Sample records for nasa african monsoon

  1. Black carbon and West African Monsoon precipitation. Observations and simulations

    Huang, J.; Adams, A.; Zhang, C.; Wang, C.


    We have recently investigated large-scale co-variability between aerosol and precipitation and other meteorological variables in the West African Monsoon (WAM) region using long term satellite observations and reanalysis data. In this study we compared the observational results to a global model simulation including only direct radiative forcing of black carbon (BC). From both observations and model simulations we found that in boreal cold seasons anomalously high African aerosols are associated with significant reductions in cloud amount, cloud top height, and surface precipitation. These results suggest that the observed precipitation reduction in the WAM region is caused by radiative effect of BC. The result also suggests that the BC effect on precipitation is nonlinear. (orig.)

  2. African monsoon multidisciplinary analysis - An international research project and field campaign

    Redelsperger, J. L.; Thorncroft, C. D.; Diedhiou, Arona; Lebel, Thierry; Parker, D. J.; Polcher, J.


    African Monsoon Multidisciplinary Analysis (AMMA) is an international project to improve our knowledge and understanding of the West African monsoon (WAM) and its variability with an emphasis on daily-to-interannual time scales. AMMA is motivated by an interest in fundamental scientific issues and by the societal need for improved prediction of the WAM and its impacts on West African nations. Recognizing the societal need to develop strategies that reduce the socioeconomic impacts of the vari...

  3. Sensible and latent heat forced divergent circulations in the West African Monsoon System

    Hagos, S.; Zhang, C.


    Field properties of divergent circulation are utilized to identify the roles of various diabatic processes in forcing moisture transport in the dynamics of the West African Monsoon and its seasonal cycle. In this analysis, the divergence field is treated as a set of point sources and is partitioned into two sub-sets corresponding to latent heat release and surface sensible heat flux at each respective point. The divergent circulation associated with each set is then calculated from the Poisson's equation using Gauss-Seidel iteration. Moisture transport by each set of divergent circulation is subsequently estimated. The results show different roles of the divergent circulations forced by surface sensible and latent heating in the monsoon dynamics. Surface sensible heating drives a shallow meridional circulation, which transports moisture deep into the continent at the polar side of the monsoon rain band and thereby promotes the seasonal northward migration of monsoon precipitation during the monsoon onset season. In contrast, the circulation directly associated with latent heating is deep and the corresponding moisture convergence is within the region of precipitation. Latent heating also induces dry air advection from the north. Neither effect promotes the seasonal northward migration of precipitation. The relative contributions of the processes associated with latent and sensible heating to the net moisture convergence, and hence the seasonal evolution of monsoon precipitation, depend on the background moisture.

  4. Intercomparison and analyses of the climatology of the West African monsoon in the West African monsoon modeling and evaluation project (WAMME) first model intercomparison experiment

    Xue, Yongkang; Sales, Fernando De [University of California, Los Angeles, CA (United States); Lau, W.K.M.; Schubert, Siegfried D.; Wu, Man-Li C. [NASA, Goddard Space Flight Center, Greenbelt, MD (United States); Boone, Aaron [Centre National de Recherches Meteorologiques, Meteo-France Toulouse, Toulouse (France); Feng, Jinming [University of California, Los Angeles, CA (United States); Chinese Academy of Sciences, Institute of Atmospheric Physics, Beijing (China); Dirmeyer, Paul; Guo, Zhichang [Center for Ocean-Land-Atmosphere Interactions, Calverton, MD (United States); Kim, Kyu-Myong [University of Maryland Baltimore County, Baltimore, MD (United States); Kitoh, Akio [Meteorological Research Institute, Tsukuba (Japan); Kumar, Vadlamani [National Center for Environmental Prediction, Camp Springs, MD (United States); Wyle Information Systems, Gaithersburg, MD (United States); Poccard-Leclercq, Isabelle [Universite de Bourgogne, Centre de Recherches de Climatologie UMR5210 CNRS, Dijon (France); Mahowald, Natalie [Cornell University, Ithaca, NY (United States); Moufouma-Okia, Wilfran; Rowell, David P. [Met Office Hadley Centre, Exeter (United Kingdom); Pegion, Phillip [NASA, Goddard Space Flight Center, Greenbelt, MD (United States); National Center for Environmental Prediction, Camp Springs, MD (United States); Schemm, Jae; Thiaw, Wassila M. [National Center for Environmental Prediction, Camp Springs, MD (United States); Sealy, Andrea [The Caribbean Institute for Meteorology and Hydrology, St. James (Barbados); Vintzileos, Augustin [National Center for Environmental Prediction, Camp Springs, MD (United States); Science Applications International Corporation, Camp Springs, MD (United States); Williams, Steven F. [National Center for Atmospheric Research, Boulder, CO (United States)


    This paper briefly presents the West African monsoon (WAM) modeling and evaluation project (WAMME) and evaluates WAMME general circulation models' (GCM) performances in simulating variability of WAM precipitation, surface temperature, and major circulation features at seasonal and intraseasonal scales in the first WAMME experiment. The analyses indicate that models with specified sea surface temperature generally have reasonable simulations of the pattern of spatial distribution of WAM seasonal mean precipitation and surface temperature as well as the averaged zonal wind in latitude-height cross-section and low level circulation. But there are large differences among models in simulating spatial correlation, intensity, and variance of precipitation compared with observations. Furthermore, the majority of models fail to produce proper intensities of the African Easterly Jet (AEJ) and the tropical easterly jet. AMMA Land Surface Model Intercomparison Project (ALMIP) data are used to analyze the association between simulated surface processes and the WAM and to investigate the WAM mechanism. It has been identified that the spatial distributions of surface sensible heat flux, surface temperature, and moisture convergence are closely associated with the simulated spatial distribution of precipitation; while surface latent heat flux is closely associated with the AEJ and contributes to divergence in AEJ simulation. Common empirical orthogonal functions (CEOF) analysis is applied to characterize the WAM precipitation evolution and has identified a major WAM precipitation mode and two temperature modes (Sahara mode and Sahel mode). Results indicate that the WAMME models produce reasonable temporal evolutions of major CEOF modes but have deficiencies/uncertainties in producing variances explained by major modes. Furthermore, the CEOF analysis shows that WAM precipitation evolution is closely related to the enhanced Sahara mode and the weakened Sahel mode, supporting

  5. Niger River Discharge and the Connection to the West African Monsoon Over the Last 25 kyr

    Patten, J.; Marcantonio, F.; Slowey, N. C.; Schmidt, M. W.; Parker, A. O.; Thomas, D. J.


    The intensity of the West African monsoon is directly tied to the shifting of the Inter-Tropical Convergence Zone and global-scale climate variability. As the West African monsoon varies through time, it affects the precipitation that occurs within the Niger River basin and the Niger River's discharge into the eastern equatorial Atlantic Ocean. The accumulation of marine sediments on the continental slope offshore of the Niger Delta reflects these processes. We seek to better understand how related environmental processes have varied as climate and sea level changed during the latter part of the last glacial-interglacial cycle. Here we present results from our ongoing investigation of sediments collected offshore of the Niger Delta that reflect such changes. The concentrations of 230Th, 232Th, and 234U in the sediments have been measured and combined with ages from radiocarbon dates and planktonic foraminiferal δ18O stratigraphies to estimate how the rate of sediment accumulation has varied through time. This record is considered together with measurements of sediment CaCO3 content and grain-size distribution to better understand the relative importance of environmental processes that control the flux of sediments and thorium to the seafloor - scavenging by particles settling through the water column versus the transport of sediments downslope by turbidity flows. We present xs230Th-derived 232Th fluxes that we suggest approximate the amount of fine-grained detrital material delivered from the Niger River to our sites. We anticipate that the importance of these competing processes will vary as climate/sea-level change influences the flux of sediments from the Niger River and the transport of these sediments to the slope.

  6. Coherent response of the Indo-African boreal summer monsoon to Pacific SST captured in Ethiopian rain δ18O

    Madhavan, M.; Palliyil, L. R.; Ramesh, R.


    Pacific Sea Surface Temperature (SST) plays an important role in the inter-annual to inter-decadal variability of boreal monsoons. We identified a common mode of inter annual variability in the Indian and African boreal summer monsoon (June to September) rainfalls, which is linked to Pacific SSTs, using Empirical Orthogonal Function (EOF) analysis. Temporal coefficients (Principle component: PC1) of the leading mode of variability (EOF-1) is well correlated with the Indian summer monsoon rainfall and Sahel rainfall. About forty year long monthly observations of δ18O (and δD) at Addis Ababa, Ethiopia show a strong association with PC1 (r=0.69 for δ18O and r=0.75 for δD). Analysis of SST, sea level pressure and lower tropospheric winds suggest that 18O depletion in Ethiopian rainfall (and wet phases of PC1) is associated with cooler eastern tropical Pacific and warmer western Pacific and strengthening of Pacific subtropical high in both the hemispheres. Associated changes in the trade winds cause enhanced westerly moisture transport into the Indian subcontinent and northern Africa and cause enhanced rainfall. The intrusion of Atlantic westerly component of moisture transport at Addis Ababa during wet phases of PC1 is clearly recorded in δ18O of rain. We also observe the same common mode of variability (EOF1) of Indo-African boreal summer monsoon rain on decadal time scales. A 100 year long δ18O record of actively growing speleothem from the Mechara cave, Ethiopia, matches very well with the PC1 on the decadal time scale. This highlights the potential of speleothem δ18O and leaf wax δD from Ethiopia to investigate the natural variability and teleconnections of Indo-African boreal monsoon.

  7. Representation of the West African Monsoon System in the aerosol-climate model ECHAM6-HAM2

    Stanelle, Tanja; Lohmann, Ulrike; Bey, Isabelle


    The West African Monsoon (WAM) is a major component of the global monsoon system. The temperature contrast between the Saharan land surface in the North and the sea surface temperature in the South dominates the WAM formation. The West African region receives most of its precipitation during the monsoon season between end of June and September. Therefore the existence of the monsoon is of major social and economic importance. We discuss the ability of the climate model ECHAM6 as well as the coupled aerosol climate model ECHAM6-HAM2 to simulate the major features of the WAM system. The north-south temperature gradient is reproduced by both model versions but all model versions fail in reproducing the precipitation amount south of 10° N. A special focus is on the representation of the nocturnal low level jet (NLLJ) and the corresponding enhancement of low level clouds (LLC) at the Guinea Coast, which are a crucial factor for the regional energy budget. Most global climate models have difficulties to represent these features. The pure climate model ECHAM6 is able to simulate the existence of the NLLJ and LLC, but the model does not represent the pronounced diurnal cycle. Overall, the representation of LLC is worse in the coupled model. We discuss the model behaviors on the basis of outputted temperature and humidity tendencies and try to identify potential processes responsible for the model deficiencies.

  8. Rainfall variability, climate change and regionalization in the African monsoon region

    Fontaine, Bernard; Roucou, Pascal; Vigaud, Nicolas; Camara, Moctar; Konare, Abdourahamane; Sanda, Seidou Ibrah; Diedhiou, Arona; Janicot, Serge


    This summary recalls some results at the end of the AMMA international experiment (2003-2010) in terms of variability of the African monsoon at the intra-seasonal to multi-decadal scales and of climate prospective. The results confirmed the weight of surface temperatures and marine tele-connections for inter-annual and decadal fluctuations and stressed the importance of atmospheric variability. They also described the dominant modes of intra-seasonal variability as their interactions with the surface. Several hypotheses involving memory effects related to soil water and vegetation, particularly in boreal spring and autumn have also been made. Prospective analysis from model output suggests rainfall surplus around 2050 over the Eastern-central Sahel and relative deficit to the West. Phase 2 of AMMA (2010-2020) will focus more on aspects that have a high social impact in direct collaboration with meteorological services predictability, prediction scores, operational indicators, evaluation of the part of anthropogenic forcing in the current and future variations. (authors)

  9. Understanding the West African monsoon variability and its remote effects: an illustration of the grid point nudging methodology

    Bielli, Soline; Douville, Hervé; Pohl, Benjamin


    General circulation models still show deficiencies in simulating the basic features of the West African Monsoon at intraseasonal, seasonal and interannual timescales. It is however, difficult to disentangle the remote versus regional factors that contribute to such deficiencies, and to diagnose their possible consequences for the simulation of the global atmospheric variability. The aim of the present study is to address these questions using the so-called grid point nudging technique, where prognostic atmospheric fields are relaxed either inside or outside the West African Monsoon region toward the ERA40 reanalysis. This regional or quasi-global nudging is tested in ensembles of boreal summer simulations. The impact is evaluated first on the model climatology, then on intraseasonal timescales with an emphasis on North Atlantic/Europe weather regimes, and finally on interannual timescales. Results show that systematic biases in the model climatology over West Africa are mostly of regional origin and have a limited impact outside the domain. A clear impact is found however on the eddy component of the extratropical circulation, in particular over the North Atlantic/European sector. At intraseasonal timescale, the main regional biases also resist to the quasi-global nudging though their magnitude is reduced. Conversely, nudging the model over West Africa exerts a strong impact on the frequency of the two North Atlantic weather regimes that favor the occurrence of heat waves over Europe. Significant impacts are also found at interannual timescale. Not surprisingly, the quasi-global nudging allows the model to capture the variability of large-scale dynamical monsoon indices, but exerts a weaker control on rainfall variability suggesting the additional contribution of regional processes. Conversely, nudging the model toward West Africa suppresses the spurious ENSO teleconnection that is simulated over Europe in the control experiment, thereby emphasizing the relevance

  10. Understanding the West African monsoon variability and its remote effects: an illustration of the grid point nudging methodology

    Bielli, Soline; Douville, Herve; Pohl, Benjamin [CNRM/GMGEC/UDC, Meteo-France, Toulouse Cedex 01 (France)


    General circulation models still show deficiencies in simulating the basic features of the West African Monsoon at intraseasonal, seasonal and interannual timescales. It is however, difficult to disentangle the remote versus regional factors that contribute to such deficiencies, and to diagnose their possible consequences for the simulation of the global atmospheric variability. The aim of the present study is to address these questions using the so-called grid point nudging technique, where prognostic atmospheric fields are relaxed either inside or outside the West African Monsoon region toward the ERA40 reanalysis. This regional or quasi-global nudging is tested in ensembles of boreal summer simulations. The impact is evaluated first on the model climatology, then on intraseasonal timescales with an emphasis on North Atlantic/Europe weather regimes, and finally on interannual timescales. Results show that systematic biases in the model climatology over West Africa are mostly of regional origin and have a limited impact outside the domain. A clear impact is found however on the eddy component of the extratropical circulation, in particular over the North Atlantic/European sector. At intraseasonal timescale, the main regional biases also resist to the quasi-global nudging though their magnitude is reduced. Conversely, nudging the model over West Africa exerts a strong impact on the frequency of the two North Atlantic weather regimes that favor the occurrence of heat waves over Europe. Significant impacts are also found at interannual timescale. Not surprisingly, the quasi-global nudging allows the model to capture the variability of large-scale dynamical monsoon indices, but exerts a weaker control on rainfall variability suggesting the additional contribution of regional processes. Conversely, nudging the model toward West Africa suppresses the spurious ENSO teleconnection that is simulated over Europe in the control experiment, thereby emphasizing the relevance

  11. Recent variations in geopotential height associated with West African monsoon variability

    Okoro, Ugochukwu K.; Chen, Wen; Nath, Debashis


    In the present study, the atmospheric circulation patterns associated with the seasonal West Africa (WA) monsoon (WAM) rainfall variability has been investigated. The observational rainfall data from the Climatic Research Unit (CRU) and atmospheric fields from the National Center for Environmental Prediction (NCEP) reanalysis 2, from 1979 to 2014, have been used. The rainfall variability extremes, classified as wet or dry years, are the outcomes of simultaneous 6-month SPI at the three rainfall zones, which shows increasing trends [Guinea Coast (GC = 0.012 year-1), Eastern Sudano Sahel (ESS = 0.045 year-1) and Western Sudano Sahel (WSS = 0.056 year-1) from Sen's slope]; however, it is significant only in the Sahel region (α = 0.05 and α = 0.001 at ESS and WSS, respectively, from Mann-Kendall test). The vertical profile of the geopotential height (GpH) during the wet and dry years reveals that the 700 hPa anomalies show remarkable pattern at about 8°N to 13°N. This shows varying correlation with the zonal averaged vertically integrated moisture flux convergence and rainfall anomalies, respectively, as well as the oceanic pulsations indexes [Ocean Nino Index (ONI) and South Atlantic Ocean dipole index (SAODI), significant from t test], identified as precursors to the Sahel and GC rainfall variability respectively. The role of GpH anomalies at 700 hPa has been identified as the facilitator to the West African Westerly Jet's input to the moisture flux transported over the WA. This is a new perspective of the circulation processes associated with WAM and serves as a basis for modeling investigations.

  12. RAMA: The Research Moored Array for African-Asian-Australian Monsoon Analysis and Prediction (including supplement)

    McPhaden, M.J.; Meyers, G.; Ando, K.; Masumoto, Y.; Murty, V.S.N.; Ravichandran, M.; Syamsudin, F.; Vialard, J.; Yu, L.; Yu, W.

    -atmosphere interactions, and intense seasonal rains over the Indian subcontinent, Southeast Asia, East Africa, and Australia. Recurrence of these monsoon rains is critical to agricultural production that supports a third of the world’s population. The Indian Ocean also...

  13. The West African monsoon: Contribution of the AMMA multidisciplinary programme to the study of a regional climate system.

    Lebel, T.; Janicot, S.; Redelsperger, J. L.; Parker, D. J.; Thorncroft, C. D.


    The AMMA international project aims at improving our knowledge and understanding of the West African monsoon and its variability with an emphasis on daily-to-interannual timescales. AMMA is motivated by an interest in fundamental scientific issues and by the societal need for improved prediction of the WAM and its impacts on water resources, health and food security for West African nations. The West African monsoon (WAM) has a distinctive annual cycle in rainfall that remains a challenge to understand and predict. The location of peak rainfall, which resides in the Northern Hemisphere throughout the year, moves from the ocean to the land in boreal spring. Around the end of June there is a rapid shift in the location of peak rainfall between the coast and around 10°N where it remains until about the end of August. In September the peak rainfall returns equatorward at a relatively steady pace and is located over the ocean again by November. The fact that the peak rainfall migrates irregularly compared to the peak solar heating is due to the interactions that occur between the land, the atmosphere and the ocean. To gain a better understanding of this complex climate system, a large international research programme was launched in 2002, the biggest of its kind into environment and climate ever attempted in Africa. AMMA has involved a comprehensive field experiment bringing together ocean, land and atmospheric measurements, on timescales ranging from hourly and daily variability up to the changes in seasonal activity over a number of years. This presentation will focus on the description of the field programme and its accomplishments, and address some key questions that have been recently identified to form the core of AMMA-Phase 2.

  14. Factors controlling the distribution of ozone in the West African lower troposphere during the AMMA (African Monsoon Multidisciplinary Analysis wet season campaign

    M. Saunois


    Full Text Available Ozone and its precursors were measured on board the Facility for Airborne Atmospheric Measurements (FAAM BAe 146 Atmospheric Research Aircraft during the monsoon season 2006 as part of the African Monsoon Multidisciplinary Analysis (AMMA campaign. One of the main features observed in the west African boundary layer is the increase of the ozone mixing ratios from 25 ppbv over the forested area (south of 12° N up to 40 ppbv over the Sahelian area. We employ a two-dimensional (latitudinal versus vertical meteorological model coupled with an O3-NOx-VOC chemistry scheme to simulate the distribution of trace gases over West Africa during the monsoon season and to analyse the processes involved in the establishment of such a gradient. Including an additional source of NO over the Sahelian region to account for NO emitted by soils we simulate a mean NOx concentration of 0.7 ppbv at 16° N versus 0.3 ppbv over the vegetated region further south in reasonable agreement with the observations. As a consequence, ozone is photochemically produced with a rate of 0.25 ppbv h−1 over the vegetated region whilst it reaches up to 0.75 ppbv h−1 at 16° N. We find that the modelled gradient is due to a combination of enhanced deposition to vegetation, which decreases the ozone levels by up to 11 pbbv, and the aforementioned enhanced photochemical production north of 12° N. The peroxy radicals required for this enhanced production in the north come from the oxidation of background CO and CH4 as well as from VOCs. Sensitivity studies reveal that both the background CH4 and partially oxidised VOCs, produced from the oxidation of isoprene emitted from the vegetation in the south, contribute around 5–6 ppbv to the ozone gradient. These results suggest that the northward transport of trace gases by the monsoon flux, especially during nighttime, can have a significant, though secondary

  15. Regionally heterogeneous paleoenvironmental responses in the West African and South American monsoon systems on glacial to millennial timescales

    Shanahan, T. M.; Hughen, K. A.; van Mooy, B.; Overpeck, J. T.; Baker, P. A.; Fritz, S.; Peck, J. A.; Scholz, C. A.; King, J. W.


    Although millennial-scale paleoenvironmental changes have been well characterized for high latitude sites, short-term climate variability in the tropics is less well understood. While the Intertropical Convergence Zone may act as an integrator of tropical climate changes, regional factors also play an important role in controlling the tropical response to climate forcing. Understanding these influences, and how they modulate the response to global climate forcing under different mean climate states is thus important for assessing how the tropics may respond to future climate change. Here, we examine new centennial-resolution records of paleoenvironmental change from isotopic and relative abundance data from molecular biomarkers in sediment cores from Lake Bosumtwi and Lake Titicaca. We assess the relative response of the West African and South American monsoon systems to millennial and suborbital-scale climate variability over the last ca. 30,000 years. While there is evidence for synchronous climate variability in the two systems, the dominant paleoenvironmental changes appear largely decoupled, highlighting the importance of regional climatology in controlling the response to climate forcing in tropical regions.

  16. Transport pathways of CO in the African upper troposphere during the monsoon season: a study based upon the assimilation of spaceborne observations

    B. Barret


    Full Text Available The transport pathways of carbon monoxide (CO in the African Upper Troposphere (UT during the West African Monsoon (WAM is investigated through the assimilation of CO observations by the Aura Microwave Limb Sounder (MLS in the MOCAGE Chemistry Transport Model (CTM. The assimilation setup, based on a 3-D First Guess at Assimilation Time (3-D-FGAT variational method is described. Comparisons between the assimilated CO fields and in situ airborne observations from the MOZAIC program between Europe and both Southern Africa and Southeast Asia show an overall good agreement around the lowermost pressure level sampled by MLS (~215 hPa. The 4-D assimilated fields averaged over the month of July 2006 have been used to determine the main dynamical processes responsible for the transport of CO in the African UT. The studied period corresponds to the second AMMA (African Monsoon Multidisciplinary Analyses aircraft campaign. At 220 hPa, the CO distribution is characterized by a latitudinal maximum around 5° N mostly driven by convective uplift of air masses impacted by biomass burning from Southern Africa, uplifted within the WAM region and vented predominantly southward by the upper branch of the winter hemisphere Hadley cell. Above 150 hPa, the African CO distribution is characterized by a broad maximum over northern Africa. This maximum is mostly controlled by the large scale UT circulation driven by the Asian Summer Monsoon (ASM and characterized by the Asian Monsoon Anticyclone (AMA centered at 30° N and the Tropical Easterly Jet (TEJ on the southern flank of the anticyclone. Asian pollution uplifted to the UT over large region of Southeast Asia is trapped within the AMA and transported by the anticyclonic circulation over Northeast Africa. South of the AMA, the TEJ is responsible for the tranport of CO-enriched air masses from India and Southeast Asia over Africa. Using the high time resolution provided by the 4-D assimilated fields, we give evidence

  17. The representation of low-level clouds during the West African monsoon in weather and climate models

    Kniffka, Anke; Hannak, Lisa; Knippertz, Peter; Fink, Andreas


    The West African monsoon is one of the most important large-scale circulation features in the tropics and the associated seasonal rainfalls are crucial to rain-fed agriculture and water resources for hundreds of millions of people. However, numerical weather and climate models still struggle to realistically represent salient features of the monsoon across a wide range of scales. Recently it has been shown that substantial errors in radiation and clouds exist in the southern parts of West Africa (8°W-8°E, 5-10°N) during summer. This area is characterised by strong low-level jets associated with the formation of extensive ultra-low stratus clouds. Often persisting long after sunrise, these clouds have a substantial impact on the radiation budget at the surface and thus the diurnal evolution of the planetary boundary layer (PBL). Here we present some first results from a detailed analysis of the representation of these clouds and the associated PBL features across a range of weather and climate models. Recent climate model simulations for the period 1991-2010 run in the framework of the Year of Tropical Convection (YOTC) offer a great opportunity for this analysis. The models are those used for the latest Assessment Report of the Intergovernmental Panel on Climate Change, but for YOTC the model output has a much better temporal resolution, allowing to resolve the diurnal cycle, and includes diabatic terms, allowing to much better assess physical reasons for errors in low-level temperature, moisture and thus cloudiness. These more statistical climate model analyses are complemented by experiments using ICON (Icosahedral non-hydrostatic general circulation model), the new numerical weather prediction model of the German Weather Service and the Max Planck Institute for Meteorology. ICON allows testing sensitivities to model resolution and numerical schemes. These model simulations are validated against (re-)analysis data, satellite observations (e.g. CM SAF cloud and

  18. Why do global climate models struggle to represent low-level clouds in the West African summer monsoon?

    Knippertz, Peter; Hannak, Lisa; Fink, Andreas H.; Kniffka, Anke; Pante, Gregor


    Climate models struggle to realistically represent the West African monsoon (WAM), which hinders reliable future projections and the development of adequate adaption measures. Low-level clouds over southern West Africa (5-10°N, 8°W-8°E) during July-September are an integral part of the WAM through their effect on the surface energy balance and precipitation, but their representation in climate models has so far received little attention. These clouds usually form during the night near the level of the nocturnal low-level jet ( 950 hPa), thicken and spread until the mid-morning ( 09 UTC), and then break up and rise in the course of the day, typically to about 850 hPa. The low thermal contrast to the surface and the frequent presence of obscuring higher-level clouds make detection of the low-level clouds from space rather challenging. Here we use 30 years of output from 18 models participating in the Coupled Model Intercomparison Project Phase 5 (CMIP5) as well as 20 years of output from 8 models participating in the Year of Tropical Convection (YoTC) experiments to identify cloud biases and their causes. A great advantage of the YoTC dataset is the 6-hourly output frequency, which allows an analysis of the diurnal cycle, and the availability of temperature and moisture tendencies from parameterized processes such as convection, radiation and boundary-layer turbulence. A comparison to earlier analyses based on CMIP3 output reveals rather limited improvements with regard to the represenation of low-level cloud and winds. Compared to ERA-Interim re-analyses, which shows satisfactory agreement with surface observations, many of the CMIP5 and YoTC models still have large biases in low-level cloudiness of both signs and a tendency to too high elevation and too weak diurnal cycles. At the same time, these models tend to have too strong low-level jets, the impact of which is unclear due to concomitant effects on temperature and moisture advection as well as turbulent

  19. The impact of convection in the West African monsoon region on global weather forecasts - explicit vs. parameterised convection simulations using the ICON model

    Pante, Gregor; Knippertz, Peter


    The West African monsoon is the driving element of weather and climate during summer in the Sahel region. It interacts with mesoscale convective systems (MCSs) and the African easterly jet and African easterly waves. Poor representation of convection in numerical models, particularly its organisation on the mesoscale, can result in unrealistic forecasts of the monsoon dynamics. Arguably, the parameterisation of convection is one of the main deficiencies in models over this region. Overall, this has negative impacts on forecasts over West Africa itself but may also affect remote regions, as waves originating from convective heating are badly represented. Here we investigate those remote forecast impacts based on daily initialised 10-day forecasts for July 2016 using the ICON model. One set of simulations employs the default setup of the global model with a horizontal grid spacing of 13 km. It is compared with simulations using the 2-way nesting capability of ICON. A second model domain over West Africa (the nest) with 6.5 km grid spacing is sufficient to explicitly resolve MCSs in this region. In the 2-way nested simulations, the prognostic variables of the global model are influenced by the results of the nest through relaxation. The nest with explicit convection is able to reproduce single MCSs much more realistically compared to the stand-alone global simulation with parameterised convection. Explicit convection leads to cooler temperatures in the lower troposphere (below 500 hPa) over the northern Sahel due to stronger evaporational cooling. Overall, the feedback of dynamic variables from the nest to the global model shows clear positive effects when evaluating the output of the global domain of the 2-way nesting simulation and the output of the stand-alone global model with ERA-Interim re-analyses. Averaged over the 2-way nested region, bias and root mean squared error (RMSE) of temperature, geopotential, wind and relative humidity are significantly reduced in

  20. An overview of the diurnal cycle of the atmospheric boundary layer during the West African monsoon season: results from the 2016 observational campaign

    Kalthoff, Norbert; Lohou, Fabienne; Brooks, Barbara; Jegede, Gbenga; Adler, Bianca; Babić, Karmen; Dione, Cheikh; Ajao, Adewale; Amekudzi, Leonard K.; Aryee, Jeffrey N. A.; Ayoola, Muritala; Bessardon, Geoffrey; Danuor, Sylvester K.; Handwerker, Jan; Kohler, Martin; Lothon, Marie; Pedruzo-Bagazgoitia, Xabier; Smith, Victoria; Sunmonu, Lukman; Wieser, Andreas; Fink, Andreas H.; Knippertz, Peter


    A ground-based field campaign was conducted in southern West Africa from mid-June to the end of July 2016 within the framework of the Dynamics-Aerosol-Chemistry-Cloud Interactions in West Africa (DACCIWA) project. It aimed to provide a high-quality comprehensive data set for process studies, in particular of interactions between low-level clouds (LLCs) and boundary-layer conditions. In this region missing observations are still a major issue. During the campaign, extensive remote sensing and in situ measurements were conducted at three supersites: Kumasi (Ghana), Savè (Benin) and Ile-Ife (Nigeria). Daily radiosoundings were performed at 06:00 UTC, and 15 intensive observation periods (IOPs) were performed during which additional radiosondes were launched, and remotely piloted aerial systems were operated. Extended stratiform LLCs form frequently in southern West Africa during the nighttime and persist long into the following day. They affect the radiation budget and hence the evolution of the atmospheric boundary layer and regional climate. The relevant parameters and processes governing the formation and dissolution of the LLCs are still not fully understood. This paper gives an overview of the diurnal cycles of the energy-balance components, near-surface temperature, humidity, wind speed and direction as well as of the conditions (LLCs, low-level jet) in the boundary layer at the supersites and relates them to synoptic-scale conditions (monsoon layer, harmattan layer, African easterly jet, tropospheric stratification) in the DACCIWA operational area. The characteristics of LLCs vary considerably from day to day, including a few almost cloud-free nights. During cloudy nights we found large differences in the LLCs' formation and dissolution times as well as in the cloud-base height. The differences exist at individual sites and also between the sites. The synoptic conditions are characterized by a monsoon layer with south-westerly winds, on average about 1.9 km

  1. An overview of the diurnal cycle of the atmospheric boundary layer during the West African monsoon season: results from the 2016 observational campaign

    N. Kalthoff


    Full Text Available A ground-based field campaign was conducted in southern West Africa from mid-June to the end of July 2016 within the framework of the Dynamics–Aerosol–Chemistry–Cloud Interactions in West Africa (DACCIWA project. It aimed to provide a high-quality comprehensive data set for process studies, in particular of interactions between low-level clouds (LLCs and boundary-layer conditions. In this region missing observations are still a major issue. During the campaign, extensive remote sensing and in situ measurements were conducted at three supersites: Kumasi (Ghana, Savè (Benin and Ile-Ife (Nigeria. Daily radiosoundings were performed at 06:00 UTC, and 15 intensive observation periods (IOPs were performed during which additional radiosondes were launched, and remotely piloted aerial systems were operated. Extended stratiform LLCs form frequently in southern West Africa during the nighttime and persist long into the following day. They affect the radiation budget and hence the evolution of the atmospheric boundary layer and regional climate. The relevant parameters and processes governing the formation and dissolution of the LLCs are still not fully understood. This paper gives an overview of the diurnal cycles of the energy-balance components, near-surface temperature, humidity, wind speed and direction as well as of the conditions (LLCs, low-level jet in the boundary layer at the supersites and relates them to synoptic-scale conditions (monsoon layer, harmattan layer, African easterly jet, tropospheric stratification in the DACCIWA operational area. The characteristics of LLCs vary considerably from day to day, including a few almost cloud-free nights. During cloudy nights we found large differences in the LLCs' formation and dissolution times as well as in the cloud-base height. The differences exist at individual sites and also between the sites. The synoptic conditions are characterized by a monsoon layer with south-westerly winds, on

  2. Global monsoons in the mid-Holocene and oceanic feedback

    Liu, Z.; Kutzbach, J. [Center for Climatic Research, University of Wisconsin-Madison, 1225 W. Dayton Street, Madison, WI 53706 (United States); Harrison, S.P. [Max Planck Institute for Biogeochemistry, P.O. Box 100164, 07701 Jena (Germany); Otto-Bliesner, B. [National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307 (United States)


    The response of the six major summer monsoon systems (the North American monsoon, the northern Africa monsoon, the Asia monsoon, the northern Australasian monsoon, the South America monsoon and the southern Africa monsoon) to mid-Holocene orbital forcing has been investigated using a coupled ocean-atmosphere general circulation model (FOAM), with the focus on the distinct roles of the direct insolation forcing and oceanic feedback. The simulation result is also found to compare well with the NCAR CSM. The direct effects of the change in insolation produce an enhancement of the Northern Hemisphere monsoons and a reduction of the Southern Hemisphere monsoons. Ocean feedbacks produce a further enhancement of the northern Africa monsoon and the North American monsoon. However, ocean feedbacks appear to weaken the Asia monsoon, although the overall effect (direct insolation forcing plus ocean feedback) remains a strengthened monsoon. The impact of ocean feedbacks on the South American and southern African monsoons is relatively small, and therefore these regions, especially the South America, experienced a reduced monsoon regime compared to present. However, there is a strong ocean feedback on the northern Australian monsoon that negates the direct effects of orbital changes and results in a strengthening of austral summer monsoon precipitation in this region. A new synthesis is made for mid-Holocene paleoenvironmental records and is compared with the model simulations. Overall, model simulations produce changes in regional climates that are generally consistent with paleoenvironmental observations. (orig.)

  3. Impact of West African Monsoon convective transport and lightning NOx production upon the upper tropospheric composition: a multi-model study

    H. Schlager


    Full Text Available Within the African Monsoon Multidisciplinary Analysis (AMMA, we investigate the impact of nitrogen oxides produced by lightning (LiNOx and convective transport during the West African Monsoon (WAM upon the composition of the upper troposphere (UT in the tropics. For this purpose, we have performed simulations with 4 state-of-the-art chemistry transport models involved within AMMA, namely MOCAGE, TM4, LMDz-INCA and p-TOMCAT. The model intercomparison is complemented with an evaluation of the simulations based on both spaceborne and airborne observations. The baseline simulations show important differences between the UT CO and O3 distributions simulated by each of the 4 models when compared to measurements from the MOZAIC program and fom the Aura/MLS spaceborne sensor. We show that such model discrepancies can be explained by differences in the convective transport parameterizations and, more particularly, the altitude reached by convective updrafts (ranging between ~200–125 hPa. Concerning UT O3, the models exhibit a good agreement with the main observed features. Nevertheless the majority of models simulate low O3 concentrations compared to both MOZAIC and Aura/MLS observations south of the equator, and rather high concentrations in the Northern Hemisphere. Sensitivity studies are performed to quantify the effect of deep convective transport and the influence of LiNOx production on the UT composition. These clearly indicate that the CO maxima and the elevated O3 concentrations south of the equator are due to convective uplift of air masses impacted by Southern African biomass burning, in agreement with previous studies. Moreover, during the WAM, LiNOx from Africa are responsible for the highest UT O3 enhancements (10–20 ppbv over the tropical Atlantic between 10° S–20° N. Differences between models are primarily due to the performance of the parameterizations used to simulate lightning activity which are evaluated using spaceborne

  4. Air Pollution over North-West Bay of Bengal in the Early Post-Monsoon Season Based on NASA MERRAero Data

    Kishcha, Pavel; DaSilva, Arlindo M.; Starobinets, Boris; Alpert, Pinhas


    The MERRA Aerosol Reanalysis (MERRAero) has been recently developed at NASA's Global Modeling Assimilation Office (GMAO). This reanalysis is based on a version of the GEOS-5 model radiatively coupled with GOCART aerosols, and it includes assimilation of bias-corrected Aerosol Optical Thickness (AOT) from the MODIS sensor on both Terra and Aqua satellites. Our main finding is that, in October, in the absence of aerosol sources in north-west Bay of Bengal (BoB), MERRAero showed increasing AOT trends over north-west BoB exceeding those over the east of the Ganges basin. The Ganges basin is characterized by significant population growth accompanied by developing industry, agriculture, and increasing transportation: this has resulted in declining air quality. MERRAero data for the period 2002-2009 was used to study AOT trends over north-west Bay of Bengal (BoB) in the early post-monsoon season. This season is characterized by aerosol transport from the Ganges basin to north-west BoB by prevailing winds; and still significant rainfall of over 150 mmmonth. Different aerosol components showed strong increasing AOT trends over north-west BoB. The following factors contributed to the increasing AOT trend over the area in question in October: an increasing number of days when prevailing winds blew from land to sea, resulting in a drier environment and an increase in air pollution over north-west BoB; wind convergence was observed over north-west BoB causing the accumulation of aerosol particles over that region, when prevailing winds blew from land to sea. MERRAero aerosol reanalysis can be used on a global scale.

  5. Study of aerosol direct and indirect effects and auto-conversion processes over the West African monsoon region using a regional climate model

    Salah, Zeinab; Shalaby, Ahmed; Steiner, Allison L.; Zakey, Ashraf S.; Gautam, Ritesh; Abdel Wahab, Mohamed M.


    This study assesses the direct and indirect effects of natural and anthropogenic aerosols (e.g., black carbon and sulfate) over West and Central Africa during the West African monsoon (WAM) period (June-July-August). We investigate the impacts of aerosols on the amount of cloudiness, the influences on the precipitation efficiency of clouds, and the associated radiative forcing (direct and indirect). Our study includes the implementation of three new formulations of auto-conversion parameterization [namely, the Beheng (BH), Tripoli and Cotton (TC) and Liu and Daum (R6) schemes] in RegCM4.4.1, besides the default model's auto-conversion scheme (Kessler). Among the new schemes, BH reduces the precipitation wet bias by more than 50% over West Africa and achieves a bias reduction of around 25% over Central Africa. Results from detailed sensitivity experiments suggest a significant path forward in terms of addressing the long-standing issue of the characteristic wet bias in RegCM. In terms of aerosol-induced radiative forcing, the impact of the various schemes is found to vary considerably (ranging from -5 to -25 W m-2).

  6. Biogenic nitrogen oxide emissions from soils: impact on NOx and ozone over west Africa during AMMA (African Monsoon Multidisciplinary Analysis: observational study

    J. B. McQuaid


    Full Text Available Chemical and meteorological parameters measured on board the Facility for Airborne Atmospheric Measurements (FAAM BAe 146 Atmospheric Research Aircraft during the African Monsoon Multidisciplinary Analysis (AMMA campaign are presented to show the impact of NOx emissions from recently wetted soils in West Africa. NO emissions from soils have been previously observed in many geographical areas with different types of soil/vegetation cover during small scale studies and have been inferred at large scales from satellite measurements of NOx. This study is the first dedicated to showing the emissions of NOx at an intermediate scale between local surface sites and continental satellite measurements. The measurements reveal pronounced mesoscale variations in NOx concentrations closely linked to spatial patterns of antecedent rainfall. Fluxes required to maintain the NOx concentrations observed by the BAe-146 in a number of cases studies and for a range of assumed OH concentrations (1×106 to 1×107 molecules cm−3 are calculated to be in the range 8.4 to 36.1 ng N m−2 s−1. These values are comparable to the range of fluxes from 0.5 to 28 ng N m−2 s−1 reported from small scale field studies in a variety of non-nutrient rich tropical and sub-tropical locations reported in the review of Davidson and Kingerlee (1997. The fluxes calculated in the present study have been scaled up to cover the area of the Sahel bounded by 10 to 20 N and 10 E to 20 W giving an estimated emission of 0.03 to 0.30 Tg N from this area for July and August 2006. The observed chemical data also suggest that the NOx emitted from soils is taking part in ozone formation as ozone concentrations exhibit similar fine scale structure to the NOx, with enhancements over the wet soils. Such variability can not be explained on the basis of transport from other areas. Delon et al. (2008 is a companion paper to this one which models the impact of soil NOx emissions on the NOx and ozone

  7. The Indian Monsoon

    The word 'monsoon' is derived from the Arabic word 'mausam' for season and the distinguishing attribute of ... lance, the word monsoon is used for the rainfall in the rainy season. In this article, I discuss the ..... [1] C S Ramage, Monsoon meteorology, International Geophysics Series,. Academic Press, San Diego, California ...

  8. 21,000 years of Ethiopian African monsoon variability recorded in sediments of the western Nile deep-sea fan: impact of the Nile freshwater inflow for the Mediterranean thermo-haline circulation

    Revel, Marie; Colin, Christophe; Bernasconi, Stephano; Combourieu-Nebout, Nathalie; Ducassou, Emmanuelle; Rolland, Yann; Bosch, Delphine


    The Nile delta sedimentation constitutes a continuous high resolution (1.6 mm/year) record of Ethiopian African monsoon regime intensity. Multiproxy analyses performed on core MS27PT recovered in hemipelagic Nile sediment margin (Blue/White Nile River suspended matter frequency fluctuations during the last 21 cal. ka BP. The radiogenic Sr and Nd isotopes, clay mineralogy, bulk elemental composition and palynological analyses reveal large changes in source components, oscillating between a dominant aeolian Saharan contribution during the LGM and the Late Holocene (~4 to 2 cal. ka BP), a dominant Blue/Atbara Nile River contribution during the early Holocene (15 to 8.4 cal. ka BP) and a probable White Nile River contribution during the Middle Holocene (8.4 to 4 cal. ka BP). The following main features are highlighted: 1. The rapid shift from the LGM arid conditions to the African Humid Period (AHP) started at about 15 cal. ka BP. AHP extends until 8.4 cal. ka BP, and we suggest that the Ethiopian African Monsoon maximum between 12 and 8 cal. ka BP is responsible for a larger Blue/Atbara Nile sediment load and freshwater input into the Eastern Mediterranean Sea. 2. The transition between the AHP and the arid Late Holocene is gradual and occurs in two main phases between 8.4 and 6.5 cal. ka BP and 6.5 to 3.2 cal. ka BP. We suggest that the main rain belt shifted southward from 8.4 to ~4 cal. ka BP and was responsible for progressively reduced sediment load and freshwater input into the eastern Mediterranean Sea. 3. The aridification along the Nile catchments occurred from ~4 to 2 cal. ka BP. A dry period, which culminates at 3.2 cal. ka BP, and seems to coincide with a re-establishment of increased oceanic primary productivity in the western Mediterranean Sea. We postulate that the decrease in thermo-haline water Mediterranean circulation could be part of a response to huge volumes of fresh-water delivered principally by the Nile River from 12 to 8.4 cal. ka BP in the

  9. The Indian Monsoon


    and led to the expectation that the impact of the monsoon on the ... a lead time of 10 days to a month for rainfall, temperature, etc., ... trying to predict, such as clouds or a monsoon depression (in ... occur because (i) the models are not perfect (involving many ... ally at many centres in the world, long-range predictions are.

  10. The Indian Monsoon

    Pacific Oceans, on subseasonal scales of a few days and on an interannual scale. ... over the Indian monsoon zone2 (Figure 3) during the summer monsoon .... each 500 km ×500 km grid over the equatorial Indian Ocean, Bay of Bengal and ...

  11. Large-scale control of the Arabian Sea monsoon inversion in August

    Wu, Chi-Hua; Wang, S.-Y. Simon; Hsu, Huang-Hsiung


    The summer monsoon inversion in the Arabian Sea is characterized by a large amount of low clouds and August as the peak season. Atmospheric stratification associated with the monsoon inversion has been considered a local system influenced by the advancement of the India-Pakistan monsoon. Empirical and numerical evidence from this study suggests that the Arabian Sea monsoon inversion is linked to a broader-scale monsoon evolution across the African Sahel, South Asia, and East Asia-Western North Pacific (WNP), rather than being a mere byproduct of the India-Pakistan monsoon progression. In August, the upper-tropospheric anticyclone in South Asia extends sideways corresponding with the enhanced precipitation in the subtropical WNP, equatorial Indian Ocean, and African Sahel while the middle part of this anticyclone weakens over the Arabian Sea. The increased heating in the adjacent monsoon systems creates a suppression effect on the Arabian Sea, suggesting an apparent competition among the Africa-Asia-WNP monsoon subsystems. The peak Sahel rainfall in August, together with enhanced heating in the equatorial Indian Ocean, produces a critical effect on strengthening the Arabian Sea thermal inversion. By contrast, the WNP monsoon onset which signifies the eastward expansion of the subtropical Asian monsoon heating might play a secondary or opposite role in the Arabian Sea monsoon inversion.

  12. NASA and USGS invest in invasive species modeling to evaluate habitat for Africanized Honey Bees


    Invasive non-native species, such as plants, animals, and pathogens, have long been an interest to the U.S. Geological Survey (USGS) and NASA. Invasive species cause harm to our economy (around $120 B/year), the environment (e.g., replacing native biodiversity, forest pathogens negatively affecting carbon storage), and human health (e.g., plague, West Nile virus). Five years ago, the USGS and NASA formed a partnership to improve ecological forecasting capabilities for the early detection and containment of the highest priority invasive species. Scientists from NASA Goddard Space Flight Center (GSFC) and the Fort Collins Science Center developed a longterm strategy to integrate remote sensing capabilities, high-performance computing capabilities and new spatial modeling techniques to advance the science of ecological invasions [Schnase et al., 2002].

  13. Modeling sensitivity study of the possible impact of snow and glaciers developing over Tibetan Plateau on Holocene African-Asian summer monsoon climate

    L. Jin


    Full Text Available The impacts of various scenarios of a gradual snow and glaciers developing over the Tibetan Plateau on climate change in Afro-Asian monsoon region and other regions during the Holocene (9 kyr BP–0 kyr BP are studied by using the Earth system model of intermediate complexity, CLIMBER-2. The simulations show that the imposed snow and glaciers over the Tibetan Plateau in the mid-Holocene induce global summer temperature decreases over most of Eurasia but in the Southern Asia temperature response is opposite. With the imposed snow and glaciers, summer precipitation decreases strongly in North Africa and South Asia as well as northeastern China, while it increases in Southeast Asia and the Mediterranean. For the whole period of Holocene (9 kyr BP–0 kyr BP, the response of vegetation cover to the imposed snow and glaciers cover over the Tibetan Plateau is not synchronous in South Asia and in North Africa, showing an earlier and a more rapid decrease in vegetation cover in North Africa from 9 kyr BP to 6 kyr BP while it has only minor influence on that in South Asia until 5 kyr BP. The precipitation decreases rapidly in North Africa and South Asia while it decreases slowly or unchanged during 6 kyr BP to 0 kyr BP with imposed snow and glacier cover over the Tibetan Plateau. The different scenarios of snow and glacier developing over the Tibetan Plateau would result in differences in variation of temperature, precipitation and vegetation cover in North Africa, South Asia and Southeast Asia. The model results suggest that the development of snow and ice cover over Tibetan Plateau represents an additional important climate feedback, which amplify orbital forcing and produces a significant synergy with the positive vegetation feedback.

  14. Modelling the impacts of deforestation on monsoon rainfall in West Africa

    Abiodun, B J; Pal, J S; Afiesimama, E A; Gutowski, W J; Adedoyin, A


    The study found that deforestation causes more monsoon moisture to be retained in the mid-troposphere, thereby reducing the northward transport of moisture needed for rainfall over West Africa. Hence, deforestation has dynamical impacts on the West African monsoon and rainfall.

  15. Energetics and monsoon bifurcations

    Seshadri, Ashwin K.


    Monsoons involve increases in dry static energy (DSE), with primary contributions from increased shortwave radiation and condensation of water vapor, compensated by DSE export via horizontal fluxes in monsoonal circulations. We introduce a simple box-model characterizing evolution of the DSE budget to study nonlinear dynamics of steady-state monsoons. Horizontal fluxes of DSE are stabilizing during monsoons, exporting DSE and hence weakening the monsoonal circulation. By contrast latent heat addition (LHA) due to condensation of water vapor destabilizes, by increasing the DSE budget. These two factors, horizontal DSE fluxes and LHA, are most strongly dependent on the contrast in tropospheric mean temperature between land and ocean. For the steady-state DSE in the box-model to be stable, the DSE flux should depend more strongly on the temperature contrast than LHA; stronger circulation then reduces DSE and thereby restores equilibrium. We present conditions for this to occur. The main focus of the paper is describing conditions for bifurcation behavior of simple models. Previous authors presented a minimal model of abrupt monsoon transitions and argued that such behavior can be related to a positive feedback called the `moisture advection feedback'. However, by accounting for the effect of vertical lapse rate of temperature on the DSE flux, we show that bifurcations are not a generic property of such models despite these fluxes being nonlinear in the temperature contrast. We explain the origin of this behavior and describe conditions for a bifurcation to occur. This is illustrated for the case of the July-mean monsoon over India. The default model with mean parameter estimates does not contain a bifurcation, but the model admits bifurcation as parameters are varied.

  16. Lakes or wetlands? A comment on 'The middle Holocene climatic records from Arabia: Reassessing lacustrine environments, shift of ITCZ in Arabian Sea, and impacts of the southwest Indian and African monsoons' by Enzel et al.

    Engel, Max; Matter, Albert; Parker, Adrian G.; Parton, Ash; Petraglia, Michael D.; Preston, Gareth W.; Preusser, Frank


    Enzel et al. (2015) reassess sedimentary records of Early to Mid-Holocene lake sites in Arabia based on a reinterpretation of published multiproxy data and a qualitative analysis of satellite imagery. The authors conclude that these sites represent palaeo-wetland environments rather than palaeolakes and that the majority of the Arabian Peninsula experienced no or, if at all, only a very minor increase of rainfall at that time mainly due to eastward expansion of the East African Summer Monsoon. We disagree with their reassessment and identify several cases where unequivocal evidence for early Late Pleistocene and Early to Mid-Holocene perennial lake environments in Arabia, lasting for centuries to millennia, was neglected by Enzel et al. (2015). Here we summarize findings which indicate the presence of lakes from the sites of Jubbah, Tayma, Mundafan (all Saudi Arabia), Wahalah, Awafi (both UAE), and the Wahiba Sands (Oman), supported by evidence including occurrence of barnacle colonies in living position, remnant bioclastic shoreline deposits, undisturbed varve formation, shallowing-up lacustrine sequences, various aquatic freshwater, brackish and saline micro- and macrofossils, such as ichnofaunal remains, which are the result of prolonged field-based research. While the precise depth, hydrology and ecology of these water bodies is still not entirely resolved, their perennial nature is indicative of a markedly increased precipitation regime, which, in combination with more abundant groundwater and increased spring outflow in terminal basins fed by charged aquifers, was sufficient to overcome evaporative losses. The palaeolakes' influence on sustaining prehistoric populations is corroborated by the presence of rich archaeological evidence.

  17. Monsoon onset over Kerala and pre monsoon rainfall peak

    RameshKumar, M.R.; Shenoi, S.S.C.; Shankar, D.

    and the monsoon onset date over Kerala was found to be 0.72, which was statistically significant. Thus, as is felt that the pre monsoon rainfall estimate from the satellite data can be used for predicting the monsoon onset over Kerala coast. The results...

  18. Measuring the monsoon

    Ramaswamy, V.; Nair, R.R.

    that are constant enough to be used for navigation. But the monsoon also acts as a sign of the climatic times. Although its timing is remarkably regular, the intensity of its effects varies considerably from year to year. On top of natural variations in the strength...

  19. Tropical and Monsoonal Studies.


    Duiing the cold surge event the balance of the 200 mb zonal momentum budget is between the zonal advecton of momentum and the coriolis, aceration ...over the South China Sea in the Malaysia ACKNOWLEDGEMENTS region during the winter monsoon, December 1973. Pure AppL Geophys., 115, 1303-1334. We wish

  20. The Indian Monsoon

    Home; Journals; Resonance – Journal of Science Education; Volume 13; Issue 3. The Indian Monsoon - Links to Cloud systems over the Tropical Oceans. Sulochana Gadgil. Series Article Volume 13 Issue 3 March 2008 pp 218-235. Fulltext. Click here to view fulltext PDF. Permanent link:

  1. Foretelling the Monsoon

    Relation between the continental TCZ and the TCZ over Equatorial Indian Ocean · Understanding year-to year (interannual) variation of the monsoon · Slide 40 · IMPACT OF EL NINO/LA NINA · Slide 42 · Variation of ISMR anomalies ( i.e. difference from the average value) normalized by std. deviation from 1979-2004.

  2. Large-scale overview of the summer monsoon over West Africa during the AMMA field experiment in 2006

    S. Janicot


    Full Text Available The AMMA (African Monsoon Multidisciplinary Analysis program is dedicated to providing a better understanding of the West African monsoon and its influence on the physical, chemical and biological environment regionally and globally, as well as relating variability of this monsoon system to issues of health, water resources, food security and demography for West African nations. Within this framework, an intensive field campaign took place during the summer of 2006 to better document specific processes and weather systems at various key stages of this monsoon season. This campaign was embedded within a longer observation period that documented the annual cycle of surface and atmospheric conditions between 2005 and 2007. The present paper provides a large and regional scale overview of the 2006 summer monsoon season, that includes consideration of of the convective activity, mean atmospheric circulation and synoptic/intraseasonal weather systems, oceanic and land surface conditions, continental hydrology, dust concentration and ozone distribution. The 2006 African summer monsoon was a near-normal rainy season except for a large-scale rainfall excess north of 15° N. This monsoon season was also characterized by a 10-day delayed onset compared to climatology, with convection becoming developed only after 10 July. This onset delay impacted the continental hydrology, soil moisture and vegetation dynamics as well as dust emission. More details of some less-well-known atmospheric features in the African monsoon at intraseasonal and synoptic scales are provided in order to promote future research in these areas.

  3. The Monsoon Erosion Pump and the Indian Monsoon since Eocene

    Giosan, L.


    Lack of consensus on the Neogene establishment and evolution of the Indian Monsoon is remarkable after half a century of research. Conflicting interpretations point toward the possibility of periodic decoupling between monsoon winds and monsoon precipitation. Here I introduce the concept of a monsoon erosion pump based on terrestrial and oceanic records reconstructed from recent NGHP and IODP drilling and spanning the last 34 million years in the Bay of Bengal, Arabian and Andaman Seas. From millennial to orbital to tectonic timescales, these records suggest that vegetation land cover interacts and modulates the regime of erosion and weathering under perennial but variable monsoonal rain conditions. Under this new proposed paradigm the Indian monsoon exhibits two distinct flavours during the Neogene that can be largely explained by its heartbeat, or astronomical forcing, mediated by the global glacial state and interacting with the paleogeography of South Asia.

  4. Large-Scale Control of the Arabian Sea Summer Monsoon Inversion and Low Clouds: A New Perspective

    Wu, C. H.; Wang, S. Y.; Hsu, H. H.; Hsu, P. C.


    The Arabian Sea undergoes a so-called summer monsoon inversion that reaches the maximum intensity in August associated with a large amount of low-level clouds. The formation of inversion and low clouds was generally thought to be a local system influenced by the India-Pakistan monsoon advancement. New empirical and numerical evidence suggests that, rather than being a mere byproduct of the nearby monsoon, the Arabian Sea monsoon inversion is coupled with a broad-scale monsoon evolution connected across the Africa Sahel, South Asia, and the East Asia-western North Pacific (WNP). Several subseasonal variations occur in tandem: The eastward expansion of the Asian-Pacific monsoonal heating likely suppresses the India-Pakistan monsoon while enhancing low-level thermal inversion of Arabian Sea; the upper-tropospheric anticyclone in South Asia weakens in August smoothing zonal contrast in geopotential heights (10°N-30°N); the subtropical WNP monsoon trough in the lower troposphere that signals the revival of East Asian summer monsoon matures in August; the Sahel rainfall peaks in August accompanied by an intensified tropical easterly jet. The occurrence of the latter two processes enhances upper-level anticyclones over Africa and WNP and this, in turn, induces subsidence in between over the Arabian Sea. Numerical experiments demonstrate the combined effect of the African and WNP monsoonal heating on the enhancement of the Arabian Sea monsoon inversion. Connection is further found in the interannual and decadal variations between the East Asian-WNP monsoon and the Arabian Sea monsoon inversion. In years with reduced low clouds of Arabian Sea, the East Asian midlatitude jet stream remains strong in August while the WNP monsoon trough appears to be weakened. The Arabian Sea inversion (ridge) and WNP trough pattern which forms a dipole structure, is also found to have intensified since the 21st century.

  5. Winter/Summer Monsoon Experiment

    National Oceanic and Atmospheric Administration, Department of Commerce — The Winter/Summer Monsoon Experiment (MONEX) was conducted during the First Global GARP (Global Atmospheric Research Program) Experiment (FGGE). An international...

  6. Monsoon Convection during the South China Sea Monsoon Experiment Observed from Shipboard Radar and the TRMM Satellite

    Rickenbach, Tom; Cifelli, Rob; Halverson, Jeff; Kucera, Paul; Atkinson, Lester; Fisher, Brad; Gerlach, John; Harris, Kathy; Kaufman, Cristina; Liu, Ching-Hwang; hide


    A main goal of the recent South China Sea Monsoon Experiment (SCSMEX) was to study convective processes associated with the onset of the Southeast Asian summer monsoon. The NASA TOGA C-band scanning radar was deployed on the Chinese research vessel Shi Yan #3 for two 20 day cruises, collecting dual-Doppler measurements in conjunction with the BMRC C-Pol dual-polarimetric radar on Dongsha Island. Soundings and surface meteorological data were also collected with an NCAR Integrated Sounding System (ISS). This experiment was the first major tropical field campaign following the launch of the Tropical Rainfall Measuring Mission (TRMM) satellite. These observations of tropical oceanic convection provided an opportunity to make comparisons between surface radar measurements and the Precipitation Radar (PR) aboard the TRMM satellite in an oceanic environment. Nearly continuous radar operations were conducted during two Intensive Observing Periods (IOPS) straddling the onset of the monsoon (5-25 May 1998 and 5-25 June 1998). Mesoscale lines of convection with widespread regions of both trailing and forward stratiform precipitation were observed during the active monsoon periods in a southwesterly flow regime. Several examples of mesoscale convection will be shown from ship-based and spacebome radar reflectivity data during times of TRMM satellite overpasses. Further examples of pre-monsoon convection, characterized by isolated cumulonimbus and shallow, precipitating congestus clouds, will be discussed. A strong waterspout was observed very near the ship from an isolated cell in the pre-monsoon period, and was well documented with photography, radar, sounding, and sounding data.

  7. Pleistocene Indian Monsoon Rainfall Variability

    Yirgaw, D. G.; Hathorne, E. C.; Giosan, L.; Collett, T. S.; Sijingeo, A. V.; Nath, B. N.; Frank, M.


    The past variability of the Indian Monsoon is mostly known from records of wind strength over the Arabian Sea. Here we investigate proxies for fresh water input and runoff in a region of strong monsoon precipitation that is a major moisture source for the east Asian Monsoon. A sediment core obtained by the IODP vessel JOIDES Resolution and a gravity core from the Alcock Seamount complex in the Andaman Sea are used to examine the past monsoon variability on the Indian sub-continent and directly over the ocean. The current dataset covers the last glacial and deglacial but will eventually provide a Pleistocene record. We utilise the ecological habitats of G. sacculifer and N. dutertrei to investigate the freshwater-induced stratification with paired Mg/Ca and δ18O analyses to estimate seawater δ18O (δ18Osw). During the last 60 kyrs, Ba/Ca ratios and δ18Osw values generally agree well between the two cores and suggest the weakest surface runoff and monsoon during the LGM and strongest monsoon during the Holocene. The difference in δ18O between the species, interpreted as a proxy for upper ocean stratification, implies stratification developed around 37 ka and remained relatively constant during the LGM, deglacial and Holocene. To investigate monsoon variability for intervals in the past, single shell Mg/Ca and δ18O analyses have been conducted. Mg/Ca ratios from individual shells of N. dutertrei suggest relatively small changes in temperature. However, individual N. dutertrei δ18O differ greatly between the mid-Holocene and samples from the LGM and a nearby core top. The mid-Holocene individuals have a greater range and large skew towards negative values indicating greater fresh water influence.

  8. Circulation characteristics of a monsoon depression during ...

    M. Senthilkumar (Newgen Imaging) 1461 1996 Oct 15 13:05:22

    ciated with organized convective processes in a monsoon depression. The objective is to ..... the errors are large and the performance of the high-resolution ... Ramage C S 1971 Monsoon meteorology (London: Academic. Press) 45–46.

  9. On breaks of the Indian monsoon

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    quadrapole is a basic feature of weak spells of the intraseasonal variation over the Asia-west Pacific region. ... (Earth Planet. Sci.), 112 .... be useful to define the break monsoon (and active ... monsoon zone, different scientists have used the.

  10. Interactions Between Asian Air Pollution and Monsoon System: South Asia (ROSES-2014 ACMAP)

    Pan, Xiaohua; Chin, Mian; Tao, Zhining; Kim, Dongchul; Bian, Huisheng; Kucsera, Tom


    Asia's rapid economic growth over the past several decades has brought a remarkable increase in air pollution levels in that region. High concentrations of aerosols (also known as particulate matter or PM) from pollution sources pose major health hazards to half of the world population in Asia including South Asia. How do pollution and dust aerosols regulate the monsoon circulation and rainfall via scattering and absorbing solar radiation, changing the atmospheric heating rates, and modifying the cloud properties? We conducted a series of regional model experiments with NASA-Unified Weather Research and Forecast (NUWRF) regional model with coupled aerosol-chemistry-radiation-microphysics processes over South Asia for winter, pre-monsoon, and monsoon seasons to address this question. This study investigates the worsening air quality problem in South Asia by focusing on the interactions between pollution and South Asian monsoon, not merely focusing on the increase of pollutant emissions.

  11. Meteorological results of monsoon-88 Expedition (pre-monsoon period)

    Sadhuram, Y.; Krishnamurthy, L.; Babu, M.T.

    Mean atmospheric circulation, moisture budget and net heat exchange were studied during a pre-monsoon period (18th March to 3rd May, 1988), making use of the data collected on board "Akademik Korolev" in the central equatorial and southern Arabian...

  12. Asian monsoon variability, cyclicities, and forcing mechanisms

    Naidu, P.D.

    in monsoonal intensity from 5 to 2Ma. Uplift of the Himalayas and the Tibetan Plateau occurred coeval with the increase in strength of the Asian Monsoon between 9.5 and 5Ma. Variability of monsoon on glacial and interglacial time scale Multi proxy based... in the Western Ghats of India 131 Fig. 3. Multi proxy monsoon reconstructions show that summer monsoon strength was stronger during interglacials (shaded intervals) as compared to glacials 0 2 4 6 8 10 12 14 16 18 20 0 100 200 300 400 0 50...

  13. Monsoon Convective During the South China Sea Monsoon Experiment: Observations from Ground-Based Radar and the TRMM Satellite

    Cifelli, Rob; Rickenbach, Tom; Halverson, Jeff; Keenan, Tom; Kucera, Paul; Atkinson, Lester; Fisher, Brad; Gerlach, John; Harris, Kathy; Kaufman, Cristina


    A main goal of the recent South China Sea Monsoon Experiment (SCSMEX) was to study convective processes associated with the onset of the Southeast Asian summer monsoon. The NASA TOGA C-band scanning radar was deployed on the Chinese research vessel Shi Yan #3 for two 20 day cruises, collecting dual-Doppler measurements in conjunction with the BMRC C-Pol dual-polarimetric radar on Dongsha Island. Soundings and surface meteorological data were also collected with an NCAR Integrated Sounding System (ISS). This experiment was the first major tropical field campaign following the launch of the Tropical Rainfall Measuring Mission (TRMM) satellite. These observations of tropical oceanic convection provided an opportunity to make comparisons between surface radar measurements and the Precipitation Radar (PR) aboard the TRMM satellite in an oceanic environment. Nearly continuous radar operations were conducted during two Intensive Observing Periods (IOPS) straddling the onset of the monsoon (5-25 May 1998 and 5-25 June 1998). Mesoscale lines of convection with widespread regions of both trailing and forward stratiform precipitation were observed following the onset of the active monsoon in the northern South China Sea region. The vertical structure of the convection during periods of strong westerly flow and relatively moist environmental conditions in the lower to mid-troposphere contrasted sharply with convection observed during periods of low level easterlies, weak shear, and relatively dry conditions in the mid to upper troposphere. Several examples of mesoscale convection will be shown from the ground (ship)-based and spaceborne radar data during times of TRMM satellite overpasses. Examples of pre-monsoon convection, characterized by isolated cumulonimbus and shallow, precipitating congestus clouds, will also be discussed.

  14. Monsoonal response to mid-holocene orbital forcing in a high resolution GCM

    J. H. C. Bosmans


    Full Text Available In this study, we use a sophisticated high-resolution atmosphere-ocean coupled climate model, EC-Earth, to investigate the effect of Mid-Holocene orbital forcing on summer monsoons on both hemispheres. During the Mid-Holocene (6 ka, there was more summer insolation on the Northern Hemisphere than today, which intensified the meridional temperature and pressure gradients. Over North Africa, monsoonal precipitation is intensified through increased landward monsoon winds and moisture advection as well as decreased moisture convergence over the oceans and more convergence over land compared to the pre-industrial simulation. Precipitation also extends further north as the ITCZ shifts northward in response to the stronger poleward gradient of insolation. This increase and poleward extent is stronger than in most previous ocean-atmosphere GCM simulations. In north-westernmost Africa, precipitation extends up to 35° N. Over tropical Africa, internal feedbacks completely overcome the direct warming effect of increased insolation. We also find a weakened African Easterly Jet. Over Asia, monsoonal precipitation during the Mid-Holocene is increased as well, but the response is different than over North-Africa. There is more convection over land at the expense of convection over the ocean, but precipitation does not extend further northward, monsoon winds over the ocean are weaker and the surrounding ocean does not provide more moisture. On the Southern Hemisphere, summer insolation and the poleward insolation gradient were weaker during the Mid-Holocene, resulting in a reduced South American monsoon through decreased monsoon winds and less convection, as well as an equatorward shift in the ITCZ. This study corroborates the findings of paleodata research as well as previous model studies, while giving a more detailed account of Mid-Holocene monsoons.

  15. Observations of Coastally Transitioning West African Mesoscale Convective Systems during NAMMA

    Bradley W. Klotz


    Full Text Available Observations from the NASA 10 cm polarimetric Doppler weather radar (NPOL were used to examine structure, development, and oceanic transition of West African Mesoscale Convective Systems (MCSs during the NASA African Monsoon Multidisciplinary Analysis (NAMMA to determine possible indicators leading to downstream tropical cyclogenesis. Characteristics examined from the NPOL data include echo-top heights, maximum radar reflectivity, height of maximum radar reflectivity, and convective and stratiform coverage areas. Atmospheric radiosondes launched during NAMMA were used to investigate environmental stability characteristics that the MCSs encountered while over land and ocean, respectively. Strengths of African Easterly Waves (AEWs were examined along with the MCSs in order to improve the analysis of MCS characteristics. Mean structural and environmental characteristics were calculated for systems that produced TCs and for those that did not in order to determine differences between the two types. Echo-top heights were similar between the two types, but maximum reflectivity and height and coverage of intense convection (>50 dBZ are all larger than for the TC producing cases. Striking differences in environmental conditions related to future TC formation include stronger African Easterly Jet, increased moisture especially at middle and upper levels, and increased stability as the MCSs coastally transition.

  16. Impacts of Aerosol-Monsoon Interaction on Rainfall and Circulation over Northern India and the Himalaya Foothills

    Lau, William K. M.; Kim, Kyu-Myong; Shi, Jainn-Jong; Matsui, T.; Chin, M.; Tan, Qian; Peters-Lidard, C.; Tao, W. K.


    The boreal summer of 2008 was unusual for the Indian monsoon, featuring exceptional heavy loading of dust aerosols over the Arabian Sea and northern-central India, near normal all- India rainfall, but excessive heavy rain, causing disastrous flooding in the Northern Indian Himalaya Foothills (NIHF) regions, accompanied by persistent drought conditions in central and southern India. Using NASA Unified-physics Weather Research Forecast (NUWRF) model with fully interactive aerosol physics and dynamics, we carried out three sets of 7-day ensemble model forecast experiments: 1) control with no aerosol, 2) aerosol radiative effect only and 3) aerosol radiative and aerosol-cloud-microphysics effects, to study the impacts of aerosol monsoon interactions on monsoon variability over the NIHF during the summer of 2008. Results show that aerosol-radiation interaction (ARI), i.e., dust aerosol transport, and dynamical feedback processes induced by aerosol-radiative heating, plays a key role in altering the large scale monsoon circulation system, reflected by an increased north-south tropospheric temperature gradient, a northward shift of heavy monsoon rainfall, advancing the monsoon onset by 1-5 days over the HF, consistent with the EHP hypothesis (Lau et al. 2006). Additionally, we found that dust aerosols, via the semi-direct effect, increase atmospheric stability, and cause the dissipation of a developing monsoon onset cyclone over northeastern India northern Bay of Bengal. Eventually, in a matter of several days, ARI transforms the developing monsoon cyclone into mesoscale convective cells along the HF slopes. Aerosol-Cloud-microphysics Interaction (ACI) further enhances the ARI effect in invigorating the deep convection cells and speeding up the transformation processes. Results indicate that even in short-term (up to weekly) numerical forecasting of monsoon circulation and rainfall, effects of aerosol-monsoon interaction can be substantial and cannot be ignored.

  17. Clouds vertical properties over the Northern Hemisphere monsoon regions from CloudSat-CALIPSO measurements

    Das, Subrata Kumar; Golhait, R. B.; Uma, K. N.


    The CloudSat spaceborne radar and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) space-borne lidar measurements, provide opportunities to understand the intriguing behavior of the vertical structure of monsoon clouds. The combined CloudSat-CALIPSO data products have been used for the summer season (June-August) of 2006-2010 to present the statistics of cloud macrophysical (such as cloud occurrence frequency, distribution of cloud top and base heights, geometrical thickness and cloud types base on occurrence height), and microphysical (such as ice water content, ice water path, and ice effective radius) properties of the Northern Hemisphere (NH) monsoon region. The monsoon regions considered in this work are the North American (NAM), North African (NAF), Indian (IND), East Asian (EAS), and Western North Pacific (WNP). The total cloud fraction over the IND (mostly multiple-layered cloud) appeared to be more frequent as compared to the other monsoon regions. Three distinctive modes of cloud top height distribution are observed over all the monsoon regions. The high-level cloud fraction is comparatively high over the WNP and IND. The ice water content and ice water path over the IND are maximum compared to the other monsoon regions. We found that the ice water content has little variations over the NAM, NAF, IND, and WNP as compared to their macrophysical properties and thus give an impression that the regional differences in dynamics and thermodynamics properties primarily cause changes in the cloud frequency or coverage and only secondary in the cloud ice properties. The background atmospheric dynamics using wind and relative humidity from the ERA-Interim reanalysis data have also been investigated which helps in understanding the variability of the cloud properties over the different monsoon regions.

  18. The Summer Monsoon of 1987.

    Krishnamurti, T. N.; Bedi, H. S.; Subramaniam, M.


    In this paper we have examined the evolution of a number of parameters we believe were important for our understanding of the drought over India during the summer of 1987. The list of parameters includes monthly means or anomalies of the following fields: sea surface temperatures, divergent circulations, outgoing longwave radiation, streamfunction of the lower and upper troposphere, and monthly precipitation (expressed as a percentage departure from a long-term mean). The El Niño related warm sea surface temperature anomaly and a weaker warm sea surface temperature anomaly over the equatorial Indian Ocean provide sustained convection, as reflected by the negative values of the outgoing longwave radiation. With the seasonal heating, a pronounced planetary-scale divergent circulation evolved with a center along the western Pacific Ocean. The monsoonal divergent circulation merged with that related to the El Niño, maintaining most of the heavy rainfall activity between the equatorial Pacific Ocean and east Asia. Persistent convective activity continued south of India during the entire monsoon season. Strong Hadley type overturnings with rising motions over these warm SST anomaly regions and descent roughly near 20° to 25°S was evident as early as April 1987. The subtropical high pressure areas near 20° to 25°S showed stronger than normal circulations. This was revealed by the presence of a counterclockwise streamfunction anomaly at 850 mb during April 1987. With the seasonal heating, this anomaly moved northwards and was located over the Arabian Sea and India. This countermonsoon circulation anomaly at the low levels was associated with a weaker than normal Somali jet and Arabian Sea circulation throughout this summer. The monsoon remained active along northeast India, Bangladesh, northern lndochina, and central China during the summer monsoon season. This was related to the eastward shift of the divergent circulation. An eastward shift of the upper tropospheric

  19. Characteristics of monsoon low level jet (MLLJ)

    Temperature and wind data are used to describe variation in the strength of the Monsoon Low Level Jet (MLLJ) from an active phase of the monsoon to a break phase. Also estimated are the characteristics of turbulence above and below MLLJ.

  20. Indian monsoon variations during three contrasting climatic periods: the Holocene, Heinrich Stadial 2 and the last interglacial-glacial transition

    Zorzi, Coralie; Fernanda Sanchez Goñi, Maria; Anupama, Krishnamurthy; Prasad, Srinivasan; Hanquiez, Vincent; Johnson, Joel; Giosan, Liviu


    In contrast to the East Asian and African monsoons the Indian monsoon is still poorly documented throughout the last climatic cycle (last 135,000 years). Pollen analysis from two marine sediment cores (NGHP-01-16A and NGHP-01-19B) collected from the offshore Godavari and Mahanadi basins, both located in the Core Monsoon Zone (CMZ) reveals changes in Indian summer monsoon variability and intensity during three contrasting climatic periods: the Holocene, the Heinrich Stadial (HS) 2 and the Marine Isotopic Stage (MIS) 5/4 during the ice sheet growth transition. During the first part of the Holocene between 11,300 and 4,200 cal years BP, characterized by high insolation (minimum precession, maximum obliquity), the maximum extension of the coastal forest and mangrove reflects high monsoon rainfall. This climatic regime contrasts with that of the second phase of the Holocene, from 4,200 cal years BP to the present, marked by the development of drier vegetation in a context of low insolation (maximum precession, minimum obliquity). The historical period in India is characterized by an alternation of strong and weak monsoon centennial phases that may reflect the Medieval Climate Anomaly and the Little Ice Age, respectively. During the HS 2, a period of low insolation and extensive iceberg discharge in the North Atlantic Ocean, vegetation was dominated by grassland and dry flora indicating pronounced aridity as the result of a weak Indian summer monsoon. The MIS 5/4 glaciation, also associated with low insolation but moderate freshwater fluxes, was characterized by a weaker reduction of the Indian summer monsoon and a decrease of seasonal contrast as recorded by the expansion of dry vegetation and the development of Artemisia, respectively. Our results support model predictions suggesting that insolation changes control the long term trend of the Indian monsoon precipitation, but its millennial scale variability and intensity are instead modulated by atmospheric

  1. Sensible climates in monsoon Asia.

    Ono, H S; Kawamura, T


    This study identifies characteristics of the geographical distribution of sensible climates and their diurnal and annual variations, and presents a classification of bioclimates in monsoon Asia by using Kawamura's discomfort index formula. During the hottest month, tropical areas and areas in central and South China are uncomfortable for humans throughout the day and night, and temperate zones in lowlands are uncomfortable during the daytime. Tropical zones are uncomfortable all year long and temperate zones in lowlands are uncomfortable during summer. Four climatic types were distinguished in monsoon Asia. Climatic type I, hyperthermal throughout the year, occurs in the tropics south of latitude 20 degrees N. Climatic type II, hyperthermal in the hottest month and comfortable in the coldest month, extends over latitudes from 20 degrees to 30 degrees N except in the highlands. Climatic type III, hyperthermal in the hottest month and hypothermal in the coldest month, encompasses temperate zones of East Asia and subtropical arid areas of northwestern India. Climatic type V, comfortable in the hottest month and hypothermal in coldest month, occurs near the southeast coast of the Soviet Union and in the highlands of the Himalayas.

  2. Observational Analysis of Two Contrasting Monsoon Years

    Karri, S.; Ahmad, R.; Sujata, P.; Jose, S.; Sreenivas, G.; Maurya, D. K.


    The Indian summer monsoon rainfall contributes about 75 % of the total annual rainfall and exhibits considerable interannual variations. The agricultural economy of the country depends mainly on the monsoon rainfall. The long-range forecast of the monsoon rainfall is, therefore of significant importance in agricultural planning and other economic activities of the country. There are various parameters which influence the amount of rainfall received during the monsoon. Some of the important parameters considered by the Indian Meteorological Department (IMD) for the study of monsoon are Outgoing Longwave Radiation (OLR), moisture content of the atmosphere, zonal wind speed, low level vorticity, pressure gradient etc. Compared to the Long Period Average (LPA) value of rain fall, the country as a whole received higher amount of rainfall in June, 2013 (34 % more than LPA). The same month showed considerable decrease next year as the amount of rainfall received was around 43 % less compared to LPA. This drastic difference of monsoon prompted to study the behaviour of some of the monsoon relevant parameters. In this study we have considered five atmospheric parameters as the indicators of monsoon behaviour namely vertical relative humidity, OLR, aerosol optical depth (AOD), wind at 850 hPa and mean sea level pressure (MSLP). In the initial analysis of weekly OLR difference for year 2013 and 2014 shows positive values in the month of May over north-western parts of India (region of heat low). This should result in a weaker monsoon in 2014. This is substantiated by the rainfall data received for various stations over India. Inference made based on the analysis of RH profiles coupled with AOD values is in agreement with the rainfall over the corresponding stations.

  3. Hybrid insolation forcing of Pliocene monsoon dynamics in West Africa

    R. R. Kuechler


    Full Text Available The Pliocene is regarded as a potential analogue for future climate with conditions generally warmer-than-today and higher-than-preindustrial atmospheric CO2 levels. Here we present the first orbitally resolved records of continental hydrology and vegetation changes from West Africa for two Pliocene time intervals (5.0–4.6 Ma, 3.6–3.0 Ma, which we compare with records from the last glacial cycle (Kuechler et al., 2013. Our results indicate that changes in local insolation alone are insufficient to explain the full degree of hydrologic variations. Generally two modes of interacting insolation forcings are observed: during eccentricity maxima, when precession was strong, the West African monsoon was driven by summer insolation; during eccentricity minima, when precession-driven variations in local insolation were minimal, obliquity-driven changes in the summer latitudinal insolation gradient became dominant. This hybrid monsoonal forcing concept explains orbitally controlled tropical climate changes, incorporating the forcing mechanism of latitudinal gradients for the Pliocene, which probably increased in importance during subsequent Northern Hemisphere glaciations.

  4. Relationship between summer monsoon rainfall and cyclogenesis ...

    relationship between Indian Ocean Dipole Mode. Index (IODMI) and the ... 2013) in the cyclogenesis over north Indian Ocean ..... Indian summer monsoon; J. Climate 17 3141–3155. ... Murakami H, Wang B and Kitoh A 2011 Future change.

  5. NASA Thesaurus

    National Aeronautics and Space Administration — The NASA Thesaurus contains the authorized NASA subject terms used to index and retrieve materials in the NASA Technical Reports Server (NTRS) and the NTRS...

  6. Impacts of interannual variation of the East Asian winter monsoon on aerosol concentrations over eastern China

    Zhu, J.; Liao, H.; Li, J.; Feng, J.


    China has been experiencing increased concentrations of aerosols, commonly attributed to the large increases in emissions associated with the rapid economic development. We apply a global three-dimensional Goddard Earth Observing System chemical transport model (GEOS-Chem) driven by the NASA/GEOS-4 assimilated meteorological data to quantify the impacts of East Asian winter monsoon (EAWM) on the aerosol concentrations over eastern China. We found that the simulated aerosol concentrations over eastern China have strong interannual variation and negative correlations with the strength of EAWM. Model results show that, accounting for sulfate, nitrate, ammonium, black carbon, and organic carbon aerosols, the winter surface layer PM2.5 concentration averaged over eastern China (110°-125°E, 20°-45°N) can be 17.97% (4.78 µg m-3) higher in the weak monsoon years than that in the strong monsoon years. Regionally, the weakening of EAWM is shown to be able to increase PM2.5 concentration in the middle and lower reach of the Yellow River by 12 µg m-3. This point indicates that climate change associated with variation of EAWM has an essential influence on worsening air quality over eastern China. The possible causes of higher aerosol concentrations in the weak monsoon years may be attributed to the changing in wind fields and planetary boundary layer height between the weak and strong monsoon years. Sensitivity studies are performed to identify the role of chemical reaction associated with temperature and humidity on the higher aerosol concentrations in the weak monsoon years over eastern China.

  7. Aerosol and monsoon climate interactions over Asia: AEROSOL AND MONSOON CLIMATE INTERACTIONS

    Li, Zhanqing [State Key Laboratory of Earth Surface Processes and Resource Ecology and College of Global Change and Earth System Science, Beijing Normal University, Beijing China; Department of Atmospheric and Oceanic Science and ESSIC, University of Maryland, College Park Maryland USA; Lau, W. K. -M. [Department of Atmospheric and Oceanic Science and ESSIC, University of Maryland, College Park Maryland USA; Ramanathan, V. [Department of Atmospheric and Climate Sciences, University of California, San Diego California USA; Wu, G. [Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing China; Ding, Y. [National Climate Center, China Meteorological Administration, Beijing China; Manoj, M. G. [Department of Atmospheric and Oceanic Science and ESSIC, University of Maryland, College Park Maryland USA; Liu, J. [Department of Atmospheric and Oceanic Science and ESSIC, University of Maryland, College Park Maryland USA; Qian, Y. [Pacific Northwest National Laboratory, Richland Washington USA; Li, J. [State Key Laboratory of Earth Surface Processes and Resource Ecology and College of Global Change and Earth System Science, Beijing Normal University, Beijing China; Zhou, T. [Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing China; Fan, J. [Pacific Northwest National Laboratory, Richland Washington USA; Rosenfeld, D. [Institute of Earth Sciences, Hebrew University, Jerusalem Israel; Ming, Y. [Geophysical Fluid Dynamic Laboratory, NOAA, Princeton New Jersey USA; Wang, Y. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena California USA; Huang, J. [College of Atmospheric Sciences, Lanzhou University, Lanzhou China; Wang, B. [Department of Atmospheric Sciences, University of Hawaii, Honolulu Hawaii USA; School of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing China; Xu, X. [Chinese Academy of Meteorological Sciences, Beijing China; Lee, S. -S. [Department of Atmospheric and Oceanic Science and ESSIC, University of Maryland, College Park Maryland USA; Cribb, M. [Department of Atmospheric and Oceanic Science and ESSIC, University of Maryland, College Park Maryland USA; Zhang, F. [State Key Laboratory of Earth Surface Processes and Resource Ecology and College of Global Change and Earth System Science, Beijing Normal University, Beijing China; Yang, X. [State Key Laboratory of Earth Surface Processes and Resource Ecology and College of Global Change and Earth System Science, Beijing Normal University, Beijing China; Zhao, C. [State Key Laboratory of Earth Surface Processes and Resource Ecology and College of Global Change and Earth System Science, Beijing Normal University, Beijing China; Takemura, T. [Research Institute for Applied Mechanics, Kyushu University, Fukuoka Japan; Wang, K. [State Key Laboratory of Earth Surface Processes and Resource Ecology and College of Global Change and Earth System Science, Beijing Normal University, Beijing China; Xia, X. [Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing China; Yin, Y. [School of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing China; Zhang, H. [National Climate Center, China Meteorological Administration, Beijing China; Guo, J. [Chinese Academy of Meteorological Sciences, Beijing China; Zhai, P. M. [Chinese Academy of Meteorological Sciences, Beijing China; Sugimoto, N. [National Institute for Environmental Studies, Tsukuba Japan; Babu, S. S. [Space Physics Laboratory, Vikram Sarabhai Space Centre, Thiruvananthapuram India; Brasseur, G. P. [Max Planck Institute for Meteorology, Hamburg Germany


    Asian monsoons and aerosols have been studied extensively which are intertwined in influencing the climate of Asia. This paper provides a comprehensive review of ample studies on Asian aerosol, monsoon and their interactions. The region is the primary source of aerosol emissions of varies species, influenced by distinct weather and climatic regimes. On continental scale, aerosols reduce surface insolation and weaken the land-ocean thermal contrast, thus inhibiting the development of monsoons. Locally, aerosol radiative effects alter the thermodynamic stability and convective potential of the lower atmosphere leading to reduced temperatures, increased atmospheric stability, and weakened wind and atmospheric circulation. The atmospheric thermodynamic state may also be altered by the aerosol serving as cloud condensation nuclei or ice nuclei. Many mechanisms have been put forth regarding how aerosols modulate the amplitude, frequency, intensity, and phase of numerous monsoon climate variables. A wide range of theoretical, observational, and modeling findings on the Asian monsoon, aerosols, and their interactions are synthesized. A new paradigm is proposed on investigating aerosol-monsoon interactions, in which natural aerosols such as desert dust, black carbon from biomass burning, and biogenic aerosols from vegetation are considered integral components of an intrinsic aerosol-monsoon climate system, subject to external forcings of global warming, anthropogenic aerosols, and land use and change. Future research on aerosol-monsoon interactions calls for an integrated approach and international collaborations based on long-term sustained observations, process measurements, and improved models, as well as using observations to constrain model simulations and projections.

  8. Monsoon signatures in recent corals from the Laccadive Islands

    Naqvi, S.A.S.

    X-radiographs of the coral (Porites sp.) collected from several atolls of Lakshadweep show alternate bands of low and high density, formed in non-monsoon period and monsoon period, respectively. The results reveal annual density variations as well...

  9. Hydrography of the Wadge bank - premonsoon and monsoon seasons

    RamaRaju, V.S.; Rao, T.V.N.; RameshBabu, V.; Anto, A.F.

    The hydrography of the Wadge Bank during premonsoon and monsoon seasons is presented. The thermocline slopes downward towards the central region. Upwelling is prominent in the entire region during monsoon and is observed only in the western...

  10. The monsoon system: Land-sea breeze or the ITCZ?

    Gadgil, Sulochana


    For well over 300 years, the monsoon has been considered to be a gigantic land-sea breeze driven by the land-ocean contrast in surface temperature. In this paper, this hypothesis and its implications for the variability of the monsoon are discussed and it is shown that the observations of monsoon variability do not support this popular theory of the monsoon. An alternative hypothesis (whose origins can be traced to Blanford's (1886) remarkably perceptive analysis) in which the basic system responsible for the Indian summer monsoon is considered to be the Intertropical Convergence Zone (ITCZ) or the equatorial trough, is then examined and shown to be consistent with the observations. The implications of considering the monsoon as a manifestation of the seasonal migration of the ITCZ for the variability of the Indian summer monsoon and for identification of the monsoonal regions of the world are briefly discussed.

  11. Modelling the Asian summer monsoon using CCAM

    Nguyen, Kim Chi; McGregor, John L. [CSIRO Marine and Atmospheric Research, Aspendale, VIC (Australia)


    A ten-year mean (1989-1998) climatology of the Asian summer monsoon is studied using the CSIRO Conformal-Cubic Atmospheric Model (CCAM) to downscale NCEP reanalyses. The aim of the current study is to validate the model results against previous work on this topic, in order to identify model strengths and weaknesses in simulating the Asian summer monsoon. The model results are compared with available observations and are presented in two parts. In the first part, the mean summer rainfall, maximum and minimum temperatures and winds are compared with the observations. The second part focuses on validation of the monsoon onset. The model captures the mean characteristics such as the cross-equatorial flow of low-level winds over the Indian Ocean and near the Somali coast, rainfall patterns, onset indices, northward movements, active-break and revival periods. (orig.)

  12. Studies of African wave disturbances with the GISS GCM

    Druyan, Leonard M.; Hall, Timothy M.


    Simulations made with the general circulation model of the NASA/Goddard Institute for Space Studies (GISS GCM) run at 4 deg latitude by 5 deg longitude horizontal resolution are analyzed to determine the model's representation of African wave disturbances. Waves detected in the model's lower troposphere over northern Africa during the summer monsoon season exhibit realistic wavelengths of about 2200 km. However, power spectra of the meridional wind show that the waves propagate westward too slowly, with periods of 5-10 days, about twice the observed values. This sluggishness is most pronounced during August, consistent with simulated 600-mb zonal winds that are only about half the observed speeds of the midtropospheric jet. The modeled wave amplitudes are strongest over West Africa during the first half of the summer but decrease dramatically by September, contrary to observational evidence. Maximum amplitudes occur at realistic latitudes, 12 deg - 20 deg N, but not as observed near the Atlantic coast. Spectral analyses suggest some wave modulation of precipitation in the 5-8 day band, and compositing shows that precipitation is slightly enhanced east of the wave trough, coincident with southerly winds. Extrema of low-level convergence west of the wave troughs, coinciding with northerly winds, were not preferred areas for simulated precipitation, probably because of the drying effect of this advection, as waves were generally north of the humid zone. The documentation of African wave disturbances in the GISS GCM is a first step toward considering wave influences in future GCM studies of Sahel drought.

  13. Tropical Cyclones in the 7km NASA Global Nature Run for use in Observing System Simulation Experiments

    Reale, Oreste; Achuthavarier, Deepthi; Fuentes, Marangelly; Putman, William M.; Partyka, Gary


    The National Aeronautics and Space Administration (NASA) Nature Run (NR), released for use in Observing System Simulation Experiments (OSSEs), is a 2-year long global non-hydrostatic free-running simulation at a horizontal resolution of 7 km, forced by observed sea-surface temperatures (SSTs) and sea ice, and inclusive of interactive aerosols and trace gases. This article evaluates the NR with respect to tropical cyclone (TC) activity. It is emphasized that to serve as a NR, a long-term simulation must be able to produce realistic TCs, which arise out of realistic large-scale forcings. The presence in the NR of the realistic, relevant dynamical features over the African Monsoon region and the tropical Atlantic is confirmed, along with realistic African Easterly Wave activity. The NR Atlantic TC seasons, produced with 2005 and 2006 SSTs, show interannual variability consistent with observations, with much stronger activity in 2005. An investigation of TC activity over all the other basins (eastern and western North Pacific, North and South Indian Ocean, and Australian region), together with relevant elements of the atmospheric circulation, such as, for example, the Somali Jet and westerly bursts, reveals that the model captures the fundamental aspects of TC seasons in every basin, producing realistic number of TCs with realistic tracks, life spans and structures. This confirms that the NASA NR is a very suitable tool for OSSEs targeting TCs and represents an improvement with respect to previous long simulations that have served the global atmospheric OSSE community. PMID:29674806

  14. Anomalous behaviour of the Indian summer monsoon 2009

    The Indian subcontinent witnessed a severe monsoon drought in the year 2009. India as a whole received. 77% of its long period average during summer monsoon season (1 June to 30 September) of 2009, which is the third highest deficient all India monsoon season rainfall year during the period 1901–2009. Therefore,.

  15. Relationship between summer monsoon rainfall and cyclogenesis over Bay of Bengal during post-monsoon (October-December) season

    Sadhuram, Y; Maneesha, K.

    peak monsoon (October–November) season and concluded that the frequency of cyclones is modulated by negative and positive IOD rather than El-Nino and La-Nina. In this study, the relationship between southwest monsoon rainfall (June–September) and TNDC... Relationship between summer monsoon rainfall and cyclogenesis over Bay of Bengal during post-monsoon (October–December) season Y Sadhuram∗ and K Maneesha CSIR–National Institute of Oceanography, 176, Lawsons Bay Colony, Visakhapatnam 530 017, India...

  16. Distribution and sources of particulate organic matter in the Indian monsoonal estuaries during monsoon

    Sarma, V.V.S.S.; Krishna, M.S.; Prasad, V.R.; Kumar, B.S.K.; Naidu, S.A.; Rao, G.D.; Viswanadham, R.; Sridevi, T.; Kumar, P.P.; Reddy, N.P.C.

    The distribution and sources of particulate organic carbon (POC) and nitrogen (PN) in 27 Indian estuaries were examined during the monsoon using the content and isotopic composition of carbon and nitrogen. Higher phytoplankton biomass was noticed...

  17. Dirtier Air from a Weaker Monsoon

    Chin, Mian


    The level of air pollution in China has much increased in the past decades, causing serious health problems. Among the main pollutants are aerosols, also known as particulate matter: tiny, invisible particles that are suspended in the air. These particles contribute substantially to premature mortality associated with cardiopulmonary diseases and lung cancer1. The increase of the aerosol level in China has been commonly attributed to the fast rise in pollutant emissions from the rapid economic development in the region. However, writing in Geophysical Research Letters, Jianlei Zhu and colleagues2 tell a different side of the story: using a chemical transport model and observation data, they show that the decadal scale weakening of the East Asian summer monsoon has also contributed to the increase of aerosol concentrations in China. The life cycle of atmospheric aerosols starts with its emission or formation in the atmosphere. Some aerosol components such as dust, soot and sea salt are emitted directly as particles to the atmosphere, but others are formed there by way of photochemical reactions. For example, sulphate and nitrate aerosols are produced from their respective precursor gases, sulphur dioxide and nitrogen oxides. Aerosol particles can be transported away from their source locations by winds or vertical motion of the air. Eventually, they are removed from the atmosphere by means of dry deposition and wet scavenging by precipitation. Measurements generally show that aerosol concentrations over Asia are lowest during the summer monsoon season3, because intense rainfall efficiently removes them from the air. The East Asian summer monsoon extends over subtropics and mid-latitudes. Its rainfall tends to concentrate in rain belts that stretch out for many thousands of kilometres and affect China, Korea, Japan and the surrounding area. Observations suggest that the East Asian summer monsoon circulation and precipitation have been in decline since the 1970s4. In

  18. Multi-Satellite Synergy for Aerosol Analysis in the Asian Monsoon Region

    Ichoku, Charles; Petrenko, Maksym


    Atmospheric aerosols represent one of the greatest uncertainties in environmental and climate research, particularly in tropical monsoon regions such as the Southeast Asian regions, where significant contributions from a variety of aerosol sources and types is complicated by unstable atmospheric dynamics. Although aerosols are now routinely retrieved from multiple satellite Sensors, in trying to answer important science questions about aerosol distribution, properties, and impacts, researchers often rely on retrievals from only one or two sensors, thereby running the risk of incurring biases due to sensor/algorithm peculiarities. We are conducting detailed studies of aerosol retrieval uncertainties from various satellite sensors (including Terra-/ Aqua-MODIS, Terra-MISR, Aura-OMI, Parasol-POLDER, SeaWiFS, and Calipso-CALIOP), based on the collocation of these data products over AERONET and other important ground stations, within the online Multi-sensor Aerosol Products Sampling System (MAPSS) framework that was developed recently. Such analyses are aimed at developing a synthesis of results that can be utilized in building reliable unified aerosol information and climate data records from multiple satellite measurements. In this presentation, we will show preliminary results of. an integrated comparative uncertainly analysis of aerosol products from multiple satellite sensors, particularly focused on the Asian Monsoon region, along with some comparisons from the African Monsoon region.

  19. Innovation @ NASA

    Roman, Juan A.


    This presentation provides an overview of the activities National Aeronautics and Space Administration (NASA) is doing to encourage innovation across the agency. All information provided is available publicly.


    National Aeronautics and Space Administration — NASA's Lidar Atmospheric Sensing Experiment (LASE) system using the DIAL (Differential Absorption Lidar) system was operated during the NASA African Monsoon...

  1. Forecasting Monsoon Precipitation Using Artificial Neural Networks


    This paper explores the application of Artificial Intelligent (AI) techniques for climate forecast. It pres ents a study on modelling the monsoon precipitation forecast by means of Artificial Neural Networks (ANNs). Using the historical data of the total amount of summer rainfall over the Delta Area of Yangtze River in China, three ANNs models have been developed to forecast the monsoon precipitation in the corre sponding area one year, five-year, and ten-year forward respectively. Performances of the models have been validated using a 'new' data set that has not been exposed to the models during the processes of model development and test. The experiment results are promising, indicating that the proposed ANNs models have good quality in terms of the accuracy, stability and generalisation ability.

  2. Automated software configuration in the MONSOON system

    Daly, Philip N.; Buchholz, Nick C.; Moore, Peter C.


    MONSOON is the next generation OUV-IR controller project being developed at NOAO. The design is flexible, emphasizing code re-use, maintainability and scalability as key factors. The software needs to support widely divergent detector systems ranging from multi-chip mosaics (for LSST, QUOTA, ODI and NEWFIRM) down to large single or multi-detector laboratory development systems. In order for this flexibility to be effective and safe, the software must be able to configure itself to the requirements of the attached detector system at startup. The basic building block of all MONSOON systems is the PAN-DHE pair which make up a single data acquisition node. In this paper we discuss the software solutions used in the automatic PAN configuration system.

  3. Development of summer monsoon and onset of continuous rains over central west coast of India

    Varkey, M.J.

    rains happening during the last phase of monsoon development as a consequence of and after (2-5 weeks) the establishment of monsoon circulation or monsoon front. Summer monsoon front, as the term 'monsoon' originally meant, is to be delineated from...

  4. Diagnosing GCM errors over West Africa using relaxation experiments. Part I: summer monsoon climatology and interannual variability

    Pohl, Benjamin; Douville, Hervé


    The CNRM atmospheric general circulation model Arpege-Climat is relaxed towards atmospheric reanalyses outside the 10°S-32°N 30°W-50°E domain in order to disentangle the regional versus large-scale sources of climatological biases and interannual variability of the West African monsoon (WAM). On the one hand, the main climatological features of the monsoon, including the spatial distribution of summer precipitation, are only weakly improved by the nudging, thereby suggesting the regional origin of the Arpege-Climat biases. On the other hand, the nudging technique is relatively efficient to control the interannual variability of the WAM dynamics, though the impact on rainfall variability is less clear. Additional sensitivity experiments focusing on the strong 1994 summer monsoon suggest that the weak sensitivity of the model biases is not an artifact of the nudging design, but the evidence that regional physical processes are the main limiting factors for a realistic simulation of monsoon circulation and precipitation in the Arpege-Climat model. Sensitivity experiments to soil moisture boundary conditions are also conducted and highlight the relevance of land-atmosphere coupling for the amplification of precipitation biases. Nevertheless, the land surface hydrology is not the main explanation for the model errors that are rather due to deficiencies in the atmospheric physics. The intraseasonal timescale and the model internal variability are discussed in a companion paper.

  5. Diagnosing GCM errors over West Africa using relaxation experiments. Part I: summer monsoon climatology and interannual variability

    Pohl, Benjamin [Meteo-France/CNRS, CNRM/GAME, Toulouse (France); CNRS/Universite de Bourgogne, Centre de Recherches de Climatologie, Dijon (France); Douville, Herve [Meteo-France/CNRS, CNRM/GAME, Toulouse (France)


    The CNRM atmospheric general circulation model Arpege-Climat is relaxed towards atmospheric reanalyses outside the 10 S-32 N 30 W-50 E domain in order to disentangle the regional versus large-scale sources of climatological biases and interannual variability of the West African monsoon (WAM). On the one hand, the main climatological features of the monsoon, including the spatial distribution of summer precipitation, are only weakly improved by the nudging, thereby suggesting the regional origin of the Arpege-Climat biases. On the other hand, the nudging technique is relatively efficient to control the interannual variability of the WAM dynamics, though the impact on rainfall variability is less clear. Additional sensitivity experiments focusing on the strong 1994 summer monsoon suggest that the weak sensitivity of the model biases is not an artifact of the nudging design, but the evidence that regional physical processes are the main limiting factors for a realistic simulation of monsoon circulation and precipitation in the Arpege-Climat model. Sensitivity experiments to soil moisture boundary conditions are also conducted and highlight the relevance of land-atmosphere coupling for the amplification of precipitation biases. Nevertheless, the land surface hydrology is not the main explanation for the model errors that are rather due to deficiencies in the atmospheric physics. The intraseasonal timescale and the model internal variability are discussed in a companion paper. (orig.)

  6. Monsoon Rainfall and Landslides in Nepal

    Dahal, R. K.; Hasegawa, S.; Bhandary, N. P.; Yatabe, R.


    A large number of human settlements on the Nepal Himalayas are situated either on old landslide mass or on landslide-prone areas. As a result, a great number of people are affected by large- and small-scale landslides all over the Himalayas especially during monsoon periods. In Nepal, only in the half monsoon period (June 10 to August 15), 70, 50 and 68 people were killed from landslides in 2007, 2008 and 2009, respectively. In this context, this paper highlights monsoon rainfall and their implications in the Nepal Himalaya. In Nepal, monsoon is major source of rainfall in summer and approximately 80% of the annual total rainfall occurs from June to September. The measured values of mean annual precipitation in Nepal range from a low of approximately 250 mm at area north of the Himalaya to many areas exceeding 6,000 mm. The mean annual rainfall varying between 1500 mm and 2500 mm predominate over most of the country. In Nepal, the daily distribution of precipitation during rainy season is also uneven. Sometime 10% of the total annual precipitation can occur in a single day. Similarly, 50% total annual rainfall also can occur within 10 days of monsoon. This type of uneven distribution plays an important role in triggering many landslides in Nepal. When spatial distribution of landslides was evaluated from record of more than 650 landslides, it is found that more landslides events were concentrated at central Nepal in the area of high mean annual rainfall. When monsoon rainfall and landslide relationship was taken into consideration, it was noticed that a considerable number of landslides were triggered in the Himalaya by continuous rainfall of 3 to 90 days. It has been noticed that continuous rainfall of few days (5 days or 7 days or 10 days) are usually responsible for landsliding in the Nepal Himalaya. Monsoon rains usually fall with interruptions of 2-3 days and are generally characterized by low intensity and long duration. Thus, there is a strong role of

  7. Onset, active and break periods of the Australian monsoon

    Shaik, Hakeem A; Cleland, Samuel J


    Four operational techniques of monsoon monitoring the Australian monsoon at Darwin have been developed in the Darwin Regional Specialised Meteorological Centre. Two techniques used the rainfall only criteria and look into the onset of wet season rainfall/monsoon rainfall. The other two techniques are based purely on Darwin wind data. The data used for the study ranges from 14 to 21 years. The main purpose of the study is to develop near-real time monitoring tools for the Australian monsoon at Darwin. The average date of onset of the monsoon ranges from 19 December to 30 December. The average date of monsoon onset is 28 December. In eleven out of twenty-one years the onset date remained within three days range between the two rainfall techniques, whereas it is eleven out of fourteen years between the wind techniques. The median number of active monsoon spells in a wet season is 3 for the rainfall techniques and 6 for the wind techniques. The average length of each active monsoon spell is around 4 days for all of the techniques. The date of onset of the monsoon has shown negative correlation with the Southern Oscillation Index (SOI) that is late onset is found to occur in El Nino years while early onset is more likely in La Nina years.

  8. Sea surface temperature variability over North Indian Ocean - A study of two contrasting monsoon seasons

    RameshKumar, M.R.; Sathyendranath, S.; Viswambharan, N.K.; Rao, L.V.G.

    Using the satellite derived sea surface temperature (SST) data for 1979 (bad monsoon) and 1983 (good monsoon), the SST variability for two contrasting monsoon seasons is studied. The study indicates that large negative anomalies off the Somali...

  9. NASA reports

    Obrien, John E.; Fisk, Lennard A.; Aldrich, Arnold A.; Utsman, Thomas E.; Griffin, Michael D.; Cohen, Aaron


    Activities and National Aeronautics and Space Administration (NASA) programs, both ongoing and planned, are described by NASA administrative personnel from the offices of Space Science and Applications, Space Systems Development, Space Flight, Exploration, and from the Johnson Space Center. NASA's multi-year strategic plan, called Vision 21, is also discussed. It proposes to use the unique perspective of space to better understand Earth. Among the NASA programs mentioned are the Magellan to Venus and Galileo to Jupiter spacecraft, the Cosmic Background Explorer, Pegsat (the first Pegasus payload), Hubble, the Joint U.S./German ROSAT X-ray Mission, Ulysses to Jupiter and over the sun, the Astro-Spacelab Mission, and the Gamma Ray Observatory. Copies of viewgraphs that illustrate some of these missions, and others, are provided. Also discussed were life science research plans, economic factors as they relate to space missions, and the outlook for international cooperation.

  10. Asian Eocene monsoons as revealed by leaf architectural signatures

    Spicer, Robert A.; Yang, Jian; Herman, Alexei B.; Kodrul, Tatiana; Maslova, Natalia; Spicer, Teresa E. V.; Aleksandrova, Galina; Jin, Jianhua


    The onset and development of the Asian monsoon systems is a topic that has attracted considerable research effort but proxy data limitations, coupled with a diversity of definitions and metrics characterizing monsoon phenomena, have generated much debate. Failure of geological proxies to yield metrics capable of distinguishing between rainfall seasonality induced by migrations of the Inter-tropical Convergence Zone (ITCZ) from that attributable to topographically modified seasonal pressure reversals has frustrated attempts to understand mechanisms underpinning monsoon development and dynamics. Here we circumvent the use of such single climate parameter metrics in favor of detecting directly the distinctive attributes of different monsoon regimes encoded in leaf fossils. Leaf form adapts to the prevailing climate, particularly under the extreme seasonal stresses imposed by monsoons, so it is likely that fossil leaves carry a unique signature of past monsoon regimes. Leaf form trait spectra obtained from fossils from Eocene basins in southern China were compared with those seen in modern leaves growing under known climate regimes. The fossil leaf trait spectra, including those derived from previously published fossil floras from northwestern India, were most similar to those found in vegetation exposed to the modern Indonesia-Australia Monsoon (I-AM), which is largely a product of seasonal migrations of the ITCZ. The presence of this distinctive leaf physiognomic signature suggests that although a monsoon climate existed in Eocene time across southern Asia the characteristics of the modern topographically-enhanced South Asia Monsoon had yet to develop. By the Eocene leaves in South Asia had become well adapted to an I-AM type regime across many taxa and points to the existence of a pervasive monsoon climate prior to the Eocene. No fossil trait spectra typical of exposure to the modern East Asia monsoon were seen, suggesting the effects of this system in southern

  11. Early forecasting of Indian Summer Monsoon: case study 2016

    Surovyatkina, Elena; Stolbova, Veronika; Kurths, Jurgen


    The prior knowledge of dates of onset and withdrawal of monsoon is of vital importance for the population of the Indian subcontinent. In May 2016 before monsoon season, India recorded its highest-ever temperature of 51C. Hot waves have decimated crops, killed livestock and left 330 million people without enough water. At the end of monsoon season the floods in Indian this year have also broken previous records. Severe and devastating rainfall poured down, triggering dams spilling and floods. Such extreme conditions pose the vital questions such as: When will the monsoon come? When will the monsoon withdraw? More lead time in monsoon forecast warning is crucial for taking appropriate decisions at various levels - from the farmer's field (e.g. plowing day, seeding) to the central government (e.g. managing water and energy resources, food procurement policies). The Indian Meteorological Department issues forecasts of onset of monsoon for Kerala state in South India on May 15-th. It does not give such predictions for the other 28 states of the country. Our study concerns the central part of India. We made the monsoon forecast using our recently developed method which focuses on Tipping elements of the Indian monsoon [1]. Our prediction relies on observations of near-surface air temperature and relative humidity from both the ERA-40 and NCEP/NCAR reanalyses. We performed both of our forecasts for the onset and withdrawal of monsoon for the central part of India, the Eastern Ghats (20N,80E). We predicted the monsoon arrival to the Eastern Ghats (20N,80E) on the 13th of June with a deviation of +/-4 days. The prediction was made on May 6-th, 2016 [2], that is 40 days in advance of the date of the forecast. The actual monsoon arrival was June 17-th. In this day near-surface air temperature and relative humidity overcame the critical values and the monsoon season started, that was confirmed by observations of meteorological stations located around the EG-region. We


    Paul LUNDE


    Full Text Available The “global economy” of the Middle Ages was created by linking the Indian Ocean trading networks with those of the Mediterranean Sea and its African and European hinterlands. These products, together with ceramics, textiles and sugar provided from Egypt and Syria, reached European markets almost exclusively through the Italian maritime republics of Amalfi, Pisa, Genoa and Venice. Especially the direction of the monsoon winds in the Indian Ocean and the course of the Venice trade ships were at the same direction. Thereby, Venice trade ships set out toward the end of August and made their way slowly through the Adriatic and the Aegean to Cyprus and Alexandria, timing their arrival there to coincide with the availability of monsoon-borne and by this way the products which are ned carried through Europe. İt is important to emphasize this subject that North Europe economy depends on this Monsoons where they became at Indian Ocean. As a maritime republic dedicated itself to the international trade, Venice was an anomaly in a feudal Europe that measured wealth by land, not money. Therefor this idea were encouraging their believing about ending the monopoly of the Muslim trade at the Indian Ocean. Ortaçağın global ekonomisini Hint Okyanusu ticaret hattı ile Akdeniz, Afrika ve Avrupa Hinterlantları arasındaki ticaret bağlantısı teşkil ediyordu. Avrupa ekonomisindeki gelişmelere paralel olarak Batı dünyasının gereksinim duyduğu ve Mısır ile Suriye’den tedarik edilen şeker, tekstil, seramik gibi ürünler Amalfi, Pisa, Ceneviz ve Venedik gibi İtalyan Cumhuriyetleri aracılığıyla Avrupa pazarlarına taşınmaktaydı. Özellikle Hint Okyanusu üzerindeki muson rüzgârlarının yönleriyle Venedik ticaret gemilerinin rotaları aynı doğrultudaydı. Bu suretle Ağustos ayının sonuna doğru İtalya’dan ayrılan gemiler, Adriyatik, Ege ve Kıbrıs rotasından İskenderiye’ye ulaştığı esnada musonlarla kar

  13. Evaporation over the Arabian Sea during two contrasting monsoons

    RameshKumar, M.R.; Sadhuram, Y.

    monsoon rainfall. It is noticed that in general, the sea surface temperatures are higher in 1983 throughout the monsoon season than in 1979 in the Arabian Sea excepting western region. The mean rates of evaporation on a seasonal scale are found to be equal...

  14. Reconciling societal and scientific definitions for the monsoon

    Reeve, Mathew; Stephenson, David


    Science defines the monsoon in numerous ways. We can apply these definitions to forecast data, reanalysis data, observations, GCMs and more. In a basic research setting, we hope that this work will advance science and our understanding of the monsoon system. In an applied research setting, we often hope that this work will benefit a specific stakeholder or community. We may want to inform a stakeholder when the monsoon starts, now and in the future. However, what happens if the stakeholders cannot relate to the information because their perceptions do not align with the monsoon definition we use in our analysis? We can resolve this either by teaching the stakeholders or learning from them about how they define the monsoon and when they perceive it to begin. In this work we reconcile different scientific monsoon definitions with the perceptions of agricultural communities in Bangladesh. We have developed a statistical technique that rates different scientific definitions against the people's perceptions of when the monsoon starts and ends. We construct a probability mass function (pmf) around each of the respondent's answers in a questionnaire survey. We can use this pmf to analyze the time series of monsoon onsets and withdrawals from the different scientific definitions. We can thereby quantitatively judge which definition may be most appropriate for a specific applied research setting.

  15. The monsoon system: Land–sea breeze or the ITCZ?

    Sulochana Gadgil


    Jan 27, 2018 ... ocean contrast is one of the main drivers of the monsoon rainfall, in the 5th Assessment Report of the Inter-governmental Panel on Climate Change. (IPCC Climate Change 2013), the likely enhance- ment of monsoon rainfall has been attributed to increased land–sea contrast, and more abundant.

  16. Impact of Climate Change on India's Monsoonal Climate: Present ...

    Expected Future Changes in Rainfall and Temperature over India under IPCC SRES A1B GHG Scenarios · Expected Future Change in Monsoon Rainfall and Annual Surface Temp for 2020's, 2050's and 2080's · Likely Future Paradox of Monsoon-ENSO Links · High-Resolution Regional Climate Change Scenarios.

  17. Gridded daily Indian monsoon rainfall for 14 seasons: Merged ...

    Indian monsoon is an important component of earth's climate system. Daily rainfall data for longer period is vital to study components and processes related to Indian monsoon. Daily observed gridded rainfall data covering both land and adjoining oceanic regions are required for numerical model vali- dation and model ...

  18. On the Feasibility of Tracking the Monsoon History by Using Ancient Wind Direction Records

    Gallego, D.; Ribera, P.; Peña-Ortiz, C.; Vega, I.; Gómez, F. D. P.; Ordoñez-Perez, P.; Garcia-Hererra, R.


    In this work, we use old wind direction records to reconstruct indices for the West African Monsoon (WAM) and the Indian Summer Monsoon (ISM). Since centuries ago, ships departing from the naval European powers circumnavigated Africa in their route to the Far East. Most of these ships took high-quality observations preserved in logbooks. We show that wind direction observations taken aboard ships can be used to track the seasonal wind reversal typical of monsoonal circulations. The persistence of the SW winds in the 20W-17W and 7N-13N region is highly correlated with the WAM strength and Sahel's precipitation. It has been possible to build a WAM index back to the 19th Century. Our results show that in the Sahel, the second half of the 19thCentury was significantly wetter than present day. The relation of the WAM with the ENSO cycle, and the Atlantic Multidecadal Oscillation was low and instable from the 1840s to the 1970s, when they abruptly suffered an unprecedented reinforcement which last up to the present day. The persistence of the SSW wind in the 60E-80E and 8N-12N area has been used to track the ISM onset since the 1880s. We found evidences of later than average onset dates during the 1900-1925 and 1970-1990 periods and earlier than average onset between 1940 and 1965. A significant relation between the ISM onset and the PDO restricted to shifts from negative to positive PDO phases has been found. The most significant contribution of our study is the fact that we have shown that it is possible to build consistent monsoon indices of instrumental character using solely direct observations of wind direction. Our indices have been generated by using data currently available in the ICOADS 2.5 database, but a large amount of wind observations for periods previous to the 20thcentury still remain not explored in thousands of logbooks preserved in British archives. The interest of unveil these data to track the monsoons for more than 200 -or even 300 years- it is

  19. Annual monsoon rains recorded by Jurassic dunes.

    Loope, D B; Rowe, C M; Joeckel, R M


    Pangaea, the largest landmass in the Earth's history, was nearly bisected by the Equator during the late Palaeozoic and early Mesozoic eras. Modelling experiments and stratigraphic studies have suggested that the supercontinent generated a monsoonal atmospheric circulation that led to extreme seasonality, but direct evidence for annual rainfall periodicity has been lacking. In the Mesozoic era, about 190 million years ago, thick deposits of wind-blown sand accumulated in dunes of a vast, low-latitude desert at Pangaea's western margin. These deposits are now situated in the southwestern USA. Here we analyse slump masses in the annual depositional cycles within these deposits, which have been described for some outcrops of the Navajo Sandstone. Twenty-four slumps, which were generated by heavy rainfall, appear within one interval representing 36 years of dune migration. We interpret the positions of 20 of these masses to indicate slumping during summer monsoon rains, with the other four having been the result of winter storms. The slumped lee faces of these Jurassic dunes therefore represent a prehistoric record of yearly rain events.

  20. Comparison of East Asian winter monsoon indices

    Gao Hui


    Full Text Available Four East Asian winter monsoon (EAWM indices are compared in this paper. In the research periods, all the indices show similar interannual and decadal-interdecadal variations, with predominant periods centering in 3–4 years, 6.5 years and 9–15 years, respectively. Besides, all the indices show remarkable weakening trends since the 1980s. The correlation coefficient of each two indices is positive with a significance level of 99%. Both the correlation analyses and the composites indicate that in stronger EAWM years, the Siberian high and the higher-level subtropical westerly jet are stronger, and the Aleutian low and the East Asia trough are deeper. This circulation pattern is favorable for much stronger northwesterly wind and lower air temperature in the subtropical regions of East Asia, while it is on the opposite in weaker EAWM years. Besides, EAWM can also exert a remarkable leading effect on the summer monsoon. After stronger (weaker EAWM, less (more summer precipitation is seen over the regions from the Yangtze River valley of China to southern Japan, while more (less from South China Sea to the tropical western Pacific.

  1. Weakening of the North American monsoon with global warming

    Pascale, Salvatore; Boos, William R.; Bordoni, Simona; Delworth, Thomas L.; Kapnick, Sarah B.; Murakami, Hiroyuki; Vecchi, Gabriel A.; Zhang, Wei


    Future changes in the North American monsoon, a circulation system that brings abundant summer rains to vast areas of the North American Southwest, could have significant consequences for regional water resources. How this monsoon will change with increasing greenhouse gases, however, remains unclear, not least because coarse horizontal resolution and systematic sea-surface temperature biases limit the reliability of its numerical model simulations. Here we investigate the monsoon response to increased atmospheric carbon dioxide (CO2) concentrations using a 50-km-resolution global climate model which features a realistic representation of the monsoon climatology and its synoptic-scale variability. It is found that the monsoon response to CO2 doubling is sensitive to sea-surface temperature biases. When minimizing these biases, the model projects a robust reduction in monsoonal precipitation over the southwestern United States, contrasting with previous multi-model assessments. Most of this precipitation decline can be attributed to increased atmospheric stability, and hence weakened convection, caused by uniform sea-surface warming. These results suggest improved adaptation measures, particularly water resource planning, will be required to cope with projected reductions in monsoon rainfall in the American Southwest.

  2. Glacial to Holocene swings of the Australian-Indonesian monsoon

    Mohtadi, Mahyar; Oppo, Delia W.; Steinke, Stephan; Stuut, Jan-Berend W.; de Pol-Holz, Ricardo; Hebbeln, Dierk; Lückge, Andreas


    The Australian-Indonesian monsoon is an important component of the climate system in the tropical Indo-Pacific region. However, its past variability, relation with northern and southern high-latitude climate and connection to the other Asian monsoon systems are poorly understood. Here we present high-resolution records of monsoon-controlled austral winter upwelling during the past 22,000 years, based on planktic foraminiferal oxygen isotopes and faunal composition in a sedimentary archive collected offshore southern Java. We show that glacial-interglacial variations in the Australian-Indonesian winter monsoon were in phase with the Indian summer monsoon system, consistent with their modern linkage through cross-equatorial surface winds. Likewise, millennial-scale variability of upwelling shares similar sign and timing with upwelling variability in the Arabian Sea. On the basis of element composition and grain-size distribution as precipitation-sensitive proxies in the same archive, we infer that (austral) summer monsoon rainfall was highest during the Bølling-Allerød period and the past 2,500 years. Our results indicate drier conditions during Heinrich Stadial 1 due to a southward shift of summer rainfall and a relatively weak Hadley cell south of the Equator. We suggest that the Australian-Indonesian summer and winter monsoon variability were closely linked to summer insolation and abrupt climate changes in the northern hemisphere.


    S. Salihin


    Full Text Available This paper provides the precise information on spatial-temporal distribution of water vapour that was retrieved from Zenith Path Delay (ZPD which was estimated by Global Positioning System (GPS processing over the Malaysian Peninsular. A time series analysis of these ZPD and Integrated Water Vapor (IWV values was done to capture the characteristic on their seasonal variation during monsoon seasons. This study was found that the pattern and distribution of atmospheric water vapour over Malaysian Peninsular in whole four years periods were influenced by two inter-monsoon and two monsoon seasons which are First Inter-monsoon, Second Inter-monsoon, Southwest monsoon and Northeast monsoon.

  4. Decadal Monsoon-ENSO Relationships Reexamined

    Yun, Kyung-Sook; Timmermann, Axel


    The strength of the El Niño-Southern Oscillation (ENSO)-Indian summer monsoon rainfall (ISMR) relationship shows considerable decadal fluctuations, which have been previously linked to low-frequency climatic processes such as shifts in ENSO's center of action or the Atlantic Multidecadal Oscillation. However, random variability can also cause similar variations in the relationship between climate phenomena. Here we propose a statistical test to determine whether the observed time-evolving correlations between ENSO and ISMR are different from those expected from a simple stochastic null hypothesis model. The analysis focuses on the time evolution of moving correlations, their expected variance, and probabilities for rapid transitions. The results indicate that the time evolution of the observed running correlation between these climate modes is indistinguishable from a system in which the ISMR signal can be expressed as a stochastically perturbed ENSO signal. This challenges previous deterministic interpretations. Our results are further corroborated by the analysis of climate model simulations.

  5. The Aerosol-Monsoon Climate System of Asia

    Lau, William K. M.; Kyu-Myong, Kim


    In Asian monsoon countries such as China and India, human health and safety problems caused by air-pollution are worsening due to the increased loading of atmospheric pollutants stemming from rising energy demand associated with the rapid pace of industrialization and modernization. Meanwhile, uneven distribution of monsoon rain associated with flash flood or prolonged drought, has caused major loss of human lives, and damages in crop and properties with devastating societal impacts on Asian countries. Historically, air-pollution and monsoon research are treated as separate problems. However a growing number of recent studies have suggested that the two problems may be intrinsically intertwined and need to be studied jointly. Because of complexity of the dynamics of the monsoon systems, aerosol impacts on monsoons and vice versa must be studied and understood in the context of aerosol forcing in relationship to changes in fundamental driving forces of the monsoon climate system (e.g. sea surface temperature, land-sea contrast etc.) on time scales from intraseasonal variability (weeks) to climate change ( multi-decades). Indeed, because of the large contributions of aerosols to the global and regional energy balance of the atmosphere and earth surface, and possible effects of the microphysics of clouds and precipitation, a better understanding of the response to climate change in Asian monsoon regions requires that aerosols be considered as an integral component of a fully coupled aerosol-monsoon system on all time scales. In this paper, using observations and results from climate modeling, we will discuss the coherent variability of the coupled aerosol-monsoon climate system in South Asia and East Asia, including aerosol distribution and types, with respect to rainfall, moisture, winds, land-sea thermal contrast, heat sources and sink distributions in the atmosphere in seasonal, interannual to climate change time scales. We will show examples of how elevated

  6. Diversification and persistence at the arid-monsoonal interface: australia-wide biogeography of the Bynoe's gecko (Heteronotia binoei; Gekkonidae).

    Fujita, Matthew K; McGuire, Jimmy A; Donnellan, Stephen C; Moritz, Craig


    Late Neogene aridification in the Southern Hemisphere caused contractions of mesic biota to refugia, similar to the patterns established by glaciation in the Northern Hemisphere, but these episodes also opened up new adaptive zones that spurred range expansion and diversification in arid-adapted lineages. To understand these dynamics, we present a multilocus (nine nuclear introns, one mitochondrial gene) phylogeographic analysis of the Bynoe's gecko (Heteronotia binoei), a widely distributed complex spanning the tropical monsoon, coastal woodland, and arid zone biomes in Australia. Bayesian phylogenetic analyses, estimates of divergence times, and demographic inferences revealed episodes of diversification in the Pliocene, especially in the tropical monsoon biome, and range expansions in the Pleistocene. Ancestral habitat reconstructions strongly support recent and independent invasions into the arid zone. Our study demonstrates the varied responses to aridification in Australia, including localized persistence of lineages in the tropical monsoonal biome, and repeated invasion of and expansion through newly available arid-zone habitats. These patterns are consistent with those found in other arid environments in the Southern Hemisphere, including the South African succulent karoo and the Chilean lowlands, and highlight the diverse modes of diversification and persistence of Earth's biota during the glacial cycles of the Pliocene and Pleistocene.

  7. Validation of the HIRHAM-Simulated Indian Summer Monsoon Circulation

    Stefan Polanski


    Full Text Available The regional climate model HIRHAM has been applied over the Asian continent to simulate the Indian monsoon circulation under present-day conditions. The model is driven at the lateral and lower boundaries by European reanalysis (ERA40 data for the period from 1958 to 2001. Simulations with a horizontal resolution of 50 km are carried out to analyze the regional monsoon patterns. The focus in this paper is on the validation of the long-term summer monsoon climatology and its variability concerning circulation, temperature, and precipitation. Additionally, the monsoonal behavior in simulations for wet and dry years has been investigated and compared against several observational data sets. The results successfully reproduce the observations due to a realistic reproduction of topographic features. The simulated precipitation shows a better agreement with a high-resolution gridded precipitation data set over the central land areas of India and in the higher elevated Tibetan and Himalayan regions than ERA40.

  8. Prediction of monsoon rainfall with a nested grid mesoscale limited ...

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    At the India Meteorological Department (IMD), New Delhi, a 12-level limited area ... namurti et al (1995, 1998) noted that the Florida .... intensifies into monsoon depression giving rise to .... available to us on rainfall over the sea is the INSAT.

  9. Retrieval of vertical wind profiles during monsoon from satellite ...

    Complex EOF analysis; cloud motion vector winds; wind profiles; retrieval; monsoon. Proc. Indian Acad. Sci. .... The data gaps are removed using simple linear interpolation .... retrieved via standard linear regression using the two independent ...

  10. Spatial monsoon variability with respect to NAO and SO

    the negative phase of ESI tendency, almost all subdivisions of India show ... to affect the Indian summer monsoon rainfall indi- ... Monthly composite picture of ESI during (a) positive (28 years) and (b) negative (25 years) tendency of ESI.

  11. Air sea interaction during summer monsoon period of 1979

    RameshKumar, M.R.

    The present study highlights the utility of satellite derived parameters like SST, precipitation, CMV winds in the lower troposphere etc. in supplementing the in-situ observations. This information can lead to a better understanding of the monsoon...

  12. Unusual rainfall shift during monsoon period of 2010 in Pakistan ...



    Sep 4, 2013 ... Key words: Indus River, monsoon, flooding in 2010, rainfall pattern, Climate ... data was plotted in excel sheet with upper and lower limits defined .... Houze Jr, Rasmussen R, Medina K, Brodzik S, Romatschke SU (2011).

  13. Did Aboriginal vegetation burning affect the Australian summer monsoon?

    Balcerak, Ernie


    For thousands of years, Aboriginal Australians burned forests, creating grasslands. Some studies have suggested that in addition to changing the landscape, these burning practices also affected the timing and intensity of the Australian summer monsoon. Different vegetation types can alter evaporation, roughness, and surface reflectivity, leading to changes in the weather and climate. On the basis of an ensemble of experiments with a global climate model, Notaro et al. conducted a comprehensive evaluation of the effects of decreased vegetation cover on the summer monsoon in northern Australia. They found that although decreased vegetation cover would have had only minor effects during the height of the monsoon season, during the premonsoon season, burning-induced vegetation loss would have caused significant decreases in precipitation and increases in temperature. Thus, by burning forests, Aboriginals altered the local climate, effectively extending the dry season and delaying the start of the monsoon season. (Geophysical Research Letters, doi:10.1029/2011GL047774, 2011)

  14. Dinoflagellates in a mesotrophic, tropical environment influenced by monsoon

    DeCosta, P.M.; Anil, A.C.; Patil, J.S.; Hegde, S.; DeSilva, M.S.; Chourasia, M.

    The changes in dinoflagellate community structure in both e the water column and sediment in a mesotrophic, tropical port environment were investigated in this study. Since the South West Monsoon (SWM) is the main source of climatic variation...

  15. quantitative precipitation forecasts during the Indian Summer Monsoon


    the Indian Summer Monsoon: Contiguous Rain Area (CRA) Approach ... 1Centre for Australian Weather and Climate Research, Melbourne, Australia ... are evaluated over India using the Contiguous Rainfall Area (CRA) verification technique.

  16. Spatio-temporal variability of summer monsoon rainfall over Orissa ...

    decreasing trends in rainfall and number of rainy days over some parts of southwest Orissa during. June and ..... the recent trends and associated physical processes. 3. Results and ... depends on the activity of the monsoon trough. To.

  17. NASA Astrophysics Technology Needs

    Stahl, H. Philip


    July 2010, NASA Office of Chief Technologist (OCT) initiated an activity to create and maintain a NASA integrated roadmap for 15 key technology areas which recommend an overall technology investment strategy and prioritize NASA?s technology programs to meet NASA?s strategic goals. Science Instruments, Observatories and Sensor Systems(SIOSS) roadmap addresses technology needs to achieve NASA?s highest priority objectives -- not only for the Science Mission Directorate (SMD), but for all of NASA.

  18. Recent change of the global monsoon precipitation (1979-2008)

    Wang, Bin [University of Hawaii at Manoa, Department of Meteorology, Honolulu, HI (United States); University of Hawaii at Manoa, International Pacific Research Center, Honolulu, HI (United States); Liu, Jian [Chinese Academy of Sciences, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Nanjing (China); Kim, Hyung-Jin [Japan Agency for Marine-Earth Science and Technology, Research Institute for Global Change, Yokohama, Kanagawa (Japan); Webster, Peter J. [Georgia Institute of Technology, School of Earth and Atmospheric Sciences, Atlanta, GA (United States); Yim, So-Young [University of Hawaii at Manoa, International Pacific Research Center, Honolulu, HI (United States)


    The global monsoon (GM) is a defining feature of the annual variation of Earth's climate system. Quantifying and understanding the present-day monsoon precipitation change are crucial for prediction of its future and reflection of its past. Here we show that regional monsoons are coordinated not only by external solar forcing but also by internal feedback processes such as El Nino-Southern Oscillation (ENSO). From one monsoon year (May to the next April) to the next, most continental monsoon regions, separated by vast areas of arid trade winds and deserts, vary in a cohesive manner driven by ENSO. The ENSO has tighter regulation on the northern hemisphere summer monsoon (NHSM) than on the southern hemisphere summer monsoon (SHSM). More notably, the GM precipitation (GMP) has intensified over the past three decades mainly due to the significant upward trend in NHSM. The intensification of the GMP originates primarily from an enhanced east-west thermal contrast in the Pacific Ocean, which is coupled with a rising pressure in the subtropical eastern Pacific and decreasing pressure over the Indo-Pacific warm pool. While this mechanism tends to amplify both the NHSM and SHSM, the stronger (weaker) warming trend in the NH (SH) creates a hemispheric thermal contrast, which favors intensification of the NHSM but weakens the SHSM. The enhanced Pacific zonal thermal contrast is largely a result of natural variability, whilst the enhanced hemispherical thermal contrast is likely due to anthropogenic forcing. We found that the enhanced global summer monsoon not only amplifies the annual cycle of tropical climate but also promotes directly a ''wet-gets-wetter'' trend pattern and indirectly a ''dry-gets-drier'' trend pattern through coupling with deserts and trade winds. The mechanisms recognized in this study suggest a way forward for understanding past and future changes of the GM in terms of its driven mechanisms. (orig.)

  19. Transient coupling relationships of the Holocene Australian monsoon

    McRobie, F. H.; Stemler, T.; Wyrwoll, K.-H.


    The northwest Australian summer monsoon owes a notable degree of its interannual variability to interactions with other regional monsoon systems. Therefore, changes in the nature of these relationships may contribute to variability in monsoon strength over longer time scales. Previous attempts to evaluate how proxy records from the Indonesian-Australian monsoon region correspond to other records from the Indian and East Asian monsoon regions, as well as to El Niño-related proxy records, have been qualitative, relying on 'curve-fitting' methods. Here, we seek a quantitative approach for identifying coupling relationships between paleoclimate proxy records, employing statistical techniques to compute the interdependence of two paleoclimate time series. We verify the use of complex networks to identify coupling relationships between modern climate indices. This method is then extended to a set of paleoclimate proxy records from the Asian, Australasian and South American regions spanning the past 9000 years. The resulting networks demonstrate the existence of coupling relationships between regional monsoon systems on millennial time scales, but also highlight the transient nature of teleconnections during this period. In the context of the northwest Australian summer monsoon, we recognise a shift in coupling relationships from strong interhemispheric links with East Asian and ITCZ-related proxy records in the mid-Holocene to significantly weaker coupling in the later Holocene. Although the identified links cannot explain the underlying physical processes leading to coupling between regional monsoon systems, this method provides a step towards understanding the role that changes in teleconnections play in millennial-to orbital-scale climate variability.

  20. Causal evidence between monsoon and evolution of rhizomyine rodents.

    López-Antoñanzas, Raquel; Knoll, Fabien; Wan, Shiming; Flynn, Lawrence J


    The modern Asian monsoonal systems are currently believed to have originated around the end of the Oligocene following a crucial step of uplift of the Tibetan-Himalayan highlands. Although monsoon possibly drove the evolution of many mammal lineages during the Neogene, no evidence thereof has been provided so far. We examined the evolutionary history of a clade of rodents, the Rhizomyinae, in conjunction with our current knowledge of monsoon fluctuations over time. The macroevolutionary dynamics of rhizomyines were analyzed within a well-constrained phylogenetic framework coupled with biogeographic and evolutionary rate studies. The evolutionary novelties developed by these rodents were surveyed in parallel with the fluctuations of the Indian monsoon so as to evaluate synchroneity and postulate causal relationships. We showed the existence of three drops in biodiversity during the evolution of rhizomyines, all of which reflected elevated extinction rates. Our results demonstrated linkage of monsoon variations with the evolution and biogeography of rhizomyines. Paradoxically, the evolution of rhizomyines was accelerated during the phases of weakening of the monsoons, not of strengthening, most probably because at those intervals forest habitats declined, which triggered extinction and progressive specialization toward a burrowing existence.

  1. Do differences in future sulfate emission pathways matter for near-term climate? A case study for the Asian monsoon

    Bartlett, Rachel E.; Bollasina, Massimo A.; Booth, Ben B. B.; Dunstone, Nick J.; Marenco, Franco; Messori, Gabriele; Bernie, Dan J.


    Anthropogenic aerosols could dominate over greenhouse gases in driving near-term hydroclimate change, especially in regions with high present-day aerosol loading such as Asia. Uncertainties in near-future aerosol emissions represent a potentially large, yet unexplored, source of ambiguity in climate projections for the coming decades. We investigated the near-term sensitivity of the Asian summer monsoon to aerosols by means of transient modelling experiments using HadGEM2-ES under two existing climate change mitigation scenarios selected to have similar greenhouse gas forcing, but to span a wide range of plausible global sulfur dioxide emissions. Increased sulfate aerosols, predominantly from East Asian sources, lead to large regional dimming through aerosol-radiation and aerosol-cloud interactions. This results in surface cooling and anomalous anticyclonic flow over land, while abating the western Pacific subtropical high. The East Asian monsoon circulation weakens and precipitation stagnates over Indochina, resembling the observed southern-flood-northern-drought pattern over China. Large-scale circulation adjustments drive suppression of the South Asian monsoon and a westward extension of the Maritime Continent convective region. Remote impacts across the Northern Hemisphere are also generated, including a northwestward shift of West African monsoon rainfall induced by the westward displacement of the Indian Ocean Walker cell, and temperature anomalies in northern midlatitudes linked to propagation of Rossby waves from East Asia. These results indicate that aerosol emissions are a key source of uncertainty in near-term projection of regional and global climate; a careful examination of the uncertainties associated with aerosol pathways in future climate assessments must be highly prioritised.

  2. Convective environment in pre-monsoon and monsoon conditions over the Indian subcontinent: the impact of surface forcing

    L. Thomas


    Full Text Available Thermodynamic soundings for pre-monsoon and monsoon seasons from the Indian subcontinent are analysed to document differences between convective environments. The pre-monsoon environment features more variability for both near-surface moisture and free-tropospheric temperature and moisture profiles. As a result, the level of neutral buoyancy (LNB and pseudo-adiabatic convective available potential energy (CAPE vary more for the pre-monsoon environment. Pre-monsoon soundings also feature higher lifting condensation levels (LCLs. LCL heights are shown to depend on the availability of surface moisture, with low LCLs corresponding to high surface humidity, arguably because of the availability of soil moisture. A simple theoretical argument is developed and showed to mimic the observed relationship between LCLs and surface moisture. We argue that the key element is the partitioning of surface energy flux into its sensible and latent components, that is, the surface Bowen ratio, and the way the Bowen ratio affects surface buoyancy flux. We support our argument with observations of changes in the Bowen ratio and LCL height around the monsoon onset, and with idealized simulations of cloud fields driven by surface heat fluxes with different Bowen ratios.

  3. The Untold Story of NASA's Trailblazers

    Johnson, played by Taraji P Henson, a young. African-American 'computer' (the term com- puter at the time referred to women who man- ually completed calculations relevant to the scientific problems being considered at NASA at the time). Under the supervision of Dorothy. Vaughan, the first woman of color supervisor.

  4. Detecting the influence of ocean process on the moisture supply for India summer monsoon from Satellite Sea Surface Salinity

    Tang, W.; Yueh, S. H.; Liu, W. T.; Fore, A.; Hayashi, A.


    A strong contrast in the onset of Indian summer monsoon was observed by independent satellites: average rain rate over India subcontinent (IS) in June was more than doubled in 2013 than 2012 (TRMM); also observed are larger area of wet soil (Aquarius) and high water storage (GRACE). The difference in IS rainfall was contributed to the moisture inputs through west coast of India, estimated from ocean wind (OSCAT2) and water vapor (TMI). This is an interesting testbed for studying the role of ocean on terrestrial water cycle, in particular the Indian monsoon, which has tremendous social-economical impact. What is the source of extra moisture in 2013 or deficit in 2012 for the monsoon onset? Is it possible to quantify the contribution of ocean process that maybe responsible for redistributing the freshwater in favor of the summer monsoon moisture supply? This study aims to identify the influence of ocean processes on the freshwater exchange between air-sea interfaces, using Aquarius sea surface salinity (SSS). We found two areas in Indian Ocean with high correlation between IS rain rate and Aquarius SSS: one area is in the Arabian Sea adjacent to IS, another area is a horizontal patch from 60°E to 100°E centered around 10°S. On the other hand, E-P (OAflux, TRMM) shows no similar correlation patterns with IS rain. Based on the governing equation of the salt budget in the upper ocean, we define the freshwater flux, F, from the oceanic branch of the water cycle, including contributions from salinity tendency, advection, and subsurface process. The tendency and advection terms are estimated using Aquarius SSS and OSCAR ocean current. We will present results of analyzing the spatial and temporal variability of F and evidence of and hypothesis on how the oceanic processes may enhance the moisture supply for summer Indian monsoon onset in 2013 comparing with 2012. The NASA Soil Moisture Active Passive (SMAP) has been producing the global soil moisture (SM) every 2-3 days

  5. An upper tropospheric ‘ozone river’ from Africa to India during the 2008 Asian post-monsoon season

    Flore Tocquer


    Full Text Available We have used ozone data from the Infrared Atmospheric Sounding Interferometer to follow an event of ozone-enriched air-masses in the upper troposphere from eastern Africa to northern India. The ozone transport (hereafter called ‘ozone river’ or O3R occurred during the Asian post-monsoon season in 2008 and was associated with Rossby wave propagation. The persistence of the O3R in a narrow channel was confirmed by MOZAIC airborne data over the northwestern Indian coast. The regions of origin of the O3R were identified by a transport analysis based on the Lagrangian model FLEXPART. The Lagrangian simulations combined with potential vorticity fields indicate that stratospheric intrusions are not likely to be the most important contributor to the observed O3 enhancements. A high-resolution Eulerian model, Meso-NH, with tagged tracers was used to discriminate between African biomass burning, lightnings and Indian anthropogenic pollution as potential sources of precursors for the O3R. Lightning NOx emissions, associated with convective clouds over Africa, were found to be the principal contributor to the ozone enhancement over the Indian Ocean taking advantage of a northeastward jet. This case study illustrates African lightning emissions as an important source for enhanced O3 in the upper troposphere over the Indian Ocean region during the post-monsoon season.

  6. African Anthropologist

    PROMOTING ACCESS TO AFRICAN RESEARCH ... It provides a forum for African and Africanist anthropologists to publish research reports, articles, book ... A Qualitative Exploration · EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT

  7. Modelling Monsoons: Understanding and Predicting Current and Future Behaviour

    Turner, A; Sperber, K R; Slingo, J M; Meehl, G A; Mechoso, C R; Kimoto, M; Giannini, A


    The global monsoon system is so varied and complex that understanding and predicting its diverse behaviour remains a challenge that will occupy modellers for many years to come. Despite the difficult task ahead, an improved monsoon modelling capability has been realized through the inclusion of more detailed physics of the climate system and higher resolution in our numerical models. Perhaps the most crucial improvement to date has been the development of coupled ocean-atmosphere models. From subseasonal to interdecadal timescales, only through the inclusion of air-sea interaction can the proper phasing and teleconnections of convection be attained with respect to sea surface temperature variations. Even then, the response to slow variations in remote forcings (e.g., El Nino-Southern Oscillation) does not result in a robust solution, as there are a host of competing modes of variability that must be represented, including those that appear to be chaotic. Understanding the links between monsoons and land surface processes is not as mature as that explored regarding air-sea interactions. A land surface forcing signal appears to dominate the onset of wet season rainfall over the North American monsoon region, though the relative role of ocean versus land forcing remains a topic of investigation in all the monsoon systems. Also, improved forecasts have been made during periods in which additional sounding observations are available for data assimilation. Thus, there is untapped predictability that can only be attained through the development of a more comprehensive observing system for all monsoon regions. Additionally, improved parameterizations - for example, of convection, cloud, radiation, and boundary layer schemes as well as land surface processes - are essential to realize the full potential of monsoon predictability. Dynamical considerations require ever increased horizontal resolution (probably to 0.5 degree or higher) in order to resolve many monsoon features

  8. KSC kicks off African-American History Month


    Clothed in her traditional African garb, Michelle Amos, mistress of ceremonies, welcomes the audience on Feb. 3 at the kick-off of African-American History Month. The theme for this year's observation is 'Heritage and Horizons: The African-American Legacy and the Challenges of the 21st Century.' February is designated each year as a time to celebrate the achievements and contributions of African Americans to Kennedy Space Center, NASA and the nation.

  9. Indian monsoon variability on millennial-orbital timescales.

    Kathayat, Gayatri; Cheng, Hai; Sinha, Ashish; Spötl, Christoph; Edwards, R Lawrence; Zhang, Haiwei; Li, Xianglei; Yi, Liang; Ning, Youfeng; Cai, Yanjun; Lui, Weiguo Lui; Breitenbach, Sebastian F M


    The Indian summer monsoon (ISM) monsoon is critical to billions of people living in the region. Yet, significant debates remain on primary ISM drivers on millennial-orbital timescales. Here, we use speleothem oxygen isotope (δ(18)O) data from Bittoo cave, Northern India to reconstruct ISM variability over the past 280,000 years. We find strong coherence between North Indian and Chinese speleothem δ(18)O records from the East Asian monsoon domain, suggesting that both Asian monsoon subsystems exhibit a coupled response to changes in Northern Hemisphere summer insolation (NHSI) without significant temporal lags, supporting the view that the tropical-subtropical monsoon variability is driven directly by precession-induced changes in NHSI. Comparisons of the North Indian record with both Antarctic ice core and sea-surface temperature records from the southern Indian Ocean over the last glacial period do not suggest a dominant role of Southern Hemisphere climate processes in regulating the ISM variability on millennial-orbital timescales.

  10. Testing a flexible method to reduce false monsoon onsets.

    Mathew Alexander Stiller-Reeve

    Full Text Available To generate information about the monsoon onset and withdrawal we have to choose a monsoon definition and apply it to data. One problem that arises is that false monsoon onsets can hamper our analysis, which is often alleviated by smoothing the data in time or space. Another problem is that local communities or stakeholder groups may define the monsoon differently. We therefore aim to develop a technique that reduces false onsets for high-resolution gridded data, while also being flexible for different requirements that can be tailored to particular end-users. In this study, we explain how we developed our technique and demonstrate how it successfully reduces false onsets and withdrawals. The presented results yield improved information about the monsoon length and its interannual variability. Due to this improvement, we are able to extract information from higher resolution data sets. This implies that we can potentially get a more detailed picture of local climate variations that can be used in more local climate application projects such as community-based adaptations.

  11. Global monsoon precipitation responses to large volcanic eruptions

    Liu, Fei; Chai, Jing; Wang, Bin; Liu, Jian; Zhang, Xiao; Wang, Zhiyuan


    Climate variation of global monsoon (GM) precipitation involves both internal feedback and external forcing. Here, we focus on strong volcanic forcing since large eruptions are known to be a dominant mechanism in natural climate change. It is not known whether large volcanoes erupted at different latitudes have distinctive effects on the monsoon in the Northern Hemisphere (NH) and the Southern Hemisphere (SH). We address this issue using a 1500-year volcanic sensitivity simulation by the Community Earth System Model version 1.0 (CESM1). Volcanoes are classified into three types based on their meridional aerosol distributions: NH volcanoes, SH volcanoes and equatorial volcanoes. Using the model simulation, we discover that the GM precipitation in one hemisphere is enhanced significantly by the remote volcanic forcing occurring in the other hemisphere. This remote volcanic forcing-induced intensification is mainly through circulation change rather than moisture content change. In addition, the NH volcanic eruptions are more efficient in reducing the NH monsoon precipitation than the equatorial ones, and so do the SH eruptions in weakening the SH monsoon, because the equatorial eruptions, despite reducing moisture content, have weaker effects in weakening the off-equatorial monsoon circulation than the subtropical-extratropical volcanoes do. PMID:27063141

  12. Global monsoon precipitation responses to large volcanic eruptions.

    Liu, Fei; Chai, Jing; Wang, Bin; Liu, Jian; Zhang, Xiao; Wang, Zhiyuan


    Climate variation of global monsoon (GM) precipitation involves both internal feedback and external forcing. Here, we focus on strong volcanic forcing since large eruptions are known to be a dominant mechanism in natural climate change. It is not known whether large volcanoes erupted at different latitudes have distinctive effects on the monsoon in the Northern Hemisphere (NH) and the Southern Hemisphere (SH). We address this issue using a 1500-year volcanic sensitivity simulation by the Community Earth System Model version 1.0 (CESM1). Volcanoes are classified into three types based on their meridional aerosol distributions: NH volcanoes, SH volcanoes and equatorial volcanoes. Using the model simulation, we discover that the GM precipitation in one hemisphere is enhanced significantly by the remote volcanic forcing occurring in the other hemisphere. This remote volcanic forcing-induced intensification is mainly through circulation change rather than moisture content change. In addition, the NH volcanic eruptions are more efficient in reducing the NH monsoon precipitation than the equatorial ones, and so do the SH eruptions in weakening the SH monsoon, because the equatorial eruptions, despite reducing moisture content, have weaker effects in weakening the off-equatorial monsoon circulation than the subtropical-extratropical volcanoes do.

  13. Asian monsoons in a late Eocene greenhouse world.

    Licht, A; van Cappelle, M; Abels, H A; Ladant, J-B; Trabucho-Alexandre, J; France-Lanord, C; Donnadieu, Y; Vandenberghe, J; Rigaudier, T; Lécuyer, C; Terry, D; Adriaens, R; Boura, A; Guo, Z; Soe, Aung Naing; Quade, J; Dupont-Nivet, G; Jaeger, J-J


    The strong present-day Asian monsoons are thought to have originated between 25 and 22 million years (Myr) ago, driven by Tibetan-Himalayan uplift. However, the existence of older Asian monsoons and their response to enhanced greenhouse conditions such as those in the Eocene period (55-34 Myr ago) are unknown because of the paucity of well-dated records. Here we show late Eocene climate records revealing marked monsoon-like patterns in rainfall and wind south and north of the Tibetan-Himalayan orogen. This is indicated by low oxygen isotope values with strong seasonality in gastropod shells and mammal teeth from Myanmar, and by aeolian dust deposition in northwest China. Our climate simulations support modern-like Eocene monsoonal rainfall and show that a reinforced hydrological cycle responding to enhanced greenhouse conditions counterbalanced the negative effect of lower Tibetan relief on precipitation. These strong monsoons later weakened with the global shift to icehouse conditions 34 Myr ago.

  14. Carbon dioxide emissions from Indian monsoonal estuaries

    Sarma Vedula, VSS


    The oceans act as a net sink for atmospheric CO2, however, the role of coastal bodies on global CO2 fluxes remains unclear due to lack of data. The estimated absorption of CO2 from the continental shelves, with limited data, is 0.22 to 1.0 PgC/y, and of CO2 emission by estuaries to the atmosphere is 0.27 PgC/y. The estimates from the estuaries suffer from large uncertainties due to large variability and lack of systematic data collection. It is especially true for Southeast Asian estuaries as the biogeochemical cycling of material are different due to high atmospheric temperature, seasonality driven by monsoons, seasonal discharge etc. In order to quantify CO2 emissions from the Indian estuaries, samples were collected at 27 estuaries all along the Indian coast during discharge wet and dry periods. The emissions of CO2 to the atmosphere from Indian estuaries were 4-5 times higher during wet than dry period. The pCO2 ranged between ~300 and 18492 microatm which were within the range of world estuaries. The mean pCO2 and particulate organic carbon (POC) showed positive relation with rate of discharge suggesting availability of high quantities of organic matter that led to enhanced microbial decomposition. The annual CO2 fluxes from the Indian estuaries, together with dry period data available in the literature, amounts to 1.92 TgC which is >10 times less than that from the European estuaries. The low CO2 fluxes from the Indian estuaries are attributed to low flushing rates and less human settlements along the banks of the Indian estuaries.

  15. African Journals Online: African Studies

    Items 51 - 56 of 56 ... Research Review of the Institute of African Studies. Please note: As of 2013 the Research Review of the Institute of African Studies is now publishing under the title Contemporary Journal of African Studies. You can view the CJAS pages on AJOL here:

  16. Diatom community dynamics in a tropical, monsoon-influenced environment: West coast of India

    DeCosta, P.M.; Anil, A.C.

    Diatom communities are influenced by environmental perturbations, such as the monsoon system that impact the niche opportunities of species. To discern the influence of the monsoon system on diatom community structure, we sampled during two...

  17. Changes of extreme precipitation and nonlinear influence of climate variables over monsoon region in China

    Gao, Tao; Wang, Huixia Judy; Zhou, Tianjun


    of precipitation extremes over monsoon regions in China (MRC). However, research on monsoon extremes in China and their associations with climate variables is limited. In this study, we examine the space-time variations of extreme precipitation across the MRC

  18. Influence of monsoon upwelling on the planktonic foraminifera off Oman during Late Quaternary

    Naidu, P.D.

    Planktonic foraminifer abundances, fluxes, test sizes, and coiling properties are influenced in various ways by the southwest monsoon winds and associated upwelling in the western Arabian Sea. The influence of monsoon driven upwelling...

  19. Environmental status of groundwater affected by chromite ore processing residue (COPR) dumpsites during pre-monsoon and monsoon seasons.

    Matern, Katrin; Weigand, Harald; Singh, Abhas; Mansfeldt, Tim


    Chromite ore processing residue (COPR) is generated by the roasting of chromite ores for the extraction of chromium. Leaching of carcinogenic hexavalent chromium (Cr(VI)) from COPR dumpsites and contamination of groundwater is a key environmental risk. The objective of the study was to evaluate Cr(VI) contamination in groundwater in the vicinity of three COPR disposal sites in Uttar Pradesh, India, in the pre-monsoon and monsoon seasons. Groundwater samples (n = 57 pre-monsoon, n = 70 monsoon) were taken in 2014 and analyzed for Cr(VI) and relevant hydrochemical parameters. The site-specific ranges of Cr(VI) concentrations in groundwater were Rania), <0.005 to 115 mg L -1 (Chhiwali), and <0.005 to 2.0 mg L -1 (Godhrauli). Maximum levels of Cr(VI) were found close to the COPR dumpsites and significantly exceeded safe drinking water limits (0.05 mg L -1 ). No significant dependence of Cr(VI) concentration on monsoons was observed.

  20. Evaluation of global climate models for Indian monsoon climatology

    Kodra, Evan; Ganguly, Auroop R; Ghosh, Subimal


    The viability of global climate models for forecasting the Indian monsoon is explored. Evaluation and intercomparison of model skills are employed to assess the reliability of individual models and to guide model selection strategies. Two dominant and unique patterns of Indian monsoon climatology are trends in maximum temperature and periodicity in total rainfall observed after 30 yr averaging over India. An examination of seven models and their ensembles reveals that no single model or model selection strategy outperforms the rest. The single-best model for the periodicity of Indian monsoon rainfall is the only model that captures a low-frequency natural climate oscillator thought to dictate the periodicity. The trend in maximum temperature, which most models are thought to handle relatively better, is best captured through a multimodel average compared to individual models. The results suggest a need to carefully evaluate individual models and model combinations, in addition to physical drivers where possible, for regional projections from global climate models. (letter)

  1. Observations of barrier layer formation in the Bay of Bengal during summer monsoon

    Vinayachandran, P.N.; Murty, V.S.N.; RameshBabu, V.

    monsoon, J. Geophys. Res., 107(C12), 8018, doi:10.1029/2001JC000831, 2002. 1. Introduction [2] Several monsoon lows and depressions, that contrib- ute substantially to the summer monsoon rainfall of the Indian subcontinent, form over the Bay of Bengal... August–September, 1990,Murtyetal.[1996]foundthatthemixedlayerbasedon a temperature criterion is deeper than that using density. The regionwithrelativelyfreshwaterwithhighSSTappearstobe an excellent breeding ground for the formation of monsoon depressions...

  2. Effects of increased CO{sub 2} levels on monsoons

    Cherchi, Annalisa; Masina, Simona; Navarra, Antonio [Centro Euro-Mediterraneo per i Cambiamenti Climatici and Istituto Nazionale di Geofisica e Vulcanologia, Bologna (Italy); Alessandri, Andrea [Centro Euro-Mediterraneo per i Cambiamenti Climatici, Bologna (Italy)


    Increased atmospheric carbon dioxide concentration provided warmer atmospheric temperature and higher atmospheric water vapor content, but not necessarily more precipitation. A set of experiments performed with a state-of-the-art coupled general circulation model forced with increased atmospheric CO{sub 2} concentration (2, 4 and 16 times the present-day mean value) were analyzed and compared with a control experiment to evaluate the effect of increased CO{sub 2} levels on monsoons. Generally, the monsoon precipitation responses to CO{sub 2} forcing are largest if extreme concentrations of carbon dioxide are used, but they are not necessarily proportional to the forcing applied. In fact, despite a common response in terms of an atmospheric water vapor increase to the atmospheric warming, two out of the six monsoons studied simulate less or equal summer mean precipitation in the 16 x CO{sub 2} experiment compared to the intermediate sensitivity experiments. The precipitation differences between CO{sub 2} sensitivity experiments and CTRL have been investigated specifying the contribution of thermodynamic and purely dynamic processes. As a general rule, the differences depending on the atmospheric moisture content changes (thermodynamic component) are large and positive, and they tend to be damped by the dynamic component associated with the changes in the vertical velocity. However, differences are observed among monsoons in terms of the role played by other terms (like moisture advection and evaporation) in shaping the precipitation changes in warmer climates. The precipitation increase, even if weak, occurs despite a weakening of the mean circulation in the monsoon regions (''precipitation-wind paradox''). In particular, the tropical east-west Walker circulation is reduced, as found from velocity potential analysis. The meridional component of the monsoon circulation is changed as well, with larger (smaller) meridional (vertical) scales. (orig.)

  3. New spatial and temporal indices of Indian summer monsoon rainfall

    Dwivedi, Sanjeev; Uma, R.; Lakshmi Kumar, T. V.; Narayanan, M. S.; Pokhrel, Samir; Kripalani, R. H.


    The overall yearly seasonal performance of Indian southwest monsoon rainfall (ISMR) for the whole Indian land mass is presently expressed by the India Meteorological Department (IMD) by a single number, the total quantum of rainfall. Any particular year is declared as excess/deficit or normal monsoon rainfall year on the basis of this single number. It is well known that monsoon rainfall also has high interannual variability in spatial and temporal scales. To account for these aspects in ISMR, we propose two new spatial and temporal indices. These indices have been calculated using the 115 years of IMD daily 0.25° × 0.25° gridded rainfall data. Both indices seem to go in tandem with the in vogue seasonal quantum index. The anomaly analysis indicates that the indices during excess monsoon years behave randomly, while for deficit monsoon years the phase of all the three indices is the same. Evaluation of these indices is also studied with respect to the existing dynamical indices based on large-scale circulation. It is found that the new temporal indices have better link with circulation indices as compared to the new spatial indices. El Nino and Southern Oscillation (ENSO) especially over the equatorial Pacific Ocean still have the largest influence in both the new indices. However, temporal indices have much better remote influence as compared to that of spatial indices. Linkages over the Indian Ocean regions are very different in both the spatial and temporal indices. Continuous wavelet transform (CWT) analysis indicates that the complete spectrum of oscillation of the QI is shared in the lower oscillation band by the spatial index and in the higher oscillation band by the temporal index. These new indices may give some extra dimension to study Indian summer monsoon variability.

  4. 20th century intraseasonal Asian monsoon dynamics viewed from Isomap

    A. Hannachi


    Full Text Available The Asian summer monsoon is a high-dimensional and highly nonlinear phenomenon involving considerable moisture transport towards land from the ocean, and is critical for the whole region. We have used daily ECMWF reanalysis (ERA-40 sea-level pressure (SLP anomalies on the seasonal cycle, over the region 50–145° E, 20° S–35° N, to study the nonlinearity of the Asian monsoon using Isomap. We have focused on the two-dimensional embedding of the SLP anomalies for ease of interpretation. Unlike the unimodality obtained from tests performed in empirical orthogonal function space, the probability density function, within the two-dimensional Isomap space, turns out to be bimodal. But a clustering procedure applied to the SLP data reveals support for three clusters, which are identified using a three-component bivariate Gaussian mixture model. The modes are found to appear similar to active and break phases of the monsoon over South Asia in addition to a third phase, which shows active conditions over the western North Pacific. Using the low-level wind field anomalies, the active phase over South Asia is found to be characterised by a strengthening and an eastward extension of the Somali jet. However during the break phase, the Somali jet is weakened near southern India, while the monsoon trough in northern India also weakens. Interpretation is aided using the APHRODITE gridded land precipitation product for monsoon Asia. The effect of large-scale seasonal mean monsoon and lower boundary forcing, in the form of ENSO, is also investigated and discussed. The outcome here is that ENSO is shown to perturb the intraseasonal regimes, in agreement with conceptual ideas.

  5. Monsoon effect simulation on typhoon rainfall potential - Typhoon Morakot (2009

    Yi-Ling Chang


    Full Text Available A record breaking extreme precipitation event produced 3000 mm day-1 of accumulated rainfall over southern Taiwan in August 2009. The interactions between Typhoon Morakot and the prevailing southwesterly (SW monsoon are the primary mechanism for this heavy precipitation during 5 - 13 August 2009. This extreme precipitation could be produced by the abundant moisture from the SW monsoon associated with the interaction between typhoon and monsoon wind fields, leading to severe property damage. The accurate mapping of extreme precipitation caused from the interaction between a monsoon and typhoon is critical for early warning in Taiwan. This study simulates the heavy rainfall event is based on the Weather Research and Forecast system model (WRF using the three nested domain configuration. Using data assimilation with a virtual meteorological field using the 3D-Var system, such as wind field to alter the SW monsoon strength in the initial condition, the impacts of intensified convergence and water vapor content on the accumulated rainfall are analyzed to quantize the intensification of typhoon rainfall potential. The results showed a positive correlation between the enhanced precipitation and the intensity of low-level wind speed convergence as well as water vapor content. For the Typhoon Morakot case study the rainfall for could attain approximately 2 × 104 mm at 6 hours interval in the southern Taiwan area when 10 × 10-6 s-1 convergence intensified at 850 hPa level around the southern part of the Taiwan Strait. These results suggest that low-level wind speed, convergence and water vapor content play key roles in the typhoon rainfall potential coupled with the SW monsoon.

  6. Wet scavenging of organic and elemental carbon during summer monsoon and winter monsoon seasons

    Sonwani, S.; Kulshrestha, U. C.


    In the era of rapid industrialization and urbanization, atmospheric abundance of carbonaceous aerosols is increasing due to more and more fossil fuel consumption. Increasing levels of carbonaceous content have significant adverse effects on air quality, human health and climate. The present study was carried out at Delhi covering summer monsoon (July -Sept) and winter monsoon (Dec-Jan) seasons as wind and other meteorological factors affect chemical composition of precipitation in different manner. During the study, the rainwater and PM10 aerosols were collected in order to understand the scavenging process of elemental and organic carbon. The Rain water samples were collected on event basis. PM10 samples were collected before rain (PR), during rain (DR) and after rain (AR) during 2016-2017. The collected samples were analysed by the thermal-optical reflectance method using IMPROVE-A protocol. In PM10, the levels of organic carbon (OC) and its fractions (OC1, OC2, OC3 and OC4) were found significantly lower in the AR samples as compared to PR and DR samples. A significant positive correlation was noticed between scavenging ratios of organic carbon and rain intensity indicating an efficient wet removal of OC. In contrast to OCs, the levels of elemental carbon and its fractions (EC1, EC2, and EC3) in AR were not distinct during PR and DR. The elemental carbon showed very week correlation with rain intensity in Delhi region which could be explained on the basis of hydrophobic nature of freshly emitted carbon soot. The detailed results will be discussed during the conference.

  7. International Conference on Aerosols, Clouds and the Indian Monsoon

    Singh, Ramesh P.; Tare, Vinod; Tripathi, S. N.


    In recent years, dense haze and fog problems in the northern parts of India have affected the 460 million people living in the Indo-Gangetic basin. Substantial Indian research activities related to aerosols, clouds, and monsoon are taking place in the central and southern parts of India. To attract attention to the problems, a three-day International Conference on Aerosols, Clouds and Indian Monsoon was recently held at the Indian Institute of Technology, Kanpur, in the central part of the Indo-Gangetic basin. About 120 delegates from India, Germany, Greece, Japan, Taiwan, and the United States attended the conference.

  8. The NASA Astrophysics Program

    Zebulum, Ricardo S.


    NASA's scientists are enjoying unprecedented access to astronomy data from space, both from missions launched and operated only by NASA, as well as missions led by other space agencies to which NASA contributed instruments or technology. This paper describes the NASA astrophysics program for the next decade, including NASA's response to the ASTRO2010 Decadal Survey.

  9. Winter monsoon circulation of the northern Arabian Sea and Somali Current

    Schott, Friedrich A.; Fischer, Jürgen


    The winter monsoon circulation in the northern inflow region of the Somali Current is discussed on the basis of an array of moored acoustic Doppler current profiler and current meter stations deployed during 1995-1996 and a ship survey carried out in January 1998. It is found that the westward inflow into the Somali Current regime occurs essentially south of 11°N and that this inflow bifurcates at the Somali coast, with the southward branch supplying the equatorward Somali Current and the northward one returning into the northwestern Arabian Sea. This northward branch partially supplies a shallow outflow through the Socotra Passage between the African continent and the banks of Socotra and partially feeds into eastward recirculation directly along the southern slopes of Socotra. Underneath this shallow surface flow, southwestward undercurrent flows are observed. Undercurrent inflow from the Gulf of Aden through the Socotra Passage occurs between 100 and 1000 m, with its current core at 700-800 m, and is clearly marked by the Red Sea Water (RSW) salinity maximum. The observations suggest that the maximum RSW inflow out of the Gulf of Aden occurs during the winter monsoon season and uses the Socotra Passage as its main route into the Indian Ocean. Westward undercurrent inflow into the Somali Current regime is also observed south of Socotra, but this flow lacks the RSW salinity maximum. Off the Arabian peninsula, eastward boundary flow is observed in the upper 800 m with a compensating westward flow to the south. The observed circulation pattern is qualitatively compared with recent high-resolution numerical model studies and is found to be in basic agreement.

  10. Budgeting suspended sediment fluxes in tropical monsoonal watersheds with limited data: the Lake Tana basin

    Zimale Fasikaw A.


    Full Text Available Soil erosion decreases soil fertility of the uplands and causes siltation of lakes and reservoirs; the lakes and reservoirs in tropical monsoonal African highlands are especially affected by sedimentation. Efforts in reducing loads by designing management practices are hampered by lack of quantitative data on the relationship of erosion in the watersheds and sediment accumulation on flood plains, lakes and reservoirs. The objective of this study is to develop a prototype quantitative method for estimating sediment budget for tropical monsoon lakes with limited observational data. Four watersheds in the Lake Tana basin were selected for this study. The Parameter Efficient Distributed (PED model that has shown to perform well in the Ethiopian highlands is used to overcome the data limitations and recreate the missing sediment fluxes. PED model parameters are calibrated using daily discharge data and the occasionally collected sediment concentration when establishing the sediment rating curves for the major rivers. The calibrated model parameters are then used to predict the sediment budget for the 1994-2009 period. Sediment retained in the lake is determined from two bathymetric surveys taken 20 years apart whereas the sediment leaving the lake is calculated based on measured discharge and observed sediment concentrations. Results show that annually on average 34 t/ha/year of sediment is removed from the gauged part of the Lake Tana watersheds. Depending on the up-scaling method from the gauged to the ungauged part, 21 to 32 t/ha/year (equivalent to 24-38 Mt/year is transported from the upland watersheds of which 46% to 65% is retained in the flood plains and 93% to 96% is trapped on the flood plains and in the lake. Thus, only 4-7% of all sediment produced in the watersheds leaves the Lake Tana Basin.

  11. 'Biracial'-Looking Twins: A New Twin Type?/Twin Research: Twins with Cystic Teratomas; Sleep Quality and Body Mass Index; Previable Membrane Rupture/Print and Online Reports: Twins Born to a Sister Surrogate; NASA Twin Study; African-Cosmopolitan Twin Fashion Inspirations; Triplet Hockey Stars.

    Segal, Nancy L


    Dizygotic (DZ) co-twins born to mothers and fathers from different racial or ethnic backgrounds often resemble one parent much more than the other. As such, these pairs comprise a unique subset of twins for investigating how others' responses to their different looks may affect their personalities and self-esteem. This article describes some of these twin pairs and some challenges of raising them, and suggests ways they may be used in research. Next, recent twin research on cystic teratomas, relations between sleep quality and body mass index, and previable membrane rupture is described. The final section concerns twins, twin studies, and related events in the media, namely: twins born to a sister surrogate, the NASA twin investigation, inspiring African-Cosmopolitan twins in fashion, and triplet Hockey Stars.

  12. Dynamics and composition of the Asian summer monsoon anticyclone

    Gottschaldt, Klaus Dirk; Schlager, Hans; Baumann, Robert; Sinh Cai, Duy; Eyring, Veronika; Graf, Phoebe; Grewe, V.; Jöckel, Patrick; Jurkat-Witschas, Tina; Voigt, Christiane; Zahn, Andreas; Ziereis, Helmut


    This study places HALO research aircraft observations in the upper-tropospheric Asian summer monsoon anticyclone (ASMA) into the context of regional, intra-annual variability by hindcasts with the ECHAM/MESSy Atmospheric Chemistry (EMAC) model. The observations were obtained during the Earth

  13. Characteristics of monsoon waves off Uran, west coast of India

    Nayak, B.U.; Chandramohan, P.; Mandal, S.

    's and the spectral methods for determining various wave parameters. Monsoon wave climate was stronger with the occurrence of the highest significant wave height of 2.45 m and the corresponding maximum wave height of 3.9 m in July. Significant wave height varied from...

  14. Simulation of Indian summer monsoon using the Japan ...

    Simulation of Indian summer monsoon using the Japan Meteorological Agency's seasonal ensemble prediction system. Kailas Sonawane1,∗. , O P Sreejith1, D R Pattanaik1,. Mahendra Benke1, Nitin Patil2 and D S Pai1. 1India Meteorological Department, Pune 411 005, India. 2Interdisciplinary Programme in Climate ...

  15. Monsoon sensitivity to aerosol direct radiative forcing in the ...

    to the total, scattering aerosols and black carbon aerosols. ... acts as an internal damping mechanism spinning down the regional hydrological cycle and leading to sig- ... tion and emission of longwave radiation. ... effect of aerosols over India, where the emission of .... that aerosol effects on monsoon water cycle dynam-.

  16. Dynamics and composition of the Asian summer monsoon anticyclone

    Gottschaldt, Klaus-Dirk; Schlager, Hans; Baumann, Robert; Sinh Cai, Duy; Eyring, Veronika; Graf, Phoebe; Grewe, Volker; Jöckel, Patrick; Jurkat-Witschas, Tina; Voigt, Christiane; Zahn, Andreas; Ziereis, Helmut


    This study places HALO research aircraft observations in the upper-tropospheric Asian summer monsoon anticyclone (ASMA) into the context of regional, intra-annual variability by hindcasts with the ECHAM/MESSy Atmospheric Chemistry (EMAC) model. The observations were obtained during the Earth System Model Validation (ESMVal) campaign in September 2012. Observed and simulated tracer-tracer relations reflect photochemical O3 production as well as in-mixing from the lower troposphere and the tropopause layer. The simulations demonstrate that tropospheric trace gas profiles in the monsoon season are distinct from those in the rest of the year, and the measurements reflect the main processes acting throughout the monsoon season. Net photochemical O3 production is significantly enhanced in the ASMA, where uplifted precursors meet increased NOx, mainly produced by lightning. An analysis of multiple monsoon seasons in the simulation shows that stratospherically influenced tropopause layer air is regularly entrained at the eastern ASMA flank and then transported in the southern fringe around the interior region. Radial transport barriers of the circulation are effectively overcome by subseasonal dynamical instabilities of the anticyclone, which occur quite frequently and are of paramount importance for the trace gas composition of the ASMA. Both the isentropic entrainment of O3-rich air and the photochemical conversion of uplifted O3-poor air tend to increase O3 in the ASMA outflow.

  17. Predicting monsoon rainfall and pressure indices from sea surface temperature

    Sadhuram, Y.

    The relationship between the sea surface temperature (SST) in the Indian Ocean and monsoon rainfall has been examined by using 21 years data set (1967-87) of MOHSST.6 (Met. Office Historical Sea Surface Temperature data set, obtained from U.K. Met...

  18. Retrieval of vertical wind profiles during monsoon from satellite ...

    large number of radiosonde observations of wind profiles over the Indian Ocean during the monsoon months. It has been found that the first ... include several sources of both systematic and random errors. Among them cloud top height .... highly correlated with the pseudo-winds at levels between 850mb and 600mb (r ј 0:8) ...

  19. Fluvial hydrology and geomorphology of Monsoon-dominated Indian rivers

    Vishwas S. Kale


    Full Text Available The Indian rivers are dominantly monsoon rainfed. As a result, their regime characteristics are dictated by the spatio-temporal variations in the monsoon rainfall. Although the rivers carry out most of the geomorphic work during 4-5 months of the monsoon season, the nature and magnitude of response to variations in the discharge and sediment load varies with the basin size and relief characteristics. Large monsoon floods play a role of great importance on all the rivers. This paper describes the hydrological and geomorphological characteristics of the two major fluvial systems of the Indian region, namely the Himalayan fluvial system and the Peninsular fluvial system. Large number of studies published so far indicate that there are noteworthy differences between the two river systems, with respect to river hydrology, channel morphology, sediment load and behaviour. The nature of alterations in the fluvial system due to increased human interference is also briefly mentioned. This short review demonstrates that there is immense variety of rivers in India. This makes India one of the best places to study rivers and their forms and processes.

  20. Multi-model ensemble schemes for predicting northeast monsoon ...

    drought occurred. Some of these are extreme north- east monsoon years with significantly less rain- fall (1982, 1988, 1989 and 2005), and in some years, more than normal rainfall occurred (1987,. 1993, 1996, 1997 and 1998). Some of these typ- ical years may also be characterized as El Ni˜no year (1987), La Ni˜na year ...

  1. Long range prediction of Indian summer monsoon rainfall

    to the performance of summer monsoon rain- fall over India. Variations in the total amount of rainfall have strong socio-economic consequences. Parthasarathy et al .... deviation of rainfall for training period 1961–1995, are 838.4 mm and 89.3 mm respectively. The period. 1949–1960 and 1996–2005 is used for independent.

  2. Moisture source for summer monsoon rainfall over India

    Sadhuram, Y.; Rao, D.P.

    Southwest monsoon plays a vital role in India's economy as the major income comes from agriculture. What could be the moisture source for this copious amount of rainfall over the Indian sub-continent?. This has been studied in detail and noticed...

  3. Surface temperature pattern of the Indian Ocean before summer monsoon

    Gopinathan, C.K.; Rao, D.P.

    , suggests that the position of the warmer areas in the Bay of Bengal in May is an indicator of the subsequent summer rainfall over India. The statistical method adopted for the long range forcasting of the Indian summer monsoon gives very little...

  4. Seasonal prediction of Indian summer monsoon: Sensitivity to ...

    In the present study, the assessment of the Community Atmosphere Model (CAM) developed at National Centre for Atmospheric Research (NCAR) for seasonal forecasting of Indian Summer Monsoon (ISM) with different persistent SST is reported. Towards achieving the objective, 30-year model climatology has been ...

  5. Global surface temperature in relation to northeast monsoon rainfall ...

    is observed that the meridional gradient in surface air temperature anomalies between Europe and ... Surface air tempera- ture is one of the factors that influence monsoon variability. The distribution of surface air temper- ature over land and sea determines the locations ..... Asia, north Indian Ocean, northeast Russia and.

  6. Summer monsoon intraseasonal oscillation over eastern Arabian Sea

    Significant power is seen in the 8–15-day time scale in TWV during onset and retreat of the summer ... Intraseasonal oscillation; wavelet analysis; Indian summer monsoon. J. Earth .... be caused by synoptic scale systems, in conformity with the ...

  7. Unusual rainfall shift during monsoon period of 2010 in Pakistan ...

    Floods due to “blocking event” in the jet stream during 2010 caused intense rainfall and flash floods in northern Pakistan which resulted to riverine flooding in southern Pakistan. In the beginning of July 2010, changes in summer monsoon rainfall patterns caused the most severe flooding in Pakistan history. Process control ...

  8. Tropospheric biennial oscillation and South Asian summer monsoon ...


    suggested that the Indo-Pacific SST displays strong impact on TBO as compared to .... and model display clear biennial signals with above 95% confidence level .... Ascending motion and low level convergence over the monsoon core ..... Indian and western Pacific oceans during the northern winter as revealed by a self-.

  9. Seasonal forecasting of Bangladesh summer monsoon rainfall using ...

    In this paper, the development of a statistical forecasting method for summer ... 2008 summer monsoon rainfall based on the model were also found to be in good agreement with the ..... nificant on the basis of a one-tailed test of Student's.

  10. Seasonal behaviour of tidal inlets in a tropical monsoon area

    Lam, N.T.; Stive, M.J.F.; Verhagen, H.J.; Wang, Z.B.


    Morphodynamics of a tidal inlet system on a micro-tidal coast in a tropical monsoon influenced region is modelled and discussed. Influences of river flow and wave climate on the inlet morphology are investigated with the aid of process-based state-of-the-art numerical models. Seasonal and episodic

  11. Increased particle flux to the deep ocean related to monsoons

    Nair, R.R.; Ittekkot, V.; Manganini, S.J.; Ramaswamy, V.; Haake, B.; Degens, E.T.; Desai, B.N.; Honjo, S.

    . To assess the impact of monsoon-driven processes on the downward particle flux variations in the open ocean we deployed three moored arrays consisting of six time-series sediment traps at selected locations in the western, central and eastern parts...

  12. Monsoon regime in the Indian Ocean and zooplankton variability

    Nair, V.R.

    and the estuaries in order to show how the monsoon exerts its influence on zooplankton from different types of environment. In the open ocean, the semi-annually reversing system of currents exert profound influence on the shifting of zooplankton populations and its...

  13. The Global Monsoon as Seen through the Divergent Atmospheric Circulation.

    Trenberth, Kevin E.; Stepaniak, David P.; Caron, Julie M.


    A comprehensive description is given of the global monsoon as seen through the large-scale overturning in the atmosphere that changes with the seasons, and it provides a basis for delimiting the monsoon regions of the world. The analysis focuses on the mean annual cycle of the divergent winds and associated vertical motions, as given by the monthly mean fields for 1979-93 reanalyses from the National Centers for Environmental Prediction-National Center for Atmospheric Research (NCEP-NCAR) and European Centre for Medium-Range Weather Forecasts (ECMWF), which are able to reproduce the dominant modes. A complex empirical orthogonal function analysis of the divergent circulation brings out two dominant modes with essentially the same vertical structures in all months of the year. The first mode, which depicts the global monsoon, has a simple vertical structure with a maximum in vertical motion at about 400 mb, divergence in the upper troposphere that is strongest at 150 mb and decays to zero amplitude above 70 mb, and convergence in the lower troposphere with a maximum at 925 mb (ECMWF) or 850 mb (NCEP). However, this mode has a rich three-dimensional spatial structure that evolves with the seasons. It accounts for 60% of the annual cycle variance of the divergent mass circulation and dominates the Hadley circulation as well as three overturning transverse cells. These include the Pacific Walker circulation; an Americas-Atlantic Walker circulation, both of which comprise rising motion in the west and sinking in the east; and a transverse cell over Asia, the Middle East, North Africa, and the Indian Ocean that has rising motion in the east and sinking toward the west. These exist year-round but migrate and evolve considerably with the seasons and have about a third to half of the mass flux of the peak Hadley cell. The annual cycle of the two Hadley cells reveals peak strength in early February and early August in both reanalyses.A second monsoon mode, which accounts for

  14. An Assessment of Monsoon Triggered Landslides in Western Nepal

    Sudan Acharya, Madhu


    Due to heavy monsoon rain, rugged topography and very young mountains, frequent slope failures and soil erosion are very common in Nepal but in most of cases the natural slopes are disturbed by men to construct a road through it and the situation further aggravated by the Monsoon rain. Summer usually tests the disaster response capacity of Nepal, when the monsoons trigger water induced disasters. This year Nepal's Western regions were most severely affected by floods and landslides. Every year, sadly, it is the same story of mostly poor people living in remote villages succumbing to landslides and flooding and those who survive facing hardships brought on by the disaster. The tail end of the monsoon in October has triggered flood and landslides in Nepal which affected a total of 14 districts in the mid and far-west regions, of which Kailali, Bardiya, Banke, Dadeldhura, Accham and Kanchapur district are most affected. The affected areas are geographically scattered and remote, and are therefore difficult to access. In this year (2009), flood and landslides have claimed 62 lives, affecting more than 152,000 individuals from 27,000 families. More than 4,000 families are displaced and are taking shelter in schools, open space and forest areas with no protection from the external elements. In the above context the prevention and mitigation measures for landslides is a great challenge for Nepal. Nepal has been investing its huge amount of resources to stabilize landslides and roadside slope failures, still then it has become unmanageable during Monsoon time. Considering the above facts, an assessment of landslides which were occurred during the Monsoon (July-October 2009), along Khodpe - Jhota - Chainpur road in far western region of Nepal has been carried out based on the field observation of various landslides. The paper presents the causes and mechanisms of failures of different landslides which are mostly triggered by Monsoon rain. It also suggests some low cost

  15. What drives the global summer monsoon over the past millennium?

    Liu, Jian [Chinese Academy of Sciences, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Nanjing (China); Wang, Bin [University of Hawaii at Manoa, Department of Meteorology, Honolulu, HI (United States); University of Hawaii at Manoa, International Pacific Research Center, Honolulu, HI (United States); Yim, So-Young; Lee, June-Yi [University of Hawaii at Manoa, International Pacific Research Center, Honolulu, HI (United States); Jhun, Jong-Ghap [Seoul National University, School of Earth and Environmental Sciences/Research Institute of Oceanography, Seoul (Korea, Republic of); Ha, Kyung-Ja [Pusan National University, Division of Earth Environmental System, Busan (Korea, Republic of)


    The global summer monsoon precipitation (GSMP) provides a fundamental measure for changes in the annual cycle of the climate system and hydroclimate. We investigate mechanisms governing decadal-centennial variations of the GSMP over the past millennium with a coupled climate model's (ECHO-G) simulation forced by solar-volcanic (SV) radiative forcing and greenhouse gases (GHG) forcing. We show that the leading mode of GSMP is a forced response to external forcing on centennial time scale with a globally uniform change of precipitation across all monsoon regions, whereas the second mode represents internal variability on multi-decadal time scale with regional characteristics. The total amount of GSMP varies in phase with the global mean temperature, indicating that global warming is accompanied by amplification of the annual cycle of the climate system. The northern hemisphere summer monsoon precipitation (NHSMP) responds to GHG forcing more sensitively, while the southern hemisphere summer monsoon precipitation (SHSMP) responds to the SV radiative forcing more sensitively. The NHSMP is enhanced by increased NH land-ocean thermal contrast and NH-minus-SH thermal contrast. On the other hand, the SHSMP is strengthened by enhanced SH subtropical highs and the east-west mass contrast between Southeast Pacific and tropical Indian Ocean. The strength of the GSMP is determined by the factors controlling both the NHSMP and SHSMP. Intensification of GSMP is associated with (a) increased global land-ocean thermal contrast, (b) reinforced east-west mass contrast between Southeast Pacific and tropical Indian Ocean, and (c) enhanced circumglobal SH subtropical highs. The physical mechanisms revealed here will add understanding of future change of the global monsoon. (orig.)

  16. Characteristics of monsoonal circulation over the western Pacific

    Shen, J; Chen, E


    In this article the meteorological observations on ships four times daily in the area between 0 to 46/sup 0/N, 90 to 155/sup 0/E has been utilized. The grid 2 x 2 degrees along coastal waters, and 5 x 5 degrees over the open sea have been used. Here the monsoon currents over the western Pacific are calculated and analyzed and a brief discussion is given. The following three criteria were obtained: (1) The monsoon current over the western Pacific between winter and summer changed almost in opposite directions with April and October being the transitional months. In general the wind direction change from summer to winter went from the coastal waters to the open sea. (2) After the discussion about the duration and the prevailing wind directions, the following was determined: during the winter monsoon period, the 25/sup 0/N latitudinal line may be regarded as the boundary from October to March when the winter wind directions inclined N (NW or N) to the north of that line; but to the south of it NE winds prevailed. However, the durations were quite different in different regions, ranging from five to nine months. Owing to the topographic influence of the Taiwan Strait, the duration of the NE wind lasted nine months. The 25/sup 0/N line may also be applied for summer monsoons; over the eastern open ocean from the Gulf of the Bohai Sea and the Japanese islands the southerly winds lasted about nine months, but in the Taiwan Strait they lasted only two months. (3) During the winter monsoon period, the region of strong winds which encircled the continent was over the open ocean to the east of the Japanese islands and the Philippines. However, it was not as near to the shore line as in the winter season, and the frequency of strong winds was somewhat more on the southern side of the 25/sup 0/N line.

  17. African Zoology

    African Zoology, a peer-reviewed research journal, publishes original scientific contributions and critical reviews that focus principally on African fauna in terrestrial, freshwater, and marine ecosystems. Research from other regions that advances practical and theoretical aspects of zoology will be considered. Rigorous ...

  18. Online Time Series Analysis of Land Products over Asia Monsoon Region via Giovanni

    Shen, Suhung; Leptoukh, Gregory G.; Gerasimov, Irina


    Time series analysis is critical to the study of land cover/land use changes and climate. Time series studies at local-to-regional scales require higher spatial resolution, such as 1km or less, data. MODIS land products of 250m to 1km resolution enable such studies. However, such MODIS land data files are distributed in 10ox10o tiles, due to large data volumes. Conducting a time series study requires downloading all tiles that include the study area for the time period of interest, and mosaicking the tiles spatially. This can be an extremely time-consuming process. In support of the Monsoon Asia Integrated Regional Study (MAIRS) program, NASA GES DISC (Goddard Earth Sciences Data and Information Services Center) has processed MODIS land products at 1 km resolution over the Asia monsoon region (0o-60oN, 60o-150oE) with a common data structure and format. The processed data have been integrated into the Giovanni system (Goddard Interactive Online Visualization ANd aNalysis Infrastructure) that enables users to explore, analyze, and download data over an area and time period of interest easily. Currently, the following regional MODIS land products are available in Giovanni: 8-day 1km land surface temperature and active fire, monthly 1km vegetation index, and yearly 0.05o, 500m land cover types. More data will be added in the near future. By combining atmospheric and oceanic data products in the Giovanni system, it is possible to do further analyses of environmental and climate changes associated with the land, ocean, and atmosphere. This presentation demonstrates exploring land products in the Giovanni system with sample case scenarios.

  19. Modeling the Influences of Aerosols on Pre-Monsoon Circulation and Rainfall over Southeast Asia

    Lee, D.; Sud, Y. C.; Oreopoulos, L.; Kim, K.-M.; Lau, W. K.; Kang, I.-S.


    We conduct several sets of simulations with a version of NASA's Goddard Earth Observing System, version 5, (GEOS-5) Atmospheric Global Climate Model (AGCM) equipped with a two-moment cloud microphysical scheme to understand the role of biomass burning aerosol (BBA) emissions in Southeast Asia (SEA) in the pre-monsoon period of February-May. Our experiments are designed so that both direct and indirect aerosol effects can be evaluated. For climatologically prescribed monthly sea surface temperatures, we conduct sets of model integrations with and without biomass burning emissions in the area of peak burning activity, and with direct aerosol radiative effects either active or inactive. Taking appropriate differences between AGCM experiment sets, we find that BBA affects liquid clouds in statistically significantly ways, increasing cloud droplet number concentrations, decreasing droplet effective radii (i.e., a classic aerosol indirect effect), and locally suppressing precipitation due to a deceleration of the autoconversion process, with the latter effect apparently also leading to cloud condensate increases. Geographical re-arrangements of precipitation patterns, with precipitation increases downwind of aerosol sources are also seen, most likely because of advection of weakly precipitating cloud fields. Somewhat unexpectedly, the change in cloud radiative effect (cloud forcing) at surface is in the direction of lesser cooling because of decreases in cloud fraction. Overall, however, because of direct radiative effect contributions, aerosols exert a net negative forcing at both the top of the atmosphere and, perhaps most importantly, the surface, where decreased evaporation triggers feedbacks that further reduce precipitation. Invoking the approximation that direct and indirect aerosol effects are additive, we estimate that the overall precipitation reduction is about 40% due to the direct effects of absorbing aerosols, which stabilize the atmosphere and reduce

  20. Potential modulations of pre-monsoon aerosols during El Niño: impact on Indian summer monsoon

    Fadnavis, S.; Roy, Chaitri; Sabin, T. P.; Ayantika, D. C.; Ashok, K.


    The potential role of aerosol loading on the Indian summer monsoon rainfall during the El Niño years are examined using satellite-derived observations and a state of the art fully interactive aerosol-chemistry-climate model. The Aerosol Index (AI) from TOMS (1978-2005) and Aerosol Optical Depth (AOD) from MISR spectroradiometer (2000-2010) indicate a higher-than-normal aerosol loading over the Indo-Gangetic plain (IGP) during the pre-monsoon season with a concurrent El Niño. Sensitivity experiments using ECHAM5-HAMMOZ climate model suggests that this enhanced loading of pre-monsoon absorbing aerosols over the Indo-Gangetic plain can reduce the drought during El Niño years by invoking the `Elevated-Heat-Pump' mechanism through an anomalous aerosol-induced warm core in the atmospheric column. This anomalous heating upshot the relative strengthening of the cross-equatorial moisture inflow associated with the monsoon and eventually reduces the severity of drought during El Niño years. The findings are subject to the usual limitations such as the uncertainties in observations, and limited number of El Niño years (during the study period).

  1. Strengthening African Union for African Integration: An African ...

    Log in or Register to get access to full text downloads. ... in the international state system and seek for African initiative in solving African problems. ... of the African Union by examining the efforts of African Leaders towards African integration, ...

  2. Air pollution episodes associated with East Asian winter monsoons

    Hien, P.D., E-mail: [Vietnam Atomic Energy Agency, 59 Ly Thuong Kiet str. Hanoi (Viet Nam); Loc, P.D.; Dao, N.V. [National Hydro-Meteorological Center, 62-A2 Nguyen Chi Thanh str. Hanoi (Viet Nam)


    A dozen multi-day pollution episodes occur from October to February in Hanoi, Vietnam due to prolonged anticyclonic conditions established after the northeast monsoon surges (cold surges). These winter pollution episodes (WPEs) account for most of the 24-h PM{sub 10} exceedances and the highest concentrations of gaseous pollutants in Hanoi. In this study, WPEs were investigated using continuous air quality monitoring data and information on upper-air soundings and air mass trajectories. The 24-h pollutant concentrations are lowest during cold surges; concurrently rise thereafter reaching the highest levels toward the middle of a monsoon cycle, then decline ahead of the next cold surge. Each monsoon cycle usually proceeds through a dry phase and a humid phase as Asiatic continental cold air arrives in Hanoi through inland China then via the East China Sea. WPEs are associated with nighttime radiation temperature inversions (NRTIs) in the dry phase and subsidence temperature inversions (STIs) in the humid phase. In NRTI periods, the rush hour pollution peak is more pronounced in the evening than in the morning and the pollution level is about two times higher at night than in daytime. In STI periods, broad morning and evening traffic peaks are observed and pollution is as high at night as in daytime. The close association between pollution and winter monsoon meteorology found in this study for the winter 2003-04 may serve as a basis for advance warning of WPEs and for forecasting the 24-h pollutant concentrations. - Highlights: {yields} Dozen pollution episodes from Oct. to Feb in Hanoi associated with anticyclones after monsoon surges. {yields} 24-h concentrations of PM{sub 10}, SO{sub 2}, NO{sub 2}, CO rise after surge and decline ahead of the next. {yields} Episodes caused by nighttime radiation and subsidence inversions in dry and humid monsoon phases. {yields} Distinct diurnal variations of pollutant concentrations observed in the two periods. {yields} Close

  3. Predictor-Year Subspace Clustering Based Ensemble Prediction of Indian Summer Monsoon

    Moumita Saha


    Full Text Available Forecasting the Indian summer monsoon is a challenging task due to its complex and nonlinear behavior. A large number of global climatic variables with varying interaction patterns over years influence monsoon. Various statistical and neural prediction models have been proposed for forecasting monsoon, but many of them fail to capture variability over years. The skill of predictor variables of monsoon also evolves over time. In this article, we propose a joint-clustering of monsoon years and predictors for understanding and predicting the monsoon. This is achieved by subspace clustering algorithm. It groups the years based on prevailing global climatic condition using statistical clustering technique and subsequently for each such group it identifies significant climatic predictor variables which assist in better prediction. Prediction model is designed to frame individual cluster using random forest of regression tree. Prediction of aggregate and regional monsoon is attempted. Mean absolute error of 5.2% is obtained for forecasting aggregate Indian summer monsoon. Errors in predicting the regional monsoons are also comparable in comparison to the high variation of regional precipitation. Proposed joint-clustering based ensemble model is observed to be superior to existing monsoon prediction models and it also surpasses general nonclustering based prediction models.

  4. Predicting onset and withdrawal of Indian Summer Monsoon in 2016: results of Tipping elements approach

    Surovyatkina, Elena; Stolbova, Veronika; Kurths, Jurgen


    The monsoon is the season of rain caused by a global seasonal reverse in winds direction and a change in pressure distribution. The Southwest winds bring summer monsoon to India. The economy of India is able to maintain its GDP in the wake of a good monsoon. However, if monsoon gets delayed by even two weeks, it can spell disaster because the high population depending on agriculture - 70% of its people directly related to farming. Agriculture, in turn, is dependent on the monsoon. Although the rainy season happens annually between June and September, the time of monsoon season's onset and withdrawal varies within a month from year to year. The important feature of the monsoon is that it starts and ends suddenly. Hence, despite enormous progress having been made in predicting monsoon since 1886, it remains a significant scientific challenge. To make predictions of monsoon timing in 2016, we applied our recently developed method [1]. Our approach is based on a teleconnection between the Eastern Ghats (EG) and North Pakistan (NP) - Tipping Elements of Indian Summer Monsoon. Both our predictions - for monsoon onset and withdrawal - were made for the Eastern Ghats region (EG-20N,80E) in the central part of India, while the Indian Meteorological Department forecasts monsoon over Kerala - a state at the southern tip of the Indian subcontinent. Our prediction for monsoon onset was published on May 6-th, 2016 [2]. We predicted the monsoon arrival to the EG on the 13th of June with a deviation of +/-4 days. In fact, monsoon onset was on June 17-th, that was confirmed by information from meteorological stations located around the EG-region. Hence, our prediction of monsoon onset (made 40 days in advance) was correct. We delivered the prediction of monsoon withdrawal on July 27, 2016 [3], announcing the monsoon withdrawal from the EG on October 5-th with a deviation of +/-5 days. The actual monsoon withdrawal started on October 10-th when the relative humidity in the region

  5. Monsoon oscillations regulate fertility of the Red Sea

    Raitsos, Dionysios E.


    Tropical ocean ecosystems are predicted to become warmer, more saline, and less fertile in a future Earth. The Red Sea, one of the warmest and most saline environments in the world, may afford insights into the function of the tropical ocean ecosystem in a changing planet. We show that the concentration of chlorophyll and the duration of the phytoplankton growing season in the Red Sea are controlled by the strength of the winter Arabian monsoon (through horizontal advection of fertile waters from the Indian Ocean). Furthermore, and contrary to expectation, in the last decade (1998-2010) the winter Red Sea phytoplankton biomass has increased by 75% during prolonged positive phases of the Multivariate El Niño-Southern Oscillation Index. A new mechanism is reported, revealing the synergy of monsoon and climate in regulating Red Sea greenness. © 2015 The Authors.

  6. Monsoon oscillations regulate fertility of the Red Sea

    Raitsos, Dionysios E.; Yi, Xing; Platt, Trevor; Racault, Marie-Fanny; Brewin, Robert J. W.; Pradhan, Yaswant; Papadopoulos, Vassilis P.; Sathyendranath, Shubha; Hoteit, Ibrahim


    Tropical ocean ecosystems are predicted to become warmer, more saline, and less fertile in a future Earth. The Red Sea, one of the warmest and most saline environments in the world, may afford insights into the function of the tropical ocean ecosystem in a changing planet. We show that the concentration of chlorophyll and the duration of the phytoplankton growing season in the Red Sea are controlled by the strength of the winter Arabian monsoon (through horizontal advection of fertile waters from the Indian Ocean). Furthermore, and contrary to expectation, in the last decade (1998-2010) the winter Red Sea phytoplankton biomass has increased by 75% during prolonged positive phases of the Multivariate El Niño-Southern Oscillation Index. A new mechanism is reported, revealing the synergy of monsoon and climate in regulating Red Sea greenness. © 2015 The Authors.

  7. Dynamics and Composition of the Asian Summer Monsoon Anticyclone

    Gottschaldt, K. D.; Schlager, H.; Baumann, R.; Bozem, H.; Cai, D. S.; Eyring, V.; Hoor, P. M.; Graf, P.; Joeckel, P.; Jurkat, T.; Voigt, C.; Grewe, V.; Zahn, A.; Ziereis, H.


    This study places trace gas observations in the upper-tropospheric Asian summer monsoon anticyclone (ASMA) obtained with the HALO research aircraft during the ESMVal campaign into the context of regional, intra-annual variability by hindcasts with the EMAC model. The simulations demonstrate that tropospheric trace gas profiles in the monsoon season are distinct from the rest of the year. Air uplifted from the lower troposphere to the tropopause layer dominates the eastern part of the ASMA's interior, while the western part is characterized by subsidence down to the mid-troposphere. Soluble compounds are being washed out when uplifted by convection in the eastern part, where lightning simultaneously replenishes reactive nitrogen in the upper troposphere. Net photochemical ozone production is significantly enhanced in the ASMA, contrasted by an ozone depleting regime in the mid-troposphere and more neutral conditions in autumn and winter. An analysis of multiple monsoon seasons in the simulation shows that stratospherically influenced tropopause layer air is regularly entrained at the eastern ASMA flank, and then transported in the southern fringe around the interior region. Observed and simulated tracer-tracer relations reflect photochemical O3 production, as well as in-mixing from the lower troposphere and the tropopause layer. The simulation additionally shows entrainment of clean air from the equatorial region by northerly winds at the western ASMA flank. Although the in situ measurements were performed towards the end of summer, the main ingredients needed for their interpretation are present throughout the monsoon season.Subseasonal dynamical instabilities of the ASMA effectively overcome horizontal transport barriers, occur quite frequently, and are of paramount importance for the trace gas composition of the ASMA and its outflow into regions around the world.

  8. The Red Sea outflow regulated by the Indian monsoon

    Aiki, Hidenori; Takahashi, Keiko; Yamagata, Toshio


    To investigate why the Red Sea water overflows less in summer and more in winter, we have developed a locally high-resolution global OGCM with transposed poles in the Arabian peninsula and India. Based on a series of sensitivity experiments with different sets of idealized atmospheric forcing, the present study shows that the summer cessation of the strait outflow is remotely induced by the monsoonal wind over the Indian Ocean, in particular that over the western Arabian Sea. During the southwest monsoon (May-September), thermocline in the Gulf of Aden shoals as a result of coastal Ekman upwelling induced by the predominantly northeastward wind in the Gulf of Aden and the Arabian Sea. Because this shoaling is maximum during the southwest summer monsoon, the Red Sea water is blocked at the Bab el Mandeb Strait by upwelling of the intermediate water of the Gulf of Aden in late summer. The simulation also shows the three-dimensional evolution of the Red Sea water tongue at the mid-depths in the Gulf of Aden. While the tongue meanders, the discharged Red Sea outflow water (RSOW) (incoming Indian Ocean intermediate water (IOIW)) is always characterized by anticyclonic (cyclonic) vorticity, as suggested from the potential vorticity difference.

  9. Monsoon and primary acute angle closure in malaysia.

    Ch'ng, T W; Mosavi, S A A; Noor Azimah, A A; Azlan, N Z; Azhany, Y; Liza-Sharmini, A T


    Acute angle closure (AAC) without prompt treatment may lead to optic neuropathy. Environmental factor such as climate change may precipitate pupillary block, the possible mechanism of AAC. To determine the association of northeast monsoon and incidence of AAC in Malaysia. A retrospective study was conducted on AAC patients admitted to two main tertiary hospitals in Kelantan, Malaysia between January 2001 and December 2011. The cumulative number of rainy day, amount of rain, mean cloud cover and 24 hours mean humidity at the estimated day of attack were obtained from the Department of Meteorology, Malaysia. A total 73 cases of AAC were admitted with mean duration of 4.1SD 2.0 days. More than half have previous history of possibility of AAC. There was higher incidence of AAC during the northeast monsoon (October to March). There was also significant correlation of number of rainy day (r=0.718, pclimate as the potential risk factor. Prompt treatment to arrest pupillary block and reduction of the intraocular pressure is important to prevent potential glaucomatous damage. Public awareness of AAC and accessibility to treatment should be part of preparation to face the effect of northeast monsoon.

  10. Atmospheric water budget over the South Asian summer monsoon region

    Unnikrishnan, C. K.; Rajeevan, M.


    High resolution hybrid atmospheric water budget over the South Asian monsoon region is examined. The regional characteristics, variability, regional controlling factors and the interrelations of the atmospheric water budget components are investigated. The surface evapotranspiration was created using the High Resolution Land Data Assimilation System (HRLDAS) with the satellite-observed rainfall and vegetation fraction. HRLDAS evapotranspiration shows significant similarity with in situ observations and MODIS satellite-observed evapotranspiration. Result highlights the fundamental importance of evapotranspiration over northwest and southeast India on atmospheric water balance. The investigation shows that the surface net radiation controls the annual evapotranspiration over those regions, where the surface evapotranspiration is lower than 550 mm. The rainfall and evapotranspiration show a linear relation over the low-rainfall regions (forcing (like surface net radiation). The lead and lag correlation of water budget components show that the water budget anomalies are interrelated in the monsoon season even up to 4 months lead. These results show the important regional interrelation of water budget anomalies on south Asian monsoon.

  11. Effects of large-scale deforestation on precipitation in the monsoon regions: remote versus local effects.

    Devaraju, N; Bala, Govindasamy; Modak, Angshuman


    In this paper, using idealized climate model simulations, we investigate the biogeophysical effects of large-scale deforestation on monsoon regions. We find that the remote forcing from large-scale deforestation in the northern middle and high latitudes shifts the Intertropical Convergence Zone southward. This results in a significant decrease in precipitation in the Northern Hemisphere monsoon regions (East Asia, North America, North Africa, and South Asia) and moderate precipitation increases in the Southern Hemisphere monsoon regions (South Africa, South America, and Australia). The magnitude of the monsoonal precipitation changes depends on the location of deforestation, with remote effects showing a larger influence than local effects. The South Asian Monsoon region is affected the most, with 18% decline in precipitation over India. Our results indicate that any comprehensive assessment of afforestation/reforestation as climate change mitigation strategies should carefully evaluate the remote effects on monsoonal precipitation alongside the large local impacts on temperatures.

  12. African Journals Online (AJOL)

    African Journals OnLine (AJOL) is the world's largest online library of ... AJOL works to change this, so that African-origin research output is available to Africans ... South African Medical Journal ... Global Journal of Pure and Applied Sciences.

  13. Immunizations and African Americans

    ... Data > Minority Population Profiles > Black/African American > Immunizations Immunizations and African Americans African American adults are less ... 19 to 35 months had comparable rates of immunization. African American women are as likely to have ...

  14. Chemical Engineering at NASA

    Collins, Jacob


    This viewgraph presentation is a review of the career paths for chemicals engineer at NASA (specifically NASA Johnson Space Center.) The author uses his personal experience and history as an example of the possible career options.

  15. NASA strategic plan


    The NASA Strategic Plan is a living document. It provides far-reaching goals and objectives to create stability for NASA's efforts. The Plan presents NASA's top-level strategy: it articulates what NASA does and for whom; it differentiates between ends and means; it states where NASA is going and what NASA intends to do to get there. This Plan is not a budget document, nor does it present priorities for current or future programs. Rather, it establishes a framework for shaping NASA's activities and developing a balanced set of priorities across the Agency. Such priorities will then be reflected in the NASA budget. The document includes vision, mission, and goals; external environment; conceptual framework; strategic enterprises (Mission to Planet Earth, aeronautics, human exploration and development of space, scientific research, space technology, and synergy); strategic functions (transportation to space, space communications, human resources, and physical resources); values and operating principles; implementing strategy; and senior management team concurrence.

  16. NASA Space Radiation Laboratory

    Federal Laboratory Consortium — The NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory is a NASA funded facility, delivering heavy ion beams to a target area where scientists...

  17. NASA systems engineering handbook

    Shishko, Robert; Aster, Robert; Chamberlain, Robert G.; McDuffee, Patrick; Pieniazek, Les; Rowell, Tom; Bain, Beth; Cox, Renee I.; Mooz, Harold; Polaski, Lou


    This handbook brings the fundamental concepts and techniques of systems engineering to NASA personnel in a way that recognizes the nature of NASA systems and environment. It is intended to accompany formal NASA training courses on systems engineering and project management when appropriate, and is designed to be a top-level overview. The concepts were drawn from NASA field center handbooks, NMI's/NHB's, the work of the NASA-wide Systems Engineering Working Group and the Systems Engineering Process Improvement Task team, several non-NASA textbooks and guides, and material from independent systems engineering courses taught to NASA personnel. Five core chapters cover systems engineering fundamentals, the NASA Project Cycle, management issues in systems engineering, systems analysis and modeling, and specialty engineering integration. It is not intended as a directive.

  18. Understanding the Unusual 2017 Monsoon and Floods in South Asia

    Akanda, A. S.; Palash, W.; Hasan, M. A.; Nusrat, F.


    Driven primarily by the South Asian Monsoon, the Ganges-Brahmaputra-Meghna (GBM) river basin system collectively drains intense precipitation for an area of more than 1.5 million square kilometers during the wet summer season. Bangladesh, being the lowest riparian country in the system, experiences recurrent floods and immense suffering to its population. The 2017 monsoon season was quite unusual in terms of the characteristics of the precipitation received in the basin. The monsoon was spread out over a much larger time span (April-October) compared to the average monsoon season (June-September). Although the monsoon does not typically start until June in Bangladesh, the 2017 season started much earlier in April with unusually heavy precipitation in the Meghna basin region and caused major damage to agriculture in northeastern Bangladesh. The rainfall continued in several record-breaking pulses, compared to the typical one or two large waves. One of the largest pulses occurred in early August with very high in intensity and volume, causing ECMWF to issue a major warning about widespread flooding in Bangladesh, Northern India, and Eastern Nepal. This record flood event impacted over 40 million people in the above regions, causing major damage to life and infrastructure. Although the Brahmaputra rose above the danger level several times this season, the Ganges was unusually low, thus sparing downstream areas from disastrous floods. However, heavy precipitation continued until October, causing urban flooding in Dhaka and Chittagong - and worsening sanitation and public health conditions in southern Bangladesh - currently undergoing a terrible humanitarian crisis involving Rohingya refugees from the Myanmar. Despite marked improvement in flood forecasting systems in recent years, the 2017 floods identified critical gaps in our understanding of the flooding phenomena and limitations of dissemination in these regions. In this study, we investigate 1) the unusual

  19. The classification of PM10 concentrations in Johor Based on Seasonal Monsoons

    Hamid, Hazrul Abdul; Hanafi Rahmat, Muhamad; Aisyah Sapani, Siti


    Air is the most important living resource in life. Contaminated air could adversely affect human health and the environment, especially during the monsoon season. Contamination occurs as a result of human action and haze. There are several pollutants present in the air where one of them is PM10. Secondary data was obtained from the Department of Environment from 2010 until 2014 and was analyzed using the hourly average of PM10 concentrations. This paper examined the relation between PM10 concentrations and the monsoon seasons (Northeast Monsoon and Southwest Monsoon) in Larkin and Pasir Gudang. It was expected that the concentration of PM10 would be higher during the Southwest Monsoon as it is a dry season. The data revealed that the highest PM10 concentrations were recorded between 2010 to 2014 during this particular monsoon season. The characteristics of PM10 concentration were compared using descriptive statistics based on the monsoon seasons and classified using the hierarchical cluster analysis (Ward Methods). The annual average of PM10 concentration during the Southwest Monsoon had exceeded the standard set by the Malaysia Ambient Air Quality Guidelines (50 μg/m3) while the PM10 concentration during the Northeast Monsoon was below the acceptable level for both stations. The dendrogram displayed showed two clusters for each monsoon season for both stations excepted for the PM10 concentration during the Northeast Monsoon in Larkin which was classified into three clusters due to the haze in 2010. Overall, the concentration of PM10 in 2013 was higher based on the clustering shown for every monsoon season at both stations according to the characteristics in the descriptive statistics.

  20. Effect of climate change on seasonal monsoon in Asia and its impact on the variability of monsoon rainfall in Southeast Asia

    Yen Yi Loo


    Full Text Available Global warming and climate change is one of the most extensively researched and discussed topical issues affecting the environment. Although there are enough historical evidence to support the theory that climate change is a natural phenomenon, many research scientists are widely in agreement that the increase in temperature in the 20th century is anthropologically related. The associated effects are the variability of rainfall and cyclonic patterns that are being observed globally. In Southeast Asia the link between global warming and the seasonal atmospheric flow during the monsoon seasons shows varying degree of fuzziness. This study investigates the impact of climate change on the seasonality of monsoon Asia and its effect on the variability of monsoon rainfall in Southeast Asia. The comparison of decadal variation of precipitation and temperature anomalies before the 1970s found general increases which were mostly varying. But beyond the 1970s, global precipitation anomalous showed increases that almost corresponded with increases in global temperature anomalies for the same period. There are frequent changes and a shift westward of the Indian summer monsoon. Although precipitation is observed to be 70% below normal levels, in some areas the topography affects the intensity of rainfall. These shifting phenomenon of other monsoon season in the region are impacting on the variability of rainfall and the onset of monsoons in Southeast Asia and is predicted to delay for 15 days the onset of the monsoon in the future. The variability of monsoon rainfall in the SEA region is observed to be decadal and the frequency and intensity of intermittent flooding of some areas during the monsoon season have serious consequences on the human, financial, infrastructure and food security of the region.

  1. Comparative Study of Monsoon Rainfall Variability over India and the Odisha State

    K C Gouda


    Full Text Available Indian summer monsoon (ISM plays an important role in the weather and climate system over India. The rainfall during monsoon season controls many sectors from agriculture, food, energy, and water, to the management of disasters. Being a coastal province on the eastern side of India, Odisha is one of the most important states affected by the monsoon rainfall and associated hydro-meteorological systems. The variability of monsoon rainfall is highly unpredictable at multiple scales both in space and time. In this study, the monsoon variability over the state of Odisha is studied using the daily gridded rainfall data from India Meteorological Department (IMD. A comparative analysis of the behaviour of monsoon rainfall at a larger scale (India, regional scale (Odisha, and sub-regional scale (zones of Odisha is carried out in terms of the seasonal cycle of monsoon rainfall and its interannual variability. It is seen that there is no synchronization in the seasonal monsoon category (normal/excess/deficit when analysed over large (India and regional (Odisha scales. The impact of El Niño, La Niña, and the Indian Ocean Dipole (IOD on the monsoon rainfall at both scales (large scale and regional scale is analysed and compared. The results show that the impact is much more for rainfall over India, but it has no such relation with the rainfall over Odisha. It is also observed that there is a positive (negative relation of the IOD with the seasonal monsoon rainfall variability over Odisha (India. The correlation between the IAV of monsoon rainfall between the large scale and regional scale was found to be 0.46 with a phase synchronization of 63%. IAV on a sub-regional scale is also presented.

  2. Aerosol and rainfall variability over the Indian monsoon region: distributions, trends and coupling

    R. Gautam


    Full Text Available Aerosol solar absorption over the Indian monsoon region has a potential role of modulating the monsoon circulation and rainfall distribution as suggested by recent studies based on model simulations. Prior to the onset of the monsoon, northern India is influenced by significant dust transport that constitutes the bulk of the regional aerosol loading over the Gangetic-Himalayan region. In this paper, a multi-sensor characterization of the increasing pre-monsoon aerosol loading over northern India, in terms of their spatial, temporal and vertical distribution is presented. Aerosol transport from the northwestern arid regions into the Indo-Gangetic Plains and over the foothills of the Himalayas is found to be vertically extended to elevated altitudes (up to 5 km as observed from the space-borne lidar measurements (CALIPSO. In relation with the enhanced pre-monsoon aerosol loading and the associated solar absorption effects on tropospheric temperature anomalies, this paper investigates the monsoon rainfall variability over India in recent past decades from an observational viewpoint. It is found that the early summer monsoon rainfall over India is on the rise since 1950s, as indicated by historical rainfall data, with over 20% increase for the period 1950–2004. This large sustained increase in the early summer rainfall is led by the observed strengthening of the pre-monsoon tropospheric land-sea thermal gradient over the Indian monsoon region as indicated by microwave satellite measurements (MSU of tropospheric temperatures from 1979–2007. Combined analysis of changes in tropospheric temperatures and summer monsoon rainfall in the past three decades, suggest a future possibility of an emerging rainfall pattern of a wetter monsoon over South Asia in early summer followed by a drier period.

  3. Internal NASA Study: NASAs Protoflight Research Initiative

    Coan, Mary R.; Hirshorn, Steven R.; Moreland, Robert


    The NASA Protoflight Research Initiative is an internal NASA study conducted within the Office of the Chief Engineer to better understand the use of Protoflight within NASA. Extensive literature reviews and interviews with key NASA members with experience in both robotic and human spaceflight missions has resulted in three main conclusions and two observations. The first conclusion is that NASA's Protoflight method is not considered to be "prescriptive." The current policies and guidance allows each Program/Project to tailor the Protoflight approach to better meet their needs, goals and objectives. Second, Risk Management plays a key role in implementation of the Protoflight approach. Any deviations from full qualification will be based on the level of acceptable risk with guidance found in NPR 8705.4. Finally, over the past decade (2004 - 2014) only 6% of NASA's Protoflight missions and 6% of NASA's Full qualification missions experienced a publicly disclosed mission failure. In other words, the data indicates that the Protoflight approach, in and of it itself, does not increase the mission risk of in-flight failure. The first observation is that it would be beneficial to document the decision making process on the implementation and use of Protoflight. The second observation is that If a Project/Program chooses to use the Protoflight approach with relevant heritage, it is extremely important that the Program/Project Manager ensures that the current project's requirements falls within the heritage design, component, instrument and/or subsystem's requirements for both the planned and operational use, and that the documentation of the relevant heritage is comprehensive, sufficient and the decision well documented. To further benefit/inform this study, a recommendation to perform a deep dive into 30 missions with accessible data on their testing/verification methodology and decision process to research the differences between Protoflight and Full Qualification

  4. Projections of West African summer monsoon rainfall extremes from two CORDEX models

    Akinsanola, A. A.; Zhou, Wen


    Global warming has a profound impact on the vulnerable environment of West Africa; hence, robust climate projection, especially of rainfall extremes, is quite important. Based on two representative concentration pathway (RCP) scenarios, projected changes in extreme summer rainfall events over West Africa were investigated using data from the Coordinated Regional Climate Downscaling Experiment models. Eight (8) extreme rainfall indices (CDD, CWD, r10mm, r20mm, PRCPTOT, R95pTOT, rx5day, and sdii) defined by the Expert Team on Climate Change Detection and Indices were used in the study. The performance of the regional climate model (RCM) simulations was validated by comparing with GPCP and TRMM observation data sets. Results show that the RCMs reasonably reproduced the observed pattern of extreme rainfall over the region and further added significant value to the driven GCMs over some grids. Compared to the baseline period 1976-2005, future changes (2070-2099) in summer rainfall extremes under the RCP4.5 and RCP8.5 scenarios show statistically significant decreasing total rainfall (PRCPTOT), while consecutive dry days and extreme rainfall events (R95pTOT) are projected to increase significantly. There are obvious indications that simple rainfall intensity (sdii) will increase in the future. This does not amount to an increase in total rainfall but suggests a likelihood of greater intensity of rainfall events. Overall, our results project that West Africa may suffer more natural disasters such as droughts and floods in the future.

  5. South Asian summer monsoon variability during the last ~54 kyrs inferred from surface water salinity and river run off proxies

    Gebregiorgis, D.; Hathorne, E.C.; Sijinkumar, A.V.; Nath, B.N.; Nurnberg, D.; Frank, M.

    ; Viswambharan and Mohanakumar, 2014). Decadal to centennial scale variations in monsoon precipitation have been in phase with temperature fluctuations in northern high latitudes(Fleitmann et al., 2003). Monsoonal changes on millennial to longer time...

  6. Late holocene primary productivity and sea surface temperature variations in the northeastern Arabian Sea: Implications for winter monsoon variability.

    Boll, A.; Luckge, A.; Munz, P.; Forke, S.; Schulz, H.; Ramaswamy, V.; Rixen, T.; Gaye, B.; Emeis, K.-C.

    changes in winter monsoon strength with winds from the northeast that drive convective mixing and high surface ocean productivity in the northeastern Arabian Sea. To establish a high-resolution record of winter monsoon variability for the late Holocene, we...

  7. The abrupt onset of the modern South Asian monsoon winds

    Betzler, C.; Eberli, G.P.; Kroon, D.; Wright, J.D.; Swart, P.K.; Nath, B.N.; Alvarez-Zarikian, C.A.; Alonso-Garcia, M.; Bialik, O.M.; Blattler, C.L.; Guo, J.; Haffen, S.; Horozal, S.; Inoue, M.; Jovane, L.; Lanci, L.; Laya, J.C.; Mee, A.L.H.; Ludmann, T.; Nakakuni, M.; Niino, K.; Petruny, L.M.; Pratiwi, S.D.; Reijmer, J.J.G.; Reolid, J.; Slagle, A.L.; Sloss, C.R.; Su, X.; Yao, Z.; Young, J.R.

    :29838 | DOI: 10.1038/srep29838 The abrupt onset of the modern South Asian Monsoon winds Christian Betzler1, Gregor P. Eberli2, Dick Kroon3, James D. Wright4, Peter K. Swart2, Bejugam Nagender Nath5, Carlos A. Received: 25 April 2016 accepted: 21 June 2016 Published: 20 July 2016 OPEN 2Scientific RepoRts | 6:29838 | DOI: 10.1038/srep29838 control, and we propose that the post Miocene Climate Optimum cooling, together...

  8. Extended Range Prediction of Indian Summer Monsoon: Current status

    Sahai, A. K.; Abhilash, S.; Borah, N.; Joseph, S.; Chattopadhyay, R.; S, S.; Rajeevan, M.; Mandal, R.; Dey, A.


    The main focus of this study is to develop forecast consensus in the extended range prediction (ERP) of monsoon Intraseasonal oscillations using a suit of different variants of Climate Forecast system (CFS) model. In this CFS based Grand MME prediction system (CGMME), the ensemble members are generated by perturbing the initial condition and using different configurations of CFSv2. This is to address the role of different physical mechanisms known to have control on the error growth in the ERP in the 15-20 day time scale. The final formulation of CGMME is based on 21 ensembles of the standalone Global Forecast System (GFS) forced with bias corrected forecasted SST from CFS, 11 low resolution CFST126 and 11 high resolution CFST382. Thus, we develop the multi-model consensus forecast for the ERP of Indian summer monsoon (ISM) using a suite of different variants of CFS model. This coordinated international effort lead towards the development of specific tailor made regional forecast products over Indian region. Skill of deterministic and probabilistic categorical rainfall forecast as well the verification of large-scale low frequency monsoon intraseasonal oscillations has been carried out using hindcast from 2001-2012 during the monsoon season in which all models are initialized at every five days starting from 16May to 28 September. The skill of deterministic forecast from CGMME is better than the best participating single model ensemble configuration (SME). The CGMME approach is believed to quantify the uncertainty in both initial conditions and model formulation. Main improvement is attained in probabilistic forecast which is because of an increase in the ensemble spread, thereby reducing the error due to over-confident ensembles in a single model configuration. For probabilistic forecast, three tercile ranges are determined by ranking method based on the percentage of ensemble members from all the participating models falls in those three categories. CGMME further

  9. African Environment

    Environmental Studies and Regional Planning Bulletin African Environment is published in French and English, and for some issues, in Arabic. (only the issue below has been received by AJOL). Vol 10, No 3 (1999). DOWNLOAD FULL TEXT Open Access DOWNLOAD FULL TEXT Subscription or Fee Access. Table of ...

  10. African Journals Online: Central African Republic

    African Journals Online: Central African Republic. Home > African Journals Online: Central African Republic. Log in or Register to get access to full text downloads. Username, Password, Remember me, or Register · Browse By Category · Browse Alphabetically · Browse By Country · List All Titles · Free to read Titles This ...

  11. Light-Absorbing Aerosol during NASA GRIP: Overview of Observations in the Free Troposphere and Associated with Tropical Storm Systems

    Ziemba, L. D.; Beyersdorf, A. J.; Chen, G.; Corr, C. A.; Craig, L.; Dhaniyala, S.; Dibb, J. E.; Hudgins, C. H.; Ismail, S.; Latham, T.; Nenes, A.; Thornhill, K. L.; Winstead, E.; Anderson, B. E.


    aerodynamic size distributions obtained from an optical particle counter (OPC) and aerodynamic particle sizer (APS), respectively, as well as by filter-based analyses of chemical composition. BC and dust concentrations, size distribution, and optical properties are reported for clear-sky conditions and in the regions surrounding tropical storms to better understand the radial and vertical distribution of light-absorbing aerosol associated with hurricanes. Observations during GRIP are compared to an extensive characterization of the Saharan Air Layer (SAL) made during the 2006 NAMMA (NASA African Monsoon Multidisciplinary Analyses) mission to assess changes in concentration and aerosol size distribution during transport and cloud interaction.

  12. Why is Bay of Bengal warmer than Arabian Sea during the summer monsoon?

    Shenoi, S.S.C.; Shankar, D.; Shetye, S.R.

    the summer monsoon. In the Arabian Sea, the winds associated with the summer monsoon are stronger and favour the transfer of heat to deeper layers owing to overturning and turbulent mixing. In contrast, the weaker winds over the bay force a relatively...

  13. The value of C sub(e) for the Arabian Sea during summer monsoon

    Rao, A.S.; Sadhuram, Y.; Krishna, V.V.G.

    We estimate, from the moisture budget the bulk aerodynamic coefficient for latent heat flux (C sub(e)) during the monsoon season over the central Arabian Sea. The average value of C sub(e) under active monsoon conditions was found to be 2.25 x 10...

  14. Recent trends in pre-monsoon daily temperature extremes over India

    e-mail: Extreme climate and weather events are increasingly being recognized as key aspects of climate change. Pre-monsoon season ... change in day-to-day magnitude of fluctuations of pre-monsoon maximum and minimum tempera- tures. ... by high exceedence counts during drought periods.

  15. Revisiting Asian monsoon formation and change associated with Tibetan Plateau forcing: I. Formation

    Wu, Guoxiong; Liu, Yimin; Duan, Anmin; Bao, Qing [Chinese Academy of Sciences, State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Beijing (China); Dong, Buwen [University of Reading, Department of Meteorology, National Centre for Atmospheric Science, Reading (United Kingdom); Liang, Xiaoyun [China Meteorological Administration, National Climate Center, Beijing (China); Yu, Jingjing [China Meteorological Administration, National Meteorological Information Center, Beijing (China)


    Numerical experiments with different idealized land and mountain distributions are carried out to study the formation of the Asian monsoon and related coupling processes. Results demonstrate that when there is only extratropical continent located between 0 and 120 E and between 20/30 N and the North Pole, a rather weak monsoon rainband appears along the southern border of the continent, coexisting with an intense intertropical convergence zone (ITCZ). The continuous ITCZ surrounds the whole globe, prohibits the development of near-surface cross-equatorial flow, and collects water vapor from tropical oceans, resulting in very weak monsoon rainfall. When tropical lands are integrated, the ITCZ over the longitude domain where the extratropical continent exists disappears as a consequence of the development of a strong surface cross-equatorial flow from the winter hemisphere to the summer hemisphere. In addition, an intense interaction between the two hemispheres develops, tropical water vapor is transported to the subtropics by the enhanced poleward flow, and a prototype of the Asian monsoon appears. The Tibetan Plateau acts to enhance the coupling between the lower and upper tropospheric circulations and between the subtropical and tropical monsoon circulations, resulting in an intensification of the East Asian summer monsoon and a weakening of the South Asian summer monsoon. Linking the Iranian Plateau to the Tibetan Plateau substantially reduces the precipitation over Africa and increases the precipitation over the Arabian Sea and the northern Indian subcontinent, effectively contributing to the development of the South Asian summer monsoon. (orig.)

  16. Residual estuarine circulation in the Mandovi, a monsoonal estuary: A three-dimensional model study

    Vijith, V.; Shetye, S.R.; Baetens, K.; Luyten, P.; Michael, G.S.

    -dependence is forced by the Indian Summer Monsoon (ISM) and hence the estuary is referred to as a monsoonal estuary. In this paper, we use a three-dimensional, open source, hydrodynamic, numerical model to reproduce the observed annual salinity field in the Mandovi. We...

  17. Late Holocene anti-phase change in the East Asian summer and winter monsoons

    Kang, Shugang; Wang, Xulong; Roberts, Helen M.; Duller, Geoff A. T.; Cheng, Peng; Lu, Yanchou; An, Zhisheng


    Changes in East Asian summer and winter monsoon intensity have played a pivotal role in the prosperity and decline of society in the past, and will be important for future climate scenarios. However, the phasing of changes in the intensity of East Asian summer and winter monsoons on millennial and centennial timescales during the Holocene is unclear, limiting our ability to understand the factors driving past and future changes in the monsoon system. Here, we present a high resolution (up to multidecadal) loess record for the last 3.3 ka from the southern Chinese Loess Plateau that clearly demonstrates the relationship between changes in the intensity of the East Asian summer and winter monsoons, particularly at multicentennial scales. At multimillennial scales, the East Asian summer monsoon shows a steady weakening, while the East Asian winter monsoon intensifies continuously. At multicentennial scales, a prominent ∼700-800 yr cycle in the East Asian summer and winter monsoon intensity is observed, and here too the two monsoons are anti-phase. We conclude that multimillennial changes are driven by Northern Hemisphere summer insolation, while multicentennial changes can be correlated with solar activity and changing strength of the Atlantic meridional overturning circulation.

  18. Monsoon wind and maritime trade: A case study of historical evidence from Orissa, India

    Tripati, S.; Raut, L.N.

    Monsoon plays a predominant role in the daily life of the people of South Asia. The use of monsoon wind in the Indian Ocean for maritime trade was a boon to the sailing ships to reach overseas countries. It is believed that Hippalus discovered...

  19. Astronomically forced western African (21°N-20°S) rainfall variations during the Last Interglacial

    Govin, Aline; Varma, Vidya; Prange, Matthias


    Many studies document an intensified NW African monsoon during the African Humid Period (11.5-5.5 ka) in response to increased summer insolation. Similarly, the particularly high summer insolation during the Last Interglacial (LIG, 129-116 ka) led to enhanced North African rainfall and a "green Sahara". Although this pluvial period seemed to facilitate the migration of modern humans out of Africa, the precise evolution of African wet conditions during the LIG remains unknown. Here we aim to document the evolution of western African precipitation during the LIG and identify the climate forcing associated. We use the major element compositions of nine marine sediment cores located along the W African margin (21°N-20°S) in order to characterize the terrestrial climatic conditions in the region where terrigenous material originates and infer past western African precipitation changes. Geochemical data are compared to results from a transient simulation (130-115 ka) performed with the coupled ocean - atmosphere Community Climate System Model CCSM3 and forced by insolation variations only. Both geochemical and model data indicate humid conditions in NW Africa (9-21°N) between 127 and 122 ka, in response to the high summer insolation. The period of intensified NW African monsoon starts ~3 ka later in geochemical data (127 ka) than in the simulation (130 ka). This result suggests that the persistent melting of northern ice sheets and associated cooling at the beginning of the LIG delayed the orbitally-induced intensification of the NW African monsoon. In addition, geochemical and model data indicate a slight precipitation increase in equatorial Africa throughout the LIG, in response to the small increase in annual insolation induced by the obliquity decrease. At ~5-10°S, sediment cores and model results document a small decrease in annual precipitation that is consistent with increasing sea level pressure in southern Africa during the LIG. This pattern seems to follow

  20. On the role of convective systems over the northwest Pacific and monsoon activity over the Indian subcontinent

    RameshKumar, M.R.; Babu, A; Reason, C.

    been examined in relation to breaks in monsoon conditions over the Indian sub-continent during contrasting monsoon years. A see-saw nature of convection between the NWP and north Indian Ocean was found during the years with excess monsoon rainfall...

  1. Fine-scale responses of phytoplankton to freshwater influx in a tropical monsoonal estuary following the onset of southwest monsoon

    Pednekar, S.M.; Matondkar, S.G.P.; Gomes, H.R.; Goes, J.I.; Parab, S.G.; Kerkar, V.

    of seawater which have a significant impact on circulation, salinity (Shetye et al 2007; Vijith et al 2009) as well as water column turbidity caused by the dis- turbance of bottom sediments (Devassy and Goes 1988). On account of this free mixing of coastal.... By the first week of October (PostM Influence of SW monsoon in phytoplankton–freshwater influx 549 phase), rainfall had reduced to occasional and spo- radic showers and salinity values began rising to between3and7psu. 3.3 Nitrate Nitrate variation across...

  2. Diagnosis of the Asian summer monsoon variability and the climate prediction of monsoon precipitation via physical decomposition

    Lim, Young-Kwon

    This study investigates the space-time evolution of the dominant modes that constitute the Asian summer monsoon (ASM), and, as an ultimate goal, the climate prediction of the ASM rainfall. Precipitation and other synoptic variables during the prominent life cycle of the ASM (May 21 to September 17) are used to show the detailed features of dominant modes, which are identified as the seasonal cycle, the ISO defined by the 40--50 day intraseasonal oscillation including the Madden-Julian oscillation, and the El Nino mode. The present study reveals that the ISO is the second largest component of the ASM rainfall variation. Correlation analysis indicates that ISO explains a larger fraction of the variance of the observed precipitation (without climatology) than the ENSO mode. The dominant ISO signal faithfully explains the northward propagation of the ISO toward the Asian continent causing intraseasonal active/break periods. The interannual variation of the ISO strength suggests that the ENSO exerts some influence on the ISO. The composite convective ISO anomaly and Kelvin-Rossby wave response over the Indian Ocean shows that the ISO tends to be stronger during the early stage of the ASM than normal in El Nino (La Nina) years, indicating greater (smaller) possibility of ISO-related extreme rainfall over India, Bangladesh, and the Bay of Bengal. The ENSO mode reveals that the following factors affect the evolution of the ASM system in El Nino (La Nina) years. (1) The anomalous sea surface temperature and sea level pressure over the Indian Ocean during the early stage of the ASM weaken (enhance) the meridional pressure gradient. (2) As a result, the westerly jet and the ensuing moisture transport toward India and the Bay of Bengal become weak (strong) and delayed (expedited), providing a less (more) favorable condition for regional monsoon onsets. (3) The Walker circulation anomaly results in an enhanced subsidence (ascent) and drought (flood) over the Maritime continent

  3. Relative role of pre-monsoon conditions and intraseasonal oscillations in determining early-vs-late indian monsoon intensity in a GCM

    Ghosh, Rohit; Chakraborty, Arindam; Nanjundiah, Ravi S.


    The aim of this paper is to identify relative roles of different land-atmospheric conditions, apart from sea surface temperature (SST), in determining early vs. late summer monsoon intensity over India in a high resolution general circulation model (GCM). We find that in its early phase (June-July; JJ), pre-monsoon land-atmospheric processes play major role to modulate the precipitation over Indian region. These effects of pre-monsoon conditions decrease substantially during its later phase (August-September; AS) for which the interannual variation is mainly governed by the low frequency northward propagating intraseasonal oscillations. This intraseasonal variability which is related to mean vertical wind shear has a significant role during the early phase of monsoon as well. Further, using multiple linear regression, we show that interannual variation of early and late monsoon rainfall over India is best explained when all these land-atmospheric parameters are taken together. Our study delineates the relative role of different processes affecting early versus later summer monsoon rainfall over India that can be used for determining its subseasonal predictability.

  4. African Journals Online: African Studies

    Items 1 - 50 of 56 ... Africa Development is the quarterly bilingual journal of CODESRIA. .... relationship in the family, workplace, schools and organisations. .... activities, and personalities driving the democracy and development agenda in the region; 4. Conflict .... with preference for the results of African and Africanist studies.

  5. Monsoon signatures in trace gas records from Cape Rama, India

    Bhattacharya, S.K.; Jani, R.A.; Borole, D.V.; Francey, R.J.; Allison, C.E.; Masarie, K.A.


    Concentrations of trace gases CO 2 , CH 4 , CO, N 2 O and H 2 , and the stable carbon and oxygen isotopic composition of CO 2 have been measured in air samples collected from Cape Rama, a coastal station on the west coast of India, since 1993. The data show clear signatures of continental and oceanic air mass resulting in complex seasonal variation of trace gas characteristics. The regional atmospheric circulation in the Indian Ocean and Arabian Sea undergoes biannual reversal in low-level winds associated with the yearly migration of the inter-tropical convergence zone (ITCZ). From June to September, the wind is from the equatorial Indian Ocean to the Indian subcontinent (southwest monsoon) and brings in pristine marine air. From December to February, dry continental winds blow from the northeast and transport continental emissions to the ocean (northeast monsoon). Detailed transport and chemical modelling will be necessary to interpret these records, however the potential to identify and constrain the regional trace gas emissions appears to be high. (author)

  6. Transport of sulfonamide antibiotics in crop fields during monsoon season.

    Park, Jong Yol; Ruidisch, Marianne; Huwe, Bernd


    Previous studies have documented the occurrence of veterinary sulfonamide antibiotics in groundwater and rivers located far from pollution sources, although their transport and fate is relatively unknown. In mountainous agricultural fields, the transport behaviour can be influenced by climate, slope and physico-chemical properties of the sulfonamides. The objective of this research is to describe the transport behaviour of three sulfonamide antibiotics (sulfamethoxazole, sulfadimethoxine and sulfamethazine) in sloped agricultural fields located in the Haean catchment, South Korea. During dry and monsoon seasons, a solute transport experiment was conducted in two typical sandy loam agricultural fields after application of antibiotics and potassium bromide as conservative tracers. Field measurement and modelling revealed that frequency and amount of runoff generation indicate a relation between slope and rain intensity during monsoon season. Since the steepness of slope influenced partitioning of precipitation between runoff and subsurface flow, higher loss of sulfonamide antibiotics and bromide by runoff was observed at the steeper sloped field. Bromide on topsoil rapidly infiltrated at high infiltration rates. On the contrary, the sulfonamides were relatively retarded in the upper soil layer due to adsorption onto soil particles. Presence of furrows and ridges affected the distribution of sulfonamide antibiotics in the subsurface due to gradient from wetter furrows to drier ridges induced by topography. Modelling results with HydroGeoSphere matched with background studies that describe physico-chemical properties of the sulfonamides interaction between soil and the antibiotic group, solute transport through vadose zone and runoff generation by storm events.

  7. Community level perceptions of the monsoon onset, withdrawal and climatic trends in Bangladesh

    Reeve, M. A.; Abu Syed, M. D.; Hossain, P. R.; Maainuddi, G.; Mamnun, N.


    A structured questionnaire study was carried out in 6 different regions in Bangladesh in order to give insight into how the different communities define the monsoon. The respondents were asked how they define the monsoon onset and withdrawal, and by how much these can vary from year to year. They were also asked about how they perceive changes in onset and withdrawal dates and total monsoonal rainfall during the past 20 years. Bangladesh is a developing country with a large proportion of the population living in rural areas and employed in the agricultural sector. It is foreseen that these communities will be most affected by changes in the climate. These groups were considered to be the main stakeholders when considering climate change, due to the direct influence the monsoon has on their livelihood and the food supply for the entire nation. Agricultural workers were therefore the main group targeted in this study. The main aim of the study was to create a framework for defining the monsoon in order to increase the usability of results in future impact-related studies. Refining definitions according to the perceptions of the main stakeholders helps to achieve this goal. Results show that rainfall is the main parameter used in defining the monsoon onset and withdrawal. This is possibly intuitive, however the monsoon onset was considered to be considerably earlier than previous scientific studies. This could be due to pre-monsoonal rainfall, however the respondents defined this type of rainfall separately to what they called the monsoon. The monsoon is considered to start earliest in the Sylhet region in northeast Bangladesh.

  8. Atmospheric circulation characteristics associated with the onset of Asian summer monsoon

    Li, Chongyin; Pan, Jing


    The onset of the Asian summer monsoon has been a focus in the monsoon study for many years. In this paper, we study the variability and predictability of the Asian summer monsoon onset and demonstrate that this onset is associated with specific atmospheric circulation characteristics. The outbreak of the Asian summer monsoon is found to occur first over the southwestern part of the South China Sea (SCS) and the Malay Peninsula region, and the monsoon onset is closely related to intra-seasonal oscillations in the lower atmosphere. These intra-seasonal oscillations consist of two low-frequency vortex pairs, one located to the east of the Philippines and the other over the tropical eastern Indian Ocean. Prior to the Asian summer monsoon onset, a strong low-frequency westerly emerges over the equatorial Indian Ocean and the low-frequency vortex pair develops symmetrically along the equator. The formation and evolution of these low-frequency vortices are important and serve as a good indicator for the Asian summer monsoon onset. The relationship between the northward jumps of the westerly jet over East Asia and the Asian summer monsoon onset over SCS is investigated. It is shown that the northward jump of the westerly jet occurs twice during the transition from winter to summer and these jumps are closely related to the summer monsoon development. The first northward jump (from 25° 28°N to around 30°N) occurs on 8 May on average, about 7 days ahead of the summer monsoon onset over the SCS. It is found that the reverse of meridional temperature gradient in the upper-middle troposphere (500 200 hPa) and the enhancement and northward movement of the subtropical jet in the Southern Hemispheric subtropics are responsible for the first northward jump of the westerly jet.

  9. African Journals Online (AJOL)

    It has also been difficult for African researchers to access the work of other African academics. In partnership with hundreds of journals from all over the continent, AJOL works to change this, so that African-origin research output is available to Africans and to the rest of the world. AJOL is ... African Journal of AIDS Research.

  10. The Plio-Pleistocene Evolution of the Indian Ocean Monsoonal System: Evidence from the Arabian Sea and East Africa

    Wilson, K. E.; Maslin, M. A.; Mackay, A. W.; Leng, M. J.; Kingston, J.; Deino, A.


    It is important to identify the teleconnections between high latitude forcing and tropical monsoonal circulation in order to understand climate change in East Africa during the Plio-Pleistocene. Here we present a record of aeolian dust transport to the Arabian Sea between approximately 2.9 and 2.3 million years ago (Ma), constructed from the high-resolution XRF scanning of sediment cores from ODP Sites 721 and 722. Variations in the delivery of aeolian dust to the Arabian Sea, reflected in normalised flux of titanium, show that monsoonal circulation prior to 2.6 Ma, and after 2.5 Ma, was highly variable and primarily driven by orbitally-forced changes in tropical summer insolation, strongly modulated by the 400,000 year cycle of orbital eccentricity. This is confirmed by the presence of lakes in the East African Rift Valley during key eccentricity maxima. The dust record is coupled with the analysis of a well-dated series of diatomite units from the Baringo-Bogoria Basin which document the rhythmic cycling of large, precessionally-driven freshwater lakes which periodically occupied the Central Kenyan Rift Valley between 2.7 and 2.58 Ma. Analysis of one of these lake sequences using stable oxygen isotope measurements of diatom silica, combined with the XRF analysis of whole-sample geochemistry, reveals that the deep lake phase was characterised by fluctuations in rainfall and lake depth over cycles lasting, on average, 1,400 years. The presence of these millennial-scale fluctuations is confirmed by evidence of abrupt climate cycles in the oceanic dust record from the Arabian Sea.

  11. Winter and summer monsoon water mass, heat and freshwater transport changes in the Arabian Sea near 8°N

    Stramma, Lothar; Brandt, Peter; Schott, Friedrich; Quadfasel, Detlef; Fischer, Jürgen

    The differences in the water mass distributions and transports in the Arabian Sea between the summer monsoon of August 1993 and the winter monsoon of January 1998 are investigated, based on two hydrographic sections along approximately 8°N. At the western end the sections were closed by a northward leg towards the African continent at about 55°E. In the central basin along 8°N the monsoon anomalies of the temperature and density below the surface-mixed layer were dominated by annual Rossby waves propagating westward across the Arabian Sea. In the northwestern part of the basin the annual Rossby waves have much smaller impact, and the density anomalies observed there were mostly associated with the Socotra Gyre. Salinity and oxygen differences along the section reflect local processes such as the spreading of water masses originating in the Bay of Bengal, northward transport of Indian Central Water, or slightly stronger southward spreading of Red Sea Water in August than in January. The anomalous wind conditions of 1997/98 influenced only the upper 50-100 m with warmer surface waters in January 1998, and Bay of Bengal Water covered the surface layer of the section in the eastern Arabian Sea. Estimates of the overturning circulation of the Arabian Sea were carried out despite the fact that many uncertainties are involved. For both cruises a vertical overturning cell of about 4-6 Sv was determined, with inflow below 2500 m and outflow between about 300 and 2500 m. In the upper 300-450 m a seasonally reversing shallow meridional overturning cell appears to exist in which the Ekman transport is balanced by a geostrophic transport. The heat flux across 8°N is dominated by the Ekman transport, yielding about -0.6 PW for August 1993, and 0.24 PW for January 1998. These values are comparable to climatological and model derived heat flux estimates. Freshwater fluxes across 8°N also were computed, yielding northward freshwater fluxes of 0.07 Sv in January 1998 and 0

  12. NASA Technology Plan 1998


    This NASA Strategic Plan describes an ambitious, exciting vision for the Agency across all its Strategic Enterprises that addresses a series of fundamental questions of science and research. This vision is so challenging that it literally depends on the success of an aggressive, cutting-edge advanced technology development program. The objective of this plan is to describe the NASA-wide technology program in a manner that provides not only the content of ongoing and planned activities, but also the rationale and justification for these activities in the context of NASA's future needs. The scope of this plan is Agencywide, and it includes technology investments to support all major space and aeronautics program areas, but particular emphasis is placed on longer term strategic technology efforts that will have broad impact across the spectrum of NASA activities and perhaps beyond. Our goal is to broaden the understanding of NASA technology programs and to encourage greater participation from outside the Agency. By relating technology goals to anticipated mission needs, we hope to stimulate additional innovative approaches to technology challenges and promote more cooperative programs with partners outside NASA who share common goals. We also believe that this will increase the transfer of NASA-sponsored technology into nonaerospace applications, resulting in an even greater return on the investment in NASA.

  13. Study on coral annual banding for the investigation of Asian monsoon; Asian monsoon to sango nenrin kenkyu

    Suzuki, A. [Geological Survey of Japan, Tsukuba (Japan); Kawabata, H. [Tohoku University, Sendai (Japan)


    A coral skeleton is sampled at Kenya`s Malindi National Marine Park situated west of the Seychelles, and it offers information about the Afro-Asian monsoon. An X-ray profile of the specimen discloses the seasonal variation in the density of the coral skeleton. The oxygen isotopic ratio, which is generally affected by the seawater oxygen isotopic ratio composition which is dependent on the surface layer water temperature and fresh water, is found dominated, in the coral skeleton, practically by the surface layer water temperature. Accordingly, the oxygen isotopic ratio represents the seasonal and annual variations in the surface layer water temperature. It is inferred that the emergence of Ba/Ca ratio peaks in December into January reflects the presence of Ba from rivers, and there are indications that the Somali current has transported water to the coral sampling area from the Galana River which is the greatest river in Kenya. Five of the Ba/Ca ratio peaks coincide with peaks in the UV fluorescent band, which is attributed to the presence of terrigenous organic matters. The ENSO and Asian monsoon phenomena are estimated on the basis of the findings described above. 11 refs., 6 figs.

  14. Obesity and African Americans

    ... Data > Minority Population Profiles > Black/African American > Obesity Obesity and African Americans African American women have the ... youthonline . [Accessed 08/18/2017] HEALTH IMPACT OF OBESITY People who are overweight are more likely to ...

  15. African Journals Online: Kenya

    Items 1 - 29 of 29 ... African Journal of Food, Agriculture, Nutrition and Development ... African and international non-governmental organizations (NGOs); African and .... for scholars and practitioners in all spheres of biological sciences to publish ...

  16. Retraction | Simon | African Zoology

    Panthera leo) ina. West African national park”. African Zoology is publishing an Editorial Expression of Concern regarding the following article: “New records of a threatened lion population (Panthera leo) in a West African national park” by ...

  17. Predicting summer monsoon of Bhutan based on SST and teleconnection indices

    Dorji, Singay; Herath, Srikantha; Mishra, Binaya Kumar; Chophel, Ugyen


    The paper uses a statistical method of predicting summer monsoon over Bhutan using the ocean-atmospheric circulation variables of sea surface temperature (SST), mean sea-level pressure (MSLP), and selected teleconnection indices. The predictors are selected based on the correlation. They are the SST and MSLP of the Bay of Bengal and the Arabian Sea and the MSLP of Bangladesh and northeast India. The Northern Hemisphere teleconnections of East Atlantic Pattern (EA), West Pacific Pattern (WP), Pacific/North American Pattern, and East Atlantic/West Russia Pattern (EA/WR). The rainfall station data are grouped into two regions with principal components analysis and Ward's hierarchical clustering algorithm. A support vector machine for regression model is proposed to predict the monsoon. The model shows improved skills over traditional linear regression. The model was able to predict the summer monsoon for the test data from 2011 to 2015 with a total monthly root mean squared error of 112 mm for region A and 33 mm for region B. Model could also forecast the 2016 monsoon of the South Asia Monsoon Outlook of World Meteorological Organization (WMO) for Bhutan. The reliance on agriculture and hydropower economy makes the prediction of summer monsoon highly valuable information for farmers and various other sectors. The proposed method can predict summer monsoon for operational forecasting.

  18. Multi-decadal modulation of the El Nino-Indian monsoon relationship by Indian Ocean variability

    Ummenhofer, Caroline C; Sen Gupta, Alexander; Li Yue; Taschetto, Andrea S; England, Matthew H


    The role of leading modes of Indo-Pacific climate variability is investigated for modulation of the strength of the Indian summer monsoon during the period 1877-2006. In particular, the effect of Indian Ocean conditions on the relationship between the El Nino-Southern Oscillation (ENSO) and the Indian monsoon is explored. Using an extended classification for ENSO and Indian Ocean dipole (IOD) events for the past 130 years and reanalyses, we have expanded previous interannual work to show that variations in Indian Ocean conditions modulate the ENSO-Indian monsoon relationship also on decadal timescales. El Nino events are frequently accompanied by a significantly reduced Indian monsoon and widespread drought conditions due to anomalous subsidence associated with a shift in the descending branch of the zonal Walker circulation. However, for El Nino events that co-occur with positive IOD (pIOD) events, Indian Ocean conditions act to counter El Nino's drought-inducing subsidence by enhancing moisture convergence over the Indian subcontinent, with an average monsoon season resulting. Decadal modulations of the frequency of independent and combined El Nino and pIOD events are consistent with a strengthened El Nino-Indian monsoon relationship observed at the start of the 20th century and the apparent recent weakening of the El Nino-Indian monsoon relationship.

  19. Multi-decadal modulation of the El Nino-Indian monsoon relationship by Indian Ocean variability

    Ummenhofer, Caroline C; Sen Gupta, Alexander; Li Yue; Taschetto, Andrea S; England, Matthew H, E-mail: [Climate Change Research Centre, University of New South Wales, Sydney (Australia)


    The role of leading modes of Indo-Pacific climate variability is investigated for modulation of the strength of the Indian summer monsoon during the period 1877-2006. In particular, the effect of Indian Ocean conditions on the relationship between the El Nino-Southern Oscillation (ENSO) and the Indian monsoon is explored. Using an extended classification for ENSO and Indian Ocean dipole (IOD) events for the past 130 years and reanalyses, we have expanded previous interannual work to show that variations in Indian Ocean conditions modulate the ENSO-Indian monsoon relationship also on decadal timescales. El Nino events are frequently accompanied by a significantly reduced Indian monsoon and widespread drought conditions due to anomalous subsidence associated with a shift in the descending branch of the zonal Walker circulation. However, for El Nino events that co-occur with positive IOD (pIOD) events, Indian Ocean conditions act to counter El Nino's drought-inducing subsidence by enhancing moisture convergence over the Indian subcontinent, with an average monsoon season resulting. Decadal modulations of the frequency of independent and combined El Nino and pIOD events are consistent with a strengthened El Nino-Indian monsoon relationship observed at the start of the 20th century and the apparent recent weakening of the El Nino-Indian monsoon relationship.

  20. Picophytoplankton as Tracers of Environmental Forcing in a Tropical Monsoonal Bay.

    Mitbavkar, Smita; Patil, Jagadish S; Rajaneesh, K M


    In order to better understand the picophytoplankton (PP) dynamics in tropical monsoon influenced coastal regions, samples were collected daily (June-September 2008: monsoon, December 2008: post-monsoon and April 2009: pre-monsoon) from a fixed station in Dona Paula Bay, India. Eight PP abundance peaks comprising Prochlorococcus-like cells, picoeukaryotes, and three groups of Synechococcus occurred. The chlorophyll biomass and PP abundance were negatively influenced by reduced solar radiation, salinity and water transparency due to precipitation and positively influenced by the stabilized waters during precipitation break/non-monsoon periods. Responses to environmental conditions differed with PP groups, wherein the presence of Synechococcus-PEI (phycoerythrin) throughout the year suggested its ability to tolerate salinity and temperature variations and low light conditions. Synechococcus-PEII appearance toward monsoon end and non-monsoon during high water transparency suggests its tidal advection from offshore waters. Dominance of Synechococcus-PC (phycocyanin) at intermediate salinities under low water transparency during MON and high salinities in PrM coinciding with high nitrate concentrations implies a greater influence of light quality or nutrients. Cyanobacteria and not picoeukaryotes were the dominant picophytoplankton in terms of numbers as well as biomass. This study suggests that PP could be used as tracers of environmental forcing driven by tides and freshwater influx and also highlights the importance of high-frequency samplings in dynamic coastal regions through which transient responses can be captured.

  1. Global warming and South Indian monsoon rainfall-lessons from the Mid-Miocene.

    Reuter, Markus; Kern, Andrea K; Harzhauser, Mathias; Kroh, Andreas; Piller, Werner E


    Precipitation over India is driven by the Indian monsoon. Although changes in this atmospheric circulation are caused by the differential seasonal diabatic heating of Asia and the Indo-Pacific Ocean, it is so far unknown how global warming influences the monsoon rainfalls regionally. Herein, we present a Miocene pollen flora as the first direct proxy for monsoon over southern India during the Middle Miocene Climate Optimum. To identify climatic key parameters, such as mean annual temperature, warmest month temperature, coldest month temperature, mean annual precipitation, mean precipitation during the driest month, mean precipitation during the wettest month and mean precipitation during the warmest month the Coexistence Approach is applied. Irrespective of a ~ 3-4 °C higher global temperature during the Middle Miocene Climate Optimum, the results indicate a modern-like monsoonal precipitation pattern contrasting marine proxies which point to a strong decline of Indian monsoon in the Himalaya at this time. Therefore, the strength of monsoon rainfall in tropical India appears neither to be related to global warming nor to be linked with the atmospheric conditions over the Tibetan Plateau. For the future it implies that increased global warming does not necessarily entail changes in the South Indian monsoon rainfall.

  2. NASA Remote Sensing Data for Epidemiological Studies

    Maynard, Nancy G.; Vicente, G. A.


    In response to the need for improved observations of environmental factors to better understand the links between human health and the environment, NASA has established a new program to significantly improve the utilization of NASA's diverse array of data, information, and observations of the Earth for health applications. This initiative, lead by Goddard Space Flight Center (GSFC) has the following goals: (1) To encourage interdisciplinary research on the relationships between environmental parameters (e.g., rainfall, vegetation) and health, (2) Develop practical early warning systems, (3) Create a unique system for the exchange of Earth science and health data, (4) Provide an investigator field support system for customers and partners, (5) Facilitate a system for observation, identification, and surveillance of parameters relevant to environment and health issues. The NASA Environment and Health Program is conducting several interdisciplinary projects to examine applications of remote sensing data and information to a variety of health issues, including studies on malaria, Rift Valley Fever, St. Louis Encephalitis, Dengue Fever, Ebola, African Dust and health, meningitis, asthma, and filariasis. In addition, the NASA program is creating a user-friendly data system to help provide the public health community with easy and timely access to space-based environmental data for epidemiological studies. This NASA data system is being designed to bring land, atmosphere, water and ocean satellite data/products to users not familiar with satellite data/products, but who are knowledgeable in the Geographic Information Systems (GIS) environment. This paper discusses the most recent results of the interdisciplinary environment-health research projects and provides an analysis of the usefulness of the satellite data to epidemiological studies. In addition, there will be a summary of presently-available NASA Earth science data and a description of how it may be obtained.

  3. NASA Airborne Science Program: NASA Stratospheric Platforms

    Curry, Robert E.


    The National Aeronautics and Space Administration conducts a wide variety of remote sensing projects using several unique aircraft platforms. These vehicles have been selected and modified to provide capabilities that are particularly important for geophysical research, in particular, routine access to very high altitudes, long range, long endurance, precise trajectory control, and the payload capacity to operate multiple, diverse instruments concurrently. While the NASA program has been in operation for over 30 years, new aircraft and technological advances that will expand the capabilities for airborne observation are continually being assessed and implemented. This presentation will review the current state of NASA's science platforms, recent improvements and new missions concepts as well as provide a survey of emerging technologies unmanned aerial vehicles for long duration observations (Global Hawk and Predator). Applications of information technology that allow more efficient use of flight time and the ability to rapidly reconfigure systems for different mission objectives are addressed.

  4. Initial results from the StratoClim aircraft campaign in the Asian Monsoon in summer 2017

    Rex, M.


    The Asian Monsoon System is one of the Earth's largest and most energetic weather systems. Monsoon rainfall is critical to feeding over a billion people in Asia and the monsoon circulation affects weather patterns over the entire northern hemisphere. The Monsoon also acts like an enormous elevator, pumping vast amounts of air and pollutants from the surface up to the tropopause region at levels above 16km altitude, from where air can ascend into the stratosphere, where it spreads globally. Thus the monsoon affects the chemical composition of the global tropopause region and the stratosphere, and hence plays a key role for the composition of the UTS. Dynamically the monsoon circulation leads to the formation of a large anticyclone at tropopause levels above South Asia - the Asian Monsoon Anticyclone (AMA). Satellite images show a large cloud of aerosols directly above the monsoon, the Asian Tropopause Aerosol Layer (ATAL). In July to August 2017 the international research project StratoClim carried out the first in-situ aircraft measurements in the AMA and the ATAL with the high altitude research aircraft M55-Geophysica. Around 8 scientific flights took place in the airspaces of Nepal, India and Bangladesh and have horizontally and vertically probed the AMA and have well characterized the ATAL along flight patterns that have been carefully designed by a theory, modelling and satellite data analysing team in the field. The aircraft campaign has been complemented by launches of research balloons from ground stations in Nepal, Bangladesh, China and Palau. The presentation will give an overview of the StratoClim project, the aircraft and balloon activities and initial results from the StratoClim Asian Monsoon campaign in summer 2017.

  5. Why the Australian Monsoon Strengthened During the Cold Last Glacial Maximum?

    Yan, M.; Wang, B.; Liu, J.; Ning, L.


    The multi-model ensemble simulation suggests that the global monsoon and most sub-monsoons are weakened during the Last Glacial Maximum (LGM) due to the lower green-house gases concentration, the presence of the ice-sheets and the weakened seasonal distribution of insolation. In contrast, the Australian monsoon is strengthened during the LGM. The precipitation there increases in austral summer and decreases in austral winter, so that the annual range or monsoonality increases. The strengthened monsoonality is mainly due to the decreased precipitation in austral winter, which is primarily caused by circulation changes, although the reduced atmospheric water vapor also has a moderate contribution. On the other hand, the strengthened Australian summer monsoon rainfall is likely caused by the change of land-sea thermal contrast due to the alteration of land-sea configuration and by the asymmetric change in sea surface temperature (SST) over Indo-Pacific warm pool region. The strengthened land-sea thermal contrast and Western Pacific-Eastern Indian Ocean thermal gradients in the pre-summer monsoon season triggers a cyclonic wind anomaly that is maintained to the monsoon season, thereby increasing summer precipitation. The increased summer precipitation is associated with the increased cloud cover over the land and decreased cloud cover over the ocean. This may weaken the land-sea thermal contrast, which agrees with the paleoclimate reconstruction. The biases between different models are likely related to the different responses of SST over the North Atlantic Ocean in the pre-summer monsoon season.

  6. Heavy Rainfall Associated with a Monsoon Depression in South China: Structure Analysis

    JIANG Jianying; JIANG Jixi; BU Yalin; LIU Nianqing


    A heavy rainfall associated with the deepening of a monsoon depression happened in the summer of 2005.This process was first diagnostically analyzed and the 3D structure of the monsoon depression was discussed,then this structure was compared with those of the monsoon depression in South Asia and the low vortex in the Meiyu front. The results showed that the heavy rainfall directly resulted from a monsoon depression in South China, and the large-scale environment provided a favorable background for the deepening of the monsoon depression. The 3D structure of the monsoon depression was as follows. In the horizontal direction,there existed a convective cloud band to the south of the monsoon depression, which lay in a convectively instable area, with a relatively strong ascending motion in the mid and low levels of the troposphere, and the ascending motion matched well with a moist tongue, a convergence area, and a band of positive vorticity in the mid and low levels of the troposphere. In the vertical direction, the depression had an obviously cyclonic circulation in the mid and low levels of the troposphere, but no circulation from above 300 hPa. The monsoon depression corresponded to convergence and positive vorticity in the low levels, but to divergence and negative vortieity in the upper levels. The upward draft of the depression could reach the upper levels of the troposphere in the west of the depression, while the descending motion lay in the east. There was a low-level jet to the south of the depression, while the upper-level jet was not obvious. The depression was vertically warm in the upper levels and cold in the low levels, and the axis of the depression tilted southeastward with height, whose characteristics were different not only from the monsoon depression in South Asia but also from the low vortex in the Meiyu front.

  7. The northwestern Indian Ocean during the monsoons of 1979: distribution, abundance, and feeding of zooplankton

    Smith, S.L.


    Upwelling induced by the separation of the Somali Current from the coast of east Africa is associated with low surface temperatures, high concentrations of nitrate, and blooms of phytoplankton. Coefficients of concordance, based upon 17 taxa of zooplankton collected at 33 stations in the southwest monsoon and 15 stations in the northeast monsoon, were consistently larger for the southwest monsoon and indicative of a general response of the zooplankton in the northwestern Indian Ocean. The largest coefficients of concordance in the southwest monsoon were among adult females of Paracalanus denudatus, Paracalanus parvus, and Paracalanus aculeatus and of Calanoides carinatus and Eucalanus spp. Coefficients of concordance among copepodids of six taxa had a trend similar to adult females in the southwest monsoon. During the southwest monsoon, total biomass of zooplankton was significantly greater within areas of upwelling than outside; adult females and copepodids of C. carinatus and Eucalanus spp. were significantly more abundant within the upwelling regions, along with adult females of Clausocalanus furcatus and Clausocalanus minor. The upwelling regions, which are associated with a reproductively active population of the large-bodied C. carinatus, are the primary features affecting distributions of zooplankton during the southwest monsoon and the main difference between monsoons. The ontogenetic migration of C. carinatus is essentially an annual life-history strategy and therefore on the same temporal scale as the reversals in the monsoonal winds and associated upwelling. The ability of C. carinatus to ingest readily the diatoms that dominate the upwelling regions and to store lipid is crucial to its dominance of the areas of upwelling both in numbers and biomass.

  8. Building resilience to face recurring environmental crisis in African Sahel

    Boyd, Emily; Cornforth, Rosalind J.; Lamb, Peter J.; Tarhule, Aondover; Lélé, M. Issa; Brouder, Alan


    The present food shortages in the Horn of Africa and the West African Sahel are affecting 31 million people. Such continuing and future crises require that people in the region adapt to an increasing and potentially irreversible global sustainability challenge. Given this situation and that short-term weather and seasonal climate forecasting have limited skill for West Africa, the Rainwatch project illustrates the value of near real-time monitoring and improved communication for the unfavourable 2011 West African monsoon, the resulting severe drought-induced humanitarian impacts continuing into 2012, and their exacerbation by flooding in 2012. Rainwatch is now coupled with a boundary organization (Africa Climate Exchange, AfClix) with the aim of integrating the expertise and actions of relevant institutions, agencies and stakeholders to broker ground-based dialogue to promote resilience in the face of recurring crisis.

  9. NASA Jet Noise Research

    Henderson, Brenda


    The presentation highlights NASA's jet noise research for 2016. Jet-noise modeling efforts, jet-surface interactions results, acoustic characteristics of multi-stream jets, and N+2 Supersonic Aircraft system studies are presented.

  10. NASA Image Exchange (NIX)

    National Aeronautics and Space Administration — NASA Technical Reports Server (NTRS) provides access to aerospace-related citations, full-text online documents, and images and videos. The types of information...

  11. NASA Earth Exchange (NEX)

    National Aeronautics and Space Administration — The NASA Earth Exchange (NEX) represents a new platform for the Earth science community that provides a mechanism for scientific collaboration and knowledge sharing....

  12. My NASA Data

    National Aeronautics and Space Administration — MY NASA DATA (MND) is a tool that allows anyone to make use of satellite data that was previously unavailable.Through the use of MND’s Live Access Server (LAS) a...

  13. NASA Space Sounds API

    National Aeronautics and Space Administration — NASA has released a series of space sounds via sound cloud. We have abstracted away some of the hassle in accessing these sounds, so that developers can play with...

  14. NASA Water Resources Program

    Toll, David L.


    With increasing population pressure and water usage coupled with climate variability and change, water issues are being reported by numerous groups as the most critical environmental problems facing us in the 21st century. Competitive uses and the prevalence of river basins and aquifers that extend across boundaries engender political tensions between communities, stakeholders and countries. In addition to the numerous water availability issues, water quality related problems are seriously affecting human health and our environment. The potential crises and conflicts especially arise when water is competed among multiple uses. For example, urban areas, environmental and recreational uses, agriculture, and energy production compete for scarce resources, not only in the Western U.S. but throughout much of the U.S. and also in numerous parts of the world. Mitigating these conflicts and meeting water demands and needs requires using existing water resources more efficiently. The NASA Water Resources Program Element works to use NASA products and technology to address these critical water issues. The primary goal of the Water Resources is to facilitate application of NASA Earth science products as a routine use in integrated water resources management for the sustainable use of water. This also includes the extreme events of drought and floods and the adaptation to the impacts from climate change. NASA satellite and Earth system observations of water and related data provide a huge volume of valuable data in both near-real-time and extended back nearly 50 years about the Earth's land surface conditions such as precipitation, snow, soil moisture, water levels, land cover type, vegetation type, and health. NASA Water Resources Program works closely to use NASA and Earth science data with other U.S. government agencies, universities, and non-profit and private sector organizations both domestically and internationally. The NASA Water Resources Program organizes its

  15. NASA, NOAA administrators nominated

    Richman, Barbara T.

    President Ronald Reagan recently said he intended to nominate James Montgomery Beggs as NASA Administrator and John V. Byrne as NOAA Administrator. These two positions are key scientific posts that have been vacant since the start of the Reagan administration on January 20. The President also said he intends to nominate Hans Mark as NASA Deputy Administrator. At press time, Reagan had not designated his nominee for the director of the Office of Science and Technology Policy.

  16. Prediction and Monitoring of Monsoon Intraseasonal Oscillations over Indian Monsoon Region in an Ensemble Prediction System using CFSv2

    Borah, Nabanita; Sukumarpillai, Abhilash; Sahai, Atul Kumar; Chattopadhyay, Rajib; Joseph, Susmitha; De, Soumyendu; Nath Goswami, Bhupendra; Kumar, Arun


    An ensemble prediction system (EPS) is devised for the extended range prediction (ERP) of monsoon intraseasonal oscillations (MISO) of Indian summer monsoon (ISM) using NCEP Climate Forecast System model version2 at T126 horizontal resolution. The EPS is formulated by producing 11 member ensembles through the perturbation of atmospheric initial conditions. The hindcast experiments were conducted at every 5-day interval for 45 days lead time starting from 16th May to 28th September during 2001-2012. The general simulation of ISM characteristics and the ERP skill of the proposed EPS at pentad mean scale are evaluated in the present study. Though the EPS underestimates both the mean and variability of ISM rainfall, it simulates the northward propagation of MISO reasonably well. It is found that the signal-to-noise ratio becomes unity by about18 days and the predictability error saturates by about 25 days. Though useful deterministic forecasts could be generated up to 2nd pentad lead, significant correlations are observed even up to 4th pentad lead. The skill in predicting large-scale MISO, which is assessed by comparing the predicted and observed MISO indices, is found to be ~17 days. It is noted that the prediction skill of actual rainfall is closely related to the prediction of amplitude of large scale MISO as well as the initial conditions related to the different phases of MISO. Categorical prediction skills reveals that break is more skillfully predicted, followed by active and then normal. The categorical probability skill scores suggest that useful probabilistic forecasts could be generated even up to 4th pentad lead.

  17. African Solutions to African Problems?

    Emmanuel, Nikolas G.; Schwartz, Brendan


    . The emergence of Déby’s Chad depends both on its ability to accomplish sub-imperial tasks encouraged by these actors, while obfuscating undemocratic governance and human rights abuses at home. Nonetheless, Déby’s role in regional security has helped him achieve a certain degree of agency in his relationship...... and maintain control of the state. These range from “liberal” desires to help control the region’s trouble spots in places like Mali, to clearly illiberal medaling in the domestic affairs of neighbors like the Central African Republic, with the fight against Boko Haram somewhere in the middle. This paper seeks...

  18. Factors controlling the temporal and spatial variations in Synechococcus abundance in a monsoonal estuary

    Rajaneesh, K.M.; Mitbavkar, S.

    salinity preferences with phycoerythrin-rich cells at salinities >2 (Synechococcus-PEI), >20 (Synechococcus-PEII) and <1 (Synechococcus-PEIII) whereas phycocyanin-rich (Synechococcus-PC) dominant at lower salinities. Downstream stratification during monsoon...

  19. Deglaciation in the tropical Indian Ocean driven by interplay between the regional monsoon and global teleconnections

    Saraswat, R.; Lea, D.W.; Nigam, R.; Mackensen, A.; Naik, Dinesh K.

    High resolution climate records of the ice age terminations from monsoon-dominated regions reveal the interplay of regional and global driving forces. Speleothem records from Chinese caves indicate that glacial terminations were interrupted...

  20. Attenuation of surface waves due to monsoon rains: A model study for the north Indian Ocean

    Vethamony, P.; Kumar, B.P.; Sarma, Y.V.B.

    The dynamic interaction of intense rain with waves based on momentum exchange is applied to a second generation wave model to predict wave attenuation during monsoon. The scheme takes into account the characteristics of rain and wave parameters...

  1. Variability of the date of monsoon onset over Kerala (India) of the ...

    P N Preenu


    Jul 25, 2017 ... Nansen Environmental Research Centre India, 6A Oxford Business Centre, Kochi, Kerala 682 016, India. ... Monsoon onset over Kerala (India) which occurs every year is a ...... for delayed MOK years and figure 12 gives the.

  2. Relationships between Indian summer monsoon rainfall and ice cover over selected oceanic regions

    Gopinathan, C.K.

    The variations in oceanic ice cover at selected polar regions during 1973 to 1987 have been analysed in relation to the seasonal Indian summer monsoon rainfall. The ice cover over the Arctic regions in June has negative relationship (correlation...

  3. Vertical distribution of mesozooplankton in the central and eastern Arabian Sea during the winter monsoons

    Padmavati, G.; Haridas, P.; Nair, K.K.C.; Gopalakrishnan, T.C.; Shiney, P.; Madhupratap, M.

    The vertical distribution of mesozooplankton in the central and eastern Arabian Sea was investigated during the winter monsoon in 1995. Samples were analysed from discrete depth zones defined according to oxygen and temperature profiles of the water...

  4. Monsoon oscillations of the Findlater Jet and coastal winds of India

    Pankajakshan, T.; Zhao, C.; Muraleedharan, P.M.; Rao, G.S.P.; Sugimori, Y.

    Intraseasonal variability (ISV) of the Low Level Jet (LLJ) and its effects on coastal winds during the Indian summer monsoon are examined using National Centre for Environmental Prediction / National Centre for Atmospheric Research (NCEP) reanalyses...

  5. Monsoonal reversal of remote sensing biases in latent heat flux over eastern Arabian Sea

    Muraleedharan, P.M.; Pankajakshan, T.; Sathe, P.V.; Murty, V.S.N.; Santosh, K.R.

    The Arabian Sea is a unique basin where a number of atmospheric and oceanographic processes occur due to the contrasting climatic conditions, which it experiences. The drastic monsoonal variability occurring in the boundary layer adversely affects...

  6. Seasonal variations in the fouling diatom community structure from a monsoon influenced tropical estuary

    Mitbavkar, S.; Anil, A.C.

    Seasonal variations in the fouling diatom community from a monsoon influenced tropical estuary were investigated. The community composition did not differ significantly between stainless steel and polystyrene substrata due to dominance by Navicula...

  7. Bacterial domination over Archaea in ammonia oxidation in a monsoon-driven tropical estuary

    Vipindas, P.V.; Anas, A.; Jasmin, C.; Lallu, K.R.; Fausia, K.H.; Balachandran, K.K.; Muraleedharan, K.R.; Nair, S.

    Autotrophic ammonia oxidizing microorganisms,which are responsible for the rate-limiting step of nitrification in most aquatic systems, have not been studied in tropical estuaries. Cochin estuary (CE) is one of the largest, productive, and monsoon...

  8. Driving forces of Indian summer monsoon on Milankovitch and sub-Milankovitch time scales: A review

    Naidu, P.D.

    A scientific consensus exists that tectonic evolution of Himalaya is the main cause of monsoon initiation and evolution in southeast Asia. Several forcing factors such as tectonic, solar insolation, latent heat transport, albedo of the earth surface...

  9. Spectral characteristics of the nearshore waves off Paradip, India during monsoon and extreme events

    Aboobacker, V.M.; Vethamony, P.; Sudheesh, K.; Rupali, S.P.

    and directional wave energy spectra distinctly separate out the wave conditions that prevailed off Paradip in the monsoon, fair weather and extreme weather events during the above period. Frequency-energy spectra during extreme events are single peaked...

  10. Influence of orographically enhanced SW monsoon flux on coastal processes along the SE Arabian Sea

    Chauhan, O.S.; Raghavan, B.R.; Singh, K.; Rajawat, A; Ajai; Kader, U.S.A; Nayak, S.

    The Arabian Sea has an excess evaporation over precipitation regime. The southeast Arabian Sea is, however, anomalous because it has ~2800–4800 mm rainfall during the southwest monsoon (SWM). Despite a high rainfall, the fluvial influence on supply...

  11. Interactions between trophic levels in upwelling and non-upwelling regions during summer monsoon

    Malik, A; Fernandes, C.E.G.; Gonsalves, M.J.B.D.; Subina, N.S.; Mamatha, S.S.; Krishna, K.S.; Varik, S.; RituKumari; Gauns, M.; Cejoice, R.P.; Pandey, S.S.; Jineesh, V.K.; Kamaleson, A; Vijayan, V.; Mukherjee, I.; Subramanyan, S.; Nair, S.; Ingole, B.S.; LokaBharathi, P.A

    Coastal upwelling is a regular phenomenon occurring along the southwest coast of India during summer monsoon (May–September). We hypothesize that there could be a shift in environmental parameters along with changes in the network of interactions...

  12. Seasonal variations in abundance, biomass and grazing rates of microzooplankton in a tropical monsoonal estuary

    Gauns, M.; Mochemadkar, S.; Patil, S.; Pratihary, A.K.; Naqvi, S.W.A.; Madhupratap, M.

    Seasonal abundance, composition and grazing rates of microzooplankton (20–200 µm) in the Zuari estuary were investigated to evaluate their importance in food web dynamics of a tropical monsoonal estuary. Average abundances of microzooplankton...

  13. Monsoonal impact on planktonic standing stock and abundance in a tropical estuary (Cochin backwaters - India)

    Madhu, N.V.; Jyothibabu, R; Balachandran, K.K.; Honey, U.K.; Martin, G.D.; Vijay, J.G.; Shiyas, C.A.; Gupta, G.V.M.; Achuthankutty, C.T.

    and post monsoon seasons, but became low during premonsoon season (<5). Hence, it is suggested that during the periods of fresh water dominance, the trophic food web of Cochin estuarine system is characterized by substantial amount of unconsumed carbon...

  14. Variations in phytoplankton community in a monsoon-influenced tropical estuary

    Patil, J.S.; Anil, A.C.

    . The break period in monsoon altered the phytoplankton community leading to mixed species bloom of large-sized diatoms and harmful dinoflagellates (Gymnodinium catenatum and Cochlodinium polykrikoides) under high-saline, nutrient-poor, non...

  15. Upper ocean stratification and circulation in the northern Bay of Bengal during southwest monsoon of 1991

    Gopalakrishna, V. V.; Murty, V. S. N.; Sengupta, D.; Shenoy, Shrikant; Araligidad, Nilesh


    During the southwest monsoon (July) of 1991 a large plume (300×250 km 2) of warm (>29°C) and less saline (Continental Shelf Research 19 (1999) 1437, Journal of Geophysical Research 106 (C1) (2001) 1067).

  16. Foraminiferal production and monsoonal upwelling in the Arabian sea: evidence from sediment traps

    Curry, W.B.; Ostermann, D.R.; Guptha, M.V.S.; Ittekkot, V.

    Planktonic foraminifera collected in sediment traps in the Arabian Sea during 1986 and 1987 responded to the southern Asian monsoon with changes in productivity, relative abundance of species and isotopic shell chemistry. Most species...

  17. Ecology of benthic production during southwest monsoon in an estuarine complex of Goa

    Parulekar, A.H.; Dwivedi, S.N.

    Qualitative and quantitative differences in the spatial temporal distribution and production of benthic macrofauna in pre- and post-monsoon were observed and the differences are discussed in relation to the environmental factors The fauna...

  18. Living coccolithophores during the northeast monsoon from the Equatorial Indian Ocean: Implications on hydrography

    Guptha, M.V.S.; Mergulhao, L.P.; Murty, V.S.N.; Shenoy, D.M.

    suggested a prevalence of oligotrophic conditions or lack of supply of nutrients into the upper mixed layer (approx. 50 m thick) during the northeast monsoon. However, the relatively higher abundance of Florisphaera profunda at 4 degrees S indicated...

  19. African Journals Online (AJOL)

    It has also been difficult for African researchers to access the work of other African academics. In partnership with hundreds of journals from all over the continent, AJOL works to change this, so that African-origin research output is available to Africans and to the rest of the ... Egyptian Journal of Medical Human Genetics.

  20. African Journals Online (AJOL)

    African Journals OnLine (AJOL) is the world's largest and pre-eminent collection of peer-reviewed, African-published scholarly journals. Historically, scholarly information has flowed from North to South and from West to East. It has also been difficult for African researchers to access the work of other African academics.

  1. Trends in African philosophy


    In the contention of Oladipo (2006), the debate on the idea of. African philosophy which has been divided into trends or schools, dates back to the 1960's and 70's, which constitute the modern epoch of African philosophy, when some African thinkers began to question the perspective that traditional African beliefs and.

  2. African Journals Online (AJOL)

    It has also been difficult for African researchers to access the work of other African ... search for an article by title, author/s or keywords,; and find other information sources ... Southern African Business Review; The role played by the South African ... The Basis of Distinction Between Qualitative and Quantitative Research in ...

  3. African Journals Online (AJOL)

    It has also been difficult for African researchers to access the work of other African academics. In partnership with hundreds of journals from all over the continent, AJOL works to change this, so that African-origin research output is available to Africans and ... Featured Country: South Africa, Featured Journal: Ergonomics SA ...

  4. Importance of monsoon rainfall in mass fluxes of filtered and unfiltered mercury in Gwangyang Bay, Korea

    Jang, Jiyi; Han, Seunghee


    We investigated the effects of the East Asian Summer Monsoon (EASM), which brings approximately half of Korea's annual rainfall in July, on the concentration and particle-water partitioning, and sources of Hg in coastal waters. Surface seawater samples were collected from eight sites in Gwangyang Bay, Korea, during the monsoon (July, 2009) and non-monsoon dry (April and November, 2009) seasons and the concentrations of suspended particulate matter, chlorophyll-a, and unfiltered and filtered Hg were determined. We found significant (p 0.05) between the monsoon (459 ± 141 pmol g -1 ) and the dry season (346 ± 30 pmol g -1 ), which resulted in decreased particle-water partition coefficients of Hg in the monsoon season compared to the values in the dry season: 5.7 ± 0.1 in April, 5.3 ± 0.1 in July, and 5.8 ± 0.1 in November. The annual Hg input to Gwangyang Bay was estimated at 64 ± 6.6 mol yr -1 and 27 ± 1.9 mol yr -1 for unfiltered and filtered Hg, respectively. The Hg discharged from rivers was a major source of Hg in Gwangyang Bay: the river input contributed 83 ± 13% of total input of unfiltered and 73 ± 6.0% of filtered Hg. On a monthly basis, unfiltered Hg input was 17 ± 11 mol month -1 in the monsoon season and 3.2 ± 0.70 mol month -1 in the dry season, while filtered Hg input was 7.1 ± 4.1 mol month -1 in the monsoon and 1.3 ± 0.26 mol month -1 in the dry. Consequently, the EASM resulted in an unfiltered Hg input 5.3 times greater than the mean dry month input and a filtered Hg input 5.5 times greater than the mean dry month input, which is mainly attributable to enhanced river water discharge during the monsoon season. - Research Highlights: → Filtered mercury concentration increased in the monsoon month in coastal water. → The monsoon rain increased unfiltered Hg input 5.5 times greater than the dry month. → The monsoon rain increased filtered Hg input 5.3 times greater than the dry month.

  5. Glacial-interglacial water cycle, global monsoon and atmospheric methane changes

    Guo, Zhengtang; Wu, Haibin [Chinese Academy of Sciences, Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Beijing (China); Zhou, Xin [Chinese Academy of Sciences, Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Beijing (China); University of Science and Technology of China, School of Earth and Space Sciences and Institute of Polar Environment, Hefei (China)


    The causes of atmospheric methane (CH{sub 4}) changes are still a major contention, in particular with regards to the relative contributions of glacial-interglacial cycles, monsoons in both hemispheres and the late Holocene human intervention. Here, we explore the CH{sub 4} signals in the Antarctic EPICA Dome C and Vostok ice records using the methods of timeseries analyses and correlate them with insolation and geological records to address these issues. The results parse out three distinct groups of CH{sub 4} signals attributable to different drivers. The first group ({proportional_to}80% variance), well tracking the marine {delta}{sup 18}O record, is attributable to glacial-interglacial modulation on the global water cycle with the effects shared by wetlands at all latitudes, from monsoonal and non-monsoonal regions in both hemispheres. The second group ({proportional_to}15% variance), centered at the {proportional_to}10-kyr semi-precession frequency, is linkable with insolation-driven tropical monsoon changes in both hemispheres. The third group ({proportional_to}5% variance), marked by millennial frequencies, is seemingly related with the combined effect of ice-volume and bi-hemispheric insolation changes at the precession bands. These results indicate that bi-hemispheric monsoon changes have been a constant driver of atmospheric CH{sub 4}. This mechanism also partially explains the Holocene CH{sub 4} reversal since {proportional_to}5 kyr BP besides the human intervention. In the light of these results, we propose that global monsoon can be regarded as a system consisting of two main integrated components, one primarily driven by the oscillations of Inter-Tropical Convergence Zone (ITCZ) in response to the low-latitude summer insolation changes, anti-phase between the two hemispheres (i.e. the ITCZ monsoon component); and another modulated by the glacial-interglacial cycles, mostly synchronous at the global scale (i.e. the glacial-interglacial monsoon

  6. Asian summer monsoon prediction in ECMWF System 4 and NCEP CFSv2 retrospective seasonal forecasts

    Kim, Hye-Mi; Webster, Peter J.; Curry, Judith A.; Toma, Violeta E. [Georgia Institute of Technology, School of Earth and Atmospheric Science, Atlanta, GA (United States)


    The seasonal prediction skill of the Asian summer monsoon is assessed using retrospective predictions (1982-2009) from the ECMWF System 4 (SYS4) and NCEP CFS version 2 (CFSv2) seasonal prediction systems. In both SYS4 and CFSv2, a cold bias of sea-surface temperature (SST) is found over the equatorial Pacific, North Atlantic, Indian Oceans and over a broad region in the Southern Hemisphere relative to observations. In contrast, a warm bias is found over the northern part of North Pacific and North Atlantic. Excessive precipitation is found along the ITCZ, equatorial Atlantic, equatorial Indian Ocean and the maritime continent. The southwest monsoon flow and the Somali Jet are stronger in SYS4, while the south-easterly trade winds over the tropical Indian Ocean, the Somali Jet and the subtropical northwestern Pacific high are weaker in CFSv2 relative to the reanalysis. In both systems, the prediction of SST, precipitation and low-level zonal wind has greatest skill in the tropical belt, especially over the central and eastern Pacific where the influence of El Nino-Southern Oscillation (ENSO) is dominant. Both modeling systems capture the global monsoon and the large-scale monsoon wind variability well, while at the same time performing poorly in simulating monsoon precipitation. The Asian monsoon prediction skill increases with the ENSO amplitude, although the models simulate an overly strong impact of ENSO on the monsoon. Overall, the monsoon predictive skill is lower than the ENSO skill in both modeling systems but both systems show greater predictive skill compared to persistence. (orig.)

  7. Monsoon rainfall behaviour in recent times on local/regional scale in India

    Singh, Surender; Rao, V.U.M.; Singh, Diwan


    An attempt has been made here to investigate the local/regional monsoon rainfall behaviour in the meteorological sub-division no. 13 comprising the areas of Haryana, Delhi and Chandigarh in India. The monthly monsoon rainfall data of 30 years (1970-99) of different locations in the region were used for the investigation. All locations except Delhi received more rainfall in monsoon season during the decade (1990-99) showing general increasing trend in the rainfall behaviour in recent times. The mean monsoon rainfall at various locations ranged between 324.8 mm at Sirsa and 974.9 mm at Chandigarh. The major amount of monsoon rainfall occurred during the month of July and August in the entire region. Monthly mean rainfall ranged between 37.5 to 144.9 mm (June), 130.6 to 298.2 mm (July), 92.6 to 313.6 mm (August) and 44.0 to 149.4mm (September) at different locations. All the locations in the region exhibited overall increasing trend in monsoon rainfall over the period under study. All locations in the region received their lowest monsoon rainfall in the year 1987 which was a drought year and the season's rainfall ranged between 56.1 mm (Sirsa) and 290.0 mm (Delhi) during this year. Many of the locations observed clusters of fluctuations in their respective monsoon rainfall. The statistical summaries of historical data series (1970-99) gave rainfall information on various time scale. Such information acquires value through its influence on the decision making of the ultimate users. (author)

  8. A mechanism for land-ocean contrasts in global monsoon trends in a warming climate

    Fasullo, J. [National Center for Atmospheric Research, CAS/NCAR, Boulder, CO (United States)


    A central paradox of the global monsoon record involves reported decreases in rainfall over land during an era in which the global hydrologic cycle is both expected and observed to intensify. It is within this context that this work develops a physical basis for both interpreting the observed record and anticipating changes in the monsoons in a warming climate while bolstering the concept of the global monsoon in the context of shared feedbacks. The global-land monsoon record across multiple reanalyses is first assessed. Trends that in other studies have been taken as real are shown to likely be spurious as a result of changes in the assimilated data streams both prior to and during the satellite era. Nonetheless, based on satellite estimates, robust increases in monsoon rainfall over ocean do exist and a physical basis for this land-ocean contrast remains lacking. To address the contrast's causes, simulated trends are therefore assessed. While projections of total rainfall are inconsistent across models, the robust land-ocean contrast identified in observations is confirmed. A feedback mechanism is proposed rooted in the facts that land areas warm disproportionately relative to ocean, and onshore flow is the chief source of monsoonal moisture. Reductions in lower tropospheric relative humidity over land domains are therefore inevitable and these have direct consequences for the monsoonal convective environment including an increase in the lifting condensation level and a shift in the distribution of convection generally towards less frequent and potentially more intense events. The mechanism is interpreted as an important modulating influence on the ''rich-get-richer'' mechanism. Caveats for regional monsoons exist and are discussed. (orig.)

  9. Evaluation of CFSV2 Forecast Skill for Indian Summer Monsoon Sub-Seasonal Characteristics

    S, S. A.; Ghosh, S.


    Prediction of sub seasonal monsoon characteristics of Indian Summer Monsoon (ISM) is highly crucial for agricultural planning and water resource management. The Climate forecast System version 2 (CFS V2), the state of the art coupled climate model developed by NCEP, is currently being employed for the seasonal and extended range forecasts of ISM. Even though CFSV2 is a fully coupled ocean- atmosphere- land model with advanced physics, increased resolution and refined initialisation, its ISM forecasts, in terms of seasonal mean and variability needs improvement. Numerous works have been done for verifying the CFSV2 forecasts in terms of the seasonal mean, its mean and variability, active and break spells, and El Nino Southern Oscillation (ENSO) - monsoon interactions. Most of these works are based on either rain fall strength or rainfall based indices. Here we evaluate the skill of CFS v2 model in forecasting the various sub seasonal features of ISM, viz., the onset and withdrawal days of monsoon that are determined using circulation based indices, the Monsoon Intra Seasonal Oscillations (MISO), and Indian Ocean and Pacific Ocean sea surface temperatures. The MISO index, we use here, is based on zonal wind at 850 hPa and Outgoing Long wave Radiation (OLR) anomalies. With this work, we aim at assessing the skill of the model in simulating the large scale circulation patterns and their variabilities within the monsoon season. Variabilities in these large scale circulation patterns are primarily responsible for the variabilities in the seasonal monsoon strength and its temporal distribution across the season. We find that the model can better forecast the large scale circulation and than the actual precipitation. Hence we suggest that seasonal rainfall forecasts can be improved by the statistical downscaling of CFSV2 forecasts by incorporating the established relationships between the well forecasted large scale variables and monsoon precipitation.

  10. Seasonally asymmetric transition of the Asian monsoon in response to ice age boundary conditions

    Ueda, Hiroaki; Kuroki, Harumitsu; Kamae, Youichi [University of Tsukuba, Graduate School of Life and Environmental Sciences, Tsukuba, Ibaraki (Japan); Ohba, Masamichi [Central Research Institute of Electric Power Industry, Environmental Science Research Laboratory, Abiko (Japan)


    Modulation of a monsoon under glacial forcing is examined using an atmosphere-ocean coupled general circulation model (AOGCM) following the specifications established by Paleoclimate Modelling Intercomparison Project phase 2 (PMIP2) to understand the air-sea-land interaction under different climate forcing. Several sensitivity experiments are performed in response to individual changes in the continental ice sheet, orbital parameters, and sea surface temperature (SST) in the Last Glacial Maximum (LGM: 21 ka) to evaluate the driving mechanisms for the anomalous seasonal evolution of the monsoon. Comparison of the model results in the LGM with the pre-industrial (PI) simulation shows that the Arabian Sea and Bay of Bengal are characterized by enhancement of pre-monsoon convection despite a drop in the SST encompassing the globe, while the rainfall is considerably suppressed in the subsequent monsoon period. In the LGM winter relative to the PI, anomalies in the meridional temperature gradient (MTG) between the Asian continents minus the tropical oceans become positive and are consistent with the intensified pre-monsoon circulation. The enhanced MTG anomalies can be explained by a decrease in the condensation heating relevant to the suppressed tropical convection as well as positive insolation anomalies in the higher latitude, showing an opposing view to a warmer future climate. It is also evident that a latitudinal gradient in the SST across the equator plays an important role in the enhancement of pre-monsoon rainfall. As for the summer, the sensitivity experiments imply that two ice sheets over the northern hemisphere cools the air temperature over the Asian continent, which is consistent with the reduction of MTG involved in the attenuated monsoon. The surplus pre-monsoon convection causes a decrease in the SST through increased heat loss from the ocean surface; in other words, negative ocean feedback is also responsible for the subsequent weakening of summer

  11. Long range forecasting of summer monsoon rainfall from SST in the central equatorial Indian Ocean

    Sadhuram, Y; Murthy, T.V.R.

    of summer monsoon rainfall from SST in the central equatorial Indian ocean Y. Sadhuram and T. V. Ramana Murthy National Institute of Oceanography, Regional Centre, 176, Lawson's Bay Colony, . Visakhapatnam-530017 ABSTRACT Severalprediction tedmiques have... and droughts associated with strong and weak monsoons greatly influence the economy of the country. Most of the droughts and floods are associated with EI-Nino and La- Nina respectively (Webster andYang3 and krishna Kumar et al\\. The relationship between ENSO...

  12. GMMIP (v1.0) contribution to CMIP6: Global Monsoons Model Inter-comparison Project

    Zhou, Tianjun; Turner, Andrew G.; Kinter, James L.; Wang, Bin; Qian, Yun; Chen, Xiaolong; Wu, Bo; Wang, Bin; Liu, Bo; Zou, Liwei; He, Bian


    The Global Monsoons Model Inter-comparison Project (GMMIP) has been endorsed by the panel of Coupled Model Inter-comparison Project (CMIP) as one of the participating model inter-comparison projects (MIPs) in the sixth phase of CMIP (CMIP6). The focus of GMMIP is on monsoon climatology, variability, prediction and projection, which is relevant to four of the “Grand Challenges” proposed by the World Climate Research Programme. At present, 21 international modeling groups are committed to joining GMMIP. This overview paper introduces the motivation behind GMMIP and the scientific questions it intends to answer. Three tiers of experiments, of decreasing priority, are designed to examine (a) model skill in simulating the climatology and interannual-to-multidecadal variability of global monsoons forced by the sea surface temperature during historical climate period; (b) the roles of the Interdecadal Pacific Oscillation and Atlantic Multidecadal Oscillation in driving variations of the global and regional monsoons; and (c) the effects of large orographic terrain on the establishment of the monsoons. The outputs of the CMIP6 Diagnostic, Evaluation and Characterization of Klima experiments (DECK), “historical” simulation and endorsed MIPs will also be used in the diagnostic analysis of GMMIP to give a comprehensive understanding of the roles played by different external forcings, potential improvements in the simulation of monsoon rainfall at high resolution and reproducibility at decadal timescales. The implementation of GMMIP will improve our understanding of the fundamental physics of changes in the global and regional monsoons over the past 140 years and ultimately benefit monsoons prediction and projection in the current century.

  13. Cyclone trends constrain monsoon variability during late Oligocene sea level highstands (Kachchh Basin, NW India)

    Reuter, M.; Piller, W. E.; Harzhauser, M.; Kroh, A.


    Climate change has an unknown impact on tropical cyclones and the Asian monsoon. Herein we present a sequence of fossil shell beds from the shallow-marine Maniyara Fort Formation (Kachcch Basin) as a recorder of tropical cyclone activity along the NW Indian coast during the late Oligocene warming period (~ 27-24 Ma). Proxy data providing information about the atmospheric circulation dynamics over the Indian subcontinent at this time are important since it corresponds to a major climate reorganization in Asia that ends up with the establishment of the modern Asian monsoon system at the Oligocene-Miocene boundary. The vast shell concentrations are comprised of a mixture of parautochthonous and allochthonous assemblages indicating storm-generated sediment transport from deeper to shallow water during third-order sea level highstands. Three distinct skeletal assemblages were distinguished, each recording a relative storm wave base. (1) A shallow storm wave base is shown by nearshore molluscs, reef corals and Clypeaster echinoids; (2) an intermediate storm wave base depth is indicated by lepidocyclinid foraminifers, Eupatagus echinoids and corallinacean algae; and (3) a deep storm wave base is represented by an Amussiopecten bivalve-Schizaster echinoid assemblage. These wave base depth estimates were used for the reconstruction of long-term tropical storm intensity during the late Oligocene. The development and intensification of cyclones over the recent Arabian Sea is primarily limited by the atmospheric monsoon circulation and strength of the associated vertical wind shear. Therefore, since the topographic boundary conditions for the Indian monsoon already existed in the late Oligocene, the reconstructed long-term cyclone trends were interpreted to reflect monsoon variability during the initiation of the Asian monsoon system. Our results imply an active monsoon over the Eastern Tethys at ~ 26 Ma followed by a period of monsoon weakening during the peak of the late

  14. Vertical structure of atmospheric boundary layer over Ranchi during the summer monsoon season

    Chandra, Sagarika; Srivastava, Nishi; Kumar, Manoj


    Thermodynamic structure and variability in the atmospheric boundary layer have been investigated with the help of balloon-borne GPS radiosonde over a monsoon trough station Ranchi (Lat. 23°45'N, Long. 85°43'E, India) during the summer monsoon season (June-September) for a period of 2011-2013. Virtual potential temperature gradient method is used for the determination of mixed layer height (MLH). The MLH has been found to vary in the range of 1000-1300 m during the onset, 600-900 m during the active and 1400-1750 m during the break phase of monsoon over this region. Inter-annual variations noticed in MLH could be associated with inter-annual variability in convection and rainfall prevailing over the region. Along with the MLH, the cloud layer heights are also derived from the thermodynamic profiles for the onset, active and break phases of monsoon. Cloud layer height varied a lot during different phases of the monsoon. For the determination of boundary-layer convection, thermodynamic parameter difference (δθ = θ es- θ e) between saturated equivalent potential temperature (θ es ) and equivalent potential temperature (θ e) is used. It is a good indicator of convection and indicates the intense and suppressed convection during different phases of monsoon.

  15. Influence of inland aerosol loading on the monsoon over Indian subcontinent

    Satyanarayana, M.; Krishnakumar, V.; Mahadevan Pillai, V. P.; Radhakrishnan, S. R.; Raghunath, K.


    The monsoon water cycle is the lifeline to over 60% of the world's population. The study on the behavioral change of Indian monsoon due to aerosol loading will help for the better understanding of Indian Monsoon. Aerosol system influences the atmosphere in two ways; it affects directly the radiation budget and indirectly provides condensation nuclei required for the clouds. The precipitation of the clouds in the monsoon season depends on the microphysical properties of the clouds. The effect of aerosol on cirrus clouds is being looked into through this work as an effort to study the role of aerosol on Indian Monsoon. The microphysical properties of high altitude clouds were obtained from the ground based lidar experiments at a low latitude station in the Indian subcontinent. Measurements during the Indian monsoon period from the inland station National Atmospheric Research Laboratory (NARL) Gadanki (13.5_ N, 79.2_ E), Tirupati, India were used for the investigation. The depolarization characteristics of the cirrus clouds were measured and the correlation between the depolarization and the precipitation characteristics were studied. The results obtained over a period of one year from January 1998 to December 1998 were presented.

  16. The East Asian Atmospheric Water Cycle and Monsoon Circulation in the Met Office Unified Model

    Rodríguez, José M.; Milton, Sean F.; Marzin, Charline


    In this study the low-level monsoon circulation and observed sources of moisture responsible for the maintenance and seasonal evolution of the East Asian monsoon are examined, studying the detailed water budget components. These observational estimates are contrasted with the Met Office Unified Model (MetUM) climate simulation performance in capturing the circulation and water cycle at a variety of model horizontal resolutions and in fully coupled ocean-atmosphere simulations. We study the role of large-scale circulation in determining the hydrological cycle by analyzing key systematic errors in the model simulations. MetUM climate simulations exhibit robust circulation errors, including a weakening of the summer west Pacific Subtropical High, which leads to an underestimation of the southwesterly monsoon flow over the region. Precipitation and implied diabatic heating biases in the South Asian monsoon and Maritime Continent region are shown, via nudging sensitivity experiments, to have an impact on the East Asian monsoon circulation. By inference, the improvement of these tropical biases with increased model horizontal resolution is hypothesized to be a factor in improvements seen over East Asia with increased resolution. Results from the annual cycle of the hydrological budget components in five domains show a good agreement between MetUM simulations and ERA-Interim reanalysis in northern and Tibetan domains. In simulations, the contribution from moisture convergence is larger than in reanalysis, and they display less precipitation recycling over land. The errors are closely linked to monsoon circulation biases.

  17. Simulation of the anthropogenic aerosols over South Asia and their effects on Indian summer monsoon

    Ji, Zhenming [Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Beijing (China); National Climate Center, Beijing (China); Graduate University of Chinese Academy of Sciences, Beijing (China); Kang, Shichang [Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Beijing (China); Chinese Academy of Sciences, State Key Laboratory of Cryospheric Science, Lanzhou (China); Zhang, Dongfeng [Shanxi Meteorological Bureau, Taiyuan (China); Zhu, Chunzi [Nanjing University of Information Science Technology, College of Atmospheric Science, Nanjing (China); Wu, Jia; Xu, Ying [National Climate Center, Beijing (China)


    A regional climate model coupled with a chemistry-aerosol model is employed to simulate the anthropogenic aerosols including sulfate, black carbon and organic carbon and their direct effect on climate over South Asia. The model is driven by the NCAR/NCEP re-analysis data. Multi-year simulations with half, normal and double emission fluxes are conducted. Results show that the model performs well in reproducing present climate over the region. Simulations of the aerosol optical depth and surface concentration of aerosols are also reasonable although to a less extent. The negative radiative forcing is found at the top of atmosphere and largely depended on emission concentration. Surface air temperature decreases by 0.1-0.5 C both in pre-monsoon and monsoon seasons. The range and intensity of cooling areas enlarge while aerosol emission increases. Changes in precipitation are between -25 and 25%. Different diversifications of rainfall are showed with three emission scenarios. The changes of precipitation are consistent with varieties of monsoon onset dates in pre-monsoon season. In the regions of increasing precipitation, monsoon onset is advanced and vice versa. In northeast India and Myanmar, aerosols lead the India summer monsoon onset advancing 1-2 pentads, and delaying by 1-2 pentads in central and southeast India. These changes are mainly caused by the anomaly of local Hadley circulations and enhancive precipitation. Tibetan Plateau played a crucial role in the circulation changes. (orig.)

  18. Regional trends in early-monsoon rainfall over Vietnam and CCSM4 attribution

    Li, R.; Wang, S. S.-Y.; Gillies, R. R.; Buckley, B. M.; Yoon, J.-H.; Cho, C.


    The analysis of precipitation trends for Vietnam revealed that early-monsoon precipitation has increased over the past three decades but to varying degrees over the northern, central and southern portions of the country. Upon investigation, it was found that the change in early-monsoon precipitation is associated with changes in the low-level cyclonic airflow over the South China Sea and Indochina that is embedded in the large-scale atmospheric circulation associated with a "La Niña-like" anomalous sea surface temperature pattern with warming in the western Pacific and Indian Oceans and cooling in the eastern Pacific. The Community Climate System Model version 4 (CCSM4) was subsequently used for an attribution analysis. Over northern Vietnam an early-monsoon increase in precipitation is attributed to changes in both greenhouse gases and natural forcing. For central Vietnam, the observed increase in early-monsoon precipitation is reproduced by the simulation forced with greenhouse gases. However, over southern Vietnam the early-monsoon precipitation increase is less definitive where aerosols were seen to be preponderant but natural forcing through the role of the Interdecadal Pacific Oscillation may well be a factor that is not resolved by CCSM4. Increased early-monsoonal precipitation over the coastal lowland and deltas has the potential to amplify economic and human losses.

  19. Effect of increasing greenhouse gases on Indian monsoon rainfall as downscaled from the ECHAM coupled model

    Singh, S.V.; Storch, H.V.


    It is more or less accepted that the increasing anthropogenic gases will result in global warming through the greenhouse effect. The major influence of this will be felt in the form of ice melts and rising sea levels. The influence on regional climates like monsoons is not very clear. Since the monsoons arise due to surface heating, one would expect that global warming will lead to more vigorous monsoons. The expected change in a climate parameter can be studied by analyzing the historical data and then extrapolating in time. Alternatively, one can use the state-of-the-art coupled GCMs which are able to simulate the earth's climate with reasonable accuracy. Both methods have some limitations. The first method cannot adequately consider the nonlinearity, and the second method may not be efficient for regional scales. So that the projections can be trusted, the regional features should be well simulated. None of the current models are able to simulate the Indian monsoon satisfactorily. Therefore it is desirable to infer the expected change in monsoons from other large and near global scale features which are better simulated. This approach, which depends on the concurrent association between a large-scale modeled feature and a regional scale, is known as downscaling, after Storch et al., and is adopted here to project the Indian monsoon rainfall for the next 100 years from the ECHAM T21 coupled model

  20. A vigorous Mesoamerican monsoon during the Last Glacial Maximum driven by orbital and oceanic forcing

    Lachniet, M. S.; Asmerom, Y.; Bernal, J. P.; Polyak, V.; Vazquez-Selem, L. V.


    The external forcings on global monsoon strength include summer orbital insolation and ocean circulation changes, both of which are key control knobs on Earth's climate. However, few records of the North American Monsoon (NAM) are available to test its sensitivity to variations in the precession-dominated insolation signal and Atlantic Meridional Overturning Circulation (AMOC) for the Last Glacial Maximum (LGM; 21 ± 3 cal ka BP) and deglacial periods. In particular, well-dated and high-resolution records from the southern sector of the NAM, referred to informally as the Mesoamerican monsoon to distinguish it from the more northerly 'core' NAM, are needed to better elucidate paleoclimate change in North America. Here, we present a 22 ka (ka = kilo years) rainfall history from absolutely-dated speleothems from tropical southwestern Mexico that documents a vigorous LGM summer monsoon, in contradiction to previous interpretations, and that the monsoon collapsed during the Heinrich stadial 1 and Younger Dryas cold events. We conclude that a strong Mesoamerican monsoon requires both a large ocean-to-land temperature contrast, driven as today by summer insolation, and a proximal latitudinal position of the Intertropical Convergence Zone, forced by active AMOC.

  1. Prediction of Indian Summer-Monsoon Onset Variability: A Season in Advance.

    Pradhan, Maheswar; Rao, A Suryachandra; Srivastava, Ankur; Dakate, Ashish; Salunke, Kiran; Shameera, K S


    Monsoon onset is an inherent transient phenomenon of Indian Summer Monsoon and it was never envisaged that this transience can be predicted at long lead times. Though onset is precipitous, its variability exhibits strong teleconnections with large scale forcing such as ENSO and IOD and hence may be predictable. Despite of the tremendous skill achieved by the state-of-the-art models in predicting such large scale processes, the prediction of monsoon onset variability by the models is still limited to just 2-3 weeks in advance. Using an objective definition of onset in a global coupled ocean-atmosphere model, it is shown that the skillful prediction of onset variability is feasible under seasonal prediction framework. The better representations/simulations of not only the large scale processes but also the synoptic and intraseasonal features during the evolution of monsoon onset are the comprehensions behind skillful simulation of monsoon onset variability. The changes observed in convection, tropospheric circulation and moisture availability prior to and after the onset are evidenced in model simulations, which resulted in high hit rate of early/delay in monsoon onset in the high resolution model.

  2. Effect of Floodplain Inundation on River Pollution in Taiwan's Strong Monsoonal Climate

    Hester, E. T.; Lin, A. Y. C.


    River-floodplain interaction provides important benefits such as flood mitigation, provision of ecological habitat, and improved water quality. Human actions have historically reduced such interaction and associated benefits by diking, floodplain fill, and river regulation. In response, floodplain restoration has become popular in North America and Europe, but is less practiced in Asia. In Taiwan, unusually strong monsoons and steep terrain alter floodplain dynamics relative to elsewhere around the world, and provide a unique environment for floodplain management. We used numerical models of flow, transport, and reaction in river channels and floodplains to quantify the effect of river-floodplain interaction on water quality in Taiwan's strong monsoon and high topographic relief. We conducted sensitivity analyses of parameters such as river slope, monsoon severity, reservoir operation mode, degree of floodplain reconnection, contaminant reaction rate, and contaminant reaction type on floodplain connectivity and contaminant mitigation. We found significant differences in floodplain hydraulics and residence times in Taiwan's steep monsoonal environment relative to the shallower non-monsoonal environment typical of the eastern USA, with significant implications for water quality. For example, greater flashiness of floodplain inundation in Taiwan provides greater challenges for reconnecting sufficient floodplain volume to handle monsoonal runoff. Yet longer periods when floodplains are reliably dry means that such lands may have greater value for seasonal use such as parks or agriculture. The potential for floodplain restoration in Taiwan is thus significant, but qualitatively different than in the eastern USA.

  3. Influence of the monsoon trough on air-sea interaction in the head of the Bay of Bengal during the southwest monsoon of 1990 (monsoon trough boundary layer experiment - 90)

    Sarma, Y.V.B.; Seetaramayya, P.; Murty, V.S.N.; Rao, D.P.

    programme reveals considerable temporal variability in sea-level pressure, sea-surface temperature (SST) and the fluxes of heat and momentum at the air-sea interface. This variability is related closely to the north-south movement of the monsoon trough...

  4. Chemical and aerosol characterisation of the troposphere over West Africa during the monsoon period as part of AMMA

    C. E. Reeves


    Full Text Available During June, July and August 2006 five aircraft took part in a campaign over West Africa to observe the aerosol content and chemical composition of the troposphere and lower stratosphere as part of the African Monsoon Multidisciplinary Analysis (AMMA project. These are the first such measurements in this region during the monsoon period. In addition to providing an overview of the tropospheric composition, this paper provides a description of the measurement strategy (flights performed, instrumental payloads, wing-tip to wing-tip comparisons and points to some of the important findings discussed in more detail in other papers in this special issue.

    The ozone data exhibits an "S" shaped vertical profile which appears to result from significant losses in the lower troposphere due to rapid deposition to forested areas and photochemical destruction in the moist monsoon air, and convective uplift of ozone-poor air to the upper troposphere. This profile is disturbed, particularly in the south of the region, by the intrusions in the lower and middle troposphere of air from the southern hemisphere impacted by biomass burning. Comparisons with longer term data sets suggest the impact of these intrusions on West Africa in 2006 was greater than in other recent wet seasons. There is evidence for net photochemical production of ozone in these biomass burning plumes as well as in urban plumes, in particular that from Lagos, convective outflow in the upper troposphere and in boundary layer air affected by nitrogen oxide emissions from recently wetted soils. This latter effect, along with enhanced deposition to the forested areas, contributes to a latitudinal gradient of ozone in the lower troposphere. Biogenic volatile organic compounds are also important in defining the composition both for the boundary layer and upper tropospheric convective outflow.

    Mineral dust was found to be the most abundant and ubiquitous aerosol type in the

  5. NASA Systems Engineering Handbook

    Hirshorn, Steven R.; Voss, Linda D.; Bromley, Linda K.


    The update of this handbook continues the methodology of the previous revision: a top-down compatibility with higher level Agency policy and a bottom-up infusion of guidance from the NASA practitioners in the field. This approach provides the opportunity to obtain best practices from across NASA and bridge the information to the established NASA systems engineering processes and to communicate principles of good practice as well as alternative approaches rather than specify a particular way to accomplish a task. The result embodied in this handbook is a top-level implementation approach on the practice of systems engineering unique to NASA. Material used for updating this handbook has been drawn from many sources, including NPRs, Center systems engineering handbooks and processes, other Agency best practices, and external systems engineering textbooks and guides. This handbook consists of six chapters: (1) an introduction, (2) a systems engineering fundamentals discussion, (3) the NASA program project life cycles, (4) systems engineering processes to get from a concept to a design, (5) systems engineering processes to get from a design to a final product, and (6) crosscutting management processes in systems engineering. The chapters are supplemented by appendices that provide outlines, examples, and further information to illustrate topics in the chapters. The handbook makes extensive use of boxes and figures to define, refine, illustrate, and extend concepts in the chapters.

  6. NASA Accountability Report


    NASA is piloting fiscal year (FY) 1997 Accountability Reports, which streamline and upgrade reporting to Congress and the public. The document presents statements by the NASA administrator, and the Chief Financial Officer, followed by an overview of NASA's organizational structure and the planning and budgeting process. The performance of NASA in four strategic enterprises is reviewed: (1) Space Science, (2) Mission to Planet Earth, (3) Human Exploration and Development of Space, and (4) Aeronautics and Space Transportation Technology. Those areas which support the strategic enterprises are also reviewed in a section called Crosscutting Processes. For each of the four enterprises, there is discussion about the long term goals, the short term objectives and the accomplishments during FY 1997. The Crosscutting Processes section reviews issues and accomplishments relating to human resources, procurement, information technology, physical resources, financial management, small and disadvantaged businesses, and policy and plans. Following the discussion about the individual areas is Management's Discussion and Analysis, about NASA's financial statements. This is followed by a report by an independent commercial auditor and the financial statements.

  7. Improving GEFS Weather Forecasts for Indian Monsoon with Statistical Downscaling

    Agrawal, Ankita; Salvi, Kaustubh; Ghosh, Subimal


    Weather forecast has always been a challenging research problem, yet of a paramount importance as it serves the role of 'key input' in formulating modus operandi for immediate future. Short range rainfall forecasts influence a wide range of entities, right from agricultural industry to a common man. Accurate forecasts actually help in minimizing the possible damage by implementing pre-decided plan of action and hence it is necessary to gauge the quality of forecasts which might vary with the complexity of weather state and regional parameters. Indian Summer Monsoon Rainfall (ISMR) is one such perfect arena to check the quality of weather forecast not only because of the level of intricacy in spatial and temporal patterns associated with it, but also the amount of damage it can cause (because of poor forecasts) to the Indian economy by affecting agriculture Industry. The present study is undertaken with the rationales of assessing, the ability of Global Ensemble Forecast System (GEFS) in predicting ISMR over central India and the skill of statistical downscaling technique in adding value to the predictions by taking them closer to evidentiary target dataset. GEFS is a global numerical weather prediction system providing the forecast results of different climate variables at a fine resolution (0.5 degree and 1 degree). GEFS shows good skills in predicting different climatic variables but fails miserably over rainfall predictions for Indian summer monsoon rainfall, which is evident from a very low to negative correlation values between predicted and observed rainfall. Towards the fulfilment of second rationale, the statistical relationship is established between the reasonably well predicted climate variables (GEFS) and observed rainfall. The GEFS predictors are treated with multicollinearity and dimensionality reduction techniques, such as principal component analysis (PCA) and least absolute shrinkage and selection operator (LASSO). Statistical relationship is

  8. Technological Innovations from NASA

    Pellis, Neal R.


    The challenge of human space exploration places demands on technology that push concepts and development to the leading edge. In biotechnology and biomedical equipment development, NASA science has been the seed for numerous innovations, many of which are in the commercial arena. The biotechnology effort has led to rational drug design, analytical equipment, and cell culture and tissue engineering strategies. Biomedical research and development has resulted in medical devices that enable diagnosis and treatment advances. NASA Biomedical developments are exemplified in the new laser light scattering analysis for cataracts, the axial flow left ventricular-assist device, non contact electrocardiography, and the guidance system for LASIK surgery. Many more developments are in progress. NASA will continue to advance technologies, incorporating new approaches from basic and applied research, nanotechnology, computational modeling, and database analyses.

  9. NASA's Scientific Visualization Studio

    Mitchell, Horace G.


    Since 1988, the Scientific Visualization Studio(SVS) at NASA Goddard Space Flight Center has produced scientific visualizations of NASA s scientific research and remote sensing data for public outreach. These visualizations take the form of images, animations, and end-to-end systems and have been used in many venues: from the network news to science programs such as NOVA, from museum exhibits at the Smithsonian to White House briefings. This presentation will give an overview of the major activities and accomplishments of the SVS, and some of the most interesting projects and systems developed at the SVS will be described. Particular emphasis will be given to the practices and procedures by which the SVS creates visualizations, from the hardware and software used to the structures and collaborations by which products are designed, developed, and delivered to customers. The web-based archival and delivery system for SVS visualizations at will also be described.

  10. Ariane: NASA's European rival

    The successful test launch of two three-quarter ton satellites in the European Space Agency's (ESA) Ariane rocket last June firmly placed ESA in competition with NASA for the lucrative and growing satellite launching market. Under the auspices of the private (but largely French-government financed) Arianespace company, ESA is already attracting customers to its three-stage rocket by offering low costs.According to recent reports [Nature, 292, pp. 785 and 788, 1981], Arianespace has been able to win several U.S. customers away from NASA, including Southern Pacific Communications, Western Union, RCA, Satellite Television Corporation, and GTE. Nature [292, 1981] magazine in an article entitled ‘More Trouble for the Hapless Shuttle’ suggests that it will be possible for Ariane to charge lower prices for a launch than NASA, even with the space shuttle.

  11. Study on the association of green house gas (CO2) with monsoon rainfall using AIRS and TRMM satellite observations

    Singh, R. B.; Janmaijaya, M.; Dhaka, S. K.; Kumar, V.

    Monsoon water cycle is the lifeline to over 60 per cent of the world's population. Throughout history, the monsoon-related calamities of droughts and floods have determined the life pattern of people. The association of Green House Gases (GHGs) particularly Carbon dioxide (CO2) with monsoon has been greatly debated amongst the scientific community in the past. The effect of CO2 on the monsoon rainfall over the Indian-Indonesian region (8-30°N, 65°-100°E) is being investigated using satellite data. The correlation coefficient (Rxy) between CO2 and monsoon is analysed. The Rxy is not significantly positive over a greater part of the study region, except a few regions. The inter-annual anomalies of CO2 is identified for playing a secondary role to influencing monsoon while other phenomenon like ENSO might be exerting a much greater influence.

  12. NASA research in aeropropulsion

    Stewart, W.L.; Weber, R.J.


    Future advances in aircraft propulsion systems will be aided by the research performed by NASA and its contractors. This paper gives selected examples of recent accomplishments and current activities relevant to the principal classes of civil and military aircraft. Some instances of new emerging technologies with potential high impact on further progress are discussed. NASA research described includes noise abatement and fuel economy measures for commercial subsonic, supersonic, commuter, and general aviation aircraft, aircraft engines of the jet, turboprop, diesel and rotary types, VTOL, X-wing rotocraft, helicopters, and ''stealth'' aircraft. Applications to military aircraft are also discussed.

  13. NASA's Software Safety Standard

    Ramsay, Christopher M.


    NASA relies more and more on software to control, monitor, and verify its safety critical systems, facilities and operations. Since the 1960's there has hardly been a spacecraft launched that does not have a computer on board that will provide command and control services. There have been recent incidents where software has played a role in high-profile mission failures and hazardous incidents. For example, the Mars Orbiter, Mars Polar Lander, the DART (Demonstration of Autonomous Rendezvous Technology), and MER (Mars Exploration Rover) Spirit anomalies were all caused or contributed to by software. The Mission Control Centers for the Shuttle, ISS, and unmanned programs are highly dependant on software for data displays, analysis, and mission planning. Despite this growing dependence on software control and monitoring, there has been little to no consistent application of software safety practices and methodology to NASA's projects with safety critical software. Meanwhile, academia and private industry have been stepping forward with procedures and standards for safety critical systems and software, for example Dr. Nancy Leveson's book Safeware: System Safety and Computers. The NASA Software Safety Standard, originally published in 1997, was widely ignored due to its complexity and poor organization. It also focused on concepts rather than definite procedural requirements organized around a software project lifecycle. Led by NASA Headquarters Office of Safety and Mission Assurance, the NASA Software Safety Standard has recently undergone a significant update. This new standard provides the procedures and guidelines for evaluating a project for safety criticality and then lays out the minimum project lifecycle requirements to assure the software is created, operated, and maintained in the safest possible manner. This update of the standard clearly delineates the minimum set of software safety requirements for a project without detailing the implementation for those

  14. First observations of Gigantic Jets from Monsoon Thunderstorms over India

    Singh, Rajesh; Maurya, Ajeet; Chanrion, Olivier; Neubert, Torsten; Cummer, Steven; Mlynarczyk, Janusz; Bór, József; Siingh, Devendraa; Cohen, Morris; Kumar, Sushil


    Gigantic Jets are electric discharges from thunderstorm cloud tops to the bottom of the ionosphere at ~80 km altitude. After their first discovery in 2001, relatively few observations have been reported. Most of these are from satellites at large distances and a few tens from the ground at higher spatial resolution. Here we report the first Gigantic Jets observed in India from two thunderstorm systems that developed over the land surface from monsoon activity, each storm producing two Gigantic Jets. The jets were recorded by a video camera system at standard video rate (20 ms exposure) at a few hundred km distance. ELF measurements suggest that the jets are of the usual negative polarity and that they develop in less than 40 ms, which is faster than most jets reported in the past. The jets originate from the leading edge of a slowly drifting convective cloud complex close to the highest regions of the clouds and carry ~25 Coulomb of charge to the ionosphere. One jet has a markedly horizontal displacement that we suggest is caused by a combination of close-range cloud electric fields at inception, and longer-range cloud fields at larger distances during full development. The Gigantic Jets are amongst the few that have been observed over land.

  15. Aerosol interactions with African/Atlantic climate dynamics

    Hosseinpour, F; Wilcox, E M


    Mechanistic relationships exist between variability of dust in the oceanic Saharan air layer (OSAL) and transient changes in the dynamics of Western Africa and the tropical Atlantic Ocean. This study provides evidence of possible interactions between dust in the OSAL region and African easterly jet–African easterly wave (AEJ–AEW) system in the climatology of boreal summer, when easterly wave activity peaks. Synoptic-scale changes in instability and precipitation in the African/Atlantic intertropical convergence zone are correlated with enhanced aerosol optical depth (AOD) in the OSAL region in response to anomalous 3D overturning circulations and upstream/downstream thermal anomalies at above and below the mean-AEJ level. Upstream and downstream anomalies are referred to the daily thermal/dynamical changes over the West African monsoon region and the Eastern Atlantic Ocean, respectively. Our hypothesis is that AOD in the OSAL is positively correlated with the downstream AEWs and negatively correlated with the upstream waves from climatological perspective. The similarity between the 3D pattern of thermal/dynamical anomalies correlated with dust outbreaks and those of AEWs provides a mechanism for dust radiative heating in the atmosphere to reinforce AEW activity. We proposed that the interactions of OSAL dust with regional climate mainly occur through coupling of dust with the AEWs. (paper)

  16. Future projection of mean and variability of the Asian Summer Monsoon and Indian Ocean Climate systems

    Annamalai, H. [Univ. of Hawaii, Honolulu, HI (United States)


    The overall goal of this project is to assess the ability of the CMIP3/5 models to simulate the Indian-Ocean monsoon systems. The PI along with post-docs investigated research issues ranging from synoptic systems to long-term trends over the Asian monsoon region. The PI applied diagnostic tools such as moist static energy (MSE) to isolate: the moist and radiative processes responsible for extended monsoon breaks over South Asia, precursors in the ENSO-monsoon association, reasons for the drying tendency over South Asia and the possible effect on tropical Indian Ocean climate anomalies influencing certain aspects of ENSO characteristics. By diagnosing various observations and coupled model simulations, we developed working hypothesis and tested them by carrying out sensitivity experiments with both linear and nonlinear models. Possible physical and dynamical reasons for model sensitivities were deduced. On the teleconnection front, the ability of CMIP5 models in representing the monsoon-desert mechanism was examined recently. Further more, we have applied a suite of diagnostics and have performed an in depth analysis on CMIP5 integrations to isolate the possible reasons for the ENSO-monsoon linkage or lack thereof. The PI has collaborated with Dr. K.R. Sperber of PCMDI and other CLIVAR Asian-Australian monsoon panel members in understanding the ability of CMIP3/5 models in capturing monsoon and its spectrum of variability. The objective and process-based diagnostics aided in selecting models that best represent the present-day monsoon and its variability that are then employed for future projections. Two major highlights were an invitation to write a review on present understanding monsoons in a changing climate in Nature Climate Change, and identification of an east-west shift in observed monsoon rainfall (more rainfall over tropical western Pacific and drying tendency over South Asia) in the last six decades and attributing that shift to SST rise over the tropical

  17. The Road to NASA

    Meyers, Valerie


    This slide presentation describes the career path and projects that the author worked on during her internship at NASA. As a Graduate Student Research Program (GSRP) participant the assignments that were given include: Human Mesenchymal Stem Cell Research, Spaceflight toxicology, Lunar Airborne Dust Toxicity Advisory Group (LADTAG) and a special study at Devon Island.

  18. NASA science communications strategy


    In 1994, the Clinton Administration issued a report, 'Science in the National Interest', which identified new national science goals. Two of the five goals are related to science communications: produce the finest scientists and engineers for the 21st century, and raise scientific and technological literacy of all Americans. In addition to the guidance and goals set forth by the Administration, NASA has been mandated by Congress under the 1958 Space Act to 'provide for the widest practicable and appropriate dissemination concerning its activities and the results thereof'. In addition to addressing eight Goals and Plans which resulted from a January 1994 meeting between NASA and members of the broader scientific, education, and communications community on the Public Communication of NASA's Science, the Science Communications Working Group (SCWG) took a comprehensive look at the way the Agency communicates its science to ensure that any changes the Agency made were long-term improvements. The SCWG developed a Science Communications Strategy for NASA and a plan to implement the Strategy. This report outlines a strategy from which effective science communications programs can be developed and implemented across the agency. Guiding principles and strategic themes for the strategy are provided, with numerous recommendations for improvement discussed within the respective themes of leadership, coordination, integration, participation, leveraging, and evaluation.

  19. Changes in the in-phase relationship between the Indian and subsequent Australian summer monsoons during the past five decades

    J.-Y. Yu


    Full Text Available This study examines the decadal changes in the in-phase relationship between Indian summer monsoon and the subsequent Australian summer monsoon using observational data from 1950–2005. The in-phase relationship is the tendency for a strong Indian summer monsoon to be followed by a strong Australian summer monsoon and vice versa. It is found that the in-phase relationship was weak during the late 1950s and early 1960s, strengthened to a maximum in the early 1970s just before the 1976/77 Pacific climate shift, then declined until the late 1990s. Pacific SST anomalies are noticed to have strong persistence from boreal to austral summer, providing the memory to connect the Indian and subsequent Australian summer monsoon. The simultaneous correlation between the Pacific SST anomalies and the Indian summer monsoon is always strong. It is the weakening and strengthening of the simultaneous correlation between the Australian summer monsoon and the Pacific SST anomalies that contributes to the decadal variations of the in-phase monsoon relation. This study suggests that the interaction between the Australian monsoon and the Pacific Ocean is crucial to tropical climate variability and has experienced significant changes over the past five decades.

  20. Heart Disease and African Americans

    ... Minority Population Profiles > Black/African American > Heart Disease Heart Disease and African Americans Although African American adults are ... were 30 percent more likely to die from heart disease than non-Hispanic whites. African American women are ...

  1. Planetary boundary layer height over the Indian subcontinent: Variability and controls with respect to monsoon

    Sathyanadh, Anusha; Prabhakaran, Thara; Patil, Chetana; Karipot, Anandakumar


    Planetary boundary layer (PBL) height characteristics over the Indian sub-continent at diurnal to seasonal scales and its controlling factors in relation to monsoon are investigated. The reanalysis (Modern Era Retrospective analysis for Research and Applications, MERRA) PBL heights (PBLH) used for the study are validated against those derived from radiosonde observations and radio occultation air temperature and humidity profiles. The radiosonde observations include routine India Meteorological Department observations at two locations (coastal and an inland) for one full year and campaign based early afternoon radiosonde observations at six inland locations over the study region for selected days from May-September 2011. The temperature and humidity profiles from radio occultations spread over the sub-continent at irregular timings during the year 2011. The correlations and root mean square errors are in the range 0.74-0.83 and 407 m-643 m, respectively. Large pre-monsoon, monsoon and post-monsoon variations in PBL maximum height (1000 m-4000 m), time of occurrence of maximum height (11:00 LST-17:00 LST) and growth rate (100 to 400 m h- 1) are noted over the land, depending on geographical location and more significantly on the moisture availability which influences the surface sensible and latent heat fluxes. The PBLH variations associated with active-break intra-seasonal monsoon oscillations are up to 1000 m over central Indian locations. Inter relationship between the PBLH and the controlling factors, i.e. Evaporative Fraction, net radiation, friction velocity, surface Richardson number, and scalar diffusivity fraction, show significant variation between dry and wet PBL regimes, which also varies with geographical location. Evaporative fraction has dominant influence on the PBLH over the region. Enhanced entrainment during monsoon contributes to reduction in PBLH, whereas the opposite effect is noted during dry period. Linear regression, cross wavelet and

  2. Seasonal and Intraseasonal Variability of Mesoscale Convective Systems over the South Asian Monsoon Region

    Virts, Katrina S.; Houze, Robert A.


    Seasonal and intraseasonal differences in mesoscale convective systems (MCSs) over South Asia are examined using A-Train satellites, a ground-based lightning network, and reanalysis fields. Pre-monsoon (April-May) MCSs occur primarily over Bangladesh and the eastern Bay of Bengal. During the monsoon (June-September), small MCSs occur over the Meghalaya Plateau and northeast Himalayan notch, while large and connected MCSs are most widespread over the Bay of Bengal. Monsoon MCSs produce less lightning and exhibit more extensive stratiform and anvil reflectivity structures in CloudSat observations than do pre-monsoon MCSs. During the monsoon season, Bay of Bengal and Meghalaya Plateau MCSs vary with the 30-60 day northward-propagating intraseasonal oscillation, while northeast Himalayan notch MCSs are associated with weak large-scale anomalies but locally enhanced CAPE. During intraseasonal active periods, a zone of enhanced large and connected MCSs, precipitation, and lightning extends from the northeastern Arabian Sea southeast over India and the Bay of Bengal, flanked by suppressed anomalies. Spatial variability is observed within this enhancement zone: lightning is most enhanced where MCSs are less enhanced, and vice versa. Reanalysis composites indicate that Bay of Bengal MCSs are associated with monsoon depressions, which are frequent during active monsoon periods, while Meghalaya Plateau MCSs are most frequent at the end of break periods, as anomalous southwesterly winds strengthen moist advection toward the terrain. Over both regions, MCSs exhibit more extensive stratiform and anvil regions and less lightning when the large-scale environment is moister, and vice versa.

  3. The effect of El-Niño on South Asian Monsoon and agricultural production

    Mukherjee, A.


    Mukherjee A, Wang S.Y.Abstract:The South Asian Monsoon has a prominent and significant impact on South Asian countries like India, Bangladesh, Nepal, Pakistan, Sri Lanka and it is one of the most studied phenomena in the world. The monsoon is historically known to be influenced by El Niño-Southern Oscillation (ENSO). The inter-annual and inter-decadal variability of seasonal precipitation over India strongly depends upon the ENSO phasing. The average southwest monsoon rainfall received during the years with El Niño was found to be less compared to normal years and the average rainfall during the northeast monsoon is higher in coastal Andhra Pradesh. ENSO is anti-correlated with Indian summer monsoon (ISM). The last prominent effect of ENSO on India's monsoon occurred in 2009 with 23% reduction in annual rainfall, reducing summer sown crops such as rice, sugar cane etc. and pushing up food prices. Climatic resources endowment plays a major role in planning agricultural production in tropical and sub-tropical environment especially under rain-fed agriculture, and so contingent crop planning drawn on this relationship would help to mitigate the effects of ENSO episodes in the region. The unexplored area in this domain of research is the changes in the frequency and intensity of ENSO due to global warming and its impact on ENSO prediction and agricultural management practices. We analyze the last 30 years datasets of Pacific SST, and precipitation and air temperature over Southeast Asia to examine the evolution of ENSO teleconnections with ISM, as well as making estimates of drought indices such as Palmer Drought Severity Index. This research can lead toward better crop management strategies in the South Asian monsoon region.

  4. Identification of tipping elements of the Indian Summer Monsoon using climate network approach

    Stolbova, Veronika; Surovyatkina, Elena; Kurths, Jurgen


    Spatial and temporal variability of the rainfall is a vital question for more than one billion of people inhabiting the Indian subcontinent. Indian Summer Monsoon (ISM) rainfall is crucial for India's economy, social welfare, and environment and large efforts are being put into predicting the Indian Summer Monsoon. For predictability of the ISM, it is crucial to identify tipping elements - regions over the Indian subcontinent which play a key role in the spatial organization of the Indian monsoon system. Here, we use climate network approach for identification of such tipping elements of the ISM. First, we build climate networks of the extreme rainfall, surface air temperature and pressure over the Indian subcontinent for pre-monsoon, monsoon and post-monsoon seasons. We construct network of extreme rainfall event using observational satellite data from 1998 to 2012 from the Tropical Rainfall Measuring Mission (TRMM 3B42V7) and reanalysis gridded daily rainfall data for a time period of 57 years (1951-2007) (Asian Precipitation Highly Resolved Observational Data Integration Towards the Evaluation of Water Resources, APHRODITE). For the network of surface air temperature and pressure fields, we use re-analysis data provided by the National Center for Environmental Prediction and National Center for Atmospheric Research (NCEP/NCAR). Second, we filter out data by coarse-graining the network through network measures, and identify tipping regions of the ISM. Finally, we compare obtained results of the network analysis with surface wind fields and show that occurrence of the tipping elements is mostly caused by monsoonal wind circulation, migration of the Intertropical Convergence Zone (ITCZ) and Westerlies. We conclude that climate network approach enables to select the most informative regions for the ISM, providing realistic description of the ISM dynamics with fewer data, and also help to identify tipping regions of the ISM. Obtained tipping elements deserve a

  5. Regional simulation of Indian summer monsoon intraseasonal oscillations at gray-zone resolution

    Chen, Xingchao; Pauluis, Olivier M.; Zhang, Fuqing


    Simulations of the Indian summer monsoon by the cloud-permitting Weather Research and Forecasting (WRF) model at gray-zone resolution are described in this study, with a particular emphasis on the model ability to capture the monsoon intraseasonal oscillations (MISOs). Five boreal summers are simulated from 2007 to 2011 using the ERA-Interim reanalysis as the lateral boundary forcing data. Our experimental setup relies on a horizontal grid spacing of 9 km to explicitly simulate deep convection without the use of cumulus parameterizations. When compared to simulations with coarser grid spacing (27 km) and using a cumulus scheme, the 9 km simulations reduce the biases in mean precipitation and produce more realistic low-frequency variability associated with MISOs. Results show that the model at the 9 km gray-zone resolution captures the salient features of the summer monsoon. The spatial distributions and temporal evolutions of monsoon rainfall in the WRF simulations verify qualitatively well against observations from the Tropical Rainfall Measurement Mission (TRMM), with regional maxima located over Western Ghats, central India, Himalaya foothills, and the west coast of Myanmar. The onset, breaks, and withdrawal of the summer monsoon in each year are also realistically captured by the model. The MISO-phase composites of monsoon rainfall, low-level wind, and precipitable water anomalies in the simulations also agree qualitatively with the observations. Both the simulations and observations show a northeastward propagation of the MISOs, with the intensification and weakening of the Somali Jet over the Arabian Sea during the active and break phases of the Indian summer monsoon.

  6. On the link between extreme floods and excess monsoon epochs in South Asia

    Kale, Vishwas [University of Pune, Department of Geography, Pune (India)


    This paper provides a synoptic view of extreme monsoon floods on all the nine large rivers of South Asia and their association with the excess (above-normal) monsoon rainfall periods. Annual maximum flood series for 18 gauging stations spread over four countries (India, Pakistan, Bangladesh and Nepal) and long-term monsoon rainfall data were analyzed to ascertain whether the extreme floods were clustered in time and whether they coincided with multi-decade excess monsoon rainfall epochs at the basin level. Simple techniques, such as the Cramer's t-test, regression and Mann-Kendall (MK) tests and Hurst method were used to evaluate the trends and patterns of the flood and rainfall series. MK test reveals absence of any long-term tendency in all the series. However, the Cramer's t test and Hurst-Mandelbrot rescaled range statistic provide evidence that both rainfall and flood time series are persistent. Using the Cramer's t-test the excess monsoon epochs for each basin were identified. The excess monsoon periods for different basins were found to be highly asynchronous with respect to duration as well as the beginning and end. Three main conclusions readily emerge from the analyses. Extreme floods (>90th percentile) in South Asia show a tendency to cluster in time. About three-fourth of the extreme floods have occurred during the excess monsoon periods between {proportional_to}1840 and 2000 AD, implying a noteworthy link between the two. The frequency of large floods was higher during the post-1940 period in general and during three decades (1940s, 1950s and 1980s) in particular. (orig.)

  7. NASA Schedule Management Handbook


    The purpose of schedule management is to provide the framework for time-phasing, resource planning, coordination, and communicating the necessary tasks within a work effort. The intent is to improve schedule management by providing recommended concepts, processes, and techniques used within the Agency and private industry. The intended function of this handbook is two-fold: first, to provide guidance for meeting the scheduling requirements contained in NPR 7120.5, NASA Space Flight Program and Project Management Requirements, NPR 7120.7, NASA Information Technology and Institutional Infrastructure Program and Project Requirements, NPR 7120.8, NASA Research and Technology Program and Project Management Requirements, and NPD 1000.5, Policy for NASA Acquisition. The second function is to describe the schedule management approach and the recommended best practices for carrying out this project control function. With regards to the above project management requirements documents, it should be noted that those space flight projects previously established and approved under the guidance of prior versions of NPR 7120.5 will continue to comply with those requirements until project completion has been achieved. This handbook will be updated as needed, to enhance efficient and effective schedule management across the Agency. It is acknowledged that most, if not all, external organizations participating in NASA programs/projects will have their own internal schedule management documents. Issues that arise from conflicting schedule guidance will be resolved on a case by case basis as contracts and partnering relationships are established. It is also acknowledged and understood that all projects are not the same and may require different levels of schedule visibility, scrutiny and control. Project type, value, and complexity are factors that typically dictate which schedule management practices should be employed.

  8. Realism of modelled Indian summer monsoon correlation with the tropical Indo-Pacific affects projected monsoon changes.

    Li, Ziguang; Lin, Xiaopei; Cai, Wenju


    El Niño-Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD) tend to exert an offsetting impact on Indian summer monsoon rainfall (ISMR), with an El Niño event tending to lower, whereas a positive IOD tending to increase ISMR. Simulation of these relationships in Phase Five of the Coupled Model Intercomparison Project has not been fully assessed, nor is their impact on the response of ISMR to greenhouse warming. Here we show that the majority of models simulate an unrealistic present-day IOD-ISMR correlation due to an overly strong control by ENSO. As such, a positive IOD is associated with an ISMR reduction in the simulated present-day climate. This unrealistic present-day correlation is relevant to future ISMR projection, inducing an underestimation in the projected ISMR increase. Thus uncertainties in ISMR projection can be in part induced by present-day simulation of ENSO, the IOD, their relationship and their rainfall correlations.

  9. Detecting human impacts on the flora, fauna, and summer monsoon of Pleistocene Australia

    G. H. Miller


    Full Text Available The moisture balance across northern and central Australia is dominated by changes in the strength of the Australian Summer Monsoon. Lake-level records that record changes in monsoon strength on orbital timescales are most consistent with a Northern Hemisphere insolation control on monsoon strength, a result consistent with recent modeling studies. A weak Holocene monsoon relative to monsoon strength 65–60 ka, despite stronger forcing, suggests a changed monsoon regime after 60 ka. Shortly after 60 ka humans colonized Australia and all of Australia's largest mammals became extinct. Between 60 and 40 ka Australian climate was similar to present and not changing rapidly. Consequently, attention has turned toward plausible human mechanisms for the extinction, with proponents for over-hunting, ecosystem change, and introduced disease. To differentiate between these options we utilize isotopic tracers of diet preserved in eggshells of two large, flightless birds to track the status of ecosystems before and after human colonization. More than 800 dated eggshells of the Australian emu (Dromaius novaehollandiae, an opportunistic, dominantly herbivorous feeder, provide a 140-kyr dietary reconstruction that reveals unprecedented reduction in the bird's food resources about 50 ka, coeval in three distant regions. These data suggest a tree/shrub savannah with occasionally rich grasslands was converted abruptly to the modern desert scrub. The diet of the heavier, extinct Genyornis newtoni, derived from >550 dated eggshells, was more restricted than in co-existing Dromaius, implying a more specialized feeding strategy. We suggest that generalist feeders, such as Dromaius, were able to adapt to a changed vegetation regime, whereas more specialized feeders, such as Genyornis, became extinct. We speculate that ecosystem collapse across arid and semi-arid zones was a consequence of systematic burning by early humans

  10. Interaction of Convective Organization and Monsoon Precipitation, Atmosphere, Surface and Sea (INCOMPASS)

    Turner, A. G.; Bhat, G. S.; Evans, J. G.; Madan, R.; Marsham, J. H.; Martin, G.; Mitra, A. K.; Mrudula, G.; Parker, D. J.; Pattnaik, S.; Rajagopal, E. N.; Taylor, C.; Tripathi, S. N.


    INCOMPASS will build on a field and aircraft measurement campaign from the 2016 monsoon onset to better understand and predict monsoon rainfall. The monsoon supplies the majority of water in South Asia, however modelling and forecasting the monsoon from days to the season ahead is limited by large model errors that develop quickly. Likely problems lie in physical parametrizations such as convection, the boundary layer and land surface. At the same time, lack of detailed observations prevents more thorough understanding of monsoon circulation and its interaction with the land surface; a process governed by boundary layer and convective cloud dynamics. From May to July 2016, INCOMPASS used a modified BAe-146 jet aircraft operated by the UK Facility for Airborne Atmospheric Measurements (FAAM), for the first project of this scale in India. The India and UK team flew around 100 hours of science sorties from bases in northern and southern India. Flights from Lucknow in the northern plains took measurements to the west and southeast to allow sampling of the complete contrast from dry desert air to the humid environment over the north Bay of Bengal. These routes were repeated in the pre-monsoon and monsoon phases, measuring contrasting surface and boundary layer structures. In addition, flights from the southern base in Bengaluru measured contrasts from the Arabian Sea, across the intense rains of the Western Ghats mountains, over the rain shadow in southeast India and over the southern Bay of Bengal. Flight planning was performed with the aid of forecasts from a new UK Met Office 4km limited area model. INCOMPASS also installed a network of surface flux towers, as well as operating a cloud-base ceilometer and performing intensive radiosonde launches from a supersite in Kanpur. This presentation will outline preliminary results from the field campaign including new observations of the surface, boundary layer structure and atmospheric profiles together with detailed

  11. Environment, Health and Climate: Impact of African aerosols

    Liousse, C.; Doumbia, T.; Assamoi, E.; Galy-Lacaux, C.; Baeza, A.; Penner, J. E.; Val, S.; Cachier, H.; Xu, L.; Criqui, P.


    Fossil fuel and biofuel emissions of particles in Africa are expected to significantly increase in the near future, particularly due to rapid growth of African cities. In addition to biomass burning emissions prevailing in these areas, air quality degradation is then expected with important consequences on population health and climatic/radiative impact. In our group, we are constructing a new integrated methodology to study the relations between emissions, air quality and their impacts. This approach includes: (1) African combustion emission characterizations; (2) joint experimental determination of aerosol chemistry from ultrafine to coarse fractions and health issues (toxicology and epidemiology). (3) integrated environmental, health and radiative modeling. In this work, we show some results illustrating our first estimates of African anthropogenic emission impacts: - a new African anthropogenic emission inventory adapted to regional specificities on traffic, biofuel and industrial emissions has been constructed for the years 2005 and 2030. Biomass burning inventories were also improved in the frame of AMMA (African Monsoon) program. - carbonaceous aerosol radiative impact in Africa has been modeled with TM5 model and Penner et al. (2011) radiative code for these inventories for 2005 and 2030 and for two scenarios of emissions : a reference scenario, with no further emission controls beyond those achieved in 2003 and a ccc* scenario including planned policies in Kyoto protocol and regulations as applied to African emission specificities. In this study we will show that enhanced heating is expected with the ccc* scenarios emissions in which the OC fraction is relatively lower than in the reference scenario. - results of short term POLCA intensive campaigns in Bamako and Dakar in terms of aerosol chemical characterization linked to specific emissions sources and their inflammatory impacts on the respiratory tract through in vitro studies. In this study, organic

  12. NASA UAS Update

    Bauer, Jeffrey Ervin; Mulac, Brenda Lynn


    Last year may prove to be a pivotal year for the National Aeronautics and Space Administration (NASA) in the Unmanned Aircraft Systems (UAS) arena, especially in relation to routine UAS access to airspace as NASA accepted an invitation to join the UAS Executive Committee (UAS ExCom). The UAS ExCom is a multi-agency, Federal executive-level committee comprised of the Federal Aviation Administration (FAA), Department of Defense (DoD), Department of Homeland Security (DHS), and NASA with the goals to: 1) Coordinate and align efforts between key Federal Government agencies to achieve routine safe federal public UAS operations in the National Airspace System (NAS); 2) Coordinate and prioritize technical, procedural, regulatory, and policy solutions needed to deliver incremental capabilities; 3) Develop a plan to accommodate the larger stakeholder community at the appropriate time; and 4) Resolve conflicts between Federal Government agencies (FAA, DoD, DHS, and NASA), related to the above goals. The committee was formed in recognition of the need of UAS operated by these agencies to access to the National Airspace System (NAS) to support operational, training, development and research requirements. In order to meet that need, technical, procedural, regulatory, and policy solutions are required to deliver incremental capabilities leading to routine access. The formation of the UAS ExCom is significant in that it represents a tangible commitment by FAA senior leadership to address the UAS access challenge. While the focus of the ExCom is government owned and operated UAS, civil UAS operations are bound to benefit by the progress made in achieving routine access for government UAS. As the UAS ExCom was forming, NASA's Aeronautics Research Mission Directorate began to show renewed interest in UAS, particularly in relation to the future state of the air transportation system under the Next Generation Air Transportation System (NextGen). NASA made funding from the American

  13. South African Medical Journal

    The South African Medical Journal is published by the South African Medical Association, which represents ... G Watermeyer, S Thomson, 399-402 ... Assessing the value of Western Cape Provincial Government health administrative data and ...

  14. African Crop Science Journal

    AFRICAN JOURNALS ONLINE (AJOL) · Journals · Advanced Search · USING AJOL ... The African Crop Science Journal, a quarterly publication, publishes original ... interactions, information science, environmental science and soil science.

  15. African Journals Online (AJOL)

    Lwati: A Journal of Contemporary Research. Vol 14, No 3 (2017) ... Journal of Business and Administrative Studies. Vol 6, No 2 (2014) ... Vol 11 (2015): African Journal of Educational Studies in Mathematics and Sciences Vol. 11, 2015. African ...

  16. South African Music Studies

    SAMUS: South African Music Studies is the official organ for the South African ... Shifty Records in Apartheid South Africa: Innovations in Independent Record ... Experiences of Belonging and Exclusion in the Production and Reception of ...

  17. Liberalism and African Culture.

    Sindima, Harvey


    Discusses the effect of liberalism on the African understanding of education, community, and religion. Describes ways in which the European intrusion, that is, colonial governments, schools, and churches, undermined traditional African life and thought. (DM)

  18. African Studies Monographs

    The African Studies Monographs is a serial that promotes research and scholarship on the African perspective worldwide. This includes matters of philosophy, history, literature, arts and culture, environment, gender, politics, administration crisis management, etc.

  19. The role of potential vorticity anomalies in the Somali Jet on Indian Summer Monsoon Intraseasonal Variability

    Rai, P.; Joshi, M.; Dimri, A. P.; Turner, A. G.


    The climate of the Indian subcontinent is dominated by rainfall arising from the Indian summer monsoon (ISM) during June to September. Intraseasonal variability during the monsoon is characterized by periods of heavy rainfall interspersed by drier periods, known as active and break events respectively. Understanding and predicting such events is of vital importance for forecasting human impacts such as water resources. The Somali Jet is a key regional feature of the monsoon circulation. In the present study, we find that the spatial structure of Somali Jet potential vorticity (PV) anomalies varies considerably during active and break periods. Analysis of these anomalies shows a mechanism whereby sea surface temperature (SST) anomalies propagate north/northwestwards through the Arabian Sea, caused by a positive feedback loop joining anomalies in SST, convection, modification of PV by diabatic heating and mixing in the atmospheric boundary layer, wind-stress curl, and ocean upwelling processes. The feedback mechanism is consistent with observed variability in the coupled ocean-atmosphere system on timescales of approximately 20 days. This research suggests that better understanding and prediction of monsoon intraseasonal variability in the South Asian monsoon may be gained by analysis of the day-to-day dynamical evolution of PV in the Somali Jet.

  20. On the shortening of Indian summer monsoon season in a warming scenario

    Sabeerali, C. T.; Ajayamohan, R. S.


    Assessing the future projections of the length of rainy season (LRS) has paramount societal impact considering its potential to alter the seasonal mean rainfall over the Indian subcontinent. Here, we explored the projections of LRS using both historical and Representative Concentration Pathways 8.5 (RCP8.5) simulations of the Coupled Model Intercomparison Project Phase5 (CMIP5). RCP8.5 simulations project shortening of the LRS of Indian summer monsoon by altering the timing of onset and withdrawal dates. Most CMIP5 RCP8.5 model simulations indicate a faster warming rate over the western tropical Indian Ocean compared to other regions of the Indian Ocean. It is found that the pronounced western Indian Ocean warming and associated increase in convection results in warmer upper troposphere over the Indian Ocean compared to the Indian subcontinent, reducing the meridional gradient in upper tropospheric temperature (UTT) over the Asian summer monsoon (ASM) domain. The weakening of the meridional gradient in UTT induces weakening of easterly vertical wind shear over the ASM domain during first and last phase of monsoon, facilitate delayed (advanced) monsoon onset (withdrawal) dates, ensues the shortening of LRS of the Indian summer monsoon in a warming scenario.

  1. Mechanism of ENSO influence on the South Asian monsoon rainfall in global model simulations

    Joshi, Sneh; Kar, Sarat C.


    Coupled ocean atmosphere global climate models are increasingly being used for seasonal scale simulation of the South Asian monsoon. In these models, sea surface temperatures (SSTs) evolve as coupled air-sea interaction process. However, sensitivity experiments with various SST forcing can only be done in an atmosphere-only model. In this study, the Global Forecast System (GFS) model at T126 horizontal resolution has been used to examine the mechanism of El Niño-Southern Oscillation (ENSO) forcing on the monsoon circulation and rainfall. The model has been integrated (ensemble) with observed, climatological and ENSO SST forcing to document the mechanism on how the South Asian monsoon responds to basin-wide SST variations in the Indian and Pacific Oceans. The model simulations indicate that the internal variability gets modulated by the SSTs with warming in the Pacific enhancing the ensemble spread over the monsoon region as compared to cooling conditions. Anomalous easterly wind anomalies cover the Indian region both at 850 and 200 hPa levels during El Niño years. The locations and intensity of Walker and Hadley circulations are altered due to ENSO SST forcing. These lead to reduction of monsoon rainfall over most parts of India during El Niño events compared to La Niña conditions. However, internally generated variability is a major source of uncertainty in the model-simulated climate.

  2. A numerical study of the South China Sea Warm Current during winter monsoon relaxation

    Zhang, Cong; Ding, Yang; Bao, Xianwen; Bi, Congcong; Li, Ruixiang; Zhang, Cunjie; Shen, Biao; Wan, Kai


    Using a Finite-Volume Community Ocean Model, we investigated the dynamic mechanism of the South China Sea Warm Current (SCSWC) in the northern South China Sea (NSCS) during winter monsoon relaxation. The model reproduces the mean surface circulation of the NSCS during winter, while model-simulated subtidal currents generally capture its current pattern. The model shows that the current over the continental shelf is generally southwestward, under a strong winter monsoon condition, but a northeastward counter-wind current usually develops between 50-and 100-m isobaths, when the monsoon relaxes. Model experiments, focusing on the wind relaxation process, show that sea level is elevated in the northwestern South China Sea (SCS), related to the persistent northeasterly monsoon. Following wind relaxation, a high sea level band builds up along the mid-shelf, and a northeastward current develops, having an obvious vertical barotropic structure. Momentum balance analysis indicates that an along-shelf pressure gradient provides the initial driving force for the SCSWC during the first few days following wind relaxation. The SCSWC subsequently reaches a steady quasi-geostrophic balance in the cross-shelf direction, mainly linked to sea level adjustment over the shelf. Lagrangian particle tracking experiments show that both the southwestward coastal current and slope current contribute to the northeastward movement of the SCSWC during winter monsoon relaxation.

  3. Deep learning for predicting the monsoon over the homogeneous regions of India

    Saha, Moumita; Mitra, Pabitra; Nanjundiah, Ravi S.


    Indian monsoon varies in its nature over the geographical regions. Predicting the rainfall not just at the national level, but at the regional level is an important task. In this article, we used a deep neural network, namely, the stacked autoencoder to automatically identify climatic factors that are capable of predicting the rainfall over the homogeneous regions of India. An ensemble regression tree model is used for monsoon prediction using the identified climatic predictors. The proposed model provides forecast of the monsoon at a long lead time which supports the government to implement appropriate policies for the economic growth of the country. The monsoon of the central, north-east, north-west, and south-peninsular India regions are predicted with errors of 4.1%, 5.1%, 5.5%, and 6.4%, respectively. The identified predictors show high skill in predicting the regional monsoon having high variability. The proposed model is observed to be competitive with the state-of-the-art prediction models.

  4. The effect of monsoon variability on fish landing in the Sadeng Fishing Port of Yogyakarta, Indonesia

    Subarna, D.


    The volume of landing fish of the Sadeng Fishing Port within certain months showed an increase from year to year, especially during June, July and August (JJA). While in other months the fish production was low. The purpose of this research was to understand the influence of monsoon variability on fish landing in the Sadeng Fishing Port. Data were analyzed descriptively as spatial and temporal catch. Data were namely catch fish production collected from fishing port, while satellite and HYCOM model during 2011–2012 period were selected. The wind data, sea surface temperature (SST) and chlorophyll-a were analyzed from ASCAT and MODIS sensors during the Southeast Monsoon. The result showed the wind from the southeasterly provide wind stress at sea level and caused Ekman Transport to move away water mass from the sea shore. The lost water mass in the ocean surface was replaced by cold water from deeper layer which was rich in nutrients. The distribution of chlorophyll-a during the Southeast Monsoon was relatively higher in the southern coast of Java than during the Northwest monsoon. The SST showed approximately 25.3 °C. The abundance of nutrients indicated by the distribution of chlorophyll-a around the coast during the Southeast Monsoon, will enhance the arrival of larger fish. Thus, it can be understood that during June, July, and August the catch production is higher than the other months.

  5. Is the negative IOD during 2016 the reason for monsoon failure over southwest peninsular India?

    Sreelekha, P. N.; Babu, C. A.


    The study investigates the mechanism responsible for the deficit rainfall over southwest peninsular India during the 2016 monsoon season. Analysis shows that the large-scale variation in circulation pattern due to the strong, negative Indian Ocean Dipole phenomenon was the reason for the deficit rainfall. Significant reduction in the number of northward-propagating monsoon-organized convections together with fast propagation over the southwest peninsular India resulted in reduction in rainfall. On the other hand, their persistence for longer time over the central part of India resulted in normal rainfall. It was found that the strong convection over the eastern equatorial Indian Ocean creates strong convergence over that region. The combined effect of the sinking due to the well-developed Walker circulation originated over the eastern equatorial Indian Ocean and the descending limb of the monsoon Hadley cell caused strong subsidence over the western equatorial Indian Ocean. The tail of this large-scale sinking extended up to the southern parts of India. This hinders formation of monsoon-organized convections leading to a large deficiency of rainfall during monsoon 2016 over the southwest peninsular India.

  6. Radiative effects of black carbon aerosols on Indian monsoon: a study using WRF-Chem model

    Soni, Pramod; Tripathi, Sachchida Nand; Srivastava, Rajesh


    The Weather Research and Forecasting model with Chemistry (WRF-Chem) is utilized to examine the radiative effects of black carbon (BC) aerosols on the Indian monsoon, for the year 2010. Five ensemble simulations with different initial conditions (1st to 5th December, 2009) were performed and simulation results between 1st January, 2010 to 31st December, 2010 were used for analysis. Most of the BC which stays near the surface during the pre-monsoon season gets transported to higher altitudes with the northward migration of the Inter Tropical Convergence Zone (ITCZ) during the monsoon season. In both the seasons, strong negative SW anomalies are present at the surface along with positive anomalies in the atmosphere, which results in the surface cooling and lower tropospheric heating, respectively. During the pre-monsoon season, lower troposphere heating causes increased convection and enhanced meridional wind circulation, bringing moist air from Indian Ocean and Bay of Bengal to the North-East India, leading to increased rainfall there. However, during the monsoon season, along with cooling over the land regions, a warming over the Bay of Bengal is simulated. This differential heating results in an increased westerly moisture flux anomaly over central India, leading to increased rainfall over northern parts of India but decreased rainfall over southern parts. Decreased rainfall over southern India is also substantiated by the presence of increased evaporation over Bay of Bengal and decrease over land regions.

  7. Decoupling of monsoon activity across the northern and southern Indo-Pacific during the Late Glacial

    Denniston, R. F.; Asmerom, Y.; Polyak, V. J.; Wanamaker, A. D.; Ummenhofer, C. C.; Humphreys, W. F.; Cugley, J.; Woods, D.; Lucker, S.


    Recent studies of stalagmites from the Southern Hemisphere tropics of Indonesia reveal two shifts in monsoon activity not apparent in records from the Northern Hemisphere sectors of the Austral-Asian monsoon system: an interval of enhanced rainfall at ∼19 ka, immediately prior to Heinrich Stadial 1, and a sharp increase in precipitation at ∼9 ka. Determining whether these events are site-specific or regional is important for understanding the full range of sensitivities of the Austral-Asian monsoon. We present a discontinuous 40 kyr carbon isotope record of stalagmites from two caves in the Kimberley region of the north-central Australian tropics. Heinrich stadials are represented by pronounced negative carbon isotopic anomalies, indicative of enhanced rainfall associated with a southward shift of the intertropical convergence zone and consistent with hydroclimatic changes observed across Asia and the Indo-Pacific. Between 20 and 8 ka, however, the Kimberley stalagmites, like the Indonesian record, reveal decoupling of monsoon behavior from Southeast Asia, including the early deglacial wet period (which we term the Late Glacial Pluvial) and the abrupt strengthening of early Holocene monsoon rainfall.

  8. Simulation of monsoon intraseasonal variability in NCEP CFSv2 and its role on systematic bias

    Goswami, Bidyut B.; Deshpande, Medha; Mukhopadhyay, P.; Saha, Subodh K.; Rao, Suryachandra A.; Murthugudde, Raghu; Goswami, B. N.


    We have evaluated the simulation of Indian summer monsoon and its intraseasonal oscillations in the National Centers for Environmental Prediction climate forecast system model version 2 (CFSv2). The dry bias over the Indian landmass in the mean monsoon rainfall is one of the major concerns. In spite of this dry bias, CFSv2 shows a reasonable northward propagation of convection at intraseasonal (30-60 day) time scale. In order to document and understand this dry bias over the Indian landmass in CFSv2 simulations, a two pronged investigation is carried out on the two major facets of Indian summer monsoon: one, the air-sea interactions and two, the large scale vertical heating structure in the model. Our analysis shows a possible bias in the co-evolution of convection and sea surface temperature in CFSv2 over the equatorial Indian Ocean. It is also found that the simulated large scale vertical heat source (Q1) and moisture sink (Q2) over the Indian region are biased relative to observational estimates. Finally, this study provides a possible explanation for the dry precipitation bias over the Indian landmass in the simulated mean monsoon on the basis of the biases associated with the simulated ocean-atmospheric processes and the vertical heating structure. This study also throws some light on the puzzle of CFSv2 exhibiting a reasonable northward propagation at the intraseasonal time scale (30-60 day) despite a drier monsoon over the Indian land mass.

  9. Changes of extreme precipitation and nonlinear influence of climate variables over monsoon region in China

    Gao, Tao


    The El Niño-Southern Oscillation (ENSO), Indian Ocean Dipole (IOD), North Atlantic Oscillation (NAO), Atlantic Multidecadal Oscillation (AMO) and Pacific decadal oscillation (PDO) are well understood to be major drivers for the variability of precipitation extremes over monsoon regions in China (MRC). However, research on monsoon extremes in China and their associations with climate variables is limited. In this study, we examine the space-time variations of extreme precipitation across the MRC, and assess the time-varying influences of the climate drivers using Bayesian dynamic linear regression and their combined nonlinear effects through fitting generalized additive models. Results suggest that the central-east and south China is dominated by less frequent but more intense precipitation. Extreme rainfalls show significant positive trends, coupled with a significant decline of dry spells, indicating an increasing chance of occurrence of flood-induced disasters in the MRC during 1960–2014. Majority of the regional indices display some abrupt shifts during the 1990s. The influences of climate variables on monsoon extremes exhibit distinct interannual or interdecadal variations. IOD, ENSO and AMO have strong impacts on monsoon and extreme precipitation, especially during the 1990s, which is generally consistent with the abrupt shifts in precipitation regimes around this period. Moreover, ENSO mainly affects moderate rainfalls and dry spells, while IOD has a more significant impact on precipitation extremes. These findings could be helpful for improving the forecasting of monsoon extremes in China and the evaluations of climate models.

  10. Prediction of a thermodynamic wave train from the monsoon to the Arctic following extreme rainfall events

    Krishnamurti, T. N.; Kumar, Vinay


    This study addresses numerical prediction of atmospheric wave trains that provide a monsoonal link to the Arctic ice melt. The monsoonal link is one of several ways that heat is conveyed to the Arctic region. This study follows a detailed observational study on thermodynamic wave trains that are initiated by extreme rain events of the northern summer south Asian monsoon. These wave trains carry large values of heat content anomalies, heat transports and convergence of flux of heat. These features seem to be important candidates for the rapid melt scenario. This present study addresses numerical simulation of the extreme rains, over India and Pakistan, and the generation of thermodynamic wave trains, simulations of large heat content anomalies, heat transports along pathways and heat flux convergences, potential vorticity and the diabatic generation of potential vorticity. We compare model based simulation of many features such as precipitation, divergence and the divergent wind with those evaluated from the reanalysis fields. We have also examined the snow and ice cover data sets during and after these events. This modeling study supports our recent observational findings on the monsoonal link to the rapid Arctic ice melt of the Canadian Arctic. This numerical modeling suggests ways to interpret some recent episodes of rapid ice melts that may require a well-coordinated field experiment among atmosphere, ocean, ice and snow cover scientists. Such a well-coordinated study would sharpen our understanding of this one component of the ice melt, i.e. the monsoonal link, which appears to be fairly robust.

  11. The role of potential vorticity anomalies in the Somali Jet on Indian Summer Monsoon Intraseasonal Variability

    Rai, P.; Joshi, M.; Dimri, A. P.; Turner, A. G.


    The climate of the Indian subcontinent is dominated by rainfall arising from the Indian summer monsoon (ISM) during June to September. Intraseasonal variability during the monsoon is characterized by periods of heavy rainfall interspersed by drier periods, known as active and break events respectively. Understanding and predicting such events is of vital importance for forecasting human impacts such as water resources. The Somali Jet is a key regional feature of the monsoon circulation. In the present study, we find that the spatial structure of Somali Jet potential vorticity (PV) anomalies varies considerably during active and break periods. Analysis of these anomalies shows a mechanism whereby sea surface temperature (SST) anomalies propagate north/northwestwards through the Arabian Sea, caused by a positive feedback loop joining anomalies in SST, convection, modification of PV by diabatic heating and mixing in the atmospheric boundary layer, wind-stress curl, and ocean upwelling processes. The feedback mechanism is consistent with observed variability in the coupled ocean-atmosphere system on timescales of approximately 20 days. This research suggests that better understanding and prediction of monsoon intraseasonal variability in the South Asian monsoon may be gained by analysis of the day-to-day dynamical evolution of PV in the Somali Jet.

  12. Asian Summer Monsoon Rainfall associated with ENSO and its Predictability

    Shin, C. S.; Huang, B.; Zhu, J.; Marx, L.; Kinter, J. L.; Shukla, J.


    The leading modes of the Asian summer monsoon (ASM) rainfall variability and their seasonal predictability are investigated using the CFSv2 hindcasts initialized from multiple ocean analyses over the period of 1979-2008 and observation-based analyses. It is shown that the two leading empirical orthogonal function (EOF) modes of the observed ASM rainfall anomalies, which together account for about 34% of total variance, largely correspond to the ASM responses to the ENSO influences during the summers of the developing and decaying years of a Pacific anomalous event, respectively. These two ASM modes are then designated as the contemporary and delayed ENSO responses, respectively. It is demonstrated that the CFSv2 is capable of predicting these two dominant ASM modes up to the lead of 5 months. More importantly, the predictability of the ASM rainfall are much higher with respect to the delayed ENSO mode than the contemporary one, with the predicted principal component time series of the former maintaining high correlation skill and small ensemble spread with all lead months whereas the latter shows significant degradation in both measures with lead-time. A composite analysis for the ASM rainfall anomalies of all warm ENSO events in this period substantiates the finding that the ASM is more predictable following an ENSO event. The enhanced predictability mainly comes from the evolution of the warm SST anomalies over the Indian Ocean in the spring of the ENSO maturing phases and the persistence of the anomalous high sea surface pressure over the western Pacific in the subsequent summer, which the hindcasts are able to capture reasonably well. The results also show that the ensemble initialization with multiple ocean analyses improves the CFSv2's prediction skill of both ENSO and ASM rainfall. In fact, the skills of the ensemble mean hindcasts initialized from the four different ocean analyses are always equivalent to the best ones initialized from any individual ocean

  13. Modelling the distribution of domestic ducks in Monsoon Asia

    Van Bockel, Thomas P.; Prosser, Diann; Franceschini, Gianluca; Biradar, Chandra; Wint, William; Robinson, Tim; Gilbert, Marius


    Domestic ducks are considered to be an important reservoir of highly pathogenic avian influenza (HPAI), as shown by a number of geospatial studies in which they have been identified as a significant risk factor associated with disease presence. Despite their importance in HPAI epidemiology, their large-scale distribution in Monsoon Asia is poorly understood. In this study, we created a spatial database of domestic duck census data in Asia and used it to train statistical distribution models for domestic duck distributions at a spatial resolution of 1km. The method was based on a modelling framework used by the Food and Agriculture Organisation to produce the Gridded Livestock of the World (GLW) database, and relies on stratified regression models between domestic duck densities and a set of agro-ecological explanatory variables. We evaluated different ways of stratifying the analysis and of combining the prediction to optimize the goodness of fit of the predictions. We found that domestic duck density could be predicted with reasonable accuracy (mean RMSE and correlation coefficient between log-transformed observed and predicted densities being 0.58 and 0.80, respectively), using a stratification based on livestock production systems. We tested the use of artificially degraded data on duck distributions in Thailand and Vietnam as training data, and compared the modelled outputs with the original high-resolution data. This showed, for these two countries at least, that these approaches could be used to accurately disaggregate provincial level (administrative level 1) statistical data to provide high resolution model distributions.

  14. Soil 137Cs background values in monsoon region of china

    Zhang Mingli; Yang Hao; Wang Xiaolei; Wang Yihong; Xu Congan; Yang Jiudong; Rong Jing


    Land degradation,, which is resulted from the soil erosion, is one of the major environmental problems. It severely affects the food supplies, environmental safety and the sustainable development in China. Some areas in the monsoon region are suffering from the acute soil erosion. To find out the degree of soil erosion, the proven technique of 137 Cs tracer is definitely one of the best methods, and the key is to ascertain the accuracy of soil 137 Cs background value. The distributions of 137 Cs were explored in soil profiles by detecting the 137 Cs of soil cores from the Yimeng mountain area in Shandong Province, hills in the southern area of Jiangsu Province and Dianchi catchment in Yunnan Province, respectively. We found that the depth of 137 Cs distribution is not the same in the soils of various areas. But the 137 Cs activity shows an exponential distribution in the uncultivated soil and demonstrates a strong correlation with the soil depth, while the 137 Cs activity proves uniform in the soil plowing layer of the cultivated land. The study shows the 137 Cs background values of three areas: 1737.1 Bq/m 2 in Yimeng mountain area, 1847.6 Bq/m 2 in southern area of hills in Jiangsu, 918.0 Bq/m 2 in Dianchi catchment. The certainty of 137 Cs background value can technically support the use of 137 Cs technique to study the spatial pattern of soil erosion, deposition and the land degradation, which provides the support for the sustainable utilization of soil resource, the assessment of economical benefit and loss and the evaluation of water and soil conservation measures. (authors)

  15. NASA's Astrophysics Data Archives

    Hasan, H.; Hanisch, R.; Bredekamp, J.


    The NASA Office of Space Science has established a series of archival centers where science data acquired through its space science missions is deposited. The availability of high quality data to the general public through these open archives enables the maximization of science return of the flight missions. The Astrophysics Data Centers Coordinating Council, an informal collaboration of archival centers, coordinates data from five archival centers distiguished primarily by the wavelength range of the data deposited there. Data are available in FITS format. An overview of NASA's data centers and services is presented in this paper. A standard front-end modifyer called `Astrowbrowse' is described. Other catalog browsers and tools include WISARD and AMASE supported by the National Space Scince Data Center, as well as ISAIA, a follow on to Astrobrowse.

  16. African Anthropologist: Submissions

    Author Guidelines. The African Anthropologist is a biannual journal of the Pan African Anthropological Association. It provides a forum for African and Africanist anthropologists to publish articles, research reports, review articles, and book reviews. The views expressed in any published material are those of the authors and ...

  17. African Journals Online (AJOL)

    African Journals OnLine (AJOL) is the world's largest and pre-eminent collection of peer-reviewed, African-published scholarly journals. Historically ... African Research Review; The Roles of Information Communication Technologies in Education: Review Article with Emphasis to the Computer and Internet Ethiopian Journal ...

  18. African Journals Online (AJOL)

    reviewed, African-published scholarly journals. Historically, scholarly information has flowed from North to South and from West to East. It has also been difficult for African researchers to access the work of other African academics. In partnership with ...

  19. African Journals Online (AJOL)

    It has also been difficult for African researchers to access the work of other African academics. ... search for an article by title, author/s or keywords,; and find other information ... Southern African Business Review; Project Work by Students for First ... The Basis of Distinction Between Qualitative and Quantitative Research in ...

  20. African Journals Online (AJOL)

    It has also been difficult for African researchers to access the work of other African ... search for an article by title, author/s or keywords,; and find other information ... Southern African Business Review; Effect of Globalization on Sovereignty of States ... The Basis of Distinction Between Qualitative and Quantitative Research in ...

  1. African Journals Online (AJOL)

    It has also been difficult for African researchers to access the work of other African ... search for an article by title, author/s or keywords,; and find other information sources ... Southern African Business Review; Conflicts in Africa: Meaning, Causes, ... The Basis of Distinction Between Qualitative and Quantitative Research in ...

  2. African Journals Online: Health

    Items 1 - 50 of 167 ... African Journal of AIDS Research (AJAR) is a peer-reviewed ... The African Journal of Drug & Alcohol Studies is an international ... The Journal has been produced through the efforts of Kenya Medical Research Institute (KEMRI) and the African .... in basic and clinical medical sciences as well as dentistry.

  3. African Journals Online (AJOL)

    South African Journal for Research in Sport, Physical Education and Recreation. Vol 17, No 4 (2017). African Health Sciences. Vol 6, No 1 (2015). Nigeria Journal of Pure and Applied Physics. Vol 5, No 2 (2017). Journal of Student Affairs in Africa. Vol 14, No 1 (2017). Annals of African Surgery. Vol 63, No 7-9 (2018).

  4. African Journals Online (AJOL)

    reviewed, African-published scholarly journals. Historically ... It has also been difficult for African researchers to access the work of other African academics. In partnership with ... Vol 15, No 1 (2018). SAHARA-J: Journal of Social Aspects of HIV/AIDS.

  5. African Journals Online (AJOL)

    West African Journal of Applied Ecology. Vol 6, No 2 (2017). Filosofia Theoretica: Journal of African Philosophy, Culture and Religions. AJOL African Journals Online. HOW TO USE AJOL... for Researchers · for Librarians · for Authors · FAQ's · More about AJOL · AJOL's Partners · Terms and Conditions of Use · Contact AJOL ...

  6. African Journals Online (AJOL)

    In partnership with hundreds of journals from all over the continent, AJOL works to change this, so that African-origin research output is available to Africans and to ... African Journal of AIDS Research. Vol 35, No 2 (2017). Zimbabwe Veterinary Journal. Vol 34, No 1 (2018). Eastern Africa Social Science Research Review.

  7. NASA Photo One

    Ross, James C.


    This is a photographic record of NASA Dryden flight research aircraft, spanning nearly 25 years. The author has served as a Dryden photographer, and now as its chief photographer and airborne photographer. The results are extraordinary images of in-flight aircraft never seen elsewhere, as well as pictures of aircraft from unusual angles on the ground. The collection is the result of the agency required documentation process for its assets.

  8. Consolidating NASA's Arc Jets

    Balboni, John A.; Gokcen, Tahir; Hui, Frank C. L.; Graube, Peter; Morrissey, Patricia; Lewis, Ronald


    The paper describes the consolidation of NASA's high powered arc-jet testing at a single location. The existing plasma arc-jet wind tunnels located at the Johnson Space Center were relocated to Ames Research Center while maintaining NASA's technical capability to ground-test thermal protection system materials under simulated atmospheric entry convective heating. The testing conditions at JSC were reproduced and successfully demonstrated at ARC through close collaboration between the two centers. New equipment was installed at Ames to provide test gases of pure nitrogen mixed with pure oxygen, and for future nitrogen-carbon dioxide mixtures. A new control system was custom designed, installed and tested. Tests demonstrated the capability of the 10 MW constricted-segmented arc heater at Ames meets the requirements of the major customer, NASA's Orion program. Solutions from an advanced computational fluid dynamics code were used to aid in characterizing the properties of the plasma stream and the surface environment on the calorimeters in the supersonic flow stream produced by the arc heater.

  9. The NASA Astrobiology Roadmap.

    Des Marais, David J; Nuth, Joseph A; Allamandola, Louis J; Boss, Alan P; Farmer, Jack D; Hoehler, Tori M; Jakosky, Bruce M; Meadows, Victoria S; Pohorille, Andrew; Runnegar, Bruce; Spormann, Alfred M


    The NASA Astrobiology Roadmap provides guidance for research and technology development across the NASA enterprises that encompass the space, Earth, and biological sciences. The ongoing development of astrobiology roadmaps embodies the contributions of diverse scientists and technologists from government, universities, and private institutions. The Roadmap addresses three basic questions: how does life begin and evolve, does life exist elsewhere in the universe, and what is the future of life on Earth and beyond? Seven Science Goals outline the following key domains of investigation: understanding the nature and distribution of habitable environments in the universe, exploring for habitable environments and life in our own Solar System, understanding the emergence of life, determining how early life on Earth interacted and evolved with its changing environment, understanding the evolutionary mechanisms and environmental limits of life, determining the principles that will shape life in the future, and recognizing signatures of life on other worlds and on early Earth. For each of these goals, Science Objectives outline more specific high priority efforts for the next three to five years. These eighteen objectives are being integrated with NASA strategic planning.

  10. The NASA Astrobiology Roadmap

    Des Marais, David J.; Allamandola, Louis J.; Benner, Steven A.; Boss, Alan P.; Deamer, David; Falkowski, Paul G.; Farmer, Jack D.; Hedges, S. Blair; Jakosky, Bruce M.; Knoll, Andrew H.; hide


    The NASA Astrobiology Roadmap provides guidance for research and technology development across the NASA enterprises that encompass the space, Earth, and biological sciences. The ongoing development of astrobiology roadmaps embodies the contributions of diverse scientists and technologists from government, universities, and private institutions. The Roadmap addresses three basic questions: How does life begin and evolve, does life exist elsewhere in the universe, and what is the future of life on Earth and beyond? Seven Science Goals outline the following key domains of investigation: understanding the nature and distribution of habitable environments in the universe, exploring for habitable environments and life in our own solar system, understanding the emergence of life, determining how early life on Earth interacted and evolved with its changing environment, understanding the evolutionary mechanisms and environmental limits of life, determining the principles that will shape life in the future, and recognizing signatures of life on other worlds and on early Earth. For each of these goals, Science Objectives outline more specific high-priority efforts for the next 3-5 years. These 18 objectives are being integrated with NASA strategic planning.

  11. Variations of Indian monsoon precipitation during the last 32 kyr reflected in the surface hydrography of the Western Bay of Bengal

    Govil, P.; Naidu, P.D.

    sub-continent. To increase the accuracy of monsoon forecasting one need to understand the variability of monsoon rainfall at different time scales from decadal, centennial and millennial time scales. Several researchers have studied...

  12. Variability of wind stress and currents at selected locations over the north Indian Ocean during 1977 and 1979 summer monsoon seasons

    Gopalakrishna, V.V.; Sadhuram, Y.; RameshBabu, V.; Rao, M.V.

    Intra-seasonal variability of wind stress, wind stress curl and currents at different locations over the northern Indian Ocean during two contrasting monsoon seasons has been investigated making use of the time series data collected during MONSOON...

  13. On the relationship between Indian monsoon withdrawal and Iran's fall precipitation onset

    Babaeian, Iman; Rezazadeh, Parviz


    Indian monsoon is the most prominent of the world's monsoon systems which primarily affects synoptic patterns of India and adjacent countries such as Iran in interaction with large-scale weather systems. In this article, the relationship between the withdrawal date of the Indian monsoon and the onset of fall precipitation in Iran has been studied. Data included annual time series of withdrawal dates of the Indian monsoon prepared by the Indian Institute for Tropical Meteorology, and time series of the first date of 25 mm accumulated precipitation over Iran's synoptic weather stations in a 10-day period which is the basis for the cultivation date. Both time series were considered in Julian calendar with the starting date on August 1. The studied period is 1960-2014 which covers 55 years of data from 36 meteorological stations in Iran. By classifying the withdrawal dates of the Indian monsoon in three stages of late, normal, and early withdrawals, its relation with the onset of fall precipitation in western, southwestern, southern, eastern, central, and northern regions of Iran was studied. Results demonstrated that in four out of the six mentioned regions, the late withdrawal of the Indian monsoon postpones the onset of fall precipitation over Iran. No significant relation was found between the onset of fall precipitation in central region of Iran and the monsoon's withdrawal date. In the western, southwestern, southern, and eastern regions of Iran, the late monsoon delays the onset of fall's precipitation; while in the south Caspian Sea coastal area, it causes the early onset of autumnal precipitation. The lag in onset of fall precipitation in Iran which is coordinated with the late withdrawal of monsoon is accompanied with prolonged subtropical high settling over Iran's plateau that prevents the southward movement of polar jet frontal systems. Such conditions enhance northerly wind currents over the Caspian Sea which, in turn, increase the precipitation in Caspian

  14. Quantifying pollution transport from the Asian monsoon anticyclone into the lower stratosphere

    F. Ploeger


    Full Text Available Pollution transport from the surface to the stratosphere within the Asian monsoon circulation may cause harmful effects on stratospheric chemistry and climate. Here, we investigate air mass transport from the monsoon anticyclone into the stratosphere using a Lagrangian chemistry transport model. We show how two main transport pathways from the anticyclone emerge: (i into the tropical stratosphere (tropical pipe, and (ii into the Northern Hemisphere (NH extratropical lower stratosphere. Maximum anticyclone air mass fractions reach around 5 % in the tropical pipe and 15 % in the extratropical lowermost stratosphere over the course of a year. The anticyclone air mass fraction correlates well with satellite hydrogen cyanide (HCN and carbon monoxide (CO observations, confirming that pollution is transported deep into the tropical stratosphere from the Asian monsoon anticyclone. Cross-tropopause transport occurs in a vertical chimney, but with the pollutants transported quasi-horizontally along isentropes above the tropopause into the tropics and NH.

  15. African aerosol and large-scale precipitation variability over West Africa

    Huang Jingfeng; Zhang Chidong; Prospero, Joseph M


    We investigated the large-scale connection between African aerosol and precipitation in the West African Monsoon (WAM) region using 8-year (2000-2007) monthly and daily Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol products (aerosol optical depth, fine mode fraction) and Tropical Rainfall Measuring Mission (TRMM) precipitation and rain type. These high-quality data further confirmed our previous results that the large-scale link between aerosol and precipitation in this region undergoes distinct seasonal and spatial variability. Previously detected suppression of precipitation during months of high aerosol concentration occurs in both convective and stratiform rain, but not systematically in shallow rain. This suggests the suppression of deep convection due to the aerosol. Based on the seasonal cycle of dust and smoke and their geographical distribution, our data suggest that both dust (coarse mode aerosol) and smoke (fine mode aerosol) contribute to the precipitation suppression. However, the dust effect is evident over the Gulf of Guinea while the smoke effect is evident over both land and ocean. A back trajectory analysis further demonstrates that the precipitation reduction is statistically linked to the upwind aerosol concentration. This study suggests that African aerosol outbreaks in the WAM region can influence precipitation in the local monsoon system which has direct societal impact on the local community. It calls for more systematic investigations to determine the modulating mechanisms using both observational and modeling approaches.

  16. Strengthening African Union for African Integration: An African ...


    to secure African continent, speed up development process, and strengthen our survival ... Regional integration generally involves a somewhat complex web of cooperation ... networking of various government institutions to provide and shape.

  17. NASA Product Peer Review Process

    Jenks, Ken


    This viewgraph presentation describes NASA's product peer review process. The contents include: 1) Inspection/Peer Review at NASA; 2) Reasons for product peer reviews; 3) Different types of peer reviews; and 4) NASA requirements for peer reviews. This presentation also includes a demonstration of an actual product peer review.

  18. Variability of mixed layer depth in the northern Indian Ocean during 1977 and 1979 summer monsoon seasons

    Gopalakrishna, V.V.; Sadhuram, Y.; RameshBabu, V.

    quantitatively making use of time-series data collected during MONSOON-77 and MONEX-79 programmes. After the onset of monsoon (June/July 1977) over the central Arabian Sea, wind stress together with possible sinking processes on account of negative wind stress...

  19. Different orbital rhythms in the Asian summer monsoon records from North and South China during the Pleistocene

    Ao, H.; Dekkers, M.J.; Xiao, G.; Yang, X.; Qin, L.; Liu, X; Qiang, X.; Chang, H.; Zhao, H.


    Here we construct a Pleistocene astronomical timescale for the Nihewan fluvio–lacustrine sediments (North China), via tuning a stacked summer monsoon index generated from grain size and low-field magnetic susceptibility records to orbital obliquity and precession. Combining the summer monsoon

  20. Dynamics of size-fractionated phytoplankton biomass in a monsoonal estuary: Patterns and drivers for seasonal and spatial variability

    Rajaneesh, K. M.; Mitbavkar, Smita; Anil, Arga Chandrashekar


    Phytoplankton size-fractionated biomass is an important determinant of the type of food web functioning in aquatic ecosystems. Knowledge about the effect of seasonal salinity gradient on the size-fractionated biomass dynamics is still lacking, especially in tropical estuaries experiencing monsoon. The phytoplankton size-fractionated chlorophyll a biomass (>3 μm and 3 μm size-fraction was the major contributor to the total phytoplankton chlorophyll a biomass with the ephemeral dominance of biomass concentration of both size-fractions showed signs of recovery with increasing salinity downstream towards the end of the monsoon season. In contrast, the chlorophyll a biomass response was size-dependent during the non-monsoon seasons with the sporadic dominance (>50%) of biomass during high water temperature episodes from downstream to middle estuary during pre-monsoon and at low salinity and high nutrient conditions upstream during post-monsoon. These conditions also influenced the picophytoplankton community structure with picoeukaryotes dominating during the pre-monsoon, phycoerythrin containing Synechococcus during the monsoon and phycocyanin containing Synechococcus during the post-monsoon. This study highlights switching over of dominance in size-fractionated phytoplankton chlorophyll a biomass at intra, inter-seasonal and spatial scales which will likely govern the estuarine trophodynamics.

  1. Evaporation-precipitation changes in the eastern Arabian Sea for the last 68 ka: Implications on monsoon variability

    Govil, P.; Naidu, P.D.

    from MIS 4 to MIS 3 was marked with a conspicuous shift from higher to lower delta sup(18)Ow values, which reflects a decrease in the evaporation precipitation budget in the EAS, perhaps due to the strengthening of southwest monsoon. Monsoon...

  2. Role of the Indian Ocean on the southern oscillation, atmospheric circulation indices and monsoon rainfall over India

    Sadhuram, Y.; Wells, N.C.

    Oscillation and ENSO is also examined. Indian monsoon rainfall is strongly and positively correlated with the SST of November month (0.77; statistically significant at 99% level) of the preceding calendar year. Monsoon indices (M1, U200) are strongly...

  3. Summer cooling in the east central Arabian Sea - a process of dynamic response to the southwest monsoon

    RameshBabu, V.; Sastry, J.S.

    The cooling of the east central Arabian Sea during summer monsoon season is examined using data sets of MONEX '79 and MONSOON '77 programmes. These studies have revealed that downward transfer of heat due to the mixing of warm surface and cold sub...

  4. Model Interpretation of Climate Signals: Application to the Asian Monsoon Climate

    Lau, William K. M.


    This is an invited review paper intended to be published as a Chapter in a book entitled "The Global Climate System: Patterns, Processes and Teleconnections" Cambridge University Press. The author begins with an introduction followed by a primer of climate models, including a description of various modeling strategies and methodologies used for climate diagnostics and predictability studies. Results from the CLIVAR Monsoon Model Intercomparison Project (MMIP) were used to illustrate the application of the strategies to modeling the Asian monsoon. It is shown that state-of-the art atmospheric GCMs have reasonable capability in simulating the seasonal mean large scale monsoon circulation, and response to El Nino. However, most models fail to capture the climatological as well as interannual anomalies of regional scale features of the Asian monsoon. These include in general over-estimating the intensity and/or misplacing the locations of the monsoon convection over the Bay of Bengal, and the zones of heavy rainfall near steep topography of the Indian subcontinent, Indonesia, and Indo-China and the Philippines. The intensity of convection in the equatorial Indian Ocean is generally weaker in models compared to observations. Most important, an endemic problem in all models is the weakness and the lack of definition of the Mei-yu rainbelt of the East Asia, in particular the part of the Mei-yu rainbelt over the East China Sea and southern Japan are under-represented. All models seem to possess certain amount of intraseasonal variability, but the monsoon transitions, such as the onset and breaks are less defined compared with the observed. Evidences are provided that a better simulation of the annual cycle and intraseasonal variability is a pre-requisite for better simulation and better prediction of interannual anomalies.

  5. Characteristics of monsoon inversions over the Arabian Sea observed by satellite sounder and reanalysis data sets

    S. Dwivedi


    Full Text Available Monsoon inversion (MI over the Arabian Sea (AS is one of the important characteristics associated with the monsoon activity over Indian region during summer monsoon season. In the present study, we have used 5 years (2009–2013 of temperature and water vapour measurement data obtained from satellite sounder instrument, an Infrared Atmospheric Sounding Interferometer (IASI onboard MetOp satellite, in addition to ERA-Interim data, to study their characteristics. The lower atmospheric data over the AS have been examined first to identify the areas where MIs are predominant and occur with higher strength. Based on this information, a detailed study has been made to investigate their characteristics separately in the eastern AS (EAS and western AS (WAS to examine their contrasting features. The initiation and dissipation times of MIs, their percentage occurrence, strength, etc., has been examined using the huge database. The relation with monsoon activity (rainfall over Indian region during normal and poor monsoon years is also studied. WAS ΔT values are  ∼  2 K less than those over the EAS, ΔT being the temperature difference between 950 and 850 hPa. A much larger contrast between the WAS and EAS in ΔT is noticed in ERA-Interim data set vis-à-vis those observed by satellites. The possibility of detecting MI from another parameter, refractivity N, obtained directly from another satellite constellation of GPS Radio Occultation (RO (COSMIC, has also been examined. MI detected from IASI and Atmospheric Infrared Sounder (AIRS onboard the NOAA satellite have been compared to see how far the two data sets can be combined to study the MI characteristics. We suggest MI could also be included as one of the semipermanent features of southwest monsoon along with the presently accepted six parameters.

  6. From monsoon to marine productivity in the Arabian Sea: insights from glacial and interglacial climates

    Le Mézo, Priscilla; Beaufort, Luc; Bopp, Laurent; Braconnot, Pascale; Kageyama, Masa


    The current-climate Indian monsoon is known to boost biological productivity in the Arabian Sea. This paradigm has been extensively used to reconstruct past monsoon variability from palaeo-proxies indicative of changes in surface productivity. Here, we test this paradigm by simulating changes in marine primary productivity for eight contrasted climates from the last glacial-interglacial cycle. We show that there is no straightforward correlation between boreal summer productivity of the Arabian Sea and summer monsoon strength across the different simulated climates. Locally, productivity is fuelled by nutrient supply driven by Ekman dynamics. Upward transport of nutrients is modulated by a combination of alongshore wind stress intensity, which drives coastal upwelling, and by a positive wind stress curl to the west of the jet axis resulting in upward Ekman pumping. To the east of the jet axis there is however a strong downward Ekman pumping due to a negative wind stress curl. Consequently, changes in coastal alongshore stress and/or curl depend on both the jet intensity and position. The jet position is constrained by the Indian summer monsoon pattern, which in turn is influenced by the astronomical parameters and the ice sheet cover. The astronomical parameters are indeed shown to impact wind stress intensity in the Arabian Sea through large-scale changes in the meridional gradient of upper-tropospheric temperature. However, both the astronomical parameters and the ice sheets affect the pattern of wind stress curl through the position of the sea level depression barycentre over the monsoon region (20-150° W, 30° S-60° N). The combined changes in monsoon intensity and pattern lead to some higher glacial productivity during the summer season, in agreement with some palaeo-productivity reconstructions.

  7. ENSO, IOD and Indian Summer Monsoon in NCEP climate forecast system

    Pokhrel, Samir; Chaudhari, H.S.; Saha, Subodh K.; Dhakate, Ashish; Yadav, R.K.; Salunke, Kiran; Mahapatra, S.; Rao, Suryachandra A. [Indian Institute of Tropical Meteorology, Pashan, Pune (India)


    El Nino-Southern Oscillation (ENSO), Indian Ocean Dipole (IOD) and Indian Summer Monsoon rainfall features are explored statistically and dynamically using National Centers for Environment Prediction (NCEP) Climate Forecast System (CFSv1) freerun in relation to observations. The 100 years of freerun provides a sufficiently long homogeneous data set to find out the mean state, periodicity, coherence among these climatic events and also the influence of ENSO and IOD on the Indian monsoon. Differences in the occurrence of seasonal precipitation between the observations and CFS freerun are examined as a coupled ocean-atmosphere system. CFS simulated ENSO and IOD patterns and their associated tropical Walker and regional Hadley circulation in pure ENSO (PEN), pure IOD (PIO) and coexisting ENSO-IOD (PEI) events have some similarity to the observations. PEN composites are much closer to the observation as compared to PIO and PEI composites, which suggest a better ENSO prediction and its associated teleconnections as compared to IOD and combined phenomenon. Similar to the observation, the model simulation also show that the decrease in the Indian summer monsoon rainfall during ENSO phases is associated with a descending motion of anomalous Walker circulation and the increase in the Indian summer monsoon rainfall during IOD phase is associated with the ascending branch of anomalous regional Hadley circulation. During co-existing ENSO and IOD years, however, the fate of Indian summer monsoon is dictated by the combined influence of both of them. The shift in the anomalous descending and ascending branches of the Walker and Hadley circulation may be somewhat attributed to the cold (warm) bias over eastern (western) equatorial Indian Ocean basin, respectively in the model. This study will be useful for identifying some of the limitations of the CFS model and consequently it will be helpful in improving the model to unravel the realistic coupled ocean-atmosphere interactions

  8. Some heat and moisture budgets over Bay of Bengal during MONSOON 17 experiment

    Bhaskar Rao, D.V.


    Heat and moisture budgets have been estimated for the period 13-18 August 1977 over Bay of Bengal using data collected from USSR ships during MONSOON 77 experiment. The divergence, relative vorticity and vertical p-velocity fields are derived. The apparent heat source and moisture sink are obtained for the period. The vertical-time sections of the derived fields are presented and the distributions are compared for undisturbed conditions during the period of study. The results show strong convective motions during the disturbed period indicating the importance of convection in the monsoon depressions. (author)


    徐国强; 朱乾根


    With NCEP/NCAR reanalysis daily data and SST for 1998, the paper investigates the features of summer monsoon low-frequency oscillation (LFO) over the South China Sea (SCS). Results show that SCS summer monsoon onset is enhanced because of its LFO. Low-frequency (LF) low-level convergence (divergence) region of SCS is in the LF positive (negative) rainfall area. LFO of the SCS region migrates from south to north in the meridian and from west to east in zonal direction. LF divergence of SCS is vertically compensating to each other between high and low level.

  10. Lower tropospheric ozone over India and its linkage to the South Asian monsoon

    Lu, Xiao; Zhang, Lin; Liu, Xiong; Gao, Meng; Zhao, Yuanhong; Shao, Jingyuan


    Lower tropospheric (surface to 600 hPa) ozone over India poses serious risks to both human health and crops, and potentially affects global ozone distribution through frequent deep convection in tropical regions. Our current understanding of the processes controlling seasonal and long-term variations in lower tropospheric ozone over this region is rather limited due to spatially and temporally sparse observations. Here we present an integrated process analysis of the seasonal cycle, interannual variability, and long-term trends of lower tropospheric ozone over India and its linkage to the South Asian monsoon using the Ozone Monitoring Instrument (OMI) satellite observations for years 2006-2014 interpreted with a global chemical transport model (GEOS-Chem) simulation for 1990-2010. OMI observed lower tropospheric ozone over India averaged for 2006-2010, showing the highest concentrations (54.1 ppbv) in the pre-summer monsoon season (May) and the lowest concentrations (40.5 ppbv) in the summer monsoon season (August). Process analyses in GEOS-Chem show that hot and dry meteorological conditions and active biomass burning together contribute to 5.8 Tg more ozone being produced in the lower troposphere in India in May than January. The onset of the summer monsoon brings ozone-unfavorable meteorological conditions and strong upward transport, which all lead to large decreases in the lower tropospheric ozone burden. Interannually, we find that both OMI and GEOS-Chem indicate strong positive correlations (r = 0.55-0.58) between ozone and surface temperature in pre-summer monsoon seasons, with larger correlations found in high NOx emission regions reflecting NOx-limited production conditions. Summer monsoon seasonal mean ozone levels are strongly controlled by monsoon strengths. Lower ozone concentrations are found in stronger monsoon seasons mainly due to less ozone net chemical production. Furthermore, model simulations over 1990-2010 estimate a mean annual trend of 0

  11. Increases in aerosol concentrations over eastern China due to the decadal-scale weakening of the East Asian summer monsoon

    Zhu, Jianlei; Liao, Hong; Li, Jianping


    China has been experiencing increased concentrations of aerosols, commonly attributed to the large increases in emissions associated with the rapid economic development. We show by using a chemical transport model driven by the assimilated meteorological fields that the observed decadal-scale weakening of the East Asian summer monsoon also contributed to the increases in aerosols in China. We find that the simulated aerosol concentrations have strong negative correlations with the strength of the East Asian Summer monsoon. Accounting for sulfate, nitrate, ammonium, black carbon, and organic carbon aerosols, the summer surface-layer PM2.5 concentration averaged over eastern China (110°-125°E, 20°-45°N) can be 17.7% higher in the weakest monsoon years than in the strongest monsoon years. The weakening of the East Asian Summer monsoon increases aerosol concentrations mainly by the changes in atmospheric circulation (the convergence of air pollutants) in eastern China.

  12. Crops and Culture: Dispersal of African Millets to the Indian Subcontinent and its Cultural Consequences

    Randi Haaland


    Full Text Available In this paper I will discuss the spread of African crops to the Indian subcontinent. The spread was probably related to the Indus civilizations trading network in the Indian Ocean during the late 3rd millennium BC. It was at this time African food plants, the so-called big millets were dispersed across the African savannah to the horn of Africa and further to the Indian sub-continent. The big millets were cultivated as monsoon summer crops complementing the existing barley/wheat winter crops. The African pot/porridge cuisine was added to wheat/barley oven/bread cuisine. Recent study in Nepal shows that the African crops are cultivated today on marginal agricultural land in the foothills of Himalaya. We will look at Nepal as an example of the production and consumption of African big millets. The crops are processed into porridge and beer, and this cuisine is a food tradition similar to the pot and porridge cuisine we find in sub-Saharan Africa.DOI: Dhaulagiri Journal of Sociology and Anthropology Vol. 5, 2011: 1-30

  13. NASA Lunar Impact Monitoring

    Suggs, Robert M.; Moser, D. E.


    The MSFC lunar impact monitoring program began in 2006 in support of environment definition for the Constellation (return to Moon) program. Work continued by the Meteoroid Environment Office after Constellation cancellation. Over 330 impacts have been recorded. A paper published in Icarus reported on the first 5 years of observations and 126 calibrated flashes. Icarus:; ArXiv: A NASA Technical Memorandum on flash locations is in press

  14. NASA Technology Transfer System

    Tran, Peter B.; Okimura, Takeshi


    NTTS is the IT infrastructure for the Agency's Technology Transfer (T2) program containing 60,000+ technology portfolio supporting all ten NASA field centers and HQ. It is the enterprise IT system for facilitating the Agency's technology transfer process, which includes reporting of new technologies (e.g., technology invention disclosures NF1679), protecting intellectual properties (e.g., patents), and commercializing technologies through various technology licenses, software releases, spinoffs, and success stories using custom built workflow, reporting, data consolidation, integration, and search engines.

  15. Resources: NASA for entrepreneurs

    Jannazo, Mary Ann


    The services of NASA's Technology Utilization Program are detailed and highlights of spinoff products in various stages of completion are described. Areas discussed include: Stirling engines for automotive applications, klystron tubes used to reduce power costs at UHF television stations, sports applications of riblet film (e.g., boat racing), reinforced plastic for high-temperature applications, coating technology appropriate for such applications similar to the renovation of the Statue of Liberty, and medical uses of fuel pump technology (e.g., heart pumps).

  16. Prediction of monthly rainfall on homogeneous monsoon regions of India based on large scale circulation patterns using Genetic Programming

    Kashid, Satishkumar S.; Maity, Rajib


    SummaryPrediction of Indian Summer Monsoon Rainfall (ISMR) is of vital importance for Indian economy, and it has been remained a great challenge for hydro-meteorologists due to inherent complexities in the climatic systems. The Large-scale atmospheric circulation patterns from tropical Pacific Ocean (ENSO) and those from tropical Indian Ocean (EQUINOO) are established to influence the Indian Summer Monsoon Rainfall. The information of these two large scale atmospheric circulation patterns in terms of their indices is used to model the complex relationship between Indian Summer Monsoon Rainfall and the ENSO as well as EQUINOO indices. However, extracting the signal from such large-scale indices for modeling such complex systems is significantly difficult. Rainfall predictions have been done for 'All India' as one unit, as well as for five 'homogeneous monsoon regions of India', defined by Indian Institute of Tropical Meteorology. Recent 'Artificial Intelligence' tool 'Genetic Programming' (GP) has been employed for modeling such problem. The Genetic Programming approach is found to capture the complex relationship between the monthly Indian Summer Monsoon Rainfall and large scale atmospheric circulation pattern indices - ENSO and EQUINOO. Research findings of this study indicate that GP-derived monthly rainfall forecasting models, that use large-scale atmospheric circulation information are successful in prediction of All India Summer Monsoon Rainfall with correlation coefficient as good as 0.866, which may appears attractive for such a complex system. A separate analysis is carried out for All India Summer Monsoon rainfall for India as one unit, and five homogeneous monsoon regions, based on ENSO and EQUINOO indices of months of March, April and May only, performed at end of month of May. In this case, All India Summer Monsoon Rainfall could be predicted with 0.70 as correlation coefficient with somewhat lesser Correlation Coefficient (C.C.) values for different

  17. Summer monsoon onset-induced changes of autotrophic pico- and nanoplankton in the largest monsoonal estuary along the west coast of India

    Mohan, A.P.; Jyothibabu, R; Jagadeesan, L.; Lallu, K.R; Karnan, C.

    to the microbial food web of the northwestern Indian Ocean.Deep sea research part II. 40: 773–782. Callieri, C., E. Amicucci, R. Bertoni, and L. Voros. 1996. Fluorometric characterization of two picocyanobacteria strains from different underwater light quality.... 2014. Waning of plankton food web in the upstream region of the Cochin backwaters during the Southwest Monsoon. Indian Journal of Marine Sciences (In Press). Jyothibabu, R., N. V. Madhu, L. Jagadeesan, A. Anjusha, A. P. Mohan , N.Ullas, N. Sudheesh...

  18. NASA's Propulsion Research Laboratory


    The grand opening of NASA's new, world-class laboratory for research into future space transportation technologies located at the Marshall Space Flight Center (MSFC) in Huntsville, Alabama, took place in July 2004. The state-of-the-art Propulsion Research Laboratory (PRL) serves as a leading national resource for advanced space propulsion research. Its purpose is to conduct research that will lead to the creation and development of innovative propulsion technologies for space exploration. The facility is the epicenter of the effort to move the U.S. space program beyond the confines of conventional chemical propulsion into an era of greatly improved access to space and rapid transit throughout the solar system. The laboratory is designed to accommodate researchers from across the United States, including scientists and engineers from NASA, the Department of Defense, the Department of Energy, universities, and industry. The facility, with 66,000 square feet of useable laboratory space, features a high degree of experimental capability. Its flexibility allows it to address a broad range of propulsion technologies and concepts, such as plasma, electromagnetic, thermodynamic, and propellant propulsion. An important area of emphasis is the development and utilization of advanced energy sources, including highly energetic chemical reactions, solar energy, and processes based on fission, fusion, and antimatter. The Propulsion Research Laboratory is vital for developing the advanced propulsion technologies needed to open up the space frontier, and sets the stage of research that could revolutionize space transportation for a broad range of applications.

  19. The NASA SETI program

    Billingham, J.; Brocker, D. H.


    In 1959, it was proposed that a sensible way to conduct interstellar communication would be to use radio at or near the frequency of hydrogen. In 1960, the first Search for Extraterrestrial Intelligence (SETI) was conducted using a radiotelescope at Green Bank in West Virginia. Since 1970, NASA has systematically developed a definitive program to conduct a sophisticated search for evidence of extraterrestrial intelligent life. The basic hypothesis is that life may be widespread in the univers, and that in many instances extraterrestrial life may have evolved into technological civilizations. The underlying scientific arguments are based on the continuously improving knowledge of astronomy and astrophysics, especially star system formation, and of planetary science, chemical evolution, and biological evolution. If only one in a million sun-like stars in our galaxy harbors species with cognitive intelligence, then there are 100,000 civilizations in the Milky Way alone. The fields of radioastronomy digital electronic engineering, spectrum analysis, and signal detection have advanced rapidly in the last twenty years and now allow for sophisticated systems to be built in order to attempt the detection of extraterrestrial intelligence signals. In concert with the scientific and engineering communities, NASA has developed, over the last several years, a Microwave Observing Project whose goal is to design, build, and operate SETI systems during the decade of the nineties in pursuit of the goal signal detection. The Microwave Observing Project is now approved and underway. There are two major components in the project: the Target Search Element and the Sky Survey Element.

  20. NASA's interstellar probe mission

    Liewer, P.C.; Ayon, J.A.; Wallace, R.A.; Mewaldt, R.A.


    NASA's Interstellar Probe will be the first spacecraft designed to explore the nearby interstellar medium and its interaction with our solar system. As envisioned by NASA's Interstellar Probe Science and Technology Definition Team, the spacecraft will be propelled by a solar sail to reach >200 AU in 15 years. Interstellar Probe will investigate how the Sun interacts with its environment and will directly measure the properties and composition of the dust, neutrals and plasma of the local interstellar material which surrounds the solar system. In the mission concept developed in the spring of 1999, a 400-m diameter solar sail accelerates the spacecraft to ∼15 AU/year, roughly 5 times the speed of Voyager 1 and 2. The sail is used to first bring the spacecraft to ∼0.25 AU to increase the radiation pressure before heading out in the interstellar upwind direction. After jettisoning the sail at ∼5 AU, the spacecraft coasts to 200-400 AU, exploring the Kuiper Belt, the boundaries of the heliosphere, and the nearby interstellar medium

  1. NASA Data Archive Evaluation

    Holley, Daniel C.; Haight, Kyle G.; Lindstrom, Ted


    The purpose of this study was to expose a range of naive individuals to the NASA Data Archive and to obtain feedback from them, with the goal of learning how useful people with varied backgrounds would find the Archive for research and other purposes. We processed 36 subjects in four experimental categories, designated in this report as C+R+, C+R-, C-R+ and C-R-, for computer experienced researchers, computer experienced non-researchers, non-computer experienced researchers, and non-computer experienced non-researchers, respectively. This report includes an assessment of general patterns of subject responses to the various aspects of the NASA Data Archive. Some of the aspects examined were interface-oriented, addressing such issues as whether the subject was able to locate information, figure out how to perform desired information retrieval tasks, etc. Other aspects were content-related. In doing these assessments, answers given to different questions were sometimes combined. This practice reflects the tendency of the subjects to provide answers expressing their experiences across question boundaries. Patterns of response are cross-examined by subject category in order to bring out deeper understandings of why subjects reacted the way they did to the archive. After the general assessment, there will be a more extensive summary of the replies received from the test subjects.

  2. The Glacial-Interglacial summer monsoon recorded in southwest Sulawesi speleothems: Evidence for sea level thresholds driving tropical monsoon strength

    Kimbrough, A. K.; Gagan, M. K.; Dunbar, G. B.; Krause, C.; Di Nezio, P. N.; Hantoro, W. S.; Cheng, H.; Edwards, R. L.; Shen, C. C.; Sun, H.; Cai, B.; Rifai, H.


    Southwest Sulawesi lies within the Indo-Pacific Warm Pool (IPWP), at the center of atmospheric convection for two of the largest circulation cells on the planet, the meridional Hadley Cell and zonal Indo-Pacific Walker Circulation. Due to the geographic coincidence of these circulation cells, southwest Sulawesi serves as a hotspot for changes in tropical Pacific climate variability and Australian-Indonesian summer monsoon (AISM) strength over glacial-interglacial (G-I) timescales. The work presented here spans 386 - 127 ky BP, including glacial terminations IV ( 340 ky BP) and both phases of TIII (TIII 248 ky BP and TIIIa 217 ky BP). This record, along with previous work from southwest Sulawesi spanning the last 40 kyr, reveals coherent climatic features over three complete G-I cycles. The multi-stalagmite Sulawesi speleothem δ18O record demonstrates that on G-I timescales, the strength of the AISM is most sensitive to changes in sea level and its impact on the regional distribution of land and shallow ocean. Stalagmite δ18O and trace element (Mg/Ca) data indicate a rapid increase in rainfall at glacial terminations and wet interglacials. TIV, TIII, TIIIa, and TI are each characterized by an abrupt 3‰ decrease in δ18O that coincides with sea level rise and flooding of the Sunda and Sahul shelves. Strong evidence for a sea level (flooding/exposure) threshold is found throughout the southwest Sulawesi record. This is most clearly demonstrated over the period 230 - 212 ky BP (MIS 7d-7c), when a sea level fall to only -80 to -60 m for 10 kyr results in a weakened AISM and glacial conditions, followed by a full termination. Taken together, both glaciations and glacial terminations imply a sea level threshold driving the AISM between two primary levels of intensity (`interglacial' & `glacial'). These massive, sea-level driven shifts in AISM strength are superimposed on precession-scale variability associated with boreal fall insolation at the equator, indicating


    Ilse van der Walt

    characterised by a volatile mix of conflict, instability and state weakness, and analysts ... to ensure peace, security and stability on the continent at national, ... half a dozen African economies have been growing at more than 6 per cent per year.

  4. Coastal processes at the southern tip of India during summer monsoon 2005

    Smitha, B.R; VimalKumar, K.G.; Sanjeevan, V.N.

    . Analysis indicates that the system is in harmony with the southwest monsoon winds, maximum during July with horizontal SST gradient of 4 degrees C and 1.17m/ day of vertical velocity. The role of local wind forcing is verified by comparing the isothermal...

  5. Aerosol properties over the Arabian Sea during the north east monsoon

    Suresh, T.; Dulac, F; Leon, G.F; Desa, E.

    440, 670, 870, 936, 940 and 1020 mm, in the Arabian Sea between 15.4-17.86 degrees N and 73.28-69.3 degrees E, during the North East monsoon period of 1-10 December, 1998. The aerosol optical properties derived from these data showed variations from...

  6. Teleconnections associated with the intensification of the Australian monsoon during El Nino Modoki events

    Taschetto, A S; Gupta, A Sen; Ummenhofer, C C; England, M H; Haarsma, R J


    In this study we investigate the teleconnection between the central-western Pacific sea surface temperature (SST) warming, characteristic of El Nino Modoki events, and Australian rainfall using observations and atmospheric general circulation model experiments. During Modoki events, wet conditions are generally observed over northwestern Australia at the peak of the monsoon season (i.e. January and February) while dry conditions occur in the shoulder-months (i.e. December and March). This results in a shorter but more intense monsoon season over northwestern Australia relative to the climatology. We show that, apart from the well-known displacement of the Walker circulation, the anomalous warming in the central-western equatorial Pacific also induces a westward-propagating disturbance associated with a Gill-type mechanism. This in turn generates an anomalous cyclonic circulation over northwestern Australia that reinforces the climatological mean conditions during the peak of the monsoon season. The anomalous circulation leads to convergence of moisture and increased precipitation over northern Australia. This response, however, only occurs persistently during austral summer when the South Pacific Convergence Zone is climatologically strengthened, phase-locking the Gill-type response to the seasonal cycle. The interaction between the interannual SST variability during El Nino Modoki events and the evolution of the seasonal cycle intensifies deep convection in the central-west Pacific, driving a Gill-type response to diabatic heating. The intensified monsoonal rainfall occurs strongly in February due to the climatological wind conditions that are normally cyclonic over northwestern Australia.

  7. Climate and land use controls over terrestrial water use efficiency in monsoon Asia.

    Hanqin Tian; Chaoqun Lu; Guangsheng Chen; Xiaofeng Xu; Mingliang Liu; et al


    Much concern has been raised regarding how and to what extent climate change and intensive human activities have altered water use efficiency (WUE, amount of carbon uptake per unit of water use) in monsoon Asia. By using a process-based ecosystem model [dynamic land ecosystem model (DLEM)], we examined effects of climate change, land use/cover change, and land...

  8. Anomalous circulation in the eastern equatorial Indian Ocean during southwest monsoon of 1994

    Unnikrishnan, A.S.; Murty, V.S.N.; Babu, M.T.; Gopinathan, C.K.; Charyulu, R.J.K.

    and an eastward flow, constituting the southwest monsoon current (SWMC), in the vicinity of the equator characterise the upper ocean circulation. While low salinity waters (33.5 -34.75) in the upper layer are advected westward from 88 E via the westward flow...

  9. Variability of the Date of Monsoon Onset over Kerala (India) of the ...


    Nansen Environmental Research Centre India,6A Oxford Business Centre, Kochi - ... Monsoon Onset over Kerala (India) which occurs every year is a major ... Decadal variability in DMOK. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18.

  10. Monsoon control on trace metal fluxes in the deep Arabian Sea

    Monsoon control on trace metal fluxes in the deep Arabian Sea ... at marine boundaries and surface ocean processes: Forcings and feedbacks Volume 115 ... Annual Al fluxes at shallow and deep trap depths were 0.47 and 0.46 gm−2 in the ...

  11. Vertical Distribution of Temperature in Transitional Season II and West Monsoon in Western Pacific

    Pranoto, Hikari A. H.; Kunarso; Soeyanto, Endro


    Western Pacific is the water mass intersection from both the Northern Pacific and Southern Pacific ocean. The Western Pacific ocean is warm pool area which formed by several warm surface currents. As a warm pool area and also the water mass intersection, western Pacific ocean becomes an interesting study area. The object of this study is to describe the temperature vertical distribution by mooring buoy and temporally in transitional season II (September - November 2014) and west monsoon (December 2014 - February 2015) in Western Pacific. Vertical temperature and wind speed data that was used in this study was recorded by INA-TRITON mooring instrument and obtained from Laboratory of Marine Survey, BPPT. Supporting data of this study was wind vector data from ECMWF to observe the relation between temperature distribution and monsoon. The quantitative approach was used in this study by processing temperature and wind data from INA-TRITON and interpreted graphically. In the area of study, it was found that in transitional season II the range of sea surface temperature to 500-meter depth was about 8.29 - 29.90 °C while in west monsoon was 8.12 - 29.45 °C. According to the research result, the sea SST of western Pacific ocean was related to monsoonal change with SST and wind speed correlation coefficient was 0.78. While the deep layer temperature was affected by water mass flow which passes through the western Pacific Ocean.

  12. Changes in the Asian monsoon climate during 1700-1850 induced by preindustrial cultivation.

    Takata, Kumiko; Saito, Kazuyuki; Yasunari, Tetsuzo


    Preindustrial changes in the Asian summer monsoon climate from the 1700s to the 1850s were estimated with an atmospheric general circulation model (AGCM) using historical global land cover/use change data reconstructed for the last 300 years. Extended cultivation resulted in a decrease in monsoon rainfall over the Indian subcontinent and southeastern China and an associated weakening of the Asian summer monsoon circulation. The precipitation decrease in India was marked and was consistent with the observational changes derived from examining the Himalayan ice cores for the concurrent period. Between the 1700s and the 1850s, the anthropogenic increases in greenhouse gases and aerosols were still minor; also, no long-term trends in natural climate variations, such as those caused by the ocean, solar activity, or volcanoes, were reported. Thus, we propose that the land cover/use change was the major source of disturbances to the climate during that period. This report will set forward quantitative examination of the actual impacts of land cover/use changes on Asian monsoons, relative to the impact of greenhouse gases and aerosols, viewed in the context of global warming on the interannual, decadal, and centennial time scales.

  13. Two millennia of Mesoamerican monsoon variability driven by Pacific and Atlantic synergistic forcing

    Lachniet, Matthew S.; Asmerom, Yemane; Polyak, Victor; Bernal, Juan Pablo


    The drivers of Mesoamerican monsoon variability over the last two millennia remain poorly known because of a lack of precisely-dated and climate-calibrated proxy records. Here, we present a new high resolution (∼2 yrs) and precisely-dated (± 4 yr) wet season hydroclimate reconstruction for the Mesoamerican sector of the North American Monsoon over the past 2250 years based on two aragonite stalagmites from southwestern Mexico which replicate oxygen isotope variations over the 950-1950 CE interval. The reconstruction is quantitatively calibrated to instrumental rainfall variations in the Basin of Mexico. Comparisons to proxy indices of ocean-atmosphere circulation show a synergistic forcing by the North Atlantic and El Niño/Southern Oscillations, whereby monsoon strengthening coincided with a La Niña-like mode and a negative North Atlantic Oscillation, and vice versa for droughts. Our data suggest that weak monsoon intervals are associated with a strong North Atlantic subtropical high pressure system and a weak Intertropical convergence zone in the eastern Pacific Ocean. Population expansions at three major highland Mexico civilization of Teotihuacan, Tula, and Aztec Tenochtitlan were all associated with drought to pluvial transitions, suggesting that urban population growth was favored by increasing freshwater availability in the semi-arid Mexican highlands, and that this hydroclimatic change was controlled by Pacific and Atlantic Ocean forcing.

  14. Atlantic and Pacific Ocean synergistic forcing of the Mesomerican monsoon over the last two millennia

    Lachniet, M. S.; Asmerom, Y.; Polyak, V. J.; Bernal, J. P.


    We present a new replicated, high resolution (~2 yrs) and precisely-dated (± 4 yr) wet season hydroclimate reconstruction for the Mesoamerican sector of the North American Monsoon over the past 2250 years. Our new reconstruction is based on two aragonite stalagmites from southwestern Mexico which replicate oxygen isotope variations over the 950-1950 CE interval, and are calibrated to instrumental rainfall variations in the Basin of Mexico. Such data complement existing dendroclimatic reconstructions of early wet season and winter drought severity. Comparisons to indices of ocean-atmosphere circulation show a combined forcing by the North Atlantic Oscillation and the El Niño/Southern Oscillation. Monsoon strengthening coincided with synergistic forcing of a La Niña-like mode and a negative North Atlantic Oscillation, and vice versa for droughts. Although drought is commonly invoked as an stressor leading to societal change, the role of intensified monsoon onto cultural development is rarely explored. We observe that prominent transitions from drought to pluvial conditions are associated with population increases in three of the major highland Mexico civilizations of Teotihuacan, Tula Grande, and the Aztecs. These data suggest a role for ocean-atmosphere dynamics arising from the Atlantic and Pacific Oceans on Mesoamerican monsoon strength.

  15. A Stalagmite record of Holocene Indonesian-Australian summer monsoon variability from the Australian tropics

    Denniston, Rhawn F.; Wyrwoll, Karl-Heinz; Polyak, Victor J.; Brown, Josephine R.; Asmerom, Yemane; Wanamaker, Alan D.; LaPointe, Zachary; Ellerbroek, Rebecca; Barthelmes, Michael; Cleary, Daniel; Cugley, John; Woods, David; Humphreys, William F.


    Oxygen isotopic data from a suite of calcite and aragonite stalagmites from cave KNI-51, located in the eastern Kimberley region of tropical Western Australia, represent the first absolute-dated, high-resolution speleothem record of the Holocene Indonesian-Australian summer monsoon (IASM) from the Australian tropics. Stalagmite oxygen isotopic values track monsoon intensity via amount effects in precipitation and reveal a dynamic Holocene IASM which strengthened in the early Holocene, decreased in strength by 4 ka, with a further decrease from ˜2 to 1 ka, before strengthening again at 1 ka to years to levels similar to those between 4 and 2 ka. The relationships between the KNI-51 IASM reconstruction and those from published speleothem time series from Flores and Borneo, in combination with other data sets, appear largely inconsistent with changes in the position and/or organization of the Intertropical Convergence Zone (ITCZ). Instead, we argue that the El Niño/Southern Oscillation (ENSO) may have played a dominant role in driving IASM variability since at least the middle Holocene. Given the muted modern monsoon rainfall responses to most El Niño events in the Kimberley, an impact of ENSO on regional monsoon precipitation over northwestern Australia would suggest non-stationarity in the long-term relationship between ENSO forcing and IASM rainfall, possibly due to changes in the mean state of the tropical Pacific over the Holocene.

  16. Pre-monsoon living planktonic foraminifera from the Southeastern Arabian Sea

    Guptha, M.V.S.; Naidu, P.D.; Muralinath, A.S.

    LOGICAL SoCIETY OF INDIA Vol. 36, Dec. 1990, pp. 654 to 660 Pre-Monsoon Living Planktonic Foraminifera from the Southeastern Arabian Sea M. V. S. GUPTHA.. P. DIVAKAR NAlDU AND A. S. MURALINATH Nalional Institute of Oceanography, Dona Paula, Goa 403004...

  17. Does SW Monsoon Influence Total Suspended Matter Flux into the Arabian Sea?

    Raghavan, B.R.; Chauhan, O.S.

    Seasonal enhancement in the flux of total suspended matter (TSM) has been attributed to climatology of the SW monsoon (SWM) in time-series trap experiments conducted in the Arabian Sea. To determine the influence of climate on TSM flux, synoptic...

  18. Sensitivity of convective precipitation to soil moisture and vegetation during break spell of Indian summer monsoon

    Kutty, Govindan; Sandeep, S.; Vinodkumar; Nhaloor, Sreejith


    Indian summer monsoon rainfall is characterized by large intra-seasonal fluctuations in the form of active and break spells in rainfall. This study investigates the role of soil moisture and vegetation on 30-h precipitation forecasts during the break monsoon period using Weather Research and Forecast (WRF) model. The working hypothesis is that reduced rainfall, clear skies, and wet soil condition during the break monsoon period enhance land-atmosphere coupling over central India. Sensitivity experiments are conducted with modified initial soil moisture and vegetation. The results suggest that an increase in antecedent soil moisture would lead to an increase in precipitation, in general. The precipitation over the core monsoon region has increased by enhancing forest cover in the model simulations. Parameters such as Lifting Condensation Level, Level of Free Convection, and Convective Available Potential Energy indicate favorable atmospheric conditions for convection over forests, when wet soil conditions prevail. On spatial scales, the precipitation is more sensitive to soil moisture conditions over northeastern parts of India. Strong horizontal gradient in soil moisture and orographic uplift along the upslopes of Himalaya enhanced rainfall over the east of Indian subcontinent.

  19. Variability of the date of monsoon onset over Kerala (India) of the ...

    P N Preenu


    Jul 25, 2017 ... Sci. (2017) 126:76 c Indian Academy of Sciences ... Nansen Environmental Research Centre India, 6A Oxford Business Centre, Kochi, Kerala 682 016, India. .... definition of the large scale monsoon onset (over. India and not ...

  20. Effect of freshwater influx on phytoplankton in the Mandovi estuary (Goa, India) during monsoon season: Chemotaxonomy

    Parab, S.G.; Matondkar, S.G.P.; Gomes, H.R.; Goes, J.I.

    for an increase in nitrate levels upto 26 mu M from less than 1 mu M during pre-monsoon and enhancement of chlorophyll a (chl a) as high as 14 mu g·L sup(-1) during the same period. The phytoplankton population was observed through both chemotaxonomy...

  1. Cyclicity in the Late Holocene monsoonal changes from the western Bay of Bengal: Foraminiferal approach.

    Rana, S.S.; Nigam, R.

    .; Imbrie, J.; Hays, J.; Kukla, G.; Saltzman, B.. NATO ASI Ser. C: Math. Phys. Sci.; 126: 349-366. Sarkar, A., Ramesh, R., Somayajulu, B.L.K., Agnihotri, R., Jull, A.J.T., Burr, G.S. 2000. High resolution Holocene monsoon record from the eastern Arabian Sea...

  2. Wind stress, curl and vertical velocity in the Bay of Bengal during southwest monsoon, 1984

    Babu, M.T.; Heblekar, A.K.; Murty, C.S.

    Wind distribution observed during southwest monsoon of 1984 has used to derive the mean wind stress for the season at every 1 degree square grid and curl over the Bay of Bengal. Two regions of maximum wind stress are present over the Bay of Bengal...

  3. Apparent relationship between thermal regime in Antarctic waters and Indian summer monsoon

    Menon, H.B.; RameshBabu, V.; Sastry, J.S.

    ) charts for the Indian Ocean sector of the Southern Ocean during 2 contrasting years (1977 and 1979) of summer monsoon over India. The results suggest an apparent relationship between the thermal regimes in the Antarctic waters of the Indian Ocean sector...

  4. Hydrography and circulation in the western Bay of Bengal during the northeast monsoon

    Shetye, S.R.; Gouveia, A.D.; Shankar, D.; Shenoi, S.S.C.; Vinayachandran, P.N.; Sundar, D.; Michael, G.S.; Nampoothiri, G.

    , the transport is 7.7 x 10 sup(6) m sup(3) s sup(-1) . Recent model studies lead us to conclude that the EICC during the northeast monsoon is driven by winds along the east coast of India and Ekman pumping in the interior bay. In the south, Ekman pumping over...

  5. Decoupled warming and monsoon precipitation in East Asia over the last deglaciation

    Peterse, F.; Prins, M.A.; Beets, C.J.; Troelstra, S.R.; Zheng, H.B.; Gu, Z.Y.; Schouten, S.; Sinninghe Damsté, J.S.


    Our understanding of the continental climate development in East Asia is mainly based on loess-paleosol sequences and summer monsoon precipitation reconstructions based on oxygen isotopes (delta O-18) of stalagmites from several Chinese caves. Based on these records, it is thought that East Asian

  6. Trace metal dynamics in zooplankton from the Bay of Bengal during summer monsoon

    Rejomon, G.; DineshKumar, P.K.; Nair, M.; Muraleedharan, K.R.

    Trace metal (Fe, Co, Ni, Cu, Zn, Cd, and Pb) concentrations in zooplankton from the mixed layer were investigated at 8 coastal and 20 offshore stations in the western Bay of Bengal during the summer monsoon of 2003. The ecotoxicological importance...

  7. A new criterion for identifying breaks in monsoon conditions over the Indian subcontinent

    RameshKumar, M.R.; Dessai, U.R.P.

    in the months of July and August were of 3-4 days duration (49%). Breaks identified by our method were in general consistent with those identified by the conventional methods. Further, the correlation between the seasonal monsoon rainfall and break (active) days...

  8. Hydrographic characteristics of central Bay of Bengal waters during southwest monsoon of 1983

    Somayajulu, Y.K.; Murty, T.V.R.; PrasannaKumar, S.; Sastry, J.S.

    to postmonsoon. The loss of energy from the sea surface to the atmosphere by evaporational cooling due to strong monsoonal winds and reduction in the incoming solar radiation by clouds may result in a net loss of energy (cooling). During premonsoon the isotherms...

  9. Indian monsoon variability at different time scales: Marine and terrestrial proxy records

    Patnaik, R.; Gupta, A; Naidu, P.D.; Yadav, R.R.; Bhattacharyya, A; Kumar, M.

    Here, we present a review of the work done in India during 2007-2011 on various proxy records of monsoon variability preserved in the marine (Central Indian Basin, western, northern and eastern Arabian Sea and the Bay of Bengal) and terrestrial...

  10. Heat content variations in the northeastern Arabian sea during a weak spell of 1986 summer monsoon

    Gopalakrishna, V.V.; Sarma, M.S.S.; Sadhuram, Y.; RameshBabu, V.

    Based on time series measurements of temperature and surface meteorological parameters taken at a stationary location (10 degrees N;67 degrees E) in the northeastern Arabian Sea during a weak spell of 1986 monsoon from 29th August to 5th September...

  11. A model perspective on orbital forcing of monsoons and Mediterranean climate using EC-Earth

    Bosmans, J.H.C.


    This thesis focuses on orbitally forced changes of monsoons and Mediterranean climate. Changes in the shape of the Earths orbit around the Sun and its rotational axis govern the seasonal and latitudinal distribution of incoming solar radiation on time scales of thousands to millions of years. The

  12. Assessment of Unusual Gigantic Jets observed during the Monsoon season: First observations from Indian Subcontinent

    Singh, Rajesh; Maurya, Ajeet K.; Chanrion, Olivier


    observations. Here we report first observations of Gigantic Jets in Indian subcontinent over the Indo-Gangetic plains during the monsoon season. Two storms each produced two jets with characteristics not documented so far. Jets propagated similar to 37 km up remarkably in similar to 5 ms with velocity...

  13. Organized convection over southwest peninsular India during the pre-monsoon season

    Sreelekha, P. N.; Babu, C. A.


    The paper addresses observational aspects of widespread rain associated with the organized convection that forms over the southwest peninsular India during the pre-monsoon season. The evolution of the cloud band over the equatorial region, its northward propagation, development of cross equatorial flow near the Somalia coast, and appearance of equatorial westerly wind resemble closely to that of the monsoon organized convection. Low-level convergence, cyclonic vorticity, and ascending motion are other major characteristics of the cloud bands associated with the pre-monsoon organized convection which exhibits similarity with that of monsoon. The ascending motion plays vital role on the formation of cloud band that produces widespread rainfall persisting for more than a week. The vertical shear of meridional winds is found to co-exist with precipitation over the Arabian Sea off the southwest peninsular India. The velocity potential values derived from the winds at 850 and 200 hPa levels confirm the rising motion on the basis of low-level convergence and upper level divergence. Also, shifting of ascending limb of the local Hadley circulation to the north of the equator is observed during the days of the presence of organized convection over the southwest peninsular region. Noticeable shift in the Walker circulation rising limb is also identified during the same time.

  14. The Indian summer monsoon rainfall: interplay of coupled dynamics, radiation and cloud microphysics

    P. K. Patra


    Full Text Available The Indian summer monsoon rainfall (ISMR, which has a strong connection to agricultural food production, has been less predictable by conventional models in recent times. Two distinct years 2002 and 2003 with lower and higher July rainfall, respectively, are selected to help understand the natural and anthropogenic influences on ISMR. We show that heating gradients along the meridional monsoon circulation are reduced due to aerosol radiative forcing and the Indian Ocean Dipole in 2002. An increase in the dust and biomass-burning component of the aerosols through the zonal monsoon circulation resulted in reduction of cloud droplet growth in July 2002. These conditions were opposite to those in July 2003 which led to an above average ISMR. In this study, we have utilized NCEP/NCAR reanalyses for meteorological data (e.g. sea-surface temperature, horizontal winds, and precipitable water, NOAA interpolated outgoing long-wave radiation, IITM constructed all-India rainfall amounts, aerosol parameters as observed from the TOMS and MODIS satellites, and ATSR fire count maps. Based on this analysis, we suggest that monsoon rainfall prediction models should include synoptic as well as interannual variability in both atmospheric dynamics and chemical composition.

  15. A note on Arabian Sea warm pool and its possible relation with monsoon onset over Kerala

    Chacko, K.V.; HareeshKumar, P.V.; RameshKumar, M.R.; Mathew, B.; Bannur, V.M.

    The possible relation of the Arabian Sea Warm Pool (ASWP) with monsoon onset over Kerala is studied by utilizing the TRMM Microwave Imager data during the period 2007-2011 (5 years). The ASWP is a part of the Indian Ocean warm pool and forms...

  16. Impact of East Asian Summer Monsoon on Surface Ozone Pattern in China

    Li, Shu; Wang, Tijian; Huang, Xing; Pu, Xi; Li, Mengmeng; Chen, Pulong; Yang, Xiu-Qun; Wang, Minghuai


    Tropospheric ozone plays a key role in regional and global atmospheric and climate systems. In East Asia, ozone can be affected both in concentration level and spatial pattern by typical monsoon climate. This paper uses three different indices to identify the strength of East Asian summer monsoon (EASM) and explores the possible impact of EASM intensity on the ozone pattern through synthetic and process analysis. The difference in ozone between three strong and three weak monsoon years was analyzed using the simulations from regional climate model RegCM4-Chem. It was found that EASM intensity can significantly influence the spatial distribution of ozone in the lower troposphere. When EASM is strong, ozone in the eastern part of China (28°N - 42° N) is reduced, but the inverse is detected in the north and south. The surface ozone difference ranges from -7 to 7 ppbv during the 3 months (June to August) of the EASM, with the most obvious difference in August. Difference of the 3 months' average ozone ranges from -3.5 to 4 ppbv. Process analysis shows that the uppermost factor controlling ozone level during summer monsoon seasons is the chemistry process. Interannual variability of EASM can impact the spatial distribution of ozone through wind in the lower troposphere, cloud cover, and downward shortwave radiation, which affect the transport and chemical formation of ozone. The phenomenon should be addressed when considering the interaction between ozone and the climate in East Asia region.

  17. Variations in swells along Eastern Arabian Sea during the summer monsoon

    Johnson, G.; SanilKumar, V.; Sanjiv, P.C.; Singh, J.; Pednekar, P.S.; AshokKumar, K.; Dora, G.U.; Gowthaman, R.

    A study was carried out to find the variation in wave characteristics along the eastern Arabian Sea and the influence of swells in the nearshore waves at 3 locations during summer monsoon in 2010. Percentage of swells in the measured waves was 75...

  18. Transport of regional pollutions to UTLS during Asian Summer Monsoon - A CTM study

    Li, Qian; Bian, Jianchun; Lu, Daren


    We use a 3-D global Chemical Transport Model (CTM) GEOS-Chem to simulate the observed Asian Summer Monsoon transport of biomass burning tracers HCN and CO from local emissions to UTLS. By analyzing the satellite observations, we focus on the distribution and spatial-temporal variation of HCN and CO concentration in UTLS. The model simulations capture well the main features of distribution of HCN and CO compared with satellite observations. Recent studies (Li et al., 2009; Randel et al., 2010) indicated that regional emissions may play an important role controlling the distribution and variation of HCN in tropical UTLS during Asian Summer Monsoon seasons, mainly due to the local dynamical uplift of Asian Summer Monsoon. By using GEOS-Chem simulations, we will analyze the UTLS distribution and variation of HCN and CO from emissions of different regions including S.E. Asia, Boreal Asia, Indonesia and Australia, Africa, Europe, Northern America and Southern America. According to the amount and seasonal variability of emissions, the contribution of biomass burning and biofuel burning emissions of different regions to the highly concentrated HCN and CO in UTLS during Asian Summer Monsoon seasons will be discussed, individually.

  19. Improvement of Statistical Typhoon Rainfall Forecasting with ANN-Based Southwest Monsoon Enhancement

    Tsung-Yi Pan


    Full Text Available Typhoon Morakot 2009, with significant southwest monsoon flow, produced a record-breaking rainfall of 2361 mm in 48 hours. This study hopes to improve a statistical typhoon rainfall forecasting method used over the mountain region of Taiwan via an artificial neural network based southwest monsoon enhancement (ANNSME model. Rainfall data collected at two mountain weather stations, ALiShan and YuShan, are analyzed to establish the relation to the southwest monsoon moisture flux which is calculated at a designated sea area southwest of Taiwan. The results show that the moisture flux, with southwest monsoon flow, transported water vapor during the landfall periods of Typhoons Mindulle, Bilis, Fungwong, Kalmaegi, Haitaing and Morakot. Based on the moisture flux, a linear regression is used to identify an effective value of moisture flux as the threshold flux which can enhance mountain rainfall in southwestern Taiwan. In particular, a feedforward neural network (FNN is applied to estimate the residuals from the linear model to the differences between simulated rainfalls by a typhoon rainfall climatology model (TRCM and observations. Consequently, the ANNSME model integrates the effective moisture flux, linear rainfall model and the FNN for residuals. Even with very limited training cases, our results indicate that the ANNSME model is robust and suitable for improvement of TRCM rainfall prediction. The improved prediction of the total rainfall and of the multiple rainfall peaks is important for emergency operation.

  20. Characteristics of monsoon low level jet (MLLJ) as an index of ...

    R.Narasimhan(krishtel emaging) 1461 1996 Oct 15 13:05:22

    level jet or the. Monsoon Low Level Jet (MLLJ) stream over penin- sular India. They have investigated the occurrence of significant low-level wind maximum in the ver- tical and had defined it in accordance with the fol- lowing criteria following Fay ...

  1. Global energetics and local physics as drivers of past, present and future monsoons

    Biasutti, Michela; Voigt, Aiko; Boos, William R.; Braconnot, Pascale; Hargreaves, Julia C.; Harrison, Sandy P.; Kang, Sarah M.; Mapes, Brian E.; Scheff, Jacob; Schumacher, Courtney; Sobel, Adam H.; Xie, Shang-Ping


    Global constraints on momentum and energy govern the variability of the rainfall belt in the intertropical convergence zone and the structure of the zonal mean tropical circulation. The continental-scale monsoon systems are also facets of a momentum- and energy-constrained global circulation, but their modern and palaeo variability deviates substantially from that of the intertropical convergence zone. The mechanisms underlying deviations from expectations based on the longitudinal mean budgets are neither fully understood nor simulated accurately. We argue that a framework grounded in global constraints on energy and momentum yet encompassing the complexities of monsoon dynamics is needed to identify the causes of the mismatch between theory, models and observations, and ultimately to improve regional climate projections. In a first step towards this goal, disparate regional processes must be distilled into gross measures of energy flow in and out of continents and between the surface and the tropopause, so that monsoon dynamics may be coherently diagnosed across modern and palaeo observations and across idealized and comprehensive simulations. Accounting for zonal asymmetries in the circulation, land/ocean differences in surface fluxes, and the character of convective systems, such a monsoon framework would integrate our understanding at all relevant scales: from the fine details of how moisture and energy are lifted in the updrafts of thunderclouds, up to the global circulations.

  2. Breeding in the monsoon : semi-annual reproduction in the Seychelles warbler (Acrocephalus sechellensis)

    Komdeur, Jan; Daan, Serge


    Despite the absence of pronounced changes in day length, there is considerable climatological seasonality in the tropics. Its expression can be complex like in the monsoon climate of the Indian Ocean Islands. The land mass distribution on both sides of the equator leads to seasonal changes in

  3. Studies on MODIS NDVI and its relation with the south west monsoon, western ghats, India

    Lakshmi Kumar, Tv; Barbosa, Humberto; Uma, R.; Rao, Koteswara


    Eleven years (2000 to 2010) of Normalized Difference Vegetation Index (NDVI) data, derived from Moderate Imaging Spectroradiometer (MODIS) Terra with 250m resolution are used in the present study to discuss the changes in the trends of vegetal cover. The interannual variability of NDVI over western ghats (number of test sites are 17) showed increasing trend and the pronounced changes are resulted due to the monsoon variability in terms of its distribution (wide spread/fairly wide spread/scattered/isolated) and activity (vigorous/normal/weak) and are studied in detail. The NDVI progression is observed from June with a minimum value of 0.179 and yielded to maximum at 0.565 during September/October, on average. The study then relates the NDVI with the no of light, moderate and heavy rainfall events via statistical techniques such as correlation and regression to understand the connection in between the ground vegetation and the south west monsoon. The results of the study inferred i) NDVI, Antecedent Precipitation Index (API) are in good agreement throughout the monsoon which is evidenced by correlation as well as by Morlett Wavelet Analysis, ii) NDVI maintained good correlation with no of Light Rainy and Moderate Rainy alternatively but not with no of Heavy Rainy days, iii) Relation of NDVI with Isolated, Scattered distributions and active monsoons is substantial and iv) Phenological stages captured the Rate of Green Up during the crop season over western ghats.

  4. Impacts of half a degree additional warming on the Asian summer monsoon rainfall characteristics

    Lee, Donghyun; Min, Seung-Ki; Fischer, Erich; Shiogama, Hideo; Bethke, Ingo; Lierhammer, Ludwig; Scinocca, John F.


    This study investigates the impacts of global warming of 1.5 °C and 2.0 °C above pre-industrial conditions (Paris Agreement target temperatures) on the South Asian and East Asian monsoon rainfall using five atmospheric global climate models participating in the ‘Half a degree Additional warming, Prognosis and Projected Impacts’ (HAPPI) project. Mean and extreme precipitation is projected to increase under warming over the two monsoon regions, more strongly in the 2.0 °C warmer world. Moisture budget analysis shows that increases in evaporation and atmospheric moisture lead to the additional increases in mean precipitation with good inter-model agreement. Analysis of daily precipitation characteristics reveals that more-extreme precipitation will have larger increase in intensity and frequency responding to the half a degree additional warming, which is more clearly seen over the South Asian monsoon region, indicating non-linear scaling of precipitation extremes with temperature. Strong inter-model relationship between temperature and precipitation intensity further demonstrates that the increased moisture with warming (Clausius-Clapeyron relation) plays a critical role in the stronger intensification of more-extreme rainfall with warming. Results from CMIP5 coupled global climate models under a transient warming scenario confirm that half a degree additional warming would bring more frequent and stronger heavy precipitation events, exerting devastating impacts on the human and natural system over the Asian monsoon region.

  5. Landslides Induced by 2015 Gorkha Earthquake and Their Continuous Evolution Post 2015 and 2016-Monsoon

    Spear, B.; Haritashya, U. K.; Kargel, J. S.


    Gorkha Nepal has been a hot bed of landslide activity since the 7.8 magnitude earthquake that occurred on April 25th 2015. Even though previous studies have mapped and analyzed the landslides that were directly related to the earthquake, this research maps and analyzes the landslides that occurred during monsoon or after monsoon season in 2015 and 2016. Specifically, our objectives included monitoring post-earthquake landslide evolution and reactivation. We also observed landslides which occurred in the steep side slopes of various small rivers and threatened to block the flow of river. Consequently, we used Landsat, Sentinel, ASTER and images available at Google Earth Engine to locate, map, and analyze these landslides. Our preliminary result indicates 5,270 landslides, however 957 of these landslides occurred significantly after the earthquake. Of the 957 landslides, 508 of them occurred during the monsoon season of 2015 and 48 in the 2016 monsoon season. As well as locating and mapping these landslides, we were able to identify that there were 22 landslides blocking rivers and 24 were reactivated. Our result and landslide density maps clearly identifies zones that are prone to landslides. For example, the steepest areas, such as the Helambu or Langtang region, have a very high concentration of landslides since the earthquake. Furthermore, landslides with the largest area were often nearby each other in very steep regions. This research can be used to determine which areas in the Gorkha Nepal region are safe to use and which areas are high risk.

  6. Influence of eastern Arabian Sea on summer monsoon rainfall over west coast of India

    RameshBabu, V.; Rao, M.S.; Rao, M.V.

    and distant nature. In order to realise the model results and the influence of Arabian sea in the context of long range forecasting of monsoon rainfall, we have examined the correlation between the rainfall over west coast of India and premonsoon thermal...

  7. A lidar study of atmospheric aerosols during two contrasting monsoon seasons

    Devara, P.C.S.; Raj, P.E. [Indian Institute of Tropical Meteorology (India)


    The vertical profiles of the boundary-layer aerosols obtained with a bistatic argon ion lidar system at the Indian Institute of Tropical Meteorology (IITM), Pune, India, during two contrasting, successive south-west (summer) monsoon seasons of 1987 (weak monsoon year) and 1988 (active monsoon year) have been examined. The concurrent meteorological parameters such as temperature, relative humidity and rainfall over Pune have also been studied. It is noticed that the aerosol columnar content (integration of vertical profile throughout the height range) is greater during the active monsoon months and less during the weak monsoon months. Thus the monsoon season total rainfall during 1987 and 1988, apart from other meteorological parameters, shows close correspondence with the aerosol columnar content over the experimental station. A brief description of the lidar experimental setup and the database is given. The observed association between the aerosol columnar content and the monsoon activity is explained in terms of the environmental and meteorological conditions prevailing over Pune. [Spanish] Los perfiles verticales de los aerosoles de la capa fronteriza obtenidos mediante un sistema de Lidar biestatico de iones de argon en el Instituto de Meteorologia Tropical (IITM) en Pune, India, durante dos estaciones contrastantes y suscesivas del monzon del SW (verano) de 1987 (ano de monzon debil) y 1988 (ano activo de monzon) han sido estudiados. Los parametros meteorologicos concurrentes tales como temperatura, humedad relativa y lluvia en Pune, han sido tambien estudiados. Se observa que el contenido columnar de aerosoles (integracion del perfil vertical en toda la gama de alturas) es mayor durante los meses del monzon activo y menor en los meses del monzon debil. De manera que, el total de la lluvia monzonica durante 1987 y 1988, aparte de otros parametros meteorologicos, muestran una correspondencia intima con el contenido columnar de a erosoles sobre la estacion

  8. Predicting Indian Summer Monsoon onset through variations of surface air temperature and relative humidity

    Stolbova, Veronika; Surovyatkina, Elena; Kurths, Jurgen


    Indian Summer Monsoon (ISM) rainfall has an enormous effect on Indian agriculture, economy, and, as a consequence, life and prosperity of more than one billion people. Variability of the monsoonal rainfall and its onset have a huge influence on food production, agricultural planning and GDP of the country, which on 22% is determined by agriculture. Consequently, successful forecasting of the ISM onset is a big challenge and large efforts are being put into it. Here, we propose a novel approach for predictability of the ISM onset, based on critical transition theory. The ISM onset is defined as an abrupt transition from sporadious rainfall to spatially organized and temporally sustained rainfall. Taking this into account, we consider the ISM onset as is a critical transition from pre-monsoon to monsoon, which take place in time and also in space. It allows us to suggest that before the onset of ISM on the Indian subcontinent should be areas of critical behavior where indicators of the critical transitions can be detected through an analysis of observational data. First, we identify areas with such critical behavior. Second, we use detected areas as reference points for observation locations for the ISM onset prediction. Third, we derive a precursor for the ISM onset based on the analysis of surface air temperature and relative humidity variations in these reference points. Finally, we demonstrate the performance of this precursor on two observational data sets. The proposed approach allows to determine ISM onset in advance in 67% of all considered years. Our proposed approach is less effective during the anomalous years, which are associated with weak/strong monsoons, e.g. El-Nino, La-Nina or positive Indian Ocean Dipole events. The ISM onset is predicted for 23 out of 27 normal monsoon years (85%) during the past 6 decades. In the anomalous years, we show that time series analysis in both areas during the pre-monsoon period reveals indicators whether the

  9. On the relationship between the Indian summer monsoon rainfall and the EQUINOO in the CFSv2

    Vishnu, S.; Francis, P. A.; Ramakrishna, S. S. V. S.; Shenoi, S. S. C.


    Several recent studies have shown that positive (negative) phase of Equatorial Indian Ocean Oscillation (EQUINOO) is favourable (unfavourable) to the Indian summer monsoon. However, many ocean-atmosphere global coupled models, including the state-of-the-art Climate Forecast System (CFS) version 2 have difficulty in reproducing this link realistically. In this study, we analyze the retrospective forecasts by the CFS model for the period 1982-2010 with an objective to identify the reasons behind the failure of the model to simulate the observed links between Indian summer monsoon and EQUINOO. It is found that, in the model hindcasts, the rainfall in the core monsoon region was mainly due to westward propagating synoptic scale systems, that originated from the vicinity of the tropical convergence zone (TCZ). Our analysis shows that unlike in observations, in the CFS, majority of positive (negative) EQUINOO events are associated with El Niño (La Niña) events in the Pacific. In addition to this, there is a strong link between EQUINOO and Indian Ocean Dipole (IOD) in the model. We show that, during the negative phase of EQUINOO/IOD, northward propagating TCZs remained stationary over the Bay of Bengal for longer period compared to the positive phase of EQUINOO/IOD. As a result, compared to the positive phase of EQUINOO/IOD, during a negative phase of EQUINOO/IOD, more westward propagating synoptic scale systems originated from the vicinity of TCZ and moved on to the core monsoon region, which resulted in higher rainfall over this region in the CFS. We further show that frequent, though short-lived, westward propagating systems, generated near the vicinity of TCZ over the Bay moved onto the mainland were responsible for less number of break monsoon spells during the negative phase of EQUINOO/IOD in the model hindcasts. This study underlines the necessity for improving the skill of the coupled models, particularly CFS model, to simulate the links between EQUINOO/IOD and

  10. NASA Communications Augmentation network

    Omidyar, Guy C.; Butler, Thomas E.; Laios, Straton C.


    The NASA Communications (Nascom) Division of the Mission Operations and Data Systems Directorate (MO&DSD) is to undertake a major initiative to develop the Nascom Augmentation (NAUG) network to achieve its long-range service objectives for operational data transport to support the Space Station Freedom Program, the Earth Observing System (EOS), and other projects. The NAUG is the Nascom ground communications network being developed to accommodate the operational traffic of the mid-1990s and beyond. The NAUG network development will be based on the Open Systems Interconnection Reference Model (OSI-RM). This paper describes the NAUG network architecture, subsystems, topology, and services; addresses issues of internetworking the Nascom network with other elements of the Space Station Information System (SSIS); discusses the operations environment. This paper also notes the areas of related research and presents the current conception of how the network will provide broadband services in 1998.

  11. NASA commercial programs


    Highlights of NASA-sponsored and assisted commercial space activities of 1989 are presented. Industrial R and D in space, centers for the commercial development of space, and new cooperative agreements are addressed in the U.S. private sector in space section. In the building U.S. competitiveness through technology section, the following topics are presented: (1) technology utilization as a national priority; (2) an exploration of benefits; and (3) honoring Apollo-Era spinoffs. International and domestic R and D trends, and the space sector are discussed in the section on selected economic indicators. Other subjects included in this report are: (1) small business innovation; (2) budget highlights and trends; (3) commercial programs management; and (4) the commercial programs advisory committee.

  12. NASA scheduling technologies

    Adair, Jerry R.


    This paper is a consolidated report on ten major planning and scheduling systems that have been developed by the National Aeronautics and Space Administration (NASA). A description of each system, its components, and how it could be potentially used in private industry is provided in this paper. The planning and scheduling technology represented by the systems ranges from activity based scheduling employing artificial intelligence (AI) techniques to constraint based, iterative repair scheduling. The space related application domains in which the systems have been deployed vary from Space Shuttle monitoring during launch countdown to long term Hubble Space Telescope (HST) scheduling. This paper also describes any correlation that may exist between the work done on different planning and scheduling systems. Finally, this paper documents the lessons learned from the work and research performed in planning and scheduling technology and describes the areas where future work will be conducted.

  13. NASA Space Life Sciences

    Hayes, Judith


    This slide presentation reviews the requirements that NASA has for the medical service of a crew returning to earth after long duration space flight. The scenarios predicate a water landing. Two scenarios are reviewed that outline the ship-board medical operations team and the ship board science reseach team. A schedule for the each crew upon landing is posited for each of scenarios. The requirement for a heliport on board the ship is reviewed and is on the requirement for a helicopter to return the Astronauts to the Baseline Data Collection Facility (BDCF). The ideal is to integrate the medical and science requirements, to minimize the risks and Inconveniences to the returning astronauts. The medical support that is required for all astronauts returning from long duration space flight (30 days or more) is reviewed. The personnel required to support the team is outlined. The recommendations for medical operations and science research for crew support are stated.

  14. NASA, Building Tomorrow's Future

    Mango, Edward


    We, as NASA, continue to Dare Mighty Things. Here we are in October. In my country, the United States of America, we celebrate the anniversary of Christopher Columbus's arrival in the Americas, which occurred on October 12, 1492. His story, although happening over 500 years ago, is still very valid today. It is a part of the American spirit; part of the international human spirit. Columbus is famous for discovering the new world we now call America, but he probably never envisioned what great discoveries would be revealed many generations later. But in order for Columbus to begin his great adventure, he needed a business plan. Ho would he go about obtaining the funds and support necessary to build, supply, and man the ships required for his travels? He had a lot of obstacles and distractions. He needed a strong, internal drive to achieve his plans and recruit a willing crew of explorers also ready to risk their all for the unknown journey ahead. As Columbus set sail, he said "By prevailing over all obstacles and distractions, one may unfailingly arrive at his chosen goal or destination." Columbus may not have known he was on a journey for all human exploration. Recently, Charlie Bolden, the NASA Administrator, said, "Human exploration is and has always been about making life better for humans on Earth." Today, NASA and the U.S. human spaceflight program hold many of the same attributes as did Columbus and his contemporaries - a willing, can-do spirit. We are on the threshold of exciting new times in space exploration. Like Columbus, we need a business plan to take us into the future. We need to design the best ships and utilize the best designers, with their past knowledge and experience, to build those ships. We need funding and support from governments to achieve these goals of space exploration into the unknown. NASA does have that business plan, and it is an ambitious plan for human spaceflight and exploration. Today, we have a magnificent spaceflight

  15. Configuration Management at NASA

    Doreswamy, Rajiv


    NASA programs are characterized by complexity, harsh environments and the fact that we usually have one chance to get it right. Programs last decades and need to accept new hardware and technology as it is developed. We have multiple suppliers and international partners Our challenges are many, our costs are high and our failures are highly visible. CM systems need to be scalable, adaptable to new technology and span the life cycle of the program (30+ years). Multiple Systems, Contractors and Countries added major levels of complexity to the ISS program and CM/DM and Requirements management systems center dot CM Systems need to be designed for long design life center dot Space Station Design started in 1984 center dot Assembly Complete in 2012 center dot Systems were developed on a task basis without an overall system perspective center dot Technology moves faster than a large project office, try to make sure you have a system that can adapt

  16. NASA Biological Specimen Repository

    McMonigal, K. A.; Pietrzyk, R. A.; Sams, C. F.; Johnson, M. A.


    The NASA Biological Specimen Repository (NBSR) was established in 2006 to collect, process, preserve and distribute spaceflight-related biological specimens from long duration ISS astronauts. This repository provides unique opportunities to study longitudinal changes in human physiology spanning may missions. The NBSR collects blood and urine samples from all participating ISS crewmembers who have provided informed consent. These biological samples are collected once before flight, during flight scheduled on flight days 15, 30, 60, 120 and within 2 weeks of landing. Postflight sessions are conducted 3 and 30 days after landing. The number of in-flight sessions is dependent on the duration of the mission. Specimens are maintained under optimal storage conditions in a manner that will maximize their integrity and viability for future research The repository operates under the authority of the NASA/JSC Committee for the Protection of Human Subjects to support scientific discovery that contributes to our fundamental knowledge in the area of human physiological changes and adaptation to a microgravity environment. The NBSR will institute guidelines for the solicitation, review and sample distribution process through establishment of the NBSR Advisory Board. The Advisory Board will be composed of representatives of all participating space agencies to evaluate each request from investigators for use of the samples. This process will be consistent with ethical principles, protection of crewmember confidentiality, prevailing laws and regulations, intellectual property policies, and consent form language. Operations supporting the NBSR are scheduled to continue until the end of U.S. presence on the ISS. Sample distribution is proposed to begin with selections on investigations beginning in 2017. The availability of the NBSR will contribute to the body of knowledge about the diverse factors of spaceflight on human physiology.

  17. NASA Integrated Network COOP

    Anderson, Michael L.; Wright, Nathaniel; Tai, Wallace


    Natural disasters, terrorist attacks, civil unrest, and other events have the potential of disrupting mission-essential operations in any space communications network. NASA's Space Communications and Navigation office (SCaN) is in the process of studying options for integrating the three existing NASA network elements, the Deep Space Network, the Near Earth Network, and the Space Network, into a single integrated network with common services and interfaces. The need to maintain Continuity of Operations (COOP) after a disastrous event has a direct impact on the future network design and operations concepts. The SCaN Integrated Network will provide support to a variety of user missions. The missions have diverse requirements and include anything from earth based platforms to planetary missions and rovers. It is presumed that an integrated network, with common interfaces and processes, provides an inherent advantage to COOP in that multiple elements and networks can provide cross-support in a seamless manner. The results of trade studies support this assumption but also show that centralization as a means of achieving integration can result in single points of failure that must be mitigated. The cost to provide this mitigation can be substantial. In support of this effort, the team evaluated the current approaches to COOP, developed multiple potential approaches to COOP in a future integrated network, evaluated the interdependencies of the various approaches to the various network control and operations options, and did a best value assessment of the options. The paper will describe the trade space, the study methods, and results of the study.

  18. NASA Bluetooth Wireless Communications

    Miller, Robert D.


    NASA has been interested in wireless communications for many years, especially when the crew size of the International Space Station (ISS) was reduced to two members. NASA began a study to find ways to improve crew efficiency to make sure the ISS could be maintained with limited crew capacity and still be a valuable research testbed in Low-Earth Orbit (LEO). Currently the ISS audio system requires astronauts to be tethered to the audio system, specifically a device called the Audio Terminal Unit (ATU). Wireless communications would remove the tether and allow astronauts to freely float from experiment to experiment without having to worry about moving and reconnecting the associated cabling or finding the space equivalent of an extension cord. A wireless communication system would also improve safety and reduce system susceptibility to Electromagnetic Interference (EMI). Safety would be improved because a crewmember could quickly escape a fire while maintaining communications with the ground and other crewmembers at any location. In addition, it would allow the crew to overcome the volume limitations of the ISS ATU. This is especially important to the Portable Breathing Apparatus (PBA). The next generation of space vehicles and habitats also demand wireless attention. Orion will carry up to six crewmembers in a relatively small cabin. Yet, wireless could become a driving factor to reduce launch weight and increase habitable volume. Six crewmembers, each tethered to a panel, could result in a wiring mess even in nominal operations. In addition to Orion, research is being conducted to determine if Bluetooth is appropriate for Lunar Habitat applications.

  19. Impact assessment of El Nino and La Nina episodes on local/regional monsoon rainfall in India

    Singh, Sureuder; Rao, V.U.M.; Shigh, Diwan


    Large scale atmospheric circulation's and climatic anomalies have been shown to have a significant impact on seasonal weather over many parts of the world. In the present paper an attempt has been made to examine regional monsoon dynamics in relation with El Nino and La Nina episodes. The investigation was earned out for the meteorological sub- division's comprising the areas of Haryana, Delhi and Chandigarh in India. The monthly monsoon rainfall data of different locations in the region and corresponding data on El Nino and La Nina episodes for the period of 30 years (1970-99) were used for this investigation. During the El Nino episodes, various locations experienced excess rainfall in monsoon ranged between 11 and 22 percent. Under the influence of La Nina episodes, the probability of excess monsoon rainfall at different locations in the sub-division ranged between 13 and 25 percent. However, many locations viz., Hisar, Bhiwani, Gurgaon, Delhi and Chandigarh received deficient monsoon rainfall which was contrary to the global belief of the association between SST anomalies and rainfall distribution. No significant association was observed between El Nino and La Nina and monsoon rainfall at different locations in the entire sub-division. However, there was a strong relationship between these SST anomalies and all India monsoon rainfall over the period under study (1970-99). (author)

  20. Distribution of coccolithophores as a potential proxy in paleoceanography: The case of the Oman Sea monsoonal pattern

    Mojtahedin Elham


    Full Text Available High abundances of coccoliths have been observed in surface sediment samples from near the coasts of the Oman Sea in February 2011. At the end of the NE monsoon, the locally observed high Gephyrocapsa oceanica production is hypothesized to respond to local injections of nutrient-rich deep water into the surface water due to sea-surface cooling leading to convection. The most abundant coccolithophore species are G. oceanica followed by Emiliania huxleyi, Helicosphaera carteri, Calcidiscus leptoporus. Some species, such as Gephyrocapsa muellerae, Gephyrocapsa ericsonii, Umbilicosphaera sibogae, Umbellosphaera tenuis and Florisphaera profunda, are rare. The G. oceanica suggested a prevalence of upwelling conditions or high supply of nutrients in the Oman Sea (especially West Jask at the end of the NE monsoon. E. huxleyi showed low relative abundances at the end of the NE monsoon. Due to the location of the Oman Sea in low latitudes with high temperatures, we have observed low abundances of G. muellerae in the study area. Additionally, we have identified low abundances of G. ericsonii at the end of the NE monsoon. Helicosphaera carteri showed a clear negative response with decreasing amounts (relative abundances at the end of the NE monsoon. C. leptoporus, U. sibogae and U. tenuis have very low relative abundances in the NE monsoon and declined extremely at the end of the NE monsoon. F. profunda, which is known to inhabit the lower photic zone (<100 m depht was rarely observed in the samples.

  1. Distribution of coccolithophores as a potential proxy in paleoceanography: The case of the Oman Sea monsoonal pattern

    Mojtahedin, Elham; Hadavi, Fatemeh; Lak, Razyeh


    High abundances of coccoliths have been observed in surface sediment samples from near the coasts of the Oman Sea in February 2011. At the end of the NE monsoon, the locally observed high Gephyrocapsa oceanica production is hypothesized to respond to local injections of nutrient-rich deep water into the surface water due to sea-surface cooling leading to convection. The most abundant coccolithophore species are G. oceanica followed by Emiliania huxleyi, Helicosphaera carteri, Calcidiscus leptoporus. Some species, such as Gephyrocapsa muellerae, Gephyrocapsa ericsonii, Umbilicosphaera sibogae, Umbellosphaera tenuis and Florisphaera profunda, are rare. The G. oceanica suggested a prevalence of upwelling conditions or high supply of nutrients in the Oman Sea (especially West Jask) at the end of the NE monsoon. E. huxleyi showed low relative abundances at the end of the NE monsoon. Due to the location of the Oman Sea in low latitudes with high temperatures, we have observed low abundances of G. muellerae in the study area. Additionally, we have identified low abundances of G. ericsonii at the end of the NE monsoon. Helicosphaera carteri showed a clear negative response with decreasing amounts (relative abundances) at the end of the NE monsoon. C. leptoporus, U. sibogae and U. tenuis have very low relative abundances in the NE monsoon and declined extremely at the end of the NE monsoon. F. profunda, which is known to inhabit the lower photic zone (<100 m depht) was rarely observed in the samples.

  2. Distributional patterns of anemophilous tree pollen indicating the pathways of Indian monsoon through Qinghai–Tibetan Plateau

    Zhi-Yong Zhang


    Full Text Available The distribution pattern of vegetation on Qinghai–Tibetan Plateau is fundamentally influenced by the plateau climate, which is mainly controlled by Indian monsoon during summer. The long distance transportation of pollen (mostly anemophilous taxa produced by trees on the plateau has been recorded by modern pollen samples in previous studies, and hypothesized to be a good indicator of monsoon dynamics. Here we use 270 surface pollen samples from Qinghai–Tibetan Plateau to test the distribution patterns of the anemophilous tree pollen. Meanwhile factors related to Indian monsoon affecting pollen transportation are simulated and analyzed. Results show that depositional patterns of anemophilous tree pollen, especially Abies, Pinus, Quercus and Betula are completely controlled by the pathways of Indian monsoon. This is reflected by climatic indicators of the atmospheric pressure pattern over June–July–August, by the precipitation pattern over June–July–August and by the topographic feature of the plateau. The spatial interpolation of thin plate spline results also display two depositional centers (ca. 30°N, 95°E and 30°N, 105°E of the anemophilous tree pollen. In contrast to previous conclusion that pollen distributional pattern is determined by mean annual precipitation, we argue that Indian monsoon is the essential controller because of the synchronization between timing of monsoon wind and timing of plants flowering. Our finding strongly suggests that distributional pattern of anemophilous tree pollen on the plateau is a good proxy of Indian monsoon.

  3. Regime shift of Indian summer monsoon rainfall to a persistent arid state: external forcing versus internal variability

    Srivastava, Ankur; Pradhan, Maheswar; Goswami, B. N.; Rao, Suryachandra A.


    The high propensity of deficient monsoon rainfall over the Indian sub-continent in the recent 3 decades (seven deficient monsoons against 3 excess monsoon years) compared to the prior 3 decades has serious implications on the food and water resources in the country. Motivated by the need to understand the high occurrence of deficient monsoon during this period, we examine the change in predictability of the Indian summer monsoon (ISM) and its teleconnections with Indo-Pacific sea surface temperatures between the two periods. The shift in the tropical climate in the late 1970s appears to be one of the major reasons behind this. We find an increased predictability of the ISM in the recent 3 decades owing to reduced `internal' interannual variability (IAV) due to the high-frequency modes, while the `external' IAV arising from the low-frequency modes has remained largely the same. The Indian Ocean Dipole-ISM teleconnection has become positive during the monsoon season in the recent period thereby compensating for the weakened ENSO-ISM teleconnection. The central Pacific El-Niño and the Indian Ocean (IO) warming during the recent 3 decades are working together to realise enhanced ascending motion in the equatorial IO between 70°E and 100°E, preconditioning the Indian monsoon system prone to a deficient state.

  4. African Journal of Marine Science

    AFRICAN JOURNALS ONLINE (AJOL) · Journals · Advanced Search ... The African (formerly South African) Journal of Marine Science provides an international forum for the publication of original scientific contributions or critical reviews, ...

  5. The link between Tibetan Plateau monsoon and Indian summer precipitation: a linear diagnostic perspective

    Ge, Fei; Sielmann, Frank; Zhu, Xiuhua; Fraedrich, Klaus; Zhi, Xiefei; Peng, Ting; Wang, Lei


    The thermal forcing of the Tibetan Plateau (TP) is analyzed to investigate the formation and variability of Tibetan Plateau Summer Monsoon (TPSM), which affects the climates of the surrounding regions, in particular the Indian summer monsoon precipitation. Dynamic composites and statistical analyses indicate that the Indian summer monsoon precipitation is less/greater than normal during the strong/weak TPSM. Strong (weak) TPSM is associated with an anomalous near surface cyclone (anticyclone) over the western part of the Tibetan Plateau, enhancing (reducing) the westerly flow along its southern flank, suppressing (favoring) the meridional flow of warm and moist air from the Indian ocean and thus cutting (providing) moisture supply for the northern part of India and its monsoonal rainfall. These results are complemented by a dynamic and thermodynamic analysis: (i) A linear thermal vorticity forcing primarily describes the influence of the asymmetric heating of TP generating an anomalous stationary wave flux. Composite analysis of anomalous stationary wave flux activity (after Plumb in J Atmos Sci 42:217-229, 1985) strongly indicate that non-orographic effects (diabatic heating and/or interaction with transient eddies) of the Tibetan Plateau contribute to the generation of an anomalous cyclone (anti-cyclone) over the western TP. (ii) Anomalous TPSM generation shows that strong TPSM years are related to the positive surface sensible heating anomalies over the eastern TP favoring the strong diabatic heating in summer. While negative TPSM years are associated with the atmospheric circulation anomalies during the preceding spring, enhancing northerly dry-cold air intrusions into TP, which may weaken the condensational heat release in the middle and upper troposphere, leading to a weaker than normal summer monsoon over the TP in summer.

  6. Assessment of Land Surface Models in a High-Resolution Atmospheric Model during Indian Summer Monsoon

    Attada, Raju


    Assessment of the land surface models (LSMs) on monsoon studies over the Indian summer monsoon (ISM) region is essential. In this study, we evaluate the skill of LSMs at 10 km spatial resolution in simulating the 2010 monsoon season. The thermal diffusion scheme (TDS), rapid update cycle (RUC), and Noah and Noah with multi-parameterization (Noah-MP) LSMs are chosen based on nature of complexity, that is, from simple slab model to multi-parameterization options coupled with the Weather Research and Forecasting (WRF) model. Model results are compared with the available in situ observations and reanalysis fields. The sensitivity of monsoon elements, surface characteristics, and vertical structures to different LSMs is discussed. Our results reveal that the monsoon features are reproduced by WRF model with all LSMs, but with some regional discrepancies. The model simulations with selected LSMs are able to reproduce the broad rainfall patterns, orography-induced rainfall over the Himalayan region, and dry zone over the southern tip of India. The unrealistic precipitation pattern over the equatorial western Indian Ocean is simulated by WRF–LSM-based experiments. The spatial and temporal distributions of top 2-m soil characteristics (soil temperature and soil moisture) are well represented in RUC and Noah-MP LSM-based experiments during the ISM. Results show that the WRF simulations with RUC, Noah, and Noah-MP LSM-based experiments significantly improved the skill of 2-m temperature and moisture compared to TDS (chosen as a base) LSM-based experiments. Furthermore, the simulations with Noah, RUC, and Noah-MP LSMs exhibit minimum error in thermodynamics fields. In case of surface wind speed, TDS LSM performed better compared to other LSM experiments. A significant improvement is noticeable in simulating rainfall by WRF model with Noah, RUC, and Noah-MP LSMs over TDS LSM. Thus, this study emphasis the importance of choosing/improving LSMs for simulating the ISM phenomena

  7. Monsoonal influence on variation of hydrochemistry and isotopic signatures: Implications for associated arsenic release in groundwater

    Majumder, Santanu; Datta, Saugata; Nath, Bibhash; Neidhardt, Harald; Sarkar, Simita; Roman-Ross, Gabriela; Berner, Zsolt; Hidalgo, Manuela; Chatterjee, Debankur; Chatterjee, Debashis


    The present study examines the groundwater and surface water geochemistry of two different geomorphic domains within the Chakdaha block, West Bengal, in an attempt to decipher potential influences of groundwater abstraction on the hydrochemical evolution of the aquifer, the effect of different water inputs (monsoon rain, irrigation and downward percolation from surface water impoundments) to the groundwater system and concomitant As release. A low-land flood plain and a natural levee have been selected for this purpose. Although the stable isotopic signatures of oxygen (δ18O) and hydrogen (δ2H) are largely controlled by local precipitation, the isotopic composition falls sub-parallel to the Global Meteoric Water Line (GMWL). The Cl/Br molar ratio indicates vertical recharge into the wells within the flood plain area, especially during the post-monsoon season, while influences of both evaporation and vertical mixing are visible within the natural levee wells. Increase in mean DOC concentrations (from 1.33 to 6.29 mg/L), from pre- to post-monsoon season, indicates possible inflow of organic carbon to the aquifer during the monsoonal recharge. Concomitant increase in AsT, Fe(II) and HCO3- highlights a possible initial episode of reductive dissolution of As-rich Fe-oxyhydroxides. The subsequent sharp increase in the mean As(III) proportions (by 223%), particularly in the flood plain samples during the post-monsoon season, which is accompanied by a slight increase in mean AsT (7%) may refer to anaerobic microbial degradation of DOC coupled with the reduction of As(V) to As(III) without triggering additional As release from the aquifer sediments.

  8. Assessment of Land Surface Models in a High-Resolution Atmospheric Model during Indian Summer Monsoon

    Attada, Raju; Kumar, Prashant; Dasari, Hari Prasad


    Assessment of the land surface models (LSMs) on monsoon studies over the Indian summer monsoon (ISM) region is essential. In this study, we evaluate the skill of LSMs at 10 km spatial resolution in simulating the 2010 monsoon season. The thermal diffusion scheme (TDS), rapid update cycle (RUC), and Noah and Noah with multi-parameterization (Noah-MP) LSMs are chosen based on nature of complexity, that is, from simple slab model to multi-parameterization options coupled with the Weather Research and Forecasting (WRF) model. Model results are compared with the available in situ observations and reanalysis fields. The sensitivity of monsoon elements, surface characteristics, and vertical structures to different LSMs is discussed. Our results reveal that the monsoon features are reproduced by WRF model with all LSMs, but with some regional discrepancies. The model simulations with selected LSMs are able to reproduce the broad rainfall patterns, orography-induced rainfall over the Himalayan region, and dry zone over the southern tip of India. The unrealistic precipitation pattern over the equatorial western Indian Ocean is simulated by WRF-LSM-based experiments. The spatial and temporal distributions of top 2-m soil characteristics (soil temperature and soil moisture) are well represented in RUC and Noah-MP LSM-based experiments during the ISM. Results show that the WRF simulations with RUC, Noah, and Noah-MP LSM-based experiments significantly improved the skill of 2-m temperature and moisture compared to TDS (chosen as a base) LSM-based experiments. Furthermore, the simulations with Noah, RUC, and Noah-MP LSMs exhibit minimum error in thermodynamics fields. In case of surface wind speed, TDS LSM performed better compared to other LSM experiments. A significant improvement is noticeable in simulating rainfall by WRF model with Noah, RUC, and Noah-MP LSMs over TDS LSM. Thus, this study emphasis the importance of choosing/improving LSMs for simulating the ISM phenomena in

  9. Assessment of Land Surface Models in a High-Resolution Atmospheric Model during Indian Summer Monsoon

    Attada, Raju; Kumar, Prashant; Dasari, Hari Prasad


    Assessment of the land surface models (LSMs) on monsoon studies over the Indian summer monsoon (ISM) region is essential. In this study, we evaluate the skill of LSMs at 10 km spatial resolution in simulating the 2010 monsoon season. The thermal diffusion scheme (TDS), rapid update cycle (RUC), and Noah and Noah with multi-parameterization (Noah-MP) LSMs are chosen based on nature of complexity, that is, from simple slab model to multi-parameterization options coupled with the Weather Research and Forecasting (WRF) model. Model results are compared with the available in situ observations and reanalysis fields. The sensitivity of monsoon elements, surface characteristics, and vertical structures to different LSMs is discussed. Our results reveal that the monsoon features are reproduced by WRF model with all LSMs, but with some regional discrepancies. The model simulations with selected LSMs are able to reproduce the broad rainfall patterns, orography-induced rainfall over the Himalayan region, and dry zone over the southern tip of India. The unrealistic precipitation pattern over the equatorial western Indian Ocean is simulated by WRF–LSM-based experiments. The spatial and temporal distributions of top 2-m soil characteristics (soil temperature and soil moisture) are well represented in RUC and Noah-MP LSM-based experiments during the ISM. Results show that the WRF simulations with RUC, Noah, and Noah-MP LSM-based experiments significantly improved the skill of 2-m temperature and moisture compared to TDS (chosen as a base) LSM-based experiments. Furthermore, the simulations with Noah, RUC, and Noah-MP LSMs exhibit minimum error in thermodynamics fields. In case of surface wind speed, TDS LSM performed better compared to other LSM experiments. A significant improvement is noticeable in simulating rainfall by WRF model with Noah, RUC, and Noah-MP LSMs over TDS LSM. Thus, this study emphasis the importance of choosing/improving LSMs for simulating the ISM phenomena

  10. African Journals Online (AJOL)

    Continuing Medical Education; Establishing financial markets in Ethiopia: the environmental foundation, challenges and opportunities ... Ethiopian Journal of Education and Sciences; Gender Relations in ... South African Actuarial Journal.

  11. African Journals Online (AJOL)

    Ethiopian Journal of Education and Sciences; Educational leadership and ... Ethiopian Journal of Education and Sciences; Establishing financial markets in Ethiopia: the environmental foundation, challenges ... South African Actuarial Journal.

  12. NASA and The Semantic Web

    Ashish, Naveen


    We provide an overview of several ongoing NASA endeavors based on concepts, systems, and technology from the Semantic Web arena. Indeed NASA has been one of the early adopters of Semantic Web Technology and we describe ongoing and completed R&D efforts for several applications ranging from collaborative systems to airspace information management to enterprise search to scientific information gathering and discovery systems at NASA.

  13. The NASA Polarimetric Radar (NPOL)

    Petersen, Walter A.; Wolff, David B.


    Characteristics of the NASA NPOL S-band dual-polarimetric radar are presented including its operating characteristics, field configuration, scanning capabilities and calibration approaches. Examples of precipitation science data collections conducted using various scan types, and associated products, are presented for different convective system types and previous field campaign deployments. Finally, the NASA NPOL radar location is depicted in its home base configuration within the greater Wallops Flight Facility precipitation research array supporting NASA Global Precipitation Measurement Mission ground validation.

  14. Non-linear regime shifts in Holocene Asian monsoon variability: potential impacts on cultural change and migratory patterns

    Donges, J. F.; Donner, R. V.; Marwan, N.; Breitenbach, S. F. M.; Rehfeld, K.; Kurths, J.


    The Asian monsoon system is an important tipping element in Earth's climate with a large impact on human societies in the past and present. In light of the potentially severe impacts of present and future anthropogenic climate change on Asian hydrology, it is vital to understand the forcing mechanisms of past climatic regime shifts in the Asian monsoon domain. Here we use novel recurrence network analysis techniques for detecting episodes with pronounced non-linear changes in Holocene Asian monsoon dynamics recorded in speleothems from caves distributed throughout the major branches of the Asian monsoon system. A newly developed multi-proxy methodology explicitly considers dating uncertainties with the COPRA (COnstructing Proxy Records from Age models) approach and allows for detection of continental-scale regime shifts in the complexity of monsoon dynamics. Several epochs are characterised by non-linear regime shifts in Asian monsoon variability, including the periods around 8.5-7.9, 5.7-5.0, 4.1-3.7, and 3.0-2.4 ka BP. The timing of these regime shifts is consistent with known episodes of Holocene rapid climate change (RCC) and high-latitude Bond events. Additionally, we observe a previously rarely reported non-linear regime shift around 7.3 ka BP, a timing that matches the typical 1.0-1.5 ky return intervals of Bond events. A detailed review of previously suggested links between Holocene climatic changes in the Asian monsoon domain and the archaeological record indicates that, in addition to previously considered longer-term changes in mean monsoon intensity and other climatic parameters, regime shifts in monsoon complexity might have played an important role as drivers of migration, pronounced cultural changes, and the collapse of ancient human societies.

  15. Bacterioplankton activity in the surface waters of the Arabian Sea during and after the 1994 SW monsoon

    Pomroy, Alan; Joint, Ian


    Bacterial biomass and production were measured on two cruises to the northwestern Arabian Sea in 1994; the first cruise took place towards the end of the SW monsoon in September, and the second cruise during the inter-monsoon period in November and December. Although phytoplankton production was significantly higher during the monsoon, bacterial numbers showed little difference. Bacteria were most abundant in the euphotic zone and highest bacterial numbers were measured during the monsoon period in the Gulf of Oman and the shelf waters off southern Oman; in these regions, numbers ranged from 0.9 to 1.6×10 9 bacteria l -1. On both cruises, bacteria were less abundant in the euphotic zone of the central Arabian Sea and typically ca 0.8×10 9 cells l -1 were present. The majority of bacteria (80-95%) were small cocci that were larger (median diameter 0.40 μm) during the monsoon period than the inter-monsoon, when the cells had a diameter of 0.36 μm; there was no comparable change in cell dimensions of bacteria present as rods. Bacterial production was measured by the incorporation of 3H-thymidine and 3H-leucine. On both cruises, uptake rates were highest on the Omani shelf and decreased offshore. In the central Arabian Sea, thymidine incorporation rates were similar in the monsoon and inter-monsoon periods, but higher rates of leucine incorporation were measured during the monsoon period. Bacterial production was a relatively small proportion of phytoplankton production in both periods sampled; bacterial production was equivalent to between 10 and 30% of the daily primary production in the Arabian Sea.

  16. A Mesoscale Analysis of Column-Integrated Aerosol Properties in Northern India During the TIGERZ 2008 Pre-Monsoon Period and a Comparison to MODIS Retrievals

    Giles, D. M.; Holben, B. N.; Tripathi, S. N.; Eck, T. F.; Newcomb, W. W.; Slutsker, I.; Dickerson, R. R.; Thompson, A. M.; Wang, S.-H.; Singh, R. P.; hide


    The Indo-Gangetic Plain (IGP) of the northern Indian subcontinent produces anthropogenic pollution from urban, industrial and rural combustion sources nearly continuously and is affected by convection-induced winds driving desert and alluvial dust into the atmosphere during the premonsoon period. Within the IGP, the NASA Aerosol Robotic Network (AERONET) project initiated the TIGERZ measurement campaign in May 2008 with an intensive operational period from May 1 to June 23, 2008. Mesoscale spatial variability of aerosol optical depth (AOD, tau) measurements at 500mn was assessed at sites around Kanpur, India, with averages ranging from 0.31 to 0.89 for spatial variability study (SVS) deployments. Sites located downwind from the city of Kanpur indicated slightly higher average aerosol optical depth (delta Tau(sub 500)=0.03-0.09). In addition, SVS AOD area-averages were compared to the long-tenn Kanpur AERONET site data: Four SVS area-averages were within +/- 1 cr of the climatological mean of the Kanpur site, while one SVS was within 2sigma below climatology. For a SVS case using AERONET inversions, the 440-870mn Angstrom exponent of approximately 0.38, the 440-870mn absorption Angstrom exponent (AAE) of 1.15-1.53, and the sphericity parameter near zero suggested the occurrence of large, strongly absorbing, non-spherical aerosols over Kanpur (e.g., mixed black carbon and dust) as well as stronger absorption downwind of Kanpur. Furthermore, the 3km and lOkm Terra and Aqua MODIS C005 aerosol retrieval algorithms at tau(sub 550) were compared to the TIGERZ data set. Although MODIS retrievals at higher quality levels were comparable to the MODIS retrieval uncertainty, the total number of MODIS matchups (N) were reduced with subsequent quality levels (N=25, QA>=0; N=9,QA>=l; N=6, QA>=2; N=1, QA=3) over Kanpur during the premonsoon primarily due to the semi-bright surface, complex aerosol mixture and cloud-contaminated pixels. The TIGERZ 2008 data set provided a unique

  17. NASA Information Technology Implementation Plan


    NASA's Information Technology (IT) resources and IT support continue to be a growing and integral part of all NASA missions. Furthermore, the growing IT support requirements are becoming more complex and diverse. The following are a few examples of the growing complexity and diversity of NASA's IT environment. NASA is conducting basic IT research in the Intelligent Synthesis Environment (ISE) and Intelligent Systems (IS) Initiatives. IT security, infrastructure protection, and privacy of data are requiring more and more management attention and an increasing share of the NASA IT budget. Outsourcing of IT support is becoming a key element of NASA's IT strategy as exemplified by Outsourcing Desktop Initiative for NASA (ODIN) and the outsourcing of NASA Integrated Services Network (NISN) support. Finally, technology refresh is helping to provide improved support at lower cost. Recently the NASA Automated Data Processing (ADP) Consolidation Center (NACC) upgraded its bipolar technology computer systems with Complementary Metal Oxide Semiconductor (CMOS) technology systems. This NACC upgrade substantially reduced the hardware maintenance and software licensing costs, significantly increased system speed and capacity, and reduced customer processing costs by 11 percent.

  18. Impact of geographic variations of the convective and dehydration center on stratospheric water vapor over the Asian monsoon region

    K. Zhang


    Full Text Available The Asian monsoon region is the most prominent moisture center of water vapor in the lower stratosphere (LS during boreal summer. Previous studies have suggested that the transport of water vapor to the Asian monsoon LS is controlled by dehydration temperatures and convection mainly over the Bay of Bengal and Southeast Asia. However, there is a clear geographic variation of convection associated with the seasonal and intra-seasonal variations of the Asian monsoon circulation, and the relative influence of such a geographic variation of convection vs. the variation of local dehydration temperatures on water vapor transport is still not clear. Using satellite observations from the Aura Microwave Limb Sounder (MLS and a domain-filling forward trajectory model, we show that almost half of the seasonal water vapor increase in the Asian monsoon LS are attributable to geographic variations of convection and resultant variations of the dehydration center, of which the influence is comparable to the influence of the local dehydration temperature increase. In particular, dehydration temperatures are coldest over the southeast and warmest over the northwest Asian monsoon region. Although the convective center is located over Southeast Asia, an anomalous increase of convection over the northwest Asia monsoon region increases local diabatic heating in the tropopause layer and air masses entering the LS are dehydrated at relatively warmer temperatures. Due to warmer dehydration temperatures, anomalously moist air enters the LS and moves eastward along the northern flank of the monsoon anticyclonic flow, leading to wet anomalies in the LS over the Asian monsoon region. Likewise, when convection increases over the Southeast Asia monsoon region, dry anomalies appear in the LS. On a seasonal scale, this feature is associated with the monsoon circulation, convection and diabatic heating marching towards the northwest Asia monsoon region from June to August. The

  19. NASA Langley/CNU Distance Learning Programs

    Caton, Randall; Pinelli, Thomas E.


    NASA Langley Research Center and Christopher Newport University (CNU) provide, free to the public, distance learning programs that focus on math, science, and/or technology over a spectrum of education levels from K-adult. The effort started in 1997, and we currently have a suite of five distance-learning programs. We have around 450,000 registered educators and 12.5 million registered students in 60 countries. Partners and affiliates include the American Institute of Aeronautics and Astronautics (AIAA), the Aerospace Education Coordinating Committee (AECC), the Alliance for Community Media, the National Educational Telecommunications Association, Public Broadcasting System (PBS) affiliates, the NASA Learning Technologies Channel, the National Council of Teachers of Mathematics (NCTM), the Council of the Great City Schools, Hampton City Public Schools, Sea World Adventure Parks, Busch Gardens,, and Riverdeep. Our mission is based on the "Horizon of Learning," a vision for inspiring learning across a continuum of educational experiences. The programs form a continuum of educational experiences for elementary youth through adult learners. The strategic plan for the programs will evolve to reflect evolving national educational needs, changes within NASA, and emerging system initiatives. Plans for each program component include goals, objectives, learning outcomes, and rely on sound business models. It is well documented that if technology is used properly it can be a powerful partner in education. Our programs employ both advances in information technology and in effective pedagogy to produce a broad range of materials to complement and enhance other educational efforts. Collectively, the goals of the five programs are to increase educational excellence; enhance and enrich the teaching of mathematics, science, and technology; increase scientific and technological literacy; and communicate the results of NASA discovery, exploration, innovation and research

  20. A Holocene Record of Monsoon Intensity From Speleothems in Flores, Indonesia

    Griffiths, M. L.; Drysdale, R.; Gagan, M.; Ayliffe, L.; Zhao, J.; St. Pierre, E.; Hantoro, W.; Suwargadi, B.


    The Australasian monsoon is among the largest monsoon systems on Earth. The affected region experiences a marked seasonal cycle in winds and precipitation, similar to its Northern Hemisphere counterparts (e.g., Asian monsoons). The Australasian monsoon is the life blood of the millions of people of the Indonesian archipelago. Since the climate is the dominating factor controlling food production, it is of great significance and urgency that we gain a firmer grasp on the parameters that control variations in monsoon intensity. Precise uranium series dating of two actively growing speleothems measuring ~1.25 (LR06-B1) and ~1.61 (LR06-B3) meters in length from Liang Luar cave (Flores, eastern Indonesia), reveal basal ages of ~12,846±103 and 23,605±171 years respectively. In previous studies, stable isotope ratios (δ18O and δ13C) and trace element concentrations in speleothems have revealed past environmental change (e.g., Burns et al., 2001; Wang et al., 2001; Fleitmann et al., 2004; Drysdale et al., 2004).In monsoon-affected regions, the δ18O signal recorded in stalagmites seems to be dominated by the amount of precipitation (so-called `amount effect'), whereby more negative (positive) δ18O values indicate enhanced (diminished) precipitation. Preliminary results from LR06-B1 indicate that δ18O values show a general increase in monsoon intensity from the beginning of the record to ~2000 years BP: this more or less follows insolation changes over the Australian continent.Comparison of our record with D4 from Dongge Cave reveals an anticorrelation during the Holocene, further supporting the hypothesis that tropical monsoon intensity is largely controlled by changes in insolation in both the Northern and Southern Hemisphere. Examination of our δ13C record demonstrates a high-frequency signal superimposed on low- frequency variability which correlates with the reconstructed sunspot cycle: higher (lower) sunspot numbers, and hence increased solar activity

  1. South African Family Practice

    South African Family Practice(SAFP) is a peer-reviewed scientific journal, which strives to ... The content of SAFP is designed to reflect and support further development of the broad ... Vol 60, No 2 (2018) ... of doctors and physiotherapists in the rehabilitation of people living with HIV · EMAIL ... AJOL African Journals Online.

  2. East African Medical Journal

    The East African Medical Journal is intended for publication of papers on ... research on problems relevant to East Africa and other African countries will receive special ... Analysis of survival patterns of TB‐HIV co‐infected patients in relation to ...

  3. Annals of African Surgery

    The goal of the Annals of African Surgery is to provide a medium for the exchange of current information between surgeons in the African region. The journal embraces surgery in all its aspects; basic science, clinical research, experimental research, surgical education. It will assist surgeons in the region to keep abreast of ...

  4. African Peacekeepers in Africa

    Emmanuel, Nikolas G.


    behind African participation in United Nations (UN) peacekeeping operations in Africa. In doing so, this research focuses on US military aid and foreign troop training from 2002 to 2012, and its impact on African deployments into UN peacekeeping missions in Africa. As can be expected, such third...

  5. African Journals Online (AJOL)

    Historically, scholarly information has flowed from North to South and from West to East. It has also been difficult for African researchers to access the work of other African academics. In partnership with hundreds of journals from all ... Featured Country: Nigeria, Featured Journal: Nigeria Journal of Business Administration ...

  6. African Journals Online: Guernsey

    African Journals Online: Guernsey. Home > African Journals Online: Guernsey. Log in or Register to get access to full text downloads. Username, Password, Remember me, or Register · Browse By Category · Browse Alphabetically · Browse By Country · List All Titles · Free to read Titles This Journal is Open Access ...

  7. African Journals Online: Grenada

    African Journals Online: Grenada. Home > African Journals Online: Grenada. Log in or Register to get access to full text downloads. Username, Password, Remember me, or Register · Browse By Category · Browse Alphabetically · Browse By Country · List All Titles · Free to read Titles This Journal is Open Access ...

  8. African Journals Online: India

    African Journals Online: India. Home > African Journals Online: India. Log in or Register to get access to full text downloads. Username, Password, Remember me, or Register · Browse By Category · Browse Alphabetically · Browse By Country · List All Titles · Free to read Titles This Journal is Open Access. Afghanistan ...

  9. African Journals Online: Barbados

    African Journals Online: Barbados. Home > African Journals Online: Barbados. Log in or Register to get access to full text downloads. Username, Password, Remember me, or Register · Browse By Category · Browse Alphabetically · Browse By Country · List All Titles · Free to read Titles This Journal is Open Access ...

  10. African Journals Online: Malta

    African Journals Online: Malta. Home > African Journals Online: Malta. Log in or Register to get access to full text downloads. Username, Password, Remember me, or Register · Browse By Category · Browse Alphabetically · Browse By Country · List All Titles · Free to read Titles This Journal is Open Access. Afghanistan ...

  11. African Journals Online: Bahamas

    African Journals Online: Bahamas. Home > African Journals Online: Bahamas. Log in or Register to get access to full text downloads. Username, Password, Remember me, or Register · Browse By Category · Browse Alphabetically · Browse By Country · List All Titles · Free to read Titles This Journal is Open Access ...

  12. African Journals Online: Liechtenstein

    African Journals Online: Liechtenstein. Home > African Journals Online: Liechtenstein. Log in or Register to get access to full text downloads. Username, Password, Remember me, or Register · Browse By Category · Browse Alphabetically · Browse By Country · List All Titles · Free to read Titles This Journal is Open Access ...

  13. African Journals Online: Vanuatu

    African Journals Online: Vanuatu. Home > African Journals Online: Vanuatu. Log in or Register to get access to full text downloads. Username, Password, Remember me, or Register · Browse By Category · Browse Alphabetically · Browse By Country · List All Titles · Free to read Titles This Journal is Open Access ...

  14. African Journals Online (AJOL)

    In partnership with hundreds of journals from all over the continent, AJOL works to change this, so that African-origin research output is available to Africans and to the rest of the world. ... AFRREV IJAH: An International Journal of Arts and Humanities; Human Rights under the Ethiopian Constitution: A Descriptive Overview

  15. African Journals Online (AJOL)

    Ethiopian Journal of Education and Sciences; Conflicts in Africa: Meaning, Causes, Impact and Solution African Research Review; The competitive advantage of nations: is Porter's Diamond Framework a new theory that explains the international competitiveness of countries? Southern African Business Review; The Rise of ...

  16. African Journals Online (AJOL)

    African Journals OnLine (AJOL) is the world's largest and pre-eminent collection of peer-reviewed, African-published scholarly journals. Historically, scholarly information ... Ethiopian Journal of Education and Sciences; Advertising practice in Nigeria: Development, new trends, challenges and prospects. EJOTMAS: Ekpoma ...

  17. African Journals Online: Aruba

    African Journals Online: Aruba. Home > African Journals Online: Aruba. Log in or Register to get access to full text downloads. Username, Password, Remember me, or Register · Browse By Category · Browse Alphabetically · Browse By Country · List All Titles · Free to read Titles This Journal is Open Access. Afghanistan ...

  18. African Journals Online: Kazakhstan

    African Journals Online: Kazakhstan. Home > African Journals Online: Kazakhstan. Log in or Register to get access to full text downloads. Username, Password, Remember me, or Register · Browse By Category · Browse Alphabetically · Browse By Country · List All Titles · Free to read Titles This Journal is Open Access ...

  19. African Journals Online: Switzerland

    African Journals Online: Switzerland. Home > African Journals Online: Switzerland. Log in or Register to get access to full text downloads. Username, Password, Remember me, or Register · Browse By Category · Browse Alphabetically · Browse By Country · List All Titles · Free to read Titles This Journal is Open Access ...

  20. African Journals Online (AJOL)

    In partnership with hundreds of journals from all over the continent, AJOL works to change this, so that African-origin research output is available to Africans and to the rest of the world. AJOL is a Non-Profit Organisation based ... International Journal of Engineering, Science and Technology. Vol 4, No 1 (2012). International ...