper discusses the importance of PDA methods in NASA's new commercial environment, their applications, and the key role they can play in designing reliable, safe, and affordable launch systems. More specifically, this paper discusses: 1) The involvement of NASA in PDA 2) Why PDA is needed 3) A PDA model structure 4) A PDA example application 5) PDA link to safety and affordability.

  10. In-Space Manufacturing at NASA Marshall Space Flight Center: Enabling Technologies for Exploration

    Science.gov (United States)

    Bean, Quincy; Johnston, Mallory; Ordonez, Erick; Ryan, Rick; Prater, Tracie; Werkeiser, Niki

    2015-01-01

    NASA Marshall Space Flight Center is currently engaged in a number of in-space manufacturing(ISM)activities that have the potential to reduce launch costs, enhance crew safety, and provide the capabilities needed to undertake long duration spaceflight safely and sustainably.

  11. Nuclear safety in France

    International Nuclear Information System (INIS)

    Queniart, D.

    1989-12-01

    This paper outlines the organizational and technical aspects of nuclear safety in France. From the organization point of view, the roles of the operator, of the safety authority and of the Institute for Protection and Nuclear Safety are developed. From the technical viewpoint, the evolution of safety since the beginning of the French nuclear programme, the roles of deterministic and probabilistic methods and the severe accident policy (prevention and mitigation, venting containment) in France are explained

  12. International Cooperation in the Field of International Space Station Payload Safety: Overcoming Differences and Working for Future

    Science.gov (United States)

    Nakamura, Yasuhiro; Ozawa, Masayuki; Takeyasu, Yoshioka; Griffith, Gerald; Goto, Katsuhito; Mitsui, Masami

    2010-09-01

    The importance of international cooperation among the International Space Station(ISS) Program participants is ever increasing as the ISS nears assembly complete. In the field of payload safety assurance, NASA and JAXA have enhanced their cooperation level. The authors describe the evolution of cooperation between the two agencies and the challenges encountered and overcame. NASA and JAXA have been working toward development of a NASA Payload Safety Review Panel(PSRP) franchise panel at JAXA for several years. When the JAXA Safety Review Panel(SRP) becomes a fully franchised panel of the NASA PSRP, the JAXA SRP will have the authority review and approve all JAXA ISS payloads operated on USOS and JEM, although NASA and JAXA joint reviews may be conducted as necessary. A NASA PSRP franchised panel at JAXA will streamline the conventional review process. Japanese payload organizations will not have to go through both JAXA and NASA payload safety reviews, while NASA will be relieved of a certain amount of review activities. The persistent efforts have recently born fruit. For the past two years, NASA and JAXA have increased emphasis on efforts to develop a NASA PSRP Franchised Panel at JAXA with concrete results. In 2009, NASA and JAXA signed Charter and Joint Development Plan. At the end of 2009, NASA PSRP transferred some review responsibility to the JAXA SRP under the franchising charter. Although JAXA had long history of reviewing payloads by their own panel prior to NASA PSRP reviews, it took several years for JAXA to receive NASA PSRP approval for delegation of franchised review authority to JAXA. This paper discusses challenges JAXA and NAXA faced. Considerations were required in developing a franchise at JAXA for history and experiences of the JAXA SRP as well as language and cultural differences. The JAXA panel, not only had its own well-established processes and supporting organizational structures which had some differences from its NASA PSRP counterparts

  13. Nuclear Safety Project - annual report 1980

    International Nuclear Information System (INIS)

    1981-08-01

    The Annual Report 1980 is a detailed description (in German language) of work within the Nuclear Safety Project performed in 1980 in the nuclear safety field by KfK institutes and departments and by external institutes on behalf of KfK. It includes for each individual research activity short summaries in English language on work completed, essential results, plans for the near future. (orig./RW) [de

  14. Research Institute for Advanced Computer Science

    Science.gov (United States)

    Gross, Anthony R. (Technical Monitor); Leiner, Barry M.

    2000-01-01

    The Research Institute for Advanced Computer Science (RIACS) carries out basic research and technology development in computer science, in support of the National Aeronautics and Space Administration's missions. RIACS is located at the NASA Ames Research Center. It currently operates under a multiple year grant/cooperative agreement that began on October 1, 1997 and is up for renewal in the year 2002. Ames has been designated NASA's Center of Excellence in Information Technology. In this capacity, Ames is charged with the responsibility to build an Information Technology Research Program that is preeminent within NASA. RIACS serves as a bridge between NASA Ames and the academic community, and RIACS scientists and visitors work in close collaboration with NASA scientists. RIACS has the additional goal of broadening the base of researchers in these areas of importance to the nation's space and aeronautics enterprises. RIACS research focuses on the three cornerstones of information technology research necessary to meet the future challenges of NASA missions: (1) Automated Reasoning for Autonomous Systems. Techniques are being developed enabling spacecraft that will be self-guiding and self-correcting to the extent that they will require little or no human intervention. Such craft will be equipped to independently solve problems as they arise, and fulfill their missions with minimum direction from Earth; (2) Human-Centered Computing. Many NASA missions require synergy between humans and computers, with sophisticated computational aids amplifying human cognitive and perceptual abilities; (3) High Performance Computing and Networking. Advances in the performance of computing and networking continue to have major impact on a variety of NASA endeavors, ranging from modeling and simulation to data analysis of large datasets to collaborative engineering, planning and execution. In addition, RIACS collaborates with NASA scientists to apply information technology research to a

  15. NIKHEF-K safety report 1982

    International Nuclear Information System (INIS)

    1983-12-01

    In this safety report, general information is offered about the safety policy at the NIKHEF-K institute Amsterdam. Costs, prevention, training courses and inspection related to (radiation) safety are briefly discussed. Small accidents are reported. Some measurements have been carried out, but no measurable increase of radiation doses have been found. (Auth.)

  16. Curriculum: Integrating Health and Safety Into Engineering Curricula.

    Science.gov (United States)

    Talty, John T.

    1985-01-01

    National Institute for Occupational Safety and Health instituted a project in 1980 to encourage engineering educators to focus on occupational safety and health issues in engineering curricula. Progress to date is outlined, considering specific results in curriculum development, engineering society interaction, and formation of a teaching…

  17. NASA Thesaurus

    Data.gov (United States)

    National Aeronautics and Space Administration — The NASA Thesaurus contains the authorized NASA subject terms used to index and retrieve materials in the NASA Technical Reports Server (NTRS) and the NTRS...

  18. NASA and Public Libraries: Enhancing STEM Literacy in Underserved Communities

    Science.gov (United States)

    Dusenbery, P.; LaConte, K.; Harold, J. B.; Randall, C.

    2016-12-01

    NASA research programs are helping humanity understand the origin and evolution of galaxies, stars, and planets, and defining the conditions necessary to support life beyond Earth. The Space Science Institute's (SSI) National Center for Interactive Learning (NCIL) was recently funded by NASA`s Science Mission Directorate (SMD) to develop and implement a project called NASA@ My Library: A National Earth and Space Science Initiative That Connects NASA, Public Libraries and Their Communities. As places that offer their services for free, public libraries have become the "public square" by providing a place where members of a community can gather for information, educational programming, and policy discussions. Libraries are developing new ways to engage their patrons in STEM learning, and NCIL's STAR Library Education Network (STAR_Net) has been supporting their efforts for the last eight years, including through a vibrant community of practice that serves both librarians and STEM professionals. Project stakeholders include public library staff, state libraries, the earth and space science education community at NASA, subject matter experts, and informal science educators. The project will leverage high-impact SMD and library events to catalyze partnerships through dissemination of SMD assets and professional development. It will also develop frameworks for public libraries to increase STEM interest pathways in their communities (with supports for reaching underserved audiences). This presentation will summarize the key activities and expected outcomes of the 5-year project.

  19. Applying Formal Methods to NASA Projects: Transition from Research to Practice

    Science.gov (United States)

    Othon, Bill

    2009-01-01

    NASA project managers attempt to manage risk by relying on mature, well-understood process and technology when designing spacecraft. In the case of crewed systems, the margin for error is even tighter and leads to risk aversion. But as we look to future missions to the Moon and Mars, the complexity of the systems will increase as the spacecraft and crew work together with less reliance on Earth-based support. NASA will be forced to look for new ways to do business. Formal methods technologies can help NASA develop complex but cost effective spacecraft in many domains, including requirements and design, software development and inspection, and verification and validation of vehicle subsystems. To realize these gains, the technologies must be matured and field-tested so that they are proven when needed. During this discussion, current activities used to evaluate FM technologies for Orion spacecraft design will be reviewed. Also, suggestions will be made to demonstrate value to current designers, and mature the technology for eventual use in safety-critical NASA missions.

  20. Model Transformation for a System of Systems Dependability Safety Case

    Science.gov (United States)

    Murphy, Judy; Driskell, Steve

    2011-01-01

    The presentation reviews the dependability and safety effort of NASA's Independent Verification and Validation Facility. Topics include: safety engineering process, applications to non-space environment, Phase I overview, process creation, sample SRM artifact, Phase I end result, Phase II model transformation, fault management, and applying Phase II to individual projects.

  1. Stressing the Need for Safety in Technical Education

    Science.gov (United States)

    Defore, Jesse j.

    1974-01-01

    Discusses the importance of a safety orientation program in technical education and major components of a safety-conscious working enviroment. Suggests every institution take such measures as appointment of a safety officer, maintenance of a safety posture, inclusion of safety in curricula, and application of good safety practices. (CC)

  2. Evolution of International Space Station Program Safety Review Processes and Tools

    Science.gov (United States)

    Ratterman, Christian D.; Green, Collin; Guibert, Matt R.; McCracken, Kristle I.; Sang, Anthony C.; Sharpe, Matthew D.; Tollinger, Irene V.

    2013-01-01

    The International Space Station Program at NASA is constantly seeking to improve the processes and systems that support safe space operations. To that end, the ISS Program decided to upgrade their Safety and Hazard data systems with 3 goals: make safety and hazard data more accessible; better support the interconnection of different types of safety data; and increase the efficiency (and compliance) of safety-related processes. These goals are accomplished by moving data into a web-based structured data system that includes strong process support and supports integration with other information systems. Along with the data systems, ISS is evolving its submission requirements and safety process requirements to support the improved model. In contrast to existing operations (where paper processes and electronic file repositories are used for safety data management) the web-based solution provides the program with dramatically faster access to records, the ability to search for and reference specific data within records, reduced workload for hazard updates and approval, and process support including digital signatures and controlled record workflow. In addition, integration with other key data systems provides assistance with assessments of flight readiness, more efficient review and approval of operational controls and better tracking of international safety certifications. This approach will also provide new opportunities to streamline the sharing of data with ISS international partners while maintaining compliance with applicable laws and respecting restrictions on proprietary data. One goal of this paper is to outline the approach taken by the ISS Progrm to determine requirements for the new system and to devise a practical and efficient implementation strategy. From conception through implementation, ISS and NASA partners utilized a user-centered software development approach focused on user research and iterative design methods. The user-centered approach used on

  3. 1998 NASA-ASEE-Stanford Summer Faculty Fellowship Program

    Science.gov (United States)

    1998-01-01

    This report presents the essential features and highlights of the 1998 Summer Faculty Fellowship Program at Ames Research Center and Dryden Flight Research Center in a comprehensive and concise form. Summary reports describing the fellows' technical accomplishments are enclosed in the attached technical report. The proposal for the 1999 NASA-ASEE-Stanford Summer Faculty Fellowship Program is being submitted under separate cover. Of the 31 participating fellows, 27 were at Ames and 4 were at Dryden. The Program's central feature is the active participation by each fellow in one of the key technical activities currently under way at either the NASA Ames Research Center or the NASA Dryden Flight Research Center. The research topic is carefully chosen in advance to satisfy the criteria of: (1) importance to NASA, (2) high technical level, and (3) a good match to the interests, ability, and experience of the fellow, with the implied possibility of NASA-supported follow-on work at the fellow's home institution. Other features of the Summer Faculty Fellowship Program include participation by the fellows in workshops and seminars at Stanford, the Ames Research Center, and other off-site locations. These enrichment programs take place either directly or remotely, via the Stanford Center for Professional Development, and also involve specific interactions between fellows and Stanford faculty on technical and other academic subjects. A few, brief remarks are in order to summarize the fellows' opinions of the summer program. It is noteworthy that 90% of the fellows gave the NASA-Ames/Dryden- Stanford program an "excellent" rating and the remaining 10%, "good." Also, 100% would recommend the program to their colleagues as an effective means of furthering their professional development as teachers and researchers. Last, but not least, 87% of the fellows stated that a continuing research relationship with their NASA colleagues' organization probably would be maintained. Therefore

  4. Institute for Nuclear Waste Disposal. Annual Report 2011

    International Nuclear Information System (INIS)

    Geckeis, H.; Stumpf, T.

    2012-01-01

    The R and D at the Institute for Nuclear Waste Disposal, INE, (Institut fuer Nukleare Entsorgung) of the Karlsruhe Institute of Technology (KIT) focuses on (i) long term safety research for nuclear waste disposal, (ii) immobilization of high level radioactive waste (HLW), (iii) separation of minor actinides from HLW and (iv) radiation protection.

  5. IRSN safety research carried out for reviewing geological disposal safety case

    International Nuclear Information System (INIS)

    Serres, Christophe; Besnus, Francois; Gay, Didier

    2010-01-01

    The Radiation Protection and Nuclear Safety Institute develops a research programme on scientific issues related to geological disposal safety in order to supporting the technical assessment carried out in the framework of the regulatory review process. This research programme is organised along key safety questions that deal with various scientific disciplines as geology, hydrogeology, mechanics, geochemistry or physics and is implemented in national and international partnerships. It aims at providing IRSN with sufficient independent knowledge and scientific skills in order to be able to assess whether the scientific results gained by the waste management organisation and their integration for demonstrating the safety of the geological disposal are acceptable with regard to the safety issues to be dealt with in the Safety Case. (author)

  6. Institutional analysis for energy policy

    Energy Technology Data Exchange (ETDEWEB)

    Morris, F.A.; Cole, R.J.

    1980-07-01

    This report summarizes principles, techniques, and other information for doing institutional analyses in the area of energy policy. The report was prepared to support DOE's Regional Issues Identification and Assessment (RIIA) program. RIIA identifies environmental, health, safety, socioeconomic, and institutional issues that could accompany hypothetical future scenarios for energy consumption and production on a regional basis. Chapter 1 provides some theoretical grounding in institutional analysis. Chapter 2 provides information on constructing institutional maps of the processes for bringing on line energy technologies and facilities contemplated in RIIA scenarios. Chapter 3 assesses the institutional constraints, opportunities, and impacts that affect whether these technologies and facilities would in fact be developed. Chapters 4 and 5 show how institutional analysis can support use of exercises such as RIIA in planning institutional change and making energy policy choices.

  7. Nuclear safety in France in 2001

    International Nuclear Information System (INIS)

    Anon.

    2002-01-01

    This article presents the milestones of 2001 concerning nuclear safety in France: 1) the new organization of nuclear safety in France, IPSN (institute of protection and nuclear safety) and OPRI (office for protection against ionizing radiation) have merged into an independent organization: IRSN (institute of radiation protection and nuclear safety); 2) a draft bill has been proposed by the government to impose to nuclear operators new obligations concerning the transfer of information to the public; 3) nuclear safety authorities have drafted a new procedure in order to cope with the demand concerning modification of nuclear fuel management particularly the increase of the burn-up; 4) new evolutions concerning the management of a major nuclear crisis as a consequence of the terrorist attack on New-york and the accident at the AZF plant in Toulouse; 5) a point is made concerning the work of the WENRA association about the harmonization of the nuclear safety policies of its different members. (A.C.)

  8. Software Safety and Security

    CERN Document Server

    Nipkow, T; Hauptmann, B

    2012-01-01

    Recent decades have seen major advances in methods and tools for checking the safety and security of software systems. Automatic tools can now detect security flaws not only in programs of the order of a million lines of code, but also in high-level protocol descriptions. There has also been something of a breakthrough in the area of operating system verification. This book presents the lectures from the NATO Advanced Study Institute on Tools for Analysis and Verification of Software Safety and Security; a summer school held at Bayrischzell, Germany, in 2011. This Advanced Study Institute was

  9. Politicization and institutional unclarity: the case of the Portuguese food agency.

    Science.gov (United States)

    Domingues, Mafalda

    2006-09-01

    Recent changes in the institutional framework of food safety in Portugal have been initiated by BSE scandals and by EU legislative impact. Portuguese consumers have only recently moved from a poverty-related fear of food scarcity to modern fears of safety-related problems with food. Food safety is now highly politicized in Portugal, and the organization of food safety policies has been the topic of several parliamentary debates and of governmental reform. The chapter describes the political conflicts generated by the planned establishment of a new Food Agency-controversies which have so far hindered institutional change.

  10. Analysis of Aviation Safety Reporting System Incident Data Associated With the Technical Challenges of the Vehicle Systems Safety Technology Project

    Science.gov (United States)

    Withrow, Colleen A.; Reveley, Mary S.

    2014-01-01

    This analysis was conducted to support the Vehicle Systems Safety Technology (VSST) Project of the Aviation Safety Program (AVsP) milestone VSST4.2.1.01, "Identification of VSST-Related Trends." In particular, this is a review of incident data from the NASA Aviation Safety Reporting System (ASRS). The following three VSST-related technical challenges (TCs) were the focus of the incidents searched in the ASRS database: (1) Vechicle health assurance, (2) Effective crew-system interactions and decisions in all conditions; and (3) Aircraft loss of control prevention, mitigation, and recovery.

  11. Organizational Risk and Opportunity Management: Concepts and Processes for NASA's Consideration

    Science.gov (United States)

    Dezfuli, Homayoon; Benjamin, Allan; Everett, Christopher

    2016-01-01

    The focus of this report is on the development of a framework and overall approach that serves the interests of nonprofit and Government organizations like NASA that focus on developing and/or applying new technology (henceforth referred to as organizations like NASA). These interests tend to place emphasis on performing services and achieving scientific and technical gains more than on achieving financial investment goals, which is the province of commercial enterprises. In addition, the objectives of organizations like NASA extend to institutional development and maintenance, financial health, legal and reputational protection, education and partnerships, and mandated milestone achievements. This report discusses the philosophical underpinnings of OROM for organizations like NASA, the integration of OROM with existing management processes, and the nature of the activities that are performed to implement OROM within this context. The proposed framework includes a set of core principles that would be essential to any successful OROM approach, along with some features that are currently under development and are continuing to evolve. The report is intended to foster discussion of OROM at NASA in order to reach a consensus on the optimum approach for the agency.

  12. Risk Management of NASA Projects

    Science.gov (United States)

    Sarper, Hueseyin

    1997-01-01

    Various NASA Langley Research Center and other center projects were attempted for analysis to obtain historical data comparing pre-phase A study and the final outcome for each project. This attempt, however, was abandoned once it became clear that very little documentation was available. Next, extensive literature search was conducted on the role of risk and reliability concepts in project management. Probabilistic risk assessment (PRA) techniques are being used with increasing regularity both in and outside of NASA. The value and the usage of PRA techniques were reviewed for large projects. It was found that both civilian and military branches of the space industry have traditionally refrained from using PRA, which was developed and expanded by nuclear industry. Although much has changed with the end of the cold war and the Challenger disaster, it was found that ingrained anti-PRA culture is hard to stop. Examples of skepticism against the use of risk management and assessment techniques were found both in the literature and in conversations with some technical staff. Program and project managers need to be convinced that the applicability and use of risk management and risk assessment techniques is much broader than just in the traditional safety-related areas of application. The time has come to begin to uniformly apply these techniques. The whole idea of risk-based system can maximize the 'return on investment' that the public demands. Also, it would be very useful if all project documents of NASA Langley Research Center, pre-phase A through final report, are carefully stored in a central repository preferably in electronic format.

  13. Development and Execution of the RUNSAFE Runway Safety Bayesian Belief Network Model

    Science.gov (United States)

    Green, Lawrence L.

    2015-01-01

    One focus area of the National Aeronautics and Space Administration (NASA) is to improve aviation safety. Runway safety is one such thrust of investigation and research. The two primary components of this runway safety research are in runway incursion (RI) and runway excursion (RE) events. These are adverse ground-based aviation incidents that endanger crew, passengers, aircraft and perhaps other nearby people or property. A runway incursion is the incorrect presence of an aircraft, vehicle or person on the protected area of a surface designated for the landing and take-off of aircraft; one class of RI events simultaneously involves two aircraft, such as one aircraft incorrectly landing on a runway while another aircraft is taking off from the same runway. A runway excursion is an incident involving only a single aircraft defined as a veer-off or overrun off the runway surface. Within the scope of this effort at NASA Langley Research Center (LaRC), generic RI, RE and combined (RI plus RE, or RUNSAFE) event models have each been developed and implemented as a Bayesian Belief Network (BBN). Descriptions of runway safety issues from the literature searches have been used to develop the BBN models. Numerous considerations surrounding the process of developing the event models have been documented in this report. The event models were then thoroughly reviewed by a Subject Matter Expert (SME) panel through multiple knowledge elicitation sessions. Numerous improvements to the model structure (definitions, node names, node states and the connecting link topology) were made by the SME panel. Sample executions of the final RUNSAFE model have been presented herein for baseline and worst-case scenarios. Finally, a parameter sensitivity analysis for a given scenario was performed to show the risk drivers. The NASA and LaRC research in runway safety event modeling through the use of BBN technology is important for several reasons. These include: 1) providing a means to clearly

  14. The Institute on Climate and Planets (ICP): A Research Education Program

    Science.gov (United States)

    Carlson, Barbara (Technical Monitor)

    2003-01-01

    Giving students a fair start to become productive and responsible contributors in the 21st century workforce and society depends on our ability to help them develop: (1) A global view of the world; (2) Problem-solving and/or reasoning abilities; (3) Basic scientific and technical literacy; and (4) A multi-disciplinary understanding of how humans and nature interact with the earth system. The Institute on Climate and Planets (ICP) in New York City is NASA Goddard Institute for Space Studies' (GISS) response to the national challenge to give students a fair start to become productive in America's workforce and society, GISS is part of the Earth Science Director at NASA Goddard Space Flight Center in Maryland and a component of Columbia University's Earth Institute, a university-wide initiative whose mission is to understand our planet so as to enhance its sustainability. In 1994 Jim Hansen, several of his GISS and Columbia University colleagues and Fitzgerald Bramwell, the former Director of the New York City Alliance for Minority Participation at City University of New York, launched the ICP. ICP contributes to NASA education and minority outreach goals by directly involving underrepresented college, high school and junior high school students and their educators in research. ICP takes advantage of the interest of many civil servants and Columbia University research scientists at GISS to involve students and educators on multi-level research teams working on problems at the core of NASA's Earth Science Enterprise - advancing our understanding of Earth s climate, climate variability, and climate impacts.

  15. Analysis of Aviation Safety Reporting System Incident Data Associated with the Technical Challenges of the Atmospheric Environment Safety Technology Project

    Science.gov (United States)

    Withrow, Colleen A.; Reveley, Mary S.

    2014-01-01

    This study analyzed aircraft incidents in the NASA Aviation Safety Reporting System (ASRS) that apply to two of the three technical challenges (TCs) in NASA's Aviation Safety Program's Atmospheric Environment Safety Technology Project. The aircraft incidents are related to airframe icing and atmospheric hazards TCs. The study reviewed incidents that listed their primary problem as weather or environment-nonweather between 1994 and 2011 for aircraft defined by Federal Aviation Regulations (FAR) Parts 121, 135, and 91. The study investigated the phases of flight, a variety of anomalies, flight conditions, and incidents by FAR part, along with other categories. The first part of the analysis focused on airframe-icing-related incidents and found 275 incidents out of 3526 weather-related incidents over the 18-yr period. The second portion of the study focused on atmospheric hazards and found 4647 incidents over the same time period. Atmospheric hazards-related incidents included a range of conditions from clear air turbulence and wake vortex, to controlled flight toward terrain, ground encounters, and incursions.

  16. Nuclear Safety Project. Annual report 1983

    International Nuclear Information System (INIS)

    1984-06-01

    The annual report 1983 is a detailed description (in German language) of work within the Nuclear Safety Project performed in 1983 in the nuclear safety field by KfK institutes and departments and by external institutes on behalf of KfK. It includes for each individual research activity short summaries in English language on work performed, results obtained and plans for future work. This report was compiled by the project management. (orig.) [de

  17. Nuclear safety project. Annual report 1985

    International Nuclear Information System (INIS)

    1986-07-01

    The annual report 1985 is a detailed description (in German language) of work within the nuclear safety project performed in 1985 in the nuclear safety field by KfK institutes and departments and by external institutes on behalf of KfK. It includes for each individual research activity short summaries in English language on work performed, results obtained and plans for future work. This report was compiled by the project management. (orig./HP) [de

  18. Natural Language Interface for Safety Certification of Safety-Critical Software

    Science.gov (United States)

    Denney, Ewen; Fischer, Bernd

    2011-01-01

    Model-based design and automated code generation are being used increasingly at NASA. The trend is to move beyond simulation and prototyping to actual flight code, particularly in the guidance, navigation, and control domain. However, there are substantial obstacles to more widespread adoption of code generators in such safety-critical domains. Since code generators are typically not qualified, there is no guarantee that their output is correct, and consequently the generated code still needs to be fully tested and certified. The AutoCert generator plug-in supports the certification of automatically generated code by formally verifying that the generated code is free of different safety violations, by constructing an independently verifiable certificate, and by explaining its analysis in a textual form suitable for code reviews.

  19. [Activities of Research Institute for Advanced Computer Science

    Science.gov (United States)

    Gross, Anthony R. (Technical Monitor); Leiner, Barry M.

    2001-01-01

    The Research Institute for Advanced Computer Science (RIACS) carries out basic research and technology development in computer science, in support of the National Aeronautics and Space Administrations missions. RIACS is located at the NASA Ames Research Center, Moffett Field, California. RIACS research focuses on the three cornerstones of IT research necessary to meet the future challenges of NASA missions: 1. Automated Reasoning for Autonomous Systems Techniques are being developed enabling spacecraft that will be self-guiding and self-correcting to the extent that they will require little or no human intervention. Such craft will be equipped to independently solve problems as they arise, and fulfill their missions with minimum direction from Earth. 2. Human-Centered Computing Many NASA missions require synergy between humans and computers, with sophisticated computational aids amplifying human cognitive and perceptual abilities. 3. High Performance Computing and Networking Advances in the performance of computing and networking continue to have major impact on a variety of NASA endeavors, ranging from modeling and simulation to analysis of large scientific datasets to collaborative engineering, planning and execution. In addition, RIACS collaborates with NASA scientists to apply IT research to a variety of NASA application domains. RIACS also engages in other activities, such as workshops, seminars, visiting scientist programs and student summer programs, designed to encourage and facilitate collaboration between the university and NASA IT research communities.

  20. NASA-Navy Telemedicine: Autogenic Feedback Training Exercises for Motion Sickness

    Science.gov (United States)

    Acromite, Michael T.; Cowings, Patricia; Toscano, William; Davis, Carl; Porter, Henry O.

    2010-01-01

    Airsickness is the most significant medical condition affecting naval aviation training. A 2001 study showed that airsickness was reported in 81% of naval aviation students and was associated with 82% of below average flight scores. The cost to a single training air-wing was over $150,000 annually for fuel and maintenance costs alone. Resistent cases are sent to the Naval Aerospace Medical Institute (NAMI) for evaluation and desensitization in the self-paced airsickness desensitization (SPAD) program. This approach is 75% successful, but can take up to 8 weeks at a significant travel cost. NASA Ames Research Center's Autogenic Feedback Training Exercises (AFTE) uses physiological and biofeedback training for motion sickness prevention. It has a remote capability that has been used from Moffett Field, CA to Atlanta, GA . AFTE is administered in twelve (30-minute) training sessions. The success rate for the NASA AFTE program has been over 85%. Methods: Implementation Phases: Phase I: Transfer NASA AFTE to NAMI; NASA will remotely train aviation students at NAMI. Phase II: NAMI-centered AFTE application with NASA oversight. Phase III: NAMI-centered AFTE to remotely train at various Navy sites. Phase IV: NAMI to offer Tri-service application and examine research opportunities. Results: 1. Use available telemedicine connectivity between NAMI and NASA. 2. Save over $2,000 per student trained. 3. Reduce aviation training attrition. 4. Provide standardization of multi-location motion sickness training. 5. Future tri-service initiatives. 6. Data to NASA and Navy for QA and research opportunities.

  1. Rossendorf Research Center, Institute of Safety Research. Annual report 1991

    International Nuclear Information System (INIS)

    Boehmert, J.; Weiss, F.P.

    1992-08-01

    The working program covers above all topics concerning the assessment of design basis safety and the increase of operational safety of the WWER type reactors. The topics are directed to the WWER-440/213 type and to the WWER-1000 type, and are dealt with by the three departments, i.e. incident analysis, neutron embrittlement, and mechanical integrity. One paper is concerned with the determination of the neutron field of HERA. (orig.) [de

  2. Safety management of a complex R and D ground operating system

    Science.gov (United States)

    Connors, J. F.; Maurer, R. A.

    1975-01-01

    A perspective on safety program management was developed for a complex R&D operating system, such as the NASA-Lewis Research Center. Using a systems approach, hazardous operations are subjected to third-party reviews by designated-area safety committees and are maintained under safety permit controls. To insure personnel alertness, emergency containment forces and employees are trained in dry-run emergency simulation exercises. The keys to real safety effectiveness are top management support and visibility of residual risks.

  3. Applying Systems Thinking to Law Enforcement Safety: Recommendation for a Comprehensive Safety Management Framework

    Science.gov (United States)

    2015-12-01

    injuries can also lead to other significant health concerns such as depression and absenteeism , which impact organizational productivity and safety...injuries is important: (1) to determine the impact of costs such as lost wages, medical expenses and insurance claims, as well as productivity ... production and operational safety; and a sustaining institutional culture.53 Safety is often not the primary goal of organizations, as other business or

  4. NASA Astrophysics Technology Needs

    Science.gov (United States)

    Stahl, H. Philip

    2012-01-01

    July 2010, NASA Office of Chief Technologist (OCT) initiated an activity to create and maintain a NASA integrated roadmap for 15 key technology areas which recommend an overall technology investment strategy and prioritize NASA?s technology programs to meet NASA?s strategic goals. Science Instruments, Observatories and Sensor Systems(SIOSS) roadmap addresses technology needs to achieve NASA?s highest priority objectives -- not only for the Science Mission Directorate (SMD), but for all of NASA.

  5. Annual report 1991. Environment Institute

    International Nuclear Information System (INIS)

    1992-01-01

    This is the annual report of the Environment Institute of the Joint Research Centre - Ispra Site - of the Commission of the European Communities. The report summarizes the progress accomplished in the course of 1991 - i.e. the last of the four year (1988-91) Specific Research Programme of the Joint Research Centre - in the projects tackled by the Institute. The activities were mainly focused on the areas of environmental chemicals, air pollution, water pollution, chemical waste and food and drug analysis, included in the programme Environmental Protection, and of safety assessment of nuclear waste disposal in geological formation as a part of the Radioactive Waste Management programme. The scientific support provided to different Commission Services is also described, proper emphasis being given to that provided to the Directorate General Xl (Environment, Nuclear Safety and Civil Protection) in the field of chemicals, air pollution, water pollution, chemical waste and radioactive environmental monitoring (REM). The above activities are aimed at the implementation of EC directives in the related fields. The work for third parties and the contribution of the Institute to various EUREKA and COST projects are also shortly described. Lastly the report provides essential data concerning the Institute structure and the human and financial resources

  6. Patient safety in undergraduate radiography curricula: A European perspective

    International Nuclear Information System (INIS)

    England, A.; Azevedo, K.B.; Bezzina, P.; Henner, A.; McNulty, J.P.

    2016-01-01

    Purpose: To establish an understanding of patient safety within radiography education across Europe by surveying higher education institutions registered as affiliate members of the European Federation of Radiographer Societies (EFRS). Method: An online survey was developed to ascertain data on: programme type, patient safety definitions, relevant safety topics, specific areas taught, teaching and assessment methods, levels of teaching and curriculum drivers. Responses were identifiable in terms of educational institution and country. All 54 affiliated educational institutions were invited to participate. Descriptive and thematic analyses are reported. Results: A response rate of 61.1% (n = 33) was achieved from educational institutions representing 19 countries. Patient safety topics appear to be extremely well covered across curricula, however, topics including radiation protection and optimisation were not reported as being taught at an ‘advanced level’ by five and twelve respondents, respectively. Respondents identified the clinical department as the location of most patient safety-related teaching. Conclusions: Patient safety topics are deeply embedded within radiography curricula across Europe. Variations exist in terms of individual safety topics including, teaching and assessment methods, and the depth in which subjects are taught. Results from this study provide a baseline for assessing developments in curricula and can also serve as a benchmark for comparisons. - Highlights: • First European report on patient safety (PS). • PS deeply embedded within training curricula. • Terms and definitions largely consistent. • Some variety in the delivery and assessment methods. • Report provides baseline and opportunities for comparisons.

  7. Workplace Safety and Health Topics: Safety & Prevention

    Science.gov (United States)

    ... 1, 2018 Content source: National Institute for Occupational Safety and Health Education and Information Division Email Recommend Tweet YouTube Instagram Listen Watch RSS ABOUT About CDC Jobs Funding LEGAL Policies Privacy FOIA No Fear Act OIG 1600 Clifton Road Atlanta , GA 30329-4027 USA 800-CDC-INFO ( ...

  8. A comparison of the difference of requirements between functional safety and nuclear safety controllers

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C.K.; Lee, C.L.; Shyu, S.S. [Inst. of Nuclear Energy Research, Taoyuan, Taiwan (China)

    2014-07-01

    In order to establish self-reliant capabilities of nuclear I&C systems in Taiwan, Taiwan's Nuclear I&C System (TNICS) project had been established by Institute of Nuclear Energy Research (INER). A Triple Modular Redundant (TMR) safety controller (SCS-2000) has been completed and gone through the IEC 61508 Safety Integrity Level 3 (SIL3) certification of Functional Safety for industries. Based on the certification processes, the difference of requirements between Functional Safety and Nuclear Safety controllers in term of hardware and software are addressed in this study. Besides, the measures used to determine and verify the reliability of the safety control system design are presented. (author)

  9. Respirator studies for the National Institute for Occupational Safety and Health. Progress report, July 1, 1974--June 30, 1975

    International Nuclear Information System (INIS)

    Douglas, D.D.; Revoir, W.; Lowry, P.L.

    1976-08-01

    Respirator studies carried out in FY 1975 for the National Institute for Occupational Safety and Health were concentrated in two major areas: (1) the development of respirator test equipment and methods to improve the means of evaluating the performance of respirators, (2) the testing of respirators to obtain quantitative data to permit recommendations to be made to upgrade respirator performance criteria. Major accomplishments included obtaining man-test results on several different respirators using an anthropometrically selected test panel, determination of respirator exhalation valve leakages under static and dynamic conditions, and determination of the effects of respirator strap tension on facepiece leakage

  10. Reevaluation of the NOAA/CMDL carbon monoxide reference scale and comparisons with CO reference gases at NASA-Langley and the Fraunhofer Institut

    Energy Technology Data Exchange (ETDEWEB)

    Novelli, P.C.; Collins, J.E. Jr.; Myers, R.C.; Sachse, G.W.; Scheel, H.E. [Univ. of Colordo, Boulder, CO (United States)]|[Science and Technology Corporation, Hampton, VA (United States)]|[NOAA, Boulder, CO (United States)]|[NASA, Langley Research Center, Hampton, VA (United States)]|[Fraunhofer-Inst. fuer Atmospharishce Umweltforschung (Germany)

    1994-06-01

    The carbon monoxide (CO) reference scale created by the National Oceanic and Atmospheric Administration/Climate Monitoring and Diagnostics Laboratory (NOAA/CMDL) is used to quantify measurements of CO in the atmosphere, calibrate standards of other laboratories and to otherwise provide reference gases to the community measuring atmospheric CO. This reference scale was created based upon a set of primary standards prepared by gravimetric methods at CMDL and has been propagated to a set of working standards. In this paper we compare CO mixing ratios assigned to the working standards by three approaches: (1) calibration against the original gravimetric standards, (2) calibration using only working standards as the reference gas, and (3) calibration against three new gravimetric standards prepared to CMDL. The agreement between these values was typically better than 1%. The calibration histories of CMDL working standards are reviewed with respect to expected rates of CO change in the atmosphere. Using a Monte Carlo approach to simulate the effect of drifting standards on calculated mixing ratios, we conclude that the error solely associated with the maintenance of standards will limit the ability to detect small CO changes in the atmosphere. We also report results of intercalibration experiments conducted between CMDL and the Diode Laser Sensor Group (DACOM) at the NASA Langley Research Center (Hampton, Virginia), and CMDL and the Fraunhofer-Institut (Garmisch-Partenkirchen, Germany). Each laboratory calibrated several working standards for CO using their reference gases, and these results were compared to calibrations conducted by CMDL. The intercomparison of eight standards (CO concentrations between approximately 100 and approximately 165 ppb) by CMDL and NASA agreed to better than +/- 2%. (Abstract Truncated)

  11. NASA strategic plan

    Science.gov (United States)

    1994-01-01

    The NASA Strategic Plan is a living document. It provides far-reaching goals and objectives to create stability for NASA's efforts. The Plan presents NASA's top-level strategy: it articulates what NASA does and for whom; it differentiates between ends and means; it states where NASA is going and what NASA intends to do to get there. This Plan is not a budget document, nor does it present priorities for current or future programs. Rather, it establishes a framework for shaping NASA's activities and developing a balanced set of priorities across the Agency. Such priorities will then be reflected in the NASA budget. The document includes vision, mission, and goals; external environment; conceptual framework; strategic enterprises (Mission to Planet Earth, aeronautics, human exploration and development of space, scientific research, space technology, and synergy); strategic functions (transportation to space, space communications, human resources, and physical resources); values and operating principles; implementing strategy; and senior management team concurrence.

  12. Engineering Management Capstone Project EM 697: Compare and Contrast Risk Management Implementation at NASA and the US Army

    Science.gov (United States)

    Brothers, Mary Ann; Safie, Fayssal M. (Technical Monitor)

    2002-01-01

    NASA at Marshall Space Flight Center (MSFC) and the U.S. Army at Redstone Arsenal were analyzed to determine whether they were successful in implementing their risk management program. Risk management implementation surveys were distributed to aid in this analysis. The scope is limited to NASA S&MA (Safety and Mission Assurance) at MSFC, including applicable support contractors, and the US Army Engineering Directorate, including applicable contractors, located at Redstone Arsenal. NASA has moderately higher risk management implementation survey scores than the Army. Accordingly, the implementation of the risk management program at NASA is considered good while only two of five of the survey categories indicated that the risk management implementation is good at the Army.

  13. NASA space radiation transport code development consortium

    International Nuclear Information System (INIS)

    Townsend, L. W.

    2005-01-01

    Recently, NASA established a consortium involving the Univ. of Tennessee (lead institution), the Univ. of Houston, Roanoke College and various government and national laboratories, to accelerate the development of a standard set of radiation transport computer codes for NASA human exploration applications. This effort involves further improvements of the Monte Carlo codes HETC and FLUKA and the deterministic code HZETRN, including developing nuclear reaction databases necessary to extend the Monte Carlo codes to carry out heavy ion transport, and extending HZETRN to three dimensions. The improved codes will be validated by comparing predictions with measured laboratory transport data, provided by an experimental measurements consortium, and measurements in the upper atmosphere on the balloon-borne Deep Space Test Bed (DSTB). In this paper, we present an overview of the consortium members and the current status and future plans of consortium efforts to meet the research goals and objectives of this extensive undertaking. (authors)

  14. Complete NASA Dryden Staff of 1985, in front of building 4800

    Science.gov (United States)

    1985-01-01

    In 1985 the NASA Ames-Dryden Flight Research Facility employees and contractors gathered around the base of the X-1E for a picture. The X-1E is mounted in front of building 4800, the main building at Dryden. On Wednesday, October 1, 1958, the NACA yellow-backed winged symbol (see E-33718) that represented the National Advisory Committee for Aeronautics for 43-years, was removed from the front of the main building at the NASA High Speed Flight Station, making room for a new insignia belonging to the National Aeronautics and Space Administration. This NASA Insignia was created by retiree James J. Modarelli, former Chief of Technical Publication of Lewis Research Center; designed by the Army Institute of Heraldry; and approved by the Commission of Fine Arts and the NASA Administrator. This official insignia of the NASA is a dark blue disc with white stars. The white hand-cut letters 'NASA' are in the center of the disc and are encircled by a white diagonal orbit. A solid red 'V' shape appears behind and in front of the letters and extends beyond the disc. The 'V' is patterned after an actual wing design being tested by NACA researchers during the late 1950s. This insignia was used from 1958 to 1975 and was affectionately known at the 'meatball,' returning to NASA Insignia status in 1992. In the photo above the NASA Logotype appearing on the front of the main building replaced the NASA Insignia. The NASA Logotype was developed under the Federal Design Improvement Program initiated by the President in 1972, with the preferred color being red. It was approved by the Commission of Fine Arts and the NASA Administrator in October 1975. It symbolized NASA's role in aeronautics and space from 1975 to 1992 and has since been retired. In the logotype, the letters 'NASA' are reduced with the strokes being of one width; the elimination of cross strokes in the two 'A' letters imparts a quality of uniqueness and contemporary character. This familiar logo was known as 'The Worm'. On

  15. Checklists, safety, my culture and me.

    Science.gov (United States)

    Raghunathan, Karthik

    2012-07-01

    The world is not flat. Hierarchy is a fact of life in society and in healthcare institutions. National, specialty-specific and institutional cultures may play an important role in shaping today's patient-safety climate. The influence of power distance on safety interventions is under-studied. Checklists may make power distance-hampered negotiations easier by providing a standardised aviation-like framework for communications and by democratising the environment. By using surveys and simulation, we might discover patterns of potentially hidden yet problematic interactions that might foster maintenance of the error swamp. We need to understand how people interact as members of a group as this is crucial for the development of generalisable safety interventions.

  16. Relationship between knowledge, attitude, behavior, and self-efficacy on the radiation safety management of radiation workers in medical institutions

    International Nuclear Information System (INIS)

    Han, Eun Ok

    2007-01-01

    Radiation safety managements in medical institutions are needed to protect certain radiation damages as a part of National Coalition. This study investigates the characteristics of self-efficacy that become the major factor on the knowledge, attitude, and behavior on the radiation safety management of radiation workers as an approach of educational aspects and analyzes the relationship between such factors to provide basic materials for improving the activity level of radiation safety managements. In order to implement the goal of this study, a survey was performed for 1,200 workers who were engaged in radiation treatments in medical centers, such as general hospital, university hospital, private hospital, and public health center for 42 days from July 23, 2006. Then, the results of the analysis can be summarized as follows: 1. Average scores on knowledge, attitude, and behavior in the radiation safety management were presented as 75.76±11.20, 90.55±8.59, 80.58±11.70, respectively. Also, the average score of self-efficacy was recorded as 73.55±9.82. 2. Knowledge levels in the radiation safety management showed significant differences according to the sex, age, marriage, education, and experience. Also, males of married, older, highly educated, and largely experienced represented high knowledge levels. Attitude levels in the radiation safety management showed certain significant differences according to the type of medical centers in which private hospitals showed a relatively low level compared to that of high levels in university hospitals. Behavior levels in the radiation safety management also represented significant differences according to the age, marriage, education, experience, and types of medical centers. Factors in married, general hospital, older, highly educated, and largely experienced showed high behavior levels. In addition, the self-efficacy showed certain differences according to the marriage and types of medical centers. Factors in married

  17. Relationship between knowledge, attitude, behavior, and self-efficacy on the radiation safety management of radiation workers in medical institutions

    Energy Technology Data Exchange (ETDEWEB)

    Han, Eun Ok [Daegu Health College, Daegu (Korea, Republic of)

    2007-06-15

    Radiation safety managements in medical institutions are needed to protect certain radiation damages as a part of National Coalition. This study investigates the characteristics of self-efficacy that become the major factor on the knowledge, attitude, and behavior on the radiation safety management of radiation workers as an approach of educational aspects and analyzes the relationship between such factors to provide basic materials for improving the activity level of radiation safety managements. In order to implement the goal of this study, a survey was performed for 1,200 workers who were engaged in radiation treatments in medical centers, such as general hospital, university hospital, private hospital, and public health center for 42 days from July 23, 2006. Then, the results of the analysis can be summarized as follows: 1. Average scores on knowledge, attitude, and behavior in the radiation safety management were presented as 75.76{+-}11.20, 90.55{+-}8.59, 80.58{+-}11.70, respectively. Also, the average score of self-efficacy was recorded as 73.55{+-}9.82. 2. Knowledge levels in the radiation safety management showed significant differences according to the sex, age, marriage, education, and experience. Also, males of married, older, highly educated, and largely experienced represented high knowledge levels. Attitude levels in the radiation safety management showed certain significant differences according to the type of medical centers in which private hospitals showed a relatively low level compared to that of high levels in university hospitals. Behavior levels in the radiation safety management also represented significant differences according to the age, marriage, education, experience, and types of medical centers. Factors in married, general hospital, older, highly educated, and largely experienced showed high behavior levels. In addition, the self-efficacy showed certain differences according to the marriage and types of medical centers. Factors in

  18. The JOVE initiative - A NASA/university Joint Venture in space science

    Science.gov (United States)

    Six, F.; Chappell, R.

    1990-01-01

    The JOVE (NASA/university Joint Venture in space science) initiative is a point program between NASA and institutions of higher education whose aim is to bring about an extensive merger between these two communities. The project is discussed with emphasis on suggested contributions of partnership members, JOVE process timeline, and project schedules and costs. It is suggested that NASA provide a summer resident research associateship (one ten week stipend); scientific on-line data from space missions; an electronic network and work station, providing a link to the data base and to other scientists; matching student support, both undergraduate and graduate; matching summer salary for up to three faculty participants; and travel funds. The universities will be asked to provide research time for faculty participants, matching student support, matching summer salary for faculty participants, an instructional unit in space science, and an outreach program to pre-college students.

  19. LTE for public safety

    CERN Document Server

    Liebhart, Rainer; Wong, Curt; Merkel , Jürgen

    2015-01-01

    The aim of the book is to educate government agencies, operators, vendors and other regulatory institutions how LTE can be deployed to serve public safety market and offer regulatory / public safety features. It is written in such a way that it can be understood by both technical and non-technical personnel with just introductory knowledge in wireless communication. Some sections and chapters about public safety services offered by LTE network are intended to be understood by anyone with no knowledge in wireless communication.

  20. Ignalina Safety Analysis Group

    International Nuclear Information System (INIS)

    Ushpuras, E.

    1995-01-01

    The article describes the fields of activities of Ignalina NPP Safety Analysis Group (ISAG) in the Lithuanian Energy Institute and overview the main achievements gained since the group establishment in 1992. The group is working under the following guidelines: in-depth analysis of the fundamental physical processes of RBMK-1500 reactors; collection, systematization and verification of the design and operational data; simulation and analysis of potential accident consequences; analysis of thermohydraulic and neutronic characteristics of the plant; provision of technical and scientific consultations to VATESI, Governmental authorities, and also international institutions, participating in various projects aiming at Ignalina NPP safety enhancement. The ISAG is performing broad scientific co-operation programs with both Eastern and Western scientific groups, supplying engineering assistance for Ignalina NPP. ISAG is also participating in the joint Lithuanian - Swedish - Russian project - Barselina, the first Probabilistic Safety Assessment (PSA) study of Ignalina NPP. The work is underway together with Maryland University (USA) for assessment of the accident confinement system for a range of breaks in the primary circuit. At present the ISAG personnel is also involved in the project under the grant from the Nuclear Safety Account, administered by the European Bank for reconstruction and development for the preparation and review of an in-depth safety assessment of the Ignalina plant

  1. Design Safety Used in NASA's Human-rated Primary Lithium Batteries

    Science.gov (United States)

    Jeevarajan, J.

    2013-01-01

    Single cell tests were benign for external short, inadvertent charge and overdischarge into reversal up to 4.5 A. At lower current loads cells die (may be due to excessive dendrite formation) benignly. String level external short circuits lead to an unbalanced overdischarge, with one cell going into reversal. The result is catastrophic violent venting. Unbalanced string overdischarges at different currents causes catastrophic violent venting also. Heat-to-vent is very dramatic displaying violent venting Simulated internal short is also catastrophic and displays violent venting. Battery is not UL-rated; hence does not have dual-fault tolerance or tolerance to inherent cell tolerance to failures Battery Design for NASA JSC's human-rated application for use on ISS was changed to include two bypass diodes per cell to provide for two-failure tolerance to overdischarge into reversal (and external short) hazards.

  2. Nuclear Protection and Safety Institute R and D activities in the field of plant ageing

    Energy Technology Data Exchange (ETDEWEB)

    Deletre, G; Henry, J Y; Miannay, D; Olivera, J J; Horowitz, H; Barrachin, B

    1991-11-01

    A part of the work carried out by the CEA's Nuclear Protection and Safety Institute (IPSN) is devoted to revealing possible modifications in nuclear reactor materials under the combined effects of time, temperature and irradiation. The current R and D programme being carried out by the IPSN in collaboration with various specialized CEA departments concentrates on three main fields: - Reactor coolant system materials, - Polymerbased materials, - Coatings and paintings used inside pressurized water reactor containments. These activities are, of course, part of a much wider context which includes operating experience feedback, particularly as regards deterioration already observed in pressurized water reactors; this deterioration is usually the result of phenomena which were overlooked or inadequately studied at the design stage (corrosion, erosion, vibratory or thermal fatigue, cavitation, etc.). With his perspective in view, the IPSN is also undertaking a number of activities to develop powerful inspection methods and increase the effectiveness of preventive maintenance programmes.

  3. Nuclear Protection and Safety Institute R and D activities in the field of plant aging

    International Nuclear Information System (INIS)

    Deletre, G.; Henry, J.Y.; Miannay, D.; Olivera, J.J.; Horowitz, H.; Barrachin, B.

    1991-01-01

    A part of the work carried out by the CEA's Nuclear Protection and Safety Institute (IPSN) is devoted to revealing possible modifications in nuclear reactor materials under the combined effects of time, temperature and irradiation. The current R and D programme being carried out by the IPSN is collaboration with various specialized CEA departments concentrates on three main fields: Reactor coolant system materials, Polymerbased materials, Coatings and paintings used inside pressurized water reactor containments. These activities are, of course, part of a much wider context which includes operating experience feedback, particularly as regards deterioration already observed in pressurized water reactors; this deterioration is usually the result of phenomena which were overlooked or inadequately studied at the design stage (corrosion, erosion, vibratory or thermal fatigue, cavitation, etc). With this perspective in view, the IPSN is also undertaking a number of activities to develop powerful inspection methods and increase the effectiveness of preventive maintenance programmes. (author)

  4. Nuclear Safety Project. Annual report 1986

    International Nuclear Information System (INIS)

    1987-09-01

    The annual report 1986 is a detailed description of work within the Nuclear Safety Project performed in 1986 in the nuclear safety field by KfK institutes and departments and by external institutes on behalf of KfK. It includes individual research activities on dynamic loads and strains of reactor components under accident conditions, fuel behaviour under accident conditions, investigation and control of LWR core-meltdown accidents, improvement of fission product retention and reduction of radiation exposure, and on behaviour, impact and removal of released pollutants. (DG)

  5. A total safety management model

    International Nuclear Information System (INIS)

    Obadia, I.J.; Vidal, M.C.R.; Melo, P.F.F.F.

    2002-01-01

    In nuclear organizations, quality and safety are inextricably linked. Therefore, the search for excellence means reaching excellence in nuclear safety. The International Atomic Energy Agency, IAEA, developed, after the Chernobyl accident, the organizational approach for improving nuclear safety based on the safety culture, which requires a framework necessary to provide modifications in personnel attitudes and behaviors in situations related to safety. This work presents a Total Safety Management Model, based on the Model of Excellence of the Brazilian Quality Award and on the safety culture approach, which represents an alternative to this framework. The Model is currently under validation at the Nuclear Engineering Institute, in Rio de Janeiro, Brazil, and the results of its initial safety culture self assessment are also presented and discussed. (author)

  6. Internal NASA Study: NASAs Protoflight Research Initiative

    Science.gov (United States)

    Coan, Mary R.; Hirshorn, Steven R.; Moreland, Robert

    2015-01-01

    The NASA Protoflight Research Initiative is an internal NASA study conducted within the Office of the Chief Engineer to better understand the use of Protoflight within NASA. Extensive literature reviews and interviews with key NASA members with experience in both robotic and human spaceflight missions has resulted in three main conclusions and two observations. The first conclusion is that NASA's Protoflight method is not considered to be "prescriptive." The current policies and guidance allows each Program/Project to tailor the Protoflight approach to better meet their needs, goals and objectives. Second, Risk Management plays a key role in implementation of the Protoflight approach. Any deviations from full qualification will be based on the level of acceptable risk with guidance found in NPR 8705.4. Finally, over the past decade (2004 - 2014) only 6% of NASA's Protoflight missions and 6% of NASA's Full qualification missions experienced a publicly disclosed mission failure. In other words, the data indicates that the Protoflight approach, in and of it itself, does not increase the mission risk of in-flight failure. The first observation is that it would be beneficial to document the decision making process on the implementation and use of Protoflight. The second observation is that If a Project/Program chooses to use the Protoflight approach with relevant heritage, it is extremely important that the Program/Project Manager ensures that the current project's requirements falls within the heritage design, component, instrument and/or subsystem's requirements for both the planned and operational use, and that the documentation of the relevant heritage is comprehensive, sufficient and the decision well documented. To further benefit/inform this study, a recommendation to perform a deep dive into 30 missions with accessible data on their testing/verification methodology and decision process to research the differences between Protoflight and Full Qualification

  7. The NASA Severe Thunderstorm Observations and Regional Modeling (NASA STORM) Project

    Science.gov (United States)

    Schultz, Christopher J.; Gatlin, Patrick N.; Lang, Timothy J.; Srikishen, Jayanthi; Case, Jonathan L.; Molthan, Andrew L.; Zavodsky, Bradley T.; Bailey, Jeffrey; Blakeslee, Richard J.; Jedlovec, Gary J.

    2016-01-01

    The NASA Severe Storm Thunderstorm Observations and Regional Modeling(NASA STORM) project enhanced NASA’s severe weather research capabilities, building upon existing Earth Science expertise at NASA Marshall Space Flight Center (MSFC). During this project, MSFC extended NASA’s ground-based lightning detection capacity to include a readily deployable lightning mapping array (LMA). NASA STORM also enabled NASA’s Short-term Prediction and Research Transition (SPoRT) to add convection allowing ensemble modeling to its portfolio of regional numerical weather prediction (NWP) capabilities. As a part of NASA STORM, MSFC developed new open-source capabilities for analyzing and displaying weather radar observations integrated from both research and operational networks. These accomplishments enabled by NASA STORM are a step towards enhancing NASA’s capabilities for studying severe weather and positions them for any future NASA related severe storm field campaigns.

  8. 78 FR 24751 - Safety and Occupational Health Study Section (SOHSS), National Institute for Occupational Safety...

    Science.gov (United States)

    2013-04-26

    ... 14, 2013 (Closed) Place: Embassy Suites, 1900 Diagonal Road, Alexandria, Virginia 22314, Telephone... business and for the study section to consider safety and occupational health-related grant applications...

  9. Regional Super ESPC Saves Energy and Dollars at NASA's Johnson Space Center

    International Nuclear Information System (INIS)

    Federal Energy Management Program

    2001-01-01

    This case study about energy saving performance contacts (ESPCs) presents an overview of how the NASA's Johnson Space Flight Center established an ESPC contract and the benefits derived from it. The Federal Energy Management Program instituted these special contracts to help federal agencies finance energy-saving projects at their facilities

  10. Annual report 1991. Institute for Advanced Materials

    International Nuclear Information System (INIS)

    1992-01-01

    The Institute executed in 1991 the R and D programme on advanced materials of the Joint Research Centre and contributed to the programmes: reactor safety, radio-active waste management, fusion technology and safety, nuclear fuel and actinide research. The supplementary programme: Operation of the High Flux Reactor is presented in condensed form. A full report is published separately. (Author). refs., figs., tabs

  11. Building on the Past - Looking to the Future: A Focus on Payload Safety

    Science.gov (United States)

    Nash, Sally K.; Rehm, Raymond B.; Samtoagp. Darren M.; Wong, Teresa K.; Wolf, Scott L.

    2008-01-01

    The history of the space industry stretches far and above lunar landings to the construction of the International Space Station. For years, humans have sought to understand the nature of the universe. As society grows in knowledge and curiosity of space, the focus of maintaining the safety of the crew and vehicle habitability is of utmost importance to the National Aeronautics and Space Administration (NASA) community. Through the years, Payload Safety has developed not only as a Panel, but also as part of the NASA community, striving to enhance the efficiency and understanding of how business should be conducted as more International Partners become involved. This is the first in a series of papers and presentations in what is hoped to be an annual update that provides continuous challenges and lessons learned in the areas of communication, safety requirements and processes and other areas which have been vital to the Payload Safety Review Panel (PSRP).

  12. Recent tasks and status of National Research Institute for Radiobiology and Radiohygiene as TSO

    International Nuclear Information System (INIS)

    Pellet, S.

    2007-01-01

    The technical support function of the National Research Institute for Radiobiology and Radiohygiene has been introduced at the time of its establishment. In order to support the actual requirements the Institute carries on extended research in the fields of radiation protection and radiation biology participating in national and international projects. Supporting the proper performance of national radiation protection and safety tasks the Institute gives professional directives and expert opinions for decision processes of authorities. The Institutes main areas of radiation protection activity are: - Radiation-related licensing, inspection, record keeping; - assuring safety of radiation sources; - National Personal Dosimetry Service; - radiological monitoring of the environment; - preparedness for radiological incidents and accidents; - radiation protection training activities. The Institute has an accredited Testing Laboratory with nearly sixty examination protocols. Together with its Central Environmental Testing Laboratory, the Institute thus provides a significant support for both theoretical and practical accomplishment of the national radiation protection and safety tasks. (author)

  13. Proceedings of the twenty-fifth annual institute on mining health, safety and research

    Energy Technology Data Exchange (ETDEWEB)

    Tinney, G.R.; Bacho, A.; Karmis, M. [eds.

    1994-12-31

    The keynote session included papers on the US Bureau of Mines - a vision for the future; clean, green and lean; and the psychology of occupational safety. The technical sessions include panel discussions on Virginia`s revised mine safety regulations, and on independent contractors. Other papers covered: criminal enforcement of regulatory violations; accidents during surface mine mobile equipment; Federal Mine Safety and Health Review Commission; safety, technological and productivity potentials of highwall mining; and accidents caused by falls of unsupported roof.

  14. Psychological aspect of safety culture and motivation

    International Nuclear Information System (INIS)

    Godienko, O.

    2002-01-01

    Evaluations of motivation related to safety of personnel in NPPs and other nuclear facilities is made using the results from a study involving 606 persons from Kursk NPP, Physics and Power Engineering Institute (Russia), Obninsk Institute od Nuclear Power and Engineering and Training Centre of Russian Federation Navy. The results show the predominant role of safety motivation as an independent component in the structure of labor activity of nuclear workers and its dynamics in forming the motivation structure

  15. The NASA Airborne Astronomy Program: A perspective on its contributions to science, technology, and education

    Science.gov (United States)

    Larson, Harold P.

    1995-01-01

    The scientific, educational, and instrumental contributions from NASA's airborne observatories are deduced from the program's publication record (789 citations, excluding abstracts, involving 580 authors at 128 institutions in the United States and abroad between 1967-1990).

  16. Case study: the Argentina Road Safety Project: lessons learned for the decade of action for road safety, 2011-2020.

    Science.gov (United States)

    Raffo, Veronica; Bliss, Tony; Shotten, Marc; Sleet, David; Blanchard, Claire

    2013-12-01

    This case study of the Argentina Road Safety Project demonstrates how the application of World Bank road safety project guidelines focused on institution building can accelerate knowledge transfer, scale up investment and improve the focus on results. The case study highlights road safety as a development priority and outlines World Bank initiatives addressing the implementation of the World Report on Road Traffic Injury's recommendations and the subsequent launch of the Decade of Action for Road Safety, from 2011-2020. The case study emphasizes the vital role played by the lead agency in ensuring sustainable road safety improvements and promoting the shift to a 'Safe System' approach, which necessitated the strengthening of all elements of the road safety management system. It summarizes road safety performance and institutional initiatives in Argentina leading up to the preparation and implementation of the project. We describe the project's development objectives, financing arrangements, specific components and investment staging. Finally, we discuss its innovative features and lessons learned, and present a set of supplementary guidelines, both to assist multilateral development banks and their clients with future road safety initiatives, and to encourage better linkages between the health and transportation sectors supporting them.

  17. 1997 NASA-ODU American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program

    Science.gov (United States)

    Tiwari, Surendra N. (Compiler); Young, Deborah B. (Compiler)

    1998-01-01

    Since 1964, the National Aeronautics and Space Administration (NASA) has supported a program of summer faculty fellowships for engineering and science educators. In a series of collaborations between NASA research and development centers and nearby universities, engineering faculty members spend 10 weeks working with professional peers on research. The Summer Faculty Program Committee of the American Society for Engineering Education supervises the programs. Objectives of the program are as follows: (1) To further the professional knowledge of qualified engineering and science faculty members, (2) To stimulate and exchange ideas between participants and NASA; (3) To enrich and refresh the research and teaching activities of participants' institutions; and (4) To contribute to the research objectives of the NASA center. Program description is as follows: College or university faculty members will be appointed as Research Fellows to spend 10 weeks in cooperative research and study at the NASA Langley Research Center. The Fellow will devote approximately 90 percent of the time to a research problem and the remaining time to a study program. The study program will consist of lectures and seminars on topics of interest or that are directly relevant to the Fellows' research topics. The lectures and seminar leaders will be distinguished scientists and engineers from NASA, education, and industry.

  18. 75 FR 56549 - National Institute for Occupational Safety and Health (NIOSH), Safety and Occupational Health...

    Science.gov (United States)

    2010-09-16

    ... Suites Hotel, 1900 Diagonal Road, Alexandria, Virginia, 22314, Telephone (703) 684-5900, Fax (703) 684... conduct of Study Section business and for the study section to consider safety and occupational health...

  19. Patient safety in organizational culture as perceived by leaderships of hospital institutions with different types of administration.

    Science.gov (United States)

    Silva, Natasha Dejigov Monteiro da; Barbosa, Antonio Pires; Padilha, Kátia Grillo; Malik, Ana Maria

    2016-01-01

    To identify the perceptions of leaderships toward patient safety culture dimensions in the routine of hospitals with different administrative profiles: government, social and private organizations, and make correlations among participating institutions regarding dimensions of patient safety culture used. A quantitative cross-sectional study that used the Self Assessment Questionnaire 30 translated into Portuguese. The data were processed by analysis of variance (ANOVA) in addition to descriptive statistics, with statistical significance set at p-value ≤ 0.05. According to the participants' perceptions, the significant dimensions of patient safety culture were 'patient safety climate' and 'organizational learning', with 81% explanatory power. Mean scores showed that among private organizations, higher values were attributed to statements; however, the correlation between dimensions was stronger among government hospitals. Different hospital organizations present distinct values for each dimension of patient safety culture and their investigation enables professionals to identify which dimensions need to be introduced or improved to increase patient safety. Identificar percepções das lideranças sobre as dimensões da cultura de segurança do paciente no cotidiano de hospitais de diferentes perfis administrativos: públicos, organizações sociais e privados, e realizar correlação entre as instituições participantes, de acordo com as dimensões da cultura de segurança do paciente utilizadas. Estudo transversal de aspecto quantitativo obtido por meio da aplicação do instrumento Self Assessment Questionnaire 30, traduzido para a língua portuguesa. Os dados foram tratados com análise de variância (ANOVA), além das estatísticas descritivas, considerando como de significância estatística valores de p-valor ≤ 0,05. Segundo a percepção dos participantes do estudo, as dimensões significativas para a cultura de segurança do paciente foram Ambiente de

  20. FAA/NASA Joint University Program for Air Transportation Research, 1992-1993

    Science.gov (United States)

    Morrell, Frederick R. (Compiler)

    1994-01-01

    The research conducted during the academic year 1992-1993 under the FAA/NASA sponsored Joint University Program for Air Transportation Research is summarized. The year end review was held at Ohio University, Athens, Ohio, 17-18 June 1993. The Joint University Program is a coordinated set of three grants sponsored by the Federal Aviation Administration and NASA Langley Research Center, one each with the Massachusetts Institute of Technology, Ohio University, and Princeton University. Completed works, status reports, and annotated bibliographies are presented for research topics, which include navigation, guidance, and control theory and practice, aircraft performance, human factors and air traffic management. An overview of the year's activities for each university is also presented.

  1. 75 FR 5333 - Safety and Occupational Health Study Section (SOHSS), National Institute for Occupational Safety...

    Science.gov (United States)

    2010-02-02

    ...) Place: Embassy Suites Hotel, 1900 Diagonal Road, Alexandria, Virginia 22314, Telephone (703) 684-5900... matters related to the conduct of Study Section business and for the study section to consider safety and...

  2. The AGI-ASU-NASA Triad Program for K-12 Earth and Space Science Education

    Science.gov (United States)

    Pacheco, H. A.; Semken, S. C.; Taylor, W.; Benbow, A. E.

    2011-12-01

    The NASA Triad program of the American Geological Institute (AGI) and Arizona State University School of Earth and Space Exploration (ASU SESE) is a three-part effort to promote Earth and space science literacy and STEM education at the national level, funded by NASA through a cooperative agreement starting in 2010. NASA Triad comprises (1) infusion of NASA STEM content into AGI's secondary Earth science curricula; (2) national lead teacher professional development workshops; and (3) an online professional development guide for teachers running NASA STEM workshops. The Triad collaboration draws on AGI's inquiry-based curriculum and teacher professional-development resources and workforce-building programs; ASU SESE's spectrum of research in Mars and Moon exploration, astrobiology, meteoritics, Earth systems, and cyberlearning; and direct access to NASA facilities and dynamic education resources. Triad milestones to date include integration of NASA resources into AGI's print and online curricula and two week-long, national-scale, teacher-leader professional development academies in Earth and space sciences presented at ASU Dietz Museum in Tempe and NASA Johnson Space Flight Center in Houston. Robust front-end and formative assessments of these program components, including content gains, teacher-perceived classroom relevance, teacher-cohort lesson development, and teacher workshop design, have been conducted. Quantitative and qualitative findings from these assessment activities have been applied to identify best and most effective practices, which will be disseminated nationally and globally through AGI and NASA channels.

  3. National Institute for Occupational Safety and Health Oversight: OMB Involvement in VDT Study. Hearing before the Subcommittee on Health and Safety of the Committee on Education and Labor. House of Representatives, Ninety-Ninth Congress, Second Session (June 4, 1986).

    Science.gov (United States)

    Congress of the U.S., Washington, DC. House Committee on Education and Labor.

    This hearing addressed the issue of whether the delays in producing a proposed National Institute for Occupational and Safety Health (NIOSH) study on the possible health hazards associated with video display terminals (VDTs) are due to concerns about scientific methodology or unwarranted interference by the Office of Management and Budget (OMB).…

  4. Commercial Crew Program Crew Safety Strategy

    Science.gov (United States)

    Vassberg, Nathan; Stover, Billy

    2015-01-01

    The purpose of this presentation is to explain to our international partners (ESA and JAXA) how NASA is implementing crew safety onto our commercial partners under the Commercial Crew Program. It will show them the overall strategy of 1) how crew safety boundaries have been established; 2) how Human Rating requirements have been flown down into programmatic requirements and over into contracts and partner requirements; 3) how CCP SMA has assessed CCP Certification and CoFR strategies against Shuttle baselines; 4) Discuss how Risk Based Assessment (RBA) and Shared Assurance is used to accomplish these strategies.

  5. Annual Safety Report 1981

    International Nuclear Information System (INIS)

    1982-09-01

    A safety report from Section K (Nuclear Physics) of the Dutch National Institute for Nuclear and High Energy Physics is presented for 1981. The report begins with general matters concerning safety policy at NIKHEF, licences and expenditure. Works accidents (none of them radiological) are detailed and accident prevention considered. The measurement programme for neutron radiation in the vicinity of the accelerator is described and the results are discussed. The means and results of personnel dosimetry are also presented. The report is concluded with a list of publications concerning safety aspects at NIKHEF. (C.F.)

  6. Institute of Energy and Climate Research IEK-6 : nuclear waste management & reactor safety report 2009/2010 ; material science for nuclear waste management

    OpenAIRE

    Klinkenberg, M.; Neumeier, S.; Bosbach, D. (Editors)

    2011-01-01

    This is the first issue of a new series of bi-annual reports intended to provide an overview of research activities for the safe management of nuclear waste in the Institute of Energy and Climate Research (IEK-6), Nuclear Waste Management and Reactor Safety devision in Jülich. The report gives a thematic overview of the research in 2009 and 2010 by short papers of five to eight pages. Some papers are discussing the work within different projects with intensive overlap, such as ...

  7. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) summer faculty fellowship program, 1986, Volume 1

    International Nuclear Information System (INIS)

    Mcinnis, B.; Goldstein, S.

    1987-06-01

    The Johnson Space Center (JSC) NASA/ASEE Summer Faculty Fellowship Program was conducted by the University of Houston. The basic objectives of the program are: (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching objectives of participants' institutions; and (4) to contribute to the research objectives of the NASA Centers. Each faculty fellow spent ten weeks at JSC engaged in a research project commensurate with his interests and background and worked in collaboration with a NASA/JSC colleague. Volume 1 contains sections 1 through 14

  8. Methods for safety culture improvement

    International Nuclear Information System (INIS)

    Sivintsev, Yu.V.

    1998-01-01

    New IAEA publication concerning the problems of safety assurance covering different aspects beginning from terminology applied and up to concrete examples of well and poor safety culture development at nuclear facilities is discussed. The safety culture is defined as such set of characteristics and specific activities of institutions and individual persons which states that safety problems of a nuclear facility are given the attention determined by their importance as being of highest priority. The statements of the new document have recommended, not mandatory character. It is emphasized that the process of safety culture improvement at nuclear facilities should be integral component of management procedure, not a bolt on extra

  9. NASA technology applications team: Applications of aerospace technology

    Science.gov (United States)

    1993-01-01

    This report covers the activities of the Research Triangle Institute (RTI) Technology Applications Team for the period 1 October 1992 through 30 September 1993. The work reported herein was supported by the National Aeronautics and Space Administration (NASA), Contract No. NASW-4367. Highlights of the RTI Applications Team activities over the past year are presented in Section 1.0. The Team's progress in fulfilling the requirements of the contract is summarized in Section 2.0. In addition to our market-driven approach to applications project development, RTI has placed increased effort on activities to commercialize technologies developed at NASA Centers. These Technology Commercialization efforts are summarized in Section 3.0. New problem statements prepared by the Team in the reporting period are presented in Section 4.0. The Team's transfer activities for ongoing projects with the NASA Centers are presented in Section 5.0. Section 6.0 summarizes the status of four add-on tasks. Travel for the reporting period is described in Section 7.0. The RTI Team staff and consultants and their project responsibilities are listed in Appendix A. Appendix B includes Technology Opportunity Announcements and Spinoff! Sheets prepared by the Team while Appendix C contains a series of technology transfer articles prepared by the Team.

  10. C-Band Airport Surface Communications System Engineering-Initial High-Level Safety Risk Assessment and Mitigation

    Science.gov (United States)

    Zelkin, Natalie; Henriksen, Stephen

    2011-01-01

    This document is being provided as part of ITT's NASA Glenn Research Center Aerospace Communication Systems Technical Support (ACSTS) contract: "New ATM Requirements--Future Communications, C-Band and L-Band Communications Standard Development." ITT has completed a safety hazard analysis providing a preliminary safety assessment for the proposed C-band (5091- to 5150-MHz) airport surface communication system. The assessment was performed following the guidelines outlined in the Federal Aviation Administration Safety Risk Management Guidance for System Acquisitions document. The safety analysis did not identify any hazards with an unacceptable risk, though a number of hazards with a medium risk were documented. This effort represents an initial high-level safety hazard analysis and notes the triggers for risk reassessment. A detailed safety hazards analysis is recommended as a follow-on activity to assess particular components of the C-band communication system after the profile is finalized and system rollout timing is determined. A security risk assessment has been performed by NASA as a parallel activity. While safety analysis is concerned with a prevention of accidental errors and failures, the security threat analysis focuses on deliberate attacks. Both processes identify the events that affect operation of the system; and from a safety perspective the security threats may present safety risks.

  11. The NASA Astrophysics Program

    Science.gov (United States)

    Zebulum, Ricardo S.

    2011-01-01

    NASA's scientists are enjoying unprecedented access to astronomy data from space, both from missions launched and operated only by NASA, as well as missions led by other space agencies to which NASA contributed instruments or technology. This paper describes the NASA astrophysics program for the next decade, including NASA's response to the ASTRO2010 Decadal Survey.

  12. The Suomi National Polar-Orbiting Partnership (SNPP): Continuing NASA Research and Applications

    Science.gov (United States)

    Butler, James; Gleason, James; Jedlovec, Gary; Coronado, Patrick

    2015-01-01

    The Suomi National Polar-orbiting Partnership (SNPP) satellite was successfully launched into a polar orbit on October 28, 2011 carrying 5 remote sensing instruments designed to provide data to improve weather forecasts and to increase understanding of long-term climate change. SNPP provides operational continuity of satellite-based observations for NOAA's Polar-orbiting Operational Environmental Satellites (POES) and continues the long-term record of climate quality observations established by NASA's Earth Observing System (EOS) satellites. In the 2003 to 2011 pre-launch timeframe, NASA's SNPP Science Team assessed the adequacy of the operational Raw Data Records (RDRs), Sensor Data Records (SDRs), and Environmental Data Records (EDRs) from the SNPP instruments for use in NASA Earth Science research, examined the operational algorithms used to produce those data records, and proposed a path forward for the production of climate quality products from SNPP. In order to perform these tasks, a distributed data system, the NASA Science Data Segment (SDS), ingested RDRs, SDRs, and EDRs from the NOAA Archive and Distribution and Interface Data Processing Segments, ADS and IDPS, respectively. The SDS also obtained operational algorithms for evaluation purposes from the NOAA Government Resource for Algorithm Verification, Independent Testing and Evaluation (GRAVITE). Within the NASA SDS, five Product Evaluation and Test Elements (PEATEs) received, ingested, and stored data and performed NASA's data processing, evaluation, and analysis activities. The distributed nature of this data distribution system was established by physically housing each PEATE within one of five Climate Analysis Research Systems (CARS) located at either at a NASA or a university institution. The CARS were organized around 5 key EDRs directly in support of the following NASA Earth Science focus areas: atmospheric sounding, ocean, land, ozone, and atmospheric composition products. The PEATES provided

  13. 77 FR 75633 - Safety and Occupational Health Study Section (SOHSS), National Institute for Occupational Safety...

    Science.gov (United States)

    2012-12-21

    ... (Closed). 8:00 a.m.-5:00 p.m., February 22, 2013 (Closed). Place: Embassy Suites, 1900 Diagonal Road... conduct of Study Section business and for the study section to consider safety and occupational health...

  14. NASA systems engineering handbook

    Science.gov (United States)

    Shishko, Robert; Aster, Robert; Chamberlain, Robert G.; McDuffee, Patrick; Pieniazek, Les; Rowell, Tom; Bain, Beth; Cox, Renee I.; Mooz, Harold; Polaski, Lou

    1995-06-01

    This handbook brings the fundamental concepts and techniques of systems engineering to NASA personnel in a way that recognizes the nature of NASA systems and environment. It is intended to accompany formal NASA training courses on systems engineering and project management when appropriate, and is designed to be a top-level overview. The concepts were drawn from NASA field center handbooks, NMI's/NHB's, the work of the NASA-wide Systems Engineering Working Group and the Systems Engineering Process Improvement Task team, several non-NASA textbooks and guides, and material from independent systems engineering courses taught to NASA personnel. Five core chapters cover systems engineering fundamentals, the NASA Project Cycle, management issues in systems engineering, systems analysis and modeling, and specialty engineering integration. It is not intended as a directive.

  15. How trust in institutions and organizations builds general consumer confidence in the safety of food: a decomposition of effects.

    Science.gov (United States)

    de Jonge, J; van Trijp, J C M; van der Lans, I A; Renes, R J; Frewer, L J

    2008-09-01

    This paper investigates the relationship between general consumer confidence in the safety of food and consumer trust in institutions and organizations. More specifically, using a decompositional regression analysis approach, the extent to which the strength of the relationship between trust and general confidence is dependent upon a particular food chain actor (for example, food manufacturers) is assessed. In addition, the impact of specific subdimensions of trust, such as openness, on consumer confidence are analyzed, as well as interaction effects of actors and subdimensions of trust. The results confirm previous findings, which indicate that a higher level of trust is associated with a higher level of confidence. However, the results from the current study extend on previous findings by disentangling the effects that determine the strength of this relationship into specific components associated with the different actors, the different trust dimensions, and specific combinations of actors and trust dimensions. The results show that trust in food manufacturers influences general confidence more than trust in other food chain actors, and that care is the most important trust dimension. However, the contribution of a particular trust dimension in enhancing general confidence is actor-specific, suggesting that different actors should focus on different trust dimensions when the purpose is to enhance consumer confidence in food safety. Implications for the development of communication strategies that are designed to regain or maintain consumer confidence in the safety of food are discussed.

  16. Technology Innovations from NASA's Next Generation Launch Technology Program

    Science.gov (United States)

    Cook, Stephen A.; Morris, Charles E. K., Jr.; Tyson, Richard W.

    2004-01-01

    NASA's Next Generation Launch Technology Program has been on the cutting edge of technology, improving the safety, affordability, and reliability of future space-launch-transportation systems. The array of projects focused on propulsion, airframe, and other vehicle systems. Achievements range from building miniature fuel/oxygen sensors to hot-firings of major rocket-engine systems as well as extreme thermo-mechanical testing of large-scale structures. Results to date have significantly advanced technology readiness for future space-launch systems using either airbreathing or rocket propulsion.

  17. Paul Scherrer Institute Scientific Report 2000. Volume IV: Nuclear Energy and Safety

    International Nuclear Information System (INIS)

    Smith, Brian; Gschwend, Beatrice

    2001-03-01

    Nuclear energy related research in Switzerland is concentrated at PSI's Nuclear Energy and Safety Research Department (NES). The activities of the department are concentrated on three main domains of: Safety and related problems of operating plants; safety features of future reactor and fuel cycles; waste management. Comprehensive assessments of energy systems are carried out in cooperation with PSI's General Energy Research Department. Many of the programs are part of collaborations with universities, industry, or international organisations. Progress in 2000 in these topical areas is described in this report. A list of scientific publications in 2000 is also provided

  18. Paul Scherrer Institute Scientific Report 2000. Volume IV: Nuclear Energy and Safety

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Brian; Gschwend, Beatrice [eds.

    2001-03-01

    Nuclear energy related research in Switzerland is concentrated at PSI's Nuclear Energy and Safety Research Department (NES). The activities of the department are concentrated on three main domains of: Safety and related problems of operating plants; safety features of future reactor and fuel cycles; waste management. Comprehensive assessments of energy systems are carried out in cooperation with PSI's General Energy Research Department. Many of the programs are part of collaborations with universities, industry, or international organisations. Progress in 2000 in these topical areas is described in this report. A list of scientific publications in 2000 is also provided.

  19. Activities of the Research Institute for Advanced Computer Science

    Science.gov (United States)

    Oliger, Joseph

    1994-01-01

    The Research Institute for Advanced Computer Science (RIACS) was established by the Universities Space Research Association (USRA) at the NASA Ames Research Center (ARC) on June 6, 1983. RIACS is privately operated by USRA, a consortium of universities with research programs in the aerospace sciences, under contract with NASA. The primary mission of RIACS is to provide research and expertise in computer science and scientific computing to support the scientific missions of NASA ARC. The research carried out at RIACS must change its emphasis from year to year in response to NASA ARC's changing needs and technological opportunities. Research at RIACS is currently being done in the following areas: (1) parallel computing; (2) advanced methods for scientific computing; (3) high performance networks; and (4) learning systems. RIACS technical reports are usually preprints of manuscripts that have been submitted to research journals or conference proceedings. A list of these reports for the period January 1, 1994 through December 31, 1994 is in the Reports and Abstracts section of this report.

  20. A Study on Enhancement of Understanding of Radiation and Safety Management

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Dong Han; Park, Ji Young; Lee, Jae Uk; Bae, Jun Woo; Kim, Hee Reyoung [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2014-10-15

    Concerns for radiation exposure have been increased from small and big radiation works or experiments with radiation generator (RG) or radiation isotopes (RI) at institutions using radiation in Korea. Actually, due to radiation exposure occurred on the process of handling RI, etc., The exposure should be maintained as low as reasonably possible. To do this, above all, suitable training and establishment of safety culture have to be preceded. In this respect, an education institution is a place where people learn first about handling radiations in various specialties with purposes including academic research, and the first learned habits and practices acts as the basis for safety management of radiation when they continue to do radiation work after going into the society. Hereford, it is needed to establish the right safety culture on radiation for its safe managing. In the present study, the direction for the right understandings and safety improvement are suggested through the radiation survey on education institutions and preparation of safety guidances for users. The basic guidance at the radiation experiment was prepared for the right understanding of the radiation to prevent radiation accidents from careless handling by workers based on the surveyed results for education institutions. It is expected to be used as fundamentals for improvement for radiation safety management of workers and researchers and, further, safety policy for national nuclear energy and radiations.

  1. A Study on Enhancement of Understanding of Radiation and Safety Management

    International Nuclear Information System (INIS)

    Yoo, Dong Han; Park, Ji Young; Lee, Jae Uk; Bae, Jun Woo; Kim, Hee Reyoung

    2014-01-01

    Concerns for radiation exposure have been increased from small and big radiation works or experiments with radiation generator (RG) or radiation isotopes (RI) at institutions using radiation in Korea. Actually, due to radiation exposure occurred on the process of handling RI, etc., The exposure should be maintained as low as reasonably possible. To do this, above all, suitable training and establishment of safety culture have to be preceded. In this respect, an education institution is a place where people learn first about handling radiations in various specialties with purposes including academic research, and the first learned habits and practices acts as the basis for safety management of radiation when they continue to do radiation work after going into the society. Hereford, it is needed to establish the right safety culture on radiation for its safe managing. In the present study, the direction for the right understandings and safety improvement are suggested through the radiation survey on education institutions and preparation of safety guidances for users. The basic guidance at the radiation experiment was prepared for the right understanding of the radiation to prevent radiation accidents from careless handling by workers based on the surveyed results for education institutions. It is expected to be used as fundamentals for improvement for radiation safety management of workers and researchers and, further, safety policy for national nuclear energy and radiations

  2. Recommended techniques for effective maintainability. A continuous improvement initiative of the NASA Reliability and Maintainability Steering Committee

    Science.gov (United States)

    1994-01-01

    This manual presents a series of recommended techniques that can increase overall operational effectiveness of both flight and ground based NASA systems. It provides a set of tools that minimizes risk associated with: (1) restoring failed functions (both ground and flight based); (2) conducting complex and highly visible maintenance operations; and (3) sustaining a technical capability to support the NASA mission using aging equipment or facilities. It considers (1) program management - key elements of an effective maintainability effort; (2) design and development - techniques that have benefited previous programs; (3) analysis and test - quantitative and qualitative analysis processes and testing techniques; and (4) operations and operational design techniques that address NASA field experience. This document is a valuable resource for continuous improvement ideas in executing the systems development process in accordance with the NASA 'better, faster, smaller, and cheaper' goal without compromising safety.

  3. Reaction Control System Thruster Cracking Consultation: NASA Engineering and Safety Center (NESC) Materials Super Problem Resolution Team (SPRT) Findings

    Science.gov (United States)

    MacKay, Rebecca A.; Smith, Stephen W.; Shah, Sandeep R.; Piascik, Robert S.

    2005-01-01

    The shuttle orbiter s reaction control system (RCS) primary thruster serial number 120 was found to contain cracks in the counter bores and relief radius after a chamber repair and rejuvenation was performed in April 2004. Relief radius cracking had been observed in the 1970s and 1980s in seven thrusters prior to flight; however, counter bore cracking had never been seen previously in RCS thrusters. Members of the Materials Super Problem Resolution Team (SPRT) of the NASA Engineering and Safety Center (NESC) conducted a detailed review of the relevant literature and of the documentation from the previous RCS thruster failure analyses. It was concluded that the previous failure analyses lacked sufficient documentation to support the conclusions that stress corrosion cracking or hot-salt cracking was the root cause of the thruster cracking and lacked reliable inspection controls to prevent cracked thrusters from entering the fleet. The NESC team identified and performed new materials characterization and mechanical tests. It was determined that the thruster intergranular cracking was due to hydrogen embrittlement and that the cracking was produced during manufacturing as a result of processing the thrusters with fluoride-containing acids. Testing and characterization demonstrated that appreciable environmental crack propagation does not occur after manufacturing.

  4. The Power for Flight: NASA's Contributions to Aircraft Propulsion

    Science.gov (United States)

    Kinney, Jeremy R.

    2017-01-01

    The New York Times announced America's entry into the 'long awaited' Jet Age when a Pan American (Pan Am) World Airways Boeing 707 airliner left New York for Paris on October 26, 1958. Powered by four turbojet engines, the 707 offered speed, more nonstop flights, and a smoother and quieter travel experience compared to newly antiquated propeller airliners. With the Champs-Elysees only 6 hours away, humankind had entered into a new and exciting age in which the shrinking of the world for good was no longer a daydream. Fifty years later, the New York Times declared the second coming of a 'cleaner, leaner' Jet Age. Decades-old concerns over fuel efficiency, noise, and emissions shaped this new age as the aviation industry had the world poised for 'a revolution in jet engines'. Refined turbofans incorporating the latest innovations would ensure that aviation would continue to enable a worldwide transportation network. At the root of many of the advances over the preceding 50 years was the National Aeronautics and Space Administration (NASA). On October 1, 1958, just a few weeks before the flight of that Pan Am 707, NASA came into existence. Tasked with establishing a national space program as part of a Cold War competition between the United States and the Soviet Union, NASA is often remembered in popular memory first for putting the first human beings on the Moon in July 1969, followed by running the successful 30-year Space Shuttle Program and by landing the Rover Curiosity on Mars in August 2012. What many people do not recognize is the crucial role the first 'A' in NASA played in the development of aircraft since the Agency's inception. Innovations shaping the aerodynamic design, efficient operation, and overall safety of aircraft made NASA a vital element of the American aviation industry even though they remained unknown to the public. This is the story of one facet of NASA's many contributions to commercial, military, and general aviation: the development of

  5. Optimization of safety production supervision mode of coalmining enterprises

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, M.; Xiao, Z. [China University of Mining and Technology, Xuzhou (China). School of Management

    2005-12-01

    In view of the fact that safety production supervision of coal mines in China features low efficacy, this paper applies principles of cybernetics to simulate the dynamic process of safety supervision, and proposes that institutional variables be controlled to support intermediate goals, which in turn contribute to the ultimate safety production objective. Rather than focussing all attention on safety issues of working faces, supervising departments of coalmines are advised to pay much more attention to institutional factors that may impact people's attitude and behavior, which are responsible for most coalmine accidents. It is believed that such a shift of attention can effectively reduce coalmining production accidents and greatly enhance supervision efficacy. 8 refs., 5 figs.

  6. The 20-20-20 Airships NASA Centennial Challenge

    Science.gov (United States)

    Kiessling, Alina; Diaz, Ernesto; Rhodes, Jason; Ortega, Sam; Eberly, Eric

    2015-08-01

    A 2013 Keck Institute for Space Studies (KISS) study examined airships as a possible platform for Earth and space science. Airships, lighter than air, powered, maneuverable vehicles, could offer significant gains in observing time, sky and ground coverage, data downlink capability, and continuity of observations over existing suborbital options at competitive prices. The KISS study recommended three courses of action to spur the development and use of airships as a science platform. One of those recommendations was that a prize competition be developed to demonstrate a stratospheric airship. Consequently, we have been developing a NASA Centennial Challenge; (www.nasa.gov/challenges) to spur innovation in stratospheric airships as a science platform. We anticipate a multi-million dollar class prize for the first organization to fly a powered airship that remains stationary at 20km (65,000 ft) altitude for over 20 hours with a 20kg payload. The design must be scalable to longer flights with more massive payloads. A second prize tier, for a 20km flight lasting 200 hours with a 200kg payload would incentivize a further step toward a scientifically compelling and viable new platform. This technology would also have broad commercial applications including communications, asset tracking, and surveillance. Via the 20-20-20 Centennial Challenge, we are seeking to spur private industry (or non-profit institutions, including Universities) to demonstrate the capability for sustained airship flights as astronomy and Earth science platforms.

  7. A Flight Control System Architecture for the NASA AirSTAR Flight Test Infrastructure

    Science.gov (United States)

    Murch, Austin M.

    2008-01-01

    A flight control system architecture for the NASA AirSTAR infrastructure has been designed to address the challenges associated with safe and efficient flight testing of research control laws in adverse flight conditions. The AirSTAR flight control system provides a flexible framework that enables NASA Aviation Safety Program research objectives, and includes the ability to rapidly integrate and test research control laws, emulate component or sensor failures, inject automated control surface perturbations, and provide a baseline control law for comparison to research control laws and to increase operational efficiency. The current baseline control law uses an angle of attack command augmentation system for the pitch axis and simple stability augmentation for the roll and yaw axes.

  8. Annual report 2011. Institute of Radiochemistry

    International Nuclear Information System (INIS)

    Bernhard, G.

    2011-01-01

    The Institute of Radiochemistry (IRC) IS one of the seven institutes of the Helmholtz- Zentrum Dresden-Rossendorf (HZDR). The research activities are fully integrated into the ''Nuclear Safety Research Program'' of the Helmholtz Association and focused on the topic ''Safety of Nuclear Waste Disposal''. The research objectives are to generate better process understanding and data for the long-term safety analysis of a nuclear waste disposal in the deep geological underground. A better knowledge about the dominating processes essential for radionuclide (actinide) mobilization and immobilization on the molecular level is needed for the assessment of the macroscopic processes which determine the transport and distribution of radioactivity in the environment. Special emphasis is put on the biological mediated transport of long-lived radionuclides in the geosphere and their interaction with different biosystems like biota and human organism for a better calculation of environmental and health risks. Advanced knowledge is needed for description of the processes dominating at the interfaces between geo- and bio-systems related to the distribution of long-lived radionuclides in various bio-systems along the food chain. More than 120 scientists, technicians, and students, working on their Ph.D., diploma, master, or bachelor thesis, were employed at the Institute of Radiochemistry in 2011. About 20 Ph.D. students are working at the institute. Promotion of young scientists is an important requirement to ensure the competence and further excellent scientific results in the discipline of radiochemistry in future times. We accomplished many new scientific results in the past year, which are presented in this Annual Report, and about 50 original papers were published in peer-reviewed international scientific journals. In 2011, the future research profile of the HZDR was under discussion with the aim to focus the research fields and programs. One result of this process was the

  9. Annual report 2011. Institute of Radiochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Bernhard, G [ed.

    2011-07-01

    The Institute of Radiochemistry (IRC) IS one of the seven institutes of the Helmholtz- Zentrum Dresden-Rossendorf (HZDR). The research activities are fully integrated into the ''Nuclear Safety Research Program'' of the Helmholtz Association and focused on the topic ''Safety of Nuclear Waste Disposal''. The research objectives are to generate better process understanding and data for the long-term safety analysis of a nuclear waste disposal in the deep geological underground. A better knowledge about the dominating processes essential for radionuclide (actinide) mobilization and immobilization on the molecular level is needed for the assessment of the macroscopic processes which determine the transport and distribution of radioactivity in the environment. Special emphasis is put on the biological mediated transport of long-lived radionuclides in the geosphere and their interaction with different biosystems like biota and human organism for a better calculation of environmental and health risks. Advanced knowledge is needed for description of the processes dominating at the interfaces between geo- and bio-systems related to the distribution of long-lived radionuclides in various bio-systems along the food chain. More than 120 scientists, technicians, and students, working on their Ph.D., diploma, master, or bachelor thesis, were employed at the Institute of Radiochemistry in 2011. About 20 Ph.D. students are working at the institute. Promotion of young scientists is an important requirement to ensure the competence and further excellent scientific results in the discipline of radiochemistry in future times. We accomplished many new scientific results in the past year, which are presented in this Annual Report, and about 50 original papers were published in peer-reviewed international scientific journals. In 2011, the future research profile of the HZDR was under discussion with the aim to focus the research fields and programs. One result of this process was the

  10. NASA's Management and Utilization of the Small Business Innovative Research (SBIR) Program

    Science.gov (United States)

    Mexcur, Winfield Paul

    2003-01-01

    The United Space Congress established the SBIR program in 1982 for the following purposes: ( 1) Stimulate technological innovation (2) Increase private-sector commercialization derived from federal R&D (3) Use small business to meet federal R&D needs (4) Foster and encourage participation by disadvantaged persons and women in technological innovation The STTR program was established in 1992 with the additional requirement of having a small business partner with a research institution (usually a university) for the purpose of transferring intellectual property from the research institution to the small business concern for enabling a government technical need and furthering the technological development for the purpose of developing commercial products. The government of Japan has established a program that models portions of the U.S. SBIR and STTR programs. They are very interested in how NASA has been so successful in fulfilling the Congressional objectives of these programs. In particular, they want to understand the management practices and incentives that are provided to enable partnerships between business enterprises, academia and government. The speech will also focus on some of the many successful technologies (on a conceptual level) that have been developed through NASA s SBIR and STTR programs and mechanisms used to promote cooperation between small businesses, large businesses, academia and government agencies within the United States. The speech is on a conceptual level, focusing on U.S. and NASA policies and management implementation practices. No enabling technical discussion will be held.

  11. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1989, volume 2

    Science.gov (United States)

    Jones, William B., Jr. (Editor); Goldstein, Stanley H. (Editor)

    1989-01-01

    The 1989 Johnson Space Center (JSC) National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program was conducted by Texas A and M University and JSC. The 10-week program was operated under the auspices of the ASEE. The program at JSC, as well as the programs at other NASA Centers, was funded by the Office of University Affairs, NASA Headquarters, Washington, D.C. The objectives of the program, which began nationally in 1964 and at JSC in 1965, are: (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants' institutions; and (4) to contribute to the research objective of the NASA Centers.

  12. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program 1988, volume 2

    Science.gov (United States)

    Bannerot, Richard B.; Goldstein, Stanley H.

    1989-01-01

    The 1988 Johnson Space Center (JSC) National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program was conducted by the University of Houston and JCS. The 10-week program was operated under the auspices of the ASEE. The program at JSC, as well as the programs at other NASA Centers, was funded by the Office of University Affairs, NASA Headquarters, Washington, D.C. The objectives of the program, which began in 1965 at JSC and in 1964 nationally, are: (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants' institutions; and (4) to contribute to the research objectives of the NASA Centers.

  13. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1989, volume 1

    Science.gov (United States)

    Jones, William B., Jr. (Editor); Goldstein, Stanley H. (Editor)

    1989-01-01

    The 1989 Johnson Space Center (JSC) National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program was conducted by Texas A and M University and JSC. The 10-week program was operated under the auspices of the ASEE. The program at JSC, as well as the programs at other NASA Centers, was funded by the Office of University Affairs, NASA Headquarters, Washington, D.C. The objectives of the program, which began nationally in 1964 and at JSC in 1965, are: (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants' institutions; and (4) to contribute to the research objective of the NASA Centers.

  14. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program 1988, volume 1

    Science.gov (United States)

    Bannerot, Richard B. (Editor); Goldstein, Stanley H. (Editor)

    1989-01-01

    The 1988 Johnson Space Center (JSC) National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program was conducted by the University of Houston and JSC. The 10-week program was operated under the auspices of the ASEE. The program at JSC, as well as the programs at other NASA Centers, was funded by the Office of University Affairs, NASA Headquarters, Washington, D.C. The objectives of the program, which began in 1965 at JSC and in 1964 nationally, are (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants' institutions; and (4) to contribute to the research objectives of the NASA Centers.

  15. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1992, volume 2

    Science.gov (United States)

    Bannerot, Richard B. (Editor); Goldstein, Stanley H. (Editor)

    1992-01-01

    The 1992 Johnson Space Center (JSC) National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program was conducted by the University of Houston and JSC. The program at JSC, as well as the programs at other NASA Centers, was funded by the Office of University Affairs, NASA Headquarters Washington, DC. The objectives of the program, which began nationally in 1964 and at JSC in 1965, are (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants' institutions; and (4) to contribute to the research objective of the NASA Centers. This document contains reports 13 through 24.

  16. Japan reforms its nuclear safety

    International Nuclear Information System (INIS)

    Anon.

    2013-01-01

    The Fukushima Daiichi NPP accident deeply questioned the bases of nuclear safety and nuclear safety regulation in Japan. It also resulted in a considerable loss of public confidence in the safety of nuclear power across the world. Although the accident was caused by natural phenomena, institutional and human factors also largely contributed to its devastating consequences, as shown by the Japanese Diet's and Government's investigation reports. 'Both regulators and licensees were held responsible and decided to fully reconsider the existing approaches to nuclear safety. Consequently, the regulatory system underwent extensive reform based on the lessons learned from the accident,' Yoshihiro Nakagome, the President of Japan Nuclear Energy Safety Organisation, an ETSON member TSO, explains. (orig.)

  17. Analysis of Aviation Safety Reporting System Incident Data Associated with the Technical Challenges of the System-Wide Safety and Assurance Technologies Project

    Science.gov (United States)

    Withrow, Colleen A.; Reveley, Mary S.

    2015-01-01

    The Aviation Safety Program (AvSP) System-Wide Safety and Assurance Technologies (SSAT) Project asked the AvSP Systems and Portfolio Analysis Team to identify SSAT-related trends. SSAT had four technical challenges: advance safety assurance to enable deployment of NextGen systems; automated discovery of precursors to aviation safety incidents; increasing safety of human-automation interaction by incorporating human performance, and prognostic algorithm design for safety assurance. This report reviews incident data from the NASA Aviation Safety Reporting System (ASRS) for system-component-failure- or-malfunction- (SCFM-) related and human-factor-related incidents for commercial or cargo air carriers (Part 121), commuter airlines (Part 135), and general aviation (Part 91). The data was analyzed by Federal Aviation Regulations (FAR) part, phase of flight, SCFM category, human factor category, and a variety of anomalies and results. There were 38 894 SCFM-related incidents and 83 478 human-factorrelated incidents analyzed between January 1993 and April 2011.

  18. Research reports: 1990 NASA/ASEE Summer faculty fellowship program

    International Nuclear Information System (INIS)

    Freeman, L.M.; Chappell, C.R.; Six, F.; Karr, G.R.

    1990-10-01

    Reports on the research projects performed under the NASA/ASEE Summer faculty fellowship program are presented. The program was conducted by The University of Alabama and MSFC during the period from June 4, 1990 through August 10, 1990. Some of the topics covered include: (1) Space Shuttles; (2) Space Station Freedom; (3) information systems; (4) materials and processes; (4) Space Shuttle main engine; (5) aerospace sciences; (6) mathematical models; (7) mission operations; (8) systems analysis and integration; (9) systems control; (10) structures and dynamics; (11) aerospace safety; and (12) remote sensing

  19. Nuclear safety research in HGF 2011

    International Nuclear Information System (INIS)

    Tromm, Walter

    2012-01-01

    partners in the Nuclear Competence Association. As of January 2011, the Dresden-Rossendorf Helmholtz Center (HZDR), with its 2 Institutes of Safety Research and for Radiochemistry, is an integral part of the Nuclear Safety Research Program within the Energy Research Area. Both institutes work on topics of safety research for nuclear reactors and safety research for nuclear waste management. In this way, the 2 institutes represent very welcome added value as well as a supplement to the Nuclear Safety Research Program. (orig.)

  20. Complementary safety assessment in the light of the Fukushima accident - Laue Langevin Institute

    International Nuclear Information System (INIS)

    Desbriere; Caillot; Bidet

    2012-01-01

    This CSA (Complementary Safety Assessment) analyses the robustness of the Grenoble High Flux reactor to extreme situations such as those that led to the Fukushima accident and proposes a series of improvements. Robustness is the ability for the facility to withstand events beyond the level for which the facility was designed. Robustness is linked to safety margins but also to the situations leading to a sudden deterioration of the accident sequence (cliff edge effect). Safety is not only a matter of design or of engineered systems, it is also a matter of organization. So issues like crisis organization and work organization via subcontracting are also taken into consideration. This report is divided into 9 main chapters: 1) main features of the high flux reactor, 2) macroscopic study of safety, identification of structures and equipment essential to safety, 3) earthquake risk, 4) flood risk, 5) risks due to other extreme natural disasters, 6) the loss of electrical power supplies and of cooling systems, 7) management of severe accidents, 8) subcontracting policy, 9) synthesis and improvements. This study confirms the robustness of the facility and a series of improvements and modifications is proposed to face very unlikely situations (especially plurality of failures) that were not taken into account in baseline safety studies. (A.C.)

  1. National Aeronautics and Space Administration (NASA) /American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program. Volume 1

    Science.gov (United States)

    Bannerot, Richard B. (Editor); Sickorez, Donn G. (Editor)

    1997-01-01

    The 1996 JSC NASA/ASEE Summer Faculty Fellowship Program was conducted by the University of Houston and JSC. The objectives of the program, which began nationally in 1964 and at JSC in 1965 are to (1) further the professional knowledge qualified engineering and science faculty members, (2) stimulate an exchange of ideas between participants and NASA, (3) refresh the research and teaching activities of participants' institutions, and (4) contribute to the research objectives of the NASA centers. Each faculty fellow spent at least 10 weeks at JSC engaged in a research project in collaboration with a NASA JSC colleague. This document is a compilation of the final reports on the research projects completed by the faculty fellows during the summer of 1996.

  2. Organization of research team for nano-associated safety assessment in effort to study nanotoxicology of zinc oxide and silica nanoparticles

    Directory of Open Access Journals (Sweden)

    Kim YR

    2014-12-01

    Full Text Available Yu-Ri Kim,1,* Sung Ha Park,2,* Jong-Kwon Lee,3 Jayoung Jeong,3 Ja Hei Kim,4 Eun-Ho Meang,5 Tae Hyun Yoon,6 Seok Tae Lim,7 Jae-Min Oh,8 Seong Soo A An,9 Meyoung-Kon Kim1 1Department of Biochemistry and Molecular Biology, Korea University Medical School and College, Seoul, South Korea; 2Department of Biochemistry, University of Bath, Bath, UK; 3Toxicological Research Division, National Institute of Food and Drug Safety Evaluation, Chungchungbuk-do, 4Consumers Korea, Chongro-ku, 5General toxicology team, Korea Testing and Research Institute, 6Laboratory of Nanoscale Characterization and Environmental Chemistry, Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul, 7Department of Nuclear Medicine, Chonbuk National University Medical School, Jeonju, Jellabuk-Do, 8Department of Chemistry and Medical Chemistry, College of Science and Technology, Yonsei University, Gangwon-do, 9Department of Bionanotechnology, Gachon Medical Research Institute, Gachon University, Seongnam, South Korea *Authors contributed equally to this work Abstract: Currently, products made with nanomaterials are used widely, especially in biology, biotechnologies, and medical areas. However, limited investigations on potential toxicities of nanomaterials are available. Hence, diverse and systemic toxicological data with new methods for nanomaterials are needed. In order to investigate the nanotoxicology of nanoparticles (NPs, the Research Team for Nano-Associated Safety Assessment (RT-NASA was organized in three parts and launched. Each part focused on different contents of research directions: investigators in part I were responsible for the efficient management and international cooperation on nano-safety studies; investigators in part II performed the toxicity evaluations on target organs such as assessment of genotoxicity, immunotoxicity, or skin penetration; and investigators in part III evaluated the toxicokinetics of NPs with newly developed

  3. COLD-SAT feasibility study safety analysis

    Science.gov (United States)

    Mchenry, Steven T.; Yost, James M.

    1991-01-01

    The Cryogenic On-orbit Liquid Depot-Storage, Acquisition, and Transfer (COLD-SAT) satellite presents some unique safety issues. The feasibility study conducted at NASA-Lewis desired a systems safety program that would be involved from the initial design in order to eliminate and/or control the inherent hazards. Because of this, a hazards analysis method was needed that: (1) identified issues that needed to be addressed for a feasibility assessment; and (2) identified all potential hazards that would need to be controlled and/or eliminated during the detailed design phases. The developed analysis method is presented as well as the results generated for the COLD-SAT system.

  4. KfK Nuclear Safety Project. First semiannual report 1985

    International Nuclear Information System (INIS)

    1985-11-01

    The semiannual progress report 1985/1 is a description of work within the Nuclear Safety Project performed in the first six month of 1985 in the nuclear safety field by KfK institutes and departements and by external institutions on behalf of KfK. The chosen kind of this report is that of short summaries, containing the topics: work performed, results obtained and plans for future work. (orig./HP) [de

  5. NASA reports

    Science.gov (United States)

    Obrien, John E.; Fisk, Lennard A.; Aldrich, Arnold A.; Utsman, Thomas E.; Griffin, Michael D.; Cohen, Aaron

    1992-01-01

    Activities and National Aeronautics and Space Administration (NASA) programs, both ongoing and planned, are described by NASA administrative personnel from the offices of Space Science and Applications, Space Systems Development, Space Flight, Exploration, and from the Johnson Space Center. NASA's multi-year strategic plan, called Vision 21, is also discussed. It proposes to use the unique perspective of space to better understand Earth. Among the NASA programs mentioned are the Magellan to Venus and Galileo to Jupiter spacecraft, the Cosmic Background Explorer, Pegsat (the first Pegasus payload), Hubble, the Joint U.S./German ROSAT X-ray Mission, Ulysses to Jupiter and over the sun, the Astro-Spacelab Mission, and the Gamma Ray Observatory. Copies of viewgraphs that illustrate some of these missions, and others, are provided. Also discussed were life science research plans, economic factors as they relate to space missions, and the outlook for international cooperation.

  6. Model-Driven Development of Safety Architectures

    Science.gov (United States)

    Denney, Ewen; Pai, Ganesh; Whiteside, Iain

    2017-01-01

    We describe the use of model-driven development for safety assurance of a pioneering NASA flight operation involving a fleet of small unmanned aircraft systems (sUAS) flying beyond visual line of sight. The central idea is to develop a safety architecture that provides the basis for risk assessment and visualization within a safety case, the formal justification of acceptable safety required by the aviation regulatory authority. A safety architecture is composed from a collection of bow tie diagrams (BTDs), a practical approach to manage safety risk by linking the identified hazards to the appropriate mitigation measures. The safety justification for a given unmanned aircraft system (UAS) operation can have many related BTDs. In practice, however, each BTD is independently developed, which poses challenges with respect to incremental development, maintaining consistency across different safety artifacts when changes occur, and in extracting and presenting stakeholder specific information relevant for decision making. We show how a safety architecture reconciles the various BTDs of a system, and, collectively, provide an overarching picture of system safety, by considering them as views of a unified model. We also show how it enables model-driven development of BTDs, replete with validations, transformations, and a range of views. Our approach, which we have implemented in our toolset, AdvoCATE, is illustrated with a running example drawn from a real UAS safety case. The models and some of the innovations described here were instrumental in successfully obtaining regulatory flight approval.

  7. Modeling to Mars: a NASA Model Based Systems Engineering Pathfinder Effort

    Science.gov (United States)

    Phojanamongkolkij, Nipa; Lee, Kristopher A.; Miller, Scott T.; Vorndran, Kenneth A.; Vaden, Karl R.; Ross, Eric P.; Powell, Bobby C.; Moses, Robert W.

    2017-01-01

    The NASA Engineering Safety Center (NESC) Systems Engineering (SE) Technical Discipline Team (TDT) initiated the Model Based Systems Engineering (MBSE) Pathfinder effort in FY16. The goals and objectives of the MBSE Pathfinder include developing and advancing MBSE capability across NASA, applying MBSE to real NASA issues, and capturing issues and opportunities surrounding MBSE. The Pathfinder effort consisted of four teams, with each team addressing a particular focus area. This paper focuses on Pathfinder team 1 with the focus area of architectures and mission campaigns. These efforts covered the timeframe of February 2016 through September 2016. The team was comprised of eight team members from seven NASA Centers (Glenn Research Center, Langley Research Center, Ames Research Center, Goddard Space Flight Center IV&V Facility, Johnson Space Center, Marshall Space Flight Center, and Stennis Space Center). Collectively, the team had varying levels of knowledge, skills and expertise in systems engineering and MBSE. The team applied their existing and newly acquired system modeling knowledge and expertise to develop modeling products for a campaign (Program) of crew and cargo missions (Projects) to establish a human presence on Mars utilizing In-Situ Resource Utilization (ISRU). Pathfinder team 1 developed a subset of modeling products that are required for a Program System Requirement Review (SRR)/System Design Review (SDR) and Project Mission Concept Review (MCR)/SRR as defined in NASA Procedural Requirements. Additionally, Team 1 was able to perform and demonstrate some trades and constraint analyses. At the end of these efforts, over twenty lessons learned and recommended next steps have been identified.

  8. National Aeronautics and Space Administration (NASA)/American Society of Engineering Education (ASEE) Summer Faculty Fellowship Program - 2000

    Science.gov (United States)

    Bannerot, Richard B. (Editor); Sickorez, Donn G. (Editor)

    2003-01-01

    The 2000 Johnson Space Center (JSC) National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program was conducted by the University of Houston and JSC. The 10-week program was operated under the auspices of the ASEE. The program at JSC, as well as the programs at other NASA Centers, was funded by the Office of University Affairs, NASA Headquarters, Washington, D.C. The objectives of the program, which began in 1965 at JSC and 1964 nationally, are to (1) further the professional knowledge of qualified engineering and science faculty, (2) stimulate an exchange of ideas between participants and NASA, (3) enrich and refresh the research and teaching activities of participants' institutions, and (4) contribute to the research objectives of the NASA Centers. Each faculty fellow spent at least 10 weeks at JSC engaged in a research project commensurate with her/his interests and background, and worked in collabroation with a NASA/JSC colleague. This document is a compilation of the final reports on the research projects done by the faculty fellows during the summer of 2000.

  9. Space reactor safety, 1985--1995 lessons learned

    International Nuclear Information System (INIS)

    Marshall, A.C.

    1995-01-01

    Space reactor safety activities and decisions have evolved over the last decade. Important safety decisions have been made in the SP-100, Space Exploration Initiative, NEPSTP, SNTP, and Bimodal Space Reactor programs. In addition, international guidance on space reactor safety has been instituted. Space reactor safety decisions and practices have developed in the areas of inadvertent criticality, reentry, radiological release, orbital operation, programmatic, and policy. In general, the lessons learned point out the importance of carefully reviewing previous safety practices for appropriateness to space nuclear programs in general and to the specific mission under consideration

  10. Space reactor safety, 1985--1995 lessons learned

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, A.C.

    1995-12-31

    Space reactor safety activities and decisions have evolved over the last decade. Important safety decisions have been made in the SP-100, Space Exploration Initiative, NEPSTP, SNTP, and Bimodal Space Reactor programs. In addition, international guidance on space reactor safety has been instituted. Space reactor safety decisions and practices have developed in the areas of inadvertent criticality, reentry, radiological release, orbital operation, programmatic, and policy. In general, the lessons learned point out the importance of carefully reviewing previous safety practices for appropriateness to space nuclear programs in general and to the specific mission under consideration.

  11. Microbiological Food Safety Surveillance in China

    Directory of Open Access Journals (Sweden)

    Xiaoyan Pei

    2015-08-01

    Full Text Available Microbiological food safety surveillance is a system that collects data regarding food contamination by foodborne pathogens, parasites, viruses, and other harmful microbiological factors. It helps to understand the spectrum of food safety, timely detect food safety hazards, and provide relevant data for food safety supervision, risk assessment, and standards-setting. The study discusses the microbiological surveillance of food safety in China, and introduces the policies and history of the national microbiological surveillance system. In addition, the function and duties of different organizations and institutions are provided in this work, as well as the generation and content of the surveillance plan, quality control, database, and achievement of the microbiological surveillance of food safety in China.

  12. Laser Safety Inspection Criteria

    International Nuclear Information System (INIS)

    Barat, K

    2005-01-01

    A responsibility of the Laser Safety Officer (LSO) is to perform laser safety audits. The American National Standard Z136.1 Safe use of Lasers references this requirement in several sections: (1) Section 1.3.2 LSO Specific Responsibilities states under Hazard Evaluation, ''The LSO shall be responsible for hazards evaluation of laser work areas''; (2) Section 1.3.2.8, Safety Features Audits, ''The LSO shall ensure that the safety features of the laser installation facilities and laser equipment are audited periodically to assure proper operation''; and (3) Appendix D, under Survey and Inspections, it states, ''the LSO will survey by inspection, as considered necessary, all areas where laser equipment is used''. Therefore, for facilities using Class 3B and or Class 4 lasers, audits for laser safety compliance are expected to be conducted. The composition, frequency and rigueur of that inspection/audit rests in the hands of the LSO. A common practice for institutions is to develop laser audit checklists or survey forms. In many institutions, a sole Laser Safety Officer (LSO) or a number of Deputy LSO's perform these audits. For that matter, there are institutions that request users to perform a self-assessment audit. Many items on the common audit list and the associated findings are subjective because they are based on the experience and interest of the LSO or auditor in particular items on the checklist. Beam block usage is an example; to one set of eyes a particular arrangement might be completely adequate, while to another the installation may be inadequate. In order to provide more consistency, the National Ignition Facility Directorate at Lawrence Livermore National Laboratory (NIF-LLNL) has established criteria for a number of items found on the typical laser safety audit form. These criteria are distributed to laser users, and they serve two broad purposes: first, it gives the user an expectation of what will be reviewed by an auditor, and second, it is an

  13. New FINESSE Faculty Institutes for NASA Earth and Space Science Education

    Science.gov (United States)

    Slater, Timothy F.; Slater, Stephanie; Marshall, Sunette Sophia; Stork, Debra; Pomeroy, J. Richard R

    2014-06-01

    In a systematic effort to improve the preparation of future science teachers, scholars coordinated by the CAPER Center for Astronomy & Physics Education Research are providing a series of high-quality, 2-day professional development workshops, with year-round follow-up support, for college and university professors who prepare future science teachers to work with highly diverse student populations. These workshops focus on reforming and revitalizing undergraduate science teaching methods courses and Earth and Space science content courses that future teachers most often take to reflect contemporary pedagogies and data-rich problem-based learning approaches steeped in authentic scientific inquiry, which consistently demonstrate effectiveness with diverse students. Participants themselves conduct science data-rich research projects during the institutes using highly regarded approaches to inquiry using proven models. In addition, the Institute allocates significant time to illustrating best practices for working with diverse students. Moreover, participants leave with a well-formulated action plan to reform their courses targeting future teachers to include more data-rich scientific inquiry lessons and to be better focused on improving science education for a wide diversity of students. Through these workshops faculty use a backwards faded scaffolding mechanism for working inquiry into a deeper understanding of science by using existing on-line data to develop and research astronomy, progressing from creating a valid and easily testable question, to simple data analysis, arriving at a conclusion, and finally presenting and supporting that conclusion in the classroom. An updated schedule is available at FINESSEProgram.org

  14. Experiment to evaluate software safety

    International Nuclear Information System (INIS)

    Soubies, B.; Henry, J.Y.

    1994-01-01

    The process of licensing nuclear power plants for operation consists of mandatory steps featuring detailed examination of the instrumentation and control system by the safety authorities, including softwares. The criticality of these softwares obliges the manufacturer to develop in accordance with the IEC 880 standard 'Computer software in nuclear power plant safety systems' issued by the International Electronic Commission. The evaluation approach, a two-stage assessment is described in detail. In this context, the IPSN (Institute of Protection and Nuclear Safety), the technical support body of the safety authority uses the MALPAS tool to analyse the quality of the programs. (R.P.). 4 refs

  15. Centre de la Manche institutional control period: after the first safety review - 59236

    International Nuclear Information System (INIS)

    Dutzer, Michel; Vervialle, Jean Pierre; Andre, Alain; Marchiol, Albert

    2012-01-01

    Centre de la Manche disposal facility is the first French surface disposal facility dedicated to low and intermediate level short lived radioactive waste. It started up in 1969. After a continuous improvement, in the design of disposal vaults, in operational modes, in the whole process of waste management, in the safety approach, the last packages were received in 1994. 527, 000 m 3 of waste packages have been disposed during the 25 years of operation. The facility was licensed for the institutional control period in 2003. The disposal vaults are covered with a multilayer capping system that includes a bituminous membrane to provide protection against rainwater infiltration. Water that might infiltrate through the membrane is collected by the bottom slab of the vaults to a pipe network implemented in an underground gallery. Measurements show an overall infiltration rate of about 3 l/m 2 /year that complies with the objective of Andra of a few liters per square meter and per year. Investigations are performed in order to assess the behavior of the membrane in the long term. For this purpose periodically samples of the bituminous membrane are taken and measurements are performed. As at the beginning of the operational period waste packages were not conditioned in accordance with the specifications that are presently prescribed to waste generators, some settlements can be observed on the ancient part or the facilities. At the end of 2009 some excavation works were performed in an area where a settlement of few tens of centimeters was observed. The integrity of the membrane could be observed and the adequacy of the selection of this option for the water-tightness of the capping system was so confirmed. Environmental monitoring includes radiological and chemical measurements for discharge, underground water and surface water. In the particular framework of Centre de la Manche, a contamination of groundwater by tritiated wastes occurred in 1976. Theses wastes were

  16. Role and tasks of the Mine Safety and Health Administration

    Energy Technology Data Exchange (ETDEWEB)

    Bradecki, W. (Wyzszy Urzad Gorniczy, Katowice (Poland))

    1992-01-01

    Discusses the visit of 2 representatives of the Mine Safety and Health Administration and the West Mining Company from the United States to Poland in November 1991. During the visit, occupational safety in underground coal mines in Upper Silesia was evaluated. Selected aspects of experience and organization schemes of the Mine Safety and Health Administration are evaluated from the point of view of their use in Poland to increase occupational safety in coal mining. The following aspects are discussed: Mine Safety and Health Administration and its budget (US$ 186 million), personnel (2,700), research institutes that specialize in mine safety (the National Institute of Occupational Safety and Health, Bureau of Mines), natural hazards associated with mining, mine safety in underground and surface coal mines in the USA in relation to number of coal miners and coal output, job safety analysis as a key to the success of the MSHA, increased hazards in small mines (Pennsylvania, West Virginia, Virginia and Kentucky), problems of drug addiction and alcoholism among coal miners.

  17. Paul Scherrer Institute Scientific Report 1999. Volume IV: Nuclear Energy and Safety

    International Nuclear Information System (INIS)

    Smith, Brian; Gschwend, Beatrice

    2000-01-01

    Nuclear energy related research in Switzerland is concentrated at PSI's Nuclear Energy and Safety Research Department (NES). The total effort invested in nuclear energy research in 1999 amounted to about 185 py/a and 4.7 MCHF of investment and maintenance costs. Approximately half of the salary, investment and maintenance costs are externally funded, primarily by the Swiss Utilities, the national co-operative for the disposal of nuclear waste (NAGRA), the Federal Office of Energy (BFE) through the nuclear safety inspectorate (HSK) and the Federal Office for Science and Education (BBW) in connection with the EU Framework Programmes; an increasing part of external funding is coming from domestic and foreign industry (nuclear component and fuel suppliers). The activities of the department are concentrated on three main domains of: Safety and related problems of operating plants; safety features of future reactor and fuel cycles; waste management. 4 % of the total resources are invested in addressing more global aspects of energy. Many of the programs are part of collaborations with universities, industry, or international organisations. Progress in 1999 in these topical areas is described in this report. A list of scientific publications in 1999 is also provided

  18. Paul Scherrer Institute Scientific Report 1998. Volume IV: Nuclear Energy and Safety

    Energy Technology Data Exchange (ETDEWEB)

    Birchley, Jon; Ringele, Ruth [eds.

    1999-09-01

    Nuclear energy related research in Switzerland is concentrated at PSI`s Nuclear Energy and Safety Research Department (NES). The total effort invested in nuclear energy research in 1998 amounted to about 195 py/a and 4.5 millions CHF of investment and maintenance costs. Approximately half of the salary, investment and maintenance costs are externally funded, primarily by the Swiss Utilities, the national co-operative for the disposal of nuclear waste (NAGRA), the Federal Office of Energy (BFE) through the nuclear safety inspectorate (HSK) and the Federal Office for Science and Education (BBW) in connection with the EC Framework Programmes; an increasing part of external funding is coming from domestic and foreign industry (nuclear component and fuel suppliers). The activities of the department are concentrated on three main domains of: Safety and related problems of operating plants; safety features of future reactor and fuel cycles; waste management. 4 % of the total resources are invested in addressing more global aspects of energy. Many of the programs are part of collaborations with universities, industry, or international organisations. A list of scientific publications in 1998 is included. (author) figs., tabs., refs.

  19. Paul Scherrer Institute Scientific Report 1998. Volume IV: Nuclear Energy and Safety

    International Nuclear Information System (INIS)

    Birchley, Jon; Ringele, Ruth

    1999-01-01

    Nuclear energy related research in Switzerland is concentrated at PSI's Nuclear Energy and Safety Research Department (NES). The total effort invested in nuclear energy research in 1998 amounted to about 195 py/a and 4.5 millions CHF of investment and maintenance costs. Approximately half of the salary, investment and maintenance costs are externally funded, primarily by the Swiss Utilities, the national co-operative for the disposal of nuclear waste (NAGRA), the Federal Office of Energy (BFE) through the nuclear safety inspectorate (HSK) and the Federal Office for Science and Education (BBW) in connection with the EC Framework Programmes; an increasing part of external funding is coming from domestic and foreign industry (nuclear component and fuel suppliers). The activities of the department are concentrated on three main domains of: Safety and related problems of operating plants; safety features of future reactor and fuel cycles; waste management. 4 % of the total resources are invested in addressing more global aspects of energy. Many of the programs are part of collaborations with universities, industry, or international organisations. A list of scientific publications in 1998 is included. (author)

  20. Paul Scherrer Institute Scientific Report 1999. Volume IV: Nuclear Energy and Safety

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Brian; Gschwend, Beatrice [eds.

    2000-07-01

    Nuclear energy related research in Switzerland is concentrated at PSI's Nuclear Energy and Safety Research Department (NES). The total effort invested in nuclear energy research in 1999 amounted to about 185 py/a and 4.7 MCHF of investment and maintenance costs. Approximately half of the salary, investment and maintenance costs are externally funded, primarily by the Swiss Utilities, the national co-operative for the disposal of nuclear waste (NAGRA), the Federal Office of Energy (BFE) through the nuclear safety inspectorate (HSK) and the Federal Office for Science and Education (BBW) in connection with the EU Framework Programmes; an increasing part of external funding is coming from domestic and foreign industry (nuclear component and fuel suppliers). The activities of the department are concentrated on three main domains of: Safety and related problems of operating plants; safety features of future reactor and fuel cycles; waste management. 4 % of the total resources are invested in addressing more global aspects of energy. Many of the programs are part of collaborations with universities, industry, or international organisations. Progress in 1999 in these topical areas is described in this report. A list of scientific publications in 1999 is also provided.