WorldWideScience

Sample records for nasa merra product

  1. Application of Aura OMI L2G Products Compared with NASA MERRA-2 Assimilation

    Science.gov (United States)

    Zeng, Jian; Shen, Suhung; Wei, Jennifer; Johnson, James E.; Su, Jian; Meyer, David J.

    2018-01-01

    The Ozone Monitoring Instrument (OMI) is one of the instruments aboard NASA's Aura satellite. It measures ozone total column and vertical profile, aerosols, clouds, and trace gases including NO2, SO2, HCHO, BrO, and OClO using absorption in the ultraviolet electromagnetic spectrum (280 - 400 nm). OMI Level-2G (L2G) products are based on the pixel-level OMI granule satellite measurements stored within global 0.25 deg. X 0.25 deg. grids, therefore they conserve all the Level 2 (L2) spatial and temporal details for 24 hours of scientific data in one file. The second Modern-Era Retrospective analysis for Research and Applications (MERRA-2) is NASA's atmospheric reanalysis, using an upgraded version of Goddard Earth Observing System Model, version 5 (GEOS-5) data assimilation system. MERRA-2 includes aerosol data reanalysis and improved representations of stratospheric ozone, compared with its predecessor MERRA, in both instantaneous and time-averaged collections. It is found that simply comparing satellite Level-3 products might cause biases, due to lack of detailed temporal and original retrieval information. It is therefore preferable to inter-compare or implement satellite derived physical quantities directly with/to model assimilation with as high temporal and spatial resolutions as possible. This study will demonstrate utilization of OMI L2G daily aerosol and ozone products by comparing them with MERRA-2 hourly aerosol/ozone simulations, matched in both space and time aspects. Both OMI and MERRA-2 products are accessible online through NASA Goddard Earth Sciences Data Information Services Center (GES DISC, https://disc.gsfc.nasa.gov/).

  2. Evaluation of the Ozone Fields in NASA's MERRA-2 Reanalysis

    Science.gov (United States)

    Wargan, Krzysztof; Labow, Gordon; Frith, Stacey; Pawson, Steven; Livesey, Nathaniel; Partyka, Gary

    2017-01-01

    We describe and assess the quality of the assimilated ozone product from the Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2) produced at NASAs Global Modeling and Assimilation Office (GMAO) spanning the time period from 1980 to present. MERRA-2 assimilates partial column ozone retrievals from a series of Solar Backscatter Ultraviolet (SBUV) radiometers on NASA and NOAA spacecraft between January 1980 and September 2004; starting in October 2004 retrieved ozone profiles from the Microwave Limb Sounder (MLS) and total column ozone from the Ozone Monitoring Instrument on NASAs EOS Aura satellite are assimilated. We compare the MERRA-2 ozone with independent satellite and ozonesonde data focusing on the representation of the spatial and temporal variability of stratospheric and upper tropospheric ozone and on implications of the change in the observing system from SBUV to EOS Aura. The comparisons show agreement within 10 (standard deviation of the difference) between MERRA-2 profiles and independent satellite data in most of the stratosphere. The agreement improves after 2004 when EOS Aura data are assimilated. The standard deviation of the differences between the lower stratospheric and upper tropospheric MERRA-2 ozone and ozonesondes is 11.2 and 24.5, respectively, with correlations of 0.8 and above, indicative of a realistic representation of the near-tropopause ozone variability in MERRA-2. The agreement improves significantly in the EOS Aura period, however MERRA-2 is biased low in the upper troposphere with respect to the ozonesondes. Caution is recommended when using MERRA-2 ozone for decadal changes and trend studies.

  3. Evaluation of NASA's MERRA Precipitation Product in Reproducing the Observed Trend and Distribution of Extreme Precipitation Events in the United States

    Science.gov (United States)

    Ashouri, Hamed; Sorooshian, Soroosh; Hsu, Kuo-Lin; Bosilovich, Michael G.; Lee, Jaechoul; Wehner, Michael F.; Collow, Allison

    2016-01-01

    This study evaluates the performance of NASA's Modern-Era Retrospective Analysis for Research and Applications (MERRA) precipitation product in reproducing the trend and distribution of extreme precipitation events. Utilizing the extreme value theory, time-invariant and time-variant extreme value distributions are developed to model the trends and changes in the patterns of extreme precipitation events over the contiguous United States during 1979-2010. The Climate Prediction Center (CPC) U.S.Unified gridded observation data are used as the observational dataset. The CPC analysis shows that the eastern and western parts of the United States are experiencing positive and negative trends in annual maxima, respectively. The continental-scale patterns of change found in MERRA seem to reasonably mirror the observed patterns of change found in CPC. This is not previously expected, given the difficulty in constraining precipitation in reanalysis products. MERRA tends to overestimate the frequency at which the 99th percentile of precipitation is exceeded because this threshold tends to be lower in MERRA, making it easier to be exceeded. This feature is dominant during the summer months. MERRA tends to reproduce spatial patterns of the scale and location parameters of the generalized extreme value and generalized Pareto distributions. However, MERRA underestimates these parameters, particularly over the Gulf Coast states, leading to lower magnitudes in extreme precipitation events. Two issues in MERRA are identified: 1) MERRA shows a spurious negative trend in Nebraska and Kansas, which is most likely related to the changes in the satellite observing system over time that has apparently affected the water cycle in the central United States, and 2) the patterns of positive trend over the Gulf Coast states and along the East Coast seem to be correlated with the tropical cyclones in these regions. The analysis of the trends in the seasonal precipitation extremes indicates that

  4. Exploring Climatology and Long-Term Variations of Aerosols from NASA Reanalysis MERRA-2 with Giovanni

    Science.gov (United States)

    Shen, Suhung; Ostrenga, Dana; Vollmer, Bruce; Li, Zhanqing

    2016-01-01

    Dust plays important roles in energy cycle and climate variations. The dust deposition is the major source of iron in the open ocean, which is an essential micronutrient for phytoplankton growth and therefore may influence the ocean uptake of atmospheric CO2. Mineral dust can also act as fertilizer for forests over long time periods. Over 35 years of simulated global aerosol products from NASA atmospheric reanalysis, second Modern-Era Retrospective analysis for Research and Applications (MERRA-2) are available from NASA Goddard Earth Science Data and Information Services Center (GES DISC). The MERRA-2 covers the period 1980-present, continuing as an ongoing climate analysis. Aerosol assimilation is included throughout the period, using MODIS, MISR, AERONET, and AVHRR (in the pre-EOS period). The aerosols are assimilated by using MERRA-2 aerosol model, which interact directly with the radiation parameterization, and radiatively coupled with atmospheric model dynamics in the Goddard Earth Observing System Model, Version 5 (GEOS-5). Dust deposition data along with other major aerosol compositions (e.g. black carbon, sea salt, and sulfate, etc.) are simulated as dry and wet deposition, respectively. The hourly and monthly data are available at spatial resolution of 0.5ox0.625o (latitude x longitude). Quick data exploration of climatology and interannual variations of MERRA-2 aerosol can be done through the online visualization and analysis tool, Giovanni. This presentation, using dust deposition as an example, demonstrates a number of MERRA-2 data services at GES DISC. Global distributions of dust depositions, and their seasonal and inter-annual variations are investigated from MERRA-2 monthly aerosol products.

  5. Studying Diurnal Variations of Aerosols with NASA MERRA-2 Reanalysis Data

    Science.gov (United States)

    Shen, Suhung; Ostrenga, Dana M.; Zeng, Jian; Vollmer, Bruce E.

    2018-01-01

    Aerosols play an important role in atmospheric dynamics, climate variations, and Earth's energy cycle by altering the radiation balance in the atmosphere through interaction with clouds, providing fertilizer for forests and canopy, and as a supply of iron to the ocean over long time periods. Studies suggest that much of the feedback between dust aerosols and dynamics is associated with diurnal and synoptic scale variability. However, the lack of sub-daily resolution of aerosols from satellite observations makes it difficult to study the diurnal characteristics, especially over tropical and subtropical regions. Investigation of this topic utilizes over 37 years of simulated global aerosol products from NASA atmospheric reanalysis, in the second Modern-Era Retrospective analysis for Research and Applications (MERRA-2) data set, available from NASA Goddard Earth Science Data and Information Services Center (GES DISC). MERRA-2 covers the period 1980-present, and is continuing as an ongoing climate analysis. Aerosol assimilation is included throughout the period, using data from MODIS, MISR, AERONET, and AVHRR (in the pre-EOS period). The aerosols are assimilated using the MERRA-2 aerosol model, which interacts directly with radiation parameterization, and is radiatively coupled with atmospheric model dynamics in the Goddard Earth Observing System Model, Version 5 (GEOS-5). Hourly, monthly, and monthly diurnal data are available at spatial resolution of 0.5o x 0.625o (latitude x longitude). By using MERRA-2 hourly and monthly diurnal products, different aerosol diurnal variabilities are observed over North America, Africa, Asia, and Australia, that may be due to different meteorological conditions and aerosol sources. The presentation will also provide an overview of MERRA-2 data services at GES DISC, such as how to find and download data, and how to quickly visualize and analyze data online with Giovanni.

  6. Enhancing Global Land Surface Hydrology Estimates from the NASA MERRA Reanalysis Using Precipitation Observations and Model Parameter Adjustments

    Science.gov (United States)

    Reichle, Rolf; Koster, Randal; DeLannoy, Gabrielle; Forman, Barton; Liu, Qing; Mahanama, Sarith; Toure, Ally

    2011-01-01

    The Modern-Era Retrospective analysis for Research and Applications (MERRA) is a state-of-the-art reanalysis that provides. in addition to atmospheric fields. global estimates of soil moisture, latent heat flux. snow. and runoff for J 979-present. This study introduces a supplemental and improved set of land surface hydrological fields ('MERRA-Land') generated by replaying a revised version of the land component of the MERRA system. Specifically. the MERRA-Land estimates benefit from corrections to the precipitation forcing with the Global Precipitation Climatology Project pentad product (version 2.1) and from revised parameters in the rainfall interception model, changes that effectively correct for known limitations in the MERRA land surface meteorological forcings. The skill (defined as the correlation coefficient of the anomaly time series) in land surface hydrological fields from MERRA and MERRA-Land is assessed here against observations and compared to the skill of the state-of-the-art ERA-Interim reanalysis. MERRA-Land and ERA-Interim root zone soil moisture skills (against in situ observations at 85 US stations) are comparable and significantly greater than that of MERRA. Throughout the northern hemisphere, MERRA and MERRA-Land agree reasonably well with in situ snow depth measurements (from 583 stations) and with snow water equivalent from an independent analysis. Runoff skill (against naturalized stream flow observations from 15 basins in the western US) of MERRA and MERRA-Land is typically higher than that of ERA-Interim. With a few exceptions. the MERRA-Land data appear more accurate than the original MERRA estimates and are thus recommended for those interested in using '\\-tERRA output for land surface hydrological studies.

  7. Exploring and Analyzing Climate Variations Online by Using NASA MERRA-2 Data at GES DISC

    Science.gov (United States)

    Shen, Suhung; Ostrenga, Dana M.; Vollmer, Bruce E.; Kempler, Steven J.

    2016-01-01

    NASA Giovanni (Goddard Interactive Online Visualization ANd aNalysis Infrastructure) (http:giovanni.sci.gsfc.nasa.govgiovanni) is a web-based data visualization and analysis system developed by the Goddard Earth Sciences Data and Information Services Center (GES DISC). Current data analysis functions include Lat-Lon map, time series, scatter plot, correlation map, difference, cross-section, vertical profile, and animation etc. The system enables basic statistical analysis and comparisons of multiple variables. This web-based tool facilitates data discovery, exploration and analysis of large amount of global and regional remote sensing and model data sets from a number of NASA data centers. Long term global assimilated atmospheric, land, and ocean data have been integrated into the system that enables quick exploration and analysis of climate data without downloading, preprocessing, and learning data. Example data include climate reanalysis data from NASA Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) which provides data beginning in 1980 to present; land data from NASA Global Land Data Assimilation System (GLDAS), which assimilates data from 1948 to 2012; as well as ocean biological data from NASA Ocean Biogeochemical Model (NOBM), which provides data from 1998 to 2012. This presentation, using surface air temperature, precipitation, ozone, and aerosol, etc. from MERRA-2, demonstrates climate variation analysis with Giovanni at selected regions.

  8. MERRA Analytic Services

    Science.gov (United States)

    Schnase, J. L.; Duffy, D. Q.; McInerney, M. A.; Tamkin, G. S.; Thompson, J. H.; Gill, R.; Grieg, C. M.

    2012-12-01

    MERRA Analytic Services (MERRA/AS) is a cyberinfrastructure resource for developing and evaluating a new generation of climate data analysis capabilities. MERRA/AS supports OBS4MIP activities by reducing the time spent in the preparation of Modern Era Retrospective-Analysis for Research and Applications (MERRA) data used in data-model intercomparison. It also provides a testbed for experimental development of high-performance analytics. MERRA/AS is a cloud-based service built around the Virtual Climate Data Server (vCDS) technology that is currently used by the NASA Center for Climate Simulation (NCCS) to deliver Intergovernmental Panel on Climate Change (IPCC) data to the Earth System Grid Federation (ESGF). Crucial to its effectiveness, MERRA/AS's servers will use a workflow-generated realizable object capability to perform analyses over the MERRA data using the MapReduce approach to parallel storage-based computation. The results produced by these operations will be stored by the vCDS, which will also be able to host code sets for those who wish to explore the use of MapReduce for more advanced analytics. While the work described here will focus on the MERRA collection, these technologies can be used to publish other reanalysis, observational, and ancillary OBS4MIP data to ESGF and, importantly, offer an architectural approach to climate data services that can be generalized to applications and customers beyond the traditional climate research community. In this presentation, we describe our approach, experiences, lessons learned,and plans for the future.; (A) MERRA/AS software stack. (B) Example MERRA/AS interfaces.

  9. Climate Data Guide - Modern Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2)

    Science.gov (United States)

    Cullather, Richard; Bosilovich, Michael

    2017-01-01

    The Modern-Era Retrospective analysis for Research and Applications, version 2 (MERRA-2) is a global atmospheric reanalysis produced by the NASA Global Modeling and Assimilation Office (GMAO). It spans the satellite observing era from 1980 to the present. The goals of MERRA-2 are to provide a regularly-gridded, homogeneous record of the global atmosphere, and to incorporate additional aspects of the climate system including trace gas constituents (stratospheric ozone), and improved land surface representation, and cryospheric processes. MERRA-2 is also the first satellite-era global reanalysis to assimilate space-based observations of aerosols and represent their interactions with other physical processes in the climate system. The inclusion of these additional components are consistent with the overall objectives of an Integrated Earth System Analysis (IESA). MERRA-2 is intended to replace the original MERRA product, and reflects recent advances in atmospheric modeling and data assimilation. Modern hyperspectral radiance and microwave observations, along with GPS-Radio Occultation and NASA ozone datasets are now assimilated in MERRA-2. Much of the structure of the data files remains the same in MERRA-2. While the original MERRA data format was HDF-EOS, the MERRA-2 supplied binary data format is now NetCDF4 (with lossy compression to save space).

  10. MERRA/AS: The MERRA Analytic Services Project Interim Report

    Science.gov (United States)

    Schnase, John; Duffy, Dan; Tamkin, Glenn; Nadeau, Denis; Thompson, Hoot; Grieg, Cristina; Luczak, Ed; McInerney, Mark

    2013-01-01

    MERRA AS is a cyberinfrastructure resource that will combine iRODS-based Climate Data Server (CDS) capabilities with Coudera MapReduce to serve MERRA analytic products, store the MERRA reanalysis data collection in an HDFS to enable parallel, high-performance, storage-side data reductions, manage storage-side driver, mapper, reducer code sets and realized objects for users, and provide a library of commonly used spatiotemporal operations that can be composed to enable higher-order analyses.

  11. Comparing AIRS/AMSU-A Satellite and MERRA/MERRA-2 Reanalysis products with In-situ Station Observations at Summit, Greenland

    Science.gov (United States)

    Hearty, T. J., III; Vollmer, B.; Wei, J. C.; Huwe, P. M.; Albayrak, A.; Wu, D. L.; Cullather, R. I.; Meyer, D. L.; Lee, J. N.; Blaisdell, J. M.; Susskind, J.; Nowicki, S.

    2017-12-01

    The surface air and skin temperatures reported by the Atmospheric Infrared Sounder (AIRS), the Modern-Era Retrospective analysis for Research and Applications (MERRA), and MERRA-2 at Summit, Greenland are compared with near surface air temperatures measured at National Oceanic and Atmospheric Administration (NOAA) and Greenland Climate Network (GC-Net) weather stations. Therefore this investigation requires familiarity with a heterogeneous set of swath, grid, and point data in several different formats, different granularity, and different sampling. We discuss the current subsetting capabilities available at the GES DISC (Goddard Earth Sciences Data Information Services Center) to perform the inter-comparisons necessary to evaluate the quality and trustworthiness of these datasets. We also explore potential future services which may assist users with this type of intercomparison. We find the AIRS Surface Skin Temperature (TS) is best correlated with the NOAA 2 m air temperature (T2M) but it tends to be colder than the station measurements. The difference may be the result of the frequent near surface temperature inversions in the region. The AIRS Surface Air Temperature (SAT) is also well correlated with the NOAA T2M but it has a warm bias with respect to the NOAA T2M during the cold season and a larger standard error than surface temperature. This suggests that the extrapolation of the temperature profile to the surface is not valid for the strongest inversions. Comparing the temperature lapse rate derived from the 2 stations shows that the lapse rate can increase closer to the surface. We also find that the difference between the AIRS SAT and TS is sensitive to near surface inversions. The MERRA-2 surface and near surface temperatures show improvements over MERRA but little sensitivity to near surface temperature inversions.

  12. MERRA DAS 2D Constants V5.2.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The MAC0NXASM or const_2d_asm_Nx data product is the MERRA Data Assimilation System 2-Dimensional Constants at native resolution. MERRA, or the Modern Era...

  13. MERRA CHM 2D Constants V5.2.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The MAC0FXCHM or const_2d_chm_Fx data product is the MERRA Data Assimilation System 2-Dimensional Constants at native Fv resolution. MERRA, or the Modern Era...

  14. Comparisons of the tropospheric specific humidity from GPS radio occultations with ERA-Interim, NASA MERRA, and AIRS data

    Science.gov (United States)

    Vergados, Panagiotis; Mannucci, Anthony J.; Ao, Chi O.; Verkhoglyadova, Olga; Iijima, Byron

    2018-03-01

    We construct a 9-year data record (2007-2015) of the tropospheric specific humidity using Global Positioning System radio occultation (GPS RO) observations from the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) mission. This record covers the ±40° latitude belt and includes estimates of the zonally averaged monthly mean specific humidity from 700 up to 400 hPa. It includes three major climate zones: (a) the deep tropics (±15°), (b) the trade winds belts (±15-30°), and (c) the subtropics (±30-40°). We find that the RO observations agree very well with the European Centre for Medium-Range Weather Forecasts Re-Analysis Interim (ERA-Interim), the Modern-Era Retrospective Analysis for Research and Applications (MERRA), and the Atmospheric Infrared Sounder (AIRS) by capturing similar magnitudes and patterns of variability in the monthly zonal mean specific humidity and interannual anomaly over annual and interannual timescales. The JPL and UCAR specific humidity climatologies differ by less than 15 % (depending on location and pressure level), primarily due to differences in the retrieved refractivity. In the middle-to-upper troposphere, in all climate zones, JPL is the wettest of all data sets, AIRS is the driest of all data sets, and UCAR, ERA-Interim, and MERRA are in very good agreement, lying between the JPL and AIRS climatologies. In the lower-to-middle troposphere, we present a complex behavior of discrepancies, and we speculate that this might be due to convection and entrainment. Conclusively, the RO observations could potentially be used as a climate variable, but more thorough analysis is required to assess the structural uncertainty between centers and its origin.

  15. AOD Distributions and Trends of Major Aerosol Species over a Selection of the World's Most Populated Cities Based on the 1st Version of NASA's MERRA Aerosol Reanalysis

    Science.gov (United States)

    Provencal, Simon; Kishcha, Pavel; da Silva, Arlindo M.; Elhacham, Emily; Alpert, Pinhas

    2017-01-01

    NASA recently extended the Modern-Era Retrospective Analysis for Research and Application (MERRA) with an atmospheric aerosol reanalysis which includes five particulate species: sulfate, organic matter, black carbon, mineral dust and sea salt. The MERRA Aerosol Reanalysis (MERRAero) is an innovative tool to study air quality issues around the world for its global and constant coverage and its distinction of aerosol speciation expressed in the form of aerosol optical depth (AOD). The purpose of this manuscript is to apply MERRAero to the study of urban air pollution at the global scale by analyzing the AOD over a period of 13 years (2003-2015) and over a selection of 200 of the world's most populated cities in order to assess the impacts of urbanization, industrialization, air quality regulations and regional transport which affect urban aerosol load. Environmental regulations and the recent global economic recession have helped to decrease the AOD and sulfate aerosols in most cities in North America, Europe and Japan. Rapid industrialization in China over the last two decades resulted in Chinese cities having the highest AOD values in the world. China has nevertheless recently implemented emission control measures which are showing early signs of success in many cities of Southern China where AOD has decreased substantially over the last 13 years. The AOD over South American cities, which is dominated by carbonaceous aerosols, has also decreased over the last decade due to an increase in commodity prices which slowed deforestation activities in the Amazon rainforest. At the opposite, recent urbanization and industrialization in India and Bangladesh resulted in a strong increase of AOD, sulfate and carbonaceous aerosols in most cities of these two countries. The AOD over most cities in Northern Africa and Western Asia changed little over the last decade. Emissions of natural aerosols, which cities in these two regions tend to be mostly composed of, don't tend to

  16. NASA Product Peer Review Process

    Science.gov (United States)

    Jenks, Ken

    2009-01-01

    This viewgraph presentation describes NASA's product peer review process. The contents include: 1) Inspection/Peer Review at NASA; 2) Reasons for product peer reviews; 3) Different types of peer reviews; and 4) NASA requirements for peer reviews. This presentation also includes a demonstration of an actual product peer review.

  17. Assessment and Enhancement of MERRA Land Surface Hydrology Estimates

    Science.gov (United States)

    Reichle, Rolf H.; Koster, Randal D.; deLannoy, Gabrielle J. M.; Forman, Barton A.; Liu, Qing; Mahanama, Sarith P. P.; Toure, Ally

    2012-01-01

    The Modern-Era Retrospective analysis for Research and Applications (MERRA) is a state-ofthe-art reanalysis that provides, in addition to atmospheric fields, global estimates of soil moisture, latent heat flux, snow, and runoff for 1979-present. This study introduces a supplemental and improved set of land surface hydrological fields ("MERRA-Land") generated by re-running a revised version of the land component of the MERRA system. Specifically, the MERRA-Land estimates benefit from corrections to the precipitation forcing with the Global Precipitation Climatology Project pentad product (version 2.1) and from revised parameter values in the rainfall interception model, changes that effectively correct for known limitations in the MERRA surface meteorological forcings. The skill (defined as the correlation coefficient of the anomaly time series) in land surface hydrological fields from MERRA and MERRA-Land is assessed here against observations and compared to the skill of the state-of-the-art ERA-Interim (ERA-I) reanalysis. MERRA-Land and ERA-I root zone soil moisture skills (against in situ observations at 85 US stations) are comparable and significantly greater than that of MERRA. Throughout the northern hemisphere, MERRA and MERRA-Land agree reasonably well with in situ snow depth measurements (from 583 stations) and with snow water equivalent from an independent analysis. Runoff skill (against naturalized stream flow observations from 18 US basins) of MERRA and MERRA-Land is typically higher than that of ERA-I. With a few exceptions, the MERRA-Land data appear more accurate than the original MERRA estimates and are thus recommended for those interested in using MERRA output for land surface hydrological studies.

  18. Evaluation of the Ozone Fields in NASA’s MERRA-2 Reanalysis

    Science.gov (United States)

    Wargan, Krzysztof; Labow, Gordon; Frith, Stacey; Pawson, Steven; Livesey, Nathaniel; Partyka, Gary

    2018-01-01

    We describe and assess the quality of the assimilated ozone product from the Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2) produced at NASA’s Global Modeling and Assimilation Office (GMAO) spanning the time period from 1980 to present. MERRA-2 assimilates partial column ozone retrievals from a series of Solar Backscatter Ultraviolet (SBUV) radiometers on NASA and NOAA spacecraft between January 1980 and September 2004; starting in October 2004 retrieved ozone profiles from the Microwave Limb Sounder (MLS) and total column ozone from the Ozone Monitoring Instrument on NASA’s EOS Aura satellite are assimilated. We compare the MERRA-2 ozone with independent satellite and ozonesonde data focusing on the representation of the spatial and temporal variability of stratospheric and upper tropospheric ozone and on implications of the change in the observing system from SBUV to EOS Aura. The comparisons show agreement within 10 % (standard deviation of the difference) between MERRA-2 profiles and independent satellite data in most of the stratosphere. The agreement improves after 2004 when EOS Aura data are assimilated. The standard deviation of the differences between the lower stratospheric and upper tropospheric MERRA-2 ozone and ozonesondes is 11.2 % and 24.5 %, respectively, with correlations of 0.8 and above, indicative of a realistic representation of the near-tropopause ozone variability in MERRA-2. The agreement improves significantly in the EOS Aura period, however MERRA-2 is biased low in the upper troposphere with respect to the ozonesondes. Caution is recommended when using MERRA-2 ozone for decadal changes and trend studies. PMID:29527096

  19. Using the OMI aerosol index and absorption aerosol optical depth to evaluate the NASA MERRA Aerosol Reanalysis

    Science.gov (United States)

    Buchard, V.; da Silva, A. M.; Colarco, P. R.; Darmenov, A.; Randles, C. A.; Govindaraju, R.; Torres, O.; Campbell, J.; Spurr, R.

    2015-05-01

    A radiative transfer interface has been developed to simulate the UV aerosol index (AI) from the NASA Goddard Earth Observing System version 5 (GEOS-5) aerosol assimilated fields. The purpose of this work is to use the AI and aerosol absorption optical depth (AAOD) derived from the Ozone Monitoring Instrument (OMI) measurements as independent validation for the Modern Era Retrospective analysis for Research and Applications Aerosol Reanalysis (MERRAero). MERRAero is based on a version of the GEOS-5 model that is radiatively coupled to the Goddard Chemistry, Aerosol, Radiation, and Transport (GOCART) aerosol module and includes assimilation of aerosol optical depth (AOD) from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. Since AI is dependent on aerosol concentration, optical properties and altitude of the aerosol layer, we make use of complementary observations to fully diagnose the model, including AOD from the Multi-angle Imaging SpectroRadiometer (MISR), aerosol retrievals from the AErosol RObotic NETwork (AERONET) and attenuated backscatter coefficients from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) mission to ascertain potential misplacement of plume height by the model. By sampling dust, biomass burning and pollution events in 2007 we have compared model-produced AI and AAOD with the corresponding OMI products, identifying regions where the model representation of absorbing aerosols was deficient. As a result of this study over the Saharan dust region, we have obtained a new set of dust aerosol optical properties that retains consistency with the MODIS AOD data that were assimilated, while resulting in better agreement with aerosol absorption measurements from OMI. The analysis conducted over the southern African and South American biomass burning regions indicates that revising the spectrally dependent aerosol absorption properties in the near-UV region improves the modeled-observed AI comparisons

  20. NASA Technologies for Product Identification

    Science.gov (United States)

    Schramm, Fred, Jr.

    2006-01-01

    Since 1975 bar codes on products at the retail counter have been accepted as the standard for entering product identity for price determination. Since the beginning of the 21st century, the Data Matrix symbol has become accepted as the bar code format that is marked directly on a part, assembly or product that is durable enough to identify that item for its lifetime. NASA began the studies for direct part marking Data Matrix symbols on parts during the Return to Flight activities after the Challenger Accident. Over the 20 year period that has elapsed since Challenger, a mountain of studies, analyses and focused problem solutions developed by and for NASA have brought about world changing results. NASA Technical Standard 6002 and NASA Handbook 6003 for Direct Part Marking Data Matrix Symbols on Aerospace Parts have formed the basis for most other standards on part marking internationally. NASA and its commercial partners have developed numerous products and methods that addressed the difficulties of collecting part identification in aerospace operations. These products enabled the marking of Data Matrix symbols in virtually every situation and the reading of symbols at great distances, severe angles, under paint and in the dark without a light. Even unmarkable delicate parts now have a process to apply a chemical mixture called NanocodesTM that can be converted to a Data Matrix. The accompanying intellectual property is protected by 10 patents, several of which are licensed. Direct marking Data Matrix on NASA parts virtually eliminates data entry errors and the number of parts that go through their life cycle unmarked, two major threats to sound configuration management and flight safety. NASA is said to only have people and stuff with information connecting them. Data Matrix is one of the most significant improvements since Challenger to the safety and reliability of that connection. This presentation highlights the accomplishments of NASA in its efforts to develop

  1. Estimating top-of-atmosphere thermal infrared radiance using MERRA-2 atmospheric data

    Science.gov (United States)

    Kleynhans, Tania; Montanaro, Matthew; Gerace, Aaron; Kanan, Christopher

    2017-05-01

    Thermal infrared satellite images have been widely used in environmental studies. However, satellites have limited temporal resolution, e.g., 16 day Landsat or 1 to 2 day Terra MODIS. This paper investigates the use of the Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) reanalysis data product, produced by NASA's Global Modeling and Assimilation Office (GMAO) to predict global topof-atmosphere (TOA) thermal infrared radiance. The high temporal resolution of the MERRA-2 data product presents opportunities for novel research and applications. Various methods were applied to estimate TOA radiance from MERRA-2 variables namely (1) a parameterized physics based method, (2) Linear regression models and (3) non-linear Support Vector Regression. Model prediction accuracy was evaluated using temporally and spatially coincident Moderate Resolution Imaging Spectroradiometer (MODIS) thermal infrared data as reference data. This research found that Support Vector Regression with a radial basis function kernel produced the lowest error rates. Sources of errors are discussed and defined. Further research is currently being conducted to train deep learning models to predict TOA thermal radiance

  2. MERRA 3D Analyzed State, Meteorology Instantaneous Diurnal (p-coord, 2/3x1/2L42) V5.2.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The MAIUNPANA or instU_3d_ana_Np data product is the MERRA Data Assimilation System 3-Dimensional instantaneous, on pressure levels, at native resolution. MERRA, or...

  3. MERRA 3D Analyzed State, Meteorology Instantaneous 6-hourly (p-coord, 2/3x1/2L42) V5.2.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The MAI6NPANA or inst6_3d_ana_Np data product is the MERRA Data Assimilation System 3-Dimensional instantaneous, on pressure levels, at native resolution. MERRA, or...

  4. Eight Year Climatologies from Observational (AIRS) and Model (MERRA) Data

    Science.gov (United States)

    Hearty, Thomas; Savtchenko, Andrey; Won, Young-In; Theobalk, Mike; Vollmer, Bruce; Manning, Evan; Smith, Peter; Ostrenga, Dana; Leptoukh, Greg

    2010-01-01

    We examine climatologies derived from eight years of temperature, water vapor, cloud, and trace gas observations made by the Atmospheric Infrared Sounder (AIRS) instrument flying on the Aqua satellite and compare them to similar climatologies constructed with data from a global assimilation model, the Modern Era Retrospective-Analysis for Research and Applications (MERRA). We use the AIRS climatologies to examine anomalies and trends in the AIRS data record. Since sampling can be an issue for infrared satellites in low earth orbit, we also use the MERRA data to examine the AIRS sampling biases. By sampling the MERRA data at the AIRS space-time locations both with and without the AIRS quality control we estimate the sampling bias of the AIRS climatology and the atmospheric conditions where AIRS has a lower sampling rate. While the AIRS temperature and water vapor sampling biases are small at low latitudes, they can be more than a few degrees in temperature or 10 percent in water vapor at higher latitudes. The largest sampling biases are over desert. The AIRS and MERRA data are available from the Goddard Earth Sciences Data and Information Services Center (GES DISC). The AIRS climatologies we used are available for analysis with the GIOVANNI data exploration tool. (see, http://disc.gsfc.nasa.gov).

  5. Assessment of moisture budget over West Africa using MERRA-2's aerological model and satellite data

    Science.gov (United States)

    Igbawua, Tertsea; Zhang, Jiahua; Yao, Fengmei; Zhang, Da

    2018-02-01

    The study assessed the performance of NASA's Modern-Era Retrospective Analysis for Research and Applications (MERRA) and MERRA-2 aerological (P-E*) model in reproducing the salient features of West Africa water balance including its components from 1980 to 2013. In this study we have shown that recent reanalysis efforts have generated imbalances between regional integrated precipitation (P) and surface evaporation (E), and the effect is more in the newly released MERRA-2. The atmospheric water balance of MERRA and MERRA-2 were inter-compared and thereafter compared with model forecast output of European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-I) and Japanese 55-year Reanalysis (JRA-55). Results indicated that a bias of 12-20 (5-13) mm/month in MERRA-2 (ERA-I) leads to the classification of the Sahel (14°N-20°N) as a moisture source during the West African Summer Monsoon. Comparisons between MERRA/MERRA-2 and prognostic fields from two ERA-I and JRA-55 indicated that the average P-E* in MERRA is 18.94 (52.24) mm/month which is less than ERA-I (JRA-55) over Guinea domain and 25.03 (4.53) mm/month greater than ERA-I (JRA-55) over the Sahel. In MERRA-2, average P-E* indicated 25.76 (59.06) mm/month which is less than ERA-I (JRA-55) over Guinea and 73.72 (94.22) mm/month less than ERA-I (JRA-55) over the Sahel respectively. These imbalances are due to adjustments in data assimilation methods, satellite calibration and observational data base. The change in convective P parameterization and increased re-evaporation of P in MERRA-2 is suggestive of the cause of positive biases in P and E. The little disagreements between MERRA/MERRA-2 and CRU precipitation highlights one of the major challenges associated with climate research in West Africa and major improvements in observation data and surface fluxes from reanalysis remain vital.

  6. Using MERRA Gridded Innovation for Quantifying Uncertainties in Analysis Fields and Diagnosing Observing System Inhomogeneities

    Science.gov (United States)

    da Silva, A.; Redder, C. R.

    2010-12-01

    MERRA is a NASA reanalysis for the satellite era using a major new version of the Goddard Earth Observing System Data Assimilation System Version 5 (GEOS-5). The Project focuses on historical analyses of the hydrological cycle on a broad range of weather and climate time scales and places the NASA EOS suite of observations in a climate context. The characterization of uncertainty in reanalysis fields is a commonly requested feature by users of such data. While intercomparison with reference data sets is common practice for ascertaining the realism of the datasets, such studies typically are restricted to long term climatological statistics and seldom provide state dependent measures of the uncertainties involved. In principle, variational data assimilation algorithms have the ability of producing error estimates for the analysis variables (typically surface pressure, winds, temperature, moisture and ozone) consistent with the assumed background and observation error statistics. However, these "perceived error estimates" are expensive to obtain and are limited by the somewhat simplistic errors assumed in the algorithm. The observation minus forecast residuals (innovations) by-product of any assimilation system constitutes a powerful tool for estimating the systematic and random errors in the analysis fields. Unfortunately, such data is usually not readily available with reanalysis products, often requiring the tedious decoding of large datasets and not so-user friendly file formats. With MERRA we have introduced a gridded version of the observations/innovations used in the assimilation process, using the same grid and data formats as the regular datasets. Such dataset empowers the user with the ability of conveniently performing observing system related analysis and error estimates. The scope of this dataset will be briefly described. We will present a systematic analysis of MERRA innovation time series for the conventional observing system, including maximum

  7. MERRA Analytic Services: Meeting the Big Data Challenges of Climate Science through Cloud-Enabled Climate Analytics-as-a-Service

    Science.gov (United States)

    Schnase, J. L.; Duffy, D.; Tamkin, G. S.; Nadeau, D.; Thompson, J. H.; Grieg, C. M.; McInerney, M.; Webster, W. P.

    2013-12-01

    Climate science is a Big Data domain that is experiencing unprecedented growth. In our efforts to address the Big Data challenges of climate science, we are moving toward a notion of Climate Analytics-as-a-Service (CAaaS). We focus on analytics, because it is the knowledge gained from our interactions with Big Data that ultimately produce societal benefits. We focus on CAaaS because we believe it provides a useful way of thinking about the problem: a specialization of the concept of business process-as-a-service, which is an evolving extension of IaaS, PaaS, and SaaS enabled by Cloud Computing. Within this framework, Cloud Computing plays an important role; however, we see it as only one element in a constellation of capabilities that are essential to delivering climate analytics as a service. These elements are essential because in the aggregate they lead to generativity, a capacity for self-assembly that we feel is the key to solving many of the Big Data challenges in this domain. MERRA Analytic Services (MERRA/AS) is an example of cloud-enabled CAaaS built on this principle. MERRA/AS enables MapReduce analytics over NASA's Modern-Era Retrospective Analysis for Research and Applications (MERRA) data collection. The MERRA reanalysis integrates observational data with numerical models to produce a global temporally and spatially consistent synthesis of 26 key climate variables. It represents a type of data product that is of growing importance to scientists doing climate change research and a wide range of decision support applications. MERRA/AS brings together the following generative elements in a full, end-to-end demonstration of CAaaS capabilities: (1) high-performance, data proximal analytics, (2) scalable data management, (3) software appliance virtualization, (4) adaptive analytics, and (5) a domain-harmonized API. The effectiveness of MERRA/AS has been demonstrated in several applications. In our experience, Cloud Computing lowers the barriers and risk to

  8. Use of MERRA-2 in the National Solar Radiation Database and Beyond

    Energy Technology Data Exchange (ETDEWEB)

    Sengupta, Manajit; Lopez, Anthony; Habte, Aron

    2017-07-06

    The National Solar Radiation Database (NSRDB) is a flagship product of NREL that provides solar radiation and ancillary meteorological information through a GIS based portal. This data is provided at a 4kmx4km spatial and 30 minute temporal resolution covering the period between 1998-2015. The gridded data that is distributed by the NSRDB is derived from satellite measurements using the Physical Solar Model (PSM) that contains a 2-stage approach. This 2-stage approach consists of first retrieving cloud properties using measurement from the GOES series of satellites and using that information in a radiative transfer model to estimate solar radiation at the surface. In addition to the satellite data the model requires ancillary meteorological information that is provided mainly by NASA's Modern Era Retrospecitve Analysis for Research and Applications (MERRA-2) 2 model output. This presentation provides an insight into how the NSRDB is developed using the PSM and how the various sources of data including the MERRA-2 data is used during the process.

  9. The Effect of Satellite Observing System Changes on MERRA Water and Energy Fluxes

    Science.gov (United States)

    Robertson, Franklin R.; Bosilovich, M. G.; Chen, J.; Miller, T. L.

    2011-01-01

    Because reanalysis data sets offer state variables and fluxes at regular space / time intervals, atmospheric reanalyses have become a mainstay of the climate community for diagnostic purposes and for driving offline ocean and land models. Although one weakness of these data sets is the susceptibility of the flux products to uncertainties because of shortcomings in parameterized model physics, another issue, perhaps less appreciated, is the fact that continual but discreet changes in the evolving observational system, particularly from satellite sensors, may also introduce artifacts in the time series of quantities. In this paper we examine the ability of the NASA MERRA (Modern Era Retrospective Analysis for Research and Applications) and other recent reanalyses to determine variability in the climate system over the satellite record (approx. the last 30 years). In particular we highlight the effect on the reanalysis of discontinuities at the junctures of the onset of passive microwave imaging (Special Sensor Microwave Imager) in late 1987 and, more prominently, with improved sounding and imaging with the Advanced Microwave Sounding Unit, AMSU-A, in 1998. We first examine MERRA fluxes from the perspective of how physical modes of variability (e.g. ENSO events, Pacific Decadal Variability) are contained by artificial step-like trends induced by the onset of new moisture data these two satellite observing systems. Secondly, we show how Redundancy Analysis, a statistical regression methodology, is effective in relating these artifact signals in the moisture and temperature analysis increments to their presence in the physical flux terms (e.g. precipitation, radiation). This procedure is shown to be effective greatly reducing the artificial trends in the flux quantities.

  10. Intercomparison of AMSR2 and AMSR-E Soil Moisture Retrievals with MERRA-L data set over Australia

    Science.gov (United States)

    Cho, E.; Choi, M.; Su, C. H.; Ryu, D.; Kim, H.; Jacobs, J. M.

    2015-12-01

    Soil moisture is an important variable in the hydrological cycle on the land surface and plays an essential role in hydrological and meteorological processes. The Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E) sensor on board the Aqua satellite offered valuable soil moisture data set from June 2002 and October 2011 and has been used in a wide range of applications. However, the AMSR-E sensor stopped operation from 4 October 2011 due to a problem with its antenna. AMSR-E was replaced by the Advanced Microwave Scanning Radiometer 2 (AMSR2) on the Global Climate Change Observation Mission 1 - Water (GCOM-W1) satellite in May 2012. Assessment of AMSR2 soil moisture retrievals as compared to AMSR-E has not yet been extensively evaluated. This task is critical if AMSR2 soil moisture products are used as a continuous dataset continuing the legacy of AMSR-E. The purpose of this study is to inter-compare AMSR2 and AMSR-E microwave based soil moisture over Australia, mediated by using model-based soil moisture data set to determine statistically similar inter-comparison periods from time periods of the individual sensors. This work use NASA-VUA AMSR2 and AMSR-E based soil moisture products derived by the Land Parameter Retrieval Model (LPRM) and the modelled soil moisture from NASA's MERRA-L (Modern Era Retrospective-analysis for Research and Applications-Land) re-analysis. The satellite soil moisture products are compared against the MERRA-L using traditional metrics, and the random errors in individual products are estimated using lagged instrumental variable regression analysis. Generally, the results demonstrate that the two satellite-based soil moisture retrievals have reasonable agreement with MERRA-L soil moisture data set. The error differences are notable, with the zonal error statistics are higher for AMSR2 in all climate zones, though the error maps of AMSR2 and AMSR-E are spatially similar over the Australia regions. This study leads

  11. MERRA IAU 2d Vertical integrals V5.2.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The MAT1NXINT or tavg1_2d_int_Nx data product is the MERRA Data Assimilation System 2-Dimensional vertical integral that is time averaged single-level at the native...

  12. Multidecadal Changes in the UTLS Ozone from the MERRA-2 Reanalysis and the GMI Chemistry Model

    Science.gov (United States)

    Wargan, Krzysztof; Orbe, Clara; Pawson, Steven; Ziemke, Jerald R.; Oman, Luke; Olsen, Mark; Coy, Lawrence; Knowland, Emma

    2018-01-01

    Long-term changes of ozone in the UTLS (Upper Troposphere / Lower Stratosphere) reflect the response to decreases in the stratospheric concentrations of ozone-depleting substances as well as changes in the stratospheric circulation induced by climate change. To date, studies of UTLS ozone changes and variability have relied mainly on satellite and in-situ observations as well as chemistry-climate model simulations. By comparison, the potential of reanalysis ozone data remains relatively untapped. This is despite evidence from recent studies, including detailed analyses conducted under SPARC (Scalable Processor Architecture) Reanalysis Intercomparison Project (S-RIP), that demonstrate that stratospheric ozone fields from modern atmospheric reanalyses exhibit good agreement with independent data while delineating issues related to inhomogeneities in the assimilated observations. In this presentation, we will explore the possibility of inferring long-term geographically and vertically resolved behavior of the lower stratospheric (LS) ozone from NASA's MERRA-2 (Modern-Era Retrospective Analysis for Research and Applications -2) reanalysis after accounting for the few known discontinuities and gaps in its assimilated input data. This work builds upon previous studies that have documented excellent agreement between MERRA-2 ozone and ozonesonde observations in the LS. Of particular importance is a relatively good vertical resolution of MERRA-2 allowing precise separation of tropospheric and stratospheric ozone contents. We also compare the MERRA-2 LS ozone results with the recently completed 37-year simulation produced using Goddard Earth Observing System in "replay"� mode coupled with the GMI (Global Modeling Initiative) chemistry mechanism. Replay mode dynamically constrains the model with the MERRA-2 reanalysis winds, temperature, and pressure. We will emphasize the areas of agreement of the reanalysis and replay and interpret differences between them in the context

  13. Introduction to NASA Symposium on Productivity and Quality

    Science.gov (United States)

    Braunstein, David

    1984-01-01

    The discussions will concentrate on white-collar organizational issues common to large organizations. The program will address a number of management issues for improving our nation's productivity and quality, and therefore its competitive position. executives have contributed their time to share /their experience with you. In addition, the American Institute of Astronautics & Aeronautics corporate members have helped to organize the sessions. I am most grateful for this support. The NASA Administrator has set the goal for NASA to become a leader in productivity and quality.

  14. MERRA 3D IAU Tendency, Wind Components, Time average 3-hourly (1.25x1.25L42) V5.2.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The MAT3CPUDT or tavg3_3d_udt_Cp data product is the MERRA Data Assimilation System 3-Dimensional eastward wind tendencies that is time averaged on pressure levels...

  15. MERRA IAU 2D Vertical Integrals and Budget Terms, Instantaneous Monthly (2/3x1/2L1) V5.2.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The MAIMNXINT or instM_2d_int_Nx data product is the MERRA Data Assimilation System 2-Dimensional vertical integral that is time averaged single-level at the native...

  16. MERRA 3D IAU Tendency, Ozone, Diurnal (1.25x1.25L42) V5.2.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The MATUCPODT or tavgU_3d_odt_Cp data product is the MERRA Data Assimilation System 3-Dimensional ozone tendencies that is time averaged on pressure levels at a...

  17. MERRA 2D IAU Ocean Surface Diagnostic, Single Level, Time Avg 1-hr (2/3x1/2L1) V5.2.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The MAT1NXOCN or tavg1_2d_ocn_Nx data product is the MERRA Data Assimilation System 2-Dimensional ocean surface single-level diagnostics that is time averaged...

  18. MERRA 3D IAU Diagnostic, Turbulence, Time average 3-hourly (1.25x1.25L42) V5.2.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The MAT3CPTRB or tavg3_3d_trb_Cp data product is the MERRA Data Assimilation System 3-Dimensional turbulence diagnostic that is time averaged on pressure levels at a...

  19. MERRA 3D IAU Tendency, Specific Humidity, Monthly Mean (1.25x1.25L42) V5.2.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The MATMCPQDT or tavgM_3d_qdt_Cp data product is the MERRA Data Assimilation System 3-Dimensional moisture tendencies that is time averaged on pressure levels at a...

  20. MERRA 3D IAU Tendency, Specific Humidity, Diurnal (1.25x1.25L42) V5.2.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The MATUCPQDT or tavgU_3d_qdt_Cp data product is the MERRA Data Assimilation System 3-Dimensional moisture tendencies that is time averaged on pressure levels at a...

  1. MERRA 3D IAU Diagnostic, Cloud Properties, Time average 3-hourly (1.25x1.25L42) V5.2.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The MAT3CPCLD or tavg3_3d_cld_Cp data product is the MERRA Data Assimilation System 3-Dimensional cloud diagnostic that is time averaged on pressure levels at a...

  2. MERRA 2D IAU Diagnostic, Land Only States and Diagnostics, Monthly Mean (2/3x1/2L1) V5.2.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The MATMNXLND or tavgM_2d_lnd_Nx data product is the MERRA Data Assimilation System 2-Dimensional land surface diagnostic that is time averaged single-level at the...

  3. MERRA 3D IAU Diagnostic, Moist Physics, Time average 3-hourly (1.25x1.25L42) V5.2.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The MAT3CPMST or tavg3_3d_mst_Cp data product is the MERRA Data Assimilation System 3-Dimensional moist process diagnostic that is time averaged on pressure levels...

  4. MERRA 3D IAU Tendency, Temperature, Monthly Mean (1.25x1.25L42) V5.2.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The MATMCPTDT or tavgM_3d_tdt_Cp data product is the MERRA Data Assimilation System 3-Dimensional temperature tendencies that is time averaged on pressure levels at...

  5. MERRA 3D IAU Diagnostic, Radiation, Time average 3-hourly (1.25x1.25L42) V5.2.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The MAT3CPRAD or tavg3_3d_rad_Cp data product is the MERRA Data Assimilation System 3-Dimensional radiation diagnostic that is time averaged on pressure levels at a...

  6. MERRA-Land 2d land surface diagnostics, Time Average 1-hourly (2/3x1/2L1) V5.2.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The Modern-Era Retrospective Analysis for Research and Applications (MERRA) is a state-of-the-art reanalysis data product that provides, in addition to atmospheric...

  7. MERRA-Land 2d land surface diagnostics, Monthly (2/3x1/2L1) V5.2.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The Modern-Era Retrospective Analysis for Research and Applications (MERRA) is a state-of-the-art reanalysis data product that provides, in addition to atmospheric...

  8. MERRA Chem 2D IAU Diagnostics, Fluxes and Meteorology, Diurnal (surface, 1.25x1L1) V5.2.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The MATUFXCHM or tavgU_3d_chm_Fx data product is the MERRA Data Assimilation System Chemistry 2-Dimensional chemistry that is time averaged, single-level, at reduced...

  9. MERRA 3D IAU State, Meteorology Instantaneous Monthly (p-coord, 1.25x1.25L42) V5.2.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The MAIMCPASM or instM_3d_asm_Cp data product is the MERRA Data Assimilation System 3-Dimensional assimilated state on pressure, at a reduced resolution. It is a...

  10. MERRA 2D IAU Diagnostic, Surface Fluxes, Monthly Mean (2/3x1/2L1) V5.2.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The MATMNXFLX or tavgM_2d_flx_Nx data product is the MERRA Data Assimilation System 2-Dimensional surface turbulence flux diagnostic that is time averaged...

  11. MERRA Chem 2D IAU Diagnostics, Fluxes and Meteorology, Time Average 3-hourly (surface, 1.25x1L1) V5.2.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The MAT3FXCHM or tavg3_3d_chm_Fx data product is the MERRA Data Assimilation System Chemistry 2-Dimensional chemistry that is time averaged, single-level, at reduced...

  12. MERRA Chem 2D IAU Diagnostics, Fluxes and Meteorology, Monthly Mean (surface, 1.25x1L1) V5.2.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The MATMFXCHM or tavgM_3d_chm_Fx data product is the MERRA Data Assimilation System Chemistry 2-Dimensional chemistry that is time averaged, single-level, at reduced...

  13. MERRA 2D IAU Diagnostic, Surface Fluxes, Diurnal (2/3x1/2L1) V5.2.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The MATUNXFLX or tavgU_2d_flx_Nx data product is the MERRA Data Assimilation System 2-Dimensional surface turbulence flux diagnostic that is time averaged...

  14. MERRA 3D IAU Diagnostic, Cloud Properties, Diurnal (1.25x1.25L42) V5.2.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The MATUCPCLD or tavgU_3d_cld_Cp data product is the MERRA Data Assimilation System 3-Dimensional cloud diagnostic that is time averaged on pressure levels at a...

  15. MERRA 2D IAU Diagnostic, Vertical Integrals and Budget Terms, Diurnal (2/3x1/2L1) V5.2.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The MATUNXINT or tavgU_2d_int_Nx data product is the MERRA Data Assimilation System 2-Dimensional vertical integral that is time averaged single-level at the native...

  16. MERRA 3D IAU Tendency, Specific Humidity, Time average 3-hourly (1.25x1.25L42) V5.2.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The MAT3CPQDT or tavg3_3d_qdt_Cp data product is the MERRA Data Assimilation System 3-Dimensional moisture tendencies that is time averaged on pressure levels at a...

  17. MERRA 2D IAU Ocean Surface Diagnostic, Single Level, Monthly Mean (2/3x1/2L1) V5.2.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The MATMNXOCN or tavgM_2d_ocn_Nx data product is the MERRA Data Assimilation System 2-Dimensional ocean surface single-level diagnostics that is monthly mean...

  18. MERRA 3D IAU Tendency, Ozone, Time average 3-hourly (1.25x1.25L42) V5.2.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The MAT3CPODT or tavg3_3d_odt_Cp data product is the MERRA Data Assimilation System 3-Dimensional ozone tendencies that is time averaged on pressure levels at a...

  19. MERRA 2D IAU Diagnostic, Radiation Surface and TOA, Diurnal (2/3x1/2L1) V5.2.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The MATUNXRAD or tavgU_2d_rad_Nx data product is the MERRA Data Assimilation System 2-Dimensional surface and TOA radiation flux that is time averaged single-level...

  20. MERRA IAU 2D Vertical Integrals and Budget Terms, Instantaneous Diurnal (2/3x1/2L1) V5.2.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The MAIUNXINT or instU_2d_int_Nx data product is the MERRA Data Assimilation System 2-Dimensional vertical integral that is time averaged single-level at the native...

  1. MERRA 3D IAU Diagnostic, Moist Physics, Diurnal (1.25x1.25L42) V5.2.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The MATUCPMST or tavgU_3d_mst_Cp data product is the MERRA Data Assimilation System 3-Dimensional moist process diagnostic that is time averaged on pressure levels...

  2. MERRA 2D IAU Diagnostic, Radiation Surface and TOA, Monthly Mean (2/3x1/2L1) V5.2.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The MATMNXRAD or tavgM_2d_rad_Nx data product is the MERRA Data Assimilation System 2-Dimensional surface and TOA radiation flux that is time averaged single-level...

  3. MERRA 3D IAU Diagnostic, Radiation, Diurnal (1.25x1.25L42) V5.2.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The MATUCPRAD or tavgU_3d_rad_Cp data product is the MERRA Data Assimilation System 3-Dimensional radiation diagnostic that is time averaged on pressure levels at a...

  4. MERRA 3D IAU Diagnostic, Cloud Properties, Monthly Mean (1.25x1.25L42) V5.2.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The MATMCPCLD or tavgM_3d_cld_Cp data product is the MERRA Data Assimilation System 3-Dimensional cloud diagnostic that is time averaged on pressure levels at a...

  5. MERRA 2D IAU Diagnostic, Surface Fluxes, Time Average 1-hourly (2/3x1/2L1) V5.2.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The MAT1NXFLX or tavg1_2d_flx_Nx data product is the MERRA Data Assimilation System 2-Dimensional surface turbulence flux diagnostic that is time averaged...

  6. MERRA 2D IAU Diagnostic, Single Level Meteorology, Diurnal (2/3x1/2L1) V5.2.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The MATUNXSLV or tavgU_2d_slv_Nx data product is the MERRA Data Assimilation System 2-Dimensional atmospheric single-level diagnostics that is time averaged...

  7. MERRA 2D IAU Ocean Surface Diagnostic, Single Level, Diurnal (2/3x1/2L1) V5.2.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The MATUNXOCN or tavgU_2d_ocn_Nx data product is the MERRA Data Assimilation System 2-Dimensional ocean surface single-level diagnostics that is monthly mean...

  8. MERRA 3D IAU Tendency, Temperature, Diurnal (1.25x1.25L42) V5.2.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The MATUCPTDT or tavgU_3d_tdt_Cp data product is the MERRA Data Assimilation System 3-Dimensional temperature tendencies that is time averaged on pressure levels at...

  9. MERRA 2D IAU Diagnostic, Single Level Meteorology, Time Average 1-hourly (2/3x1/2L1) V5.2.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The MAT1NXSLV or tavg1_2d_slv_Nx data product is the MERRA Data Assimilation System 2-Dimensional atmospheric single-level diagnostics that is time averaged...

  10. MERRA 2D IAU Diagnostic, Vertical Integrals and Budget Terms, Instantaneous 1-hourly (2/3x1/2L1) V5.2.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The MAI1NXINT or inst1_2d_int_Nx data product is the MERRA Data Assimilation System 2-Dimensional vertical integral that is Instantaneous single-level at the native...

  11. MERRA 3D IAU Tendency, Wind Components, Monthly Mean (1.25x1.25L42) V5.2.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The MATMCPUDT or tavgM_3d_udt_Cp data product is the MERRA Data Assimilation System 3-Dimensional eastward wind tendencies that is time averaged on pressure levels...

  12. Chemistry Simulations Using MERRA-2 Reanalysis with the GMI CTM and Replay in Support of the Atmospheric Composition Community

    Science.gov (United States)

    Oman, Luke D.; Strahan, Susan E.

    2016-01-01

    Simulations using reanalyzed meteorological conditions have been long used to understand causes of atmospheric composition change over the recent past. Using the new Modern-Era Retrospective analysis for Research and Applications, version 2 (MERRA-2) meteorology, chemistry simulations are being conducted to create products covering 1980-2016 for the atmospheric composition community. These simulations use the Global Modeling Initiative (GMI) chemical mechanism in two different models: the GMI Chemical Transport Model (CTM) and the GEOS-5 model developed Replay mode. Replay mode means an integration of the GEOS-5 general circulation model that is incrementally adjusted each time step toward the MERRA-2 analysis. The GMI CTM is a 1 x 1.25 simulation and the MERRA-2 GMI Replay simulation uses the native MERRA-2 approximately horizontal resolution on the cubed sphere. The Replay simulations is driven by the online use of key MERRA-2 meteorological variables (i.e. U, V, T, and surface pressure) with all other variables calculated in response to those variables. A specialized set of transport diagnostics is included in both runs to better understand trace gas transport and changes over the recent past.

  13. Liquid hydrogen production and economics for NASA Kennedy Space Center

    Science.gov (United States)

    Block, D. L.

    1985-12-01

    Detailed economic analyses for the production of liquid hydrogen used to power the Space Shuttle are presented. The hydrogen production and energy needs of the NASA Kennedy Space Center are reviewed, and steam reformation, polygeneration, and electrolysis for liquid hydrogen production are examined on an equal economic basis. The use of photovoltaics as an electrolysis power source is considered. The 1985 present worth is calculated based on life cycle costs over a 21-year period beginning with full operation in 1990. Two different sets of escalation, inflation, and discount rates are used, with revenue credit being given for energy or other products of the hydrogen production process. The results show that the economic analyses are very dependent on the escalation rates used. The least net present value is found for steam reformation of natural gas, while the best net present value is found for the electrolysis process which includes the phasing of photovoltaics.

  14. NASA's Space Launch Transitions: From Design to Production

    Science.gov (United States)

    Askins, Bruce; Robinson, Kimberly

    2016-01-01

    NASA's Space Launch System (SLS) successfully completed its Critical Design Review (CDR) in 2015, a major milestone on the journey to an unprecedented era of exploration for humanity. CDR formally marked the program's transition from design to production phase just four years after the program's inception and the first such milestone for a human launch vehicle in 40 years. While challenges typical of a complex development program lie ahead, CDR evaluators concluded that the design is technically and programmatically sound and ready to press forward to Design Certification Review (DCR) and readiness for launch of Exploration Mission 1 (EM-1) in the 2018 timeframe. SLS is prudently based on existing propulsion systems, infrastructure and knowledge with a clear, evolutionary path as required by mission needs. In its initial configuration, designated Block I, SLS will a minimum of 70 metric tons (t) of payload to low Earth orbit (LEO). It can evolve to a 130 t payload capacity by upgrading its engines, boosters, and upper stage, dramatically increasing the mass and volume of human and robotic exploration while decreasing mission risk, increasing safety, and simplifying ground and mission operations. CDR was the central programmatic accomplishment among many technical accomplishments that will be described in this paper. The government/industry SLS team successfully test fired a flight-like five-segment solid rocket motor, as well as seven hotfire development tests of the RS-25 core stage engine. The majority of the major test article and flight barrels, rings, and domes for the core stage liquid oxygen, liquid hydrogen, engine section, intertank, and forward skirt were manufactured at NASA's Michoud Assembly Facility. Renovations to the B-2 test stand for stage green run testing were completed at NASA Stennis Space Center. Core stage test stands are rising at NASA Marshall Space Flight Center. The modified Pegasus barge for core stage transportation from manufacturing

  15. tavgM_2d_int_Nx: MERRA 2D IAU Diagnostic, Vertical Integrals and Budget Terms, Monthly Mean 0.667 x 0.5 degree V5.2.0 (MATMNXINT) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — The MATMNXINT or tavgM_2d_int_Nx data product is the MERRA Data Assimilation System 2-Dimensional vertical integral that is time averaged single-level at the native...

  16. tavgU_2d_flx_Nx: MERRA 2D IAU Diagnostic, Surface Fluxes, Diurnal 0.667 x 0.5 degree V5.2.0 (MATUNXFLX) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — The MATUNXFLX or tavgU_2d_flx_Nx data product is the MERRA Data Assimilation System 2-Dimensional surface turbulence flux diagnostic that is time averaged...

  17. tavgM_2d_slv_Nx: MERRA 2D IAU Diagnostic, Single Level Meteorology, Monthly Mean 0.667 x 0.5 degree V5.2.0 (MATMNXSLV) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — The MATMNXSLV or tavgM_2d_slv_Nx data product is the MERRA Data Assimilation System 2-Dimensional atmospheric single-level diagnostics that is time averaged...

  18. tavgM_3d_cld_Cp: MERRA 3D IAU Diagnostic, Cloud Properties, Monthly Mean 1.25 x 1.25 degree V5.2.0 (MATMCPCLD) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — The MATMCPCLD or tavgM_3d_cld_Cp data product is the MERRA Data Assimilation System 3-Dimensional cloud diagnostic that is time averaged on pressure levels at a...

  19. tavgM_3d_udt_Cp: MERRA 3D IAU Tendency, Wind Components, Monthly Mean 1.25 x 1.25 degree V5.2.0 (MATMCPUDT) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — The MATMCPUDT or tavgM_3d_udt_Cp data product is the MERRA Data Assimilation System 3-Dimensional eastward wind tendencies that is time averaged on pressure levels...

  20. tavgM_3d_qdt_Cp: MERRA 3D IAU Tendency, Specific Humidity, Monthly Mean 1.25 x 1.25 degree V5.2.0 (MATMCPQDT) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — The MATMCPQDT or tavgM_3d_qdt_Cp data product is the MERRA Data Assimilation System 3-Dimensional moisture tendencies that is time averaged on pressure levels at a...

  1. tavgM_2d_ocn_Nx: MERRA 2D IAU Ocean Surface Diagnostic, Monthly Mean 0.667 x 0.5 degree V5.2.0 (MATMNXOCN) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — The MATMNXOCN or tavgM_2d_ocn_Nx data product is the MERRA Data Assimilation System 2-Dimensional ocean surface single-level diagnostics that is monthly mean...

  2. tavgM_2d_ocn_Nx: MERRA 2D IAU Ocean Surface Diagnostic, Diurnal 0.667 x 0.5 degree V5.2.0 (MATUNXOCN) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — The MATUNXOCN or tavgU_2d_ocn_Nx data product is the MERRA Data Assimilation System 2-Dimensional ocean surface single-level diagnostics that is monthly mean...

  3. tavgM_3d_trb_Cp: MERRA 3D IAU Diagnostic, Turbulence, Monthly Mean 1.25 x 1.25 degree V5.2.0 (MATMCPTRB) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — The MATMCPTRB or tavgM_3d_trb_Cp data product is the MERRA Data Assimilation System 3-Dimensional turbulence diagnostic that is time averaged on pressure levels at a...

  4. tavgM_2d_flx_Nx: MERRA 2D IAU Diagnostic, Surface Fluxes, Monthly Mean 0.667 x 0.5 degree V5.2.0 (MATMNXFLX) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — The MATMNXFLX or tavgM_2d_flx_Nx data product is the MERRA Data Assimilation System 2-Dimensional surface turbulence flux diagnostic that is time averaged...

  5. tavgU_3d_mst_Cp: MERRA 3D IAU Diagnostic, Moist Physics, Diurnal 1.25 x 1.25 degree V5.2.0 (MATUCPMST) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — The MATUCPMST or tavgU_3d_mst_Cp data product is the MERRA Data Assimilation System 3-Dimensional moist process diagnostic that is time averaged on pressure levels...

  6. instU_3d_asm_Cp: MERRA 3D IAU State, Meteorology Diurnal 1.25 x 1.25 degree V5.2.0 (MAIUCPASM) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — The MAIUCPASM or instU_3d_asm_Cp data product is the MERRA Data Assimilation System 3-Dimensional assimilated state on pressure, at a reduced resolution. It is a...

  7. tavgM_3d_rad_Cp: MERRA 3D IAU Diagnostic, Radiation, Monthly Mean 1.25 x 1.25 degree V5.2.0 (MATMCPRAD) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — The MATMCPRAD or tavgM_3d_rad_Cp data product is the MERRA Data Assimilation System 3-Dimensional radiation diagnostic that is time averaged on pressure levels at a...

  8. tavgM_3d_tdt_Cp: MERRA 3D IAU Tendency, Temperature, Monthly Mean 1.25 x 1.25 degree V5.2.0 (MATMCPTDT) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — The MATMCPTDT or tavgM_3d_tdt_Cp data product is the MERRA Data Assimilation System 3-Dimensional temperature tendencies that is time averaged on pressure levels at...

  9. tavgM_3d_odt_Cp: MERRA 3D IAU Tendency, Ozone, Monthly Mean 1.25 x 1.25 degree V5.2.0 (MATMCPODT) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — The MATMCPODT or tavgM_3d_odt_Cp data product is the MERRA Data Assimilation System 3-Dimensional ozone tendencies that is time averaged on pressure levels at a...

  10. tavgM_3d_mst_Cp: MERRA 3D IAU Diagnostic, Moist Physics, Monthly Mean 1.25 x 1.25 degree V5.2.0 (MATMCPMST) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — The MATMCPMST or tavgM_3d_mst_Cp data product is the MERRA Data Assimilation System 3-Dimensional moist process diagnostic that is time averaged on pressure levels...

  11. tavgU_2d_chm_Fx: MERRA Chem 2D IAU Diagnostics, Fluxes and Meteorology, Diurnal 1.25 x 1 degree V5.2.0 (MATUFXCHM) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — The MATUFXCHM or tavgU_3d_chm_Fx data product is the MERRA Data Assimilation System Chemistry 2-Dimensional chemistry that is time averaged, single-level, at reduced...

  12. tavgM_2d_lnd_Nx: MERRA 2D IAU Diagnostic, Land Only States and Diagnostics, Monthly Mean 0.667 x 0.5 degree V5.2.0 (MATMNXLND) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — The MATMNXLND or tavgM_2d_lnd_Nx data product is the MERRA Data Assimilation System 2-Dimensional land surface diagnostic that is time averaged single-level at the...

  13. tavgM_2d_rad_Nx: MERRA 2D IAU Diagnostic, Radiation Surface and TOA, Monthly Mean 0.667 x 0.5 degree V5.2.0 (MATMNXRAD) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — The MATMNXRAD or tavgM_2d_rad_Nx data product is the MERRA Data Assimilation System 2-Dimensional surface and TOA radiation flux that is time averaged single-level...

  14. tavg1_2d_ocn_Nx: MERRA 2D IAU Ocean Surface Diagnostic, Time Average 1-hourly 0.667 x 0.5 degree V5.2.0 (MAT1NXOCN) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — The MAT1NXOCN or tavg1_2d_ocn_Nx data product is the MERRA Data Assimilation System 2-Dimensional ocean surface single-level diagnostics that is time averaged...

  15. tavg1_2d_flx_Nx: MERRA 2D IAU Diagnostic, Surface Fluxes, Time Average 1-hourly 0.667 x 0.5 degree V5.2.0 (MAT1NXFLX) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — The MAT1NXFLX or tavg1_2d_flx_Nx data product is the MERRA Data Assimilation System 2-Dimensional surface turbulence flux diagnostic that is time averaged...

  16. tavg1_2d_slv_Nx: MERRA 2D IAU Diagnostic, Single Level Meteorology, Time Average 1-hourly 0.667 x 0.5 degree V5.2.0 (MAT1NXSLV) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — The MAT1NXSLV or tavg1_2d_slv_Nx data product is the MERRA Data Assimilation System 2-Dimensional atmospheric single-level diagnostics that is time averaged...

  17. MERRA Chem 3D IAU C-Grid Wind and Mass Flux, Time Average 3-Hourly (eta coord, 2/3x1/2L72) V5.2.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The MAT3NVCHM or tavg3_3d_chm_Nv data product is the MERRA Data Assimilation System Chemistry 3-Dimensional chemistry on layers that is time averaged, 3D model...

  18. tavg3_2d_chm_Fx: MERRA Chem 2D IAU Diagnostics, Fluxes and Meteorology, Time Average 3-hourly 1.25 x 1 degree V5.2.0 (MAT3FXCHM) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — The MAT3FXCHM or tavg3_3d_chm_Fx data product is the MERRA Data Assimilation System Chemistry 2-Dimensional chemistry that is time averaged, single-level, at reduced...

  19. The GEOS-5 Atmospheric General Circulation Model: Mean Climate and Development from MERRA to Fortuna

    Science.gov (United States)

    Molod, Andrea; Takacs, Lawrence; Suarez, Max; Bacmeister, Julio; Song, In-Sun; Eichmann, Andrew

    2012-01-01

    This report is a documentation of the Fortuna version of the GEOS-5 Atmospheric General Circulation Model (AGCM). The GEOS-5 AGCM is currently in use in the NASA Goddard Modeling and Assimilation Office (GMAO) for simulations at a wide range of resolutions, in atmosphere only, coupled ocean-atmosphere, and data assimilation modes. The focus here is on the development subsequent to the version that was used as part of NASA s Modern-Era Retrospective Analysis for Research and Applications (MERRA). We present here the results of a series of 30-year atmosphere-only simulations at different resolutions, with focus on the behavior of the 1-degree resolution simulation. The details of the changes in parameterizations subsequent to the MERRA model version are outlined, and results of a series of 30-year, atmosphere-only climate simulations at 2-degree resolution are shown to demonstrate changes in simulated climate associated with specific changes in parameterizations. The GEOS-5 AGCM presented here is the model used for the GMAO s atmosphere-only and coupled CMIP-5 simulations.

  20. Transition From NASA Space Communication Systems to Commerical Communication Products

    Science.gov (United States)

    Ghazvinian, Farzad; Lindsey, William C.

    1994-01-01

    Transitioning from twenty-five years of space communication system architecting, engineering and development to creating and marketing of commercial communication system hardware and software products is no simple task for small, high-tech system engineering companies whose major source of revenue has been the U.S. Government. Yet, many small businesses are faced with this onerous and perplexing task. The purpose of this talk/paper is to present one small business (LinCom) approach to taking advantage of the systems engineering expertise and knowledge captured in physical neural networks and simulation software by supporting numerous National Aeronautics and Space Administration (NASA) and the Department of Defense (DoD) projects, e.g., Space Shuttle, TDRSS, Space Station, DCSC, Milstar, etc. The innovative ingredients needed for a systems house to transition to a wireless communication system products house that supports personal communication services and networks (PCS and PCN) development in a global economy will be discussed. Efficient methods for using past government sponsored space system research and development to transition to VLSI communication chip set products will be presented along with notions of how synergy between government and industry can be maintained to benefit both parties.

  1. MERRA Analytic Services: Meeting the Big Data Challenges of Climate Science Through Cloud-enabled Climate Analytics-as-a-service

    Science.gov (United States)

    Schnase, John L.; Duffy, Daniel Quinn; Tamkin, Glenn S.; Nadeau, Denis; Thompson, John H.; Grieg, Christina M.; McInerney, Mark A.; Webster, William P.

    2014-01-01

    Climate science is a Big Data domain that is experiencing unprecedented growth. In our efforts to address the Big Data challenges of climate science, we are moving toward a notion of Climate Analytics-as-a-Service (CAaaS). We focus on analytics, because it is the knowledge gained from our interactions with Big Data that ultimately produce societal benefits. We focus on CAaaS because we believe it provides a useful way of thinking about the problem: a specialization of the concept of business process-as-a-service, which is an evolving extension of IaaS, PaaS, and SaaS enabled by Cloud Computing. Within this framework, Cloud Computing plays an important role; however, we it see it as only one element in a constellation of capabilities that are essential to delivering climate analytics as a service. These elements are essential because in the aggregate they lead to generativity, a capacity for self-assembly that we feel is the key to solving many of the Big Data challenges in this domain. MERRA Analytic Services (MERRAAS) is an example of cloud-enabled CAaaS built on this principle. MERRAAS enables MapReduce analytics over NASAs Modern-Era Retrospective Analysis for Research and Applications (MERRA) data collection. The MERRA reanalysis integrates observational data with numerical models to produce a global temporally and spatially consistent synthesis of 26 key climate variables. It represents a type of data product that is of growing importance to scientists doing climate change research and a wide range of decision support applications. MERRAAS brings together the following generative elements in a full, end-to-end demonstration of CAaaS capabilities: (1) high-performance, data proximal analytics, (2) scalable data management, (3) software appliance virtualization, (4) adaptive analytics, and (5) a domain-harmonized API. The effectiveness of MERRAAS has been demonstrated in several applications. In our experience, Cloud Computing lowers the barriers and risk to

  2. Recent Global Warming as Observed by AIRS and Depicted in GISSTEMP and MERRA-2

    Science.gov (United States)

    Susskind, Joel; Lee, Jae; Iredell, Lena

    2017-01-01

    AIRS Version-6 monthly mean level-3 surface temperature products confirm the result, depicted in the GISSTEMP dataset, that the earth's surface temperature has been warming since early 2015, though not before that. AIRS is at a higher spatial resolution than GISSTEMP, and produces sharper spatial features which are otherwise in excellent agreement with those of GISSTEMP. Version-6 AO Ts anomalies are consistent with those of Version-6 AIRS/AMSU. Version-7 AO anomalies should be even more accurate, especially at high latitudes. ARCs of MERRA-2 Ts anomalies are spurious as a result of a discontinuity which occurred somewhere between 2007 and 2008. This decreases global mean trends.

  3. A method for daily global solar radiation estimation from two instantaneous values using MODIS atmospheric products

    International Nuclear Information System (INIS)

    Xu, Xiaojun; Du, Huaqiang; Zhou, Guomo; Mao, Fangjie; Li, Pingheng; Fan, Weiliang; Zhu, Dien

    2016-01-01

    Accurate information on the temporal and spatial distributions of solar radiation is very important in many scientific fields. In this study, instantaneous solar irradiances on a horizontal surface at 10:30 and 13:30 local time (LT) were calculated from Moderate Resolution Imaging Spectroradiometer (MODIS) atmospheric data products with relatively high spatial resolution using a solar radiation model. These solar irradiances were combined to derive half-hourly averages of solar irradiance (HASI) and daily global solar radiation (GSR) on a horizontal surface using linear interpolation, piecewise linear regression, and quadratic polynomial regression. Compared with field observations, the HASI were estimated accurately when the total cloud fraction (TCF) was 0.6. Overall, the daily GSR estimated in this study was better than that estimated by the Modern-Era Retrospective Analysis for Research and Applications (MERRA) reanalysis of NASA. The daily GSR estimated in this study was underestimated, whereas it was overestimated by MERRA. The combination of the daily GSR estimates of this study and MERRA offers a simple and feasible technique for reducing uncertainty in daily GSR estimates. - Highlights: • Daily GSR is integrated from two observations from the MODIS products. • Daily GSR from the MODIS products is underestimated. • Biases were attributed primarily to variations in the total cloud percent. • Combining daily GSR estimates from the MODIS and the MERRA increases accuracy.

  4. Primary Productivity, NASA Aqua MODIS and GOES Imager, 0.1 degrees, Global, EXPERIMENTAL

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Primary Productivity is calculated from NASA Aqua MODIS Chl a and NOAA GOES Imager SST data. THIS IS AN EXPERIMENTAL PRODUCT: intended strictly for scientific...

  5. Global Navigation Satellite System (GNSS) Rapid Clock Product Summary from NASA CDDIS

    Data.gov (United States)

    National Aeronautics and Space Administration — This derived product set consists of Global Navigation Satellite System Rapid Clock Product Summary from the NASA Crustal Dynamics Data Information System (CDDIS)....

  6. Primary Productivity, NASA Aqua MODIS, 4.4 km, Global, EXPERIMENTAL

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Primary Productivity is calculated from NASA Aqua MODIS Chl a SST data. THIS IS AN EXPERIMENTAL PRODUCT: intended strictly for scientific evaluation by professional...

  7. Variation in MERRA-2 aerosol optical depth over the Yangtze River Delta from 1980 to 2016

    Science.gov (United States)

    Sun, Enwei; Che, Huizheng; Xu, Xiaofeng; Wang, Zhenzhu; Lu, Chunsong; Gui, Ke; Zhao, Hujia; Zheng, Yu; Wang, Yaqiang; Wang, Hong; Sun, Tianze; Liang, Yuanxin; Li, Xiaopan; Sheng, Zhizhong; An, Linchang; Zhang, Xiaoye; Shi, Guangyu

    2018-05-01

    In this study, 765 instantaneous MERRA-2 (second Modern-Era Retrospective analysis for Research and Applications) aerosol optical depth (AOD) values at 550 nm were compared with those of a sky radiometer in Hefei (31.90° N, 117.17° E) for the different seasons from March 2007 to February 2010. The correlation coefficients (R) were 0.88, 0.83, 0.88, and 0.80 in spring, summer, autumn, and winter, respectively. The MERRA-2 AOD is also compared with MODIS Aqua AOD in the entire Yangtze River Delta, and good agreement has been obtained. The MERRA-2 AOD product was used to analyze the spatial distribution and temporal variation of the annual, seasonal and monthly means of the AOD over the Yangtze River Delta region from 1980 to 2016 (37 years). The mean values of the MERRA-2 AOD during the study period show that the AOD (between 0.45 and 0.55) in the northern area of the Yangtze River Delta was higher than that (between 0.30 and 0.45) of the southern area. The northwest part of the Yangtze River Delta had the highest mean AOD values (between 0.50 and 0.55). The AOD increased slowly in the 1980s and 1990s, followed by a rapid increase between 2001 and 2010. An AOD decrease can be seen from 2011 to 2016. The mean AOD in each month is discussed. High AOD was observed in March, April, and June, while low AOD could be seen in September, October, November, and December. Three different area types (large cities, medium-sized cities, and remote areas) had nearly the same annual AOD variation. Large cities had the highest AOD (about 0.48), while remote areas had the lowest (about 0.42). In summer, the AOD in remote areas was much lower than that in cities. The AOD variational trend over the Yangtze River Delta was studied during two periods. The increasing trend could be seen over the entire Yangtze River Delta in each month from 1980 to 2009. A decreasing trend was found all over the Yangtze River Delta in January, February, March, July, October, and November, whereas in

  8. MERRA Chem 3D IAU Edge Pressure, Instantaneous 3-Hourly (eta coord, 2/3x1/2L73) V5.2.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The MAI3NECHM or inst3_3d_chm_Ne data product is the MERRA Data Assimilation System Chemistry 3-Dimensional chemistry on layer Edges that is time averaged, 3D model...

  9. MERRA 2D IAU Diagnostic, Land Only States and Diagnostics, Time Average 1-hourly (2/3x1/2L1) V5.2.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The MAT1NXLND or tavg1_2d_lnd_Nx data product is the MERRA Data Assimilation System 2-Dimensional land surface diagnostic that is time averaged single-level at the...

  10. MERRA Chem 3D IAU, Precip Mass Flux, Time average 3-hourly (eta coord edges, 1.25X1L73) V5.2.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The MAT3FECHM or tavg3_3d_chm_Fe data product is the MERRA Data Assimilation System Chemistry 3-Dimensional chemistry on layers edges that is time averaged, 3D model...

  11. MERRA 2D IAU Diagnostic, Radiation Surface and TOA, Time Average 1-hourly (2/3x1/2L1) V5.2.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The MAT1NXRAD or tavg1_2d_rad_Nx data product is the MERRA Data Assimilation System 2-Dimensional surface and TOA radiation flux that is time averaged single-level...

  12. NASA Prediction of Worldwide Energy Resource High Resolution Meteorology Data For Sustainable Building Design

    Science.gov (United States)

    Chandler, William S.; Hoell, James M.; Westberg, David; Zhang, Taiping; Stackhouse, Paul W., Jr.

    2013-01-01

    A primary objective of NASA's Prediction of Worldwide Energy Resource (POWER) project is to adapt and infuse NASA's solar and meteorological data into the energy, agricultural, and architectural industries. Improvements are continuously incorporated when higher resolution and longer-term data inputs become available. Climatological data previously provided via POWER web applications were three-hourly and 1x1 degree latitude/longitude. The NASA Modern Era Retrospective-analysis for Research and Applications (MERRA) data set provides higher resolution data products (hourly and 1/2x1/2 degree) covering the entire globe. Currently POWER solar and meteorological data are available for more than 30 years on hourly (meteorological only), daily, monthly and annual time scales. These data may be useful to several renewable energy sectors: solar and wind power generation, agricultural crop modeling, and sustainable buildings. A recent focus has been working with ASHRAE to assess complementing weather station data with MERRA data. ASHRAE building design parameters being investigated include heating/cooling degree days and climate zones.

  13. Development of Hybrid Product Breakdown Structure for NASA Ground Systems

    Science.gov (United States)

    Monaghan, Mark W.; Henry, Robert J.

    2013-01-01

    The Product Breakdown Structure is traditionally a method of identification of the products of a project in a tree structure. It is a tool used to assess, plan, document, and display the equipment requirements for a project. It is part of a product based planning technique, and attempts to break down all components of a project in as much detail as possible, so that nothing is overlooked. The PBS for ground systems at the Kennedy Space Center is being developed to encompass the traditional requirements including the alignment of facility, systems, and components to the organizational hierarchy. The Ground Operations Product Breakdown Structure is a hybrid in nature in that some aspects of a work breakdown structure will be incorporated and merged with the Architecture Concept of Operations, Master Subsystem List, customer interface, and assigned management responsibility. The Ground Operations Product Breakdown Structure needs to be able to identify the flexibility of support differing customers (internal and external) usage of ground support equipment within the Kennedy Space Center launch and processing complex. The development of the Product Breakdown Structure is an iterative activity Initially documenting the organization hierarchy structure and relationships. The Product Breakdown Structure identifies the linkage between the customer program requirements, allocation of system resources, development of design goals, and identification logistics products. As the Product Breakdown Structure progresses the incorporation of the results of requirement planning for the customer occurs identifying facility needs and systems. The mature Product Breakdown Structure is baselined with a hierarchical drawing, the Product Breakdown Structure database, and an associated document identifying the verification of the data through the life cycle of the program/product line. This paper will document, demonstrate, and identify key aspects of the life cycle of a Hybrid Product

  14. Characterize Aerosols from MODIS MISR OMI MERRA-2: Dynamic Image Browse Perspective

    Science.gov (United States)

    Wei, Jennifer; Yang, Wenli; Albayrak, Arif; Zhao, Peisheng; Zeng, Jian; Shen, Suhung; Johnson, James; Kempler, Steve

    2016-01-01

    Among the known atmospheric constituents, aerosols still represent the greatest uncertainty in climate research. To understand the uncertainty is to bring altogether of observational (in-situ and remote sensing) and modeling datasets and inter-compare them synergistically for a wide variety of applications that can bring far-reaching benefits to the science community and the broader society. These benefits can best be achieved if these earth science data (satellite and modeling) are well utilized and interpreted. Unfortunately, this is not always the case, despite the abundance and relative maturity of numerous satellite-borne sensors routinely measure aerosols. There is often disagreement between similar aerosol parameters retrieved from different sensors, leaving users confused as to which sensors to trust for answering important science questions about the distribution, properties, and impacts of aerosols. NASA Goddard Earth Sciences Data and Information Services Center (GES DISC) have developed a new visualization service (NASA Level 2 Data Quality Visualization, DQViz)supporting various visualization and data accessing capabilities from satellite Level 2(MODISMISROMI) and long term assimilated aerosols from NASA Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2 displaying at their own native physical-retrieved spatial resolution. Functionality will include selecting data sources (e.g., multiple parameters under the same measurement), defining area-of-interest and temporal extents, zooming, panning, overlaying, sliding, and data subsetting and reformatting.

  15. American Meteorological Society (AMS) - The Modern Era Retrospective-Analysis for Research and Applications (MERRA) Data and Accessibility

    Science.gov (United States)

    daSilva, Arlindo

    2009-01-01

    The AM Short Course on The Modern Era Retrospective-analysis for Research and Applications (MERRA) data and accessibility will be held on January 11, 2009 preceding the 89th Annual Meeting in Phoenix, Arizona. Preliminary programs, registration, hotel, and general information will be posted on the AMS Web site in mid-September 2008. Retrospective-analyses (or reanalyses) have been established as an important tool in weather and climate research over the last decade. As computer power increases, the data assimilation and modeling systems improve and become more advanced, the input data quality increases and so reanalyses become more reliable. In 2008, NASA Global Modeling and Assimilation Office began producing a new reanalysis called the Modem Era Retrospective-analysis for Research and Applications (MERRA). The initial data from the reanalysis has been made available to the community and should be complete through 30 years (1979-present) by Fall of 2009. MERRA has taken advantage of the advancement of computing resources to provide users more data than previously available. The native spatial resolution is nominally 1/2 degrees and the surface two dimensional data are one hourly frequency. In addition to the meteorological analysis data, complete mass, energy and momentum budget data and also stratospheric data are provided. The eventual data holdings will exceed 150Tb. In order to facilitate user accessibility to the data, it will be stored in online hard drives (not tape storage) and available through several portals. Subsetting tools will also be available to allow users to tailor their data requests. The goals of this short course are to provide hands on users of reanalyses instruction on MERRA systems and also interactive experience with the online data and access tools. The course is intended for students and research scientists who will be actively interested in accessing and applying MERRA data in their weather, climate or applications work. The course has

  16. New Global Precipitation Products and Data Service Updates at the NASA GES DISC

    Science.gov (United States)

    Liu, Z.; Ostrenga, D.; Savtchenko, A.; DeShong, B.; Greene, M.; Vollmer, B.; Kempler, S.

    2016-01-01

    This poster describes recent updates of the ongoing GPM data service activities at the NASA Goddard Earth Sciences (GES) Data and Information Services Center(DISC) to facilitate access and exploration of GPM, TRMM and other NASA precipitation datasets for the global community. The poster contains -Updates on GPM products and data services -New features in Giovanni for precipitation data visualization -Precipitation data and service outreach activities.

  17. How NASA KSC Controls Interfaces with the use of Motion Skeletons and Product Structure

    Science.gov (United States)

    Jones, Corey

    2013-01-01

    This presentation will show how NASA KSC controls interfaces for Modular Product Architecture (MPA) using Locator Skeletons, Interface Skeletons, and Product Structure, to be combined together within a Motion Skeleton. The user will learn how to utilize skeleton models to communicate interface data, as successfully done at NASA KSC in their use of Motion Skeletons to control interfaces for multi-launch systems. There will be discussion of the methodology used to control design requirements through WTParts, and how to utilize product structure for non-CAD documents.

  18. Customizing NASA's Earth Science Research Products for addressing MENA Water Challenges

    Science.gov (United States)

    Habib, Shahid

    2012-01-01

    As projected by IPCC 2007 report, by the end of this century the Middle East North Mrica (MENA) region is projected to experience an increase of 3 C to 5 C rise in mean temperatures and a 20% decline in precipitation. This poses a serious problem for this geographic zone especially when majority of the hydrological consumption is for the agriculture sector and the remaining amount is for domestic consumption. In late 2011, the World Bank, USAID and NASA have joined hands to establishing integrated, modem, up to date NASA developed capabilities for various countries in the MENA region for addressing water resource issues and adapting to climate change impacts for improved decision making for societal benefits. The main focus of this undertaking is to address the most pressing societal issues which can be modeled and solved by utilizing NASA Earth Science remote sensing data products and hydrological models. The remote sensing data from space is one of the best ways to study such complex issues and further feed into the decision support systems. NASA's fleet of Earth Observing satellites offer a great vantage point from space to look at the globe and provide vital signs necessary to maintain healthy and sustainable ecosystem. NASA has over fifteen satellites and thirty instruments operating on these space borne platforms and generating over 2000 different science products on a daily basis. Some of these products are soil moisture, global precipitation, aerosols, cloud cover, normalized difference vegetation index, land cover/use, ocean altimetry, ocean salinity, sea surface winds, sea surface temperature, ozone and atmospheric gasses, ice and snow measurements, and many more. All of the data products, models and research results are distributed via the Internet freely through out the world. This project will utilize several NASA models such as global Land Data Assimilation System (LDAS) to generate hydrological states and fluxes in near real time. These LDAS products

  19. Assessments of Ali, Dome A, and Summit Camp for mm-wave Observations Using MERRA-2 Reanalysis

    International Nuclear Information System (INIS)

    Kuo, Chao-Lin

    2017-01-01

    NASA's latest MERRA-2 reanalysis of the modern satellite measurements has made atmospheric data easily accessible with unprecedented uniformity, fidelity, and completeness. In this paper, these data are used to evaluate five sites for millimeter-wave (mm-wave) observations. These include two established sites (South Pole and Chajnantor, Atacama), and three new sites (Ali in Tibet, Dome A in Antarctica, and Summit Camp in Greenland). Atmospheric properties including precipitable water vapor (PWV), sky brightness temperature fluctuations, and ice and liquid water paths are derived and compared. Dome A emerges to be the best among those evaluated, with PWV and fluctuations smaller than the second-best site, South Pole, by more than a factor of 2. It is found that the higher site in Ali (6100 m) is on par with Cerro Chajnantor (5612 m) in terms of transmission and stability. The lower site in Ali (5250 m) planned for the first stage of observations at 90/150 GHz provides conditions comparable to those on the Chajnantor Plateau. These analyses confirm Ali to be an excellent mm-wave site in the Northern Hemisphere that will complement well-established Southern sites. According to MERRA-2 data, the observing conditions at Summit Camp are also comparable to Cerro Chajnantor. Furthermore, it is more affected by the presence of liquid water clouds.

  20. NASA Excellence Award for Quality and Productivity 1989 highlights. The 1989 recipient: Lockheed Engineering and Sciences Company

    Science.gov (United States)

    1990-01-01

    The NASA Excellence Award for Productivity and Quality is the result of NASA's desire to encourage superior quality and the continuous improvement philosophy in the aerospace industry. It is awarded to NASA contractors, subcontractors, and suppliers who have demonstrated sustained excellence, customer orientation, and outstanding achievements in a total quality management (TQM) environment. The 'highlights' booklet is intended to transfer successful techniques demonstrated by the performance and quality of major NASA contractors.

  1. Monitoring Disaster-Related Power Outages Using NASA Black Marble Nighttime Light Product

    Science.gov (United States)

    Wang, Z.; Román, M. O.; Sun, Q.; Molthan, A. L.; Schultz, L. A.; Kalb, V. L.

    2018-04-01

    Timely and accurate monitoring of disruptions to the electricity grid, including the magnitude, spatial extent, timing, and duration of net power losses, is needed to improve situational awareness of disaster response and long-term recovery efforts. Satellite-derived Nighttime Lights (NTL) provide an indication of human activity patterns and have been successfully used to monitor disaster-related power outages. The global 500 m spatial resolution National Aeronautics and Space Administration (NASA) Black Marble NTL daily standard product suite (VNP46) is generated from Visible Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band (DNB) onboard the NASA/National Oceanic and Atmospheric Administration (NOAA) Suomi National Polar-orbiting Partnership (Suomi- NPP) satellite, which began operations on 19 January 2012. With its improvements in product accuracy (including critical atmospheric and BRDF correction routines), the VIIRS daily Black Mable product enables systematic monitoring of outage conditions across all stages of the disaster management cycle.

  2. MONITORING DISASTER-RELATED POWER OUTAGES USING NASA BLACK MARBLE NIGHTTIME LIGHT PRODUCT

    Directory of Open Access Journals (Sweden)

    Z. Wang

    2018-04-01

    Full Text Available Timely and accurate monitoring of disruptions to the electricity grid, including the magnitude, spatial extent, timing, and duration of net power losses, is needed to improve situational awareness of disaster response and long-term recovery efforts. Satellite-derived Nighttime Lights (NTL provide an indication of human activity patterns and have been successfully used to monitor disaster-related power outages. The global 500 m spatial resolution National Aeronautics and Space Administration (NASA Black Marble NTL daily standard product suite (VNP46 is generated from Visible Infrared Imaging Radiometer Suite (VIIRS Day/Night Band (DNB onboard the NASA/National Oceanic and Atmospheric Administration (NOAA Suomi National Polar-orbiting Partnership (Suomi- NPP satellite, which began operations on 19 January 2012. With its improvements in product accuracy (including critical atmospheric and BRDF correction routines, the VIIRS daily Black Mable product enables systematic monitoring of outage conditions across all stages of the disaster management cycle.

  3. 7th Annual NASA/Contractors Conference on Quality and Productivity: "Total Quality Leadership"

    Science.gov (United States)

    1991-01-01

    More than 750 NASA, government, contractor, and academic representatives attended the Seventh Annual NASA/Contractors Conference on Quality and Productivity on October 12-13, 1990, in Grenelefe, Florida. The panel presentations and keynote speeches revolving around the theme of 'Total Quality Leadership' provided a solid base of understanding of the importance, benefits, and principles of total quality management. The implementation of these strategies is critical if we are to effectively pursue our mission of continuous quality improvement and reliability in our products, processess, and services. The annual NASA/contractors conferences serve as catalysts for achieving success in this mission. The conference was highlighted by the announcement of the first recipients of the George M. Low Trophy: NASA's Quality and Excellence Award. My congratulations go out to all nine finalist organizations and to the two recipients of this prestigious honor: Rockwell Space Systems Division and Marotta Scientific Controls, Inc. (the first small business to achieve this honor). These organizations have demonstrated a commitment to quality that is unsurpassed in the aerospace industry. This report summarizes the presentations and is not intended to be a verbatim proceedings document. You are encouraged to contact the speakers with any requests for further information.

  4. tavg3_3d_chm_Fe: MERRA Chem 3D IAU, Precip Mass Flux, Time average 3-hourly 1.25 x 1 degree V5.2.0 (MAT3FECHM) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — The MAT3FECHM or tavg3_3d_chm_Fe data product is the MERRA Data Assimilation System Chemistry 3-Dimensional chemistry on layers edges that is time averaged, 3D model...

  5. MERRA Chem 3D IAU C-Grid Edge Mass Flux, Time Average 3-Hourly (eta coord, 2/3x1/2L73) V5.2.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The MAT3NECHM or tavg3_3d_chm_Ne data product is the MERRA Data Assimilation System Chemistry 3-Dimensional chemistry on layer Edges that is time averaged, 3D model...

  6. tavg3_3d_chm_Fv: MERRA Chem 3D IAU States Cloud Precip, Time average 3-hourly 1.25 x 1.25 degree V5.2.0 (MAT3FVCHM) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — The MAT3FVCHM or tavg3_3d_chm_Fv data product is the MERRA Data Assimilation System Chemistry 3-Dimensional chemistry on layers file that is time averaged, 3D model...

  7. tavg1_2d_rad_Nx: MERRA 2D IAU Diagnostic, Radiation Surface and TOA, Time Average 1-hourly 0.667 x 0.5 degree V5.2.0 (MAT1NXRAD) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — The MAT1NXRAD or tavg1_2d_rad_Nx data product is the MERRA Data Assimilation System 2-Dimensional surface and TOA radiation flux that is time averaged single-level...

  8. The Nasa-Isro SAR Mission Science Data Products and Processing Workflows

    Science.gov (United States)

    Rosen, P. A.; Agram, P. S.; Lavalle, M.; Cohen, J.; Buckley, S.; Kumar, R.; Misra-Ray, A.; Ramanujam, V.; Agarwal, K. M.

    2017-12-01

    The NASA-ISRO SAR (NISAR) Mission is currently in the development phase and in the process of specifying its suite of data products and algorithmic workflows, responding to inputs from the NISAR Science and Applications Team. NISAR will provide raw data (Level 0), full-resolution complex imagery (Level 1), and interferometric and polarimetric image products (Level 2) for the entire data set, in both natural radar and geocoded coordinates. NASA and ISRO are coordinating the formats, meta-data layers, and algorithms for these products, for both the NASA-provided L-band radar and the ISRO-provided S-band radar. Higher level products will be also be generated for the purpose of calibration and validation, over large areas of Earth, including tectonic plate boundaries, ice sheets and sea-ice, and areas of ecosystem disturbance and change. This level of comprehensive product generation has been unprecedented for SAR missions in the past, and leads to storage processing challenges for the production system and the archive center. Further, recognizing the potential to support applications that require low latency product generation and delivery, the NISAR team is optimizing the entire end-to-end ground data system for such response, including exploring the advantages of cloud-based processing, algorithmic acceleration using GPUs, and on-demand processing schemes that minimize computational and transport costs, but allow rapid delivery to science and applications users. This paper will review the current products, workflows, and discuss the scientific and operational trade-space of mission capabilities.

  9. Evaluation of the performance of hydrological variables derived from GLDAS-2 and MERRA-2 in Mexico

    Science.gov (United States)

    Real-Rangel, R. A.; Pedrozo-Acuña, A.; Breña-Naranjo, J. A.

    2017-12-01

    Hydrological studies have found in data assimilation systems and global reanalysis of land surface variables (e.g soil moisture, streamflow) a wide range of applications, from drought monitoring to water balance and hydro-climatology variability assessment. Indeed, these hydrological data sources have led to an improvement in developing and testing monitoring and prediction systems in poorly gauged regions of the world. This work tests the accuracy and error of land surface variables (precipitation, soil moisture, runoff and temperature) derived from the data assimilation reanalysis products GLDAS-2 and MERRA-2. Validate the performance of these data platforms must be thoroughly evaluated in order to consider the error of hydrological variables (i.e., precipitation, soil moisture, runoff and temperature) derived from the reanalysis products. For such purpose, a quantitative assessment was performed at 2,892 climatological stations, 42 stream gauges and 44 soil moisture probes located in Mexico and across different climate regimes (hyper-arid to tropical humid). Results show comparisons between these gridded products against ground-based observational stations for 1979-2014. The results of this analysis display a spatial distribution of errors and accuracy over Mexico discussing differences between climates, enabling the informed use of these products.

  10. Using NASA Products of the Water Cycle for Improved Water Resources Management

    Science.gov (United States)

    Toll, D. L.; Doorn, B.; Engman, E. T.; Lawford, R. G.

    2010-12-01

    NASA Water Resources works within the Earth sciences and GEO community to leverage investments of space-based observation and modeling results including components of the hydrologic cycle into water resources management decision support tools for the goal towards the sustainable use of water. These Earth science hydrologic related observations and modeling products provide a huge volume of valuable data in both near-real-time and extended back nearly 50 years. Observations of this type enable assessment of numerous water resources management issues including water scarcity, extreme events of drought and floods, and water quality. Examples of water cycle estimates make towards the contributions to the water management community include snow cover and snowpack, soil moisture, evapotranspiration, precipitation, streamflow and ground water. The availability of water is also contingent on the quality of water and hence water quality is an important part of NASA Water Resources. Water quality activities include both nonpoint source (agriculture land use, ecosystem disturbances, impervious surfaces, etc.) and direct remote sensing ( i.e., turbidity, algae, aquatic vegetation, temperature, etc.). . The NASA Water Resources Program organizes its projects under five functional themes: 1) stream-flow and flood forecasting; 2) water consumptive use and irrigation (includes evapotranspiration); 3) drought; 4) water quality; and 5) climate impacts on water resources. Currently NASA Water Resources is supporting 21 funded projects with 11 additional projects being concluded. To maximize the use of NASA water cycle measurements end to projects are supported with strong links with decision support systems. The NASA Water Resources Program works closely with other government agencies NOAA, USDA-FAS, USGS, AFWA, USAID, universities, and non-profit, international, and private sector organizations. International water cycle applications include: 1) Famine Early Warning System Network

  11. The NASA In-Space Propulsion Technology Project, Products, and Mission Applicability

    Science.gov (United States)

    Anderson, David J.; Pencil, Eric; Liou, Larry; Dankanich, John; Munk, Michelle M.; Kremic, Tibor

    2009-01-01

    The In-Space Propulsion Technology (ISPT) Project, funded by NASA s Science Mission Directorate (SMD), is continuing to invest in propulsion technologies that will enable or enhance NASA robotic science missions. This overview provides development status, near-term mission benefits, applicability, and availability of in-space propulsion technologies in the areas of aerocapture, electric propulsion, advanced chemical thrusters, and systems analysis tools. Aerocapture investments improved: guidance, navigation, and control models of blunt-body rigid aeroshells; atmospheric models for Earth, Titan, Mars, and Venus; and models for aerothermal effects. Investments in electric propulsion technologies focused on completing NASA s Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6 to 7 kW throttle-able gridded ion system. The project is also concluding its High Voltage Hall Accelerator (HiVHAC) mid-term product specifically designed for a low-cost electric propulsion option. The primary chemical propulsion investment is on the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance for lower cost. The project is also delivering products to assist technology infusion and quantify mission applicability and benefits through mission analysis and tools. In-space propulsion technologies are applicable, and potentially enabling for flagship destinations currently under evaluation, as well as having broad applicability to future Discovery and New Frontiers mission solicitations.

  12. NASA Langley Atmospheric Science Data Centers Near Real-Time Data Products

    Science.gov (United States)

    Davenport, T.; Parker, L.; Rinsland, P. L.

    2014-12-01

    Over the past decade the Atmospheric Science Data Center (ASDC) at NASA Langley Research Center has archived and distributed a variety of satellite mission data sets. NASA's goal in Earth science is to observe, understand, and model the Earth system to discover how it is changing, to better predict change, and to understand the consequences for life on Earth. The ASDC has collaborated with Science Teams to accommodate emerging science users in the climate and modeling communities. The ASDC has expanded its original role to support operational usage by related Earth Science satellites, support land and ocean assimilations, support of field campaigns, outreach programs, and application projects for agriculture and energy industries to bridge the gap between Earth science research results and the adoption of data and prediction capabilities for reliable and sustained use in Decision Support Systems (DSS). For example; these products are being used by the community performing data assimilations to regulate aerosol mass in global transport models to improve model response and forecast accuracy, to assess the performance of components of a global coupled atmospheric-ocean climate model, improve atmospheric motion vector (winds) impact on numerical weather prediction models, and to provide internet-based access to parameters specifically tailored to assist in the design of solar and wind powered renewable energy systems. These more focused applications often require Near Real-Time (NRT) products. Generating NRT products pose their own unique set challenges for the ASDC and the Science Teams. Examples of ASDC NRT products and challenges will be discussed.

  13. An A-train and MERRA view of cloud, thermodynamic, and dynamic variability within the subtropical marine boundary layer

    Directory of Open Access Journals (Sweden)

    B. H. Kahn

    2017-08-01

    Full Text Available The global-scale patterns and covariances of subtropical marine boundary layer (MBL cloud fraction and spatial variability with atmospheric thermodynamic and dynamic fields remain poorly understood. We describe an approach that leverages coincident NASA A-train and the Modern Era Retrospective-Analysis for Research and Applications (MERRA data to quantify the relationships in the subtropical MBL derived at the native pixel and grid resolution. A new method for observing four subtropical oceanic regions that capture transitions from stratocumulus to trade cumulus is demonstrated, where stratocumulus and cumulus regimes are determined from infrared-based thermodynamic phase. Visible radiances are normally distributed within stratocumulus and are increasingly skewed away from the coast, where trade cumulus dominates. Increases in MBL depth, wind speed, and effective radius (re, and reductions in 700–1000 hPa moist static energy differences and 700 and 850 hPa vertical velocity correspond with increases in visible radiance skewness. We posit that a more robust representation of the cloudy MBL is obtained using visible radiance rather than retrievals of optical thickness that are limited to a smaller subset of cumulus. The method using the combined A-train and MERRA data set has demonstrated that an increase in re within shallow cumulus is strongly related to higher MBL wind speeds that further correspond to increased precipitation occurrence according to CloudSat, previously demonstrated with surface observations. Hence, the combined data sets have the potential of adding global context to process-level understanding of the MBL.

  14. Terrestrial Hydrological Data from NASA's Hydrology Data and Information Services Center (HDISC): Products, Services, and Applications

    Science.gov (United States)

    Fang, Hongliang; Beaudoing, Hiroko K.; Mocko, David M.; Rodell, Matthew; Teng, Bill; Vollmer, Bruce

    2010-01-01

    Terrestrial hydrological variables are important in global hydrology, climate, and carbon cycle studies. The North American and Global Land Data Assimilation Systems (NLDAS and GLDAS, respectively) have been generating a series of land surface states (soil moisture, snow, and temperature) and fluxes (evapotranspiration, radiation, and heat flux) variables. These data, hosted at and available from NASA s Hydrology Data and Information Services Center (HDISC), include the NLDAS hourly 1/8 degree products and the GLDAS 3-hourly 0.25 and 1.0 degree products. HDISC provides easy access and visualization and analysis capabilities for these products, thus reducing the time and resources spent by scientists on data management and facilitating hydrological research. Users can perform spatial and parameter subsetting, data format transformation, and data analysis operations without needing to first download the data. HDISC is continually being developed as a data and services portal that supports weather and climate forecasts, and water and energy cycle research.

  15. Intergrating Data From NASA Missions Into NOAAs Pacific Region Intergrated Climatology Information Products (PRICIP)

    Science.gov (United States)

    Benham, L.; Chester, K.; Eisberg, A.; Iyer, S.; Lee, K.; Marra, J.; Schmidt, C.; Skiles, J.

    2008-12-01

    The Pacific Region Integrated Climatology Information Products (PRICIP) Project is developing a number of products that will successfully promote awareness and understanding of the patterns and effects of "storminess" in the Pacific Rim. The National Oceanic and Atmospheric Administration's (NOAA) Integrated Data and Environmental Applications (IDEA) Center initiated the PRICIP Project to improve our understanding of such storm processes by creating a web portal containing both scientific and socioeconomic information about Pacific storms. Working in conjunction with partners at NOAA, students from the NASA Ames DEVELOP internship program are integrating NASA satellite imagery into the PRICIP web portal by animating eight storm systems that took place in the South Pacific Ocean between 1992 and 2005, four other anomalous high water events in the Hawaiian Islands, and annual storm tracks. The primary intended audience includes coastal disaster management decision-makers and other similarly concerned agencies. The broad access of these web-based products is also expected to reach scientists, the National Weather Service (NWS), the Federal Emergency Management Agency (FEMA), and media broadcasting consumers. The newly integrated and animated hindcast data will also help educate laypersons about past storms and help them for future storms.

  16. Summary Report of the Seventh Annual NASA/Contractors Conference on Quality and Productivity: "Total Quality Leadership"

    Science.gov (United States)

    1991-01-01

    More than 750 NASA, government, contractor, and academic representatives attended the Seventh Annual NASA/Contractors Conference on Quality and Productivity on October 12-13, 1990, in Grenelefe, Florida. The panel presentations and keynote speeches revolving around the theme of 'Total Quality Leadership" provided a solid base of understanding of the importance, benefits, and principles of total quality management. The implementation of these strategies is critical if we are to effectively pursue our mission of continuous quality improvement and reliability in our products, processes, and services. The annual NASA/contractors conferences serve as catalysts for achieving success in this mission.

  17. OMPS Near Real-time Products Available Through NASA LANCE (Land Atmosphere Near Real-time Capability for EOS)

    Science.gov (United States)

    Warnock, A.; Durbin, P. B.; Cechini, M. F.; Masuoka, E.

    2017-12-01

    Near real-time (NRT) images from the NASA Ozone Mapping and Profiler Suite (OMPS) for sulfur dioxide, total column ozone and aerosol index products are now available through NASA's online Land Atmosphere Near real-time Capability for EOS (LANCE) system. Color palettes, image dimensions and data ranges have been aligned with the corresponding OMI products, allowing for direct comparison of OMPS NRT images with OMI NRT images already available in NASA Worldview. The images are delivered to LANCE within hours of satellite observation. LANCE NRT imagery can be interactively viewed through Worldview and the Global Imagery Browse Services (GIBS).

  18. Predicting Top-of-Atmosphere Thermal Radiance Using MERRA-2 Atmospheric Data with Deep Learning

    Directory of Open Access Journals (Sweden)

    Tania Kleynhans

    2017-11-01

    Full Text Available Image data from space-borne thermal infrared (IR sensors are used for a variety of applications, however they are often limited by their temporal resolution (i.e., repeat coverage. To potentially increase the temporal availability of thermal image data, a study was performed to determine the extent to which thermal image data can be simulated from available atmospheric and surface data. The work conducted here explored the use of Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2 developed by The National Aeronautics and Space Administration (NASA to predict top-of-atmosphere (TOA thermal IR radiance globally at time scales finer than available satellite data. For this case study, TOA radiance data was derived for band 31 (10.97 μ m of the Moderate-Resolution Imaging Spectroradiometer (MODIS sensor. Two approaches have been followed, namely an atmospheric radiative transfer forward modeling approach and a supervised learning approach. The first approach uses forward modeling to predict TOA radiance from the available surface and atmospheric data. The second approach applied four different supervised learning algorithms to the atmospheric data. The algorithms included a linear least squares regression model, a non-linear support vector regression (SVR model, a multi-layer perceptron (MLP, and a convolutional neural network (CNN. This research found that the multi-layer perceptron model produced the lowest overall error rates with an root mean square error (RMSE of 1.36 W/m 2 ·sr· μ m when compared to actual Terra/MODIS band 31 image data. These studies found that for radiances above 6 W/m 2 ·sr· μ m, the forward modeling approach could predict TOA radiance to within 12 percent, and the best supervised learning approach can predict TOA to within 11 percent.

  19. Plant Atrium System for Food Production in NASA's Deep Space Habitat Tests

    Science.gov (United States)

    Massa, Gioia D.; Simpson, Morgan; Wheeler, Raymond M.; Newsham, Gerald; Stutte, Gary W.

    2013-01-01

    In preparation for future human exploration missions to space, NASA evaluates habitat concepts to assess integration issues, power requirements, crew operations, technology, and system performance. The concept of a Food Production System utilizes fresh foods, such as vegetables and small fruits, harvested on a continuous basis, to improve the crew's diet and quality of life. The system would need to fit conveniently into the habitat and not interfere with other components or operations. To test this concept, a plant growing "atrium" was designed to surround the lift between the lower and upper modules of the Deep Space Habitat and deployed at NASA Desert Research and Technology Studies (DRATS) test site in 2011 and at NASA Johnson Space Center in 2012. With this approach, no-utilized volume provided an area for vegetable growth. For the 2011 test, mizuna, lettuce, basil, radish and sweetpotato plants were grown in trays using commercially available red I blue LED light fixtures. Seedlings were transplanted into the atrium and cared for by the. crew. Plants were then harvested two weeks later following completion of the test. In 2012, mizuna, lettuce, and radish plants were grown similarly but under flat panel banks of white LEDs. In 2012, the crew went through plant harvesting, including sanitizing tlie leafy greens and radishes, which were then consumed. Each test demonstrated successful production of vegetables within a functional hab module. The round red I blue LEDs for the 2011 test lighting cast a purple light in the hab, and were less uniformly distributed over the plant trays. The white LED panels provided broad spectrum light with more uniform distribution. Post-test questionnaires showed that the crew enjoyed tending and consuming the plants and that the white LED light in 2012 provided welcome extra light for the main HAB AREA.

  20. Technical Report Series on Global Modeling and Data Assimilation, Volume 43. MERRA-2; Initial Evaluation of the Climate

    Science.gov (United States)

    Koster, Randal D. (Editor); Bosilovich, Michael G.; Akella, Santha; Lawrence, Coy; Cullather, Richard; Draper, Clara; Gelaro, Ronald; Kovach, Robin; Liu, Qing; Molod, Andrea; hide

    2015-01-01

    The years since the introduction of MERRA have seen numerous advances in the GEOS-5 Data Assimilation System as well as a substantial decrease in the number of observations that can be assimilated into the MERRA system. To allow continued data processing into the future, and to take advantage of several important innovations that could improve system performance, a decision was made to produce MERRA-2, an updated retrospective analysis of the full modern satellite era. One of the many advances in MERRA-2 is a constraint on the global dry mass balance; this allows the global changes in water by the analysis increment to be near zero, thereby minimizing abrupt global interannual variations due to changes in the observing system. In addition, MERRA-2 includes the assimilation of interactive aerosols into the system, a feature of the Earth system absent from previous reanalyses. Also, in an effort to improve land surface hydrology, observations-corrected precipitation forcing is used instead of model-generated precipitation. Overall, MERRA-2 takes advantage of numerous updates to the global modeling and data assimilation system. In this document, we summarize an initial evaluation of the climate in MERRA-2, from the surface to the stratosphere and from the tropics to the poles. Strengths and weaknesses of the MERRA-2 climate are accordingly emphasized.

  1. Five Years of NASA Science and Engineering in the Classroom: The Integrated Product Team/NASA Space Missions Course

    Science.gov (United States)

    Hakkila, Jon; Runyon, Cassndra; Benfield, M. P. J.; Turner, Matthew W.; Farrington, Phillip A.

    2015-08-01

    We report on five years of an exciting and successful educational collaboration in which science undergraduates at the College of Charleston work with engineering seniors at the University of Alabama in Huntsville to design a planetary science mission in response to a mock announcement of opportunity. Alabama high schools are also heavily involved in the project, and other colleges and universities have also participated. During the two-semester course students learn about scientific goals, past missions, methods of observation, instrumentation, and component integration, proposal writing, and presentation. More importantly, students learn about real-world communication and teamwork, and go through a series of baseline reviews before presenting their results at a formal final review for a panel of NASA scientists and engineers. The project is competitive, with multiple mission designs competing with one another for the best review score. Past classes have involved missions to Venus, Europa, Titan, Mars, asteroids, comets, and even the Moon. Classroom successes and failures have both been on epic scales.

  2. Initial Flight Test of the Production Support Flight Control Computers at NASA Dryden Flight Research Center

    Science.gov (United States)

    Carter, John; Stephenson, Mark

    1999-01-01

    The NASA Dryden Flight Research Center has completed the initial flight test of a modified set of F/A-18 flight control computers that gives the aircraft a research control law capability. The production support flight control computers (PSFCC) provide an increased capability for flight research in the control law, handling qualities, and flight systems areas. The PSFCC feature a research flight control processor that is "piggybacked" onto the baseline F/A-18 flight control system. This research processor allows for pilot selection of research control law operation in flight. To validate flight operation, a replication of a standard F/A-18 control law was programmed into the research processor and flight-tested over a limited envelope. This paper provides a brief description of the system, summarizes the initial flight test of the PSFCC, and describes future experiments for the PSFCC.

  3. Developing a Dynamic SPARROW Water Quality Decision Support System Using NASA Remotely-Sensed Products

    Science.gov (United States)

    Al-Hamdan, M. Z.; Smith, R. A.; Hoos, A.; Schwarz, G. E.; Alexander, R. B.; Crosson, W. L.; Srikishen, J.; Estes, M., Jr.; Cruise, J.; Al-Hamdan, A.; Ellenburg, W. L., II; Flores, A.; Sanford, W. E.; Zell, W.; Reitz, M.; Miller, M. P.; Journey, C. A.; Befus, K. M.; Swann, R.; Herder, T.; Sherwood, E.; Leverone, J.; Shelton, M.; Smith, E. T.; Anastasiou, C. J.; Seachrist, J.; Hughes, A.; Graves, D.

    2017-12-01

    The USGS Spatially Referenced Regression on Watershed Attributes (SPARROW) surface water quality modeling system has been widely used for long term, steady state water quality analysis. However, users have increasingly requested a dynamic version of SPARROW that can provide seasonal estimates of nutrients and suspended sediment to receiving waters. The goal of this NASA-funded project is to develop a dynamic decision support system to enhance the southeast SPARROW water quality model and finer-scale dynamic models for selected coastal watersheds through the use of remotely-sensed data and other NASA Land Information System (LIS) products. The spatial and temporal scale of satellite remote sensing products and LIS modeling data make these sources ideal for the purposes of development and operation of the dynamic SPARROW model. Remote sensing products including MODIS vegetation indices, SMAP surface soil moisture, and OMI atmospheric chemistry along with LIS-derived evapotranspiration (ET) and soil temperature and moisture products will be included in model development and operation. MODIS data will also be used to map annual land cover/land use in the study areas and in conjunction with Landsat and Sentinel to identify disturbed areas that might be sources of sediment and increased phosphorus loading through exposure of the bare soil. These data and others constitute the independent variables in a regression analysis whose dependent variables are the water quality constituents total nitrogen, total phosphorus, and suspended sediment. Remotely-sensed variables such as vegetation indices and ET can be proxies for nutrient uptake by vegetation; MODIS Leaf Area Index can indicate sources of phosphorus from vegetation; soil moisture and temperature are known to control rates of denitrification; and bare soil areas serve as sources of enhanced nutrient and sediment production. The enhanced SPARROW dynamic models will provide improved tools for end users to manage water

  4. NASA's MODIS/VIIRS Land Surface Temperature and Emissivity Products: Asssessment of Accuracy, Continuity and Science Uses

    Science.gov (United States)

    Hulley, G. C.; Malakar, N.; Islam, T.

    2017-12-01

    Land Surface Temperature and Emissivity (LST&E) are an important Earth System Data Record (ESDR) and Environmental Climate Variable (ECV) defined by NASA and GCOS respectively. LST&E data are key variables used in land cover/land use change studies, in surface energy balance and atmospheric water vapor retrieval models and retrievals, and in climate research. LST&E products are currently produced on a routine basis using data from the MODIS instruments on the NASA EOS platforms and by the VIIRS instrument on the Suomi-NPP platform that serves as a bridge between NASA EOS and the next-generation JPSS platforms. Two new NASA LST&E products for MODIS (MxD21) and VIIRS (VNP21) are being produced during 2017 using a new approach that addresses discrepancies in accuracy and consistency between the current suite of split-window based LST products. The new approach uses a Temperature Emissivity Separation (TES) algorithm, originally developed for the ASTER instrument, to physically retrieve both LST and spectral emissivity consistently for both sensors with high accuracy and well defined uncertainties. This study provides a rigorous assessment of accuracy of the MxD21/VNP21 products using temperature- and radiance-based validation strategies and demonstrates continuity between the products using collocated matchups over CONUS. We will further demonstrate potential science use of the new products with studies related to heat waves, monitoring snow melt dynamics, and land cover/land use change.

  5. Microreactor System Design for a NASA In Situ Propellant Production Plant on Mars

    Science.gov (United States)

    TeGrotenhuis, W. E.; Wegeng, R. S.; Vanderwiel, D. P.; Whyatt, G. A.; Viswanathan, V. V.; Schielke, K. P.; Sanders, G. B.; Peters, T. A.; Nicholson, Leonard S. (Technical Monitor)

    2000-01-01

    The NASA In Situ Resource Utilization (ISRU) program is planning near-term missions to Mars that will include chemical processes for converting the carbon dioxide (CO2) and possibly water from the Martian environment to propellants, oxygen, and other useful chemicals. The use of indigenous resources reduces the size and weight of the payloads from Earth significantly, representing enormous cost savings that make human exploration of Mars affordable. Extraterrestrial chemical processing plants will need to be compact, lightweight, highly efficient under reduced gravity, and extraordinarily reliable for long periods. Microchemical and thermal systems represent capability for dramatic reduction in size and weight, while offering high reliability through massive parallelization. In situ propellant production (ISPP), one aspect of the ISRU program, involves collecting and pressurizing atmospheric CO2, conversion reactions, chemical separations, heat exchangers, and cryogenic storage. A preliminary system design of an ISPP plant based on microtechnology has demonstrated significant size, weight, and energy efficiency gains over the current NASA baseline. Energy management is a strong driver for Mars-based processes, not only because energy is a scarce resource, but because heat rejection is problematic; the low pressure environment makes convective heat transfer ineffective. Energy efficiency gains are largely achieved in the microchemical plant through extensive heat recuperation and energy cascading, which has a small size and weight penalty because the added micro heat exchangers are small. This leads to additional size and weight gains by reducing the required area of waste heat radiators. The microtechnology-based ISPP plant is described in detail, including aspects of pinch analysis for optimizing the heat exchanger network. Three options for thermochemical compression Of CO2 from the Martian atmosphere, adsorption, absorption, and cryogenic freezing, are presented

  6. Evaluate transport processes in MERRA driven chemical transport models using updated 222Rn emission inventories and global observations

    Science.gov (United States)

    Zhang, B.; Liu, H.; Crawford, J. H.; Fairlie, T. D.; Chen, G.; Chambers, S. D.; Kang, C. H.; Williams, A. G.; Zhang, K.; Considine, D. B.; Payer Sulprizio, M.; Yantosca, R.

    2015-12-01

    Convective and synoptic processes play a major role in determining the transport and distribution of trace gases and aerosols in the troposphere. The representation of these processes in global models (at ~100-1000 km horizontal resolution) is challenging, because convection is a sub-grid process and needs to be parameterized, while synoptic processes are close to the grid scale. Depending on the parameterization schemes used in climate models, the role of convection in transporting trace gases and aerosols may vary from model to model. 222Rn is a chemically inert and radioactive gas constantly emitted from soil and has a half-life (3.8 days) comparable to synoptic timescale, which makes it an effective tracer for convective and synoptic transport. In this study, we evaluate the convective and synoptic transport in two chemical transport models (GMI and GEOS-Chem), both driven by the NASA's MERRA reanalysis. Considering the uncertainties in 222Rn emissions, we incorporate two more recent scenarios with regionally varying 222Rn emissions into GEOS-Chem/MERRA and compare the simulation results with those using the relatively uniform 222Rn emissions in the standard model. We evaluate the global distribution and seasonality of 222Rn concentrations simulated by the two models against an extended collection of 222Rn observations from 1970s to 2010s. The intercomparison will improve our understanding of the spatial variability in global 222Rn emissions, including the suspected excessive 222Rn emissions in East Asia, and provide useful feedbacks on 222Rn emission models. We will assess 222Rn vertical distributions at different latitudes in the models using observations at surface sites and in the upper troposphere and lower stratosphere. Results will be compared with previous models driven by other meteorological fields (e.g., fvGCM and GEOS4). Since the decay of 222Rn is the source of 210Pb, a useful radionuclide tracer attached to submicron aerosols, improved

  7. High spatial resolution satellite observations for validation of MODIS land products: IKONOS observations acquired under the NASA scientific data purchase.

    Science.gov (United States)

    Jeffrey T. Morisette; Jaime E. Nickeson; Paul Davis; Yujie Wang; Yuhong Tian; Curtis E. Woodcock; Nikolay Shabanov; Matthew Hansen; Warren B. Cohen; Doug R. Oetter; Robert E. Kennedy

    2003-01-01

    Phase 1I of the Scientific Data Purchase (SDP) has provided NASA investigators access to data from four different satellite and airborne data sources. The Moderate Resolution Imaging Spectrometer (MODIS) land discipline team (MODLAND) sought to utilize these data in support of land product validation activities with a lbcus on tile EOS Land Validation Core Sites. These...

  8. tavg1_2d_int_Nx: MERRA 2D IAU Diagnostic, Vertical Integrals and Budget Terms, Time Average 1-hourly 0.667 x 0.5 degree V5.2.0 (MAT1NXINT) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — The MAT1NXINT or tavg1_2d_int_Nx data product is the MERRA Data Assimilation System 2-Dimensional vertical integral that is time averaged single-level at the native...

  9. tavg1_2d_lnd_Nx: MERRA 2D IAU Diagnostic, Land Only States and Diagnostics, Time Average 1-hourly 0.667 x 0.5 degree V5.2.0 (MAT1NXLND) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — The MAT1NXLND or tavg1_2d_lnd_Nx data product is the MERRA Data Assimilation System 2-Dimensional land surface diagnostic that is time averaged single-level at the...

  10. tavg3_3d_chm_Ne: MERRA Chem 3D IAU C-Grid Edge Mass Flux, Time Average 3-Hourly 0.667 x 0.5 degree V5.2.0 (MAT3NECHM) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — The MAT3NECHM or tavg3_3d_chm_Ne data product is the MERRA Data Assimilation System Chemistry 3-Dimensional chemistry on layer Edges that is time averaged, 3D model...

  11. Proximate composition of CELSS crops grown in NASA's Biomass Production Chamber

    Science.gov (United States)

    Wheeler, R. M.; Mackowiak, C. L.; Sager, J. C.; Knott, W. M.; Berry, W. L.

    Edible biomass from four crops of wheat (Triticum aestivum L.), four crops of lettuce (Lactuca sativa L.), four crops of potato (Solanum tuberosum L.), and three crops of soybean (Glycine max (L.) Merr.) grown in NASA's CELSS Biomass Production Chamber were analyzed for proximate composition. All plants were grown using recirculating nutrient (hydroponic) film culture with pH and electrical conductivity automatically controlled. Temperature and humidity were controlled to near optimal levels for each species and atmospheric carbon dioxide partial pressures were maintained near 100 Pa during the light cycles. Soybean seed contained the highest percentage of protein and fat, potato tubers and wheat seed contained the highest levels of carbohydrate, and lettuce leaves contained the highest level of ash. Analyses showed values close to data published for field-grown plants with several exceptions: In comparison with field-grown plants, wheat seed had higher protein levels; soybean seed had higher ash and crude fiber levels; and potato tubers and lettuce leaves had higher protein and ash levels. The higher ash and protein levels may have been a result of the continuous supply of nutrients (e.g., potassium and nitrogen) to the plants by the recirculating hydroponic culture.

  12. Customer-oriented Data Formats and Services for Global Land Data Assimilation System (GLDAS) Products at the NASA GES DISC

    Science.gov (United States)

    Fang, Hongliang; Beaudoing, Hiroko; Rodell, Matthew; Teng, BIll; Vollmer, Bruce

    2008-01-01

    The Global Land Data Assimilation System (GLDAS) is generating a series of land surface state (e.g., soil moisture and surface temperature) and flux (e.g., evaporation and sensible heat flux) products simulated by four land surface Models (CLM, Mosaic, Noah and VIC). These products are now accessible at the Hydrology Data and Information Services Center (HDISC), a component of NASA Goddard Earth Sciences Data and Information Services Center (GESDISC).

  13. NASA/SPoRT's GOES-R Activities in Support of Product Development, Management, and Training

    Science.gov (United States)

    Fuell, K. K.; Jedlovec, G.; Molthan, A.; Stano, G. T.

    2012-12-01

    The NASA Short-term Prediction Research and Transition (SPoRT) Center supports many activities within the GOES-R Proving Grounds (PG). These include the development of imagery from existing instrumentation as a proxy to future Advanced Baseline Imager (ABI) capabilities on GOES-R. The Moderate Resolution Imaging Spectroradiometer (MODIS) and the Visible/Infrared Imager/Radiometer Suite (VIIRS) instruments are used to provide a glimpse of the multi-spectral capabilities that will become the norm as the number of channels and data rate dramatically increase with GOES-R. The NOAA/NWS has plans to provide operational users with all ABI channels at the highest resolution. Data fusion of individual channels into composite red, green, and blue imagery products will assist the end user with this future wave of information. While increasing the efficiency in the operational use of ABI channels, these composites provide only qualitative information. Within the GOES-R PG, SPoRT and other partners are exploring ways to include quantitative information as part of the composite imagery. However, limitations in local hardware processing and/or data bandwidth for users of the GOES-R data stream are challenges to overcome. This presentation will discuss the creation of these composite images as well as possible solutions to address these processing challenges. In a similar manner the Geostationary Lightning Mapper (GLM) to be launched on GOES-R presents several data management challenges. The GLM is a pioneering instrument to quantify total lightning from a geostationary platform. The expected data frequency from the GLM is to be at a sub-minute interval. Users of such a data set may have little experience in handling such a rapid update of information. To assist users, SPoRT is working with the NWS to develop tools within the user's decision support system to allow tracking and analysis of total lightning from a storm-based perspective. This presentation will discuss the

  14. NASA/SPoRT's GOES-R Activities in Support of Product Development, Management, and Training

    Science.gov (United States)

    Fuell, Kevin K.; Jedlovec, Gary; Molthan, Andrew L.; Stano, Geoffrey T.

    2012-01-01

    The NASA Short-term Prediction Research and Transition (SPoRT) Center supports many activities within the GOES-R Proving Grounds (PG). These include the development of imagery from existing instrumentation as a proxy to future Advanced Baseline Imager (ABI) capabilities on GOES-R. The Moderate Resolution Imaging Spectroradiometer (MODIS) and the Visible/Infrared Imager/Radiometer Suite (VIIRS) instruments are used to provide a glimpse of the multi-spectral capabilities that will become the norm as the number of channels and data rate dramatically increase with GOES-R. The NOAA/NWS has plans to provide operational users with all ABI channels at the highest resolution. Data fusion of individual channels into composite red, green, and blue imagery products will assist the end user with this future wave of information. While increasing the efficiency in the operational use of ABI channels, these composites provide only qualitative information. Within the GOES-R PG, SPoRT and other partners are exploring ways to include quantitative information as part of the composite imagery. However, limitations in local hardware processing and/or data bandwidth for users of the GOES-R data stream are challenges to overcome. This presentation will discuss the creation of these composite images as well as possible solutions to address these processing challenges. In a similar manner the Geostationary Lightning Mapper (GLM) to be launched on GOES-R presents several data management challenges. The GLM is a pioneering instrument to quantify total lightning from a geostationary platform. The expected data frequency from the GLM is to be at a sub-minute interval. Users of such a data set may have little experience in handling such a rapid update of information. To assist users, SPoRT is working with the NWS to develop tools within the user fs decision support system to allow tracking and analysis of total lightning from a storm-based perspective. This presentation will discuss the

  15. Technical Report Series on Global Modeling and Data Assimilation. Volume 31; Global Surface Ocean Carbon Estimates in a Model Forced by MERRA

    Science.gov (United States)

    Gregg, Watson W.; Casey, Nancy W.; Rousseaux, Cecile S.

    2013-01-01

    MERRA products were used to force an established ocean biogeochemical model to estimate surface carbon inventories and fluxes in the global oceans. The results were compared to public archives of in situ carbon data and estimates. The model exhibited skill for ocean dissolved inorganic carbon (DIC), partial pressure of ocean CO2 (pCO2) and air-sea fluxes (FCO2). The MERRA-forced model produced global mean differences of 0.02% (approximately 0.3 microns) for DIC, -0.3% (about -1.2 (micro) atm; model lower) for pCO2, and -2.3% (-0.003 mol C/sq m/y) for FCO2 compared to in situ estimates. Basin-scale distributions were significantly correlated with observations for all three variables (r=0.97, 0.76, and 0.73, P<0.05, respectively for DIC, pCO2, and FCO2). All major oceanographic basins were represented as sources to the atmosphere or sinks in agreement with in situ estimates. However, there were substantial basin-scale and local departures.

  16. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 12: An initial investigation into the production and use of Scientific and Technical Information (STI) at five NASA centers: Results of a telephone survey

    Science.gov (United States)

    Glassman, Nanci A.; Pinelli, Thomas E.

    1992-01-01

    A study was conducted to provide NASA management with an 'initial' look at the production and use of scientific and technical information (STI) at five NASA centers (Ames, Goddard, Langley, Lewis, and Marshall). The 550 respondents who were interviewed by telephone held favorable views regarding the NASA STI system. About 65 percent of the respondents stated that it is either very or somewhat important for them to publish their work through the NASA STI system. About 10 percent of those respondents encountered problems using the NASA STI system services for publication. The most frequently reported problem was 'the process is too time consuming' (8.6 percent). Overall, those respondents using the NASA STI system to publish their work rated the system as excellent (24.6 percent) or good (37.6 percent). About 79 percent of the respondents stated that it is either very or somewhat important for them to use the NASA STI system to access information. The most frequently reported problems were 'the time and effort it takes to locate and obtain information through the system' (14.4 percent). Overall, about 83 percent of the respondents stated that the NASA STI system is important to performing their work. Overall, about 73 percent of the respondents stated that the NASA STI system meets their information needs.

  17. Assessment of wetland productive capacity from a remote-sensing-based model - A NASA/NMFS joint research project

    Science.gov (United States)

    Butera, M. K.; Frick, A. L.; Browder, J.

    1983-01-01

    NASA and the U.S. National Marine Fisheries Service have undertaken the development of Landsat Thematic Mapper (TM) technology for the evaluation of the usefulness of wetlands to estuarine fish and shellfish production. Toward this end, a remote sensing-based Productive Capacity model has been developed which characterizes the biological and hydrographic features of a Gulf Coast Marsh to predict detrital export. Regression analyses of TM simulator data for wetland plant production estimation are noted to more accurately estimate the percent of total vegetative cover than biomass, indicating that a nonlinear relationship may be involved.

  18. Recent Global Warming As Depicted by AIRS, GISSTEMP, and MERRA-2

    Science.gov (United States)

    Susskind, J.; Iredell, L. F.; Lee, J. N.

    2017-12-01

    We observed anomalously warm global mean surface temperatures since 2015. The year 2016 represents the warmest annual mean surface skin and surface air temperatures in the AIRS observational period, September 2002 through August 2017. Additionally, AIRS monthly mean surface skin temperature, from January 2016 through September 2016, and November 2016, were the warmest observed for each month of the year. Continuing this trend, the AIRS global surface temperatures of 2017 February and April show the second greatest positive anomalies from average. This recent warming is particularly significant over the Arctic where the snow and sea ice melt is closely tied to the spring and summer surface temperatures. In this paper, we show the global distribution of surface temperature anomalies as observed by AIRS over the period September 2002 through August 2017 and compare them with those from the GISSTEMP and MERRA-2 surface temperatures. The spatial patterns of warm and cold anomalies for a given month show reasonably good agreement in all three data set. AIRS anomalies, which do not have the benefit of in-situ measurements, are in almost perfect agreement with those of MERRA-2, which does use in-situ surface measurements. GISSTEMP anomaly patterns for the most part look similar to those of AIRS and MERRA-2, but are more spread out spatially, and consequently are also weaker.

  19. That's How We Roll: The NASA K2 Mission Science Products and Their Performance Metrics

    Science.gov (United States)

    Van Cleve, Jeffrey E.; Howell, Steve B.; Smith, Jeffrey C.; Clarke, Bruce D.; Thompson, Susan E.; Bryson, Stephen T.; Lund, Mikkel N.; Handberg, Rasmus; Chaplin, William J.

    2016-07-01

    NASA's exoplanet Discovery mission Kepler was reconstituted as the K2 mission a year after the failure of the second of Kepler's four reaction wheels in 2013 May. Fine control of the spacecraft pointing is now accomplished through the use of the two remaining well-functioning reaction wheels and balancing the pressure of sunlight on the solar panels, which constrains K2 observations to fields in the ecliptic for up to approximately 80 days each. This pseudo-stable mechanism gives typical roll motion in the focal plane of 1.0 pixels peak-to-peak over 6 hr at the edges of the field, two orders of magnitude greater than typical 6 hr pointing errors in the Kepler primary mission. Despite these roll errors, the joint performance of the flight system and its modified science data processing pipeline restores much of the photometric precision of the primary mission while viewing a wide variety of targets, thus turning adversity into diversity. We define K2 performance metrics for data compression and pixel budget available in each campaign; the photometric noise on exoplanet transit and stellar activity timescales; residual correlations in corrected long-cadence light curves; and the protection of test sinusoidal signals from overfitting in the systematic error removal process. We find that data compression and noise both increase linearly with radial distance from the center of the field of view, with the data compression proportional to star count as well. At the center, where roll motion is nearly negligible, the limiting 6 hr photometric precision for a quiet 12th magnitude star can be as low as 30 ppm, only 25% higher than that of Kepler. This noise performance is achieved without sacrificing signal fidelity; test sinusoids injected into the data are attenuated by less than 10% for signals with periods upto 15 days, so that a wide range of stellar rotation and variability signatures are preserved by the K2 pipeline. At timescales relevant to asteroseismology, light

  20. In-Space Propulsion Technology Products for NASA's Future Science and Exploration Missions

    Science.gov (United States)

    Anderson, David J.; Pencil, Eric; Peterson, Todd; Dankanich, John; Munk, Michelle M.

    2011-01-01

    Since 2001, the In-Space Propulsion Technology (ISPT) project has been developing and delivering in-space propulsion technologies that will enable or enhance NASA robotic science missions. These in-space propulsion technologies are applicable, and potentially enabling, for future NASA flagship and sample return missions currently being considered, as well as having broad applicability to future competed mission solicitations. The high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance for lower cost was completed in 2009. Two other ISPT technologies are nearing completion of their technology development phase: 1) NASA's Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; and 2) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures; guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells; aerothermal effect models: and atmospheric models for Earth, Titan, Mars and Venus. This paper provides status of the technology development, applicability, and availability of in-space propulsion technologies that have recently completed their technology development and will be ready for infusion into NASA s Discovery, New Frontiers, Science Mission Directorate (SMD) Flagship, and Exploration technology demonstration missions

  1. In-Space Propulsion Technology Products Ready for Infusion on NASA's Future Science Missions

    Science.gov (United States)

    Anderson, David J.; Pencil, Eric; Peterson, Todd; Dankanich, John; Munk, Michele M.

    2012-01-01

    Since 2001, the In-Space Propulsion Technology (ISPT) program has been developing and delivering in-space propulsion technologies that will enable or enhance NASA robotic science missions. These in-space propulsion technologies are applicable, and potentially enabling, for future NASA flagship and sample return missions currently being considered. They have a broad applicability to future competed mission solicitations. The high-temperature Advanced Material Bipropellant Rocket (AMBR) engine, providing higher performance for lower cost, was completed in 2009. Two other ISPT technologies are nearing completion of their technology development phase: 1) NASA s Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; and 2) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures; guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells; aerothermal effect models; and atmospheric models for Earth, Titan, Mars and Venus. This paper provides status of the technology development, applicability, and availability of in-space propulsion technologies that have recently completed their technology development and will be ready for infusion into NASA s Discovery, New Frontiers, SMD Flagship, or technology demonstration missions.

  2. Assessing the Regional/Diurnal Bias between Satellite Retrievals and GEOS-5/MERRA Model Estimates of Land Surface Temperature

    Science.gov (United States)

    Scarino, B. R.; Smith, W. L., Jr.; Minnis, P.; Bedka, K. M.

    2017-12-01

    Atmospheric models rely on high-accuracy, high-resolution initial radiometric and surface conditions for better short-term meteorological forecasts, as well as improved evaluation of global climate models. Continuous remote sensing of the Earth's energy budget, as conducted by the Clouds and Earth's Radiant Energy System (CERES) project, allows for near-realtime evaluation of cloud and surface radiation properties. It is unfortunately common for there to be bias between atmospheric/surface radiation models and Earth-observations. For example, satellite-observed surface skin temperature (Ts), an important parameter for characterizing the energy exchange at the ground/water-atmosphere interface, can be biased due to atmospheric adjustment assumptions and anisotropy effects. Similarly, models are potentially biased by errors in initial conditions and regional forcing assumptions, which can be mitigated through assimilation with true measurements. As such, when frequent, broad-coverage, and accurate retrievals of satellite Ts are available, important insights into model estimates of Ts can be gained. The Satellite ClOud and Radiation Property retrieval System (SatCORPS) employs a single-channel thermal-infrared method to produce anisotropy-corrected Ts over clear-sky land and ocean surfaces from data taken by geostationary Earth orbit (GEO) satellite imagers. Regional and diurnal changes in model land surface temperature (LST) performance can be assessed owing to the somewhat continuous measurements of the LST offered by GEO satellites - measurements which are accurate to within 0.2 K. A seasonal, hourly comparison of satellite-observed LST with the NASA Goddard Earth Observing System Version 5 (GEOS-5) and the Modern-Era Retrospective Analysis for Research and Applications (MERRA) LST estimates is conducted to reveal regional and diurnal biases. This assessment is an important first step for evaluating the effectiveness of Ts assimilation, as well for determining the

  3. Data products of NASA Goddard's LiDAR, hyperspectral, and thermal airborne imager (G-LiHT)

    Science.gov (United States)

    Corp, Lawrence A.; Cook, Bruce D.; McCorkel, Joel; Middleton, Elizabeth M.

    2015-06-01

    Scientists in the Biospheric Sciences Laboratory at NASA's Goddard Space Flight Center have undertaken a unique instrument fusion effort for an airborne package that integrates commercial off the shelf LiDAR, Hyperspectral, and Thermal components. G-LiHT is a compact, lightweight and portable system that can be used on a wide range of airborne platforms to support a number of NASA Earth Science research projects and space-based missions. G-LiHT permits simultaneous and complementary measurements of surface reflectance, vegetation structure, and temperature, which provide an analytical framework for the development of new algorithms for mapping plant species composition, plant functional types, biodiversity, biomass, carbon stocks, and plant growth. G-LiHT and its supporting database are designed to give scientists open access to the data that are needed to understand the relationship between ecosystem form and function and to stimulate the advancement of synergistic algorithms. This system will enhance our ability to design new missions and produce data products related to biodiversity and climate change. G-LiHT has been operational since 2011 and has been used to collect data for a number of NASA and USFS sponsored studies, including NASA's Carbon Monitoring System (CMS) and the American ICESat/GLAS Assessment of Carbon (AMIGA-Carb). These acquisitions target a broad diversity of forest communities and ecoregions across the United States and Mexico. Here, we will discuss the components of G-LiHT, their calibration and performance characteristics, operational implementation, and data processing workflows. We will also provide examples of higher level data products that are currently available.

  4. Laser Pulse Production for NASA's Global Ecosystem Dynamics Investigation (GEDI) Lidar

    Science.gov (United States)

    Stysley, Paul R.; Coyle, D. Barry; Clarke, Greg B.; Frese, Erich; Blalock, Gordon; Morey, Peter; Kay, Richard B.; Poulios, Demetrios; Hersh, Michael

    2016-01-01

    The Lasers and Electro-Optics Branch at Goddard Space Flight Center has been tasked with building the Lasers for the Global Ecosystems Dynamics Investigation (GEDI) Lidar Mission, to be installed on the Japanese Experiment Module (JEM) on the International Space Station (ISS)1. GEDI will use three NASA-developed lasers, each coupled with a Beam Dithering Unit (BDU) to produce three sets of staggered footprints on the Earth's surface to accurately measure global biomass. We will report on the design, assembly progress, test results, and delivery process of this laser system.

  5. Photochemical ozone production in tropical squall line convection during NASA Global Tropospheric Experiment/Amazon Boundary Layer Experiment 2A

    Science.gov (United States)

    Pickering, Kenneth E.; Thompson, Anne M.; Tao, Wei-Kuo; Simpson, Joanne; Scala, John R.

    1991-01-01

    The role of convection was examined in trace gas transport and ozone production in a tropical dry season squall line sampled on August 3, 1985, during NASA Global Tropospheric Experiment/Amazon Boundary Layer Experiment 2A (NASA GTE/ABLE 2A) in Amazonia, Brazil. Two types of analyses were performed. Transient effects within the cloud are examined with a combination of two-dimensional cloud and one-dimensional photochemical modeling. Tracer analyses using the cloud model wind fields yield a series of cross sections of NO(x), CO, and O3 distribution during the lifetime of the cloud; these fields are used in the photochemical model to compute the net rate of O3 production. At noon, when the cloud was mature, the instantaneous ozone production potential in the cloud is between 50 and 60 percent less than in no-cloud conditions due to reduced photolysis and cloud scavenging of radicals. Analysis of cloud inflows and outflows is used to differentiate between air that is undisturbed and air that has been modified by the storm. These profiles are used in the photochemical model to examine the aftereffects of convective redistribution in the 24-hour period following the storm. Total tropospheric column O3 production changed little due to convection because so little NO(x) was available in the lower troposphere. However, the integrated O3 production potential in the 5- to 13-km layer changed from net destruction to net production as a result of the convection. The conditions of the August 3, 1985, event may be typical of the early part of the dry season in Amazonia, when only minimal amounts of pollution from biomass burning have been transported into the region.

  6. CATS Near Real Time Data Products: Applications for Assimilation Into the NASA GEOS-5 AGCM

    Science.gov (United States)

    Hlavka, D. L.; Nowottnick, E. P.; Yorks, J. E.; Da Silva, A.; McGill, M. J.; Palm, S. P.; Selmer, P. A.; Pauly, R. M.; Ozog, S.

    2017-01-01

    From February 2015 through October 2017, the NASA Cloud-Aerosol Transport System (CATS) backscatter lidar operated on the International Space Station (ISS) as a technology demonstration for future Earth Science Missions, providing vertical measurements of cloud and aerosols properties. Owing to its location on the ISS, a cornerstone technology demonstration of CATS was the capability to acquire, process, and disseminate near-real time (NRT) data within 6 hours of observation time. CATS NRT data has several applications, including providing notification of hazardous events for air traffic control and air quality advisories, field campaign flight planning, as well as for constraining cloud and aerosol distributions in via data assimilation in aerosol transport models.   Recent developments in aerosol data assimilation techniques have permitted the assimilation of aerosol optical thickness (AOT), a 2-dimensional column integrated quantity that is reflective of the simulated aerosol loading in aerosol transport models. While this capability has greatly improved simulated AOT forecasts, the vertical position, a key control on aerosol transport, is often not impacted when 2-D AOT is assimilated. Here, we present preliminary efforts to assimilate CATS aerosol observations into the NASA Goddard Earth Observing System version 5 (GEOS-5) atmospheric general circulation model and assimilation system using a 1-D Variational (1-D VAR) ensemble approach, demonstrating the utility of CATS for future Earth Science Missions.

  7. Transportable Applications Environment (TAE) Plus - A NASA productivity tool used to develop graphical user interfaces

    Science.gov (United States)

    Szczur, Martha R.

    1991-01-01

    The Transportable Applications Environment (TAE) Plus, developed at NASA's Goddard Space Flight Center, is an advanced portable user interface development environment which simplifies the process of creating and managing complex application graphical user interfaces (GUIs), supports prototyping, allows applications to be oported easily between different platforms, and encourages appropriate levels of user interface consistency between applications. This paper discusses the capabilities of the TAE Plus tool, and how it makes the job of designing and developing GUIs easier for the application developers. The paper also explains how tools like TAE Plus provide for reusability and ensure reliability of UI software components, as well as how they aid in the reduction of development and maintenance costs.

  8. Global Land Data Assimilation System (GLDAS) Products, Services and Application from NASA Hydrology Data and Information Services Center (HDISC)

    Science.gov (United States)

    Fang, Hongliang; Beaudoing, Hiroko K.; Rodell, matthew; Teng, William L.; Vollmer, Bruce E.

    2009-01-01

    The Global Land Data Assimilation System (GLDAS) is generating a series of land surface state (e.g., soil moisture and surface temperature) and flux (e.g., evaporation and sensible heat flux) products simulated by four land surface models (CLM, Mosaic, Noah and VIC). These products are now accessible at the Hydrology Data and Information Services Center (HDISC), a component of the NASA Goddard Earth Sciences Data and Information Services Center (GES DISC). Current data holdings include a set of 1.0 degree resolution data products from the four models, covering 1979 to the present; and a 0.25 degree data product from the Noah model, covering 2000 to the present. The products are in Gridded Binary (GRIB) format and can be accessed through a number of interfaces. Users can search the products through keywords and perform on-the-fly spatial and parameter subsetting and format conversion of selected data. More advanced visualization, access and analysis capabilities will be available in the future. The long term GLDAS data are used to develop climatology of water cycle components and to explore the teleconnections of droughts and pluvial.

  9. The NASA Reanalysis Ensemble Service - Advanced Capabilities for Integrated Reanalysis Access and Intercomparison

    Science.gov (United States)

    Tamkin, G.; Schnase, J. L.; Duffy, D.; Li, J.; Strong, S.; Thompson, J. H.

    2017-12-01

    NASA's efforts to advance climate analytics-as-a-service are making new capabilities available to the research community: (1) A full-featured Reanalysis Ensemble Service (RES) comprising monthly means data from multiple reanalysis data sets, accessible through an enhanced set of extraction, analytic, arithmetic, and intercomparison operations. The operations are made accessible through NASA's climate data analytics Web services and our client-side Climate Data Services Python library, CDSlib; (2) A cloud-based, high-performance Virtual Real-Time Analytics Testbed supporting a select set of climate variables. This near real-time capability enables advanced technologies like Spark and Hadoop-based MapReduce analytics over native NetCDF files; and (3) A WPS-compliant Web service interface to our climate data analytics service that will enable greater interoperability with next-generation systems such as ESGF. The Reanalysis Ensemble Service includes the following: - New API that supports full temporal, spatial, and grid-based resolution services with sample queries - A Docker-ready RES application to deploy across platforms - Extended capabilities that enable single- and multiple reanalysis area average, vertical average, re-gridding, standard deviation, and ensemble averages - Convenient, one-stop shopping for commonly used data products from multiple reanalyses including basic sub-setting and arithmetic operations (e.g., avg, sum, max, min, var, count, anomaly) - Full support for the MERRA-2 reanalysis dataset in addition to, ECMWF ERA-Interim, NCEP CFSR, JMA JRA-55 and NOAA/ESRL 20CR… - A Jupyter notebook-based distribution mechanism designed for client use cases that combines CDSlib documentation with interactive scenarios and personalized project management - Supporting analytic services for NASA GMAO Forward Processing datasets - Basic uncertainty quantification services that combine heterogeneous ensemble products with comparative observational products (e

  10. NASA Educational Product Development and Post-Secondary Program Assessment Planning

    Science.gov (United States)

    Salmons, Phyllis A.

    1999-01-01

    Producing "value-added students" involves proactively addressing how successfully students develop their skills, knowledge, and personal, social, and ethical growth due to their association with a program. NASA programs for higher education can certainly be responsive in aiding the academic community strive for quality in terms of "valueadded" students. By identifying essential characteristics of exemplary assessment practices, the standards developed by accrediting agencies serve as guides for developing quality practices and policies. Such a process is an effective tool for communicating the expectations of the educational components of a program to all concerned with the program and its expected results. When standards are connected to student performance, they provide a very compelling argument for refocusing the definition of quality in higher education. By linking standards and performance, student learning and development becomes the starting point for examining program quality. If the multiple stakeholders - faculty, peers, the professional community, addressed assessment issues, then accreditation can be a link among various constituencies, the parties can better understand the needs of each other and develop the necessary trust needed for understanding and support.

  11. Image Analysis via Soft Computing: Prototype Applications at NASA KSC and Product Commercialization

    Science.gov (United States)

    Dominguez, Jesus A.; Klinko, Steve

    2011-01-01

    This slide presentation reviews the use of "soft computing" which differs from "hard computing" in that it is more tolerant of imprecision, partial truth, uncertainty, and approximation and its use in image analysis. Soft computing provides flexible information processing to handle real life ambiguous situations and achieve tractability, robustness low solution cost, and a closer resemblance to human decision making. Several systems are or have been developed: Fuzzy Reasoning Edge Detection (FRED), Fuzzy Reasoning Adaptive Thresholding (FRAT), Image enhancement techniques, and visual/pattern recognition. These systems are compared with examples that show the effectiveness of each. NASA applications that are reviewed are: Real-Time (RT) Anomaly Detection, Real-Time (RT) Moving Debris Detection and the Columbia Investigation. The RT anomaly detection reviewed the case of a damaged cable for the emergency egress system. The use of these techniques is further illustrated in the Columbia investigation with the location and detection of Foam debris. There are several applications in commercial usage: image enhancement, human screening and privacy protection, visual inspection, 3D heart visualization, tumor detections and x ray image enhancement.

  12. NASA Symposium on Productivity and Quality: Strategies for Improving Operations in Government and Industry

    Science.gov (United States)

    1984-01-01

    The purpose of the Symposium is to increase the awareness of productivity and quality issues in the United States, and to foster national initiatives through government and industry executive leadership. The Symposium will provide a forum for discussion of white-collar productivity issues by experienced executives from successful organizations and an opportunity to share information learned through Productivity initiatives in govemment, industry and academic organizations. It will focus on white-collar organizational issues that are common to large companies and technology oriented organizations. The Symposium program will include strategies for improving operations in government and industry and will be responsive to the management issues viewed necessary to increase our nation's productivity growth rate.

  13. Application of NASA's Advanced Life Support Technologies for Waste Treatment, Water Purification and Recycle, and Food Production in Polar Regions

    Science.gov (United States)

    Bubenheim, David L.; Lewis, Carol E.; Covington, M. Alan (Technical Monitor)

    1995-01-01

    NASA's advanced life support technologies are being combined with Arctic science and engineering knowledge to address the unique needs of the remote communities of Alaska through the Advanced Life Systems for Extreme Environments (ALSEE) project. ALSEE is a collaborative effort involving NASA, the State of Alaska, the University of Alaska, the North Slope Borough of Alaska, and the National Science Foundation (NSF). The focus is a major issue in the state of Alaska and other areas of the Circumpolar North, the health and welfare of its people, their lives and the subsistence lifestyle in remote communities, economic opportunity, and care for the environment. The project primarily provides treatment and reduction of waste, purification and recycling of water. and production of food. A testbed is being established to demonstrate the technologies which will enable safe, healthy, and autonomous function of remote communities and to establish the base for commercial development of the resulting technology into new industries. The challenge is to implement the technological capabilities in a manner compatible with the social and economic structures of the native communities, the state, and the commercial sector. Additional information is contained in the original extended abstract.

  14. NASA Thesaurus

    Data.gov (United States)

    National Aeronautics and Space Administration — The NASA Thesaurus contains the authorized NASA subject terms used to index and retrieve materials in the NASA Technical Reports Server (NTRS) and the NTRS...

  15. Technical Report Series on Global Modeling and Data Assimilation. Volume 32; Estimates of AOD Trends (2002 - 2012) Over the World's Major Cities Based on the MERRA Aerosol Reanalysis

    Science.gov (United States)

    Provencal, Simon; Kishcha, Pavel; Elhacham, Emily; daSilva, Arlindo M.; Alpert, Pinhas; Suarez, Max J.

    2014-01-01

    NASA's Global Modeling and Assimilation Office has extended the Modern-Era Retrospective Analysis for Research and Application (MERRA) tool with five atmospheric aerosol species (sulfates, organic carbon, black carbon, mineral dust and sea salt). This inclusion of aerosol reanalysis data is now known as MERRAero. This study analyses a ten-year period (July 2002 - June 2012) MERRAero aerosol reanalysis applied to the study of aerosol optical depth (AOD) and its trends for the aforementioned aerosol species over the world's major cities (with a population of over 2 million inhabitants). We found that a proportion of various aerosol species in total AOD exhibited a geographical dependence. Cities in industrialized regions (North America, Europe, central and eastern Asia) are characterized by a strong proportion of sulfate aerosols. Organic carbon aerosols are dominant over cities which are located in regions where biomass burning frequently occurs (South America and southern Africa). Mineral dust dominates other aerosol species in cities located in proximity to the major deserts (northern Africa and western Asia). Sea salt aerosols are prominent in coastal cities but are dominant aerosol species in very few of them. AOD trends are declining over cities in North America, Europe and Japan, as a result of effective air quality regulation. By contrast, the economic boom in China and India has led to increasing AOD trends over most cities in these two highly-populated countries. Increasing AOD trends over cities in the Middle East are caused by increasing desert dust.

  16. NASA/SPoRt: GOES-R Activities in Support of Product Development, Management, and Training

    Science.gov (United States)

    Fuell, Kevin; Jedlovec, Gary; Molthan, Andrew; Stano, Geoffrey

    2012-01-01

    SPoRT is using current capabilities of MODIS and VIIRS, combined with current GOES (i.e. Hybrid Imagery) to demonstrate mesoscale capabilities of future ABI instrument. SPoRT is transitioning RGBs from EUMETSAT standard "recipes" to demonstrate a method to more efficiently handle the increase channels/frequency of ABI. Challenges for RGB production exist. Internal vs. external production, Bit depth needed, Adding quantitative information, etc. SPoRT forming group to address these issues. SPoRT is leading efforts on the application of total lightning in operations and to educate users of this new capability. Training in many forms is used to support testbed activities and is a key part to the transition process.

  17. CDDIS: NASA's Archive of Space Geodesy Data and Products Supporting GGOS

    Science.gov (United States)

    Noll, Carey; Michael, Patrick

    2016-01-01

    The Crustal Dynamics Data Information System (CDDIS) supports data archiving and distribution activities for the space geodesy and geodynamics community. The main objectives of the system are to store space geodesy and geodynamics related data and products in a central archive, to maintain information about the archival of these data,to disseminate these data and information in a timely manner to a global scientific research community, and provide user based tools for the exploration and use of the archive. The CDDIS data system and its archive is a key component in several of the geometric services within the International Association of Geodesy (IAG) and its observing systemthe Global Geodetic Observing System (GGOS), including the IGS, the International DORIS Service (IDS), the International Laser Ranging Service (ILRS), the International VLBI Service for Geodesy and Astrometry (IVS), and the International Earth Rotation and Reference Systems Service (IERS). The CDDIS provides on-line access to over 17 Tbytes of dataand derived products in support of the IAG services and GGOS. The systems archive continues to grow and improve as new activities are supported and enhancements are implemented. Recently, the CDDIS has established a real-time streaming capability for GNSS data and products. Furthermore, enhancements to metadata describing the contents ofthe archive have been developed to facilitate data discovery. This poster will provide a review of the improvements in the system infrastructure that CDDIS has made over the past year for the geodetic community and describe future plans for the system.

  18. Global Precipitation Measurement (GPM) Mission Products and Services at the NASA Goddard Earth Sciences Data and Information Services Center (GES DISC)

    Science.gov (United States)

    Liu, Z.; Ostrenga, D.; Vollmer, B.; Kempler, S.; Deshong, B.; Greene, M.

    2015-01-01

    The NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC) hosts and distributes GPM data within the NASA Earth Observation System Data Information System (EOSDIS). The GES DISC is also home to the data archive for the GPM predecessor, the Tropical Rainfall Measuring Mission (TRMM). Over the past 17 years, the GES DISC has served the scientific as well as other communities with TRMM data and user-friendly services. During the GPM era, the GES DISC will continue to provide user-friendly data services and customer support to users around the world. GPM products currently and to-be available: -Level-1 GPM Microwave Imager (GMI) and partner radiometer products, DPR products -Level-2 Goddard Profiling Algorithm (GPROF) GMI and partner products, DPR products -Level-3 daily and monthly products, DPR products -Integrated Multi-satellitE Retrievals for GPM (IMERG) products (early, late, and final) A dedicated Web portal (including user guides, etc.) has been developed for GPM data (http://disc.sci.gsfc.nasa.gov/gpm). Data services that are currently and to-be available include Google-like Mirador (http://mirador.gsfc.nasa.gov/) for data search and access; data access through various Web services (e.g., OPeNDAP, GDS, WMS, WCS); conversion into various formats (e.g., netCDF, HDF, KML (for Google Earth), ASCII); exploration, visualization, and statistical online analysis through Giovanni (http://giovanni.gsfc.nasa.gov); generation of value-added products; parameter and spatial subsetting; time aggregation; regridding; data version control and provenance; documentation; science support for proper data usage, FAQ, help desk; monitoring services (e.g. Current Conditions) for applications. The United User Interface (UUI) is the next step in the evolution of the GES DISC web site. It attempts to provide seamless access to data, information and services through a single interface without sending the user to different applications or URLs (e.g., search, access

  19. Retrieving SW fluxes from geostationary narrowband radiances for the NASA-CERES SYN1deg product

    Science.gov (United States)

    Wrenn, F. J., IV; Doelling, D. R.; Liang, L.

    2017-12-01

    The CERES mission was designed to measure the natural variability of the net TOA flux over long time scales relevant to climate monitoring. To achieve this goal, CERES provides the level-3 SSF1deg, SYN1deg, and EBAF monthly 1° by 1° regional TOA flux. The single satellite (Terra or Aqua) SSF1deg 24-hour shortwave flux is based on one daytime measurements and assumes constant meteorology to model the diurnal change in albedo. To accurately describe regions with a prominent diurnal signal, the SYN1deg Edition4 dataset employs hourly geostationary (GEO) measurements. This improves upon Edition3, which used 3-hourly GEO measurements and with temporal interpolation. The EBAF product combines the temporal stability of the SSF1deg product with the diurnal information from SYN1deg and removes the CERES instrument calibration bias by constraining the net flux balance to the ocean heat storage term. The SYN-1deg product retrieves hourly SW fluxes from GEO measurements. Over regions with large diurnal cycles, such as maritime stratus and land afternoon convective locations, the GEO derived SW fluxes will capture the diurnal flux not observed with Terra or Aqua sun-synchronous satellites. Obtaining fluxes from geostationary satellite radiance is a multistep process. First, most GEO visible imagers lack calibration and must be calibrated to MODIS and VIIRS. Second, the GEO imager visible channel radiances are converted to broadband radiances using empirical and theoretical models. The lack of coincident, collocated, and co-angled GEO and CERES measurements makes building an empirical model difficult. The narrowband to broadband models are a function of surface and cloud conditions, which are difficult to identify due to the inconsistent cloud retrievals between the 16 GEO imagers used in the CERES record. Third, the GEO derived broadband radiances are passed through the CERES angular distribution model (ADM) to convert the radiances to fluxes. Lastly, the GEO derived

  20. Customer-oriented Data Formats and Services for Global Land Data Assimilation System (GLDAS) Products at the NASA GES DISC

    Science.gov (United States)

    Fang, H.; Kato, H.; Rodell, M.; Teng, W. L.; Vollmer, B. E.

    2008-12-01

    The Global Land Data Assimilation System (GLDAS) has been generating a series of land surface state (e.g., soil moisture and surface temperature) and flux (e.g., evaporation and sensible heat flux) products, simulated by four land surface models (CLM, Mosaic, Noah and VIC). These products are now accessible at the Hydrology Data and Information Services Center (HDISC), a component of the NASA Goddard Earth Sciences Data and Information Services Center (GES DISC). Current GLDAS data hosted at HDISC include a set of 1.0° data products, covering 1979 to the present, from the four models and a 0.25° data product, covering 2000 to the present, from the Noah model. In addition to the basic anonymous ftp data downloading, users can avail themselves of several advanced data search and downloading services, such as Mirador and OPeNDAP. Mirador is a Google-based search tool that provides keywords searching, on-the-fly spatial and parameter subsetting of selected data. OPeNDAP (Open-source Project for a Network Data Access Protocol) enables remote OPeNDAP clients to access OPeNDAP served data regardless of local storage format. Additional data services to be available in the near future from HDISC include (1) on-the-fly converter of GLDAS to NetCDF and binary data formats; (2) temporal aggregation of GLDAS files; and (3) Giovanni, an online visualization and analysis tool that provides a simple way to visualize, analyze, and access vast amounts of data without having to download the data.

  1. Towards a better understanding of flood generation and surface water inundation mechanisms using NASA remote sensing data products

    Science.gov (United States)

    Lucey, J.; Reager, J. T., II; Lopez, S. R.

    2017-12-01

    Floods annually cause several weather-related fatalities and financial losses. According to NOAA and FEMA, there were 43 deaths and 18 billion dollars paid out in flood insurance policies during 2005. The goal of this work is to improve flood prediction and flood risk assessment by creating a general model of predictability of extreme runoff generation using various NASA products. Using satellite-based flood inundation observations, we can relate surface water formation processes to changes in other hydrological variables, such as precipitation, storage and soil moisture, and understand how runoff generation response to these forcings is modulated by local topography and land cover. Since it is known that a flood event would cause an abnormal increase in surface water, we examine these underlying physical relationships in comparison with the Dartmouth Flood Observatory archive of historic flood events globally. Using ground water storage observations (GRACE), precipitation (TRMM or GPCP), land use (MODIS), elevation (SRTM) and surface inundation levels (SWAMPS), an assessment of geological and climate conditions can be performed for any location around the world. This project utilizes multiple linear regression analysis evaluating the relationship between surface water inundation, total water storage anomalies and precipitation values, grouped by average slope or land use, to determine their statistical relationships and influences on inundation data. This research demonstrates the potential benefits of using global data products for early flood prediction and will improve our understanding of runoff generation processes.

  2. Evaluation of NASA SPoRT's Pseudo-Geostationary Lightning Mapper Products in the 2011 Spring Program

    Science.gov (United States)

    Stano, Geoffrey T.; Carcione, Brian; Siewert, Christopher; Kuhlman, Kristin M.

    2012-01-01

    NASA's Short-term Prediction Research and Transition (SPoRT) program is a contributing partner with the GOES-R Proving Ground (PG) preparing forecasters to understand and utilize the unique products that will be available in the GOES-R era. This presentation emphasizes SPoRT s actions to prepare the end user community for the Geostationary Lightning Mapper (GLM). This preparation is a collaborative effort with SPoRT's National Weather Service partners, the National Severe Storms Laboratory (NSSL), and the Hazardous Weather Testbed s Spring Program. SPoRT continues to use its effective paradigm of matching capabilities to forecast problems through collaborations with our end users and working with the developers at NSSL to create effective evaluations and visualizations. Furthermore, SPoRT continues to develop software plug-ins so that these products will be available to forecasters in their own decision support system, AWIPS and eventually AWIPS II. In 2009, the SPoRT program developed the original pseudo geostationary lightning mapper (PGLM) flash extent product to demonstrate what forecasters may see with GLM. The PGLM replaced the previous GLM product and serves as a stepping-stone until the AWG s official GLM proxy is ready. The PGLM algorithm is simple and can be applied to any ground-based total lightning network. For 2011, the PGLM used observations from four ground-based networks (North Alabama, Kennedy Space Center, Oklahoma, and Washington D.C.). While the PGLM is not a true proxy product, it is intended as a tool to train forecasters about total lightning as well as foster discussions on product visualizations and incorporating GLM-resolution data into forecast operations. The PGLM has been used in 2010 and 2011 and is likely to remain the primary lightning training tool for the GOES-R program for the near future. This presentation will emphasize the feedback received during the 2011 Spring Program. This will discuss several topics. Based on feedback

  3. Where Does the Irrigation Water Go? An Estimate of the Contribution of Irrigation to Precipitation Using MERRA

    Science.gov (United States)

    Wei, Jiangfeng; Dirmeyer, Paul A.; Wisser, Dominik; Bosilovich, Michael G.; Mocko, David M.

    2013-01-01

    Irrigation is an important human activity that may impact local and regional climate, but current climate model simulations and data assimilation systems generally do not explicitly include it. The European Centre for Medium-Range Weather Forecasts (ECMWF) Interim Re-Analysis (ERA-Interim) shows more irrigation signal in surface evapotranspiration (ET) than the Modern-Era Retrospective Analysis for Research and Applications (MERRA) because ERA-Interim adjusts soil moisture according to the observed surface temperature and humidity while MERRA has no explicit consideration of irrigation at the surface. But, when compared with the results from a hydrological model with detailed considerations of agriculture, the ET from both reanalyses show large deficiencies in capturing the impact of irrigation. Here, a back-trajectory method is used to estimate the contribution of irrigation to precipitation over local and surrounding regions, using MERRA with observation-based corrections and added irrigation-caused ET increase from the hydrological model. Results show substantial contributions of irrigation to precipitation over heavily irrigated regions in Asia, but the precipitation increase is much less than the ET increase over most areas, indicating that irrigation could lead to water deficits over these regions. For the same increase in ET, precipitation increases are larger over wetter areas where convection is more easily triggered, but the percentage increase in precipitation is similar for different areas. There are substantial regional differences in the patterns of irrigation impact, but, for all the studied regions, the highest percentage contribution to precipitation is over local land.

  4. Global Precipitation Measurement (GPM) Mission Products and Services at the NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC)

    Science.gov (United States)

    Liu, Zhong; Ostrenga, D.; Vollmer, B.; Deshong, B.; Greene, M.; Teng, W.; Kempler, S. J.

    2015-01-01

    On February 27, 2014, the NASA Global Precipitation Measurement (GPM) mission was launched to provide the next-generation global observations of rain and snow (http:pmm.nasa.govGPM). The GPM mission consists of an international network of satellites in which a GPM Core Observatory satellite carries both active and passive microwave instruments to measure precipitation and serve as a reference standard, to unify precipitation measurements from a constellation of other research and operational satellites. The NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC) hosts and distributes GPM data within the NASA Earth Observation System Data Information System (EOSDIS). The GES DISC is home to the data archive for the GPM predecessor, the Tropical Rainfall Measuring Mission (TRMM). Over the past 16 years, the GES DISC has served the scientific as well as other communities with TRMM data and user-friendly services. During the GPM era, the GES DISC will continue to provide user-friendly data services and customer support to users around the world. GPM products currently and to-be available include the following: 1. Level-1 GPM Microwave Imager (GMI) and partner radiometer products. 2. Goddard Profiling Algorithm (GPROF) GMI and partner products. 3. Integrated Multi-satellitE Retrievals for GPM (IMERG) products. (early, late, and final)A dedicated Web portal (including user guides, etc.) has been developed for GPM data (http:disc.sci.gsfc.nasa.govgpm). Data services that are currently and to-be available include Google-like Mirador (http:mirador.gsfc.nasa.gov) for data search and access; data access through various Web services (e.g., OPeNDAP, GDS, WMS, WCS); conversion into various formats (e.g., netCDF, HDF, KML (for Google Earth), ASCII); exploration, visualization, and statistical online analysis through Giovanni (http:giovanni.gsfc.nasa.gov); generation of value-added products; parameter and spatial subsetting; time aggregation; regridding; data

  5. Global Precipitation Measurement (GPM) Mission Products and Services at the NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC)

    Science.gov (United States)

    Ostrenga, D.; Liu, Z.; Vollmer, B.; Teng, W. L.; Kempler, S. J.

    2014-12-01

    On February 27, 2014, the NASA Global Precipitation Measurement (GPM) mission was launched to provide the next-generation global observations of rain and snow (http://pmm.nasa.gov/GPM). The GPM mission consists of an international network of satellites in which a GPM "Core Observatory" satellite carries both active and passive microwave instruments to measure precipitation and serve as a reference standard, to unify precipitation measurements from a constellation of other research and operational satellites. The NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC) hosts and distributes GPM data within the NASA Earth Observation System Data Information System (EOSDIS). The GES DISC is home to the data archive for the GPM predecessor, the Tropical Rainfall Measuring Mission (TRMM). Over the past 16 years, the GES DISC has served the scientific as well as other communities with TRMM data and user-friendly services. During the GPM era, the GES DISC will continue to provide user-friendly data services and customer support to users around the world. GPM products currently and to-be available include the following: Level-1 GPM Microwave Imager (GMI) and partner radiometer products Goddard Profiling Algorithm (GPROF) GMI and partner products Integrated Multi-satellitE Retrievals for GPM (IMERG) products (early, late, and final) A dedicated Web portal (including user guides, etc.) has been developed for GPM data (http://disc.sci.gsfc.nasa.gov/gpm). Data services that are currently and to-be available include Google-like Mirador (http://mirador.gsfc.nasa.gov/) for data search and access; data access through various Web services (e.g., OPeNDAP, GDS, WMS, WCS); conversion into various formats (e.g., netCDF, HDF, KML (for Google Earth), ASCII); exploration, visualization, and statistical online analysis through Giovanni (http://giovanni.gsfc.nasa.gov); generation of value-added products; parameter and spatial subsetting; time aggregation; regridding

  6. Supporting Hydrometeorological Research and Applications with Global Precipitation Measurement (GPM) Products and Services

    Science.gov (United States)

    Liu, Zhong; Ostrenga, D.; Vollmer, B.; Deshong, B.; MacRitchie, K.; Greene, M.; Kempler, S.

    2016-01-01

    Precipitation is an important dataset in hydrometeorological research and applications such as flood modeling, drought monitoring, etc. On February 27, 2014, the NASA Global Precipitation Measurement (GPM) mission was launched to provide the next-generation global observations of rain and snow (http:pmm.nasa.govGPM). The GPM mission consists of an international network of satellites in which a GPM Core Observatory satellite carries both active and passive microwave instruments to measure precipitation and serve as a reference standard, to unify precipitation measurements from a constellation of other research and operational satellites. The NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC) hosts and distributes GPM data. The GES DISC is home to the data archive for the GPM predecessor, the Tropical Rainfall Measuring Mission (TRMM). GPM products currently available include the following:1. Level-1 GPM Microwave Imager (GMI) and partner radiometer products2. Goddard Profiling Algorithm (GPROF) GMI and partner products (Level-2 and Level-3)3. GPM dual-frequency precipitation radar and their combined products (Level-2 and Level-3)4. Integrated Multi-satellitE Retrievals for GPM (IMERG) products (early, late, and final run)GPM data can be accessed through a number of data services (e.g., Simple Subset Wizard, OPeNDAP, WMS, WCS, ftp, etc.). A newly released Unified User Interface or UUI is a single interface to provide users seamless access to data, information and services. For example, a search for precipitation products will not only return TRMM and GPM products, but also other global precipitation products such as MERRA (Modern Era Retrospective-Analysis for Research and Applications), GLDAS (Global Land Data Assimilation Systems), etc.New features and capabilities have been recently added in GIOVANNI to allow exploring and inter-comparing GPM IMERG (Integrated Multi-satelliE Retrievals for GPM) half-hourly and monthly precipitation

  7. A clear-sky hyperspectral closure study for MERRA-2 and ERA-interim reanalyses

    Science.gov (United States)

    Chen, X.; Huang, X.; Loeb, N. G.; Dong, X.; Xi, B.; Dolinar, E. K.; Bosilovich, M. G.; Kato, S.; Smith, W. L., Jr.; Stackhouse, P. W., Jr.

    2017-12-01

    We carried out a clear-sky radiance closure study to compare four sets of synthetic AIRS spectra to 51 AIRS L1 spectra over the ARM Southern Great Plains (SGP) site. The AIRS observations were made when the ARM SGP cloud radar identified cloud free situation for 50-km region within the SGP site. Four sets of synthetic AIRS spectra are calculated using collocated atmospheric profiles from ARM SGP sounding, AIRS L2 retrievals, MERRA-2 and ECMWF ERA-Interim reanalyses. Only channels that are sensitive to temperature, CO2 and water vapor and not to other trace gases are selected for study. The selected channels are further divided into different groups according to their sensitivities to the emission from different vertical levels and to H2O and CO2, respectively. Observed and synthetic radiances of each group are then examined. For synthetic spectra using the AIRS L2 retrievals or the ARM SGP sounding profiles, the brightness temperature (BT) differences between synthetic and observed ones are within ±0.5 K or even smaller, for all groups and for all four seasons. For MERRA-2 and ECMWF-interim reanalyses, the BT differences from observations for each CO2 group are generally within ±0.5 K, indicating good agreements with respect to temperature profiles in the reanalyses. The BT differences for H2O groups are all negative, ranging from -0.5K to -1.5K. The largest BT difference is -1.5K for H2O channels peaking at 400-200 hPa. Such BT difference is persistent when the synthetic radiances based on reanalyses are compared with observed ones for the entire zone of 30°N-40°N. These comparisons imply that the reanalyses can represent the temperature profile well but there is persistent wet bias in the reanalyses, especially for the upper troposphere. The water vapor at 400-200 hPa in reanalyses needs to be adjusted by about -0.01 g/kg in order to reach agreement with the observed radiances.

  8. AOD distributions and trends of major aerosol species over a selection of the world’s most populated cities based on the 1st Version of NASA’s MERRA Aerosol Reanalysis

    Science.gov (United States)

    Provençal, Simon; Kishcha, Pavel; da Silva, Arlindo M.; Elhacham, Emily; Alpert, Pinhas

    2018-01-01

    NASA recently extended the Modern-Era Retrospective Analysis for Research and Application (MERRA) with an atmospheric aerosol reanalysis which includes five particulate species: sulfate, organic matter, black carbon, mineral dust and sea salt. The MERRA Aerosol Reanalysis (MERRAero) is an innovative tool to study air quality issues around the world for its global and constant coverage and its distinction of aerosol speciation expressed in the form of aerosol optical depth (AOD). The purpose of this manuscript is to apply MERRAero to the study of urban air pollution at the global scale by analyzing the AOD over a period of 13 years (2003–2015) and over a selection of 200 of the world’s most populated cities in order to assess the impacts of urbanization, industrialization, air quality regulations and regional transport which affect urban aerosol load. Environmental regulations and the recent global economic recession have helped to decrease the AOD and sulfate aerosols in most cities in North America, Europe and Japan. Rapid industrialization in China over the last two decades resulted in Chinese cities having the highest AOD values in the world. China has nevertheless recently implemented emission control measures which are showing early signs of success in many cities of Southern China where AOD has decreased substantially over the last 13 years. The AOD over South American cities, which is dominated by carbonaceous aerosols, has also decreased over the last decade due to an increase in commodity prices which slowed deforestation activities in the Amazon rainforest. At the opposite, recent urbanization and industrialization in India and Bangladesh resulted in a strong increase of AOD, sulfate and carbonaceous aerosols in most cities of these two countries. The AOD over most cities in Northern Africa and Western Asia changed little over the last decade. Emissions of natural aerosols, which cities in these two regions tend to be mostly composed of, don’t tend

  9. New 4.4 km-resolution aerosol product from NASA's Multi-angle Imaging SpectroRadiometer: A user's guide

    Science.gov (United States)

    Nastan, A.; Garay, M. J.; Witek, M. L.; Seidel, F.; Bull, M. A.; Kahn, R. A.; Diner, D. J.

    2017-12-01

    The NASA Multi-angle Imaging SpectroRadiometer (MISR) instrument on NASA's Terra satellite has provided an 18-year-and-growing aerosol data record. MISR's V22 aerosol product has been used extensively in studies of regional and global climate and the health effects of particulate air pollution. The MISR team recently released a new version of this product (V23), which increases the spatial resolution from 17.6 km to 4.4 km, improves performance versus AERONET, and provides better spatial coverage, more accurate cloud screening, and improved radiometric conditioning relative to V22. The product formatting was also completely revamped to improve clarity and usability. Established and prospective users of the MISR aerosol product are invited to learn about the features and performance of the new product and to participate in one-on-one demonstrations of how to obtain, visualize, and analyze the new product. Because the aerosol product is used in generating atmospherically-corrected surface bidirectional reflectance factors, improvements in MISR's 1.1 km resolution land surface product are a by-product of the updated aerosol retrievals. Illustrative comparisons of the V22 and V23 aerosol and surface products will be shown.

  10. Simulation of the Ozone Monitoring Instrument aerosol index using the NASA Goddard Earth Observing System aerosol reanalysis products

    Science.gov (United States)

    Colarco, Peter R.; Gassó, Santiago; Ahn, Changwoo; Buchard, Virginie; da Silva, Arlindo M.; Torres, Omar

    2017-11-01

    We provide an analysis of the commonly used Ozone Monitoring Instrument (OMI) aerosol index (AI) product for qualitative detection of the presence and loading of absorbing aerosols. In our analysis, simulated top-of-atmosphere (TOA) radiances are produced at the OMI footprints from a model atmosphere and aerosol profile provided by the NASA Goddard Earth Observing System (GEOS-5) Modern-Era Retrospective Analysis for Research and Applications aerosol reanalysis (MERRAero). Having established the credibility of the MERRAero simulation of the OMI AI in a previous paper we describe updates in the approach and aerosol optical property assumptions. The OMI TOA radiances are computed in cloud-free conditions from the MERRAero atmospheric state, and the AI is calculated. The simulated TOA radiances are fed to the OMI near-UV aerosol retrieval algorithms (known as OMAERUV) is compared to the MERRAero calculated AI. Two main sources of discrepancy are discussed: one pertaining to the OMI algorithm assumptions of the surface pressure, which are generally different from what the actual surface pressure of an observation is, and the other related to simplifying assumptions in the molecular atmosphere radiative transfer used in the OMI algorithms. Surface pressure assumptions lead to systematic biases in the OMAERUV AI, particularly over the oceans. Simplifications in the molecular radiative transfer lead to biases particularly in regions of topography intermediate to surface pressures of 600 and 1013.25 hPa. Generally, the errors in the OMI AI due to these considerations are less than 0.2 in magnitude, though larger errors are possible, particularly over land. We recommend that future versions of the OMI algorithms use surface pressures from readily available atmospheric analyses combined with high-spatial-resolution topographic maps and include more surface pressure nodal points in their radiative transfer lookup tables.

  11. Civil Service Workforce Market Supply and the Effect on Cost Estimating Relationship (CERS) that May Effect the Productivity Factors for Future NASA Missions

    Science.gov (United States)

    Sterk, Steve; Chesley, Stephan

    2008-01-01

    The upcoming retirement of the Baby Boomers will leave a workforce age gap between the younger generation (the future NASA decision makers) and the gray beards. This paper will reflect on the average age of the workforce across NASA Centers, the Aerospace Industry and other Government Agencies, like DoD. This paper will dig into Productivity and Realization Factors and how they get applied to bi-monthly (payroll) data for true full-time equivalent (FTE) calculations that could be used at each of the NASA Centers and other business systems that are on the forefront in being implemented. This paper offers some comparative costs analysis/solutions, from simple FTE cost-estimating relationships (CERs) versus CERs for monthly time-phasing activities for small research projects that start and get completed within a government fiscal year. This paper will present the results of a parametric study investigating the cost-effectiveness of alternative performance-based CERs and how they get applied into the Center's forward pricing rate proposals (FPRP). True CERs based on the relationship of a younger aged workforce will have some effects on labor rates used in both commercial cost models and other internal home-grown cost models which may impact the productivity factors for future NASA missions.

  12. Civil Service Workforce Market Supply and the Effect on the Cost Estimating Relationships (CERs) that may effect the Productivity Factors for Future NASA Missions

    Science.gov (United States)

    Sterk, Steve; Chesley, Stephen

    2008-01-01

    The upcoming retirement of the Baby Boomers on the horizon will leave a performance gap between younger generation (the future NASA decision makers) and the gray beards. This paper will reflect on the average age of workforce across NASA Centers, the Aerospace Industry and other Government Agencies, like DoD. This papers will dig into Productivity and Realization Factors and how they get applied to bimonthly (payroll data) for true FTE calculations that could be used at each of the NASA Centers and other business systems that are on the forefront in being implemented. This paper offers some comparative costs solutions, from simple - full time equivalent (FTE) cost estimating relationships CERs, to complex - CERs for monthly time-phasing activities for small research projects that start and get completed within a government fiscal year. This paper will present the results of a parametric study investigating the cost-effectiveness of different alternatives performance based cost estimating relationships (CERs) and how they get applied into the Center s forward pricing rate proposals (FPRP). True CERs based on the relationship of a younger aged workforce will have some effects on labor rates used in both commercial cost models and internal home-grown cost models which may impact the productivity factors for future NASA missions.

  13. Evaluation of PM2.5 surface concentration simulated by Version 1 of the NASA’s MERRA Aerosol Reanalysis over Israel and Taiwan

    Science.gov (United States)

    Provençal, Simon; Buchard, Virginie; da Silva, Arlindo M.; Leduc, Richard; Barrette, Nathalie; Elhacham, Emily; Wang, Sheng-Hsiang

    2018-01-01

    Version 1 of the NASA MERRA Aerosol Reanalysis (MERRAero) assimilates bias-corrected aerosol optical depth (AOD) data from MODIS-Terra and MODIS-Aqua, and simulates particulate matter (PM) concentration data to reproduce a consistent database of AOD and PM concentration around the world from 2002 to the end of 2015. The purpose of this paper is to evaluate MERRAero’s simulation of fine PM concentration against surface measurements in two regions of the world with relatively high levels of PM concentration but with profoundly different PM composition, those of Israel and Taiwan. Being surrounded by major deserts, Israel’s PM load is characterized by a significant contribution of mineral dust, and secondary contributions of sea salt particles, given its proximity to the Mediterranean Sea, and sulfate particles originating from Israel’s own urban activities and transported from Europe. Taiwan’s PM load is composed primarily of anthropogenic particles (sulfate, nitrate and carbonaceous particles) locally produced or transported from China, with an additional contribution of springtime transport of mineral dust originating from Chinese and Mongolian deserts. The evaluation in Israel produced favorable results with MERRAero slightly overestimating measurements by 6% on average and reproducing an excellent year-to-year and seasonal fluctuation. The evaluation in Taiwan was less favorable with MERRAero underestimating measurements by 42% on average. Two likely reasons explain this discrepancy: emissions of anthropogenic PM and their precursors are largely uncertain in China, and MERRAero doesn’t include nitrate particles in its simulation, a pollutant of predominately anthropogenic sources. MERRAero nevertheless simulates well the concentration of fine PM during the summer, when Taiwan is least affected by the advection of pollution from China. PMID:29670645

  14. Innovation @ NASA

    Science.gov (United States)

    Roman, Juan A.

    2014-01-01

    This presentation provides an overview of the activities National Aeronautics and Space Administration (NASA) is doing to encourage innovation across the agency. All information provided is available publicly.

  15. Analysis of air pollution over Hanoi, Vietnam using multi-satellite and MERRA reanalysis datasets.

    Directory of Open Access Journals (Sweden)

    Kristofer Lasko

    Full Text Available Air pollution is one of the major environmental concerns in Vietnam. In this study, we assess the current status of air pollution over Hanoi, Vietnam using multiple different satellite datasets and weather information, and assess the potential to capture rice residue burning emissions with satellite data in a cloud-covered region. We used a timeseries of Ozone Monitoring Instrument (OMI Ultraviolet Aerosol Index (UVAI satellite data to characterize absorbing aerosols related to biomass burning. We also tested a timeseries of 3-hourly MERRA-2 reanalysis Black Carbon (BC concentration data for 5 years from 2012-2016 and explored pollution trends over time. We then used MODIS active fires, and synoptic wind patterns to attribute variability in Hanoi pollution to different sources. Because Hanoi is within the Red River Delta where rice residue burning is prominent, we explored trends to see if the residue burning signal is evident in the UVAI or BC data. Further, as the region experiences monsoon-influenced rainfall patterns, we adjusted the BC data based on daily rainfall amounts. Results indicated forest biomass burning from Northwest Vietnam and Laos impacts Hanoi air quality during the peak UVAI months of March and April. Whereas, during local rice residue burning months of June and October, no increase in UVAI is observed, with slight BC increase in October only. During the peak BC months of December and January, wind patterns indicated pollutant transport from southern China megacity areas. Results also indicated severe pollution episodes during December 2013 and January 2014. We observed significantly higher BC concentrations during nighttime than daytime with peaks generally between 2130 and 0030 local time. Our results highlight the need for better air pollution monitoring systems to capture episodic pollution events and their surface-level impacts, such as rice residue burning in cloud-prone regions in general and Hanoi, Vietnam in

  16. Estimating climatological variability of solar energy production

    Czech Academy of Sciences Publication Activity Database

    Juruš, Pavel; Eben, Kryštof; Resler, Jaroslav; Krč, Pavel; Kasanický, Ivan; Pelikán, Emil; Brabec, Marek; Hošek, Jiří

    98 Part C, December (2013), s. 255-264 ISSN 0038-092X R&D Projects: GA MŠk LD12009 Institutional support: RVO:67985807 ; RVO:68378289 Keywords : MERRA * reanalysis * numerical weather prediction * photovoltaic power production Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 3.541, year: 2013

  17. The Eighth Annual NASA/Contractors Conference and 1991 National Symposium on Quality and Productivity: Extending the boundaries of total quality management

    Science.gov (United States)

    Templeton, Geoffrey B. (Editor); Stewart, Lynne M. (Editor); Still, William T. (Editor)

    1992-01-01

    The Eighth Annual NASA/Contractors Conference and 1991 National Symposium on Quality and Productivity provided a forum to exchange knowledge and experiences in these areas of continuous improvement. The more than 1,100 attendees from government, industry, academia, community groups, and the international arena had a chance to learn about methods, tools, and strategies for excellence and to discuss continuous improvement strategies, successes, and failures. This event, linked via satellite to concurrent conferences hosted by the NASA Goddard Space Flight Center in Greenbelt, Maryland, and Martin Marietta Astronautics Group in Denver, Colorado, also explored extending the boundaries of Total Quality Management to include partnerships for quality within communities and encouraged examination, evaluation, and change to incorporate the principles of continuous improvement.

  18. Global Navigation Satellite System (GNSS) Final Clock Product (5 minute resolution, daily files, generated weekly) from NASA CDDIS

    Data.gov (United States)

    National Aeronautics and Space Administration — This derived product set consists of Global Navigation Satellite System Final Satellite and Receiver Clock Product (5-minute granularity, daily files, generated...

  19. NASA reports

    Science.gov (United States)

    Obrien, John E.; Fisk, Lennard A.; Aldrich, Arnold A.; Utsman, Thomas E.; Griffin, Michael D.; Cohen, Aaron

    1992-01-01

    Activities and National Aeronautics and Space Administration (NASA) programs, both ongoing and planned, are described by NASA administrative personnel from the offices of Space Science and Applications, Space Systems Development, Space Flight, Exploration, and from the Johnson Space Center. NASA's multi-year strategic plan, called Vision 21, is also discussed. It proposes to use the unique perspective of space to better understand Earth. Among the NASA programs mentioned are the Magellan to Venus and Galileo to Jupiter spacecraft, the Cosmic Background Explorer, Pegsat (the first Pegasus payload), Hubble, the Joint U.S./German ROSAT X-ray Mission, Ulysses to Jupiter and over the sun, the Astro-Spacelab Mission, and the Gamma Ray Observatory. Copies of viewgraphs that illustrate some of these missions, and others, are provided. Also discussed were life science research plans, economic factors as they relate to space missions, and the outlook for international cooperation.

  20. Assessments of Ali, Dome A, and Summit Camp for mm-wave Observations Using MERRA-2 Reanalysis

    Science.gov (United States)

    Kuo, Chao-Lin

    2017-10-01

    NASA’s latest MERRA-2 reanalysis of the modern satellite measurements has made atmospheric data easily accessible with unprecedented uniformity, fidelity, and completeness. In this paper, these data are used to evaluate five sites for millimeter-wave (mm-wave) observations. These include two established sites (South Pole and Chajnantor, Atacama), and three new sites (Ali in Tibet, Dome A in Antarctica, and Summit Camp in Greenland). Atmospheric properties including precipitable water vapor (PWV), sky brightness temperature fluctuations, and ice and liquid water paths are derived and compared. Dome A emerges to be the best among those evaluated, with PWV and fluctuations smaller than the second-best site, South Pole, by more than a factor of 2. It is found that the higher site in Ali (6100 m) is on par with Cerro Chajnantor (5612 m) in terms of transmission and stability. The lower site in Ali (5250 m) planned for the first stage of observations at 90/150 GHz provides conditions comparable to those on the Chajnantor Plateau. These analyses confirm Ali to be an excellent mm-wave site in the Northern Hemisphere that will complement well-established Southern sites. According to MERRA-2 data, the observing conditions at Summit Camp are also comparable to Cerro Chajnantor. However, it is more affected by the presence of liquid water clouds.

  1. NASA/GEWEX Surface Radiation Budget: Integrated Data Product With Reprocessed Radiance, Cloud, and Meteorology Inputs, and New Surface Albedo Treatment

    Science.gov (United States)

    Cox, Stephen J.; Stackhouse, Paul W., Jr.; Gupta, Shashi K.; Mikovitz, J. Colleen; Zhang, Taiping

    2016-01-01

    The NASA/GEWEX Surface Radiation Budget (SRB) project produces shortwave and longwave surface and top of atmosphere radiative fluxes for the 1983-near present time period. Spatial resolution is 1 degree. The current release 3.0 (available at gewex-srb.larc.nasa.gov) uses the International Satellite Cloud Climatology Project (ISCCP) DX product for pixel level radiance and cloud information. This product is subsampled to 30 km. ISCCP is currently recalibrating and recomputing their entire data series, to be released as the H product, at 10km resolution. The ninefold increase in pixel number will allow SRB a higher resolution gridded product (e.g. 0.5 degree), as well as the production of pixel-level fluxes. In addition to the input data improvements, several important algorithm improvements have been made. Most notable has been the adaptation of Angular Distribution Models (ADMs) from CERES to improve the initial calculation of shortwave TOA fluxes, from which the surface flux calculations follow. Other key input improvements include a detailed aerosol history using the Max Planck Institut Aerosol Climatology (MAC), temperature and moisture profiles from HIRS, and new topography, surface type, and snow/ice. Here we present results for the improved GEWEX Shortwave and Longwave algorithm (GSW and GLW) with new ISCCP data, the various other improved input data sets and the incorporation of many additional internal SRB model improvements. As of the time of abstract submission, results from 2007 have been produced with ISCCP H availability the limiting factor. More SRB data will be produced as ISCCP reprocessing continues. The SRB data produced will be released as part of the Release 4.0 Integrated Product, recognizing the interdependence of the radiative fluxes with other GEWEX products providing estimates of the Earth's global water and energy cycle (I.e., ISCCP, SeaFlux, LandFlux, NVAP, etc.).

  2. Determination of some trace elements in edible crops grown in Jebel Merra area

    International Nuclear Information System (INIS)

    Mohamed, Abdelmoneim Adam

    2001-11-01

    This preliminary study was conducted in the area of Jebel Merra in South Darfour State, Western Sudan, With the aim of establishing a base-line data on trace element levels in foodstuffs cultivated in the region. 19 samples of vegetables, cereal grains, spices and fruits were collected from farms in Nyala, Derbat, Sunie and Gawa. With the exception of Nyala, the sampling farms were located on hill slopes using turus system as a means for water harvesting. Samples were analyzed for six trace elements, viz., Fe, Mn, Zn, Cu, Co and Cr using Atomic Absorption Spectroscopy (Aas). Comparison of the results with similar data from different parts of Sudan and from some other countries reveals that the foodstuffs grown in this high latitude region are relatively deficient in their elemental content. This salient feature conforms with well-known fact that, the soil in high latitude regions depleted in nutritional plant elements due to the leaching caused by runoff water hence the corresponding concentrations in plants are quite low indicative of state of malnutrition. Categorically speaking, among the vegetables analyzed, okra has shown a high affinity in accumulating Fe (187.49 ppm), Mn (80.31ppm), Cu (7.43 ppm) and Zn (12.74 ppm) comparative to other species. On the other hand, opposite trend was observed with sorghum as the poorest one with respect to its ability in concentrating Fe (55.57 ppm), Mn (4.19 ppm), Zn (5.25 ppm) and Cu (1.26 ppm) relative to millet, Wheat, Lupins and broad beans. With regard to spices covered in this investigation, garlic contains the lowest concentrations of all the elements analyzed and agree well with those found in onion the poorest of all the vegetables. Concentrations obtained were 108.78 ppm (Fe), 3.6 ppm (Mn), 4.6 ppm (Zn), 1.73 ppm (Cu) and 0.1 ppm (Cr) and 0.16 ppm (Co). On individual basis, the highest concentration of Mn was measured in lupins at 143.18 ppm. Cr content in all spices was found to be less than 1 ppm, whereas for Co

  3. NASA Water Resources Program

    Science.gov (United States)

    Toll, David L.

    2011-01-01

    With increasing population pressure and water usage coupled with climate variability and change, water issues are being reported by numerous groups as the most critical environmental problems facing us in the 21st century. Competitive uses and the prevalence of river basins and aquifers that extend across boundaries engender political tensions between communities, stakeholders and countries. In addition to the numerous water availability issues, water quality related problems are seriously affecting human health and our environment. The potential crises and conflicts especially arise when water is competed among multiple uses. For example, urban areas, environmental and recreational uses, agriculture, and energy production compete for scarce resources, not only in the Western U.S. but throughout much of the U.S. and also in numerous parts of the world. Mitigating these conflicts and meeting water demands and needs requires using existing water resources more efficiently. The NASA Water Resources Program Element works to use NASA products and technology to address these critical water issues. The primary goal of the Water Resources is to facilitate application of NASA Earth science products as a routine use in integrated water resources management for the sustainable use of water. This also includes the extreme events of drought and floods and the adaptation to the impacts from climate change. NASA satellite and Earth system observations of water and related data provide a huge volume of valuable data in both near-real-time and extended back nearly 50 years about the Earth's land surface conditions such as precipitation, snow, soil moisture, water levels, land cover type, vegetation type, and health. NASA Water Resources Program works closely to use NASA and Earth science data with other U.S. government agencies, universities, and non-profit and private sector organizations both domestically and internationally. The NASA Water Resources Program organizes its

  4. Seasonal scale water deficit forecasting in Africa and the Middle East using NASA's Land Information System (LIS)

    Science.gov (United States)

    Peters-Lidard, C. D.; Arsenault, K. R.; Shukla, S.; Getirana, A.; McNally, A.; Koster, R. D.; Zaitchik, B. F.; Badr, H. S.; Roningen, J. M.; Kumar, S.; Funk, C. C.

    2017-12-01

    A seamless and effective water deficit monitoring and early warning system is critical for assessing food security in Africa and the Middle East. In this presentation, we report on the ongoing development and validation of a seasonal scale water deficit forecasting system based on NASA's Land Information System (LIS) and seasonal climate forecasts. First, our presentation will focus on the implementation and validation of drought and water availability monitoring products in the region. Next, it will focus on evaluating drought and water availability forecasts. Finally, details will be provided of our ongoing collaboration with end-user partners in the region (e.g., USAID's Famine Early Warning Systems Network, FEWS NET), on formulating meaningful early warning indicators, effective communication and seamless dissemination of the products through NASA's web-services. The water deficit forecasting system thus far incorporates NASA GMAO's Catchment and the Noah Multi-Physics (MP) LSMs. In addition, the LSMs' surface and subsurface runoff are routed through the Hydrological Modeling and Analysis Platform (HyMAP) to simulate surface water dynamics. To establish a climatology from 1981-2015, the two LSMs are driven by NASA/GMAO's Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2), and the USGS and UCSB Climate Hazards Group InfraRed Precipitation with Station (CHIRPS) daily rainfall dataset. Comparison of the models' energy and hydrological budgets with independent observations suggests that major droughts are well-reflected in the climatology. The system uses seasonal climate forecasts from NASA's GEOS-5 (the Goddard Earth Observing System Model-5) and NCEP's Climate Forecast System-2, and it produces forecasts of soil moisture, ET and streamflow out to 6 months in the future. Forecasts of those variables are formulated in terms of indicators to provide forecasts of drought and water availability in the region. Current work suggests

  5. Ninth Annual NASA/Contractors Conference on Quality and Productivity. World Class Excellence: The Journey Continues. Conference presentations

    Science.gov (United States)

    Templeton, Geoffrey B. (Editor); Stewart, Lynne M. (Editor)

    1992-01-01

    The topics covered include the following: The George M. Low Trophy; total quality assessment and measurement; using award criteria to improve organizational effectiveness; results--keeping an eye on the bottom line; capturing customer satisfaction; moving from management to leadership; leadership versus management; transforming the management team; leadership success stories; success stories in the quest for excellence; small business successes; education success stories; government success stories; tools and techniques for total quality management (TQM) integration; planning and organizing for TQM integration; successful stories for implementing system level TQM/CI tools; assessing TQM results; establishing an environment for continuous improvement at NASA; empowerment; synergism of partnering; and partnerships in education.

  6. An Analysis of the Relationship Between Atmospheric Heat Transport and the Position of the ITCZ in NASA NEWS products, CMIP5 GCMs, and Multiple Reanalyses

    Science.gov (United States)

    Stanfield, R.; Dong, X.; Su, H.; Xi, B.; Jiang, J. H.

    2016-12-01

    In the past few years, studies have found a strong connection between atmospheric heat transport across the equator (AHTEQ) and the position of the ITCZ. This study investigates the seasonal, annual-mean and interannual variability of the ITCZ position and explores the relationships between the ITCZ position and inter-hemispheric energy transport in NASA NEWS products, multiple reanalyses datasets, and CMIP5 simulations. We find large discrepancies exist in the ITCZ-AHTEQ relationships in these datasets and model simulations. The components of energy fluxes are examined to identify the primary sources for the discrepancies among the datasets and models results.

  7. Comparison of OLR Data Sets from AIRS, CERES and MERRA 2

    Science.gov (United States)

    Lee, Jae N.; Susskind, Joel; Iredell, Lena; Loeb, Norman; Lim, Young-Kwon

    2015-01-01

    Organizers of the NASA Sounder Science Team Meeting would like to post the presentations to a the JPL Atmospheric Infrared Sounder (AIRS) publicly-available website. The meeting was held in Greenbelt, Maryland, October 13-16, 2015.

  8. NASA-modified precipitation products to improve USEPA nonpoint source water quality modeling for the Chesapeake Bay.

    Science.gov (United States)

    Nigro, Joseph; Toll, David; Partington, Ed; Ni-Meister, Wenge; Lee, Shihyan; Gutierrez-Magness, Angelica; Engman, Ted; Arsenault, Kristi

    2010-01-01

    The USEPA has estimated that over 20,000 water bodies within the United States do not meet water quality standards. One of the regulations in the Clean Water Act of 1972 requires states to monitor the total maximum daily load, or the amount of pollution that can be carried by a water body before it is determined to be "polluted," for any watershed in the United States (Copeland, 2005). In response to this mandate, the USEPA developed Better Assessment Science Integrating Nonpoint Sources (BASINS) as a decision support tool for assessing pollution and to guide the decision-making process for improving water quality. One of the models in BASINS, the Hydrological Simulation Program-Fortran (HSPF), computes continuous streamflow rates and pollutant concentration at each basin outlet. By design, precipitation and other meteorological data from weather stations serve as standard model input. In practice, these stations may be unable to capture the spatial heterogeneity of precipitation events, especially if they are few and far between. An attempt was made to resolve this issue by substituting station data with NASA-modified/NOAA precipitation data. Using these data within HSPF, streamflow was calculated for seven watersheds in the Chesapeake Bay Basin during low flow periods, convective storm periods, and annual flows. In almost every case, the modeling performance of HSPF increased when using the NASA-modified precipitation data, resulting in better streamflow statistics and, potentially, in improved water quality assessment.

  9. Prototyping agile production, analytics and visualization pipelines for big-data on the NASA Earth Exchange (NEX)

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of this project is to develop capabilities for an integrated petabyte-scale Earth science product development, production and collaborative analysis...

  10. Strategies for revitalizing organizations; Proceedings of the Second NASA Symposium on Quality and Productivity, Washington, DC, Dec. 2, 3, 1986

    Science.gov (United States)

    Gerard, Mireille (Editor); Edwards, Pamela W. (Editor)

    1987-01-01

    Attention is given to topics concerning managerial improvement of the American economy's goods and services through enhanced workforce productivity. The broad topic of entrepreneurialism in management organizations was addressed with a view to its effect on innovation in large corporations, and methods for measuring and sharing productivity increases were treated with respect to white collar productivity. Also discussed are participative management techniques and their implementation, and worker involvement in the enhancement of product quality.

  11. NASA-Modified Precipitation Products to Improve EPA Nonpoint Source Water Quality Modeling for the Chesapeake Bay

    Science.gov (United States)

    Nigro, Joseph; Toll, David; Partington, Ed; Ni-Meister, Wenge; Lee, Shihyan; Gutierrez-Magness, Angelica; Engman, Ted; Arsenault, Kristi

    2010-01-01

    The Environmental Protection Agency (EPA) has estimated that over 20,000 water bodies within the United States do not meet water quality standards. Ninety percent of the impairments are typically caused by nonpoint sources. One of the regulations in the Clean Water Act of 1972 requires States to monitor the Total Maximum Daily Load (TMDL), or the amount of pollution that can be carried by a water body before it is determined to be "polluted", for any watershed in the U.S.. In response to this mandate, the EPA developed Better Assessment Science Integrating Nonpoint Sources (BASINS) as a Decision Support Tool (DST) for assessing pollution and to guide the decision making process for improving water quality. One of the models in BASINS, the Hydrological Simulation Program -- Fortran (HSPF), computes daily stream flow rates and pollutant concentration at each basin outlet. By design, precipitation and other meteorological data from weather stations serve as standard model input. In practice, these stations may be unable to capture the spatial heterogeneity of precipitation events especially if they are few and far between. An attempt was made to resolve this issue by substituting station data with NASA modified/NOAA precipitation data. Using these data within HSPF, stream flow was calculated for seven watersheds in the Chesapeake Bay Basin during low flow periods, convective storm periods, and annual flows. In almost every case, the modeling performance of HSPF increased when using the NASA-modified precipitation data, resulting in better stream flow statistics and, ultimately, in improved water quality assessment.

  12. The NASA Polarimetric Radar (NPOL)

    Science.gov (United States)

    Petersen, Walter A.; Wolff, David B.

    2013-01-01

    Characteristics of the NASA NPOL S-band dual-polarimetric radar are presented including its operating characteristics, field configuration, scanning capabilities and calibration approaches. Examples of precipitation science data collections conducted using various scan types, and associated products, are presented for different convective system types and previous field campaign deployments. Finally, the NASA NPOL radar location is depicted in its home base configuration within the greater Wallops Flight Facility precipitation research array supporting NASA Global Precipitation Measurement Mission ground validation.

  13. Assessment and Applications of NASA Ozone Data Products Derived from Aura OMI-MLS Satellite Measurements in Context of the GMI Chemical Transport Model

    Science.gov (United States)

    Ziemke, J. R.; Olsen, M. A.; Witte, J. C.; Douglass, A. R.; Strahan, S. E.; Wargan, K.; Liu, X.; Schoeberl, M. R.; Yang, K.; Kaplan, T. B.; hide

    2013-01-01

    Measurements from the Ozone Monitoring Instrument (OMI) and Microwave Limb Sounder (MLS), both onboard the Aura spacecraft, have been used to produce daily global maps of column and profile ozone since August 2004. Here we compare and evaluate three strategies to obtain daily maps of tropospheric and stratospheric ozone from OMI and MLS measurements: trajectory mapping, direct profile retrieval, and data assimilation. Evaluation is based upon an assessment that includes validation using ozonesondes and comparisons with the Global Modeling Initiative (GMI) chemical transport model (CTM). We investigate applications of the three ozone data products from near-decadal and inter-annual timescales to day-to-day case studies. Zonally averaged inter-annual changes in tropospheric ozone from all of the products in any latitude range are of the order 1-2 Dobson Units while changes (increases) over the 8-year Aura record investigated http://eospso.gsfc.nasa.gov/atbd-category/49 vary approximately 2-4 Dobson Units. It is demonstrated that all of the ozone products can measure and monitor exceptional tropospheric ozone events including major forest fire and pollution transport events. Stratospheric ozone during the Aura record has several anomalous inter-annual events including stratospheric warming split events in the Northern Hemisphere extra-tropics that are well captured using the data assimilation ozone profile product. Data assimilation with continuous daily global coverage and vertical ozone profile information is the best of the three strategies at generating a global tropospheric and stratospheric ozone product for science applications.

  14. Estimating Sampling Biases and Measurement Uncertainties of AIRS-AMSU-A Temperature and Water Vapor Observations Using MERRA Reanalysis

    Science.gov (United States)

    Hearty, Thomas J.; Savtchenko, Andrey K.; Tian, Baijun; Fetzer, Eric; Yung, Yuk L.; Theobald, Michael; Vollmer, Bruce; Fishbein, Evan; Won, Young-In

    2014-01-01

    We use MERRA (Modern Era Retrospective-Analysis for Research Applications) temperature and water vapor data to estimate the sampling biases of climatologies derived from the AIRS/AMSU-A (Atmospheric Infrared Sounder/Advanced Microwave Sounding Unit-A) suite of instruments. We separate the total sampling bias into temporal and instrumental components. The temporal component is caused by the AIRS/AMSU-A orbit and swath that are not able to sample all of time and space. The instrumental component is caused by scenes that prevent successful retrievals. The temporal sampling biases are generally smaller than the instrumental sampling biases except in regions with large diurnal variations, such as the boundary layer, where the temporal sampling biases of temperature can be +/- 2 K and water vapor can be 10% wet. The instrumental sampling biases are the main contributor to the total sampling biases and are mainly caused by clouds. They are up to 2 K cold and greater than 30% dry over mid-latitude storm tracks and tropical deep convective cloudy regions and up to 20% wet over stratus regions. However, other factors such as surface emissivity and temperature can also influence the instrumental sampling bias over deserts where the biases can be up to 1 K cold and 10% wet. Some instrumental sampling biases can vary seasonally and/or diurnally. We also estimate the combined measurement uncertainties of temperature and water vapor from AIRS/AMSU-A and MERRA by comparing similarly sampled climatologies from both data sets. The measurement differences are often larger than the sampling biases and have longitudinal variations.

  15. NASA's Scientific Visualization Studio

    Science.gov (United States)

    Mitchell, Horace G.

    2003-01-01

    Since 1988, the Scientific Visualization Studio(SVS) at NASA Goddard Space Flight Center has produced scientific visualizations of NASA s scientific research and remote sensing data for public outreach. These visualizations take the form of images, animations, and end-to-end systems and have been used in many venues: from the network news to science programs such as NOVA, from museum exhibits at the Smithsonian to White House briefings. This presentation will give an overview of the major activities and accomplishments of the SVS, and some of the most interesting projects and systems developed at the SVS will be described. Particular emphasis will be given to the practices and procedures by which the SVS creates visualizations, from the hardware and software used to the structures and collaborations by which products are designed, developed, and delivered to customers. The web-based archival and delivery system for SVS visualizations at svs.gsfc.nasa.gov will also be described.

  16. NASA Systems Engineering Handbook

    Science.gov (United States)

    Hirshorn, Steven R.; Voss, Linda D.; Bromley, Linda K.

    2017-01-01

    The update of this handbook continues the methodology of the previous revision: a top-down compatibility with higher level Agency policy and a bottom-up infusion of guidance from the NASA practitioners in the field. This approach provides the opportunity to obtain best practices from across NASA and bridge the information to the established NASA systems engineering processes and to communicate principles of good practice as well as alternative approaches rather than specify a particular way to accomplish a task. The result embodied in this handbook is a top-level implementation approach on the practice of systems engineering unique to NASA. Material used for updating this handbook has been drawn from many sources, including NPRs, Center systems engineering handbooks and processes, other Agency best practices, and external systems engineering textbooks and guides. This handbook consists of six chapters: (1) an introduction, (2) a systems engineering fundamentals discussion, (3) the NASA program project life cycles, (4) systems engineering processes to get from a concept to a design, (5) systems engineering processes to get from a design to a final product, and (6) crosscutting management processes in systems engineering. The chapters are supplemented by appendices that provide outlines, examples, and further information to illustrate topics in the chapters. The handbook makes extensive use of boxes and figures to define, refine, illustrate, and extend concepts in the chapters.

  17. NASA Astrophysics Technology Needs

    Science.gov (United States)

    Stahl, H. Philip

    2012-01-01

    July 2010, NASA Office of Chief Technologist (OCT) initiated an activity to create and maintain a NASA integrated roadmap for 15 key technology areas which recommend an overall technology investment strategy and prioritize NASA?s technology programs to meet NASA?s strategic goals. Science Instruments, Observatories and Sensor Systems(SIOSS) roadmap addresses technology needs to achieve NASA?s highest priority objectives -- not only for the Science Mission Directorate (SMD), but for all of NASA.

  18. Utilizing NASA Earth Observations to Enhance Flood Impact Products and Mitigation in the Lower Mekong Water Basin

    Science.gov (United States)

    Doyle, C.; Gao, M.; Spruce, J.; Bolten, J. D.; Weber, S.

    2014-12-01

    This presentation discusses results of a project to develop a near real time flood monitoring capability for the Lower Mekong Water Basin (LMB), the largest river basin in Southeast Asia and home to more than sixty million people. The region has seen rapid population growth and socio-economic development, fueling unsustainable deforestation, agricultural expansion, and stream-flow regulation. The basin supports substantial rice farming and other agrarian activities, which heavily depend upon seasonal flooding. But, floods due to typhoons and other severe weather events can result in disasters that cost millions of dollars and cause hardships to millions of people. This study uses near real time and historical Aqua and Terra MODIS 250-m resolution Normalized Difference Vegetation Index (NDVI) products to map flood and drought impact within the LMB. In doing so, NDVI change products are derived by comparing from NDVI during the wet season to a baseline NDVI from the dry season. The method records flood events, which cause drastic decreases in NDVI compared to non-flooded conditions. NDVI change product computation was automated for updating a near real-time system, as part of the Committee on Earth Observing Satellites Disaster Risk Management Observation Strategy. The system is a web-based 'Flood Dashboard that will showcase MODIS flood monitoring products, along with other flood mapping and weather data products. This flood dashboard enables end-users to view and assess a variety of geospatial data to monitor floods and flood impacts in near real-time, as well provides a platform for further data aggregation for flood prediction modeling and post-event assessment.

  19. Utilizing NASA Earth Observations to Monitor Land Management Practices and the Development of Marshlands to Rice Fields in Rwanda

    Science.gov (United States)

    Dusabimana, M. R.; Blach, D.; Mwiza, F.; Muzungu, E.; Swaminathan, R.; Tate, Z.

    2014-12-01

    Rwanda, a small country with the highest population density in Sub-Saharan Africa, is one of the world's poorest countries. Although agriculture is the backbone of Rwandan economy, agricultural productivity is extremely low. Over 90 % of the population is engaged in subsistence farming and only 52 % of the total land surface area is arable. Of this land, approximately 165,000 hectares are marshlands, of which only 57 % has been cultivated. Rwandan government has invested in the advancement of agriculture with activities such as irrigation, marshland reclamation, and crop regionalization. In 2001, Ministry of Agriculture and Animal Resources (MINAGRI) released the Rural Sector Support Program (RSSP), which aimed at converting marshlands into rice fields at various development sites across the country. The focus of this project was to monitor rice fields in Rwanda utilizing NASA Earth observations such as Landsat 5 Thematic Mapper and Landsat 8 Operational Land Imager. Modified Normalized Difference Water Index (MNDWI) was used to depict the progress of marshland to rice field conversion as it highlights the presence of irrigated rice fields from the surrounding area. Additionally, Decision Support System for Agrotechnology Transfer (DSSAT) was used to estimate rice yield at RSSP sites. Various simulations were run to find perfect conditions for cultivating the highest yield for a given farm. Furthermore, soil erosion susceptibility masks were created by combining factors derived from ASTER, MERRA, and ground truth data using Revised Universal Soil Loss Equation (RUSLE). The end results, maps, and tutorials were delivered to the partners and policy makers in Rwanda to help make informed decisions. It can be clearly seen that Earth observations can be successfully used to monitor agricultural and land management practices as a cost effective method that will enable farmers to improve crop yield production and food security.

  20. NASA's "Eyes" Focus on Education

    Science.gov (United States)

    Hussey, K.

    2016-12-01

    NASA's "Eyes on…" suite of products continues to grow in capability and popularity. The "Eyes on the Earth", "Eyes on the Solar System" and "Eyes on Exoplanets" real-time, 3D interactive visualization products have proven themselves as highly effective demonstration and communication tools for NASA's Earth and Space Science missions. This presentation will give a quick look at the latest updates to the "Eyes" suite plus what is being done to make them tools for STEM Education.

  1. Evaluation of ERA-Interim, MERRA, NCEP-DOE R2 and CFSR Reanalysis precipitation Data using Gauge Observation over Ethiopia for a period of 33 years

    Directory of Open Access Journals (Sweden)

    Tewodros Woldemariam Tesfaye

    2017-09-01

    Full Text Available The vital demand of reliable climatic and hydrologic data of fine spatial and temporal resolution triggered the employment of reanalysis datasets as a surrogate in most of the hydrological modelling exercises. This study examines the performance of four widely used reanalysis datasets: ERA-Interim, NCEP-DOE R2, MERRA and CFSR, in reproducing the spatio-temporal characteristics of observed daily precipitation of different stations spread across Ethiopia, East Africa. The appropriateness of relying on reanalysis datasets for hydrologic modelling, climate change impact assessment and regional modelling studies is assessed using various statistical and non-parametric techniques. ERA-Interim is found to exhibit higher correlation and least root mean square error values with observed daily rainfall, which is followed by CFSR and MERRA in most of the stations. The variability of daily precipitation is better captured by ERA, CFSR and MERRA, while NCEP-DOE R2 overestimated the spread of the precipitation data. While ERA overestimates the probability of moderate rainfall, it is seemingly better in capturing the probability of low rainfall. CFSR captures the overall distribution reasonable well. NCEP-DOE R2 appears to be outperforming others in capturing the probabilities of higher magnitude rainfall. Climatological seasonal cycle and the characteristics of wet and dry spells are compared further, where ERA seemingly replicates the pattern more effectively. However, observed rainfall exhibits higher frequency of short wet spells when compared to that of any reanalysis datasets. MERRA relatively underperforms in simulating the wet spell characteristics of observed daily rainfall. CFSR overestimates the mean wet spell length and mean dry spell length. Spatial trend analysis indicates that the northern and central western Ethiopia show increasing trends, whereas the Central and Eastern Ethiopia as well as the Southern Ethiopia stations show either no trend

  2. On the comparisons of tropical relative humidity in the lower and middle troposphere among COSMIC radio occultations and MERRA and ECMWF data sets

    Science.gov (United States)

    Vergados, P.; Mannucci, A. J.; Ao, C. O.; Jiang, J. H.; Su, H.

    2015-04-01

    The spatial variability of the tropical tropospheric relative humidity (RH) throughout the vertical extent of the troposphere is examined using Global Positioning System Radio Occultation (GPSRO) observations from the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) mission. These high vertical resolution observations capture the detailed structure and moisture budget of the Hadley Cell circulation. We compare the COSMIC observations with the European Center for Medium-range Weather Forecast (ECMWF) Reanalysis Interim (ERA-Interim) and the Modern-Era Retrospective analysis for Research and Applications (MERRA) climatologies. Qualitatively, the spatial pattern of RH in all data sets matches up remarkably well, capturing distinct features of the general circulation. However, RH discrepancies exist between ERA-Interim and COSMIC data sets that are noticeable across the tropical boundary layer. Specifically, ERA-Interim shows a drier Intertropical Convergence Zone (ITCZ) by 15-20% compared to both COSMIC and MERRA data sets, but this difference decreases with altitude. Unlike ECMWF, MERRA shows an excellent agreement with the COSMIC observations except above 400 hPa, where GPSRO observations capture drier air by 5-10%. RH climatologies were also used to evaluate intraseasonal variability. The results indicate that the tropical middle troposphere at ±5-25° is most sensitive to seasonal variations. COSMIC and MERRA data sets capture the same magnitude of the seasonal variability, but ERA-Interim shows a weaker seasonal fluctuation up to 10% in the middle troposphere inside the dry air subsidence regions of the Hadley Cell. Over the ITCZ, RH varies by maximum 9% between winter and summer.

  3. On the comparisons of tropical relative humidity in the lower and middle troposphere among COSMIC radio occultations, MERRA and ECMWF data sets

    Science.gov (United States)

    Vergados, P.; Mannucci, A. J.; Ao, C. O.; Jiang, J. H.; Su, H.

    2015-01-01

    The spatial variability of the tropical tropospheric relative humidity (RH) throughout the vertical extent of the troposphere is examined using Global Positioning System Radio Occultation (GPSRO) observations from the Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC) mission. These high vertical resolution observations capture the detailed structure and moisture budget of the Hadley Cell circulation. We compare the COSMIC observations with the European Center for Medium-range Weather Forecast (ECMWF) Re-Analysis Interim (ERA-Interim) and the Modern-Era Retrospective analysis for Research and Applications (MERRA) climatologies. Qualitatively, the spatial pattern of RH in all data sets matches up remarkably well, capturing distinct features of the general circulation. However, RH discrepancies exist between ERA-Interim and COSMIC data sets, which are noticeable across the tropical boundary layer. Specifically, ERA-Interim shows a drier Inter Tropical Convergence Zone (ITCZ) by 15-20% compared both to COSMIC and MERRA data sets, but this difference decreases with altitude. Unlike ECMWF, MERRA shows an excellent agreement with the COSMIC observations except above 400 hPa, where GPSRO observations capture drier air by 5-10%. RH climatologies were also used to evaluate intraseasonal variability. The results indicate that the tropical middle troposphere at ±5-25° is most sensitive to seasonal variations. COSMIC and MERRA data sets capture the same magnitude of the seasonal variability, but ERA-Interim shows a weaker seasonal fluctuation up to 10% in the middle troposphere inside the dry air subsidence regions of the Hadley Cell. Over the ITCZ, RH varies by maximum 9% between winter and summer.

  4. An Investigation of the Kinematic and Microphysical Control of Lightning Rate, Extent and NOX Production using DC3 Observations and the NASA Lightning Nitrogen Oxides Model (LNOM)

    Science.gov (United States)

    Carey, L. D.; Koshak, W. J.; Peterson, H. S.; Matthee, R.; Bain, A. L.

    2013-12-01

    The Deep Convective Clouds and Chemistry (DC3) experiment seeks to quantify the relationship between storm physics, lightning characteristics and the production of nitrogen oxides via lightning (LNOX). The focus of this study is to investigate the kinematic and microphysical control of lightning properties, particularly those that may govern LNOX production, such as flash rate, type and extent across Alabama during DC3. Prior studies have demonstrated that lightning flash rate and type is correlated to kinematic and microphysical properties in the mixed-phase region of thunderstorms such as updraft volume and graupel mass. More study is required to generalize these relationships in a wide variety of storm modes and meteorological conditions. Less is known about the co-evolving relationship between storm physics, morphology and three-dimensional flash extent, despite its importance for LNOX production. To address this conceptual gap, the NASA Lightning Nitrogen Oxides Model (LNOM) is applied to North Alabama Lightning Mapping Array (NALMA) and Vaisala National Lightning Detection NetworkTM (NLDN) observations following ordinary convective cells through their lifecycle. LNOM provides estimates of flash rate, flash type, channel length distributions, lightning segment altitude distributions (SADs) and lightning NOX production profiles. For this study, LNOM is applied in a Lagrangian sense to multicell thunderstorms over Northern Alabama on two days during DC3 (21 May and 11 June 2012) in which aircraft observations of NOX are available for comparison. The LNOM lightning characteristics and LNOX production estimates are compared to the evolution of updraft and precipitation properties inferred from dual-Doppler and polarimetric radar analyses applied to observations from a nearby radar network, including the UAH Advanced Radar for Meteorological and Operational Research (ARMOR). Given complex multicell evolution, particular attention is paid to storm morphology, cell

  5. An Investigation of the Kinematic and Microphysical Control of Lightning Rate, Extent and NOx Production using DC3 Observations and the NASA Lightning Nitrogen Oxides Model (LNOM)

    Science.gov (United States)

    Carey, Lawrence; Koshak, William; Peterson, Harold; Matthee, Retha; Bain, Lamont

    2013-01-01

    The Deep Convective Clouds and Chemistry (DC3) experiment seeks to quantify the relationship between storm physics, lightning characteristics and the production of nitrogen oxides via lightning (LNOx). The focus of this study is to investigate the kinematic and microphysical control of lightning properties, particularly those that may govern LNOx production, such as flash rate, type and extent across Alabama during DC3. Prior studies have demonstrated that lightning flash rate and type is correlated to kinematic and microphysical properties in the mixed-phase region of thunderstorms such as updraft volume and graupel mass. More study is required to generalize these relationships in a wide variety of storm modes and meteorological conditions. Less is known about the co-evolving relationship between storm physics, morphology and three-dimensional flash extent, despite its importance for LNOx production. To address this conceptual gap, the NASA Lightning Nitrogen Oxides Model (LNOM) is applied to North Alabama Lightning Mapping Array (NALMA) and Vaisala National Lightning Detection Network(TM) (NLDN) observations following ordinary convective cells through their lifecycle. LNOM provides estimates of flash rate, flash type, channel length distributions, lightning segment altitude distributions (SADs) and lightning NOx production profiles. For this study, LNOM is applied in a Lagrangian sense to multicell thunderstorms over Northern Alabama on two days during DC3 (21 May and 11 June 2012) in which aircraft observations of NOx are available for comparison. The LNOM lightning characteristics and LNOX production estimates are compared to the evolution of updraft and precipitation properties inferred from dual-Doppler and polarimetric radar analyses applied to observations from a nearby radar network, including the UAH Advanced Radar for Meteorological and Operational Research (ARMOR). Given complex multicell evolution, particular attention is paid to storm morphology, cell

  6. Regional fire monitoring and characterization using global NASA MODIS fire products in dry lands of Central Asia

    Science.gov (United States)

    Loboda, Tatiana V.; Giglio, Louis; Boschetti, Luigi; Justice, Christopher O.

    2012-06-01

    Central Asian dry lands are grass- and desert shrub-dominated ecosystems stretching across Northern Eurasia. This region supports a population of more than 100 million which continues to grow at an average rate of 1.5% annually. Dry steppes are the primary grain and cattle growing zone within Central Asia. Degradation of this ecosystem through burning and overgrazing directly impacts economic growth and food supply in the region. Fire is a recurrent disturbance agent in dry lands contributing to soil erosion and air pollution. Here we provide an overview of inter-annual and seasonal fire dynamics in Central Asia obtained from remotely sensed data. We evaluate the accuracy of the Moderate Resolution Imaging Spectroradiometer (MODIS) global fire products within Central Asian dry lands and use these products to characterize fire occurrence between 2001 and 2009. The results show that on average ˜15 million ha of land burns annually across Central Asia with the majority of the area burned in August and September in grasslands. Fire is used as a common crop residue management practice across the region. Nearly 89% of all burning occurs in Kazakhstan, where 5% and 3% of croplands and grasslands, respectively, are burned annually.

  7. Snow Radiance Data Assimilation over High Mountain Asia Using the NASA Land Information System and a Well-Trained Support Vector Machine

    Science.gov (United States)

    Kwon, Y.; Forman, B. A.; Yoon, Y.; Kumar, S.

    2017-12-01

    High Mountain Asia (HMA) has been progressively losing ice and snow in recent decades, which could negatively impact regional water supply and native ecosystems. One goal of this study is to characterize the spatiotemporal variability of snow (and ice) across the HMA region. In addition, modeled snow water equivalent (SWE) estimates will be enhanced through the assimilation of passive microwave brightness temperatures (TB) collected by the Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E) as part of a radiance assimilation system. The radiance assimilation framework includes the NASA Land Information System (LIS) in conjunction with a well-trained support vector machine (SVM) that acts as the observation operator. The Noah Land Surface Model with multi-parameterization options (Noah-MP) is used as the prior model for simulating snow dynamics. Noah-MP is forced by meteorological fields from the NASA Modern-Era Retrospective analysis for Research and Applications, version 2 (MERRA-2) atmospheric reanalysis for the periods 01 Sep. 2002 to 01 Sep. 2011. The radiance assimilation system requires two separate phases: 1) training and 2) assimilation. During the training phase, a nonlinear SVM is generated for three different AMSR-E frequencies - 10.65, 18.7, and 36.5 GHz - at both vertical and horizontal polarization. The trained SVM is then used to predict TB during the assimilation phase. An ensemble Kalman filter will be used to condition the model on AMSR-E brightness temperatures not used during SVM training. The performance of the Noah-MP (with and without radiance assimilation) will be assessed via comparison to in-situ measurements, remotely-sensing geophysical retrievals, and other reanalysis products.

  8. NASA's Van Allen Probes RBSP-ECT and NSF's FIREBIRD Data Products and Access to Them: An Insider's Outlook on the Inner and Outer Belts.

    Science.gov (United States)

    Smith, S. S.; Spence, H. E.; Geoffrey, R.; Klumpar, D. M.

    2017-12-01

    In this poster, we present a summary of access to data products Radiation Belt Storm Probes - Energetic Particle Composition, and Thermal plasma (RBSP-ECT) suite of NASA's Van Allen Probes mission. The RBSP-ECT science investigation (http://rbsp-ect.sr.unh.edu) measures comprehensively the near-Earth charged particle environment in order to understand the processes that control the acceleration, global distribution, and variability of radiation belt electrons and ions. RBSP-ECT data products derive from the three instrument elements that comprise the suite, which collectively covers the broad energies that define the source and seed populations, the core radiation belts, and also their highest energy ultra-relativistic extensions. These RBSP-ECT instruments include, from lowest to highest energies: the Helium, Oxygen, Proton, and Electron (HOPE) sensor, the Magnetic Electron and Ion Spectrometer (MagEIS), and the Relativistic Electron and Proton Telescope (REPT). We provide a brief overview of their principles of operation, as well as a description of the Level 1-3 data products that the HOPE, MagEIS, and REPT instruments produce, both separately and together. We provide a summary of how to access these RBSP-ECT data products at our Science Operation Center and Science Data Center (http://www.rbsp-ect.lanl.gov/rbsp_ect.php ) as well as caveats for their use. In addition, we also provide a summary of access to the data products from NSF's CubeSat mission called Focused Investigation of Relativistic Electron Burst: Intensity, Range, and Dynamics (FIREBIRD). The dual CubeSat FIREBIRD missions provide data on energetic radiation belt electrons precipitating into the atmosphere at low altitudes, which complements and is contemporary with RBSP-ECT measurements. We provide a similar summary of how to access these data (https://ssel.montana.edu/firebird2.html). Finally, in the spirit of efficiently and effectively promoting and encouraging new collaborations, we present a

  9. MODELING THE EFFECTS OF CLIMATE AND LAND USE CHANGE ON CARBON AND TRACE GAS BUDGETS OVER THE AMAZON REGION USING NASA SATELLITE PRODUCTS

    Science.gov (United States)

    As part of the LBA-ECO Phase III synthesis efforts for remote sensing and predictive modeling of Amazon carbon, water, and trace gas fluxes, we are evaluating results from the regional ecosystem model called NASA-CASA (Carnegie-Ames Stanford Approach). The NASA-CASA model has bee...

  10. The NASA Astrophysics Program

    Science.gov (United States)

    Zebulum, Ricardo S.

    2011-01-01

    NASA's scientists are enjoying unprecedented access to astronomy data from space, both from missions launched and operated only by NASA, as well as missions led by other space agencies to which NASA contributed instruments or technology. This paper describes the NASA astrophysics program for the next decade, including NASA's response to the ASTRO2010 Decadal Survey.

  11. Using Satellite Observations to Evaluate the AeroCOM Volcanic Emissions Inventory and the Dispersal of Volcanic SO2 Clouds in MERRA

    Science.gov (United States)

    Hughes, Eric J.; Krotkov, Nickolay; da Silva, Arlindo; Colarco, Peter

    2015-01-01

    Simulation of volcanic emissions in climate models requires information that describes the eruption of the emissions into the atmosphere. While the total amount of gases and aerosols released from a volcanic eruption can be readily estimated from satellite observations, information about the source parameters, like injection altitude, eruption time and duration, is often not directly known. The AeroCOM volcanic emissions inventory provides estimates of eruption source parameters and has been used to initialize volcanic emissions in reanalysis projects, like MERRA. The AeroCOM volcanic emission inventory provides an eruptions daily SO2 flux and plume top altitude, yet an eruption can be very short lived, lasting only a few hours, and emit clouds at multiple altitudes. Case studies comparing the satellite observed dispersal of volcanic SO2 clouds to simulations in MERRA have shown mixed results. Some cases show good agreement with observations Okmok (2008), while for other eruptions the observed initial SO2 mass is half of that in the simulations, Sierra Negra (2005). In other cases, the initial SO2 amount agrees with the observations but shows very different dispersal rates, Soufriere Hills (2006). In the aviation hazards community, deriving accurate source terms is crucial for monitoring and short-term forecasting (24-h) of volcanic clouds. Back trajectory methods have been developed which use satellite observations and transport models to estimate the injection altitude, eruption time, and eruption duration of observed volcanic clouds. These methods can provide eruption timing estimates on a 2-hour temporal resolution and estimate the altitude and depth of a volcanic cloud. To better understand the differences between MERRA simulations and volcanic SO2 observations, back trajectory methods are used to estimate the source term parameters for a few volcanic eruptions and compared to their corresponding entry in the AeroCOM volcanic emission inventory. The nature of

  12. Resources: NASA for entrepreneurs

    Science.gov (United States)

    Jannazo, Mary Ann

    1988-01-01

    The services of NASA's Technology Utilization Program are detailed and highlights of spinoff products in various stages of completion are described. Areas discussed include: Stirling engines for automotive applications, klystron tubes used to reduce power costs at UHF television stations, sports applications of riblet film (e.g., boat racing), reinforced plastic for high-temperature applications, coating technology appropriate for such applications similar to the renovation of the Statue of Liberty, and medical uses of fuel pump technology (e.g., heart pumps).

  13. Enhancing Access to and Use of NASA Earth Sciences Data via CUAHSI-HIS (Hydrologic Information System) and Other Hydrologic Community Tools

    Science.gov (United States)

    Rui, H.; Strub, R.; Teng, W. L.; Vollmer, B.; Mocko, D. M.; Maidment, D. R.; Whiteaker, T. L.

    2013-12-01

    The way NASA earth sciences data are typically archived (by time steps, one step per file, often containing multiple variables) is not optimal for their access by the hydrologic community, particularly if the data volume and/or number of data files are large. To enhance the access to and use of these NASA data, the NASA Goddard Earth Sciences Data and Information Services Center (GES DISC) adopted two approaches, in a project supported by the NASA ACCESS Program. The first is to optimally reorganize two large hydrological data sets for more efficient access, as time series, and to integrate the time series data (aka 'data rods') into hydrologic community tools, such as CUAHSI-HIS, EPA-BASINS, and Esri-ArcGIS. This effort has thus far resulted in the reorganization and archive (as data rods) of the following variables from the North American and Global Land Data Assimilation Systems (NLDAS and GLDAS, respectively): precipitation, soil moisture, evapotranspiration, runoff, near-surface specific humidity, potential evaporation, soil temperature, near surface air temperature, and near-surface wind. The second approach is to leverage the NASA Simple Subset Wizard (SSW), which was developed to unite data search and subsetters at various NASA EOSDIS data centers into a single, simple, seamless process. Data accessed via SSW are converted to time series before being made available via Web service. Leveraging SSW makes all data accessible via SSW potentially available to HIS users, which increases the number of data sets available as time series beyond those available as data rods. Thus far, a set of selected variables from the NASA Modern Era-Retrospective Analysis for Research and Applications Land Surface (MERRA-Land) data set has been integrated into CUAHSI-HIS, including evaporation, land surface temperature, runoff, soil moisture, soil temperature, precipitation, and transpiration. All data integration into these tools has been conducted in collaboration with their

  14. Status of the NASA Micro Pulse Lidar Network (MPLNET: overview of the network and future plans, new version 3 data products, and the polarized MPL

    Directory of Open Access Journals (Sweden)

    Welton Ellsworth J.

    2018-01-01

    Full Text Available The NASA Micro Pulse Lidar Network (MPLNET is a global federated network of Micro-Pulse Lidars (MPL co-located with the NASA Aerosol Robotic Network (AERONET. MPLNET began in 2000, and there are currently 17 long-term sites, numerous field campaigns, and more planned sites on the way. We have developed a new Version 3 processing system including the deployment of polarized MPLs across the network. Here we provide an overview of Version 3, the polarized MPL, and current and future plans.

  15. Status of the NASA Micro Pulse Lidar Network (MPLNET): overview of the network and future plans, new version 3 data products, and the polarized MPL

    Science.gov (United States)

    Welton, Ellsworth J.; Stewart, Sebastian A.; Lewis, Jasper R.; Belcher, Larry R.; Campbell, James R.; Lolli, Simone

    2018-04-01

    The NASA Micro Pulse Lidar Network (MPLNET) is a global federated network of Micro-Pulse Lidars (MPL) co-located with the NASA Aerosol Robotic Network (AERONET). MPLNET began in 2000, and there are currently 17 long-term sites, numerous field campaigns, and more planned sites on the way. We have developed a new Version 3 processing system including the deployment of polarized MPLs across the network. Here we provide an overview of Version 3, the polarized MPL, and current and future plans.

  16. Wind energy prospecting: socio-economic value of a new wind resource assessment technique based on a NASA Earth science dataset

    Science.gov (United States)

    Vanvyve, E.; Magontier, P.; Vandenberghe, F. C.; Delle Monache, L.; Dickinson, K.

    2012-12-01

    Wind energy is amongst the fastest growing sources of renewable energy in the U.S. and could supply up to 20 % of the U.S power production by 2030. An accurate and reliable wind resource assessment for prospective wind farm sites is a challenging task, yet is crucial for evaluating the long-term profitability and feasibility of a potential development. We have developed an accurate and computationally efficient wind resource assessment technique for prospective wind farm sites, which incorporates innovative statistical techniques and the new NASA Earth science dataset MERRA. This technique produces a wind resource estimate that is more accurate than that obtained by the wind energy industry's standard technique, while providing a reliable quantification of its uncertainty. The focus now is on evaluating the socio-economic value of this new technique upon using the industry's standard technique. Would it yield lower financing costs? Could it result in lower electricity prices? Are there further down-the-line positive consequences, e.g. job creation, time saved, greenhouse gas decrease? Ultimately, we expect our results will inform efforts to refine and disseminate the new technique to support the development of the U.S. renewable energy infrastructure. In order to address the above questions, we are carrying out a cost-benefit analysis based on the net present worth of the technique. We will describe this approach, including the cash-flow process of wind farm financing, how the wind resource assessment factors in, and will present current results for various hypothetical candidate wind farm sites.

  17. NASA Space Science Resource Catalog

    Science.gov (United States)

    Teays, T.

    2000-05-01

    The NASA Office of Space Science Resource Catalog provides a convenient online interface for finding space science products for use in classrooms, science museums, planetariums, and many other venues. Goals in developing this catalog are: (1) create a cataloging system for all NASA OSS education products, (2) develop a system for characterizing education products which is meaningful to a large clientele, (3) develop a mechanism for evaluating products, (4) provide a user-friendly interface to search and access the data, and (5) provide standardized metadata and interfaces to other cataloging and library systems. The first version of the catalog is being tested at the spring 2000 conventions of the National Science Teachers Association (NSTA) and the National Council of Teachers of Mathematics (NCTM) and will be released in summer 2000. The catalog may be viewed at the Origins Education Forum booth.

  18. Seasonal scale water deficit forecasting in Africa and the Middle East using NASA's Land Information System (LIS)

    Science.gov (United States)

    Shukla, Shraddhanand; Arsenault, Kristi R.; Getirana, Augusto; Kumar, Sujay V.; Roningen, Jeanne; Zaitchik, Ben; McNally, Amy; Koster, Randal D.; Peters-Lidard, Christa

    2017-04-01

    Drought and water scarcity are among the important issues facing several regions within Africa and the Middle East. A seamless and effective monitoring and early warning system is needed by regional/national stakeholders. Such system should support a proactive drought management approach and mitigate the socio-economic losses up to the extent possible. In this presentation, we report on the ongoing development and validation of a seasonal scale water deficit forecasting system based on NASA's Land Information System (LIS) and seasonal climate forecasts. First, our presentation will focus on the implementation and validation of the LIS models used for drought and water availability monitoring in the region. The second part will focus on evaluating drought and water availability forecasts. Finally, details will be provided of our ongoing collaboration with end-user partners in the region (e.g., USAID's Famine Early Warning Systems Network, FEWS NET), on formulating meaningful early warning indicators, effective communication and seamless dissemination of the monitoring and forecasting products through NASA's web-services. The water deficit forecasting system thus far incorporates NOAA's Noah land surface model (LSM), version 3.3, the Variable Infiltration Capacity (VIC) model, version 4.12, NASA GMAO's Catchment LSM, and the Noah Multi-Physics (MP) LSM (the latter two incorporate prognostic water table schemes). In addition, the LSMs' surface and subsurface runoff are routed through the Hydrological Modeling and Analysis Platform (HyMAP) to simulate surface water dynamics. The LSMs are driven by NASA/GMAO's Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2), and the USGS and UCSB Climate Hazards Group InfraRed Precipitation with Station (CHIRPS) daily rainfall dataset. The LIS software framework integrates these forcing datasets and drives the four LSMs and HyMAP. The Land Verification Toolkit (LVT) is used for the evaluation of the

  19. NASA spinoffs to energy and the environment

    Science.gov (United States)

    Gilbert, Ray L.; Lehrman, Stephen A.

    1989-01-01

    Thousands of aerospace innovations have found their way into everyday use, and future National Aeronautics and Space Administration (NASA) missions promise to provide many more spinoff opportunities. Each spinoff has contributed some measure of benefit to the national economy, productivity, or lifestyle. In total, these spinoffs represent a substantial dividend on the national investment in aerospace research. Along with examples of the many terrestrial applications of NASA technology to energy and the environment, this paper presents the mechanisms by which NASA promotes technology transfer. Also discussed are new NASA initiatives in superconductivity research, global warming, and aeropropulsion.

  20. Chemical Engineering at NASA

    Science.gov (United States)

    Collins, Jacob

    2008-01-01

    This viewgraph presentation is a review of the career paths for chemicals engineer at NASA (specifically NASA Johnson Space Center.) The author uses his personal experience and history as an example of the possible career options.

  1. NASA strategic plan

    Science.gov (United States)

    1994-01-01

    The NASA Strategic Plan is a living document. It provides far-reaching goals and objectives to create stability for NASA's efforts. The Plan presents NASA's top-level strategy: it articulates what NASA does and for whom; it differentiates between ends and means; it states where NASA is going and what NASA intends to do to get there. This Plan is not a budget document, nor does it present priorities for current or future programs. Rather, it establishes a framework for shaping NASA's activities and developing a balanced set of priorities across the Agency. Such priorities will then be reflected in the NASA budget. The document includes vision, mission, and goals; external environment; conceptual framework; strategic enterprises (Mission to Planet Earth, aeronautics, human exploration and development of space, scientific research, space technology, and synergy); strategic functions (transportation to space, space communications, human resources, and physical resources); values and operating principles; implementing strategy; and senior management team concurrence.

  2. NASA Space Radiation Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory is a NASA funded facility, delivering heavy ion beams to a target area where scientists...

  3. NASA systems engineering handbook

    Science.gov (United States)

    Shishko, Robert; Aster, Robert; Chamberlain, Robert G.; McDuffee, Patrick; Pieniazek, Les; Rowell, Tom; Bain, Beth; Cox, Renee I.; Mooz, Harold; Polaski, Lou

    1995-06-01

    This handbook brings the fundamental concepts and techniques of systems engineering to NASA personnel in a way that recognizes the nature of NASA systems and environment. It is intended to accompany formal NASA training courses on systems engineering and project management when appropriate, and is designed to be a top-level overview. The concepts were drawn from NASA field center handbooks, NMI's/NHB's, the work of the NASA-wide Systems Engineering Working Group and the Systems Engineering Process Improvement Task team, several non-NASA textbooks and guides, and material from independent systems engineering courses taught to NASA personnel. Five core chapters cover systems engineering fundamentals, the NASA Project Cycle, management issues in systems engineering, systems analysis and modeling, and specialty engineering integration. It is not intended as a directive.

  4. Flexible Electronics Development Supported by NASA

    Science.gov (United States)

    Baumann, Eric

    2014-01-01

    The commercial electronics industry is leading development in most areas of electronics for NASA applications; however, working in partnership with industry and the academic community, results from NASA research could lead to better understanding and utilization of electronic materials by the flexible electronics industry. Innovative ideas explored by our partners in industry and the broader U.S. research community help NASA execute our missions and bring new American products and services to the global technology marketplace. [Mike Gazarik, associate administrator for Space Technology, NASA Headquarters, Washington DC] This presentation provides information on NASA needs in electronics looking towards the future, some of the work being supported by NASA in flexible electronics, and the capabilities of the Glenn Research Center supporting the development of flexible electronics.

  5. NASA/IPAC Infrared Science Archive

    Data.gov (United States)

    National Aeronautics and Space Administration — IRSA is chartered to curate the calibrated science products from NASAs infrared and sub-millimeter missions, including five major large-area/all-sky surveys. IRSA...

  6. Characterization of smoke and dust episode over West Africa: comparison of MERRA-2 modeling with multiwavelength Mie–Raman lidar observations

    Directory of Open Access Journals (Sweden)

    I. Veselovskii

    2018-02-01

    Full Text Available Observations of multiwavelength Mie–Raman lidar taken during the SHADOW field campaign are used to analyze a smoke–dust episode over West Africa on 24–27 December 2015. For the case considered, the dust layer extended from the ground up to approximately 2000 m while the elevated smoke layer occurred in the 2500–4000 m range. The profiles of lidar measured backscattering, extinction coefficients, and depolarization ratios are compared with the vertical distribution of aerosol parameters provided by the Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2. The MERRA-2 model simulated the correct location of the near-surface dust and elevated smoke layers. The values of modeled and observed aerosol extinction coefficients at both 355 and 532 nm are also rather close. In particular, for the episode reported, the mean value of difference between the measured and modeled extinction coefficients at 355 nm is 0.01 km−1 with SD of 0.042 km−1. The model predicts significant concentration of dust particles inside the elevated smoke layer, which is supported by an increased depolarization ratio of 15 % observed in the center of this layer. The modeled at 355 nm the lidar ratio of 65 sr in the near-surface dust layer is close to the observed value (70 ± 10 sr. At 532 nm, however, the simulated lidar ratio (about 40 sr is lower than measurements (55 ± 8 sr. The results presented demonstrate that the lidar and model data are complimentary and the synergy of observations and models is a key to improve the aerosols characterization.

  7. Internal NASA Study: NASAs Protoflight Research Initiative

    Science.gov (United States)

    Coan, Mary R.; Hirshorn, Steven R.; Moreland, Robert

    2015-01-01

    The NASA Protoflight Research Initiative is an internal NASA study conducted within the Office of the Chief Engineer to better understand the use of Protoflight within NASA. Extensive literature reviews and interviews with key NASA members with experience in both robotic and human spaceflight missions has resulted in three main conclusions and two observations. The first conclusion is that NASA's Protoflight method is not considered to be "prescriptive." The current policies and guidance allows each Program/Project to tailor the Protoflight approach to better meet their needs, goals and objectives. Second, Risk Management plays a key role in implementation of the Protoflight approach. Any deviations from full qualification will be based on the level of acceptable risk with guidance found in NPR 8705.4. Finally, over the past decade (2004 - 2014) only 6% of NASA's Protoflight missions and 6% of NASA's Full qualification missions experienced a publicly disclosed mission failure. In other words, the data indicates that the Protoflight approach, in and of it itself, does not increase the mission risk of in-flight failure. The first observation is that it would be beneficial to document the decision making process on the implementation and use of Protoflight. The second observation is that If a Project/Program chooses to use the Protoflight approach with relevant heritage, it is extremely important that the Program/Project Manager ensures that the current project's requirements falls within the heritage design, component, instrument and/or subsystem's requirements for both the planned and operational use, and that the documentation of the relevant heritage is comprehensive, sufficient and the decision well documented. To further benefit/inform this study, a recommendation to perform a deep dive into 30 missions with accessible data on their testing/verification methodology and decision process to research the differences between Protoflight and Full Qualification

  8. NASA Resources for Educators and Public

    Science.gov (United States)

    Morales, Lester

    2012-01-01

    A variety of NASA Classroom Activities, Educator Guides, Lithographs, Posters and more are available to Pre ]service and In ]service Educators through Professional Development Workshops. We are here for you to engage, demonstrate, and facilitate the use of educational technologies, the NASA Website, NASA Education Homepage and more! We are here for you to inspire you by providing in-service and pre- service training utilizing NASA curriculum support products. We are here for you to partner with your local, state, and regional educational organizations to better educate ALL! NASA AESP specialists are experienced professional educators, current on education issues and familiar with the curriculum frameworks, educational standards, and systemic architecture of the states they service. These specialists provide engaging and inspiring student presentations and teacher training right at YOUR school at no cost to you! Experience free out-of-this-world interactive learning with NASA's Digital Learning Network. Students of all ages can participate in LIVE events with NASA Experts and Education Specialists. The Exploration Station provides NASA educational programs that introduce the application of Science, Technology, Engineering, & Mathematics, to students. Students participate in a variety of hands-on activities that compliment related topics taught by the classroom teacher. NASA KSC ERC can create Professional Development Workshops for teachers in groups of fifteen or more. Education/Information Specialists also assist educators in developing lessons to meet Sunshine State and national curriculum standards.

  9. Overview of NASA's Carbon Monitoring System Flux-Pilot Project

    Science.gov (United States)

    Pawson, Steven; Gunson, Michael R.; Jucks, Kenneth

    2011-01-01

    NASA's space-based observations of physical, chemical and biological parameters in the Earth System along with state-of-the-art modeling capabilities provide unique capabilities for analyses of the carbon cycle. The Carbon Monitoring System is developing an exploratory framework for detecting carbon in the environment and its changes, with a view towards contributing to national and international monitoring activities. The Flux-Pilot Project aims to provide a unified view of land-atmosphere and ocean-atmosphere carbon exchange, using observation-constrained models. Central to the project is the application of NASA's satellite observations (especially MODIS), the ACOS retrievals of the JAXA-GOSAT observations, and the "MERRA" meteorological reanalysis produced with GEOS-S. With a primary objective of estimating uncertainty in computed fluxes, two land- and two ocean-systems are run for 2009-2010 and compared with existing flux estimates. An transport model is used to evaluate simulated CO2 concentrations with in-situ and space-based observations, in order to assess the realism of the fluxes and how uncertainties in fluxes propagate into atmospheric concentrations that can be more readily evaluated. Finally, the atmospheric partial CO2 columns observed from space are inverted to give new estimates of surface fluxes, which are evaluated using the bottom-up estimates and independent datasets. The focus of this presentation will be on the science goals and current achievements of the pilot project, with emphasis on how policy-relevant questions help focus the scientific direction. Examples include the issue of what spatio-temporal resolution of fluxes can be detected from polar-orbiting satellites and whether it is possible to use space-based observations to separate contributions to atmospheric concentrations of (say) fossil-fuel and biological activity

  10. The NASA Carbon Monitoring System

    Science.gov (United States)

    Hurtt, G. C.

    2015-12-01

    Greenhouse gas emission inventories, forest carbon sequestration programs (e.g., Reducing Emissions from Deforestation and Forest Degradation (REDD and REDD+), cap-and-trade systems, self-reporting programs, and their associated monitoring, reporting and verification (MRV) frameworks depend upon data that are accurate, systematic, practical, and transparent. A sustained, observationally-driven carbon monitoring system using remote sensing data has the potential to significantly improve the relevant carbon cycle information base for the U.S. and world. Initiated in 2010, NASA's Carbon Monitoring System (CMS) project is prototyping and conducting pilot studies to evaluate technological approaches and methodologies to meet carbon monitoring and reporting requirements for multiple users and over multiple scales of interest. NASA's approach emphasizes exploitation of the satellite remote sensing resources, computational capabilities, scientific knowledge, airborne science capabilities, and end-to-end system expertise that are major strengths of the NASA Earth Science program. Through user engagement activities, the NASA CMS project is taking specific actions to be responsive to the needs of stakeholders working to improve carbon MRV frameworks. The first phase of NASA CMS projects focused on developing products for U.S. biomass/carbon stocks and global carbon fluxes, and on scoping studies to identify stakeholders and explore other potential carbon products. The second phase built upon these initial efforts, with a large expansion in prototyping activities across a diversity of systems, scales, and regions, including research focused on prototype MRV systems and utilization of COTS technologies. Priorities for the future include: 1) utilizing future satellite sensors, 2) prototyping with commercial off-the-shelf technology, 3) expanding the range of prototyping activities, 4) rigorous evaluation, uncertainty quantification, and error characterization, 5) stakeholder

  11. Science@NASA: Direct to People!

    Science.gov (United States)

    Koczor, Ronald J.; Adams, Mitzi; Gallagher, Dennis; Whitaker, Ann (Technical Monitor)

    2002-01-01

    Science@NASA is a science communication effort sponsored by NASA's Marshall Space Flight Center. It is the result of a four year research project between Marshall, the University of Florida College of Journalism and Communications and the internet communications company, Bishop Web Works. The goals of Science@NASA are to inform, inspire, and involve people in the excitement of NASA science by bringing that science directly to them. We stress not only the reporting of the facts of a particular topic, but also the context and importance of the research. Science@NASA involves several levels of activity from academic communications research to production of content for 6 websites, in an integrated process involving all phases of production. A Science Communications Roundtable Process is in place that includes scientists, managers, writers, editors, and Web technical experts. The close connection between the scientists and the writers/editors assures a high level of scientific accuracy in the finished products. The websites each have unique characters and are aimed at different audience segments: 1. http://science.nasa.gov. (SNG) Carries stories featuring various aspects of NASA science activity. The site carries 2 or 3 new stories each week in written and audio formats for science-attentive adults. 2. http://liftoff.msfc.nasa.gov. Features stories from SNG that are recast for a high school level audience. J-Track and J-Pass applets for tracking satellites are our most popular product. 3. http://kids. msfc.nasa.gov. This is the Nursemaids site and is aimed at a middle school audience. The NASAKids Club is a new feature at the site. 4. http://www.thursdaysclassroom.com . This site features lesson plans and classroom activities for educators centered around one of the science stories carried on SNG. 5. http://www.spaceweather.com. This site gives the status of solar activity and its interactions with the Earth's ionosphere and magnetosphere.

  12. NASA's Contribution to Global Space Geodesy Networks

    Science.gov (United States)

    Bosworth, John M.

    1999-01-01

    The NASA Space Geodesy program continues to be a major provider of space geodetic data for the international earth science community. NASA operates high performance Satellite Laser Ranging (SLR), Very Long Baseline Interferometry (VLBI) and Global Positioning System (GPS) ground receivers at well over 30 locations around the world and works in close cooperation with space geodetic observatories around the world. NASA has also always been at the forefront in the quest for technical improvement and innovation in the space geodesy technologies to make them even more productive, accurate and economical. This presentation will highlight the current status of NASA's networks; the plans for partnerships with international groups in the southern hemisphere to improve the geographic distribution of space geodesy sites and the status of the technological improvements in SLR and VLBI that will support the new scientific thrusts proposed by interdisciplinary earth scientists. In addition, the expanding role of the NASA Space geodesy data archive, the CDDIS will be described.

  13. NASA Office of Small and Disadvantaged Business Utilization

    Science.gov (United States)

    2001-01-01

    The Office of Small and Disadvantaged Business Utilization (OSDBU) within NASA promotes the utilization of small, disadvantaged, and women-owned small businesses in compliance with Federal laws, regulations, and policies. We assist such firms in obtaining contracts and subcontracts with NASA and its prime contractors. The OSDBU also facilitates the participation of small businesses in NASA's technology transfer and commercialization activities. Our driving philosophy is to consider small businesses as our products. Our customers are the NASA Enterprises, Field Centers, Functional Staff Offices, major prime contractors, and other large institutions. We hone the skills of our products to make them marketable to our customers in the performance of NASA missions.

  14. NASA Technology Plan 1998

    Science.gov (United States)

    1998-01-01

    This NASA Strategic Plan describes an ambitious, exciting vision for the Agency across all its Strategic Enterprises that addresses a series of fundamental questions of science and research. This vision is so challenging that it literally depends on the success of an aggressive, cutting-edge advanced technology development program. The objective of this plan is to describe the NASA-wide technology program in a manner that provides not only the content of ongoing and planned activities, but also the rationale and justification for these activities in the context of NASA's future needs. The scope of this plan is Agencywide, and it includes technology investments to support all major space and aeronautics program areas, but particular emphasis is placed on longer term strategic technology efforts that will have broad impact across the spectrum of NASA activities and perhaps beyond. Our goal is to broaden the understanding of NASA technology programs and to encourage greater participation from outside the Agency. By relating technology goals to anticipated mission needs, we hope to stimulate additional innovative approaches to technology challenges and promote more cooperative programs with partners outside NASA who share common goals. We also believe that this will increase the transfer of NASA-sponsored technology into nonaerospace applications, resulting in an even greater return on the investment in NASA.

  15. NASA's EOSDIS, Trust and Certification

    Science.gov (United States)

    Ramapriyan, H. K.

    2017-01-01

    NASA's Earth Observing System Data and Information System (EOSDIS) has been in operation since August 1994, managing most of NASA's Earth science data from satellites, airborne sensors, filed campaigns and other activities. Having been designated by the Federal Government as a project responsible for production, archiving and distribution of these data through its Distributed Active Archive Centers (DAACs), the Earth Science Data and Information System Project (ESDIS) is responsible for EOSDIS, and is legally bound by the Office of Management and Budgets circular A-130, the Federal Records Act. It must follow the regulations of the National Institute of Standards and Technologies (NIST) and National Archive and Records Administration (NARA). It must also follow the NASA Procedural Requirement 7120.5 (NASA Space Flight Program and Project Management). All these ensure that the data centers managed by ESDIS are trustworthy from the point of view of efficient and effective operations as well as preservation of valuable data from NASA's missions. Additional factors contributing to this trust are an extensive set of internal and external reviews throughout the history of EOSDIS starting in the early 1990s. Many of these reviews have involved external groups of scientific and technological experts. Also, independent annual surveys of user satisfaction that measure and publish the American Customer Satisfaction Index (ACSI), where EOSDIS has scored consistently high marks since 2004, provide an additional measure of trustworthiness. In addition, through an effort initiated in 2012 at the request of NASA HQ, the ESDIS Project and 10 of 12 DAACs have been certified by the International Council for Science (ICSU) World Data System (WDS) and are members of the ICSUWDS. This presentation addresses questions such as pros and cons of the certification process, key outcomes and next steps regarding certification. Recently, the ICSUWDS and Data Seal of Approval (DSA) organizations

  16. NASA's Interests in Bioregenerative Life Support

    Science.gov (United States)

    Wheeler, Raymond M.

    2018-01-01

    NASA and other space agencies and around the world have had long-standing interest in using plants and biological approaches for regenerative life support. In particular, NASA's Kennedy Space Center, has conducted research in this area for over 30 years. One unique aspect to this testing was NASA's Biomass Production Chamber, which had four vertically stacked growing shelves inside a large, 113 cubic meter chamber. This was perhaps one of the first working examples of a vertical agriculture system in the world. A review of some of this research along with some of the more salient findings will be presented.

  17. NASA-427: A New Aluminum Alloy

    Science.gov (United States)

    Nabors, Sammy A.

    2015-01-01

    NASA's Marshall Space Flight Center researchers have developed a new, stronger aluminum alloy, ideal for cast aluminum products that have powder or paint-baked thermal coatings. With advanced mechanical properties, the NASA-427 alloy shows greater tensile strength and increased ductility, providing substantial improvement in impact toughness. In addition, this alloy improves the thermal coating process by decreasing the time required for heat treatment. With improvements in both strength and processing time, use of the alloy provides reduced materials and production costs, lower product weight, and better product performance. The superior properties of NASA-427 can benefit many industries, including automotive, where it is particularly well-suited for use in aluminum wheels.

  18. NASA Airborne Science Program: NASA Stratospheric Platforms

    Science.gov (United States)

    Curry, Robert E.

    2010-01-01

    The National Aeronautics and Space Administration conducts a wide variety of remote sensing projects using several unique aircraft platforms. These vehicles have been selected and modified to provide capabilities that are particularly important for geophysical research, in particular, routine access to very high altitudes, long range, long endurance, precise trajectory control, and the payload capacity to operate multiple, diverse instruments concurrently. While the NASA program has been in operation for over 30 years, new aircraft and technological advances that will expand the capabilities for airborne observation are continually being assessed and implemented. This presentation will review the current state of NASA's science platforms, recent improvements and new missions concepts as well as provide a survey of emerging technologies unmanned aerial vehicles for long duration observations (Global Hawk and Predator). Applications of information technology that allow more efficient use of flight time and the ability to rapidly reconfigure systems for different mission objectives are addressed.

  19. NASA Jet Noise Research

    Science.gov (United States)

    Henderson, Brenda

    2016-01-01

    The presentation highlights NASA's jet noise research for 2016. Jet-noise modeling efforts, jet-surface interactions results, acoustic characteristics of multi-stream jets, and N+2 Supersonic Aircraft system studies are presented.

  20. NASA Image Exchange (NIX)

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA Technical Reports Server (NTRS) provides access to aerospace-related citations, full-text online documents, and images and videos. The types of information...

  1. NASA Earth Exchange (NEX)

    Data.gov (United States)

    National Aeronautics and Space Administration — The NASA Earth Exchange (NEX) represents a new platform for the Earth science community that provides a mechanism for scientific collaboration and knowledge sharing....

  2. My NASA Data

    Data.gov (United States)

    National Aeronautics and Space Administration — MY NASA DATA (MND) is a tool that allows anyone to make use of satellite data that was previously unavailable.Through the use of MND’s Live Access Server (LAS) a...

  3. NASA Space Sounds API

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA has released a series of space sounds via sound cloud. We have abstracted away some of the hassle in accessing these sounds, so that developers can play with...

  4. Temperature and Humidity Profiles in the TqJoint Data Group of AIRS Version 6 Product for the Climate Model Evaluation

    Science.gov (United States)

    Ding, Feng; Fang, Fan; Hearty, Thomas J.; Theobald, Michael; Vollmer, Bruce; Lynnes, Christopher

    2014-01-01

    The Atmospheric Infrared Sounder (AIRS) mission is entering its 13th year of global observations of the atmospheric state, including temperature and humidity profiles, outgoing long-wave radiation, cloud properties, and trace gases. Thus AIRS data have been widely used, among other things, for short-term climate research and observational component for model evaluation. One instance is the fifth phase of the Coupled Model Intercomparison Project (CMIP5) which uses AIRS version 5 data in the climate model evaluation. The NASA Goddard Earth Sciences Data and Information Services Center (GES DISC) is the home of processing, archiving, and distribution services for data from the AIRS mission. The GES DISC, in collaboration with the AIRS Project, released data from the version 6 algorithm in early 2013. The new algorithm represents a significant improvement over previous versions in terms of greater stability, yield, and quality of products. The ongoing Earth System Grid for next generation climate model research project, a collaborative effort of GES DISC and NASA JPL, will bring temperature and humidity profiles from AIRS version 6. The AIRS version 6 product adds a new "TqJoint" data group, which contains data for a common set of observations across water vapor and temperature at all atmospheric levels and is suitable for climate process studies. How different may the monthly temperature and humidity profiles in "TqJoint" group be from the "Standard" group where temperature and water vapor are not always valid at the same time? This study aims to answer the question by comprehensively comparing the temperature and humidity profiles from the "TqJoint" group and the "Standard" group. The comparison includes mean differences at different levels globally and over land and ocean. We are also working on examining the sampling differences between the "TqJoint" and "Standard" group using MERRA data.

  5. NASA, NOAA administrators nominated

    Science.gov (United States)

    Richman, Barbara T.

    President Ronald Reagan recently said he intended to nominate James Montgomery Beggs as NASA Administrator and John V. Byrne as NOAA Administrator. These two positions are key scientific posts that have been vacant since the start of the Reagan administration on January 20. The President also said he intends to nominate Hans Mark as NASA Deputy Administrator. At press time, Reagan had not designated his nominee for the director of the Office of Science and Technology Policy.

  6. Automated Test for NASA CFS

    Science.gov (United States)

    McComas, David C.; Strege, Susanne L.; Carpenter, Paul B. Hartman, Randy

    2015-01-01

    The core Flight System (cFS) is a flight software (FSW) product line developed by the Flight Software Systems Branch (FSSB) at NASA's Goddard Space Flight Center (GSFC). The cFS uses compile-time configuration parameters to implement variable requirements to enable portability across embedded computing platforms and to implement different end-user functional needs. The verification and validation of these requirements is proving to be a significant challenge. This paper describes the challenges facing the cFS and the results of a pilot effort to apply EXB Solution's testing approach to the cFS applications.

  7. Antimatter Propulsion Developed by NASA

    Science.gov (United States)

    1999-01-01

    This Quick Time movie shows possible forms of an antimatter propulsion system being developed by NASA. Antimatter annihilation offers the highest possible physical energy density of any known reaction substance. It is about 10 billion times more powerful than that of chemical energy such as hydrogen and oxygen combustion. Antimatter would be the perfect rocket fuel, but the problem is that the basic component of antimatter, antiprotons, doesn't exist in nature and has to manufactured. The process of antimatter development is ongoing and making some strides, but production of this as a propulsion system is far into the future.

  8. NASA total quality management 1989 accomplishments report

    Science.gov (United States)

    Tai, Betty P. (Editor); Stewart, Lynne M. (Editor)

    1990-01-01

    NASA and contractor employees achieved many notable improvements in 1989. The highlights of those improvements, described in this seventh annual Accomplishments Report, demonstrate that the people who support NASA's activities are getting more involved in quality and continuous improvement efforts. Their gains solidly support NASA's and this Nation's goal to remain a leader in space exploration and in world-wide market competition, and, when communicated to others through avenues such as this report, foster improvement efforts across government and industry. The principles in practice which led to these process refinements are important cultural elements to any organization's productivity and quality efforts. The categories in this report reflect NASA principles set forth in the 1980's and are more commonly known today as Total Quality Management (TQM): top management leadership and support; strategic planning; focus on the customer; employee training and recognition; employee empowerment and teamwork; measurement and analysis; and quality assurance.

  9. 2011 NASA Range Safety Annual Report

    Science.gov (United States)

    Dumont, Alan G.

    2012-01-01

    Welcome to the 2011 edition of the NASA Range Safety Annual Report. Funded by NASA Headquarters, this report provides a NASA Range Safety overview for current and potential range users. As is typical with odd year editions, this is an abbreviated Range Safety Annual Report providing updates and links to full articles from the previous year's report. It also provides more complete articles covering new subject areas, summaries of various NASA Range Safety Program activities conducted during the past year, and information on several projects that may have a profound impact on the way business will be done in the future. Specific topics discussed and updated in the 2011 NASA Range Safety Annual Report include a program overview and 2011 highlights; Range Safety Training; Range Safety Policy revision; Independent Assessments; Support to Program Operations at all ranges conducting NASA launch/flight operations; a continuing overview of emerging range safety-related technologies; and status reports from all of the NASA Centers that have Range Safety responsibilities. Every effort has been made to include the most current information available. We recommend this report be used only for guidance and that the validity and accuracy of all articles be verified for updates. Once again the web-based format was used to present the annual report. We continually receive positive feedback on the web-based edition and hope you enjoy this year's product as well. As is the case each year, contributors to this report are too numerous to mention, but we thank individuals from the NASA Centers, the Department of Defense, and civilian organizations for their contributions. In conclusion, it has been a busy and productive year. I'd like to extend a personal Thank You to everyone who contributed to make this year a successful one, and I look forward to working with all of you in the upcoming year.

  10. NASA Accountability Report

    Science.gov (United States)

    1997-01-01

    NASA is piloting fiscal year (FY) 1997 Accountability Reports, which streamline and upgrade reporting to Congress and the public. The document presents statements by the NASA administrator, and the Chief Financial Officer, followed by an overview of NASA's organizational structure and the planning and budgeting process. The performance of NASA in four strategic enterprises is reviewed: (1) Space Science, (2) Mission to Planet Earth, (3) Human Exploration and Development of Space, and (4) Aeronautics and Space Transportation Technology. Those areas which support the strategic enterprises are also reviewed in a section called Crosscutting Processes. For each of the four enterprises, there is discussion about the long term goals, the short term objectives and the accomplishments during FY 1997. The Crosscutting Processes section reviews issues and accomplishments relating to human resources, procurement, information technology, physical resources, financial management, small and disadvantaged businesses, and policy and plans. Following the discussion about the individual areas is Management's Discussion and Analysis, about NASA's financial statements. This is followed by a report by an independent commercial auditor and the financial statements.

  11. NASA Technologies that Benefit Society

    Science.gov (United States)

    Griffin, Amanda

    2012-01-01

    Applications developed on Earth of technology needed for space flight have produced thousands of spinoffs that contribute to improving national security, the economy, productivity and lifestyle. Over the course of it s history, NASA has nurtured partnerships with the private sector to facilitate the transfer of NASA-developed technology. For every dollar spent on research and development in the space program, it receives back $7 back in the form of corporate and personal income taxes from increased jobs and economic growth. A new technology, known as Liquid-metal alloy, is the result of a project funded by NASA s Jet Propulsion Lab. The unique technology is a blend of titanium, zirconium, nickel, copper and beryllium that achieves a strength greater than titanium. NASA plans to use this metal in the construction of a drill that will help for the search of water beneath the surface of Mars. Many other applications include opportunities in aerospace, defense, military, automotive, medical instrumentation and sporting goods.Developed in the 1980 s, the original Sun Tigers Inc sunlight-filtering lens has withstood the test of time. This technology was first reported in 1987 by NASA s JPL. Two scientists from JPL were later tasked with studying the harmful effects of radiation produced during laser and welding work. They came up with a transparent welding curtain that absorbs, filters and scatters light to maximize protection of human eyes. The two scientists then began doing business as Eagle Eye Optics. Each pair of sunglasses comes complete with ultraviolet protection, dual layer scratch resistant coating, polarized filters for maximum protection against glare and high visual clarity. Sufficient evidence shows that damage to the eye, especially to the retina, starts much earlier than most people realize. Sun filtering sunglasses are important. Winglets seen at the tips of airplane wings are among aviations most visible fuel-saving, performance enhancing technology

  12. Technological Innovations from NASA

    Science.gov (United States)

    Pellis, Neal R.

    2006-01-01

    The challenge of human space exploration places demands on technology that push concepts and development to the leading edge. In biotechnology and biomedical equipment development, NASA science has been the seed for numerous innovations, many of which are in the commercial arena. The biotechnology effort has led to rational drug design, analytical equipment, and cell culture and tissue engineering strategies. Biomedical research and development has resulted in medical devices that enable diagnosis and treatment advances. NASA Biomedical developments are exemplified in the new laser light scattering analysis for cataracts, the axial flow left ventricular-assist device, non contact electrocardiography, and the guidance system for LASIK surgery. Many more developments are in progress. NASA will continue to advance technologies, incorporating new approaches from basic and applied research, nanotechnology, computational modeling, and database analyses.

  13. Ariane: NASA's European rival

    Science.gov (United States)

    The successful test launch of two three-quarter ton satellites in the European Space Agency's (ESA) Ariane rocket last June firmly placed ESA in competition with NASA for the lucrative and growing satellite launching market. Under the auspices of the private (but largely French-government financed) Arianespace company, ESA is already attracting customers to its three-stage rocket by offering low costs.According to recent reports [Nature, 292, pp. 785 and 788, 1981], Arianespace has been able to win several U.S. customers away from NASA, including Southern Pacific Communications, Western Union, RCA, Satellite Television Corporation, and GTE. Nature [292, 1981] magazine in an article entitled ‘More Trouble for the Hapless Shuttle’ suggests that it will be possible for Ariane to charge lower prices for a launch than NASA, even with the space shuttle.

  14. Public Access to NASA's Earth Science Data

    Science.gov (United States)

    Behnke, J.; James, N.

    2013-12-01

    Many steps have been taken over the past 20 years to make NASA's Earth Science data more accessible to the public. The data collected by NASA represent a significant public investment in research. NASA holds these data in a public trust to promote comprehensive, long-term Earth science research. Consequently, NASA developed a free, open and non-discriminatory policy consistent with existing international policies to maximize access to data and to keep user costs as low as possible. These policies apply to all data archived, maintained, distributed or produced by NASA data systems. The Earth Observing System Data and Information System (EOSDIS) is a major core capability within NASA Earth Science Data System Program. EOSDIS is designed to ingest, process, archive, and distribute data from approximately 90 instruments. Today over 6800 data products are available to the public through the EOSDIS. Last year, EOSDIS distributed over 636 million science data products to the user community, serving over 1.5 million distinct users. The system supports a variety of science disciplines including polar processes, land cover change, radiation budget, and most especially global climate change. A core philosophy of EOSDIS is that the general user is best served by providing discipline specific support for the data. To this end, EOSDIS has collocated NASA Earth science data with centers of science discipline expertise, called Distributed Active Archive Centers (DAACs). DAACs are responsible for data management, archive and distribution of data products. There are currently twelve DAACs in the EOSDIS system. The centralized entrance point to the NASA Earth Science data collection can be found at http://earthdata.nasa.gov. Over the years, we have developed several methods for determining needs of the user community including use of the American Customer Satisfaction Index survey and a broad metrics program. Annually, we work with an independent organization (CFI Group) to send this

  15. NASA research in aeropropulsion

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, W.L.; Weber, R.J.

    1981-12-01

    Future advances in aircraft propulsion systems will be aided by the research performed by NASA and its contractors. This paper gives selected examples of recent accomplishments and current activities relevant to the principal classes of civil and military aircraft. Some instances of new emerging technologies with potential high impact on further progress are discussed. NASA research described includes noise abatement and fuel economy measures for commercial subsonic, supersonic, commuter, and general aviation aircraft, aircraft engines of the jet, turboprop, diesel and rotary types, VTOL, X-wing rotocraft, helicopters, and ''stealth'' aircraft. Applications to military aircraft are also discussed.

  16. NASA's Software Safety Standard

    Science.gov (United States)

    Ramsay, Christopher M.

    2007-01-01

    NASA relies more and more on software to control, monitor, and verify its safety critical systems, facilities and operations. Since the 1960's there has hardly been a spacecraft launched that does not have a computer on board that will provide command and control services. There have been recent incidents where software has played a role in high-profile mission failures and hazardous incidents. For example, the Mars Orbiter, Mars Polar Lander, the DART (Demonstration of Autonomous Rendezvous Technology), and MER (Mars Exploration Rover) Spirit anomalies were all caused or contributed to by software. The Mission Control Centers for the Shuttle, ISS, and unmanned programs are highly dependant on software for data displays, analysis, and mission planning. Despite this growing dependence on software control and monitoring, there has been little to no consistent application of software safety practices and methodology to NASA's projects with safety critical software. Meanwhile, academia and private industry have been stepping forward with procedures and standards for safety critical systems and software, for example Dr. Nancy Leveson's book Safeware: System Safety and Computers. The NASA Software Safety Standard, originally published in 1997, was widely ignored due to its complexity and poor organization. It also focused on concepts rather than definite procedural requirements organized around a software project lifecycle. Led by NASA Headquarters Office of Safety and Mission Assurance, the NASA Software Safety Standard has recently undergone a significant update. This new standard provides the procedures and guidelines for evaluating a project for safety criticality and then lays out the minimum project lifecycle requirements to assure the software is created, operated, and maintained in the safest possible manner. This update of the standard clearly delineates the minimum set of software safety requirements for a project without detailing the implementation for those

  17. The Road to NASA

    Science.gov (United States)

    Meyers, Valerie

    2010-01-01

    This slide presentation describes the career path and projects that the author worked on during her internship at NASA. As a Graduate Student Research Program (GSRP) participant the assignments that were given include: Human Mesenchymal Stem Cell Research, Spaceflight toxicology, Lunar Airborne Dust Toxicity Advisory Group (LADTAG) and a special study at Devon Island.

  18. NASA science communications strategy

    Science.gov (United States)

    1995-01-01

    In 1994, the Clinton Administration issued a report, 'Science in the National Interest', which identified new national science goals. Two of the five goals are related to science communications: produce the finest scientists and engineers for the 21st century, and raise scientific and technological literacy of all Americans. In addition to the guidance and goals set forth by the Administration, NASA has been mandated by Congress under the 1958 Space Act to 'provide for the widest practicable and appropriate dissemination concerning its activities and the results thereof'. In addition to addressing eight Goals and Plans which resulted from a January 1994 meeting between NASA and members of the broader scientific, education, and communications community on the Public Communication of NASA's Science, the Science Communications Working Group (SCWG) took a comprehensive look at the way the Agency communicates its science to ensure that any changes the Agency made were long-term improvements. The SCWG developed a Science Communications Strategy for NASA and a plan to implement the Strategy. This report outlines a strategy from which effective science communications programs can be developed and implemented across the agency. Guiding principles and strategic themes for the strategy are provided, with numerous recommendations for improvement discussed within the respective themes of leadership, coordination, integration, participation, leveraging, and evaluation.

  19. Enhancing Undergraduate Education with NASA Resources

    Science.gov (United States)

    Manning, James G.; Meinke, Bonnie; Schultz, Gregory; Smith, Denise Anne; Lawton, Brandon L.; Gurton, Suzanne; Astrophysics Community, NASA

    2015-08-01

    The NASA Astrophysics Science Education and Public Outreach Forum (SEPOF) coordinates the work of NASA Science Mission Directorate (SMD) Astrophysics EPO projects and their teams to bring cutting-edge discoveries of NASA missions to the introductory astronomy college classroom. Uniquely poised to foster collaboration between scientists with content expertise and educators with pedagogical expertise, the Forum has coordinated the development of several resources that provide new opportunities for college and university instructors to bring the latest NASA discoveries in astrophysics into their classrooms.To address the needs of the higher education community, the Astrophysics Forum collaborated with the astrophysics E/PO community, researchers, and introductory astronomy instructors to place individual science discoveries and learning resources into context for higher education audiences. The resulting products include two “Resource Guides” on cosmology and exoplanets, each including a variety of accessible resources. The Astrophysics Forum also coordinates the development of the “Astro 101” slide set series. The sets are five- to seven-slide presentations on new discoveries from NASA astrophysics missions relevant to topics in introductory astronomy courses. These sets enable Astronomy 101 instructors to include new discoveries not yet in their textbooks in their courses, and may be found at: https://www.astrosociety.org/education/resources-for-the-higher-education-audience/.The Astrophysics Forum also coordinated the development of 12 monthly “Universe Discovery Guides,” each featuring a theme and a representative object well-placed for viewing, with an accompanying interpretive story, strategies for conveying the topics, and supporting NASA-approved education activities and background information from a spectrum of NASA missions and programs. These resources are adaptable for use by instructors and may be found at: http://nightsky.jpl.nasa

  20. NASA Schedule Management Handbook

    Science.gov (United States)

    2011-01-01

    The purpose of schedule management is to provide the framework for time-phasing, resource planning, coordination, and communicating the necessary tasks within a work effort. The intent is to improve schedule management by providing recommended concepts, processes, and techniques used within the Agency and private industry. The intended function of this handbook is two-fold: first, to provide guidance for meeting the scheduling requirements contained in NPR 7120.5, NASA Space Flight Program and Project Management Requirements, NPR 7120.7, NASA Information Technology and Institutional Infrastructure Program and Project Requirements, NPR 7120.8, NASA Research and Technology Program and Project Management Requirements, and NPD 1000.5, Policy for NASA Acquisition. The second function is to describe the schedule management approach and the recommended best practices for carrying out this project control function. With regards to the above project management requirements documents, it should be noted that those space flight projects previously established and approved under the guidance of prior versions of NPR 7120.5 will continue to comply with those requirements until project completion has been achieved. This handbook will be updated as needed, to enhance efficient and effective schedule management across the Agency. It is acknowledged that most, if not all, external organizations participating in NASA programs/projects will have their own internal schedule management documents. Issues that arise from conflicting schedule guidance will be resolved on a case by case basis as contracts and partnering relationships are established. It is also acknowledged and understood that all projects are not the same and may require different levels of schedule visibility, scrutiny and control. Project type, value, and complexity are factors that typically dictate which schedule management practices should be employed.

  1. NASA UAS Update

    Science.gov (United States)

    Bauer, Jeffrey Ervin; Mulac, Brenda Lynn

    2010-01-01

    Last year may prove to be a pivotal year for the National Aeronautics and Space Administration (NASA) in the Unmanned Aircraft Systems (UAS) arena, especially in relation to routine UAS access to airspace as NASA accepted an invitation to join the UAS Executive Committee (UAS ExCom). The UAS ExCom is a multi-agency, Federal executive-level committee comprised of the Federal Aviation Administration (FAA), Department of Defense (DoD), Department of Homeland Security (DHS), and NASA with the goals to: 1) Coordinate and align efforts between key Federal Government agencies to achieve routine safe federal public UAS operations in the National Airspace System (NAS); 2) Coordinate and prioritize technical, procedural, regulatory, and policy solutions needed to deliver incremental capabilities; 3) Develop a plan to accommodate the larger stakeholder community at the appropriate time; and 4) Resolve conflicts between Federal Government agencies (FAA, DoD, DHS, and NASA), related to the above goals. The committee was formed in recognition of the need of UAS operated by these agencies to access to the National Airspace System (NAS) to support operational, training, development and research requirements. In order to meet that need, technical, procedural, regulatory, and policy solutions are required to deliver incremental capabilities leading to routine access. The formation of the UAS ExCom is significant in that it represents a tangible commitment by FAA senior leadership to address the UAS access challenge. While the focus of the ExCom is government owned and operated UAS, civil UAS operations are bound to benefit by the progress made in achieving routine access for government UAS. As the UAS ExCom was forming, NASA's Aeronautics Research Mission Directorate began to show renewed interest in UAS, particularly in relation to the future state of the air transportation system under the Next Generation Air Transportation System (NextGen). NASA made funding from the American

  2. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report number 20: The use of selected information products and services by US aerospace engineers and scientists: Results of two surveys

    Science.gov (United States)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1994-01-01

    The U.S. government technical report is a primary means by which the results of federally funded research and development (R&D) are transferred to the U.S. aerospace industry. However, little is known about this information product in terms of its actual use, importance, and value in the transfer of federally, funded R&D. To help establish a body of knowledge, the U.S. government technical report is being investigated as part of the NASA/DoD Aerospace Knowledge Diffusion Research Project. In this report, we summarize the literature on technical reports and provide a model that depicts the transfer of federally funded aerospace R&D via the U.S. government technical report. We present results from two surveys of our investigation of aerospace knowledge diffusion vis-a-vis the U.S. government technical report and close with a brief overview of on-going research into aerospace knowledge diffusion focusing on the role of the industry-affiliated information intermediary.

  3. An automated, open-source (NASA Ames Stereo Pipeline) workflow for mass production of high-resolution DEMs from commercial stereo satellite imagery: Application to mountain glacies in the contiguous US

    Science.gov (United States)

    Shean, D. E.; Arendt, A. A.; Whorton, E.; Riedel, J. L.; O'Neel, S.; Fountain, A. G.; Joughin, I. R.

    2016-12-01

    We adapted the open source NASA Ames Stereo Pipeline (ASP) to generate digital elevation models (DEMs) and orthoimages from very-high-resolution (VHR) commercial imagery of the Earth. These modifications include support for rigorous and rational polynomial coefficient (RPC) sensor models, sensor geometry correction, bundle adjustment, point cloud co-registration, and significant improvements to the ASP code base. We outline an automated processing workflow for 0.5 m GSD DigitalGlobe WorldView-1/2/3 and GeoEye-1 along-track and cross-track stereo image data. Output DEM products are posted at 2, 8, and 32 m with direct geolocation accuracy of process individual stereo pairs on a local workstation, the methods presented here were developed for large-scale batch processing in a high-performance computing environment. We have leveraged these resources to produce dense time series and regional mosaics for the Earth's ice sheets. We are now processing and analyzing all available 2008-2016 commercial stereo DEMs over glaciers and perennial snowfields in the contiguous US. We are using these records to study long-term, interannual, and seasonal volume change and glacier mass balance. This analysis will provide a new assessment of regional climate change, and will offer basin-scale analyses of snowpack evolution and snow/ice melt runoff for water resource applications.

  4. NASA/DoD Aerospace Knowledge Diffusion Research Project: Report 43: The Technical Communication Practices of U.S. Aerospace Engineers and Scientists: Results of the Phase 1 Mail Survey -- Manufacturing and Production Perspective

    Science.gov (United States)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1996-01-01

    The U.S. government technical report is a primary means by which the results of federally funded research and development (R&D) are transferred to the U.S. aerospace industry. However, little is known about this information product in terms of its actual use, importance, and value in the transfer of federally funded R&D. To help establish a body of knowledge, the U.S. government technical report is being investigated as part of the NASA/DOD Aerospace Knowledge Diffusion Research Project. In this report, we summarize the literature on technical reports and provide a model that depicts the transfer of federally funded aerospace R&D via the U.S. government technical report. We present results from our investigation of aerospace knowledge diffusion vis-a-vis the U.S. government technical report, and present the results of research that investigated aerospace knowledge diffusion vis-a-vis the technical communication practices of U.S. aerospace engineers and scientists who were members of the Society of Manufacturing Engineers.

  5. NASA thermionic-conversion program

    International Nuclear Information System (INIS)

    Morris, J.F.

    1977-01-01

    NASA's program for applied research and technology (ART) in thermionic energy conversion (TEC) has made worthwhile contributions in a relatively short time: Many of these accomplishments are incremental, yet important. And their integration has yielded gains in performance as well as in the knowledge necessary to point productive directions for future work. Both promise and problems derive from the degrees of freedom allowed by the current programmatic emphasis on out-of-core thermionics. Materials and designs previously prohibited by in-core nucleonics and geometries now offer new potentialities. But as a result a major TEC-ART responsibility is the efficient reduction of the glitter of diverse possibilities to the hard glint of reality. As always high-temperature material effects are crucial to the level and duration of TEC performance: New electrodes must increase and maintain power output regardless of emitter-vapor deposition on collectors. They must also serve compatibly with hot-shell alloys. And while space TEC must face high-temperature vaporization problems externally as well as internally, terrestrial TEC must tolerate hot corrosive atmospheres outside and near-vacuum inside. Furthermore, some modes for decreasing interelectrode losses appear to require rather demanding converter geometries to produce practical power densities. In these areas and others significant progress is being made in the NASA TEC-ART Program

  6. NASA Hydrogen Research at Florida Universities

    International Nuclear Information System (INIS)

    David L Block; Ali T-Raissi

    2006-01-01

    This paper presents a summary of the activities and results from 36 hydrogen research projects being conducted over a four-year period by Florida universities for the U. S. National Aeronautics and Space Administration (NASA). The program entitled 'NASA Hydrogen Research at Florida Universities' is managed by the Florida Solar Energy Center (FSEC). FSEC has 22 years of experience in conducting research in areas related to hydrogen technologies and fuel cells. The R and D activities under this program cover technology areas related to production, cryogenics, sensors, storage, separation processes, fuel cells, resource assessments and education. (authors)

  7. NASA's Astrophysics Data Archives

    Science.gov (United States)

    Hasan, H.; Hanisch, R.; Bredekamp, J.

    2000-09-01

    The NASA Office of Space Science has established a series of archival centers where science data acquired through its space science missions is deposited. The availability of high quality data to the general public through these open archives enables the maximization of science return of the flight missions. The Astrophysics Data Centers Coordinating Council, an informal collaboration of archival centers, coordinates data from five archival centers distiguished primarily by the wavelength range of the data deposited there. Data are available in FITS format. An overview of NASA's data centers and services is presented in this paper. A standard front-end modifyer called `Astrowbrowse' is described. Other catalog browsers and tools include WISARD and AMASE supported by the National Space Scince Data Center, as well as ISAIA, a follow on to Astrobrowse.

  8. NASA Photo One

    Science.gov (United States)

    Ross, James C.

    2013-01-01

    This is a photographic record of NASA Dryden flight research aircraft, spanning nearly 25 years. The author has served as a Dryden photographer, and now as its chief photographer and airborne photographer. The results are extraordinary images of in-flight aircraft never seen elsewhere, as well as pictures of aircraft from unusual angles on the ground. The collection is the result of the agency required documentation process for its assets.

  9. Consolidating NASA's Arc Jets

    Science.gov (United States)

    Balboni, John A.; Gokcen, Tahir; Hui, Frank C. L.; Graube, Peter; Morrissey, Patricia; Lewis, Ronald

    2015-01-01

    The paper describes the consolidation of NASA's high powered arc-jet testing at a single location. The existing plasma arc-jet wind tunnels located at the Johnson Space Center were relocated to Ames Research Center while maintaining NASA's technical capability to ground-test thermal protection system materials under simulated atmospheric entry convective heating. The testing conditions at JSC were reproduced and successfully demonstrated at ARC through close collaboration between the two centers. New equipment was installed at Ames to provide test gases of pure nitrogen mixed with pure oxygen, and for future nitrogen-carbon dioxide mixtures. A new control system was custom designed, installed and tested. Tests demonstrated the capability of the 10 MW constricted-segmented arc heater at Ames meets the requirements of the major customer, NASA's Orion program. Solutions from an advanced computational fluid dynamics code were used to aid in characterizing the properties of the plasma stream and the surface environment on the calorimeters in the supersonic flow stream produced by the arc heater.

  10. The NASA Astrobiology Roadmap.

    Science.gov (United States)

    Des Marais, David J; Nuth, Joseph A; Allamandola, Louis J; Boss, Alan P; Farmer, Jack D; Hoehler, Tori M; Jakosky, Bruce M; Meadows, Victoria S; Pohorille, Andrew; Runnegar, Bruce; Spormann, Alfred M

    2008-08-01

    The NASA Astrobiology Roadmap provides guidance for research and technology development across the NASA enterprises that encompass the space, Earth, and biological sciences. The ongoing development of astrobiology roadmaps embodies the contributions of diverse scientists and technologists from government, universities, and private institutions. The Roadmap addresses three basic questions: how does life begin and evolve, does life exist elsewhere in the universe, and what is the future of life on Earth and beyond? Seven Science Goals outline the following key domains of investigation: understanding the nature and distribution of habitable environments in the universe, exploring for habitable environments and life in our own Solar System, understanding the emergence of life, determining how early life on Earth interacted and evolved with its changing environment, understanding the evolutionary mechanisms and environmental limits of life, determining the principles that will shape life in the future, and recognizing signatures of life on other worlds and on early Earth. For each of these goals, Science Objectives outline more specific high priority efforts for the next three to five years. These eighteen objectives are being integrated with NASA strategic planning.

  11. The NASA Astrobiology Roadmap

    Science.gov (United States)

    Des Marais, David J.; Allamandola, Louis J.; Benner, Steven A.; Boss, Alan P.; Deamer, David; Falkowski, Paul G.; Farmer, Jack D.; Hedges, S. Blair; Jakosky, Bruce M.; Knoll, Andrew H.; hide

    2003-01-01

    The NASA Astrobiology Roadmap provides guidance for research and technology development across the NASA enterprises that encompass the space, Earth, and biological sciences. The ongoing development of astrobiology roadmaps embodies the contributions of diverse scientists and technologists from government, universities, and private institutions. The Roadmap addresses three basic questions: How does life begin and evolve, does life exist elsewhere in the universe, and what is the future of life on Earth and beyond? Seven Science Goals outline the following key domains of investigation: understanding the nature and distribution of habitable environments in the universe, exploring for habitable environments and life in our own solar system, understanding the emergence of life, determining how early life on Earth interacted and evolved with its changing environment, understanding the evolutionary mechanisms and environmental limits of life, determining the principles that will shape life in the future, and recognizing signatures of life on other worlds and on early Earth. For each of these goals, Science Objectives outline more specific high-priority efforts for the next 3-5 years. These 18 objectives are being integrated with NASA strategic planning.

  12. NASA PEMFC Development Background and History

    Science.gov (United States)

    Hoberecht, Mark

    2011-01-01

    NASA has been developing proton-exchange-membrane (PEM) fuel cell power systems for the past decade, as an upgraded technology to the alkaline fuel cells which presently provide power for the Shuttle Orbiter. All fuel cell power systems consist of one or more fuel cell stacks in combination with appropriate balance-of-plant hardware. Traditional PEM fuel cells are characterized as flow-through, in which recirculating reactant streams remove product water from the fuel cell stack. NASA recently embarked on the development of non-flow-through fuel cell systems, in which reactants are dead-ended into the fuel cell stack and product water is removed by internal wicks. This simplifies the fuel cell power system by eliminating the need for pumps to provide reactant circulation, and mechanical water separators to remove the product water from the recirculating reactant streams. By eliminating these mechanical components, the resulting fuel cell power system has lower mass, volume, and parasitic power requirements, along with higher reliability and longer life. Four vendors have designed and fabricated non-flow-through fuel cell stacks under NASA funding. One of these vendors is considered the "baseline" vendor, and the remaining three vendors are competing for the "alternate" role. Each has undergone testing of their stack hardware integrated with a NASA balance-of-plant. Future Exploration applications for this hardware include primary fuel cells for a Lunar Lander and regenerative fuel cells for Surface Systems.

  13. Enhancing the Impact of NASA Astrophysics Education and Public Outreach: Using Real NASA Data in the Classroom

    Science.gov (United States)

    Lawton, Brandon L.; Smith, D. A.; SMD Astrophysics E/PO Community, NASA

    2013-01-01

    The NASA Science Education and Public Outreach Forums support the NASA Science Mission Directorate (SMD) and its education and public outreach (E/PO) community in enhancing the coherence, efficiency, and effectiveness of SMD-funded E/PO programs. As a part of this effort, the Astrophysics Forum is coordinating a collaborative project among the NASA SMD astrophysics missions and E/PO programs to create a broader impact for the use of real NASA data in classrooms. Among NASA's major education goals is the training of students in the Science, Technology, Engineering, and Math (STEM) disciplines. The use of real data, from some of the most sophisticated observatories in the world, provide educators an authentic opportunity to teach students basic science process skills, inquiry, and real-world applications of the STEM subjects. The goal of this NASA SMD astrophysics community collaboration is to find a way to maximize the reach of existing real data products produced by E/PO professionals working with NASA E/PO grants and missions in ways that enhance the teaching of the STEM subjects. We present an initial result of our collaboration: defining levels of basic science process skills that lie at the heart of authentic scientific research and national education standards (AAAS Benchmarks) and examples of NASA data products that align with those levels. Our results are the beginning of a larger goal of utilizing the new NASA education resource catalog, NASA Wavelength, for the creation of progressions that tie NASA education resources together. We aim to create an informational sampler that illustrates how an educator can use the NASA Wavelength resource catalog to connect NASA real-data resources that meet the educational goals of their class.

  14. FAA/NASA UAS Traffic Management Pilot Program (UPP)

    Science.gov (United States)

    Johnson, Ronald D.; Kopardekar, Parimal H.; Rios, Joseph L.

    2018-01-01

    NASA Ames is leading ATM R&D organization. NASA started working on UTM in 2012, it's come a long way primarily due to close relationship with FAA and industry. We have a research transition team between FAA and NASA for UTM. We have a few other RTTs as well. UTM is a great example of collaborative innovation, and now it's reaching very exciting stage of UTM Pilot Project (UPP). NASA is supporting FAA and industry to make the UPP most productive and successful.

  15. NASA's Applied Sciences: Natural Disasters Program

    Science.gov (United States)

    Kessler, Jason L.

    2010-01-01

    Fully utilize current and near-term airborne and spaceborne assets and capabilities. NASA spaceborne instruments are for research but can be applied to natural disaster response as appropriate. NASA airborne instruments can be targeted specifically for disaster response. Could impact research programs. Better flow of information improves disaster response. Catalog capability, product, applicable disaster, points of contact. Ownership needs to come from the highest level of NASA - unpredictable and irregular nature of disasters requires contingency funding for disaster response. Build-in transfer of applicable natural disaster research capabilities to operational functionality at other agencies (e.g., USFS, NOAA, FEMA...) at the outset, whenever possible. For the Decadal Survey Missions, opportunities exist to identify needs and requirements early in the mission design process. Need to understand additional needs and commitments for meeting the needs of the disaster community. Opportunity to maximize disaster response and mitigation from the Decadal Survey Missions. Additional needs or capabilities may require agency contributions.

  16. NASA Developments in Personnel Protective Equipment

    Science.gov (United States)

    Graf, John

    2015-01-01

    NASA has some unique and challenging PPE needs: there are credible threats to air quality (fire, ammonia leak, hydrazine leak)that require a contingency breathing apparatus that operates for many hours - but there is not enough space or up-mass to provide supplied air tanks. We cannot use "Scott Air Tanks" commonly used by firefighters and other first responders. NASA has developed a respirator based emergency breathing device. It uses a "one size fits everybody in the astronaut corps" hooded mask with excellent chemical permeability and fire resistance properties, and a filtering respirator cartridge that protects the wearer from ammonia leaks, hydrazine leaks, or products of combustion. If you need a small, lightweight emergency breathing system that lasts longer than a supplied air system, we should meet and learn if NASA sponsored technology development can help.

  17. NASA Remote Sensing Data for Epidemiological Studies

    Science.gov (United States)

    Maynard, Nancy G.; Vicente, G. A.

    2002-01-01

    In response to the need for improved observations of environmental factors to better understand the links between human health and the environment, NASA has established a new program to significantly improve the utilization of NASA's diverse array of data, information, and observations of the Earth for health applications. This initiative, lead by Goddard Space Flight Center (GSFC) has the following goals: (1) To encourage interdisciplinary research on the relationships between environmental parameters (e.g., rainfall, vegetation) and health, (2) Develop practical early warning systems, (3) Create a unique system for the exchange of Earth science and health data, (4) Provide an investigator field support system for customers and partners, (5) Facilitate a system for observation, identification, and surveillance of parameters relevant to environment and health issues. The NASA Environment and Health Program is conducting several interdisciplinary projects to examine applications of remote sensing data and information to a variety of health issues, including studies on malaria, Rift Valley Fever, St. Louis Encephalitis, Dengue Fever, Ebola, African Dust and health, meningitis, asthma, and filariasis. In addition, the NASA program is creating a user-friendly data system to help provide the public health community with easy and timely access to space-based environmental data for epidemiological studies. This NASA data system is being designed to bring land, atmosphere, water and ocean satellite data/products to users not familiar with satellite data/products, but who are knowledgeable in the Geographic Information Systems (GIS) environment. This paper discusses the most recent results of the interdisciplinary environment-health research projects and provides an analysis of the usefulness of the satellite data to epidemiological studies. In addition, there will be a summary of presently-available NASA Earth science data and a description of how it may be obtained.

  18. Distance Learning With NASA Lewis Research Center's Learning Technologies Project

    Science.gov (United States)

    Petersen, Ruth

    1998-01-01

    The NASA Lewis Research Center's Learning Technologies Project (LTP) has responded to requests from local school district technology coordinators to provide content for videoconferencing workshops. Over the past year we have offered three teacher professional development workshops that showcase NASA Lewis-developed educational products and NASA educational Internet sites. In order to determine the direction of our involvement with distance learning, the LTP staff conducted a survey of 500 U.S. schools. We received responses from 72 schools that either currently use distance learning or will be using distance learning in 98-99 school year. The results of the survey are summarized in the article. In addition, the article provides information on distance learners, distance learning technologies, and the NASA Lewis LTP videoconferencing workshops. The LTP staff will continue to offer teacher development workshops through videoconferencing during the 98-99 school year. We hope to add workshops on new educational products as they are developed at NASA Lewis.

  19. NASA Center for Computational Sciences: History and Resources

    Science.gov (United States)

    2000-01-01

    The Nasa Center for Computational Sciences (NCCS) has been a leading capacity computing facility, providing a production environment and support resources to address the challenges facing the Earth and space sciences research community.

  20. NASA Lunar Impact Monitoring

    Science.gov (United States)

    Suggs, Robert M.; Moser, D. E.

    2015-01-01

    The MSFC lunar impact monitoring program began in 2006 in support of environment definition for the Constellation (return to Moon) program. Work continued by the Meteoroid Environment Office after Constellation cancellation. Over 330 impacts have been recorded. A paper published in Icarus reported on the first 5 years of observations and 126 calibrated flashes. Icarus: http://www.sciencedirect.com/science/article/pii/S0019103514002243; ArXiv: http://arxiv.org/abs/1404.6458 A NASA Technical Memorandum on flash locations is in press

  1. NASA Technology Transfer System

    Science.gov (United States)

    Tran, Peter B.; Okimura, Takeshi

    2017-01-01

    NTTS is the IT infrastructure for the Agency's Technology Transfer (T2) program containing 60,000+ technology portfolio supporting all ten NASA field centers and HQ. It is the enterprise IT system for facilitating the Agency's technology transfer process, which includes reporting of new technologies (e.g., technology invention disclosures NF1679), protecting intellectual properties (e.g., patents), and commercializing technologies through various technology licenses, software releases, spinoffs, and success stories using custom built workflow, reporting, data consolidation, integration, and search engines.

  2. NASA's Water Solutions Using Remote Sensing

    Science.gov (United States)

    Toll, David

    2012-01-01

    NASA Water Resources works within Earth sciences to leverage investments of space-based observation, model results, and development and deployment of enabling technologies, systems, and capabilities into water resources management decision support tools for the sustainable use of water. Earth science satellite observations and modelling products provide a huge volume of valuable data in both near-real-time and extended back nearly 50 years about the Earth's land surface conditions such as land cover type, vegetation type and health, precipitation, snow, soil moisture, and water levels and radiation. Observations of this type combined with models and analysis enable satellite-based assessment of the water cycle. With increasing population pressure and water usage coupled with climate variability and change, water issues are being reported by numerous groups as the most critical environmental problems facing us in the 21st century. Competitive uses and the prevalence of river basins and aquifers that extend across boundaries engender political tensions between communities, stakeholders and countries. The NASA Water Resources Program has the objective to provide NASA products to help deal with these issues with the goal for the sustainable use of water. The Water Resources program organizes its projects under five functional themes: 1) stream-flow and flood forecasting; 2) water consumptive use (includes evapotranspiration) and irrigation; 3) drought; 4) water quality; and 5) climate and water resources. NASA primarily works with national and international groups such as other US government agencies (NOAA, EPA, USGS, USAID) and various other groups to maximize the widest use of the water products. A summary of NASA's water activities linked to helping solve issues for developing countries will be highlighted.

  3. NASA's Propulsion Research Laboratory

    Science.gov (United States)

    2004-01-01

    The grand opening of NASA's new, world-class laboratory for research into future space transportation technologies located at the Marshall Space Flight Center (MSFC) in Huntsville, Alabama, took place in July 2004. The state-of-the-art Propulsion Research Laboratory (PRL) serves as a leading national resource for advanced space propulsion research. Its purpose is to conduct research that will lead to the creation and development of innovative propulsion technologies for space exploration. The facility is the epicenter of the effort to move the U.S. space program beyond the confines of conventional chemical propulsion into an era of greatly improved access to space and rapid transit throughout the solar system. The laboratory is designed to accommodate researchers from across the United States, including scientists and engineers from NASA, the Department of Defense, the Department of Energy, universities, and industry. The facility, with 66,000 square feet of useable laboratory space, features a high degree of experimental capability. Its flexibility allows it to address a broad range of propulsion technologies and concepts, such as plasma, electromagnetic, thermodynamic, and propellant propulsion. An important area of emphasis is the development and utilization of advanced energy sources, including highly energetic chemical reactions, solar energy, and processes based on fission, fusion, and antimatter. The Propulsion Research Laboratory is vital for developing the advanced propulsion technologies needed to open up the space frontier, and sets the stage of research that could revolutionize space transportation for a broad range of applications.

  4. The NASA SETI program

    Science.gov (United States)

    Billingham, J.; Brocker, D. H.

    1991-01-01

    In 1959, it was proposed that a sensible way to conduct interstellar communication would be to use radio at or near the frequency of hydrogen. In 1960, the first Search for Extraterrestrial Intelligence (SETI) was conducted using a radiotelescope at Green Bank in West Virginia. Since 1970, NASA has systematically developed a definitive program to conduct a sophisticated search for evidence of extraterrestrial intelligent life. The basic hypothesis is that life may be widespread in the univers, and that in many instances extraterrestrial life may have evolved into technological civilizations. The underlying scientific arguments are based on the continuously improving knowledge of astronomy and astrophysics, especially star system formation, and of planetary science, chemical evolution, and biological evolution. If only one in a million sun-like stars in our galaxy harbors species with cognitive intelligence, then there are 100,000 civilizations in the Milky Way alone. The fields of radioastronomy digital electronic engineering, spectrum analysis, and signal detection have advanced rapidly in the last twenty years and now allow for sophisticated systems to be built in order to attempt the detection of extraterrestrial intelligence signals. In concert with the scientific and engineering communities, NASA has developed, over the last several years, a Microwave Observing Project whose goal is to design, build, and operate SETI systems during the decade of the nineties in pursuit of the goal signal detection. The Microwave Observing Project is now approved and underway. There are two major components in the project: the Target Search Element and the Sky Survey Element.

  5. NASA's interstellar probe mission

    International Nuclear Information System (INIS)

    Liewer, P.C.; Ayon, J.A.; Wallace, R.A.; Mewaldt, R.A.

    2000-01-01

    NASA's Interstellar Probe will be the first spacecraft designed to explore the nearby interstellar medium and its interaction with our solar system. As envisioned by NASA's Interstellar Probe Science and Technology Definition Team, the spacecraft will be propelled by a solar sail to reach >200 AU in 15 years. Interstellar Probe will investigate how the Sun interacts with its environment and will directly measure the properties and composition of the dust, neutrals and plasma of the local interstellar material which surrounds the solar system. In the mission concept developed in the spring of 1999, a 400-m diameter solar sail accelerates the spacecraft to ∼15 AU/year, roughly 5 times the speed of Voyager 1 and 2. The sail is used to first bring the spacecraft to ∼0.25 AU to increase the radiation pressure before heading out in the interstellar upwind direction. After jettisoning the sail at ∼5 AU, the spacecraft coasts to 200-400 AU, exploring the Kuiper Belt, the boundaries of the heliosphere, and the nearby interstellar medium

  6. NASA Data Archive Evaluation

    Science.gov (United States)

    Holley, Daniel C.; Haight, Kyle G.; Lindstrom, Ted

    1997-01-01

    The purpose of this study was to expose a range of naive individuals to the NASA Data Archive and to obtain feedback from them, with the goal of learning how useful people with varied backgrounds would find the Archive for research and other purposes. We processed 36 subjects in four experimental categories, designated in this report as C+R+, C+R-, C-R+ and C-R-, for computer experienced researchers, computer experienced non-researchers, non-computer experienced researchers, and non-computer experienced non-researchers, respectively. This report includes an assessment of general patterns of subject responses to the various aspects of the NASA Data Archive. Some of the aspects examined were interface-oriented, addressing such issues as whether the subject was able to locate information, figure out how to perform desired information retrieval tasks, etc. Other aspects were content-related. In doing these assessments, answers given to different questions were sometimes combined. This practice reflects the tendency of the subjects to provide answers expressing their experiences across question boundaries. Patterns of response are cross-examined by subject category in order to bring out deeper understandings of why subjects reacted the way they did to the archive. After the general assessment, there will be a more extensive summary of the replies received from the test subjects.

  7. NASA's Earth Observing Data and Information System

    Science.gov (United States)

    Mitchell, Andrew E.; Behnke, Jeanne; Lowe, Dawn; Ramapriyan, H. K.

    2009-01-01

    NASA's Earth Observing System Data and Information System (EOSDIS) has been a central component of NASA Earth observation program for over 10 years. It is one of the largest civilian science information system in the US, performing ingest, archive and distribution of over 3 terabytes of data per day much of which is from NASA s flagship missions Terra, Aqua and Aura. The system supports a variety of science disciplines including polar processes, land cover change, radiation budget, and most especially global climate change. The EOSDIS data centers, collocated with centers of science discipline expertise, archive and distribute standard data products produced by science investigator-led processing systems. Key to the success of EOSDIS is the concept of core versus community requirements. EOSDIS supports a core set of services to meet specific NASA needs and relies on community-developed services to meet specific user needs. EOSDIS offers a metadata registry, ECHO (Earth Observing System Clearinghouse), through which the scientific community can easily discover and exchange NASA s Earth science data and services. Users can search, manage, and access the contents of ECHO s registries (data and services) through user-developed and community-tailored interfaces or clients. The ECHO framework has become the primary access point for cross-Data Center search-and-order of EOSDIS and other Earth Science data holdings archived at the EOSDIS data centers. ECHO s Warehouse Inventory Search Tool (WIST) is the primary web-based client for discovering and ordering cross-discipline data from the EOSDIS data centers. The architecture of the EOSDIS provides a platform for the publication, discovery, understanding and access to NASA s Earth Observation resources and allows for easy integration of new datasets. The EOSDIS also has developed several methods for incorporating socioeconomic data into its data collection. Over the years, we have developed several methods for determining

  8. Emerging Cyber Infrastructure for NASA's Large-Scale Climate Data Analytics

    Science.gov (United States)

    Duffy, D.; Spear, C.; Bowen, M. K.; Thompson, J. H.; Hu, F.; Yang, C. P.; Pierce, D.

    2016-12-01

    The resolution of NASA climate and weather simulations have grown dramatically over the past few years with the highest-fidelity models reaching down to 1.5 KM global resolutions. With each doubling of the resolution, the resulting data sets grow by a factor of eight in size. As the climate and weather models push the envelope even further, a new infrastructure to store data and provide large-scale data analytics is necessary. The NASA Center for Climate Simulation (NCCS) has deployed the Data Analytics Storage Service (DASS) that combines scalable storage with the ability to perform in-situ analytics. Within this system, large, commonly used data sets are stored in a POSIX file system (write once/read many); examples of data stored include Landsat, MERRA2, observing system simulation experiments, and high-resolution downscaled reanalysis. The total size of this repository is on the order of 15 petabytes of storage. In addition to the POSIX file system, the NCCS has deployed file system connectors to enable emerging analytics built on top of the Hadoop File System (HDFS) to run on the same storage servers within the DASS. Coupled with a custom spatiotemporal indexing approach, users can now run emerging analytical operations built on MapReduce and Spark on the same data files stored within the POSIX file system without having to make additional copies. This presentation will discuss the architecture of this system and present benchmark performance measurements from traditional TeraSort and Wordcount to large-scale climate analytical operations on NetCDF data.

  9. Using High Frequency Passive Microwave, A-train, and TRMM Data to Evaluate Hydrometer Structure in the NASA GEOS-5 Data Assimilation System

    Science.gov (United States)

    Robertson, Franklin; Bacmeister, Julio; Bosilovich, Michael; Pittman, Jasna

    2007-01-01

    Validating water vapor and prognostic condensate in global models remains a challenging research task. Model parameterizations are still subject to a large number of tunable parameters; furthermore, accurate and representative in situ observations are very sparse, and satellite observations historically have significant quantitative uncertainties. Progress on improving cloud / hydrometeor fields in models stands to benefit greatly from the growing inventory ofA-Train data sets. ill the present study we are using a variety of complementary satellite retrievals of hydrometeors to examine condensate produced by the emerging NASA Modem Era Retrospective Analysis for Research and Applications, MERRA, and its associated atmospheric general circulation model GEOS5. Cloud and precipitation are generated by both grid-scale prognostic equations and by the Relaxed Arakawa-Schubert (RAS) diagnostic convective parameterization. The high frequency channels (89 to 183.3 GHz) from AMSU-B and MRS on NOAA polar orbiting satellites are being used to evaluate the climatology and variability of precipitating ice from tropical convective anvils. Vertical hydrometeor structure from the Tropical Rainfall Measuring Mission (TRMM) and CloudSat radars are used to develop statistics on vertical hydrometeor structure in order to better interpret the extensive high frequency passive microwave climatology. Cloud liquid and ice water path data retrieved from the Moderate Resolution Imaging Spectroradiometer, MODIS, are used to investigate relationships between upper level cloudiness and tropical deep convective anvils. Together these data are used to evaluate cloud / ice water path, gross aspects of vertical hydrometeor structure, and the relationship between cloud extent and surface precipitation that the MERRA reanalysis must capture.

  10. NASA Communications Augmentation network

    Science.gov (United States)

    Omidyar, Guy C.; Butler, Thomas E.; Laios, Straton C.

    1990-01-01

    The NASA Communications (Nascom) Division of the Mission Operations and Data Systems Directorate (MO&DSD) is to undertake a major initiative to develop the Nascom Augmentation (NAUG) network to achieve its long-range service objectives for operational data transport to support the Space Station Freedom Program, the Earth Observing System (EOS), and other projects. The NAUG is the Nascom ground communications network being developed to accommodate the operational traffic of the mid-1990s and beyond. The NAUG network development will be based on the Open Systems Interconnection Reference Model (OSI-RM). This paper describes the NAUG network architecture, subsystems, topology, and services; addresses issues of internetworking the Nascom network with other elements of the Space Station Information System (SSIS); discusses the operations environment. This paper also notes the areas of related research and presents the current conception of how the network will provide broadband services in 1998.

  11. NASA commercial programs

    Science.gov (United States)

    1990-01-01

    Highlights of NASA-sponsored and assisted commercial space activities of 1989 are presented. Industrial R and D in space, centers for the commercial development of space, and new cooperative agreements are addressed in the U.S. private sector in space section. In the building U.S. competitiveness through technology section, the following topics are presented: (1) technology utilization as a national priority; (2) an exploration of benefits; and (3) honoring Apollo-Era spinoffs. International and domestic R and D trends, and the space sector are discussed in the section on selected economic indicators. Other subjects included in this report are: (1) small business innovation; (2) budget highlights and trends; (3) commercial programs management; and (4) the commercial programs advisory committee.

  12. NASA scheduling technologies

    Science.gov (United States)

    Adair, Jerry R.

    1994-01-01

    This paper is a consolidated report on ten major planning and scheduling systems that have been developed by the National Aeronautics and Space Administration (NASA). A description of each system, its components, and how it could be potentially used in private industry is provided in this paper. The planning and scheduling technology represented by the systems ranges from activity based scheduling employing artificial intelligence (AI) techniques to constraint based, iterative repair scheduling. The space related application domains in which the systems have been deployed vary from Space Shuttle monitoring during launch countdown to long term Hubble Space Telescope (HST) scheduling. This paper also describes any correlation that may exist between the work done on different planning and scheduling systems. Finally, this paper documents the lessons learned from the work and research performed in planning and scheduling technology and describes the areas where future work will be conducted.

  13. NASA Space Life Sciences

    Science.gov (United States)

    Hayes, Judith

    2009-01-01

    This slide presentation reviews the requirements that NASA has for the medical service of a crew returning to earth after long duration space flight. The scenarios predicate a water landing. Two scenarios are reviewed that outline the ship-board medical operations team and the ship board science reseach team. A schedule for the each crew upon landing is posited for each of scenarios. The requirement for a heliport on board the ship is reviewed and is on the requirement for a helicopter to return the Astronauts to the Baseline Data Collection Facility (BDCF). The ideal is to integrate the medical and science requirements, to minimize the risks and Inconveniences to the returning astronauts. The medical support that is required for all astronauts returning from long duration space flight (30 days or more) is reviewed. The personnel required to support the team is outlined. The recommendations for medical operations and science research for crew support are stated.

  14. NASA, Building Tomorrow's Future

    Science.gov (United States)

    Mango, Edward

    2011-01-01

    We, as NASA, continue to Dare Mighty Things. Here we are in October. In my country, the United States of America, we celebrate the anniversary of Christopher Columbus's arrival in the Americas, which occurred on October 12, 1492. His story, although happening over 500 years ago, is still very valid today. It is a part of the American spirit; part of the international human spirit. Columbus is famous for discovering the new world we now call America, but he probably never envisioned what great discoveries would be revealed many generations later. But in order for Columbus to begin his great adventure, he needed a business plan. Ho would he go about obtaining the funds and support necessary to build, supply, and man the ships required for his travels? He had a lot of obstacles and distractions. He needed a strong, internal drive to achieve his plans and recruit a willing crew of explorers also ready to risk their all for the unknown journey ahead. As Columbus set sail, he said "By prevailing over all obstacles and distractions, one may unfailingly arrive at his chosen goal or destination." Columbus may not have known he was on a journey for all human exploration. Recently, Charlie Bolden, the NASA Administrator, said, "Human exploration is and has always been about making life better for humans on Earth." Today, NASA and the U.S. human spaceflight program hold many of the same attributes as did Columbus and his contemporaries - a willing, can-do spirit. We are on the threshold of exciting new times in space exploration. Like Columbus, we need a business plan to take us into the future. We need to design the best ships and utilize the best designers, with their past knowledge and experience, to build those ships. We need funding and support from governments to achieve these goals of space exploration into the unknown. NASA does have that business plan, and it is an ambitious plan for human spaceflight and exploration. Today, we have a magnificent spaceflight

  15. Configuration Management at NASA

    Science.gov (United States)

    Doreswamy, Rajiv

    2013-01-01

    NASA programs are characterized by complexity, harsh environments and the fact that we usually have one chance to get it right. Programs last decades and need to accept new hardware and technology as it is developed. We have multiple suppliers and international partners Our challenges are many, our costs are high and our failures are highly visible. CM systems need to be scalable, adaptable to new technology and span the life cycle of the program (30+ years). Multiple Systems, Contractors and Countries added major levels of complexity to the ISS program and CM/DM and Requirements management systems center dot CM Systems need to be designed for long design life center dot Space Station Design started in 1984 center dot Assembly Complete in 2012 center dot Systems were developed on a task basis without an overall system perspective center dot Technology moves faster than a large project office, try to make sure you have a system that can adapt

  16. NASA's Space Launch System Takes Shape

    Science.gov (United States)

    Askins, Bruce; Robinson, Kimberly F.

    2017-01-01

    Major hardware and software for NASA's Space Launch System (SLS) began rolling off assembly lines in 2016, setting the stage for critical testing in 2017 and the launch of a major new capability for deep space human exploration. SLS continues to pursue a 2018 first launch of Exploration Mission 1 (EM-1). At NASA's Michoud Assembly Facility near New Orleans, LA, Boeing completed welding of structural test and flight liquid hydrogen tanks, and engine sections. Test stands for core stage structural tests at NASA's Marshall Space Flight Center, Huntsville, AL. neared completion. The B2 test stand at NASA's Stennis Space Center, MS, completed major structural renovation to support core stage green run testing in 2018. Orbital ATK successfully test fired its second qualification solid rocket motor in the Utah desert and began casting the motor segments for EM-1. Aerojet Rocketdyne completed its series of test firings to adapt the heritage RS-25 engine to SLS performance requirements. Production is under way on the first five new engine controllers. NASA also signed a contract with Aerojet Rocketdyne for propulsion of the RL10 engines for the Exploration Upper Stage. United Launch Alliance delivered the structural test article for the Interim Cryogenic Propulsion Stage to MSFC for tests and construction was under way on the flight stage. Flight software testing at MSFC, including power quality and command and data handling, was completed. Substantial progress is planned for 2017. Liquid oxygen tank production will be completed at Michoud. Structural testing at Marshall will get under way. RS-25 hotfire testing will verify the new engine controllers. Core stage horizontal integration will begin. The core stage pathfinder mockup will arrive at the B2 test stand for fit checks and tests. EUS will complete preliminary design review. This paper will discuss the technical and programmatic successes and challenges of 2016 and look ahead to plans for 2017.

  17. NASA Biological Specimen Repository

    Science.gov (United States)

    McMonigal, K. A.; Pietrzyk, R. A.; Sams, C. F.; Johnson, M. A.

    2010-01-01

    The NASA Biological Specimen Repository (NBSR) was established in 2006 to collect, process, preserve and distribute spaceflight-related biological specimens from long duration ISS astronauts. This repository provides unique opportunities to study longitudinal changes in human physiology spanning may missions. The NBSR collects blood and urine samples from all participating ISS crewmembers who have provided informed consent. These biological samples are collected once before flight, during flight scheduled on flight days 15, 30, 60, 120 and within 2 weeks of landing. Postflight sessions are conducted 3 and 30 days after landing. The number of in-flight sessions is dependent on the duration of the mission. Specimens are maintained under optimal storage conditions in a manner that will maximize their integrity and viability for future research The repository operates under the authority of the NASA/JSC Committee for the Protection of Human Subjects to support scientific discovery that contributes to our fundamental knowledge in the area of human physiological changes and adaptation to a microgravity environment. The NBSR will institute guidelines for the solicitation, review and sample distribution process through establishment of the NBSR Advisory Board. The Advisory Board will be composed of representatives of all participating space agencies to evaluate each request from investigators for use of the samples. This process will be consistent with ethical principles, protection of crewmember confidentiality, prevailing laws and regulations, intellectual property policies, and consent form language. Operations supporting the NBSR are scheduled to continue until the end of U.S. presence on the ISS. Sample distribution is proposed to begin with selections on investigations beginning in 2017. The availability of the NBSR will contribute to the body of knowledge about the diverse factors of spaceflight on human physiology.

  18. NASA Integrated Network COOP

    Science.gov (United States)

    Anderson, Michael L.; Wright, Nathaniel; Tai, Wallace

    2012-01-01

    Natural disasters, terrorist attacks, civil unrest, and other events have the potential of disrupting mission-essential operations in any space communications network. NASA's Space Communications and Navigation office (SCaN) is in the process of studying options for integrating the three existing NASA network elements, the Deep Space Network, the Near Earth Network, and the Space Network, into a single integrated network with common services and interfaces. The need to maintain Continuity of Operations (COOP) after a disastrous event has a direct impact on the future network design and operations concepts. The SCaN Integrated Network will provide support to a variety of user missions. The missions have diverse requirements and include anything from earth based platforms to planetary missions and rovers. It is presumed that an integrated network, with common interfaces and processes, provides an inherent advantage to COOP in that multiple elements and networks can provide cross-support in a seamless manner. The results of trade studies support this assumption but also show that centralization as a means of achieving integration can result in single points of failure that must be mitigated. The cost to provide this mitigation can be substantial. In support of this effort, the team evaluated the current approaches to COOP, developed multiple potential approaches to COOP in a future integrated network, evaluated the interdependencies of the various approaches to the various network control and operations options, and did a best value assessment of the options. The paper will describe the trade space, the study methods, and results of the study.

  19. NASA Bluetooth Wireless Communications

    Science.gov (United States)

    Miller, Robert D.

    2007-01-01

    NASA has been interested in wireless communications for many years, especially when the crew size of the International Space Station (ISS) was reduced to two members. NASA began a study to find ways to improve crew efficiency to make sure the ISS could be maintained with limited crew capacity and still be a valuable research testbed in Low-Earth Orbit (LEO). Currently the ISS audio system requires astronauts to be tethered to the audio system, specifically a device called the Audio Terminal Unit (ATU). Wireless communications would remove the tether and allow astronauts to freely float from experiment to experiment without having to worry about moving and reconnecting the associated cabling or finding the space equivalent of an extension cord. A wireless communication system would also improve safety and reduce system susceptibility to Electromagnetic Interference (EMI). Safety would be improved because a crewmember could quickly escape a fire while maintaining communications with the ground and other crewmembers at any location. In addition, it would allow the crew to overcome the volume limitations of the ISS ATU. This is especially important to the Portable Breathing Apparatus (PBA). The next generation of space vehicles and habitats also demand wireless attention. Orion will carry up to six crewmembers in a relatively small cabin. Yet, wireless could become a driving factor to reduce launch weight and increase habitable volume. Six crewmembers, each tethered to a panel, could result in a wiring mess even in nominal operations. In addition to Orion, research is being conducted to determine if Bluetooth is appropriate for Lunar Habitat applications.

  20. NASA and The Semantic Web

    Science.gov (United States)

    Ashish, Naveen

    2005-01-01

    We provide an overview of several ongoing NASA endeavors based on concepts, systems, and technology from the Semantic Web arena. Indeed NASA has been one of the early adopters of Semantic Web Technology and we describe ongoing and completed R&D efforts for several applications ranging from collaborative systems to airspace information management to enterprise search to scientific information gathering and discovery systems at NASA.

  1. NASA GIBS Use in Live Planetarium Shows

    Science.gov (United States)

    Emmart, C. B.

    2015-12-01

    The American Museum of Natural History's Hayden Planetarium was rebuilt in year 2000 as an immersive theater for scientific data visualization to show the universe in context to our planet. Specific astrophysical movie productions provide the main daily programming, but interactive control software, developed at AMNH allows immersive presentation within a data aggregation of astronomical catalogs called the Digital Universe 3D Atlas. Since 2006, WMS globe browsing capabilities have been built into a software development collaboration with Sweden's Linkoping University (LiU). The resulting Uniview software, now a product of the company SCISS, is operated by about fifty planetariums around that world with ability to network amongst the sites for global presentations. Public presentation of NASA GIBS has allowed authoritative narratives to be presented within the range of data available in context to other sources such as Science on a Sphere, NASA Earth Observatory and Google Earth KML resources. Specifically, the NOAA supported World Views Network conducted a series of presentations across the US that focused on local ecological issues that could then be expanded in the course of presentation to national and global scales of examination. NASA support of for GIBS resources in an easy access multi scale streaming format like WMS has tremendously enabled particularly facile presentations of global monitoring like never before. Global networking of theaters for distributed presentations broadens out the potential for impact of this medium. Archiving and refinement of these presentations has already begun to inform new types of documentary productions that examine pertinent, global interdependency topics.

  2. NASA Information Technology Implementation Plan

    Science.gov (United States)

    2000-01-01

    NASA's Information Technology (IT) resources and IT support continue to be a growing and integral part of all NASA missions. Furthermore, the growing IT support requirements are becoming more complex and diverse. The following are a few examples of the growing complexity and diversity of NASA's IT environment. NASA is conducting basic IT research in the Intelligent Synthesis Environment (ISE) and Intelligent Systems (IS) Initiatives. IT security, infrastructure protection, and privacy of data are requiring more and more management attention and an increasing share of the NASA IT budget. Outsourcing of IT support is becoming a key element of NASA's IT strategy as exemplified by Outsourcing Desktop Initiative for NASA (ODIN) and the outsourcing of NASA Integrated Services Network (NISN) support. Finally, technology refresh is helping to provide improved support at lower cost. Recently the NASA Automated Data Processing (ADP) Consolidation Center (NACC) upgraded its bipolar technology computer systems with Complementary Metal Oxide Semiconductor (CMOS) technology systems. This NACC upgrade substantially reduced the hardware maintenance and software licensing costs, significantly increased system speed and capacity, and reduced customer processing costs by 11 percent.

  3. NASA technology investments: building America's future

    Science.gov (United States)

    Peck, Mason

    2013-03-01

    Investments in technology and innovation enable new space missions, stimulate the economy, contribute to the nation's global competitiveness, and inspire America's next generation of scientists, engineers and astronauts. Chief Technologist Mason Peck will provide an overview of NASA's ambitious program of space exploration that builds on new technologies, as well as proven capabilities, as it expands humanity's reach into the solar system while providing broadly-applicable benefits here on Earth. Peck also will discuss efforts of the Office of the Chief Technologist to coordinate the agency's overall technology portfolio, identifying development needs, ensuring synergy and reducing duplication, while furthering the national initiatives as outlined by President Obama's Office of Science and Technology Policy. By coordinating technology programs within NASA, Peck's office facilitates integration of available and new technology into operational systems that support specific human-exploration missions, science missions, and aeronautics. The office also engages other government agencies and the larger aerospace community to develop partnerships in areas of mutual interest that could lead to new breakthrough capabilities. NASA technology transfer translates our air and space missions into societal benefits for people everywhere. Peck will highlight NASA's use of technology transfer and commercialization to help American entrepreneurs and innovators develop technological solutions that stimulate the growth of the innovation economy by creating new products and services, new business and industries and high quality, sustainable jobs.

  4. HSI in NASA: From Research to Implementation

    Science.gov (United States)

    Whitmore, Mihriban; Plaga, John A.

    2016-01-01

    As NASA plans to send human explorers beyond low Earth orbit, onward to Mars and other destinations in the solar system, there will be new challenges to address in terms of HSI. These exploration missions will be quite different from the current and past missions such as Apollo, Shuttle, and International Space Station. The exploration crew will be more autonomous from ground mission control with delayed, and at times, no communication. They will have limited to no resupply for much longer mission durations. Systems to deliver and support extended human habitation at these destinations are extremely complex and unique, presenting new opportunities to employ HSI practices. In order to have an effective and affordable HSI implementation, both research and programmatic efforts are required. Currently, the HSI-related research at NASA is primarily in the area of space human factors and habitability. The purpose is to provide human health and performance countermeasures, knowledge, technologies, and tools to enable safe, reliable, and productive human space exploration beyond low Earth orbit, and update standards, requirements, and processes to verify and validate these requirements. In addition, HSI teams are actively engaged in technology development and demonstration efforts to influence the mission architecture and next-generation vehicle design. Finally, appropriate HSI references have been added to NASA' s systems engineering documentation, and an HSI Practitioner's Guide has been published to help design engineers consider HSI early and continuously in the acquisition process. These current and planned HSI-related activities at NASA will be discussed in this panel.

  5. Open Source and Design Thinking at NASA: A Vision for Future Software

    Science.gov (United States)

    Trimble, Jay

    2017-01-01

    NASA Mission Control Software for the Visualization of data has historically been closed, accessible only to small groups of flight controllers, often bound to a specific mission discipline such as flight dynamics, health and status or mission planning. Open Mission Control Technologies (MCT) provides new capability for NASA mission controllers and, by being fully open source, opens up NASA software for the visualization of mission data to broader communities inside and outside of NASA. Open MCT is the product of a design thinking process within NASA, using participatory design and design sprints to build a product that serves users.

  6. NASA Lunar and Planetary Mapping and Modeling

    Science.gov (United States)

    Day, B. H.; Law, E.

    2016-12-01

    NASA's Lunar and Planetary Mapping and Modeling Portals provide web-based suites of interactive visualization and analysis tools to enable mission planners, planetary scientists, students, and the general public to access mapped lunar data products from past and current missions for the Moon, Mars, and Vesta. New portals for additional planetary bodies are being planned. This presentation will recap significant enhancements to these toolsets during the past year and look forward to the results of the exciting work currently being undertaken. Additional data products and tools continue to be added to the Lunar Mapping and Modeling Portal (LMMP). These include both generalized products as well as polar data products specifically targeting potential sites for the Resource Prospector mission. Current development work on LMMP also includes facilitating mission planning and data management for lunar CubeSat missions, and working with the NASA Astromaterials Acquisition and Curation Office's Lunar Apollo Sample database in order to help better visualize the geographic contexts from which samples were retrieved. A new user interface provides, among other improvements, significantly enhanced 3D visualizations and navigation. Mars Trek, the project's Mars portal, has now been assigned by NASA's Planetary Science Division to support site selection and analysis for the Mars 2020 Rover mission as well as for the Mars Human Landing Exploration Zone Sites. This effort is concentrating on enhancing Mars Trek with data products and analysis tools specifically requested by the proposing teams for the various sites. Also being given very high priority by NASA Headquarters is Mars Trek's use as a means to directly involve the public in these upcoming missions, letting them explore the areas the agency is focusing upon, understand what makes these sites so fascinating, follow the selection process, and get caught up in the excitement of exploring Mars. The portals also serve as

  7. NASA Facts, The Viking Mission.

    Science.gov (United States)

    National Aeronautics and Space Administration, Washington, DC. Educational Programs Div.

    Presented is one of a series of publications of National Aeronautics and Space Administration (NASA) facts about the exploration of Mars. The Viking mission to Mars, consisting of two unmanned NASA spacecraft launched in August and September, 1975, is described. A description of the spacecraft and their paths is given. A diagram identifying the…

  8. NASA System Engineering Design Process

    Science.gov (United States)

    Roman, Jose

    2011-01-01

    This slide presentation reviews NASA's use of systems engineering for the complete life cycle of a project. Systems engineering is a methodical, disciplined approach for the design, realization, technical management, operations, and retirement of a system. Each phase of a NASA project is terminated with a Key decision point (KDP), which is supported by major reviews.

  9. NASA's Big Data Task Force

    Science.gov (United States)

    Holmes, C. P.; Kinter, J. L.; Beebe, R. F.; Feigelson, E.; Hurlburt, N. E.; Mentzel, C.; Smith, G.; Tino, C.; Walker, R. J.

    2017-12-01

    Two years ago NASA established the Ad Hoc Big Data Task Force (BDTF - https://science.nasa.gov/science-committee/subcommittees/big-data-task-force), an advisory working group with the NASA Advisory Council system. The scope of the Task Force included all NASA Big Data programs, projects, missions, and activities. The Task Force focused on such topics as exploring the existing and planned evolution of NASA's science data cyber-infrastructure that supports broad access to data repositories for NASA Science Mission Directorate missions; best practices within NASA, other Federal agencies, private industry and research institutions; and Federal initiatives related to big data and data access. The BDTF has completed its two-year term and produced several recommendations plus four white papers for NASA's Science Mission Directorate. This presentation will discuss the activities and results of the TF including summaries of key points from its focused study topics. The paper serves as an introduction to the papers following in this ESSI session.

  10. NASA Advanced Supercomputing Facility Expansion

    Science.gov (United States)

    Thigpen, William W.

    2017-01-01

    The NASA Advanced Supercomputing (NAS) Division enables advances in high-end computing technologies and in modeling and simulation methods to tackle some of the toughest science and engineering challenges facing NASA today. The name "NAS" has long been associated with leadership and innovation throughout the high-end computing (HEC) community. We play a significant role in shaping HEC standards and paradigms, and provide leadership in the areas of large-scale InfiniBand fabrics, Lustre open-source filesystems, and hyperwall technologies. We provide an integrated high-end computing environment to accelerate NASA missions and make revolutionary advances in science. Pleiades, a petaflop-scale supercomputer, is used by scientists throughout the U.S. to support NASA missions, and is ranked among the most powerful systems in the world. One of our key focus areas is in modeling and simulation to support NASA's real-world engineering applications and make fundamental advances in modeling and simulation methods.

  11. Technology Investments in the NASA Entry Systems Modeling Project

    Science.gov (United States)

    Barnhardt, Michael; Wright, Michael; Hughes, Monica

    2017-01-01

    The Entry Systems Modeling (ESM) technology development project, initiated in 2012 under NASAs Game Changing Development (GCD) Program, is engaged in maturation of fundamental research developing aerosciences, materials, and integrated systems products for entry, descent, and landing(EDL)technologies [1]. To date, the ESM project has published over 200 papers in these areas, comprising the bulk of NASAs research program for EDL modeling. This presentation will provide an overview of the projects successes and challenges, and an assessment of future investments in EDL modeling and simulation relevant to NASAs mission

  12. NASA/FAA North Texas Research Station Overview

    Science.gov (United States)

    Borchers, Paul F.

    2012-01-01

    NTX Research Staion: NASA research assets embedded in an interesting operational air transport environment. Seven personnel (2 civil servants, 5 contractors). ARTCC, TRACON, Towers, 3 air carrier AOCs(American, Eagle and Southwest), and 2 major airports all within 12 miles. Supports NASA Airspace Systems Program with research products at all levels (fundamental to system level). NTX Laboratory: 5000 sq ft purpose-built, dedicated, air traffic management research facility. Established data links to ARTCC, TRACON, Towers, air carriers, airport and NASA facilities. Re-configurable computer labs, dedicated radio tower, state-of-the-art equipment.

  13. Clear-sky irradiance simulation using GMAO products and its comparison to ground and CERES satellite observation

    Science.gov (United States)

    Ham, S. H.; Loeb, N. G.; Kato, S.; Rose, F. G.; Bosilovich, M. G.; Rutan, D. A.; Huang, X.; Collow, A.

    2017-12-01

    Global Modeling Assimilation Office (GMAO) GEOS assimilated datasets are used to describe temperature and humidity profiles in the Clouds and the Earth's Radiant Energy System (CERES) data processing. Given that advance versions of the assimilated data sets known as of Forward Processing (FP), FP Parallel (FPP), and Modern-Era Retrospective Analysis for Research and Applications version 2 (MERRA-2) datasets are available, we examine clear-sky irradiance calculation to see if accuracy is improved with these newer versions of GMAO datasets when their temperature and humidity profiles are used in computing irradiances. Two older versions, GEOS-5.2.0 and GEOS-5.4.1 are used for producing, respectively, Ed3 and Ed4 CERES data products. For the evaluation, CERES-derived TOA irradiances and observed ground-based surface irradiances are compared with the computed irradiances for clear skies identified by Moderate Resolution Imaging Spectroradiometer (MODIS). Surface type dependent spectral emissivity is taken from an observationally-based monthly gridded emissivity dataset. TOA longwave (LW) irradiances computed with GOES-5.2.0 temperature and humidity profiles are biased low, up to -5 Wm-2, compared to CERES-derived TOA longwave irradiance over tropical oceans. In contrast, computed longwave irradiances agree well with CERES observations with the biases less than 2 W m-2 when GOES-5.4.1, FP v5.13, or MERRA-2 temperature and humidity are used. The negative biases of the TOA LW irradiance computed with GOES-5.2.0 appear to be related to a wet bias at 500-850 hPa layer. This indicates that if the input of CERES algorithm switches from GOES-5.2.0 to FP v5.13 or MERRA-2, the bias in clear-sky longwave TOA fluxes over tropical oceans is expected to be smaller. At surface, downward LW irradiances computed with FP v5.13 and MERRA-2 are biased low, up to -10 Wm-2, compared to ground observations over tropical oceans. The magnitude of the bias in the longwave surface irradiances

  14. Productivity

    DEFF Research Database (Denmark)

    Spring, Martin; Johnes, Geraint; Hald, Kim Sundtoft

    Productivity is increasingly critical for developed economies. It has always been important: as Paul Krugman puts it, “Productivity isn’t everything, but in the long run it is almost everything. A country’s ability to improve its standard of living over time depends almost entirely on its ability...... to raise its output per worker”(Krugman, 1994). Analyses of productivity have, by and large, been the preserve of economists. Operations Management (OM) is rooted in a similar concern for the efficient use of scarce resources; Management Accounting (MA) is concerned with the institutionalised measurement...... and management of productivity. Yet the three perspectives are rarely connected. This paper is a sketch of a literature review seeking to identify, contrast and reconcile these three perspectives. In so doing, it aims to strengthen the connections between policy and managerial analyses of productivity....

  15. Computer graphics aid mission operations. [NASA missions

    Science.gov (United States)

    Jeletic, James F.

    1990-01-01

    The application of computer graphics techniques in NASA space missions is reviewed. Telemetric monitoring of the Space Shuttle and its components is discussed, noting the use of computer graphics for real-time visualization problems in the retrieval and repair of the Solar Maximum Mission. The use of the world map display for determining a spacecraft's location above the earth and the problem of verifying the relative position and orientation of spacecraft to celestial bodies are examined. The Flight Dynamics/STS Three-dimensional Monitoring System and the Trajectroy Computations and Orbital Products System world map display are described, emphasizing Space Shuttle applications. Also, consideration is given to the development of monitoring systems such as the Shuttle Payloads Mission Monitoring System and the Attitude Heads-Up Display and the use of the NASA-Goddard Two-dimensional Graphics Monitoring System during Shuttle missions and to support the Hubble Space Telescope.

  16. NASA Collaborative Design Processes

    Science.gov (United States)

    Jones, Davey

    2017-01-01

    This is Block 1, the first evolution of the world's most powerful and versatile rocket, the Space Launch System, built to return humans to the area around the moon. Eventually, larger and even more powerful and capable configurations will take astronauts and cargo to Mars. On the sides of the rocket are the twin solid rocket boosters that provide more than 75 percent during liftoff and burn for about two minutes, after which they are jettisoned, lightening the load for the rest of the space flight. Four RS-25 main engines provide thrust for the first stage of the rocket. These are the world's most reliable rocket engines. The core stage is the main body of the rocket and houses the fuel for the RS-25 engines, liquid hydrogen and liquid oxygen, and the avionics, or "brain" of the rocket. The core stage is all new and being manufactured at NASA's "rocket factory," Michoud Assembly Facility near New Orleans. The Launch Vehicle Stage Adapter, or LVSA, connects the core stage to the Interim Cryogenic Propulsion Stage. The Interim Cryogenic Propulsion Stage, or ICPS, uses one RL-10 rocket engine and will propel the Orion spacecraft on its deep-space journey after first-stage separation. Finally, the Orion human-rated spacecraft sits atop the massive Saturn V-sized launch vehicle. Managed out of Johnson Space Center in Houston, Orion is the first spacecraft in history capable of taking humans to multiple destinations within deep space. 2) Each element of the SLS utilizes collaborative design processes to achieve the incredible goal of sending human into deep space. Early phases are focused on feasibility and requirements development. Later phases are focused on detailed design, testing, and operations. There are 4 basic phases typically found in each phase of development.

  17. NASA Robotic Neurosurgery Testbed

    Science.gov (United States)

    Mah, Robert

    1997-01-01

    The detection of tissue interface (e.g., normal tissue, cancer, tumor) has been limited clinically to tactile feedback, temperature monitoring, and the use of a miniature ultrasound probe for tissue differentiation during surgical operations, In neurosurgery, the needle used in the standard stereotactic CT or MRI guided brain biopsy provides no information about the tissue being sampled. The tissue sampled depends entirely upon the accuracy with which the localization provided by the preoperative CT or MRI scan is translated to the intracranial biopsy site. In addition, no information about the tissue being traversed by the needle (e.g., a blood vessel) is provided. Hemorrhage due to the biopsy needle tearing a blood vessel within the brain is the most devastating complication of stereotactic CT/MRI guided brain biopsy. A robotic neurosurgery testbed has been developed at NASA Ames Research Center as a spin-off of technologies from space, aeronautics and medical programs. The invention entitled "Robotic Neurosurgery Leading to Multimodality Devices for Tissue Identification" is nearing a state ready for commercialization. The devices will: 1) improve diagnostic accuracy and precision of general surgery, with near term emphasis on stereotactic brain biopsy, 2) automate tissue identification, with near term emphasis on stereotactic brain biopsy, to permit remote control of the procedure, and 3) reduce morbidity for stereotactic brain biopsy. The commercial impact from this work is the potential development of a whole new generation of smart surgical tools to increase the safety, accuracy and efficiency of surgical procedures. Other potential markets include smart surgical tools for tumor ablation in neurosurgery, general exploratory surgery, prostate cancer surgery, and breast cancer surgery.

  18. NASA Remote Sensing Technologies for Improved Integrated Water Resources Management

    Science.gov (United States)

    Toll, D. L.; Doorn, B.; Searby, N. D.; Entin, J. K.; Lee, C. M.

    2014-12-01

    This presentation will emphasize NASA's water research, applications, and capacity building activities using satellites and models to contribute to water issues including water availability, transboundary water, flooding and droughts for improved Integrated Water Resources Management (IWRM). NASA's free and open exchange of Earth data observations and products helps engage and improve integrated observation networks and enables national and multi-national regional water cycle research and applications that are especially useful in data sparse regions of most developing countries. NASA satellite and modeling products provide a huge volume of valuable data extending back over 50 years across a broad range of spatial (local to global) and temporal (hourly to decadal) scales and include many products that are available in near real time (see earthdata.nasa.gov). To further accomplish these objectives NASA works to actively partner with public and private groups (e.g. federal agencies, universities, NGO's, and industry) in the U.S. and international community to ensure the broadest use of its satellites and related information and products and to collaborate with regional end users who know the regions and their needs best. Key objectives of this talk will highlight NASA's Water Resources and Capacity Building Programs with their objective to discover and demonstrate innovative uses and practical benefits of NASA's advanced system technologies for improved water management in national and international applications. The event will help demonstrate the strong partnering and the use of satellite data to provide synoptic and repetitive spatial coverage helping water managers' deal with complex issues. The presentation will also demonstrate how NASA is a major contributor to water tasks and activities in GEOSS (Global Earth Observing System of Systems) and GEO (Group on Earth Observations).

  19. Software process improvement in the NASA software engineering laboratory

    Science.gov (United States)

    Mcgarry, Frank; Pajerski, Rose; Page, Gerald; Waligora, Sharon; Basili, Victor; Zelkowitz, Marvin

    1994-01-01

    The Software Engineering Laboratory (SEL) was established in 1976 for the purpose of studying and measuring software processes with the intent of identifying improvements that could be applied to the production of ground support software within the Flight Dynamics Division (FDD) at the National Aeronautics and Space Administration (NASA)/Goddard Space Flight Center (GSFC). The SEL has three member organizations: NASA/GSFC, the University of Maryland, and Computer Sciences Corporation (CSC). The concept of process improvement within the SEL focuses on the continual understanding of both process and product as well as goal-driven experimentation and analysis of process change within a production environment.

  20. Update on NASA Microelectronics Activities

    Science.gov (United States)

    Label, Kenneth A.; Sampson, Michael J.; Casey, Megan; Lauenstein, Jean-Marie

    2017-01-01

    Mission Statement: The NASA Electronic Parts and Packaging (NEPP) Program provides NASA's leadership for developing and maintaining guidance for the screening, qualification, test. and usage of EEE parts by NASA as well as in collaboration with other government Agencies and industry. NASA Space Technology Mission Directorate (STMD) "STMD rapidly develops, demonstrates, and infuses revolutionary, high-payoff technologies through transparent, collaborative partnerships, expanding the boundaries of the aerospace enterprise." Mission Statement: The Space Environments Testing Management Office (SETMO) will identify, prioritize, and manage a select suite of Agency key capabilities/assets that are deemed to be essential to the future needs of NASA or the nation, including some capabilities that lack an adequate business base over the budget horizon. NESC mission is to perform value-added independent testing, analysis, and assessments of NASA's high-risk projects to ensure safety and mission success. NASA Space Environments and Avionics Fellows as well as Radiation and EEE Parts Community of Practice (CoP) leads.

  1. Through the Eyes of NASA: NASA's 2017 Eclipse Education Progam

    Science.gov (United States)

    Mayo, L.

    2017-12-01

    Over the last three years, NASA has been developing plans to bring the August 21st total solar eclipse to the nation, "as only NASA can", leveraging its considerable space assets, technology, scientists, and its unmatched commitment to science education. The eclipse, long anticipated by many groups, represents the largest Big Event education program that NASA has ever undertaken. It is the latest in a long string of successful Big Event international celebrations going back two decades including both transits of Venus, three solar eclipses, solar maximum, and mission events such as the MSL/Curiosity landing on Mars, and the launch of the Lunar Reconnaissance Orbiter (LRO) to name a few. This talk will detail NASA's program development methods, strategic partnerships, and strategies for using this celestial event to engage the nation and improve overall science literacy.

  2. Benefits for Health; NASA

    Science.gov (United States)

    Perchonok, Michele

    2014-01-01

    The goal of HRP is to provide human health and performance countermeasures, knowledge, technologies, and tools to enable safe, reliable, and productive human space exploration. Presentation discusses (1) Bone Health: Vitamin D, Fish Consumption and Exercise (2) Medical Support in Remote Areas (3) ISS Ultrasound 4) Dry electrode EKG System (5) Environmental Factors and Psychological Health.

  3. The NASA Integrated Information Technology Architecture

    Science.gov (United States)

    Baldridge, Tim

    1997-01-01

    of IT systems, 3) the Technical Architecture: a common, vendor-independent framework for design, integration and implementation of IT systems and 4) the Product Architecture: vendor=specific IT solutions. The Systems Architecture is effectively a description of the end-user "requirements". Generalized end-user requirements are discussed and subsequently organized into specific mission and project functions. The Technical Architecture depicts the framework, and relationship, of the specific IT components that enable the end-user functionality as described in the Systems Architecture. The primary components as described in the Technical Architecture are: 1) Applications: Basic Client Component, Object Creation Applications, Collaborative Applications, Object Analysis Applications, 2) Services: Messaging, Information Broker, Collaboration, Distributed Processing, and 3) Infrastructure: Network, Security, Directory, Certificate Management, Enterprise Management and File System. This Architecture also provides specific Implementation Recommendations, the most significant of which is the recognition of IT as core to NASA activities and defines a plan, which is aligned with the NASA strategic planning processes, for keeping the Architecture alive and useful.

  4. NASA Applications of Molecular Nanotechnology

    Science.gov (United States)

    Globus, Al; Bailey, David; Han, Jie; Jaffe, Richard; Levit, Creon; Merkle, Ralph; Srivastava, Deepak

    1998-01-01

    Laboratories throughout the world are rapidly gaining atomically precise control over matter. As this control extends to an ever wider variety of materials, processes and devices, opportunities for applications relevant to NASA's missions will be created. This document surveys a number of future molecular nanotechnology capabilities of aerospace interest. Computer applications, launch vehicle improvements, and active materials appear to be of particular interest. We also list a number of applications for each of NASA's enterprises. If advanced molecular nanotechnology can be developed, almost all of NASA's endeavors will be radically improved. In particular, a sufficiently advanced molecular nanotechnology can arguably bring large scale space colonization within our grasp.

  5. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper Sixty Eight, Who is Managing Knowledge? The Implications for Knowledge Production and Management of Global Strategic Alliances in Knowledge-Dependent Industries

    Science.gov (United States)

    1998-03-01

    United States. Pittsburgh, PA: Carnegie Mellon University Press (August). Cohen, S.S., S . Halimi , and J. Zysman. 1986. "Institutions, Politics, and...San Marcos 333 S . Twin Oaks Valley Rd. San Marcos, CA 92096-0001 vgolich@csusm.edu Thomas E. Pinelli Technology & Distance Learning Officer NASA...1991; Chesnais, 1993; Cohen 1977; Cohen, Halimi , and Zysman, 1986 Crossland, 1975; Gillispie, 1980; Gilpin 1968; Golich

  6. NASA/JSC ISSLive!

    Science.gov (United States)

    Harris, Philip D.; Price, Jennifer B.; Khan, Ahmed; Severance, Mark T.

    2011-01-01

    Just 150 miles above us, the International Space Station (ISS) is orbiting. Each day, the astronauts on board perform a variety of activities from exercise, science experiments, and maintenance. Yet, many on the ground do not know about these daily activities. National Aeronautics Space Agency/ Johnson Space Center (NASA/JSC) innovation creation ISSLive! - an education project - is working to bridge this knowledge gap with traditional education channels such as schools, but also non-traditional channels with the non-technical everyday public. ISSLive! provides a website that seamlessly integrates planning and telemetry data, video feeds, 3D models, and iOS and android applications. Through the site, users are able to view astronauts daily schedules, in plain English alongside the original data. As an example, when an astronaut is working with a science experiment, a user will be able to read about the activity and for more detailed activities follow provided links to view more information all integrated into the same site. Live telemetry data from a predefined set can also be provided alongside the activities. For users to learn more, 3D models of the external and internal parts of the ISS are available, allowing users to explore the station and even select sensors, such as temperature, and view a real-time chart of the data. Even ground operations are modeled with a 3D mission control center, providing users information on the various flight control disciplines and showing live data that they would be monitoring. Some unique activities are also highlighted and have dedicated spaces to explore in more detail. Education is the focus of ISSLive!, even from the beginning when university students participated in the development process as part of their master s projects. Focus groups at a Houston school showed interest in the project and excitement towards including ISSLive! in their classroom. Through this inclusion, students' knowledge can be assessed with projects

  7. Overview of NASA's Earth Science Data Systems

    Science.gov (United States)

    McDonald, Kenneth

    2004-01-01

    For over the last 15 years, NASA's Earth Science Enterprise (ESE) has devoted a tremendous effort to design and build the Earth Observing System (EOS) Data and Information System (EOSDIS) to acquire, process, archive and distribute the data of the EOS series of satellites and other ESE missions and field programs. The development of EOSDIS began with an early prototype to support NASA data from heritage missions and progressed through a formal development process to today's system that supports the data from multiple missions including Landsat 7, Terra, Aqua, SORCE and ICESat. The system is deployed at multiple Distributed Active Archive Centers (DAACs) and its current holdings are approximately 4.5 petabytes. The current set of unique users requesting EOS data and information products exceeds 2 million. While EOSDIS has been the centerpiece of NASA's Earth Science Data Systems, other initiatives have augmented the services of EOSDIS and have impacted its evolution and the future directions of data systems within the ESE. ESDIS had an active prototyping effort and has continued to be involved in the activities of the Earth Science Technology Office (ESTO). In response to concerns from the science community that EOSDIS was too large and monolithic, the ESE initiated the Earth Science Information Partners (ESP) Federation Experiment that funded a series of projects to develop specialized products and services to support Earth science research and applications. Last year, the enterprise made 41 awards to successful proposals to the Research, Education and Applications Solutions Network (REASON) Cooperative Agreement Notice to continue and extend the ESP activity. The ESE has also sponsored a formulation activity called the Strategy for the Evolution of ESE Data Systems (SEEDS) to develop approaches and decision support processes for the management of the collection of data system and service providers of the enterprise. Throughout the development of its earth science

  8. Implementing NASA's Capability-Driven Approach: Insight into NASA's Processes for Maturing Exploration Systems

    Science.gov (United States)

    Williams-Byrd, Julie; Arney, Dale; Rodgers, Erica; Antol, Jeff; Simon, Matthew; Hay, Jason; Larman, Kevin

    2015-01-01

    NASA is engaged in transforming human spaceflight. The Agency is shifting from an exploration-based program with human activities focused on low Earth orbit (LEO) and targeted robotic missions in deep space to a more sustainable and integrated pioneering approach. Through pioneering, NASA seeks to address national goals to develop the capacity for people to work, learn, operate, live, and thrive safely beyond the Earth for extended periods of time. However, pioneering space involves more than the daunting technical challenges of transportation, maintaining health, and enabling crew productivity for long durations in remote, hostile, and alien environments. This shift also requires a change in operating processes for NASA. The Agency can no longer afford to engineer systems for specific missions and destinations and instead must focus on common capabilities that enable a range of destinations and missions. NASA has codified a capability driven approach, which provides flexible guidance for the development and maturation of common capabilities necessary for human pioneers beyond LEO. This approach has been included in NASA policy and is captured in the Agency's strategic goals. It is currently being implemented across NASA's centers and programs. Throughout 2014, NASA engaged in an Agency-wide process to define and refine exploration-related capabilities and associated gaps, focusing only on those that are critical for human exploration beyond LEO. NASA identified 12 common capabilities ranging from Environmental Control and Life Support Systems to Robotics, and established Agency-wide teams or working groups comprised of subject matter experts that are responsible for the maturation of these exploration capabilities. These teams, called the System Maturation Teams (SMTs) help formulate, guide and resolve performance gaps associated with the identified exploration capabilities. The SMTs are defining performance parameters and goals for each of the 12 capabilities

  9. LP DAAC MEaSUREs Project Artifact Tracking Via the NASA Earthdata Collaboration Environment

    Science.gov (United States)

    Bennett, S. D.

    2015-12-01

    The Land Processes Distributed Active Archive Center (LP DAAC) is a NASA Earth Observing System (EOS) Data and Information System (EOSDIS) DAAC that supports selected EOS Community non-standard data products such as the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Emissivity Database (GED), and also supports NASA Earth Science programs such as Making Earth System Data Records for Use in Research Environments (MEaSUREs) to contribute in providing long-term, consistent, and mature data products. As described in The LP DAAC Project Lifecycle Plan (Daucsavage, J.; Bennett, S., 2014), key elements within the Project Inception Phase fuse knowledge between NASA stakeholders, data producers, and NASA data providers. To support and deliver excellence for NASA data stewardship, and to accommodate long-tail data preservation with Community and MEaSUREs products, the LP DAAC is utilizing NASA's own Earthdata Collaboration Environment to bridge stakeholder communication divides. By leveraging a NASA supported platform, this poster describes how the Atlassian Confluence software combined with a NASA URS/Earthdata support can maintain each project's members, status, documentation, and artifact checklist. Furthermore, this solution provides a gateway for project communities to become familiar with NASA clients, as well as educating the project's NASA DAAC Scientists for NASA client distribution.

  10. Industrial and Systems Engineering Applications in NASA

    Science.gov (United States)

    Shivers, Charles H.

    2006-01-01

    A viewgraph presentation on the many applications of Industrial and Systems Engineering used for safe NASA missions is shown. The topics include: 1) NASA Information; 2) Industrial Engineering; 3) Systems Engineering; and 4) Major NASA Programs.

  11. NASA 3D Models: Cassini

    Data.gov (United States)

    National Aeronautics and Space Administration — Cassini spacecraft from SPACE rendering package, built by Michael Oberle under NASA contract at JPL. Includes orbiter only, Huygens probe detached. Accurate except...

  12. NASA: Investing in Our Future

    Science.gov (United States)

    1992-01-01

    A short explanation of NASA's accomplishments and goals are discussed in this video. Space Station Freedom, lunar bases, manned Mars mission, and robotic spacecrafts to explore other worlds are briefly described.

  13. NASA's computer science research program

    Science.gov (United States)

    Larsen, R. L.

    1983-01-01

    Following a major assessment of NASA's computing technology needs, a new program of computer science research has been initiated by the Agency. The program includes work in concurrent processing, management of large scale scientific databases, software engineering, reliable computing, and artificial intelligence. The program is driven by applications requirements in computational fluid dynamics, image processing, sensor data management, real-time mission control and autonomous systems. It consists of university research, in-house NASA research, and NASA's Research Institute for Advanced Computer Science (RIACS) and Institute for Computer Applications in Science and Engineering (ICASE). The overall goal is to provide the technical foundation within NASA to exploit advancing computing technology in aerospace applications.

  14. NASA 3D Models: Aqua

    Data.gov (United States)

    National Aeronautics and Space Administration — Aqua, Latin for water, is a NASA Earth Science satellite mission named for the large amount of information that the mission is collecting about the Earth's water...

  15. NASA 3D Models: Terra

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA launched the Earth Observing System's flagship satellite Terra, named for Earth, on December 18, 1999. Terra has been collecting data about Earth's changing...

  16. NASA 3D Models: TRMM

    Data.gov (United States)

    National Aeronautics and Space Administration — The Tropical Rainfall Measuring Mission (TRMM) is a joint mission between NASA and the Japan Aerospace Exploration Agency (JAXA) designed to monitor and study...

  17. NASA 3D Models: SORCE

    Data.gov (United States)

    National Aeronautics and Space Administration — The Solar Radiation and Climate Experiment (SORCE) is a NASA-sponsored satellite mission that is providing state-of-the-art measurements of incoming x-ray,...

  18. NASA Technical Reports Server (NTRS)

    Data.gov (United States)

    National Aeronautics and Space Administration — The NTRS is a valuable resource for researchers, students, educators, and the public to access NASA's current and historical technical literature and engineering...

  19. NASA's Plan for SDLS Testing

    Science.gov (United States)

    Bailey, Brandon

    2015-01-01

    The Space Data Link Security (SDLS) Protocol is a Consultative Committee for Space Data Systems (CCSDS) standard which extends the known Data Link protocols to secure data being sent over a space link by providing confidentiality and integrity services. This plan outlines the approach by National Aeronautics Space Administration (NASA) in performing testing of the SDLS protocol using a prototype based on an existing NASA missions simulator.

  20. NASA as a Convener: Government, Academic and Industry Collaborations Through the NASA Human Health and Performance Center

    Science.gov (United States)

    Davis, Jeffrey R.; Richard, Elizabeth E.

    2011-01-01

    in Biomimicry, NASA and the FAA Center of Excellence for Commercial Space Flight for collaborative projects, NASA and the FDA concerning automatic external defibrillators, and NASA and Tufts University for an education pilot. These and other collaborations will be detailed in the paper demonstrating that a government-sponsored convening entity (the NHHPC) can facilitate industry, academic, and non-profit collaborations for products of mutual benefit.

  1. NASA Airborne Astronomy Ambassadors (AAA) Professional Development and NASA Connections

    Science.gov (United States)

    Backman, D. E.; Clark, C.; Harman, P. K.

    2017-12-01

    NASA's Airborne Astronomy Ambassadors (AAA) program is a three-part professional development (PD) experience for high school physics, astronomy, and earth science teachers. AAA PD consists of: (1) blended learning via webinars, asynchronous content learning, and in-person workshops, (2) a STEM immersion experience at NASA Armstrong's B703 science research aircraft facility in Palmdale, California, and (3) ongoing opportunities for connection with NASA astrophysics and planetary science Subject Matter Experts (SMEs). AAA implementation in 2016-18 involves partnerships between the SETI Institute and seven school districts in northern and southern California. AAAs in the current cohort were selected by the school districts based on criteria developed by AAA program staff working with WestEd evaluation consultants. The selected teachers were then randomly assigned by WestEd to a Group A or B to support controlled testing of student learning. Group A completed their PD during January - August 2017, then participated in NASA SOFIA science flights during fall 2017. Group B will act as a control during the 2017-18 school year, then will complete their professional development and SOFIA flights during 2018. A two-week AAA electromagnetic spectrum and multi-wavelength astronomy curriculum aligned with the Science Framework for California Public Schools and Next Generation Science Standards was developed by program staff for classroom delivery. The curriculum (as well as the AAA's pre-flight PD) capitalizes on NASA content by using "science snapshot" case studies regarding astronomy research conducted by SOFIA. AAAs also interact with NASA SMEs during flight weeks and will translate that interaction into classroom content. The AAA program will make controlled measurements of student gains in standards-based learning plus changes in student attitudes towards STEM, and observe & record the AAAs' implementation of curricular changes. Funded by NASA: NNX16AC51

  2. NASA software documentation standard software engineering program

    Science.gov (United States)

    1991-01-01

    The NASA Software Documentation Standard (hereinafter referred to as Standard) can be applied to the documentation of all NASA software. This Standard is limited to documentation format and content requirements. It does not mandate specific management, engineering, or assurance standards or techniques. This Standard defines the format and content of documentation for software acquisition, development, and sustaining engineering. Format requirements address where information shall be recorded and content requirements address what information shall be recorded. This Standard provides a framework to allow consistency of documentation across NASA and visibility into the completeness of project documentation. This basic framework consists of four major sections (or volumes). The Management Plan contains all planning and business aspects of a software project, including engineering and assurance planning. The Product Specification contains all technical engineering information, including software requirements and design. The Assurance and Test Procedures contains all technical assurance information, including Test, Quality Assurance (QA), and Verification and Validation (V&V). The Management, Engineering, and Assurance Reports is the library and/or listing of all project reports.

  3. NASA Net Zero Energy Buildings Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Pless, S.; Scheib, J.; Torcellini, P.; Hendron, B.; Slovensky, M.

    2014-10-01

    In preparation for the time-phased net zero energy requirement for new federal buildings starting in 2020, set forth in Executive Order 13514, NASA requested that the National Renewable Energy Laboratory (NREL) to develop a roadmap for NASA's compliance. NASA detailed a Statement of Work that requested information on strategic, organizational, and tactical aspects of net zero energy buildings. In response, this document presents a high-level approach to net zero energy planning, design, construction, and operations, based on NREL's first-hand experience procuring net zero energy construction, and based on NREL and other industry research on net zero energy feasibility. The strategic approach to net zero energy starts with an interpretation of the executive order language relating to net zero energy. Specifically, this roadmap defines a net zero energy acquisition process as one that sets an aggressive energy use intensity goal for the building in project planning, meets the reduced demand goal through energy efficiency strategies and technologies, then adds renewable energy in a prioritized manner, using building-associated, emission- free sources first, to offset the annual energy use required at the building; the net zero energy process extends through the life of the building, requiring a balance of energy use and production in each calendar year.

  4. Computational Nanoelectronics and Nanotechnology at NASA ARC

    Science.gov (United States)

    Saini, Subhash

    1998-01-01

    Both physical and economic considerations indicate that the scaling era of CMOS will run out of steam around the year 2010. However, physical laws also indicate that it is possible to compute at a rate of a billion times present speeds with the expenditure of only one Watt of electrical power. NASA has long-term needs where ultra-small semiconductor devices are needed for critical applications: high performance, low power, compact computers for intelligent autonomous vehicles and Petaflop computing technolpgy are some key examples. To advance the design, development, and production of future generation micro- and nano-devices, IT Modeling and Simulation Group has been started at NASA Ames with a goal to develop an integrated simulation environment that addresses problems related to nanoelectronics and molecular nanotecnology. Overview of nanoelectronics and nanotechnology research activities being carried out at Ames Research Center will be presented. We will also present the vision and the research objectives of the IT Modeling and Simulation Group including the applications of nanoelectronic based devices relevant to NASA missions.

  5. NASA CYGNSS Mission Overview

    Science.gov (United States)

    Ruf, C. S.; Balasubramaniam, R.; Gleason, S.; McKague, D. S.; O'Brien, A.

    2017-12-01

    The CYGNSS constellation of eight satellites was successfully launched on 15 December 2016 into a low inclination (tropical) Earth orbit. Each satellite carries a four-channel bi-static radar receiver that measures GPS signals scattered by the ocean, from which ocean surface roughness, near surface wind speed, and air-sea latent heat flux are estimated. The measurements are unique in several respects, most notably in their ability to penetrate through all levels of precipitation, made possible by the low frequency at which GPS operates, and in the frequent sampling of tropical cyclone intensification and of the diurnal cycle of winds, made possible by the large number of satellites. Engineering commissioning of the constellation was successfully completed in March 2017 and the mission is currently in the early phase of science operations. Level 2 science data products have been developed for near surface (10 m referenced) ocean wind speed, ocean surface roughness (mean square slope) and latent heat flux. Level 3 gridded versions of the L2 products have also been developed. A set of Level 4 products have also been developed specifically for direct tropical cyclone overpasses. These include the storm intensity (peak sustained winds) and size (radius of maximum winds), its extent (34, 50 and 64 knot wind radii), and its integrated kinetic energy. Assimilation of CYGNSS L2 wind speed data into the HWRF hurricane weather prediction model has also been developed. An overview and the current status of the mission will be presented, together with highlights of early on-orbit performance and scientific results.

  6. NASA Risk Management Handbook. Version 1.0

    Science.gov (United States)

    Dezfuli, Homayoon; Benjamin, Allan; Everett, Christopher; Maggio, Gaspare; Stamatelatos, Michael; Youngblood, Robert; Guarro, Sergio; Rutledge, Peter; Sherrard, James; Smith, Curtis; hide

    2011-01-01

    The purpose of this handbook is to provide guidance for implementing the Risk Management (RM) requirements of NASA Procedural Requirements (NPR) document NPR 8000.4A, Agency Risk Management Procedural Requirements [1], with a specific focus on programs and projects, and applying to each level of the NASA organizational hierarchy as requirements flow down. This handbook supports RM application within the NASA systems engineering process, and is a complement to the guidance contained in NASA/SP-2007-6105, NASA Systems Engineering Handbook [2]. Specifically, this handbook provides guidance that is applicable to the common technical processes of Technical Risk Management and Decision Analysis established by NPR 7123.1A, NASA Systems Engineering Process and Requirements [3]. These processes are part of the \\Systems Engineering Engine. (Figure 1) that is used to drive the development of the system and associated work products to satisfy stakeholder expectations in all mission execution domains, including safety, technical, cost, and schedule. Like NPR 7123.1A, NPR 8000.4A is a discipline-oriented NPR that intersects with product-oriented NPRs such as NPR 7120.5D, NASA Space Flight Program and Project Management Requirements [4]; NPR 7120.7, NASA Information Technology and Institutional Infrastructure Program and Project Management Requirements [5]; and NPR 7120.8, NASA Research and Technology Program and Project Management Requirements [6]. In much the same way that the NASA Systems Engineering Handbook is intended to provide guidance on the implementation of NPR 7123.1A, this handbook is intended to provide guidance on the implementation of NPR 8000.4A. 1.2 Scope and Depth This handbook provides guidance for conducting RM in the context of NASA program and project life cycles, which produce derived requirements in accordance with existing systems engineering practices that flow down through the NASA organizational hierarchy. The guidance in this handbook is not meant

  7. Overview of NASA Langley's Systems Analysis Capabilities

    Science.gov (United States)

    Cavanaugh, Stephen; Kumar, Ajay; Brewer, Laura; Kimmel, Bill; Korte, John; Moul, Tom

    2006-01-01

    The Systems Analysis and Concepts Directorate (SACD) has been in the systems analysis business line supporting National Aeronautics and Space Administration (NASA) aeronautics, exploration, space operations and science since the 1960 s. Our current organization structure is shown in Figure 1. SACD mission can be summed up in the following statements: 1. We conduct advanced concepts for Agency decision makers and programs. 2. We provide aerospace systems analysis products such as mission architectures, advanced system concepts, system and technology trades, life cycle cost and risk analysis, system integration and pre-decisional sensitive information. 3. Our work enables informed technical, programmatic and budgetary decisions. SACD has a complement of 114 government employees and approximately 50 on-site contractors which is equally split between supporting aeronautics and exploration. SACD strives for technical excellence and creditability of the systems analysis products delivered to its customers. The Directorate office is continuously building market intelligence and working with other NASA centers and external partners to expand our business base. The Branches strive for technical excellence and credibility of our systems analysis products by seeking out existing and new partnerships that are critical for successful systems analysis. The Directorates long term goal is to grow the amount of science systems analysis business base.

  8. The NASA Commercial Crew Program (CCP) Mission Assurance Process

    Science.gov (United States)

    Canfield, Amy

    2016-01-01

    In 2010, NASA established the Commercial Crew Program in order to provide human access to the International Space Station and low earth orbit via the commercial (non-governmental) sector. A particular challenge to NASA has been how to determine the commercial providers transportation system complies with Programmatic safety requirements. The process used in this determination is the Safety Technical Review Board which reviews and approves provider submitted Hazard Reports. One significant product of the review is a set of hazard control verifications. In past NASA programs, 100 percent of these safety critical verifications were typically confirmed by NASA. The traditional Safety and Mission Assurance (SMA) model does not support the nature of the Commercial Crew Program. To that end, NASA SMA is implementing a Risk Based Assurance (RBA) process to determine which hazard control verifications require NASA authentication. Additionally, a Shared Assurance Model is also being developed to efficiently use the available resources to execute the verifications. This paper will describe the evolution of the CCP Mission Assurance process from the beginning of the Program to its current incarnation. Topics to be covered include a short history of the CCP; the development of the Programmatic mission assurance requirements; the current safety review process; a description of the RBA process and its products and ending with a description of the Shared Assurance Model.

  9. NASA Work Breakdown Structure (WBS) Handbook

    Science.gov (United States)

    Terrell, Stefanie M.

    2018-01-01

    The purpose of this document is to provide program/project teams necessary instruction and guidance in the best practices for Work Breakdown Structure (WBS) and WBS dictionary development and use for project implementation and management control. This handbook can be used for all types of NASA projects and work activities including research, development, construction, test and evaluation, and operations. The products of these work efforts may be hardware, software, data, or service elements (alone or in combination). The aim of this document is to assist project teams in the development of effective work breakdown structures that provide a framework of common reference for all project elements.

  10. NASA-FAA-NOAA Partnering Strategy

    Science.gov (United States)

    Colantonio, Ron

    2003-01-01

    This viewgraph presentation provides an overview of NASA-FAA (Federal Aviation Administration) and NOAA (National Oceanic and Atmospheric Administration) collaboration efforts particularly in the area of aviation and aircraft safety. Five technology areas are being jointly by these agencies: (1) aviation weather information; (2) weather products; (3) automet technologies; (4) forward looking weather sensors and (5) turbulence controls and mitigation systems. Memorandum of Agreements (MOU) between these agencies are reviewed. A general review of the pros and pitfalls of inter-agency collaborations is also presented.

  11. NASA Operational Environment Team (NOET): NASA's key to environmental technology

    Science.gov (United States)

    Cook, Beth

    1993-01-01

    NASA has stepped forward to face the environmental challenge to eliminate the use of Ozone-Layer Depleting Substances (OLDS) and to reduce our Hazardous Air Pollutants (HAP) by 50 percent in 1995. These requirements have been issued by the Clean Air Act, the Montreal Protocol, and various other legislative acts. A proactive group, the NASA Operational Environment Team or NOET, received its charter in April 1992 and was tasked with providing a network through which replacement activities and development experiences can be shared. This is a NASA-wide team which supports the research and development community by sharing information both in person and via a computerized network, assisting in specification and standard revisions, developing cleaner propulsion systems, and exploring environmentally-compliant alternatives to current processes.

  12. NASA's Impacts Towards Improving International Water Management Using Satellites

    Science.gov (United States)

    Toll, D. L.; Doorn, B.; Searby, N. D.; Entin, J. K.; Lawford, R. G.; Mohr, K. I.; Lee, C. M.

    2013-12-01

    Key objectives of the NASA's Water Resources and Capacity Building Programs are to discover and demonstrate innovative uses and practical benefits of NASA's advanced system technologies for improved water management. This presentation will emphasize NASA's water research, applications, and capacity building activities using satellites and models to contribute to water issues including water availability, transboundary water, flooding and droughts to international partners, particularly developing countries. NASA's free and open exchange of Earth data observations and products helps engage and improve integrated observation networks and enables national and multi-national regional water cycle research and applications that are especially useful in data sparse regions of most developing countries. NASA satellite and modeling products provide a huge volume of valuable data extending back over 50 years across a broad range of spatial (local to global) and temporal (hourly to decadal) scales and include many products that are available in near real time (see earthdata.nasa.gov). To further accomplish these objectives NASA works to actively partner with public and private groups (e.g. federal agencies, universities, NGO's, and industry) in the U.S. and internationally to ensure the broadest use of its satellites and related information and products and to collaborate with regional end users who know the regions and their needs best. The event will help demonstrate the strong partnering and the use of satellite data to provide synoptic and repetitive spatial coverage helping water managers' deal with complex issues. This presentation will outline and describe NASA's international water related research, applications and capacity building programs' efforts to address developing countries critical water challenges in Asia, African and Latin America. This will specifically highlight impacts and case studies from NASA's programs in Water Resources (e.g., drought, snow

  13. The NASA risk management program

    International Nuclear Information System (INIS)

    Buchbinder, B.; Philipson, L.L.

    1989-01-01

    This paper reports that the NASA Risk Management Program has been established to ensure the appropriate application of risk-based procedures in support of the elimination, reduction, or acceptance of significant safety risks of concern in NASA. The term appropriate is emphasized, in that the particular procedures applied to each given risk are to reflect its character and prioritized importance, the technological and economic feasibility of its treatment. A number of key documents have been produced in support of this implementation. Databases, risk analysis tools, and risk communication procedures requisite to the execution of the risk management functions also are being developed or documented. Several risk management applications have been made and a comprehensive application to a major new NASA program is underway. This paper summarizes the development and current status of the NASA Risk Management Program. Some principal actions that have been carried out in NASA in consonance with the program are noted particularly, and views are presented on the program's likely future directions

  14. NASA Microgravity Materials Science Conference

    Science.gov (United States)

    Gillies, D. C. (Compiler); McCauley, D. E. (Compiler)

    1999-01-01

    The Microgravity Materials Science Conference was held July 14-16, 1998 at the Von Braun Center in Huntsville, AL. It was organized by the Microgravity Materials Science Discipline Working Group, sponsored by the Microgravity Research Division at NASA Headquarters, and hosted by the NASA Marshall Space Flight Center and the Alliance for Microgravity Materials Science and Applications. It was the third NASA conference of this type in the microgravity materials science discipline. The microgravity science program sponsored approximately 125 investigations and 100 principal investigators in FY98, almost all of whom made oral or poster presentations at this conference. The conference's purpose was to inform the materials science community of research opportunities in reduced gravity in preparation for a NASA Research Announcement scheduled for release in late 1998 by the Microgravity Research Division at NASA Headquarters. The conference was aimed at materials science researchers from academia, industry, and government. A tour of the Marshall Space Flight Center microgravity research facilities was held on July 16, 1998. This volume is comprised of the research reports submitted by the principal investigators after the conference.

  15. NASA's Astronant Family Support Office

    Science.gov (United States)

    Beven, Gary; Curtis, Kelly D.; Holland, Al W.; Sipes, Walter; VanderArk, Steve

    2014-01-01

    During the NASA-Mir program of the 1990s and due to the challenges inherent in the International Space Station training schedule and operations tempo, it was clear that a special focus on supporting families was a key to overall mission success for the ISS crewmembers pre-, in- and post-flight. To that end, in January 2001 the first Family Services Coordinator was hired by the Behavioral Health and Performance group at NASA JSC and matrixed from Medical Operations into the Astronaut Office's organization. The initial roles and responsibilities were driven by critical needs, including facilitating family communication during training deployments, providing mission-specific and other relevant trainings for spouses, serving as liaison for families with NASA organizations such as Medical Operations, NASA management and the Astronaut Office, and providing assistance to ensure success of an Astronaut Spouses Group. The role of the Family Support Office (FSO) has modified as the ISS Program matured and the needs of families changed. The FSO is currently an integral part of the Astronaut Office's ISS Operations Branch. It still serves the critical function of providing information to families, as well as being the primary contact for US and international partner families with resources at JSC. Since crews launch and return on Russian vehicles, the FSO has the added responsibility for coordinating with Flight Crew Operations, the families, and their guests for Soyuz launches, landings, and Direct Return to Houston post-flight. This presentation will provide a summary of the family support services provided for astronauts, and how they have changed with the Program and families the FSO serves. Considerations for future FSO services will be discussed briefly as NASA proposes one year missions and beyond ISS missions. Learning Objective: 1) Obtain an understanding of the reasons a Family Support Office was important for NASA. 2) Become familiar with the services provided for

  16. NASA Operational Environment Team (NOET) - NASA's key to environmental technology

    Science.gov (United States)

    Cook, Beth

    1993-01-01

    NOET is a NASA-wide team which supports the research and development community by sharing information both in person and via a computerized network, assisting in specification and standard revisions, developing cleaner propulsion systems, and exploring environmentally compliant alternatives to current processes. NOET's structure, dissemination of materials, electronic information, EPA compliance, specifications and standards, and environmental research and development are discussed.

  17. NASA'S Earth Science Data Stewardship Activities

    Science.gov (United States)

    Lowe, Dawn R.; Murphy, Kevin J.; Ramapriyan, Hampapuram

    2015-01-01

    NASA has been collecting Earth observation data for over 50 years using instruments on board satellites, aircraft and ground-based systems. With the inception of the Earth Observing System (EOS) Program in 1990, NASA established the Earth Science Data and Information System (ESDIS) Project and initiated development of the Earth Observing System Data and Information System (EOSDIS). A set of Distributed Active Archive Centers (DAACs) was established at locations based on science discipline expertise. Today, EOSDIS consists of 12 DAACs and 12 Science Investigator-led Processing Systems (SIPS), processing data from the EOS missions, as well as the Suomi National Polar Orbiting Partnership mission, and other satellite and airborne missions. The DAACs archive and distribute the vast majority of data from NASA’s Earth science missions, with data holdings exceeding 12 petabytes The data held by EOSDIS are available to all users consistent with NASA’s free and open data policy, which has been in effect since 1990. The EOSDIS archives consist of raw instrument data counts (level 0 data), as well as higher level standard products (e.g., geophysical parameters, products mapped to standard spatio-temporal grids, results of Earth system models using multi-instrument observations, and long time series of Earth System Data Records resulting from multiple satellite observations of a given type of phenomenon). EOSDIS data stewardship responsibilities include ensuring that the data and information content are reliable, of high quality, easily accessible, and usable for as long as they are considered to be of value.

  18. NASA Software Engineering Benchmarking Effort

    Science.gov (United States)

    Godfrey, Sally; Rarick, Heather

    2012-01-01

    Benchmarking was very interesting and provided a wealth of information (1) We did see potential solutions to some of our "top 10" issues (2) We have an assessment of where NASA stands with relation to other aerospace/defense groups We formed new contacts and potential collaborations (1) Several organizations sent us examples of their templates, processes (2) Many of the organizations were interested in future collaboration: sharing of training, metrics, Capability Maturity Model Integration (CMMI) appraisers, instructors, etc. We received feedback from some of our contractors/ partners (1) Desires to participate in our training; provide feedback on procedures (2) Welcomed opportunity to provide feedback on working with NASA

  19. NASA Pathways Internship: Spring 2016

    Science.gov (United States)

    Alvarez, Oscar, III

    2016-01-01

    I was selected to contribute to the Data Systems and Handling Branch under the Avionics Flight Systems Division at the Lyndon B. Johnson Space Center in Houston, Texas. There I used my knowledge from school, as well as my job experience from the military, to help me comprehend my assigned project and contribute to it. With help from my mentors, supervisors, colleagues, and an excellent NASA work environment, I was able to learn, as well as accomplish, a lot towards my project. Not only did I understand more about embedded systems, microcontrollers, and low-level programming, I also was given the opportunity to explore the NASA community.

  20. NASA Technology Readiness Level Definitions

    Science.gov (United States)

    Mcnamara, Karen M.

    2012-01-01

    This presentation will cover the basic Technology Readiness Level (TRL) definitions used by the National Aeronautics and Space Administration (NASA) and their specific wording. We will discuss how they are used in the NASA Project Life Cycle and their effectiveness in practice. We'll also discuss the recent efforts by the International Standards Organization (ISO) to develop a broadly acceptable set of TRL definitions for the international space community and some of the issues brought to light. This information will provide input for further discussion of the use of the TRL scale in manufacturing.

  1. NASA FY 2000 Accountability Report

    Science.gov (United States)

    2000-01-01

    This Accountability Report consolidates reports required by various statutes and summarizes NASA's program accomplishments and its stewardship over budget and financial resources. It is a culmination of NASA's management process, which begins with mission definition and program planning, continues with the formulation and justification of budgets for the President and Congress, and ends with scientific and engineering program accomplishments. The report covers activities from October 1, 1999, through September 30, 2000. Achievements are highlighted in the Statement of the Administrator and summarized in the Report.

  2. NASA, Engineering, and Swarming Robots

    Science.gov (United States)

    Leucht, Kurt

    2015-01-01

    This presentation is an introduction to NASA, to science and engineering, to biologically inspired robotics, and to the Swarmie ant-inspired robot project at KSC. This presentation is geared towards elementary school students, middle school students, and also high school students. This presentation is suitable for use in STEM (science, technology, engineering, and math) outreach events. The first use of this presentation will be on Oct 28, 2015 at Madison Middle School in Titusville, Florida where the author has been asked by the NASA-KSC Speakers Bureau to speak to the students about the Swarmie robots.

  3. NASA IMAGESEER: NASA IMAGEs for Science, Education, Experimentation and Research

    Science.gov (United States)

    Le Moigne, Jacqueline; Grubb, Thomas G.; Milner, Barbara C.

    2012-01-01

    A number of web-accessible databases, including medical, military or other image data, offer universities and other users the ability to teach or research new Image Processing techniques on relevant and well-documented data. However, NASA images have traditionally been difficult for researchers to find, are often only available in hard-to-use formats, and do not always provide sufficient context and background for a non-NASA Scientist user to understand their content. The new IMAGESEER (IMAGEs for Science, Education, Experimentation and Research) database seeks to address these issues. Through a graphically-rich web site for browsing and downloading all of the selected datasets, benchmarks, and tutorials, IMAGESEER provides a widely accessible database of NASA-centric, easy to read, image data for teaching or validating new Image Processing algorithms. As such, IMAGESEER fosters collaboration between NASA and research organizations while simultaneously encouraging development of new and enhanced Image Processing algorithms. The first prototype includes a representative sampling of NASA multispectral and hyperspectral images from several Earth Science instruments, along with a few small tutorials. Image processing techniques are currently represented with cloud detection, image registration, and map cover/classification. For each technique, corresponding data are selected from four different geographic regions, i.e., mountains, urban, water coastal, and agriculture areas. Satellite images have been collected from several instruments - Landsat-5 and -7 Thematic Mappers, Earth Observing-1 (EO-1) Advanced Land Imager (ALI) and Hyperion, and the Moderate Resolution Imaging Spectroradiometer (MODIS). After geo-registration, these images are available in simple common formats such as GeoTIFF and raw formats, along with associated benchmark data.

  4. Best Practices in NASA's Astrophysics Education and Public Outreach Projects

    Science.gov (United States)

    Hasan, H.; Smith, D.

    2015-11-01

    NASA's Astrophysics Education and Public Outreach (EPO) program has partnered scientists and educators since its inception almost twenty years ago, leading to authentic STEM experiences and products widely used by the education and outreach community. We present examples of best practices and representative projects. Keys to success include effective use of unique mission science/technology, attention to audience needs, coordination of effort, robust partnerships and publicly accessible repositories of EPO products. Projects are broadly targeted towards audiences in formal education, informal education, and community engagement. All NASA programs are evaluated for quality and impact. New technology is incorporated to engage young students being raised in the digital age. All projects focus on conveying the excitement of scientific discoveries from NASA's Astrophysics missions, advancing scientific literacy, and engaging students in science and technology careers.

  5. Materials Lifecycle and Environmental Consideration at NASA

    Science.gov (United States)

    Clark-Ingram, Marceia

    2010-01-01

    The aerospace community faces tremendous challenges with continued availability of existing material supply chains during the lifecycle of a program. Many obsolescence drivers affect the availability of materials: environmental safety ahd health regulations, vendor and supply economics, market sector demands,and natural disasters. Materials selection has become increasingly more critical when designing aerospace hardware. NASA and DoD conducted a workshop with subject matter experts to discuss issues and define solutions for materials selections during the lifecycle phases of a product/system/component. The three primary lifecycle phases were: Conceptualization/Design, Production & Sustainment, and End of life / Reclamation. Materials obsolescence and pollution prevention considerations were explored for the aforementioned lifecycle phases. The recommended solutions from the workshop are being presented.

  6. The economic impact of NASA R and D spending: Executive summary

    Science.gov (United States)

    Evans, M. K.

    1976-01-01

    An evaluation of the economic impact of NASA research and development programs is made. The methodology and the results revolve around the interrelationships existing between the demand and supply effects of increased research and development spending, in particular, NASA research and development spending. The INFORUM Inter-Industry Forecasing Model is used to measure the short-run economic impact of alternative levels of NASA expenditures for 1975. An aggregate production function approach is used to develop the data series necessary to measure the impact of NASA research and development spending, and other determinants of technological progress, on the rate of growth in productivity of the U. S. economy. The measured relationship between NASA research and development spending and technological progress is simulated in the Chase Macroeconometric Model to measure the immediate, intermediate, and long-run economic impact of increased NASA research and development spending over a sustained period.

  7. Fission Power System Technology for NASA Exploration Missions

    Science.gov (United States)

    Mason, Lee; Houts, Michael

    2011-01-01

    Under the NASA Exploration Technology Development Program, and in partnership with the Department of Energy (DOE), NASA is conducting a project to mature Fission Power System (FPS) technology. A primary project goal is to develop viable system options to support future NASA mission needs for nuclear power. The main FPS project objectives are as follows: 1) Develop FPS concepts that meet expected NASA mission power requirements at reasonable cost with added benefits over other options. 2) Establish a hardware-based technical foundation for FPS design concepts and reduce overall development risk. 3) Reduce the cost uncertainties for FPS and establish greater credibility for flight system cost estimates. 4) Generate the key products to allow NASA decisionmakers to consider FPS as a preferred option for flight development. In order to achieve these goals, the FPS project has two main thrusts: concept definition and risk reduction. Under concept definition, NASA and DOE are performing trade studies, defining requirements, developing analytical tools, and formulating system concepts. A typical FPS consists of the reactor, shield, power conversion, heat rejection, and power management and distribution (PMAD). Studies are performed to identify the desired design parameters for each subsystem that allow the system to meet the requirements with reasonable cost and development risk. Risk reduction provides the means to evaluate technologies in a laboratory test environment. Non-nuclear hardware prototypes are built and tested to verify performance expectations, gain operating experience, and resolve design uncertainties.

  8. Power beaming research at NASA

    Science.gov (United States)

    Rather, John D. G.

    1992-01-01

    NASA's current research activities to evaluate laser power beaming systems are summarized with regard to their applications of greatest interest. Key technical certainties and uncertainties pertaining to laser power beaming systems appropriate for space applications are quantified. A path of development is presented that includes maturation of key technology components for reliable laser and millimeter wave power beaming systems during the 1990s.

  9. NASA energy technology applications program

    Energy Technology Data Exchange (ETDEWEB)

    1980-07-05

    The NASA Energy Technology Applications Program is reviewed. This program covers the following points: 1. wind generation of electricity; 2. photovoltaic solar cells; 3. satellite power systems; 4. direct solar heating and cooling; 5. solar thermal power plants; 6. energy storage; 7. advanced ground propulsion; 8. stationary on-site power supply; 9. advanced coal extraction; 10. magnetic heat pump; 11. aeronautics.

  10. Continuous Risk Management at NASA

    Science.gov (United States)

    Hammer, Theodore F.; Rosenberg, Linda

    1999-01-01

    NPG 7120.5A, "NASA Program and Project Management Processes and Requirements" enacted in April, 1998, requires that "The program or project manager shall apply risk management principles..." The Software Assurance Technology Center (SATC) at NASA GSFC has been tasked with the responsibility for developing and teaching a systems level course for risk management that provides information on how to comply with this edict. The course was developed in conjunction with the Software Engineering Institute at Carnegie Mellon University, then tailored to the NASA systems community. This presentation will briefly discuss the six functions for risk management: (1) Identify the risks in a specific format; (2) Analyze the risk probability, impact/severity, and timeframe; (3) Plan the approach; (4) Track the risk through data compilation and analysis; (5) Control and monitor the risk; (6) Communicate and document the process and decisions. This risk management structure of functions has been taught to projects at all NASA Centers and is being successfully implemented on many projects. This presentation will give project managers the information they need to understand if risk management is to be effectively implemented on their projects at a cost they can afford.

  11. NASA Earth Science Education Collaborative

    Science.gov (United States)

    Schwerin, T. G.; Callery, S.; Chambers, L. H.; Riebeek Kohl, H.; Taylor, J.; Martin, A. M.; Ferrell, T.

    2016-12-01

    The NASA Earth Science Education Collaborative (NESEC) is led by the Institute for Global Environmental Strategies with partners at three NASA Earth science Centers: Goddard Space Flight Center, Jet Propulsion Laboratory, and Langley Research Center. This cross-organization team enables the project to draw from the diverse skills, strengths, and expertise of each partner to develop fresh and innovative approaches for building pathways between NASA's Earth-related STEM assets to large, diverse audiences in order to enhance STEM teaching, learning and opportunities for learners throughout their lifetimes. These STEM assets include subject matter experts (scientists, engineers, and education specialists), science and engineering content, and authentic participatory and experiential opportunities. Specific project activities include authentic STEM experiences through NASA Earth science themed field campaigns and citizen science as part of international GLOBE program (for elementary and secondary school audiences) and GLOBE Observer (non-school audiences of all ages); direct connections to learners through innovative collaborations with partners like Odyssey of the Mind, an international creative problem-solving and design competition; and organizing thematic core content and strategically working with external partners and collaborators to adapt and disseminate core content to support the needs of education audiences (e.g., libraries and maker spaces, student research projects, etc.). A scaffolded evaluation is being conducted that 1) assesses processes and implementation, 2) answers formative evaluation questions in order to continuously improve the project; 3) monitors progress and 4) measures outcomes.

  12. NASA's Commercial Communication Technology Program

    Science.gov (United States)

    Bagwell, James W.

    1998-01-01

    Various issues associated with "NASA's Commercial Communication Technology Program" are presented in viewgraph form. Specific topics include: 1) Coordination/Integration of government program; 2) Achievement of seamless interoperable satellite and terrestrial networks; 3) Establishment of program to enhance Satcom professional and technical workforce; 4) Precompetitive technology development; and 5) Effective utilization of spectrum and orbit assets.

  13. NASA Publications Guide for Authors

    Science.gov (United States)

    2015-01-01

    This document presents guidelines for use by NASA authors in preparation and publication of their scientific and technical information (STI). Section 2 gives an overview. Section 2 describes types of publication. Section 3 discusses technical, data/information, and dissemination reviews. Section 4 provides recommended standards and gives the elements of a typical report. Section 5 presents miscellaneous preparation recommendations.

  14. The NASA Fireball Network Database

    Science.gov (United States)

    Moser, Danielle E.

    2011-01-01

    The NASA Meteoroid Environment Office (MEO) has been operating an automated video fireball network since late-2008. Since that time, over 1,700 multi-station fireballs have been observed. A database containing orbital data and trajectory information on all these events has recently been compiled and is currently being mined for information. Preliminary results are presented here.

  15. NASA Software Engineering Benchmarking Study

    Science.gov (United States)

    Rarick, Heather L.; Godfrey, Sara H.; Kelly, John C.; Crumbley, Robert T.; Wifl, Joel M.

    2013-01-01

    To identify best practices for the improvement of software engineering on projects, NASA's Offices of Chief Engineer (OCE) and Safety and Mission Assurance (OSMA) formed a team led by Heather Rarick and Sally Godfrey to conduct this benchmarking study. The primary goals of the study are to identify best practices that: Improve the management and technical development of software intensive systems; Have a track record of successful deployment by aerospace industries, universities [including research and development (R&D) laboratories], and defense services, as well as NASA's own component Centers; and Identify candidate solutions for NASA's software issues. Beginning in the late fall of 2010, focus topics were chosen and interview questions were developed, based on the NASA top software challenges. Between February 2011 and November 2011, the Benchmark Team interviewed a total of 18 organizations, consisting of five NASA Centers, five industry organizations, four defense services organizations, and four university or university R and D laboratory organizations. A software assurance representative also participated in each of the interviews to focus on assurance and software safety best practices. Interviewees provided a wealth of information on each topic area that included: software policy, software acquisition, software assurance, testing, training, maintaining rigor in small projects, metrics, and use of the Capability Maturity Model Integration (CMMI) framework, as well as a number of special topics that came up in the discussions. NASA's software engineering practices compared favorably with the external organizations in most benchmark areas, but in every topic, there were ways in which NASA could improve its practices. Compared to defense services organizations and some of the industry organizations, one of NASA's notable weaknesses involved communication with contractors regarding its policies and requirements for acquired software. One of NASA's strengths

  16. Managemant of NASA's major projects

    Science.gov (United States)

    James, L. B.

    1973-01-01

    Approaches used to manage major projects are studied and the existing documents on NASA management are reviewed. The work consists of: (1) the project manager's role, (2) request for proposal, (3) project plan, (4) management information system, (5) project organizational thinking, (6) management disciplines, (7) important decisions, and (8) low cost approach.

  17. NASA low speed centrifugal compressor

    Science.gov (United States)

    Hathaway, Michael D.

    1990-01-01

    The flow characteristics of a low speed centrifugal compressor were examined at NASA Lewis Research Center to improve understanding of the flow in centrifugal compressors, to provide models of various flow phenomena, and to acquire benchmark data for three dimensional viscous flow code validation. The paper describes the objectives, test facilities' instrumentation, and experiment preliminary comparisons.

  18. NASA Science Served Family Style

    Science.gov (United States)

    Noel-Storr, Jacob; Mitchell, S.; Drobnes, E.

    2010-01-01

    Family oriented innovative programs extend the reach of many traditional out-of-school venues to involve the entire family in learning in comfortable and fun environments. Research shows that parental involvement is key to increasing student achievement outcomes, and family-oriented programs have a direct impact on student performance. Because families have the greatest influence on children's attitudes towards education and career choices, we have developed a Family Science program that provides families a venue where they can explore the importance of science and technology in our daily lives by engaging in learning activities that change their perception and understanding of science. NASA Family Science Night strives to change the way that students and their families participate in science, within the program and beyond. After three years of pilot implementation and assessment, our evaluation data shows that Family Science Night participants have positive change in their attitudes and involvement in science.  Even after a single session, families are more likely to engage in external science-related activities and are increasingly excited about science in their everyday lives.  As we enter our dissemination phase, NASA Family Science Night will be compiling and releasing initial evaluation results, and providing facilitator training and online support resources. Support for NASA Family Science Nights is provided in part through NASA ROSES grant NNH06ZDA001N.

  19. The Role and Evolution of NASA's Earth Science Data Systems

    Science.gov (United States)

    Ramapriyan, H. K.

    2015-01-01

    One of the three strategic goals of NASA is to Advance understanding of Earth and develop technologies to improve the quality of life on our home planet (NASA strategic plan 2014). NASA's Earth Science Data System (ESDS) Program directly supports this goal. NASA has been launching satellites for civilian Earth observations for over 40 years, and collecting data from various types of instruments. Especially since 1990, with the start of the Earth Observing System (EOS) Program, which was a part of the Mission to Planet Earth, the observations have been significantly more extensive in their volumes, variety and velocity. Frequent, global observations are made in support of Earth system science. An open data policy has been in effect since 1990, with no period of exclusive access and non-discriminatory access to data, free of charge. NASA currently holds nearly 10 petabytes of Earth science data including satellite, air-borne, and ground-based measurements and derived geophysical parameter products in digital form. Millions of users around the world are using NASA data for Earth science research and applications. In 2014, over a billion data files were downloaded by users from NASAs EOS Data and Information System (EOSDIS), a system with 12 Distributed Active Archive Centers (DAACs) across the U. S. As a core component of the ESDS Program, EOSDIS has been operating since 1994, and has been evolving continuously with advances in information technology. The ESDS Program influences as well as benefits from advances in Earth Science Informatics. The presentation will provide an overview of the role and evolution of NASAs ESDS Program.

  20. Evolving Metadata in NASA Earth Science Data Systems

    Science.gov (United States)

    Mitchell, A.; Cechini, M. F.; Walter, J.

    2011-12-01

    NASA's Earth Observing System (EOS) is a coordinated series of satellites for long term global observations. NASA's Earth Observing System Data and Information System (EOSDIS) is a petabyte-scale archive of environmental data that supports global climate change research by providing end-to-end services from EOS instrument data collection to science data processing to full access to EOS and other earth science data. On a daily basis, the EOSDIS ingests, processes, archives and distributes over 3 terabytes of data from NASA's Earth Science missions representing over 3500 data products ranging from various types of science disciplines. EOSDIS is currently comprised of 12 discipline specific data centers that are collocated with centers of science discipline expertise. Metadata is used in all aspects of NASA's Earth Science data lifecycle from the initial measurement gathering to the accessing of data products. Missions use metadata in their science data products when describing information such as the instrument/sensor, operational plan, and geographically region. Acting as the curator of the data products, data centers employ metadata for preservation, access and manipulation of data. EOSDIS provides a centralized metadata repository called the Earth Observing System (EOS) ClearingHouse (ECHO) for data discovery and access via a service-oriented-architecture (SOA) between data centers and science data users. ECHO receives inventory metadata from data centers who generate metadata files that complies with the ECHO Metadata Model. NASA's Earth Science Data and Information System (ESDIS) Project established a Tiger Team to study and make recommendations regarding the adoption of the international metadata standard ISO 19115 in EOSDIS. The result was a technical report recommending an evolution of NASA data systems towards a consistent application of ISO 19115 and related standards including the creation of a NASA-specific convention for core ISO 19115 elements. Part of

  1. NASA's Universe of Learning: Engaging Learners in Discovery

    Science.gov (United States)

    Cominsky, L.; Smith, D. A.; Lestition, K.; Greene, M.; Squires, G.

    2016-12-01

    NASA's Universe of Learning is one of 27 competitively awarded education programs selected by NASA's Science Mission Directorate (SMD) to enable scientists and engineers to more effectively engage with learners of all ages. The NASA's Universe of Learning program is created through a partnership between the Space Telescope Science Institute, Chandra X-ray Center, IPAC at Caltech, Jet Propulsion Laboratory Exoplanet Exploration Program, and Sonoma State University. The program will connect the scientists, engineers, science, technology and adventure of NASA Astrophysics with audience needs, proven infrastructure, and a network of over 500 partners to advance the objectives of SMD's newly restructured education program. The multi-institutional team will develop and deliver a unified, consolidated suite of education products, programs, and professional development offerings that spans the full spectrum of NASA Astrophysics, including the Exoplanet Exploration theme. Program elements include enabling educational use of Astrophysics mission data and offering participatory experiences; creating multimedia and immersive experiences; designing exhibits and community programs; providing professional development for pre-service educators, undergraduate instructors, and informal educators; and, producing resources for special needs and underserved/underrepresented audiences. This presentation will provide an overview of the program and process for mapping discoveries to products and programs for informal, lifelong, and self-directed learning environments.

  2. Risk Management at NASA and Its Applicability to the Oil and Gas Industry

    Science.gov (United States)

    Kaplan, David

    2018-01-01

    NASA has a world-class capability for quantitatively assessing the risk of highly-complex, isolated engineering structures operated in extremely hostile environments. In particular, the International Space Station (ISS) represents a reasonable risk analog for High Pressure, High Temperature drilling and production operations on deepwater rigs. Through a long-term U.S. Government Interagency Agreement, BSEE has partnered with NASA to modify NASA's Probabilistic Risk Assessment (PRA) capabilities for application to deepwater drilling and production operations. The immediate focus of the activity will be to modify NASA PRA Procedure Guides and Methodology Documents to make them applicable to the Oil &Gas Industry. The next step will be for NASA to produce a PRA for a critical drilling system component, such as a Blowout Preventer (BOP). Subsequent activities will be for NASA and industry partners to jointly develop increasingly complex PRA's that analyze other critical drilling and production system components, including both hardware and human reliability. In the presentation, NASA will provide the objectives, schedule, and current status of its PRA activities for BSEE. Additionally, NASA has a Space Act Agreement with Anadarko Petroleum Corporation to develop a PRA for a generic 20K BOP. NASA will summarize some of the preliminary insights gained to date from that 20K BOP PRA as an example of the distinction between quantitative versus qualitative risk assessment.

  3. NASA EEE Parts and NASA Electronic Parts and Packaging (NEPP) Program Update 2018

    Science.gov (United States)

    Label, Kenneth A.; Sampson, Michael J.; Pellish, Jonathan A.; Majewicz, Peter J.

    2018-01-01

    NASA Electronic Parts and Packaging (NEPP) Program and NASA Electronic Parts Assurance Group (NEPAG) are NASAs point-of-contacts for reliability and radiation tolerance of EEE parts and their packages. This presentation includes an FY18 program overview.

  4. 76 FR 64122 - NASA Advisory Committee; Renewal of NASA's International Space Station Advisory Committee Charter

    Science.gov (United States)

    2011-10-17

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (11-095)] NASA Advisory Committee; Renewal of NASA's International Space Station Advisory Committee Charter AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of renewal and amendment of the Charter of the International...

  5. Air Traffic Management Research at NASA

    Science.gov (United States)

    Farley, Todd

    2012-01-01

    The U.S. air transportation system is the most productive in the world, moving far more people and goods than any other. It is also the safest system in the world, thanks in part to its venerable air traffic control system. But as demand for air travel continues to grow, the air traffic control systems aging infrastructure and labor-intensive procedures are impinging on its ability to keep pace with demand. And that impinges on the growth of our economy. Part of NASA's current mission in aeronautics research is to invent new technologies and procedures for ATC that will enable our national airspace system to accommodate the increasing demand for air transportation well into the next generation while still maintaining its excellent record for safety. It is a challenging mission, as efforts to modernize have, for decades, been hamstrung by the inability to assure safety to the satisfaction of system operators, system regulators, and/or the traveling public. In this talk, we'll provide a brief history of air traffic control, focusing on the tension between efficiency and safety assurance, and we'll highlight some new NASA technologies coming down the pike.

  6. Intentional Collaboration & Innovation Spaces at NASA

    Science.gov (United States)

    Scott, David W.

    2014-01-01

    Collaboration and Innovation (C&I) are extremely popular terms in corporate jargon, and institutions with reputations for creativity often have clever and fun spaces set aside for hatching ideas and developing products or services. In and of themselves, a room full of "collaboration furniture" and electronics can't make C&I happen, any more than oil makes a gas or diesel engine run. As with the engine, though, quality lubrication is a huge factor in the smooth operation, power, and longevity of C&I activity. This paper describes spaces deliberately set up at numerous NASA field centers to support collaborative and creative thinking and processes. (Sometimes support is not so much a matter of doing things to spark discussion as it is removing constraints imposed by traditional settings and making information sharing as easy as possible.) Some spaces are rooms or suites dedicated to C&I, with significant electronic support and/or intentional lack thereof (to emphasize the human element). Others are small, comfortable "roosting places" that invite conversations of opportunity. Descriptions include the sponsoring organization, underlying goals and philosophies, lessons learned, and opportunities to excel. There is discussion about how such areas might interconnect within centers, across NASA, and with external entities using current technology and what tools and approaches may be in our future.

  7. A Bioinformatics Facility for NASA

    Science.gov (United States)

    Schweighofer, Karl; Pohorille, Andrew

    2006-01-01

    Building on an existing prototype, we have fielded a facility with bioinformatics technologies that will help NASA meet its unique requirements for biological research. This facility consists of a cluster of computers capable of performing computationally intensive tasks, software tools, databases and knowledge management systems. Novel computational technologies for analyzing and integrating new biological data and already existing knowledge have been developed. With continued development and support, the facility will fulfill strategic NASA s bioinformatics needs in astrobiology and space exploration. . As a demonstration of these capabilities, we will present a detailed analysis of how spaceflight factors impact gene expression in the liver and kidney for mice flown aboard shuttle flight STS-108. We have found that many genes involved in signal transduction, cell cycle, and development respond to changes in microgravity, but that most metabolic pathways appear unchanged.

  8. Harvesting NASA's Common Metadata Repository

    Science.gov (United States)

    Shum, D.; Mitchell, A. E.; Durbin, C.; Norton, J.

    2017-12-01

    As part of NASA's Earth Observing System Data and Information System (EOSDIS), the Common Metadata Repository (CMR) stores metadata for over 30,000 datasets from both NASA and international providers along with over 300M granules. This metadata enables sub-second discovery and facilitates data access. While the CMR offers a robust temporal, spatial and keyword search functionality to the general public and international community, it is sometimes more desirable for international partners to harvest the CMR metadata and merge the CMR metadata into a partner's existing metadata repository. This poster will focus on best practices to follow when harvesting CMR metadata to ensure that any changes made to the CMR can also be updated in a partner's own repository. Additionally, since each partner has distinct metadata formats they are able to consume, the best practices will also include guidance on retrieving the metadata in the desired metadata format using CMR's Unified Metadata Model translation software.

  9. Space Radiation Research at NASA

    Science.gov (United States)

    Norbury, John

    2016-01-01

    The harmful effects of space radiation on astronauts is one of the most important limiting factors for human exploration of space beyond low Earth orbit, including a journey to Mars. This talk will present an overview of space radiation issues that arise throughout the solar system and will describe research efforts at NASA aimed at studying space radiation effects on astronauts, including the experimental program at the NASA Space Radiation Laboratory at Brookhaven National Laboratory. Recent work on galactic cosmic ray simulation at ground based accelerators will also be presented. The three major sources of space radiation, namely geomagnetically trapped particles, solar particle events and galactic cosmic rays will be discussed as well as recent discoveries of the harmful effects of space radiation on the human body. Some suggestions will also be given for developing a space radiation program in the Republic of Korea.

  10. NASA's Earth Science Data Systems

    Science.gov (United States)

    Ramapriyan, H. K.

    2015-01-01

    NASA's Earth Science Data Systems (ESDS) Program has evolved over the last two decades, and currently has several core and community components. Core components provide the basic operational capabilities to process, archive, manage and distribute data from NASA missions. Community components provide a path for peer-reviewed research in Earth Science Informatics to feed into the evolution of the core components. The Earth Observing System Data and Information System (EOSDIS) is a core component consisting of twelve Distributed Active Archive Centers (DAACs) and eight Science Investigator-led Processing Systems spread across the U.S. The presentation covers how the ESDS Program continues to evolve and benefits from as well as contributes to advances in Earth Science Informatics.

  11. NASA Electric Propulsion System Studies

    Science.gov (United States)

    Felder, James L.

    2015-01-01

    An overview of NASA efforts in the area of hybrid electric and turboelectric propulsion in large transport. This overview includes a list of reasons why we are looking at transmitting some or all of the propulsive power for the aircraft electrically, a list of the different types of hybrid-turbo electric propulsion systems, and the results of 4 aircraft studies that examined different types of hybrid-turbo electric propulsion systems.

  12. NASA/MSFC prediction techniques

    International Nuclear Information System (INIS)

    Smith, R.E.

    1987-01-01

    The NASA/MSFC method of forecasting is more formal than NOAA's. The data are smoothed by the Lagrangian method and linear regression prediction techniques are used. The solar activity period is fixed at 11 years--the mean period of all previous cycles. Interestingly, the present prediction for the time of the next solar minimum is February or March of 1987, which, within the uncertainties of two methods, can be taken to be the same as the NOAA result

  13. NASA-Ames vertical gun

    Science.gov (United States)

    Schultz, P. H.

    1984-01-01

    A national facility, the NASA-Ames vertical gun range (AVGR) has an excellent reputation for revealing fundamental aspects of impact cratering that provide important constraints for planetary processes. The current logistics in accessing the AVGR, some of the past and ongoing experimental programs and their relevance, and the future role of this facility in planetary studies are reviewed. Publications resulting from experiments with the gun (1979 to 1984) are listed as well as the researchers and subjects studied.

  14. The NASA Bed Rest Project

    Science.gov (United States)

    Rhodes, Bradley; Meck, Janice

    2005-01-01

    NASA s National Vision for Space Exploration includes human travel beyond low earth orbit and the ultimate safe return of the crews. Crucial to fulfilling the vision is the successful and timely development of countermeasures for the adverse physiological effects on human systems caused by long term exposure to the microgravity environment. Limited access to in-flight resources for the foreseeable future increases NASA s reliance on ground-based analogs to simulate these effects of microgravity. The primary analog for human based research will be head-down bed rest. By this approach NASA will be able to evaluate countermeasures in large sample sizes, perform preliminary evaluations of proposed in-flight protocols and assess the utility of individual or combined strategies before flight resources are requested. In response to this critical need, NASA has created the Bed Rest Project at the Johnson Space Center. The Project establishes the infrastructure and processes to provide a long term capability for standardized domestic bed rest studies and countermeasure development. The Bed Rest Project design takes a comprehensive, interdisciplinary, integrated approach that reduces the resource overhead of one investigator for one campaign. In addition to integrating studies operationally relevant for exploration, the Project addresses other new Vision objectives, namely: 1) interagency cooperation with the NIH allows for Clinical Research Center (CRC) facility sharing to the benefit of both agencies, 2) collaboration with our International Partners expands countermeasure development opportunities for foreign and domestic investigators as well as promotes consistency in approach and results, 3) to the greatest degree possible, the Project also advances research by clinicians and academia alike to encourage return to earth benefits. This paper will describe the Project s top level goals, organization and relationship to other Exploration Vision Projects, implementation

  15. NASA Occupant Protection Standards Development

    Science.gov (United States)

    Somers, Jeffrey; Gernhardt, Michael; Lawrence, Charles

    2012-01-01

    Historically, spacecraft landing systems have been tested with human volunteers, because analytical methods for estimating injury risk were insufficient. These tests were conducted with flight-like suits and seats to verify the safety of the landing systems. Currently, NASA uses the Brinkley Dynamic Response Index to estimate injury risk, although applying it to the NASA environment has drawbacks: (1) Does not indicate severity or anatomical location of injury (2) Unclear if model applies to NASA applications. Because of these limitations, a new validated, analytical approach was desired. Leveraging off of the current state of the art in automotive safety and racing, a new approach was developed. The approach has several aspects: (1) Define the acceptable level of injury risk by injury severity (2) Determine the appropriate human surrogate for testing and modeling (3) Mine existing human injury data to determine appropriate Injury Assessment Reference Values (IARV). (4) Rigorously Validate the IARVs with sub-injurious human testing (5) Use validated IARVs to update standards and vehicle requirement

  16. Successes of Small Business Innovation Research at NASA Glenn Research Center

    Science.gov (United States)

    Kim, Walter S.; Bitler, Dean W.; Prok, George M.; Metzger, Marie E.; Dreibelbis, Cindy L.; Ganss, Meghan

    2002-01-01

    This booklet of success stories highlights the NASA Glenn Research Center's accomplishments and successes by the Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) Programs. These success stories are the results of selecting projects that support NASA missions and also have high commercialization potential. Each success story describes the innovation accomplished, commercialization of the technology, and further applications and usages. This booklet emphasizes the integration and incorporation of technologies into NASA missions and other government projects. The company name and the NASA contact person are identified to encourage further usage and application of the SBIR developed technologies and also to promote further commercialization of these products.

  17. 78 FR 54680 - NASA Federal Advisory Committees

    Science.gov (United States)

    2013-09-05

    ... Committee Management Division, Office of International and Interagency Relations, NASA Headquarters... AGENCY: National Aeronautics and Space Administration. ACTION: Annual Invitation for Public Nominations... invitation for public nominations for service on NASA Federal advisory committees. U.S. citizens may nominate...

  18. Technology transfer at NASA - A librarian's view

    Science.gov (United States)

    Buchan, Ronald L.

    1991-01-01

    The NASA programs, publications, and services promoting the transfer and utilization of aerospace technology developed by and for NASA are briefly surveyed. Topics addressed include the corporate sources of NASA technical information and its interest for corporate users of information services; the IAA and STAR abstract journals; NASA/RECON, NTIS, and the AIAA Aerospace Database; the RECON Space Commercialization file; the Computer Software Management and Information Center file; company information in the RECON database; and services to small businesses. Also discussed are the NASA publications Tech Briefs and Spinoff, the Industrial Applications Centers, NASA continuing bibliographies on management and patent abstracts (indexed using the NASA Thesaurus), the Index to NASA News Releases and Speeches, and the Aerospace Research Information Network (ARIN).

  19. DOE and NASA joint Dark Energy mission

    CERN Multimedia

    2003-01-01

    "DOE and NASA announced their plan for a Joint Dark Energy Mission (JDEM) on October 23, 2003, at the NASA Office of Space Science Structure and Evolution of the Universe Subcommittee (SEUS) meeting" (1 paragraph).

  20. 76 FR 41825 - NASA Advisory Council; Meeting

    Science.gov (United States)

    2011-07-15

    ... Avenue, NASA Research Park, NASA Ames Research Center (ARC), Moffett Field, CA 94035-1000. FOR FURTHER... Headquarters, Washington, DC 20546, 202/358-1148. SUPPLEMENTARY INFORMATION: The agenda for the meeting will...

  1. The economic impact of NASA R and D spending

    Science.gov (United States)

    Evans, M. K.

    1976-01-01

    The economic impact of R and D spending, particularly NASA R and D spending, on the U. S. economy was evaluated. The crux of the methodology and hence the results revolve around the fact that it was necessary to consider both the demand effects of increased spending and the supply effects of a higher rate of technological growth and a larger total productive capacity. The demand effects are primarily short-run in nature, while the supply effects do not begin to have a significant effect on aggregate economic activity until the fifth year after increased expenditures have taken place. The short-term economic impact of alternative levels of NASA expenditures for 1975 was first examined. The long-term economic impact of increased levels of NASA R and D spending over a sustained period was then evaluated.

  2. Science@NASA: Direct to People Via the Internet

    Science.gov (United States)

    Koczor, R. J.; Phillips, T.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    NASA's founding charter includes the requirement for reporting all scientific results to the public. This requirement is based on the principal that the exploration of space results in real benefits to humanity and that those benefits are to be shared as widely as practical. When NASA was founded, the traditional education and outreach methods were through the news media and the formal and informal (museums, planetariums exhibits, etc.) educational communities. With the nearly ubiquitous availability of the Internet, a third choice presents itself: communicating directly with individuals in their homes. This powerful approach offers benefits and pitfalls that must be addressed to be effective. This paper covers an integrated approach to providing high quality NASA research information to multiple audiences via a family of websites. The paper discuss the content generation, review, and production process and provide metrics on evaluating the results.

  3. NASA Electronic Publishing System: Cost/benefit Methodology

    Science.gov (United States)

    Tuey, Richard C.

    1994-01-01

    The NASA Scientific and Technical Information Office was assigned the responsibility to examine the benefits of the utilization of electronic printing and duplicating systems throughout NASA Installations and Headquarters. The subject of this report is the documentation of the methodology used in justifying the acquisition of the most cost beneficial solution for the printing and duplicating requirements of a duplicating facility that is contemplating the acquisition of an electronic printing and duplicating system. Four alternatives are presented with each alternative costed out with its associated benefits. The methodology goes a step further than just a cost benefit analysis through its comparison of risks associated with each alternative, sensitivity to number of impressions and productivity gains on the selected alternative and finally the return on investment for the selected alternative. The report can be used in conjunction with the two earlier reports, NASA-TM-106242 and TM-106510 in guiding others in determining the cost effective duplicating alternative.

  4. Artificial intelligence - NASA. [robotics for Space Station

    Science.gov (United States)

    Erickson, J. D.

    1985-01-01

    Artificial Intelligence (AI) represents a vital common space support element needed to enable the civil space program and commercial space program to perform their missions successfully. It is pointed out that advances in AI stimulated by the Space Station Program could benefit the U.S. in many ways. A fundamental challenge for the civil space program is to meet the needs of the customers and users of space with facilities enabling maximum productivity and having low start-up costs, and low annual operating costs. An effective way to meet this challenge may involve a man-machine system in which artificial intelligence, robotics, and advanced automation are integrated into high reliability organizations. Attention is given to the benefits, NASA strategy for AI, candidate space station systems, the Space Station as a stepping stone, and the commercialization of space.

  5. New NASA Technologies for Space Exploration

    Science.gov (United States)

    Calle, Carlos I.

    2015-01-01

    NASA is developing new technologies to enable planetary exploration. NASA's Space Launch System is an advance vehicle for exploration beyond LEO. Robotic explorers like the Mars Science Laboratory are exploring Mars, making discoveries that will make possible the future human exploration of the planet. In this presentation, we report on technologies being developed at NASA KSC for planetary exploration.

  6. 78 FR 41804 - NASA Advisory Council; Meeting.

    Science.gov (United States)

    2013-07-11

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (13-077)] NASA Advisory Council; Meeting... Space Administration announces a meeting of the NASA Advisory Council (NAC). DATES: Wednesday, July 31... ADDRESSES: NASA Headquarters, Room 9H40, Program Review Center, 300 E Street SW., Washington, DC 20456 FOR...

  7. 48 CFR 1842.271 - NASA clause.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true NASA clause. 1842.271 Section 1842.271 Federal Acquisition Regulations System NATIONAL AERONAUTICS AND SPACE ADMINISTRATION... NASA clause. Insert the clause at 1852.242-70, Technical Direction, when paragraph 3(m) of the NASA...

  8. 75 FR 4588 - NASA Advisory Council; Meeting

    Science.gov (United States)

    2010-01-28

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 10-011] NASA Advisory Council; Meeting... Committee of the NASA Advisory Council. This will be the first meeting of this Committee. DATES: February 11, 2010--11 a.m.-1 p.m. (EST). Meet-Me-Number: 1-877-613-3958; 2939943. ADDRESSES: NASA Headquarters, 300...

  9. 76 FR 4133 - NASA Advisory Council; Meeting

    Science.gov (United States)

    2011-01-24

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (11-007)] NASA Advisory Council; Meeting... Space Administration announces a meeting of the NASA Advisory Council. DATES: Thursday, February 10, 2011, 8 a.m.-5 p.m., Local Time. Friday, February 11, 2011, 8 a.m.-12 p.m., Local Time. ADDRESSES: NASA...

  10. 75 FR 5629 - NASA Advisory Council; Meeting

    Science.gov (United States)

    2010-02-03

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-019)] NASA Advisory Council; Meeting... Space Administration announces a meeting of the NASA Advisory Council. DATES: Thursday, February 18, 2010, 9 a.m.-5 p.m. EST; Friday, February 19, 2010, 9 a.m.-1 p.m., EST. ADDRESSES: NASA Headquarters...

  11. 77 FR 9997 - NASA Advisory Council; Meeting

    Science.gov (United States)

    2012-02-21

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (12-016)] NASA Advisory Council; Meeting... Space Administration announces a meeting of the NASA Advisory Council (NAC). DATES: Thursday, March 8, 2012, 8 a.m.-5 p.m., local time and Friday, March 9, 2012, 8 a.m.-12 p.m., local time. ADDRESSES: NASA...

  12. 75 FR 4875 - NASA Advisory Council; Meeting

    Science.gov (United States)

    2010-01-29

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-015)] NASA Advisory Council; Meeting... the NASA Advisory Council. This will be the first meeting of this Committee. DATES: February 17, 2010--10 a.m.-4 p.m. (EST). ADDRESSES: NASA Headquarters, 300 E Street, SW., Washington, DC, Room CD61. FOR...

  13. NASA Education Implementation Plan 2015-2017

    Science.gov (United States)

    National Aeronautics and Space Administration, 2015

    2015-01-01

    The NASA Education Implementation Plan (NEIP) provides an understanding of the role of NASA in advancing the nation's STEM education and workforce pipeline. The document outlines the roles and responsibilities that NASA Education has in approaching and achieving the agency's and administration's strategic goals in STEM Education. The specific…

  14. NASA Ames Environmental Sustainability Report 2011

    Science.gov (United States)

    Clarke, Ann H.

    2011-01-01

    The 2011 Ames Environmental Sustainability Report is the second in a series of reports describing the steps NASA Ames Research Center has taken toward assuring environmental sustainability in NASA Ames programs, projects, and activities. The Report highlights Center contributions toward meeting the Agency-wide goals under the 2011 NASA Strategic Sustainability Performance Program.

  15. NASA Virtual Institutes: International Bridges for Space Exploration

    Science.gov (United States)

    Schmidt, Gregory K.

    2016-01-01

    NASA created the first virtual institute, the NASA Astrobiology Institute (NAI), in 2009 with an aim toward bringing together geographically disparate and multidisciplinary teams toward the goal of answering broad questions in the then-new discipline of astrobiology. With the success of the virtual institute model, NASA then created the NASA Lunar Science Institute (NLSI) in 2008 to address questions of science and human exploration of the Moon, and then the NASA Aeronautics Research Institute (NARI) in 2012 which addresses key questions in the development of aeronautics technologies. With the broadening of NASA's human exploration targets to include Near Earth Asteroids and the moons of Mars as well as the Moon, the NLSI morphed into the Solar System Exploration Research Virtual Institute (SSERVI) in 2012. SSERVI funds domestic research teams to address broad questions at the intersection of science and human exploration, with the underlying principle that science enables human exploration, and human exploration enables science. Nine domestic teams were funded in 2014 for a five-year period to address a variety of different topics, and nine international partners (with more to come) also work with the U.S. teams on a variety of topics of mutual interest. The result is a robust and productive research infrastructure that is not only scientifically productive but can respond to strategic topics of domestic and international interest, and which develops a new generation of researchers. This is all accomplished with the aid of virtual collaboration technologies which enable scientific research at a distance. The virtual institute model is widely applicable to a range of space science and exploration problems.

  16. Embracing Open Source for NASA's Earth Science Data Systems

    Science.gov (United States)

    Baynes, Katie; Pilone, Dan; Boller, Ryan; Meyer, David; Murphy, Kevin

    2017-01-01

    The overarching purpose of NASAs Earth Science program is to develop a scientific understanding of Earth as a system. Scientific knowledge is most robust and actionable when resulting from transparent, traceable, and reproducible methods. Reproducibility includes open access to the data as well as the software used to arrive at results. Additionally, software that is custom-developed for NASA should be open to the greatest degree possible, to enable re-use across Federal agencies, reduce overall costs to the government, remove barriers to innovation, and promote consistency through the use of uniform standards. Finally, Open Source Software (OSS) practices facilitate collaboration between agencies and the private sector. To best meet these ends, NASAs Earth Science Division promotes the full and open sharing of not only all data, metadata, products, information, documentation, models, images, and research results but also the source code used to generate, manipulate and analyze them. This talk focuses on the challenges to open sourcing NASA developed software within ESD and the growing pains associated with establishing policies running the gamut of tracking issues, properly documenting build processes, engaging the open source community, maintaining internal compliance, and accepting contributions from external sources. This talk also covers the adoption of existing open source technologies and standards to enhance our custom solutions and our contributions back to the community. Finally, we will be introducing the most recent OSS contributions from NASA Earth Science program and promoting these projects for wider community review and adoption.

  17. Using MERRA-2 analysis fields to simulate limb scattered radiance profiles for inhomogeneous atmospheric lines of sight: Preparation for data assimilation of OMPS LP radiances through 2D single-scattering GSLS radiative transfer model development

    Science.gov (United States)

    Loughman, R. P.; Bhartia, P. K.; Moy, L.; Kramarova, N. A.; Wargan, K.

    2016-12-01

    Many remote sensing techniques used to monitor the Earth's upper atmosphere fall into the broad category of "limb viewing" (LV) measurements, which includes any method for which the line of sight (LOS) fails to intersect the surface. Occultation, limb emission and limb scattering (LS) measurements are all LV methods that offer strong sensitivity to changes in the atmosphere near the tangent point of the LOS, due to the enhanced geometric path through the tangent layer (where the concentration also typically peaks, for most atmospheric species). But many of the retrieval algorithms used to interpret LV measurements assume that the atmosphere consists of "spherical shells", in which the atmospheric properties vary only with altitude (creating a 1D atmosphere). This assumption simplifies the analysis, but at the possible price of misinterpreting measurements made in the real atmosphere. In this presentation, we focus on the problem of LOS inhomogeneity for LS measurements made by the OMPS Limb Profiler (LP) instrument during the 2015 ozone hole period. The GSLS radiative transfer model (RTM) used in the default OMPS LP algorithms assumes a spherical-shell atmosphere defined at levels spaced 1 km apart, with extinction coefficients assumed to vary linearly with height between levels. Several recent improvements enable an updated single-scattering version of the GSLS RTM to ingest 3D MERRA-2 analysis fields (including temperature, pressure, and ozone concentration) when creating the model atmosphere, by introducing flexible altitude grids, flexible atmospheric specification along the LOS, and improved treatment of the radiative transfer within each atmospheric layer. As a result, the effect of LOS inhomogeneity on the current (1D) OMPS LP retrieval algorithm can now be studied theoretically, using realistic 3D atmospheric profiles. This work also represents a step towards enabling OMPS LP data to be ingested as part of future data assimilation efforts.

  18. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 62: The Influence of Knowledge Diffusion on Aeronautics Innovation: The Research, Development, and Production of Large Commercial Aircraft in France, Germany, and the United Kingdom

    Science.gov (United States)

    Golich, Vicki L.; Pinelli, Thomas E.

    1997-01-01

    This paper focuses on how European public policies-individually and collectively - influence the diffusion of knowledge and technology. It begins with an overview of the roles played historically and currently by European governments in the Research, Development and Production (RD&P) of Large Commercial Aircraft (LCA). The analytical framework brings together literature from global political economy, comparative politics, business management, and science and technology policy studies. It distinguishes between the production of knowledge, on the one hand, and the dissemination of knowledge, on the other. France, Germany, and the United Kingdom serve as the analytical cases. The paper concludes with a call for additional research in this area, some tentative lessons learned, and a discussion of the consequences of national strategies and policies for the diffusion of knowledge and technology in an era of globalizaton.

  19. Using Authentic Science in the Classroom: NASA's Coordinated Efforts to Enhance STEM Education

    Science.gov (United States)

    Lawton, B.; Schwerin, T.; Low, R.

    2015-11-01

    A key NASA education goal is to attract and retain students in science, technology engineering, and mathematics (STEM) disciplines. When teachers engage students in the examination of authentic data derived from NASA satellite missions, they simultaneously build 21st century technology skills as well as core content knowledge about the Earth and space. In this session, we highlight coordinated efforts by NASA Science Mission Directorate (SMD) Education and Public Outreach (EPO) programs to enhance educator accessibility to data resources, distribute state-of -the-art data tools and expand pathways for educators to find and use data resources. The group discussion explores how NASA SMD EPO efforts can further improve teacher access to authentic NASA data, identifies the types of tools and lessons most requested by the community, and explores how communication and collaboration between product developers and classroom educators using data tools and products can be enhanced.

  20. Risk Management of NASA Projects

    Science.gov (United States)

    Sarper, Hueseyin

    1997-01-01

    Various NASA Langley Research Center and other center projects were attempted for analysis to obtain historical data comparing pre-phase A study and the final outcome for each project. This attempt, however, was abandoned once it became clear that very little documentation was available. Next, extensive literature search was conducted on the role of risk and reliability concepts in project management. Probabilistic risk assessment (PRA) techniques are being used with increasing regularity both in and outside of NASA. The value and the usage of PRA techniques were reviewed for large projects. It was found that both civilian and military branches of the space industry have traditionally refrained from using PRA, which was developed and expanded by nuclear industry. Although much has changed with the end of the cold war and the Challenger disaster, it was found that ingrained anti-PRA culture is hard to stop. Examples of skepticism against the use of risk management and assessment techniques were found both in the literature and in conversations with some technical staff. Program and project managers need to be convinced that the applicability and use of risk management and risk assessment techniques is much broader than just in the traditional safety-related areas of application. The time has come to begin to uniformly apply these techniques. The whole idea of risk-based system can maximize the 'return on investment' that the public demands. Also, it would be very useful if all project documents of NASA Langley Research Center, pre-phase A through final report, are carefully stored in a central repository preferably in electronic format.

  1. Debris Likelihood, based on GhostNet, NASA Aqua MODIS, and GOES Imager, EXPERIMENTAL

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Debris Likelihood Index (Estimated) is calculated from GhostNet, NASA Aqua MODIS Chl a and NOAA GOES Imager SST data. THIS IS AN EXPERIMENTAL PRODUCT: intended...

  2. NASA's Optical Measurement Program 2014

    Science.gov (United States)

    Cowardin, H.; Lederer, S.; Stansbery, G.; Seitzer, P.; Buckalew, B.; Abercromby, K.; Barker, E.

    2014-01-01

    The Optical Measurements Group (OMG) within the NASA Orbital Debris Program Office (ODPO) addresses U.S. National Space Policy goals by monitoring and characterizing debris. Since 2001, the OMG has used the Michigan Orbital Debris Survey Telescope (MODEST) at Cerro Tololo Inter-American Observatory (CTIO) in Chile for general orbital debris survey. The 0.6-m Schmidt MODEST provides calibrated astronomical data of GEO targets, both catalogued and uncatalogued debris, with excellent image quality. The data are utilized by the ODPO modeling group and are included in the Orbital Debris Engineering Model (ORDEM) v. 3.0. MODEST and the CTIO/SMARTS (Small and Moderate Aperture Research Telescope System) 0.9 m both acquire filter photometric data, as well as synchronously observing targets in selected optical filters. This information provides data used in material composition studies as well as longer orbital arc data on the same target, without time delay or bias from a rotating, tumbling, or spinning target. NASA, in collaboration with the University of Michigan, began using the twin 6.5-m Magellan telescopes at Las Campanas Observatory in Chile for deep imaging (Baade) and spectroscopic data (Clay) in 2011. Through the data acquired on Baade, debris have been detected that are 3 magnitudes fainter than detections with MODEST, while the data from Clay provide better resolved information used in material characterization analyses via selected bandpasses. To better characterize and model optical data, the Optical Measurements Center (OMC) at NASA/JSC has been in operation since 2005, resulting in a database of comparison laboratory data. The OMC is designed to emulate illumination conditions in space using equipment and techniques that parallel telescopic observations and source-target-sensor orientations. Lastly, the OMG is building the Meter Class Autonomous Telescope (MCAT) at Ascension Island. The 1.3-m telescope is designed to observe GEO and LEO targets, using a

  3. NASA Airline Operations Research Center

    Science.gov (United States)

    Mogford, Richard H.

    2016-01-01

    This is a PowerPoint presentation NASA airline operations center (AOC) research. It includes information on using IBM Watson in the AOC. It also reviews a dispatcher decision support tool call the Flight Awareness Collaboration Tool (FACT). FACT gathers information about winter weather onto one screen and includes predictive abilities. It should prove to be useful for airline dispatchers and airport personnel when they manage winter storms and their effect on air traffic. This material is very similar to other previously approved presentations with the same title.

  4. NASA's Chandra Finds Black Holes Are "Green"

    Science.gov (United States)

    2006-04-01

    Black holes are the most fuel efficient engines in the Universe, according to a new study using NASA's Chandra X-ray Observatory. By making the first direct estimate of how efficient or "green" black holes are, this work gives insight into how black holes generate energy and affect their environment. The new Chandra finding shows that most of the energy released by matter falling toward a supermassive black hole is in the form of high-energy jets traveling at near the speed of light away from the black hole. This is an important step in understanding how such jets can be launched from magnetized disks of gas near the event horizon of a black hole. Illustration of Fuel for a Black Hole Engine Illustration of Fuel for a Black Hole Engine "Just as with cars, it's critical to know the fuel efficiency of black holes," said lead author Steve Allen of the Kavli Institute for Particle Astrophysics and Cosmology at Stanford University, and the Stanford Linear Accelerator Center. "Without this information, we cannot figure out what is going on under the hood, so to speak, or what the engine can do." Allen and his team used Chandra to study nine supermassive black holes at the centers of elliptical galaxies. These black holes are relatively old and generate much less radiation than quasars, rapidly growing supermassive black holes seen in the early Universe. The surprise came when the Chandra results showed that these "quiet" black holes are all producing much more energy in jets of high-energy particles than in visible light or X-rays. These jets create huge bubbles, or cavities, in the hot gas in the galaxies. Animation of Black Hole in Elliptical Galaxy Animation of Black Hole in Elliptical Galaxy The efficiency of the black hole energy-production was calculated in two steps: first Chandra images of the inner regions of the galaxies were used to estimate how much fuel is available for the black hole; then Chandra images were used to estimate the power required to produce

  5. NASA Space Rocket Logistics Challenges

    Science.gov (United States)

    Neeley, James R.; Jones, James V.; Watson, Michael D.; Bramon, Christopher J.; Inman, Sharon K.; Tuttle, Loraine

    2014-01-01

    The Space Launch System (SLS) is the new NASA heavy lift launch vehicle and is scheduled for its first mission in 2017. The goal of the first mission, which will be uncrewed, is to demonstrate the integrated system performance of the SLS rocket and spacecraft before a crewed flight in 2021. SLS has many of the same logistics challenges as any other large scale program. Common logistics concerns for SLS include integration of discreet programs geographically separated, multiple prime contractors with distinct and different goals, schedule pressures and funding constraints. However, SLS also faces unique challenges. The new program is a confluence of new hardware and heritage, with heritage hardware constituting seventy-five percent of the program. This unique approach to design makes logistics concerns such as commonality especially problematic. Additionally, a very low manifest rate of one flight every four years makes logistics comparatively expensive. That, along with the SLS architecture being developed using a block upgrade evolutionary approach, exacerbates long-range planning for supportability considerations. These common and unique logistics challenges must be clearly identified and tackled to allow SLS to have a successful program. This paper will address the common and unique challenges facing the SLS programs, along with the analysis and decisions the NASA Logistics engineers are making to mitigate the threats posed by each.

  6. AGU testifies on NASA Budget

    Science.gov (United States)

    Simarski, Lynn Teo

    Witnesses from outside the U.S. government—including Frank Eden, representing AGU—testified about the National Aeronautics and Space Administration's budget on March 12 before the House Science Committee's subcommittee on space. One major topic of the hearing was familiar: what should NASA's top priority be, space science or human exploration of space.“Obviously this committee has a huge job of trying to set priorities—consistent with the budget restraints—that will end up giving the American taxpayer the most bang for his buck, as well as providing direction for our space program,” said F. James Sensenbrenner, Jr. (R-Wis.), the subcommittee's ranking Republican. Another recurring topic, cited by the subcommittee's new chairman, Ralph M. Hall (D-Tex.), as well as by other committee members, was how to translate NASA-developed technologies into commercial gain for the U.S. in the global marketplace. Hall and others also posed a number of questions on a topic the chairman called a special concern of his: whether it would be economically and scientifically plausible for the U.S. to use the Soviet space station Mir for certain activities, such as medical applications.

  7. The NASA Beyond Einstein Program

    Science.gov (United States)

    White, Nicholas E.

    2006-01-01

    Einstein's legacy is incomplete, his theory of General relativity raises -- but cannot answer --three profound questions: What powered the big bang? What happens to space, time, and matter at the edge of a black hole? and What is the mysterious dark energy pulling the Universe apart? The Beyond Einstein program within NASA's Office of Space Science aims to answer these questions, employing a series of missions linked by powerful new technologies and complementary approaches towards shared science goals. The Beyond Einstein program has three linked elements which advance science and technology towards two visions; to detect directly gravitational wave signals from the earliest possible moments of the BIg Bang, and to image the event horizon of a black hole. The central element is a pair of Einstein Great Observatories, Constellation-X and LISA. Constellation-X is a powerful new X-ray observatory dedicated to X-Ray Spectroscopy. LISA is the first spaced based gravitational wave detector. These powerful facilities will blaze new paths to the questions about black holes, the Big Bang and dark energy. The second element is a series of competitively selected Einstein Probes, each focused on one of the science questions and includes a mission dedicated resolving the Dark Energy mystery. The third element is a program of technology development, theoretical studies and education. The Beyond Einstein program is a new element in the proposed NASA budget for 2004. This talk will give an overview of the program and the missions contained within it.

  8. NASA Cloud-Based Climate Data Services

    Science.gov (United States)

    McInerney, M. A.; Schnase, J. L.; Duffy, D. Q.; Tamkin, G. S.; Strong, S.; Ripley, W. D., III; Thompson, J. H.; Gill, R.; Jasen, J. E.; Samowich, B.; Pobre, Z.; Salmon, E. M.; Rumney, G.; Schardt, T. D.

    2012-12-01

    Cloud-based scientific data services are becoming an important part of NASA's mission. Our technological response is built around the concept of specialized virtual climate data servers, repetitive cloud provisioning, image-based deployment and distribution, and virtualization-as-a-service (VaaS). A virtual climate data server (vCDS) is an Open Archive Information System (OAIS) compliant, iRODS-based data server designed to support a particular type of scientific data collection. iRODS is data grid middleware that provides policy-based control over collection-building, managing, querying, accessing, and preserving large scientific data sets. We have deployed vCDS Version 1.0 in the Amazon EC2 cloud using S3 object storage and are using the system to deliver a subset of NASA's Intergovernmental Panel on Climate Change (IPCC) data products to the latest CentOS federated version of Earth System Grid Federation (ESGF), which is also running in the Amazon cloud. vCDS-managed objects are exposed to ESGF through FUSE (Filesystem in User Space), which presents a POSIX-compliant filesystem abstraction to applications such as the ESGF server that require such an interface. A vCDS manages data as a distinguished collection for a person, project, lab, or other logical unit. A vCDS can manage a collection across multiple storage resources using rules and microservices to enforce collection policies. And a vCDS can federate with other vCDSs to manage multiple collections over multiple resources, thereby creating what can be thought of as an ecosystem of managed collections. With the vCDS approach, we are trying to enable the full information lifecycle management of scientific data collections and make tractable the task of providing diverse climate data services. In this presentation, we describe our approach, experiences, lessons learned, and plans for the future.; (A) vCDS/ESG system stack. (B) Conceptual architecture for NASA cloud-based data services.

  9. NASA's Contributions to Controlled Environment Agriculture

    Science.gov (United States)

    Wheeler, Raymond M.

    2016-01-01

    It may come as a surprise, but NASA has been a long-standing sponsor of controlled environment agriculture (CEA) research. This is based on the potential for using plants (crops) for life support systems in space. Through photosynthesis, crops could produce food and oxygen for humans, while removing CO2. In addition, plant transpiration could help purify waste water. NASAs interest in bioregenerative life support dates back to the late 1950s. At that time, much of the testing focused on algae, but over the years moved toward higher plants as CEA techniques improved. Throughout the 1980s and 90s, extensive testing was carried out at different universities to gather horticultural data for a range of crops, including wheat, soybean, lettuce, potato, sweet potato, cowpea, rice and more. These studies examined different electric light sources, mineral nutrition, recirculating hydroponics, effects of CO2, temperature, photosynthetic photon flux (PPF), and photoperiod on the crops, and identified cultivars that would be useful for space. Findings from these studies were then used to conduct large scale (20 sq m), closed atmosphere tests at Kennedy Space Center, and later at NASA Johnson Space Center, where plant growth chambers were linked to human habitats. Results showed that with high light input and careful horticultural management, about 20-25 sq m of crops under continuous cultivation could produce the O2 for one person, and about 40-50 sq m could produce enough dietary calories. The ability to sustain these production levels and accurately assess system costs and failures needs further study. In all likelihood, the use of plants for life support will evolve, where for early missions like the International Space Station, crops will be grown in small chambers to provide supplemental fresh foods. As mission durations and distances increase, the systems could expand to assume more of the life support burden. But the constraints of space travel require that these

  10. NASA's Planetary Defense Coordination Office at NASA HQ

    Science.gov (United States)

    Daou, D.; Johnson, L.; Fast, K. E.; Landis, R.; Friedensen, V. P.; Kelley, M.

    2017-12-01

    NASA and its partners maintain a watch for near-Earth objects (NEOs), asteroids and comets that pass close to the Earth, as part of an ongoing effort to discover, catalog, and characterize these bodies. The PDCO is responsible for: Ensuring the early detection of potentially hazardous objects (PHOs) - asteroids and comets whose orbit are predicted to bring them within 0.05 Astronomical Units of Earth; and of a size large enough to reach Earth's surface - that is, greater than perhaps 30 to 50 meters; Tracking and characterizing PHOs and issuing warnings about potential impacts; Providing timely and accurate communications about PHOs; and Performing as a lead coordination node in U.S. Government planning for response to an actual impact threat. The PDCO collaborates with other U.S. Government agencies, other national and international agencies, and professional and amateur astronomers around the world. The PDCO also is responsible for facilitating communications between the science community and the public should any potentially hazardous NEO be discovered. In addition, the PDCO works closely with the United Nations Office of Outer Space Affairs, its Committee on the Peaceful Uses of Outer Space, and its Action Team on Near Earth Objects (also known as Action Team 14). The PDCO is a leading member of the International Asteroid Warning Network (IAWN) and the Space Missions Planning Advisory Group (SMPAG), multinational endeavors recommended by the United Nations for an international response to the NEO impact hazard and established and operated by the space-capable nations. The PDCO also communicates with the scientific community through channels such as NASA's Small Bodies Assessment Group (SBAG). In this talk, we will provide an update to the office's various efforts and new opportunities for partnerships in the continuous international effort for Planetary Defense.

  11. Applications of NASA and NOAA Satellite Observations by NASA's Short-term Prediction Research and Transition (SPoRT) Center in Response to Natural Disasters

    Science.gov (United States)

    Molthan, Andrew L.; Burks, Jason E.; McGrath, Kevin M.; Jedlovec, Gary J.

    2012-01-01

    NASA s Short-term Prediction Research and Transition (SPoRT) Center supports the transition of unique NASA and NOAA research activities to the operational weather forecasting community. SPoRT emphasizes real-time analysis and prediction out to 48 hours. SPoRT partners with NOAA s National Weather Service (NWS) Weather Forecast Offices (WFOs) and National Centers to improve current products, demonstrate future satellite capabilities and explore new data assimilation techniques. Recently, the SPoRT Center has been involved in several activities related to disaster response, in collaboration with NOAA s National Weather Service, NASA s Applied Sciences Disasters Program, and other partners.

  12. NASA's Earth Science Flight Program overview

    Science.gov (United States)

    Neeck, Steven P.; Volz, Stephen M.

    2011-11-01

    NASA's Earth Science Division (ESD) conducts pioneering work in Earth system science, the interdisciplinary view of Earth that explores the interaction among the atmosphere, oceans, ice sheets, land surface interior, and life itself that has enabled scientists to measure global and climate changes and to inform decisions by governments, organizations, and people in the United States and around the world. The ESD makes the data collected and results generated by its missions accessible to other agencies and organizations to improve the products and services they provide, including air quality indices, disaster management, agricultural yield projections, and aviation safety. In addition to four missions now in development and 14 currently operating on-orbit, the ESD is now developing the first tier of missions recommended by the 2007 Earth Science Decadal Survey and is conducting engineering studies and technology development for the second tier. Furthermore, NASA's ESD is planning implementation of a set of climate continuity missions to assure availability of key data sets needed for climate science and applications. These include a replacement for the Orbiting Carbon Observatory (OCO), OCO-2, planned for launch in 2013; refurbishment of the SAGE III atmospheric chemistry instrument to be hosted by the International Space Station (ISS) as early as 2014; and the Gravity Recovery and Climate Experiment Follow-On (GRACE FO) mission scheduled for launch in 2016. The new Earth Venture (EV) class of missions is a series of uncoupled, low to moderate cost, small to medium-sized, competitively selected, full orbital missions, instruments for orbital missions of opportunity, and sub-orbital projects.

  13. NASA University Program Management Information System

    Science.gov (United States)

    1999-01-01

    As basic policy, NASA believes that colleges and universities should be encouraged to participate in the nation's space and aeronautics program to the maximum extent practicable. Indeed, universities are considered as partners with government and industry in the nation's aerospace program. NASA's objective is to have them bring their scientific, engineering, and social research competence to bear on aerospace problems and on the broader social, economic, and international implications of NASA's technical and scientific programs. It is expected that, in so doing, universities will strengthen both their research and their educational capabilities to contribute more effectively to the national well-being. NASA field codes and certain Headquarters program offices provide funds for those activities in universities which contribute to the mission needs of that particular NASA element. Although NASA has no predetermined amount of money to devote to university activities, the effort funded each year is substantial. (See the bar chart on the next page). This annual report is one means of documenting the NASA-university relationship, frequently denoted, collectively, as NASA's University Program. This report is consistent with agency accounting records, as the data is obtained from NASA's Financial and Contractual Status (FACS) System, operated by the Financial Management Division and the Procurement Office. However, in accordance with interagency agreements, the orientation differs from that required for financial or procurement purposes. Any apparent discrepancies between this report and other NASA procurement or financial reports stem from the selection criteria for the data.

  14. NASA Soil Moisture Active Passive (SMAP) Applications

    Science.gov (United States)

    Orr, Barron; Moran, M. Susan; Escobar, Vanessa; Brown, Molly E.

    2014-05-01

    The launch of the NASA Soil Moisture Active Passive (SMAP) mission in 2014 will provide global soil moisture and freeze-thaw measurements at moderate resolution (9 km) with latency as short as 24 hours. The resolution, latency and global coverage of SMAP products will enable new applications in the fields of weather, climate, drought, flood, agricultural production, human health and national security. To prepare for launch, the SMAP mission has engaged more than 25 Early Adopters. Early Adopters are users who have a need for SMAP-like soil moisture or freeze-thaw data, and who agreed to apply their own resources to demonstrate the utility of SMAP data for their particular system or model. In turn, the SMAP mission agreed to provide Early Adopters with simulated SMAP data products and pre-launch calibration and validation data from SMAP field campaigns, modeling, and synergistic studies. The applied research underway by Early Adopters has provided fundamental knowledge of how SMAP data products can be scaled and integrated into users' policy, business and management activities to improve decision-making efforts. This presentation will cover SMAP applications including weather and climate forecasting, vehicle mobility estimation, quantification of greenhouse gas emissions, management of urban potable water supply, and prediction of crop yield. The presentation will end with a discussion of potential international applications with focus on the ESA/CEOS TIGER Initiative entitled "looking for water in Africa", the United Nations (UN) Convention to Combat Desertification (UNCCD) which carries a specific mandate focused on Africa, the UN Framework Convention on Climate Change (UNFCCC) which lists soil moisture as an Essential Climate Variable (ECV), and the UN Food and Agriculture Organization (FAO) which reported a food and nutrition crisis in the Sahel.

  15. NASA Orbital Debris Baseline Populations

    Science.gov (United States)

    Krisko, Paula H.; Vavrin, A. B.

    2013-01-01

    The NASA Orbital Debris Program Office has created high fidelity populations of the debris environment. The populations include objects of 1 cm and larger in Low Earth Orbit through Geosynchronous Transfer Orbit. They were designed for the purpose of assisting debris researchers and sensor developers in planning and testing. This environment is derived directly from the newest ORDEM model populations which include a background derived from LEGEND, as well as specific events such as the Chinese ASAT test, the Iridium 33/Cosmos 2251 accidental collision, the RORSAT sodium-potassium droplet releases, and other miscellaneous events. It is the most realistic ODPO debris population to date. In this paper we present the populations in chart form. We describe derivations of the background population and the specific populations added on. We validate our 1 cm and larger Low Earth Orbit population against SSN, Haystack, and HAX radar measurements.

  16. NASA Procurement Career Development Program

    Science.gov (United States)

    1987-01-01

    The NASA Procurement Career Development Program establishes an agency-wide framework for the management of career development activity in the procurement field. Within this framework, installations are encouraged to modify the various components to meet installation-specific mission and organization requirements. This program provides a systematic process for the assessment of and planning for the development, training, and education required to increase the employees' competence in the procurement work functions. It includes the agency-wide basic knowledge and skills by career field and level upon which individual and organizational development plans are developed. Also, it provides a system that is compatible with other human resource management and development systems, processes, and activities. The compatibility and linkage are important in fostering the dual responsibility of the individual and the organization in the career development process.

  17. NASA'S Water Resources Element Within the Applied Sciences Program

    Science.gov (United States)

    Toll, David; Doorn, Bradley; Engman, Edwin

    2010-01-01

    The NASA Applied Sciences Program works within NASA Earth sciences to leverage investment of satellite and information systems to increase the benefits to society through the widest practical use of NASA research results. Such observations provide a huge volume of valuable data in both near-real-time and extended back nearly 50 years about the Earth's land surface conditions such as land cover type, vegetation type and health, precipitation, snow, soil moisture, and water levels and radiation. Observations of this type combined with models and analysis enable satellite-based assessment of numerous water resources management activities. The primary goal of the Earth Science Applied Science Program is to improve future and current operational systems by infusing them with scientific knowledge of the Earth system gained through space-based observation, model results, and development and deployment of enabling technologies, systems, and capabilities. Water resources is one of eight elements in the Applied Sciences Program and it addresses concerns and decision making related to water quantity and water quality. With increasing population pressure and water usage coupled with climate variability and change, water issues are being reported by numerous groups as the most critical environmental problems facing us in the 21st century. Competitive uses and the prevalence of river basins and aquifers that extend across boundaries engender political tensions between communities, stakeholders and countries. Mitigating these conflicts and meeting water demands requires using existing resources more efficiently. The potential crises and conflicts arise when water is competed among multiple uses. For example, urban areas, environmental and recreational uses, agriculture, and energy production compete for scarce resources, not only in the Western U.S. but throughout much of the U.S. but also in many parts of the world. In addition to water availability issues, water quality related

  18. 14 CFR 1221.103 - Establishment of the NASA Insignia.

    Science.gov (United States)

    2010-01-01

    ..., NASA Program Identifiers, NASA Flags, and the Agency's Unified Visual Communications System § 1221.103... approved by the Commission of Fine Arts and the NASA Administrator. It symbolizes NASA's role in... visual communications formerly reserved for the NASA Logotype. The NASA Insignia shall be used as set...

  19. 14 CFR 1221.102 - Establishment of the NASA Seal.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Establishment of the NASA Seal. 1221.102 Section 1221.102 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype, NASA...

  20. 14 CFR 1221.106 - Establishment of the NASA Flag.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Establishment of the NASA Flag. 1221.106 Section 1221.106 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype, NASA...

  1. 14 CFR 1221.109 - Use of the NASA Seal.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Use of the NASA Seal. 1221.109 Section 1221.109 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype, NASA Program...

  2. 14 CFR 1221.113 - Use of the NASA Flags.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Use of the NASA Flags. 1221.113 Section 1221.113 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype, NASA Program...

  3. Advanced Stirling Convertor (ASC) Development for NASA RPS

    Science.gov (United States)

    Wong, Wayne A.; Wilson, Scott; Collins, Josh

    2014-01-01

    Sunpower's Advanced Stirling Convertor (ASC) initiated development under contract to the NASA Glenn Research Center (GRC) and after a series of successful demonstrations, the ASC began transitioning from a technology development project to flight development project. The ASC has very high power conversion efficiency making it attractive for future Radioisotope Power Systems (RPS) in order to make best use of the low plutonium-238 fuel inventory in the U.S. In recent years, the ASC became part of the NASA-Department of Energy Advanced Stirling Radioisotope Generator (ASRG) Integrated Project. Sunpower held two parallel contracts to produce ASC convertors, one with the Department of Energy/Lockheed Martin to produce the ASC-F flight convertors, and one with NASA GRC for the production of ASC-E3 engineering units, the initial units of which served as production pathfinders. The integrated ASC technical team successfully overcame various technical challenges that led to the completion and delivery of the first two pairs of flight-like ASC-E3 by 2013. However, in late Fall 2013, the DOE initiated termination of the Lockheed Martin ASRG flight development contract driven primarily by budget constraints. NASA continues to recognize the importance of high efficiency ASC power conversion for RPS and continues investment in the technology including the continuation of ASC-E3 production at Sunpower and the assembly of the ASRG Engineering Unit #2. This paper provides a summary of ASC technical accomplishments, overview of tests at GRC, plans for continued ASC production at Sunpower, and status of Stirling technology development.

  4. Advanced Stirling Convertor Development for NASA Radioisotope Power Systems

    Science.gov (United States)

    Wong, Wayne A.; Wilson, Scott D.; Collins, Josh

    2015-01-01

    Sunpower Inc.'s Advanced Stirling Convertor (ASC) initiated development under contract to the NASA Glenn Research Center and after a series of successful demonstrations, the ASC began transitioning from a technology development project to a flight development project. The ASC has very high power conversion efficiency making it attractive for future Radioisotope Power Systems (RPS) in order to make best use of the low plutonium-238 fuel inventory in the United States. In recent years, the ASC became part of the NASA and Department of Energy (DOE) Advanced Stirling Radioisotope Generator (ASRG) Integrated Project. Sunpower held two parallel contracts to produce ASCs, one with the DOE and Lockheed Martin to produce the ASC-F flight convertors, and one with NASA Glenn for the production of ASC-E3 engineering units, the initial units of which served as production pathfinders. The integrated ASC technical team successfully overcame various technical challenges that led to the completion and delivery of the first two pairs of flightlike ASC-E3 by 2013. However, in late fall 2013, the DOE initiated termination of the Lockheed Martin ASRG flight development contract driven primarily by budget constraints. NASA continues to recognize the importance of high-efficiency ASC power conversion for RPS and continues investment in the technology including the continuation of ASC-E3 production at Sunpower and the assembly of the ASRG Engineering Unit #2. This paper provides a summary of ASC technical accomplishments, overview of tests at Glenn, plans for continued ASC production at Sunpower, and status of Stirling technology development.

  5. Biophysics of NASA radiation quality factors

    International Nuclear Information System (INIS)

    Cucinotta, Francis A.

    2015-01-01

    NASA has implemented new radiation quality factors (QFs) for projecting cancer risks from space radiation exposures to astronauts. The NASA QFs are based on particle track structure concepts with parameters derived from available radiobiology data, and NASA introduces distinct QFs for solid cancer and leukaemia risk estimates. The NASA model was reviewed by the US National Research Council and approved for use by NASA for risk assessment for International Space Station missions and trade studies of future exploration missions to Mars and other destinations. A key feature of the NASA QFs is to represent the uncertainty in the QF assessments and evaluate the importance of the QF uncertainty to overall uncertainties in cancer risk projections. In this article, the biophysical basis for the probability distribution functions representing QF uncertainties was reviewed, and approaches needed to reduce uncertainties were discussed. (author)

  6. Biophysics of NASA radiation quality factors.

    Science.gov (United States)

    Cucinotta, Francis A

    2015-09-01

    NASA has implemented new radiation quality factors (QFs) for projecting cancer risks from space radiation exposures to astronauts. The NASA QFs are based on particle track structure concepts with parameters derived from available radiobiology data, and NASA introduces distinct QFs for solid cancer and leukaemia risk estimates. The NASA model was reviewed by the US National Research Council and approved for use by NASA for risk assessment for International Space Station missions and trade studies of future exploration missions to Mars and other destinations. A key feature of the NASA QFs is to represent the uncertainty in the QF assessments and evaluate the importance of the QF uncertainty to overall uncertainties in cancer risk projections. In this article, the biophysical basis for the probability distribution functions representing QF uncertainties was reviewed, and approaches needed to reduce uncertainties were discussed. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. NASA's Applied Sciences for Water Resources

    Science.gov (United States)

    Doorn, Bradley; Toll, David; Engman, Ted

    2011-01-01

    The Earth Systems Division within NASA has the primary responsibility for the Earth Science Applied Science Program and the objective to accelerate the use of NASA science results in applications to help solve problems important to society and the economy. The primary goal of the Earth Science Applied Science Program is to improve future and current operational systems by infusing them with scientific knowledge of the Earth system gained through space-based observation, assimilation of new observations, and development and deployment of enabling technologies, systems, and capabilities. This paper discusses one of the major problems facing water resources managers, that of having timely and accurate data to drive their decision support tools. It then describes how NASA?s science and space based satellites may be used to overcome this problem. Opportunities for the water resources community to participate in NASA?s Water Resources Applications Program are described.

  8. NASA Earthdata Forums: An Interactive Venue for Discussions of NASA Data and Earth Science

    Science.gov (United States)

    Hearty, Thomas J., III; Acker, James; Meyer, Dave; Northup, Emily A.; Bagwell, Ross E.

    2017-01-01

    We demonstrate how students and teachers can register to use the NASA Earthdata Forums. The NASA Earthdata forums provide a venue where registered users can pose questions regarding NASA Earth science data in a moderated forum, and have their questions answered by data experts and scientific subject matter experts connected with NASA Earth science missions and projects. Since the forums are also available for research scientists to pose questions and discuss pertinent topics, the NASA Earthdata Forums provide a unique opportunity for students and teachers to gain insight from expert scientists and enhance their knowledge of the many different ways that NASA Earth observations can be used in research and applications.

  9. NASA University Program Management Information System

    Science.gov (United States)

    2000-01-01

    As basic policy, NASA believes that colleges and universities should be encouraged to participate in the nation's space and aeronautics program to the maximum extent practicable. Indeed, universities are considered as partners with government and industry in the nation's aerospace program. NASA:s objective is to have them bring their scientific, engineering, and social research competence to bear on aerospace problems and on the broader social, economic, and international implications of NASA's technical and scientific programs. It is expected that, in so doing, universities will strengthen both their research and their educational capabilities to contribute more effectively to the national well-being. NASA field codes and certain Headquarters program offices provide funds for those activities in universities which contribute to the mission needs of that particular NASA element. Although NASA has no predetermined amount of money to devote to university activities, the effort funded each year is substantial. This annual report is one means of documenting the NASA-university relationship, frequently denoted, collectively, as NASA's University Program. This report is consistent with agency accounting records, as the data is obtained from NASA:s Financial and Contractual Status (FACS) System, operated by the Financial Management Division and the Procurement Office. However, in accordance with interagency agreements, the orientation differs from that required for financial or procurement purposes. Any apparent discrepancies between this report and other NASA procurement or financial reports stem from the selection criteria for the data.* This report was prepared by the Education Division/FE, Office of Human Resources and Education, using a management information system which was modernized during FY 1993.

  10. The NASA Air Traffic Management Ontology (atmonto)

    Data.gov (United States)

    National Aeronautics and Space Administration — The NASA ATM (Air Traffic Management) Ontology describes classes, properties, and relationships relevant to the domain of air traffic management, and represents...

  11. Semantic-Web Technology: Applications at NASA

    Science.gov (United States)

    Ashish, Naveen

    2004-01-01

    We provide a description of work at the National Aeronautics and Space Administration (NASA) on building system based on semantic-web concepts and technologies. NASA has been one of the early adopters of semantic-web technologies for practical applications. Indeed there are several ongoing 0 endeavors on building semantics based systems for use in diverse NASA domains ranging from collaborative scientific activity to accident and mishap investigation to enterprise search to scientific information gathering and integration to aviation safety decision support We provide a brief overview of many applications and ongoing work with the goal of informing the external community of these NASA endeavors.

  12. NASA tire/runway friction projects

    Science.gov (United States)

    Yager, Thomas J.

    1995-01-01

    The paper reviews several aspects of NASA Langley Research Center's tire/runway friction evaluations directed towards improving the safety and economy of aircraft ground operations. The facilities and test equipment used in implementing different aircraft tire friction studies and other related aircraft ground performance investigations are described together with recent workshop activities at NASA Wallops Flight Facility. An overview of the pending Joint NASA/Transport Canada/FM Winter Runway Friction Program is given. Other NASA ongoing studies and on-site field tests are discussed including tire wear performance and new surface treatments. The paper concludes with a description of future research plans.

  13. NASA Aerosciences Activities to Support Human Space Flight

    Science.gov (United States)

    LeBeau, Gerald J.

    2011-01-01

    The Lyndon B. Johnson Space Center (JSC) has been a critical element of the United State's human space flight program for over 50 years. It is the home to NASA s Mission Control Center, the astronaut corps, and many major programs and projects including the Space Shuttle Program, International Space Station Program, and the Orion Project. As part of JSC's Engineering Directorate, the Applied Aeroscience and Computational Fluid Dynamics Branch is charted to provide aerosciences support to all human spacecraft designs and missions for all phases of flight, including ascent, exo-atmospheric, and entry. The presentation will review past and current aeroscience applications and how NASA works to apply a balanced philosophy that leverages ground testing, computational modeling and simulation, and flight testing, to develop and validate related products. The speaker will address associated aspects of aerodynamics, aerothermodynamics, rarefied gas dynamics, and decelerator systems, involving both spacecraft vehicle design and analysis, and operational mission support. From these examples some of NASA leading aerosciences challenges will be identified. These challenges will be used to provide foundational motivation for the development of specific advanced modeling and simulation capabilities, and will also be used to highlight how development activities are increasing becoming more aligned with flight projects. NASA s efforts to apply principles of innovation and inclusion towards improving its ability to support the myriad of vehicle design and operational challenges will also be briefly reviewed.

  14. A Study of Technical Engineering Peer Reviews at NASA

    Science.gov (United States)

    Chao, Lawrence P.; Tumer, Irem Y.; Bell, David G.

    2003-01-01

    This report describes the state of practices of design reviews at NASA and research into what can be done to improve peer review practices. There are many types of reviews at NASA: required and not, formalized and informal, programmatic and technical. Standing project formal reviews such as the Preliminary Design Review and Critical Design Review are a required part of every project and mission development. However, the technical, engineering peer reviews that support teams' work on such projects are informal, some times ad hoc, and inconsistent across the organization. The goal of this work is to identify best practices and lessons learned from NASA's experience, supported by academic research and methodologies to ultimately improve the process. This research has determined that the organization, composition, scope, and approach of the reviews impact their success. Failure Modes and Effects Analysis (FMEA) can identify key areas of concern before or in the reviews. Product definition tools like the Project Priority Matrix, engineering-focused Customer Value Chain Analysis (CVCA), and project or system-based Quality Function Deployment (QFD) help prioritize resources in reviews. The use of information technology and structured design methodologies can strengthen the engineering peer review process to help NASA work towards error-proofing the design process.

  15. Extending NASA Research Results to Benefit Society: Rapid Prototyping for Coastal Applications

    Science.gov (United States)

    Glorioso, Mark V.; Miller, Richard L.; Hall, Callie M.; McPherson, Terry R.

    2006-01-01

    The mission of the NASA Applied Sciences Program is to expand and accelerate the use of NASA research results to benefit society in 12 application areas of national priority. ONe of the program's major challenges is to perform a quick, efficient, and detailed review (i.e., prototyping) of the large number of combinations of NASA observations and results from Earth system models that may be used by a wide range of decision support tools. A Rapid Prototyping Capacity (RPC) is being developed to accelerate the use of NASA research results. Here, we present the conceptual framework of the Rapid Prototyping Capacity within the context of quickly assessing the efficacy of NASA research results and technologies to support the Coastal Management application. An initial RPC project designed to quickly evaluate the utility of moderate-resolution MODIS products for calibrating/validating coastal sediment transport models is also presented.

  16. NASA Airborne Astronomy Ambassadors (AAA)

    Science.gov (United States)

    Backman, D. E.; Harman, P. K.; Clark, C.

    2016-12-01

    NASA's Airborne Astronomy Ambassadors (AAA) is a three-part professional development (PD) program for high school physics and astronomy teachers. The AAA experience consists of: (1) blended-learning professional development composed of webinars, asynchronous content learning, and a series of hands-on workshops (2) a STEM immersion experience at NASA Armstrong Flight Research Center's B703 science research aircraft facility in Palmdale, California, and (3) ongoing participation in the AAA community of practice (CoP) connecting participants with astrophysics and planetary science Subject Matter Experts (SMEs). The SETI Institute (SI) is partnering with school districts in Santa Clara and Los Angeles Counties during the AAA program's "incubation" period, calendar years 2016 through 2018. AAAs will be selected by the school districts based on criteria developed during spring 2016 focus group meetings led by the program's external evaluator, WestEd.. Teachers with 3+ years teaching experience who are assigned to teach at least 2 sections in any combination of the high school courses Physics (non-AP), Physics of the Universe (California integrated model), Astronomy, or Earth & Space Sciences are eligible. Partner districts will select at least 48 eligible applicants with SI oversight. WestEd will randomly assign selected AAAs to group A or group B. Group A will complete PD in January - June of 2017 and then participate in SOFIA science flights during fall 2017 (SOFIA Cycle 5). Group B will act as a control during the 2017-18 school year. Group B will then complete PD in January - June of 2018 and participate in SOFIA science flights in fall 2018 (Cycle 6). Under the current plan, opportunities for additional districts to seek AAA partnerships with SI will be offered in 2018 or 2019. A nominal two-week AAA curriculum component will be developed by SI for classroom delivery that will be aligned with selected California Draft Science Framework Disciplinary Core Ideas

  17. SMAP Data Assimilation at NASA SPoRT

    Science.gov (United States)

    Blankenship, Clay B.; Case, Jonathan L.; Zavodsky, Bradley T.

    2016-01-01

    The NASA Short-Term Prediction Research and Transition (SPoRT) Center maintains a near-real- time run of the Noah Land Surface Model within the Land Information System (LIS) at 3-km resolution. Soil moisture products from this model are used by several NOAA/National Weather Service Weather Forecast Offices for flood and drought situational awareness. We have implemented assimilation of soil moisture retrievals from the Soil Moisture Ocean Salinity (SMOS) and Soil Moisture Active/ Passive (SMAP) satellites, and are now evaluating the SMAP assimilation. The SMAP-enhanced LIS product is planned for public release by October 2016.

  18. Learning Without Boundaries: A NASA - National Guard Bureau Distance Learning Partnership

    Science.gov (United States)

    Anderson, Susan H.; Chilelli, Christopher J.; Picard, Stephan

    2003-01-01

    With a variety of high-quality live interactive educational programs originating at the Johnson Space Center in Houston, Texas and other space and research centers, the US space agency NASA (National Aeronautics and Space Administration) has a proud track record of connecting with students throughout the world and stimulating their creativity and collaborative skills by teaching them underlying scientific and technological underpinnings of space exploration. However, NASA desires to expand its outreach capability for this type of interactive instruction. In early 2002, NASA and the National Guard Bureau -- using the Guard's nationwide system of state-ofthe-art classrooms and high bandwidth network -- began a collaboration to extend the reach of NASA content and educational programs to more of America's young people. Already, hundreds of elementary, middle, and high school students have visited Guard e-Learning facilities and participated in interactive NASA learning events. Topics have included experimental flight, satellite imagery-interpretation, and Mars exploration. Through this partnership, NASA and the National Guard are enabling local school systems throughout the United States (and, increasingly, the world) to use the excitement of space flight to encourage their students to become passionate about the possibility of one day serving as scientists, mathematicians, technologists, and engineers. At the 54th International Astronautical Conference MAJ Stephan Picard, the guiding visionary behind the Guard's partnership with NASA, and Chris Chilelli, an educator and senior instructional designer at NASA, will share with attendees background on NASA's educational products and the National Guard's distributed learning network; will discuss the unique opportunity this partnership already has provided students and teachers throughout the United States; will offer insights into the formation by government entities of e-Learning partnerships with one another; and will

  19. NASA's Aerosol Sampling Experiment Summary

    Science.gov (United States)

    Meyer, Marit E.

    2016-01-01

    In a spacecraft cabin environment, the size range of indoor aerosols is much larger and they persist longer than on Earth because they are not removed by gravitational settling. A previous aerosol experiment in 1991 documented that over 90 of the mass concentration of particles in the NASA Space Shuttle air were between 10 m and 100 m based on measurements with a multi-stage virtual impactor and a nephelometer (Liu et al. 1991). While the now-retired Space Shuttle had short duration missions (less than two weeks), the International Space Station (ISS) has been continually inhabited by astronauts for over a decade. High concentrations of inhalable particles on ISS are potentially responsible for crew complaints of respiratory and eye irritation and comments about 'dusty' air. Air filtration is the current control strategy for airborne particles on the ISS, and filtration modeling, performed for engineering and design validation of the air revitalization system in ISS, predicted that PM requirements would be met. However, aerosol monitoring has never been performed on the ISS to verify PM levels. A flight experiment is in preparation which will provide data on particulate matter in ISS ambient air. Particles will be collected with a thermophoretic sampler as well as with passive samplers which will extend the particle size range of sampling. Samples will be returned to Earth for chemical and microscopic analyses, providing the first aerosol data for ISS ambient air.

  20. NASA Standards Inform Comfortable Car Seats

    Science.gov (United States)

    2014-01-01

    NASA developed standards, which included the neutral body posture (NBP), to specify ways to design flight systems that support human health and safety. Nissan Motor Company, with US offices in Franklin, Tennessee, turned to NASA's NBP research for the development of a new driver's seat. The 2013 Altima now features the new seat, and the company plans to incorporate the seats in upcoming vehicles.

  1. NASA Lunar and Meteorite Sample Disk Program

    Science.gov (United States)

    Foxworth, Suzanne

    2017-01-01

    The Lunar and Meteorite Sample Disk Program is designed for K-12 classroom educators who work in K-12 schools, museums, libraries, or planetariums. Educators have to be certified to borrow the Lunar and Meteorite Sample Disks by attending a NASA Certification Workshop provided by a NASA Authorized Sample Disk Certifier.

  2. 75 FR 59747 - NASA Advisory Council; Meeting.

    Science.gov (United States)

    2010-09-28

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (10-113)] NASA Advisory Council; Meeting. AGENCY: National Aeronautics and Space Administration. ACTION: Notice of meeting. SUMMARY: In accordance... Space Administration announces a meeting of the NASA Advisory Council. DATES: Wednesday, October 6, 2010...

  3. NASA directives master list and index

    Science.gov (United States)

    1995-01-01

    This handbook sets forth in two parts, Master List of Management Directives and Index to NASA Management Directives, the following information for the guidance of users of the NASA Management Directives System. Chapter 1 contains introductory information material on how to use this handbook. Chapter 2 is a complete master list of agencywide management directives, describing each directive by type, number, effective date, expiration date, title, and organization code of the office responsible for the directive. Chapter 3 includes a consolidated numerical list of all delegations of authority and a breakdown of such delegation by the office or center to which special authority is assigned. Chapter 4 sets forth a consolidated list of all NASA handbooks (NHB's) and important footnotes covering the control and ordering of such documents. Chapter 5 is a consolidated list of NASA management directives applicable to the Jet Propulsion Laboratory. Chapter 6 is a consolidated list of NASA regulations published in the Code of Federal Regulations. Chapter 7 is a consolidated list of NASA regulations published in Title 14 of the Code of Federal Regulations. Complementary manuals to the NASA Management Directives System are described in Chapter 8. The second part contains an in depth alphabetical index to all NASA management directives other than handbooks, most of which are indexed by titles only.

  4. NASA Administrative Data Base Management Systems, 1984

    Science.gov (United States)

    Radosevich, J. D. (Editor)

    1984-01-01

    Strategies for converting to a data base management system (DBMS) and the implementation of the software packages necessary are discussed. Experiences with DBMS at various NASA centers are related including Langley's ADABAS/NATURAL and the NEMS subsystem of the NASA metrology informaton system. The value of the integrated workstation with a personal computer is explored.

  5. NASA/Air Force Cost Model: NAFCOM

    Science.gov (United States)

    Winn, Sharon D.; Hamcher, John W. (Technical Monitor)

    2002-01-01

    The NASA/Air Force Cost Model (NAFCOM) is a parametric estimating tool for space hardware. It is based on historical NASA and Air Force space projects and is primarily used in the very early phases of a development project. NAFCOM can be used at the subsystem or component levels.

  6. The Suomi National Polar-Orbiting Partnership (SNPP): Continuing NASA Research and Applications

    Science.gov (United States)

    Butler, James; Gleason, James; Jedlovec, Gary; Coronado, Patrick

    2015-01-01

    The Suomi National Polar-orbiting Partnership (SNPP) satellite was successfully launched into a polar orbit on October 28, 2011 carrying 5 remote sensing instruments designed to provide data to improve weather forecasts and to increase understanding of long-term climate change. SNPP provides operational continuity of satellite-based observations for NOAA's Polar-orbiting Operational Environmental Satellites (POES) and continues the long-term record of climate quality observations established by NASA's Earth Observing System (EOS) satellites. In the 2003 to 2011 pre-launch timeframe, NASA's SNPP Science Team assessed the adequacy of the operational Raw Data Records (RDRs), Sensor Data Records (SDRs), and Environmental Data Records (EDRs) from the SNPP instruments for use in NASA Earth Science research, examined the operational algorithms used to produce those data records, and proposed a path forward for the production of climate quality products from SNPP. In order to perform these tasks, a distributed data system, the NASA Science Data Segment (SDS), ingested RDRs, SDRs, and EDRs from the NOAA Archive and Distribution and Interface Data Processing Segments, ADS and IDPS, respectively. The SDS also obtained operational algorithms for evaluation purposes from the NOAA Government Resource for Algorithm Verification, Independent Testing and Evaluation (GRAVITE). Within the NASA SDS, five Product Evaluation and Test Elements (PEATEs) received, ingested, and stored data and performed NASA's data processing, evaluation, and analysis activities. The distributed nature of this data distribution system was established by physically housing each PEATE within one of five Climate Analysis Research Systems (CARS) located at either at a NASA or a university institution. The CARS were organized around 5 key EDRs directly in support of the following NASA Earth Science focus areas: atmospheric sounding, ocean, land, ozone, and atmospheric composition products. The PEATES provided

  7. NASA's Bio-Inspired Acoustic Absorber Concept

    Science.gov (United States)

    Koch, L. Danielle

    2017-01-01

    Transportation noise pollutes our worlds cities, suburbs, parks, and wilderness areas. NASAs fundamental research in aviation acoustics is helping to find innovative solutions to this multifaceted problem. NASA is learning from nature to develop the next generation of quiet aircraft.The number of road vehicles and airplanes has roughly tripled since the 1960s. Transportation noise is audible in nearly all the counties across the US. Noise can damage your hearing, raise your heart rate and blood pressure, disrupt your sleep, and make communication difficult. Noise pollution threatens wildlife when it prevents animals from hearing prey, predators, and mates. Noise regulations help drive industry to develop quieter aircraft. Noise standards for aircraft have been developed by the International Civil Aviation Organization and adopted by the US Federal Aviation Administration. The US National Park Service is working with the Federal Aviation Administration to try to balance the demand for access to the parks and wilderness areas with preservation of the natural soundscape. NASA is helping by conceptualizing quieter, more efficient aircraft of the future and performing the fundamental research to make these concepts a reality someday. Recently, NASA has developed synthetic structures that can absorb sound well over a wide frequency range, and particularly below 1000 Hz, and which mimic the acoustic performance of bundles of natural reeds. We are adapting these structures to control noise on aircraft, and spacecraft. This technology might be used in many other industrial or architectural applications where acoustic absorbers have tight constraints on weight and thickness, and may be exposed to high temperatures or liquids. Information about this technology is being made available through reports and presentations available through the NASA Technical Report Server, http:ntrs.nasa.gov. Organizations who would like to collaborate with NASA or commercialize NASAs technology

  8. The Snow Data System at NASA JPL

    Science.gov (United States)

    Laidlaw, R.; Painter, T. H.; Mattmann, C. A.; Ramirez, P.; Bormann, K.; Brodzik, M. J.; Burgess, A. B.; Rittger, K.; Goodale, C. E.; Joyce, M.; McGibbney, L. J.; Zimdars, P.

    2014-12-01

    NASA JPL's Snow Data System has a data-processing pipeline powered by Apache OODT, an open source software tool. The pipeline has been running for several years and has successfully generated a significant amount of cryosphere data, including MODIS-based products such as MODSCAG, MODDRFS and MODICE, with historical and near-real time windows and covering regions such as the Artic, Western US, Alaska, Central Europe, Asia, South America, Australia and New Zealand. The team continues to improve the pipeline, using monitoring tools such as Ganglia to give an overview of operations, and improving fault-tolerance with automated recovery scripts. Several alternative adaptations of the Snow Covered Area and Grain size (SCAG) algorithm are being investigated. These include using VIIRS and Landsat TM/ETM+ satellite data as inputs. Parallel computing techniques are being considered for core SCAG processing, such as using the PyCUDA Python API to utilize multi-core GPU architectures. An experimental version of MODSCAG is also being developed for the Google Earth Engine platform, a cloud-based service.

  9. Current and Future Parts Management at NASA

    Science.gov (United States)

    Sampson, Michael J.

    2011-01-01

    This presentation provides a high level view of current and future electronic parts management at NASA. It describes a current perspective of the new human space flight direction that NASA is beginning to take and how that could influence parts management in the future. It provides an overview of current NASA electronic parts policy and how that is implemented at the NASA flight Centers. It also describes some of the technical challenges that lie ahead and suggests approaches for their mitigation. These challenges include: advanced packaging, obsolescence and counterfeits, the global supply chain and Commercial Crew, a new direction by which NASA will utilize commercial launch vehicles to get astronauts to the International Space Station.

  10. NASA Game Changing Development Program Manufacturing Innovation Project

    Science.gov (United States)

    Tolbert, Carol; Vickers, John

    2011-01-01

    This presentation examines the new NASA Manufacturing Innovation Project. The project is a part of the Game Changing Development Program which is one element of the Space Technology Programs Managed by Office of the Chief Technologist. The project includes innovative technologies in model-based manufacturing, digital additive manufacturing, and other next generation manufacturing tools. The project is also coupled with the larger federal initiatives in this area including the National Digital Engineering and Manufacturing Initiative and the Advanced Manufacturing Partnership. In addition to NASA, other interagency partners include the Department of Defense, Department of Commerce, NIST, Department of Energy, and the National Science Foundation. The development of game-changing manufacturing technologies are critical for NASA s mission of exploration, strengthening America s manufacturing competitiveness, and are highly related to current challenges in defense manufacturing activities. There is strong consensus across industry, academia, and government that the future competitiveness of U.S. industry will be determined, in large part, by a technologically advanced manufacturing sector. This presentation highlights the prospectus of next generation manufacturing technologies to the challenges faced NASA and by the Department of Defense. The project focuses on maturing innovative/high payoff model-based manufacturing technologies that may lead to entirely new approaches for a broad array of future NASA missions and solutions to significant national needs. Digital manufacturing and computer-integrated manufacturing "virtually" guarantee advantages in quality, speed, and cost and offer many long-term benefits across the entire product lifecycle. This paper addresses key enablers and emerging strategies in areas such as: Current government initiatives, Model-based manufacturing, and Additive manufacturing.

  11. Working with NASA's OSS E/PO Support Network

    Science.gov (United States)

    Miner, E. D.; Lowes, L. L.

    2001-11-01

    With greater and greater emphasis on the inclusion of a public engagement component in all government-supported research funding, many members of the DPS are finding it difficult to find sufficient time and funding to develop a wide-reaching and effective E/PO program. NASA's Office of Space Science, over the last five years, has built a Support Network to assist its funded scientists to establish partnerships with local and/or national science formal or informal education organizations, who are anxious to connect with and use the expertise of space scientists. The OSS Support Network consists of four theme-based 'Forums,' including the Solar System Exploration (SSE) Forum, specifically designed for working with planetary scientists, and seven regional 'Brokers-Facilitators' who are more familiar with partnership and other potential avenues for involvement by scientists. The services provided by the Support Network are free to both the scientists and their potential partners and is not limited to NASA-funded scientists. In addition to its assistance to space scientists, the Support Network is involved in a number of other overarching efforts, including support of a Solar System Ambassador Program, a Solar System Educator Program, Space Place (web and e-mail science products for libraries and small planetariums and museums), an on-line Space Science Resource Directory, annual reports of Space Science E/PO activity, identifying and filling in 'holes' and 'over-populations' in a solar system E/PO product matrix of grade level versus product versus content, research on product effectiveness, and scientific and educational evaluation of space science products. Forum and Broker-Facilitator contact information is available at http://spacescience.nasa.gov/education/resources/ecosystem/index.htm. Handouts with additional information will be available at the meeting.

  12. First NASA Aviation Safety Program Weather Accident Prevention Project Annual Review

    Science.gov (United States)

    Colantonio, Ron

    2000-01-01

    The goal of this Annual Review was to present NASA plans and accomplishments that will impact the national aviation safety goal. NASA's WxAP Project focuses on developing the following products: (1) Aviation Weather Information (AWIN) technologies (displays, sensors, pilot decision tools, communication links, etc.); (2) Electronic Pilot Reporting (E-PIREPS) technologies; (3) Enhanced weather products with associated hazard metrics; (4) Forward looking turbulence sensor technologies (radar, lidar, etc.); (5) Turbulence mitigation control system designs; Attendees included personnel from various NASA Centers, FAA, National Weather Service, DoD, airlines, aircraft and pilot associations, industry, aircraft manufacturers and academia. Attendees participated in discussion sessions aimed at collecting aviation user community feedback on NASA plans and R&D activities. This CD is a compilation of most of the presentations presented at this Review.

  13. Experiences From NASA/Langley's DMSS Project

    Science.gov (United States)

    1996-01-01

    There is a trend in institutions with high performance computing and data management requirements to explore mass storage systems with peripherals directly attached to a high speed network. The Distributed Mass Storage System (DMSS) Project at the NASA Langley Research Center (LaRC) has placed such a system into production use. This paper will present the experiences, both good and bad, we have had with this system since putting it into production usage. The system is comprised of: 1) National Storage Laboratory (NSL)/UniTree 2.1, 2) IBM 9570 HIPPI attached disk arrays (both RAID 3 and RAID 5), 3) IBM RS6000 server, 4) HIPPI/IPI3 third party transfers between the disk array systems and the supercomputer clients, a CRAY Y-MP and a CRAY 2, 5) a "warm spare" file server, 6) transition software to convert from CRAY's Data Migration Facility (DMF) based system to DMSS, 7) an NSC PS32 HIPPI switch, and 8) a STK 4490 robotic library accessed from the IBM RS6000 block mux interface. This paper will cover: the performance of the DMSS in the following areas: file transfer rates, migration and recall, and file manipulation (listing, deleting, etc.); the appropriateness of a workstation class of file server for NSL/UniTree with LaRC's present storage requirements in mind the role of the third party transfers between the supercomputers and the DMSS disk array systems in DMSS; a detailed comparison (both in performance and functionality) between the DMF and DMSS systems LaRC's enhancements to the NSL/UniTree system administration environment the mechanism for DMSS to provide file server redundancy the statistics on the availability of DMSS the design and experiences with the locally developed transparent transition software which allowed us to make over 1.5 million DMF files available to NSL/UniTree with minimal system outage

  14. NASA's commercial research plans and opportunities

    Science.gov (United States)

    Arnold, Ray J.

    One of the primary goals of the National Aeronautics and Space Administration's (NASA) commercial space development plan is to encourage the development of space-based products and markets, along with the infrastructure and transportation that will support those products and markets. A three phased program has been instituted to carry out this program. The first phase utilizes government grants through the Centers for the Commercial Development of Space (CCDS) for space-related, industry driven research; the development of a technology data base; and the development of commercial space transportation and infrastructure. The second phase includes the development of these technologies by industry for new commercial markets, and features unique industry/government collaborations such as Joint Endeavor Agreements. The final phase will feature technical applications actually brought to the marketplace. The government's role will be to support industry required infrastructure to encourage start-up markets and industries through follow-on development agreements such as the Space Systems Development Agreement. The Office of Commercial Programs has an aggressive flight program underway on the Space Shuttle, suborbital rockets, orbital expendable launch vehicles, and the Commercial Middeck Accommodation Module with SPACEHAB Inc. The Office of Commercial Program's has been allocated 35 percent of the U.S. share of the Space Station Freedom resources for 1997 utilization. A utilization plan has been developed with the Centers for the Commercial Development of Space and has identified eleven materials processing and biotechnology payloads occupying 5 double racks in the pressurized module as well as two payloads external to the module in materials exposure and environment monitoring. The Office of Commercial Programs will rely on the Space Station Freedom to provide the long duration laboratory component for space-based commercial research.

  15. NASA's Earth Observing Data and Information System

    Science.gov (United States)

    Mitchell, A. E.; Behnke, J.; Lowe, D.; Ramapriyan, H. K.

    2009-12-01

    NASA’s Earth Observing System Data and Information System (EOSDIS) has been a central component of NASA Earth observation program for over 10 years. It is one of the largest civilian science information system in the US, performing ingest, archive and distribution of over 3 terabytes of data per day much of which is from NASA’s flagship missions Terra, Aqua and Aura. The system supports a variety of science disciplines including polar processes, land cover change, radiation budget, and most especially global climate change. The EOSDIS data centers, collocated with centers of science discipline expertise, archive and distribute standard data products produced by science investigator-led processing systems. Key to the success of EOSDIS is the concept of core versus community requirements. EOSDIS supports a core set of services to meet specific NASA needs and relies on community-developed services to meet specific user needs. EOSDIS offers a metadata registry, ECHO (Earth Observing System Clearinghouse), through which the scientific community can easily discover and exchange NASA’s Earth science data and services. Users can search, manage, and access the contents of ECHO’s registries (data and services) through user-developed and community-tailored interfaces or clients. The ECHO framework has become the primary access point for cross-Data Center search-and-order of EOSDIS and other Earth Science data holdings archived at the EOSDIS data centers. ECHO’s Warehouse Inventory Search Tool (WIST) is the primary web-based client for discovering and ordering cross-discipline data from the EOSDIS data centers. The architecture of the EOSDIS provides a platform for the publication, discovery, understanding and access to NASA’s Earth Observation resources and allows for easy integration of new datasets. The EOSDIS also has developed several methods for incorporating socioeconomic data into its data collection. Over the years, we have developed several methods for

  16. NASA Spacecraft Fault Management Workshop Results

    Science.gov (United States)

    Newhouse, Marilyn; McDougal, John; Barley, Bryan; Fesq, Lorraine; Stephens, Karen

    2010-01-01

    Fault Management is a critical aspect of deep-space missions. For the purposes of this paper, fault management is defined as the ability of a system to detect, isolate, and mitigate events that impact, or have the potential to impact, nominal mission operations. The fault management capabilities are commonly distributed across flight and ground subsystems, impacting hardware, software, and mission operations designs. The National Aeronautics and Space Administration (NASA) Discovery & New Frontiers (D&NF) Program Office at Marshall Space Flight Center (MSFC) recently studied cost overruns and schedule delays for 5 missions. The goal was to identify the underlying causes for the overruns and delays, and to develop practical mitigations to assist the D&NF projects in identifying potential risks and controlling the associated impacts to proposed mission costs and schedules. The study found that 4 out of the 5 missions studied had significant overruns due to underestimating the complexity and support requirements for fault management. As a result of this and other recent experiences, the NASA Science Mission Directorate (SMD) Planetary Science Division (PSD) commissioned a workshop to bring together invited participants across government, industry, academia to assess the state of the art in fault management practice and research, identify current and potential issues, and make recommendations for addressing these issues. The workshop was held in New Orleans in April of 2008. The workshop concluded that fault management is not being limited by technology, but rather by a lack of emphasis and discipline in both the engineering and programmatic dimensions. Some of the areas cited in the findings include different, conflicting, and changing institutional goals and risk postures; unclear ownership of end-to-end fault management engineering; inadequate understanding of the impact of mission-level requirements on fault management complexity; and practices, processes, and

  17. Nasa's Land Remote Sensing Plans for the 1980's

    Science.gov (United States)

    Higg, H. C.; Butera, K. M.; Settle, M.

    1985-01-01

    Research since the launch of LANDSAT-1 has been primarily directed to the development of analysis techniques and to the conduct of applications studies designed to address resource information needs in the United States and in many other countries. The current measurement capabilities represented by MSS, TM, and SIR-A and B, coupled with the present level of remote sensing understanding and the state of knowledge in the discipline earth sciences, form the foundation for NASA's Land Processes Program. Science issues to be systematically addressed include: energy balance, hydrologic cycle, biogeochemical cycles, biological productivity, rock cycle, landscape development, geological and botanical associations, and land surface inventory, monitoring, and modeling. A global perspective is required for using remote sensing technology for problem solving or applications context. A successful model for this kind of activity involves joint research with a user entity where the user provides a test site and ground truth and NASA provides the remote sensing techniques to be tested.

  18. Historical Mass, Power, Schedule, and Cost Growth for NASA Spacecraft

    Science.gov (United States)

    Hayhurst, Marc R.; Bitten, Robert E.; Shinn, Stephen A.; Judnick, Daniel C.; Hallgrimson, Ingrid E.; Youngs, Megan A.

    2016-01-01

    Although spacecraft developers have been moving towards standardized product lines as the aerospace industry has matured, NASA's continual need to push the cutting edge of science to accomplish unique, challenging missions can still lead to spacecraft resource growth over time. This paper assesses historical mass, power, cost, and schedule growth for multiple NASA spacecraft from the last twenty years and compares to industry reserve guidelines to understand where the guidelines may fall short. Growth is assessed from project start to launch, from the time of the preliminary design review (PDR) to launch and from the time of the critical design review (CDR) to launch. Data is also assessed not just at the spacecraft bus level, but also at the subsystem level wherever possible, to help obtain further insight into possible drivers of growth. Potential recommendations to minimize spacecraft mass, power, cost, and schedule growth for future missions are also discussed.

  19. Development and Deployment of NASA's Budget Execution Dashboard

    Science.gov (United States)

    Putz, Peter

    2009-01-01

    This paper discusses the successful implementation of a highly visible company-wide management system and its potential to change managerial and accounting policies, processes and practices in support of organizational goals. Applying the conceptual framework of innovation in organizations, this paper describes the development and deployment process of the NASA Budget Execution Dashboard and the first two fiscal years of its use. It discusses the positive organizational changes triggered by the dashboard, like higher visibility of financial goals and variances between plans and actuals, increased involvement of all management levels in tracking and correcting of plan deviations, establishing comparable data standards across a strongly diversified organization, and enhanced communication between line organizations (NASA Centers) and product organizations (Mission Directorates). The paper also discusses the critical success factors experienced in this project: Strong leadership and division of management roles, rapid and responsive technology development, and frequent communication among stakeholders.

  20. NASA Tech Briefs, October 2013

    Science.gov (United States)

    2013-01-01

    Topics include: A Short-Range Distance Sensor with Exceptional Linearity; Miniature Trace Gas Detector Based on Microfabricated Optical Resonators; Commercial Non-Dispersive Infrared Spectroscopy Sensors for Sub-Ambient Carbon Dioxide Detection; Fast, Large-Area, Wide-Bandgap UV Photodetector for Cherenkov Light Detection; Mission Data System Java Edition Version 7; Adaptive Distributed Environment for Procedure Training (ADEPT); LEGEND, a LEO-to-GEO Environment Debris Model; Electronics/Computers; Millimeter-Wave Localizers for Aircraft-to-Aircraft Approach Navigation; Impedance Discontinuity Reduction Between High-Speed Differential Connectors and PCB Interfaces; SpaceCube Version 1.5; High-Pressure Lightweight Thrusters; Non-Magnetic, Tough, Corrosion- and Wear-Resistant Knives From Bulk Metallic Glasses and Composites; Ambient Dried Aerogels; Applications for Gradient Metal Alloys Fabricated Using Additive Manufacturing; Passivation of Flexible YBCO Superconducting Current Lead With Amorphous SiO2 Layer; Propellant-Flow-Actuated Rocket Engine Igniter; Lightweight Liquid Helium Dewar for High-Altitude Balloon Payloads; Method to Increase Performance of Foil Bearings Through Passive Thermal Management; Unibody Composite Pressurized Structure; JWST Integrated Science Instrument Module Alignment Optimization Tool; Radar Range Sidelobe Reduction Using Adaptive Pulse Compression Technique; Digitally Calibrated TR Modules Enabling Real-Time Beamforming SweepSAR Architectures; Electro-Optic Time-to-Space Converter for Optical Detector Jitter Mitigation; Partially Transparent Petaled Mask/Occulter for Visible-Range Spectrum; Educational NASA Computational and Scientific Studies (enCOMPASS); Coarse-Grain Bandwidth Estimation Scheme for Large-Scale Network; Detection of Moving Targets Using Soliton Resonance Effect; High-Efficiency Nested Hall Thrusters for Robotic Solar System Exploration; High-Voltage Clock Driver for Photon-Counting CCD Characterization; Development of