Sample records for nasa high-end computing

  1. High-End Scientific Computing (United States)

    EPA uses high-end scientific computing, geospatial services and remote sensing/imagery analysis to support EPA's mission. The Center for Environmental Computing (CEC) assists the Agency's program offices and regions to meet staff needs in these areas.

  2. High-End Computing Challenges in Aerospace Design and Engineering (United States)

    Bailey, F. Ronald


    High-End Computing (HEC) has had significant impact on aerospace design and engineering and is poised to make even more in the future. In this paper we describe four aerospace design and engineering challenges: Digital Flight, Launch Simulation, Rocket Fuel System and Digital Astronaut. The paper discusses modeling capabilities needed for each challenge and presents projections of future near and far-term HEC computing requirements. NASA's HEC Project Columbia is described and programming strategies presented that are necessary to achieve high real performance.

  3. Federal High End Computing (HEC) Information Portal (United States)

    Networking and Information Technology Research and Development, Executive Office of the President — This portal provides information about opportunities to engage in U.S. Federal government high performance computing activities, including supercomputer use,...


    Energy Technology Data Exchange (ETDEWEB)

    Corones, James [Krell Institute


    High-End computing (HEC) has been a driver for advances in science and engineering for the past four decades. Increasingly HEC has become a significant element in the national security, economic vitality, and competitiveness of the United States. Advances in HEC provide results that cut across traditional disciplinary and organizational boundaries. This program provides opportunities to share information about HEC systems and computational techniques across multiple disciplines and organizations through conferences and exhibitions of HEC advances held in Washington DC so that mission agency staff, scientists, and industry can come together with White House, Congressional and Legislative staff in an environment conducive to the sharing of technical information, accomplishments, goals, and plans. A common thread across this series of conferences is the understanding of computational science and applied mathematics techniques across a diverse set of application areas of interest to the Nation. The specific objectives of this program are: Program Objective 1. To provide opportunities to share information about advances in high-end computing systems and computational techniques between mission critical agencies, agency laboratories, academics, and industry. Program Objective 2. To gather pertinent data, address specific topics of wide interest to mission critical agencies. Program Objective 3. To promote a continuing discussion of critical issues in high-end computing. Program Objective 4.To provide a venue where a multidisciplinary scientific audience can discuss the difficulties applying computational science techniques to specific problems and can specify future research that, if successful, will eliminate these problems.

  5. High End Computing Technologies for Earth Science Applications: Trends, Challenges, and Innovations (United States)

    Parks, John (Technical Monitor); Biswas, Rupak; Yan, Jerry C.; Brooks, Walter F.; Sterling, Thomas L.


    Earth science applications of the future will stress the capabilities of even the highest performance supercomputers in the areas of raw compute power, mass storage management, and software environments. These NASA mission critical problems demand usable multi-petaflops and exabyte-scale systems to fully realize their science goals. With an exciting vision of the technologies needed, NASA has established a comprehensive program of advanced research in computer architecture, software tools, and device technology to ensure that, in partnership with US industry, it can meet these demanding requirements with reliable, cost effective, and usable ultra-scale systems. NASA will exploit, explore, and influence emerging high end computing architectures and technologies to accelerate the next generation of engineering, operations, and discovery processes for NASA Enterprises. This article captures this vision and describes the concepts, accomplishments, and the potential payoff of the key thrusts that will help meet the computational challenges in Earth science applications.

  6. Hot Chips and Hot Interconnects for High End Computing Systems (United States)

    Saini, Subhash


    I will discuss several processors: 1. The Cray proprietary processor used in the Cray X1; 2. The IBM Power 3 and Power 4 used in an IBM SP 3 and IBM SP 4 systems; 3. The Intel Itanium and Xeon, used in the SGI Altix systems and clusters respectively; 4. IBM System-on-a-Chip used in IBM BlueGene/L; 5. HP Alpha EV68 processor used in DOE ASCI Q cluster; 6. SPARC64 V processor, which is used in the Fujitsu PRIMEPOWER HPC2500; 7. An NEC proprietary processor, which is used in NEC SX-6/7; 8. Power 4+ processor, which is used in Hitachi SR11000; 9. NEC proprietary processor, which is used in Earth Simulator. The IBM POWER5 and Red Storm Computing Systems will also be discussed. The architectures of these processors will first be presented, followed by interconnection networks and a description of high-end computer systems based on these processors and networks. The performance of various hardware/programming model combinations will then be compared, based on latest NAS Parallel Benchmark results (MPI, OpenMP/HPF and hybrid (MPI + OpenMP). The tutorial will conclude with a discussion of general trends in the field of high performance computing, (quantum computing, DNA computing, cellular engineering, and neural networks).


    Directory of Open Access Journals (Sweden)

    R. Bala Chandar


    Full Text Available Cloud computing is an inspiring technology due to its abilities like ensuring scalable services, reducing the anxiety of local hardware and software management associated with computing while increasing flexibility and scalability. A key trait of the cloud services is remotely processing of data. Even though this technology had offered a lot of services, there are a few concerns such as misbehavior of server side stored data , out of control of data owner's data and cloud computing does not control the access of outsourced data desired by the data owner. To handle these issues, we propose a new model to ensure the data correctness for assurance of stored data, distributed accountability for authentication and efficient access control of outsourced data for authorization. This model strengthens the correctness of data and helps to achieve the cloud data integrity, supports data owner to have control on their own data through tracking and improves the access control of outsourced data.

  8. Development of superconductor electronics technology for high-end computing

    Energy Technology Data Exchange (ETDEWEB)

    Silver, A [Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA 91109-8099 (United States); Kleinsasser, A [Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA 91109-8099 (United States); Kerber, G [Northrop Grumman Space Technology, One Space Park, Redondo Beach, CA 90278 (United States); Herr, Q [Northrop Grumman Space Technology, One Space Park, Redondo Beach, CA 90278 (United States); Dorojevets, M [Department of Electrical and Computer Engineering, SUNY-Stony Brook, NY 11794-2350 (United States); Bunyk, P [Northrop Grumman Space Technology, One Space Park, Redondo Beach, CA 90278 (United States); Abelson, L [Northrop Grumman Space Technology, One Space Park, Redondo Beach, CA 90278 (United States)


    This paper describes our programme to develop and demonstrate ultra-high performance single flux quantum (SFQ) VLSI technology that will enable superconducting digital processors for petaFLOPS-scale computing. In the hybrid technology, multi-threaded architecture, the computational engine to power a petaFLOPS machine at affordable power will consist of 4096 SFQ multi-chip processors, with 50 to 100 GHz clock frequency and associated cryogenic RAM. We present the superconducting technology requirements, progress to date and our plan to meet these requirements. We improved SFQ Nb VLSI by two generations, to a 8 kA cm{sup -2}, 1.25 {mu}m junction process, incorporated new CAD tools into our methodology, demonstrated methods for recycling the bias current and data communication at speeds up to 60 Gb s{sup -1}, both on and between chips through passive transmission lines. FLUX-1 is the most ambitious project implemented in SFQ technology to date, a prototype general-purpose 8 bit microprocessor chip. We are testing the FLUX-1 chip (5K gates, 20 GHz clock) and designing a 32 bit floating-point SFQ multiplier with vector-register memory. We report correct operation of the complete stripline-connected gate library with large bias margins, as well as several larger functional units used in FLUX-1. The next stage will be an SFQ multi-processor machine. Important challenges include further reducing chip supply current and on-chip power dissipation, developing at least 64 kbit, sub-nanosecond cryogenic RAM chips, developing thermally and electrically efficient high data rate cryogenic-to-ambient input/output technology and improving Nb VLSI to increase gate density.

  9. Development of superconductor electronics technology for high-end computing

    International Nuclear Information System (INIS)

    Silver, A; Kleinsasser, A; Kerber, G; Herr, Q; Dorojevets, M; Bunyk, P; Abelson, L


    This paper describes our programme to develop and demonstrate ultra-high performance single flux quantum (SFQ) VLSI technology that will enable superconducting digital processors for petaFLOPS-scale computing. In the hybrid technology, multi-threaded architecture, the computational engine to power a petaFLOPS machine at affordable power will consist of 4096 SFQ multi-chip processors, with 50 to 100 GHz clock frequency and associated cryogenic RAM. We present the superconducting technology requirements, progress to date and our plan to meet these requirements. We improved SFQ Nb VLSI by two generations, to a 8 kA cm -2 , 1.25 μm junction process, incorporated new CAD tools into our methodology, demonstrated methods for recycling the bias current and data communication at speeds up to 60 Gb s -1 , both on and between chips through passive transmission lines. FLUX-1 is the most ambitious project implemented in SFQ technology to date, a prototype general-purpose 8 bit microprocessor chip. We are testing the FLUX-1 chip (5K gates, 20 GHz clock) and designing a 32 bit floating-point SFQ multiplier with vector-register memory. We report correct operation of the complete stripline-connected gate library with large bias margins, as well as several larger functional units used in FLUX-1. The next stage will be an SFQ multi-processor machine. Important challenges include further reducing chip supply current and on-chip power dissipation, developing at least 64 kbit, sub-nanosecond cryogenic RAM chips, developing thermally and electrically efficient high data rate cryogenic-to-ambient input/output technology and improving Nb VLSI to increase gate density

  10. NASA's computer science research program (United States)

    Larsen, R. L.


    Following a major assessment of NASA's computing technology needs, a new program of computer science research has been initiated by the Agency. The program includes work in concurrent processing, management of large scale scientific databases, software engineering, reliable computing, and artificial intelligence. The program is driven by applications requirements in computational fluid dynamics, image processing, sensor data management, real-time mission control and autonomous systems. It consists of university research, in-house NASA research, and NASA's Research Institute for Advanced Computer Science (RIACS) and Institute for Computer Applications in Science and Engineering (ICASE). The overall goal is to provide the technical foundation within NASA to exploit advancing computing technology in aerospace applications.

  11. Evaluation of External Memory Access Performance on a High-End FPGA Hybrid Computer

    Directory of Open Access Journals (Sweden)

    Konstantinos Kalaitzis


    Full Text Available The motivation of this research was to evaluate the main memory performance of a hybrid super computer such as the Convey HC-x, and ascertain how the controller performs in several access scenarios, vis-à-vis hand-coded memory prefetches. Such memory patterns are very useful in stencil computations. The theoretical bandwidth of the memory of the Convey is compared with the results of our measurements. The accurate study of the memory subsystem is particularly useful for users when they are developing their application-specific personality. Experiments were performed to measure the bandwidth between the coprocessor and the memory subsystem. The experiments aimed mainly at measuring the reading access speed of the memory from Application Engines (FPGAs. Different ways of accessing data were used in order to find the most efficient way to access memory. This way was proposed for future work in the Convey HC-x. When performing a series of accesses to memory, non-uniform latencies occur. The Memory Controller of the Convey HC-x in the coprocessor attempts to cover this latency. We measure memory efficiency as a ratio of the number of memory accesses and the number of execution cycles. The result of this measurement converges to one in most cases. In addition, we performed experiments with hand-coded memory accesses. The analysis of the experimental results shows how the memory subsystem and Memory Controllers work. From this work we conclude that the memory controllers do an excellent job, largely because (transparently to the user they seem to cache large amounts of data, and hence hand-coding is not needed in most situations.

  12. Semi-Automatic Science Workflow Synthesis for High-End Computing on the NASA Earth Exchange (United States)

    National Aeronautics and Space Administration — Enhance capabilities for collaborative data analysis and modeling in Earth sciences. Develop components for automatic workflow capture, archiving and management....

  13. The NASA computer science research program plan (United States)


    A taxonomy of computer science is included, one state of the art of each of the major computer science categories is summarized. A functional breakdown of NASA programs under Aeronautics R and D, space R and T, and institutional support is also included. These areas were assessed against the computer science categories. Concurrent processing, highly reliable computing, and information management are identified.

  14. Comparison between low-cost marker-less and high-end marker-based motion capture systems for the computer-aided assessment of working ergonomics. (United States)

    Patrizi, Alfredo; Pennestrì, Ettore; Valentini, Pier Paolo


    The paper deals with the comparison between a high-end marker-based acquisition system and a low-cost marker-less methodology for the assessment of the human posture during working tasks. The low-cost methodology is based on the use of a single Microsoft Kinect V1 device. The high-end acquisition system is the BTS SMART that requires the use of reflective markers to be placed on the subject's body. Three practical working activities involving object lifting and displacement have been investigated. The operational risk has been evaluated according to the lifting equation proposed by the American National Institute for Occupational Safety and Health. The results of the study show that the risk multipliers computed from the two acquisition methodologies are very close for all the analysed activities. In agreement to this outcome, the marker-less methodology based on the Microsoft Kinect V1 device seems very promising to promote the dissemination of computer-aided assessment of ergonomics while maintaining good accuracy and affordable costs. PRACTITIONER’S SUMMARY: The study is motivated by the increasing interest for on-site working ergonomics assessment. We compared a low-cost marker-less methodology with a high-end marker-based system. We tested them on three different working tasks, assessing the working risk of lifting loads. The two methodologies showed comparable precision in all the investigations.

  15. Computer graphics aid mission operations. [NASA missions (United States)

    Jeletic, James F.


    The application of computer graphics techniques in NASA space missions is reviewed. Telemetric monitoring of the Space Shuttle and its components is discussed, noting the use of computer graphics for real-time visualization problems in the retrieval and repair of the Solar Maximum Mission. The use of the world map display for determining a spacecraft's location above the earth and the problem of verifying the relative position and orientation of spacecraft to celestial bodies are examined. The Flight Dynamics/STS Three-dimensional Monitoring System and the Trajectroy Computations and Orbital Products System world map display are described, emphasizing Space Shuttle applications. Also, consideration is given to the development of monitoring systems such as the Shuttle Payloads Mission Monitoring System and the Attitude Heads-Up Display and the use of the NASA-Goddard Two-dimensional Graphics Monitoring System during Shuttle missions and to support the Hubble Space Telescope.

  16. Computational Nanoelectronics and Nanotechnology at NASA ARC (United States)

    Saini, Subhash


    Both physical and economic considerations indicate that the scaling era of CMOS will run out of steam around the year 2010. However, physical laws also indicate that it is possible to compute at a rate of a billion times present speeds with the expenditure of only one Watt of electrical power. NASA has long-term needs where ultra-small semiconductor devices are needed for critical applications: high performance, low power, compact computers for intelligent autonomous vehicles and Petaflop computing technolpgy are some key examples. To advance the design, development, and production of future generation micro- and nano-devices, IT Modeling and Simulation Group has been started at NASA Ames with a goal to develop an integrated simulation environment that addresses problems related to nanoelectronics and molecular nanotecnology. Overview of nanoelectronics and nanotechnology research activities being carried out at Ames Research Center will be presented. We will also present the vision and the research objectives of the IT Modeling and Simulation Group including the applications of nanoelectronic based devices relevant to NASA missions.

  17. NASA Center for Computational Sciences: History and Resources (United States)


    The Nasa Center for Computational Sciences (NCCS) has been a leading capacity computing facility, providing a production environment and support resources to address the challenges facing the Earth and space sciences research community.

  18. Facilitating NASA Earth Science Data Processing Using Nebula Cloud Computing (United States)

    Pham, Long; Chen, Aijun; Kempler, Steven; Lynnes, Christopher; Theobald, Michael; Asghar, Esfandiari; Campino, Jane; Vollmer, Bruce


    Cloud Computing has been implemented in several commercial arenas. The NASA Nebula Cloud Computing platform is an Infrastructure as a Service (IaaS) built in 2008 at NASA Ames Research Center and 2010 at GSFC. Nebula is an open source Cloud platform intended to: a) Make NASA realize significant cost savings through efficient resource utilization, reduced energy consumption, and reduced labor costs. b) Provide an easier way for NASA scientists and researchers to efficiently explore and share large and complex data sets. c) Allow customers to provision, manage, and decommission computing capabilities on an as-needed bases

  19. Educational NASA Computational and Scientific Studies (enCOMPASS) (United States)

    Memarsadeghi, Nargess


    Educational NASA Computational and Scientific Studies (enCOMPASS) is an educational project of NASA Goddard Space Flight Center aimed at bridging the gap between computational objectives and needs of NASA's scientific research, missions, and projects, and academia's latest advances in applied mathematics and computer science. enCOMPASS achieves this goal via bidirectional collaboration and communication between NASA and academia. Using developed NASA Computational Case Studies in university computer science/engineering and applied mathematics classes is a way of addressing NASA's goals of contributing to the Science, Technology, Education, and Math (STEM) National Objective. The enCOMPASS Web site at provides additional information. There are currently nine enCOMPASS case studies developed in areas of earth sciences, planetary sciences, and astrophysics. Some of these case studies have been published in AIP and IEEE's Computing in Science and Engineering magazines. A few university professors have used enCOMPASS case studies in their computational classes and contributed their findings to NASA scientists. In these case studies, after introducing the science area, the specific problem, and related NASA missions, students are first asked to solve a known problem using NASA data and past approaches used and often published in a scientific/research paper. Then, after learning about the NASA application and related computational tools and approaches for solving the proposed problem, students are given a harder problem as a challenge for them to research and develop solutions for. This project provides a model for NASA scientists and engineers on one side, and university students, faculty, and researchers in computer science and applied mathematics on the other side, to learn from each other's areas of work, computational needs and solutions, and the latest advances in research and development. This innovation takes NASA science and

  20. Data, Meet Compute: NASA's Cumulus Ingest Architecture (United States)

    Quinn, Patrick


    NASA's Earth Observing System Data and Information System (EOSDIS) houses nearly 30PBs of critical Earth Science data and with upcoming missions is expected to balloon to between 200PBs-300PBs over the next seven years. In addition to the massive increase in data collected, researchers and application developers want more and faster access - enabling complex visualizations, long time-series analysis, and cross dataset research without needing to copy and manage massive amounts of data locally. NASA has looked to the cloud to address these needs, building its Cumulus system to manage the ingest of diverse data in a wide variety of formats into the cloud. In this talk, we look at what Cumulus is from a high level and then take a deep dive into how it manages complexity and versioning associated with multiple AWS Lambda and ECS microservices communicating through AWS Step Functions across several disparate installations

  1. NASA Computational Case Study: The Flight of Friendship 7 (United States)

    Simpson, David G.


    In this case study, we learn how to compute the position of an Earth-orbiting spacecraft as a function of time. As an exercise, we compute the position of John Glenn's Mercury spacecraft Friendship 7 as it orbited the Earth during the third flight of NASA's Mercury program.

  2. An Offload NIC for NASA, NLR, and Grid Computing (United States)

    Awrach, James


    , and to add several more capabilities while reducing space consumption and cost. Provisions were designed for interoperability with systems used in the NASA HEC (High-End Computing) program. The new acceleration engine consists of state-ofthe- art FPGA (field-programmable gate array) core IP, C, and Verilog code; novel communication protocol; and extensions to the Globus structure. The engine provides the functions of network acceleration, encryption, compression, packet-ordering, and security added to Globus grid or for cloud data transfer. This system is scalable in nX10-Gbps increments through 100-Gbps f-d. It can be interfaced to industry-standard system-side or network-side devices or core IP in increments of 10 GigE, scaling to provide IEEE 40/100 GigE compliance.

  3. Applied Computational Fluid Dynamics at NASA Ames Research Center (United States)

    Holst, Terry L.; Kwak, Dochan (Technical Monitor)


    The field of Computational Fluid Dynamics (CFD) has advanced to the point where it can now be used for many applications in fluid mechanics research and aerospace vehicle design. A few applications being explored at NASA Ames Research Center will be presented and discussed. The examples presented will range in speed from hypersonic to low speed incompressible flow applications. Most of the results will be from numerical solutions of the Navier-Stokes or Euler equations in three space dimensions for general geometry applications. Computational results will be used to highlight the presentation as appropriate. Advances in computational facilities including those associated with NASA's CAS (Computational Aerosciences) Project of the Federal HPCC (High Performance Computing and Communications) Program will be discussed. Finally, opportunities for future research will be presented and discussed. All material will be taken from non-sensitive, previously-published and widely-disseminated work.

  4. NASA Advanced Supercomputing Facility Expansion (United States)

    Thigpen, William W.


    The NASA Advanced Supercomputing (NAS) Division enables advances in high-end computing technologies and in modeling and simulation methods to tackle some of the toughest science and engineering challenges facing NASA today. The name "NAS" has long been associated with leadership and innovation throughout the high-end computing (HEC) community. We play a significant role in shaping HEC standards and paradigms, and provide leadership in the areas of large-scale InfiniBand fabrics, Lustre open-source filesystems, and hyperwall technologies. We provide an integrated high-end computing environment to accelerate NASA missions and make revolutionary advances in science. Pleiades, a petaflop-scale supercomputer, is used by scientists throughout the U.S. to support NASA missions, and is ranked among the most powerful systems in the world. One of our key focus areas is in modeling and simulation to support NASA's real-world engineering applications and make fundamental advances in modeling and simulation methods.

  5. Federal Plan for High-End Computing (United States)

    Networking and Information Technology Research and Development, Executive Office of the President — Since the World War II era, when scientists, mathematicians, and engineers began using revolutionary electronic machinery that could rapidly perform complex...

  6. Fluid dynamics parallel computer development at NASA Langley Research Center (United States)

    Townsend, James C.; Zang, Thomas A.; Dwoyer, Douglas L.


    To accomplish more detailed simulations of highly complex flows, such as the transition to turbulence, fluid dynamics research requires computers much more powerful than any available today. Only parallel processing on multiple-processor computers offers hope for achieving the required effective speeds. Looking ahead to the use of these machines, the fluid dynamicist faces three issues: algorithm development for near-term parallel computers, architecture development for future computer power increases, and assessment of possible advantages of special purpose designs. Two projects at NASA Langley address these issues. Software development and algorithm exploration is being done on the FLEX/32 Parallel Processing Research Computer. New architecture features are being explored in the special purpose hardware design of the Navier-Stokes Computer. These projects are complementary and are producing promising results.

  7. An introduction to NASA's advanced computing program: Integrated computing systems in advanced multichip modules (United States)

    Fang, Wai-Chi; Alkalai, Leon


    Recent changes within NASA's space exploration program favor the design, implementation, and operation of low cost, lightweight, small and micro spacecraft with multiple launches per year. In order to meet the future needs of these missions with regard to the use of spacecraft microelectronics, NASA's advanced flight computing (AFC) program is currently considering industrial cooperation and advanced packaging architectures. In relation to this, the AFC program is reviewed, considering the design and implementation of NASA's AFC multichip module.

  8. Guidelines for development of NASA (National Aeronautics and Space Administration) computer security training programs (United States)

    Tompkins, F. G.


    The report presents guidance for the NASA Computer Security Program Manager and the NASA Center Computer Security Officials as they develop training requirements and implement computer security training programs. NASA audiences are categorized based on the computer security knowledge required to accomplish identified job functions. Training requirements, in terms of training subject areas, are presented for both computer security program management personnel and computer resource providers and users. Sources of computer security training are identified.

  9. Facilitating NASA Earth Science Data Processing Using Nebula Cloud Computing (United States)

    Chen, A.; Pham, L.; Kempler, S.; Theobald, M.; Esfandiari, A.; Campino, J.; Vollmer, B.; Lynnes, C.


    Cloud Computing technology has been used to offer high-performance and low-cost computing and storage resources for both scientific problems and business services. Several cloud computing services have been implemented in the commercial arena, e.g. Amazon's EC2 & S3, Microsoft's Azure, and Google App Engine. There are also some research and application programs being launched in academia and governments to utilize Cloud Computing. NASA launched the Nebula Cloud Computing platform in 2008, which is an Infrastructure as a Service (IaaS) to deliver on-demand distributed virtual computers. Nebula users can receive required computing resources as a fully outsourced service. NASA Goddard Earth Science Data and Information Service Center (GES DISC) migrated several GES DISC's applications to the Nebula as a proof of concept, including: a) The Simple, Scalable, Script-based Science Processor for Measurements (S4PM) for processing scientific data; b) the Atmospheric Infrared Sounder (AIRS) data process workflow for processing AIRS raw data; and c) the GES-DISC Interactive Online Visualization ANd aNalysis Infrastructure (GIOVANNI) for online access to, analysis, and visualization of Earth science data. This work aims to evaluate the practicability and adaptability of the Nebula. The initial work focused on the AIRS data process workflow to evaluate the Nebula. The AIRS data process workflow consists of a series of algorithms being used to process raw AIRS level 0 data and output AIRS level 2 geophysical retrievals. Migrating the entire workflow to the Nebula platform is challenging, but practicable. After installing several supporting libraries and the processing code itself, the workflow is able to process AIRS data in a similar fashion to its current (non-cloud) configuration. We compared the performance of processing 2 days of AIRS level 0 data through level 2 using a Nebula virtual computer and a local Linux computer. The result shows that Nebula has significantly

  10. Scientific visualization in computational aerodynamics at NASA Ames Research Center (United States)

    Bancroft, Gordon V.; Plessel, Todd; Merritt, Fergus; Walatka, Pamela P.; Watson, Val


    The visualization methods used in computational fluid dynamics research at the NASA-Ames Numerical Aerodynamic Simulation facility are examined, including postprocessing, tracking, and steering methods. The visualization requirements of the facility's three-dimensional graphical workstation are outlined and the types hardware and software used to meet these requirements are discussed. The main features of the facility's current and next-generation workstations are listed. Emphasis is given to postprocessing techniques, such as dynamic interactive viewing on the workstation and recording and playback on videodisk, tape, and 16-mm film. Postprocessing software packages are described, including a three-dimensional plotter, a surface modeler, a graphical animation system, a flow analysis software toolkit, and a real-time interactive particle-tracer.

  11. Upgrading NASA/DOSE laser ranging system control computers (United States)

    Ricklefs, Randall L.; Cheek, Jack; Seery, Paul J.; Emenheiser, Kenneth S.; Hanrahan, William P., III; Mcgarry, Jan F.


    Laser ranging systems now managed by the NASA Dynamics of the Solid Earth (DOSE) and operated by the Bendix Field Engineering Corporation, the University of Hawaii, and the University of Texas have produced a wealth on interdisciplinary scientific data over the last three decades. Despite upgrades to the most of the ranging station subsystems, the control computers remain a mix of 1970's vintage minicomputers. These encompass a wide range of vendors, operating systems, and languages, making hardware and software support increasingly difficult. Current technology allows replacement of controller computers at a relatively low cost while maintaining excellent processing power and a friendly operating environment. The new controller systems are now being designed using IBM-PC-compatible 80486-based microcomputers, a real-time Unix operating system (LynxOS), and X-windows/Motif IB, and serial interfaces have been chosen. This design supports minimizing short and long term costs by relying on proven standards for both hardware and software components. Currently, the project is in the design and prototyping stage with the first systems targeted for production in mid-1993.

  12. GWDC Expands High-End Market Share

    Institute of Scientific and Technical Information of China (English)


    @@ It is a decision of great significance for GWDC to expand high-end market share in order to realize its transformation of development strategy and improve its development quality. As an important step of GWDC to explore high-end market, Oman PDO Project marks the first time that the Chinese petroleum engineering service team cooperates with the transnational petroleum corporations ranking first three in the world.

  13. The NASA Computational Fluid Dynamics (CFD) program - Building technology to solve future challenges (United States)

    Richardson, Pamela F.; Dwoyer, Douglas L.; Kutler, Paul; Povinelli, Louis A.


    This paper presents the NASA Computational Fluid Dynamics program in terms of a strategic vision and goals as well as NASA's financial commitment and personnel levels. The paper also identifies the CFD program customers and the support to those customers. In addition, the paper discusses technical emphasis and direction of the program and some recent achievements. NASA's Ames, Langley, and Lewis Research Centers are the research hubs of the CFD program while the NASA Headquarters Office of Aeronautics represents and advocates the program.


    Purves, L. R.


    NEXUS, the NASA Engineering Extendible Unified Software system, is a research set of computer programs designed to support the full sequence of activities encountered in NASA engineering projects. This sequence spans preliminary design, design analysis, detailed design, manufacturing, assembly, and testing. NEXUS primarily addresses the process of prototype engineering, the task of getting a single or small number of copies of a product to work. Prototype engineering is a critical element of large scale industrial production. The time and cost needed to introduce a new product are heavily dependent on two factors: 1) how efficiently required product prototypes can be developed, and 2) how efficiently required production facilities, also a prototype engineering development, can be completed. NEXUS extendibility and unification are achieved by organizing the system as an arbitrarily large set of computer programs accessed in a common manner through a standard user interface. The NEXUS interface is a multipurpose interactive graphics interface called NASCAD (NASA Computer Aided Design). NASCAD can be used to build and display two and three-dimensional geometries, to annotate models with dimension lines, text strings, etc., and to store and retrieve design related information such as names, masses, and power requirements of components used in the design. From the user's standpoint, NASCAD allows the construction, viewing, modification, and other processing of data structures that represent the design. Four basic types of data structures are supported by NASCAD: 1) three-dimensional geometric models of the object being designed, 2) alphanumeric arrays to hold data ranging from numeric scalars to multidimensional arrays of numbers or characters, 3) tabular data sets that provide a relational data base capability, and 4) procedure definitions to combine groups of system commands or other user procedures to create more powerful functions. NASCAD has extensive abilities to

  15. Computer science: Key to a space program renaissance. The 1981 NASA/ASEE summer study on the use of computer science and technology in NASA. Volume 2: Appendices (United States)

    Freitas, R. A., Jr. (Editor); Carlson, P. A. (Editor)


    Adoption of an aggressive computer science research and technology program within NASA will: (1) enable new mission capabilities such as autonomous spacecraft, reliability and self-repair, and low-bandwidth intelligent Earth sensing; (2) lower manpower requirements, especially in the areas of Space Shuttle operations, by making fuller use of control center automation, technical support, and internal utilization of state-of-the-art computer techniques; (3) reduce project costs via improved software verification, software engineering, enhanced scientist/engineer productivity, and increased managerial effectiveness; and (4) significantly improve internal operations within NASA with electronic mail, managerial computer aids, an automated bureaucracy and uniform program operating plans.

  16. Swedish High-End Apparel Online


    Hansson, Christoffer; Grabe, Thomas; Thomander, Karolina


    The study aims to through a qualitative case study describe how six Swedish high-end apparel companies attributed as part of “the Swedish fashion wonder” with online distribution have been affected by six chosen factors. The six factors presented are extracted from previous studies and consist of customer relationships, intermediary relationships, pricing, costs and revenue, competitors and impact on the brand. The results show that customer relationships is an important factor that most comp...

  17. Terahertz Computed Tomography of NASA Thermal Protection System Materials (United States)

    Roth, D. J.; Reyes-Rodriguez, S.; Zimdars, D. A.; Rauser, R. W.; Ussery, W. W.


    A terahertz axial computed tomography system has been developed that uses time domain measurements in order to form cross-sectional image slices and three-dimensional volume renderings of terahertz-transparent materials. The system can inspect samples as large as 0.0283 cubic meters (1 cubic foot) with no safety concerns as for x-ray computed tomography. In this study, the system is evaluated for its ability to detect and characterize flat bottom holes, drilled holes, and embedded voids in foam materials utilized as thermal protection on the external fuel tanks for the Space Shuttle. X-ray micro-computed tomography was also performed on the samples to compare against the terahertz computed tomography results and better define embedded voids. Limits of detectability based on depth and size for the samples used in this study are loosely defined. Image sharpness and morphology characterization ability for terahertz computed tomography are qualitatively described.

  18. Computer simulation of the NASA water vapor electrolysis reactor (United States)

    Bloom, A. M.


    The water vapor electrolysis (WVE) reactor is a spacecraft waste reclamation system for extended-mission manned spacecraft. The WVE reactor's raw material is water, its product oxygen. A computer simulation of the WVE operational processes provided the data required for an optimal design of the WVE unit. The simulation process was implemented with the aid of a FORTRAN IV routine.

  19. An overview of flight computer technologies for future NASA (United States)

    Alkalai, L.


    In this paper, we present an overview of current developments by several US Government Agencies and associated programs, towards high-performance single board computers for use in space. Three separate projects will be described; two that are based on the Power PC processor, and one based on the Pentium processor.

  20. An Application-Based Performance Evaluation of NASAs Nebula Cloud Computing Platform (United States)

    Saini, Subhash; Heistand, Steve; Jin, Haoqiang; Chang, Johnny; Hood, Robert T.; Mehrotra, Piyush; Biswas, Rupak


    The high performance computing (HPC) community has shown tremendous interest in exploring cloud computing as it promises high potential. In this paper, we examine the feasibility, performance, and scalability of production quality scientific and engineering applications of interest to NASA on NASA's cloud computing platform, called Nebula, hosted at Ames Research Center. This work represents the comprehensive evaluation of Nebula using NUTTCP, HPCC, NPB, I/O, and MPI function benchmarks as well as four applications representative of the NASA HPC workload. Specifically, we compare Nebula performance on some of these benchmarks and applications to that of NASA s Pleiades supercomputer, a traditional HPC system. We also investigate the impact of virtIO and jumbo frames on interconnect performance. Overall results indicate that on Nebula (i) virtIO and jumbo frames improve network bandwidth by a factor of 5x, (ii) there is a significant virtualization layer overhead of about 10% to 25%, (iii) write performance is lower by a factor of 25x, (iv) latency for short MPI messages is very high, and (v) overall performance is 15% to 48% lower than that on Pleiades for NASA HPC applications. We also comment on the usability of the cloud platform.

  1. The NASA Ames Polycyclic Aromatic Hydrocarbon Infrared Spectroscopic Database : The Computed Spectra

    NARCIS (Netherlands)

    Bauschlicher, C. W.; Boersma, C.; Ricca, A.; Mattioda, A. L.; Cami, J.; Peeters, E.; de Armas, F. Sanchez; Saborido, G. Puerta; Hudgins, D. M.; Allamandola, L. J.

    The astronomical emission features, formerly known as the unidentified infrared bands, are now commonly ascribed to polycyclic aromatic hydrocarbons (PAHs). The laboratory experiments and computational modeling done at the NASA Ames Research Center to create a collection of PAH IR spectra relevant

  2. Computational needs survey of NASA automation and robotics missions. Volume 2: Appendixes (United States)

    Davis, Gloria J.


    NASA's operational use of advanced processor technology in space systems lags behind its commercial development by more than eight years. One of the factors contributing to this is the fact that mission computing requirements are frequency unknown, unstated, misrepresented, or simply not available in a timely manner. NASA must provide clear common requirements to make better use of available technology, to cut development lead time on deployable architectures, and to increase the utilization of new technology. Here, NASA, industry and academic communities are provided with a preliminary set of advanced mission computational processing requirements of automation and robotics (A and R) systems. The results were obtained in an assessment of the computational needs of current projects throughout NASA. The high percent of responses indicated a general need for enhanced computational capabilities beyond the currently available 80386 and 68020 processor technology. Because of the need for faster processors and more memory, 90 percent of the polled automation projects have reduced or will reduce the scope of their implemented capabilities. The requirements are presented with respect to their targeted environment, identifying the applications required, system performance levels necessary to support them, and the degree to which they are met with typical programmatic constraints. Here, appendixes are provided.

  3. Computational needs survey of NASA automation and robotics missions. Volume 1: Survey and results (United States)

    Davis, Gloria J.


    NASA's operational use of advanced processor technology in space systems lags behind its commercial development by more than eight years. One of the factors contributing to this is that mission computing requirements are frequently unknown, unstated, misrepresented, or simply not available in a timely manner. NASA must provide clear common requirements to make better use of available technology, to cut development lead time on deployable architectures, and to increase the utilization of new technology. A preliminary set of advanced mission computational processing requirements of automation and robotics (A&R) systems are provided for use by NASA, industry, and academic communities. These results were obtained in an assessment of the computational needs of current projects throughout NASA. The high percent of responses indicated a general need for enhanced computational capabilities beyond the currently available 80386 and 68020 processor technology. Because of the need for faster processors and more memory, 90 percent of the polled automation projects have reduced or will reduce the scope of their implementation capabilities. The requirements are presented with respect to their targeted environment, identifying the applications required, system performance levels necessary to support them, and the degree to which they are met with typical programmatic constraints. Volume one includes the survey and results. Volume two contains the appendixes.

  4. Evaluating Cloud Computing in the Proposed NASA DESDynI Ground Data System (United States)

    Tran, John J.; Cinquini, Luca; Mattmann, Chris A.; Zimdars, Paul A.; Cuddy, David T.; Leung, Kon S.; Kwoun, Oh-Ig; Crichton, Dan; Freeborn, Dana


    The proposed NASA Deformation, Ecosystem Structure and Dynamics of Ice (DESDynI) mission would be a first-of-breed endeavor that would fundamentally change the paradigm by which Earth Science data systems at NASA are built. DESDynI is evaluating a distributed architecture where expert science nodes around the country all engage in some form of mission processing and data archiving. This is compared to the traditional NASA Earth Science missions where the science processing is typically centralized. What's more, DESDynI is poised to profoundly increase the amount of data collection and processing well into the 5 terabyte/day and tens of thousands of job range, both of which comprise a tremendous challenge to DESDynI's proposed distributed data system architecture. In this paper, we report on a set of architectural trade studies and benchmarks meant to inform the DESDynI mission and the broader community of the impacts of these unprecedented requirements. In particular, we evaluate the benefits of cloud computing and its integration with our existing NASA ground data system software called Apache Object Oriented Data Technology (OODT). The preliminary conclusions of our study suggest that the use of the cloud and OODT together synergistically form an effective, efficient and extensible combination that could meet the challenges of NASA science missions requiring DESDynI-like data collection and processing volumes at reduced costs.

  5. Distributed management of scientific projects - An analysis of two computer-conferencing experiments at NASA (United States)

    Vallee, J.; Gibbs, B.


    Between August 1975 and March 1976, two NASA projects with geographically separated participants used a computer-conferencing system developed by the Institute for the Future for portions of their work. Monthly usage statistics for the system were collected in order to examine the group and individual participation figures for all conferences. The conference transcripts were analysed to derive observations about the use of the medium. In addition to the results of these analyses, the attitudes of users and the major components of the costs of computer conferencing are discussed.

  6. High-end encroachment patterns of new products

    NARCIS (Netherlands)

    Rhee, van der B.; Schmidt, G.; Orden, van J.


    Previous research describes two key ways in which a new product may encroach on an existing market. In high-end encroachment, the new product first sells to high-end customers and then diffuses down-market; in low-end encroachment, the new product enters at the low end and encroaches up-market. This

  7. Current state and future direction of computer systems at NASA Langley Research Center (United States)

    Rogers, James L. (Editor); Tucker, Jerry H. (Editor)


    Computer systems have advanced at a rate unmatched by any other area of technology. As performance has dramatically increased there has been an equally dramatic reduction in cost. This constant cost performance improvement has precipitated the pervasiveness of computer systems into virtually all areas of technology. This improvement is due primarily to advances in microelectronics. Most people are now convinced that the new generation of supercomputers will be built using a large number (possibly thousands) of high performance microprocessors. Although the spectacular improvements in computer systems have come about because of these hardware advances, there has also been a steady improvement in software techniques. In an effort to understand how these hardware and software advances will effect research at NASA LaRC, the Computer Systems Technical Committee drafted this white paper to examine the current state and possible future directions of computer systems at the Center. This paper discusses selected important areas of computer systems including real-time systems, embedded systems, high performance computing, distributed computing networks, data acquisition systems, artificial intelligence, and visualization.

  8. Exploiting NASA's Cumulus Earth Science Cloud Archive with Services and Computation (United States)

    Pilone, D.; Quinn, P.; Jazayeri, A.; Schuler, I.; Plofchan, P.; Baynes, K.; Ramachandran, R.


    NASA's Earth Observing System Data and Information System (EOSDIS) houses nearly 30PBs of critical Earth Science data and with upcoming missions is expected to balloon to between 200PBs-300PBs over the next seven years. In addition to the massive increase in data collected, researchers and application developers want more and faster access - enabling complex visualizations, long time-series analysis, and cross dataset research without needing to copy and manage massive amounts of data locally. NASA has started prototyping with commercial cloud providers to make this data available in elastic cloud compute environments, allowing application developers direct access to the massive EOSDIS holdings. In this talk we'll explain the principles behind the archive architecture and share our experience of dealing with large amounts of data with serverless architectures including AWS Lambda, the Elastic Container Service (ECS) for long running jobs, and why we dropped thousands of lines of code for AWS Step Functions. We'll discuss best practices and patterns for accessing and using data available in a shared object store (S3) and leveraging events and message passing for sophisticated and highly scalable processing and analysis workflows. Finally we'll share capabilities NASA and cloud services are making available on the archives to enable massively scalable analysis and computation in a variety of formats and tools.

  9. Storage system software solutions for high-end user needs (United States)

    Hogan, Carole B.


    Today's high-end storage user is one that requires rapid access to a reliable terabyte-capacity storage system running in a distributed environment. This paper discusses conventional storage system software and concludes that this software, designed for other purposes, cannot meet high-end storage requirements. The paper also reviews the philosophy and design of evolving storage system software. It concludes that this new software, designed with high-end requirements in mind, provides the potential for solving not only the storage needs of today but those of the foreseeable future as well.


    Directory of Open Access Journals (Sweden)

    Gembong Baskoro


    Full Text Available This paper discuses the concept of managing high-end, high-volume innovative products. High-end, high-volume consumer products are products that have considerable influence to the way of life. Characteristic of High-end, high-volume consumer products are (1 short cycle time, (2 quick obsolete time, and (3 rapid price erosion. Beside the disadvantages that they are high risk for manufacturers, if manufacturers are able to understand precisely the consumer needs then they have the potential benefit or success to be the market leader. High innovation implies to high utilization of the user, therefore these products can influence indirectly to the way of people life. The objective of managing them is to achieve sustainability of the products development and innovation. This paper observes the behavior of these products in companies operated in high-end, high-volume consumer product.

  11. NASA Enterprise Managed Cloud Computing (EMCC): Delivering an Initial Operating Capability (IOC) for NASA use of Commercial Infrastructure-as-a-Service (IaaS) (United States)

    O'Brien, Raymond


    In 2016, Ames supported the NASA CIO in delivering an initial operating capability for Agency use of commercial cloud computing. This presentation provides an overview of the project, the services approach followed, and the major components of the capability that was delivered. The presentation is being given at the request of Amazon Web Services to a contingent representing the Brazilian Federal Government and Defense Organization that is interested in the use of Amazon Web Services (AWS). NASA is currently a customer of AWS and delivered the Initial Operating Capability using AWS as its first commercial cloud provider. The IOC, however, designed to also support other cloud providers in the future.


    International Nuclear Information System (INIS)

    Bauschlicher, C. W.; Ricca, A.; Boersma, C.; Mattioda, A. L.; Cami, J.; Peeters, E.; Allamandola, L. J.; Sanchez de Armas, F.; Puerta Saborido, G.; Hudgins, D. M.


    The astronomical emission features, formerly known as the unidentified infrared bands, are now commonly ascribed to polycyclic aromatic hydrocarbons (PAHs). The laboratory experiments and computational modeling done at the NASA Ames Research Center to create a collection of PAH IR spectra relevant to test and refine the PAH hypothesis have been assembled into a spectroscopic database. This database now contains over 800 PAH spectra spanning 2-2000 μm (5000-5 cm -1 ). These data are now available on the World Wide Web at This paper presents an overview of the computational spectra in the database and the tools developed to analyze and interpret astronomical spectra using the database. A description of the online and offline user tools available on the Web site is also presented.

  13. Tools for 3D scientific visualization in computational aerodynamics at NASA Ames Research Center

    International Nuclear Information System (INIS)

    Bancroft, G.; Plessel, T.; Merritt, F.; Watson, V.


    Hardware, software, and techniques used by the Fluid Dynamics Division (NASA) for performing visualization of computational aerodynamics, which can be applied to the visualization of flow fields from computer simulations of fluid dynamics about the Space Shuttle, are discussed. Three visualization techniques applied, post-processing, tracking, and steering, are described, as well as the post-processing software packages used, PLOT3D, SURF (Surface Modeller), GAS (Graphical Animation System), and FAST (Flow Analysis software Toolkit). Using post-processing methods a flow simulation was executed on a supercomputer and, after the simulation was complete, the results were processed for viewing. It is shown that the high-resolution, high-performance three-dimensional workstation combined with specially developed display and animation software provides a good tool for analyzing flow field solutions obtained from supercomputers. 7 refs

  14. Initial Flight Test of the Production Support Flight Control Computers at NASA Dryden Flight Research Center (United States)

    Carter, John; Stephenson, Mark


    The NASA Dryden Flight Research Center has completed the initial flight test of a modified set of F/A-18 flight control computers that gives the aircraft a research control law capability. The production support flight control computers (PSFCC) provide an increased capability for flight research in the control law, handling qualities, and flight systems areas. The PSFCC feature a research flight control processor that is "piggybacked" onto the baseline F/A-18 flight control system. This research processor allows for pilot selection of research control law operation in flight. To validate flight operation, a replication of a standard F/A-18 control law was programmed into the research processor and flight-tested over a limited envelope. This paper provides a brief description of the system, summarizes the initial flight test of the PSFCC, and describes future experiments for the PSFCC.

  15. Creating Communications, Computing, and Networking Technology Development Road Maps for Future NASA Human and Robotic Missions (United States)

    Bhasin, Kul; Hayden, Jeffrey L.


    For human and robotic exploration missions in the Vision for Exploration, roadmaps are needed for capability development and investments based on advanced technology developments. A roadmap development process was undertaken for the needed communications, and networking capabilities and technologies for the future human and robotics missions. The underlying processes are derived from work carried out during development of the future space communications architecture, an d NASA's Space Architect Office (SAO) defined formats and structures for accumulating data. Interrelationships were established among emerging requirements, the capability analysis and technology status, and performance data. After developing an architectural communications and networking framework structured around the assumed needs for human and robotic exploration, in the vicinity of Earth, Moon, along the path to Mars, and in the vicinity of Mars, information was gathered from expert participants. This information was used to identify the capabilities expected from the new infrastructure and the technological gaps in the way of obtaining them. We define realistic, long-term space communication architectures based on emerging needs and translate the needs into interfaces, functions, and computer processing that will be required. In developing our roadmapping process, we defined requirements for achieving end-to-end activities that will be carried out by future NASA human and robotic missions. This paper describes: 10 the architectural framework developed for analysis; 2) our approach to gathering and analyzing data from NASA, industry, and academia; 3) an outline of the technology research to be done, including milestones for technology research and demonstrations with timelines; and 4) the technology roadmaps themselves.

  16. Image Analysis via Soft Computing: Prototype Applications at NASA KSC and Product Commercialization (United States)

    Dominguez, Jesus A.; Klinko, Steve


    This slide presentation reviews the use of "soft computing" which differs from "hard computing" in that it is more tolerant of imprecision, partial truth, uncertainty, and approximation and its use in image analysis. Soft computing provides flexible information processing to handle real life ambiguous situations and achieve tractability, robustness low solution cost, and a closer resemblance to human decision making. Several systems are or have been developed: Fuzzy Reasoning Edge Detection (FRED), Fuzzy Reasoning Adaptive Thresholding (FRAT), Image enhancement techniques, and visual/pattern recognition. These systems are compared with examples that show the effectiveness of each. NASA applications that are reviewed are: Real-Time (RT) Anomaly Detection, Real-Time (RT) Moving Debris Detection and the Columbia Investigation. The RT anomaly detection reviewed the case of a damaged cable for the emergency egress system. The use of these techniques is further illustrated in the Columbia investigation with the location and detection of Foam debris. There are several applications in commercial usage: image enhancement, human screening and privacy protection, visual inspection, 3D heart visualization, tumor detections and x ray image enhancement.

  17. Computer-automated evolution of an X-band antenna for NASA's Space Technology 5 mission. (United States)

    Hornby, Gregory S; Lohn, Jason D; Linden, Derek S


    Whereas the current practice of designing antennas by hand is severely limited because it is both time and labor intensive and requires a significant amount of domain knowledge, evolutionary algorithms can be used to search the design space and automatically find novel antenna designs that are more effective than would otherwise be developed. Here we present our work in using evolutionary algorithms to automatically design an X-band antenna for NASA's Space Technology 5 (ST5) spacecraft. Two evolutionary algorithms were used: the first uses a vector of real-valued parameters and the second uses a tree-structured generative representation for constructing the antenna. The highest-performance antennas from both algorithms were fabricated and tested and both outperformed a hand-designed antenna produced by the antenna contractor for the mission. Subsequent changes to the spacecraft orbit resulted in a change in requirements for the spacecraft antenna. By adjusting our fitness function we were able to rapidly evolve a new set of antennas for this mission in less than a month. One of these new antenna designs was built, tested, and approved for deployment on the three ST5 spacecraft, which were successfully launched into space on March 22, 2006. This evolved antenna design is the first computer-evolved antenna to be deployed for any application and is the first computer-evolved hardware in space.

  18. Experimental and computational investigation of the NASA low-speed centrifugal compressor flow field (United States)

    Hathaway, Michael D.; Chriss, Randall M.; Wood, Jerry R.; Strazisar, Anthony J.


    An experimental and computational investigation of the NASA Lewis Research Center's low-speed centrifugal compressor (LSCC) flow field was conducted using laser anemometry and Dawes' three-dimensional viscous code. The experimental configuration consisted of a backswept impeller followed by a vaneless diffuser. Measurements of the three-dimensional velocity field were acquired at several measurement planes through the compressor. The measurements describe both the throughflow and secondary velocity field along each measurement plane. In several cases the measurements provide details of the flow within the blade boundary layers. Insight into the complex flow physics within centrifugal compressors is provided by the computational fluid dynamics analysis (CFD), and assessment of the CFD predictions is provided by comparison with the measurements. Five-hole probe and hot-wire surveys at the inlet and exit to the impeller as well as surface flow visualization along the impeller blade surfaces provided independent confirmation of the laser measurement technique. The results clearly document the development of the throughflow velocity wake that is characteristic of unshrouded centrifugal compressors.

  19. Computational Simulations of the NASA Langley HyMETS Arc-Jet Facility (United States)

    Brune, A. J.; Bruce, W. E., III; Glass, D. E.; Splinter, S. C.


    The Hypersonic Materials Environmental Test System (HyMETS) arc-jet facility located at the NASA Langley Research Center in Hampton, Virginia, is primarily used for the research, development, and evaluation of high-temperature thermal protection systems for hypersonic vehicles and reentry systems. In order to improve testing capabilities and knowledge of the test article environment, an effort is underway to computationally simulate the flow-field using computational fluid dynamics (CFD). A detailed three-dimensional model of the arc-jet nozzle and free-jet portion of the flow-field has been developed and compared to calibration probe Pitot pressure and stagnation-point heat flux for three test conditions at low, medium, and high enthalpy. The CFD model takes into account uniform pressure and non-uniform enthalpy profiles at the nozzle inlet as well as catalytic recombination efficiency effects at the probe surface. Comparing the CFD results and test data indicates an effectively fully-catalytic copper surface on the heat flux probe of about 10% efficiency and a 2-3 kpa pressure drop from the arc heater bore, where the pressure is measured, to the plenum section, prior to the nozzle. With these assumptions, the CFD results are well within the uncertainty of the stagnation pressure and heat flux measurements. The conditions at the nozzle exit were also compared with radial and axial velocimetry. This simulation capability will be used to evaluate various three-dimensional models that are tested in the HyMETS facility. An end-to-end aerothermal and thermal simulation of HyMETS test articles will follow this work to provide a better understanding of the test environment, test results, and to aid in test planning. Additional flow-field diagnostic measurements will also be considered to improve the modeling capability.

  20. The complete guide to high-end audio

    CERN Document Server

    Harley, Robert


    An updated edition of what many consider the "bible of high-end audio"   In this newly revised and updated fifth edition, Robert Harley, editor in chief of the Absolute Sound magazine, tells you everything you need to know about buying and enjoying high-quality hi-fi. With this book, discover how to get the best sound for your money, how to identify the weak links in your system and upgrade where it will do the most good, how to set up and tweak your system for maximum performance, and how to become a more perceptive and appreciative listener. Just a few of the secrets you will learn cover hi

  1. n x 10 Gbps Offload NIC for NASA, NLR, Grid Computing, Phase I (United States)

    National Aeronautics and Space Administration — This Phase 1 proposal addresses the 2008 NASA SBIR Research Topic S6.04 Data Management - Storage, Mining and Visualization (GSFC). The subtopic we address is...

  2. Development of a High Resolution Weather Forecast Model for Mesoamerica Using the NASA Nebula Cloud Computing Environment (United States)

    Molthan, Andrew L.; Case, Jonathan L.; Venner, Jason; Moreno-Madrinan, Max. J.; Delgado, Francisco


    Over the past two years, scientists in the Earth Science Office at NASA fs Marshall Space Flight Center (MSFC) have explored opportunities to apply cloud computing concepts to support near real ]time weather forecast modeling via the Weather Research and Forecasting (WRF) model. Collaborators at NASA fs Short ]term Prediction Research and Transition (SPoRT) Center and the SERVIR project at Marshall Space Flight Center have established a framework that provides high resolution, daily weather forecasts over Mesoamerica through use of the NASA Nebula Cloud Computing Platform at Ames Research Center. Supported by experts at Ames, staff at SPoRT and SERVIR have established daily forecasts complete with web graphics and a user interface that allows SERVIR partners access to high resolution depictions of weather in the next 48 hours, useful for monitoring and mitigating meteorological hazards such as thunderstorms, heavy precipitation, and tropical weather that can lead to other disasters such as flooding and landslides. This presentation will describe the framework for establishing and providing WRF forecasts, example applications of output provided via the SERVIR web portal, and early results of forecast model verification against available surface ] and satellite ]based observations.

  3. Using GOMS and NASA-TLX to Evaluate Human-Computer Interaction Process in Interactive Segmentation

    NARCIS (Netherlands)

    Ramkumar, A.; Stappers, P.J.; Niessen, W.J.; Adebahr, S; Schimek-Jasch, T; Nestle, U; Song, Y.


    HCI plays an important role in interactive medical image segmentation. The Goals, Operators, Methods, and Selection rules (GOMS) model and the National Aeronautics and Space Administration Task Load Index (NASA-TLX) questionnaire are different methods that are often used to evaluate the HCI

  4. Functional requirements document for the Earth Observing System Data and Information System (EOSDIS) Scientific Computing Facilities (SCF) of the NASA/MSFC Earth Science and Applications Division, 1992 (United States)

    Botts, Michael E.; Phillips, Ron J.; Parker, John V.; Wright, Patrick D.


    Five scientists at MSFC/ESAD have EOS SCF investigator status. Each SCF has unique tasks which require the establishment of a computing facility dedicated to accomplishing those tasks. A SCF Working Group was established at ESAD with the charter of defining the computing requirements of the individual SCFs and recommending options for meeting these requirements. The primary goal of the working group was to determine which computing needs can be satisfied using either shared resources or separate but compatible resources, and which needs require unique individual resources. The requirements investigated included CPU-intensive vector and scalar processing, visualization, data storage, connectivity, and I/O peripherals. A review of computer industry directions and a market survey of computing hardware provided information regarding important industry standards and candidate computing platforms. It was determined that the total SCF computing requirements might be most effectively met using a hierarchy consisting of shared and individual resources. This hierarchy is composed of five major system types: (1) a supercomputer class vector processor; (2) a high-end scalar multiprocessor workstation; (3) a file server; (4) a few medium- to high-end visualization workstations; and (5) several low- to medium-range personal graphics workstations. Specific recommendations for meeting the needs of each of these types are presented.

  5. USL NASA/RECON project presentations at the 1985 ACM Computer Science Conference: Abstracts and visuals (United States)

    Dominick, Wayne D. (Editor); Chum, Frank Y.; Gallagher, Suzy; Granier, Martin; Hall, Philip P.; Moreau, Dennis R.; Triantafyllopoulos, Spiros


    This Working Paper Series entry represents the abstracts and visuals associated with presentations delivered by six USL NASA/RECON research team members at the above named conference. The presentations highlight various aspects of NASA contract activities pursued by the participants as they relate to individual research projects. The titles of the six presentations are as follows: (1) The Specification and Design of a Distributed Workstation; (2) An Innovative, Multidisciplinary Educational Program in Interactive Information Storage and Retrieval; (3) Critical Comparative Analysis of the Major Commercial IS and R Systems; (4) Design Criteria for a PC-Based Common User Interface to Remote Information Systems; (5) The Design of an Object-Oriented Graphics Interface; and (6) Knowledge-Based Information Retrieval: Techniques and Applications.

  6. Interactive Computing and Processing of NASA Land Surface Observations Using Google Earth Engine (United States)

    Molthan, Andrew; Burks, Jason; Bell, Jordan


    Google's Earth Engine offers a "big data" approach to processing large volumes of NASA and other remote sensing products. h\\ps:// Interfaces include a Javascript or Python-based API, useful for accessing and processing over large periods of record for Landsat and MODIS observations. Other data sets are frequently added, including weather and climate model data sets, etc. Demonstrations here focus on exploratory efforts to perform land surface change detection related to severe weather, and other disaster events.

  7. Computers Take Flight: A History of NASA's Pioneering Digital Fly-By-Wire Project (United States)

    Tomayko, James E.


    An overview of the NASA F-8 Fly-by Wire project is presented. The project made two significant contributions to the new technology: (1) a solid design base of techniques that work and those that do not, and (2) credible evidence of good flying qualities and the ability of such a system to tolerate real faults and to continue operation without degradation. In 1972 the F-8C aircraft used in the program became he first digital fly-by-wire aircraft to operate without a mechanical backup system.

  8. NASA-VOF2D: a computer program for incompressible flows with free surfaces (United States)

    Torrey, M. D.; Cloutman, L. D.; Mjolsness, R. C.; Hirt, C. W.


    We present the NASA-VOF2D two-dimensional, transient, free-surface hydrodynamics program. It has a variety of options that provide capabilities for a wide range of applications, and it is designed to be relatively easy to use. It is based on the fractional volume-of-fluid method, and allows multiple free surfaces with surface tension and wall adhesion. It also has a partial cell treatment that allows curved boundaries and internal obstacles. This report includes a discussion of the numerical method, a code listing, and a selection of sample problems.

  9. De Novo Ultrascale Atomistic Simulations On High-End Parallel Supercomputers

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, A; Kalia, R K; Nomura, K; Sharma, A; Vashishta, P; Shimojo, F; van Duin, A; Goddard, III, W A; Biswas, R; Srivastava, D; Yang, L H


    We present a de novo hierarchical simulation framework for first-principles based predictive simulations of materials and their validation on high-end parallel supercomputers and geographically distributed clusters. In this framework, high-end chemically reactive and non-reactive molecular dynamics (MD) simulations explore a wide solution space to discover microscopic mechanisms that govern macroscopic material properties, into which highly accurate quantum mechanical (QM) simulations are embedded to validate the discovered mechanisms and quantify the uncertainty of the solution. The framework includes an embedded divide-and-conquer (EDC) algorithmic framework for the design of linear-scaling simulation algorithms with minimal bandwidth complexity and tight error control. The EDC framework also enables adaptive hierarchical simulation with automated model transitioning assisted by graph-based event tracking. A tunable hierarchical cellular decomposition parallelization framework then maps the O(N) EDC algorithms onto Petaflops computers, while achieving performance tunability through a hierarchy of parameterized cell data/computation structures, as well as its implementation using hybrid Grid remote procedure call + message passing + threads programming. High-end computing platforms such as IBM BlueGene/L, SGI Altix 3000 and the NSF TeraGrid provide an excellent test grounds for the framework. On these platforms, we have achieved unprecedented scales of quantum-mechanically accurate and well validated, chemically reactive atomistic simulations--1.06 billion-atom fast reactive force-field MD and 11.8 million-atom (1.04 trillion grid points) quantum-mechanical MD in the framework of the EDC density functional theory on adaptive multigrids--in addition to 134 billion-atom non-reactive space-time multiresolution MD, with the parallel efficiency as high as 0.998 on 65,536 dual-processor BlueGene/L nodes. We have also achieved an automated execution of hierarchical QM

  10. Exploration of operator method digital optical computers for application to NASA (United States)


    Digital optical computer design has been focused primarily towards parallel (single point-to-point interconnection) implementation. This architecture is compared to currently developing VHSIC systems. Using demonstrated multichannel acousto-optic devices, a figure of merit can be formulated. The focus is on a figure of merit termed Gate Interconnect Bandwidth Product (GIBP). Conventional parallel optical digital computer architecture demonstrates only marginal competitiveness at best when compared to projected semiconductor implements. Global, analog global, quasi-digital, and full digital interconnects are briefly examined as alternative to parallel digital computer architecture. Digital optical computing is becoming a very tough competitor to semiconductor technology since it can support a very high degree of three dimensional interconnect density and high degrees of Fan-In without capacitive loading effects at very low power consumption levels.

  11. Automatic Parallelization of Serial Programs for NASA Space‐Based Computing Systems (United States)

    National Aeronautics and Space Administration — Since improvements in clock speed in computing processors have ceased, but silicon density continues to grow, a natural result has been that multi-core processors...

  12. NASA's Information Power Grid: Large Scale Distributed Computing and Data Management (United States)

    Johnston, William E.; Vaziri, Arsi; Hinke, Tom; Tanner, Leigh Ann; Feiereisen, William J.; Thigpen, William; Tang, Harry (Technical Monitor)


    Large-scale science and engineering are done through the interaction of people, heterogeneous computing resources, information systems, and instruments, all of which are geographically and organizationally dispersed. The overall motivation for Grids is to facilitate the routine interactions of these resources in order to support large-scale science and engineering. Multi-disciplinary simulations provide a good example of a class of applications that are very likely to require aggregation of widely distributed computing, data, and intellectual resources. Such simulations - e.g. whole system aircraft simulation and whole system living cell simulation - require integrating applications and data that are developed by different teams of researchers frequently in different locations. The research team's are the only ones that have the expertise to maintain and improve the simulation code and/or the body of experimental data that drives the simulations. This results in an inherently distributed computing and data management environment.

  13. Computer programs for display. [magnetic tapes - project planning/NASA programs (United States)


    The developments of an information storage and retrieval system are presented. Computer programs used in the system are described; the programs allow display messages to be placed on disks in an off-line environment permitting a more efficient use of memory. A time table that shows complete and scheduled developments of the system is given.

  14. Computer Interactives for the Mars Atmospheric and Volatile Evolution (MAVEN) Mission through NASA's "Project Spectra!" (United States)

    Wood, E. L.


    "Project Spectra!" is a standards-based E-M spectrum and engineering program that includes paper and pencil activities as well as Flash-based computer games that help students solidify understanding of high-level planetary and solar physics. Using computer interactive games, students experience and manipulate information making abstract concepts accessible, solidifying understanding and enhancing retention of knowledge. Since students can choose what to watch and explore, the interactives accommodate a broad range of learning styles. Students can go back and forth through the interactives if they've missed a concept or wish to view something again. In the end, students are asked critical thinking questions and conduct web-based research. As part of the Mars Atmospheric and Volatile EvolutioN (MAVEN) mission education programming, we've developed two new interactives. The MAVEN mission will study volatiles in the upper atmosphere to help piece together Mars' climate history. In the first interactive, students explore black body radiation, albedo, and a simplified greenhouse effect to establish what factors contribute to overall planetary temperature. Students design a planet that is able to maintain liquid water on the surface. In the second interactive, students are asked to consider conditions needed for Mars to support water on the surface, keeping some variables fixed. Ideally, students will walk away with the very basic and critical elements required for climate studies, which has far-reaching implications beyond the study of Mars. These interactives were pilot tested at Arvada High School in Colorado.

  15. Computer-based communication in support of scientific and technical work. [conferences on management information systems used by scientists of NASA programs (United States)

    Vallee, J.; Wilson, T.


    Results are reported of the first experiments for a computer conference management information system at the National Aeronautics and Space Administration. Between August 1975 and March 1976, two NASA projects with geographically separated participants (NASA scientists) used the PLANET computer conferencing system for portions of their work. The first project was a technology assessment of future transportation systems. The second project involved experiments with the Communication Technology Satellite. As part of this project, pre- and postlaunch operations were discussed in a computer conference. These conferences also provided the context for an analysis of the cost of computer conferencing. In particular, six cost components were identified: (1) terminal equipment, (2) communication with a network port, (3) network connection, (4) computer utilization, (5) data storage and (6) administrative overhead.

  16. Distributed project scheduling at NASA: Requirements for manual protocols and computer-based support (United States)

    Richards, Stephen F.


    The increasing complexity of space operations and the inclusion of interorganizational and international groups in the planning and control of space missions lead to requirements for greater communication, coordination, and cooperation among mission schedulers. These schedulers must jointly allocate scarce shared resources among the various operational and mission oriented activities while adhering to all constraints. This scheduling environment is complicated by such factors as the presence of varying perspectives and conflicting objectives among the schedulers, the need for different schedulers to work in parallel, and limited communication among schedulers. Smooth interaction among schedulers requires the use of protocols that govern such issues as resource sharing, authority to update the schedule, and communication of updates. This paper addresses the development and characteristics of such protocols and their use in a distributed scheduling environment that incorporates computer-aided scheduling tools. An example problem is drawn from the domain of Space Shuttle mission planning.

  17. An Intelligent Computer-aided Training System (CAT) for Diagnosing Adult Illiterates: Integrating NASA Technology into Workplace Literacy (United States)

    Yaden, David B., Jr.


    An important part of NASA's mission involves the secondary application of its technologies in the public and private sectors. One current application being developed is The Adult Literacy Evaluator, a simulation-based diagnostic tool designed to assess the operant literacy abilities of adults having difficulties in learning to read and write. Using Intelligent Computer-Aided Training (ICAT) system technology in addition to speech recognition, closed-captioned television (CCTV), live video and other state-of-the-art graphics and storage capabilities, this project attempts to overcome the negative effects of adult literacy assessment by allowing the client to interact with an intelligent computer system which simulates real-life literacy activities and materials and which measures literacy performance in the actual context of its use. The specific objectives of the project are as follows: (1) to develop a simulation-based diagnostic tool to assess adults' prior knowledge about reading and writing processes in actual contexts of application; (2) to provide a profile of readers' strengths and weaknesses; and (3) to suggest instructional strategies and materials which can be used as a beginning point for remediation. In the first and development phase of the project, descriptions of literacy events and environments are being written and functional literacy documents analyzed for their components. From these descriptions, scripts are being generated which define the interaction between the student, an on-screen guide and the simulated literacy environment.

  18. Development of a High Resolution Weather Forecast Model for Mesoamerica Using the NASA Ames Code I Private Cloud Computing Environment (United States)

    Molthan, Andrew; Case, Jonathan; Venner, Jason; Moreno-Madrinan, Max J.; Delgado, Francisco


    Two projects at NASA Marshall Space Flight Center have collaborated to develop a high resolution weather forecast model for Mesoamerica: The NASA Short-term Prediction Research and Transition (SPoRT) Center, which integrates unique NASA satellite and weather forecast modeling capabilities into the operational weather forecasting community. NASA's SERVIR Program, which integrates satellite observations, ground-based data, and forecast models to improve disaster response in Central America, the Caribbean, Africa, and the Himalayas.

  19. Projected Applications of a "Climate in a Box" Computing System at the NASA Short-Term Prediction Research and Transition (SPoRT) Center (United States)

    Jedlovec, Gary J.; Molthan, Andrew L.; Zavodsky, Bradley; Case, Jonathan L.; LaFontaine, Frank J.


    The NASA Short-term Prediction Research and Transition (SPoRT) Center focuses on the transition of unique observations and research capabilities to the operational weather community, with a goal of improving short-term forecasts on a regional scale. Advances in research computing have lead to "Climate in a Box" systems, with hardware configurations capable of producing high resolution, near real-time weather forecasts, but with footprints, power, and cooling requirements that are comparable to desktop systems. The SPoRT Center has developed several capabilities for incorporating unique NASA research capabilities and observations with real-time weather forecasts. Planned utilization includes the development of a fully-cycled data assimilation system used to drive 36-48 hour forecasts produced by the NASA Unified version of the Weather Research and Forecasting (WRF) model (NU-WRF). The horsepower provided by the "Climate in a Box" system is expected to facilitate the assimilation of vertical profiles of temperature and moisture provided by the Atmospheric Infrared Sounder (AIRS) aboard the NASA Aqua satellite. In addition, the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments aboard NASA s Aqua and Terra satellites provide high-resolution sea surface temperatures and vegetation characteristics. The development of MODIS normalized difference vegetation index (NVDI) composites for use within the NASA Land Information System (LIS) will assist in the characterization of vegetation, and subsequently the surface albedo and processes related to soil moisture. Through application of satellite simulators, NASA satellite instruments can be used to examine forecast model errors in cloud cover and other characteristics. Through the aforementioned application of the "Climate in a Box" system and NU-WRF capabilities, an end goal is the establishment of a real-time forecast system that fully integrates modeling and analysis capabilities developed within the NASA SPo

  20. PERC 2 High-End Computer System Performance: Scalable Science and Engineering

    Energy Technology Data Exchange (ETDEWEB)

    Daniel Reed


    During two years of SciDAC PERC-2, our activities had centered largely on development of new performance analysis techniques to enable efficient use on systems containing thousands or tens of thousands of processors. In addition, we continued our application engagement efforts and utilized our tools to study the performance of various SciDAC applications on a variety of HPC platforms.

  1. The Use of Empirical Studies in the Development of High End Computing Applications (United States)


    but other shells may be acceptable. • A graphical windows system (e.g., X-windows, MS Windows) for some of the analysis software • Postgres > 8.1...database with name hpcs CREATE DATABASE hpcs WITH OWNER = postgres ENCODING = ’UTF8’ • Use pgrestore the backup file on the installation CD to...create the DB o pg_restore.exe -h localhost -p 5432 -U postgres -d hpcs -v "\\software\\Database\\hpcs_schema.backup" • This will create all necessary

  2. Overview of the NASA/RECON educational, research, and development activities of the Computer Science Departments of the University of Southwestern Louisiana and Southern University (United States)

    Dominick, Wayne D. (Editor)


    This document presents a brief overview of the scope of activities undertaken by the Computer Science Departments of the University of Southern Louisiana (USL) and Southern University (SU) pursuant to a contract with NASA. Presented are only basic identification data concerning the contract activities since subsequent entries within the Working Paper Series will be oriented specifically toward a detailed development and presentation of plans, methodologies, and results of each contract activity. Also included is a table of contents of the entire USL/DBMS NASA/RECON Working Paper Series.

  3. Projected Applications of a ``Climate in a Box'' Computing System at the NASA Short-term Prediction Research and Transition (SPoRT) Center (United States)

    Jedlovec, G.; Molthan, A.; Zavodsky, B.; Case, J.; Lafontaine, F.


    The NASA Short-term Prediction Research and Transition (SPoRT) Center focuses on the transition of unique observations and research capabilities to the operational weather community, with a goal of improving short-term forecasts on a regional scale. Advances in research computing have lead to “Climate in a Box” systems, with hardware configurations capable of producing high resolution, near real-time weather forecasts, but with footprints, power, and cooling requirements that are comparable to desktop systems. The SPoRT Center has developed several capabilities for incorporating unique NASA research capabilities and observations with real-time weather forecasts. Planned utilization includes the development of a fully-cycled data assimilation system used to drive 36-48 hour forecasts produced by the NASA Unified version of the Weather Research and Forecasting (WRF) model (NU-WRF). The horsepower provided by the “Climate in a Box” system is expected to facilitate the assimilation of vertical profiles of temperature and moisture provided by the Atmospheric Infrared Sounder (AIRS) aboard the NASA Aqua satellite. In addition, the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments aboard NASA’s Aqua and Terra satellites provide high-resolution sea surface temperatures and vegetation characteristics. The development of MODIS normalized difference vegetation index (NVDI) composites for use within the NASA Land Information System (LIS) will assist in the characterization of vegetation, and subsequently the surface albedo and processes related to soil moisture. Through application of satellite simulators, NASA satellite instruments can be used to examine forecast model errors in cloud cover and other characteristics. Through the aforementioned application of the “Climate in a Box” system and NU-WRF capabilities, an end goal is the establishment of a real-time forecast system that fully integrates modeling and analysis capabilities developed

  4. NASA-VOF3D: A three-dimensional computer program for incompressible flows with free surfaces (United States)

    Torrey, M. D.; Mjolsness, R. C.; Stein, L. R.


    Presented is the NASA-VOF3D three-dimensional, transient, free-surface hydrodynamics program. This three-dimensional extension of NASA-VOF2D will, in principle, permit treatment in full three-dimensional generality of the wide variety of applications that could be treated by NASA-VOF2D only within the two-dimensional idealization. In particular, it, like NASA-VOF2D, is specifically designed to calculate confined flows in a low g environment. The code is presently restricted to cylindrical geometry. The code is based on the fractional volume-of-fluid method and allows multiple free surfaces with surface tension and wall adhesion. It also has a partial cell treatment that allows curved boundaries and internal obstacles. This report provides a brief discussion of the numerical method, a code listing, and some sample problems.

  5. Proposed Use of the NASA Ames Nebula Cloud Computing Platform for Numerical Weather Prediction and the Distribution of High Resolution Satellite Imagery (United States)

    Limaye, Ashutosh S.; Molthan, Andrew L.; Srikishen, Jayanthi


    The development of the Nebula Cloud Computing Platform at NASA Ames Research Center provides an open-source solution for the deployment of scalable computing and storage capabilities relevant to the execution of real-time weather forecasts and the distribution of high resolution satellite data to the operational weather community. Two projects at Marshall Space Flight Center may benefit from use of the Nebula system. The NASA Short-term Prediction Research and Transition (SPoRT) Center facilitates the use of unique NASA satellite data and research capabilities in the operational weather community by providing datasets relevant to numerical weather prediction, and satellite data sets useful in weather analysis. SERVIR provides satellite data products for decision support, emphasizing environmental threats such as wildfires, floods, landslides, and other hazards, with interests in numerical weather prediction in support of disaster response. The Weather Research and Forecast (WRF) model Environmental Modeling System (WRF-EMS) has been configured for Nebula cloud computing use via the creation of a disk image and deployment of repeated instances. Given the available infrastructure within Nebula and the "infrastructure as a service" concept, the system appears well-suited for the rapid deployment of additional forecast models over different domains, in response to real-time research applications or disaster response. Future investigations into Nebula capabilities will focus on the development of a web mapping server and load balancing configuration to support the distribution of high resolution satellite data sets to users within the National Weather Service and international partners of SERVIR.

  6. The NASA/Baltimore Applications Project (BAP). Computer aided dispatch and communications system for the Baltimore Fire Department: A case study of urban technology application (United States)

    Levine, A. L.


    An engineer and a computer expert from Goddard Space Flight Center were assigned to provide technical assistance in the design and installation of a computer assisted system for dispatching and communicating with fire department personnel and equipment in Baltimore City. Primary contributions were in decision making and management processes. The project is analyzed from four perspectives: (1) fire service; (2) technology transfer; (3) public administration; and (5) innovation. The city benefitted substantially from the approach and competence of the NASA personnel. Given the proper conditions, there are distinct advantages in having a nearby Federal laboratory provide assistance to a city on a continuing basis, as is done in the Baltimore Applications Project.

  7. Modeling Guru: Knowledge Base for NASA Modelers (United States)

    Seablom, M. S.; Wojcik, G. S.; van Aartsen, B. H.


    Modeling Guru is an on-line knowledge-sharing resource for anyone involved with or interested in NASA's scientific models or High End Computing (HEC) systems. Developed and maintained by the NASA's Software Integration and Visualization Office (SIVO) and the NASA Center for Computational Sciences (NCCS), Modeling Guru's combined forums and knowledge base for research and collaboration is becoming a repository for the accumulated expertise of NASA's scientific modeling and HEC communities. All NASA modelers and associates are encouraged to participate and provide knowledge about the models and systems so that other users may benefit from their experience. Modeling Guru is divided into a hierarchy of communities, each with its own set forums and knowledge base documents. Current modeling communities include those for space science, land and atmospheric dynamics, atmospheric chemistry, and oceanography. In addition, there are communities focused on NCCS systems, HEC tools and libraries, and programming and scripting languages. Anyone may view most of the content on Modeling Guru (available at, but you must log in to post messages and subscribe to community postings. The site offers a full range of "Web 2.0" features, including discussion forums, "wiki" document generation, document uploading, RSS feeds, search tools, blogs, email notification, and "breadcrumb" links. A discussion (a.k.a. forum "thread") is used to post comments, solicit feedback, or ask questions. If marked as a question, SIVO will monitor the thread, and normally respond within a day. Discussions can include embedded images, tables, and formatting through the use of the Rich Text Editor. Also, the user can add "Tags" to their thread to facilitate later searches. The "knowledge base" is comprised of documents that are used to capture and share expertise with others. The default "wiki" document lets users edit within the browser so others can easily collaborate on the

  8. NASA Thesaurus (United States)

    National Aeronautics and Space Administration — The NASA Thesaurus contains the authorized NASA subject terms used to index and retrieve materials in the NASA Technical Reports Server (NTRS) and the NTRS...

  9. A model-based software development methodology for high-end automotive components

    NARCIS (Netherlands)

    Ravanan, Mahmoud


    This report provides a model-based software development methodology for high-end automotive components. The V-model is used as a process model throughout the development of the software platform. It offers a framework that simplifies the relation between requirements, design, implementation,

  10. The NASA Ames PAH IR Spectroscopic Database: Computational Version 3.00 with Updated Content and the Introduction of Multiple Scaling Factors (United States)

    Bauschlicher, Charles W., Jr.; Ricca, A.; Boersma, C.; Allamandola, L. J.


    Version 3.00 of the library of computed spectra in the NASA Ames PAH IR Spectroscopic Database (PAHdb) is described. Version 3.00 introduces the use of multiple scale factors, instead of the single scaling factor used previously, to align the theoretical harmonic frequencies with the experimental fundamentals. The use of multiple scale factors permits the use of a variety of basis sets; this allows new PAH species to be included in the database, such as those containing oxygen, and yields an improved treatment of strained species and those containing nitrogen. In addition, the computed spectra of 2439 new PAH species have been added. The impact of these changes on the analysis of an astronomical spectrum through database-fitting is considered and compared with a fit using Version 2.00 of the library of computed spectra. Finally, astronomical constraints are defined for the PAH spectral libraries in PAHdb.

  11. High End Visualization of Geophysical Datasets Using Immersive Technology: The SIO Visualization Center. (United States)

    Newman, R. L.


    How many images can you display at one time with Power Point without getting "postage stamps"? Do you have fantastic datasets that you cannot view because your computer is too slow/small? Do you assume a few 2-D images of a 3-D picture are sufficient? High-end visualization centers can minimize and often eliminate these problems. The new visualization center [] at Scripps Institution of Oceanography [SIO] immerses users into a virtual world by projecting 3-D images onto a Panoram GVR-120E wall-sized floor-to-ceiling curved screen [7' x 23'] that has 3.2 mega-pixels of resolution. The Infinite Reality graphics subsystem is driven by a single-pipe SGI Onyx 3400 with a system bandwidth of 44 Gbps. The Onyx is powered by 16 MIPS R12K processors and 16 GB of addressable memory. The system is also equipped with transmitters and LCD shutter glasses which permit stereographic 3-D viewing of high-resolution images. This center is ideal for groups of up to 60 people who can simultaneously view these large-format images. A wide range of hardware and software is available, giving the users a totally immersive working environment in which to display, analyze, and discuss large datasets. The system enables simultaneous display of video and audio streams from sources such as SGI megadesktop and stereo megadesktop, S-VHS video, DVD video, and video from a Macintosh or PC. For instance, one-third of the screen might be displaying S-VHS video from a remotely-operated-vehicle [ROV], while the remaining portion of the screen might be used for an interactive 3-D flight over the same parcel of seafloor. The video and audio combinations using this system are numerous, allowing users to combine and explore data and images in innovative ways, greatly enhancing scientists' ability to visualize, understand and collaborate on complex datasets. In the not-distant future, with the rapid growth in networking speeds in the US, it will be possible for Earth Sciences

  12. Second AIAA/NASA USAF Symposium on Automation, Robotics and Advanced Computing for the National Space Program (United States)

    Myers, Dale


    An introduction is given to NASA goals in the development of automation (expert systems) and robotics technologies in the Space Station program. Artificial intelligence (AI) has been identified as a means to lowering ground support costs. Telerobotics will enhance space assembly, servicing and repair capabilities, and will be used for an estimated half of the necessary EVA tasks. The general principles guiding NASA in the design, development, ground-testing, interactions with industry and construction of the Space Station component systems are summarized. The telerobotics program has progressed to a point where a telerobot servicer is a firm component of the first Space Station element launch, to support assembly, maintenance and servicing of the Station. The University of Wisconsin has been selected for the establishment of a Center for the Commercial Development of Space, specializing in space automation and robotics.

  13. Marketing plan for the introduction of a new high-end detection tool


    Gibernau Torres, Alvaro


    The folowing master thesis focuses on the development of the marketing plan for a new high-end radar based detection tool. It was written in colaboration with Hilti Corp., one of the leading manufacturers of detection systems in the worldwide building construction industry. The purpose of this paper is to define the marketing mix (product, price, placement, and promotion) in order to present the market-entry strategy and eventualy become the most important ...

  14. Strategic project selection based on evidential reasoning approach for high-end equipment manufacturing industry

    Directory of Open Access Journals (Sweden)

    Lu Guangyan


    Full Text Available With the rapid development of science and technology, emerging information technologies have significantly changed the daily life of people. In such context, strategic project selection for high-end equipment manufacturing industries faces more and more complexities and uncertainties with the consideration of several complex criteria. For example, a group of experts rather than a single expert should be invited to select strategic project for high-end equipment manufacturing industries and the experts may feel difficulty to express their preferences towards different strategic projects due to their limited cognitive capabilities. In order to handle these complexities and uncertainties, the criteria framework of strategic project selection is firstly constructed based on the characteristics of high-end equipment manufacturing industries and then evidential reasoning (ER approach is introduced in this paper to help experts express their uncertain preferences and aggregate these preferences to generate an appropriate strategic project. A real case of strategic project selection in a high-speed train manufacturing enterprise is investigated to demonstrate the validity of the ER approach in solving strategic project selection problem.

  15. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 47: The value of computer networks in aerospace (United States)

    Bishop, Ann Peterson; Pinelli, Thomas E.


    This paper presents data on the value of computer networks that were obtained from a national survey of 2000 aerospace engineers that was conducted in 1993. Survey respondents reported the extent to which they used computer networks in their work and communication and offered their assessments of the value of various network types and applications. They also provided information about the positive impacts of networks on their work, which presents another perspective on value. Finally, aerospace engineers' recommendations on network implementation present suggestions for increasing the value of computer networks within aerospace organizations.

  16. ePORT, NASA's Computer Database Program for System Safety Risk Management Oversight (Electronic Project Online Risk Tool) (United States)

    Johnson, Paul W.


    ePORT (electronic Project Online Risk Tool) provides a systematic approach to using an electronic database program to manage a program/project risk management processes. This presentation will briefly cover the standard risk management procedures, then thoroughly cover NASA's Risk Management tool called ePORT. This electronic Project Online Risk Tool (ePORT) is a web-based risk management program that provides a common framework to capture and manage risks, independent of a programs/projects size and budget. It is used to thoroughly cover the risk management paradigm providing standardized evaluation criterion for common management reporting, ePORT improves Product Line, Center and Corporate Management insight, simplifies program/project manager reporting, and maintains an archive of data for historical reference.

  17. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 19: Computer and information technology and aerospace knowledge diffusion (United States)

    Pinelli, Thomas E.; Kennedy, John M.; Barclay, Rebecca O.; Bishop, Ann P.


    To remain a world leader in aerospace, the US must improve and maintain the professional competency of its engineers and scientists, increase the research and development (R&D) knowledge base, improve productivity, and maximize the integration of recent technological developments into the R&D process. How well these objectives are met, and at what cost, depends on a variety of factors, but largely on the ability of US aerospace engineers and scientists to acquire and process the results of federally funded R&D. The Federal Government's commitment to high speed computing and networking systems presupposes that computer and information technology will play a major role in the aerospace knowledge diffusion process. However, we know little about information technology needs, uses, and problems within the aerospace knowledge diffusion process. The use of computer and information technology by US aerospace engineers and scientists in academia, government, and industry is reported.

  18. Improving Bone-Health Monitoring in Astronauts: Recommended Use of Quantitative Computed Tomography [QCT] for Clinical and Operational Decisions by NASA (United States)

    Sibonga, J. D.; Truszkowski, P.


    DXA measurement of areal bone mineral density [aBMD,g/cm2] is required by NASA for assessing skeletal integrity in astronauts. Due to the abundance of population-based data that correlate hip and spine BMDs to fragility fractures, BMD is widely applied as a predictor of fractures in the general aging population. In contrast, QCT is primarily a research technology that measures three-dimensional , volumetric BMD (vBMD,mg/cm3) of bone and is therefore capable of differentiating between cortical and trabecular components. Additionally, when combined with Finite Element Modeling [FEM], a computational tool, QCT data can be used to estimate the whole bone strength of the hip [FE strength] for a specific load vector. A recent report demonstrated that aBMD failed to correlate with incurred changes in FE strength (for fall and stance loading) by astronauts over typical 180-day ISS (International Space Station) missions. While there are no current guidelines for using QCT data in clinical practice, QCT increases the understanding of how bone structure and mineral content are affected by spaceflight and recovery on Earth. In order to understand/promote/consider the use of QCT, NASA convened a panel of clinicians specializing in osteoporosis. After reviewing the available, albeit limited, medical and research information from long-duration astronauts (e.g., data from DXA, QCT, FEM, biochemistry analyses, medical records and in-flight exercise performance) the panelists were charged with recommending how current and future research data and analyses could inform clinical and operational decisions. The Panel recommended that clinical bone tests on astronauts should include QCT (hip and lumbar spine) for occupational risk surveillance and for the estimation of whole hip bone strength as derived by FEM. FE strength will provide an improved index that NASA could use to select astronauts of optimal bone health for extended duration missions, for repeat missions or for specific

  19. Research on the development efficiency of regional high-end talent in China: A complex network approach. (United States)

    Zhang, Zhen; Wang, Minggang; Tian, Lixin; Zhang, Wenbin


    In this paper, based on the panel data of 31 provinces and cities in China from 1991 to 2016, the regional development efficiency matrix of high-end talent is obtained by DEA method, and the matrix is converted into a continuous change of complex networks through the construction of sliding window. Using a series of continuous changes in the complex network topology statistics, the characteristics of regional high-end talent development efficiency system are analyzed. And the results show that the average development efficiency of high-end talent in the western region is at a low level. After 2005, the national regional high-end talent development efficiency network has both short-range relevance and long-range relevance in the evolution process. The central region plays an important intermediary role in the national regional high-end talent development system. And the western region has high clustering characteristics. With the implementation of the high-end talent policies with regional characteristics by different provinces and cities, the relevance of high-end talent development efficiency in various provinces and cities presents a weakening trend, and the geographical characteristics of high-end talent are more and more obvious.

  20. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 39: The role of computer networks in aerospace engineering (United States)

    Bishop, Ann P.; Pinelli, Thomas E.


    This paper presents selected results from an empirical investigation into the use of computer networks in aerospace engineering. Such networks allow aerospace engineers to communicate with people and access remote resources through electronic mail, file transfer, and remote log-in. The study drew its subjects from private sector, government and academic organizations in the U.S. aerospace industry. Data presented here were gathered in a mail survey, conducted in Spring 1993, that was distributed to aerospace engineers performing a wide variety of jobs. Results from the mail survey provide a snapshot of the current use of computer networks in the aerospace industry, suggest factors associated with the use of networks, and identify perceived impacts of networks on aerospace engineering work and communication.

  1. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 35: The use of computer networks in aerospace engineering (United States)

    Bishop, Ann P.; Pinelli, Thomas E.


    This research used survey research to explore and describe the use of computer networks by aerospace engineers. The study population included 2000 randomly selected U.S. aerospace engineers and scientists who subscribed to Aerospace Engineering. A total of 950 usable questionnaires were received by the cutoff date of July 1994. Study results contribute to existing knowledge about both computer network use and the nature of engineering work and communication. We found that 74 percent of mail survey respondents personally used computer networks. Electronic mail, file transfer, and remote login were the most widely used applications. Networks were used less often than face-to-face interactions in performing work tasks, but about equally with reading and telephone conversations, and more often than mail or fax. Network use was associated with a range of technical, organizational, and personal factors: lack of compatibility across systems, cost, inadequate access and training, and unwillingness to embrace new technologies and modes of work appear to discourage network use. The greatest positive impacts from networking appear to be increases in the amount of accurate and timely information available, better exchange of ideas across organizational boundaries, and enhanced work flexibility, efficiency, and quality. Involvement with classified or proprietary data and type of organizational structure did not distinguish network users from nonusers. The findings can be used by people involved in the design and implementation of networks in engineering communities to inform the development of more effective networking systems, services, and policies.

  2. Innovation @ NASA (United States)

    Roman, Juan A.


    This presentation provides an overview of the activities National Aeronautics and Space Administration (NASA) is doing to encourage innovation across the agency. All information provided is available publicly.

  3. Computer simulations for the Mars Atmospheric and Volatile EvolutioN (MAVEN) mission through NASA's "Project Spectra!" (United States)

    Christofferson, R.; Wood, E. L.; Euler, G.


    "Project Spectra!" is a standards-based light science and engineering program on solar system exploration that includes both hands-on paper and pencil activities as well as Flash-based computer games that help students solidify understanding of high-level planetary and solar physics. Using computer interactive games where students experience and manipulate the information makes abstract concepts accessible. Visualizing lessons with multi-media tools solidifies understanding and retention of knowledge. Since students can choose what to watch and explore, the interactives accommodate a broad range of learning styles. Students can go back and forth through the interactives if they've missed a concept or wish to view something again. In the end, students are asked critical thinking questions and conduct web-based research. As a part of the Mars Atmospheric and Volatile EvolutioN (MAVEN) mission education programming, we've developed two new "Project Spectra!" interactives that go hand-in-hand with a paper and pencil activity. The MAVEN mission will study volatiles in the upper atmosphere to help piece together Mars' climate history. In the first interactive, students explore black body radiation, albedo, and a simplified greenhouse effect to establish what factors contribute to overall planetary temperature and how they contribute. Students are asked to create a scenario in which a planet they build and design is able to maintain liquid water on the surface. In the second interactive, students are asked to consider Mars and the conditions needed for Mars to support water on the surface, keeping some variables fixed. Ideally, students will walk away with the very basic and critical elements required for climate studies, which has far-reaching implications beyond the study of Mars. These interactives are currently being pilot tested at Arvada High School in Colorado.

  4. Computer simulations for the Mars Atmospheric and Volatile EvolutioN (MAVEN) mission through NASA's 'Project Spectra!' (United States)

    Wood, E. L.


    'Project Spectra!' is a standards-based light science and engineering program on solar system exploration that includes both hands-on paper and pencil activities as well as Flash-based computer games that help students solidify understanding of high-level planetary and solar physics. Using computer interactive games where students experience and manipulate the information makes abstract concepts accessible. Visualizing lessons with multi-media tools solidifies understanding and retention of knowledge. Since students can choose what to watch and explore, the interactives accommodate a broad range of learning styles. Students can go back and forth through the interactives if they've missed a concept or wish to view something again. In the end, students are asked critical thinking questions and conduct web-based research. As a part of the Mars Atmospheric and Volatile EvolutioN (MAVEN) mission education programming, we've developed two new 'Project Spectra!' interactives that go hand-in-hand with a paper and pencil activity. The MAVEN mission will study volatiles in the upper atmosphere to help piece together Mars' climate history. In the first interactive, students explore black body radiation, albedo, and a simplified greenhouse effect to establish what factors contribute to overall planetary temperature and how they contribute. Students are asked to create a scenario in which a planet they build and design is able to maintain liquid water on the surface. In the second interactive, students are asked to consider Mars and the conditions needed for Mars to support water on the surface, keeping some variables fixed. Ideally, students will walk away with the very basic and critical elements required for climate studies, which has far-reaching implications beyond the study of Mars. These interactives were pilot tested at Arvada High School in Colorado.

  5. Key drivers and economic consequences of high-end climate scenarios: uncertainties and risks

    DEFF Research Database (Denmark)

    Halsnæs, Kirsten; Kaspersen, Per Skougaard; Drews, Martin


    The consequences of high-end climate scenarios and the risks of extreme events involve a number of critical assumptions and methodological challenges related to key uncertainties in climate scenarios and modelling, impact analysis, and economics. A methodological framework for integrated analysis...... of extreme events increase beyond scaling, and in combination with economic assumptions we find a very wide range of risk estimates for urban precipitation events. A sensitivity analysis addresses 32 combinations of climate scenarios, damage cost curve approaches, and economic assumptions, including risk...... aversion and equity represented by discount rates. Major impacts of alternative assumptions are investigated. As a result, this study demonstrates that in terms of decision making the actual expectations concerning future climate scenarios and the economic assumptions applied are very important...

  6. Impact of microstructure on the plasma performance of industrial and high-end tungsten grades

    Energy Technology Data Exchange (ETDEWEB)

    Pintsuk, G., E-mail: [Forschungszentrum Jülich, EURATOM Association, 52428 Jülich (Germany); Loewenhoff, Th. [Forschungszentrum Jülich, EURATOM Association, 52428 Jülich (Germany)


    Tungsten and tungsten alloys are actually the primary choice as plasma facing materials for future fusion reactors. Thereby, the material’s response to the different loading conditions occurring in a tokamak is strongly depending on the material properties and therefore the material’s microstructure. This is on the one hand controlled via the manufacturing process and/or the material’s composition and on the other hand by the operational conditions causing recrystallization and melting, and subsequently not only a modified microstructure but also locally a modified composition. The influence of the variation in microstructure is addressed and the pros and cons for using the respective materials and tungsten in general in a fusion environment with steady state and transient thermal loads are outlined. While roughening and the related cracking can hardly be avoided, melting will thwart all efforts to establish a high end microstructure with defined directional properties.

  7. Impact of microstructure on the plasma performance of industrial and high-end tungsten grades

    International Nuclear Information System (INIS)

    Pintsuk, G.; Loewenhoff, Th.


    Tungsten and tungsten alloys are actually the primary choice as plasma facing materials for future fusion reactors. Thereby, the material’s response to the different loading conditions occurring in a tokamak is strongly depending on the material properties and therefore the material’s microstructure. This is on the one hand controlled via the manufacturing process and/or the material’s composition and on the other hand by the operational conditions causing recrystallization and melting, and subsequently not only a modified microstructure but also locally a modified composition. The influence of the variation in microstructure is addressed and the pros and cons for using the respective materials and tungsten in general in a fusion environment with steady state and transient thermal loads are outlined. While roughening and the related cracking can hardly be avoided, melting will thwart all efforts to establish a high end microstructure with defined directional properties

  8. Mixtures of endocrine disrupting contaminants modelled on human high end exposures

    DEFF Research Database (Denmark)

    Christiansen, Sofie; Kortenkamp, A.; Petersen, Marta Axelstad


    exceeding 1 is expected to lead to effects in the rat, a total dose more than 62 times higher than human exposures should lead to responses. Considering the high uncertainty of this estimate, experience on lowest‐observed‐adverse‐effect‐level (LOAEL)/NOAEL ratios and statistical power of rat studies, we...... expected that combined doses 150 times higher than high end human intake estimates should give no, or only borderline effects, whereas doses 450 times higher should produce significant responses. Experiments indeed showed clear developmental toxicity of the 450‐fold dose in terms of increased nipple...... though each individual chemical is present at low, ineffective doses, but the effects of mixtures modelled based on human intakes have not previously been investigated. To address this issue for the first time, we selected 13 chemicals for a developmental mixture toxicity study in rats where data about...

  9. Parallel phase model : a programming model for high-end parallel machines with manycores.

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Junfeng (Syracuse University, Syracuse, NY); Wen, Zhaofang; Heroux, Michael Allen; Brightwell, Ronald Brian


    This paper presents a parallel programming model, Parallel Phase Model (PPM), for next-generation high-end parallel machines based on a distributed memory architecture consisting of a networked cluster of nodes with a large number of cores on each node. PPM has a unified high-level programming abstraction that facilitates the design and implementation of parallel algorithms to exploit both the parallelism of the many cores and the parallelism at the cluster level. The programming abstraction will be suitable for expressing both fine-grained and coarse-grained parallelism. It includes a few high-level parallel programming language constructs that can be added as an extension to an existing (sequential or parallel) programming language such as C; and the implementation of PPM also includes a light-weight runtime library that runs on top of an existing network communication software layer (e.g. MPI). Design philosophy of PPM and details of the programming abstraction are also presented. Several unstructured applications that inherently require high-volume random fine-grained data accesses have been implemented in PPM with very promising results.

  10. Exploring Institutional Transformations to Address High-End Climate Change in Iberia

    Directory of Open Access Journals (Sweden)

    Joan David Tàbara


    Full Text Available Either meeting the UNFCCC Paris agreement to limit global average warming below the 2–1.5 °C threshold, or going beyond it entails huge challenges in terms of institutional innovation and transformation. This research describes a participatory integrated assessment process aimed at exploring the options, opportunities, necessary capacities and implications for institutional co-operation and innovation in the Iberian Peninsula under High-End Climate Change (HECC. Using in-depth interviews and a novel participatory research approach, different scenario narratives and pathways about the future of Iberia have been identified using Shared Socio-economic Pathways (SSPs. Special attention is given to the knowledge and policy options needed to implement cross-border organizational changes and co-operation mechanisms that would support the Integrated Climate Governance of the Tagus and Guadiana river basins. We show that a wealth of institutional innovation pathways and specific options and solutions exist not only to reduce GHG emissions (mitigation and the negative impacts of climate change (adaptation, but, above all, to generate new forms of social-ecological system interactions aligned with sustainability (transformation. In particular, and depending on which scenario contexts unfold in the future in Iberia, different kinds of institutional and governance capacities and clusters of solutions may be needed in order to achieve transformation.

  11. Materials and devices with applications in high-end organic transistors

    International Nuclear Information System (INIS)

    Takeya, J.; Uemura, T.; Sakai, K.; Okada, Y.


    The development of functional materials typically benefits from an understanding of the microscopic mechanisms by which those materials operate. To accelerate the development of organic semiconductor devices with industrial applications in flexible and printed electronics, it is essential to elucidate the mechanisms of charge transport associated with molecular-scale charge transfer. In this study, we employed Hall effect measurements to differentiate coherent band transport from site-to-site hopping. The results of tests using several different molecular systems as the active semiconductor layers demonstrate that high-mobility charge transport in recently-developed solution-crystallized organic transistors is the result of a band-like mechanism. These materials, which have the potential to be organic transistors exhibiting the highest speeds ever obtained, are significantly different from the conventional lower-mobility organic semiconductors with incoherent hopping-like transport mechanisms which were studied in the previous century. They may be categorized as “high-end” organic semiconductors, characterized by their coherent electronic states and high values of mobility which are close to or greater than 10 cm 2 /Vs. - Highlights: • Transport in high-mobility solution-crystallized organic transistors is band-like. • High-end organic semiconductors carry coherent electrons with mobility > 10 cm 2 /Vs. • Hall-effect measurement differentiates coherent band transport from hopping. • We found an anomalous pressure effect in organic semiconductors

  12. The HVAC Challenges of Upgrading an Old Lab for High-end Light Microscopes (United States)

    Richard, R.; Martone, P.; Callahan, L.M.


    The University of Rochester Medical Center forms the centerpiece of the University of Rochester's health research, teaching, patient care, and community outreach missions. Within this large facility of over 5 million square feet, demolition and remodeling of existing spaces is a constant activity. With more than $145 million in federal research funding, lab space is frequently repurposed and renovated to support this work. The URMC Medical Center Facilities Organization supporting small to medium space renovations is constantly challenged and constrained by the existing mechanical infrastructure and budgets to deliver a renovated space that functions within the equipment environmental parameters. One recent project, sponsored by the URMC Shared Resources Laboratory, demonstrates these points. The URMC Light Microscopy Shared Resource Laboratory requested renovation of a 121 sq. ft. room in a 40 year old building which would enable placement of a laser capture microdissection microscope and a Pascal 5 laser scanning confocal microscope with the instruments separated by a blackout curtain. This poster discusses the engineering approach implemented to bring an older lab into the environmental specifications needed for the proper operation of the high-end light microscopes.

  13. NASA reports (United States)

    Obrien, John E.; Fisk, Lennard A.; Aldrich, Arnold A.; Utsman, Thomas E.; Griffin, Michael D.; Cohen, Aaron


    Activities and National Aeronautics and Space Administration (NASA) programs, both ongoing and planned, are described by NASA administrative personnel from the offices of Space Science and Applications, Space Systems Development, Space Flight, Exploration, and from the Johnson Space Center. NASA's multi-year strategic plan, called Vision 21, is also discussed. It proposes to use the unique perspective of space to better understand Earth. Among the NASA programs mentioned are the Magellan to Venus and Galileo to Jupiter spacecraft, the Cosmic Background Explorer, Pegsat (the first Pegasus payload), Hubble, the Joint U.S./German ROSAT X-ray Mission, Ulysses to Jupiter and over the sun, the Astro-Spacelab Mission, and the Gamma Ray Observatory. Copies of viewgraphs that illustrate some of these missions, and others, are provided. Also discussed were life science research plans, economic factors as they relate to space missions, and the outlook for international cooperation.

  14. Grid Technology as a Cyberinfrastructure for Delivering High-End Services to the Earth and Space Science Community (United States)

    Hinke, Thomas H.


    services discovered using semantic grid technology. As required, high-end computational resources could be drawn from available grid resource pools. Using grid technology, this confluence of data, services and computational resources could easily be harnessed to transform data from many different sources into a desired product that is delivered to a user's workstation or to a web portal though which it could be accessed by its intended audience.

  15. On target : extreme engineering's tools used for fundamental and high-end drilling operations

    Energy Technology Data Exchange (ETDEWEB)

    Cope, G.


    Positioned at the bottom of the drillstring, measurement-while-drilling systems can discern the location of the drillbit and transmit information back to the surface in the form of pulses in the mud system. The technology is costly, time-consuming and provides a limited amount of information. This article presented details of new devices developed by Extreme Engineering Ltd. to communicate drillbit location information from the bottom of the well to the surface in real time. The XPulse is a mud pulse system with continuous directional measuring capacity that allows operators on location to perform fundamental directional drilling operations without using a technician to interpret data. Installed behind the drillbit, the device records azimuth and inclination when the bit is sitting idle. Inclination is measured using a set of 3 axis accelerometers, quartz crystal devices that are sensitive to the Earth's gravitational force. Azimuth is measured with a flux gate magnetometer that senses its orientation to the Earth's magnetic field. The 2 data are computed to give an orientation of the drillbit in three-dimensional space. Extreme Engineering Ltd. has also developed XAct, a new set of tools using acoustic telemetry to transmit data to the surface using piezo ceramic materials. The acoustic energy is transmitted up the steel drillpipe at the rate of 20 bits per second to the surface, where an electro acoustic receiver detects it. The rate is sufficient to transmit large amounts of geological and drilling information to the surface in real time. Designed for high-end applications, the new suite of tools has cost the company almost $30 million to develop. It was concluded that industry response to the new technologies has been positive. 4 figs.

  16. Projected Applications of a "Weather in a Box" Computing System at the NASA Short-Term Prediction Research and Transition (SPoRT) Center (United States)

    Jedlovec, Gary J.; Molthan, Andrew; Zavodsky, Bradley T.; Case, Jonathan L.; LaFontaine, Frank J.; Srikishen, Jayanthi


    The NASA Short-term Prediction Research and Transition Center (SPoRT)'s new "Weather in a Box" resources will provide weather research and forecast modeling capabilities for real-time application. Model output will provide additional forecast guidance and research into the impacts of new NASA satellite data sets and software capabilities. By combining several research tools and satellite products, SPoRT can generate model guidance that is strongly influenced by unique NASA contributions.

  17. MAP3D: a media processor approach for high-end 3D graphics (United States)

    Darsa, Lucia; Stadnicki, Steven; Basoglu, Chris


    Equator Technologies, Inc. has used a software-first approach to produce several programmable and advanced VLIW processor architectures that have the flexibility to run both traditional systems tasks and an array of media-rich applications. For example, Equator's MAP1000A is the world's fastest single-chip programmable signal and image processor targeted for digital consumer and office automation markets. The Equator MAP3D is a proposal for the architecture of the next generation of the Equator MAP family. The MAP3D is designed to achieve high-end 3D performance and a variety of customizable special effects by combining special graphics features with high performance floating-point and media processor architecture. As a programmable media processor, it offers the advantages of a completely configurable 3D pipeline--allowing developers to experiment with different algorithms and to tailor their pipeline to achieve the highest performance for a particular application. With the support of Equator's advanced C compiler and toolkit, MAP3D programs can be written in a high-level language. This allows the compiler to successfully find and exploit any parallelism in a programmer's code, thus decreasing the time to market of a given applications. The ability to run an operating system makes it possible to run concurrent applications in the MAP3D chip, such as video decoding while executing the 3D pipelines, so that integration of applications is easily achieved--using real-time decoded imagery for texturing 3D objects, for instance. This novel architecture enables an affordable, integrated solution for high performance 3D graphics.

  18. Communication and Memory Architecture Design of Application-Specific High-End Multiprocessors

    Directory of Open Access Journals (Sweden)

    Yahya Jan


    Full Text Available This paper is devoted to the design of communication and memory architectures of massively parallel hardware multiprocessors necessary for the implementation of highly demanding applications. We demonstrated that for the massively parallel hardware multiprocessors the traditionally used flat communication architectures and multi-port memories do not scale well, and the memory and communication network influence on both the throughput and circuit area dominates the processors influence. To resolve the problems and ensure scalability, we proposed to design highly optimized application-specific hierarchical and/or partitioned communication and memory architectures through exploring and exploiting the regularity and hierarchy of the actual data flows of a given application. Furthermore, we proposed some data distribution and related data mapping schemes in the shared (global partitioned memories with the aim to eliminate the memory access conflicts, as well as, to ensure that our communication design strategies will be applicable. We incorporated these architecture synthesis strategies into our quality-driven model-based multi-processor design method and related automated architecture exploration framework. Using this framework, we performed a large series of experiments that demonstrate many various important features of the synthesized memory and communication architectures. They also demonstrate that our method and related framework are able to efficiently synthesize well scalable memory and communication architectures even for the high-end multiprocessors. The gains as high as 12-times in performance and 25-times in area can be obtained when using the hierarchical communication networks instead of the flat networks. However, for the high parallelism levels only the partitioned approach ensures the scalability in performance.

  19. Technological Innovations from NASA (United States)

    Pellis, Neal R.


    The challenge of human space exploration places demands on technology that push concepts and development to the leading edge. In biotechnology and biomedical equipment development, NASA science has been the seed for numerous innovations, many of which are in the commercial arena. The biotechnology effort has led to rational drug design, analytical equipment, and cell culture and tissue engineering strategies. Biomedical research and development has resulted in medical devices that enable diagnosis and treatment advances. NASA Biomedical developments are exemplified in the new laser light scattering analysis for cataracts, the axial flow left ventricular-assist device, non contact electrocardiography, and the guidance system for LASIK surgery. Many more developments are in progress. NASA will continue to advance technologies, incorporating new approaches from basic and applied research, nanotechnology, computational modeling, and database analyses.

  20. Users’ Perceptions Using Low-End and High-End Mobile-Rendered HMDs: A Comparative Study

    Directory of Open Access Journals (Sweden)

    M.-Carmen Juan


    Full Text Available Currently, it is possible to combine Mobile-Rendered Head-Mounted Displays (MR HMDs with smartphones to have Augmented Reality platforms. The differences between these types of platforms can affect the user’s experiences and satisfaction. This paper presents a study that analyses the user’s perception when using the same Augmented Reality app with two MR HMD (low-end and high-end. Our study evaluates the user’s experience taking into account several factors (control, sensory, distraction, ergonomics and realism. An Augmalpha-lowerented Reality app was developed to carry out the comparison for two MR HMDs. The application had exactly the same visual appearance and functionality for both devices. Forty adults participated in our study. From the results, there were no statistically significant differences for the users’ experience for the different factors when using the two MR HMDs, except for the ergonomic factors in favour of the high-end MR HMD. Even though the scores for the high-end MR HMD were higher in nearly all of the questions, both MR HMDs provided a very satisfying viewing experience with very high scores. The results were independent of gender and age. The participants rated the high-end MR HMD as the best one. Nevertheless, when they were asked which MR HMD they would buy, the participants chose the low-end MR HMD taking into account its price.

  1. 14 CFR 1201.402 - NASA Industrial Applications Centers. (United States)


    ... and innovative technology to nonaerospace sectors of the economy—NASA operates a network of Industrial..., Department of Computer Science, Baton Rouge, LA 70813-2065. (b) To obtain access to NASA-developed computer...

  2. Research on the co-movement between high-end talent and economic growth: A complex network approach (United States)

    Zhang, Zhen; Wang, Minggang; Xu, Hua; Zhang, Wenbin; Tian, Lixin


    The major goal of this paper is to focus on the co-movement between high-end talent and economic growth by a complex network approach. Firstly, the national high-end talent development efficiency from 1990 to 2015 is taken as the quantitative index to measure the development of high-end talent. The added values of the primary industry, secondary industry, tertiary industry are selected as economic growth indexes, and all the selected sample data are standardized by the mean value processing method. Secondly, let seven months as the length of the sliding window, and one month as the sliding step, then the grey correlation degrees between systems are measured using the slope correlation degrees, and the grey correlation degree sequence is mapped into the symbol series composed by three symbols { Y , O , N } based on the coarse graining method. Let three characters as a mode, the nodes are obtained by the modes according to the time sequence. Let the transformation between the modal be the edge, and the times of the transformation be weight, then the co-movement networks between national high-end talent development efficiency and the added values of the primary industry, secondary industry, tertiary industry are built respectively. Finally, the dynamic characteristics of the networks are analysed by the node strength, strength distribution, weighted clustering coefficient, conversion cycle of the modes and the transition between the co-movement modes. The results indicate that there are mutual influence and promotion relations between the national high-end talent development efficiency and the added values of the primary, secondary and tertiary industry.

  3. Scalability of a Low-Cost Multi-Teraflop Linux Cluster for High-End Classical Atomistic and Quantum Mechanical Simulations (United States)

    Kikuchi, Hideaki; Kalia, Rajiv K.; Nakano, Aiichiro; Vashishta, Priya; Shimojo, Fuyuki; Saini, Subhash


    Scalability of a low-cost, Intel Xeon-based, multi-Teraflop Linux cluster is tested for two high-end scientific applications: Classical atomistic simulation based on the molecular dynamics method and quantum mechanical calculation based on the density functional theory. These scalable parallel applications use space-time multiresolution algorithms and feature computational-space decomposition, wavelet-based adaptive load balancing, and spacefilling-curve-based data compression for scalable I/O. Comparative performance tests are performed on a 1,024-processor Linux cluster and a conventional higher-end parallel supercomputer, 1,184-processor IBM SP4. The results show that the performance of the Linux cluster is comparable to that of the SP4. We also study various effects, such as the sharing of memory and L2 cache among processors, on the performance.

  4. NASA Information Technology Implementation Plan (United States)


    NASA's Information Technology (IT) resources and IT support continue to be a growing and integral part of all NASA missions. Furthermore, the growing IT support requirements are becoming more complex and diverse. The following are a few examples of the growing complexity and diversity of NASA's IT environment. NASA is conducting basic IT research in the Intelligent Synthesis Environment (ISE) and Intelligent Systems (IS) Initiatives. IT security, infrastructure protection, and privacy of data are requiring more and more management attention and an increasing share of the NASA IT budget. Outsourcing of IT support is becoming a key element of NASA's IT strategy as exemplified by Outsourcing Desktop Initiative for NASA (ODIN) and the outsourcing of NASA Integrated Services Network (NISN) support. Finally, technology refresh is helping to provide improved support at lower cost. Recently the NASA Automated Data Processing (ADP) Consolidation Center (NACC) upgraded its bipolar technology computer systems with Complementary Metal Oxide Semiconductor (CMOS) technology systems. This NACC upgrade substantially reduced the hardware maintenance and software licensing costs, significantly increased system speed and capacity, and reduced customer processing costs by 11 percent.

  5. Communication Requirements and Interconnect Optimization forHigh-End Scientific Applications

    Energy Technology Data Exchange (ETDEWEB)

    Kamil, Shoaib; Oliker, Leonid; Pinar, Ali; Shalf, John


    The path towards realizing peta-scale computing isincreasingly dependent on building supercomputers with unprecedentednumbers of processors. To prevent the interconnect from dominating theoverall cost of these ultra-scale systems, there is a critical need forhigh-performance network solutions whose costs scale linearly with systemsize. This work makes several unique contributions towards attaining thatgoal. First, we conduct one of the broadest studies to date of high-endapplication communication requirements, whose computational methodsinclude: finite-difference, lattice-bolzmann, particle in cell, sparselinear algebra, particle mesh ewald, and FFT-based solvers. Toefficiently collect this data, we use the IPM (Integrated PerformanceMonitoring) profiling layer to gather detailed messaging statistics withminimal impact to code performance. Using the derived communicationcharacterizations, we next present fit-trees interconnects, a novelapproach for designing network infrastructure at a fraction of thecomponent cost of traditional fat-tree solutions. Finally, we propose theHybrid Flexibly Assignable Switch Topology (HFAST) infrastructure, whichuses both passive (circuit) and active (packet) commodity switchcomponents to dynamically reconfigure interconnects to suit thetopological requirements of scientific applications. Overall ourexploration leads to a promising directions for practically addressingthe interconnect requirements of future peta-scale systems.

  6. NASA Astrophysics Technology Needs (United States)

    Stahl, H. Philip


    July 2010, NASA Office of Chief Technologist (OCT) initiated an activity to create and maintain a NASA integrated roadmap for 15 key technology areas which recommend an overall technology investment strategy and prioritize NASA?s technology programs to meet NASA?s strategic goals. Science Instruments, Observatories and Sensor Systems(SIOSS) roadmap addresses technology needs to achieve NASA?s highest priority objectives -- not only for the Science Mission Directorate (SMD), but for all of NASA.

  7. Computing farms

    International Nuclear Information System (INIS)

    Yeh, G.P.


    High-energy physics, nuclear physics, space sciences, and many other fields have large challenges in computing. In recent years, PCs have achieved performance comparable to the high-end UNIX workstations, at a small fraction of the price. We review the development and broad applications of commodity PCs as the solution to CPU needs, and look forward to the important and exciting future of large-scale PC computing

  8. NASA's Software Safety Standard (United States)

    Ramsay, Christopher M.


    NASA relies more and more on software to control, monitor, and verify its safety critical systems, facilities and operations. Since the 1960's there has hardly been a spacecraft launched that does not have a computer on board that will provide command and control services. There have been recent incidents where software has played a role in high-profile mission failures and hazardous incidents. For example, the Mars Orbiter, Mars Polar Lander, the DART (Demonstration of Autonomous Rendezvous Technology), and MER (Mars Exploration Rover) Spirit anomalies were all caused or contributed to by software. The Mission Control Centers for the Shuttle, ISS, and unmanned programs are highly dependant on software for data displays, analysis, and mission planning. Despite this growing dependence on software control and monitoring, there has been little to no consistent application of software safety practices and methodology to NASA's projects with safety critical software. Meanwhile, academia and private industry have been stepping forward with procedures and standards for safety critical systems and software, for example Dr. Nancy Leveson's book Safeware: System Safety and Computers. The NASA Software Safety Standard, originally published in 1997, was widely ignored due to its complexity and poor organization. It also focused on concepts rather than definite procedural requirements organized around a software project lifecycle. Led by NASA Headquarters Office of Safety and Mission Assurance, the NASA Software Safety Standard has recently undergone a significant update. This new standard provides the procedures and guidelines for evaluating a project for safety criticality and then lays out the minimum project lifecycle requirements to assure the software is created, operated, and maintained in the safest possible manner. This update of the standard clearly delineates the minimum set of software safety requirements for a project without detailing the implementation for those

  9. NASA Data Archive Evaluation (United States)

    Holley, Daniel C.; Haight, Kyle G.; Lindstrom, Ted


    The purpose of this study was to expose a range of naive individuals to the NASA Data Archive and to obtain feedback from them, with the goal of learning how useful people with varied backgrounds would find the Archive for research and other purposes. We processed 36 subjects in four experimental categories, designated in this report as C+R+, C+R-, C-R+ and C-R-, for computer experienced researchers, computer experienced non-researchers, non-computer experienced researchers, and non-computer experienced non-researchers, respectively. This report includes an assessment of general patterns of subject responses to the various aspects of the NASA Data Archive. Some of the aspects examined were interface-oriented, addressing such issues as whether the subject was able to locate information, figure out how to perform desired information retrieval tasks, etc. Other aspects were content-related. In doing these assessments, answers given to different questions were sometimes combined. This practice reflects the tendency of the subjects to provide answers expressing their experiences across question boundaries. Patterns of response are cross-examined by subject category in order to bring out deeper understandings of why subjects reacted the way they did to the archive. After the general assessment, there will be a more extensive summary of the replies received from the test subjects.

  10. NASA Applications of Molecular Nanotechnology (United States)

    Globus, Al; Bailey, David; Han, Jie; Jaffe, Richard; Levit, Creon; Merkle, Ralph; Srivastava, Deepak


    Laboratories throughout the world are rapidly gaining atomically precise control over matter. As this control extends to an ever wider variety of materials, processes and devices, opportunities for applications relevant to NASA's missions will be created. This document surveys a number of future molecular nanotechnology capabilities of aerospace interest. Computer applications, launch vehicle improvements, and active materials appear to be of particular interest. We also list a number of applications for each of NASA's enterprises. If advanced molecular nanotechnology can be developed, almost all of NASA's endeavors will be radically improved. In particular, a sufficiently advanced molecular nanotechnology can arguably bring large scale space colonization within our grasp.

  11. Technology transfer at NASA - A librarian's view (United States)

    Buchan, Ronald L.


    The NASA programs, publications, and services promoting the transfer and utilization of aerospace technology developed by and for NASA are briefly surveyed. Topics addressed include the corporate sources of NASA technical information and its interest for corporate users of information services; the IAA and STAR abstract journals; NASA/RECON, NTIS, and the AIAA Aerospace Database; the RECON Space Commercialization file; the Computer Software Management and Information Center file; company information in the RECON database; and services to small businesses. Also discussed are the NASA publications Tech Briefs and Spinoff, the Industrial Applications Centers, NASA continuing bibliographies on management and patent abstracts (indexed using the NASA Thesaurus), the Index to NASA News Releases and Speeches, and the Aerospace Research Information Network (ARIN).

  12. A programming environment for distributed complex computing. An overview of the Framework for Interdisciplinary Design Optimization (FIDO) project. NASA Langley TOPS exhibit H120b (United States)

    Townsend, James C.; Weston, Robert P.; Eidson, Thomas M.


    The Framework for Interdisciplinary Design Optimization (FIDO) is a general programming environment for automating the distribution of complex computing tasks over a networked system of heterogeneous computers. For example, instead of manually passing a complex design problem between its diverse specialty disciplines, the FIDO system provides for automatic interactions between the discipline tasks and facilitates their communications. The FIDO system networks all the computers involved into a distributed heterogeneous computing system, so they have access to centralized data and can work on their parts of the total computation simultaneously in parallel whenever possible. Thus, each computational task can be done by the most appropriate computer. Results can be viewed as they are produced and variables changed manually for steering the process. The software is modular in order to ease migration to new problems: different codes can be substituted for each of the current code modules with little or no effect on the others. The potential for commercial use of FIDO rests in the capability it provides for automatically coordinating diverse computations on a networked system of workstations and computers. For example, FIDO could provide the coordination required for the design of vehicles or electronics or for modeling complex systems.

  13. Experimental demonstration of OpenFlow-enabled media ecosystem architecture for high-end applications over metro and core networks. (United States)

    Ntofon, Okung-Dike; Channegowda, Mayur P; Efstathiou, Nikolaos; Rashidi Fard, Mehdi; Nejabati, Reza; Hunter, David K; Simeonidou, Dimitra


    In this paper, a novel Software-Defined Networking (SDN) architecture is proposed for high-end Ultra High Definition (UHD) media applications. UHD media applications require huge amounts of bandwidth that can only be met with high-capacity optical networks. In addition, there are requirements for control frameworks capable of delivering effective application performance with efficient network utilization. A novel SDN-based Controller that tightly integrates application-awareness with network control and management is proposed for such applications. An OpenFlow-enabled test-bed demonstrator is reported with performance evaluations of advanced online and offline media- and network-aware schedulers.


    CERN Multimedia

    M. Kasemann

    Overview In autumn the main focus was to process and handle CRAFT data and to perform the Summer08 MC production. The operational aspects were well covered by regular Computing Shifts, experts on duty and Computing Run Coordination. At the Computing Resource Board (CRB) in October a model to account for service work at Tier 2s was approved. The computing resources for 2009 were reviewed for presentation at the C-RRB. The quarterly resource monitoring is continuing. Facilities/Infrastructure operations Operations during CRAFT data taking ran fine. This proved to be a very valuable experience for T0 workflows and operations. The transfers of custodial data to most T1s went smoothly. A first round of reprocessing started at the Tier-1 centers end of November; it will take about two weeks. The Computing Shifts procedure was tested full scale during this period and proved to be very efficient: 30 Computing Shifts Persons (CSP) and 10 Computing Resources Coordinators (CRC). The shift program for the shut down w...


    CERN Multimedia

    I. Fisk


    Introduction CMS distributed computing system performed well during the 2011 start-up. The events in 2011 have more pile-up and are more complex than last year; this results in longer reconstruction times and harder events to simulate. Significant increases in computing capacity were delivered in April for all computing tiers, and the utilisation and load is close to the planning predictions. All computing centre tiers performed their expected functionalities. Heavy-Ion Programme The CMS Heavy-Ion Programme had a very strong showing at the Quark Matter conference. A large number of analyses were shown. The dedicated heavy-ion reconstruction facility at the Vanderbilt Tier-2 is still involved in some commissioning activities, but is available for processing and analysis. Facilities and Infrastructure Operations Facility and Infrastructure operations have been active with operations and several important deployment tasks. Facilities participated in the testing and deployment of WMAgent and WorkQueue+Request...


    CERN Multimedia

    P. McBride

    The Computing Project is preparing for a busy year where the primary emphasis of the project moves towards steady operations. Following the very successful completion of Computing Software and Analysis challenge, CSA06, last fall, we have reorganized and established four groups in computing area: Commissioning, User Support, Facility/Infrastructure Operations and Data Operations. These groups work closely together with groups from the Offline Project in planning for data processing and operations. Monte Carlo production has continued since CSA06, with about 30M events produced each month to be used for HLT studies and physics validation. Monte Carlo production will continue throughout the year in the preparation of large samples for physics and detector studies ramping to 50 M events/month for CSA07. Commissioning of the full CMS computing system is a major goal for 2007. Site monitoring is an important commissioning component and work is ongoing to devise CMS specific tests to be included in Service Availa...


    CERN Multimedia

    M. Kasemann

    Overview During the past three months activities were focused on data operations, testing and re-enforcing shift and operational procedures for data production and transfer, MC production and on user support. Planning of the computing resources in view of the new LHC calendar in ongoing. Two new task forces were created for supporting the integration work: Site Commissioning, which develops tools helping distributed sites to monitor job and data workflows, and Analysis Support, collecting the user experience and feedback during analysis activities and developing tools to increase efficiency. The development plan for DMWM for 2009/2011 was developed at the beginning of the year, based on the requirements from the Physics, Computing and Offline groups (see Offline section). The Computing management meeting at FermiLab on February 19th and 20th was an excellent opportunity discussing the impact and for addressing issues and solutions to the main challenges facing CMS computing. The lack of manpower is particul...

  18. Consolidating NASA's Arc Jets (United States)

    Balboni, John A.; Gokcen, Tahir; Hui, Frank C. L.; Graube, Peter; Morrissey, Patricia; Lewis, Ronald


    The paper describes the consolidation of NASA's high powered arc-jet testing at a single location. The existing plasma arc-jet wind tunnels located at the Johnson Space Center were relocated to Ames Research Center while maintaining NASA's technical capability to ground-test thermal protection system materials under simulated atmospheric entry convective heating. The testing conditions at JSC were reproduced and successfully demonstrated at ARC through close collaboration between the two centers. New equipment was installed at Ames to provide test gases of pure nitrogen mixed with pure oxygen, and for future nitrogen-carbon dioxide mixtures. A new control system was custom designed, installed and tested. Tests demonstrated the capability of the 10 MW constricted-segmented arc heater at Ames meets the requirements of the major customer, NASA's Orion program. Solutions from an advanced computational fluid dynamics code were used to aid in characterizing the properties of the plasma stream and the surface environment on the calorimeters in the supersonic flow stream produced by the arc heater.

  19. High-Performance Computing Paradigm and Infrastructure

    CERN Document Server

    Yang, Laurence T


    With hyperthreading in Intel processors, hypertransport links in next generation AMD processors, multi-core silicon in today's high-end microprocessors from IBM and emerging grid computing, parallel and distributed computers have moved into the mainstream

  20. Computer implemented land cover classification using LANDSAT MSS digital data: A cooperative research project between the National Park Service and NASA. 3: Vegetation and other land cover analysis of Shenandoah National Park (United States)

    Cibula, W. G.


    Four LANDSAT frames, each corresponding to one of the four seasons were spectrally classified and processed using NASA-developed computer programs. One data set was selected or two or more data sets were marged to improve surface cover classifications. Selected areas representing each spectral class were chosen and transferred to USGS 1:62,500 topographic maps for field use. Ground truth data were gathered to verify the accuracy of the classifications. Acreages were computed for each of the land cover types. The application of elevational data to seasonal LANDSAT frames resulted in the separation of high elevation meadows (both with and without recently emergent perennial vegetation) as well as areas in oak forests which have an evergreen understory as opposed to other areas which do not.

  1. Vulnerability to sexual violence and participation in sex work among high-end entertainment centre workers in Hunan Province, China. (United States)

    Kelvin, Elizabeth A; Sun, Xiaoming; Mantell, Joanne E; Zhou, Jianfang; Mao, Jingshu; Peng, Yanhui


    China has seen a proliferation of entertainment centres that are frequented by business people. Employees at these centres often are young, female rural-to-urban migrants who may be vulnerable to sexual violence and exploitation. Data for this study were collected using a self-administered survey among male and female employees in two high-end entertainment centres in Changsha, Hunan Province, China. We used logistic regression to examine predictors of violent and potentially exploitative experiences (partner violence, forced sex and transactional sex). Predictors included gender, ever having a same-sex partner, migration variables and employment characteristics. Participants reported high levels of partner violence (16.0% ever and 9.0% in the past 3 months) and forced sex (13.9% ever and 5.5% in the past 3 months). Nineteen percent reported sex work in the past 3 months. In the multivariate regressions, ever having had a same-sex partner was associated with higher odds of ever having experienced partner violence (odds ratio (OR)=7.8, Pgender nor migration status was associated with any of the outcomes. High-end entertainment centre workers in China are at risk for sexual violence and should be targeted with employment-based interventions.

  2. The NASA Astrophysics Program (United States)

    Zebulum, Ricardo S.


    NASA's scientists are enjoying unprecedented access to astronomy data from space, both from missions launched and operated only by NASA, as well as missions led by other space agencies to which NASA contributed instruments or technology. This paper describes the NASA astrophysics program for the next decade, including NASA's response to the ASTRO2010 Decadal Survey.


    CERN Multimedia

    I. Fisk


    Computing activity had ramped down after the completion of the reprocessing of the 2012 data and parked data, but is increasing with new simulation samples for analysis and upgrade studies. Much of the Computing effort is currently involved in activities to improve the computing system in preparation for 2015. Operations Office Since the beginning of 2013, the Computing Operations team successfully re-processed the 2012 data in record time, not only by using opportunistic resources like the San Diego Supercomputer Center which was accessible, to re-process the primary datasets HTMHT and MultiJet in Run2012D much earlier than planned. The Heavy-Ion data-taking period was successfully concluded in February collecting almost 500 T. Figure 3: Number of events per month (data) In LS1, our emphasis is to increase efficiency and flexibility of the infrastructure and operation. Computing Operations is working on separating disk and tape at the Tier-1 sites and the full implementation of the xrootd federation ...


    CERN Multimedia

    I. Fisk


    Introduction It has been a very active quarter in Computing with interesting progress in all areas. The activity level at the computing facilities, driven by both organised processing from data operations and user analysis, has been steadily increasing. The large-scale production of simulated events that has been progressing throughout the fall is wrapping-up and reprocessing with pile-up will continue. A large reprocessing of all the proton-proton data has just been released and another will follow shortly. The number of analysis jobs by users each day, that was already hitting the computing model expectations at the time of ICHEP, is now 33% higher. We are expecting a busy holiday break to ensure samples are ready in time for the winter conferences. Heavy Ion An activity that is still in progress is computing for the heavy-ion program. The heavy-ion events are collected without zero suppression, so the event size is much large at roughly 11 MB per event of RAW. The central collisions are more complex and...


    CERN Multimedia

    M. Kasemann P. McBride Edited by M-C. Sawley with contributions from: P. Kreuzer D. Bonacorsi S. Belforte F. Wuerthwein L. Bauerdick K. Lassila-Perini M-C. Sawley

    Introduction More than seventy CMS collaborators attended the Computing and Offline Workshop in San Diego, California, April 20-24th to discuss the state of readiness of software and computing for collisions. Focus and priority were given to preparations for data taking and providing room for ample dialog between groups involved in Commissioning, Data Operations, Analysis and MC Production. Throughout the workshop, aspects of software, operating procedures and issues addressing all parts of the computing model were discussed. Plans for the CMS participation in STEP’09, the combined scale testing for all four experiments due in June 2009, were refined. The article in CMS Times by Frank Wuerthwein gave a good recap of the highly collaborative atmosphere of the workshop. Many thanks to UCSD and to the organizers for taking care of this workshop, which resulted in a long list of action items and was definitely a success. A considerable amount of effort and care is invested in the estimate of the comput...

  6. Evaluating adaptation options for urban flooding based on new high-end emission scenario regional climate model simulations

    DEFF Research Database (Denmark)

    Arnbjerg-Nielsen, Karsten; Leonardsen, L.; Madsen, Henrik


    Climate change adaptation studies on urban flooding are often based on a model chain approach from climate forcing scenarios to analysis of adaptation measures. Previous analyses of climate change impacts in Copenhagen, Denmark, were supplemented by 2 high-end scenario simulations. These include...... a regional climate model projection forced to a global temperature increase of 6 degrees C in 2100 as well as a projection based on a high radiative forcing scenario (RCP8.5). With these scenarios, projected impacts of extreme precipitation increase significantly. For extreme sea surges, the impacts do...... by almost 4 and 8 times the current EAD for the RCP8.5 and 6 degrees C scenario, respectively. For both hazards, business-as-usual is not a possible scenario, since even in the absence of policy-driven changes, significant autonomous adaptation is likely to occur. Copenhagen has developed an adaptation plan...

  7. Exciting story of the high-end television projection systems and the novel compact EIDOPHOR AE-12 (United States)

    Schulz-Hennig, Joerg F.


    With the new light valve technologies and availability of international broad-band communication channels high-end large screen TV projection is a highly growing contribution to the multi-media world of today. The exciting story already started 58 years ago with the invention of the EIDOPHOR diffractive oil light modulator. The long way to turn electronic cinema into a reality triggered novel applications, e.g. teleconferencing and real time surgery transmissions at universities. Several technical approaches of spatial light modulation were tried, and finally several different solutions are feasible to provide video projectors, meeting the requirements of the different display applications of today and tomorrow. The technical history is reviewed and the limitations and feasibilities of new technologies are presented in respect to existing and new applications.

  8. NASA Administrative Data Base Management Systems, 1984 (United States)

    Radosevich, J. D. (Editor)


    Strategies for converting to a data base management system (DBMS) and the implementation of the software packages necessary are discussed. Experiences with DBMS at various NASA centers are related including Langley's ADABAS/NATURAL and the NEMS subsystem of the NASA metrology informaton system. The value of the integrated workstation with a personal computer is explored.


    CERN Multimedia

    P. McBride

    It has been a very active year for the computing project with strong contributions from members of the global community. The project has focused on site preparation and Monte Carlo production. The operations group has begun processing data from P5 as part of the global data commissioning. Improvements in transfer rates and site availability have been seen as computing sites across the globe prepare for large scale production and analysis as part of CSA07. Preparations for the upcoming Computing Software and Analysis Challenge CSA07 are progressing. Ian Fisk and Neil Geddes have been appointed as coordinators for the challenge. CSA07 will include production tests of the Tier-0 production system, reprocessing at the Tier-1 sites and Monte Carlo production at the Tier-2 sites. At the same time there will be a large analysis exercise at the Tier-2 centres. Pre-production simulation of the Monte Carlo events for the challenge is beginning. Scale tests of the Tier-0 will begin in mid-July and the challenge it...


    CERN Multimedia

    M. Kasemann

    Introduction During the past six months, Computing participated in the STEP09 exercise, had a major involvement in the October exercise and has been working with CMS sites on improving open issues relevant for data taking. At the same time operations for MC production, real data reconstruction and re-reconstructions and data transfers at large scales were performed. STEP09 was successfully conducted in June as a joint exercise with ATLAS and the other experiments. It gave good indication about the readiness of the WLCG infrastructure with the two major LHC experiments stressing the reading, writing and processing of physics data. The October Exercise, in contrast, was conducted as an all-CMS exercise, where Physics, Computing and Offline worked on a common plan to exercise all steps to efficiently access and analyze data. As one of the major results, the CMS Tier-2s demonstrated to be fully capable for performing data analysis. In recent weeks, efforts were devoted to CMS Computing readiness. All th...


    CERN Multimedia

    I. Fisk


    Introduction It has been a very active quarter in Computing with interesting progress in all areas. The activity level at the computing facilities, driven by both organised processing from data operations and user analysis, has been steadily increasing. The large-scale production of simulated events that has been progressing throughout the fall is wrapping-up and reprocessing with pile-up will continue. A large reprocessing of all the proton-proton data has just been released and another will follow shortly. The number of analysis jobs by users each day, that was already hitting the computing model expectations at the time of ICHEP, is now 33% higher. We are expecting a busy holiday break to ensure samples are ready in time for the winter conferences. Heavy Ion The Tier 0 infrastructure was able to repack and promptly reconstruct heavy-ion collision data. Two copies were made of the data at CERN using a large CASTOR disk pool, and the core physics sample was replicated ...


    CERN Multimedia

    I. Fisk


    Introduction Computing continued with a high level of activity over the winter in preparation for conferences and the start of the 2012 run. 2012 brings new challenges with a new energy, more complex events, and the need to make the best use of the available time before the Long Shutdown. We expect to be resource constrained on all tiers of the computing system in 2012 and are working to ensure the high-priority goals of CMS are not impacted. Heavy ions After a successful 2011 heavy-ion run, the programme is moving to analysis. During the run, the CAF resources were well used for prompt analysis. Since then in 2012 on average 200 job slots have been used continuously at Vanderbilt for analysis workflows. Operations Office As of 2012, the Computing Project emphasis has moved from commissioning to operation of the various systems. This is reflected in the new organisation structure where the Facilities and Data Operations tasks have been merged into a common Operations Office, which now covers everything ...


    CERN Multimedia

    M. Kasemann

    CCRC’08 challenges and CSA08 During the February campaign of the Common Computing readiness challenges (CCRC’08), the CMS computing team had achieved very good results. The link between the detector site and the Tier0 was tested by gradually increasing the number of parallel transfer streams well beyond the target. Tests covered the global robustness at the Tier0, processing a massive number of very large files and with a high writing speed to tapes.  Other tests covered the links between the different Tiers of the distributed infrastructure and the pre-staging and reprocessing capacity of the Tier1’s: response time, data transfer rate and success rate for Tape to Buffer staging of files kept exclusively on Tape were measured. In all cases, coordination with the sites was efficient and no serious problem was found. These successful preparations prepared the ground for the second phase of the CCRC’08 campaign, in May. The Computing Software and Analysis challen...


    CERN Multimedia

    I. Fisk


    Introduction The first data taking period of November produced a first scientific paper, and this is a very satisfactory step for Computing. It also gave the invaluable opportunity to learn and debrief from this first, intense period, and make the necessary adaptations. The alarm procedures between different groups (DAQ, Physics, T0 processing, Alignment/calibration, T1 and T2 communications) have been reinforced. A major effort has also been invested into remodeling and optimizing operator tasks in all activities in Computing, in parallel with the recruitment of new Cat A operators. The teams are being completed and by mid year the new tasks will have been assigned. CRB (Computing Resource Board) The Board met twice since last CMS week. In December it reviewed the experience of the November data-taking period and could measure the positive improvements made for the site readiness. It also reviewed the policy under which Tier-2 are associated with Physics Groups. Such associations are decided twice per ye...


    CERN Multimedia

    M. Kasemann

    Introduction More than seventy CMS collaborators attended the Computing and Offline Workshop in San Diego, California, April 20-24th to discuss the state of readiness of software and computing for collisions. Focus and priority were given to preparations for data taking and providing room for ample dialog between groups involved in Commissioning, Data Operations, Analysis and MC Production. Throughout the workshop, aspects of software, operating procedures and issues addressing all parts of the computing model were discussed. Plans for the CMS participation in STEP’09, the combined scale testing for all four experiments due in June 2009, were refined. The article in CMS Times by Frank Wuerthwein gave a good recap of the highly collaborative atmosphere of the workshop. Many thanks to UCSD and to the organizers for taking care of this workshop, which resulted in a long list of action items and was definitely a success. A considerable amount of effort and care is invested in the estimate of the co...

  16. A Bioinformatics Facility for NASA (United States)

    Schweighofer, Karl; Pohorille, Andrew


    Building on an existing prototype, we have fielded a facility with bioinformatics technologies that will help NASA meet its unique requirements for biological research. This facility consists of a cluster of computers capable of performing computationally intensive tasks, software tools, databases and knowledge management systems. Novel computational technologies for analyzing and integrating new biological data and already existing knowledge have been developed. With continued development and support, the facility will fulfill strategic NASA s bioinformatics needs in astrobiology and space exploration. . As a demonstration of these capabilities, we will present a detailed analysis of how spaceflight factors impact gene expression in the liver and kidney for mice flown aboard shuttle flight STS-108. We have found that many genes involved in signal transduction, cell cycle, and development respond to changes in microgravity, but that most metabolic pathways appear unchanged.

  17. A Qualitative Analysis of NASA’s Human Computer Interaction Group Examining the Root Causes of Focusing on Derivative System Improvements Versus Core User Needs (United States)


    toward qualitative analysis methods where they excelled at user research and workflow process analysis consistent with their formal training, a single one (e.g., one type of user research or graphic design) at larger Silicon Valley firms. The core competency of the design team tended...NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA MBA PROFESSIONAL REPORT A QUALITATIVE ANALYSIS OF NASA’S HUMAN COMPUTER


    CERN Multimedia


    Introduction Just two months after the “LHC First Physics” event of 30th March, the analysis of the O(200) million 7 TeV collision events in CMS accumulated during the first 60 days is well under way. The consistency of the CMS computing model has been confirmed during these first weeks of data taking. This model is based on a hierarchy of use-cases deployed between the different tiers and, in particular, the distribution of RECO data to T1s, who then serve data on request to T2s, along a topology known as “fat tree”. Indeed, during this period this model was further extended by almost full “mesh” commissioning, meaning that RECO data were shipped to T2s whenever possible, enabling additional physics analyses compared with the “fat tree” model. Computing activities at the CMS Analysis Facility (CAF) have been marked by a good time response for a load almost evenly shared between ALCA (Alignment and Calibration tasks - highest p...


    CERN Multimedia

    Contributions from I. Fisk


    Introduction The start of the 2012 run has been busy for Computing. We have reconstructed, archived, and served a larger sample of new data than in 2011, and we are in the process of producing an even larger new sample of simulations at 8 TeV. The running conditions and system performance are largely what was anticipated in the plan, thanks to the hard work and preparation of many people. Heavy ions Heavy Ions has been actively analysing data and preparing for conferences.  Operations Office Figure 6: Transfers from all sites in the last 90 days For ICHEP and the Upgrade efforts, we needed to produce and process record amounts of MC samples while supporting the very successful data-taking. This was a large burden, especially on the team members. Nevertheless the last three months were very successful and the total output was phenomenal, thanks to our dedicated site admins who keep the sites operational and the computing project members who spend countless hours nursing the...


    CERN Multimedia

    M. Kasemann

    Introduction A large fraction of the effort was focused during the last period into the preparation and monitoring of the February tests of Common VO Computing Readiness Challenge 08. CCRC08 is being run by the WLCG collaboration in two phases, between the centres and all experiments. The February test is dedicated to functionality tests, while the May challenge will consist of running at all centres and with full workflows. For this first period, a number of functionality checks of the computing power, data repositories and archives as well as network links are planned. This will help assess the reliability of the systems under a variety of loads, and identifying possible bottlenecks. Many tests are scheduled together with other VOs, allowing the full scale stress test. The data rates (writing, accessing and transfer¬ring) are being checked under a variety of loads and operating conditions, as well as the reliability and transfer rates of the links between Tier-0 and Tier-1s. In addition, the capa...


    CERN Multimedia

    Matthias Kasemann

    Overview The main focus during the summer was to handle data coming from the detector and to perform Monte Carlo production. The lessons learned during the CCRC and CSA08 challenges in May were addressed by dedicated PADA campaigns lead by the Integration team. Big improvements were achieved in the stability and reliability of the CMS Tier1 and Tier2 centres by regular and systematic follow-up of faults and errors with the help of the Savannah bug tracking system. In preparation for data taking the roles of a Computing Run Coordinator and regular computing shifts monitoring the services and infrastructure as well as interfacing to the data operations tasks are being defined. The shift plan until the end of 2008 is being put together. User support worked on documentation and organized several training sessions. The ECoM task force delivered the report on “Use Cases for Start-up of pp Data-Taking” with recommendations and a set of tests to be performed for trigger rates much higher than the ...


    CERN Multimedia

    P. MacBride

    The Computing Software and Analysis Challenge CSA07 has been the main focus of the Computing Project for the past few months. Activities began over the summer with the preparation of the Monte Carlo data sets for the challenge and tests of the new production system at the Tier-0 at CERN. The pre-challenge Monte Carlo production was done in several steps: physics generation, detector simulation, digitization, conversion to RAW format and the samples were run through the High Level Trigger (HLT). The data was then merged into three "Soups": Chowder (ALPGEN), Stew (Filtered Pythia) and Gumbo (Pythia). The challenge officially started when the first Chowder events were reconstructed on the Tier-0 on October 3rd. The data operations teams were very busy during the the challenge period. The MC production teams continued with signal production and processing while the Tier-0 and Tier-1 teams worked on splitting the Soups into Primary Data Sets (PDS), reconstruction and skimming. The storage sys...


    CERN Multimedia

    I. Fisk


    Computing operation has been lower as the Run 1 samples are completing and smaller samples for upgrades and preparations are ramping up. Much of the computing activity is focusing on preparations for Run 2 and improvements in data access and flexibility of using resources. Operations Office Data processing was slow in the second half of 2013 with only the legacy re-reconstruction pass of 2011 data being processed at the sites.   Figure 1: MC production and processing was more in demand with a peak of over 750 Million GEN-SIM events in a single month.   Figure 2: The transfer system worked reliably and efficiently and transferred on average close to 520 TB per week with peaks at close to 1.2 PB.   Figure 3: The volume of data moved between CMS sites in the last six months   The tape utilisation was a focus for the operation teams with frequent deletion campaigns from deprecated 7 TeV MC GEN-SIM samples to INVALID datasets, which could be cleaned up...


    CERN Multimedia

    I. Fisk


      Introduction Computing activity has been running at a sustained, high rate as we collect data at high luminosity, process simulation, and begin to process the parked data. The system is functional, though a number of improvements are planned during LS1. Many of the changes will impact users, we hope only in positive ways. We are trying to improve the distributed analysis tools as well as the ability to access more data samples more transparently.  Operations Office Figure 2: Number of events per month, for 2012 Since the June CMS Week, Computing Operations teams successfully completed data re-reconstruction passes and finished the CMSSW_53X MC campaign with over three billion events available in AOD format. Recorded data was successfully processed in parallel, exceeding 1.2 billion raw physics events per month for the first time in October 2012 due to the increase in data-parking rate. In parallel, large efforts were dedicated to WMAgent development and integrati...


    CERN Multimedia

    I. Fisk


    Introduction The Computing Team successfully completed the storage, initial processing, and distribution for analysis of proton-proton data in 2011. There are still a variety of activities ongoing to support winter conference activities and preparations for 2012. Heavy ions The heavy-ion run for 2011 started in early November and has already demonstrated good machine performance and success of some of the more advanced workflows planned for 2011. Data collection will continue until early December. Facilities and Infrastructure Operations Operational and deployment support for WMAgent and WorkQueue+Request Manager components, routinely used in production by Data Operations, are provided. The GlideInWMS and components installation are now deployed at CERN, which is added to the GlideInWMS factory placed in the US. There has been new operational collaboration between the CERN team and the UCSD GlideIn factory operators, covering each others time zones by monitoring/debugging pilot jobs sent from the facto...

  6. Algorithmic trends in computational fluid dynamics; The Institute for Computer Applications in Science and Engineering (ICASE)/LaRC Workshop, NASA Langley Research Center, Hampton, VA, US, Sep. 15-17, 1991 (United States)

    Hussaini, M. Y. (Editor); Kumar, A. (Editor); Salas, M. D. (Editor)


    The purpose here is to assess the state of the art in the areas of numerical analysis that are particularly relevant to computational fluid dynamics (CFD), to identify promising new developments in various areas of numerical analysis that will impact CFD, and to establish a long-term perspective focusing on opportunities and needs. Overviews are given of discretization schemes, computational fluid dynamics, algorithmic trends in CFD for aerospace flow field calculations, simulation of compressible viscous flow, and massively parallel computation. Also discussed are accerelation methods, spectral and high-order methods, multi-resolution and subcell resolution schemes, and inherently multidimensional schemes.

  7. dCache: implementing a high-end NFSv4.1 service using a Java NIO framework

    CERN Multimedia

    CERN. Geneva


    dCache is a high performance scalable storage system widely used by HEP community. In addition to set of home grown protocols we also provide industry standard access mechanisms like WebDAV and NFSv4.1. This support places dCache as a direct competitor to commercial solutions. Nevertheless conforming to a protocol is not enough; our implementations must perform comparably or even better than commercial systems. To achieve this, dCache uses two high-end IO frameworks from well know application servers: GlassFish and JBoss. This presentation describes how we implemented an rfc1831 and rfc2203 compliant ONC RPC (Sun RPC) service based on the Grizzly NIO framework, part of the GlassFish application server. This ONC RPC service is the key component of dCache’s NFSv4.1 implementation, but is independent of dCache and available for other projects. We will also show some details of dCache NFS v4.1 implementations, describe some of the Java NIO techniques used and, finally, present details of our performance e...

  8. HIV/STI risk by migrant status among workers in an urban high-end entertainment centre in Eastern China. (United States)

    Mantell, Joanne E; Kelvin, Elizabeth A; Sun, Xiaoming; Zhou, Jianfang; Exner, Theresa M; Hoffman, Susie; Zhou, Feng; Sandfort, Theo G M; Leu, Cheng-Shiun


    Large-scale internal migration in China may be an important mechanism for the spread of HIV/sexually transmitted infections (STIs) because of the risk behaviours of migrants. We conducted a self-administered survey among 724 employees of a high-end entertainment centre in Kunshan, Jiangsu Province, China. Using logistic regression, we examined the association of hometown of origin (Kunshan city, elsewhere in Jiangsu Province, or another province in China) and consecutive years living in Kunshan with measures of HIV/STI risk behaviour. We found that increased time living in Kunshan was associated with lower odds of using condoms as contraception [odds ratio (OR) = 0.78, 95% confidence interval (CI): 0.64-0.95] and consistent condom use with a casual partner (OR = 0.66, 95% CI: 0.47-0.93), after controlling for gender, marital status age and income. The odds of having had an STI were significantly lower for Kunshan natives than those originally from outside provinces (OR = 0.25, 95% CI: 0.07-0.96), but increasing years living in Kunshan was not related to lower risk for an STI. Our findings do not support the hypothesis that migrants living far from home participate in higher risk behaviour than locals. Findings suggest that adaptation to local culture over time may increase HIV/STI risk behaviours, a troublesome finding.


    CERN Multimedia

    M. Kasemann

    CMS relies on a well functioning, distributed computing infrastructure. The Site Availability Monitoring (SAM) and the Job Robot submission have been very instrumental for site commissioning in order to increase availability of more sites such that they are available to participate in CSA07 and are ready to be used for analysis. The commissioning process has been further developed, including "lessons learned" documentation via the CMS twiki. Recently the visualization, presentation and summarizing of SAM tests for sites has been redesigned, it is now developed by the central ARDA project of WLCG. Work to test the new gLite Workload Management System was performed; a 4 times increase in throughput with respect to LCG Resource Broker is observed. CMS has designed and launched a new-generation traffic load generator called "LoadTest" to commission and to keep exercised all data transfer routes in the CMS PhE-DEx topology. Since mid-February, a transfer volume of about 12 P...

  10. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 38: Computer Mediated Communication (CMC) and the communication of technical information in aerospace (United States)

    Murphy, Daniel J.; Pinelli, Thomas E.


    This paper discusses the use of computers as a medium for communication (CMC) used by aerospace engineers and scientists to obtain and/or provide technical information related to research and development activities. The data were obtained from a questionnaire survey that yielded 1006 mail responses. In addition to communication media, the research also investigates degrees of task uncertainty, environmental complexity, and other relevant variables that can affect aerospace workers' information-seeking strategies. While findings indicate that many individuals report CMC is an important function in their communication patterns, the research indicates that CMC is used less often and deemed less valuable than other more conventional media, such as paper documents, group meetings, telephone and face-to-face conversations. Fewer than one third of the individuals in the survey account for nearly eighty percent of the reported CMC use, and another twenty percent indicate they do not use the medium at all, its availability notwithstanding. These preliminary findings suggest that CMC is not as pervasive a communication medium among aerospace workers as the researcher expect a priori. The reasons underlying the reported media use are not yet fully known, and this suggests that continuing research in this area may be valuable.

  11. Chemical Engineering at NASA (United States)

    Collins, Jacob


    This viewgraph presentation is a review of the career paths for chemicals engineer at NASA (specifically NASA Johnson Space Center.) The author uses his personal experience and history as an example of the possible career options.

  12. NASA strategic plan (United States)


    The NASA Strategic Plan is a living document. It provides far-reaching goals and objectives to create stability for NASA's efforts. The Plan presents NASA's top-level strategy: it articulates what NASA does and for whom; it differentiates between ends and means; it states where NASA is going and what NASA intends to do to get there. This Plan is not a budget document, nor does it present priorities for current or future programs. Rather, it establishes a framework for shaping NASA's activities and developing a balanced set of priorities across the Agency. Such priorities will then be reflected in the NASA budget. The document includes vision, mission, and goals; external environment; conceptual framework; strategic enterprises (Mission to Planet Earth, aeronautics, human exploration and development of space, scientific research, space technology, and synergy); strategic functions (transportation to space, space communications, human resources, and physical resources); values and operating principles; implementing strategy; and senior management team concurrence.

  13. NASA Space Radiation Laboratory (United States)

    Federal Laboratory Consortium — The NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory is a NASA funded facility, delivering heavy ion beams to a target area where scientists...

  14. NASA systems engineering handbook (United States)

    Shishko, Robert; Aster, Robert; Chamberlain, Robert G.; McDuffee, Patrick; Pieniazek, Les; Rowell, Tom; Bain, Beth; Cox, Renee I.; Mooz, Harold; Polaski, Lou


    This handbook brings the fundamental concepts and techniques of systems engineering to NASA personnel in a way that recognizes the nature of NASA systems and environment. It is intended to accompany formal NASA training courses on systems engineering and project management when appropriate, and is designed to be a top-level overview. The concepts were drawn from NASA field center handbooks, NMI's/NHB's, the work of the NASA-wide Systems Engineering Working Group and the Systems Engineering Process Improvement Task team, several non-NASA textbooks and guides, and material from independent systems engineering courses taught to NASA personnel. Five core chapters cover systems engineering fundamentals, the NASA Project Cycle, management issues in systems engineering, systems analysis and modeling, and specialty engineering integration. It is not intended as a directive.

  15. NASA work unit system file maintenance manual (United States)


    The NASA Work Unit System is a management information system for research tasks (i.e., work units) performed under NASA grants and contracts. It supplies profiles on research efforts and statistics on fund distribution. The file maintenance operator can add, delete and change records at a remote terminal or can submit punched cards to the computer room for batch update. The system is designed for file maintenance by a person with little or no knowledge of data processing techniques.

  16. Computational chemistry (United States)

    Arnold, J. O.


    With the advent of supercomputers, modern computational chemistry algorithms and codes, a powerful tool was created to help fill NASA's continuing need for information on the properties of matter in hostile or unusual environments. Computational resources provided under the National Aerodynamics Simulator (NAS) program were a cornerstone for recent advancements in this field. Properties of gases, materials, and their interactions can be determined from solutions of the governing equations. In the case of gases, for example, radiative transition probabilites per particle, bond-dissociation energies, and rates of simple chemical reactions can be determined computationally as reliably as from experiment. The data are proving to be quite valuable in providing inputs to real-gas flow simulation codes used to compute aerothermodynamic loads on NASA's aeroassist orbital transfer vehicles and a host of problems related to the National Aerospace Plane Program. Although more approximate, similar solutions can be obtained for ensembles of atoms simulating small particles of materials with and without the presence of gases. Computational chemistry has application in studying catalysis, properties of polymers, all of interest to various NASA missions, including those previously mentioned. In addition to discussing these applications of computational chemistry within NASA, the governing equations and the need for supercomputers for their solution is outlined.

  17. Internal NASA Study: NASAs Protoflight Research Initiative (United States)

    Coan, Mary R.; Hirshorn, Steven R.; Moreland, Robert


    The NASA Protoflight Research Initiative is an internal NASA study conducted within the Office of the Chief Engineer to better understand the use of Protoflight within NASA. Extensive literature reviews and interviews with key NASA members with experience in both robotic and human spaceflight missions has resulted in three main conclusions and two observations. The first conclusion is that NASA's Protoflight method is not considered to be "prescriptive." The current policies and guidance allows each Program/Project to tailor the Protoflight approach to better meet their needs, goals and objectives. Second, Risk Management plays a key role in implementation of the Protoflight approach. Any deviations from full qualification will be based on the level of acceptable risk with guidance found in NPR 8705.4. Finally, over the past decade (2004 - 2014) only 6% of NASA's Protoflight missions and 6% of NASA's Full qualification missions experienced a publicly disclosed mission failure. In other words, the data indicates that the Protoflight approach, in and of it itself, does not increase the mission risk of in-flight failure. The first observation is that it would be beneficial to document the decision making process on the implementation and use of Protoflight. The second observation is that If a Project/Program chooses to use the Protoflight approach with relevant heritage, it is extremely important that the Program/Project Manager ensures that the current project's requirements falls within the heritage design, component, instrument and/or subsystem's requirements for both the planned and operational use, and that the documentation of the relevant heritage is comprehensive, sufficient and the decision well documented. To further benefit/inform this study, a recommendation to perform a deep dive into 30 missions with accessible data on their testing/verification methodology and decision process to research the differences between Protoflight and Full Qualification

  18. The NASA Carbon Monitoring System (United States)

    Hurtt, G. C.


    Greenhouse gas emission inventories, forest carbon sequestration programs (e.g., Reducing Emissions from Deforestation and Forest Degradation (REDD and REDD+), cap-and-trade systems, self-reporting programs, and their associated monitoring, reporting and verification (MRV) frameworks depend upon data that are accurate, systematic, practical, and transparent. A sustained, observationally-driven carbon monitoring system using remote sensing data has the potential to significantly improve the relevant carbon cycle information base for the U.S. and world. Initiated in 2010, NASA's Carbon Monitoring System (CMS) project is prototyping and conducting pilot studies to evaluate technological approaches and methodologies to meet carbon monitoring and reporting requirements for multiple users and over multiple scales of interest. NASA's approach emphasizes exploitation of the satellite remote sensing resources, computational capabilities, scientific knowledge, airborne science capabilities, and end-to-end system expertise that are major strengths of the NASA Earth Science program. Through user engagement activities, the NASA CMS project is taking specific actions to be responsive to the needs of stakeholders working to improve carbon MRV frameworks. The first phase of NASA CMS projects focused on developing products for U.S. biomass/carbon stocks and global carbon fluxes, and on scoping studies to identify stakeholders and explore other potential carbon products. The second phase built upon these initial efforts, with a large expansion in prototyping activities across a diversity of systems, scales, and regions, including research focused on prototype MRV systems and utilization of COTS technologies. Priorities for the future include: 1) utilizing future satellite sensors, 2) prototyping with commercial off-the-shelf technology, 3) expanding the range of prototyping activities, 4) rigorous evaluation, uncertainty quantification, and error characterization, 5) stakeholder

  19. Advanced Methodologies for NASA Science Missions (United States)

    Hurlburt, N. E.; Feigelson, E.; Mentzel, C.


    Most of NASA's commitment to computational space science involves the organization and processing of Big Data from space-based satellites, and the calculations of advanced physical models based on these datasets. But considerable thought is also needed on what computations are needed. The science questions addressed by space data are so diverse and complex that traditional analysis procedures are often inadequate. The knowledge and skills of the statistician, applied mathematician, and algorithmic computer scientist must be incorporated into programs that currently emphasize engineering and physical science. NASA's culture and administrative mechanisms take full cognizance that major advances in space science are driven by improvements in instrumentation. But it is less well recognized that new instruments and science questions give rise to new challenges in the treatment of satellite data after it is telemetered to the ground. These issues might be divided into two stages: data reduction through software pipelines developed within NASA mission centers; and science analysis that is performed by hundreds of space scientists dispersed through NASA, U.S. universities, and abroad. Both stages benefit from the latest statistical and computational methods; in some cases, the science result is completely inaccessible using traditional procedures. This paper will review the current state of NASA and present example applications using modern methodologies.

  20. NASA Technology Plan 1998 (United States)


    This NASA Strategic Plan describes an ambitious, exciting vision for the Agency across all its Strategic Enterprises that addresses a series of fundamental questions of science and research. This vision is so challenging that it literally depends on the success of an aggressive, cutting-edge advanced technology development program. The objective of this plan is to describe the NASA-wide technology program in a manner that provides not only the content of ongoing and planned activities, but also the rationale and justification for these activities in the context of NASA's future needs. The scope of this plan is Agencywide, and it includes technology investments to support all major space and aeronautics program areas, but particular emphasis is placed on longer term strategic technology efforts that will have broad impact across the spectrum of NASA activities and perhaps beyond. Our goal is to broaden the understanding of NASA technology programs and to encourage greater participation from outside the Agency. By relating technology goals to anticipated mission needs, we hope to stimulate additional innovative approaches to technology challenges and promote more cooperative programs with partners outside NASA who share common goals. We also believe that this will increase the transfer of NASA-sponsored technology into nonaerospace applications, resulting in an even greater return on the investment in NASA.

  1. Automated Test for NASA CFS (United States)

    McComas, David C.; Strege, Susanne L.; Carpenter, Paul B. Hartman, Randy


    The core Flight System (cFS) is a flight software (FSW) product line developed by the Flight Software Systems Branch (FSSB) at NASA's Goddard Space Flight Center (GSFC). The cFS uses compile-time configuration parameters to implement variable requirements to enable portability across embedded computing platforms and to implement different end-user functional needs. The verification and validation of these requirements is proving to be a significant challenge. This paper describes the challenges facing the cFS and the results of a pilot effort to apply EXB Solution's testing approach to the cFS applications.

  2. Shift to High-end Market in the Marketing of Chinese Red Wine%中国红酒营销的高端市场切入

    Institute of Scientific and Technical Information of China (English)



    围绕中国红酒营销的高端市场切入展开相关探讨,重点讨论了高端红酒的营销策略,包括概念营销策略、个性化定制策略、子品牌/副品牌开发策略、商务/政务宴会推广策略以及文化营销策略等。%In this paper, the shift to high-end market in the marketing of red wine was discussed, especially the marketing strategies of high-end red wine including concept marketing strategy, personalized custom-made strategy, sub-brand development strategy, business/government party promotion strategy, and cultural marketing strategy etc.

  3. The Effects of Teacher and Teacher-librarian High-end Collaboration on Inquiry-based Project Reports and School Monthly Test Scores of Fifth-grade Students


    Hai-Hon Chen


    The purpose of this study was twofold. The first purpose was to establish the high level collaboration of integrated instruction model between social studies teacher and teacher-librarian. The second purpose was to investigate the effects of high-end collaboration on the individual and groups’ inquiry-based project reports, as well as monthly test scores of fifth-grade students. A quasi-experimental method was adopted, two classes of elementary school fifth graders in Tainan Municipal city, T...

  4. Computer sciences (United States)

    Smith, Paul H.


    The Computer Science Program provides advanced concepts, techniques, system architectures, algorithms, and software for both space and aeronautics information sciences and computer systems. The overall goal is to provide the technical foundation within NASA for the advancement of computing technology in aerospace applications. The research program is improving the state of knowledge of fundamental aerospace computing principles and advancing computing technology in space applications such as software engineering and information extraction from data collected by scientific instruments in space. The program includes the development of special algorithms and techniques to exploit the computing power provided by high performance parallel processors and special purpose architectures. Research is being conducted in the fundamentals of data base logic and improvement techniques for producing reliable computing systems.

  5. NASA Airborne Science Program: NASA Stratospheric Platforms (United States)

    Curry, Robert E.


    The National Aeronautics and Space Administration conducts a wide variety of remote sensing projects using several unique aircraft platforms. These vehicles have been selected and modified to provide capabilities that are particularly important for geophysical research, in particular, routine access to very high altitudes, long range, long endurance, precise trajectory control, and the payload capacity to operate multiple, diverse instruments concurrently. While the NASA program has been in operation for over 30 years, new aircraft and technological advances that will expand the capabilities for airborne observation are continually being assessed and implemented. This presentation will review the current state of NASA's science platforms, recent improvements and new missions concepts as well as provide a survey of emerging technologies unmanned aerial vehicles for long duration observations (Global Hawk and Predator). Applications of information technology that allow more efficient use of flight time and the ability to rapidly reconfigure systems for different mission objectives are addressed.

  6. Networking at NASA. Johnson Space Center (United States)

    Garman, John R.


    A series of viewgraphs on computer networks at the Johnson Space Center (JSC) are given. Topics covered include information resource management (IRM) at JSC, the IRM budget by NASA center, networks evolution, networking as a strategic tool, the Information Services Directorate charter, and SSC network requirements, challenges, and status.

  7. The Untold Story of NASA's Trailblazers

    Indian Academy of Sciences (India)

    Johnson, played by Taraji P Henson, a young. African-American 'computer' (the term com- puter at the time referred to women who man- ually completed calculations relevant to the scientific problems being considered at NASA at the time). Under the supervision of Dorothy. Vaughan, the first woman of color supervisor.

  8. NASA Jet Noise Research (United States)

    Henderson, Brenda


    The presentation highlights NASA's jet noise research for 2016. Jet-noise modeling efforts, jet-surface interactions results, acoustic characteristics of multi-stream jets, and N+2 Supersonic Aircraft system studies are presented.

  9. NASA Image Exchange (NIX) (United States)

    National Aeronautics and Space Administration — NASA Technical Reports Server (NTRS) provides access to aerospace-related citations, full-text online documents, and images and videos. The types of information...

  10. NASA Earth Exchange (NEX) (United States)

    National Aeronautics and Space Administration — The NASA Earth Exchange (NEX) represents a new platform for the Earth science community that provides a mechanism for scientific collaboration and knowledge sharing....

  11. My NASA Data (United States)

    National Aeronautics and Space Administration — MY NASA DATA (MND) is a tool that allows anyone to make use of satellite data that was previously unavailable.Through the use of MND’s Live Access Server (LAS) a...

  12. NASA Space Sounds API (United States)

    National Aeronautics and Space Administration — NASA has released a series of space sounds via sound cloud. We have abstracted away some of the hassle in accessing these sounds, so that developers can play with...

  13. NASA Water Resources Program (United States)

    Toll, David L.


    With increasing population pressure and water usage coupled with climate variability and change, water issues are being reported by numerous groups as the most critical environmental problems facing us in the 21st century. Competitive uses and the prevalence of river basins and aquifers that extend across boundaries engender political tensions between communities, stakeholders and countries. In addition to the numerous water availability issues, water quality related problems are seriously affecting human health and our environment. The potential crises and conflicts especially arise when water is competed among multiple uses. For example, urban areas, environmental and recreational uses, agriculture, and energy production compete for scarce resources, not only in the Western U.S. but throughout much of the U.S. and also in numerous parts of the world. Mitigating these conflicts and meeting water demands and needs requires using existing water resources more efficiently. The NASA Water Resources Program Element works to use NASA products and technology to address these critical water issues. The primary goal of the Water Resources is to facilitate application of NASA Earth science products as a routine use in integrated water resources management for the sustainable use of water. This also includes the extreme events of drought and floods and the adaptation to the impacts from climate change. NASA satellite and Earth system observations of water and related data provide a huge volume of valuable data in both near-real-time and extended back nearly 50 years about the Earth's land surface conditions such as precipitation, snow, soil moisture, water levels, land cover type, vegetation type, and health. NASA Water Resources Program works closely to use NASA and Earth science data with other U.S. government agencies, universities, and non-profit and private sector organizations both domestically and internationally. The NASA Water Resources Program organizes its

  14. NASA, NOAA administrators nominated (United States)

    Richman, Barbara T.

    President Ronald Reagan recently said he intended to nominate James Montgomery Beggs as NASA Administrator and John V. Byrne as NOAA Administrator. These two positions are key scientific posts that have been vacant since the start of the Reagan administration on January 20. The President also said he intends to nominate Hans Mark as NASA Deputy Administrator. At press time, Reagan had not designated his nominee for the director of the Office of Science and Technology Policy.

  15. Science panel to study mega-computers to assess potential energy contributions

    CERN Multimedia

    Jones, D


    "Energy Department advisers plan to examine high-end computing in the coming year and assess how computing power could be used to further DOE's basic research agenda on combustion, fusion and other topics" (1 page).

  16. The Effects of Teacher and Teacher-librarian High-end Collaboration on Inquiry-based Project Reports and School Monthly Test Scores of Fifth-grade Students

    Directory of Open Access Journals (Sweden)

    Hai-Hon Chen


    Full Text Available The purpose of this study was twofold. The first purpose was to establish the high level collaboration of integrated instruction model between social studies teacher and teacher-librarian. The second purpose was to investigate the effects of high-end collaboration on the individual and groups’ inquiry-based project reports, as well as monthly test scores of fifth-grade students. A quasi-experimental method was adopted, two classes of elementary school fifth graders in Tainan Municipal city, Taiwan were used as samples. Students were randomly assigned to experimental conditions by class. Twenty eight students of the experimental group were taught by the collaboration of social studies teacher and teacher-librarian; while 27 students of the controlled group were taught separately by teacher in didactic teaching method. Inquiry-Based Project Record, Inquiry-Based Project Rubrics, and school monthly test scores were used as instruments for collecting data. A t-test and correlation were used to analyze the data. The results indicate that: (1 High-end collaboration model between social studies teacher and teacher-librarian was established and implemented well in the classroom. (2There was a significant difference between the experimental group and the controlled group in individual and groups’ inquiry-based project reports. Students that were taught by the collaborative teachers got both higher inquiry-based project reports’ scores than those that were taught separately by the teachers. Experimental group’s students got higher school monthly test scores than controlled groups. Suggestions for teachers’ high-end collaboration and future researcher are provided in this paper.

  17. Overview of NASA/OAST efforts related to manufacturing technology (United States)

    Saunders, N. T.


    An overview of some of NASA's current efforts related to manufacturing technology and some possible directions for the future are presented. The topics discussed are: computer-aided design, composite structures, and turbine engine components.

  18. NASA Systems Engineering Handbook (United States)

    Hirshorn, Steven R.; Voss, Linda D.; Bromley, Linda K.


    The update of this handbook continues the methodology of the previous revision: a top-down compatibility with higher level Agency policy and a bottom-up infusion of guidance from the NASA practitioners in the field. This approach provides the opportunity to obtain best practices from across NASA and bridge the information to the established NASA systems engineering processes and to communicate principles of good practice as well as alternative approaches rather than specify a particular way to accomplish a task. The result embodied in this handbook is a top-level implementation approach on the practice of systems engineering unique to NASA. Material used for updating this handbook has been drawn from many sources, including NPRs, Center systems engineering handbooks and processes, other Agency best practices, and external systems engineering textbooks and guides. This handbook consists of six chapters: (1) an introduction, (2) a systems engineering fundamentals discussion, (3) the NASA program project life cycles, (4) systems engineering processes to get from a concept to a design, (5) systems engineering processes to get from a design to a final product, and (6) crosscutting management processes in systems engineering. The chapters are supplemented by appendices that provide outlines, examples, and further information to illustrate topics in the chapters. The handbook makes extensive use of boxes and figures to define, refine, illustrate, and extend concepts in the chapters.

  19. NASA Accountability Report (United States)


    NASA is piloting fiscal year (FY) 1997 Accountability Reports, which streamline and upgrade reporting to Congress and the public. The document presents statements by the NASA administrator, and the Chief Financial Officer, followed by an overview of NASA's organizational structure and the planning and budgeting process. The performance of NASA in four strategic enterprises is reviewed: (1) Space Science, (2) Mission to Planet Earth, (3) Human Exploration and Development of Space, and (4) Aeronautics and Space Transportation Technology. Those areas which support the strategic enterprises are also reviewed in a section called Crosscutting Processes. For each of the four enterprises, there is discussion about the long term goals, the short term objectives and the accomplishments during FY 1997. The Crosscutting Processes section reviews issues and accomplishments relating to human resources, procurement, information technology, physical resources, financial management, small and disadvantaged businesses, and policy and plans. Following the discussion about the individual areas is Management's Discussion and Analysis, about NASA's financial statements. This is followed by a report by an independent commercial auditor and the financial statements.

  20. High-Speed On-Board Data Processing Platform for LIDAR Projects at NASA Langley Research Center (United States)

    Beyon, J.; Ng, T. K.; Davis, M. J.; Adams, J. K.; Lin, B.


    The project called High-Speed On-Board Data Processing for Science Instruments (HOPS) has been funded by NASA Earth Science Technology Office (ESTO) Advanced Information Systems Technology (AIST) program during April, 2012 - April, 2015. HOPS is an enabler for science missions with extremely high data processing rates. In this three-year effort of HOPS, Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) and 3-D Winds were of interest in particular. As for ASCENDS, HOPS replaces time domain data processing with frequency domain processing while making the real-time on-board data processing possible. As for 3-D Winds, HOPS offers real-time high-resolution wind profiling with 4,096-point fast Fourier transform (FFT). HOPS is adaptable with quick turn-around time. Since HOPS offers reusable user-friendly computational elements, its FPGA IP Core can be modified for a shorter development period if the algorithm changes. The FPGA and memory bandwidth of HOPS is 20 GB/sec while the typical maximum processor-to-SDRAM bandwidth of the commercial radiation tolerant high-end processors is about 130-150 MB/sec. The inter-board communication bandwidth of HOPS is 4 GB/sec while the effective processor-to-cPCI bandwidth of commercial radiation tolerant high-end boards is about 50-75 MB/sec. Also, HOPS offers VHDL cores for the easy and efficient implementation of ASCENDS and 3-D Winds, and other similar algorithms. A general overview of the 3-year development of HOPS is the goal of this presentation.

  1. NASA's Scientific Visualization Studio (United States)

    Mitchell, Horace G.


    Since 1988, the Scientific Visualization Studio(SVS) at NASA Goddard Space Flight Center has produced scientific visualizations of NASA s scientific research and remote sensing data for public outreach. These visualizations take the form of images, animations, and end-to-end systems and have been used in many venues: from the network news to science programs such as NOVA, from museum exhibits at the Smithsonian to White House briefings. This presentation will give an overview of the major activities and accomplishments of the SVS, and some of the most interesting projects and systems developed at the SVS will be described. Particular emphasis will be given to the practices and procedures by which the SVS creates visualizations, from the hardware and software used to the structures and collaborations by which products are designed, developed, and delivered to customers. The web-based archival and delivery system for SVS visualizations at will also be described.

  2. Ariane: NASA's European rival (United States)

    The successful test launch of two three-quarter ton satellites in the European Space Agency's (ESA) Ariane rocket last June firmly placed ESA in competition with NASA for the lucrative and growing satellite launching market. Under the auspices of the private (but largely French-government financed) Arianespace company, ESA is already attracting customers to its three-stage rocket by offering low costs.According to recent reports [Nature, 292, pp. 785 and 788, 1981], Arianespace has been able to win several U.S. customers away from NASA, including Southern Pacific Communications, Western Union, RCA, Satellite Television Corporation, and GTE. Nature [292, 1981] magazine in an article entitled ‘More Trouble for the Hapless Shuttle’ suggests that it will be possible for Ariane to charge lower prices for a launch than NASA, even with the space shuttle.

  3. NASA research in aeropropulsion

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, W.L.; Weber, R.J.


    Future advances in aircraft propulsion systems will be aided by the research performed by NASA and its contractors. This paper gives selected examples of recent accomplishments and current activities relevant to the principal classes of civil and military aircraft. Some instances of new emerging technologies with potential high impact on further progress are discussed. NASA research described includes noise abatement and fuel economy measures for commercial subsonic, supersonic, commuter, and general aviation aircraft, aircraft engines of the jet, turboprop, diesel and rotary types, VTOL, X-wing rotocraft, helicopters, and ''stealth'' aircraft. Applications to military aircraft are also discussed.

  4. High-End Silicon PDICs

    Directory of Open Access Journals (Sweden)

    H. Zimmermann


    Full Text Available An overview on integrated silicon photodiodes and photodiode integrated circuits (PDICs or optoelectronic integrated circuits (OEICs for optical storage systems (OSS and fiber receivers is given. It is demonstrated, that by using low-cost silicon technologies high-performance OEICs being true competitors for some III/V-semiconductor OEICs can be realized. OSS-OEICs with bandwidths of up to 380 MHz and fiber receivers with maximum data rates of up to 11 Gbps are described. Low-cost data comm receivers for plastic optical fibers (POF as well as new circuit concepts for OEICs and highly parallel optical receivers are described also in the following.

  5. High Performance Spaceflight Computing (HPSC) (United States)

    National Aeronautics and Space Administration — Space-based computing has not kept up with the needs of current and future NASA missions. We are developing a next-generation flight computing system that addresses...

  6. The Road to NASA (United States)

    Meyers, Valerie


    This slide presentation describes the career path and projects that the author worked on during her internship at NASA. As a Graduate Student Research Program (GSRP) participant the assignments that were given include: Human Mesenchymal Stem Cell Research, Spaceflight toxicology, Lunar Airborne Dust Toxicity Advisory Group (LADTAG) and a special study at Devon Island.

  7. NASA science communications strategy (United States)


    In 1994, the Clinton Administration issued a report, 'Science in the National Interest', which identified new national science goals. Two of the five goals are related to science communications: produce the finest scientists and engineers for the 21st century, and raise scientific and technological literacy of all Americans. In addition to the guidance and goals set forth by the Administration, NASA has been mandated by Congress under the 1958 Space Act to 'provide for the widest practicable and appropriate dissemination concerning its activities and the results thereof'. In addition to addressing eight Goals and Plans which resulted from a January 1994 meeting between NASA and members of the broader scientific, education, and communications community on the Public Communication of NASA's Science, the Science Communications Working Group (SCWG) took a comprehensive look at the way the Agency communicates its science to ensure that any changes the Agency made were long-term improvements. The SCWG developed a Science Communications Strategy for NASA and a plan to implement the Strategy. This report outlines a strategy from which effective science communications programs can be developed and implemented across the agency. Guiding principles and strategic themes for the strategy are provided, with numerous recommendations for improvement discussed within the respective themes of leadership, coordination, integration, participation, leveraging, and evaluation.

  8. NASA's Climate in a Box: Desktop Supercomputing for Open Scientific Model Development (United States)

    Wojcik, G. S.; Seablom, M. S.; Lee, T. J.; McConaughy, G. R.; Syed, R.; Oloso, A.; Kemp, E. M.; Greenseid, J.; Smith, R.


    designed for Linux operating systems (OS), the arrival of the WindowsHPC 2008 OS provides the opportunity to evaluate the use of a new platform on which to develop and port climate and earth science models. In particular, we are evaluating Microsoft's Visual Studio Integrated Developer Environment to determine its appropriateness for the climate modeling community. In the initial phases of this project, we have ported GEOS-5, WRF, GISS ModelE, and GFS to Linux on a CX1 and are in the process of porting WRF and ModelE to WindowsHPC 2008. Initial tests on the CX1 Linux OS indicate favorable comparisons in terms of performance and consistency of scientific results when compared with experiments executed on NASA high end systems. As in the past, NASA's large clusters will continue to be an important part of our objectives. We envision a seamless environment in which an investigator performs model development and testing on a desktop system and can seamlessly transfer execution to supercomputer clusters for production.

  9. NASA Schedule Management Handbook (United States)


    The purpose of schedule management is to provide the framework for time-phasing, resource planning, coordination, and communicating the necessary tasks within a work effort. The intent is to improve schedule management by providing recommended concepts, processes, and techniques used within the Agency and private industry. The intended function of this handbook is two-fold: first, to provide guidance for meeting the scheduling requirements contained in NPR 7120.5, NASA Space Flight Program and Project Management Requirements, NPR 7120.7, NASA Information Technology and Institutional Infrastructure Program and Project Requirements, NPR 7120.8, NASA Research and Technology Program and Project Management Requirements, and NPD 1000.5, Policy for NASA Acquisition. The second function is to describe the schedule management approach and the recommended best practices for carrying out this project control function. With regards to the above project management requirements documents, it should be noted that those space flight projects previously established and approved under the guidance of prior versions of NPR 7120.5 will continue to comply with those requirements until project completion has been achieved. This handbook will be updated as needed, to enhance efficient and effective schedule management across the Agency. It is acknowledged that most, if not all, external organizations participating in NASA programs/projects will have their own internal schedule management documents. Issues that arise from conflicting schedule guidance will be resolved on a case by case basis as contracts and partnering relationships are established. It is also acknowledged and understood that all projects are not the same and may require different levels of schedule visibility, scrutiny and control. Project type, value, and complexity are factors that typically dictate which schedule management practices should be employed.

  10. ICASE/LaRC/NSF/ARO Workshop, conducted by the Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, The National Science Foundation and the Army Research Office

    CERN Document Server

    Anderson, W


    Over the last decade, the role of computational simulations in all aspects of aerospace design has steadily increased. However, despite the many advances, the time required for computations is far too long. This book examines new ideas and methodologies that may, in the next twenty years, revolutionize scientific computing. The book specifically looks at trends in algorithm research, human computer interface, network-based computing, surface modeling and grid generation and computer hardware and architecture. The book provides a good overview of the current state-of-the-art and provides guidelines for future research directions. The book is intended for computational scientists active in the field and program managers making strategic research decisions.

  11. NASA UAS Update (United States)

    Bauer, Jeffrey Ervin; Mulac, Brenda Lynn


    Last year may prove to be a pivotal year for the National Aeronautics and Space Administration (NASA) in the Unmanned Aircraft Systems (UAS) arena, especially in relation to routine UAS access to airspace as NASA accepted an invitation to join the UAS Executive Committee (UAS ExCom). The UAS ExCom is a multi-agency, Federal executive-level committee comprised of the Federal Aviation Administration (FAA), Department of Defense (DoD), Department of Homeland Security (DHS), and NASA with the goals to: 1) Coordinate and align efforts between key Federal Government agencies to achieve routine safe federal public UAS operations in the National Airspace System (NAS); 2) Coordinate and prioritize technical, procedural, regulatory, and policy solutions needed to deliver incremental capabilities; 3) Develop a plan to accommodate the larger stakeholder community at the appropriate time; and 4) Resolve conflicts between Federal Government agencies (FAA, DoD, DHS, and NASA), related to the above goals. The committee was formed in recognition of the need of UAS operated by these agencies to access to the National Airspace System (NAS) to support operational, training, development and research requirements. In order to meet that need, technical, procedural, regulatory, and policy solutions are required to deliver incremental capabilities leading to routine access. The formation of the UAS ExCom is significant in that it represents a tangible commitment by FAA senior leadership to address the UAS access challenge. While the focus of the ExCom is government owned and operated UAS, civil UAS operations are bound to benefit by the progress made in achieving routine access for government UAS. As the UAS ExCom was forming, NASA's Aeronautics Research Mission Directorate began to show renewed interest in UAS, particularly in relation to the future state of the air transportation system under the Next Generation Air Transportation System (NextGen). NASA made funding from the American

  12. NASA Gulf of Mexico Initiative Hypoxia Research (United States)

    Armstrong, Curtis D.


    The Applied Science & Technology Project Office at Stennis Space Center (SSC) manages NASA's Gulf of Mexico Initiative (GOMI). Addressing short-term crises and long-term issues, GOMI participants seek to understand the environment using remote sensing, in-situ observations, laboratory analyses, field observations and computational models. New capabilities are transferred to end-users to help them make informed decisions. Some GOMI activities of interest to the hypoxia research community are highlighted.

  13. Management: A bibliography for NASA managers (United States)


    This bibliography lists 630 reports, articles and other documents introduced into the NASA Scientific and Technical Information System in 1991. Items are selected and grouped according to their usefulness to the manager as manager. Citations are grouped into ten subject categories: human factors and personnel issues; management theory and techniques; industrial management and manufacturing; robotics and expert systems; computers and information management; research and development; economics, costs and markets; logistics and operations management; reliability and quality control; and legality, legislation, and policy.

  14. NASA's Astrophysics Data Archives (United States)

    Hasan, H.; Hanisch, R.; Bredekamp, J.


    The NASA Office of Space Science has established a series of archival centers where science data acquired through its space science missions is deposited. The availability of high quality data to the general public through these open archives enables the maximization of science return of the flight missions. The Astrophysics Data Centers Coordinating Council, an informal collaboration of archival centers, coordinates data from five archival centers distiguished primarily by the wavelength range of the data deposited there. Data are available in FITS format. An overview of NASA's data centers and services is presented in this paper. A standard front-end modifyer called `Astrowbrowse' is described. Other catalog browsers and tools include WISARD and AMASE supported by the National Space Scince Data Center, as well as ISAIA, a follow on to Astrobrowse.

  15. NASA Photo One (United States)

    Ross, James C.


    This is a photographic record of NASA Dryden flight research aircraft, spanning nearly 25 years. The author has served as a Dryden photographer, and now as its chief photographer and airborne photographer. The results are extraordinary images of in-flight aircraft never seen elsewhere, as well as pictures of aircraft from unusual angles on the ground. The collection is the result of the agency required documentation process for its assets.

  16. The NASA Astrobiology Roadmap. (United States)

    Des Marais, David J; Nuth, Joseph A; Allamandola, Louis J; Boss, Alan P; Farmer, Jack D; Hoehler, Tori M; Jakosky, Bruce M; Meadows, Victoria S; Pohorille, Andrew; Runnegar, Bruce; Spormann, Alfred M


    The NASA Astrobiology Roadmap provides guidance for research and technology development across the NASA enterprises that encompass the space, Earth, and biological sciences. The ongoing development of astrobiology roadmaps embodies the contributions of diverse scientists and technologists from government, universities, and private institutions. The Roadmap addresses three basic questions: how does life begin and evolve, does life exist elsewhere in the universe, and what is the future of life on Earth and beyond? Seven Science Goals outline the following key domains of investigation: understanding the nature and distribution of habitable environments in the universe, exploring for habitable environments and life in our own Solar System, understanding the emergence of life, determining how early life on Earth interacted and evolved with its changing environment, understanding the evolutionary mechanisms and environmental limits of life, determining the principles that will shape life in the future, and recognizing signatures of life on other worlds and on early Earth. For each of these goals, Science Objectives outline more specific high priority efforts for the next three to five years. These eighteen objectives are being integrated with NASA strategic planning.

  17. The NASA Astrobiology Roadmap (United States)

    Des Marais, David J.; Allamandola, Louis J.; Benner, Steven A.; Boss, Alan P.; Deamer, David; Falkowski, Paul G.; Farmer, Jack D.; Hedges, S. Blair; Jakosky, Bruce M.; Knoll, Andrew H.; hide


    The NASA Astrobiology Roadmap provides guidance for research and technology development across the NASA enterprises that encompass the space, Earth, and biological sciences. The ongoing development of astrobiology roadmaps embodies the contributions of diverse scientists and technologists from government, universities, and private institutions. The Roadmap addresses three basic questions: How does life begin and evolve, does life exist elsewhere in the universe, and what is the future of life on Earth and beyond? Seven Science Goals outline the following key domains of investigation: understanding the nature and distribution of habitable environments in the universe, exploring for habitable environments and life in our own solar system, understanding the emergence of life, determining how early life on Earth interacted and evolved with its changing environment, understanding the evolutionary mechanisms and environmental limits of life, determining the principles that will shape life in the future, and recognizing signatures of life on other worlds and on early Earth. For each of these goals, Science Objectives outline more specific high-priority efforts for the next 3-5 years. These 18 objectives are being integrated with NASA strategic planning.

  18. NASA Product Peer Review Process (United States)

    Jenks, Ken


    This viewgraph presentation describes NASA's product peer review process. The contents include: 1) Inspection/Peer Review at NASA; 2) Reasons for product peer reviews; 3) Different types of peer reviews; and 4) NASA requirements for peer reviews. This presentation also includes a demonstration of an actual product peer review.

  19. Stirling Technology Development at NASA GRC (United States)

    Thieme, Lanny G.; Schreiber, Jeffrey G.; Mason, Lee S.


    The Department of Energy, Stirling Technology Company (STC), and NASA Glenn Research Center (NASA Glenn) are developing a free-piston Stirling convertor for a high efficiency Stirling Radioisotope Generator (SRG) for NASA Space Science missions. The SRG is being developed for multimission use, including providing electric power for unmanned Mars rovers and deep space missions. NASA Glenn is conducting an in-house technology project to assist in developing the convertor for space qualification and mission implementation. Recent testing of 55-We Technology Demonstration Convertors (TDCs) built by STC includes mapping of a second pair of TDCs, single TDC testing, and TDC electromagnetic interference and electromagnetic compatibility characterization on a nonmagnetic test stand. Launch environment tests of a single TDC without its pressure vessel to better understand the convertor internal structural dynamics and of dual-opposed TDCs with several engineering mounting structures with different natural frequencies have recently been completed. A preliminary life assessment has been completed for the TDC heater head, and creep testing of the IN718 material to be used for the flight convertors is underway. Long-term magnet aging tests are continuing to characterize any potential aging in the strength or demagnetization resistance of the magnets used in the linear alternator (LA). Evaluations are now beginning on key organic materials used in the LA and piston/rod surface coatings. NASA Glenn is also conducting finite element analyses for the LA, in part to look at the demagnetization margin on the permanent magnets. The world's first known integrated test of a dynamic power system with electric propulsion was achieved at NASA Glenn when a Hall-effect thruster was successfully operated with a free-piston Stirling power source. Cleveland State University is developing a multidimensional Stirling computational fluid dynamics code to significantly improve Stirling loss

  20. Stirling Technology Development at NASA GRC. Revised (United States)

    Thieme, Lanny G.; Schreiber, Jeffrey G.; Mason, Lee S.


    The Department of Energy, Stirling Technology Company (STC), and NASA Glenn Research Center (NASA Glenn) are developing a free-piston Stirling convertor for a high-efficiency Stirling Radioisotope Generator (SRG) for NASA Space Science missions. The SRG is being developed for multimission use, including providing electric power for unmanned Mars rovers and deep space missions. NASA Glenn is conducting an in-house technology project to assist in developing the convertor for space qualification and mission implementation. Recent testing, of 55-We Technology Demonstration Convertors (TDC's) built by STC includes mapping, of a second pair of TDC's, single TDC testing, and TDC electromagnetic interference and electromagnetic compatibility characterization on a nonmagnetic test stand. Launch environment tests of a single TDC without its pressure vessel to better understand the convertor internal structural dynamics and of dual-opposed TDC's with several engineering mounting structures with different natural frequencies have recently been completed. A preliminary life assessment has been completed for the TDC heater head, and creep testing of the IN718 material to be used for the flight convertors is underway. Long-term magnet aging tests are continuing to characterize any potential aging in the strength or demagnetization resistance of the magnets used in the linear alternator (LA). Evaluations are now beginning on key organic materials used in the LA and piston/rod surface coatings. NASA Glenn is also conducting finite element analyses for the LA, in part to look at the demagnetization margin on the permanent magnets. The world's first known integrated test of a dynamic power system with electric propulsion was achieved at NASA Glenn when a Hall-effect thruster was successfully operated with a free-piston Stirling power source. Cleveland State University is developing a multidimensional Stirling computational fluid dynamics code to significantly improve Stirling loss

  1. NASA Lunar Impact Monitoring (United States)

    Suggs, Robert M.; Moser, D. E.


    The MSFC lunar impact monitoring program began in 2006 in support of environment definition for the Constellation (return to Moon) program. Work continued by the Meteoroid Environment Office after Constellation cancellation. Over 330 impacts have been recorded. A paper published in Icarus reported on the first 5 years of observations and 126 calibrated flashes. Icarus:; ArXiv: A NASA Technical Memorandum on flash locations is in press

  2. NASA Technology Transfer System (United States)

    Tran, Peter B.; Okimura, Takeshi


    NTTS is the IT infrastructure for the Agency's Technology Transfer (T2) program containing 60,000+ technology portfolio supporting all ten NASA field centers and HQ. It is the enterprise IT system for facilitating the Agency's technology transfer process, which includes reporting of new technologies (e.g., technology invention disclosures NF1679), protecting intellectual properties (e.g., patents), and commercializing technologies through various technology licenses, software releases, spinoffs, and success stories using custom built workflow, reporting, data consolidation, integration, and search engines.

  3. Resources: NASA for entrepreneurs (United States)

    Jannazo, Mary Ann


    The services of NASA's Technology Utilization Program are detailed and highlights of spinoff products in various stages of completion are described. Areas discussed include: Stirling engines for automotive applications, klystron tubes used to reduce power costs at UHF television stations, sports applications of riblet film (e.g., boat racing), reinforced plastic for high-temperature applications, coating technology appropriate for such applications similar to the renovation of the Statue of Liberty, and medical uses of fuel pump technology (e.g., heart pumps).

  4. NASA's Propulsion Research Laboratory (United States)


    The grand opening of NASA's new, world-class laboratory for research into future space transportation technologies located at the Marshall Space Flight Center (MSFC) in Huntsville, Alabama, took place in July 2004. The state-of-the-art Propulsion Research Laboratory (PRL) serves as a leading national resource for advanced space propulsion research. Its purpose is to conduct research that will lead to the creation and development of innovative propulsion technologies for space exploration. The facility is the epicenter of the effort to move the U.S. space program beyond the confines of conventional chemical propulsion into an era of greatly improved access to space and rapid transit throughout the solar system. The laboratory is designed to accommodate researchers from across the United States, including scientists and engineers from NASA, the Department of Defense, the Department of Energy, universities, and industry. The facility, with 66,000 square feet of useable laboratory space, features a high degree of experimental capability. Its flexibility allows it to address a broad range of propulsion technologies and concepts, such as plasma, electromagnetic, thermodynamic, and propellant propulsion. An important area of emphasis is the development and utilization of advanced energy sources, including highly energetic chemical reactions, solar energy, and processes based on fission, fusion, and antimatter. The Propulsion Research Laboratory is vital for developing the advanced propulsion technologies needed to open up the space frontier, and sets the stage of research that could revolutionize space transportation for a broad range of applications.

  5. The NASA SETI program (United States)

    Billingham, J.; Brocker, D. H.


    In 1959, it was proposed that a sensible way to conduct interstellar communication would be to use radio at or near the frequency of hydrogen. In 1960, the first Search for Extraterrestrial Intelligence (SETI) was conducted using a radiotelescope at Green Bank in West Virginia. Since 1970, NASA has systematically developed a definitive program to conduct a sophisticated search for evidence of extraterrestrial intelligent life. The basic hypothesis is that life may be widespread in the univers, and that in many instances extraterrestrial life may have evolved into technological civilizations. The underlying scientific arguments are based on the continuously improving knowledge of astronomy and astrophysics, especially star system formation, and of planetary science, chemical evolution, and biological evolution. If only one in a million sun-like stars in our galaxy harbors species with cognitive intelligence, then there are 100,000 civilizations in the Milky Way alone. The fields of radioastronomy digital electronic engineering, spectrum analysis, and signal detection have advanced rapidly in the last twenty years and now allow for sophisticated systems to be built in order to attempt the detection of extraterrestrial intelligence signals. In concert with the scientific and engineering communities, NASA has developed, over the last several years, a Microwave Observing Project whose goal is to design, build, and operate SETI systems during the decade of the nineties in pursuit of the goal signal detection. The Microwave Observing Project is now approved and underway. There are two major components in the project: the Target Search Element and the Sky Survey Element.

  6. NASA's interstellar probe mission

    International Nuclear Information System (INIS)

    Liewer, P.C.; Ayon, J.A.; Wallace, R.A.; Mewaldt, R.A.


    NASA's Interstellar Probe will be the first spacecraft designed to explore the nearby interstellar medium and its interaction with our solar system. As envisioned by NASA's Interstellar Probe Science and Technology Definition Team, the spacecraft will be propelled by a solar sail to reach >200 AU in 15 years. Interstellar Probe will investigate how the Sun interacts with its environment and will directly measure the properties and composition of the dust, neutrals and plasma of the local interstellar material which surrounds the solar system. In the mission concept developed in the spring of 1999, a 400-m diameter solar sail accelerates the spacecraft to ∼15 AU/year, roughly 5 times the speed of Voyager 1 and 2. The sail is used to first bring the spacecraft to ∼0.25 AU to increase the radiation pressure before heading out in the interstellar upwind direction. After jettisoning the sail at ∼5 AU, the spacecraft coasts to 200-400 AU, exploring the Kuiper Belt, the boundaries of the heliosphere, and the nearby interstellar medium

  7. Computer Technology for Industry (United States)


    In this age of the computer, more and more business firms are automating their operations for increased efficiency in a great variety of jobs, from simple accounting to managing inventories, from precise machining to analyzing complex structures. In the interest of national productivity, NASA is providing assistance both to longtime computer users and newcomers to automated operations. Through a special technology utilization service, NASA saves industry time and money by making available already developed computer programs which have secondary utility. A computer program is essentially a set of instructions which tells the computer how to produce desired information or effect by drawing upon its stored input. Developing a new program from scratch can be costly and time-consuming. Very often, however, a program developed for one purpose can readily be adapted to a totally different application. To help industry take advantage of existing computer technology, NASA operates the Computer Software Management and Information Center (COSMIC)(registered TradeMark),located at the University of Georgia. COSMIC maintains a large library of computer programs developed for NASA, the Department of Defense, the Department of Energy and other technology-generating agencies of the government. The Center gets a continual flow of software packages, screens them for adaptability to private sector usage, stores them and informs potential customers of their availability.

  8. NASA/FAA North Texas Research Station Overview (United States)

    Borchers, Paul F.


    NTX Research Staion: NASA research assets embedded in an interesting operational air transport environment. Seven personnel (2 civil servants, 5 contractors). ARTCC, TRACON, Towers, 3 air carrier AOCs(American, Eagle and Southwest), and 2 major airports all within 12 miles. Supports NASA Airspace Systems Program with research products at all levels (fundamental to system level). NTX Laboratory: 5000 sq ft purpose-built, dedicated, air traffic management research facility. Established data links to ARTCC, TRACON, Towers, air carriers, airport and NASA facilities. Re-configurable computer labs, dedicated radio tower, state-of-the-art equipment.

  9. NASA Tech Briefs, October 2013 (United States)


    Topics include: A Short-Range Distance Sensor with Exceptional Linearity; Miniature Trace Gas Detector Based on Microfabricated Optical Resonators; Commercial Non-Dispersive Infrared Spectroscopy Sensors for Sub-Ambient Carbon Dioxide Detection; Fast, Large-Area, Wide-Bandgap UV Photodetector for Cherenkov Light Detection; Mission Data System Java Edition Version 7; Adaptive Distributed Environment for Procedure Training (ADEPT); LEGEND, a LEO-to-GEO Environment Debris Model; Electronics/Computers; Millimeter-Wave Localizers for Aircraft-to-Aircraft Approach Navigation; Impedance Discontinuity Reduction Between High-Speed Differential Connectors and PCB Interfaces; SpaceCube Version 1.5; High-Pressure Lightweight Thrusters; Non-Magnetic, Tough, Corrosion- and Wear-Resistant Knives From Bulk Metallic Glasses and Composites; Ambient Dried Aerogels; Applications for Gradient Metal Alloys Fabricated Using Additive Manufacturing; Passivation of Flexible YBCO Superconducting Current Lead With Amorphous SiO2 Layer; Propellant-Flow-Actuated Rocket Engine Igniter; Lightweight Liquid Helium Dewar for High-Altitude Balloon Payloads; Method to Increase Performance of Foil Bearings Through Passive Thermal Management; Unibody Composite Pressurized Structure; JWST Integrated Science Instrument Module Alignment Optimization Tool; Radar Range Sidelobe Reduction Using Adaptive Pulse Compression Technique; Digitally Calibrated TR Modules Enabling Real-Time Beamforming SweepSAR Architectures; Electro-Optic Time-to-Space Converter for Optical Detector Jitter Mitigation; Partially Transparent Petaled Mask/Occulter for Visible-Range Spectrum; Educational NASA Computational and Scientific Studies (enCOMPASS); Coarse-Grain Bandwidth Estimation Scheme for Large-Scale Network; Detection of Moving Targets Using Soliton Resonance Effect; High-Efficiency Nested Hall Thrusters for Robotic Solar System Exploration; High-Voltage Clock Driver for Photon-Counting CCD Characterization; Development of

  10. NASA space radiation transport code development consortium

    International Nuclear Information System (INIS)

    Townsend, L. W.


    Recently, NASA established a consortium involving the Univ. of Tennessee (lead institution), the Univ. of Houston, Roanoke College and various government and national laboratories, to accelerate the development of a standard set of radiation transport computer codes for NASA human exploration applications. This effort involves further improvements of the Monte Carlo codes HETC and FLUKA and the deterministic code HZETRN, including developing nuclear reaction databases necessary to extend the Monte Carlo codes to carry out heavy ion transport, and extending HZETRN to three dimensions. The improved codes will be validated by comparing predictions with measured laboratory transport data, provided by an experimental measurements consortium, and measurements in the upper atmosphere on the balloon-borne Deep Space Test Bed (DSTB). In this paper, we present an overview of the consortium members and the current status and future plans of consortium efforts to meet the research goals and objectives of this extensive undertaking. (authors)

  11. Overview of NASA's In Space Robotic Servicing (United States)

    Reed, Benjamin B.


    The panel discussion will start with a presentation of the work of the Satellite Servicing Capabilities Office (SSCO), a team responsible for the overall management, coordination, and implementation of satellite servicing technologies and capabilities for NASA. Born from the team that executed the five Hubble servicing missions, SSCO is now maturing a core set of technologies that support both servicing goals and NASA's exploration and science objectives, including: autonomous rendezvous and docking systems; dexterous robotics; high-speed, fault-tolerant computing; advanced robotic tools, and propellant transfer systems. SSCOs proposed Restore-L mission, under development since 2009, is rapidly advancing the core capabilities the fledgling satellite-servicing industry needs to jumpstart a new national industry. Restore-L is also providing key technologies and core expertise to the Asteroid Redirect Robotic Mission (ARRM), with SSCO serving as the capture module lead for the ARRM effort. Reed will present a brief overview of SSCOs history, capabilities and technologies.

  12. NASA Communications Augmentation network (United States)

    Omidyar, Guy C.; Butler, Thomas E.; Laios, Straton C.


    The NASA Communications (Nascom) Division of the Mission Operations and Data Systems Directorate (MO&DSD) is to undertake a major initiative to develop the Nascom Augmentation (NAUG) network to achieve its long-range service objectives for operational data transport to support the Space Station Freedom Program, the Earth Observing System (EOS), and other projects. The NAUG is the Nascom ground communications network being developed to accommodate the operational traffic of the mid-1990s and beyond. The NAUG network development will be based on the Open Systems Interconnection Reference Model (OSI-RM). This paper describes the NAUG network architecture, subsystems, topology, and services; addresses issues of internetworking the Nascom network with other elements of the Space Station Information System (SSIS); discusses the operations environment. This paper also notes the areas of related research and presents the current conception of how the network will provide broadband services in 1998.

  13. NASA commercial programs (United States)


    Highlights of NASA-sponsored and assisted commercial space activities of 1989 are presented. Industrial R and D in space, centers for the commercial development of space, and new cooperative agreements are addressed in the U.S. private sector in space section. In the building U.S. competitiveness through technology section, the following topics are presented: (1) technology utilization as a national priority; (2) an exploration of benefits; and (3) honoring Apollo-Era spinoffs. International and domestic R and D trends, and the space sector are discussed in the section on selected economic indicators. Other subjects included in this report are: (1) small business innovation; (2) budget highlights and trends; (3) commercial programs management; and (4) the commercial programs advisory committee.

  14. NASA scheduling technologies (United States)

    Adair, Jerry R.


    This paper is a consolidated report on ten major planning and scheduling systems that have been developed by the National Aeronautics and Space Administration (NASA). A description of each system, its components, and how it could be potentially used in private industry is provided in this paper. The planning and scheduling technology represented by the systems ranges from activity based scheduling employing artificial intelligence (AI) techniques to constraint based, iterative repair scheduling. The space related application domains in which the systems have been deployed vary from Space Shuttle monitoring during launch countdown to long term Hubble Space Telescope (HST) scheduling. This paper also describes any correlation that may exist between the work done on different planning and scheduling systems. Finally, this paper documents the lessons learned from the work and research performed in planning and scheduling technology and describes the areas where future work will be conducted.

  15. NASA Space Life Sciences (United States)

    Hayes, Judith


    This slide presentation reviews the requirements that NASA has for the medical service of a crew returning to earth after long duration space flight. The scenarios predicate a water landing. Two scenarios are reviewed that outline the ship-board medical operations team and the ship board science reseach team. A schedule for the each crew upon landing is posited for each of scenarios. The requirement for a heliport on board the ship is reviewed and is on the requirement for a helicopter to return the Astronauts to the Baseline Data Collection Facility (BDCF). The ideal is to integrate the medical and science requirements, to minimize the risks and Inconveniences to the returning astronauts. The medical support that is required for all astronauts returning from long duration space flight (30 days or more) is reviewed. The personnel required to support the team is outlined. The recommendations for medical operations and science research for crew support are stated.

  16. NASA, Building Tomorrow's Future (United States)

    Mango, Edward


    We, as NASA, continue to Dare Mighty Things. Here we are in October. In my country, the United States of America, we celebrate the anniversary of Christopher Columbus's arrival in the Americas, which occurred on October 12, 1492. His story, although happening over 500 years ago, is still very valid today. It is a part of the American spirit; part of the international human spirit. Columbus is famous for discovering the new world we now call America, but he probably never envisioned what great discoveries would be revealed many generations later. But in order for Columbus to begin his great adventure, he needed a business plan. Ho would he go about obtaining the funds and support necessary to build, supply, and man the ships required for his travels? He had a lot of obstacles and distractions. He needed a strong, internal drive to achieve his plans and recruit a willing crew of explorers also ready to risk their all for the unknown journey ahead. As Columbus set sail, he said "By prevailing over all obstacles and distractions, one may unfailingly arrive at his chosen goal or destination." Columbus may not have known he was on a journey for all human exploration. Recently, Charlie Bolden, the NASA Administrator, said, "Human exploration is and has always been about making life better for humans on Earth." Today, NASA and the U.S. human spaceflight program hold many of the same attributes as did Columbus and his contemporaries - a willing, can-do spirit. We are on the threshold of exciting new times in space exploration. Like Columbus, we need a business plan to take us into the future. We need to design the best ships and utilize the best designers, with their past knowledge and experience, to build those ships. We need funding and support from governments to achieve these goals of space exploration into the unknown. NASA does have that business plan, and it is an ambitious plan for human spaceflight and exploration. Today, we have a magnificent spaceflight

  17. Configuration Management at NASA (United States)

    Doreswamy, Rajiv


    NASA programs are characterized by complexity, harsh environments and the fact that we usually have one chance to get it right. Programs last decades and need to accept new hardware and technology as it is developed. We have multiple suppliers and international partners Our challenges are many, our costs are high and our failures are highly visible. CM systems need to be scalable, adaptable to new technology and span the life cycle of the program (30+ years). Multiple Systems, Contractors and Countries added major levels of complexity to the ISS program and CM/DM and Requirements management systems center dot CM Systems need to be designed for long design life center dot Space Station Design started in 1984 center dot Assembly Complete in 2012 center dot Systems were developed on a task basis without an overall system perspective center dot Technology moves faster than a large project office, try to make sure you have a system that can adapt

  18. NASA Biological Specimen Repository (United States)

    McMonigal, K. A.; Pietrzyk, R. A.; Sams, C. F.; Johnson, M. A.


    The NASA Biological Specimen Repository (NBSR) was established in 2006 to collect, process, preserve and distribute spaceflight-related biological specimens from long duration ISS astronauts. This repository provides unique opportunities to study longitudinal changes in human physiology spanning may missions. The NBSR collects blood and urine samples from all participating ISS crewmembers who have provided informed consent. These biological samples are collected once before flight, during flight scheduled on flight days 15, 30, 60, 120 and within 2 weeks of landing. Postflight sessions are conducted 3 and 30 days after landing. The number of in-flight sessions is dependent on the duration of the mission. Specimens are maintained under optimal storage conditions in a manner that will maximize their integrity and viability for future research The repository operates under the authority of the NASA/JSC Committee for the Protection of Human Subjects to support scientific discovery that contributes to our fundamental knowledge in the area of human physiological changes and adaptation to a microgravity environment. The NBSR will institute guidelines for the solicitation, review and sample distribution process through establishment of the NBSR Advisory Board. The Advisory Board will be composed of representatives of all participating space agencies to evaluate each request from investigators for use of the samples. This process will be consistent with ethical principles, protection of crewmember confidentiality, prevailing laws and regulations, intellectual property policies, and consent form language. Operations supporting the NBSR are scheduled to continue until the end of U.S. presence on the ISS. Sample distribution is proposed to begin with selections on investigations beginning in 2017. The availability of the NBSR will contribute to the body of knowledge about the diverse factors of spaceflight on human physiology.

  19. NASA Integrated Network COOP (United States)

    Anderson, Michael L.; Wright, Nathaniel; Tai, Wallace


    Natural disasters, terrorist attacks, civil unrest, and other events have the potential of disrupting mission-essential operations in any space communications network. NASA's Space Communications and Navigation office (SCaN) is in the process of studying options for integrating the three existing NASA network elements, the Deep Space Network, the Near Earth Network, and the Space Network, into a single integrated network with common services and interfaces. The need to maintain Continuity of Operations (COOP) after a disastrous event has a direct impact on the future network design and operations concepts. The SCaN Integrated Network will provide support to a variety of user missions. The missions have diverse requirements and include anything from earth based platforms to planetary missions and rovers. It is presumed that an integrated network, with common interfaces and processes, provides an inherent advantage to COOP in that multiple elements and networks can provide cross-support in a seamless manner. The results of trade studies support this assumption but also show that centralization as a means of achieving integration can result in single points of failure that must be mitigated. The cost to provide this mitigation can be substantial. In support of this effort, the team evaluated the current approaches to COOP, developed multiple potential approaches to COOP in a future integrated network, evaluated the interdependencies of the various approaches to the various network control and operations options, and did a best value assessment of the options. The paper will describe the trade space, the study methods, and results of the study.

  20. NASA Bluetooth Wireless Communications (United States)

    Miller, Robert D.


    NASA has been interested in wireless communications for many years, especially when the crew size of the International Space Station (ISS) was reduced to two members. NASA began a study to find ways to improve crew efficiency to make sure the ISS could be maintained with limited crew capacity and still be a valuable research testbed in Low-Earth Orbit (LEO). Currently the ISS audio system requires astronauts to be tethered to the audio system, specifically a device called the Audio Terminal Unit (ATU). Wireless communications would remove the tether and allow astronauts to freely float from experiment to experiment without having to worry about moving and reconnecting the associated cabling or finding the space equivalent of an extension cord. A wireless communication system would also improve safety and reduce system susceptibility to Electromagnetic Interference (EMI). Safety would be improved because a crewmember could quickly escape a fire while maintaining communications with the ground and other crewmembers at any location. In addition, it would allow the crew to overcome the volume limitations of the ISS ATU. This is especially important to the Portable Breathing Apparatus (PBA). The next generation of space vehicles and habitats also demand wireless attention. Orion will carry up to six crewmembers in a relatively small cabin. Yet, wireless could become a driving factor to reduce launch weight and increase habitable volume. Six crewmembers, each tethered to a panel, could result in a wiring mess even in nominal operations. In addition to Orion, research is being conducted to determine if Bluetooth is appropriate for Lunar Habitat applications.

  1. NASA Center for Climate Simulation (NCCS) Presentation (United States)

    Webster, William P.


    The NASA Center for Climate Simulation (NCCS) offers integrated supercomputing, visualization, and data interaction technologies to enhance NASA's weather and climate prediction capabilities. It serves hundreds of users at NASA Goddard Space Flight Center, as well as other NASA centers, laboratories, and universities across the US. Over the past year, NCCS has continued expanding its data-centric computing environment to meet the increasingly data-intensive challenges of climate science. We doubled our Discover supercomputer's peak performance to more than 800 teraflops by adding 7,680 Intel Xeon Sandy Bridge processor-cores and most recently 240 Intel Xeon Phi Many Integrated Core (MIG) co-processors. A supercomputing-class analysis system named Dali gives users rapid access to their data on Discover and high-performance software including the Ultra-scale Visualization Climate Data Analysis Tools (UV-CDAT), with interfaces from user desktops and a 17- by 6-foot visualization wall. NCCS also is exploring highly efficient climate data services and management with a new MapReduce/Hadoop cluster while augmenting its data distribution to the science community. Using NCCS resources, NASA completed its modeling contributions to the Intergovernmental Panel on Climate Change (IPCG) Fifth Assessment Report this summer as part of the ongoing Coupled Modellntercomparison Project Phase 5 (CMIP5). Ensembles of simulations run on Discover reached back to the year 1000 to test model accuracy and projected climate change through the year 2300 based on four different scenarios of greenhouse gases, aerosols, and land use. The data resulting from several thousand IPCC/CMIP5 simulations, as well as a variety of other simulation, reanalysis, and observationdatasets, are available to scientists and decision makers through an enhanced NCCS Earth System Grid Federation Gateway. Worldwide downloads have totaled over 110 terabytes of data.

  2. Status of Solar Sail Technology Within NASA (United States)

    Johnson, Les; Young, Roy; Montgomery, Edward; Alhorn, Dean


    In the early 2000s, NASA made substantial progress in the development of solar sail propulsion systems for use in robotic science and exploration of the solar system. Two different 20-m solar sail systems were produced and they successfully completed functional vacuum testing in NASA Glenn Research Center's (GRC's) Space Power Facility at Plum Brook Station, Ohio. The sails were designed and developed by ATK Space Systems and L Garde, respectively. The sail systems consist of a central structure with four deployable booms that support the sails. These sail designs are robust enough for deployment in a one-atmosphere, one-gravity environment and were scalable to much larger solar sails perhaps as large as 150 m on a side. Computation modeling and analytical simulations were also performed to assess the scalability of the technology to the large sizes required to implement the first generation of missions using solar sails. Life and space environmental effects testing of sail and component materials were also conducted. NASA terminated funding for solar sails and other advanced space propulsion technologies shortly after these ground demonstrations were completed. In order to capitalize on the $30M investment made in solar sail technology to that point, NASA Marshall Space Flight Center (MSFC) funded the NanoSail-D, a subscale solar sail system designed for possible small spacecraft applications. The NanoSail-D mission flew on board the ill-fated Falcon-1 Rocket launched August 2, 2008, and due to the failure of that rocket, never achieved orbit. The NanoSail-D flight spare will be flown in the Fall of 2010. This paper will summarize NASA's investment in solar sail technology to-date and discuss future opportunities

  3. Status of solar sail technology within NASA (United States)

    Johnson, Les; Young, Roy; Montgomery, Edward; Alhorn, Dean


    In the early 2000s, NASA made substantial progress in the development of solar sail propulsion systems for use in robotic science and exploration of the solar system. Two different 20-m solar sail systems were produced. NASA has successfully completed functional vacuum testing in their Glenn Research Center's Space Power Facility at Plum Brook Station, Ohio. The sails were designed and developed by Alliant Techsystems Space Systems and L'Garde, respectively. The sail systems consist of a central structure with four deployable booms that support each sail. These sail designs are robust enough for deployment in a one-atmosphere, one-gravity environment and are scalable to much larger solar sails - perhaps as large as 150 m on a side. Computation modeling and analytical simulations were performed in order to assess the scalability of the technology to the larger sizes that are required to implement the first generation of missions using solar sails. Furthermore, life and space environmental effects testing of sail and component materials was also conducted.NASA terminated funding for solar sails and other advanced space propulsion technologies shortly after these ground demonstrations were completed. In order to capitalize on the $30 M investment made in solar sail technology to that point, NASA Marshall Space Flight Center funded the NanoSail-D, a subscale solar sail system designed for possible small spacecraft applications. The NanoSail-D mission flew on board a Falcon-1 rocket, launched August 2, 2008. As a result of the failure of that rocket, the NanoSail-D was never successfully given the opportunity to achieve orbit. The NanoSail-D flight spare was flown in the Fall of 2010. This review paper summarizes NASA's investment in solar sail technology to date and discusses future opportunities.

  4. NASA and The Semantic Web (United States)

    Ashish, Naveen


    We provide an overview of several ongoing NASA endeavors based on concepts, systems, and technology from the Semantic Web arena. Indeed NASA has been one of the early adopters of Semantic Web Technology and we describe ongoing and completed R&D efforts for several applications ranging from collaborative systems to airspace information management to enterprise search to scientific information gathering and discovery systems at NASA.

  5. The NASA Polarimetric Radar (NPOL) (United States)

    Petersen, Walter A.; Wolff, David B.


    Characteristics of the NASA NPOL S-band dual-polarimetric radar are presented including its operating characteristics, field configuration, scanning capabilities and calibration approaches. Examples of precipitation science data collections conducted using various scan types, and associated products, are presented for different convective system types and previous field campaign deployments. Finally, the NASA NPOL radar location is depicted in its home base configuration within the greater Wallops Flight Facility precipitation research array supporting NASA Global Precipitation Measurement Mission ground validation.

  6. NASA Facts, The Viking Mission. (United States)

    National Aeronautics and Space Administration, Washington, DC. Educational Programs Div.

    Presented is one of a series of publications of National Aeronautics and Space Administration (NASA) facts about the exploration of Mars. The Viking mission to Mars, consisting of two unmanned NASA spacecraft launched in August and September, 1975, is described. A description of the spacecraft and their paths is given. A diagram identifying the…

  7. NASA System Engineering Design Process (United States)

    Roman, Jose


    This slide presentation reviews NASA's use of systems engineering for the complete life cycle of a project. Systems engineering is a methodical, disciplined approach for the design, realization, technical management, operations, and retirement of a system. Each phase of a NASA project is terminated with a Key decision point (KDP), which is supported by major reviews.

  8. NASA's Big Data Task Force (United States)

    Holmes, C. P.; Kinter, J. L.; Beebe, R. F.; Feigelson, E.; Hurlburt, N. E.; Mentzel, C.; Smith, G.; Tino, C.; Walker, R. J.


    Two years ago NASA established the Ad Hoc Big Data Task Force (BDTF -, an advisory working group with the NASA Advisory Council system. The scope of the Task Force included all NASA Big Data programs, projects, missions, and activities. The Task Force focused on such topics as exploring the existing and planned evolution of NASA's science data cyber-infrastructure that supports broad access to data repositories for NASA Science Mission Directorate missions; best practices within NASA, other Federal agencies, private industry and research institutions; and Federal initiatives related to big data and data access. The BDTF has completed its two-year term and produced several recommendations plus four white papers for NASA's Science Mission Directorate. This presentation will discuss the activities and results of the TF including summaries of key points from its focused study topics. The paper serves as an introduction to the papers following in this ESSI session.

  9. The NASA automation and robotics technology program (United States)

    Holcomb, Lee B.; Montemerlo, Melvin D.


    The development and objectives of the NASA automation and robotics technology program are reviewed. The objectives of the program are to utilize AI and robotics to increase the probability of mission success; decrease the cost of ground control; and increase the capability and flexibility of space operations. There is a need for real-time computational capability; an effective man-machine interface; and techniques to validate automated systems. Current programs in the areas of sensing and perception, task planning and reasoning, control execution, operator interface, and system architecture and integration are described. Programs aimed at demonstrating the capabilities of telerobotics and system autonomy are discussed.

  10. NASA's Aviation Safety and Modeling Project (United States)

    Chidester, Thomas R.; Statler, Irving C.


    The Aviation Safety Monitoring and Modeling (ASMM) Project of NASA's Aviation Safety program is cultivating sources of data and developing automated computer hardware and software to facilitate efficient, comprehensive, and accurate analyses of the data collected from large, heterogeneous databases throughout the national aviation system. The ASMM addresses the need to provide means for increasing safety by enabling the identification and correcting of predisposing conditions that could lead to accidents or to incidents that pose aviation risks. A major component of the ASMM Project is the Aviation Performance Measuring System (APMS), which is developing the next generation of software tools for analyzing and interpreting flight data.

  11. The NASA Integrated Information Technology Architecture (United States)

    Baldridge, Tim


    This document defines an Information Technology Architecture for the National Aeronautics and Space Administration (NASA), where Information Technology (IT) refers to the hardware, software, standards, protocols and processes that enable the creation, manipulation, storage, organization and sharing of information. An architecture provides an itemization and definition of these IT structures, a view of the relationship of the structures to each other and, most importantly, an accessible view of the whole. It is a fundamental assumption of this document that a useful, interoperable and affordable IT environment is key to the execution of the core NASA scientific and project competencies and business practices. This Architecture represents the highest level system design and guideline for NASA IT related activities and has been created on the authority of the NASA Chief Information Officer (CIO) and will be maintained under the auspices of that office. It addresses all aspects of general purpose, research, administrative and scientific computing and networking throughout the NASA Agency and is applicable to all NASA administrative offices, projects, field centers and remote sites. Through the establishment of five Objectives and six Principles this Architecture provides a blueprint for all NASA IT service providers: civil service, contractor and outsourcer. The most significant of the Objectives and Principles are the commitment to customer-driven IT implementations and the commitment to a simpler, cost-efficient, standards-based, modular IT infrastructure. In order to ensure that the Architecture is presented and defined in the context of the mission, project and business goals of NASA, this Architecture consists of four layers in which each subsequent layer builds on the previous layer. They are: 1) the Business Architecture: the operational functions of the business, or Enterprise, 2) the Systems Architecture: the specific Enterprise activities within the context

  12. Quantitative NDE of Composite Structures at NASA (United States)

    Cramer, K. Elliott; Leckey, Cara A. C.; Howell, Patricia A.; Johnston, Patrick H.; Burke, Eric R.; Zalameda, Joseph N.; Winfree, William P.; Seebo, Jeffery P.


    The use of composite materials continues to increase in the aerospace community due to the potential benefits of reduced weight, increased strength, and manufacturability. Ongoing work at NASA involves the use of the large-scale composite structures for spacecraft (payload shrouds, cryotanks, crew modules, etc). NASA is also working to enable the use and certification of composites in aircraft structures through the Advanced Composites Project (ACP). The rapid, in situ characterization of a wide range of the composite materials and structures has become a critical concern for the industry. In many applications it is necessary to monitor changes in these materials over a long time. The quantitative characterization of composite defects such as fiber waviness, reduced bond strength, delamination damage, and microcracking are of particular interest. The research approaches of NASA's Nondestructive Evaluation Sciences Branch include investigation of conventional, guided wave, and phase sensitive ultrasonic methods, infrared thermography and x-ray computed tomography techniques. The use of simulation tools for optimizing and developing these methods is also an active area of research. This paper will focus on current research activities related to large area NDE for rapidly characterizing aerospace composites.

  13. NASA-IGES Translator and Viewer (United States)

    Chou, Jin J.; Logan, Michael A.


    NASA-IGES Translator (NIGEStranslator) is a batch program that translates a general IGES (Initial Graphics Exchange Specification) file to a NASA-IGES-Nurbs-Only (NINO) file. IGES is the most popular geometry exchange standard among Computer Aided Geometric Design (CAD) systems. NINO format is a subset of IGES, implementing the simple and yet the most popular NURBS (Non-Uniform Rational B-Splines) representation. NIGEStranslator converts a complex IGES file to the simpler NINO file to simplify the tasks of CFD grid generation for models in CAD format. The NASA-IGES Viewer (NIGESview) is an Open-Inventor-based, highly interactive viewer/ editor for NINO files. Geometry in the IGES files can be viewed, copied, transformed, deleted, and inquired. Users can use NIGEStranslator to translate IGES files from CAD systems to NINO files. The geometry then can be examined with NIGESview. Extraneous geometries can be interactively removed, and the cleaned model can be written to an IGES file, ready to be used in grid generation.

  14. NASA Tech Briefs, May 2013 (United States)


    Topics include: Test Waveform Applications for JPL STRS Operating Environment; Pneumatic Proboscis Heat-Flow Probe; Method to Measure Total Noise Temperature of a Wireless Receiver During Operation; Cursor Control Device Test Battery; Functional Near-Infrared Spectroscopy Signals Measure Neuronal Activity in the Cortex; ESD Test Apparatus for Soldering Irons; FPGA-Based X-Ray Detection and Measurement for an X-Ray Polarimeter; Sequential Probability Ratio Test for Spacecraft Collision Avoidance Maneuver Decisions; Silicon/Carbon Nanotube Photocathode for Splitting Water; Advanced Materials and Fabrication Techniques for the Orion Attitude Control Motor; Flight Hardware Packaging Design for Stringent EMC Radiated Emission Requirements; RF Reference Switch for Spaceflight Radiometer Calibration; An Offload NIC for NASA, NLR, and Grid Computing; Multi-Scale CNT-Based Reinforcing Polymer Matrix Composites for Lightweight Structures; Ceramic Adhesive and Methods for On-Orbit Repair of Re-Entry Vehicles; Self-Healing Nanocomposites for Reusable Composite Cryotanks; Pt-Ni and Pt-Co Catalyst Synthesis Route for Fuel Cell Applications; Aerogel-Based Multilayer Insulation with Micrometeoroid Protection; Manufacturing of Nanocomposite Carbon Fibers and Composite Cylinders; Optimized Radiator Geometries for Hot Lunar Thermal Environments; A Mission Concept: Re-Entry Hopper-Aero-Space-Craft System on-Mars (REARM-Mars); New Class of Flow Batteries for Terrestrial and Aerospace Energy Storage Applications; Reliability of CCGA 1152 and CCGA 1272 Interconnect Packages for Extreme Thermal Environments; Using a Blender to Assess the Microbial Density of Encapsulated Organisms; Mixed Integer Programming and Heuristic Scheduling for Space Communication; Video Altimeter and Obstruction Detector for an Aircraft; Control Software for Piezo Stepping Actuators; Galactic Cosmic Ray Event-Based Risk Model (GERM) Code; Sasquatch Footprint Tool; and Multi-User Space Link Extension (SLE) System.

  15. NASA Tech Briefs, February 2007 (United States)


    Topics covered include: Calibration Test Set for a Phase-Comparison Digital Tracker; Wireless Acoustic Measurement System; Spiral Orbit Tribometer; Arrays of Miniature Microphones for Aeroacoustic Testing; Predicting Rocket or Jet Noise in Real Time; Computational Workbench for Multibody Dynamics; High-Power, High-Efficiency Ka-Band Space Traveling-Wave Tube; Gratings and Random Reflectors for Near-Infrared PIN Diodes; Optically Transparent Split-Ring Antennas for 1 to 10 GHz; Ice-Penetrating Robot for Scientific Exploration; Power-Amplifier Module for 145 to 165 GHz; Aerial Videography From Locally Launched Rockets; SiC Multi-Chip Power Modules as Power-System Building Blocks; Automated Design of Restraint Layer of an Inflatable Vessel; TMS for Instantiating a Knowledge Base With Incomplete Data; Simulating Flights of Future Launch Vehicles and Spacecraft; Control Code for Bearingless Switched- Reluctance Motor; Machine Aided Indexing and the NASA Thesaurus; Arbitrating Control of Control and Display Units; Web-Based Software for Managing Research; Driver Code for Adaptive Optics; Ceramic Paste for Patching High-Temperature Insulation; Fabrication of Polyimide-Matrix/Carbon and Boron-Fiber Tape; Protective Skins for Aerogel Monoliths; Code Assesses Risks Posed by Meteoroids and Orbital Debris; Asymmetric Bulkheads for Cylindrical Pressure Vessels; Self-Regulating Water-Separator System for Fuel Cells; Self-Advancing Step-Tap Drills; Array of Bolometers for Submillimeter- Wavelength Operation; Delta-Doped CCDs as Detector Arrays in Mass Spectrometers; Arrays of Bundles of Carbon Nanotubes as Field Emitters; Staggering Inflation To Stabilize Attitude of a Solar Sail; and Bare Conductive Tether for Decelerating a Spacecraft.

  16. NASA Collaborative Design Processes (United States)

    Jones, Davey


    This is Block 1, the first evolution of the world's most powerful and versatile rocket, the Space Launch System, built to return humans to the area around the moon. Eventually, larger and even more powerful and capable configurations will take astronauts and cargo to Mars. On the sides of the rocket are the twin solid rocket boosters that provide more than 75 percent during liftoff and burn for about two minutes, after which they are jettisoned, lightening the load for the rest of the space flight. Four RS-25 main engines provide thrust for the first stage of the rocket. These are the world's most reliable rocket engines. The core stage is the main body of the rocket and houses the fuel for the RS-25 engines, liquid hydrogen and liquid oxygen, and the avionics, or "brain" of the rocket. The core stage is all new and being manufactured at NASA's "rocket factory," Michoud Assembly Facility near New Orleans. The Launch Vehicle Stage Adapter, or LVSA, connects the core stage to the Interim Cryogenic Propulsion Stage. The Interim Cryogenic Propulsion Stage, or ICPS, uses one RL-10 rocket engine and will propel the Orion spacecraft on its deep-space journey after first-stage separation. Finally, the Orion human-rated spacecraft sits atop the massive Saturn V-sized launch vehicle. Managed out of Johnson Space Center in Houston, Orion is the first spacecraft in history capable of taking humans to multiple destinations within deep space. 2) Each element of the SLS utilizes collaborative design processes to achieve the incredible goal of sending human into deep space. Early phases are focused on feasibility and requirements development. Later phases are focused on detailed design, testing, and operations. There are 4 basic phases typically found in each phase of development.

  17. NASA Robotic Neurosurgery Testbed (United States)

    Mah, Robert


    The detection of tissue interface (e.g., normal tissue, cancer, tumor) has been limited clinically to tactile feedback, temperature monitoring, and the use of a miniature ultrasound probe for tissue differentiation during surgical operations, In neurosurgery, the needle used in the standard stereotactic CT or MRI guided brain biopsy provides no information about the tissue being sampled. The tissue sampled depends entirely upon the accuracy with which the localization provided by the preoperative CT or MRI scan is translated to the intracranial biopsy site. In addition, no information about the tissue being traversed by the needle (e.g., a blood vessel) is provided. Hemorrhage due to the biopsy needle tearing a blood vessel within the brain is the most devastating complication of stereotactic CT/MRI guided brain biopsy. A robotic neurosurgery testbed has been developed at NASA Ames Research Center as a spin-off of technologies from space, aeronautics and medical programs. The invention entitled "Robotic Neurosurgery Leading to Multimodality Devices for Tissue Identification" is nearing a state ready for commercialization. The devices will: 1) improve diagnostic accuracy and precision of general surgery, with near term emphasis on stereotactic brain biopsy, 2) automate tissue identification, with near term emphasis on stereotactic brain biopsy, to permit remote control of the procedure, and 3) reduce morbidity for stereotactic brain biopsy. The commercial impact from this work is the potential development of a whole new generation of smart surgical tools to increase the safety, accuracy and efficiency of surgical procedures. Other potential markets include smart surgical tools for tumor ablation in neurosurgery, general exploratory surgery, prostate cancer surgery, and breast cancer surgery.

  18. NASA Nice Climate Change Education (United States)

    Frink, K.; Crocker, S.; Jones, W., III; Marshall, S. S.; Anuradha, D.; Stewart-Gurley, K.; Howard, E. M.; Hill, E.; Merriweather, E.


    Authors: 1 Kaiem Frink, 4 Sherry Crocker, 5 Willie Jones, III, 7 Sophia S.L. Marshall, 6 Anuadha Dujari 3 Ervin Howard 1 Kalota Stewart-Gurley 8 Edwinta Merriweathe Affiliation: 1. Mathematics & Computer Science, Virginia Union University, Richmond, VA, United States. 2. Mathematics & Computer Science, Elizabeth City State Univ, Elizabeth City, NC, United States. 3. Education, Elizabeth City State University, Elizabeth City, NC, United States. 4. College of Education, Fort Valley State University , Fort Valley, GA, United States. 5. Education, Tougaloo College, Jackson, MS, United States. 6. Mathematics, Delaware State University, Dover, DE, United States. 7. Education, Jackson State University, Jackson, MS, United States. 8. Education, Alabama Agricultural and Mechanical University, Huntsville, AL, United States. ABSTRACT: In this research initiative, the 2013-2014 NASA NICE workshop participants will present best educational practices for incorporating climate change pedagogy. The presentation will identify strategies to enhance instruction of pre-service teachers to aligned with K-12 Science, Technology, Engineering and Mathematics (STEM) standards. The presentation of best practices should serve as a direct indicator to address pedagogical needs to include climate education within a K-12 curriculum Some of the strategies will include inquiry, direct instructions, and cooperative learning . At this particular workshop, we have learned about global climate change in regards to how this is going to impact our life. Participants have been charged to increase the scientific understanding of pre-service teachers education programs nationally to incorporate climate education lessons. These recommended practices will provide feasible instructional strategies that can be easily implemented and used to clarify possible misconceptions and ambiguities in scientific knowledge. Additionally, the presentation will promote an awareness to the many facets in which climate

  19. NASA-OAI HPCCP K-12 Program (United States)


    The NASA-OAI High Performance Communication and Computing K- 12 School Partnership program has been completed. Cleveland School of the Arts, Empire Computech Center, Grafton Local Schools and the Bug O Nay Ge Shig School have all received network equipment and connections. Each school is working toward integrating computer and communications technology into their classroom curriculum. Cleveland School of the Arts students are creating computer software. Empire Computech Center is a magnet school for technology education at the elementary school level. Grafton Local schools is located in a rural community and is using communications technology to bring to their students some of the same benefits students from suburban and urban areas receive. The Bug O Nay Ge Shig School is located on an Indian Reservation in Cass Lake, MN. The students at this school are using the computer to help them with geological studies. A grant has been issued to the friends of the Nashville Library. Nashville is a small township in Holmes County, Ohio. A community organization has been formed to turn their library into a state of the art Media Center. Their goal is to have a place where rural students can learn about different career options and how to go about pursuing those careers. Taylor High School in Cincinnati, Ohio was added to the schools involved in the Wind Tunnel Project. A mini grant has been awarded to Taylor High School for computer equipment. The computer equipment is utilized in the school's geometry class to computationally design objects which will be tested for their aerodynamic properties in the Barberton Wind Tunnel. The students who create the models can view the test in the wind tunnel via desk top conferencing. Two teachers received stipends for helping with the Regional Summer Computer Workshop. Both teachers were brought in to teach a session within the workshop. They were selected to teach the session based on their expertise in particular software applications.

  20. Update on NASA Microelectronics Activities (United States)

    Label, Kenneth A.; Sampson, Michael J.; Casey, Megan; Lauenstein, Jean-Marie


    Mission Statement: The NASA Electronic Parts and Packaging (NEPP) Program provides NASA's leadership for developing and maintaining guidance for the screening, qualification, test. and usage of EEE parts by NASA as well as in collaboration with other government Agencies and industry. NASA Space Technology Mission Directorate (STMD) "STMD rapidly develops, demonstrates, and infuses revolutionary, high-payoff technologies through transparent, collaborative partnerships, expanding the boundaries of the aerospace enterprise." Mission Statement: The Space Environments Testing Management Office (SETMO) will identify, prioritize, and manage a select suite of Agency key capabilities/assets that are deemed to be essential to the future needs of NASA or the nation, including some capabilities that lack an adequate business base over the budget horizon. NESC mission is to perform value-added independent testing, analysis, and assessments of NASA's high-risk projects to ensure safety and mission success. NASA Space Environments and Avionics Fellows as well as Radiation and EEE Parts Community of Practice (CoP) leads.

  1. Through the Eyes of NASA: NASA's 2017 Eclipse Education Progam (United States)

    Mayo, L.


    Over the last three years, NASA has been developing plans to bring the August 21st total solar eclipse to the nation, "as only NASA can", leveraging its considerable space assets, technology, scientists, and its unmatched commitment to science education. The eclipse, long anticipated by many groups, represents the largest Big Event education program that NASA has ever undertaken. It is the latest in a long string of successful Big Event international celebrations going back two decades including both transits of Venus, three solar eclipses, solar maximum, and mission events such as the MSL/Curiosity landing on Mars, and the launch of the Lunar Reconnaissance Orbiter (LRO) to name a few. This talk will detail NASA's program development methods, strategic partnerships, and strategies for using this celestial event to engage the nation and improve overall science literacy.

  2. NASA/JSC ISSLive! (United States)

    Harris, Philip D.; Price, Jennifer B.; Khan, Ahmed; Severance, Mark T.


    Just 150 miles above us, the International Space Station (ISS) is orbiting. Each day, the astronauts on board perform a variety of activities from exercise, science experiments, and maintenance. Yet, many on the ground do not know about these daily activities. National Aeronautics Space Agency/ Johnson Space Center (NASA/JSC) innovation creation ISSLive! - an education project - is working to bridge this knowledge gap with traditional education channels such as schools, but also non-traditional channels with the non-technical everyday public. ISSLive! provides a website that seamlessly integrates planning and telemetry data, video feeds, 3D models, and iOS and android applications. Through the site, users are able to view astronauts daily schedules, in plain English alongside the original data. As an example, when an astronaut is working with a science experiment, a user will be able to read about the activity and for more detailed activities follow provided links to view more information all integrated into the same site. Live telemetry data from a predefined set can also be provided alongside the activities. For users to learn more, 3D models of the external and internal parts of the ISS are available, allowing users to explore the station and even select sensors, such as temperature, and view a real-time chart of the data. Even ground operations are modeled with a 3D mission control center, providing users information on the various flight control disciplines and showing live data that they would be monitoring. Some unique activities are also highlighted and have dedicated spaces to explore in more detail. Education is the focus of ISSLive!, even from the beginning when university students participated in the development process as part of their master s projects. Focus groups at a Houston school showed interest in the project and excitement towards including ISSLive! in their classroom. Through this inclusion, students' knowledge can be assessed with projects

  3. Human Centered Design and Development for NASA's MerBoard (United States)

    Trimble, Jay


    This viewgraph presentation provides an overview of the design and development process for NASA's MerBoard. These devices are large interactive display screens which can be shown on the user's computer, which will allow scientists in many locations to interpret and evaluate mission data in real-time. These tools are scheduled to be used during the 2003 Mars Exploration Rover (MER) expeditions. Topics covered include: mission overview, Mer Human Centered Computers, FIDO 2001 observations and MerBoard prototypes.

  4. Industrial and Systems Engineering Applications in NASA (United States)

    Shivers, Charles H.


    A viewgraph presentation on the many applications of Industrial and Systems Engineering used for safe NASA missions is shown. The topics include: 1) NASA Information; 2) Industrial Engineering; 3) Systems Engineering; and 4) Major NASA Programs.

  5. NASA 3D Models: Cassini (United States)

    National Aeronautics and Space Administration — Cassini spacecraft from SPACE rendering package, built by Michael Oberle under NASA contract at JPL. Includes orbiter only, Huygens probe detached. Accurate except...

  6. NASA: Investing in Our Future (United States)


    A short explanation of NASA's accomplishments and goals are discussed in this video. Space Station Freedom, lunar bases, manned Mars mission, and robotic spacecrafts to explore other worlds are briefly described.

  7. NASA 3D Models: Aqua (United States)

    National Aeronautics and Space Administration — Aqua, Latin for water, is a NASA Earth Science satellite mission named for the large amount of information that the mission is collecting about the Earth's water...

  8. NASA 3D Models: Terra (United States)

    National Aeronautics and Space Administration — NASA launched the Earth Observing System's flagship satellite Terra, named for Earth, on December 18, 1999. Terra has been collecting data about Earth's changing...

  9. NASA 3D Models: TRMM (United States)

    National Aeronautics and Space Administration — The Tropical Rainfall Measuring Mission (TRMM) is a joint mission between NASA and the Japan Aerospace Exploration Agency (JAXA) designed to monitor and study...

  10. NASA 3D Models: SORCE (United States)

    National Aeronautics and Space Administration — The Solar Radiation and Climate Experiment (SORCE) is a NASA-sponsored satellite mission that is providing state-of-the-art measurements of incoming x-ray,...

  11. NASA Technical Reports Server (NTRS) (United States)

    National Aeronautics and Space Administration — The NTRS is a valuable resource for researchers, students, educators, and the public to access NASA's current and historical technical literature and engineering...

  12. NASA's Plan for SDLS Testing (United States)

    Bailey, Brandon


    The Space Data Link Security (SDLS) Protocol is a Consultative Committee for Space Data Systems (CCSDS) standard which extends the known Data Link protocols to secure data being sent over a space link by providing confidentiality and integrity services. This plan outlines the approach by National Aeronautics Space Administration (NASA) in performing testing of the SDLS protocol using a prototype based on an existing NASA missions simulator.

  13. NASA's "Eyes" Focus on Education (United States)

    Hussey, K.


    NASA's "Eyes on…" suite of products continues to grow in capability and popularity. The "Eyes on the Earth", "Eyes on the Solar System" and "Eyes on Exoplanets" real-time, 3D interactive visualization products have proven themselves as highly effective demonstration and communication tools for NASA's Earth and Space Science missions. This presentation will give a quick look at the latest updates to the "Eyes" suite plus what is being done to make them tools for STEM Education.

  14. A Computer Learning Center for Environmental Sciences (United States)

    Mustard, John F.


    In the fall of 1998, MacMillan Hall opened at Brown University to students. In MacMillan Hall was the new Computer Learning Center, since named the EarthLab which was outfitted with high-end workstations and peripherals primarily focused on the use of remotely sensed and other spatial data in the environmental sciences. The NASA grant we received as part of the "Centers of Excellence in Applications of Remote Sensing to Regional and Global Integrated Environmental Assessments" was the primary source of funds to outfit this learning and research center. Since opening, we have expanded the range of learning and research opportunities and integrated a cross-campus network of disciplines who have come together to learn and use spatial data of all kinds. The EarthLab also forms a core of undergraduate, graduate, and faculty research on environmental problems that draw upon the unique perspective of remotely sensed data. Over the last two years, the Earthlab has been a center for research on the environmental impact of water resource use in and regions, impact of the green revolution on forest cover in India, the design of forest preserves in Vietnam, and detailed assessments of the utility of thermal and hyperspectral data for water quality analysis. It has also been used extensively for local environmental activities, in particular studies on the impact of lead on the health of urban children in Rhode Island. Finally, the EarthLab has also served as a key educational and analysis center for activities related to the Brown University Affiliated Research Center that is devoted to transferring university research to the private sector.

  15. NASA Airborne Astronomy Ambassadors (AAA) Professional Development and NASA Connections (United States)

    Backman, D. E.; Clark, C.; Harman, P. K.


    NASA's Airborne Astronomy Ambassadors (AAA) program is a three-part professional development (PD) experience for high school physics, astronomy, and earth science teachers. AAA PD consists of: (1) blended learning via webinars, asynchronous content learning, and in-person workshops, (2) a STEM immersion experience at NASA Armstrong's B703 science research aircraft facility in Palmdale, California, and (3) ongoing opportunities for connection with NASA astrophysics and planetary science Subject Matter Experts (SMEs). AAA implementation in 2016-18 involves partnerships between the SETI Institute and seven school districts in northern and southern California. AAAs in the current cohort were selected by the school districts based on criteria developed by AAA program staff working with WestEd evaluation consultants. The selected teachers were then randomly assigned by WestEd to a Group A or B to support controlled testing of student learning. Group A completed their PD during January - August 2017, then participated in NASA SOFIA science flights during fall 2017. Group B will act as a control during the 2017-18 school year, then will complete their professional development and SOFIA flights during 2018. A two-week AAA electromagnetic spectrum and multi-wavelength astronomy curriculum aligned with the Science Framework for California Public Schools and Next Generation Science Standards was developed by program staff for classroom delivery. The curriculum (as well as the AAA's pre-flight PD) capitalizes on NASA content by using "science snapshot" case studies regarding astronomy research conducted by SOFIA. AAAs also interact with NASA SMEs during flight weeks and will translate that interaction into classroom content. The AAA program will make controlled measurements of student gains in standards-based learning plus changes in student attitudes towards STEM, and observe & record the AAAs' implementation of curricular changes. Funded by NASA: NNX16AC51

  16. Interfacing the Paramesh Computational Libraries to the Cactus Computational Framework, Phase I (United States)

    National Aeronautics and Space Administration — We will design and implement an interface between the Paramesh computational libraries, developed and used by groups at NASA GSFC, and the Cactus computational...

  17. NASA's Use of Human Behavior Models for Concept Development and Evaluation (United States)

    Gore, Brian F.


    Overview of NASA's use of computational approaches and methods to support research goals, of human performance models, with a focus on examples of the methods used in Code TH and TI at NASA Ames, followed by an in depth review of MIDAS' current FAA work.

  18. NASA's Earth science flight program status (United States)

    Neeck, Steven P.; Volz, Stephen M.


    NASA's strategic goal to "advance scientific understanding of the changing Earth system to meet societal needs" continues the agency's legacy of expanding human knowledge of the Earth through space activities, as mandated by the National Aeronautics and Space Act of 1958. Over the past 50 years, NASA has been the world leader in developing space-based Earth observing systems and capabilities that have fundamentally changed our view of our planet and have defined Earth system science. The U.S. National Research Council report "Earth Observations from Space: The First 50 Years of Scientific Achievements" published in 2008 by the National Academy of Sciences articulates those key achievements and the evolution of the space observing capabilities, looking forward to growing potential to address Earth science questions and enable an abundance of practical applications. NASA's Earth science program is an end-to-end one that encompasses the development of observational techniques and the instrument technology needed to implement them. This includes laboratory testing and demonstration from surface, airborne, or space-based platforms; research to increase basic process knowledge; incorporation of results into complex computational models to more fully characterize the present state and future evolution of the Earth system; and development of partnerships with national and international organizations that can use the generated information in environmental forecasting and in policy, business, and management decisions. Currently, NASA's Earth Science Division (ESD) has 14 operating Earth science space missions with 6 in development and 18 under study or in technology risk reduction. Two Tier 2 Decadal Survey climate-focused missions, Active Sensing of CO2 Emissions over Nights, Days and Seasons (ASCENDS) and Surface Water and Ocean Topography (SWOT), have been identified in conjunction with the U.S. Global Change Research Program and initiated for launch in the 2019

  19. NASA Operational Environment Team (NOET): NASA's key to environmental technology (United States)

    Cook, Beth


    NASA has stepped forward to face the environmental challenge to eliminate the use of Ozone-Layer Depleting Substances (OLDS) and to reduce our Hazardous Air Pollutants (HAP) by 50 percent in 1995. These requirements have been issued by the Clean Air Act, the Montreal Protocol, and various other legislative acts. A proactive group, the NASA Operational Environment Team or NOET, received its charter in April 1992 and was tasked with providing a network through which replacement activities and development experiences can be shared. This is a NASA-wide team which supports the research and development community by sharing information both in person and via a computerized network, assisting in specification and standard revisions, developing cleaner propulsion systems, and exploring environmentally-compliant alternatives to current processes.

  20. Proceedings of the FAA-NASA symposium on the continued airworthiness of aircraft structures : part 2 (United States)


    This publication contains the fifty-two technical papers presented at the FAA-NASA Symposium on the Continued Airworthiness of Aircraft Structures. The symposium, hosted by the FAA Center of Excellence for Computational Modeling of : Aircraft Structu...

  1. Proceedings of the FAA-NASA symposium on the continued airworthiness of aircraft structures : part 1 (United States)


    This publication contains the fifty-two technical papers presented at the FAA-NASA Symposium on the Continued Airworthiness of Aircraft Structures. The symposium, hosted by the FAA Center of Excellence for Computational Modeling of : Aircraft Structu...

  2. A self-analysis of the NASA-TLX workload measure. (United States)

    Noyes, Jan M; Bruneau, Daniel P J


    Computer use and, more specifically, the administration of tests and materials online continue to proliferate. A number of subjective, self-report workload measures exist, but the National Aeronautics and Space Administration-Task Load Index (NASA-TLX) is probably the most well known and used. The aim of this paper is to consider the workload costs associated with the computer-based and paper versions of the NASA-TLX measure. It was found that there is a significant difference between the workload scores for the two media, with the computer version of the NASA-TLX incurring more workload. This has implications for the practical use of the NASA-TLX as well as for other computer-based workload measures.

  3. A large-scale computer facility for computational aerodynamics

    International Nuclear Information System (INIS)

    Bailey, F.R.; Balhaus, W.F.


    The combination of computer system technology and numerical modeling have advanced to the point that computational aerodynamics has emerged as an essential element in aerospace vehicle design methodology. To provide for further advances in modeling of aerodynamic flow fields, NASA has initiated at the Ames Research Center the Numerical Aerodynamic Simulation (NAS) Program. The objective of the Program is to develop a leading-edge, large-scale computer facility, and make it available to NASA, DoD, other Government agencies, industry and universities as a necessary element in ensuring continuing leadership in computational aerodynamics and related disciplines. The Program will establish an initial operational capability in 1986 and systematically enhance that capability by incorporating evolving improvements in state-of-the-art computer system technologies as required to maintain a leadership role. This paper briefly reviews the present and future requirements for computational aerodynamics and discusses the Numerical Aerodynamic Simulation Program objectives, computational goals, and implementation plans


    Scott, P. J.


    The function of the NASA ARCH system is to provide a permanent storage area for files that are infrequently accessed. The NASA ARCH routines were designed to provide a simple mechanism by which users can easily store and retrieve files. The user treats NASA ARCH as the interface to a black box where files are stored. There are only five NASA ARCH user commands, even though NASA ARCH employs standard VMS directives and the VAX BACKUP utility. Special care is taken to provide the security needed to insure file integrity over a period of years. The archived files may exist in any of three storage areas: a temporary buffer, the main buffer, and a magnetic tape library. When the main buffer fills up, it is transferred to permanent magnetic tape storage and deleted from disk. Files may be restored from any of the three storage areas. A single file, multiple files, or entire directories can be stored and retrieved. archived entities hold the same name, extension, version number, and VMS file protection scheme as they had in the user's account prior to archival. NASA ARCH is capable of handling up to 7 directory levels. Wildcards are supported. User commands include TEMPCOPY, DISKCOPY, DELETE, RESTORE, and DIRECTORY. The DIRECTORY command searches a directory of savesets covering all three archival areas, listing matches according to area, date, filename, or other criteria supplied by the user. The system manager commands include 1) ARCHIVE- to transfer the main buffer to duplicate magnetic tapes, 2) REPORTto determine when the main buffer is full enough to archive, 3) INCREMENT- to back up the partially filled main buffer, and 4) FULLBACKUP- to back up the entire main buffer. On-line help files are provided for all NASA ARCH commands. NASA ARCH is written in DEC VAX DCL for interactive execution and has been implemented on a DEC VAX computer operating under VMS 4.X. This program was developed in 1985.

  5. Research Institute for Advanced Computer Science (United States)

    Gross, Anthony R. (Technical Monitor); Leiner, Barry M.


    The Research Institute for Advanced Computer Science (RIACS) carries out basic research and technology development in computer science, in support of the National Aeronautics and Space Administration's missions. RIACS is located at the NASA Ames Research Center. It currently operates under a multiple year grant/cooperative agreement that began on October 1, 1997 and is up for renewal in the year 2002. Ames has been designated NASA's Center of Excellence in Information Technology. In this capacity, Ames is charged with the responsibility to build an Information Technology Research Program that is preeminent within NASA. RIACS serves as a bridge between NASA Ames and the academic community, and RIACS scientists and visitors work in close collaboration with NASA scientists. RIACS has the additional goal of broadening the base of researchers in these areas of importance to the nation's space and aeronautics enterprises. RIACS research focuses on the three cornerstones of information technology research necessary to meet the future challenges of NASA missions: (1) Automated Reasoning for Autonomous Systems. Techniques are being developed enabling spacecraft that will be self-guiding and self-correcting to the extent that they will require little or no human intervention. Such craft will be equipped to independently solve problems as they arise, and fulfill their missions with minimum direction from Earth; (2) Human-Centered Computing. Many NASA missions require synergy between humans and computers, with sophisticated computational aids amplifying human cognitive and perceptual abilities; (3) High Performance Computing and Networking. Advances in the performance of computing and networking continue to have major impact on a variety of NASA endeavors, ranging from modeling and simulation to data analysis of large datasets to collaborative engineering, planning and execution. In addition, RIACS collaborates with NASA scientists to apply information technology research to a

  6. User Interface Technology Transfer to NASA's Virtual Wind Tunnel System (United States)

    vanDam, Andries


    Funded by NASA grants for four years, the Brown Computer Graphics Group has developed novel 3D user interfaces for desktop and immersive scientific visualization applications. This past grant period supported the design and development of a software library, the 3D Widget Library, which supports the construction and run-time management of 3D widgets. The 3D Widget Library is a mechanism for transferring user interface technology from the Brown Graphics Group to the Virtual Wind Tunnel system at NASA Ames as well as the public domain.

  7. Software process improvement in the NASA software engineering laboratory (United States)

    Mcgarry, Frank; Pajerski, Rose; Page, Gerald; Waligora, Sharon; Basili, Victor; Zelkowitz, Marvin


    The Software Engineering Laboratory (SEL) was established in 1976 for the purpose of studying and measuring software processes with the intent of identifying improvements that could be applied to the production of ground support software within the Flight Dynamics Division (FDD) at the National Aeronautics and Space Administration (NASA)/Goddard Space Flight Center (GSFC). The SEL has three member organizations: NASA/GSFC, the University of Maryland, and Computer Sciences Corporation (CSC). The concept of process improvement within the SEL focuses on the continual understanding of both process and product as well as goal-driven experimentation and analysis of process change within a production environment.

  8. The NASA risk management program

    International Nuclear Information System (INIS)

    Buchbinder, B.; Philipson, L.L.


    This paper reports that the NASA Risk Management Program has been established to ensure the appropriate application of risk-based procedures in support of the elimination, reduction, or acceptance of significant safety risks of concern in NASA. The term appropriate is emphasized, in that the particular procedures applied to each given risk are to reflect its character and prioritized importance, the technological and economic feasibility of its treatment. A number of key documents have been produced in support of this implementation. Databases, risk analysis tools, and risk communication procedures requisite to the execution of the risk management functions also are being developed or documented. Several risk management applications have been made and a comprehensive application to a major new NASA program is underway. This paper summarizes the development and current status of the NASA Risk Management Program. Some principal actions that have been carried out in NASA in consonance with the program are noted particularly, and views are presented on the program's likely future directions

  9. NASA Microgravity Materials Science Conference (United States)

    Gillies, D. C. (Compiler); McCauley, D. E. (Compiler)


    The Microgravity Materials Science Conference was held July 14-16, 1998 at the Von Braun Center in Huntsville, AL. It was organized by the Microgravity Materials Science Discipline Working Group, sponsored by the Microgravity Research Division at NASA Headquarters, and hosted by the NASA Marshall Space Flight Center and the Alliance for Microgravity Materials Science and Applications. It was the third NASA conference of this type in the microgravity materials science discipline. The microgravity science program sponsored approximately 125 investigations and 100 principal investigators in FY98, almost all of whom made oral or poster presentations at this conference. The conference's purpose was to inform the materials science community of research opportunities in reduced gravity in preparation for a NASA Research Announcement scheduled for release in late 1998 by the Microgravity Research Division at NASA Headquarters. The conference was aimed at materials science researchers from academia, industry, and government. A tour of the Marshall Space Flight Center microgravity research facilities was held on July 16, 1998. This volume is comprised of the research reports submitted by the principal investigators after the conference.

  10. Data Mining and Knowledge Discover - IBM Cognitive Alternatives for NASA KSC (United States)

    Velez, Victor Hugo


    Skillful tools in cognitive computing to transform industries have been found favorable and profitable for different Directorates at NASA KSC. In this study is shown how cognitive computing systems can be useful for NASA when computers are trained in the same way as humans are to gain knowledge over time. Increasing knowledge through senses, learning and a summation of events is how the applications created by the firm IBM empower the artificial intelligence in a cognitive computing system. NASA has explored and applied for the last decades the artificial intelligence approach specifically with cognitive computing in few projects adopting similar models proposed by IBM Watson. However, the usage of semantic technologies by the dedicated business unit developed by IBM leads these cognitive computing applications to outperform the functionality of the inner tools and present outstanding analysis to facilitate the decision making for managers and leads in a management information system.

  11. Cloud@Home: A New Enhanced Computing Paradigm (United States)

    Distefano, Salvatore; Cunsolo, Vincenzo D.; Puliafito, Antonio; Scarpa, Marco

    Cloud computing is a distributed computing paradigm that mixes aspects of Grid computing, ("… hardware and software infrastructure that provides dependable, consistent, pervasive, and inexpensive access to high-end computational capabilities" (Foster, 2002)) Internet Computing ("…a computing platform geographically distributed across the Internet" (Milenkovic et al., 2003)), Utility computing ("a collection of technologies and business practices that enables computing to be delivered seamlessly and reliably across multiple computers, ... available as needed and billed according to usage, much like water and electricity are today" (Ross & Westerman, 2004)) Autonomic computing ("computing systems that can manage themselves given high-level objectives from administrators" (Kephart & Chess, 2003)), Edge computing ("… provides a generic template facility for any type of application to spread its execution across a dedicated grid, balancing the load …" Davis, Parikh, & Weihl, 2004) and Green computing (a new frontier of Ethical computing1 starting from the assumption that in next future energy costs will be related to the environment pollution).

  12. Implementing Software Safety in the NASA Environment (United States)

    Wetherholt, Martha S.; Radley, Charles F.


    Until recently, NASA did not consider allowing computers total control of flight systems. Human operators, via hardware, have constituted the ultimate safety control. In an attempt to reduce costs, NASA has come to rely more and more heavily on computers and software to control space missions. (For example. software is now planned to control most of the operational functions of the International Space Station.) Thus the need for systematic software safety programs has become crucial for mission success. Concurrent engineering principles dictate that safety should be designed into software up front, not tested into the software after the fact. 'Cost of Quality' studies have statistics and metrics to prove the value of building quality and safety into the development cycle. Unfortunately, most software engineers are not familiar with designing for safety, and most safety engineers are not software experts. Software written to specifications which have not been safety analyzed is a major source of computer related accidents. Safer software is achieved step by step throughout the system and software life cycle. It is a process that includes requirements definition, hazard analyses, formal software inspections, safety analyses, testing, and maintenance. The greatest emphasis is placed on clearly and completely defining system and software requirements, including safety and reliability requirements. Unfortunately, development and review of requirements are the weakest link in the process. While some of the more academic methods, e.g. mathematical models, may help bring about safer software, this paper proposes the use of currently approved software methodologies, and sound software and assurance practices to show how, to a large degree, safety can be designed into software from the start. NASA's approach today is to first conduct a preliminary system hazard analysis (PHA) during the concept and planning phase of a project. This determines the overall hazard potential of

  13. Stirling technology development at NASA GRC (United States)

    Thieme, Lanny G.; Schreiber, Jeffrey G.; Mason, Lee S.


    The Department of Energy, Stirling Technology Company (STC), and NASA Glenn Research Center (GRC) are developing a free-piston Stirling convertor for a high-efficiency Stirling Radioisotope Generator (SRG) for NASA Space Science missions. The SRG is being developed for multimission use, including providing electric power for unmanned Mars rovers and deep space missions. NASA GRC is conducting an in-house technology project to assist in developing the convertor for space qualification and mission implementation. Recent testing of 55-We Technology Demonstration Convertors (TDC's) built by STC includes mapping of a second pair of TDC's, single TDC testing, and TDC electromagnetic interference and electromagnetic compatibility characterization on a non-magnetic test stand. Launch environment tests of a single TDC without its pressure vessel to better understand the convertor internal structural dynamics and of dual-opposed TDC's with several engineering mounting structures with different natural frequencies have recently been completed. A preliminary life assessment has been completed for the TDC heater head, and creep testing of the IN718 material to be used for the flight convertors is underway. Long-term magnet aging tests are continuing to characterize any potential aging in the strength or demagnetization resistance of the magnets used in the linear alternator (LA). Evaluations are now beginning on key organic materials used in the LA and piston/rod surface coatings. GRC is also conducting finite element analyses for the LA, in part to look at the demagnetization margin on the permanent magnets. The world's first known integrated test of a dynamic power system with electric propulsion was achieved at GRC when a Hall-effect thruster was successfully operated with a free-piston Stirling power source. Cleveland State University is developing a multi-dimensional Stirling computational fluid dynamics code to significantly improve Stirling loss predictions and assist in

  14. NASA's Astronant Family Support Office (United States)

    Beven, Gary; Curtis, Kelly D.; Holland, Al W.; Sipes, Walter; VanderArk, Steve


    During the NASA-Mir program of the 1990s and due to the challenges inherent in the International Space Station training schedule and operations tempo, it was clear that a special focus on supporting families was a key to overall mission success for the ISS crewmembers pre-, in- and post-flight. To that end, in January 2001 the first Family Services Coordinator was hired by the Behavioral Health and Performance group at NASA JSC and matrixed from Medical Operations into the Astronaut Office's organization. The initial roles and responsibilities were driven by critical needs, including facilitating family communication during training deployments, providing mission-specific and other relevant trainings for spouses, serving as liaison for families with NASA organizations such as Medical Operations, NASA management and the Astronaut Office, and providing assistance to ensure success of an Astronaut Spouses Group. The role of the Family Support Office (FSO) has modified as the ISS Program matured and the needs of families changed. The FSO is currently an integral part of the Astronaut Office's ISS Operations Branch. It still serves the critical function of providing information to families, as well as being the primary contact for US and international partner families with resources at JSC. Since crews launch and return on Russian vehicles, the FSO has the added responsibility for coordinating with Flight Crew Operations, the families, and their guests for Soyuz launches, landings, and Direct Return to Houston post-flight. This presentation will provide a summary of the family support services provided for astronauts, and how they have changed with the Program and families the FSO serves. Considerations for future FSO services will be discussed briefly as NASA proposes one year missions and beyond ISS missions. Learning Objective: 1) Obtain an understanding of the reasons a Family Support Office was important for NASA. 2) Become familiar with the services provided for

  15. NASA Operational Environment Team (NOET) - NASA's key to environmental technology (United States)

    Cook, Beth


    NOET is a NASA-wide team which supports the research and development community by sharing information both in person and via a computerized network, assisting in specification and standard revisions, developing cleaner propulsion systems, and exploring environmentally compliant alternatives to current processes. NOET's structure, dissemination of materials, electronic information, EPA compliance, specifications and standards, and environmental research and development are discussed.

  16. NASA Software Engineering Benchmarking Effort (United States)

    Godfrey, Sally; Rarick, Heather


    Benchmarking was very interesting and provided a wealth of information (1) We did see potential solutions to some of our "top 10" issues (2) We have an assessment of where NASA stands with relation to other aerospace/defense groups We formed new contacts and potential collaborations (1) Several organizations sent us examples of their templates, processes (2) Many of the organizations were interested in future collaboration: sharing of training, metrics, Capability Maturity Model Integration (CMMI) appraisers, instructors, etc. We received feedback from some of our contractors/ partners (1) Desires to participate in our training; provide feedback on procedures (2) Welcomed opportunity to provide feedback on working with NASA

  17. NASA Pathways Internship: Spring 2016 (United States)

    Alvarez, Oscar, III


    I was selected to contribute to the Data Systems and Handling Branch under the Avionics Flight Systems Division at the Lyndon B. Johnson Space Center in Houston, Texas. There I used my knowledge from school, as well as my job experience from the military, to help me comprehend my assigned project and contribute to it. With help from my mentors, supervisors, colleagues, and an excellent NASA work environment, I was able to learn, as well as accomplish, a lot towards my project. Not only did I understand more about embedded systems, microcontrollers, and low-level programming, I also was given the opportunity to explore the NASA community.

  18. NASA Technology Readiness Level Definitions (United States)

    Mcnamara, Karen M.


    This presentation will cover the basic Technology Readiness Level (TRL) definitions used by the National Aeronautics and Space Administration (NASA) and their specific wording. We will discuss how they are used in the NASA Project Life Cycle and their effectiveness in practice. We'll also discuss the recent efforts by the International Standards Organization (ISO) to develop a broadly acceptable set of TRL definitions for the international space community and some of the issues brought to light. This information will provide input for further discussion of the use of the TRL scale in manufacturing.

  19. NASA Technologies for Product Identification (United States)

    Schramm, Fred, Jr.


    Since 1975 bar codes on products at the retail counter have been accepted as the standard for entering product identity for price determination. Since the beginning of the 21st century, the Data Matrix symbol has become accepted as the bar code format that is marked directly on a part, assembly or product that is durable enough to identify that item for its lifetime. NASA began the studies for direct part marking Data Matrix symbols on parts during the Return to Flight activities after the Challenger Accident. Over the 20 year period that has elapsed since Challenger, a mountain of studies, analyses and focused problem solutions developed by and for NASA have brought about world changing results. NASA Technical Standard 6002 and NASA Handbook 6003 for Direct Part Marking Data Matrix Symbols on Aerospace Parts have formed the basis for most other standards on part marking internationally. NASA and its commercial partners have developed numerous products and methods that addressed the difficulties of collecting part identification in aerospace operations. These products enabled the marking of Data Matrix symbols in virtually every situation and the reading of symbols at great distances, severe angles, under paint and in the dark without a light. Even unmarkable delicate parts now have a process to apply a chemical mixture called NanocodesTM that can be converted to a Data Matrix. The accompanying intellectual property is protected by 10 patents, several of which are licensed. Direct marking Data Matrix on NASA parts virtually eliminates data entry errors and the number of parts that go through their life cycle unmarked, two major threats to sound configuration management and flight safety. NASA is said to only have people and stuff with information connecting them. Data Matrix is one of the most significant improvements since Challenger to the safety and reliability of that connection. This presentation highlights the accomplishments of NASA in its efforts to develop

  20. NASA FY 2000 Accountability Report (United States)


    This Accountability Report consolidates reports required by various statutes and summarizes NASA's program accomplishments and its stewardship over budget and financial resources. It is a culmination of NASA's management process, which begins with mission definition and program planning, continues with the formulation and justification of budgets for the President and Congress, and ends with scientific and engineering program accomplishments. The report covers activities from October 1, 1999, through September 30, 2000. Achievements are highlighted in the Statement of the Administrator and summarized in the Report.

  1. NASA, Engineering, and Swarming Robots (United States)

    Leucht, Kurt


    This presentation is an introduction to NASA, to science and engineering, to biologically inspired robotics, and to the Swarmie ant-inspired robot project at KSC. This presentation is geared towards elementary school students, middle school students, and also high school students. This presentation is suitable for use in STEM (science, technology, engineering, and math) outreach events. The first use of this presentation will be on Oct 28, 2015 at Madison Middle School in Titusville, Florida where the author has been asked by the NASA-KSC Speakers Bureau to speak to the students about the Swarmie robots.

  2. Nasa's Ant-Inspired Swarmie Robots (United States)

    Leucht, Kurt W.


    As humans push further beyond the grasp of earth, robotic missions in advance of human missions will play an increasingly important role. These robotic systems will find and retrieve valuable resources as part of an in-situ resource utilization (ISRU) strategy. They will need to be highly autonomous while maintaining high task performance levels. NASA Kennedy Space Center has teamed up with the Biological Computation Lab at the University of New Mexico to create a swarm of small, low-cost, autonomous robots to be used as a ground-based research platform for ISRU missions. The behavior of the robot swarm mimics the central-place foraging strategy of ants to find and collect resources in a previously unmapped environment and return those resources to a central site. This talk will guide the audience through the Swarmie robot project from its conception by students in a New Mexico research lab to its robot trials in an outdoor parking lot at NASA. The software technologies and techniques used on the project will be discussed, as well as various challenges and solutions that were encountered by the development team along the way.

  3. NASA IMAGESEER: NASA IMAGEs for Science, Education, Experimentation and Research (United States)

    Le Moigne, Jacqueline; Grubb, Thomas G.; Milner, Barbara C.


    A number of web-accessible databases, including medical, military or other image data, offer universities and other users the ability to teach or research new Image Processing techniques on relevant and well-documented data. However, NASA images have traditionally been difficult for researchers to find, are often only available in hard-to-use formats, and do not always provide sufficient context and background for a non-NASA Scientist user to understand their content. The new IMAGESEER (IMAGEs for Science, Education, Experimentation and Research) database seeks to address these issues. Through a graphically-rich web site for browsing and downloading all of the selected datasets, benchmarks, and tutorials, IMAGESEER provides a widely accessible database of NASA-centric, easy to read, image data for teaching or validating new Image Processing algorithms. As such, IMAGESEER fosters collaboration between NASA and research organizations while simultaneously encouraging development of new and enhanced Image Processing algorithms. The first prototype includes a representative sampling of NASA multispectral and hyperspectral images from several Earth Science instruments, along with a few small tutorials. Image processing techniques are currently represented with cloud detection, image registration, and map cover/classification. For each technique, corresponding data are selected from four different geographic regions, i.e., mountains, urban, water coastal, and agriculture areas. Satellite images have been collected from several instruments - Landsat-5 and -7 Thematic Mappers, Earth Observing-1 (EO-1) Advanced Land Imager (ALI) and Hyperion, and the Moderate Resolution Imaging Spectroradiometer (MODIS). After geo-registration, these images are available in simple common formats such as GeoTIFF and raw formats, along with associated benchmark data.

  4. Solar water heater for NASA's Space Station (United States)

    Somers, Richard E.; Haynes, R. Daniel


    The feasibility of using a solar water heater for NASA's Space Station is investigated using computer codes developed to model the Space Station configuration, orbit, and heating systems. Numerous orbit variations, system options, and geometries for the collector were analyzed. Results show that a solar water heater, which would provide 100 percent of the design heating load and would not impose a significant impact on the Space Station overall design is feasible. A heat pipe or pumped fluid radial plate collector of about 10-sq m, placed on top of the habitat module was found to be well suited for satisfying water demand of the Space Station. Due to the relatively small area required by a radial plate, a concentrator is unnecessary. The system would use only 7 to 10 percent as much electricity as an electric water-heating system.

  5. Power beaming research at NASA (United States)

    Rather, John D. G.


    NASA's current research activities to evaluate laser power beaming systems are summarized with regard to their applications of greatest interest. Key technical certainties and uncertainties pertaining to laser power beaming systems appropriate for space applications are quantified. A path of development is presented that includes maturation of key technology components for reliable laser and millimeter wave power beaming systems during the 1990s.

  6. NASA energy technology applications program

    Energy Technology Data Exchange (ETDEWEB)


    The NASA Energy Technology Applications Program is reviewed. This program covers the following points: 1. wind generation of electricity; 2. photovoltaic solar cells; 3. satellite power systems; 4. direct solar heating and cooling; 5. solar thermal power plants; 6. energy storage; 7. advanced ground propulsion; 8. stationary on-site power supply; 9. advanced coal extraction; 10. magnetic heat pump; 11. aeronautics.

  7. Continuous Risk Management at NASA (United States)

    Hammer, Theodore F.; Rosenberg, Linda


    NPG 7120.5A, "NASA Program and Project Management Processes and Requirements" enacted in April, 1998, requires that "The program or project manager shall apply risk management principles..." The Software Assurance Technology Center (SATC) at NASA GSFC has been tasked with the responsibility for developing and teaching a systems level course for risk management that provides information on how to comply with this edict. The course was developed in conjunction with the Software Engineering Institute at Carnegie Mellon University, then tailored to the NASA systems community. This presentation will briefly discuss the six functions for risk management: (1) Identify the risks in a specific format; (2) Analyze the risk probability, impact/severity, and timeframe; (3) Plan the approach; (4) Track the risk through data compilation and analysis; (5) Control and monitor the risk; (6) Communicate and document the process and decisions. This risk management structure of functions has been taught to projects at all NASA Centers and is being successfully implemented on many projects. This presentation will give project managers the information they need to understand if risk management is to be effectively implemented on their projects at a cost they can afford.

  8. NASA Earth Science Education Collaborative (United States)

    Schwerin, T. G.; Callery, S.; Chambers, L. H.; Riebeek Kohl, H.; Taylor, J.; Martin, A. M.; Ferrell, T.


    The NASA Earth Science Education Collaborative (NESEC) is led by the Institute for Global Environmental Strategies with partners at three NASA Earth science Centers: Goddard Space Flight Center, Jet Propulsion Laboratory, and Langley Research Center. This cross-organization team enables the project to draw from the diverse skills, strengths, and expertise of each partner to develop fresh and innovative approaches for building pathways between NASA's Earth-related STEM assets to large, diverse audiences in order to enhance STEM teaching, learning and opportunities for learners throughout their lifetimes. These STEM assets include subject matter experts (scientists, engineers, and education specialists), science and engineering content, and authentic participatory and experiential opportunities. Specific project activities include authentic STEM experiences through NASA Earth science themed field campaigns and citizen science as part of international GLOBE program (for elementary and secondary school audiences) and GLOBE Observer (non-school audiences of all ages); direct connections to learners through innovative collaborations with partners like Odyssey of the Mind, an international creative problem-solving and design competition; and organizing thematic core content and strategically working with external partners and collaborators to adapt and disseminate core content to support the needs of education audiences (e.g., libraries and maker spaces, student research projects, etc.). A scaffolded evaluation is being conducted that 1) assesses processes and implementation, 2) answers formative evaluation questions in order to continuously improve the project; 3) monitors progress and 4) measures outcomes.

  9. NASA's Commercial Communication Technology Program (United States)

    Bagwell, James W.


    Various issues associated with "NASA's Commercial Communication Technology Program" are presented in viewgraph form. Specific topics include: 1) Coordination/Integration of government program; 2) Achievement of seamless interoperable satellite and terrestrial networks; 3) Establishment of program to enhance Satcom professional and technical workforce; 4) Precompetitive technology development; and 5) Effective utilization of spectrum and orbit assets.

  10. NASA Publications Guide for Authors (United States)


    This document presents guidelines for use by NASA authors in preparation and publication of their scientific and technical information (STI). Section 2 gives an overview. Section 2 describes types of publication. Section 3 discusses technical, data/information, and dissemination reviews. Section 4 provides recommended standards and gives the elements of a typical report. Section 5 presents miscellaneous preparation recommendations.

  11. The NASA Fireball Network Database (United States)

    Moser, Danielle E.


    The NASA Meteoroid Environment Office (MEO) has been operating an automated video fireball network since late-2008. Since that time, over 1,700 multi-station fireballs have been observed. A database containing orbital data and trajectory information on all these events has recently been compiled and is currently being mined for information. Preliminary results are presented here.

  12. NASA Software Engineering Benchmarking Study (United States)

    Rarick, Heather L.; Godfrey, Sara H.; Kelly, John C.; Crumbley, Robert T.; Wifl, Joel M.


    To identify best practices for the improvement of software engineering on projects, NASA's Offices of Chief Engineer (OCE) and Safety and Mission Assurance (OSMA) formed a team led by Heather Rarick and Sally Godfrey to conduct this benchmarking study. The primary goals of the study are to identify best practices that: Improve the management and technical development of software intensive systems; Have a track record of successful deployment by aerospace industries, universities [including research and development (R&D) laboratories], and defense services, as well as NASA's own component Centers; and Identify candidate solutions for NASA's software issues. Beginning in the late fall of 2010, focus topics were chosen and interview questions were developed, based on the NASA top software challenges. Between February 2011 and November 2011, the Benchmark Team interviewed a total of 18 organizations, consisting of five NASA Centers, five industry organizations, four defense services organizations, and four university or university R and D laboratory organizations. A software assurance representative also participated in each of the interviews to focus on assurance and software safety best practices. Interviewees provided a wealth of information on each topic area that included: software policy, software acquisition, software assurance, testing, training, maintaining rigor in small projects, metrics, and use of the Capability Maturity Model Integration (CMMI) framework, as well as a number of special topics that came up in the discussions. NASA's software engineering practices compared favorably with the external organizations in most benchmark areas, but in every topic, there were ways in which NASA could improve its practices. Compared to defense services organizations and some of the industry organizations, one of NASA's notable weaknesses involved communication with contractors regarding its policies and requirements for acquired software. One of NASA's strengths

  13. Managemant of NASA's major projects (United States)

    James, L. B.


    Approaches used to manage major projects are studied and the existing documents on NASA management are reviewed. The work consists of: (1) the project manager's role, (2) request for proposal, (3) project plan, (4) management information system, (5) project organizational thinking, (6) management disciplines, (7) important decisions, and (8) low cost approach.

  14. NASA low speed centrifugal compressor (United States)

    Hathaway, Michael D.


    The flow characteristics of a low speed centrifugal compressor were examined at NASA Lewis Research Center to improve understanding of the flow in centrifugal compressors, to provide models of various flow phenomena, and to acquire benchmark data for three dimensional viscous flow code validation. The paper describes the objectives, test facilities' instrumentation, and experiment preliminary comparisons.

  15. NASA Science Served Family Style (United States)

    Noel-Storr, Jacob; Mitchell, S.; Drobnes, E.


    Family oriented innovative programs extend the reach of many traditional out-of-school venues to involve the entire family in learning in comfortable and fun environments. Research shows that parental involvement is key to increasing student achievement outcomes, and family-oriented programs have a direct impact on student performance. Because families have the greatest influence on children's attitudes towards education and career choices, we have developed a Family Science program that provides families a venue where they can explore the importance of science and technology in our daily lives by engaging in learning activities that change their perception and understanding of science. NASA Family Science Night strives to change the way that students and their families participate in science, within the program and beyond. After three years of pilot implementation and assessment, our evaluation data shows that Family Science Night participants have positive change in their attitudes and involvement in science.  Even after a single session, families are more likely to engage in external science-related activities and are increasingly excited about science in their everyday lives.  As we enter our dissemination phase, NASA Family Science Night will be compiling and releasing initial evaluation results, and providing facilitator training and online support resources. Support for NASA Family Science Nights is provided in part through NASA ROSES grant NNH06ZDA001N.

  16. Summary of Pressure Gain Combustion Research at NASA (United States)

    Perkins, H. Douglas; Paxson, Daniel E.


    NASA has undertaken a systematic exploration of many different facets of pressure gain combustion over the last 25 years in an effort to exploit the inherent thermodynamic advantage of pressure gain combustion over the constant pressure combustion process used in most aerospace propulsion systems. Applications as varied as small-scale UAV's, rotorcraft, subsonic transports, hypersonics and launch vehicles have been considered. In addition to studying pressure gain combustor concepts such as wave rotors, pulse detonation engines, pulsejets, and rotating detonation engines, NASA has studied inlets, nozzles, ejectors and turbines which must also process unsteady flow in an integrated propulsion system. Other design considerations such as acoustic signature, combustor material life and heat transfer that are unique to pressure gain combustors have also been addressed in NASA research projects. In addition to a wide range of experimental studies, a number of computer codes, from 0-D up through 3-D, have been developed or modified to specifically address the analysis of unsteady flow fields. Loss models have also been developed and incorporated into these codes that improve the accuracy of performance predictions and decrease computational time. These codes have been validated numerous times across a broad range of operating conditions, and it has been found that once validated for one particular pressure gain combustion configuration, these codes are readily adaptable to the others. All in all, the documentation of this work has encompassed approximately 170 NASA technical reports, conference papers and journal articles to date. These publications are very briefly summarized herein, providing a single point of reference for all of NASA's pressure gain combustion research efforts. This documentation does not include the significant contributions made by NASA research staff to the programs of other agencies, universities, industrial partners and professional society

  17. NASA's EOSDIS, Trust and Certification (United States)

    Ramapriyan, H. K.


    NASA's Earth Observing System Data and Information System (EOSDIS) has been in operation since August 1994, managing most of NASA's Earth science data from satellites, airborne sensors, filed campaigns and other activities. Having been designated by the Federal Government as a project responsible for production, archiving and distribution of these data through its Distributed Active Archive Centers (DAACs), the Earth Science Data and Information System Project (ESDIS) is responsible for EOSDIS, and is legally bound by the Office of Management and Budgets circular A-130, the Federal Records Act. It must follow the regulations of the National Institute of Standards and Technologies (NIST) and National Archive and Records Administration (NARA). It must also follow the NASA Procedural Requirement 7120.5 (NASA Space Flight Program and Project Management). All these ensure that the data centers managed by ESDIS are trustworthy from the point of view of efficient and effective operations as well as preservation of valuable data from NASA's missions. Additional factors contributing to this trust are an extensive set of internal and external reviews throughout the history of EOSDIS starting in the early 1990s. Many of these reviews have involved external groups of scientific and technological experts. Also, independent annual surveys of user satisfaction that measure and publish the American Customer Satisfaction Index (ACSI), where EOSDIS has scored consistently high marks since 2004, provide an additional measure of trustworthiness. In addition, through an effort initiated in 2012 at the request of NASA HQ, the ESDIS Project and 10 of 12 DAACs have been certified by the International Council for Science (ICSU) World Data System (WDS) and are members of the ICSUWDS. This presentation addresses questions such as pros and cons of the certification process, key outcomes and next steps regarding certification. Recently, the ICSUWDS and Data Seal of Approval (DSA) organizations

  18. NASA Tech Briefs, September 2013 (United States)


    Topics include: ISS Ammonia Leak Detection Through X-Ray Fluorescence; A System for Measuring the Sway of the Vehicle Assembly Building; Fast, High-Precision Readout Circuit for Detector Arrays; Victim Simulator for Victim Detection Radar; Hydrometeor Size Distribution Measurements by Imaging the Attenuation of a Laser Spot; Quasi-Linear Circuit; High-Speed, High-Resolution Time-to-Digital Conversion; Li-Ion Battery and Supercapacitor Hybrid Design for Long Extravehicular Activities; Ultrasonic Low-Friction Containment Plate for Thermal and Ultrasonic Stir Weld Processes; High-Powered, Ultrasonically Assisted Thermal Stir Welding; Next-Generation MKIII Lightweight HUT/Hatch Assembly; Centrifugal Sieve for Gravity-Level-Independent Size; Segregation of Granular Materials; Ion Exchange Technology Development in Support of the Urine Processor Assembly; Nickel-Graphite Composite Compliant Interface and/or Hot Shoe Material; UltraSail CubeSat Solar Sail Flight Experiment; Mechanism for Deploying a Long, Thin-Film Antenna From a Rover; Counterflow Regolith Heat Exchanger; Acquisition and Retaining Granular Samples via a Rotating Coring Bit; Very-Low-Cost, Rugged Vacuum System; Medicine Delivery Device With Integrated Sterilization and Detection; FRET-Aptamer Assays for Bone Marker Assessment, C-Telopeptide, Creatinine, and Vitamin D; Multimode Directional Coupler for Utilization of Harmonic Frequencies from TWTAs; Dual-Polarization, Multi-Frequency Antenna Array for use with Hurricane Imaging Radiometer; Complementary Barrier Infrared Detector (CBIRD) Contact Methods; Autonomous Control of Space Nuclear Reactors; High-Power, High-Speed Electro-Optic Pockels Cell Modulator; Covariance Analysis Tool (G-CAT) for Computing Ascent, Descent, and Landing Errors; Enigma Version 12; Micrometeoroid and Orbital Debris (MMOD) Shield Ballistic Limit Analysis Program; Spitzer Telemetry Processing System; Planetary Protection Bioburden Analysis Program; Wing Leading Edge RCC Rapid

  19. Computational Structures Technology for Airframes and Propulsion Systems

    International Nuclear Information System (INIS)

    Noor, A.K.; Housner, J.M.; Starnes, J.H. Jr.; Hopkins, D.A.; Chamis, C.C.


    This conference publication contains the presentations and discussions from the joint University of Virginia (UVA)/NASA Workshops. The presentations included NASA Headquarters perspectives on High Speed Civil Transport (HSCT), goals and objectives of the UVA Center for Computational Structures Technology (CST), NASA and Air Force CST activities, CST activities for airframes and propulsion systems in industry, and CST activities at Sandia National Laboratory

  20. Flux-Level Transit Injection Experiments with NASA Pleiades Supercomputer (United States)

    Li, Jie; Burke, Christopher J.; Catanzarite, Joseph; Seader, Shawn; Haas, Michael R.; Batalha, Natalie; Henze, Christopher; Christiansen, Jessie; Kepler Project, NASA Advanced Supercomputing Division


    Flux-Level Transit Injection (FLTI) experiments are executed with NASA's Pleiades supercomputer for the Kepler Mission. The latest release (9.3, January 2016) of the Kepler Science Operations Center Pipeline is used in the FLTI experiments. Their purpose is to validate the Analytic Completeness Model (ACM), which can be computed for all Kepler target stars, thereby enabling exoplanet occurrence rate studies. Pleiades, a facility of NASA's Advanced Supercomputing Division, is one of the world's most powerful supercomputers and represents NASA's state-of-the-art technology. We discuss the details of implementing the FLTI experiments on the Pleiades supercomputer. For example, taking into account that ~16 injections are generated by one core of the Pleiades processors in an hour, the “shallow” FLTI experiment, in which ~2000 injections are required per target star, can be done for 16% of all Kepler target stars in about 200 hours. Stripping down the transit search to bare bones, i.e. only searching adjacent high/low periods at high/low pulse durations, makes the computationally intensive FLTI experiments affordable. The design of the FLTI experiments and the analysis of the resulting data are presented in “Validating an Analytic Completeness Model for Kepler Target Stars Based on Flux-level Transit Injection Experiments” by Catanzarite et al. (#2494058).Kepler was selected as the 10th mission of the Discovery Program. Funding for the Kepler Mission has been provided by the NASA Science Mission Directorate.

  1. An overview of the NASA electronic components information management system (United States)

    Kramer, G.; Waterbury, S.


    The NASA Parts Project Office (NPPO) comprehensive data system to support all NASA Electric, Electronic, and Electromechanical (EEE) parts management and technical data requirements is described. A phase delivery approach is adopted, comprising four principal phases. Phases 1 and 2 support Space Station Freedom (SSF) and use a centralized architecture with all data and processing kept on a mainframe computer. Phases 3 and 4 support all NASA centers and projects and implement a distributed system architecture, in which data and processing are shared among networked database servers. The Phase 1 system, which became operational in February of 1990, implements a core set of functions. Phase 2, scheduled for release in 1991, adds functions to the Phase 1 system. Phase 3, to be prototyped beginning in 1991 and delivered in 1992, introduces a distributed system, separate from the Phase 1 and 2 system, with a refined semantic data model. Phase 4 extends the data model and functionality of the Phase 3 system to provide support for the NASA design community, including integration with Computer Aided Design (CAD) environments. Phase 4 is scheduled for prototyping in 1992 to 93 and delivery in 1994.

  2. NASA Aerosciences Activities to Support Human Space Flight (United States)

    LeBeau, Gerald J.


    The Lyndon B. Johnson Space Center (JSC) has been a critical element of the United State's human space flight program for over 50 years. It is the home to NASA s Mission Control Center, the astronaut corps, and many major programs and projects including the Space Shuttle Program, International Space Station Program, and the Orion Project. As part of JSC's Engineering Directorate, the Applied Aeroscience and Computational Fluid Dynamics Branch is charted to provide aerosciences support to all human spacecraft designs and missions for all phases of flight, including ascent, exo-atmospheric, and entry. The presentation will review past and current aeroscience applications and how NASA works to apply a balanced philosophy that leverages ground testing, computational modeling and simulation, and flight testing, to develop and validate related products. The speaker will address associated aspects of aerodynamics, aerothermodynamics, rarefied gas dynamics, and decelerator systems, involving both spacecraft vehicle design and analysis, and operational mission support. From these examples some of NASA leading aerosciences challenges will be identified. These challenges will be used to provide foundational motivation for the development of specific advanced modeling and simulation capabilities, and will also be used to highlight how development activities are increasing becoming more aligned with flight projects. NASA s efforts to apply principles of innovation and inclusion towards improving its ability to support the myriad of vehicle design and operational challenges will also be briefly reviewed.

  3. NASA EEE Parts and NASA Electronic Parts and Packaging (NEPP) Program Update 2018 (United States)

    Label, Kenneth A.; Sampson, Michael J.; Pellish, Jonathan A.; Majewicz, Peter J.


    NASA Electronic Parts and Packaging (NEPP) Program and NASA Electronic Parts Assurance Group (NEPAG) are NASAs point-of-contacts for reliability and radiation tolerance of EEE parts and their packages. This presentation includes an FY18 program overview.

  4. 76 FR 64122 - NASA Advisory Committee; Renewal of NASA's International Space Station Advisory Committee Charter (United States)


    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (11-095)] NASA Advisory Committee; Renewal of NASA's International Space Station Advisory Committee Charter AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of renewal and amendment of the Charter of the International...

  5. User Metrics in NASA Earth Science Data Systems (United States)

    Lynnes, Chris


    This presentation the collection and use of user metrics in NASA's Earth Science data systems. A variety of collection methods is discussed, with particular emphasis given to the American Customer Satisfaction Index (ASCI). User sentiment on potential use of cloud computing is presented, with generally positive responses. The presentation also discusses various forms of automatically collected metrics, including an example of the relative usage of different functions within the Giovanni analysis system.

  6. Management: A bibliography for NASA managers (supplement 21) (United States)


    This bibliography lists 664 reports, articles and other documents introduced into the NASA scientific and technical information system in 1986. Items are selected and grouped according to their usefulness to the manager as manager. Citations are grouped into ten subject categories: human factors and personnel issues; management theory and techniques; industrial management and manufacturing; robotics and expert systems; computers and information management; research and development; economics, costs, and markets; logistics and operations management; reliability and quality control; and legality, legislation, and policy.

  7. NASA Space Science Resource Catalog (United States)

    Teays, T.


    The NASA Office of Space Science Resource Catalog provides a convenient online interface for finding space science products for use in classrooms, science museums, planetariums, and many other venues. Goals in developing this catalog are: (1) create a cataloging system for all NASA OSS education products, (2) develop a system for characterizing education products which is meaningful to a large clientele, (3) develop a mechanism for evaluating products, (4) provide a user-friendly interface to search and access the data, and (5) provide standardized metadata and interfaces to other cataloging and library systems. The first version of the catalog is being tested at the spring 2000 conventions of the National Science Teachers Association (NSTA) and the National Council of Teachers of Mathematics (NCTM) and will be released in summer 2000. The catalog may be viewed at the Origins Education Forum booth.

  8. Harvesting NASA's Common Metadata Repository (United States)

    Shum, D.; Mitchell, A. E.; Durbin, C.; Norton, J.


    As part of NASA's Earth Observing System Data and Information System (EOSDIS), the Common Metadata Repository (CMR) stores metadata for over 30,000 datasets from both NASA and international providers along with over 300M granules. This metadata enables sub-second discovery and facilitates data access. While the CMR offers a robust temporal, spatial and keyword search functionality to the general public and international community, it is sometimes more desirable for international partners to harvest the CMR metadata and merge the CMR metadata into a partner's existing metadata repository. This poster will focus on best practices to follow when harvesting CMR metadata to ensure that any changes made to the CMR can also be updated in a partner's own repository. Additionally, since each partner has distinct metadata formats they are able to consume, the best practices will also include guidance on retrieving the metadata in the desired metadata format using CMR's Unified Metadata Model translation software.

  9. Space Radiation Research at NASA (United States)

    Norbury, John


    The harmful effects of space radiation on astronauts is one of the most important limiting factors for human exploration of space beyond low Earth orbit, including a journey to Mars. This talk will present an overview of space radiation issues that arise throughout the solar system and will describe research efforts at NASA aimed at studying space radiation effects on astronauts, including the experimental program at the NASA Space Radiation Laboratory at Brookhaven National Laboratory. Recent work on galactic cosmic ray simulation at ground based accelerators will also be presented. The three major sources of space radiation, namely geomagnetically trapped particles, solar particle events and galactic cosmic rays will be discussed as well as recent discoveries of the harmful effects of space radiation on the human body. Some suggestions will also be given for developing a space radiation program in the Republic of Korea.

  10. NASA's Earth Science Data Systems (United States)

    Ramapriyan, H. K.


    NASA's Earth Science Data Systems (ESDS) Program has evolved over the last two decades, and currently has several core and community components. Core components provide the basic operational capabilities to process, archive, manage and distribute data from NASA missions. Community components provide a path for peer-reviewed research in Earth Science Informatics to feed into the evolution of the core components. The Earth Observing System Data and Information System (EOSDIS) is a core component consisting of twelve Distributed Active Archive Centers (DAACs) and eight Science Investigator-led Processing Systems spread across the U.S. The presentation covers how the ESDS Program continues to evolve and benefits from as well as contributes to advances in Earth Science Informatics.

  11. NASA Electric Propulsion System Studies (United States)

    Felder, James L.


    An overview of NASA efforts in the area of hybrid electric and turboelectric propulsion in large transport. This overview includes a list of reasons why we are looking at transmitting some or all of the propulsive power for the aircraft electrically, a list of the different types of hybrid-turbo electric propulsion systems, and the results of 4 aircraft studies that examined different types of hybrid-turbo electric propulsion systems.

  12. NASA/MSFC prediction techniques

    International Nuclear Information System (INIS)

    Smith, R.E.


    The NASA/MSFC method of forecasting is more formal than NOAA's. The data are smoothed by the Lagrangian method and linear regression prediction techniques are used. The solar activity period is fixed at 11 years--the mean period of all previous cycles. Interestingly, the present prediction for the time of the next solar minimum is February or March of 1987, which, within the uncertainties of two methods, can be taken to be the same as the NOAA result

  13. NASA-Ames vertical gun (United States)

    Schultz, P. H.


    A national facility, the NASA-Ames vertical gun range (AVGR) has an excellent reputation for revealing fundamental aspects of impact cratering that provide important constraints for planetary processes. The current logistics in accessing the AVGR, some of the past and ongoing experimental programs and their relevance, and the future role of this facility in planetary studies are reviewed. Publications resulting from experiments with the gun (1979 to 1984) are listed as well as the researchers and subjects studied.

  14. The NASA Bed Rest Project (United States)

    Rhodes, Bradley; Meck, Janice


    NASA s National Vision for Space Exploration includes human travel beyond low earth orbit and the ultimate safe return of the crews. Crucial to fulfilling the vision is the successful and timely development of countermeasures for the adverse physiological effects on human systems caused by long term exposure to the microgravity environment. Limited access to in-flight resources for the foreseeable future increases NASA s reliance on ground-based analogs to simulate these effects of microgravity. The primary analog for human based research will be head-down bed rest. By this approach NASA will be able to evaluate countermeasures in large sample sizes, perform preliminary evaluations of proposed in-flight protocols and assess the utility of individual or combined strategies before flight resources are requested. In response to this critical need, NASA has created the Bed Rest Project at the Johnson Space Center. The Project establishes the infrastructure and processes to provide a long term capability for standardized domestic bed rest studies and countermeasure development. The Bed Rest Project design takes a comprehensive, interdisciplinary, integrated approach that reduces the resource overhead of one investigator for one campaign. In addition to integrating studies operationally relevant for exploration, the Project addresses other new Vision objectives, namely: 1) interagency cooperation with the NIH allows for Clinical Research Center (CRC) facility sharing to the benefit of both agencies, 2) collaboration with our International Partners expands countermeasure development opportunities for foreign and domestic investigators as well as promotes consistency in approach and results, 3) to the greatest degree possible, the Project also advances research by clinicians and academia alike to encourage return to earth benefits. This paper will describe the Project s top level goals, organization and relationship to other Exploration Vision Projects, implementation

  15. Cloud Computing Technologies Facilitate Earth Research (United States)


    Under a Space Act Agreement, NASA partnered with Seattle-based Amazon Web Services to make the agency's climate and Earth science satellite data publicly available on the company's servers. Users can access the data for free, but they can also pay to use Amazon's computing services to analyze and visualize information using the same software available to NASA researchers.

  16. NASA Occupant Protection Standards Development (United States)

    Somers, Jeffrey; Gernhardt, Michael; Lawrence, Charles


    Historically, spacecraft landing systems have been tested with human volunteers, because analytical methods for estimating injury risk were insufficient. These tests were conducted with flight-like suits and seats to verify the safety of the landing systems. Currently, NASA uses the Brinkley Dynamic Response Index to estimate injury risk, although applying it to the NASA environment has drawbacks: (1) Does not indicate severity or anatomical location of injury (2) Unclear if model applies to NASA applications. Because of these limitations, a new validated, analytical approach was desired. Leveraging off of the current state of the art in automotive safety and racing, a new approach was developed. The approach has several aspects: (1) Define the acceptable level of injury risk by injury severity (2) Determine the appropriate human surrogate for testing and modeling (3) Mine existing human injury data to determine appropriate Injury Assessment Reference Values (IARV). (4) Rigorously Validate the IARVs with sub-injurious human testing (5) Use validated IARVs to update standards and vehicle requirement

  17. Research on the Countermeasures for High-end Talent Development in the New Material Industry from the Perspective of Four-dimensional Subject-With Hunan Province as an Example (United States)

    Wen, Qiong


    In the context of the increasingly severe international economic situation, the new material industry is as one of the seven strategic emerging industries, and its development has become a major strategic decision of China that should be insisted at present and in the future. The implementation of this strategic decision cannot be achieved without talents. Based on the actual situation of Hunan Province, this paper points out the four major problems in high-end talent development of Hunan Province, namely, immaturity of industry development, unreasonable talent structure, imperfect training mechanism and unscientific incentive measures, and purposes the countermeasures in the perspective of four-dimensional subject involving government, enterprises, schools and students.

  18. 78 FR 54680 - NASA Federal Advisory Committees (United States)


    ... Committee Management Division, Office of International and Interagency Relations, NASA Headquarters... AGENCY: National Aeronautics and Space Administration. ACTION: Annual Invitation for Public Nominations... invitation for public nominations for service on NASA Federal advisory committees. U.S. citizens may nominate...

  19. DOE and NASA joint Dark Energy mission

    CERN Multimedia


    "DOE and NASA announced their plan for a Joint Dark Energy Mission (JDEM) on October 23, 2003, at the NASA Office of Space Science Structure and Evolution of the Universe Subcommittee (SEUS) meeting" (1 paragraph).

  20. 76 FR 41825 - NASA Advisory Council; Meeting (United States)


    ... Avenue, NASA Research Park, NASA Ames Research Center (ARC), Moffett Field, CA 94035-1000. FOR FURTHER... Headquarters, Washington, DC 20546, 202/358-1148. SUPPLEMENTARY INFORMATION: The agenda for the meeting will...

  1. NASA Space Engineering Research Center for VLSI systems design (United States)


    This annual review reports the center's activities and findings on very large scale integration (VLSI) systems design for 1990, including project status, financial support, publications, the NASA Space Engineering Research Center (SERC) Symposium on VLSI Design, research results, and outreach programs. Processor chips completed or under development are listed. Research results summarized include a design technique to harden complementary metal oxide semiconductors (CMOS) memory circuits against single event upset (SEU); improved circuit design procedures; and advances in computer aided design (CAD), communications, computer architectures, and reliability design. Also described is a high school teacher program that exposes teachers to the fundamentals of digital logic design.

  2. NASA Technologies that Benefit Society (United States)

    Griffin, Amanda


    Applications developed on Earth of technology needed for space flight have produced thousands of spinoffs that contribute to improving national security, the economy, productivity and lifestyle. Over the course of it s history, NASA has nurtured partnerships with the private sector to facilitate the transfer of NASA-developed technology. For every dollar spent on research and development in the space program, it receives back $7 back in the form of corporate and personal income taxes from increased jobs and economic growth. A new technology, known as Liquid-metal alloy, is the result of a project funded by NASA s Jet Propulsion Lab. The unique technology is a blend of titanium, zirconium, nickel, copper and beryllium that achieves a strength greater than titanium. NASA plans to use this metal in the construction of a drill that will help for the search of water beneath the surface of Mars. Many other applications include opportunities in aerospace, defense, military, automotive, medical instrumentation and sporting goods.Developed in the 1980 s, the original Sun Tigers Inc sunlight-filtering lens has withstood the test of time. This technology was first reported in 1987 by NASA s JPL. Two scientists from JPL were later tasked with studying the harmful effects of radiation produced during laser and welding work. They came up with a transparent welding curtain that absorbs, filters and scatters light to maximize protection of human eyes. The two scientists then began doing business as Eagle Eye Optics. Each pair of sunglasses comes complete with ultraviolet protection, dual layer scratch resistant coating, polarized filters for maximum protection against glare and high visual clarity. Sufficient evidence shows that damage to the eye, especially to the retina, starts much earlier than most people realize. Sun filtering sunglasses are important. Winglets seen at the tips of airplane wings are among aviations most visible fuel-saving, performance enhancing technology

  3. New NASA Technologies for Space Exploration (United States)

    Calle, Carlos I.


    NASA is developing new technologies to enable planetary exploration. NASA's Space Launch System is an advance vehicle for exploration beyond LEO. Robotic explorers like the Mars Science Laboratory are exploring Mars, making discoveries that will make possible the future human exploration of the planet. In this presentation, we report on technologies being developed at NASA KSC for planetary exploration.

  4. 78 FR 41804 - NASA Advisory Council; Meeting. (United States)


    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (13-077)] NASA Advisory Council; Meeting... Space Administration announces a meeting of the NASA Advisory Council (NAC). DATES: Wednesday, July 31... ADDRESSES: NASA Headquarters, Room 9H40, Program Review Center, 300 E Street SW., Washington, DC 20456 FOR...

  5. 48 CFR 1842.271 - NASA clause. (United States)


    ... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true NASA clause. 1842.271 Section 1842.271 Federal Acquisition Regulations System NATIONAL AERONAUTICS AND SPACE ADMINISTRATION... NASA clause. Insert the clause at 1852.242-70, Technical Direction, when paragraph 3(m) of the NASA...

  6. 75 FR 4588 - NASA Advisory Council; Meeting (United States)


    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 10-011] NASA Advisory Council; Meeting... Committee of the NASA Advisory Council. This will be the first meeting of this Committee. DATES: February 11, 2010--11 a.m.-1 p.m. (EST). Meet-Me-Number: 1-877-613-3958; 2939943. ADDRESSES: NASA Headquarters, 300...

  7. 76 FR 4133 - NASA Advisory Council; Meeting (United States)


    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (11-007)] NASA Advisory Council; Meeting... Space Administration announces a meeting of the NASA Advisory Council. DATES: Thursday, February 10, 2011, 8 a.m.-5 p.m., Local Time. Friday, February 11, 2011, 8 a.m.-12 p.m., Local Time. ADDRESSES: NASA...

  8. 75 FR 5629 - NASA Advisory Council; Meeting (United States)


    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-019)] NASA Advisory Council; Meeting... Space Administration announces a meeting of the NASA Advisory Council. DATES: Thursday, February 18, 2010, 9 a.m.-5 p.m. EST; Friday, February 19, 2010, 9 a.m.-1 p.m., EST. ADDRESSES: NASA Headquarters...

  9. 77 FR 9997 - NASA Advisory Council; Meeting (United States)


    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (12-016)] NASA Advisory Council; Meeting... Space Administration announces a meeting of the NASA Advisory Council (NAC). DATES: Thursday, March 8, 2012, 8 a.m.-5 p.m., local time and Friday, March 9, 2012, 8 a.m.-12 p.m., local time. ADDRESSES: NASA...

  10. 75 FR 4875 - NASA Advisory Council; Meeting (United States)


    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-015)] NASA Advisory Council; Meeting... the NASA Advisory Council. This will be the first meeting of this Committee. DATES: February 17, 2010--10 a.m.-4 p.m. (EST). ADDRESSES: NASA Headquarters, 300 E Street, SW., Washington, DC, Room CD61. FOR...

  11. NASA Education Implementation Plan 2015-2017 (United States)

    National Aeronautics and Space Administration, 2015


    The NASA Education Implementation Plan (NEIP) provides an understanding of the role of NASA in advancing the nation's STEM education and workforce pipeline. The document outlines the roles and responsibilities that NASA Education has in approaching and achieving the agency's and administration's strategic goals in STEM Education. The specific…

  12. NASA Ames Environmental Sustainability Report 2011 (United States)

    Clarke, Ann H.


    The 2011 Ames Environmental Sustainability Report is the second in a series of reports describing the steps NASA Ames Research Center has taken toward assuring environmental sustainability in NASA Ames programs, projects, and activities. The Report highlights Center contributions toward meeting the Agency-wide goals under the 2011 NASA Strategic Sustainability Performance Program.

  13. A brief overview of NASA Langley's research program in formal methods (United States)


    An overview of NASA Langley's research program in formal methods is presented. The major goal of this work is to bring formal methods technology to a sufficiently mature level for use by the United States aerospace industry. Towards this goal, work is underway to design and formally verify a fault-tolerant computing platform suitable for advanced flight control applications. Also, several direct technology transfer efforts have been initiated that apply formal methods to critical subsystems of real aerospace computer systems. The research team consists of six NASA civil servants and contractors from Boeing Military Aircraft Company, Computational Logic Inc., Odyssey Research Associates, SRI International, University of California at Davis, and Vigyan Inc.

  14. NASA's Earth Science Enterprise: Future Science Missions, Objectives and Challenges (United States)

    Habib, Shahid


    NASA has been actively involved in studying the planet Earth and its changing environment for well over thirty years. Within the last decade, NASA's Earth Science Enterprise has become a major observational and scientific element of the U.S. Global Change Research Program. NASA's Earth Science Enterprise management has developed a comprehensive observation-based research program addressing all the critical science questions that will take us into the next century. Furthermore, the entire program is being mapped to answer five Science Themes (1) land-cover and land-use change research (2) seasonal-to-interannual climate variability and prediction (3) natural hazards research and applications (4) long-term climate-natural variability and change research and (5) atmospheric ozone research. Now the emergence of newer technologies on the horizon and at the same time continuously declining budget environment has lead to an effort to refocus the Earth Science Enterprise activities. The intent is not to compromise the overall scientific goals, but rather strengthen them by enabling challenging detection, computational and space flight technologies those have not been practically feasible to date. NASA is planning faster, cost effective and relatively smaller missions to continue the science observations from space for the next decade. At the same time, there is a growing interest in the world in the remote sensing area which will allow NASA to take advantage of this by building strong coalitions with a number of international partners. The focus of this presentation is to provide a comprehensive look at the NASA's Earth Science Enterprise in terms of its brief history, scientific objectives, organization, activities and future direction.

  15. Use of cloud computing in biomedicine. (United States)

    Sobeslav, Vladimir; Maresova, Petra; Krejcar, Ondrej; Franca, Tanos C C; Kuca, Kamil


    Nowadays, biomedicine is characterised by a growing need for processing of large amounts of data in real time. This leads to new requirements for information and communication technologies (ICT). Cloud computing offers a solution to these requirements and provides many advantages, such as cost savings, elasticity and scalability of using ICT. The aim of this paper is to explore the concept of cloud computing and the related use of this concept in the area of biomedicine. Authors offer a comprehensive analysis of the implementation of the cloud computing approach in biomedical research, decomposed into infrastructure, platform and service layer, and a recommendation for processing large amounts of data in biomedicine. Firstly, the paper describes the appropriate forms and technological solutions of cloud computing. Secondly, the high-end computing paradigm of cloud computing aspects is analysed. Finally, the potential and current use of applications in scientific research of this technology in biomedicine is discussed.

  16. Risk Management of NASA Projects (United States)

    Sarper, Hueseyin


    Various NASA Langley Research Center and other center projects were attempted for analysis to obtain historical data comparing pre-phase A study and the final outcome for each project. This attempt, however, was abandoned once it became clear that very little documentation was available. Next, extensive literature search was conducted on the role of risk and reliability concepts in project management. Probabilistic risk assessment (PRA) techniques are being used with increasing regularity both in and outside of NASA. The value and the usage of PRA techniques were reviewed for large projects. It was found that both civilian and military branches of the space industry have traditionally refrained from using PRA, which was developed and expanded by nuclear industry. Although much has changed with the end of the cold war and the Challenger disaster, it was found that ingrained anti-PRA culture is hard to stop. Examples of skepticism against the use of risk management and assessment techniques were found both in the literature and in conversations with some technical staff. Program and project managers need to be convinced that the applicability and use of risk management and risk assessment techniques is much broader than just in the traditional safety-related areas of application. The time has come to begin to uniformly apply these techniques. The whole idea of risk-based system can maximize the 'return on investment' that the public demands. Also, it would be very useful if all project documents of NASA Langley Research Center, pre-phase A through final report, are carefully stored in a central repository preferably in electronic format.

  17. Workload assessment of surgeons: correlation between NASA TLX and blinks. (United States)

    Zheng, Bin; Jiang, Xianta; Tien, Geoffrey; Meneghetti, Adam; Panton, O Neely M; Atkins, M Stella


    Blinks are known as an indicator of visual attention and mental stress. In this study, surgeons' mental workload was evaluated utilizing a paper assessment instrument (National Aeronautics and Space Administration Task Load Index, NASA TLX) and by examining their eye blinks. Correlation between these two assessments was reported. Surgeons' eye motions were video-recorded using a head-mounted eye-tracker while the surgeons performed a laparoscopic procedure on a virtual reality trainer. Blink frequency and duration were computed using computer vision technology. The level of workload experienced during the procedure was reported by surgeons using the NASA TLX. A total of 42 valid videos were recorded from 23 surgeons. After blinks were computed, videos were divided into two groups based on the blink frequency: infrequent group (≤ 6 blinks/min) and frequent group (more than 6 blinks/min). Surgical performance (measured by task time and trajectories of tool tips) was not significantly different between these two groups, but NASA TLX scores were significantly different. Surgeons who blinked infrequently reported a higher level of frustration (46 vs. 34, P = 0.047) and higher overall level of workload (57 vs. 47, P = 0.045) than those who blinked more frequently. The correlation coefficients (Pearson test) between NASA TLX and the blink frequency and duration were -0.17 and 0.446. Reduction of blink frequency and shorter blink duration matched the increasing level of mental workload reported by surgeons. The value of using eye-tracking technology for assessment of surgeon mental workload was shown.

  18. NASA's Optical Measurement Program 2014 (United States)

    Cowardin, H.; Lederer, S.; Stansbery, G.; Seitzer, P.; Buckalew, B.; Abercromby, K.; Barker, E.


    The Optical Measurements Group (OMG) within the NASA Orbital Debris Program Office (ODPO) addresses U.S. National Space Policy goals by monitoring and characterizing debris. Since 2001, the OMG has used the Michigan Orbital Debris Survey Telescope (MODEST) at Cerro Tololo Inter-American Observatory (CTIO) in Chile for general orbital debris survey. The 0.6-m Schmidt MODEST provides calibrated astronomical data of GEO targets, both catalogued and uncatalogued debris, with excellent image quality. The data are utilized by the ODPO modeling group and are included in the Orbital Debris Engineering Model (ORDEM) v. 3.0. MODEST and the CTIO/SMARTS (Small and Moderate Aperture Research Telescope System) 0.9 m both acquire filter photometric data, as well as synchronously observing targets in selected optical filters. This information provides data used in material composition studies as well as longer orbital arc data on the same target, without time delay or bias from a rotating, tumbling, or spinning target. NASA, in collaboration with the University of Michigan, began using the twin 6.5-m Magellan telescopes at Las Campanas Observatory in Chile for deep imaging (Baade) and spectroscopic data (Clay) in 2011. Through the data acquired on Baade, debris have been detected that are 3 magnitudes fainter than detections with MODEST, while the data from Clay provide better resolved information used in material characterization analyses via selected bandpasses. To better characterize and model optical data, the Optical Measurements Center (OMC) at NASA/JSC has been in operation since 2005, resulting in a database of comparison laboratory data. The OMC is designed to emulate illumination conditions in space using equipment and techniques that parallel telescopic observations and source-target-sensor orientations. Lastly, the OMG is building the Meter Class Autonomous Telescope (MCAT) at Ascension Island. The 1.3-m telescope is designed to observe GEO and LEO targets, using a

  19. NASA Airline Operations Research Center (United States)

    Mogford, Richard H.


    This is a PowerPoint presentation NASA airline operations center (AOC) research. It includes information on using IBM Watson in the AOC. It also reviews a dispatcher decision support tool call the Flight Awareness Collaboration Tool (FACT). FACT gathers information about winter weather onto one screen and includes predictive abilities. It should prove to be useful for airline dispatchers and airport personnel when they manage winter storms and their effect on air traffic. This material is very similar to other previously approved presentations with the same title.

  20. Antimatter Propulsion Developed by NASA (United States)


    This Quick Time movie shows possible forms of an antimatter propulsion system being developed by NASA. Antimatter annihilation offers the highest possible physical energy density of any known reaction substance. It is about 10 billion times more powerful than that of chemical energy such as hydrogen and oxygen combustion. Antimatter would be the perfect rocket fuel, but the problem is that the basic component of antimatter, antiprotons, doesn't exist in nature and has to manufactured. The process of antimatter development is ongoing and making some strides, but production of this as a propulsion system is far into the future.

  1. Creating a Rackspace and NASA Nebula compatible cloud using the OpenStack project (Invited) (United States)

    Clark, R.


    NASA and Rackspace have both provided technology to the OpenStack that allows anyone to create a private Infrastructure as a Service (IaaS) cloud using open source software and commodity hardware. OpenStack is designed and developed completely in the open and with an open governance process. NASA donated Nova, which powers the compute portion of NASA Nebula Cloud Computing Platform, and Rackspace donated Swift, which powers Rackspace Cloud Files. The project is now in continuous development by NASA, Rackspace, and hundreds of other participants. When you create a private cloud using Openstack, you will have the ability to easily interact with your private cloud, a government cloud, and an ecosystem of public cloud providers, using the same API.

  2. NASA thermionic-conversion program

    International Nuclear Information System (INIS)

    Morris, J.F.


    NASA's program for applied research and technology (ART) in thermionic energy conversion (TEC) has made worthwhile contributions in a relatively short time: Many of these accomplishments are incremental, yet important. And their integration has yielded gains in performance as well as in the knowledge necessary to point productive directions for future work. Both promise and problems derive from the degrees of freedom allowed by the current programmatic emphasis on out-of-core thermionics. Materials and designs previously prohibited by in-core nucleonics and geometries now offer new potentialities. But as a result a major TEC-ART responsibility is the efficient reduction of the glitter of diverse possibilities to the hard glint of reality. As always high-temperature material effects are crucial to the level and duration of TEC performance: New electrodes must increase and maintain power output regardless of emitter-vapor deposition on collectors. They must also serve compatibly with hot-shell alloys. And while space TEC must face high-temperature vaporization problems externally as well as internally, terrestrial TEC must tolerate hot corrosive atmospheres outside and near-vacuum inside. Furthermore, some modes for decreasing interelectrode losses appear to require rather demanding converter geometries to produce practical power densities. In these areas and others significant progress is being made in the NASA TEC-ART Program

  3. NASA Space Rocket Logistics Challenges (United States)

    Neeley, James R.; Jones, James V.; Watson, Michael D.; Bramon, Christopher J.; Inman, Sharon K.; Tuttle, Loraine


    The Space Launch System (SLS) is the new NASA heavy lift launch vehicle and is scheduled for its first mission in 2017. The goal of the first mission, which will be uncrewed, is to demonstrate the integrated system performance of the SLS rocket and spacecraft before a crewed flight in 2021. SLS has many of the same logistics challenges as any other large scale program. Common logistics concerns for SLS include integration of discreet programs geographically separated, multiple prime contractors with distinct and different goals, schedule pressures and funding constraints. However, SLS also faces unique challenges. The new program is a confluence of new hardware and heritage, with heritage hardware constituting seventy-five percent of the program. This unique approach to design makes logistics concerns such as commonality especially problematic. Additionally, a very low manifest rate of one flight every four years makes logistics comparatively expensive. That, along with the SLS architecture being developed using a block upgrade evolutionary approach, exacerbates long-range planning for supportability considerations. These common and unique logistics challenges must be clearly identified and tackled to allow SLS to have a successful program. This paper will address the common and unique challenges facing the SLS programs, along with the analysis and decisions the NASA Logistics engineers are making to mitigate the threats posed by each.

  4. AGU testifies on NASA Budget (United States)

    Simarski, Lynn Teo

    Witnesses from outside the U.S. government—including Frank Eden, representing AGU—testified about the National Aeronautics and Space Administration's budget on March 12 before the House Science Committee's subcommittee on space. One major topic of the hearing was familiar: what should NASA's top priority be, space science or human exploration of space.“Obviously this committee has a huge job of trying to set priorities—consistent with the budget restraints—that will end up giving the American taxpayer the most bang for his buck, as well as providing direction for our space program,” said F. James Sensenbrenner, Jr. (R-Wis.), the subcommittee's ranking Republican. Another recurring topic, cited by the subcommittee's new chairman, Ralph M. Hall (D-Tex.), as well as by other committee members, was how to translate NASA-developed technologies into commercial gain for the U.S. in the global marketplace. Hall and others also posed a number of questions on a topic the chairman called a special concern of his: whether it would be economically and scientifically plausible for the U.S. to use the Soviet space station Mir for certain activities, such as medical applications.

  5. The NASA Beyond Einstein Program (United States)

    White, Nicholas E.


    Einstein's legacy is incomplete, his theory of General relativity raises -- but cannot answer --three profound questions: What powered the big bang? What happens to space, time, and matter at the edge of a black hole? and What is the mysterious dark energy pulling the Universe apart? The Beyond Einstein program within NASA's Office of Space Science aims to answer these questions, employing a series of missions linked by powerful new technologies and complementary approaches towards shared science goals. The Beyond Einstein program has three linked elements which advance science and technology towards two visions; to detect directly gravitational wave signals from the earliest possible moments of the BIg Bang, and to image the event horizon of a black hole. The central element is a pair of Einstein Great Observatories, Constellation-X and LISA. Constellation-X is a powerful new X-ray observatory dedicated to X-Ray Spectroscopy. LISA is the first spaced based gravitational wave detector. These powerful facilities will blaze new paths to the questions about black holes, the Big Bang and dark energy. The second element is a series of competitively selected Einstein Probes, each focused on one of the science questions and includes a mission dedicated resolving the Dark Energy mystery. The third element is a program of technology development, theoretical studies and education. The Beyond Einstein program is a new element in the proposed NASA budget for 2004. This talk will give an overview of the program and the missions contained within it.

  6. NASA's Planetary Defense Coordination Office at NASA HQ (United States)

    Daou, D.; Johnson, L.; Fast, K. E.; Landis, R.; Friedensen, V. P.; Kelley, M.


    NASA and its partners maintain a watch for near-Earth objects (NEOs), asteroids and comets that pass close to the Earth, as part of an ongoing effort to discover, catalog, and characterize these bodies. The PDCO is responsible for: Ensuring the early detection of potentially hazardous objects (PHOs) - asteroids and comets whose orbit are predicted to bring them within 0.05 Astronomical Units of Earth; and of a size large enough to reach Earth's surface - that is, greater than perhaps 30 to 50 meters; Tracking and characterizing PHOs and issuing warnings about potential impacts; Providing timely and accurate communications about PHOs; and Performing as a lead coordination node in U.S. Government planning for response to an actual impact threat. The PDCO collaborates with other U.S. Government agencies, other national and international agencies, and professional and amateur astronomers around the world. The PDCO also is responsible for facilitating communications between the science community and the public should any potentially hazardous NEO be discovered. In addition, the PDCO works closely with the United Nations Office of Outer Space Affairs, its Committee on the Peaceful Uses of Outer Space, and its Action Team on Near Earth Objects (also known as Action Team 14). The PDCO is a leading member of the International Asteroid Warning Network (IAWN) and the Space Missions Planning Advisory Group (SMPAG), multinational endeavors recommended by the United Nations for an international response to the NEO impact hazard and established and operated by the space-capable nations. The PDCO also communicates with the scientific community through channels such as NASA's Small Bodies Assessment Group (SBAG). In this talk, we will provide an update to the office's various efforts and new opportunities for partnerships in the continuous international effort for Planetary Defense.

  7. NASA University Program Management Information System (United States)


    As basic policy, NASA believes that colleges and universities should be encouraged to participate in the nation's space and aeronautics program to the maximum extent practicable. Indeed, universities are considered as partners with government and industry in the nation's aerospace program. NASA's objective is to have them bring their scientific, engineering, and social research competence to bear on aerospace problems and on the broader social, economic, and international implications of NASA's technical and scientific programs. It is expected that, in so doing, universities will strengthen both their research and their educational capabilities to contribute more effectively to the national well-being. NASA field codes and certain Headquarters program offices provide funds for those activities in universities which contribute to the mission needs of that particular NASA element. Although NASA has no predetermined amount of money to devote to university activities, the effort funded each year is substantial. (See the bar chart on the next page). This annual report is one means of documenting the NASA-university relationship, frequently denoted, collectively, as NASA's University Program. This report is consistent with agency accounting records, as the data is obtained from NASA's Financial and Contractual Status (FACS) System, operated by the Financial Management Division and the Procurement Office. However, in accordance with interagency agreements, the orientation differs from that required for financial or procurement purposes. Any apparent discrepancies between this report and other NASA procurement or financial reports stem from the selection criteria for the data.

  8. The Snow Data System at NASA JPL (United States)

    Laidlaw, R.; Painter, T. H.; Mattmann, C. A.; Ramirez, P.; Bormann, K.; Brodzik, M. J.; Burgess, A. B.; Rittger, K.; Goodale, C. E.; Joyce, M.; McGibbney, L. J.; Zimdars, P.


    NASA JPL's Snow Data System has a data-processing pipeline powered by Apache OODT, an open source software tool. The pipeline has been running for several years and has successfully generated a significant amount of cryosphere data, including MODIS-based products such as MODSCAG, MODDRFS and MODICE, with historical and near-real time windows and covering regions such as the Artic, Western US, Alaska, Central Europe, Asia, South America, Australia and New Zealand. The team continues to improve the pipeline, using monitoring tools such as Ganglia to give an overview of operations, and improving fault-tolerance with automated recovery scripts. Several alternative adaptations of the Snow Covered Area and Grain size (SCAG) algorithm are being investigated. These include using VIIRS and Landsat TM/ETM+ satellite data as inputs. Parallel computing techniques are being considered for core SCAG processing, such as using the PyCUDA Python API to utilize multi-core GPU architectures. An experimental version of MODSCAG is also being developed for the Google Earth Engine platform, a cloud-based service.

  9. Accessing Wind Tunnels From NASA's Information Power Grid (United States)

    Becker, Jeff; Biegel, Bryan (Technical Monitor)


    The NASA Ames wind tunnel customers are one of the first users of the Information Power Grid (IPG) storage system at the NASA Advanced Supercomputing Division. We wanted to be able to store their data on the IPG so that it could be accessed remotely in a secure but timely fashion. In addition, incorporation into the IPG allows future use of grid computational resources, e.g., for post-processing of data, or to do side-by-side CFD validation. In this paper, we describe the integration of grid data access mechanisms with the existing DARWIN web-based system that is used to access wind tunnel test data. We also show that the combined system has reasonable performance: wind tunnel data may be retrieved at 50Mbits/s over a 100 base T network connected to the IPG storage server.

  10. NASA Space Radiation Risk Project: Overview and Recent Results (United States)

    Blattnig, Steve R.; Chappell, Lori J.; George, Kerry A.; Hada, Megumi; Hu, Shaowen; Kidane, Yared H.; Kim, Myung-Hee Y.; Kovyrshina, Tatiana; Norman, Ryan B.; Nounu, Hatem N.; hide


    The NASA Space Radiation Risk project is responsible for integrating new experimental and computational results into models to predict risk of cancer and acute radiation syndrome (ARS) for use in mission planning and systems design, as well as current space operations. The project has several parallel efforts focused on proving NASA's radiation risk projection capability in both the near and long term. This presentation will give an overview, with select results from these efforts including the following topics: verification, validation, and streamlining the transition of models to use in decision making; relative biological effectiveness and dose rate effect estimation using a combination of stochastic track structure simulations, DNA damage model calculations and experimental data; ARS model improvements; pathway analysis from gene expression data sets; solar particle event probabilistic exposure calculation including correlated uncertainties for use in design optimization.

  11. NASA Orbital Debris Baseline Populations (United States)

    Krisko, Paula H.; Vavrin, A. B.


    The NASA Orbital Debris Program Office has created high fidelity populations of the debris environment. The populations include objects of 1 cm and larger in Low Earth Orbit through Geosynchronous Transfer Orbit. They were designed for the purpose of assisting debris researchers and sensor developers in planning and testing. This environment is derived directly from the newest ORDEM model populations which include a background derived from LEGEND, as well as specific events such as the Chinese ASAT test, the Iridium 33/Cosmos 2251 accidental collision, the RORSAT sodium-potassium droplet releases, and other miscellaneous events. It is the most realistic ODPO debris population to date. In this paper we present the populations in chart form. We describe derivations of the background population and the specific populations added on. We validate our 1 cm and larger Low Earth Orbit population against SSN, Haystack, and HAX radar measurements.

  12. NASA Procurement Career Development Program (United States)


    The NASA Procurement Career Development Program establishes an agency-wide framework for the management of career development activity in the procurement field. Within this framework, installations are encouraged to modify the various components to meet installation-specific mission and organization requirements. This program provides a systematic process for the assessment of and planning for the development, training, and education required to increase the employees' competence in the procurement work functions. It includes the agency-wide basic knowledge and skills by career field and level upon which individual and organizational development plans are developed. Also, it provides a system that is compatible with other human resource management and development systems, processes, and activities. The compatibility and linkage are important in fostering the dual responsibility of the individual and the organization in the career development process.

  13. 14 CFR 1221.103 - Establishment of the NASA Insignia. (United States)


    ..., NASA Program Identifiers, NASA Flags, and the Agency's Unified Visual Communications System § 1221.103... approved by the Commission of Fine Arts and the NASA Administrator. It symbolizes NASA's role in... visual communications formerly reserved for the NASA Logotype. The NASA Insignia shall be used as set...

  14. 14 CFR 1221.102 - Establishment of the NASA Seal. (United States)


    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Establishment of the NASA Seal. 1221.102 Section 1221.102 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype, NASA...

  15. 14 CFR 1221.106 - Establishment of the NASA Flag. (United States)


    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Establishment of the NASA Flag. 1221.106 Section 1221.106 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype, NASA...

  16. 14 CFR 1221.109 - Use of the NASA Seal. (United States)


    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Use of the NASA Seal. 1221.109 Section 1221.109 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype, NASA Program...

  17. 14 CFR 1221.113 - Use of the NASA Flags. (United States)


    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Use of the NASA Flags. 1221.113 Section 1221.113 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype, NASA Program...

  18. Biophysics of NASA radiation quality factors

    International Nuclear Information System (INIS)

    Cucinotta, Francis A.


    NASA has implemented new radiation quality factors (QFs) for projecting cancer risks from space radiation exposures to astronauts. The NASA QFs are based on particle track structure concepts with parameters derived from available radiobiology data, and NASA introduces distinct QFs for solid cancer and leukaemia risk estimates. The NASA model was reviewed by the US National Research Council and approved for use by NASA for risk assessment for International Space Station missions and trade studies of future exploration missions to Mars and other destinations. A key feature of the NASA QFs is to represent the uncertainty in the QF assessments and evaluate the importance of the QF uncertainty to overall uncertainties in cancer risk projections. In this article, the biophysical basis for the probability distribution functions representing QF uncertainties was reviewed, and approaches needed to reduce uncertainties were discussed. (author)

  19. Biophysics of NASA radiation quality factors. (United States)

    Cucinotta, Francis A


    NASA has implemented new radiation quality factors (QFs) for projecting cancer risks from space radiation exposures to astronauts. The NASA QFs are based on particle track structure concepts with parameters derived from available radiobiology data, and NASA introduces distinct QFs for solid cancer and leukaemia risk estimates. The NASA model was reviewed by the US National Research Council and approved for use by NASA for risk assessment for International Space Station missions and trade studies of future exploration missions to Mars and other destinations. A key feature of the NASA QFs is to represent the uncertainty in the QF assessments and evaluate the importance of the QF uncertainty to overall uncertainties in cancer risk projections. In this article, the biophysical basis for the probability distribution functions representing QF uncertainties was reviewed, and approaches needed to reduce uncertainties were discussed. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email:

  20. Flexible Electronics Development Supported by NASA (United States)

    Baumann, Eric


    The commercial electronics industry is leading development in most areas of electronics for NASA applications; however, working in partnership with industry and the academic community, results from NASA research could lead to better understanding and utilization of electronic materials by the flexible electronics industry. Innovative ideas explored by our partners in industry and the broader U.S. research community help NASA execute our missions and bring new American products and services to the global technology marketplace. [Mike Gazarik, associate administrator for Space Technology, NASA Headquarters, Washington DC] This presentation provides information on NASA needs in electronics looking towards the future, some of the work being supported by NASA in flexible electronics, and the capabilities of the Glenn Research Center supporting the development of flexible electronics.

  1. NASA's Applied Sciences for Water Resources (United States)

    Doorn, Bradley; Toll, David; Engman, Ted


    The Earth Systems Division within NASA has the primary responsibility for the Earth Science Applied Science Program and the objective to accelerate the use of NASA science results in applications to help solve problems important to society and the economy. The primary goal of the Earth Science Applied Science Program is to improve future and current operational systems by infusing them with scientific knowledge of the Earth system gained through space-based observation, assimilation of new observations, and development and deployment of enabling technologies, systems, and capabilities. This paper discusses one of the major problems facing water resources managers, that of having timely and accurate data to drive their decision support tools. It then describes how NASA?s science and space based satellites may be used to overcome this problem. Opportunities for the water resources community to participate in NASA?s Water Resources Applications Program are described.

  2. NASA Game Changing Development Program Manufacturing Innovation Project (United States)

    Tolbert, Carol; Vickers, John


    This presentation examines the new NASA Manufacturing Innovation Project. The project is a part of the Game Changing Development Program which is one element of the Space Technology Programs Managed by Office of the Chief Technologist. The project includes innovative technologies in model-based manufacturing, digital additive manufacturing, and other next generation manufacturing tools. The project is also coupled with the larger federal initiatives in this area including the National Digital Engineering and Manufacturing Initiative and the Advanced Manufacturing Partnership. In addition to NASA, other interagency partners include the Department of Defense, Department of Commerce, NIST, Department of Energy, and the National Science Foundation. The development of game-changing manufacturing technologies are critical for NASA s mission of exploration, strengthening America s manufacturing competitiveness, and are highly related to current challenges in defense manufacturing activities. There is strong consensus across industry, academia, and government that the future competitiveness of U.S. industry will be determined, in large part, by a technologically advanced manufacturing sector. This presentation highlights the prospectus of next generation manufacturing technologies to the challenges faced NASA and by the Department of Defense. The project focuses on maturing innovative/high payoff model-based manufacturing technologies that may lead to entirely new approaches for a broad array of future NASA missions and solutions to significant national needs. Digital manufacturing and computer-integrated manufacturing "virtually" guarantee advantages in quality, speed, and cost and offer many long-term benefits across the entire product lifecycle. This paper addresses key enablers and emerging strategies in areas such as: Current government initiatives, Model-based manufacturing, and Additive manufacturing.

  3. NASA Earthdata Forums: An Interactive Venue for Discussions of NASA Data and Earth Science (United States)

    Hearty, Thomas J., III; Acker, James; Meyer, Dave; Northup, Emily A.; Bagwell, Ross E.


    We demonstrate how students and teachers can register to use the NASA Earthdata Forums. The NASA Earthdata forums provide a venue where registered users can pose questions regarding NASA Earth science data in a moderated forum, and have their questions answered by data experts and scientific subject matter experts connected with NASA Earth science missions and projects. Since the forums are also available for research scientists to pose questions and discuss pertinent topics, the NASA Earthdata Forums provide a unique opportunity for students and teachers to gain insight from expert scientists and enhance their knowledge of the many different ways that NASA Earth observations can be used in research and applications.

  4. NASA University Program Management Information System (United States)


    As basic policy, NASA believes that colleges and universities should be encouraged to participate in the nation's space and aeronautics program to the maximum extent practicable. Indeed, universities are considered as partners with government and industry in the nation's aerospace program. NASA:s objective is to have them bring their scientific, engineering, and social research competence to bear on aerospace problems and on the broader social, economic, and international implications of NASA's technical and scientific programs. It is expected that, in so doing, universities will strengthen both their research and their educational capabilities to contribute more effectively to the national well-being. NASA field codes and certain Headquarters program offices provide funds for those activities in universities which contribute to the mission needs of that particular NASA element. Although NASA has no predetermined amount of money to devote to university activities, the effort funded each year is substantial. This annual report is one means of documenting the NASA-university relationship, frequently denoted, collectively, as NASA's University Program. This report is consistent with agency accounting records, as the data is obtained from NASA:s Financial and Contractual Status (FACS) System, operated by the Financial Management Division and the Procurement Office. However, in accordance with interagency agreements, the orientation differs from that required for financial or procurement purposes. Any apparent discrepancies between this report and other NASA procurement or financial reports stem from the selection criteria for the data.* This report was prepared by the Education Division/FE, Office of Human Resources and Education, using a management information system which was modernized during FY 1993.

  5. Integrating aerodynamic surface modeling for computational fluid dynamics with computer aided structural analysis, design, and manufacturing (United States)

    Thorp, Scott A.


    This presentation will discuss the development of a NASA Geometry Exchange Specification for transferring aerodynamic surface geometry between LeRC systems and grid generation software used for computational fluid dynamics research. The proposed specification is based on a subset of the Initial Graphics Exchange Specification (IGES). The presentation will include discussion of how the NASA-IGES standard will accommodate improved computer aided design inspection methods and reverse engineering techniques currently being developed. The presentation is in viewgraph format.

  6. The NASA Air Traffic Management Ontology (atmonto) (United States)

    National Aeronautics and Space Administration — The NASA ATM (Air Traffic Management) Ontology describes classes, properties, and relationships relevant to the domain of air traffic management, and represents...

  7. Semantic-Web Technology: Applications at NASA (United States)

    Ashish, Naveen


    We provide a description of work at the National Aeronautics and Space Administration (NASA) on building system based on semantic-web concepts and technologies. NASA has been one of the early adopters of semantic-web technologies for practical applications. Indeed there are several ongoing 0 endeavors on building semantics based systems for use in diverse NASA domains ranging from collaborative scientific activity to accident and mishap investigation to enterprise search to scientific information gathering and integration to aviation safety decision support We provide a brief overview of many applications and ongoing work with the goal of informing the external community of these NASA endeavors.

  8. NASA Resources for Educators and Public (United States)

    Morales, Lester


    A variety of NASA Classroom Activities, Educator Guides, Lithographs, Posters and more are available to Pre ]service and In ]service Educators through Professional Development Workshops. We are here for you to engage, demonstrate, and facilitate the use of educational technologies, the NASA Website, NASA Education Homepage and more! We are here for you to inspire you by providing in-service and pre- service training utilizing NASA curriculum support products. We are here for you to partner with your local, state, and regional educational organizations to better educate ALL! NASA AESP specialists are experienced professional educators, current on education issues and familiar with the curriculum frameworks, educational standards, and systemic architecture of the states they service. These specialists provide engaging and inspiring student presentations and teacher training right at YOUR school at no cost to you! Experience free out-of-this-world interactive learning with NASA's Digital Learning Network. Students of all ages can participate in LIVE events with NASA Experts and Education Specialists. The Exploration Station provides NASA educational programs that introduce the application of Science, Technology, Engineering, & Mathematics, to students. Students participate in a variety of hands-on activities that compliment related topics taught by the classroom teacher. NASA KSC ERC can create Professional Development Workshops for teachers in groups of fifteen or more. Education/Information Specialists also assist educators in developing lessons to meet Sunshine State and national curriculum standards.

  9. NASA tire/runway friction projects (United States)

    Yager, Thomas J.


    The paper reviews several aspects of NASA Langley Research Center's tire/runway friction evaluations directed towards improving the safety and economy of aircraft ground operations. The facilities and test equipment used in implementing different aircraft tire friction studies and other related aircraft ground performance investigations are described together with recent workshop activities at NASA Wallops Flight Facility. An overview of the pending Joint NASA/Transport Canada/FM Winter Runway Friction Program is given. Other NASA ongoing studies and on-site field tests are discussed including tire wear performance and new surface treatments. The paper concludes with a description of future research plans.

  10. NASA spinoffs to energy and the environment (United States)

    Gilbert, Ray L.; Lehrman, Stephen A.


    Thousands of aerospace innovations have found their way into everyday use, and future National Aeronautics and Space Administration (NASA) missions promise to provide many more spinoff opportunities. Each spinoff has contributed some measure of benefit to the national economy, productivity, or lifestyle. In total, these spinoffs represent a substantial dividend on the national investment in aerospace research. Along with examples of the many terrestrial applications of NASA technology to energy and the environment, this paper presents the mechanisms by which NASA promotes technology transfer. Also discussed are new NASA initiatives in superconductivity research, global warming, and aeropropulsion.

  11. Evolving Storage and Cyber Infrastructure at the NASA Center for Climate Simulation (United States)

    Salmon, Ellen; Duffy, Daniel; Spear, Carrie; Sinno, Scott; Vaughan, Garrison; Bowen, Michael


    This talk will describe recent developments at the NASA Center for Climate Simulation, which is funded by NASAs Science Mission Directorate, and supports the specialized data storage and computational needs of weather, ocean, and climate researchers, as well as astrophysicists, heliophysicists, and planetary scientists. To meet requirements for higher-resolution, higher-fidelity simulations, the NCCS augments its High Performance Computing (HPC) and storage retrieval environment. As the petabytes of model and observational data grow, the NCCS is broadening data services offerings and deploying and expanding virtualization resources for high performance analytics.

  12. NASA Airborne Astronomy Ambassadors (AAA) (United States)

    Backman, D. E.; Harman, P. K.; Clark, C.


    NASA's Airborne Astronomy Ambassadors (AAA) is a three-part professional development (PD) program for high school physics and astronomy teachers. The AAA experience consists of: (1) blended-learning professional development composed of webinars, asynchronous content learning, and a series of hands-on workshops (2) a STEM immersion experience at NASA Armstrong Flight Research Center's B703 science research aircraft facility in Palmdale, California, and (3) ongoing participation in the AAA community of practice (CoP) connecting participants with astrophysics and planetary science Subject Matter Experts (SMEs). The SETI Institute (SI) is partnering with school districts in Santa Clara and Los Angeles Counties during the AAA program's "incubation" period, calendar years 2016 through 2018. AAAs will be selected by the school districts based on criteria developed during spring 2016 focus group meetings led by the program's external evaluator, WestEd.. Teachers with 3+ years teaching experience who are assigned to teach at least 2 sections in any combination of the high school courses Physics (non-AP), Physics of the Universe (California integrated model), Astronomy, or Earth & Space Sciences are eligible. Partner districts will select at least 48 eligible applicants with SI oversight. WestEd will randomly assign selected AAAs to group A or group B. Group A will complete PD in January - June of 2017 and then participate in SOFIA science flights during fall 2017 (SOFIA Cycle 5). Group B will act as a control during the 2017-18 school year. Group B will then complete PD in January - June of 2018 and participate in SOFIA science flights in fall 2018 (Cycle 6). Under the current plan, opportunities for additional districts to seek AAA partnerships with SI will be offered in 2018 or 2019. A nominal two-week AAA curriculum component will be developed by SI for classroom delivery that will be aligned with selected California Draft Science Framework Disciplinary Core Ideas

  13. HTMT-class Latency Tolerant Parallel Architecture for Petaflops Scale Computation (United States)

    Sterling, Thomas; Bergman, Larry


    Computational Aero Sciences and other numeric intensive computation disciplines demand computing throughputs substantially greater than the Teraflops scale systems only now becoming available. The related fields of fluids, structures, thermal, combustion, and dynamic controls are among the interdisciplinary areas that in combination with sufficient resolution and advanced adaptive techniques may force performance requirements towards Petaflops. This will be especially true for compute intensive models such as Navier-Stokes are or when such system models are only part of a larger design optimization computation involving many design points. Yet recent experience with conventional MPP configurations comprising commodity processing and memory components has shown that larger scale frequently results in higher programming difficulty and lower system efficiency. While important advances in system software and algorithms techniques have had some impact on efficiency and programmability for certain classes of problems, in general it is unlikely that software alone will resolve the challenges to higher scalability. As in the past, future generations of high-end computers may require a combination of hardware architecture and system software advances to enable efficient operation at a Petaflops level. The NASA led HTMT project has engaged the talents of a broad interdisciplinary team to develop a new strategy in high-end system architecture to deliver petaflops scale computing in the 2004/5 timeframe. The Hybrid-Technology, MultiThreaded parallel computer architecture incorporates several advanced technologies in combination with an innovative dynamic adaptive scheduling mechanism to provide unprecedented performance and efficiency within practical constraints of cost, complexity, and power consumption. The emerging superconductor Rapid Single Flux Quantum electronics can operate at 100 GHz (the record is 770 GHz) and one percent of the power required by convention

  14. Computational Nanotechnology Molecular Electronics, Materials and Machines (United States)

    Srivastava, Deepak; Biegel, Bryan A. (Technical Monitor)


    This presentation covers research being performed on computational nanotechnology, carbon nanotubes and fullerenes at the NASA Ames Research Center. Topics cover include: nanomechanics of nanomaterials, nanotubes and composite materials, molecular electronics with nanotube junctions, kinky chemistry, and nanotechnology for solid-state quantum computers using fullerenes.

  15. NASA's Aerosol Sampling Experiment Summary (United States)

    Meyer, Marit E.


    In a spacecraft cabin environment, the size range of indoor aerosols is much larger and they persist longer than on Earth because they are not removed by gravitational settling. A previous aerosol experiment in 1991 documented that over 90 of the mass concentration of particles in the NASA Space Shuttle air were between 10 m and 100 m based on measurements with a multi-stage virtual impactor and a nephelometer (Liu et al. 1991). While the now-retired Space Shuttle had short duration missions (less than two weeks), the International Space Station (ISS) has been continually inhabited by astronauts for over a decade. High concentrations of inhalable particles on ISS are potentially responsible for crew complaints of respiratory and eye irritation and comments about 'dusty' air. Air filtration is the current control strategy for airborne particles on the ISS, and filtration modeling, performed for engineering and design validation of the air revitalization system in ISS, predicted that PM requirements would be met. However, aerosol monitoring has never been performed on the ISS to verify PM levels. A flight experiment is in preparation which will provide data on particulate matter in ISS ambient air. Particles will be collected with a thermophoretic sampler as well as with passive samplers which will extend the particle size range of sampling. Samples will be returned to Earth for chemical and microscopic analyses, providing the first aerosol data for ISS ambient air.

  16. NASA Standards Inform Comfortable Car Seats (United States)


    NASA developed standards, which included the neutral body posture (NBP), to specify ways to design flight systems that support human health and safety. Nissan Motor Company, with US offices in Franklin, Tennessee, turned to NASA's NBP research for the development of a new driver's seat. The 2013 Altima now features the new seat, and the company plans to incorporate the seats in upcoming vehicles.

  17. NASA Lunar and Meteorite Sample Disk Program (United States)

    Foxworth, Suzanne


    The Lunar and Meteorite Sample Disk Program is designed for K-12 classroom educators who work in K-12 schools, museums, libraries, or planetariums. Educators have to be certified to borrow the Lunar and Meteorite Sample Disks by attending a NASA Certification Workshop provided by a NASA Authorized Sample Disk Certifier.

  18. 75 FR 59747 - NASA Advisory Council; Meeting. (United States)


    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (10-113)] NASA Advisory Council; Meeting. AGENCY: National Aeronautics and Space Administration. ACTION: Notice of meeting. SUMMARY: In accordance... Space Administration announces a meeting of the NASA Advisory Council. DATES: Wednesday, October 6, 2010...

  19. NASA directives master list and index (United States)


    This handbook sets forth in two parts, Master List of Management Directives and Index to NASA Management Directives, the following information for the guidance of users of the NASA Management Directives System. Chapter 1 contains introductory information material on how to use this handbook. Chapter 2 is a complete master list of agencywide management directives, describing each directive by type, number, effective date, expiration date, title, and organization code of the office responsible for the directive. Chapter 3 includes a consolidated numerical list of all delegations of authority and a breakdown of such delegation by the office or center to which special authority is assigned. Chapter 4 sets forth a consolidated list of all NASA handbooks (NHB's) and important footnotes covering the control and ordering of such documents. Chapter 5 is a consolidated list of NASA management directives applicable to the Jet Propulsion Laboratory. Chapter 6 is a consolidated list of NASA regulations published in the Code of Federal Regulations. Chapter 7 is a consolidated list of NASA regulations published in Title 14 of the Code of Federal Regulations. Complementary manuals to the NASA Management Directives System are described in Chapter 8. The second part contains an in depth alphabetical index to all NASA management directives other than handbooks, most of which are indexed by titles only.

  20. NASA/Air Force Cost Model: NAFCOM (United States)

    Winn, Sharon D.; Hamcher, John W. (Technical Monitor)


    The NASA/Air Force Cost Model (NAFCOM) is a parametric estimating tool for space hardware. It is based on historical NASA and Air Force space projects and is primarily used in the very early phases of a development project. NAFCOM can be used at the subsystem or component levels.

  1. NASA Langley Research Center outreach in astronautical education (United States)

    Duberg, J. E.


    The Langley Research Center has traditionally maintained an active relationship with the academic community, especially at the graduate level, to promote the Center's research program and to make graduate education available to its staff. Two new institutes at the Center - the Joint Institute for Acoustics and Flight Sciences, and the Institute for Computer Applications - are discussed. Both provide for research activity at the Center by university faculties. The American Society of Engineering Education Summer Faculty Fellowship Program and the NASA-NRC Postdoctoral Resident Research Associateship Program are also discussed.

  2. [Activities of Research Institute for Advanced Computer Science (United States)

    Gross, Anthony R. (Technical Monitor); Leiner, Barry M.


    The Research Institute for Advanced Computer Science (RIACS) carries out basic research and technology development in computer science, in support of the National Aeronautics and Space Administrations missions. RIACS is located at the NASA Ames Research Center, Moffett Field, California. RIACS research focuses on the three cornerstones of IT research necessary to meet the future challenges of NASA missions: 1. Automated Reasoning for Autonomous Systems Techniques are being developed enabling spacecraft that will be self-guiding and self-correcting to the extent that they will require little or no human intervention. Such craft will be equipped to independently solve problems as they arise, and fulfill their missions with minimum direction from Earth. 2. Human-Centered Computing Many NASA missions require synergy between humans and computers, with sophisticated computational aids amplifying human cognitive and perceptual abilities. 3. High Performance Computing and Networking Advances in the performance of computing and networking continue to have major impact on a variety of NASA endeavors, ranging from modeling and simulation to analysis of large scientific datasets to collaborative engineering, planning and execution. In addition, RIACS collaborates with NASA scientists to apply IT research to a variety of NASA application domains. RIACS also engages in other activities, such as workshops, seminars, visiting scientist programs and student summer programs, designed to encourage and facilitate collaboration between the university and NASA IT research communities.

  3. NASA's Bio-Inspired Acoustic Absorber Concept (United States)

    Koch, L. Danielle


    Transportation noise pollutes our worlds cities, suburbs, parks, and wilderness areas. NASAs fundamental research in aviation acoustics is helping to find innovative solutions to this multifaceted problem. NASA is learning from nature to develop the next generation of quiet aircraft.The number of road vehicles and airplanes has roughly tripled since the 1960s. Transportation noise is audible in nearly all the counties across the US. Noise can damage your hearing, raise your heart rate and blood pressure, disrupt your sleep, and make communication difficult. Noise pollution threatens wildlife when it prevents animals from hearing prey, predators, and mates. Noise regulations help drive industry to develop quieter aircraft. Noise standards for aircraft have been developed by the International Civil Aviation Organization and adopted by the US Federal Aviation Administration. The US National Park Service is working with the Federal Aviation Administration to try to balance the demand for access to the parks and wilderness areas with preservation of the natural soundscape. NASA is helping by conceptualizing quieter, more efficient aircraft of the future and performing the fundamental research to make these concepts a reality someday. Recently, NASA has developed synthetic structures that can absorb sound well over a wide frequency range, and particularly below 1000 Hz, and which mimic the acoustic performance of bundles of natural reeds. We are adapting these structures to control noise on aircraft, and spacecraft. This technology might be used in many other industrial or architectural applications where acoustic absorbers have tight constraints on weight and thickness, and may be exposed to high temperatures or liquids. Information about this technology is being made available through reports and presentations available through the NASA Technical Report Server, Organizations who would like to collaborate with NASA or commercialize NASAs technology

  4. NASA's Contribution to Global Space Geodesy Networks (United States)

    Bosworth, John M.


    The NASA Space Geodesy program continues to be a major provider of space geodetic data for the international earth science community. NASA operates high performance Satellite Laser Ranging (SLR), Very Long Baseline Interferometry (VLBI) and Global Positioning System (GPS) ground receivers at well over 30 locations around the world and works in close cooperation with space geodetic observatories around the world. NASA has also always been at the forefront in the quest for technical improvement and innovation in the space geodesy technologies to make them even more productive, accurate and economical. This presentation will highlight the current status of NASA's networks; the plans for partnerships with international groups in the southern hemisphere to improve the geographic distribution of space geodesy sites and the status of the technological improvements in SLR and VLBI that will support the new scientific thrusts proposed by interdisciplinary earth scientists. In addition, the expanding role of the NASA Space geodesy data archive, the CDDIS will be described.

  5. Current and Future Parts Management at NASA (United States)

    Sampson, Michael J.


    This presentation provides a high level view of current and future electronic parts management at NASA. It describes a current perspective of the new human space flight direction that NASA is beginning to take and how that could influence parts management in the future. It provides an overview of current NASA electronic parts policy and how that is implemented at the NASA flight Centers. It also describes some of the technical challenges that lie ahead and suggests approaches for their mitigation. These challenges include: advanced packaging, obsolescence and counterfeits, the global supply chain and Commercial Crew, a new direction by which NASA will utilize commercial launch vehicles to get astronauts to the International Space Station.

  6. Data Acquistion Controllers and Computers that can Endure, Operate and Survive Cryogenic Temperatures, Phase I (United States)

    National Aeronautics and Space Administration — Current and future NASA exploration flight missions require Avionics systems, Computers, Controllers and Data processing units that are capable of enduring extreme...

  7. Non-Intrusive Computational Method and Uncertainty Quantification Tool for isolator operability calculations, Phase I (United States)

    National Aeronautics and Space Administration — Computational fluid dynamics (CFD) simulations are extensively used by NASA for hypersonic aerothermodynamics calculations. The physical models used in CFD codes and...

  8. US QCD computational performance studies with PERI

    International Nuclear Information System (INIS)

    Zhang, Y; Fowler, R; Huck, K; Malony, A; Porterfield, A; Reed, D; Shende, S; Taylor, V; Wu, X


    We report on some of the interactions between two SciDAC projects: The National Computational Infrastructure for Lattice Gauge Theory (USQCD), and the Performance Engineering Research Institute (PERI). Many modern scientific programs consistently report the need for faster computational resources to maintain global competitiveness. However, as the size and complexity of emerging high end computing (HEC) systems continue to rise, achieving good performance on such systems is becoming ever more challenging. In order to take full advantage of the resources, it is crucial to understand the characteristics of relevant scientific applications and the systems these applications are running on. Using tools developed under PERI and by other performance measurement researchers, we studied the performance of two applications, MILC and Chroma, on several high performance computing systems at DOE laboratories. In the case of Chroma, we discuss how the use of C++ and modern software engineering and programming methods are driving the evolution of performance tools

  9. Optical Computers and Space Technology (United States)

    Abdeldayem, Hossin A.; Frazier, Donald O.; Penn, Benjamin; Paley, Mark S.; Witherow, William K.; Banks, Curtis; Hicks, Rosilen; Shields, Angela


    The rapidly increasing demand for greater speed and efficiency on the information superhighway requires significant improvements over conventional electronic logic circuits. Optical interconnections and optical integrated circuits are strong candidates to provide the way out of the extreme limitations imposed on the growth of speed and complexity of nowadays computations by the conventional electronic logic circuits. The new optical technology has increased the demand for high quality optical materials. NASA's recent involvement in processing optical materials in space has demonstrated that a new and unique class of high quality optical materials are processible in a microgravity environment. Microgravity processing can induce improved orders in these materials and could have a significant impact on the development of optical computers. We will discuss NASA's role in processing these materials and report on some of the associated nonlinear optical properties which are quite useful for optical computers technology.

  10. Overview of NASA Langley's Piezoelectric Ceramic Packaging Technology and Applications (United States)

    Bryant, Robert G.


    Over the past decade, NASA Langley Research Center (LaRC) has developed several actuator packaging concepts designed to enhance the performance of commercial electroactive ceramics. NASA LaRC focused on properly designed actuator and sensor packaging for the following reasons, increased durability, protect the working material from the environment, allow for proper mechanical and electrical contact, afford "ready to use" mechanisms that are scalable, and develop fabrication methodology applicable to any active material of the same physical class. It is more cost effective to enhance or tailor the performance of existing systems, through innovative packaging, than to develop, test and manufacture new materials. This approach led to the development of several solid state actuators that include THUNDER, the Macrofiber Composite or (MFC) and the Radial Field Diaphragm or (RFD). All these actuators are fabricated using standard materials and processes derived from earlier concepts. NASA s fabrication and packaging technology as yielded, piezoelectric actuators and sensors that are easy to implement, reliable, consistent in properties, and of lower cost to manufacture in quantity, than their predecessors (as evidenced by their continued commercial availability.) These piezoelectric actuators have helped foster new research and development in areas involving computational modeling, actuator specific refinements, and engineering system redesign which led to new applications for piezo-based devices that replace traditional systems currently in use.

  11. NASA/CARES dual-use ceramic technology spinoff applications (United States)

    Powers, Lynn M.; Janosik, Lesley A.; Gyekenyesi, John P.; Nemeth, Noel N.


    NASA has developed software that enables American industry to establish the reliability and life of ceramic structures in a wide variety of 21st Century applications. Designing ceramic components to survive at higher temperatures than the capability of most metals and in severe loading environments involves the disciplines of statistics and fracture mechanics. Successful application of advanced ceramics material properties and the use of a probabilistic brittle material design methodology. The NASA program, known as CARES (Ceramics Analysis and Reliability Evaluation of Structures), is a comprehensive general purpose design tool that predicts the probability of failure of a ceramic component as a function of its time in service. The latest version of this software, CARESALIFE, is coupled to several commercially available finite element analysis programs (ANSYS, MSC/NASTRAN, ABAQUS, COSMOS/N4, MARC), resulting in an advanced integrated design tool which is adapted to the computing environment of the user. The NASA-developed CARES software has been successfully used by industrial, government, and academic organizations to design and optimize ceramic components for many demanding applications. Industrial sectors impacted by this program include aerospace, automotive, electronic, medical, and energy applications. Dual-use applications include engine components, graphite and ceramic high temperature valves, TV picture tubes, ceramic bearings, electronic chips, glass building panels, infrared windows, radiant heater tubes, heat exchangers, and artificial hips, knee caps, and teeth.

  12. NASA's Heliophysics Theory Program - Accomplishments in Life Cycle Ending 2011 (United States)

    Grebowsky, J.


    NASA's Heliophysics Theory Program (HTP) is now into a new triennial cycle of funded research, with new research awards beginning in 2011. The theory program was established by the (former) Solar Terrestrial Division in 1980 to redress a weakness of support in the theory area. It has been a successful, evolving scientific program with long-term funding of relatively large "critical mass groups" pursuing theory and modeling on a scale larger than that available within the limits of traditional NASA Supporting Research and Technology (SR&T) awards. The results of the last 3 year funding cycle, just ended, contributed to ever more cutting edge theoretical understanding of all parts of the Sun-Earth Connection chain. Advances ranged from the core of the Sun out into the corona, through the solar wind into the Earth's magnetosphere and down to the ionosphere and lower atmosphere, also contributing to understanding the environments of other solar system bodies. The HTP contributions were not isolated findings but continued to contribute to the planning and implementation of NASA spacecraft missions and to the development of the predictive computer models that have become the workhorses for analyzing satellite and ground-based measurements.

  13. NSI customer service representatives and user support office: NASA Science Internet (United States)


    The NASA Science Internet, (NSI) was established in 1987 to provide NASA's Offices of Space Science and Applications (OSSA) missions with transparent wide-area data connectivity to NASA's researchers, computational resources, and databases. The NSI Office at NASA/Ames Research Center has the lead responsibility for implementing a total, open networking program to serve the OSSA community. NSI is a full-service communications provider whose services include science network planning, network engineering, applications development, network operations, and network information center/user support services. NSI's mission is to provide reliable high-speed communications to the NASA science community. To this end, the NSI Office manages and operates the NASA Science Internet, a multiprotocol network currently supporting both DECnet and TCP/IP protocols. NSI utilizes state-of-the-art network technology to meet its customers' requirements. THe NASA Science Internet interconnects with other national networks including the National Science Foundation's NSFNET, the Department of Energy's ESnet, and the Department of Defense's MILNET. NSI also has international connections to Japan, Australia, New Zealand, Chile, and several European countries. NSI cooperates with other government agencies as well as academic and commercial organizations to implement networking technologies which foster interoperability, improve reliability and performance, increase security and control, and expedite migration to the OSI protocols.

  14. Optical Computing


    Woods, Damien; Naughton, Thomas J.


    We consider optical computers that encode data using images and compute by transforming such images. We give an overview of a number of such optical computing architectures, including descriptions of the type of hardware commonly used in optical computing, as well as some of the computational efficiencies of optical devices. We go on to discuss optical computing from the point of view of computational complexity theory, with the aim of putting some old, and some very recent, re...

  15. Experiences From NASA/Langley's DMSS Project (United States)


    There is a trend in institutions with high performance computing and data management requirements to explore mass storage systems with peripherals directly attached to a high speed network. The Distributed Mass Storage System (DMSS) Project at the NASA Langley Research Center (LaRC) has placed such a system into production use. This paper will present the experiences, both good and bad, we have had with this system since putting it into production usage. The system is comprised of: 1) National Storage Laboratory (NSL)/UniTree 2.1, 2) IBM 9570 HIPPI attached disk arrays (both RAID 3 and RAID 5), 3) IBM RS6000 server, 4) HIPPI/IPI3 third party transfers between the disk array systems and the supercomputer clients, a CRAY Y-MP and a CRAY 2, 5) a "warm spare" file server, 6) transition software to convert from CRAY's Data Migration Facility (DMF) based system to DMSS, 7) an NSC PS32 HIPPI switch, and 8) a STK 4490 robotic library accessed from the IBM RS6000 block mux interface. This paper will cover: the performance of the DMSS in the following areas: file transfer rates, migration and recall, and file manipulation (listing, deleting, etc.); the appropriateness of a workstation class of file server for NSL/UniTree with LaRC's present storage requirements in mind the role of the third party transfers between the supercomputers and the DMSS disk array systems in DMSS; a detailed comparison (both in performance and functionality) between the DMF and DMSS systems LaRC's enhancements to the NSL/UniTree system administration environment the mechanism for DMSS to provide file server redundancy the statistics on the availability of DMSS the design and experiences with the locally developed transparent transition software which allowed us to make over 1.5 million DMF files available to NSL/UniTree with minimal system outage

  16. The NASA Severe Thunderstorm Observations and Regional Modeling (NASA STORM) Project (United States)

    Schultz, Christopher J.; Gatlin, Patrick N.; Lang, Timothy J.; Srikishen, Jayanthi; Case, Jonathan L.; Molthan, Andrew L.; Zavodsky, Bradley T.; Bailey, Jeffrey; Blakeslee, Richard J.; Jedlovec, Gary J.


    The NASA Severe Storm Thunderstorm Observations and Regional Modeling(NASA STORM) project enhanced NASA’s severe weather research capabilities, building upon existing Earth Science expertise at NASA Marshall Space Flight Center (MSFC). During this project, MSFC extended NASA’s ground-based lightning detection capacity to include a readily deployable lightning mapping array (LMA). NASA STORM also enabled NASA’s Short-term Prediction and Research Transition (SPoRT) to add convection allowing ensemble modeling to its portfolio of regional numerical weather prediction (NWP) capabilities. As a part of NASA STORM, MSFC developed new open-source capabilities for analyzing and displaying weather radar observations integrated from both research and operational networks. These accomplishments enabled by NASA STORM are a step towards enhancing NASA’s capabilities for studying severe weather and positions them for any future NASA related severe storm field campaigns.

  17. NASA Tech Briefs, January 2006 (United States)


    Topics covered include: Semiautonomous Avionics-and-Sensors System for a UAV; Biomimetic/Optical Sensors for Detecting Bacterial Species; System Would Detect Foreign-Object Damage in Turbofan Engine; Detection of Water Hazards for Autonomous Robotic Vehicles; Fuel Cells Utilizing Oxygen From Air at Low Pressures; Hybrid Ion-Detector/Data-Acquisition System for a TOF-MS; Spontaneous-Desorption Ionizer for a TOF-MS; Equipment for On-Wafer Testing From 220 to 325 GHz; Computing Isentropic Flow Properties of Air/R-134a Mixtures; Java Mission Evaluation Workstation System; Using a Quadtree Algorithm To Assess Line of Sight; Software for Automated Generation of Cartesian Meshes; Optics Program Modified for Multithreaded Parallel Computing; Programs for Testing Processor-in-Memory Computing Systems; PVM Enhancement for Beowulf Multiple-Processor Nodes; Ion-Exclusion Chromatography for Analyzing Organics in Water; Selective Plasma Deposition of Fluorocarbon Films on SAMs; Water-Based Pressure-Sensitive Paints; System Finds Horizontal Location of Center of Gravity; Predicting Tail Buffet Loads of a Fighter Airplane; Water Containment Systems for Testing High-Speed Flywheels; Vapor-Compression Heat Pumps for Operation Aboard Spacecraft; Multistage Electrophoretic Separators; Recovering Residual Xenon Propellant for an Ion Propulsion System; Automated Solvent Seaming of Large Polyimide Membranes; Manufacturing Precise, Lightweight Paraboloidal Mirrors; Analysis of Membrane Lipids of Airborne Micro-Organisms; Noninvasive Diagnosis of Coronary Artery Disease Using 12-Lead High-Frequency Electrocardiograms; Dual-Laser-Pulse Ignition; Enhanced-Contrast Viewing of White-Hot Objects in Furnaces; Electrically Tunable Terahertz Quantum-Cascade Lasers; Few-Mode Whispering-Gallery-Mode Resonators; Conflict-Aware Scheduling Algorithm; and Real-Time Diagnosis of Faults Using a Bank of Kalman Filters.

  18. Eclipse 2017: Through the Eyes of NASA (United States)

    Mayo, Louis; NASA Heliophysics Education Consortium


    The August 21, 2017 total solar eclipse across America was, by all accounts, the biggest science education program ever carried out by NASA, significantly larger than the Curiosity Mars landing and the New Horizons Pluto flyby. Initial accounting estimates over two billion people reached and website hits exceeding five billion. The NASA Science Mission Directorate spent over two years planning and developing this enormous public education program, establishing over 30 official NASA sites along the path of totality, providing imagery from 11 NASA space assets, two high altitude aircraft, and over 50 high altitude balloons. In addition, a special four focal plane ground based solar telescope was developed in partnership with Lunt Solar Systems that observed and processed the eclipse in 6K resolution. NASA EDGE and NASA TV broadcasts during the entirity of totality across the country reached hundreds of millions, world wide.This talk will discuss NASA's strategy, results, and lessons learned; and preview some of the big events we plan to feature in the near future.

  19. Defining an Open Source Strategy for NASA (United States)

    Mattmann, C. A.; Crichton, D. J.; Lindsay, F.; Berrick, S. W.; Marshall, J. J.; Downs, R. R.


    Over the course of the past year, we have worked to help frame a strategy for NASA and open source software. This includes defining information processes to understand open source licensing, attribution, commerciality, redistribution, communities, architectures, and interactions within the agency. Specifically we held a training session at the NASA Earth Science Data Systems Working Group meeting in Open Source software as it relates to the NASA Earth Science data systems enterprise, including EOSDIS, the Distributed Active Archive Centers (DAACs), ACCESS proposals, and the MEASURES communities, and efforts to understand how open source software can be both consumed and produced within that ecosystem. In addition, we presented at the 1st NASA Open Source Summit (OSS) and helped to define an agency-level strategy, a set of recommendations and paths forward for how to identify healthy open source communities, how to deal with issues such as contributions originating from other agencies, and how to search out talent with the right skills to develop software for NASA in the modern age. This talk will review our current recommendations for open source at NASA, and will cover the set of thirteen recommendations output from the NASA Open Source Summit and discuss some of their implications for the agency.

  20. Batteries at NASA - Today and Beyond (United States)

    Reid, Concha M.


    NASA uses batteries for virtually all of its space missions. Batteries can be bulky and heavy, and some chemistries are more prone to safety issues than others. To meet NASA's needs for safe, lightweight, compact and reliable batteries, scientists and engineers at NASA develop advanced battery technologies that are suitable for space applications and that can satisfy these multiple objectives. Many times, these objectives compete with one another, as the demand for more and more energy in smaller packages dictates that we use higher energy chemistries that are also more energetic by nature. NASA partners with companies and universities, like Xavier University of Louisiana, to pool our collective knowledge and discover innovative technical solutions to these challenges. This talk will discuss a little about NASA's use of batteries and why NASA seeks more advanced chemistries. A short primer on battery chemistries and their chemical reactions is included. Finally, the talk will touch on how the work under the Solid High Energy Lithium Battery (SHELiB) grant to develop solid lithium-ion conducting electrolytes and solid-state batteries can contribute to NASA's mission.

  1. NASA OSMA NDE Program Additive Manufacturing Foundational Effort (United States)

    Waller, Jess; Walker, James; Burke, Eric; Wells, Douglas; Nichols, Charles


    NASA is providing key leadership in an international effort linking NASA and non-NASA resources to speed adoption of additive manufacturing (AM) to meet NASA's mission goals. Participants include industry, NASA's space partners, other government agencies, standards organizations and academia. Nondestructive Evaluation (NDE) is identified as a universal need for all aspects of additive manufacturing.

  2. 76 FR 41824 - NASA Advisory Council; Science Committee; Meeting (United States)


    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (11-068)] NASA Advisory Council; Science... Aeronautics and Space Administration (NASA) announces a meeting of the Science Committee of the NASA Advisory..., 2011, 7:30 a.m. to 11:30 a.m., Local Time. ADDRESSES: NASA Ames Research Center, NASA Ames Conference...

  3. 14 CFR 1206.401 - Location of NASA Information Centers. (United States)


    ... Locator (URL) addresses are as follows: (1) (HQ); (2) (ARC); (3) (DFRC); (4) (GRC); (5) (GSFC)

  4. Science@NASA: Direct to People! (United States)

    Koczor, Ronald J.; Adams, Mitzi; Gallagher, Dennis; Whitaker, Ann (Technical Monitor)


    Science@NASA is a science communication effort sponsored by NASA's Marshall Space Flight Center. It is the result of a four year research project between Marshall, the University of Florida College of Journalism and Communications and the internet communications company, Bishop Web Works. The goals of Science@NASA are to inform, inspire, and involve people in the excitement of NASA science by bringing that science directly to them. We stress not only the reporting of the facts of a particular topic, but also the context and importance of the research. Science@NASA involves several levels of activity from academic communications research to production of content for 6 websites, in an integrated process involving all phases of production. A Science Communications Roundtable Process is in place that includes scientists, managers, writers, editors, and Web technical experts. The close connection between the scientists and the writers/editors assures a high level of scientific accuracy in the finished products. The websites each have unique characters and are aimed at different audience segments: 1. (SNG) Carries stories featuring various aspects of NASA science activity. The site carries 2 or 3 new stories each week in written and audio formats for science-attentive adults. 2. Features stories from SNG that are recast for a high school level audience. J-Track and J-Pass applets for tracking satellites are our most popular product. 3. http://kids. This is the Nursemaids site and is aimed at a middle school audience. The NASAKids Club is a new feature at the site. 4. . This site features lesson plans and classroom activities for educators centered around one of the science stories carried on SNG. 5. This site gives the status of solar activity and its interactions with the Earth's ionosphere and magnetosphere.

  5. Space astronomy and astrophysics program by NASA (United States)

    Hertz, Paul L.


    The National Aeronautics and Space Administration recently released the NASA Strategic Plan 20141, and the NASA Science Mission Directorate released the NASA 2014 Science Plan3. These strategic documents establish NASA's astrophysics strategic objectives to be (i) to discover how the universe works, (ii) to explore how it began and evolved, and (iii) to search for life on planets around other stars. The multidisciplinary nature of astrophysics makes it imperative to strive for a balanced science and technology portfolio, both in terms of science goals addressed and in missions to address these goals. NASA uses the prioritized recommendations and decision rules of the National Research Council's 2010 decadal survey in astronomy and astrophysics2 to set the priorities for its investments. The NASA Astrophysics Division has laid out its strategy for advancing the priorities of the decadal survey in its Astrophysics 2012 Implementation Plan4. With substantial input from the astrophysics community, the NASA Advisory Council's Astrophysics Subcommittee has developed an astrophysics visionary roadmap, Enduring Quests, Daring Visions5, to examine possible longer-term futures. The successful development of the James Webb Space Telescope leading to a 2018 launch is an Agency priority. One important goal of the Astrophysics Division is to begin a strategic mission, subject to the availability of funds, which follows from the 2010 decadal survey and is launched after the James Webb Space Telescope. NASA is studying a Wide Field Infrared Survey Telescope as its next large astrophysics mission. NASA is also planning to partner with other space agencies on their missions as well as increase the cadence of smaller Principal Investigator led, competitively selected Astrophysics Explorers missions.

  6. NASA Tech Briefs, September 2004 (United States)


    Topics covered include: Brazing SiC/SiC Composites to Metals; Composite-Material Tanks with Chemically Resistant Liners; Thermally Conductive Metal-Tube/Carbon-Composite Joints; Improved BN Coatings on SiC Fibers in SiC Matrices; Iterative Demodulation and Decoding of Non-Square QAM; Measuring Radiation Patterns of Reconfigurable Patch Antennas on Wafers; Low-Cutoff, High-Pass Digital Filtering of Neural Signals; Further Improvement in 3DGRAPE; Ground Support Software for Spaceborne Instrumentation; MER SPICE Interface; Simulating Operation of a Planetary Rover; Analyzing Contents of a Computer Cache; Discrepancy Reporting Management System; Silicone-Rubber Microvalves Actuated by Paraffin; Hydraulic Apparatus for Mechanical Testing of Nuts; Heat Control via Torque Control in Friction Stir Welding; Manufacturing High-Quality Carbon Nanotubes at Lower Cost; Setup for Visual Observation of Carbon-Nanotube Arc Process; Solution Preserves Nucleic Acids in Body-Fluid Specimens; Oligodeoxynucleotide Probes for Detecting Intact Cells; Microwave-Spectral Signatures Would Reveal Concealed Objects; Digital Averaging Phasemeter for Heterodyne Interferometry; Optoelectronic Instrument Monitors pH in a Culture Medium; Imaging of gamma-Irradiated Regions of a Crystal; Photodiode-Based, Passive Ultraviolet Dosimeters; Discrete Wavelength-Locked External Cavity Laser; Flexible Shields for Protecting Spacecraft Against Debris; Part 2 of a Computational Study of a Drop-Laden Mixing Layer; Controllable Curved Mirrors Made from Single-Layer EAP Films; and Demonstration of a Pyrotechnic Bolt-Retractor System.

  7. Precision Departure Release Capability (PDRC): NASA to FAA Research Transition (United States)

    Engelland, Shawn; Davis, Thomas J.


    After takeoff, aircraft must merge into en route (Center) airspace traffic flows which may be subject to constraints that create localized demand-capacity imbalances. When demand exceeds capacity, Traffic Management Coordinators (TMCs) and Frontline Managers (FLMs) often use tactical departure scheduling to manage the flow of departures into the constrained Center traffic flow. Tactical departure scheduling usually involves use of a Call for Release (CFR) procedure wherein the Tower must call the Center to coordinate a release time prior to allowing the flight to depart. In present-day operations release times are computed by the Center Traffic Management Advisor (TMA) decision support tool based upon manual estimates of aircraft ready time verbally communicated from the Tower to the Center. The TMA-computed release time is verbally communicated from the Center back to the Tower where it is relayed to the Local controller as a release window that is typically three minutes wide. The Local controller will manage the departure to meet the coordinated release time window. Manual ready time prediction and verbal release time coordination are labor intensive and prone to inaccuracy. Also, use of release time windows adds uncertainty to the tactical departure process. Analysis of more than one million flights from January 2011 indicates that a significant number of tactically scheduled aircraft missed their en route slot due to ready time prediction uncertainty. Uncertainty in ready time estimates may result in missed opportunities to merge into constrained en route flows and lead to lost throughput. Next Generation Air Transportation System plans call for development of Tower automation systems capable of computing surface trajectory-based ready time estimates. NASA has developed the Precision Departure Release Capability (PDRC) concept that improves tactical departure scheduling by automatically communicating surface trajectory-based ready time predictions and

  8. NASA program planning on nuclear electric propulsion

    International Nuclear Information System (INIS)

    Bennett, G.L.; Miller, T.J.


    As part of the focused technology planning for future NASA space science and exploration missions, NASA has initiated a focused technology program to develop the technologies for nuclear electric propulsion and nuclear thermal propulsion. Beginning in 1990, NASA began a series of interagency planning workshops and meetings to identify key technologies and program priorities for nuclear propulsion. The high-priority, near-term technologies that must be developed to make NEP operational for space exploration include scaling thrusters to higher power, developing high-temperature power processing units, and developing high power, low-mass, long-lived nuclear reactors. 28 refs

  9. NASA's Interests in Bioregenerative Life Support (United States)

    Wheeler, Raymond M.


    NASA and other space agencies and around the world have had long-standing interest in using plants and biological approaches for regenerative life support. In particular, NASA's Kennedy Space Center, has conducted research in this area for over 30 years. One unique aspect to this testing was NASA's Biomass Production Chamber, which had four vertically stacked growing shelves inside a large, 113 cubic meter chamber. This was perhaps one of the first working examples of a vertical agriculture system in the world. A review of some of this research along with some of the more salient findings will be presented.

  10. In Brief: NASA Advisory Council structure (United States)

    Showstack, Randy


    NASA Administrator Charles Bolden has added four new committees to the NASA Advisory Council in the areas of commercial space, education and public outreach, information technology infrastructure, and technology and innovation, the agency announced on 2 November. Other committees are in the areas of aeronautics; audit, finance, and analysis; exploration; science; and space operations. The council, which provides advice and makes recommendations to the administrator about agency programs, policies, plans, financial controls, and other matters, holds its next meeting on 18-19 February 2010. For more information, visit

  11. NASA Armstrong's Approach to Store Separation Analysis (United States)

    Acuff, Chris; Bui, Trong


    Presentation will an overview of NASA Armstrong's store separation capabilities and how they have been applied recently. Objective of the presentation is to brief Generation Orbit and other potential partners on NASA Armstrong's store separation capabilities. It will include discussions on the use of NAVSEP and Cart3D, as well as some Python scripting work to perform the analysis, and a short overview of this methodology applied to the Towed Glider Air Launch System. Collaboration with potential customers in this area could lead to funding for the further development of a store separation capability at NASA Armstrong, which would boost the portfolio of engineering expertise at the center.

  12. Climate Modeling Computing Needs Assessment (United States)

    Petraska, K. E.; McCabe, J. D.


    This paper discusses early findings of an assessment of computing needs for NASA science, engineering and flight communities. The purpose of this assessment is to document a comprehensive set of computing needs that will allow us to better evaluate whether our computing assets are adequately structured to meet evolving demand. The early results are interesting, already pointing out improvements we can make today to get more out of the computing capacity we have, as well as potential game changing innovations for the future in how we apply information technology to science computing. Our objective is to learn how to leverage our resources in the best way possible to do more science for less money. Our approach in this assessment is threefold: Development of use case studies for science workflows; Creating a taxonomy and structure for describing science computing requirements; and characterizing agency computing, analysis, and visualization resources. As projects evolve, science data sets increase in a number of ways: in size, scope, timelines, complexity, and fidelity. Generating, processing, moving, and analyzing these data sets places distinct and discernable requirements on underlying computing, analysis, storage, and visualization systems. The initial focus group for this assessment is the Earth Science modeling community within NASA's Science Mission Directorate (SMD). As the assessment evolves, this focus will expand to other science communities across the agency. We will discuss our use cases, our framework for requirements and our characterizations, as well as our interview process, what we learned and how we plan to improve our materials after using them in the first round of interviews in the Earth Science Modeling community. We will describe our plans for how to expand this assessment, first into the Earth Science data analysis and remote sensing communities, and then throughout the full community of science, engineering and flight at NASA.

  13. NASA Tech Briefs, June 2014 (United States)


    Topics include: Real-Time Minimization of Tracking Error for Aircraft Systems; Detecting an Extreme Minority Class in Hyperspectral Data Using Machine Learning; KSC Spaceport Weather Data Archive; Visualizing Acquisition, Processing, and Network Statistics Through Database Queries; Simulating Data Flow via Multiple Secure Connections; Systems and Services for Near-Real-Time Web Access to NPP Data; CCSDS Telemetry Decoder VHDL Core; Thermal Response of a High-Power Switch to Short Pulses; Solar Panel and System Design to Reduce Heating and Optimize Corridors for Lower-Risk Planetary Aerobraking; Low-Cost, Very Large Diamond-Turned Metal Mirror; Very-High-Load-Capacity Air Bearing Spindle for Large Diamond Turning Machines; Elevated-Temperature, Highly Emissive Coating for Energy Dissipation of Large Surfaces; Catalyst for Treatment and Control of Post-Combustion Emissions; Thermally Activated Crack Healing Mechanism for Metallic Materials; Subsurface Imaging of Nanocomposites; Self-Healing Glass Sealants for Solid Oxide Fuel Cells and Electrolyzer Cells; Micromachined Thermopile Arrays with Novel Thermo - electric Materials; Low-Cost, High-Performance MMOD Shielding; Head-Mounted Display Latency Measurement Rig; Workspace-Safe Operation of a Force- or Impedance-Controlled Robot; Cryogenic Mixing Pump with No Moving Parts; Seal Design Feature for Redundancy Verification; Dexterous Humanoid Robot; Tethered Vehicle Control and Tracking System; Lunar Organic Waste Reformer; Digital Laser Frequency Stabilization via Cavity Locking Employing Low-Frequency Direct Modulation; Deep UV Discharge Lamps in Capillary Quartz Tubes with Light Output Coupled to an Optical Fiber; Speech Acquisition and Automatic Speech Recognition for Integrated Spacesuit Audio Systems, Version II; Advanced Sensor Technology for Algal Biotechnology; High-Speed Spectral Mapper; "Ascent - Commemorating Shuttle" - A NASA Film and Multimedia Project DVD; High-Pressure, Reduced-Kinetics Mechanism for N

  14. NASA CYGNSS Tropical Cyclone Mission (United States)

    Ruf, Chris; Atlas, Robert; Majumdar, Sharan; Ettammal, Suhas; Waliser, Duane


    The NASA Cyclone Global Navigation Satellite System (CYGNSS) mission consists of a constellation of eight microsatellites that were launched into low-Earth orbit on 15 December 2016. Each observatory carries a four-channel bistatic scatterometer receiver to measure near surface wind speed over the ocean. The transmitter half of the scatterometer is the constellation of GPS satellites. CYGNSS is designed to address the inadequacy in observations of the inner core of tropical cyclones (TCs) that result from two causes: 1) much of the TC inner core is obscured from conventional remote sensing instruments by intense precipitation in the eye wall and inner rain bands; and 2) the rapidly evolving (genesis and intensification) stages of the TC life cycle are poorly sampled in time by conventional polar-orbiting, wide-swath surface wind imagers. The retrieval of wind speed by CYGNSS in the presence of heavy precipitation is possible due to the long operating wavelength used by GPS (19 cm), at which scattering and attenuation by rain are negligible. Improved temporal sampling by CYGNSS is possible due to the use of eight spacecraft with 4 scatterometer channels on each one. Median and mean revisit times everywhere in the tropics are 3 and 7 hours, respectively. Wind speed referenced to 10m height above the ocean surface is retrieved from CYGNSS measurements of bistatic radar cross section in a manner roughly analogous to that of conventional ocean wind scatterometers. The technique has been demonstrated previously from space by the UK-DMC and UK-TDS missions. Wind speed is retrieved with 25 km spatial resolution and an uncertainty of 2 m/s at low wind speeds and 10% at wind speeds above 20 m/s. Extensive simulation studies conducted prior to launch indicate that there will be a significant positive impact on TC forecast skill for both track and intensity with CYGNSS measurements assimilated into HWRF numerical forecasts. Simulations of CYGNSS spatial and temporal sampling

  15. World Wind: NASA's Virtual Globe (United States)

    Hogan, P.


    infrastructure. The open-source community plays a crucial role in advancing virtual globe technology. This world community identifies, tracks and resolves technical problems, suggests new features and source code modifications, and often provides high-resolution data sets and other types of user-generated content, all while extending the functionality of virtual globe technology. NASA World Wind is one example of open source virtual globe technology that provides the world with the ability to build any desired functionality and make any desired data accessible.

  16. Data handling and visualization for NASA's science programs (United States)

    Bredekamp, Joseph H. (Editor)


    Advanced information systems capabilities are essential to conducting NASA's scientific research mission. Access to these capabilities is no longer a luxury for a select few within the science community, but rather an absolute necessity for carrying out scientific investigations. The dependence on high performance computing and networking, as well as ready and expedient access to science data, metadata, and analysis tools is the fundamental underpinning for the entire research endeavor. At the same time, advances in the whole range of information technologies continues on an almost explosive growth path, reaching beyond the research community to affect the population as a whole. Capitalizing on and exploiting these advances are critical to the continued success of space science investigations. NASA must remain abreast of developments in the field and strike an appropriate balance between being a smart buyer and a direct investor in the technology which serves its unique requirements. Another key theme deals with the need for the space and computer science communities to collaborate as partners to more fully realize the potential of information technology in the space science research environment.

  17. Software Accelerates Computing Time for Complex Math (United States)


    Ames Research Center awarded Newark, Delaware-based EM Photonics Inc. SBIR funding to utilize graphic processing unit (GPU) technology- traditionally used for computer video games-to develop high-computing software called CULA. The software gives users the ability to run complex algorithms on personal computers with greater speed. As a result of the NASA collaboration, the number of employees at the company has increased 10 percent.

  18. Computer group

    International Nuclear Information System (INIS)

    Bauer, H.; Black, I.; Heusler, A.; Hoeptner, G.; Krafft, F.; Lang, R.; Moellenkamp, R.; Mueller, W.; Mueller, W.F.; Schati, C.; Schmidt, A.; Schwind, D.; Weber, G.


    The computer groups has been reorganized to take charge for the general purpose computers DEC10 and VAX and the computer network (Dataswitch, DECnet, IBM - connections to GSI and IPP, preparation for Datex-P). (orig.)

  19. Computer Engineers. (United States)

    Moncarz, Roger


    Looks at computer engineers and describes their job, employment outlook, earnings, and training and qualifications. Provides a list of resources related to computer engineering careers and the computer industry. (JOW)

  20. Guidelines for developing NASA (National Aeronautics and Space Administration) ADP security risk management plans (United States)

    Tompkins, F. G.


    This report presents guidance to NASA Computer security officials for developing ADP security risk management plans. The six components of the risk management process are identified and discussed. Guidance is presented on how to manage security risks that have been identified during a risk analysis performed at a data processing facility or during the security evaluation of an application system.

  1. NECAP 4.1: NASA's Energy Cost Analysis Program thermal response factor routine (United States)

    Weise, M. R.


    A thermal response factor is described and calculation sequences and flowcharts for RESFAC2 are provided. RESFAC is used by NASA's (NECAP) to calculate hourly heat transfer coefficients (thermal response factors) for each unique delayed surface. NECAP uses these response factors to compute each spaces' hourly heat gain/loss.

  2. Computer Music (United States)

    Cook, Perry R.

    This chapter covers algorithms, technologies, computer languages, and systems for computer music. Computer music involves the application of computers and other digital/electronic technologies to music composition, performance, theory, history, and the study of perception. The field combines digital signal processing, computational algorithms, computer languages, hardware and software systems, acoustics, psychoacoustics (low-level perception of sounds from the raw acoustic signal), and music cognition (higher-level perception of musical style, form, emotion, etc.).

  3. Disseminating NASA-based science through NASA's Universe of Learning: Girls STEAM Ahead (United States)

    Marcucci, E.; Meinke, B. K.; Smith, D. A.; Ryer, H.; Slivinski, C.; Kenney, J.; Arcand, K.; Cominsky, L.


    The Girls STEAM Ahead with NASA (GSAWN) initiative partners the NASA's Universe of Learning (UoL) resources with public libraries to provide NASA-themed activities for girls and their families. The program expands upon the legacy program, NASA Science4Girls and Their Families, in celebration of National Women's History Month. Program resources include hands-on activities for engaging girls, such as coding experiences and use of remote telescopes, complementary exhibits, and professional development for library partner staff. The science-institute-embedded partners in NASA's UoL are uniquely poised to foster collaboration between scientists with content expertise and educators with pedagogy expertise. The thematic topics related to NASA Astrophysics enable audiences to experience the full range of NASA scientific and technical disciplines and the different career skills each requires. For example, an activity may focus on understanding exoplanets, methods of their detection, and characteristics that can be determined remotely. The events focus on engaging underserved and underrepresented audiences in Science, Technology, Engineering, and Mathematics (STEM) via use of research-based best practices, collaborations with libraries, partnerships with local and national organizations (e.g. National Girls Collaborative Project or NGCP), and remote engagement of audiences. NASA's UoL collaborated with another NASA STEM Activation partner, NASA@ My Library, to announce GSAWN to their extensive STAR_Net network of libraries. This partnership between NASA SMD-funded Science learning and literacy teams has included NASA@ My Library hosting a professional development webinar featuring a GSAWN activity, a newsletter and blog post about the program, and plans for future exhibit development. This presentation will provide an overview of the program's progress to engage girls and their families through the development and dissemination of NASA-based science programming.

  4. NASA Tech Briefs, February 2011 (United States)


    Topics covered include: Multi-Segment Radius Measurement Using an Absolute Distance Meter Through a Null Assembly; Fiber-Optic Magnetic-Field-Strength Measurement System for Lightning Detection; Photocatalytic Active Radiation Measurements and Use; Computer Generated Hologram System for Wavefront Measurement System Calibration; Non-Contact Thermal Properties Measurement with Low-Power Laser and IR Camera System; SpaceCube 2.0: An Advanced Hybrid Onboard Data Processor; CMOS Imager Has Better Cross-Talk and Full-Well Performance; High-Performance Wireless Telemetry; Telemetry-Based Ranging; JWST Wavefront Control Toolbox; Java Image I/O for VICAR, PDS, and ISIS; X-Band Acquisition Aid Software; Antimicrobial-Coated Granules for Disinfecting Water; Range 7 Scanner Integration with PaR Robot Scanning System; Methods of Antimicrobial Coating of Diverse Materials; High-Operating-Temperature Barrier Infrared Detector with Tailorable Cutoff Wavelength; A Model of Reduced Kinetics for Alkane Oxidation Using Constituents and Species for N-Heptane; Thermally Conductive Tape Based on Carbon Nanotube Arrays; Two Catalysts for Selective Oxidation of Contaminant Gases; Nanoscale Metal Oxide Semiconductors for Gas Sensing; Lightweight, Ultra-High-Temperature, CMC-Lined Carbon/Carbon Structures; Sample Acquisition and Handling System from a Remote Platform; Improved Rare-Earth Emitter Hollow Cathode; High-Temperature Smart Structures for Engine Noise Reduction and Performance Enhancement; Cryogenic Scan Mechanism for Fourier Transform Spectrometer; Piezoelectric Rotary Tube Motor; Thermoelectric Energy Conversion Technology for High-Altitude Airships; Combustor Computations for CO2-Neutral Aviation; Use of Dynamic Distortion to Predict and Alleviate Loss of Control; Cycle Time Reduction in Trapped Mercury Ion Atomic Frequency Standards; and A (201)Hg+ Comagnetometer for (199)Hg+ Trapped Ion Space Atomic Clocks.

  5. NASA Tech Briefs, October 2006 (United States)


    Topics covered include: Protein Sensors Based on Optical Ring Resonators; Phase Sensor for Aligning a Segmented Telescope Mirror; Control Software for Advanced Video Guidance Sensor; Generating Control Commands From Gestures Sensed by EMG; Multiple-Flat-Panel System Displays Multidimensional Data; 3D X-Ray Luggage-Screening System; Probe Station and Near-Field Scanner for Testing Antennas; Photodetector Arrays for Multicolor Visible/Infrared Imaging; Semiconductor Bolometers Give Background-Limited Performance; Multichannel X-Band Dielectric-Resonator Oscillator; Automatic Alignment of Displacement-Measuring Interferometer; Earth Observing System Data Gateway; Power User Interface; Mercury Shopping Cart Interface; Cassini Archive Tracking System; Architecture Adaptive Computing Environment; Computing Fault Displacements from Surface Deformations; Oxygen-Permeable, Hydrophobic Membranes of Silanized alpha-Al2O3; SiC Composite Turbine Vanes; Retaining Device for the Interior Structure of a Spacecraft Payload; Tool for Torquing Circular Electrical-Connector Collars; System for Continuous Deaeration of Hydraulic Oil; Solar-Powered Cooler and Heater for an Automobile Interior; Improved Oxygen-Beam Texturing of Glucose-Monitoring Optics; Tool for Two Types of Friction Stir Welding; Stationary Apparatus Would Apply Forces of Walking to Feet; Instrument Would Detect and Collect Biological Aerosols; Boundary Condition for Modeling Semiconductor Nanostructures; Miniature Distillation Column for Producing LOX From Air; Even Illumination from Fiber-Optic-Coupled Laser Diodes; Optically Driven Deformable Mirrors; Algorithm for Automated Detection of Edges of Clouds; Exploiting Quantum Resonance to Solve Combinatorial Problems; Hybrid Terrain Database; On Release of Microbe-Laden Particles from Mars Landers; A Concept for Run-Time Support of the Chapel Language; Thermoelectric Inhomogeneities in (Ag(sub 1-y)SbTe2)(sub x)(PbTe)(sub 1-x); and Spacecraft Escape Capsule.

  6. NASA Tech Briefs, August 2012 (United States)


    Topics covered include: Mars Science Laboratory Drill; Ultra-Compact Motor Controller; A Reversible Thermally Driven Pump for Use in a Sub-Kelvin Magnetic Refrigerator; Shape Memory Composite Hybrid Hinge; Binding Causes of Printed Wiring Assemblies with Card-Loks; Coring Sample Acquisition Tool; Joining and Assembly of Bulk Metallic Glass Composites Through Capacitive Discharge; 670-GHz Schottky Diode-Based Subharmonic Mixer with CPW Circuits and 70-GHz IF; Self-Nulling Lock-in Detection Electronics for Capacitance Probe Electrometer; Discontinuous Mode Power Supply; Optimal Dynamic Sub-Threshold Technique for Extreme Low Power Consumption for VLSI; Hardware for Accelerating N-Modular Redundant Systems for High-Reliability Computing; Blocking Filters with Enhanced Throughput for X-Ray Microcalorimetry; High-Thermal-Conductivity Fabrics; Imidazolium-Based Polymeric Materials as Alkaline Anion-Exchange Fuel Cell Membranes; Electrospun Nanofiber Coating of Fiber Materials: A Composite Toughening Approach; Experimental Modeling of Sterilization Effects for Atmospheric Entry Heating on Microorganisms; Saliva Preservative for Diagnostic Purposes; Hands-Free Transcranial Color Doppler Probe; Aerosol and Surface Parameter Retrievals for a Multi-Angle, Multiband Spectrometer LogScope; TraceContract; AIRS Maps from Space Processing Software; POSTMAN: Point of Sail Tacking for Maritime Autonomous Navigation; Space Operations Learning Center; OVERSMART Reporting Tool for Flow Computations Over Large Grid Systems; Large Eddy Simulation (LES) of Particle-Laden Temporal Mixing Layers; Projection of Stabilized Aerial Imagery Onto Digital Elevation Maps for Geo-Rectified and Jitter-Free Viewing; Iterative Transform Phase Diversity: An Image-Based Object and Wavefront Recovery; 3D Drop Size Distribution Extrapolation Algorithm Using a Single Disdrometer; Social Networking Adapted for Distributed Scientific Collaboration; General Methodology for Designing Spacecraft Trajectories

  7. 77 FR 13153 - Information Collection; NASA Contractor Financial Management Reports (United States)


    ..., [email protected] . SUPPLEMENTARY INFORMATION: I. Abstract The NASA Contractor Financial Management... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 12-019] Information Collection; NASA Contractor Financial Management Reports AGENCY: National Aeronautics and Space Administration (NASA). ACTION...

  8. 77 FR 41203 - NASA International Space Station Advisory Committee; Meeting (United States)


    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 12-057] NASA International Space Station Advisory Committee; Meeting AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of..., the National Aeronautics and Space Administration announces an open meeting of the NASA International...

  9. 78 FR 77502 - NASA International Space Station Advisory Committee; Meeting (United States)


    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (13-154)] NASA International Space Station Advisory Committee; Meeting AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of..., the National Aeronautics and Space Administration announces a meeting of the NASA International Space...

  10. 77 FR 2765 - NASA International Space Station Advisory Committee; Meeting (United States)


    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (12-003)] NASA International Space Station Advisory Committee; Meeting AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of..., the National Aeronautics and Space Administration announces an open meeting of the NASA International...

  11. 77 FR 66082 - NASA International Space Station Advisory Committee; Meeting (United States)


    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 12-090] NASA International Space Station Advisory Committee; Meeting AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of..., the National Aeronautics and Space Administration announces an open meeting of the NASA International...

  12. NASA Guidelines for Promoting Scientific and Research Integrity (United States)

    Kaminski, Amy P.; Neogi, Natasha A.


    This guidebook provides an overarching summary of existing policies, activities, and guiding principles for scientific and research integrity with which NASA's workforce and affiliates must conform. This document addresses NASA's obligations as both a research institution and as a funder of research, NASA's use of federal advisory committees, NASA's public communication of research results, and professional development of NASA's workforce. This guidebook is intended to provide a single resource for NASA researchers, NASA research program administrators and project managers, external entities who do or might receive funding from NASA for research or technical projects, evaluators of NASA research proposals, NASA advisory committee members, NASA communications specialists, and members of the general public so that they can understand NASA's commitment to and expectations for scientific and integrity across the agency.

  13. NASA plan for international crustal dynamics studies (United States)


    The international activities being planned as part of the NASA geodynamics program are described. Methods of studying the Earth's crustal movements and deformation characteristics are discussed. The significance of the eventual formalations of earthquake predictions methods is also discussed.

  14. Reinvigorating the Entrepreneurial Spirit of NASA (United States)

    Cepollina, Frank


    This talk gives a rundown of a career in servicing and looks to the future of servicing and scientific missions working together. The talk attempts to reinvigorate the old NASA entrepreneurial spirit.

  15. NASA logo painted on orbiter Endeavour (United States)


    A KSC worker paints the NASA logo on the port wing of the orbiter Endeavour, which is scheduled to launch in December for STS-88. The paint is a special pigment that takes 18 hours to dry; the whole process takes approximately two weeks to complete. The NASA logo, termed 'meatball,' was originally designed in the late 1950s. It symbolized NASA's role in aeronautics and space in the early years of the agency. The original design included a white border surrounding it. The border was dropped for the Apollo 7 mission in October 1968, replaced with royal blue to match the background of the emblem. In 1972 the logo was replaced by a simple and contemporary design -- the 'worm' -- which was retired from use last year. NASA reverted to its original logo in celebration of the agency's 40th anniversary in October, and the 'golden age' of America's space program. All the orbiters will bear the new logo.

  16. NASA Human Health and Performance Center (NHHPC) (United States)

    Davis, Jeffery R.


    This slide presentation reviews the purpose, potential members and participants of the NASA Human Health and Performance Center (NHHPC). Included in the overview is a brief description of the administration and current activities of the NHHPC.

  17. NASA-OAST photovoltaic energy conversion program (United States)

    Mullin, J. P.; Loria, J. C.


    The NASA program in photovoltaic energy conversion research is discussed. Solar cells, solar arrays, gallium arsenides, space station and spacecraft power supplies, and state of the art devices are discussed.

  18. NASA total quality management 1989 accomplishments report (United States)

    Tai, Betty P. (Editor); Stewart, Lynne M. (Editor)


    NASA and contractor employees achieved many notable improvements in 1989. The highlights of those improvements, described in this seventh annual Accomplishments Report, demonstrate that the people who support NASA's activities are getting more involved in quality and continuous improvement efforts. Their gains solidly support NASA's and this Nation's goal to remain a leader in space exploration and in world-wide market competition, and, when communicated to others through avenues such as this report, foster improvement efforts across government and industry. The principles in practice which led to these process refinements are important cultural elements to any organization's productivity and quality efforts. The categories in this report reflect NASA principles set forth in the 1980's and are more commonly known today as Total Quality Management (TQM): top management leadership and support; strategic planning; focus on the customer; employee training and recognition; employee empowerment and teamwork; measurement and analysis; and quality assurance.

  19. NASA Earth Science Communications: Airplane to TDRSS (United States)

    National Aeronautics and Space Administration — The main objective of this proposal is to perform a feasibility study for the use of NASA's Tracking and Data Relay Satellite System (TDRSS) as the provider of...

  20. NASA 3D Models: Landsat 7 (United States)

    National Aeronautics and Space Administration — The Landsat Program is a series of Earth-observing satellite missions jointly managed by NASA and the U.S. Geological Survey. Since 1972, Landsat satellites have...

  1. NASA 3D Models: QuikSCAT (United States)

    National Aeronautics and Space Administration — NASA's Quick Scatterometer (QuikSCAT) is equipped with a specialized microwave radar that measures near-surface wind speed and direction under all weather and cloud...

  2. NASA/IPAC Infrared Science Archive (United States)

    National Aeronautics and Space Administration — IRSA is chartered to curate the calibrated science products from NASAs infrared and sub-millimeter missions, including five major large-area/all-sky surveys. IRSA...

  3. Nasa-wide Standard Administrative Systems (United States)

    Schneck, P.


    Factors to be considered in developing agency-wide standard administrative systems for NASA include uniformity of hardware and software; centralization vs. decentralization; risk exposure; and models for software development.

  4. Integrated Receivers for NASA Radiometers, Phase I (United States)

    National Aeronautics and Space Administration — This proposal is responsive to NASA SBIR Subtopic S1.02: Microwave Technologies for Remote Sensing, 640GHz Polarimeter. VDI has recently demonstrated the integration...

  5. Foundational Tools for Petascale Computing

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Barton [Univ. of Wisconsin, Madison, WI (United States)


    The Paradyn project has a history of developing algorithms, techniques, and software that push the cutting edge of tool technology for high-end computing systems. Under this funding, we are working on a three-year agenda to make substantial new advances in support of new and emerging Petascale systems. The overall goal for this work is to address the steady increase in complexity of these petascale systems. Our work covers two key areas: (1) The analysis, instrumentation and control of binary programs. Work in this area falls under the general framework of the Dyninst API tool kits. (2) Infrastructure for building tools and applications at extreme scale. Work in this area falls under the general framework of the MRNet scalability framework. Note that work done under this funding is closely related to work done under a contemporaneous grant, “High-Performance Energy Applications and Systems”, SC0004061/FG02-10ER25972, UW PRJ36WV.

  6. Autonomous Warplanes: NASA Rovers Lead the Way (United States)


    Warplanes NASA Rovers Lead the Way Michael R. Schroer Major, Air National Guard Wright Flyer No. 54 Air University Press Air Force Research Institute...between most airports across the continent proved an excellent further education in aviation. Piloting a business jet on a weeklong, 11- hop trek across...Research con- ducted by the National Aeronautics and Space Administration ( NASA ) offers useful lessons for the development of future military RPAs

  7. NASA Docking System (NDS) Technical Integration Meeting (United States)

    Lewis, James L.


    This slide presentation reviews the NASA Docking System (NDS) as NASA's implementation of the International Docking System Standard (IDSS). The goals of the NDS, is to build on proven technologies previously demonstrated in flight and to advance the state of the art of docking systems by incorporating Low Impact Docking System (LIDS) technology into the NDS. A Hardware Demonstration was included in the meeting, and there was discussion about software, NDS major system interfaces, integration information, schedule, and future upgrades.

  8. NASA total quality management 1990 accomplishments report (United States)


    NASA's efforts in Total Quality Management are based on continuous improvement and serve as a foundation for NASA's present and future endeavors. Given here are numerous examples of quality strategies that have proven effective and efficient in a time when cost reduction is critical. These accomplishment benefit our Agency and help to achieve our primary goal, keeping American in the forefront of the aerospace industry.

  9. Bringing NASA Technology Down to Earth (United States)

    Lockney, Daniel P.; Taylor, Terry L.


    Whether putting rovers on Mars or sustaining life in extreme conditions, NASA develops technologies to solve some of the most difficult challenges ever faced. Through its Technology Transfer Program, the agency makes the innovations behind space exploration available to industry, academia, and the general public. This paper describes the primary mechanisms through which NASA disseminates technology to solve real-life problems; illustrates recent program accomplishments; and provides examples of spinoff success stories currently impacting everyday life.

  10. NASA Customer Data and Operations System (United States)

    Butler, Madeline J.; Stallings, William H.


    In addition to the currently provided NASA services such as Communications and Tracking and Data Relay Satellite System services, the NASA's Customer Data and Operations System (CDOS) will provide the following services to the user: Data Delivery Service, Data Archive Service, and CDOS Operations Management Service. This paper describes these services in detail and presents respective block diagrams. The CDOS services will support a variety of multipurpose missions simultaneously with centralized and common hardware and software data-driven systems.

  11. Component Verification and Certification in NASA Missions (United States)

    Giannakopoulou, Dimitra; Penix, John; Norvig, Peter (Technical Monitor)


    Software development for NASA missions is a particularly challenging task. Missions are extremely ambitious scientifically, have very strict time frames, and must be accomplished with a maximum degree of reliability. Verification technologies must therefore be pushed far beyond their current capabilities. Moreover, reuse and adaptation of software architectures and components must be incorporated in software development within and across missions. This paper discusses NASA applications that we are currently investigating from these perspectives.

  12. 2011 NASA Range Safety Annual Report (United States)

    Dumont, Alan G.


    Welcome to the 2011 edition of the NASA Range Safety Annual Report. Funded by NASA Headquarters, this report provides a NASA Range Safety overview for current and potential range users. As is typical with odd year editions, this is an abbreviated Range Safety Annual Report providing updates and links to full articles from the previous year's report. It also provides more complete articles covering new subject areas, summaries of various NASA Range Safety Program activities conducted during the past year, and information on several projects that may have a profound impact on the way business will be done in the future. Specific topics discussed and updated in the 2011 NASA Range Safety Annual Report include a program overview and 2011 highlights; Range Safety Training; Range Safety Policy revision; Independent Assessments; Support to Program Operations at all ranges conducting NASA launch/flight operations; a continuing overview of emerging range safety-related technologies; and status reports from all of the NASA Centers that have Range Safety responsibilities. Every effort has been made to include the most current information available. We recommend this report be used only for guidance and that the validity and accuracy of all articles be verified for updates. Once again the web-based format was used to present the annual report. We continually receive positive feedback on the web-based edition and hope you enjoy this year's product as well. As is the case each year, contributors to this report are too numerous to mention, but we thank individuals from the NASA Centers, the Department of Defense, and civilian organizations for their contributions. In conclusion, it has been a busy and productive year. I'd like to extend a personal Thank You to everyone who contributed to make this year a successful one, and I look forward to working with all of you in the upcoming year.

  13. Enhancing Undergraduate Education with NASA Resources (United States)

    Manning, James G.; Meinke, Bonnie; Schultz, Gregory; Smith, Denise Anne; Lawton, Brandon L.; Gurton, Suzanne; Astrophysics Community, NASA


    The NASA Astrophysics Science Education and Public Outreach Forum (SEPOF) coordinates the work of NASA Science Mission Directorate (SMD) Astrophysics EPO projects and their teams to bring cutting-edge discoveries of NASA missions to the introductory astronomy college classroom. Uniquely poised to foster collaboration between scientists with content expertise and educators with pedagogical expertise, the Forum has coordinated the development of several resources that provide new opportunities for college and university instructors to bring the latest NASA discoveries in astrophysics into their classrooms.To address the needs of the higher education community, the Astrophysics Forum collaborated with the astrophysics E/PO community, researchers, and introductory astronomy instructors to place individual science discoveries and learning resources into context for higher education audiences. The resulting products include two “Resource Guides” on cosmology and exoplanets, each including a variety of accessible resources. The Astrophysics Forum also coordinates the development of the “Astro 101” slide set series. The sets are five- to seven-slide presentations on new discoveries from NASA astrophysics missions relevant to topics in introductory astronomy courses. These sets enable Astronomy 101 instructors to include new discoveries not yet in their textbooks in their courses, and may be found at: Astrophysics Forum also coordinated the development of 12 monthly “Universe Discovery Guides,” each featuring a theme and a representative object well-placed for viewing, with an accompanying interpretive story, strategies for conveying the topics, and supporting NASA-approved education activities and background information from a spectrum of NASA missions and programs. These resources are adaptable for use by instructors and may be found at: http://nightsky.jpl.nasa

  14. NASA Science Engagement Through "Sky Art" (United States)

    Bethea, K. L.; Damadeo, K.


    Sky Art is a NASA-funded online community where the public can share in the beauty of nature and the science behind it. At the center of Sky Art is a gallery of amateur sky photos submitted by users that are related to NASA Earth science mission research areas. Through their submissions, amateur photographers from around the world are engaged in the process of making observations, or taking pictures, of the sky just like many NASA science instruments. By submitting their pictures and engaging in the online community discussions and interactions with NASA scientists, users make the connection between the beauty of nature and atmospheric science. Sky Art is a gateway for interaction and information aimed at drawing excitement and interest in atmospheric phenomena including sunrises, sunsets, moonrises, moonsets, and aerosols, each of which correlates to a NASA science mission. Educating the public on atmospheric science topics in an informal way is a central goal of Sky Art. NASA science is included in the community through interaction from scientists, NASA images, and blog posts on science concepts derived from the images. Additionally, the website connects educators through the formal education pathway where science concepts are taught through activities and lessons that align with national learning standards. Sky Art was conceived as part of the Education and Public Outreach program of the SAGE III on ISS mission. There are currently three other NASA mission involved with Sky Art: CALIPSO, GPM, and CLARREO. This paper will discuss the process of developing the Sky Art online website, the challenges of growing a community of users, as well as the use of social media and mobile applications in science outreach and education.

  15. Communicating the Science from NASA's Astrophysics Missions (United States)

    Hasan, Hashima; Smith, Denise A.


    Communicating science from NASA's Astrophysics missions has multiple objectives, which leads to a multi-faceted approach. While a timely dissemination of knowledge to the scientific community follows the time-honored process of publication in peer reviewed journals, NASA delivers newsworthy research result to the public through news releases, its websites and social media. Knowledge in greater depth is infused into the educational system by the creation of educational material and teacher workshops that engage students and educators in cutting-edge NASA Astrophysics discoveries. Yet another avenue for the general public to learn about the science and technology through NASA missions is through exhibits at museums, science centers, libraries and other public venues. Examples of the variety of ways NASA conveys the excitement of its scientific discoveries to students, educators and the general public will be discussed in this talk. A brief overview of NASA's participation in the International Year of Light will also be given, as well as of the celebration of the twenty-fifth year of the launch of the Hubble Space Telescope.

  16. NASA directives: Master list and index (United States)


    This Handbook sets forth in two parts the following information for the guidance of users of the NASA Management Directives System. Chapter 1 contains introductory information material on how to use this Handbook. Chapter 2 is a complete master list of Agency-wide management directives, describing each directive by type, number, effective date, expiration date, title, and organization code of the office responsible for the directive. Chapter 3 includes a consolidated numerical list of all delegations of authority and a breakdown of such delegation by the office of Installation to which special authority is assigned. Chapter 4 sets forth a consolidated list of all NASA Handbooks (NHB's) and important footnotes covering the control and ordering of such documents. Chapter 5 is a consolidated list of NASA management directives applicable to the Jet Propulsion Laboratory. Chapter 6 is a consolidated list of NASA management directives published in the code of Federal Regulations. Complementary manuals to the NASA Management Directives System are described in Chapter 7. Part B contains an in-depth alphabetical index to all NASA management directives other than Handbooks.

  17. Mars Sample Return: Do Australians trust NASA? (United States)

    Joyce, S.; Tomkins, C. S.; Weinstein, P.


    Mars Sample Return (MSR) represents an important scientific goal in space exploration. Any sample return mission will be extremely challenging from a scientific, economic and technical standpoint. But equally testing, will be communicating with a public that may have a very different perception of the mission. A MSR mission will generate international publicity and it is vital that NASA acknowledge the nature and extent of public concern about the mission risks and, perhaps equally importantly, the public’s confidence in NASA’s ability to prepare for and manage these risks. This study investigated the level of trust in NASA in an Australian population sample, and whether this trust was dependent on demographic variables. Participants completed an online survey that explored their attitudes towards NASA and a MSR mission. The results suggested that people believe NASA will complete the mission successfully but have doubts as to whether NASA will be honest when communicating with the public. The most significant finding to emerge from this study was that confidence in NASA was significantly (p communication.

  18. NASA's Internal Space Weather Working Group (United States)

    St. Cyr, O. C.; Guhathakurta, M.; Bell, H.; Niemeyer, L.; Allen, J.


    Measurements from many of NASA's scientific spacecraft are used routinely by space weather forecasters, both in the U.S. and internationally. ACE, SOHO (an ESA/NASA collaboration), STEREO, and SDO provide images and in situ measurements that are assimilated into models and cited in alerts and warnings. A number of years ago, the Space Weather laboratory was established at NASA-Goddard, along with the Community Coordinated Modeling Center. Within that organization, a space weather service center has begun issuing alerts for NASA's operational users. NASA's operational user community includes flight operations for human and robotic explorers; atmospheric drag concerns for low-Earth orbit; interplanetary navigation and communication; and the fleet of unmanned aerial vehicles, high altitude aircraft, and launch vehicles. Over the past three years we have identified internal stakeholders within NASA and formed a Working Group to better coordinate their expertise and their needs. In this presentation we will describe this activity and some of the challenges in forming a diverse working group.

  19. Standards of conduct for NASA employees (United States)


    'Standards of Conduct' for employees (14 CFR Part 1207) is set forth in this handbook and is hereby incorporated in the NASA Directives System. This handbook incorporates, for the convenience of NASA employees, the regulations now in effect prescribing standards of conduct for NASA employees. These regulations set forth the high ethical standards of conduct required of NASA employees in carrying out their duties and responsibilities. These regulations have been approved by the Office of Government Ethics, Office of Personnel Management. The regulations incorporated in this handbook were first published in the Federal Register on October 21, 1967 (32 FR 14648-14659); Part B concerning the acceptance of gifts, gratuities, or entertainment was extensively revised on January 19, 1976 (41 FR 2631-2633) to clarify and generally to restrict the exceptions to the general rule against the acceptance by a NASA employee from persons or firms doing or seeking business with NASA. Those regulations were updated on January 29, 1985 (50 FR 3887) to ensure conformity to the Ethics in Government Act of 1978 regarding the public financial disclosure statement. These regulations were published in the Federal Register on June 16, 1987 (52 FR 22755-764) and a correction was printed on Sept. 28, 1987 (52 FR 36234).

  20. NASA Tech Briefs, September 2006 (United States)


    Topics covered include: Improving Thermomechanical Properties of SiC/SiC Composites; Aerogel/Particle Composites for Thermoelectric Devices; Patches for Repairing Ceramics and Ceramic- Matrix Composites; Lower-Conductivity Ceramic Materials for Thermal-Barrier Coatings; An Alternative for Emergency Preemption of Traffic Lights; Vehicle Transponder for Preemption of Traffic Lights; Automated Announcements of Approaching Emergency Vehicles; Intersection Monitor for Traffic-Light-Preemption System; Full-Duplex Digital Communication on a Single Laser Beam; Stabilizing Microwave Frequency of a Photonic Oscillator; Microwave Oscillators Based on Nonlinear WGM Resonators; Pointing Reference Scheme for Free-Space Optical Communications Systems; High-Level Performance Modeling of SAR Systems; Spectral Analysis Tool 6.2 for Windows; Multi-Platform Avionics Simulator; Silicon-Based Optical Modulator with Ferroelectric Layer; Multiplexing Transducers Based on Tunnel-Diode Oscillators; Scheduling with Automated Resolution of Conflicts; Symbolic Constraint Maintenance Grid; Discerning Trends in Performance Across Multiple Events; Magnetic Field Solver; Computing for Aiming a Spaceborne Bistatic- Radar Transmitter; 4-Vinyl-1,3-Dioxolane-2-One as an Additive for Li-Ion Cells; Probabilistic Prediction of Lifetimes of Ceramic Parts; STRANAL-PMC Version 2.0; Micromechanics and Piezo Enhancements of HyperSizer; Single-Phase Rare-Earth Oxide/Aluminum Oxide Glasses; Tilt/Tip/Piston Manipulator with Base-Mounted Actuators; Measurement of Model Noise in a Hard-Wall Wind Tunnel; Loci-STREAM Version 0.9; The Synergistic Engineering Environment; Reconfigurable Software for Controlling Formation Flying; More About the Tetrahedral Unstructured Software System; Computing Flows Using Chimera and Unstructured Grids; Avoiding Obstructions in Aiming a High-Gain Antenna; Analyzing Aeroelastic Stability of a Tilt-Rotor Aircraft; Tracking Positions and Attitudes of Mars Rovers; Stochastic Evolutionary

  1. Computing, Information and Communications Technology (CICT) Website (United States)

    Hardman, John; Tu, Eugene (Technical Monitor)


    The Computing, Information and Communications Technology Program (CICT) was established in 2001 to ensure NASA's Continuing leadership in emerging technologies. It is a coordinated, Agency-wide effort to develop and deploy key enabling technologies for a broad range of mission-critical tasks. The NASA CICT program is designed to address Agency-specific computing, information, and communications technology requirements beyond the projected capabilities of commercially available solutions. The areas of technical focus have been chosen for their impact on NASA's missions, their national importance, and the technical challenge they provide to the Program. In order to meet its objectives, the CICT Program is organized into the following four technology focused projects: 1) Computing, Networking and Information Systems (CNIS); 2) Intelligent Systems (IS); 3) Space Communications (SC); 4) Information Technology Strategic Research (ITSR).

  2. NASA Tech Briefs, July 2009 (United States)


    Detectors; A Software Rejuvenation Framework for Distributed Computing; Kurtosis Approach to Solution of a Nonlinear ICA Problem; Robust Software Architecture for Robots; R4SA for Controlling Robots; Bio-Inspired Neural Model for Learning Dynamic Models; Evolutionary Computing Methods for Spectral Retrieval; Monitoring Disasters by Use of Instrumented Robotic Aircraft; Complexity for Survival of Living Systems; Using Drained Spacecraft Propellant Tanks for Habitation; Connecting Node; and Electrolytes for Low-Temperature Operation of Li-CFx Cells.

  3. 78 FR 77501 - NASA Aerospace Safety Advisory Panel; Meeting (United States)


    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: 13-153] NASA Aerospace Safety Advisory Panel; Meeting AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of Meeting...

  4. Computer systems and software engineering (United States)

    Mckay, Charles W.


    The High Technologies Laboratory (HTL) was established in the fall of 1982 at the University of Houston Clear Lake. Research conducted at the High Tech Lab is focused upon computer systems and software engineering. There is a strong emphasis on the interrelationship of these areas of technology and the United States' space program. In Jan. of 1987, NASA Headquarters announced the formation of its first research center dedicated to software engineering. Operated by the High Tech Lab, the Software Engineering Research Center (SERC) was formed at the University of Houston Clear Lake. The High Tech Lab/Software Engineering Research Center promotes cooperative research among government, industry, and academia to advance the edge-of-knowledge and the state-of-the-practice in key topics of computer systems and software engineering which are critical to NASA. The center also recommends appropriate actions, guidelines, standards, and policies to NASA in matters pertinent to the center's research. Results of the research conducted at the High Tech Lab/Software Engineering Research Center have given direction to many decisions made by NASA concerning the Space Station Program.

  5. NASA Tech Briefs, August 2013 (United States)


    Topics covered include: Radial Internal Material Handling System (RIMS) for Circular Habitat Volumes; Conical Seat Shut-Off Valve; Impact-Actuated Digging Tool for Lunar Excavation; Flexible Mechanical Conveyors for Regolith Extraction and Transport; Remote Memory Access Protocol Target Node Intellectual Property; Soft Decision Analyzer; Distributed Prognostics and Health Management with a Wireless Network Architecture; Minimal Power Latch for Single-Slope ADCs; Bismuth Passivation Technique for High-Resolution X-Ray Detectors; High-Strength, Super-elastic Compounds; Cu-Cr-Nb-Zr Alloy for Rocket Engines and Other High-Heat- Flux Applications; Microgravity Storage Vessels and Conveying-Line Feeders for Cohesive Regolith; CRUQS: A Miniature Fine Sun Sensor for Nanosatellites; On-Chip Microfluidic Components for In Situ Analysis, Separation, and Detection of Amino Acids; Spectroscopic Determination of Trace Contaminants in High-Purity Oxygen; Method of Separating Oxygen From Spacecraft Cabin Air to Enable Extravehicular Activities; Atomic Force Microscope Mediated Chromatography; Sample Analysis at Mars Instrument Simulator; Access Control of Web- and Java-Based Applications; Tool for Automated Retrieval of Generic Event Tracks (TARGET); Bilayer Protograph Codes for Half-Duplex Relay Channels; Influence of Computational Drop Representation in LES of a Droplet-Laden Mixing Layer.

  6. Sharing NASA Science with Decision Makers: A Perspective from NASA's Applied Remote Sensing Training (ARSET) Program (United States)

    Prados, A. I.; Blevins, B.; Hook, E.


    NASA ARSET has been providing applied remote sensing training since 2008. The goals of the program are to develop the technical and analytical skills necessary to utilize NASA resources for decision-support. The program has reached over 3500 participants, with 1600 stakeholders from 100 countries in 2015 alone. The target audience for the program are professionals engaged in environmental management in the public and private sectors, such as air quality forecasters, public utilities, water managers and non-governmental organizations engaged in conservation. Many program participants have little or no expertise in NASA remote sensing, and it's frequently their very first exposure to NASA's vast resources. One the key challenges for the program has been the evolution and refinement of its approach to communicating NASA data access, research, and ultimately its value to stakeholders. We discuss ARSET's best practices for sharing NASA science, which include 1) training ARSET staff and other NASA scientists on methods for science communication, 2) communicating the proper amount of scientific information at a level that is commensurate with the technical skills of program participants, 3) communicating the benefit of NASA resources to stakeholders, and 4) getting to know the audience and tailoring the message so that science information is conveyed within the context of agencies' unique environmental challenges.

  7. Public Access to NASA's Earth Science Data (United States)

    Behnke, J.; James, N.


    Many steps have been taken over the past 20 years to make NASA's Earth Science data more accessible to the public. The data collected by NASA represent a significant public investment in research. NASA holds these data in a public trust to promote comprehensive, long-term Earth science research. Consequently, NASA developed a free, open and non-discriminatory policy consistent with existing international policies to maximize access to data and to keep user costs as low as possible. These policies apply to all data archived, maintained, distributed or produced by NASA data systems. The Earth Observing System Data and Information System (EOSDIS) is a major core capability within NASA Earth Science Data System Program. EOSDIS is designed to ingest, process, archive, and distribute data from approximately 90 instruments. Today over 6800 data products are available to the public through the EOSDIS. Last year, EOSDIS distributed over 636 million science data products to the user community, serving over 1.5 million distinct users. The system supports a variety of science disciplines including polar processes, land cover change, radiation budget, and most especially global climate change. A core philosophy of EOSDIS is that the general user is best served by providing discipline specific support for the data. To this end, EOSDIS has collocated NASA Earth science data with centers of science discipline expertise, called Distributed Active Archive Centers (DAACs). DAACs are responsible for data management, archive and distribution of data products. There are currently twelve DAACs in the EOSDIS system. The centralized entrance point to the NASA Earth Science data collection can be found at Over the years, we have developed several methods for determining needs of the user community including use of the American Customer Satisfaction Index survey and a broad metrics program. Annually, we work with an independent organization (CFI Group) to send this

  8. Analog computing

    CERN Document Server

    Ulmann, Bernd


    This book is a comprehensive introduction to analog computing. As most textbooks about this powerful computing paradigm date back to the 1960s and 1970s, it fills a void and forges a bridge from the early days of analog computing to future applications. The idea of analog computing is not new. In fact, this computing paradigm is nearly forgotten, although it offers a path to both high-speed and low-power computing, which are in even more demand now than they were back in the heyday of electronic analog computers.

  9. Proceedings: Computer Science and Data Systems Technical Symposium, volume 1 (United States)

    Larsen, Ronald L.; Wallgren, Kenneth


    Progress reports and technical updates of programs being performed by NASA centers are covered. Presentations in viewgraph form are included for topics in three categories: computer science, data systems and space station applications.

  10. Proceedings: Computer Science and Data Systems Technical Symposium, volume 2 (United States)

    Larsen, Ronald L.; Wallgren, Kenneth


    Progress reports and technical updates of programs being performed by NASA centers are covered. Presentations in viewgraph form, along with abstracts, are included for topics in three catagories: computer science, data systems, and space station applications.

  11. Computational composites

    DEFF Research Database (Denmark)

    Vallgårda, Anna K. A.; Redström, Johan


    Computational composite is introduced as a new type of composite material. Arguing that this is not just a metaphorical maneuver, we provide an analysis of computational technology as material in design, which shows how computers share important characteristics with other materials used in design...... and architecture. We argue that the notion of computational composites provides a precise understanding of the computer as material, and of how computations need to be combined with other materials to come to expression as material. Besides working as an analysis of computers from a designer’s point of view......, the notion of computational composites may also provide a link for computer science and human-computer interaction to an increasingly rapid development and use of new materials in design and architecture....

  12. Exploring Cognition Using Software Defined Radios for NASA Missions (United States)

    Mortensen, Dale J.; Reinhart, Richard C.


    NASA missions typically operate using a communication infrastructure that requires significant schedule planning with limited flexibility when the needs of the mission change. Parameters such as modulation, coding scheme, frequency, and data rate are fixed for the life of the mission. This is due to antiquated hardware and software for both the space and ground assets and a very complex set of mission profiles. Automated techniques in place by commercial telecommunication companies are being explored by NASA to determine their usability by NASA to reduce cost and increase science return. Adding cognition the ability to learn from past decisions and adjust behavior is also being investigated. Software Defined Radios are an ideal way to implement cognitive concepts. Cognition can be considered in many different aspects of the communication system. Radio functions, such as frequency, modulation, data rate, coding and filters can be adjusted based on measurements of signal degradation. Data delivery mechanisms and route changes based on past successes and failures can be made to more efficiently deliver the data to the end user. Automated antenna pointing can be added to improve gain, coverage, or adjust the target. Scheduling improvements and automation to reduce the dependence on humans provide more flexible capabilities. The Cognitive Communications project, funded by the Space Communication and Navigation Program, is exploring these concepts and using the SCaN Testbed on board the International Space Station to implement them as they evolve. The SCaN Testbed contains three Software Defined Radios and a flight computer. These four computing platforms, along with a tracking antenna system and the supporting ground infrastructure, will be used to implement various concepts in a system similar to those used by missions. Multiple universities and SBIR companies are supporting this investigation. This paper will describe the cognitive system ideas under consideration and

  13. Space Science Investigation: NASA ISS Stowage Simulator (United States)

    Crawford, Gary


    During this internship the opportunity was granted to work with the Integrated, Graphics, Operations and Analysis Laboratory (IGOAL) team. The main assignment was to create 12 achievement patches for the Space Station training simulator called the "NASA ISS Stowage Training Game." This project was built using previous IGOAL developed software. To accomplish this task, Adobe Photoshop and Adobe Illustrator were used to craft the badges and other elements required. Blender, a 3D modeling software, was used to make the required 3D elements. Blender was a useful tool to make things such as a CTB bag for the "No More Bob" patch which shows a gentleman kicking a CTB bag into the distance. It was also used to pose characters to the positions that was optimal for their patches as in the "Station Sanitation" patch which portrays and astronaut waving on a U.S module on a truck. Adobe Illustrator was the main piece of software for this task. It was used to craft the badges and upload them when they were completed. The style of the badges were flat, meaning that they shouldn't look three dimensional in any way, shape or form. Adobe Photoshop was used when any pictures need brightening and was where the texture for the CTB bag was made. In order for the patches to be ready for the game's next major release, they have to go under some critical reviewing, revising and re-editing to make sure the other artists and the rest of the staff are satisfied with the final products. Many patches were created and revamped to meet the flat setting and incorporate suggestions from the IGOAL team. After the three processes were completed, the badges were implemented into the game (reference fig1 for badges). After a month of designing badges, the finished products were placed into the final game build via the programmers. The art was the final piece in showcasing the latest build to the public for testing. Comments from the testers were often exceptional and the feedback on the badges were

  14. Quantum Computing


    Scarani, Valerio


    The aim of this thesis was to explain what quantum computing is. The information for the thesis was gathered from books, scientific publications, and news articles. The analysis of the information revealed that quantum computing can be broken down to three areas: theories behind quantum computing explaining the structure of a quantum computer, known quantum algorithms, and the actual physical realizations of a quantum computer. The thesis reveals that moving from classical memor...

  15. NASA Tech Briefs, June 2004 (United States)


    Topics covered include: COTS MEMS Flow-Measurement Probes; Measurement of an Evaporating Drop on a Reflective Substrate; Airplane Ice Detector Based on a Microwave Transmission Line; Microwave/Sonic Apparatus Measures Flow and Density in Pipe; Reducing Errors by Use of Redundancy in Gravity Measurements; Membrane-Based Water Evaporator for a Space Suit; Compact Microscope Imaging System with Intelligent Controls; Chirped-Superlattice, Blocked-Intersubband QWIP; Charge-Dissipative Electrical Cables; Deep-Sea Video Cameras Without Pressure Housings; RFID and Memory Devices Fabricated Integrally on Substrates; Analyzing Dynamics of Cooperating Spacecraft; Spacecraft Attitude Maneuver Planning Using Genetic Algorithms; Forensic Analysis of Compromised Computers; Document Concurrence System; Managing an Archive of Images; MPT Prediction of Aircraft-Engine Fan Noise; Improving Control of Two Motor Controllers; Electro-deionization Using Micro-separated Bipolar Membranes; Safer Electrolytes for Lithium-Ion Cells; Rotating Reverse-Osmosis for Water Purification; Making Precise Resonators for Mesoscale Vibratory Gyroscopes; Robotic End Effectors for Hard-Rock Climbing; Improved Nutation Damper for a Spin-Stabilized Spacecraft; Exhaust Nozzle for a Multitube Detonative Combustion Engine; Arc-Second Pointer for Balloon-Borne Astronomical Instrument; Compact, Automated Centrifugal Slide-Staining System; Two-Armed, Mobile, Sensate Research Robot; Compensating for Effects of Humidity on Electronic Noses; Brush/Fin Thermal Interfaces; Multispectral Scanner for Monitoring Plants; Coding for Communication Channels with Dead-Time Constraints; System for Better Spacing of Airplanes En Route; Algorithm for Training a Recurrent Multilayer Perceptron; Orbiter Interface Unit and Early Communication System; White-Light Nulling Interferometers for Detecting Planets; and Development of Methodology for Programming Autonomous Agents.

  16. NASA Tech Briefs, March 2013 (United States)


    Topics covered include: Remote Data Access with IDL Data Compression Algorithm Architecture for Large Depth-of-Field Particle Image Velocimeters Vectorized Rebinning Algorithm for Fast Data Down-Sampling Display Provides Pilots with Real-Time Sonic-Boom Information Onboard Algorithms for Data Prioritization and Summarization of Aerial Imagery Monitoring and Acquisition Real-time System (MARS) Analog Signal Correlating Using an Analog-Based Signal Conditioning Front End Micro-Textured Black Silicon Wick for Silicon Heat Pipe Array Robust Multivariable Optimization and Performance Simulation for ASIC Design; Castable Amorphous Metal Mirrors and Mirror Assemblies; Sandwich Core Heat-Pipe Radiator for Power and Propulsion Systems; Apparatus for Pumping a Fluid; Cobra Fiber-Optic Positioner Upgrade; Improved Wide Operating Temperature Range of Li-Ion Cells; Non-Toxic, Non-Flammable, -80 C Phase Change Materials; Soft-Bake Purification of SWCNTs Produced by Pulsed Laser Vaporization; Improved Cell Culture Method for Growing Contracting Skeletal Muscle Models; Hand-Based Biometric Analysis; The Next Generation of Cold Immersion Dry Suit Design Evolution for Hypothermia Prevention; Integrated Lunar Information Architecture for Decision Support Version 3.0 (ILIADS 3.0); Relay Forward-Link File Management Services (MaROS Phase 2); Two Mechanisms to Avoid Control Conflicts Resulting from Uncoordinated Intent; XTCE GOVSAT Tool Suite 1.0; Determining Temperature Differential to Prevent Hardware Cross-Contamination in a Vacuum Chamber; SequenceL: Automated Parallel Algorithms Derived from CSP-NT Computational Laws; Remote Data Exploration with the Interactive Data Language (IDL); Mixture-Tuned, Clutter Matched Filter for Remote Detection of Subpixel Spectral Signals; Partitioned-Interval Quantum Optical Communications Receiver; and Practical UAV Optical Sensor Bench with Minimal Adjustability.

  17. NASA Tech Briefs, January 2003 (United States)


    Topics covered include: Optoelectronic Tool Adds Scale Marks to Photographic Images; Compact Interconnection Networks Based on Quantum Dots; Laterally Coupled Quantum-Dot Distributed-Feedback Lasers; Bit-Serial Adder Based on Quantum Dots; Stabilized Fiber-Optic Distribution of Reference Frequency; Delay/Doppler-Mapping GPS-Reflection Remote-Sensing System; Ladar System Identifies Obstacles Partly Hidden by Grass; Survivable Failure Data Recorders for Spacecraft; Fiber-Optic Ammonia Sensors; Silicon Membrane Mirrors with Electrostatic Shape Actuators; Nanoscale Hot-Wire Probes for Boundary-Layer Flows; Theodolite with CCD Camera for Safe Measurement of Laser-Beam Pointing; Efficient Coupling of Lasers to Telescopes with Obscuration; Aligning Three Off-Axis Mirrors with Help of a DOE; Calibrating Laser Gas Measurements by Use of Natural CO2; Laser Ranging Simulation Program; Micro-Ball-Lens Optical Switch Driven by SMA Actuator; Evaluation of Charge Storage and Decay in Spacecraft Insulators; Alkaline Capacitors Based on Nitride Nanoparticles; Low-EC-Content Electrolytes for Low-Temperature Li-Ion Cells; Software for a GPS-Reflection Remote-Sensing System; Software for Building Models of 3D Objects via the Internet; "Virtual Cockpit Window" for a Windowless Aerospacecraft; CLARAty Functional-Layer Software; Java Library for Input and Output of Image Data and Metadata; Software for Estimating Costs of Testing Rocket Engines; Energy-Absorbing, Lightweight Wheels; Viscoelastic Vibration Dampers for Turbomachine Blades; Soft Landing of Spacecraft on Energy-Absorbing Self-Deployable Cushions; Pneumatically Actuated Miniature Peristaltic Vacuum Pumps; Miniature Gas-Turbine Power Generator; Pressure-Sensor Assembly Technique; Wafer-Level Membrane-Transfer Process for Fabricating MEMS; A Reactive-Ion Etch for Patterning Piezoelectric Thin Film; Wavelet-Based Real-Time Diagnosis of Complex Systems; Quantum Search in Hilbert Space; Analytic Method for Computing Instrument

  18. NASA Tech Briefs, June 2013 (United States)


    Topics include: Cloud Absorption Radiometer Autonomous Navigation System - CANS, Software Method for Computed Tomography Cylinder Data Unwrapping, Re-slicing, and Analysis, Discrete Data Qualification System and Method Comprising Noise Series Fault Detection, Simple Laser Communications Terminal for Downlink from Earth Orbit at Rates Exceeding 10 Gb/s, Application Program Interface for the Orion Aerodynamics Database, Hyperspectral Imager-Tracker, Web Application Software for Ground Operations Planning Database (GOPDb) Management, Software Defined Radio with Parallelized Software Architecture, Compact Radar Transceiver with Included Calibration, Software Defined Radio with Parallelized Software Architecture, Phase Change Material Thermal Power Generator, The Thermal Hogan - A Means of Surviving the Lunar Night, Micromachined Active Magnetic Regenerator for Low-Temperature Magnetic Coolers, Nano-Ceramic Coated Plastics, Preparation of a Bimetal Using Mechanical Alloying for Environmental or Industrial Use, Phase Change Material for Temperature Control of Imager or Sounder on GOES Type Satellites in GEO, Dual-Compartment Inflatable Suitlock, Modular Connector Keying Concept, Genesis Ultrapure Water Megasonic Wafer Spin Cleaner, Piezoelectrically Initiated Pyrotechnic Igniter, Folding Elastic Thermal Surface - FETS, Multi-Pass Quadrupole Mass Analyzer, Lunar Sulfur Capture System, Environmental Qualification of a Single-Crystal Silicon Mirror for Spaceflight Use, Planar Superconducting Millimeter-Wave/Terahertz Channelizing Filter, Qualification of UHF Antenna for Extreme Martian Thermal Environments, Ensemble Eclipse: A Process for Prefab Development Environment for the Ensemble Project, ISS Live!, Space Operations Learning Center (SOLC) iPhone/iPad Application, Software to Compare NPP HDF5 Data Files, Planetary Data Systems (PDS) Imaging Node Atlas II, Automatic Calibration of an Airborne Imaging System to an Inertial Navigation Unit, Translating MAPGEN to ASPEN for

  19. NASA Tech Briefs, September 2009 (United States)


    opics covered include: Filtering Water by Use of Ultrasonically Vibrated Nanotubes; Computer Code for Nanostructure Simulation; Functionalizing CNTs for Making Epoxy/CNT Composites; Improvements in Production of Single-Walled Carbon Nanotubes; Progress Toward Sequestering Carbon Nanotubes in PmPV; Two-Stage Variable Sample-Rate Conversion System; Estimating Transmitted-Signal Phase Variations for Uplink Array Antennas; Board Saver for Use with Developmental FPGAs; Circuit for Driving Piezoelectric Transducers; Digital Synchronizer without Metastability; Compact, Low-Overhead, MIL-STD-1553B Controller; Parallel-Processing CMOS Circuitry for M-QAM and 8PSK TCM; Differential InP HEMT MMIC Amplifiers Embedded in Waveguides; Improved Aerogel Vacuum Thermal Insulation; Fluoroester Co-Solvents for Low-Temperature Li+ Cells; Using Volcanic Ash to Remove Dissolved Uranium and Lead; High-Efficiency Artificial Photosynthesis Using a Novel Alkaline Membrane Cell; Silicon Wafer-Scale Substrate for Microshutters and Detector Arrays; Micro-Horn Arrays for Ultrasonic Impedance Matching; Improved Controller for a Three-Axis Piezoelectric Stage; Nano-Pervaporation Membrane with Heat Exchanger Generates Medical-Grade Water; Micro-Organ Devices; Nonlinear Thermal Compensators for WGM Resonators; Dynamic Self-Locking of an OEO Containing a VCSEL; Internal Water Vapor Photoacoustic Calibration; Mid-Infrared Reflectance Imaging of Thermal-Barrier Coatings; Improving the Visible and Infrared Contrast Ratio of Microshutter Arrays; Improved Scanners for Microscopic Hyperspectral Imaging; Rate-Compatible LDPC Codes with Linear Minimum Distance; PrimeSupplier Cross-Program Impact Analysis and Supplier Stability Indicator Simulation Model; Integrated Planning for Telepresence With Time Delays; Minimizing Input-to-Output Latency in Virtual Environment; Battery Cell Voltage Sensing and Balancing Using Addressable Transformers; Gaussian and Lognormal Models of Hurricane Gust Factors; Simulation

  20. NASA Tech Briefs, April 2012 (United States)


    Topics include: Computational Ghost Imaging for Remote Sensing; Digital Architecture for a Trace Gas Sensor Platform; Dispersed Fringe Sensing Analysis - DFSA; Indium Tin Oxide Resistor-Based Nitric Oxide Microsensors; Gas Composition Sensing Using Carbon Nanotube Arrays; Sensor for Boundary Shear Stress in Fluid Flow; Model-Based Method for Sensor Validation; Qualification of Engineering Camera for Long-Duration Deep Space Missions; Remotely Powered Reconfigurable Receiver for Extreme Environment Sensing Platforms; Bump Bonding Using Metal-Coated Carbon Nanotubes; In Situ Mosaic Brightness Correction; Simplex GPS and InSAR Inversion Software; Virtual Machine Language 2.1; Multi-Scale Three-Dimensional Variational Data Assimilation System for Coastal Ocean Prediction; Pandora Operation and Analysis Software; Fabrication of a Cryogenic Bias Filter for Ultrasensitive Focal Plane; Processing of Nanosensors Using a Sacrificial Template Approach; High-Temperature Shape Memory Polymers; Modular Flooring System; Non-Toxic, Low-Freezing, Drop-In Replacement Heat Transfer Fluids; Materials That Enhance Efficiency and Radiation Resistance of Solar Cells; Low-Cost, Rugged High-Vacuum System; Static Gas-Charging Plug; Floating Oil-Spill Containment Device; Stemless Ball Valve; Improving Balance Function Using Low Levels of Electrical Stimulation of the Balance Organs; Oxygen-Methane Thruster; Lunar Navigation Determination System - LaNDS; Launch Method for Kites in Low-Wind or No-Wind Conditions; Supercritical CO2 Cleaning System for Planetary Protection and Contamination Control Applications; Design and Performance of a Wideband Radio Telescope; Finite Element Models for Electron Beam Freeform Fabrication Process Autonomous Information Unit for Fine-Grain Data Access Control and Information Protection in a Net-Centric System; Vehicle Detection for RCTA/ANS (Autonomous Navigation System); Image Mapping and Visual Attention on the Sensory Ego-Sphere; HyDE Framework for