WorldWideScience

Sample records for narrow-gap homogenizer working

  1. Use of narrow gap welding in nuclear power engineering and development of welding equipment at Vitkovice Iron Works (VZSKG), Ostrava

    Lehar, F.; Sevcik, P.

    1988-01-01

    Briefly discussed are problems related to automatic submerged arc welding into narrow gaps. The said method was tested for the first time at the Vitkovice Iron Works VZSKG for peripheral welds on pressurizers for WWER-440 reactors. The demands are summed up which are put on the welding workplace which must be met for the use of the said technology. The requirements mainly include the provision of the positioning of the welding nozzle towards the weld gap in order to maximally exclude the effect of the welder. An automatic device was designed and manufactured at the VZSKG plant for mounting the welding nozzle on the automatic welding machine manufactured by ESAB which operates on the principle of the flexible compression of the nozzle to the wall of the weld gap. In the bottom part the welding nozzle is provided with a pulley which rolls during welding thereby providing a constant distance to be maintained between the welding wire and the wall of the weld gap. The diameter of the pulley is ruled by the diameter of the welding wire. Provided the clamping part is appropriately adjusted the developed equipment may be used for any type of automatic welding machine with motor driven supports. (Z.M.). 8 figs., 5 tabs., 9 refs

  2. Narrow gap electronegative capacitive discharges

    Kawamura, E.; Lieberman, M. A.; Lichtenberg, A. J. [Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720 (United States)

    2013-10-15

    Narrow gap electronegative (EN) capacitive discharges are widely used in industry and have unique features not found in conventional discharges. In this paper, plasma parameters are determined over a range of decreasing gap length L from values for which an electropositive (EP) edge exists (2-region case) to smaller L-values for which the EN region connects directly to the sheath (1-region case). Parametric studies are performed at applied voltage V{sub rf}=500 V for pressures of 10, 25, 50, and 100 mTorr, and additionally at 50 mTorr for 1000 and 2000 V. Numerical results are given for a parallel plate oxygen discharge using a planar 1D3v (1 spatial dimension, 3 velocity components) particle-in-cell (PIC) code. New interesting phenomena are found for the case in which an EP edge does not exist. This 1-region case has not previously been investigated in detail, either numerically or analytically. In particular, attachment in the sheaths is important, and the central electron density n{sub e0} is depressed below the density n{sub esh} at the sheath edge. The sheath oscillations also extend into the EN core, creating an edge region lying within the sheath and not characterized by the standard diffusion in an EN plasma. An analytical model is developed using minimal inputs from the PIC results, and compared to the PIC results for a base case at V{sub rf}=500 V and 50 mTorr, showing good agreement. Selected comparisons are made at the other voltages and pressures. A self-consistent model is also developed and compared to the PIC results, giving reasonable agreement.

  3. Device Physics of Narrow Gap Semiconductors

    Chu, Junhao

    2010-01-01

    Narrow gap semiconductors obey the general rules of semiconductor science, but often exhibit extreme features of these rules because of the same properties that produce their narrow gaps. Consequently these materials provide sensitive tests of theory, and the opportunity for the design of innovative devices. Narrow gap semiconductors are the most important materials for the preparation of advanced modern infrared systems. Device Physics of Narrow Gap Semiconductors offers descriptions of the materials science and device physics of these unique materials. Topics covered include impurities and defects, recombination mechanisms, surface and interface properties, and the properties of low dimensional systems for infrared applications. This book will help readers to understand not only the semiconductor physics and materials science, but also how they relate to advanced opto-electronic devices. The last chapter applies the understanding of device physics to photoconductive detectors, photovoltaic infrared detector...

  4. New technology for the control of narrow-gap semiconductors

    Antoniou, I.; Bozhevolnov, V.; Melnikov, Yu.; Yafyasov, A.

    2003-01-01

    We present the results of the year work in the frame of the EU ESPRIT Project 28890 NTCONGS 'New technology for the control of narrow-gap semiconductors'. This work has involved both theoretical and experimental study, as well as the development of new specific equipment, towards the creation of a new generation of nanoelectronic devices able to operate at 77 K and even at room temperature

  5. Thermoelectricity in correlated narrow-gap semiconductors

    Tomczak, Jan M.

    2018-05-01

    We review many-body effects, their microscopic origin, as well as their impact on thermoelectricity in correlated narrow-gap semiconductors. Members of this class—such as FeSi and FeSb2—display an unusual temperature dependence in various observables: insulating with large thermopowers at low temperatures, they turn bad metals at temperatures much smaller than the size of their gaps. This insulator-to-metal crossover is accompanied by spectral weight-transfers over large energies in the optical conductivity and by a gradual transition from activated to Curie–Weiss-like behaviour in the magnetic susceptibility. We show a retrospective of the understanding of these phenomena, discuss the relation to heavy-fermion Kondo insulators—such as Ce3Bi4Pt3 for which we present new results—and propose a general classification of paramagnetic insulators. From the latter, FeSi emerges as an orbital-selective Kondo insulator. Focussing on intermetallics such as silicides, antimonides, skutterudites, and Heusler compounds we showcase successes and challenges for the realistic simulation of transport properties in the presence of electronic correlations. Further, we explore new avenues in which electronic correlations may contribute to the improvement of thermoelectric performance.

  6. Sub-arc narrow gap welding of Atucha 2 RPV closure head

    Hantsch, H.; Million, K.; Zimmermann, H.

    1982-01-01

    Narrow gap technology was used for reasons of design and fabrication when welding the closure-head dome to its flange. Preliminary tests had yielded the necessary improvements of the well-proven sub-arc practice. New facilities had to be developed for welding proper and for the accompanying machining work (finishing in the narrow gap). Special measures were adopted for monitoring the welding process and for recording the welding parameters. The new method was tried out on several large test coupons before welding of the final product was started. No difficulties were encountered during the welding job. Fabrication of the closure head is shown in a short film sequence. (orig.)

  7. A CHF Model in Narrow Gaps under Saturated Boiling

    Park, Suki; Kim, Hyeonil; Park, Cheol

    2014-01-01

    Many researchers have paid a great attention to the CHF in narrow gaps due to enormous industrial applications. Especially, a great number of researches on the CHF have been carried out in relation to nuclear safety issues such as in-vessel retention for nuclear power plants during a severe accident. Analytical studies to predict the CHF in narrow gaps have been also reported. Yu et al. (2012) developed an analytical model to predict the CHF on downward facing and inclined heaters based on the model of Kandlikar et al. (2001) for an upward facing heater. A new theoretical model is developed to predict the CHF in narrow gaps under saturated pool boiling. This model is applicable when one side of coolant channels or both sides are heated including the effects of heater orientation. The present model is compared with the experimental CHF data obtained in narrow gaps. A new analytical CHF model is proposed to predict CHF for narrow gaps under saturated pool boiling. This model can be applied to one-side or two-sides heating surface and also consider the effects of heater orientation on CHF. The present model is compared with the experimental data obtained in narrow gaps with one heater. The comparisons indicate that the present model shows a good agreement with the experimental CHF data in the horizontal annular tubes. However, it generally under-predicts the experimental data in the narrow rectangular gaps except the data obtained in the gap thickness of 10 mm and the horizontal downward facing heater

  8. Experimental Study on Critical Power in a Hemispherical Narrow Gap

    Park, Rae-Joon; Ha, Kwang-Soon; Kim, Sang-Baik; Kim, Hee-Dong; Jeong, Ji-Hwan

    2002-01-01

    An experimental study of critical heat flux in gap (CHFG) has been performed to investigate the inherent cooling mechanism in a hemispherical narrow gap. The objectives of the CHFG test are to measure critical power from a critical heat removal rate through the hemispherical narrow gap using distilled water with experimental parameters of system pressure and gap width. The CHFG test results have shown that a countercurrent flow limitation (CCFL) brings about local dryout at the small edge region of the upper part and finally global dryout in a hemispherical narrow gap. Increases in the gap width and pressure lead to an increase in critical power. The measured values of critical power are lower than the predictions made by other empirical CHF correlations applicable to flat plate, annuli, and small spherical gaps. The measured data on critical power in the hemispherical narrow gaps have been correlated using nondimensional parameters with a range of approximately ±20%. The developed correlation has been expanded to apply the spherical geometry using the Siemens/KWU correlation

  9. Experimental Study on CHF in a Hemispherical Narrow Gap

    Jeong, J.H.; Park, R.J.; Kang, K.H.; Kim, S.B.; Kim, H.D.

    1999-01-01

    As a part of the SONATA-IV program, KAERI is conducting an experimental investigation of critical heat flux(CHF) in hemispherical narrow gaps. A visualization experiment, VISU-II, was done as the first step to get a visual observation of the flow behaviour inside a hemispherical gap and to understand the CHF-triggering mechanism. It was observed that the counter-current flow limitation (CCFL) phenomenon prevented water from wetting the heater surface and induced CHF. The CHFG (Critical Heat Flux in Gap) test is now being performed to measure the CHF and to investigate the inherent cooling mechanism in hemispherical narrow gaps. Temperature measurements over the heater surface show that the two-phase flow behaviour inside the gaps could be quite different from the other usual CHF experiments. The measured CHF points are lower than the predictions by existing empirical correlations based on the data measured with small-scale horizontal plates and vertical annulus. (authors)

  10. The narrow-gap TIG welding concerns the electric power plants manufacturers

    Anon.

    2009-01-01

    Polysoude, France, played host to an expert forum on narrow gap welding from 5-7 November 2008. The successful event welcomed around one hundred experts.The power plant construction sector is currently booming worldwide. For plant construction this means using more pressure-resistant, thick-walled pipes made from high temperature steels. The key quality features of this new steel grade are the values for high creep rupture strength that also apply without restriction as the benchmark for every weld seam on these pipes. In particular, the forum on narrow gap welding addressed this area of automated welding technology. During the forum, Mr Hans-Peter Mariner (Polysoude's CEO), has offered an in-depth insight into the latest developments in narrow gap welding. This presentation highlighted that with wall thicknesses of over 60 mm, welding time is shortened by a factor of five to ten in comparison to conventional TIG processes with a traditional V seam. The welding characteristics of the parent material are the decisive factor in the application of the narrow gap process. Technical advances in equipment technology such as automatic centring, HF-free ignition, seam preparation and optimised gas protection further increase the application limits. The geometry and gap width of the weld groove are based on the mechanical properties of the materials being joined, with the shrinkage characteristics of the seam being particularly important. Another key part of the programme was a presentation on the three different narrow gap-welding techniques. The first involves a single pass weld per layer and torch or work-piece revolution. The second is dual pass welding next to one another, when the seam preparation or positioning exceed the required narrow tolerances of a few tenths of a millimetre for one stringer bead per layer. TIG narrow gap welding with a shuttle-motion electrode is ideal with very large wall thicknesses of 150-200 mm. This is particularly the case if the

  11. Experimental study on the boiling phenomena within a narrow gap

    Aoki, S.; Inoue, A.; Aritomi, M.; Sakamoto, Y.

    1982-01-01

    Experiments were carried out with annular narrow gaps having the gap widths 0.2,0.3,0.4,0.5,1.0 and 1.5 mm for the following two cases: (a) for the ''open bottom'' case, the heat transfer coefficient was improved as the gap width decreases, but it was not affected by gap lengths in the range 40 <= L <= 100 mm. (b) for the ''closed bottom'' case, the heat transfer coefficient was not affected by gap width or length. The transition heat flux could be correlated by the equivalent gap length defined in terms of the cross-sectional area of the open end. (author)

  12. Magnetization states and switching in narrow-gapped ferromagnetic nanorings

    Jie Li

    2012-03-01

    Full Text Available We study permalloy nanorings that are lithographically fabricated with narrow gaps that break the rotational symmetry of the ring while retaining the vortex ground state, using both micromagnetic simulations and magnetic force microscopy (MFM. The vortex chirality in these structures can be readily set with an in-plane magnetic field and easily probed by MFM due to the field associated with the gap, suggesting such rings for possible applications in storage technologies. We find that the gapped ring edge characteristics (i.e., edge profile and gap shape are critical in determining the magnetization switching field, thus elucidating an essential parameter in the controls of devices that might incorporate such structures.

  13. Present status of heat transfer in narrow gap rectangular channel

    Sudo, Yukio; Kaminaga, Masanori

    1990-01-01

    In the safety evaluation for research nuclear reactors, at the time of abnormal transient change and accidents, after the tripping of a primary coolant pump, such event that the flow direction of coolant in a core reverses from steady downward flow to rising flow is supposed. In this case, the coexisting convection field, in which free convection and forced convection coexist, arises in place of forced convection, and especially in the research reactors using plate type fuel like JRR-3, it is important to grasp the heat transfer characteristics in the coexisting convection field in a narrow channel. Jackson et al. proposed the heat transfer correlation equation which can be applied to wide conditions including the coexisting convection zone, but its applicability to a narrow channel has not been confirmed. Based on the experimental results, in this study, the effect that the decrease of gap exerts to the convection heat transfer characteristics reported so far was investigated. The experiment and the results are reported. In this experiment on the coexisting convection zone in a narrow gap, the effect of main flow acceleration arose sufficiently large as compared with the effect of buoyancy, and heat transfer was promoted. (K.I.)

  14. Advantages and successful use of TIG narrow-gap welding

    Loehberg, R.; Pellkofer, D.; Schmidt, J.

    1986-01-01

    Narrow-gap welding, an advancement of the mechanized TIG impulse welding process with conventional seam geometry (V-shaped and/or U-shaped welds), not only assures great economic efficiency on account of the low weld volume but also offers considerable benefits in terms of quality. Thanks to the low number of beads, the following advantages are gained: less axial and radial shrinkage which reduces the strain in the root area, total heat input and, thus, the dwell time in the critical temperature range from 500 to 800 0 C leading to a chromium depletion at the grain boundaries during the welding process is minimized which markedly reduces the sensitivity of non-stabilized steels to intercrystalline stress corrosion cracking, and a relatively favourable residual welding stress profile in the heat affected zone. The process was used successfully in the past for welds of ferritic and austenitic steel pipes in the construction of nuclear power plants and in the remote-controlled welding during the replacement of piping in plants already in operation. (orig.) [de

  15. Prediction of Weld Residual Stress of Narrow Gap Welds

    Yang, Jun Seog; Huh, Nam Su

    2010-01-01

    The conventional welding technique such as shield metal arc welding has been mostly applied to the piping system of the nuclear power plants. It is well known that this welding technique causes the overheating and welding defects due to the large groove angle of weld. On the other hand, the narrow gap welding(NGW) technique has many merits, for instance, the reduction of welding time, the shrinkage of weld and the small deformation of the weld due to the small groove angle and welding bead width comparing with the conventional welds. These characteristics of NGW affect the deformation behavior and the distribution of welding residual stress of NGW, thus it is believed that the residual stress results obtained from conventional welding procedure may not be applied to structural integrity evaluation of NGW. In this paper, the welding residual stress of NGW was predicted using the nonlinear finite element analysis to simulate the thermal and mechanical effects of the NGW. The present results can be used as the important information to perform the flaw evaluation and to improve the weld procedure of NGW

  16. Vision and spectroscopic sensing for joint tracing in narrow gap laser butt welding

    Nilsen, Morgan; Sikström, Fredrik; Christiansson, Anna-Karin; Ancona, Antonio

    2017-11-01

    The automated laser beam butt welding process is sensitive to positioning the laser beam with respect to the joint because a small offset may result in detrimental lack of sidewall fusion. This problem is even more pronounced in case of narrow gap butt welding, where most of the commercial automatic joint tracing systems fail to detect the exact position and size of the gap. In this work, a dual vision and spectroscopic sensing approach is proposed to trace narrow gap butt joints during laser welding. The system consists of a camera with suitable illumination and matched optical filters and a fast miniature spectrometer. An image processing algorithm of the camera recordings has been developed in order to estimate the laser spot position relative to the joint position. The spectral emissions from the laser induced plasma plume have been acquired by the spectrometer, and based on the measurements of the intensities of selected lines of the spectrum, the electron temperature signal has been calculated and correlated to variations of process conditions. The individual performances of these two systems have been experimentally investigated and evaluated offline by data from several welding experiments, where artificial abrupt as well as gradual deviations of the laser beam out of the joint were produced. Results indicate that a combination of the information provided by the vision and spectroscopic systems is beneficial for development of a hybrid sensing system for joint tracing.

  17. The effect of exchange interaction on quasiparticle Landau levels in narrow-gap quantum well heterostructures.

    Krishtopenko, S S; Gavrilenko, V I; Goiran, M

    2012-04-04

    Using the 'screened' Hartree-Fock approximation based on the eight-band k·p Hamiltonian, we have extended our previous work (Krishtopenko et al 2011 J. Phys.: Condens. Matter 23 385601) on exchange enhancement of the g-factor in narrow-gap quantum well heterostructures by calculating the exchange renormalization of quasiparticle energies, the density of states at the Fermi level and the quasiparticle g-factor for different Landau levels overlapping. We demonstrate that exchange interaction yields more pronounced Zeeman splitting of the density of states at the Fermi level and leads to the appearance of peak-shaped features in the dependence of the Landau level energies on the magnetic field at integer filling factors. We also find that the quasiparticle g-factor does not reach the maximum value at odd filling factors in the presence of large overlapping of spin-split Landau levels. We advance an argument that the behavior of the quasiparticle g-factor in weak magnetic fields is defined by a random potential of impurities in narrow-gap heterostructures. © 2012 IOP Publishing Ltd

  18. Electronic transport in narrow-gap semiconductor nanowires

    Bloemers, Christian

    2012-10-19

    Throughout this work the electronic transport properties of InAs, InN, and GaAs/InAs core/shell nanowires have been analyzed. This includes the analysis of specific resistivity at room temperature and low temperatures as well as the breakdown of resistivity by a contribution of mobility and carrier concentration using gate measurements. While the InN nanowires showed homogeneous transport properties, there was a large statistical spread in the properties of InAs nanowires. Differing crystal structures and the surface conditions are identified to be the main reasons for the statistical spread. Both quantities of influence have been pointed out by comparing the transport parameters before and after a surface treatment (electron irradiation and long time ambient air exposure), and by comparing the transport parameters of wires grown by different growth methods which exhibit different kinds of crystal structure. In particular, the temperature dependence of the conductivity revealed different activation energies in nanowires with differing crystal structures. An explanation has been suggested in terms of stacking fault induced potential barriers. A field-effect measurement setup has been utilized to determine the nanowire mobility and carrier concentration. Even though this method is widely used for nanowires, it is subject to a serious disadvantage concerning the influence of surface and interface states on the measurements. As an alternative method which does not suffer from this drawback, Hall measurements have been successfully performed on InAs nanowires for the first time. These measurements became possible because of the utilization of a new electron beam lithographic procedure with an alignment accuracy in the 5 nm range. Carrier concentration values could be determined and compared to the ones obtained from conventional field-effect measurements. The results of the Hall measurements revealed a methodical overestimation of the carrier concentrations obtained

  19. Electronic transport in narrow-gap semiconductor nanowires

    Bloemers, Christian

    2012-01-01

    Throughout this work the electronic transport properties of InAs, InN, and GaAs/InAs core/shell nanowires have been analyzed. This includes the analysis of specific resistivity at room temperature and low temperatures as well as the breakdown of resistivity by a contribution of mobility and carrier concentration using gate measurements. While the InN nanowires showed homogeneous transport properties, there was a large statistical spread in the properties of InAs nanowires. Differing crystal structures and the surface conditions are identified to be the main reasons for the statistical spread. Both quantities of influence have been pointed out by comparing the transport parameters before and after a surface treatment (electron irradiation and long time ambient air exposure), and by comparing the transport parameters of wires grown by different growth methods which exhibit different kinds of crystal structure. In particular, the temperature dependence of the conductivity revealed different activation energies in nanowires with differing crystal structures. An explanation has been suggested in terms of stacking fault induced potential barriers. A field-effect measurement setup has been utilized to determine the nanowire mobility and carrier concentration. Even though this method is widely used for nanowires, it is subject to a serious disadvantage concerning the influence of surface and interface states on the measurements. As an alternative method which does not suffer from this drawback, Hall measurements have been successfully performed on InAs nanowires for the first time. These measurements became possible because of the utilization of a new electron beam lithographic procedure with an alignment accuracy in the 5 nm range. Carrier concentration values could be determined and compared to the ones obtained from conventional field-effect measurements. The results of the Hall measurements revealed a methodical overestimation of the carrier concentrations obtained

  20. Design, Construction, Demonstration and Delivery of an Automated Narrow Gap Welding System.

    1982-06-29

    DESIGN, CONSTRUCTION, DEMONSTRATION AND DELIVERY OF WE DA4I &NARROW GAP CONTRACT NO. NOOGOO-81-C-E923 TO DAVID TAYLOR NAVAL RESEARCH AND DEVELOPMENT...the automated * Narrow Gap welding process, is the narrow (3/8 - inch), square-butt joint *design. This narrow joint greatly reduces the volume of weld...AD-i45 495 DESIGN CONSTRUCTION DEMONSTRATION AiND DELIVERY OF RN 1/j AUrOMATED NARROW GAP WELDING SYSTEMI() CRC AUTOMATIC WELDING CO HOUSTON TX 29

  1. Thermodynamics and electrodynamics of unusual narrow-gap semiconductors

    Migliori, A.; Darling, T.W.; Trugman, S.A.; Freibert, F.; Moshopoulou, E.; Sarrao, J.L.

    1998-01-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL) that has led to a fully funded DOE program to continue this work. The project was directed toward exploring the Ettingshausen effect, which is the direct extension of the familiar Peltier-effect refrigerator (the process used in popular coolers that run off automotive electrical power) in which a magnetic field is used to enhance refrigeration effects at temperatures well below room temperature. Such refrigeration processes are all-solid-state and are of potentially great commercial importance, but essentially no work has been done since the early 1970s. Using modern experimental and theoretical techniques, the authors have advanced the state-of-the-art significantly, laying the groundwork for commercial cryogenic solid-state refrigeration

  2. A comparison of the wide gap and narrow gap resistive plate chamber

    Cerron Zeballos, E.; Crotty, I.; Hatzifotiadou, D.; Valverde, J.L.; Neupane, S.; Peskov, V.; Singh, S.; Williams, M.C.S.; Zichichi, A.

    1996-01-01

    In this paper we study the performance of a wide gap RPC and compare it with that of a narrow gap RPC, both operated in avalanche mode. We have studied the total charge produced in the avalanche. We have measured the dependence of the performance with rate. In addition we have considered the effect of the tolerance of gas gap and calculated the power dissipated in these two types of RPC. We find that the narrow gap RPC has better timing ability; however the wide gap has superior rate capability, lower power dissipation in the gas volume and can be constructed with less stringent mechanical tolerances. (orig.)

  3. A comparison of the wide gap and narrow gap resistive plate chamber

    Cerron-Zeballos, E; Hatzifotiadou, D; Lamas-Valverde, J; Neupane, S; Peskov, Vladimir; Singh, S; Williams, M C S; Zichichi, Antonino

    1996-01-01

    In this paper we study the performance of a wide gap RPC and compare it with that of a narrow gap RPC, both operated in avalanche mode. We have studied the total charge produced in the avalanche. We have measured the dependence of the performance with rate. In addition we have considered the effect of the tolerance of gas gap and calculated the power dissipated in these two types of RPC. We find that the narrow gap RPC has better timing ability; however the wide gap has superior rate capability, lower power dissipation in the gas volume and can be constructed with less stringent mechanical tolerances.

  4. Analysis of welding distortion due to narrow-gap welding of upper port plug

    Biswas, Pankaj; Mandal, N.R.; Vasu, Parameswaran; Padasalag, Shrishail B.

    2010-01-01

    Narrow-gap welding is a low distortion welding process. This process allows very thick plates to be joined using fewer weld passes as compared to conventional V-groove or double V-groove welding. In case of narrow-gap arc welding as the heat input and weld volume is low, it reduces thermal stress leading to reduction of both residual stress and distortion. In this present study the effect of narrow-gap welding was studied on fabrication of a scaled down port plug in the form of a trapezoidal box made of 10 mm thick mild steel (MS) plates using gas tungsten arc welding (GTAW). Inherent strain method was used for numerical prediction of resulting distortions. The numerical results compared well with that of the experimentally measured distortion. The validated numerical scheme was used for prediction of weld induced distortion due to narrow-gap welding of full scale upper port plug made of 60 mm thick SS316LN material as is proposed for use in ITER project. It was observed that it is feasible to fabricate the said port plug keeping the distortions minimum within about 7 mm using GTAW for root pass welding followed by SMAW for filler runs.

  5. A semi-analytical solution for viscothermal wave propagation in narrow gaps with arbitrary boundary conditions.

    Wijnant, Ysbrand H.; Spiering, R.M.E.J.; Blijderveen, M.; de Boer, Andries

    2006-01-01

    Previous research has shown that viscothermal wave propagation in narrow gaps can efficiently be described by means of the low reduced frequency model. For simple geometries and boundary conditions, analytical solutions are available. For example, Beltman [4] gives the acoustic pressure in the gap

  6. Narrow gap mechanised arc welding in nuclear components manufactured by AREVA NP

    Peigney, A.

    2007-01-01

    Nuclear components require welds of irreproachable and reproducible quality. Moreover, for a given welding process, productivity requirements lead to reduce the volume of deposited metal and thus to use narrow gap design. In the shop, narrow gap Submerged Arc Welding process (SAW) is currently used on rotating parts in flat position for thicknesses up to 300 mm. Welding is performed with one or two wires in two passes per layer. In Gas Tungsten Arc Welding process (GTAW), multiple applications can be found because this process presents the advantage of allowing welding in all positions. Welding is performed in one or two passes per layer. The process is used in factory and on the nuclear sites for assembling new components but also for replacing components and for repairs. Presently, an increase of productivity of the process is sought through the use of hot wire and/or two wires. Concerning Gas Metal Arc Welding process (GMAW), its use is growing for nuclear components, including narrow gap applications. This process, limited in its applications in the past on account of the defects it generated, draws benefit from the progress of the welding generators. Then it is possible to use this efficient process for high security components such as those of nuclear systems. It is to be noted that the process is applicable in the various welding positions as it is the case for GTAW, while being more efficient than the latter. This paper presents the state of the art in the use of narrow gap mechanised arc welding processes by AREVA NP units. (author) [fr

  7. Optical properties of ZnTe epilayers with submonolayer planar narrow gap inclusions

    Agekian, V. F.; Filosofov, N. G., E-mail: n.filosofov@spbu.ru; Serov, A. Yu. [St. Petersburg State University, Universitetskaya nab. 7 – 9, 199034 Si. Petersburg (Russian Federation); Shtrom, I. V. [St. Petersburg State University, Universitetskaya nab. 7 – 9, 199034 Si. Petersburg (Russian Federation); Ioffe Physicotechnical Institute, Russian Academy of Sciences, Politekhnicheskaya 26, 194021 St. Petersburg (Russian Federation); St. Petersburg Academic University — Nanotechnology Research and Education Centre, Russian Academy of Sciences, Khlopina 8/3, 194021 St. Petersburg (Russian Federation); Karczewski, G. [Institute of Physics Polish Academy of Science, Ał. Lotnikov 32/46, 02-668 Warsaw (Poland)

    2016-06-17

    The exciton luminescence of ZnTe matrices with the embedded CdTe submonolayer inclusions is investigated. It is shown that the exciton localized by CdTe narrow gap component dominates in the emission spectrum. These localized excitons are coupled mainly with the phonons belonging to the cadmium enriched layers. The real distribution of cadmium in the direction of the heterostructure growth is determined from the energy position of the localized exciton emission bands.

  8. Impurity-induced photoconductivity of narrow-gap Cadmium–Mercury–Telluride structures

    Kozlov, D. V., E-mail: dvkoz@impras.ru; Rumyantsev, V. V.; Morozov, S. V.; Kadykov, A. M. [Russian Academy of Sciences, Institute for Physics of Microstructures (Russian Federation); Varavin, V. S.; Mikhailov, N. N.; Dvorestky, S. A. [Russian Academy of Sciences, Rzhanov Institute of Semiconductor Physics, Siberian Branch (Russian Federation); Gavrilenko, V. I. [Russian Academy of Sciences, Institute for Physics of Microstructures (Russian Federation); Teppe, F. [Universite Montpellier II, Laboratoire Charles Coulomb (L2C) (France)

    2015-12-15

    The photoconductivity (PC) spectra of CdHgTe (MCT) solid solutions with a Cd fraction of 17 and 19% are measured. A simple model for calculating the states of doubly charged acceptors in MCT solid solutions, which makes it possible to describe satisfactorily the observed photoconductivity spectra, is proposed. The found lines in the photoconductivity spectra of narrow-gap MCT structures are associated with transitions between the states of both charged and neutral acceptor centers.

  9. MAG narrow gap welding - an economic way to minimize welding expenses

    Kast, W.; Scholz, E.; Weyland, F.

    1982-01-01

    The thicker structural components are, the more important it is to take measures to reduce the volume of the weld. The welding process requiring the smallest possible weld section is the so-called narrow gap process. In submerged arc narrow gap welding as well as in MAG narrow gap welding different variants are imaginable, some of them already in practical use. With regard to efficiency and weld quality an optimum variant of the MAG narrow gap welding process is described. It constitutes a two wire system in which two wire electrodes of 1.2 mm diameter are arranged one behind the other. In order to avoid lack of fusion, the wire guides are slightly pointed towards each groove face. Thus, by inclining the two arcs burning one behind the other in the direction of weld progress, it is achieved that two separately solidifying weld pools and two beads per layer are simultaneously formed. Welding parameters are selected in such a way that a heat input of 16-20 kJ/cm and a deposition rate of 11-16 kgs/h are obtained. In spite of this comparatively high deposition rate, good impact values are found both in the weld and HAZ (largely reduced coarse-grain zone) which is due to an optimum weld build-up. With the available welding equipment the process can be applied to structural members having a thickness of 40-400 mm. The width of gap is 13 mm (root section) with a bevel angle of 1 0 . As filler metal, basic flux-cored wires are used which, depending on the base metal to be welded and the required tensile properties, can be of the Mn-, MnMo-, MnCrMo-, MnNi-, or MnNiMo-alloyed types. (orig.)

  10. The narrow-gap TIG welding concerns the electric power plants manufacturers; Le soudage en joint etroit suscite l'interet des constructeurs de centrales electriques

    Anon

    2009-05-15

    Polysoude, France, played host to an expert forum on narrow gap welding from 5-7 November 2008. The successful event welcomed around one hundred experts.The power plant construction sector is currently booming worldwide. For plant construction this means using more pressure-resistant, thick-walled pipes made from high temperature steels. The key quality features of this new steel grade are the values for high creep rupture strength that also apply without restriction as the benchmark for every weld seam on these pipes. In particular, the forum on narrow gap welding addressed this area of automated welding technology. During the forum, Mr Hans-Peter Mariner (Polysoude's CEO), has offered an in-depth insight into the latest developments in narrow gap welding. This presentation highlighted that with wall thicknesses of over 60 mm, welding time is shortened by a factor of five to ten in comparison to conventional TIG processes with a traditional V seam. The welding characteristics of the parent material are the decisive factor in the application of the narrow gap process. Technical advances in equipment technology such as automatic centring, HF-free ignition, seam preparation and optimised gas protection further increase the application limits. The geometry and gap width of the weld groove are based on the mechanical properties of the materials being joined, with the shrinkage characteristics of the seam being particularly important. Another key part of the programme was a presentation on the three different narrow gap-welding techniques. The first involves a single pass weld per layer and torch or work-piece revolution. The second is dual pass welding next to one another, when the seam preparation or positioning exceed the required narrow tolerances of a few tenths of a millimetre for one stringer bead per layer. TIG narrow gap welding with a shuttle-motion electrode is ideal with very large wall thicknesses of 150-200 mm. This is particularly the case if the

  11. Submerged arc narrow gap welding of the steel DIN 20MnMoNi55

    Moraes, M.M.

    1987-01-01

    The methodology for submerged arc narrow gap welding for high thickness rolled steel DIN 20MnMoNi55 was developed, using din S3NiMo1 04 mm and 05 mm wires, and DIN 8B435 flux. For this purpose, submerged arc narrow gap welded joints with 50 mm and 120 mm thickness were made aiming the welding parameters optimization and the study of the influence of welding voltage, wire diameter and wire to groove face distance on the operational performance and on the welded joint quality, specially on the ISO-V impact toughness. These welded joints were checked by non-destructive mechanical and metallographic tests. Results were compared with those obtained by one 120 mm thickness submerged arc conventional gap welded joint, using the same base metal and consumables (05 mm wire). The analysis of the results shows that the increasing of the wire to groove face distance and the welding voltage increases the hardness and the ISO-V impact toughness of the weld metal. It shows that the reduction of the gap angle is the main cause for the obtained of a heat affected zone free from coarse grains, the reduction of the welding voltage, the increasing of the wire to groove face distance, and the grounding optimization also contribute for that. It was also concluded that the quality and the execution complexity level of a narrow gap welded joint are identical to a conventional gap welded joint. (author) [pt

  12. Basic Boiling Experiments with An Inclined Narrow Gap Associated With In-Vessel Retention

    Terazu, Kuninobu; Watanabe, Fukashi; Iwaki, Chikako; Yokobori, Seiichi; Akinaga, Makoto; Hamazaki, Ryoichi; SATO, Ken-ichi

    2002-01-01

    In the case of a severe accident with relocation of the molten corium into the lower plenum of reactor pressure vessel (RPV), the successful in-vessel corium retention (IVR) can prevent the progress to ex-vessel events with uncertainties and avoid the containment failure. One of the key phenomena governing the possibility of IVR would be the gap formation and cooling between a corium crust and the RPV wall, and for the achievement of IVR, it would be necessary to supply cooling water to RPV as early as possible. The BWR features relative to IVR behavior are a deep and massive water pool in the lower plenum, and many of control rod drive guide tubes (CRDGT) installed in the lower head of RPV, in which water is injected continuously except in the case of station blackout scenario. The present paper describes the basic boiling experiment conducted in order to investigate the boiling characteristics in an inclined narrow gap simulating a part of the lower head curvature. The boiling experiments were composed of visualization tests and heat transfer tests. In the visualization tests, two types of inclined gap were constructed using the parallel plate and the V-shaped parallel plate with heating from the top plate, and the boiling flow pattern was observed with various gap width and heat flux. These observation results showed that water was easily supplied from the gap bottom of parallel plate even in a very narrow gap with smaller width than 1 mm, and water could flow continuously in the narrow gap by the geometric and thermal imbalance from the experiment results using the V-shaped parallel plate. In the heat transfer tests, the critical heat flux (CHF) data in an inclined narrow channel formed by the parallel plates were measured in terms of the parameters of gap width, heated length and inclined angle of a channel, and the effect of inclination was incorporated into the existing CHF correlation for a narrow gap. The CHF correlation modified for an inclined narrow gap

  13. Space-charge limitation of avalanche growth in narrow-gap resistive plate chambers

    Williams, M C S

    2004-01-01

    A big advance in resistive plate chamber technology happened in 1996 with the advent of the multigap resistive plate chamber (MRPC). The MRPC allows us to easily construct detectors with many small gas gaps and thus we obtain good timing together with high detection efficiency. Using this technology, it is now common to build detectors with gas gaps of 200-300 mum in width. This paper examines space-charge limited avalanche growth; this becomes a dominant effect for narrow gap resistive plate chambers. This effect controls gas gain and explains the reason for the excellent behaviour of MRPCs built with this gas gap.

  14. An analysis of hot plate initial temperature effect on rectangular narrow gap quenching process

    M-Hadi Kusuma; Mulya Juarsa; Anhar Riza Antariksawan; Nandy Putra

    2012-01-01

    The understanding about thermal management in the event of a severe accident such as the melting nuclear reactor fuel and reactor core, became a priority to maintain the integrity of reactor pressure vessel. Thus the debris will not out from the reactor pressure vessel and resulting impact of more substantial to the environment. One way to maintain the integrity of the reactor pressure vessel was cooling of the excess heat generated due to the accident. To get understanding of this aspect, there search focused on the effect of the initial temperature of the hot plate in the rectangular narrow gap quenching process. The initial temperature effect on quenching process is related to cooling process (thermal management) when the occurrence of a nuclear accident due to loss of coolant accident or severe accident. In order to address the problem, it is crucial to conduct research to get a better understanding of thermal management regarding to nuclear cooling accident. The research focused on determining the rewetting temperature of hot plate cooling on 220°C, 400°C, and 600°C with 0.2 liters/sec cooling water flowrate. Experiments were carried out by injecting 85°C cooling water temperature into the narrow gap at flowrates of 0.2 liters/sec. Data of transient temperature measurements were recorded using a data acquisition system in order to know the rewetting temperature during the quenching process. This study aims to understand the effect of hot plate initial temperature on rewetting during rectangular narrow gap quenching process. The results obtained show that the rewetting point on cooling the hot plate 220°C, 400°C and 600°occurs at varying rewetting temperatures. At 220°C hot plate initial temperature, the rewetting temperature occurs on 220°C. At 400°C hot plate initial temperature, the rewetting temperature occurs on 379.51°C. At 600°C hot plate initial temperature, the rewetting temperature occurs on 426.63°C. Significant differences of hot plate

  15. Modeling and validation of multiple joint reflections for ultra- narrow gap laser welding

    Milewski, J.; Keel, G. [Los Alamos National Lab., NM (United States); Sklar, E. [Opticad Corp., Santa Fe, New Mexico (United States)

    1995-12-01

    The effects of multiple internal reflections within a laser weld joint as a function of joint geometry and processing conditions have been characterized. A computer model utilizing optical ray tracing is used to predict the reflective propagation of laser beam energy focused into the narrow gap of a metal joint for the purpose of predicting the location of melting and coalescence which form the weld. The model allows quantitative analysis of the effects of changes to joint geometry, laser design, materials and processing variables. This analysis method is proposed as a way to enhance process efficiency and design laser welds which display deep penetration and high depth to width aspect ratios, reduced occurrence of defects and enhanced melting. Of particular interest to laser welding is the enhancement of energy coupling to highly reflective materials. The weld joint is designed to act as an optical element which propagates and concentrates the laser energy deep within the joint to be welded. Experimentation has shown that it is possible to produce welds using multiple passes to achieve deep penetration and high depth to width aspect ratios without the use of filler material. The enhanced laser melting and welding of aluminum has been demonstrated. Optimization through modeling and experimental validation has resulted in the development of a laser welding process variant we refer to as Ultra-Narrow Gap Laser Welding.

  16. Effects of microstructure and residual stress on fatigue crack growth of stainless steel narrow gap welds

    Jang, Changheui; Cho, Pyung-Yeon; Kim, Minu; Oh, Seung-Jin; Yang, Jun-Seog

    2010-01-01

    The effects of weld microstructure and residual stress distribution on the fatigue crack growth rate of stainless steel narrow gap welds were investigated. Stainless steel pipes were joined by the automated narrow gap welding process typical to nuclear piping systems. The weld fusion zone showed cellular-dendritic structures with ferrite islands in an austenitic matrix. Residual stress analysis showed large tensile stress in the inner-weld region and compressive stress in the middle of the weld. Tensile properties and the fatigue crack growth rate were measured along and across the weld thickness direction. Tensile tests showed higher strength in the weld fusion zone and the heat affected zone compared to the base metal. Within the weld fusion zone, strength was greater in the inner weld than outer weld region. Fatigue crack growth rates were several times greater in the inner weld than the outer weld region. The spatial variation of the mechanical properties is discussed in view of weld microstructure, especially dendrite orientation, and in view of the residual stress variation within the weld fusion zone. It is thought that the higher crack growth rate in the inner-weld region could be related to the large tensile residual stress despite the tortuous fatigue crack growth path.

  17. Green digital signage using nanoparticle embedded narrow-gap field sequential TN-LCDs

    Kobayashi, Shunsuke; Shiraishi, Yukihide; Sawai, Hiroya; Toshima, Naoki; Okita, Masaya; Takeuchi, Kiyofumi; Takatsu, Haruyoshi

    2012-03-01

    We have fabricated field sequential color (FSC)-LCDs using cells and modules of narrow-gap TN-LCDs with and without doping the nanoparticles of PCyD-ZrO2 and AF-SiO2. It is shown that the FSC-LCD exhibits a high optical efficiency of OE=4.5 that is defined as OE=[Luminance]/[W/m2]=(cd/W). This figure may provide us a good reference or to clear the Energy Star Program Version 5-3 that issues a guideline: LCD with 50 inch on the diagonal consumes the energy of 108W. Through this research it is claimed that our FSC=LCD may be a novel green digital signage.

  18. Magnetoraman in narrow-gap quantum wells: the resonant and non-resonant regimes

    Lopez-Richard, V.; Hai, G.-Q.; Trallero-Giner, C.; Marques, G. E.

    2002-01-01

    Raman scattering appears as one leading tool in the study of electronic excitations and spin-related phenomena. In particular magneto-Raman geometries allow for the selective activation of single-particle (SPE) or collective density excitations (CDE). A special attention will be done to the electronic properties within the conduction subband by spin-flip Raman scattering as a relevant and current research topic. Our theoretical framework is based on the Kane-Weiler 8x8 k.p Hamiltonian model and is applied to narrow-gap HgCdTe/CdTe heterostructures. The anomalous behavior of the conduction band g-factor and cyclotron masses, in terms of the field and the Landau level-filling factor, can be revealed in complementary Raman scattering geometries. (Authors)

  19. An experimental study on critical heat flux in a hemispherical narrow gap

    Park, R.J.; Lee, S.J.; Kang, K.H.; Kim, J.H.; Kim, S.B.; Kim, H.D.; Jeong, J.H.

    2000-01-01

    An experimental study of CHFG (Critical Heat Flux in Gap) has been performed to investigate the inherent cooling mechanism using distilled water and Freon R-113 in hemispherical narrow gaps. As a separate effect test of the CHFG test, a CCFL (Counter Current Flow Limit) test has been also performed to confirm the mechanism of the CHF in narrow annular gaps with large diameter. The CHFG test results have shown that an increase in the gap thickness leads to an increase in critical power. The pressure effect on the critical power was found to be much milder than predictions by CHF correlations of other studies. In the CCFL experiment, the occurrence of CCFL was correlated with the Wallis parameter, which was assumed to correspond to the critical power in the CHFG experiment. The measured values of critical power in the CHFG tests are much lower than CCFL experimental data and the predictions made by empirical CHF correlations. (author)

  20. The critical power that can be removed through a hemispherical narrow gap

    Jeong, J. H.; Park, R. J.; Kang, K. H.; Kim, S. B.; Kim, H. D.

    1998-01-01

    KAERI launched a research program named SONATA-IV (Simulation Of Naturally Arrested Thermal Attack In Vessel) to investigate the possibility of in-vessel debris cooling through a narrow gap that can be formed between reactor pressure vessel and relocated corium. The CHFG (Critical Heat Flux in Gap) experiments, one of the major experiments of the program, are being carried out. The purpose of the CHFG experiments is to assess the heat removal capacity through a hemispherical narrow gap. The experiments were performed using distilled water and the measurements were made in the range of 1 to 5 atm. The dryout of the heater surface is detected using 66 K-type thermocouples embedded in a heated copper shell. Even if local dryout occurs, there exists a quasi-steady state and the temperature of the dryout region is limited within a certain value. When the heater power is large enough, however, there is no quasi-steady state. The dryout region expands by itself without an increase in heater power and the temperature of the heater surface monotonically increase. Temperature measurements over the heater surface show that the two-phase flow behaviour inside the gaps could be quite different from the other usual CHF experiments. The temperature of the local dryout region is much lower than the minimum film boiling temperature that is measured under the pool boiling condition. The cause seems to be the excellent heat conduction of the copper shell. In order to verify this, numerical heat transfer analysis was performed on the copper shell. The results of the analysis supports the postulate. The measured global dryout points are lower than the predictions by existing empirical CHF correlations based on the data measured with small-scale horizontal plates and verical annulus

  1. Schottky diode model for non-parabolic dispersion in narrow-gap semiconductor and few-layer graphene

    Ang, Yee Sin; Ang, L. K.; Zubair, M.

    Despite the fact that the energy dispersions are highly non-parabolic in many Schottky interfaces made up of 2D material, experimental results are often interpreted using the conventional Schottky diode equation which, contradictorily, assumes a parabolic energy dispersion. In this work, the Schottky diode equation is derived for narrow-gap semiconductor and few-layer graphene where the energy dispersions are highly non-parabolic. Based on Kane's non-parabolic band model, we obtained a more general Kane-Schottky scaling relation of J (T2 + γkBT3) which connects the contrasting J T2 in the conventional Schottky interface and the J T3 scaling in graphene-based Schottky interface via a non-parabolicity parameter, γ. For N-layer graphene of ABC -stacking and of ABA -stacking, the scaling relation follows J T 2 / N + 1 and J T3 respectively. Intriguingly, the Richardson constant extracted from the experimental data using an incorrect scaling can differ with the actual value by more than two orders of magnitude. Our results highlights the importance of using the correct scaling relation in order to accurately extract important physical properties, such as the Richardson constant and the Schottky barrier's height.

  2. The characteristic investigation on narrow-gap TIG weld joint of heavy wall austenitic stainless steel pipe

    Shim, Deog Nam; Jung, In Cheol

    2003-01-01

    Although Gas Tungsten Arc Welding (GTAW or TIG welding) is considered as high quality and precision welding process, it also has demerit of low melting rate. Narrow-gap TIG welding which has narrow joint width reduces the groove volume remarkably, so it could be shorten the welding time and decrease the overall shrinkage in heavy wall pipe welding. Generally narrow-gap TIG welding is used as orbital welding process, it is important to select the optimum conditions for the automatic control welding. This paper looks at the application and metallurgical properties on narrow-gap TIG welding joint of heavy wall large austenitic stainless steel pipe to determine the deposition efficiency, the resultant shrinkage and fracture toughness. The fracture toughness depends slightly on the welding heat input

  3. Efficient steam generation by inexpensive narrow gap evaporation device for solar applications.

    Morciano, Matteo; Fasano, Matteo; Salomov, Uktam; Ventola, Luigi; Chiavazzo, Eliodoro; Asinari, Pietro

    2017-09-20

    Technologies for solar steam generation with high performance can help solving critical societal issues such as water desalination or sterilization, especially in developing countries. Very recently, we have witnessed a rapidly growing interest in the scientific community proposing sunlight absorbers for direct conversion of liquid water into steam. While those solutions can possibly be of interest from the perspective of the involved novel materials, in this study we intend to demonstrate that efficient steam generation by solar source is mainly due to a combination of efficient solar absorption, capillary water feeding and narrow gap evaporation process, which can also be achieved through common materials. To this end, we report both numerical and experimental evidence that advanced nano-structured materials are not strictly necessary for performing sunlight driven water-to-vapor conversion at high efficiency (i.e. ≥85%) and relatively low optical concentration (≈10 suns). Coherently with the principles of frugal innovation, those results unveil that solar steam generation for desalination or sterilization purposes may be efficiently obtained by a clever selection and assembly of widespread and inexpensive materials.

  4. Conditions and phase shift of fluid resonance in narrow gaps of bottom mounted caissons

    Zhu, Da-tong; Wang, Xing-gang; Liu, Qing-jun

    2017-12-01

    This paper studies the viscid and inviscid fluid resonance in gaps of bottom mounted caissons on the basis of the plane wave hypothesis and full wave model. The theoretical analysis and the numerical results demonstrate that the condition for the appearance of fluid resonance in narrow gaps is kh=(2 n+1)π ( n=0, 1, 2, 3, …), rather than kh= nπ ( n=0, 1, 2, 3, …); the transmission peaks in viscid fluid are related to the resonance peaks in the gaps. k and h stand for the wave number and the gap length. The combination of the plane wave hypothesis or the full wave model with the local viscosity model can accurately determine the heights and the locations of the resonance peaks. The upper bound for the appearance of fluid resonance in gaps is 2 b/ Lreason for the phase shift of the resonance peaks is the inductive factors. The number of resonance peaks in the spectrum curve is dependent on the ratio of the gap length to the grating constant. The heights and the positions of the resonance peaks predicted by the present models agree well with the experimental data.

  5. Measurement of critical heat flux in narrow gap with two-dimensional slices

    Kim, Yong Hoon; Kim, Sung Joong; Noh, Sang Woo; Suh, Kune Y.

    2002-01-01

    A cooling mechanism due to boiling in a gap between the debris crust and the reactor pressure vessel (RPV) wall was proposed for the TMI-2 reactor accident analysis. If there is enough heat transfer through the gap to cool the outer surface of the debris and the inner surface of the wall, the RPV wall may preserve its integrity during a severe core melt accident. If the heat removal through gap cooling relative to the counter-current flow limitation (CCFL) is pronounced, the safety margin of the reactor can be far greater than what had been previously known in the severe accident management arena. Should a severe accident take place, the RPV integrity will be maintained because of the inherent nature of degraded core coolability inside the lower head due to boiling in a narrow gap between the debris crust and the RPV wall. As a defense-in-depth measure, the heat removal capability by gap cooling coupled with external cooling can be examined for the Korean Standard Nuclear Power Plant (KSNPP) and the Advanced Power Reactor 1400MWe (APR1400) in light of the TMI-2 vessel survival. A number of studies were carried out to investigate the complex heat transfer mechanisms for the debris cooling in the lower plenum. However, these heat transfer mechanisms have not been clearly understood yet. The CHFG (Critical Heat Flux in Gap) experiments at KAERI were carried out to develop the critical heat flux (CHF) correlation in a hemispherical gap, which is the upper limit of the heat transfer. According to the CHFG experiments performed with a pool boiling condition, the CHF in a parallel gap was reduced by 1/30 compared with the value measured in the open pool boiling condition. The correlation developed from the CHFG experiment is based on the fact that the CHF in a hemispherical gap is governed by the CCFL and a Kutateladze type CCFL parameter correlates CCFL data well in hemispherical gap geometry. However, the results of the CHFG experiments appear to be limited in their

  6. Coolability of oxidized particulate debris bed accumulated in horizontal narrow gaps

    Arai, Y.; Sugiyama, K.; Narabayashi, T.

    2007-01-01

    When LOCA occurs in a nuclear reactor system, the coolability of the core would be kept as reported at a series of presentations in ICONE14. Therefore the probability of the core meltdown is negligible small. However, from the view point of defense in depth, it is necessary to be sure that the coolability of the bottom of reactor pressure vessel (RPV) is maintained even if a part of the core should melt and a substantial amount of debris should be deposited on the lower plenum. We carried out an experimental study in order to observe the coolability of particulate core-metal debris bed with 12 mm thickness accompanied with rapid heat generation because of oxidization, which was reported at ICONE14. The coolability was assured by a small amount of coolant supply because of high capillary force of oxidized fine particulate debris produced. In the present study, we examined the coolability of particulate debris bed deposited in narrower gap of 1 mm or 5 mm that coolant supply is hard. The particulate debris beds were piled up on the stainless steel sheet with 0.1 mm thickness, which was used to measure the bottom temperatures of particulate debris bed by using a thermo-video camera. We set up a heat supply section with heat input of 2.1 kW, which simulates the hard debris bed deposited on the particulate debris bed as reported for the TMI-2 accident. We measured the temperatures of the bottom surface of the heat supply section and the heat fluxes released into debris bed as well as the temperatures at the bottom of debris bed on the stainless steel sheet. It is found that when only the upper surface of particulate debris bed is in the film boiling, capillary force causes coolant supply to the particulate debris bed. Therefore, in the condition of thicker gap with small particulate debris, coolability of debris bed is improved. We find out that smaller particulate debris is moved by vapor movement. As a result, the area that high capillary force is caused because of

  7. Advances in submerged arc, narrow-gap welding with strip electrodes and thin, dual-wire electrodes

    Nies, H.

    1990-01-01

    Container and tank construction for nuclear installations traditionally is one of the major applications of narrow-gap welding with the submerged arc technique. This type of welding presents one problem, namely to completely and reliably remove the welding slag from the deep and narrow gap. The research report in hand explains the variants of welding techniques that have been tested and describes the results obtained, which primarily are reduced occurrence of faults, i.e. enhanced reliability, and better welding economy. As an alternative to welding with thick wire electrodes, which is the standard method for the applications under review, a new technique has been conceived and extensively tested, which uses thin strip electrodes at longitudinal position in the gap. This submerged arc, dual-wire technique with thin electrodes is characterised by a significantly higher thermal efficiency compared to welding with thick wires, so that the same energy input yields better efficiency of metal deposition. (orig./MM) [de

  8. International Conference on Narrow Gap Semiconductors Held in Southampton, England on 19-23 July 1992. Abstracts Booklet

    1992-07-01

    University, Liniz. Narrow gap semiconductors offer the possibility to investigate in detail the role of conduction electrons in spin relaxation processes. In...crucial role on device performance. Hg1 ,-Zn.Te (N2T) is considered an alternative material to Hg1 -. Cd.Te (NCT) for infrared detectors. To the best of our... iaSb -AlSb-InAs-AlSh-GaSb), focusing on the effects of a magnetic fiheld parallel to the tunneling current, that is, perpendicular to the materials

  9. Axisymmetrical particle-in-cell/Monte Carlo simulation of narrow gap planar magnetron plasmas. I. Direct current-driven discharge

    Kondo, Shuji; Nanbu, Kenichi

    2001-01-01

    An axisymmetrical particle-in-cell/Monte Carlo simulation is performed for modeling direct current-driven planar magnetron discharge. The axisymmetrical structure of plasma parameters such as plasma density, electric field, and electron and ion energy is examined in detail. The effects of applied voltage and magnetic field strength on the discharge are also clarified. The model apparatus has a narrow target-anode gap of 20 mm to make the computational time manageable. This resulted in the current densities which are very low compared to actual experimental results for a wider target-anode gap. The current-voltage characteristics show a negative slope in contrast with many experimental results. However, this is understandable from Gu and Lieberman's similarity equation. The negative slope appears to be due to the narrow gap

  10. A single mask process for the realization of fully-isolated, dual-height MEMS metallic structures separated by narrow gaps

    Li, Yuan; Kim, Minsoo; Allen, Mark G.

    2018-02-01

    Multi-height metallic structures are of importance for various MEMS applications, including master molds for creating 3D structures by nanoimprint lithography, or realizing vertically displaced electrodes for out-of-plane electrostatic actuators. Normally these types of multi-height structures require a multi-mask process with increased fabrication complexity. In this work, a fabrication technology is presented in which fully-isolated, dual-height MEMS metallic structures separated by narrow gaps can be realized using a self-aligned, single-mask process. The main scheme of this proposed process is through-mold electrodeposition, where two photoresist mold fabrication steps and two electrodeposition steps are sequentially implemented to define the thinner and thicker structures in the dual-height configuration. The process relies on two self-aligned steps enabled by the electrodeposited thinner structures: a wet-etching of the seed layer utilizing the thinner structure as an etch-mask to electrically isolate the thinner and the thicker structures, and a backside UV lithography utilizing the thinner structure as a lithographic mask to create a high-aspect-ratio mold for the thicker structure through-mold electrodeposition. The latter step requires the metallic structures to be fabricated on a transparent substrate. Test structures with differences in aspect ratio are demonstrated to showcase the capability of the process.

  11. An experimental study on counter current flow limitation in annular narrow gaps with large diameter

    Park, Rae Joon; Jeong, Ji Whan; Lee, Sung Jin; Cho, Young Ro; Ha, Kwang Sun; Kim, Sang Baik; Kim, Hee Dong [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2002-04-01

    The present study intends to carry out CCFL experiment with the same gap size as the CHFG facility and suggest an empirical correlation in order to provide basic information useful to development of an empirical critical-power correlation. The present facility consists of water accumulator tank, test section, DC pump, air regulator, valves and sensors. Air and water are used as working fluids. The experiments are carried out at the atmospheric pressure. Differential pressure between the gap ends, liquid and gas phase flow rates, temperature, lower plenum pressure are measured.Measured values are expressed in terms of Wallis' parameter using gap size as a characteristic length. There is a big difference between the present experimental results and the Koizumi et al.'s results, but the present experimental results are very similar to the Richter et al.'s results. The present results agree well with the Osakabe and Kawasaki's results. In comparison of present experiments with the Koizumi et al.'s experiments, gap thickness is similar, but the diameter of the present is bigger than that of Koizumi et al.'s experiments. In comparison of present experiments with the Richter et al.'s experiments, diameter is similar, but the gap thickness of the present is smaller than that of Richter et al.'s experiments. It is judged from these results that correlation development on CCFL to consider gap thickness is reasonable at similar condition of diameter.The developed correlation will be used to develop the CHFG model. 36 refs., 26 figs., 7 tabs. (Author)

  12. Numerical investigation on residual stress distribution and evolution during multipass narrow gap welding of thick-walled stainless steel pipes

    Liu, C.; Zhang, J.X.; Xue, C.B.

    2011-01-01

    Research highlights: → We performed pass-by-pass simulation of stresses for welding of thick-walled pipes. → The distributions and evolution of the residual stresses are demonstrated. → After the groove is filled to a height, the through-wall stress is almost unchanged. - Abstracts: The detailed pass-by-pass finite element (FE) simulation is presented to investigate the residual stresses in narrow gap multipass welding of pipes with a wall thickness of 70 mm and 73 weld passes. The simulated residual stress on the outer surface is validated with the experimental one. The distribution and evolution of the through-wall residual stresses are demonstrated. The investigated results show that the residual stresses on the outer and inner surfaces are tensile in the weld zone and its vicinity. The through-wall axial residual stresses at the weld center line and the HAZ line demonstrate a distribution of bending type. The through-wall hoop residual stress within the weld is mostly tensile. After the groove is filled to a certain height, the peak tensile stresses and the stress distribution patterns for both axial and hoop stresses remain almost unchanged.

  13. Experimental investigation on heat transfer of HEMJ type divertor with narrow gap between nozzle and impingement surface

    Yokomine, Takehiko; Oohara, Ken; Kunugi, Tomoaki

    2016-01-01

    Highlights: • We performed heat transfer experiment on HEMJ-type multiple jet impingement. • For narrow gap case, degradation of heat transfer performance was observed. • The re-laminarization was anticipated if the temperature level is high. • For actual design of divertor cooling, the re-laminarization must be considered. - Abstract: In order to explore the possibility of improvement of the He-cooled modular divertor with multiple jet cooling (HEMJ) concept including optimization of design parameter, an experimental study on heat transfer performance of the HEMJ divertor was performed by means of helium loop at Georgia Tech, in which the pressure, flow rate and temperature of helium pressure is up to 10 MPa, 8 g/s and 300 °C, respectively, under heat flux of 6 MW/m"2 loaded by means of induction heater. Although the non-dimensional distance between jet nozzle and impingement surface H normalized by typical nozzle diameter D, H/D is 0.9 in the reference design of HEMJ, heat transfer experiments were carried out under the condition of H/D = 0.5 and 0.25 to enhance the heat transfer performance. In the case of H/D = 0.25, the averaged Nusselt number was increased by about 20% from the value for H/D = 0.5 in the case that the jet temperature less than 100 °C. By contraries, the averaged Nusselt number was decreased with increase in jet temperature which is larger than 200 °C in the H/D = 0.25 case. It is expected that the degradation of heat transfer performance with increasing the jet temperature is caused by the re-laminarization occurred near heat transfer surface.

  14. Experimental study of the phenomena of turbulent flow in the narrow gaps between subchannels of rod bundles

    Moeller, S.V.

    1989-01-01

    It was observed that the turbulent intensities in the narrow gaps between the subchannels of rod bundles are strongly anisotropic and higher than in pipes. In rod bundles, both the axial and azimuthal components of the fluctuating velocity have a quasi-periodic behaviour. The intensities increase with decreasing distance between the rods or between rod and channel wall, respectively. To determine the origin of this phenomenon, experiments were performed in rod bundles with different pitch-to-diameter (P/D) and wall-to-diameter (W/D) ratios. In these experiments, two components of the fluctuating velocity were measured with hot wires simultaneously at two different locations of a wall subchannel, together with the pressure fluctuations at the wall measured by microphones. The output signals were registered with an analog tape recorder. Afterwards they were digitized and evaluated to obtain spectra as well as auto and cross correlations. The results were analysed to determine the interdependence between pressure and velocity fluctuations. Attention was devoted to the analysis of turbulence spectra and the identification of their specific ranges. The dominant frequency of the turbulent motion, taken from the spectra, was found to be a function of the gap width and of the flow velocity. The corresponding Strouhal number is a geometrical parameter which can be expressed in terms of P/D and W/D. Based on the observation of transit time between the probes, measured with help of cross correlations, on the form and the presence of peaks on spectra, a phenomenological model was developed, to explain the studied phenomenon. The model describes the formation of large eddies near the gaps and their effect on the fluid motion through rod bundles. The relationship between the mixing process and the studied phenomenon was determined. (orig.) [de

  15. Investigating a homogeneous culture for operating personnel working in domestic nuclear power plants

    Park, Jinkyun

    2016-01-01

    It is evident that a cultural difference (or variability) is one of the determinants affecting the performance of human operators. This means that, from the point of human reliability analysis (HRA), the effect of the cultural variability on the performance of human operators should be carefully scrutinized. In this regard, the cultural profile of operating personnel working in two domestic nuclear power plants (NPPs) were collected and compared based on the Hofstede's 11 cultural dimensions. However, as the coverage of this comparison is not sufficient to manifest the existence of a homogenous culture, cultural data were additionally collected from 52 operating personnel working in domestic NPPs, of which the working environments were distinctive from those of previous NPPs. As a result, it was observed that the cultural profiles of operating personnel working in different NPPs closely resemble each other except in a few cultural dimensions. This result suggests that, operating personnel at least working in domestic NPPs, largely share a homogeneous culture. Accordingly, although more extensive analyses are required to validate the results of this study, it is promising that the cultural variability of operating personnel could be soundly characterized if they share a homogeneous culture. - Highlights: • Cultural variability is critical for understanding human performance. • Hofstede's national and organizational culture model is used. • Cultural profiles for six groups of domestic operating personnel are compared. • Domestic operating personnel seem to share a homogenous culture.

  16. Critical heat flux analysis on change of plate temperature and cooling water flow rate for rectangular narrow gap with bilateral-heated cases

    M Hadi Kusuma; Mulya Juarsa; Anhar Riza Antariksawan

    2013-01-01

    Boiling heat transfer phenomena on rectangular narrow gap was related to the safety of nuclear reactors. Research done in order to study the safety of nuclear reactors in particular relating to boiling heat transfer and useful on the improvement of next-generation reactor designs. The research focused on calculation of the heat flux during the cooling process in rectangular narrow gap size 1.0 mm. with initial temperatures 200°C. 400°C, and 600°C, also the flow rates of cooling water 0,1 liters/second. 0,2 liters/second. and 0,3 liters/second. Experiments carried out by injecting water at a certain flow rate with the water temperature 85°C. Transient temperature measurement data recorded by the data acquisition system. Transient temperature measurement data is used to calculate the flux of heat gain is then used to obtain the heat transfer coefficient. This research aimed to obtain the correlation between critical heat flux and heat transfer coefficient to changes in temperatures and water flow rates for bilaterally-heated cases on rectangular narrow gap. The results obtained for a constant cooling water flow rate, critical heat flux will increase when hot plate temperature also increased. While on a constant hot plate temperature, coefficient heat transfer will increase when cooling water flow rate also increased. Thus it can be said that the cooling water flow rate and temperature of the hot plate has a significant effect on the critical heat flux and heat transfer coefficient resulted in quenching process of vertical rectangular narrow gap with double-heated cases. (author)

  17. The Heat Flux Analysis in an Annulus Narrows Gap With Initial Temperature Variations Using HeaTiNG-01 Test Section

    Mulya Juarsa; Efrizon Umar; Andhang Widi Harto

    2009-01-01

    An experiment to understand the complexity of boiling phenomena on a narrow gap, which has occurs in severe accident at TMI-2 NPP is necessary to be done in aimed to increase the understanding of accident management. The goal of research is to obtain a heat flux and critical heat flux (CHF) value during boiling heat transfer process in a narrow gap annulus. The method of research is experimental using HeaTiNG-01 test section. The experiment has been done with heating-up heated rod until a certain initial temperature, for this experiment, three initial temperature variations was decided at 650°C, 750°C dan 850°C. Then, a cooling process in heated rod by saturated water was recorded based on temperature data changes. Temperature data was used to calculate a value of heat flux and wall superheat temperature, until the results could be defined in boiling curve. The result of this research shows that, although the initial temperature of heated rod was different, the value of CHF is almost similar with CHF average 253.7 kW/m 2 with the changes of only 4.7%. The event of boiling in a narrow gap is not included pool boiling category based on the comparison of film boiling area of the experiment to Bromley correlations. (author)

  18. Experimental and Theoretical Study of Dryout and Post-Dryout Heat Transfer of Steam-Water Two-Phase Flow in the Annular Channel with Narrow Gap

    Aye Myint

    2004-10-01

    Two-phase annular flow with heat transfer is prevalent in many processes such as industrial and energy reformation processes. Recently, advances in high performance electronic chips and the miniaturisation of electronic circuits in which high heat flux will be created and other compact systems such as Integrated Nuclear Power Device (INPD), the refrigeration/air conditioning, automobile environment control systems have resulted in a great demand for developing efficient heat transfer techniques to accommodate these high heat fluxes. It has been studied by many researchers because of its successful application in many areas, but its influence factor and mechanism of heat transfer remain somewhat unknown yet. In order to understand the heat transfer and flow mechanism in the narrow annular channel, experimental and theoretical study of dryout and post-dryout heat transfer of steam-water two-phase flow in annular channel with narrow gap (1.0 mm and 1.5 mm) have been carried out. The working fluid is deionized water. The range of experimental pressure is 1.0 ∼ 6.OMPa. In correspondence with two different narrow gaps, two kinds of test sections were designed. The test sections were made of specially processed straight stainless steel tubes with linearity error less than 0.01% to form narrow concentric annuli. It also needs a good sealed performance at high pressure and high temperature. The experiments were carried out to investigate the characteristics and occurring conditions of the dryout point. The former Soviet researcher Kutateladse's correlation, based on round tube, was quoted and modified to apply barrow annuli under low flow conditions. At full conditions of the influencing factors, such as geometry of test section, pressure, mass flux, heat flux etc., an empirical correlation was developed to apply to bilaterally heated annuli and it had a good agreement with the experimental data A new analytical model for the dryout point of critical quality in

  19. Measurement of bubble velocity in an air/water flow through a narrow gap by using high-speed cinematography; Ermittlung der Blasengeschwindigkeit einer Luft/Wasser-Spaltstroemung mit Hilfe der Hochgeschwindigkeitskinematographie

    Koerner, S.; Friedel, L. [Technische Univ. Hamburg-Harburg, Hamburg (Germany)

    1997-12-01

    To predict the mass flow of a two phase mixture at a given pressure difference through narrow gaps, apart from the change in state of the gas phase during pressure reduction, the knowledge of the fluid dynamics on balance which occurs in the form of a relative velocity between the phases is important. These two influences were examined with the aid of high speed cinematography for a water/air bubble flow. Apart from the quick reduction in pressure due to the sudden reduction in crossection at the entry to the gap, there are no significant differences between the experimentally determined volume change in bubbles of different sizes and that calculated assuming an isothermal change in state. The mean velocity of the bubbles does not differ appreciably from that calculated assuming an homogeneous flow. [Deutsch] Zur Vorhersage des sich bei gegebener Druckdifferenz einstellenden Massenstroms eines Zweiphasengemischs durch enge Spalte ist neben der Zustandsaenderung der Gasphase waehrend der Druckabsenkung u.a. auch die Kenntnis des sich dabei einstellenden fluiddynamischen Ungleichgewichts in Form einer Relativgeschwindigkeit zwischen den Phasen von Bedeutung. Diese beiden Einfluesse wurden mit Hilfe der Hochgeschwindigkeitskinematographie fuer eine Wasser/Luft-Blasenstroemung untersucht. Abgesehen von der raschen Druckabsenkung aufgrund der ploetzlichen Querschnittsverengung im Spalteintritt treten keine nennenswerten Unterschiede zwischen den experimentell ermittelten und den unter der Annahme einer isothermen Zustandsaenderungen berechneten Volumenaenderung verschiedengrosser Blasen auf. Die mittlere Geschwindigkeit der Blasen unterscheidet sich dabei nicht wesentlich von der unter der Annahme einer homogenen Stroemung berechneten. (orig.)

  20. Theory of tamm surface states on the boundary between Hgsub(1-x)Cdsub(x)Te type semimetal and narrow-gap semiconductor

    Mekhtiyev, M.A.; Kalina, V.A.

    1980-01-01

    The conditions of appearance of tamm surface states and their energy spectrum on the boundary of semimetals and narrow-gap semiconductors are considered. By the Green function method the equation for surface state energy is obtained. The solution of the latter is analyzed in particular cases when energy of heavy hole zones of the semimetal and semiconductor is the same and when the heavy hole gap of the semiconductor is shifted down relatively to the semimetal of the same name gap as well as accurate computer calculation. It is shown that neither in parabolic limits, nor in cases of a strongly unparabolic semiconductor (semimetal) and a parabolic semimetal (semiconductor) the equation obtained has no solutions at small quasipulse values i.e. there are no surface states. In the case when the heavy hole zone of a semiconductor is shifted down for the value of the order of narrow-gap semiconductor the effective mass of surface states turns to be twice heavier than that of the semimetal volumetrical electrons [ru

  1. Restored symmetries, quark puzzle, and the Pomeron as a Josephson current. [Clustering effects, quantum supercurrents, cross sections, phase transitions, narrowing gap mechanism

    Mendes, R V [Instituto de Fisica e Matematica, Lisbon (Portugal)

    1976-07-01

    A special type of symmetry is studied, wherein manifest invariance is restored by direct integration over a set of spontaneously broken ground states. In addition to invariant states and multiplets these symmetry realizations are shown to lead, in general, to clustering effects and quantum supercurrents. A systematic exploration of these symmetry realizations is proposed, mostly in physical situations where it has so far been believed that the only consequences of the symmetry are invariant states and multiplets. An application of these ideas to the quark system yields a possible explanation for the unobservability of free quarks and an interpretation of the Pomeron as a generalized Josephson current. Furthermore, the 'narrowing gap mechanism' suggests an explanation for the behavior of the e/sup +/ e/sup -/ ..-->.. hadrons cross section and a speculation on an approaching phase transition in hadronic production and the observation of free quarks.

  2. Investigation on microstructure and properties of narrow-gap laser welding on reduced activation ferritic/martensitic steel CLF-1 with a thickness of 35 mm

    Wu, Shikai; Zhang, Jianchao; Yang, Jiaoxi; Lu, Junxia; Liao, Hongbin; Wang, Xiaoyu

    2018-05-01

    Reduced activation ferritic martensitic (RAFM) steel is chosen as a structural material for test blanket modules (TBMs) to be constructed in International Thermonuclear Experimental Reactor (ITER) and China Fusion Engineering Test Reactor (CFETR). Chinese specific RAFM steel named with CLF-1 has been developed for CFETR. In this paper, a narrow-gap groove laser multi-pass welding of CLF-1 steel with thickness of 35 mm is conduced by YLS-15000 fiber laser. Further, the microstructures of different regions in the weld joint were characterized, and tensile impact and micro-hardness tests were carried out for evaluating the mecharical properties. The results show that the butt weld joint of CLF-1 steel with a thickness of 35 mm was well-formed using the optimal narrow-gap laser filler wire welding and no obvious defects was found such as incomplete fusion cracks and pores. The microstructures of backing layer is dominated by lath martensites and the Heat-Affected Zone (HAZ) was mainly filled with two-phase hybrid structures of secondary-tempering sorbites and martensites. The filler layer is similar to the backing layer in microstructures. In tensile tests, the tensile samples from different parts of the joint all fractured at base metal (BM). The micro-hardness of weld metal (WM) was found to be higher than that of BM and the Heat-Affected Zone (HAZ) exhibited no obvious softening. After post weld heat treatment (PWHT), it can be observed that the fusion zone of the autogenous welding bead and the upper filling beads mainly consist of lath martensites which caused the lower impact absorbing energy. The HAZ mainly included two-phase hybrid structures of secondary-tempering sorbites and martensites and exhibited favorable impact toughness.

  3. Gas metal arc narrow-gap welding of pressure vessels made from the nickel alloy 2.4663

    Iversen, K.; Palussek, A.

    1984-01-01

    Since no construction and operation experience is yet available with primary components for the process heat reactor, test components shall be developed, manufactured and tested. With the helium intermediate heat exchanger, two 10 MW types come under consideration, these being the helical tube and straight tube versions. The hot gas collector component part has highest demands concerning welding and testing technology. Work pieces should be forged to be joined and non-destructively tested in a large scale test plant under operating conditions

  4. A Stable, Narrow-Gap Oxyfluoride Photocatalyst for Visible-Light Hydrogen Evolution and Carbon Dioxide Reduction.

    Kuriki, Ryo; Ichibha, Tom; Hongo, Kenta; Lu, Daling; Maezono, Ryo; Kageyama, Hiroshi; Ishitani, Osamu; Oka, Kengo; Maeda, Kazuhiko

    2018-05-16

    Mixed anion compounds such as oxynitrides and oxychalcogenides are recognized as potential candidates of visible-light-driven photocatalysts since, as compared with oxygen 2p orbitals, p orbitals of less electronegative anion (e.g., N 3- , S 2- ) can form a valence band that has more negative potential. In this regard, oxyfluorides appear unsuitable because of the higher electronegativity of fluorine. Here we show an exceptional case, an anion-ordered pyrochlore oxyfluoride Pb 2 Ti 2 O 5.4 F 1.2 that has a small band gap (ca. 2.4 eV). With suitable modification of Pb 2 Ti 2 O 5.4 F 1.2 by promoters such as platinum nanoparticles and a binuclear ruthenium(II) complex, Pb 2 Ti 2 O 5.4 F 1.2 worked as a stable photocatalyst for visible-light-driven H 2 evolution and CO 2 reduction. Density functional theory calculations have revealed that the unprecedented visible-light-response of Pb 2 Ti 2 O 5.4 F 1.2 arises from strong interaction between Pb-6s and O-2p orbitals, which is enabled by a short Pb-O bond in the pyrochlore lattice due to the fluorine substitution.

  5. Influences of lumped passes on welding residual stress of a thick-walled nuclear rotor steel pipe by multipass narrow gap welding

    Tan, Long, E-mail: mse.longtan@gmail.com [State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi’an Jiaotong University, Xi’an 710049 (China); Zhang, Jianxun; Zhuang, Dong [State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi’an Jiaotong University, Xi’an 710049 (China); Liu, Chuan [Provincial Key Lab of Advanced Welding Technology, Jiangsu University of Science and Technology, Zhenjiang 212003 (China)

    2014-07-01

    Highlights: • The internal residual stress of the thick-walled pipe is measured by using the local removal blind hole method. • Two lumped-pass models are developed to reduce computational cost. • The effect of lumped passes on the welding residual stress is discussed. • Reasonable lumped-pass model can guarantee the accuracy and improve the computational efficiency. - Abstract: The purpose of this study is to investigate the effect of the lumped passes simulation on the distribution of residual stresses before and after heat treatment in a thick-walled nuclear power rotor pipe with a 89-pass narrow gap welding process. The local removal blind hole method was used to measure internal residual stress of the thick-walled pipe after post weld heat treatment (PWHT). Based on the ANSYS software, a two-dimensional axisymmetric finite element model is employed. Two lumped-pass models of M-5th model (five weld beads as one lumped pass) and M-10th model (ten weld beads as one lumped pass) were developed to reduce computational cost. Based on the results in this study, the distributions of residual stresses of a thick-walled welded pipe before and after PWHT are developed. Meanwhile, the distribution of the through-wall axial residual stress along the weld center line is demonstrated to be a self-equilibrating type. In addition, the investigation results show that reasonable and reliable lumped-pass model can not only guarantee the accuracy of the simulated results, but also improve the computational efficiency in the thermo-elastic–plastic FE analysis procedure. Therefore, from the viewpoint of engineering application the developed lumped-pass computational procedure is a promising and useful method to predict residual stress of large and complex welded structures.

  6. Influences of lumped passes on welding residual stress of a thick-walled nuclear rotor steel pipe by multipass narrow gap welding

    Tan, Long; Zhang, Jianxun; Zhuang, Dong; Liu, Chuan

    2014-01-01

    Highlights: • The internal residual stress of the thick-walled pipe is measured by using the local removal blind hole method. • Two lumped-pass models are developed to reduce computational cost. • The effect of lumped passes on the welding residual stress is discussed. • Reasonable lumped-pass model can guarantee the accuracy and improve the computational efficiency. - Abstract: The purpose of this study is to investigate the effect of the lumped passes simulation on the distribution of residual stresses before and after heat treatment in a thick-walled nuclear power rotor pipe with a 89-pass narrow gap welding process. The local removal blind hole method was used to measure internal residual stress of the thick-walled pipe after post weld heat treatment (PWHT). Based on the ANSYS software, a two-dimensional axisymmetric finite element model is employed. Two lumped-pass models of M-5th model (five weld beads as one lumped pass) and M-10th model (ten weld beads as one lumped pass) were developed to reduce computational cost. Based on the results in this study, the distributions of residual stresses of a thick-walled welded pipe before and after PWHT are developed. Meanwhile, the distribution of the through-wall axial residual stress along the weld center line is demonstrated to be a self-equilibrating type. In addition, the investigation results show that reasonable and reliable lumped-pass model can not only guarantee the accuracy of the simulated results, but also improve the computational efficiency in the thermo-elastic–plastic FE analysis procedure. Therefore, from the viewpoint of engineering application the developed lumped-pass computational procedure is a promising and useful method to predict residual stress of large and complex welded structures

  7. Microstructure of a safe-end dissimilar metal weld joint (SA508-52-316L) prepared by narrow-gap GTAW

    Ming, Hongliang [Key Laboratory of Nuclear Materials and Safety Assessment, Liaoning Key Laboratory for Safety and Assessment Technique of Nuclear Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049 (China); Zhang, Zhiming [Key Laboratory of Nuclear Materials and Safety Assessment, Liaoning Key Laboratory for Safety and Assessment Technique of Nuclear Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Wang, Jianqiu, E-mail: wangjianqiu@imr.ac.cn [Key Laboratory of Nuclear Materials and Safety Assessment, Liaoning Key Laboratory for Safety and Assessment Technique of Nuclear Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Han, En-Hou [Key Laboratory of Nuclear Materials and Safety Assessment, Liaoning Key Laboratory for Safety and Assessment Technique of Nuclear Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Wang, Peipei; Sun, Zhiyuan [Shanghai Research Center for Weld and Detection Engineering Technique of Nuclear Equipment, Shanghai 201306 (China)

    2017-01-15

    The microstructure, residual strain and interfacial chemical composition distribution of a safe-end dissimilar metal weld joint (DMWJ, SA508-52-316L) prepared by narrow-gap gas-tungsten arc welding (NG-GTAW) were studied by optical microscope (OM) and scanning electron microscope equipped with an energy dispersive X-ray microanalysis (SEM/EDX) and an electron back scattering diffraction (EBSD) system. Complex microstructure and chemical composition distribution are found, especially at the SA508-52 interface and the 52-316L interface. In brief, a complicated microstructure transition exists within the SA508 heat affected zone (HAZ); the residual strain, the fraction of high angle random grain boundaries and low angle boundaries decrease with increasing the distance from the fusion boundary in 316L HAZ; neither typical type II boundary nor obvious carbon-depleted zone is found near the SA508-52 interface; dramatic and complicated changes of the contents of the main elements, Fe, Cr and Ni, are observed at the distinct interfaces, especially at the SA508-52 interface. No carbon concentration is found at the SA508-52 interface. - Highlights: •Residual strain and GBCD change as a function of the distance from FB in 316L HAZ. •Neither type II boundary nor obvious carbon-depleted zone is found in SA508 HAZ. •No carbon concentration is found at the SA508-52 interface. •The middle part of the DMWJ has the highest residual strain.

  8. Reflector homogenization

    Sanchez, R.; Ragusa, J.; Santandrea, S.

    2004-01-01

    The problem of the determination of a homogeneous reflector that preserves a set of prescribed albedo is considered. Duality is used for a direct estimation of the derivatives needed in the iterative calculation of the optimal homogeneous cross sections. The calculation is based on the preservation of collapsed multigroup albedo obtained from detailed reference calculations and depends on the low-order operator used for core calculations. In this work we analyze diffusion and transport as low-order operators and argue that the P 0 transfers are the best choice for the unknown cross sections to be adjusted. Numerical results illustrate the new approach for SP N core calculations. (Author)

  9. Reflector homogenization

    Sanchez, R.; Ragusa, J.; Santandrea, S. [Commissariat a l' Energie Atomique, Direction de l' Energie Nucleaire, Service d' Etudes de Reacteurs et de Modelisation Avancee, CEA de Saclay, DM2S/SERMA 91 191 Gif-sur-Yvette cedex (France)]. e-mail: richard.sanchez@cea.fr

    2004-07-01

    The problem of the determination of a homogeneous reflector that preserves a set of prescribed albedo is considered. Duality is used for a direct estimation of the derivatives needed in the iterative calculation of the optimal homogeneous cross sections. The calculation is based on the preservation of collapsed multigroup albedo obtained from detailed reference calculations and depends on the low-order operator used for core calculations. In this work we analyze diffusion and transport as low-order operators and argue that the P{sub 0} transfers are the best choice for the unknown cross sections to be adjusted. Numerical results illustrate the new approach for SP{sub N} core calculations. (Author)

  10. Neural plasticity in amplitude of low frequency fluctuation, cortical hub construction, regional homogeneity resulting from working memory training.

    Takeuchi, Hikaru; Taki, Yasuyuki; Nouchi, Rui; Sekiguchi, Atsushi; Kotozaki, Yuka; Nakagawa, Seishu; Makoto Miyauchi, Carlos; Sassa, Yuko; Kawashima, Ryuta

    2017-05-03

    Working memory training (WMT) induces changes in cognitive function and various neurological systems. Here, we investigated changes in recently developed resting state functional magnetic resonance imaging measures of global information processing [degree of the cortical hub, which may have a central role in information integration in the brain, degree centrality (DC)], the magnitude of intrinsic brain activity [fractional amplitude of low frequency fluctuation (fALFF)], and local connectivity (regional homogeneity) in young adults, who either underwent WMT or received no intervention for 4 weeks. Compared with no intervention, WMT increased DC in the anatomical cluster, including anterior cingulate cortex (ACC), to the medial prefrontal cortex (mPFC). Furthermore, WMT increased fALFF in the anatomical cluster including the right dorsolateral prefrontal cortex (DLPFC), frontopolar area and mPFC. WMT increased regional homogeneity in the anatomical cluster that spread from the precuneus to posterior cingulate cortex and posterior parietal cortex. These results suggest WMT-induced plasticity in spontaneous brain activity and global and local information processing in areas of the major networks of the brain during rest.

  11. Narrow-gap physical vapour deposition synthesis of ultrathin SnS1-xSex (0 ≤ x ≤ 1) two-dimensional alloys with unique polarized Raman spectra and high (opto)electronic properties.

    Gao, Wei; Li, Yongtao; Guo, Jianhua; Ni, Muxun; Liao, Ming; Mo, Haojie; Li, Jingbo

    2018-05-10

    Here we report ultrathin SnS1-xSex alloyed nanosheets synthesized via a narrow-gap physical vapour deposition approach. The SnS1-xSex alloy presents a uniform quadrangle shape with a lateral size of 5-80 μm and a thickness of several nanometers. Clear orthorhombic symmetries and unique in-plane anisotropic properties of the 2D alloyed nanosheets were found with the help of X-ray diffraction, high resolution transmission electron microscopy and polarized Raman spectroscopy. Moreover, 2D alloyed field-effect transistors were fabricated, exhibiting a unipolar p-type semiconductor behavior. This study also provided a lesson that the thickness of the alloyed channels played the major role in the current on/off ratio, and the high ratio of 2.10 × 102 measured from a large ultrathin SnS1-xSex device was two orders of magnitude larger than that of previously reported SnS, SnSe nanosheet based transistors because of the capacitance shielding effect. Obviously enhanced Raman peaks were also found in the thinner nanosheets. Furthermore, the ultrathin SnS0.5Se0.5 based photodetector showed a highest responsivity of 1.69 A W-1 and a short response time of 40 ms under illumination of a 532 nm laser from 405 to 808 nm. Simultaneously, the corresponding highest external quantum efficiency of 392% and detectivity of 3.96 × 104 Jones were also achieved. Hopefully, the narrow-gap synthesis technique provides us with an improved strategy to obtain large ultrathin 2D nanosheets which may tend to grow into thicker ones for stronger interlayer van der Waals forces, and the enhanced physical and (opto)electrical performances in the obtained ultrathin SnS1-xSex alloyed nanosheets prove their great potential in the future applications for versatile devices.

  12. Benchmarking monthly homogenization algorithms

    Venema, V. K. C.; Mestre, O.; Aguilar, E.; Auer, I.; Guijarro, J. A.; Domonkos, P.; Vertacnik, G.; Szentimrey, T.; Stepanek, P.; Zahradnicek, P.; Viarre, J.; Müller-Westermeier, G.; Lakatos, M.; Williams, C. N.; Menne, M.; Lindau, R.; Rasol, D.; Rustemeier, E.; Kolokythas, K.; Marinova, T.; Andresen, L.; Acquaotta, F.; Fratianni, S.; Cheval, S.; Klancar, M.; Brunetti, M.; Gruber, C.; Prohom Duran, M.; Likso, T.; Esteban, P.; Brandsma, T.

    2011-08-01

    . Training was found to be very important. Moreover, state-of-the-art relative homogenization algorithms developed to work with an inhomogeneous reference are shown to perform best. The study showed that currently automatic algorithms can perform as well as manual ones.

  13. Parametric performance of circumferentially grooved heat pipes with homogeneous and graded-porosity slab wicks at cryogenic temperatures. [methane and ethane working fluids

    Groll, M.; Pittman, R. B.; Eninger, J. E.

    1976-01-01

    A recently developed, potentially high-performance nonarterial wick was extensively tested. This slab wick has an axially varying porosity which can be tailored to match the local stress imposed on the wick. The purpose of the tests was to establish the usefulness of the graded-porosity slab wick at cryogenic temperatures between 110 and 260 K, with methane and ethane as working fluids. For comparison, a homogeneous (i.e., uniform porosity) slab wick was also tested. The tests included: maximum heat pipe performance as a function of fluid inventory, maximum performance as a function of operating temperature, maximum performance as a function of evaporator elevation, and influence of slab wick orientation on performance. The experimental data were compared with theoretical predictions obtained with the GRADE computer program.

  14. Frequency-dependent brain regional homogeneity alterations in patients with mild cognitive impairment during working memory state relative to resting state

    Pengyun eWang

    2016-03-01

    Full Text Available Several studies have reported working memory deficits in patients with mild cognitive impairment (MCI. However, previous studies investigating the neural mechanisms of MCI have primarily focused on brain activity alterations during working memory tasks. No study to date has compared brain network alterations in the working memory state between MCI patients and normal control subjects. Therefore, using the index of regional homogeneity (ReHo, we explored brain network impairments in MCI patients during a working memory task relative to the resting state, and identified frequency-dependent effects in separate frequency bands.Our results indicate that, in MCI patients, ReHo is altered in the posterior cingulate cortex in the slow-3 band (0.073–0.198 Hz, and in the bottom of the right occipital lobe and part of the right cerebellum, the right thalamus, a diffusing region in the bilateral prefrontal cortex, the left and right parietal-occipital regions, and the right angular gyrus in the slow-5 band (0.01–0.027 Hz. Furthermore, in normal controls, the value of ReHo in clusters belonging to the default mode network decreased, while the value of ReHo in clusters belonging to the attentional network increased during the task state. However, this pattern was reversed in MCI patients, and was associated with decreased working memory performance. In addition, we identified altered functional connectivity of the abovementioned regions with other parts of the brain in MCI patients.This is the first study to compare frequency-dependent alterations of ReHo in MCI patients between resting and working memory states. The results provide a new perspective regarding the neural mechanisms of working memory deficits in MCI patients, and extend our knowledge of altered brain patterns in resting and task-evoked states.

  15. Homogeneous group, research, institution

    Francesca Natascia Vasta

    2014-09-01

    Full Text Available The work outlines the complex connection among empiric research, therapeutic programs and host institution. It is considered the current research state in Italy. Italian research field is analyzed and critic data are outlined: lack of results regarding both the therapeutic processes and the effectiveness of eating disorders group analytic treatment. The work investigates on an eating disorders homogeneous group, led into an eating disorder outpatient service. First we present the methodological steps the research is based on including the strong connection among theory and clinical tools. Secondly clinical tools are described and the results commented. Finally, our results suggest the necessity of validating some more specifical hypothesis: verifying the relationship between clinical improvement (sense of exclusion and painful emotions reduction and specific group therapeutic processes; verifying the relationship between depressive feelings, relapses and transition trough a more differentiated groupal field.Keywords: Homogeneous group; Eating disorders; Institutional field; Therapeutic outcome

  16. Homogeneous turbulence dynamics

    Sagaut, Pierre

    2018-01-01

    This book provides state-of-the-art results and theories in homogeneous turbulence, including anisotropy and compressibility effects with extension to quantum turbulence, magneto-hydodynamic turbulence  and turbulence in non-newtonian fluids. Each chapter is devoted to a given type of interaction (strain, rotation, shear, etc.), and presents and compares experimental data, numerical results, analysis of the Reynolds stress budget equations and advanced multipoint spectral theories. The role of both linear and non-linear mechanisms is emphasized. The link between the statistical properties and the dynamics of coherent structures is also addressed. Despite its restriction to homogeneous turbulence, the book is of interest to all people working in turbulence, since the basic physical mechanisms which are present in all turbulent flows are explained. The reader will find a unified presentation of the results and a clear presentation of existing controversies. Special attention is given to bridge the results obta...

  17. Measurement of bubble velocity in an air/water flow through a narrow gap by using high-speed cinematography; Ermittlung der Blasengeschwindigkeit einer Luft/Wasser-Spaltstroemung mit Hilfe der Hochgeschwindigkeitskinematographie

    Koerner, S.; Friedel, L. [Technische Univ. Hamburg-Harburg, Hamburg (Germany). Arbeitsbereich Stroemungsmechanik

    1998-05-01

    For the prediction of the establishing two-phase massflow for a given pressure difference across a narrow rectangular gap, beside others, the knowledge of the change of state of the gas phase and the fluiddynamic non-equilibrium in form of the slip velocity between the phases is needed. For an air/water bubbly flow it turned out by using high-speed cinematography that apart from the quick pressure decrease during the rapid acceleration at the gap inlet no significant difference between the measured and the predicted bubble size changes assuming an isothermal change of state of the air bubbles could be detected. The measured mean bubble velocities do not considerably deviate from the values calculated on the basis of a homogeneous flow. (orig.) [Deutsch] Zur Vorhersage des sich bei gegebener Druckdifferenz einstellenden Massenstroms eines Zweiphasengemischs durch enge Spalte ist neben der Zustandsaenderung der Gasphase waehrend der Druckabsenkung u.a. auch die Kenntnis des sich dabei einstellenden fluiddynamischen Ungleichgewichts in Form einer Relativgeschwindigkeit zwischen den Phasen von Bedeutung. Diese beiden Einfluesse wurden mit Hilfe der Hochgeschwindigkeitskinematographie fuer eine Wasser/Luft-Blasenstroemung untersucht. Abgesehen von der raschen Druckabsenkung aufgrund der ploetzlichen Querschnittsverengung im Spalteintritt treten keine nennenswerten Unterschiede zwischen den experimentell ermittelten und den unter der Annahme einer isothermen Zustandsaenderungen berechneten Volumenaenderung verschiedengrosser Blasen auf. Die mittlere Geschwindigkeit der Blasen unterscheidet sich dabei nicht wesentlich von der unter der Annahme einer homogenen Stroemung berechneten. (orig.)

  18. Homogenization of neutronic diffusion models

    Capdebosq, Y.

    1999-09-01

    In order to study and simulate nuclear reactor cores, one needs to access the neutron distribution in the core. In practice, the description of this density of neutrons is given by a system of diffusion equations, coupled by non differential exchange terms. The strong heterogeneity of the medium constitutes a major obstacle to the numerical computation of this models at reasonable cost. Homogenization appears as compulsory. Heuristic methods have been developed since the origin by nuclear physicists, under a periodicity assumption on the coefficients. They consist in doing a fine computation one a single periodicity cell, to solve the system on the whole domain with homogeneous coefficients, and to reconstruct the neutron density by multiplying the solutions of the two computations. The objectives of this work are to provide mathematically rigorous basis to this factorization method, to obtain the exact formulas of the homogenized coefficients, and to start on geometries where two periodical medium are placed side by side. The first result of this thesis concerns eigenvalue problem models which are used to characterize the state of criticality of the reactor, under a symmetry assumption on the coefficients. The convergence of the homogenization process is proved, and formulas of the homogenized coefficients are given. We then show that without symmetry assumptions, a drift phenomenon appears. It is characterized by the mean of a real Bloch wave method, which gives the homogenized limit in the general case. These results for the critical problem are then adapted to the evolution model. Finally, the homogenization of the critical problem in the case of two side by side periodic medium is studied on a one dimensional on equation model. (authors)

  19. Mechanical Homogenization Increases Bacterial Homogeneity in Sputum

    Stokell, Joshua R.; Khan, Ammad

    2014-01-01

    Sputum obtained from patients with cystic fibrosis (CF) is highly viscous and often heterogeneous in bacterial distribution. Adding dithiothreitol (DTT) is the standard method for liquefaction prior to processing sputum for molecular detection assays. To determine if DTT treatment homogenizes the bacterial distribution within sputum, we measured the difference in mean total bacterial abundance and abundance of Burkholderia multivorans between aliquots of DTT-treated sputum samples with and without a mechanical homogenization (MH) step using a high-speed dispersing element. Additionally, we measured the effect of MH on bacterial abundance. We found a significant difference between the mean bacterial abundances in aliquots that were subjected to only DTT treatment and those of the aliquots which included an MH step (all bacteria, P = 0.04; B. multivorans, P = 0.05). There was no significant effect of MH on bacterial abundance in sputum. Although our results are from a single CF patient, they indicate that mechanical homogenization increases the homogeneity of bacteria in sputum. PMID:24759710

  20. Functionality and homogeneity.

    2011-01-01

    Functionality and homogeneity are two of the five Sustainable Safety principles. The functionality principle aims for roads to have but one exclusive function and distinguishes between traffic function (flow) and access function (residence). The homogeneity principle aims at differences in mass,

  1. Homogenization of Mammalian Cells.

    de Araújo, Mariana E G; Lamberti, Giorgia; Huber, Lukas A

    2015-11-02

    Homogenization is the name given to the methodological steps necessary for releasing organelles and other cellular constituents as a free suspension of intact individual components. Most homogenization procedures used for mammalian cells (e.g., cavitation pump and Dounce homogenizer) rely on mechanical force to break the plasma membrane and may be supplemented with osmotic or temperature alterations to facilitate membrane disruption. In this protocol, we describe a syringe-based homogenization method that does not require specialized equipment, is easy to handle, and gives reproducible results. The method may be adapted for cells that require hypotonic shock before homogenization. We routinely use it as part of our workflow to isolate endocytic organelles from mammalian cells. © 2015 Cold Spring Harbor Laboratory Press.

  2. Large-scale transport across narrow gaps in rod bundles

    Guellouz, M.S.; Tavoularis, S. [Univ. of Ottawa (Canada)

    1995-09-01

    Flow visualization and how-wire anemometry were used to investigate the velocity field in a rectangular channel containing a single cylindrical rod, which could be traversed on the centreplane to form gaps of different widths with the plane wall. The presence of large-scale, quasi-periodic structures in the vicinity of the gap has been demonstrated through flow visualization, spectral analysis and space-time correlation measurements. These structures are seen to exist even for relatively large gaps, at least up to W/D=1.350 (W is the sum of the rod diameter, D, and the gap width). The above measurements appear to compatible with the field of a street of three-dimensional, counter-rotating vortices, whose detailed structure, however, remains to be determined. The convection speed and the streamwise spacing of these vortices have been determined as functions of the gap size.

  3. Narrow Gap, High Mobility, and Stable Pi Conjugated Polymers

    2012-09-20

    wide-angle X-ray scattering (2D-WAXS) of P5.1 (extruded at 210oC). This trend is reflected in conventional bulk- heterojunction OPV devices as shown...Additives in Molecular Bulk Heterojunction Solar Cells Using a bithiophene capped, isoindigo core, DAD molecule as the donor phase, and PCBM as the...PCE values of 3.7% as illustrated in Figure 11. Figure 11. Combining interface control using MoOx as an electron transport material and PDMS

  4. The SPH homogeneization method

    Kavenoky, Alain

    1978-01-01

    The homogeneization of a uniform lattice is a rather well understood topic while difficult problems arise if the lattice becomes irregular. The SPH homogeneization method is an attempt to generate homogeneized cross sections for an irregular lattice. Section 1 summarizes the treatment of an isolated cylindrical cell with an entering surface current (in one velocity theory); Section 2 is devoted to the extension of the SPH method to assembly problems. Finally Section 3 presents the generalisation to general multigroup problems. Numerical results are obtained for a PXR rod bundle assembly in Section 4

  5. Homogeneity of Inorganic Glasses

    Jensen, Martin; Zhang, L.; Keding, Ralf

    2011-01-01

    Homogeneity of glasses is a key factor determining their physical and chemical properties and overall quality. However, quantification of the homogeneity of a variety of glasses is still a challenge for glass scientists and technologists. Here, we show a simple approach by which the homogeneity...... of different glass products can be quantified and ranked. This approach is based on determination of both the optical intensity and dimension of the striations in glasses. These two characteristic values areobtained using the image processing method established recently. The logarithmic ratio between...

  6. Homogenization approach in engineering

    Babuska, I.

    1975-10-01

    Homogenization is an approach which studies the macrobehavior of a medium by its microproperties. Problems with a microstructure play an essential role in such fields as mechanics, chemistry, physics, and reactor engineering. Attention is concentrated on a simple specific model problem to illustrate results and problems typical of the homogenization approach. Only the diffusion problem is treated here, but some statements are made about the elasticity of composite materials. The differential equation is solved for linear cases with and without boundaries and for the nonlinear case. 3 figures, 1 table

  7. Benchmarking homogenization algorithms for monthly data

    Venema, V. K. C.; Mestre, O.; Aguilar, E.; Auer, I.; Guijarro, J. A.; Domonkos, P.; Vertacnik, G.; Szentimrey, T.; Stepanek, P.; Zahradnicek, P.; Viarre, J.; Müller-Westermeier, G.; Lakatos, M.; Williams, C. N.; Menne, M. J.; Lindau, R.; Rasol, D.; Rustemeier, E.; Kolokythas, K.; Marinova, T.; Andresen, L.; Acquaotta, F.; Fratiannil, S.; Cheval, S.; Klancar, M.; Brunetti, M.; Gruber, C.; Prohom Duran, M.; Likso, T.; Esteban, P.; Brandsma, T.; Willett, K.

    2013-09-01

    The COST (European Cooperation in Science and Technology) Action ES0601: Advances in homogenization methods of climate series: an integrated approach (HOME) has executed a blind intercomparison and validation study for monthly homogenization algorithms. Time series of monthly temperature and precipitation were evaluated because of their importance for climate studies. The algorithms were validated against a realistic benchmark dataset. Participants provided 25 separate homogenized contributions as part of the blind study as well as 22 additional solutions submitted after the details of the imposed inhomogeneities were revealed. These homogenized datasets were assessed by a number of performance metrics including i) the centered root mean square error relative to the true homogeneous values at various averaging scales, ii) the error in linear trend estimates and iii) traditional contingency skill scores. The metrics were computed both using the individual station series as well as the network average regional series. The performance of the contributions depends significantly on the error metric considered. Although relative homogenization algorithms typically improve the homogeneity of temperature data, only the best ones improve precipitation data. Moreover, state-of-the-art relative homogenization algorithms developed to work with an inhomogeneous reference are shown to perform best. The study showed that currently automatic algorithms can perform as well as manual ones.

  8. Dynamics of homogeneous nucleation

    Toxværd, Søren

    2015-01-01

    The classical nucleation theory for homogeneous nucleation is formulated as a theory for a density fluctuation in a supersaturated gas at a given temperature. But molecular dynamics simulations reveal that it is small cold clusters which initiates the nucleation. The temperature in the nucleating...

  9. Homogeneous bilateral block shifts

    Douglas class were classified in [3]; they are unilateral block shifts of arbitrary block size (i.e. dim H(n) can be anything). However, no examples of irreducible homogeneous bilateral block shifts of block size larger than 1 were known until now.

  10. Homogeneity and Entropy

    Tignanelli, H. L.; Vazquez, R. A.; Mostaccio, C.; Gordillo, S.; Plastino, A.

    1990-11-01

    RESUMEN. Presentamos una metodologia de analisis de la homogeneidad a partir de la Teoria de la Informaci6n, aplicable a muestras de datos observacionales. ABSTRACT:Standard concepts that underlie Information Theory are employed in order design a methodology that enables one to analyze the homogeneity of a given data sample. Key : DATA ANALYSIS

  11. Homogeneous Poisson structures

    Shafei Deh Abad, A.; Malek, F.

    1993-09-01

    We provide an algebraic definition for Schouten product and give a decomposition for any homogenenous Poisson structure in any n-dimensional vector space. A large class of n-homogeneous Poisson structures in R k is also characterized. (author). 4 refs

  12. Layout optimization using the homogenization method

    Suzuki, Katsuyuki; Kikuchi, Noboru

    1993-01-01

    A generalized layout problem involving sizing, shape, and topology optimization is solved by using the homogenization method for three-dimensional linearly elastic shell structures in order to seek a possibility of establishment of an integrated design system of automotive car bodies, as an extension of the previous work by Bendsoe and Kikuchi. A formulation of a three-dimensional homogenized shell, a solution algorithm, and several examples of computing the optimum layout are presented in this first part of the two articles.

  13. Radiotracer investigation of cement raw meal homogenizers. Pt. 2

    Baranyai, L.

    1983-01-01

    Based on radioisotopic tracer technique a method has been worked out to study the homogenization and segregation processes of cement-industrial raw meal homogenizers. On-site measurements were carried out by this method in some Hungarian cement works to determine the optimal homogenization parameters of operating homogenizers. The motion and distribution of different raw meal fractions traced with 198 Au radioisotope was studied in homogenization processes proceeding with different parameters. In the first part of the publication the change of charge homogenity in time was discussed which had been measured as the resultant of mixing and separating processes. In the second part the parameters and types of homogenizers influencing the efficiency of homogenization have been detailed. (orig.) [de

  14. Radiotracer investigation of cement raw meal homogenizers. Pt. 2

    Baranyai, L

    1983-12-01

    Based on radioisotopic tracer technique a method has been worked out to study the homogenization and segregation processes of cement-industrial raw meal homogenizers. On-site measurements were carried out by this method in some Hungarian cement works to determine the optimal homogenization parameters of operating homogenizers. The motion and distribution of different raw meal fractions traced with /sup 198/Au radioisotope was studied in homogenization processes proceeding with different parameters. In the first part of the publication the change of charge homogenity in time was discussed which had been measured as the resultant of mixing and separating processes. In the second part the parameters and types of homogenizers influencing the efficiency of homogenization have been detailed.

  15. Homogen Mur - et udviklingsprojekt

    Dahl, Torben; Beim, Anne; Sørensen, Peter

    1997-01-01

    Mølletorvet i Slagelse er det første byggeri i Danmark, hvor ydervæggen er udført af homogene bærende og isolerende teglblokke. Byggeriet viser en række af de muligheder, der både med hensyn til konstruktioner, energiforhold og arkitektur ligger i anvendelsen af homogent blokmurværk.......Mølletorvet i Slagelse er det første byggeri i Danmark, hvor ydervæggen er udført af homogene bærende og isolerende teglblokke. Byggeriet viser en række af de muligheder, der både med hensyn til konstruktioner, energiforhold og arkitektur ligger i anvendelsen af homogent blokmurværk....

  16. Homogenization of resonant chiral metamaterials

    Andryieuski, Andrei; Menzel, C.; Rockstuhl, Carsten

    2010-01-01

    Homogenization of metamaterials is a crucial issue as it allows to describe their optical response in terms of effective wave parameters as, e.g., propagation constants. In this paper we consider the possible homogenization of chiral metamaterials. We show that for meta-atoms of a certain size...... an analytical criterion for performing the homogenization and a tool to predict the homogenization limit. We show that strong coupling between meta-atoms of chiral metamaterials may prevent their homogenization at all....

  17. Homogeneous M2 duals

    Figueroa-O’Farrill, José; Ungureanu, Mara

    2016-01-01

    Motivated by the search for new gravity duals to M2 branes with N>4 supersymmetry — equivalently, M-theory backgrounds with Killing superalgebra osp(N|4) for N>4 — we classify (except for a small gap) homogeneous M-theory backgrounds with symmetry Lie algebra so(n)⊕so(3,2) for n=5,6,7. We find that there are no new backgrounds with n=6,7 but we do find a number of new (to us) backgrounds with n=5. All backgrounds are metrically products of the form AdS 4 ×P 7 , with P riemannian and homogeneous under the action of SO(5), or S 4 ×Q 7 with Q lorentzian and homogeneous under the action of SO(3,2). At least one of the new backgrounds is supersymmetric (albeit with only N=2) and we show that it can be constructed from a supersymmetric Freund-Rubin background via a Wick rotation. Two of the new backgrounds have only been approximated numerically.

  18. Homogeneous M2 duals

    Figueroa-O’Farrill, José [School of Mathematics and Maxwell Institute for Mathematical Sciences,The University of Edinburgh,James Clerk Maxwell Building, The King’s Buildings, Peter Guthrie Tait Road,Edinburgh EH9 3FD, Scotland (United Kingdom); Ungureanu, Mara [Humboldt-Universität zu Berlin, Institut für Mathematik,Unter den Linden 6, 10099 Berlin (Germany)

    2016-01-25

    Motivated by the search for new gravity duals to M2 branes with N>4 supersymmetry — equivalently, M-theory backgrounds with Killing superalgebra osp(N|4) for N>4 — we classify (except for a small gap) homogeneous M-theory backgrounds with symmetry Lie algebra so(n)⊕so(3,2) for n=5,6,7. We find that there are no new backgrounds with n=6,7 but we do find a number of new (to us) backgrounds with n=5. All backgrounds are metrically products of the form AdS{sub 4}×P{sup 7}, with P riemannian and homogeneous under the action of SO(5), or S{sup 4}×Q{sup 7} with Q lorentzian and homogeneous under the action of SO(3,2). At least one of the new backgrounds is supersymmetric (albeit with only N=2) and we show that it can be constructed from a supersymmetric Freund-Rubin background via a Wick rotation. Two of the new backgrounds have only been approximated numerically.

  19. Higher-order asymptotic homogenization of periodic materials with low scale separation

    Ameen, M.M.; Peerlings, R.H.J.; Geers, M.G.D

    2016-01-01

    In this work, we investigate the limits of classical homogenization theories pertaining to homogenization of periodic linear elastic composite materials at low scale separations and demonstrate the effectiveness of higher-order periodic homogenization in alleviating this limitation. Classical

  20. Benchmarking homogenization algorithms for monthly data

    V. K. C. Venema

    2012-01-01

    precipitation data. Training the users on homogenization software was found to be very important. Moreover, state-of-the-art relative homogenization algorithms developed to work with an inhomogeneous reference are shown to perform best. The study showed that automatic algorithms can perform as well as manual ones.

  1. HOMOGENEOUS NUCLEAR POWER REACTOR

    King, L.D.P.

    1959-09-01

    A homogeneous nuclear power reactor utilizing forced circulation of the liquid fuel is described. The reactor does not require fuel handling outside of the reactor vessel during any normal operation including complete shutdown to room temperature, the reactor being selfregulating under extreme operating conditions and controlled by the thermal expansion of the liquid fuel. The liquid fuel utilized is a uranium, phosphoric acid, and water solution which requires no gus exhaust system or independent gas recombining system, thereby eliminating the handling of radioiytic gas.

  2. Homogeneous Finsler Spaces

    Deng, Shaoqiang

    2012-01-01

    "Homogeneous Finsler Spaces" is the first book to emphasize the relationship between Lie groups and Finsler geometry, and the first to show the validity in using Lie theory for the study of Finsler geometry problems. This book contains a series of new results obtained by the author and collaborators during the last decade. The topic of Finsler geometry has developed rapidly in recent years. One of the main reasons for its surge in development is its use in many scientific fields, such as general relativity, mathematical biology, and phycology (study of algae). This monograph introduc

  3. Homogeneity spoil spectroscopy

    Hennig, J.; Boesch, C.; Martin, E.; Grutter, R.

    1987-01-01

    One of the problems of in vivo MR spectroscopy of P-31 is spectra localization. Surface coil spectroscopy, which is the method of choice for clinical applications, suffers from the high-intensity signal from subcutaneous muscle tissue, which masks the spectrum of interest from deeper structures. In order to suppress this signal while maintaining the simplicity of surface coil spectroscopy, the authors introduced a small sheet of ferromagnetically dotted plastic between the surface coil and the body. This sheet destroys locally the field homogeneity and therefore all signal from structures around the coil. The very high reproducibility of the simple experimental procedure allows long-term studies important for monitoring tumor therapy

  4. Homogeneous instantons in bigravity

    Zhang, Ying-li; Sasaki, Misao; Yeom, Dong-han

    2015-01-01

    We study homogeneous gravitational instantons, conventionally called the Hawking-Moss (HM) instantons, in bigravity theory. The HM instantons describe the amplitude of quantum tunneling from a false vacuum to the true vacuum. Corrections to General Relativity (GR) are found in a closed form. Using the result, we discuss the following two issues: reduction to the de Rham-Gabadadze-Tolley (dRGT) massive gravity and the possibility of preference for a large e-folding number in the context of the Hartle-Hawking (HH) no-boundary proposal. In particular, concerning the dRGT limit, it is found that the tunneling through the so-called self-accelerating branch is exponentially suppressed relative to the normal branch, and the probability becomes zero in the dRGT limit. As far as HM instantons are concerned, this could imply that the reduction from bigravity to the dRGT massive gravity is ill-defined.

  5. The relationship between continuum homogeneity and statistical homogeneity in cosmology

    Stoeger, W.R.; Ellis, G.F.R.; Hellaby, C.

    1987-01-01

    Although the standard Friedmann-Lemaitre-Robertson-Walker (FLRW) Universe models are based on the concept that the Universe is spatially homogeneous, up to the present time no definition of this concept has been proposed that could in principle be tested by observation. Such a definition is here proposed, based on a simple spatial averaging procedure, which relates observable properties of the Universe to the continuum homogeneity idea that underlies the FLRW models. It turns out that the statistical homogeneity often used to describe the distribution of matter on a large scale does not imply spatial homogeneity according to this definition, and so cannot be simply related to a FLRW Universe model. Values are proposed for the homogeneity parameter and length scale of homogeneity of the Universe. (author)

  6. Homogeneous scintillating LKr/Xe calorimeters

    Chen, M.; Mullins, M.; Pelly, D.; Shotkin, S.; Sumorok, K.; Akyuz, D.; Chen, E.; Gaudreau, M.P.J.; Bolozdynya, A.; Tchernyshev, V.; Goritchev, P.; Khovansky, V.; Koutchenkov, A.; Kovalenko, A.; Lebedenko, V.; Vinogradov, V.; Gusev, L.; Sheinkman, V.; Krasnokutsky, R.N.; Shuvalov, R.S.; Fedyakin, N.N.; Sushkov, V.; Akopyan, M.; Doke, T.; Kikuchi, J.; Hitachi, A.; Kashiwagi, T.; Masuda, K.; Shibamura, E.; Ishida, N.; Sugimoto, S.

    1993-01-01

    Recent R and D work on full length scintillating homogeneous liquid xenon/krypton (LXe/Kr) cells has established the essential properties for precision EM calorimeters: In-situ calibration using α's, radiation hardness as well as the uniformity required for δE/E≅0.5% for e/γ's above 50 GeV. (orig.)

  7. Feasibility Study of Aseptic Homogenization: Affecting Homogenization Steps on Quality of Sterilized Coconut Milk

    Phungamngoen Chanthima

    2016-01-01

    Full Text Available Coconut milk is one of the most important protein-rich food sources available today. Separation of an emulsion into an aqueous phase and cream phase is commonly occurred and this leads an unacceptably physical defect of either fresh or processed coconut milk. Since homogenization steps are known to affect the stability of coconut milk. This work was aimed to study the effect of homogenization steps on quality of coconut milk. The samples were subject to high speed homogenization in the range of 5000-15000 rpm under sterilize temperatures at 120-140 °C for 15 min. The result showed that emulsion stability increase with increasing speed of homogenization. The lower fat particles were generated and easy to disperse in continuous phase lead to high stability. On the other hand, the stability of coconut milk decreased, fat globule increased, L value decreased and b value increased when the high sterilization temperature was applied. Homogenization after heating led to higher stability than homogenization before heating due to the reduced particle size of coconut milk after aggregation during sterilization process. The results implied that homogenization after sterilization process might play an important role on the quality of the sterilized coconut milk.

  8. Homogenization of resonant chiral metamaterials

    Andryieuski, Andrei; Menzel, Christoph; Rockstuhl, Carsten; Malureanu, Radu; Lederer, Falk; Lavrinenko, Andrei

    2010-01-01

    Homogenization of metamaterials is a crucial issue as it allows to describe their optical response in terms of effective wave parameters as e.g. propagation constants. In this paper we consider the possible homogenization of chiral metamaterials. We show that for meta-atoms of a certain size a critical density exists above which increasing coupling between neighboring meta-atoms prevails a reasonable homogenization. On the contrary, a dilution in excess will induce features reminiscent to pho...

  9. Bilipschitz embedding of homogeneous fractals

    Lü, Fan; Lou, Man-Li; Wen, Zhi-Ying; Xi, Li-Feng

    2014-01-01

    In this paper, we introduce a class of fractals named homogeneous sets based on some measure versions of homogeneity, uniform perfectness and doubling. This fractal class includes all Ahlfors-David regular sets, but most of them are irregular in the sense that they may have different Hausdorff dimensions and packing dimensions. Using Moran sets as main tool, we study the dimensions, bilipschitz embedding and quasi-Lipschitz equivalence of homogeneous fractals.

  10. Homogeneous versus heterogeneous zeolite nucleation

    Dokter, W.H.; Garderen, van H.F.; Beelen, T.P.M.; Santen, van R.A.; Bras, W.

    1995-01-01

    Aggregates of fractal dimension were found in the intermediate gel phases that organize prior to nucleation and crystallization (shown right) of silicalite from a homogeneous reaction mixture. Small- and wide-angle X-ray scattering studies prove that for zeolites nucleation may be homogeneous or

  11. Homogeneous crystal nucleation in polymers.

    Schick, C; Androsch, R; Schmelzer, J W P

    2017-11-15

    The pathway of crystal nucleation significantly influences the structure and properties of semi-crystalline polymers. Crystal nucleation is normally heterogeneous at low supercooling, and homogeneous at high supercooling, of the polymer melt. Homogeneous nucleation in bulk polymers has been, so far, hardly accessible experimentally, and was even doubted to occur at all. This topical review summarizes experimental findings on homogeneous crystal nucleation in polymers. Recently developed fast scanning calorimetry, with cooling and heating rates up to 10 6 K s -1 , allows for detailed investigations of nucleation near and even below the glass transition temperature, including analysis of nuclei stability. As for other materials, the maximum homogeneous nucleation rate for polymers is located close to the glass transition temperature. In the experiments discussed here, it is shown that polymer nucleation is homogeneous at such temperatures. Homogeneous nucleation in polymers is discussed in the framework of the classical nucleation theory. The majority of our observations are consistent with the theory. The discrepancies may guide further research, particularly experiments to progress theoretical development. Progress in the understanding of homogeneous nucleation is much needed, since most of the modelling approaches dealing with polymer crystallization exclusively consider homogeneous nucleation. This is also the basis for advancing theoretical approaches to the much more complex phenomena governing heterogeneous nucleation.

  12. Homogenization theory in reactor lattices

    Benoist, P.

    1986-02-01

    The purpose of the theory of homogenization of reactor lattices is to determine, by the mean of transport theory, the constants of a homogeneous medium equivalent to a given lattice, which allows to treat the reactor as a whole by diffusion theory. In this note, the problem is presented by laying emphasis on simplicity, as far as possible [fr

  13. Homogeneous Spaces and Equivariant Embeddings

    Timashev, DA

    2011-01-01

    Homogeneous spaces of linear algebraic groups lie at the crossroads of algebraic geometry, theory of algebraic groups, classical projective and enumerative geometry, harmonic analysis, and representation theory. By standard reasons of algebraic geometry, in order to solve various problems on a homogeneous space it is natural and helpful to compactify it keeping track of the group action, i.e. to consider equivariant completions or, more generally, open embeddings of a given homogeneous space. Such equivariant embeddings are the subject of this book. We focus on classification of equivariant em

  14. Homogenization of High-Contrast Brinkman Flows

    Brown, Donald L.

    2015-04-16

    Modeling porous flow in complex media is a challenging problem. Not only is the problem inherently multiscale but, due to high contrast in permeability values, flow velocities may differ greatly throughout the medium. To avoid complicated interface conditions, the Brinkman model is often used for such flows [O. Iliev, R. Lazarov, and J. Willems, Multiscale Model. Simul., 9 (2011), pp. 1350--1372]. Instead of permeability variations and contrast being contained in the geometric media structure, this information is contained in a highly varying and high-contrast coefficient. In this work, we present two main contributions. First, we develop a novel homogenization procedure for the high-contrast Brinkman equations by constructing correctors and carefully estimating the residuals. Understanding the relationship between scales and contrast values is critical to obtaining useful estimates. Therefore, standard convergence-based homogenization techniques [G. A. Chechkin, A. L. Piatniski, and A. S. Shamev, Homogenization: Methods and Applications, Transl. Math. Monogr. 234, American Mathematical Society, Providence, RI, 2007, G. Allaire, SIAM J. Math. Anal., 23 (1992), pp. 1482--1518], although a powerful tool, are not applicable here. Our second point is that the Brinkman equations, in certain scaling regimes, are invariant under homogenization. Unlike in the case of Stokes-to-Darcy homogenization [D. Brown, P. Popov, and Y. Efendiev, GEM Int. J. Geomath., 2 (2011), pp. 281--305, E. Marusic-Paloka and A. Mikelic, Boll. Un. Mat. Ital. A (7), 10 (1996), pp. 661--671], the results presented here under certain velocity regimes yield a Brinkman-to-Brinkman upscaling that allows using a single software platform to compute on both microscales and macroscales. In this paper, we discuss the homogenized Brinkman equations. We derive auxiliary cell problems to build correctors and calculate effective coefficients for certain velocity regimes. Due to the boundary effects, we construct

  15. Homogeneous scintillating LKr/Xe calorimeters

    Chen, M.; Mullins, M.; Pelly, D.; Shotkin, S.; Sumorok, K. (Lab. for Nuclear Science, MIT, Cambridge, MA (United States)); Akyuz, D.; Chen, E.; Gaudreau, M.P.J. (Plasma Fusion Center, MIT, Cambridge, MA (United States)); Bolozdynya, A.; Tchernyshev, V.; Goritchev, P.; Khovansky, V.; Koutchenkov, A.; Kovalenko, A.; Lebedenko, V.; Vinogradov, V.; Gusev, L.; Sheinkman, V. (ITEP, Moscow (Russia)); Krasnokutsky, R.N.; Shuvalov, R.S.; Fedyakin, N.N.; Sushkov, V. (IHEP, Serpukhov (Russia)); Akopyan, M. (Inst. for Nuclear Research, Moscow (Russia)); Doke, T.; Kikuchi, J.; Hitachi, A.; Kashiwagi, T. (Science and Eng. Res. Lab., Waseda Univ., Tokyo (Japan)); Masuda, K.; Shibamura, E. (Saitama Coll. of Health (Japan)); Ishida, N. (Seikei Univ. (Japan)); Sugimoto, S. (INS, Univ. Tokyo (Japan))

    1993-03-20

    Recent R and D work on full length scintillating homogeneous liquid xenon/krypton (LXe/Kr) cells has established the essential properties for precision EM calorimeters: In-situ calibration using [alpha]'s, radiation hardness as well as the uniformity required for [delta]E/E[approx equal]0.5% for e/[gamma]'s above 50 GeV. (orig.).

  16. Qualitative analysis of homogeneous universes

    Novello, M.; Araujo, R.A.

    1980-01-01

    The qualitative behaviour of cosmological models is investigated in two cases: Homogeneous and isotropic Universes containing viscous fluids in a stokesian non-linear regime; Rotating expanding universes in a state which matter is off thermal equilibrium. (Author) [pt

  17. A second stage homogenization method

    Makai, M.

    1981-01-01

    A second homogenization is needed before the diffusion calculation of the core of large reactors. Such a second stage homogenization is outlined here. Our starting point is the Floquet theorem for it states that the diffusion equation for a periodic core always has a particular solution of the form esup(j)sup(B)sup(x) u (x). It is pointed out that the perturbation series expansion of function u can be derived by solving eigenvalue problems and the eigenvalues serve to define homogenized cross sections. With the help of these eigenvalues a homogenized diffusion equation can be derived the solution of which is cos Bx, the macroflux. It is shown that the flux can be expressed as a series of buckling. The leading term in this series is the well known Wigner-Seitz formula. Finally three examples are given: periodic absorption, a cell with an absorber pin in the cell centre, and a cell of three regions. (orig.)

  18. Homogenization methods for heterogeneous assemblies

    Wagner, M.R.

    1980-01-01

    The third session of the IAEA Technical Committee Meeting is concerned with the problem of homogenization of heterogeneous assemblies. Six papers will be presented on the theory of homogenization and on practical procedures for deriving homogenized group cross sections and diffusion coefficients. That the problem of finding so-called ''equivalent'' diffusion theory parameters for the use in global reactor calculations is of great practical importance. In spite of this, it is fair to say that the present state of the theory of second homogenization is far from being satisfactory. In fact, there is not even a uniquely accepted approach to the problem of deriving equivalent group diffusion parameters. Common agreement exists only about the fact that the conventional flux-weighting technique provides only a first approximation, which might lead to acceptable results in certain cases, but certainly does not guarantee the basic requirement of conservation of reaction rates

  19. Spinor structures on homogeneous spaces

    Lyakhovskii, V.D.; Mudrov, A.I.

    1993-01-01

    For multidimensional models of the interaction of elementary particles, the problem of constructing and classifying spinor fields on homogeneous spaces is exceptionally important. An algebraic criterion for the existence of spinor structures on homogeneous spaces used in multidimensional models is developed. A method of explicit construction of spinor structures is proposed, and its effectiveness is demonstrated in examples. The results are of particular importance for harmonic decomposition of spinor fields

  20. A personal view on homogenization

    Tartar, L.

    1987-02-01

    The evolution of some ideas is first described. Under the name homogenization are collected all the mathematical results who help understanding the relations between the microstructure of a material and its macroscopic properties. Homogenization results are given through a critically detailed bibliography. The mathematical models given are systems of partial differential equations, supposed to describe some properties at a scale ε and we want to understand what will happen to the solutions if ε tends to 0

  1. Bridging heterogeneous and homogeneous catalysis concepts, strategies, and applications

    Li, Can

    2014-01-01

    This unique handbook fills the gap in the market for an up-to-date work that links both homogeneous catalysis applied to organic reactions and catalytic reactions on surfaces of heterogeneous catalysts.

  2. Homogenization of aligned “fuzzy fiber” composites

    Chatzigeorgiou, George; Efendiev, Yalchin; Lagoudas, Dimitris C.

    2011-01-01

    The aim of this work is to study composites in which carbon fibers coated with radially aligned carbon nanotubes are embedded in a matrix. The effective properties of these composites are identified using the asymptotic expansion homogenization

  3. 7 CFR 58.920 - Homogenization.

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Homogenization. 58.920 Section 58.920 Agriculture... Procedures § 58.920 Homogenization. Where applicable concentrated products shall be homogenized for the... homogenization and the pressure at which homogenization is accomplished will be that which accomplishes the most...

  4. Core homogenization method for pebble bed reactors

    Kulik, V.; Sanchez, R.

    2005-01-01

    This work presents a core homogenization scheme for treating a stochastic pebble bed loading in pebble bed reactors. The reactor core is decomposed into macro-domains that contain several pebble types characterized by different degrees of burnup. A stochastic description is introduced to account for pebble-to-pebble and pebble-to-helium interactions within a macro-domain as well as for interactions between macro-domains. Performance of the proposed method is tested for the PROTEUS and ASTRA critical reactor facilities. Numerical simulations accomplished with the APOLLO2 transport lattice code show good agreement with the experimental data for the PROTEUS reactor facility and with the TRIPOLI4 Monte Carlo simulations for the ASTRA reactor configuration. The difference between the proposed method and the traditional volume-averaged homogenization technique is negligible while only one type of fuel pebbles present in the system, but it grows rapidly with the level of pebble heterogeneity. (authors)

  5. Shape optimization in biomimetics by homogenization modelling

    Hoppe, Ronald H.W.; Petrova, Svetozara I.

    2003-08-01

    Optimal shape design of microstructured materials has recently attracted a great deal of attention in material science. The shape and the topology of the microstructure have a significant impact on the macroscopic properties. The present work is devoted to the shape optimization of new biomorphic microcellular ceramics produced from natural wood by biotemplating. We are interested in finding the best material-and-shape combination in order to achieve the optimal prespecified performance of the composite material. The computation of the effective material properties is carried out using the homogenization method. Adaptive mesh-refinement technique based on the computation of recovered stresses is applied in the microstructure to find the homogenized elasticity coefficients. Numerical results show the reliability of the implemented a posteriori error estimator. (author)

  6. Genetic Homogenization of Composite Materials

    P. Tobola

    2009-04-01

    Full Text Available The paper is focused on numerical studies of electromagnetic properties of composite materials used for the construction of small airplanes. Discussions concentrate on the genetic homogenization of composite layers and composite layers with a slot. The homogenization is aimed to reduce CPU-time demands of EMC computational models of electrically large airplanes. First, a methodology of creating a 3-dimensional numerical model of a composite material in CST Microwave Studio is proposed focusing on a sufficient accuracy of the model. Second, a proper implementation of a genetic optimization in Matlab is discussed. Third, an association of the optimization script and a simplified 2-dimensional model of the homogeneous equivalent model in Comsol Multiphysics is proposed considering EMC issues. Results of computations are experimentally verified.

  7. Spontaneous compactification to homogeneous spaces

    Mourao, J.M.

    1988-01-01

    The spontaneous compactification of extra dimensions to compact homogeneous spaces is studied. The methods developed within the framework of coset space dimensional reduction scheme and the most general form of invariant metrics are used to find solutions of spontaneous compactification equations

  8. Electro-magnetostatic homogenization of bianisotropic metamaterials

    Fietz, Chris

    2012-01-01

    We apply the method of asymptotic homogenization to metamaterials with microscopically bianisotropic inclusions to calculate a full set of constitutive parameters in the long wavelength limit. Two different implementations of electromagnetic asymptotic homogenization are presented. We test the homogenization procedure on two different metamaterial examples. Finally, the analytical solution for long wavelength homogenization of a one dimensional metamaterial with microscopically bi-isotropic i...

  9. Homogenization of aligned “fuzzy fiber” composites

    Chatzigeorgiou, George

    2011-09-01

    The aim of this work is to study composites in which carbon fibers coated with radially aligned carbon nanotubes are embedded in a matrix. The effective properties of these composites are identified using the asymptotic expansion homogenization method in two steps. Homogenization is performed in different coordinate systems, the cylindrical and the Cartesian, and a numerical example are presented. © 2011 Elsevier Ltd. All rights reserved.

  10. Immobilised Homogeneous Catalysts for Sequential Fine Chemical Synthesis : Functionalised Organometallics for Nanotechnology

    McDonald, A.R.

    2008-01-01

    The work described in this thesis has demonstrated the application of heterogenised homogeneous catalysts. We have shown that by coupling a homogeneous catalyst to a heterogeneous support we could combine the benefits of two major fields of catalysis: retain the high selectivity of homogeneous

  11. Observational homogeneity of the Universe

    Bonnor, W.B.; Ellis, G.F.R.

    1986-01-01

    A new approach to observational homogeneity is presented. The observation that stars and galaxies in distant regions appear similar to those nearby may be taken to imply that matter has had a similar thermodynamic history in widely separated parts of the Universe (the Postulate of Uniform Thermal Histories, or PUTH). The supposition is now made that similar thermodynamic histories imply similar dynamical histories. Then the distant apparent similarity is evidence for spatial homogeneity of the Universe. General Relativity is used to test this idea, taking a perfect fluid model and implementing PUTH by the condition that the density and entropy per baryon shall be the same function of the proper time along all galaxy world-lines. (author)

  12. Conclusions about homogeneity and devitrification

    Larche, F.

    1997-01-01

    A lot of experimental data concerning homogeneity and devitrification of R7T7 glass have been published. It appears that: - the crystallization process is very limited, - the interfaces due to bubbles and the container wall favor crystallization locally but the ratio of crystallized volume remains always below a few per cents, and - crystallization has no damaging long-term effects as far as leaching tests can be trusted. (A.C.)

  13. Is charity a homogeneous good?

    Backus, Peter

    2010-01-01

    In this paper I estimate income and price elasticities of donations to six different charitable causes to test the assumption that charity is a homogeneous good. In the US, charitable donations can be deducted from taxable income. This has long been recognized as producing a price, or taxprice, of giving equal to one minus the marginal tax rate faced by the donor. A substantial portion of the economic literature on giving has focused on estimating price and income elasticities of giving as th...

  14. Homogeneity Study of UO2 Pellet Density for Quality Control

    Moon, Je Seon; Park, Chang Je; Kang, Kwon Ho; Moon, Heung Soo; Song, Kee Chan

    2005-01-01

    A homogeneity study has been performed with various densities of UO 2 pellets as the work of a quality control. The densities of the UO 2 pellets are distributed randomly due to several factors such as the milling conditions and sintering environments, etc. After sintering, total fourteen bottles were chosen for UO 2 density and each bottle had three samples. With these bottles, the between-bottle and within-bottle homogeneity were investigated via the analysis of the variance (ANOVA). From the results of ANOVA, the calculated F-value is used to determine whether the distribution is accepted or rejected from the view of a homogeneity under a certain confidence level. All the homogeneity checks followed the International Standard Guide 35

  15. Physical applications of homogeneous balls

    Scarr, Tzvi

    2005-01-01

    One of the mathematical challenges of modern physics lies in the development of new tools to efficiently describe different branches of physics within one mathematical framework. This text introduces precisely such a broad mathematical model, one that gives a clear geometric expression of the symmetry of physical laws and is entirely determined by that symmetry. The first three chapters discuss the occurrence of bounded symmetric domains (BSDs) or homogeneous balls and their algebraic structure in physics. The book further provides a discussion of how to obtain a triple algebraic structure ass

  16. Heterotic strings on homogeneous spaces

    Israel, D.; Kounnas, C.; Orlando, D.; Petropoulos, P.M.

    2005-01-01

    We construct heterotic string backgrounds corresponding to families of homogeneous spaces as exact conformal field theories. They contain left cosets of compact groups by their maximal tori supported by NS-NS 2-forms and gauge field fluxes. We give the general formalism and modular-invariant partition functions, then we consider some examples such as SU(2)/U(1)∝S 2 (already described in a previous paper) and the SU(3)/U(1) 2 flag space. As an application we construct new supersymmetric string vacua with magnetic fluxes and a linear dilaton. (Abstract Copyright [2005], Wiley Periodicals, Inc.)

  17. Homogenization scheme for acoustic metamaterials

    Yang, Min

    2014-02-26

    We present a homogenization scheme for acoustic metamaterials that is based on reproducing the lowest orders of scattering amplitudes from a finite volume of metamaterials. This approach is noted to differ significantly from that of coherent potential approximation, which is based on adjusting the effective-medium parameters to minimize scatterings in the long-wavelength limit. With the aid of metamaterials’ eigenstates, the effective parameters, such as mass density and elastic modulus can be obtained by matching the surface responses of a metamaterial\\'s structural unit cell with a piece of homogenized material. From the Green\\'s theorem applied to the exterior domain problem, matching the surface responses is noted to be the same as reproducing the scattering amplitudes. We verify our scheme by applying it to three different examples: a layered lattice, a two-dimensional hexagonal lattice, and a decorated-membrane system. It is shown that the predicted characteristics and wave fields agree almost exactly with numerical simulations and experiments and the scheme\\'s validity is constrained by the number of dominant surface multipoles instead of the usual long-wavelength assumption. In particular, the validity extends to the full band in one dimension and to regimes near the boundaries of the Brillouin zone in two dimensions.

  18. ISOTOPE METHODS IN HOMOGENEOUS CATALYSIS.

    BULLOCK,R.M.; BENDER,B.R.

    2000-12-01

    The use of isotope labels has had a fundamentally important role in the determination of mechanisms of homogeneously catalyzed reactions. Mechanistic data is valuable since it can assist in the design and rational improvement of homogeneous catalysts. There are several ways to use isotopes in mechanistic chemistry. Isotopes can be introduced into controlled experiments and followed where they go or don't go; in this way, Libby, Calvin, Taube and others used isotopes to elucidate mechanistic pathways for very different, yet important chemistries. Another important isotope method is the study of kinetic isotope effects (KIEs) and equilibrium isotope effect (EIEs). Here the mere observation of where a label winds up is no longer enough - what matters is how much slower (or faster) a labeled molecule reacts than the unlabeled material. The most careti studies essentially involve the measurement of isotope fractionation between a reference ground state and the transition state. Thus kinetic isotope effects provide unique data unavailable from other methods, since information about the transition state of a reaction is obtained. Because getting an experimental glimpse of transition states is really tantamount to understanding catalysis, kinetic isotope effects are very powerful.

  19. Analytical solutions of time-fractional models for homogeneous Gardner equation and non-homogeneous differential equations

    Olaniyi Samuel Iyiola

    2014-09-01

    Full Text Available In this paper, we obtain analytical solutions of homogeneous time-fractional Gardner equation and non-homogeneous time-fractional models (including Buck-master equation using q-Homotopy Analysis Method (q-HAM. Our work displays the elegant nature of the application of q-HAM not only to solve homogeneous non-linear fractional differential equations but also to solve the non-homogeneous fractional differential equations. The presence of the auxiliary parameter h helps in an effective way to obtain better approximation comparable to exact solutions. The fraction-factor in this method gives it an edge over other existing analytical methods for non-linear differential equations. Comparisons are made upon the existence of exact solutions to these models. The analysis shows that our analytical solutions converge very rapidly to the exact solutions.

  20. Photo-electret effects in homogenous semiconductors

    Nabiev, G.A.

    2004-01-01

    In the given work is shown the opportunity and created the theory of photo-electret condition in semiconductors with Dember mechanism of photo-voltage generation. Photo-electret of such type can be created, instead of traditional and without an external field as a result of only one illumination. Polar factor, in this case, is the distinction of electrons and holes mobility. Considered the multilayered structure with homogeneous photoactive micro areas shared by the layers, which are interfering to alignment of carriers concentration. We consider, that the homogeneous photoactive areas contain deep levels of stick. Because of addition of elementary photo voltage in separate micro photo cells it is formed the abnormal-large photo voltage (APV-effect). Let's notice, that Dember photo-voltage in a separate micro photo-cell ≤kT/q. From the received expressions, in practically important, special case, when quasi- balance between valent zone and stick levels established in much more smaller time, than free hole lifetime, and we received, that photo-voltage is relaxing. Comparing of the received expressions with the laws of photo voltage attenuation in p-n- junction structures shows their identity; the difference is only in absolute meanings of photo voltage. During the illumination in the semiconductor are created the superfluous concentration of charge carriers and part from them stays at deep levels. At de-energizing light there is a gradual generation of carriers located at these levels

  1. Irregular Homogeneity Domains in Ternary Intermetallic Systems

    Jean-Marc Joubert

    2015-12-01

    Full Text Available Ternary intermetallic A–B–C systems sometimes have unexpected behaviors. The present paper examines situations in which there is a tendency to simultaneously form the compounds ABx, ACx and BCx with the same crystal structure. This causes irregular shapes of the phase homogeneity domains and, from a structural point of view, a complete reversal of site occupancies for the B atom when crossing the homogeneity domain. This work reviews previous studies done in the systems Fe–Nb–Zr, Hf–Mo–Re, Hf–Re–W, Mo–Re–Zr, Re–W–Zr, Cr–Mn–Si, Cr–Mo–Re, and Mo–Ni–Re, and involving the topologically close-packed Laves, χ and σ phases. These systems have been studied using ternary isothermal section determination, DFT calculations, site occupancy measurement using joint X-ray, and neutron diffraction Rietveld refinement. Conclusions are drawn concerning this phenomenon. The paper also reports new experimental or calculated data on Co–Cr–Re and Fe–Nb–Zr systems.

  2. Improving homogeneity by dynamic speed limit systems.

    Nes, N. van Brandenberg, S. & Twisk, D.A.M.

    2010-01-01

    Homogeneity of driving speeds is an important variable in determining road safety; more homogeneous driving speeds increase road safety. This study investigates the effect of introducing dynamic speed limit systems on homogeneity of driving speeds. A total of 46 subjects twice drove a route along 12

  3. 7 CFR 58.636 - Homogenization.

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Homogenization. 58.636 Section 58.636 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Procedures § 58.636 Homogenization. Homogenization of the pasteurized mix shall be accomplished to...

  4. The homogeneous geometries of real hyperbolic space

    Castrillón López, Marco; Gadea, Pedro Martínez; Swann, Andrew Francis

    We describe the holonomy algebras of all canonical connections of homogeneous structures on real hyperbolic spaces in all dimensions. The structural results obtained then lead to a determination of the types, in the sense of Tricerri and Vanhecke, of the corresponding homogeneous tensors. We use...... our analysis to show that the moduli space of homogeneous structures on real hyperbolic space has two connected components....

  5. Orthogonality Measurement for Homogenous Projects-Bases

    Ivan, Ion; Sandu, Andrei; Popa, Marius

    2009-01-01

    The homogenous projects-base concept is defined. Next, the necessary steps to create a homogenous projects-base are presented. A metric system is built, which then will be used for analyzing projects. The indicators which are meaningful for analyzing a homogenous projects-base are selected. The given hypothesis is experimentally verified. The…

  6. The evaporative vector: Homogeneous systems

    Klots, C.E.

    1987-05-01

    Molecular beams of van der Waals molecules are the subject of much current research. Among the methods used to form these beams, three-sputtering, laser ablation, and the sonic nozzle expansion of neat gases - yield what are now recognized to be ''warm clusters.'' They contain enough internal energy to undergo a number of first-order processes, in particular that of evaporation. Because of this evaporation and its attendant cooling, the properties of such clusters are time-dependent. The states of matter which can be arrived at via an evaporative vector on a typical laboratory time-scale are discussed. Topics include the (1) temperatures, (2) metastability, (3) phase transitions, (4) kinetic energies of fragmentation, and (5) the expression of magical properties, all for evaporating homogeneous clusters

  7. Notes on a class of homogeneous space-times

    Calvao, M.O.; Reboucas, M.J.; Teixeira, A.F.F.; Silva Junior, W.M.

    1987-01-01

    The breakdown of causality in homogeneous Goedel-type space-time manifolds is examined. An extension of Reboucas-Tiomno (RT) study is made. The existence of noncausal curves is also investigated under two different conditions on the energy-momentum tensor. An integral representation of the infinitesimal generators of isometries is obtained extending previous works on the RT geometry. (Author) [pt

  8. Reciprocity theory of homogeneous reactions

    Agbormbai, Adolf A.

    1990-03-01

    The reciprocity formalism is applied to the homogeneous gaseous reactions in which the structure of the participating molecules changes upon collision with one another, resulting in a change in the composition of the gas. The approach is applied to various classes of dissociation, recombination, rearrangement, ionizing, and photochemical reactions. It is shown that for the principle of reciprocity to be satisfied it is necessary that all chemical reactions exist in complementary pairs which consist of the forward and backward reactions. The backward reaction may be described by either the reverse or inverse process. The forward and backward processes must satisfy the same reciprocity equation. Because the number of dynamical variables is usually unbalanced on both sides of a chemical equation, it is necessary that this balance be established by including as many of the dynamical variables as needed before the reciprocity equation can be formulated. Statistical transformation models of the reactions are formulated. The models are classified under the titles free exchange, restricted exchange and simplified restricted exchange. The special equations for the forward and backward processes are obtained. The models are consistent with the H theorem and Le Chatelier's principle. The models are also formulated in the context of the direct simulation Monte Carlo method.

  9. Moral Beliefs and Cognitive Homogeneity

    Nevia Dolcini

    2018-04-01

    Full Text Available The Emotional Perception Model of moral judgment intends to account for experientialism about morality and moral reasoning. In explaining how moral beliefs are formed and applied in practical reasoning, the model attempts to overcome the mismatch between reason and action/desire: morality isn’t about reason for actions, yet moral beliefs, if caused by desires, may play a motivational role in (moral agency. The account allows for two kinds of moral beliefs: genuine moral beliefs, which enjoy a relation to desire, and motivationally inert moral beliefs acquired in ways other than experience. Such etiology-based dichotomy of concepts, I will argue, leads to the undesirable view of cognition as a non-homogeneous phenomenon. Moreover, the distinction between moral beliefs and moral beliefs would entail a further dichotomy encompassing the domain of moral agency: one and the same action might possibly be either genuine moral, or not moral, if acted by individuals lacking the capacity for moral feelings, such as psychopaths.

  10. Homogeneous modes of cosmological instantons

    Gratton, Steven; Turok, Neil

    2001-06-15

    We discuss the O(4) invariant perturbation modes of cosmological instantons. These modes are spatially homogeneous in Lorentzian spacetime and thus not relevant to density perturbations. But their properties are important in establishing the meaning of the Euclidean path integral. If negative modes are present, the Euclidean path integral is not well defined, but may nevertheless be useful in an approximate description of the decay of an unstable state. When gravitational dynamics is included, counting negative modes requires a careful treatment of the conformal factor problem. We demonstrate that for an appropriate choice of coordinate on phase space, the second order Euclidean action is bounded below for normalized perturbations and has a finite number of negative modes. We prove that there is a negative mode for many gravitational instantons of the Hawking-Moss or Coleman{endash}De Luccia type, and discuss the associated spectral flow. We also investigate Hawking-Turok constrained instantons, which occur in a generic inflationary model. Implementing the regularization and constraint proposed by Kirklin, Turok and Wiseman, we find that those instantons leading to substantial inflation do not possess negative modes. Using an alternate regularization and constraint motivated by reduction from five dimensions, we find a negative mode is present. These investigations shed new light on the suitability of Euclidean quantum gravity as a potential description of our universe.

  11. Homogeneous modes of cosmological instantons

    Gratton, Steven; Turok, Neil

    2001-01-01

    We discuss the O(4) invariant perturbation modes of cosmological instantons. These modes are spatially homogeneous in Lorentzian spacetime and thus not relevant to density perturbations. But their properties are important in establishing the meaning of the Euclidean path integral. If negative modes are present, the Euclidean path integral is not well defined, but may nevertheless be useful in an approximate description of the decay of an unstable state. When gravitational dynamics is included, counting negative modes requires a careful treatment of the conformal factor problem. We demonstrate that for an appropriate choice of coordinate on phase space, the second order Euclidean action is bounded below for normalized perturbations and has a finite number of negative modes. We prove that there is a negative mode for many gravitational instantons of the Hawking-Moss or ColemanendashDe Luccia type, and discuss the associated spectral flow. We also investigate Hawking-Turok constrained instantons, which occur in a generic inflationary model. Implementing the regularization and constraint proposed by Kirklin, Turok and Wiseman, we find that those instantons leading to substantial inflation do not possess negative modes. Using an alternate regularization and constraint motivated by reduction from five dimensions, we find a negative mode is present. These investigations shed new light on the suitability of Euclidean quantum gravity as a potential description of our universe

  12. AQUEOUS HOMOGENEOUS REACTORTECHNICAL PANEL REPORT

    Diamond, D.J.; Bajorek, S.; Bakel, A.; Flanagan, G.; Mubayi, V.; Skarda, R.; Staudenmeier, J.; Taiwo, T.; Tonoike, K.; Tripp, C.; Wei, T.; Yarsky, P.

    2010-12-03

    Considerable interest has been expressed for developing a stable U.S. production capacity for medical isotopes and particularly for molybdenum- 99 (99Mo). This is motivated by recent re-ductions in production and supply worldwide. Consistent with U.S. nonproliferation objectives, any new production capability should not use highly enriched uranium fuel or targets. Conse-quently, Aqueous Homogeneous Reactors (AHRs) are under consideration for potential 99Mo production using low-enriched uranium. Although the Nuclear Regulatory Commission (NRC) has guidance to facilitate the licensing process for non-power reactors, that guidance is focused on reactors with fixed, solid fuel and hence, not applicable to an AHR. A panel was convened to study the technical issues associated with normal operation and potential transients and accidents of an AHR that might be designed for isotope production. The panel has produced the requisite AHR licensing guidance for three chapters that exist now for non-power reactor licensing: Reac-tor Description, Reactor Coolant Systems, and Accident Analysis. The guidance is in two parts for each chapter: 1) standard format and content a licensee would use and 2) the standard review plan the NRC staff would use. This guidance takes into account the unique features of an AHR such as the fuel being in solution; the fission product barriers being the vessel and attached systems; the production and release of radiolytic and fission product gases and their impact on operations and their control by a gas management system; and the movement of fuel into and out of the reactor vessel.

  13. Homogeneity and thermodynamic identities in geometrothermodynamics

    Quevedo, Hernando [Universidad Nacional Autonoma de Mexico, Instituto de Ciencias Nucleares (Mexico); Universita di Roma ' ' La Sapienza' ' , Dipartimento di Fisica, Rome (Italy); ICRANet, Rome (Italy); Quevedo, Maria N. [Universidad Militar Nueva Granada, Departamento de Matematicas, Facultad de Ciencias Basicas, Bogota (Colombia); Sanchez, Alberto [CIIDET, Departamento de Posgrado, Queretaro (Mexico)

    2017-03-15

    We propose a classification of thermodynamic systems in terms of the homogeneity properties of their fundamental equations. Ordinary systems correspond to homogeneous functions and non-ordinary systems are given by generalized homogeneous functions. This affects the explicit form of the Gibbs-Duhem relation and Euler's identity. We show that these generalized relations can be implemented in the formalism of black hole geometrothermodynamics in order to completely fix the arbitrariness present in Legendre invariant metrics. (orig.)

  14. A literature review on biotic homogenization

    Guangmei Wang; Jingcheng Yang; Chuangdao Jiang; Hongtao Zhao; Zhidong Zhang

    2009-01-01

    Biotic homogenization is the process whereby the genetic, taxonomic and functional similarity of two or more biotas increases over time. As a new research agenda for conservation biogeography, biotic homogenization has become a rapidly emerging topic of interest in ecology and evolution over the past decade. However, research on this topic is rare in China. Herein, we introduce the development of the concept of biotic homogenization, and then discuss methods to quantify its three components (...

  15. Hybrid diffusion–transport spatial homogenization method

    Kooreman, Gabriel; Rahnema, Farzad

    2014-01-01

    Highlights: • A new hybrid diffusion–transport homogenization method. • An extension of the consistent spatial homogenization (CSH) transport method. • Auxiliary cross section makes homogenized diffusion consistent with heterogeneous diffusion. • An on-the-fly re-homogenization in transport. • The method is faster than fine-mesh transport by 6–8 times. - Abstract: A new hybrid diffusion–transport homogenization method has been developed by extending the consistent spatial homogenization (CSH) transport method to include diffusion theory. As in the CSH method, an “auxiliary cross section” term is introduced into the source term, making the resulting homogenized diffusion equation consistent with its heterogeneous counterpart. The method then utilizes an on-the-fly re-homogenization in transport theory at the assembly level in order to correct for core environment effects on the homogenized cross sections and the auxiliary cross section. The method has been derived in general geometry and tested in a 1-D boiling water reactor (BWR) core benchmark problem for both controlled and uncontrolled configurations. The method has been shown to converge to the reference solution with less than 1.7% average flux error in less than one third the computational time as the CSH method – 6 to 8 times faster than fine-mesh transport

  16. D-T neutron streaming experiment simulating narrow gaps in ITER equatorial port

    Ochiai, K.; Sato, S.; Wada, M.; Iida, H.; Takakura, K.; Kutsukake, C.; Tanaka, S.; Abe, Y.; Konno, C.

    2008-01-01

    Under the ITER/ITA task, we have conducted the neutron streaming experiment simulating narrow and deep gaps at boundaries between ITER vacuum vessel and equatorial port plugs. Micro-fission chambers and some activation foils were used to measure fission rates and reaction rates to evaluate the relative fast and slow neutron fluences along the gap in the experimental assembly. The MCNP4C, TORT and Attila codes were used for the experimental analysis. From comparing our measurements and calculations, the following facts were found: (1) in case of a such narrow and deep gap structure, the calculation with MCNP, TORT and Attila codes and FENDL-2.1 is sufficient to predict fast neutron field inside the gap; (2) by scattering neutrons in the experimental room, experimental error considerably increased at the deeper region than 100 cm; (3) angular quadrature set of upward biased U315 and last collided source calculation on TORT and Attila were very important technique for accurate estimation of neutron transport

  17. Stochastic model of milk homogenization process using Markov's chain

    A. A. Khvostov

    2016-01-01

    Full Text Available The process of development of a mathematical model of the process of homogenization of dairy products is considered in the work. The theory of Markov's chains was used in the development of the mathematical model, Markov's chain with discrete states and continuous parameter for which the homogenisation pressure is taken, being the basis for the model structure. Machine realization of the model is implemented in the medium of structural modeling MathWorks Simulink™. Identification of the model parameters was carried out by minimizing the standard deviation calculated from the experimental data for each fraction of dairy products fat phase. As the set of experimental data processing results of the micrographic images of fat globules of whole milk samples distribution which were subjected to homogenization at different pressures were used. Pattern Search method was used as optimization method with the Latin Hypercube search algorithm from Global Optimization Тoolbox library. The accuracy of calculations averaged over all fractions of 0.88% (the relative share of units, the maximum relative error was 3.7% with the homogenization pressure of 30 MPa, which may be due to the very abrupt change in properties from the original milk in the particle size distribution at the beginning of the homogenization process and the lack of experimental data at homogenization pressures of below the specified value. The mathematical model proposed allows to calculate the profile of volume and mass distribution of the fat phase (fat globules in the product, depending on the homogenization pressure and can be used in the laboratory and research of dairy products composition, as well as in the calculation, design and modeling of the process equipment of the dairy industry enterprises.

  18. Lagrangian statistics in compressible isotropic homogeneous turbulence

    Yang, Yantao; Wang, Jianchun; Shi, Yipeng; Chen, Shiyi

    2011-11-01

    In this work we conducted the Direct Numerical Simulation (DNS) of a forced compressible isotropic homogeneous turbulence and investigated the flow statistics from the Lagrangian point of view, namely the statistics is computed following the passive tracers trajectories. The numerical method combined the Eulerian field solver which was developed by Wang et al. (2010, J. Comp. Phys., 229, 5257-5279), and a Lagrangian module for tracking the tracers and recording the data. The Lagrangian probability density functions (p.d.f.'s) have then been calculated for both kinetic and thermodynamic quantities. In order to isolate the shearing part from the compressing part of the flow, we employed the Helmholtz decomposition to decompose the flow field (mainly the velocity field) into the solenoidal and compressive parts. The solenoidal part was compared with the incompressible case, while the compressibility effect showed up in the compressive part. The Lagrangian structure functions and cross-correlation between various quantities will also be discussed. This work was supported in part by the China's Turbulence Program under Grant No.2009CB724101.

  19. Self-consolidating concrete homogeneity

    Jarque, J. C.

    2007-08-01

    Full Text Available Concrete instability may lead to the non-uniform distribution of its properties. The homogeneity of self-consolidating concrete in vertically cast members was therefore explored in this study, analyzing both resistance to segregation and pore structure uniformity. To this end, two series of concretes were prepared, self-consolidating and traditional vibrated materials, with different w/c ratios and types of cement. The results showed that selfconsolidating concretes exhibit high resistance to segregation, albeit slightly lower than found in the traditional mixtures. The pore structure in the former, however, tended to be slightly more uniform, probably as a result of less intense bleeding. Such concretes are also characterized by greater bulk density, lower porosity and smaller mean pore size, which translates into a higher resistance to pressurized water. For pore diameters of over about 0.5 μm, however, the pore size distribution was found to be similar to the distribution in traditional concretes, with similar absorption rates.En este trabajo se estudia la homogeneidad de los hormigones autocompactantes en piezas hormigonadas verticalmente, determinando su resistencia a la segregación y la uniformidad de su estructura porosa, dado que la pérdida de estabilidad de una mezcla puede conducir a una distribución no uniforme de sus propiedades. Para ello se han fabricado dos tipos de hormigones, uno autocompactante y otro tradicional vibrado, con diferentes relaciones a/c y distintos tipos de cemento. Los resultados ponen de manifiesto que los hormigones autocompactantes presentan una buena resistencia a la segregación, aunque algo menor que la registrada en los hormigones tradicionales. A pesar de ello, su estructura porosa tiende a ser ligeramente más uniforme, debido probablemente a un menor sangrado. Asimismo, presentan una mayor densidad aparente, una menor porosidad y un menor tamaño medio de poro, lo que les confiere mejores

  20. Multilevel Monte Carlo Approaches for Numerical Homogenization

    Efendiev, Yalchin R.; Kronsbein, Cornelia; Legoll, Fré dé ric

    2015-01-01

    it comes to homogenized solutions, different levels of coarse-grid meshes are used to solve the homogenized equation. We show that, by carefully selecting the number of realizations at each level, we can achieve a speed-up in the computations in comparison

  1. Investigations into homogenization of electromagnetic metamaterials

    Clausen, Niels Christian Jerichau

    This dissertation encompasses homogenization methods, with a special interest into their applications to metamaterial homogenization. The first method studied is the Floquet-Bloch method, that is based on the assumption of a material being infinite periodic. Its field can then be expanded in term...

  2. Homogeneity of Prototypical Attributes in Soccer Teams

    Christian Zepp

    2015-09-01

    Full Text Available Research indicates that the homogeneous perception of prototypical attributes influences several intragroup processes. The aim of the present study was to describe the homogeneous perception of the prototype and to identify specific prototypical subcategories, which are perceived as homogeneous within sport teams. The sample consists of N = 20 soccer teams with a total of N = 278 athletes (age M = 23.5 years, SD = 5.0 years. The results reveal that subcategories describing the cohesiveness of the team and motivational attributes are mentioned homogeneously within sport teams. In addition, gender, identification, team size, and the championship ranking significantly correlate with the homogeneous perception of prototypical attributes. The results are discussed on the basis of theoretical and practical implications.

  3. Multilevel Monte Carlo Approaches for Numerical Homogenization

    Efendiev, Yalchin R.

    2015-10-01

    In this article, we study the application of multilevel Monte Carlo (MLMC) approaches to numerical random homogenization. Our objective is to compute the expectation of some functionals of the homogenized coefficients, or of the homogenized solutions. This is accomplished within MLMC by considering different sizes of representative volumes (RVEs). Many inexpensive computations with the smallest RVE size are combined with fewer expensive computations performed on larger RVEs. Likewise, when it comes to homogenized solutions, different levels of coarse-grid meshes are used to solve the homogenized equation. We show that, by carefully selecting the number of realizations at each level, we can achieve a speed-up in the computations in comparison to a standard Monte Carlo method. Numerical results are presented for both one-dimensional and two-dimensional test-cases that illustrate the efficiency of the approach.

  4. Aqueous homogeneous suspension reactor project

    Kersten, J.A.H.

    1976-11-01

    During the period April 1 through September 30, 1976, the energy production of the KSTR reactor was rather small due to problems with the inventory determinations and a decrease of the critical temperature at power operation for which no explanation could be found. A study program in cooperation with the IAEA will be carried out on the status and prospects of thermal breeders. Work done on the investigation of KSTR samples is mentioned briefly

  5. Numerical computing of elastic homogenized coefficients for periodic fibrous tissue

    Roman S.

    2009-06-01

    Full Text Available The homogenization theory in linear elasticity is applied to a periodic array of cylindrical inclusions in rectangular pattern extending to infinity in the inclusions axial direction, such that the deformation of tissue along this last direction is negligible. In the plane of deformation, the homogenization scheme is based on the average strain energy whereas in the third direction it is based on the average normal stress along this direction. Namely, these average quantities have to be the same on a Repeating Unit Cell (RUC of heterogeneous and homogenized media when using a special form of boundary conditions forming by a periodic part and an affine part of displacement. It exists an infinity of RUCs generating the considered array. The computing procedure is tested with different choices of RUC to control that the results of the homogenization process are independent of the kind of RUC we employ. Then, the dependence of the homogenized coefficients on the microstructure can be studied. For instance, a special anisotropy and the role of the inclusion volume are investigated. In the second part of this work, mechanical traction tests are simulated. We consider two kinds of loading, applying a density of force or imposing a displacement. We test five samples of periodic array containing one, four, sixteen, sixty-four and one hundred of RUCs. The evolution of mean stresses, strains and energy with the numbers of inclusions is studied. Evolutions depend on the kind of loading, but not their limits, which could be predicted by simulating traction test of the homogenized medium.

  6. Metallographic Index-Based Quantification of the Homogenization State in Extrudable Aluminum Alloys

    Panagiota I. Sarafoglou

    2016-05-01

    Full Text Available Extrudability of aluminum alloys of the 6xxx series is highly dependent on the microstructure of the homogenized billets. It is therefore very important to characterize quantitatively the state of homogenization of the as-cast billets. The quantification of the homogenization state was based on the measurement of specific microstructural indices, which describe the size and shape of the intermetallics and indicate the state of homogenization. The indices evaluated were the following: aspect ratio (AR, which is the ratio of the maximum to the minimum diameter of the particles, feret (F, which is the maximum caliper length, and circularity (C, which is a measure of how closely a particle resembles a circle in a 2D metallographic section. The method included extensive metallographic work and the measurement of a large number of particles, including a statistical analysis, in order to investigate the effect of homogenization time. Among the indices examined, the circularity index exhibited the most consistent variation with homogenization time. The lowest value of the circularity index coincided with the metallographic observation for necklace formation. Shorter homogenization times resulted in intermediate homogenization stages involving rounding of edges or particle pinching. The results indicated that the index-based quantification of the homogenization state could provide a credible method for the selection of homogenization process parameters towards enhanced extrudability.

  7. Characterization of two-scale gradient Young measures and application to homogenization

    Babadjian, Jean-Francois; Baia, Margarida; Santos, Pedro M.

    2006-01-01

    This work is devoted to the study of two-scale gradient Young measures naturally arising in nonlinear elasticity homogenization problems. Precisely, a characterization of this class of measures is derived and an integral representation formula for homogenized energies, whose integrands satisfy very weak regularity assumptions, is obtained in terms of two-scale gradient Young measures.

  8. Homogeneity and Strength of Mortar Joints in Pearl-Chain Bridges

    Lund, Mia Schou Møller; Arvidsson, Michael; Hansen, Kurt Kielsgaard

    2015-01-01

    -to-mix mortar products are tested. To the authors’ knowledge, no previous published work has documented the homogeneity and properties of mortar joints of such a height. Hence, the present study documents a practical test procedure where the homogeneity of three mortar joints measuring 20 x 220 x 2400 mm has...

  9. Dynamic contact angle cycling homogenizes heterogeneous surfaces.

    Belibel, R; Barbaud, C; Mora, L

    2016-12-01

    In order to reduce restenosis, the necessity to develop the appropriate coating material of metallic stent is a challenge for biomedicine and scientific research over the past decade. Therefore, biodegradable copolymers of poly((R,S)-3,3 dimethylmalic acid) (PDMMLA) were prepared in order to develop a new coating exhibiting different custom groups in its side chain and being able to carry a drug. This material will be in direct contact with cells and blood. It consists of carboxylic acid and hexylic groups used for hydrophilic and hydrophobic character, respectively. The study of this material wettability and dynamic surface properties is of importance due to the influence of the chemistry and the potential motility of these chemical groups on cell adhesion and polymer kinetic hydrolysis. Cassie theory was used for the theoretical correction of contact angles of these chemical heterogeneous surfaces coatings. Dynamic Surface Analysis was used as practical homogenizer of chemical heterogeneous surfaces by cycling during many cycles in water. In this work, we confirmed that, unlike receding contact angle, advancing contact angle is influenced by the difference of only 10% of acidic groups (%A) in side-chain of polymers. It linearly decreases with increasing acidity percentage. Hysteresis (H) is also a sensitive parameter which is discussed in this paper. Finally, we conclude that cycling provides real information, thus avoiding theoretical Cassie correction. H(10)is the most sensible parameter to %A. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. String pair production in non homogeneous backgrounds

    Bolognesi, S. [Department of Physics “E. Fermi” University of Pisa, and INFN - Sezione di Pisa,Largo Pontecorvo, 3, Ed. C, 56127 Pisa (Italy); Rabinovici, E. [Racah Institute of Physics, The Hebrew University of Jerusalem,91904 Jerusalem (Israel); Tallarita, G. [Departamento de Ciencias, Facultad de Artes Liberales,Universidad Adolfo Ibáñez, Santiago 7941169 (Chile)

    2016-04-28

    We consider string pair production in non homogeneous electric backgrounds. We study several particular configurations which can be addressed with the Euclidean world-sheet instanton technique, the analogue of the world-line instanton for particles. In the first case the string is suspended between two D-branes in flat space-time, in the second case the string lives in AdS and terminates on one D-brane (this realizes the holographic Schwinger effect). In some regions of parameter space the result is well approximated by the known analytical formulas, either the particle pair production in non-homogeneous background or the string pair production in homogeneous background. In other cases we see effects which are intrinsically stringy and related to the non-homogeneity of the background. The pair production is enhanced already for particles in time dependent electric field backgrounds. The string nature enhances this even further. For spacial varying electrical background fields the string pair production is less suppressed than the rate of particle pair production. We discuss in some detail how the critical field is affected by the non-homogeneity, for both time and space dependent electric field backgrouds. We also comment on what could be an interesting new prediction for the small field limit. The third case we consider is pair production in holographic confining backgrounds with homogeneous and non-homogeneous fields.

  11. String pair production in non homogeneous backgrounds

    Bolognesi, S.; Rabinovici, E.; Tallarita, G.

    2016-01-01

    We consider string pair production in non homogeneous electric backgrounds. We study several particular configurations which can be addressed with the Euclidean world-sheet instanton technique, the analogue of the world-line instanton for particles. In the first case the string is suspended between two D-branes in flat space-time, in the second case the string lives in AdS and terminates on one D-brane (this realizes the holographic Schwinger effect). In some regions of parameter space the result is well approximated by the known analytical formulas, either the particle pair production in non-homogeneous background or the string pair production in homogeneous background. In other cases we see effects which are intrinsically stringy and related to the non-homogeneity of the background. The pair production is enhanced already for particles in time dependent electric field backgrounds. The string nature enhances this even further. For spacial varying electrical background fields the string pair production is less suppressed than the rate of particle pair production. We discuss in some detail how the critical field is affected by the non-homogeneity, for both time and space dependent electric field backgrouds. We also comment on what could be an interesting new prediction for the small field limit. The third case we consider is pair production in holographic confining backgrounds with homogeneous and non-homogeneous fields.

  12. Control rod homogenization in heterogeneous sodium-cooled fast reactors

    Andersson, Mikael

    2016-01-01

    The sodium-cooled fast reactor is one of the candidates for a sustainable nuclear reactor system. In particular, the French ASTRID project employs an axially heterogeneous design, proposed in the so-called CFV (low sodium effect) core, to enhance the inherent safety features of the reactor. This thesis focuses on the accurate modeling of the control rods, through the homogenization method. The control rods in a sodium-cooled fast reactor are used for reactivity compensation during the cycle, power shaping, and to shutdown the reactor. In previous control rod homogenization procedures, only a radial description of the geometry was implemented, hence the axially heterogeneous features of the CFV core could not be taken into account. This thesis investigates the different axial variations the control rod experiences in a CFV core, to determine the impact that these axial environments have on the control rod modeling. The methodology used in this work is based on previous homogenization procedures, the so-called equivalence procedure. The procedure was newly implemented in the PARIS code system in order to be able to use 3D geometries, and thereby be take axial effects into account. The thesis is divided into three parts. The first part investigates the impact of different neutron spectra on the homogeneous control-rod cross sections. The second part investigates the cases where the traditional radial control-rod homogenization procedure is no longer applicable in the CFV core, which was found to be 5-10 cm away from any material interface. In the third part, based on the results from the second part, a 3D model of the control rod is used to calculate homogenized control-rod cross sections. In a full core model, a study is made to investigate the impact these axial effects have on control rod-related core parameters, such as the control rod worth, the capture rates in the control rod, and the power in the adjacent fuel assemblies. All results were compared to a Monte

  13. Spinorial characterizations of surfaces into three-dimensional homogeneous manifolds

    Roth, Julien

    2010-06-01

    We give spinorial characterizations of isometrically immersed surfaces into three-dimensional homogeneous manifolds with four-dimensional isometry group in terms of the existence of a particular spinor field. This generalizes works by Friedrich for R3 and Morel for S3 and H3. The main argument is the interpretation of the energy-momentum tensor of such a spinor field as the second fundamental form up to a tensor depending on the structure of the ambient space.

  14. Poisson-Jacobi reduction of homogeneous tensors

    Grabowski, J; Iglesias, D; Marrero, J C; Padron, E; Urbanski, P

    2004-01-01

    The notion of homogeneous tensors is discussed. We show that there is a one-to-one correspondence between multivector fields on a manifold M, homogeneous with respect to a vector field Δ on M, and first-order polydifferential operators on a closed submanifold N of codimension 1 such that Δ is transversal to N. This correspondence relates the Schouten-Nijenhuis bracket of multivector fields on M to the Schouten-Jacobi bracket of first-order polydifferential operators on N and generalizes the Poissonization of Jacobi manifolds. Actually, it can be viewed as a super-Poissonization. This procedure of passing from a homogeneous multivector field to a first-order polydifferential operator can also be understood as a sort of reduction; in the standard case-a half of a Poisson reduction. A dual version of the above correspondence yields in particular the correspondence between Δ-homogeneous symplectic structures on M and contact structures on N

  15. Computational Method for Atomistic-Continuum Homogenization

    Chung, Peter

    2002-01-01

    The homogenization method is used as a framework for developing a multiscale system of equations involving atoms at zero temperature at the small scale and continuum mechanics at the very large scale...

  16. Homogenization and Control of Lattice Structures

    Blankenship, G. L

    1985-01-01

    ...., trusses may be modeled by beam equations). Using a technique from the mathematics of asymptotic analysis called "homogenization," the author shows how such approximations may be derived in a systematic way that avoids errors made using...

  17. Homogenization of High-Contrast Brinkman Flows

    Brown, Donald L.; Efendiev, Yalchin R.; Li, Guanglian; Savatorova, Viktoria

    2015-01-01

    , Homogenization: Methods and Applications, Transl. Math. Monogr. 234, American Mathematical Society, Providence, RI, 2007, G. Allaire, SIAM J. Math. Anal., 23 (1992), pp. 1482--1518], although a powerful tool, are not applicable here. Our second point

  18. Homogenized thermal conduction model for particulate foods

    Chinesta , Francisco; Torres , Rafael; Ramón , Antonio; Rodrigo , Mari Carmen; Rodrigo , Miguel

    2002-01-01

    International audience; This paper deals with the definition of an equivalent thermal conductivity for particulate foods. An homogenized thermal model is used to asses the effect of particulate spatial distribution and differences in thermal conductivities. We prove that the spatial average of the conductivity can be used in an homogenized heat transfer model if the conductivity differences among the food components are not very large, usually the highest conductivity ratio between the foods ...

  19. Diffusion piecewise homogenization via flux discontinuity ratios

    Sanchez, Richard; Dante, Giorgio; Zmijarevic, Igor

    2013-01-01

    We analyze piecewise homogenization with flux-weighted cross sections and preservation of averaged currents at the boundary of the homogenized domain. Introduction of a set of flux discontinuity ratios (FDR) that preserve reference interface currents leads to preservation of averaged region reaction rates and fluxes. We consider the class of numerical discretizations with one degree of freedom per volume and per surface and prove that when the homogenization and computing meshes are equal there is a unique solution for the FDRs which exactly preserve interface currents. For diffusion sub-meshing we introduce a Jacobian-Free Newton-Krylov method and for all cases considered obtain an 'exact' numerical solution (eight digits for the interface currents). The homogenization is completed by extending the familiar full assembly homogenization via flux discontinuity factors to the sides of regions laying on the boundary of the piecewise homogenized domain. Finally, for the familiar nodal discretization we numerically find that the FDRs obtained with no sub-mesh (nearly at no cost) can be effectively used for whole-core diffusion calculations with sub-mesh. This is not the case, however, for cell-centered finite differences. (authors)

  20. Homogeneous anisotropic solutions of topologically massive gravity with a cosmological constant and their homogeneous deformations

    Moutsopoulos, George

    2013-01-01

    We solve the equations of topologically massive gravity (TMG) with a potentially non-vanishing cosmological constant for homogeneous metrics without isotropy. We only reproduce known solutions. We also discuss their homogeneous deformations, possibly with isotropy. We show that de Sitter space and hyperbolic space cannot be infinitesimally homogeneously deformed in TMG. We clarify some of their Segre–Petrov types and discuss the warped de Sitter spacetime. (paper)

  1. Homogeneous anisotropic solutions of topologically massive gravity with a cosmological constant and their homogeneous deformations

    Moutsopoulos, George

    2013-06-01

    We solve the equations of topologically massive gravity (TMG) with a potentially non-vanishing cosmological constant for homogeneous metrics without isotropy. We only reproduce known solutions. We also discuss their homogeneous deformations, possibly with isotropy. We show that de Sitter space and hyperbolic space cannot be infinitesimally homogeneously deformed in TMG. We clarify some of their Segre-Petrov types and discuss the warped de Sitter spacetime.

  2. Electrical model of dielectric barrier discharge homogenous and filamentary modes

    López-Fernandez, J. A.; Peña-Eguiluz, R.; López-Callejas, R.; Mercado-Cabrera, A.; Valencia-Alvarado, R.; Muñoz-Castro, A.; Rodríguez-Méndez, B. G.

    2017-01-01

    This work proposes an electrical model that combines homogeneous and filamentary modes of an atmospheric pressure dielectric barrier discharge cell. A voltage controlled electric current source has been utilized to implement the power law equation that represents the homogeneous discharge mode, which starts when the gas breakdown voltage is reached. The filamentary mode implies the emergence of electric current conducting channels (microdischarges), to add this phenomenon an RC circuit commutated by an ideal switch has been proposed. The switch activation occurs at a higher voltage level than the gas breakdown voltage because it is necessary to impose a huge electric field that contributes to the appearance of streamers. The model allows the estimation of several electric parameters inside the reactor that cannot be measured. Also, it is possible to appreciate the modes of the DBD depending on the applied voltage magnitude. Finally, it has been recognized a good agreement between simulation outcomes and experimental results.

  3. Neutron transport equation - indications on homogenization and neutron diffusion

    Argaud, J.P.

    1992-06-01

    In PWR nuclear reactor, the practical study of the neutrons in the core uses diffusion equation to describe the problem. On the other hand, the most correct method to describe these neutrons is to use the Boltzmann equation, or neutron transport equation. In this paper, we give some theoretical indications to obtain a diffusion equation from the general transport equation, with some simplifying hypothesis. The work is organised as follows: (a) the most general formulations of the transport equation are presented: integro-differential equation and integral equation; (b) the theoretical approximation of this Boltzmann equation by a diffusion equation is introduced, by the way of asymptotic developments; (c) practical homogenization methods of transport equation is then presented. In particular, the relationships with some general and useful methods in neutronic are shown, and some homogenization methods in energy and space are indicated. A lot of other points of view or complements are detailed in the text or the remarks

  4. Electrical model of dielectric barrier discharge homogenous and filamentary modes

    López-Fernandez, J A; Peña-Eguiluz, R; López-Callejas, R; Mercado-Cabrera, A; Valencia-Alvarado, R; Muñoz-Castro, A; Rodríguez-Méndez, B G

    2017-01-01

    This work proposes an electrical model that combines homogeneous and filamentary modes of an atmospheric pressure dielectric barrier discharge cell. A voltage controlled electric current source has been utilized to implement the power law equation that represents the homogeneous discharge mode, which starts when the gas breakdown voltage is reached. The filamentary mode implies the emergence of electric current conducting channels (microdischarges), to add this phenomenon an RC circuit commutated by an ideal switch has been proposed. The switch activation occurs at a higher voltage level than the gas breakdown voltage because it is necessary to impose a huge electric field that contributes to the appearance of streamers. The model allows the estimation of several electric parameters inside the reactor that cannot be measured. Also, it is possible to appreciate the modes of the DBD depending on the applied voltage magnitude. Finally, it has been recognized a good agreement between simulation outcomes and experimental results. (paper)

  5. Rapid biotic homogenization of marine fish assemblages

    Magurran, Anne E.; Dornelas, Maria; Moyes, Faye; Gotelli, Nicholas J.; McGill, Brian

    2015-01-01

    The role human activities play in reshaping biodiversity is increasingly apparent in terrestrial ecosystems. However, the responses of entire marine assemblages are not well-understood, in part, because few monitoring programs incorporate both spatial and temporal replication. Here, we analyse an exceptionally comprehensive 29-year time series of North Atlantic groundfish assemblages monitored over 5° latitude to the west of Scotland. These fish assemblages show no systematic change in species richness through time, but steady change in species composition, leading to an increase in spatial homogenization: the species identity of colder northern localities increasingly resembles that of warmer southern localities. This biotic homogenization mirrors the spatial pattern of unevenly rising ocean temperatures over the same time period suggesting that climate change is primarily responsible for the spatial homogenization we observe. In this and other ecosystems, apparent constancy in species richness may mask major changes in species composition driven by anthropogenic change. PMID:26400102

  6. Two-Dimensional Homogeneous Fermi Gases

    Hueck, Klaus; Luick, Niclas; Sobirey, Lennart; Siegl, Jonas; Lompe, Thomas; Moritz, Henning

    2018-02-01

    We report on the experimental realization of homogeneous two-dimensional (2D) Fermi gases trapped in a box potential. In contrast to harmonically trapped gases, these homogeneous 2D systems are ideally suited to probe local as well as nonlocal properties of strongly interacting many-body systems. As a first benchmark experiment, we use a local probe to measure the density of a noninteracting 2D Fermi gas as a function of the chemical potential and find excellent agreement with the corresponding equation of state. We then perform matter wave focusing to extract the momentum distribution of the system and directly observe Pauli blocking in a near unity occupation of momentum states. Finally, we measure the momentum distribution of an interacting homogeneous 2D gas in the crossover between attractively interacting fermions and bosonic dimers.

  7. Internal homogenization: effective permittivity of a coated sphere.

    Chettiar, Uday K; Engheta, Nader

    2012-10-08

    The concept of internal homogenization is introduced as a complementary approach to the conventional homogenization schemes, which could be termed as external homogenization. The theory for the internal homogenization of the permittivity of subwavelength coated spheres is presented. The effective permittivity derived from the internal homogenization of coreshells is discussed for plasmonic and dielectric constituent materials. The effective model provided by the homogenization is a useful design tool in constructing coated particles with desired resonant properties.

  8. Statistical methods for assessment of blend homogeneity

    Madsen, Camilla

    2002-01-01

    In this thesis the use of various statistical methods to address some of the problems related to assessment of the homogeneity of powder blends in tablet production is discussed. It is not straight forward to assess the homogeneity of a powder blend. The reason is partly that in bulk materials......, it is shown how to set up parametric acceptance criteria for the batch that gives a high confidence that future samples with a probability larger than a specified value will pass the USP threeclass criteria. Properties and robustness of proposed changes to the USP test for content uniformity are investigated...

  9. Flows and chemical reactions in homogeneous mixtures

    Prud'homme, Roger

    2013-01-01

    Flows with chemical reactions can occur in various fields such as combustion, process engineering, aeronautics, the atmospheric environment and aquatics. The examples of application chosen in this book mainly concern homogeneous reactive mixtures that can occur in propellers within the fields of process engineering and combustion: - propagation of sound and monodimensional flows in nozzles, which may include disequilibria of the internal modes of the energy of molecules; - ideal chemical reactors, stabilization of their steady operation points in the homogeneous case of a perfect mixture and c

  10. Fabrication and characterization of uranium-6--niobium alloy plate with improved homogeneity

    Snyder, W.B.

    1978-01-01

    Chemical inhomogeneities produced during arc melting of uranium--6 weight percent niobium alloy normally persist during fabrication of the ingot to a finished product. An investigation was directed toward producing a more homogeneous product (approx. 13.0-mm plate) by a combination of mechanical working and homogenization. Ingots were cast, forged to various reductions, homogenized under different conditions, and finally rolled to 13.0-mm-thick plate. It was concluded that increased forging reductions prior to homogenization resulted in a more homogeneous plate. Comparison of calculated and experimentally measured niobium concentration profiles indicated that the activation energy for the diffusion of niobium in uranium--niobium alloys may be lower than previously observed

  11. Improvement of the homogeneity of atomized particles dispersed in high uranium density research reactor fuels

    Kim, Chang-Kyu; Kim, Ki-Hwan; Park, Jong-Man; Lee, Yoon-Sang; Lee, Don-Bae; Sohn, Woong-Hee; Hong, Soon-Hyung

    1998-01-01

    A study on improving the homogeneous dispersion of atomized spherical particles in fuel meats has been performed in connection with the development of high uranium density fuel. In comparing various mixing methods, the better homogeneity of the mixture could be obtained as in order of Spex mill, V-shape tumbler mixer, and off-axis rotating drum mixer. The Spex mill mixer required some laborious work because of its small capacity per batch. Trough optimizing the rotating speed parameter for the V-shape tumbler mixer, almost the same homogeneity as with the Spex mill could be obtained. The homogeneity of the extruded fuel meats appeared to improve through extrusion. All extruded fuel meats with U 3 Si powder of 50-volume % had fairly smooth surfaces. The homogeneity of fuel meats by V-shaped tumbler mixer revealed to be fairly good on micrographs. (author)

  12. Dosimetric calculations by Monte Carlo for treatments of radiosurgery with the Leksell Gamma Knife, homogeneous and non homogeneous cases

    Rojas C, E.L.; Lallena R, A.M.

    2004-01-01

    In this work dose profiles are calculated that are obtained modeling treatments of radiosurgery with the Leksell Gamma Knife. This was made with the simulation code Monte Carlo Penelope for an homogeneous mannequin and one not homogeneous. Its were carried out calculations with the irradiation focus coinciding with the center of the mannequin as in near areas to the bone interface. Each one of the calculations one carries out for the 4 skull treatment that it includes the Gamma Knife and using a model simplified of their 201 sources of 60 Co. It was found that the dose profiles differ of the order of 2% when the isocenter coincides with the center of the mannequin and they ascend to near 5% when the isocenter moves toward the skull. (Author)

  13. Homogenization versus homogenization-free method to measure muscle glycogen fractions.

    Mojibi, N; Rasouli, M

    2016-12-01

    The glycogen is extracted from animal tissues with or without homogenization using cold perchloric acid. Three methods were compared for determination of glycogen in rat muscle at different physiological states. Two groups of five rats were kept at rest or 45 minutes muscular activity. The glycogen fractions were extracted and measured by using three methods. The data of homogenization method shows that total glycogen decreased following 45 min physical activity and the change occurred entirely in acid soluble glycogen (ASG), while AIG did not change significantly. Similar results were obtained by using "total-glycogen-fractionation methods". The findings of "homogenization-free method" indicate that the acid insoluble fraction (AIG) was the main portion of muscle glycogen and the majority of changes occurred in AIG fraction. The results of "homogenization method" are identical with "total glycogen fractionation", but differ with "homogenization-free" protocol. The ASG fraction is the major portion of muscle glycogen and is more metabolically active form.

  14. The homogeneous marginal utility of income assumption

    Demuynck, T.

    2015-01-01

    We develop a test to verify if every agent from a population of heterogeneous consumers has the same marginal utility of income function. This homogeneous marginal utility of income assumption is often (implicitly) used in applied demand studies because it has nice aggregation properties and

  15. Synthesis of silica nanosphere from homogeneous and ...

    WINTEC

    avoid it, reaction in heterogeneous system using CTABr was carried out. Nanosized silica sphere with ... Homogeneous system contains a mixture of ethanol, water, aqueous ammonia and ... heated to 823 K (rate, 1 K/min) in air and kept at this.

  16. Gravitational Metric Tensor Exterior to Rotating Homogeneous ...

    The covariant and contravariant metric tensors exterior to a homogeneous spherical body rotating uniformly about a common φ axis with constant angular velocity ω is constructed. The constructed metric tensors in this gravitational field have seven non-zero distinct components.The Lagrangian for this gravitational field is ...

  17. Homogeneous nucleation of water in synthetic air

    Fransen, M.A.L.J.; Sachteleben, E.; Hruby, J.; Smeulders, D.M.J.; DeMott, P.J.; O'Dowd, C.D.

    2013-01-01

    Homogeneous nucleation rates for water vapor in synthetic air are measured by means of a Pulse-Expansion Wave Tube (PEWT). A comparison of the experimental nucleation rates with the Classical Nucleation Theory (CNT) shows that a more elaborated model is necessary to describe supercooled water

  18. Homogeneity in Social Groups of Iraqis

    Gresham, J.; Saleh, F.; Majid, S.

    With appreciation to the Royal Institute for Inter-Faith Studies for initiating the Second World Congress for Middle Eastern Studies, this paper summarizes findings on homogeneity in community-level social groups derived from inter-ethnic research conducted during 2005 among Iraqi Arabs and Kurds

  19. Abelian gauge theories on homogeneous spaces

    Vassilevich, D.V.

    1992-07-01

    An algebraic technique of separation of gauge modes in Abelian gauge theories on homogeneous spaces is proposed. An effective potential for the Maxwell-Chern-Simons theory on S 3 is calculated. A generalization of the Chern-Simons action is suggested and analysed with the example of SU(3)/U(1) x U(1). (author). 11 refs

  20. Benchmarking homogenization algorithms for monthly data

    Venema, V. K. C.; Mestre, O.; Aquilar, E.; Auer, I.; Guijarro, J. A.; Domonkos, P.; Vertačník, G.; Szentimrey, T.; Štěpánek, Petr; Zahradníček, Pavel; Viarre, J.; Mueller-Westermeier, G.; Lakatos, M.; Williams, C. N.; Menne, M. J.; Lindau, R.; Rasol, D.; Rustemeier, E.; Kolokythas, K.; Marinova, T.; Andresen, L.; Acquaotta, F.; Fratianni, S.; Cheval, S.; Klancar, M.; Brunetti, M.; Gruber, C.; Duran, M. P.; Likso, T.; Esteban, P.; Brandsma, T.

    2012-01-01

    Roč. 8, č. 1 (2012), s. 89-115 ISSN 1814-9324 Institutional support: RVO:67179843 Keywords : climate data * instrumental time-series * greater alpine region * homogeneity test * variability * inhomogeneities Subject RIV: EH - Ecology, Behaviour Impact factor: 3.556, year: 2012

  1. Extension theorems for homogenization on lattice structures

    Miller, Robert E.

    1992-01-01

    When applying homogenization techniques to problems involving lattice structures, it is necessary to extend certain functions defined on a perforated domain to a simply connected domain. This paper provides general extension operators which preserve bounds on derivatives of order l. Only the special case of honeycomb structures is considered.

  2. Traffic planning for non-homogeneous traffic

    Western traffic planning methodologies mostly address the concerns of homogeneous traffic and therefore often prove inadequate in solving problems involving ... Transportation Research and Injury Prevention Programme, Indian Institute of Technology, Hauz Khas, New Delhi 110 016; Civil and Architectural Engineering ...

  3. A generalized model for homogenized reflectors

    Pogosbekyan, Leonid; Kim, Yeong Il; Kim, Young Jin; Joo, Hyung Kook

    1996-01-01

    A new concept of equivalent homogenization is proposed. The concept employs new set of homogenized parameters: homogenized cross sections (XS) and interface matrix (IM), which relates partial currents at the cell interfaces. The idea of interface matrix generalizes the idea of discontinuity factors (DFs), proposed and developed by K. Koebke and K. Smith. The method of K. Smith can be simulated within framework of new method, while the new method approximates hetero-geneous cell better in case of the steep flux gradients at the cell interfaces. The attractive shapes of new concept are:improved accuracy, simplicity of incorporation in the existing codes, equal numerical expenses in comparison to the K. Smith's approach. The new concept is useful for: (a) explicit reflector/baffle simulation; (b)control blades simulation; (c) mixed UO 2 /MOX core simulation. The offered model has been incorporated in the finite difference code and in the nodal code PANBOX. The numerical results show good accuracy of core calculations and insensitivity of homogenized parameters with respect to in-core conditions

  4. Inverse acoustic problem of N homogeneous scatterers

    Berntsen, Svend

    2002-01-01

    The three-dimensional inverse acoustic medium problem of N homogeneous objects with known geometry and location is considered. It is proven that one scattering experiment is sufficient for the unique determination of the complex wavenumbers of the objects. The mapping from the scattered fields...

  5. Mach's principle in spatially homogeneous spacetimes

    Tipler, F.J.

    1978-01-01

    On the basis of Mach's Principle it is concluded that the only singularity-free solution to the empty space Einstein equations is flat space. It is shown that the only singularity-free solution to the empty space Einstein equations which is spatially homogeneous and globally hyperbolic is in fact suitably identified Minkowski space. (Auth.)

  6. Water Filtration through Homogeneous Granulated Charge

    A. M. Krautsou

    2005-01-01

    Full Text Available General relationship for calculation of water filtration through homogeneous granulated charge has been obtained. The obtained relationship has been compared with experimental data. Discrepancies between calculated and experimental values do not exceed 6 % throughout the entire investigated range.

  7. Properties of subvisible cirrus clouds formed by homogeneous freezing

    B. Kärcher

    2002-01-01

    Full Text Available Number concentrations and mean sizes of ice crystals and derived microphysical and optical properties of subvisible cirrus clouds (SVCs formed by homogeneous freezing of supercooled aerosols are investigated as a function of temperature and updraft speed of adiabatically ascending air parcels. The properties of such clouds are insensitive to variations of the aerosol number and size distribution. Based on criteria constraining the optical extinction, sedimentation time, and existence time of SVCs, longer-lived (>10min clouds, capable of exerting a measurable radiative or chemical impact, are generated within a narrow range of updraft speeds below 1-2cm s-1 at temperatures below about 215K, with concentrations of ice crystals not exceeding 0.1cm-3. The clouds do not reach an equilibrium state because the ice crystals sediment out of the formation layer typically before the supersaturation is removed. Two important conclusions emerge from this work. First, the above characteristics of SVCs may provide an explanation for why SVCs are more common in the cold tropical than in the warmer midlatitude tropopause region. Second, it seems likely that a limited number (-3 of effective heterogeneous freezing nuclei that nucleate ice below the homogeneous freezing threshold can control the formation and properties of SVCs, although homogeneous freezing nuclei are far more abundant.

  8. A new concept of equivalent homogenization method

    Kim, Young Jin; Pogoskekyan, Leonid; Kim, Young Il; Ju, Hyung Kook; Chang, Moon Hee [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1996-07-01

    A new concept of equivalent homogenization is proposed. The concept employs new set of homogenized parameters: homogenized cross sections (XS) and interface matrix (IM), which relates partial currents at the cell interfaces. The idea of interface matrix generalizes the idea of discontinuity factors (DFs), proposed and developed by K. Koebke and K. Smith. The offered concept covers both those of K. Koebke and K. Smith; both of them can be simulated within framework of new concept. Also, the offered concept covers Siemens KWU approach for baffle/reflector simulation, where the equivalent homogenized reflector XS are derived from the conservation of response matrix at the interface in 1D simi-infinite slab geometry. The IM and XS of new concept satisfy the same assumption about response matrix conservation in 1D semi-infinite slab geometry. It is expected that the new concept provides more accurate approximation of heterogeneous cell, especially in case of the steep flux gradients at the cell interfaces. The attractive shapes of new concept are: improved accuracy, simplicity of incorporation in the existing codes, equal numerical expenses in comparison to the K. Smith`s approach. The new concept is useful for: (a) explicit reflector/baffle simulation; (b) control blades simulation; (c) mixed UO{sub 2}/MOX core simulation. The offered model has been incorporated in the finite difference code and in the nodal code PANDOX. The numerical results show good accuracy of core calculations and insensitivity of homogenized parameters with respect to in-core conditions. 9 figs., 7 refs. (Author).

  9. Asymptotic Expansion Homogenization for Multiscale Nuclear Fuel Analysis

    2015-01-01

    Engineering scale nuclear fuel performance simulations can benefit by utilizing high-fidelity models running at a lower length scale. Lower length-scale models provide a detailed view of the material behavior that is used to determine the average material response at the macroscale. These lower length-scale calculations may provide insight into material behavior where experimental data is sparse or nonexistent. This multiscale approach is especially useful in the nuclear field, since irradiation experiments are difficult and expensive to conduct. The lower length-scale models complement the experiments by influencing the types of experiments required and by reducing the total number of experiments needed. This multiscale modeling approach is a central motivation in the development of the BISON-MARMOT fuel performance codes at Idaho National Laboratory. These codes seek to provide more accurate and predictive solutions for nuclear fuel behavior. One critical aspect of multiscale modeling is the ability to extract the relevant information from the lower length-scale sim- ulations. One approach, the asymptotic expansion homogenization (AEH) technique, has proven to be an effective method for determining homogenized material parameters. The AEH technique prescribes a system of equations to solve at the microscale that are used to compute homogenized material constants for use at the engineering scale. In this work, we employ AEH to explore the effect of evolving microstructural thermal conductivity and elastic constants on nuclear fuel performance. We show that the AEH approach fits cleanly into the BISON and MARMOT codes and provides a natural, multidimensional homogenization capability.

  10. Modeling the homogenization kinetics of as-cast U-10wt% Mo alloys

    Xu, Zhijie, E-mail: zhijie.xu@pnnl.gov [Computational Mathematics Group, Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Joshi, Vineet [Energy Processes & Materials Division, Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Hu, Shenyang [Reactor Materials & Mechanical Design, Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Paxton, Dean [Nuclear Engineering and Analysis Group, Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Lavender, Curt [Energy Processes & Materials Division, Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Burkes, Douglas [Nuclear Engineering and Analysis Group, Pacific Northwest National Laboratory, Richland, WA 99352 (United States)

    2016-04-01

    Low-enriched U-22at% Mo (U–10Mo) alloy has been considered as an alternative material to replace the highly enriched fuels in research reactors. For the U–10Mo to work effectively and replace the existing fuel material, a thorough understanding of the microstructure development from as-cast to the final formed structure is required. The as-cast microstructure typically resembles an inhomogeneous microstructure with regions containing molybdenum-rich and -lean regions, which may affect the processing and possibly the in-reactor performance. This as-cast structure must be homogenized by thermal treatment to produce a uniform Mo distribution. The development of a modeling capability will improve the understanding of the effect of initial microstructures on the Mo homogenization kinetics. In the current work, we investigated the effect of as-cast microstructure on the homogenization kinetics. The kinetics of the homogenization was modeled based on a rigorous algorithm that relates the line scan data of Mo concentration to the gray scale in energy dispersive spectroscopy images, which was used to generate a reconstructed Mo concentration map. The map was then used as realistic microstructure input for physics-based homogenization models, where the entire homogenization kinetics can be simulated and validated against the available experiment data at different homogenization times and temperatures.

  11. Homogenization on Multi-Materials’ Elements: Application to Printed Circuit Boards and Warpage Analysis

    Araújo Manuel

    2016-01-01

    Full Text Available Multi-material domains are often found in industrial applications. Modelling them can be computationally very expensive due to meshing requirements. The finite element properties comprising different materials are hardly accurate. In this work, a new homogenization method that simplifies the computation of the homogenized Young modulus, Poisson ratio and thermal expansion coefficient is proposed, and applied to composite-like material on a printed circuit board. The results show a good properties correspondence between the homogenized domain and the real geometry simulation.

  12. Diamond-shaped electromagnetic transparent devices with homogeneous material parameters

    Li Tinghua; Huang Ming; Yang Jingjing; Yu Jiang; Lan Yaozhong

    2011-01-01

    Based on the linear coordinate transformation method, two-dimensional and three-dimensional electromagnetic transparent devices with diamond shape composed of homogeneous and non-singular materials are proposed in this paper. The permittivity and permeability tensors of the transparent devices are derived. The performance and scattering properties of the transparent devices are confirmed by a full-wave simulation. It can physically protect electric devices such as an antenna and a radar station inside, without sacrificing their performance. This work represents important progress towards the practical realization of metamaterial-assisted transparent devices and expands the application of transformation optics.

  13. Orange oil/water nanoemulsions prepared by high pressure homogenizer

    Kourniatis, Loretta R.; Spinelli, Luciana S.; Mansur, Claudia R.E.

    2010-01-01

    The objective of this work was to use the high-pressure homogenizer (HPH) to prepare stable oil/water nanoemulsions presenting narrow particle size distribution. The dispersions were prepared using nonionic surfactants based on ethoxylated ether. The size and distribution of the droplets formed, along with their stability, were determined in a Zetasizer Nano ZS particle size analyzer. The stability and the droplet size distribution in these systems do not present the significant differences with the increase of the processing pressure in the HPH). The processing time can promote the biggest dispersion in the size of particles, thus reducing its stability. (author)

  14. Enhancement of anaerobic sludge digestion by high-pressure homogenization.

    Zhang, Sheng; Zhang, Panyue; Zhang, Guangming; Fan, Jie; Zhang, Yuxuan

    2012-08-01

    To improve anaerobic sludge digestion efficiency, the effects of high-pressure homogenization (HPH) conditions on the anaerobic sludge digestion were investigated. The VS and TCOD were significantly removed with the anaerobic digestion, and the VS removal and TCOD removal increased with increasing the homogenization pressure and homogenization cycle number; correspondingly, the accumulative biogas production also increased with increasing the homogenization pressure and homogenization cycle number. The optimal homogenization pressure was 50 MPa for one homogenization cycle and 40 MPa for two homogenization cycles. The SCOD of the sludge supernatant significantly increased with increasing the homogenization pressure and homogenization cycle number due to the sludge disintegration. The relationship between the biogas production and the sludge disintegration showed that the accumulative biogas and methane production were mainly enhanced by the sludge disintegration, which accelerated the anaerobic digestion process and improved the methane content in the biogas. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Design of Stirrer Impeller with Variable Operational Speed for a Food Waste Homogenizer

    Idris A. Kayode; Emmanuel O. B. Ogedengbe; Marc A. Rosen

    2016-01-01

    A conceptualized impeller called KIA is designed for impact agitation of food waste in a homogenizer. A comparative analysis of the performance of KIA is made with three conventional impeller types, Rushton, Anchor, and Pitched Blade. Solid–liquid mixing of a moisture-rich food waste is simulated under various operational speeds, in order to compare the dispersions and thermal distributions at homogenous slurry conditions. Using SolidWorks, the design of the impellers employs an Application P...

  16. Homogenized group cross sections by Monte Carlo

    Van Der Marck, S. C.; Kuijper, J. C.; Oppe, J.

    2006-01-01

    Homogenized group cross sections play a large role in making reactor calculations efficient. Because of this significance, many codes exist that can calculate these cross sections based on certain assumptions. However, the application to the High Flux Reactor (HFR) in Petten, the Netherlands, the limitations of such codes imply that the core calculations would become less accurate when using homogenized group cross sections (HGCS). Therefore we developed a method to calculate HGCS based on a Monte Carlo program, for which we chose MCNP. The implementation involves an addition to MCNP, and a set of small executables to perform suitable averaging after the MCNP run(s) have completed. Here we briefly describe the details of the method, and we report on two tests we performed to show the accuracy of the method and its implementation. By now, this method is routinely used in preparation of the cycle to cycle core calculations for HFR. (authors)

  17. Design of SC solenoid with high homogeneity

    Yang Xiaoliang; Liu Zhong; Luo Min; Luo Guangyao; Kang Qiang; Tan Jie; Wu Wei

    2014-01-01

    A novel kind of SC (superconducting) solenoid coil is designed to satisfy the homogeneity requirement of the magnetic field. In this paper, we first calculate the current density distribution of the solenoid coil section through the linear programming method. Then a traditional solenoid and a nonrectangular section solenoid are designed to produce a central field up to 7 T with a homogeneity to the greatest extent. After comparison of the two solenoid coils designed in magnet field quality, fabrication cost and other aspects, the new design of the nonrectangular section of a solenoid coil can be realized through improving the techniques of framework fabrication and winding. Finally, the outlook and error analysis of this kind of SC magnet coil are also discussed briefly. (authors)

  18. Testing homogeneity in Weibull-regression models.

    Bolfarine, Heleno; Valença, Dione M

    2005-10-01

    In survival studies with families or geographical units it may be of interest testing whether such groups are homogeneous for given explanatory variables. In this paper we consider score type tests for group homogeneity based on a mixing model in which the group effect is modelled as a random variable. As opposed to hazard-based frailty models, this model presents survival times that conditioned on the random effect, has an accelerated failure time representation. The test statistics requires only estimation of the conventional regression model without the random effect and does not require specifying the distribution of the random effect. The tests are derived for a Weibull regression model and in the uncensored situation, a closed form is obtained for the test statistic. A simulation study is used for comparing the power of the tests. The proposed tests are applied to real data sets with censored data.

  19. Smooth homogeneous structures in operator theory

    Beltita, Daniel

    2005-01-01

    Geometric ideas and techniques play an important role in operator theory and the theory of operator algebras. Smooth Homogeneous Structures in Operator Theory builds the background needed to understand this circle of ideas and reports on recent developments in this fruitful field of research. Requiring only a moderate familiarity with functional analysis and general topology, the author begins with an introduction to infinite dimensional Lie theory with emphasis on the relationship between Lie groups and Lie algebras. A detailed examination of smooth homogeneous spaces follows. This study is illustrated by familiar examples from operator theory and develops methods that allow endowing such spaces with structures of complex manifolds. The final section of the book explores equivariant monotone operators and Kähler structures. It examines certain symmetry properties of abstract reproducing kernels and arrives at a very general version of the construction of restricted Grassmann manifolds from the theory of loo...

  20. Genetic homogeneity of Fascioloides magna in Austria.

    Husch, Christian; Sattmann, Helmut; Hörweg, Christoph; Ursprung, Josef; Walochnik, Julia

    2017-08-30

    The large American liver fluke, Fascioloides magna, is an economically relevant parasite of both domestic and wild ungulates. F. magna was repeatedly introduced into Europe, for the first time already in the 19th century. In Austria, a stable population of F. magna has established in the Danube floodplain forests southeast of Vienna. The aim of this study was to determine the genetic diversity of F. magna in Austria. A total of 26 individuals from various regions within the known area of distribution were investigated for their cytochrome oxidase subunit 1 (cox1) and nicotinamide dehydrogenase subunit 1 (nad1) gene haplotypes. Interestingly, all 26 individuals revealed one and the same haplotype, namely concatenated haplotype Ha5. This indicates a homogenous population of F. magna in Austria and may argue for a single introduction. Alternatively, genetic homogeneity might also be explained by a bottleneck effect and/or genetic drift. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Homogenization of variational inequalities for obstacle problems

    Sandrakov, G V

    2005-01-01

    Results on the convergence of solutions of variational inequalities for obstacle problems are proved. The variational inequalities are defined by a non-linear monotone operator of the second order with periodic rapidly oscillating coefficients and a sequence of functions characterizing the obstacles. Two-scale and macroscale (homogenized) limiting variational inequalities are obtained. Derivation methods for such inequalities are presented. Connections between the limiting variational inequalities and two-scale and macroscale minimization problems are established in the case of potential operators.

  2. Quantum groups and quantum homogeneous spaces

    Kulish, P.P.

    1994-01-01

    The usefulness of the R-matrix formalism and the reflection equations is demonstrated on examples of the quantum group covariant algebras (quantum homogeneous spaces): quantum Minkowski space-time, quantum sphere and super-sphere. The irreducible representations of some covariant algebras are constructed. The generalization of the reflection equation to super case is given and the existence of the quasiclassical limits is pointed out. (orig.)

  3. Process to produce homogenized reactor fuels

    Hart, P.E.; Daniel, J.L.; Brite, D.W.

    1980-01-01

    The fuels consist of a mixture of PuO 2 and UO 2 . In order to increase the homogeneity of mechanically mixed fuels the pellets are sintered in a hydrogen atmosphere with a sufficiently low oxygen potential. This results in a reduction of Pu +4 to Pu +3 . By the reduction process water vapor is obtained increasing the pressure within the PuO 2 particles and causing PuO 2 to be pressed into the uranium oxide structure. (DG) [de

  4. Fluoroscopic screen which is optically homogeneous

    1975-01-01

    A high efficiency fluoroscopic screen for X-ray examination consists of an optically homogeneous crystal plate of fluorescent material such as activated cesium iodide, supported on a transparent protective plate, with the edges of the assembly beveled and optically coupled to a light absorbing compound. The product is dressed to the desired thickness and provided with an X-ray-transparent light-opaque cover. (Auth.)

  5. Correlated equilibria in homogenous good Bertrand competition

    Jann, Ole; Schottmüller, Christoph

    2015-01-01

    We show that there is a unique correlated equilibrium, identical to the unique Nash equilibrium, in the classic Bertrand oligopoly model with homogenous goods and identical marginal costs. This provides a theoretical underpinning for the so-called "Bertrand paradox'' as well as its most general f...... formulation to date. Our proof generalizes to asymmetric marginal costs and arbitrarily many players in the following way: The market price cannot be higher than the second lowest marginal cost in any correlated equilibrium....

  6. Hardness and microstructure homogeneity of pure copper processed by accumulative back extrusion

    Bazaz, B.; Zarei-Hanzaki, A.; Fatemi-Varzaneh, S.M.

    2013-01-01

    The present work deals with the microstructure evolution of a pure copper processed by a new severe plastic deformation method. A set of pure copper (99.99%) work-pieces with coarse-grained microstructures was processed by accumulative back extrusion (ABE) method at room temperature. The optical and scanning electron microscopy (SEM) and hardness measurements were utilized to study the microstructural evolution and hardness homogeneity. The results indicated that ABE is a capable process to provide a homogenous grain refined microstructure in pure copper. The observed grain refinement was discussed relying on the occurrence of dynamic restoration processes. The analysis of microstructure and hardness showed outstanding homogeneity improvement throughout the work-pieces as the consecutive ABE passes were applied. The homogeneity improvement was attributed to the propagation of the shear bands and also the heavily deformed regions. A reversing route was also applied in the ABE processing to investigate its effect on the development of microstructural homogeneity. Comparing to the conventional route, the application of the reversing route was found to yield better homogeneity after less passes of the process.

  7. Homogeneous Biosensing Based on Magnetic Particle Labels

    Schrittwieser, Stefan

    2016-06-06

    The growing availability of biomarker panels for molecular diagnostics is leading to an increasing need for fast and sensitive biosensing technologies that are applicable to point-of-care testing. In that regard, homogeneous measurement principles are especially relevant as they usually do not require extensive sample preparation procedures, thus reducing the total analysis time and maximizing ease-of-use. In this review, we focus on homogeneous biosensors for the in vitro detection of biomarkers. Within this broad range of biosensors, we concentrate on methods that apply magnetic particle labels. The advantage of such methods lies in the added possibility to manipulate the particle labels by applied magnetic fields, which can be exploited, for example, to decrease incubation times or to enhance the signal-to-noise-ratio of the measurement signal by applying frequency-selective detection. In our review, we discriminate the corresponding methods based on the nature of the acquired measurement signal, which can either be based on magnetic or optical detection. The underlying measurement principles of the different techniques are discussed, and biosensing examples for all techniques are reported, thereby demonstrating the broad applicability of homogeneous in vitro biosensing based on magnetic particle label actuation.

  8. Some properties of spatially homogeneous spacetimes

    Coomer, G.C.

    1979-01-01

    This paper discusses two features of the universe which are influenced in a fundamental way by the spacetime geometry of the universe. The first is the growth of density fluctuations in the early stages of the evolution of the universe. The second is the propagation of electromagnetic radiation in the universe. A spatially homogeneous universe is assumed in both discussions. The gravitational instability theory of galaxy formation is investigated for a viscous fluid and for a charged, conducting fluid with a magnetic field added as a perturbation. It is found that the growth rate of density perturbations in both cases is lower than in the perfect fluid case. Spatially homogeneous but nonisotropic spacetimes are investigated next. Two perfect fluid solutions of Einstein's field equations are found which have spacelike hypersurfaces with Bianchi type II geometry. An expression for the spectrum of the cosmic microwave background radiation in a spatially homogeneous but nonisotropic universe is found. The expression is then used to determine the angular distribution of the intensity of the radiation in the simpler of the two solutions. When accepted values of the matter density and decoupling temperature are inserted into this solution, values for the age of the universe and the time of decoupling are obtained which agree reasonably well with the values of the standard model of the universe

  9. Commensurability effects in holographic homogeneous lattices

    Andrade, Tomas; Krikun, Alexander

    2016-01-01

    An interesting application of the gauge/gravity duality to condensed matter physics is the description of a lattice via breaking translational invariance on the gravity side. By making use of global symmetries, it is possible to do so without scarifying homogeneity of the pertinent bulk solutions, which we thus term as “homogeneous holographic lattices.' Due to their technical simplicity, these configurations have received a great deal of attention in the last few years and have been shown to correctly describe momentum relaxation and hence (finite) DC conductivities. However, it is not clear whether they are able to capture other lattice effects which are of interest in condensed matter. In this paper we investigate this question focusing our attention on the phenomenon of commensurability, which arises when the lattice scale is tuned to be equal to (an integer multiple of) another momentum scale in the system. We do so by studying the formation of spatially modulated phases in various models of homogeneous holographic lattices. Our results indicate that the onset of the instability is controlled by the near horizon geometry, which for insulating solutions does carry information about the lattice. However, we observe no sharp connection between the characteristic momentum of the broken phase and the lattice pitch, which calls into question the applicability of these models to the physics of commensurability.

  10. Homogeneous Biosensing Based on Magnetic Particle Labels

    Schrittwieser, Stefan; Pelaz, Beatriz; Parak, Wolfgang J.; Lentijo-Mozo, Sergio; Soulantica, Katerina; Dieckhoff, Jan; Ludwig, Frank; Guenther, Annegret; Tschöpe, Andreas; Schotter, Joerg

    2016-01-01

    The growing availability of biomarker panels for molecular diagnostics is leading to an increasing need for fast and sensitive biosensing technologies that are applicable to point-of-care testing. In that regard, homogeneous measurement principles are especially relevant as they usually do not require extensive sample preparation procedures, thus reducing the total analysis time and maximizing ease-of-use. In this review, we focus on homogeneous biosensors for the in vitro detection of biomarkers. Within this broad range of biosensors, we concentrate on methods that apply magnetic particle labels. The advantage of such methods lies in the added possibility to manipulate the particle labels by applied magnetic fields, which can be exploited, for example, to decrease incubation times or to enhance the signal-to-noise-ratio of the measurement signal by applying frequency-selective detection. In our review, we discriminate the corresponding methods based on the nature of the acquired measurement signal, which can either be based on magnetic or optical detection. The underlying measurement principles of the different techniques are discussed, and biosensing examples for all techniques are reported, thereby demonstrating the broad applicability of homogeneous in vitro biosensing based on magnetic particle label actuation. PMID:27275824

  11. Homogeneous Biosensing Based on Magnetic Particle Labels

    Schrittwieser, Stefan; Pelaz, Beatriz; Parak, Wolfgang; Lentijo Mozo, Sergio; Soulantica, Katerina; Dieckhoff, Jan; Ludwig, Frank; Guenther, Annegret; Tschö pe, Andreas; Schotter, Joerg

    2016-01-01

    The growing availability of biomarker panels for molecular diagnostics is leading to an increasing need for fast and sensitive biosensing technologies that are applicable to point-of-care testing. In that regard, homogeneous measurement principles are especially relevant as they usually do not require extensive sample preparation procedures, thus reducing the total analysis time and maximizing ease-of-use. In this review, we focus on homogeneous biosensors for the in vitro detection of biomarkers. Within this broad range of biosensors, we concentrate on methods that apply magnetic particle labels. The advantage of such methods lies in the added possibility to manipulate the particle labels by applied magnetic fields, which can be exploited, for example, to decrease incubation times or to enhance the signal-to-noise-ratio of the measurement signal by applying frequency-selective detection. In our review, we discriminate the corresponding methods based on the nature of the acquired measurement signal, which can either be based on magnetic or optical detection. The underlying measurement principles of the different techniques are discussed, and biosensing examples for all techniques are reported, thereby demonstrating the broad applicability of homogeneous in vitro biosensing based on magnetic particle label actuation.

  12. Testing Homogeneity with the Galaxy Fossil Record

    Hoyle, Ben; Jimenez, Raul; Heavens, Alan; Clarkson, Chris; Maartens, Roy

    2013-01-01

    Observationally confirming spatial homogeneity on sufficiently large cosmological scales is of importance to test one of the underpinning assumptions of cosmology, and is also imperative for correctly interpreting dark energy. A challenging aspect of this is that homogeneity must be probed inside our past lightcone, while observations take place on the lightcone. The history of star formation rates (SFH) in the galaxy fossil record provides a novel way to do this. We calculate the SFH of stacked Luminous Red Galaxy (LRG) spectra obtained from the Sloan Digital Sky Survey. We divide the LRG sample into 12 equal area contiguous sky patches and 10 redshift slices (0.2homogeneity, we calculate the posterior distribution for the excess large-scale variance due to inhomogeneity, and find that the most likely solution is n...

  13. Investigation of methods for hydroclimatic data homogenization

    Steirou, E.; Koutsoyiannis, D.

    2012-04-01

    We investigate the methods used for the adjustment of inhomogeneities of temperature time series covering the last 100 years. Based on a systematic study of scientific literature, we classify and evaluate the observed inhomogeneities in historical and modern time series, as well as their adjustment methods. It turns out that these methods are mainly statistical, not well justified by experiments and are rarely supported by metadata. In many of the cases studied the proposed corrections are not even statistically significant. From the global database GHCN-Monthly Version 2, we examine all stations containing both raw and adjusted data that satisfy certain criteria of continuity and distribution over the globe. In the United States of America, because of the large number of available stations, stations were chosen after a suitable sampling. In total we analyzed 181 stations globally. For these stations we calculated the differences between the adjusted and non-adjusted linear 100-year trends. It was found that in the two thirds of the cases, the homogenization procedure increased the positive or decreased the negative temperature trends. One of the most common homogenization methods, 'SNHT for single shifts', was applied to synthetic time series with selected statistical characteristics, occasionally with offsets. The method was satisfactory when applied to independent data normally distributed, but not in data with long-term persistence. The above results cast some doubts in the use of homogenization procedures and tend to indicate that the global temperature increase during the last century is between 0.4°C and 0.7°C, where these two values are the estimates derived from raw and adjusted data, respectively.

  14. Exponential Stability of Switched Positive Homogeneous Systems

    Dadong Tian

    2017-01-01

    Full Text Available This paper studies the exponential stability of switched positive nonlinear systems defined by cooperative and homogeneous vector fields. In order to capture the decay rate of such systems, we first consider the subsystems. A sufficient condition for exponential stability of subsystems with time-varying delays is derived. In particular, for the corresponding delay-free systems, we prove that this sufficient condition is also necessary. Then, we present a sufficient condition of exponential stability under minimum dwell time switching for the switched positive nonlinear systems. Some results in the previous literature are extended. Finally, a numerical example is given to demonstrate the effectiveness of the obtained results.

  15. Diffusion piecewise homogenization via flux discontinuity factors

    Sanchez, Richard; Zmijarevic, Igor

    2011-01-01

    We analyze the calculation of flux discontinuity factors (FDFs) for use with piecewise subdomain assembly homogenization. These coefficients depend on the numerical mesh used to compute the diffusion problem. When the mesh has a single degree of freedom on subdomain interfaces the solution is unique and can be computed independently per subdomain. For all other cases we have implemented an iterative calculation for the FDFs. Our numerical results show that there is no solution to this nonlinear problem but that the iterative algorithm converges towards FDFs values that reproduce subdomains reaction rates with a relatively high precision. In our test we have included both the GET and black-box FDFs. (author)

  16. Tensor harmonic analysis on homogenous space

    Wrobel, G.

    1997-01-01

    The Hilbert space of tensor functions on a homogenous space with the compact stability group is considered. The functions are decomposed onto a sum of tensor plane waves (defined in the text), components of which are transformed by irreducible representations of the appropriate transformation group. The orthogonality relation and the completeness relation for tensor plane waves are found. The decomposition constitutes a unitary transformation, which allows to obtain the Parseval equality. The Fourier components can be calculated by means of the Fourier transformation, the form of which is given explicitly. (author)

  17. Multifractal spectra in homogeneous shear flow

    Deane, A. E.; Keefe, L. R.

    1988-01-01

    Employing numerical simulations of 3-D homogeneous shear flow, the associated multifractal spectra of the energy dissipation, scalar dissipation and vorticity fields were calculated. The results for (128) cubed simulations of this flow, and those obtained in recent experiments that analyzed 1- and 2-D intersections of atmospheric and laboratory flows, are in some agreement. A two-scale Cantor set model of the energy cascade process which describes the experimental results from 1-D intersections quite well, describes the 3-D results only marginally.

  18. Autoregressive Processes in Homogenization of GNSS Tropospheric Data

    Klos, A.; Bogusz, J.; Teferle, F. N.; Bock, O.; Pottiaux, E.; Van Malderen, R.

    2016-12-01

    Offsets due to changes in hardware equipment or any other artificial event are all a subject of a task of homogenization of tropospheric data estimated within a processing of Global Navigation Satellite System (GNSS) observables. This task is aimed at identifying exact epochs of offsets and estimate their magnitudes since they may artificially under- or over-estimate trend and its uncertainty delivered from tropospheric data and used in climate studies. In this research, we analysed a common data set of differences of Integrated Water Vapour (IWV) from GPS and ERA-Interim (1995-2010) provided for a homogenization group working within ES1206 COST Action GNSS4SWEC. We analysed daily IWV records of GPS and ERA-Interim in terms of trend, seasonal terms and noise model with Maximum Likelihood Estimation in Hector software. We found that this data has a character of autoregressive process (AR). Basing on this analysis, we performed Monte Carlo simulations of 25 years long data with two different noise types: white as well as combination of white and autoregressive and also added few strictly defined offsets. This synthetic data set of exactly the same character as IWV from GPS and ERA-Interim was then subjected to a task of manual and automatic/statistical homogenization. We made blind tests and detected possible epochs of offsets manually. We found that simulated offsets were easily detected in series with white noise, no influence of seasonal signal was noticed. The autoregressive series were much more problematic when offsets had to be determined. We found few epochs, for which no offset was simulated. This was mainly due to strong autocorrelation of data, which brings an artificial trend within. Due to regime-like behaviour of AR it is difficult for statistical methods to properly detect epochs of offsets, which was previously reported by climatologists.

  19. Homogenization of Doppler broadening in spin-noise spectroscopy

    Petrov, M. Yu.; Ryzhov, I. I.; Smirnov, D. S.; Belyaev, L. Yu.; Potekhin, R. A.; Glazov, M. M.; Kulyasov, V. N.; Kozlov, G. G.; Aleksandrov, E. B.; Zapasskii, V. S.

    2018-03-01

    The spin-noise spectroscopy, being a nonperturbative linear optics tool, is still reputed to reveal a number of capabilities specific to nonlinear optics techniques. The effect of the Doppler broadening homogenization discovered in this work essentially widens these unique properties of spin-noise spectroscopy. We investigate spin noise of a classical system—cesium atoms vapor with admixture of buffer gas—by measuring the spin-induced Faraday rotation fluctuations in the region of D 2 line. The line, under our experimental conditions, is strongly inhomogeneously broadened due to the Doppler effect. Despite that, optical spectrum of the spin-noise power has the shape typical for the homogeneously broadened line with a dip at the line center. This fact is in stark contrast with the results of previous studies of inhomogeneous quantum dot ensembles and Doppler broadened atomic systems. In addition, the two-color spin-noise measurements have shown, in a highly spectacular way, that fluctuations of the Faraday rotation within the line are either correlated or anticorrelated depending on whether the two wavelengths lie on the same side or on different sides of the resonance. The experimental data are interpreted in the frame of the developed theoretical model which takes into account both kinetics and spin dynamics of Cs atoms. It is shown that the unexpected behavior of the Faraday rotation noise spectra and effective homogenization of the optical transition in the spin-noise measurements are related to smallness of the momentum relaxation time of the atoms as compared with their spin-relaxation time. Our findings demonstrate abilities of spin-noise spectroscopy for studying dynamic properties of inhomogeneously broadened ensembles of randomly moving spins.

  20. Stimulus homogeneity enhances implicit learning: evidence from contextual cueing.

    Feldmann-Wüstefeld, Tobias; Schubö, Anna

    2014-04-01

    Visual search for a target object is faster if the target is embedded in a repeatedly presented invariant configuration of distractors ('contextual cueing'). It has also been shown that the homogeneity of a context affects the efficiency of visual search: targets receive prioritized processing when presented in a homogeneous context compared to a heterogeneous context, presumably due to grouping processes at early stages of visual processing. The present study investigated in three Experiments whether context homogeneity also affects contextual cueing. In Experiment 1, context homogeneity varied on three levels of the task-relevant dimension (orientation) and contextual cueing was most pronounced for context configurations with high orientation homogeneity. When context homogeneity varied on three levels of the task-irrelevant dimension (color) and orientation homogeneity was fixed, no modulation of contextual cueing was observed: high orientation homogeneity led to large contextual cueing effects (Experiment 2) and low orientation homogeneity led to low contextual cueing effects (Experiment 3), irrespective of color homogeneity. Enhanced contextual cueing for homogeneous context configurations suggest that grouping processes do not only affect visual search but also implicit learning. We conclude that memory representation of context configurations are more easily acquired when context configurations can be processed as larger, grouped perceptual units. However, this form of implicit perceptual learning is only improved by stimulus homogeneity when stimulus homogeneity facilitates grouping processes on a dimension that is currently relevant in the task. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Topology of actions and homogeneous spaces

    Kozlov, Konstantin L

    2013-01-01

    Topologization of a group of homeomorphisms and its action provide additional possibilities for studying the topological space, the group of homeomorphisms, and their interconnections. The subject of the paper is the use of the property of d-openness of an action (introduced by Ancel under the name of weak micro-transitivity) in the study of spaces with various forms of homogeneity. It is proved that a d-open action of a Čech-complete group is open. A characterization of Polish SLH spaces using d-openness is given, and it is established that any separable metrizable SLH space has an SLH completion that is a Polish space. Furthermore, the completion is realized in coordination with the completion of the acting group with respect to the two-sided uniformity. A sufficient condition is given for extension of a d-open action to the completion of the space with respect to the maximal equiuniformity with preservation of d-openness. A result of van Mill is generalized, namely, it is proved that any homogeneous CDH metrizable compactum is the only G-compactification of the space of rational numbers for the action of some Polish group. Bibliography: 39 titles.

  2. TWO FERROMAGNETIC SPHERES IN HOMOGENEOUS MAGNETIC FIELD

    Yury A. Krasnitsky

    2018-01-01

    Full Text Available The problem of two spherical conductors is studied quite in detail with bispherical coordinates usage and has numerous appendices in an electrostatics. The boundary-value problem about two ferromagnetic spheres enclosed on homogeneous and infinite environment in which the lack of spheres exists like homogeneous magnetic field is considered. The solution of Laplace's equation in the bispherical system of coordinates allows us to find the potential and field distribution in all spaces, including area between spheres. The boundary conditions in potential continuity and in ordinary density constituent of spheres surfaces induction flux are used. It is supposed that spheres are identical, and magnetic permeability of their material is expressed in  >> 0. The problem about falling of electromagnetic plane wave on the system of two spheres, which possesses electrically small sizes, can be considered as quasistationary. The scalar potentials received as a result of Laplace's equation solution are represented by the series containing Legendre polynomials. The concept of two spheres system effective permeability is introduced. It is equal to the advantage in magnitude of magnetic induction flux vector through a certain system’s section arising due to its magnetic properties. Necessary ratios for the effective permeability referred to the central system’s section are obtained. Particularly, the results can be used during the analysis of ferroxcube core clearance, which influences on the magnetic antenna properties. 

  3. Primary healthcare solo practices: homogeneous or heterogeneous?

    Pineault, Raynald; Borgès Da Silva, Roxane; Provost, Sylvie; Beaulieu, Marie-Dominique; Boivin, Antoine; Couture, Audrey; Prud'homme, Alexandre

    2014-01-01

    Introduction. Solo practices have generally been viewed as forming a homogeneous group. However, they may differ on many characteristics. The objective of this paper is to identify different forms of solo practice and to determine the extent to which they are associated with patient experience of care. Methods. Two surveys were carried out in two regions of Quebec in 2010: a telephone survey of 9180 respondents from the general population and a postal survey of 606 primary healthcare (PHC) practices. Data from the two surveys were linked through the respondent's usual source of care. A taxonomy of solo practices was constructed (n = 213), using cluster analysis techniques. Bivariate and multilevel analyses were used to determine the relationship of the taxonomy with patient experience of care. Results. Four models were derived from the taxonomy. Practices in the "resourceful networked" model contrast with those of the "resourceless isolated" model to the extent that the experience of care reported by their patients is more favorable. Conclusion. Solo practice is not a homogeneous group. The four models identified have different organizational features and their patients' experience of care also differs. Some models seem to offer a better organizational potential in the context of current reforms.

  4. Cosmic Ray Hit Detection with Homogenous Structures

    Smirnov, O. M.

    Cosmic ray (CR) hits can affect a significant number of pixels both on long-exposure ground-based CCD observations and on the Space Telescope frames. Thus, methods of identifying the damaged pixels are an important part of the data preprocessing for practically any application. The paper presents an implementation of a CR hit detection algorithm based on a homogenous structure (also called cellular automata ), a concept originating in artificial intelligence and dicrete mathematics. Each pixel of the image is represented by a small automaton, which interacts with its neighbors and assumes a distinct state if it ``decides'' that a CR hit is present. On test data, the algorithm has shown a high detection rate (~0.7 ) and a low false alarm rate (frame. A homogenous structure is extremely trainable, which can be very important for processing large batches of data obtained under similar conditions. Training and optimizing issues are discussed, as well as possible other applications of this concept to image processing.

  5. WHAMP - waves in homogeneous, anisotropic, multicomponent plasmas

    Roennmark, K.

    1982-06-01

    In this report, a computer program which solves the dispersion relation of waves in a magnetized plasma is described. The dielectric tensor is derived using the kinetic theory of homogeneous plasmas with Maxwellian velocity distribution. Up to six different plasma components can be included in this version of the program, and each component is specified by its density, temperature, particle mass, anisotropy and drift velocity along the magnetic field. The program is thus applicable to a very wide class of plasmas, and the method should in general be useful whenever a homogeneous magnetized plasma can be approximated by a linear combination of Maxwellian components. The general theory underlying the program is outlined. It is shown that by introducing a Pade approximant for the plasma dispersion function Z, the infinite sums of modified Bessel functions which appear in the dielectric tensor may be reduced to a summable form. The Pade approximant is derived and the accuracy of the approximation is also discussed. The subroutines making up the program are described. (Author)

  6. Hydrogen Production by Homogeneous Catalysis: Alcohol Acceptorless Dehydrogenation

    Nielsen, Martin

    2015-01-01

    in hydrogen production from biomass using homogeneous catalysis. Homogeneous catalysis has the advance of generally performing transformations at much milder conditions than traditional heterogeneous catalysis, and hence it constitutes a promising tool for future applications for a sustainable energy sector...

  7. Homogenization techniques for population dynamics in strongly heterogeneous landscapes.

    Yurk, Brian P; Cobbold, Christina A

    2018-12-01

    An important problem in spatial ecology is to understand how population-scale patterns emerge from individual-level birth, death, and movement processes. These processes, which depend on local landscape characteristics, vary spatially and may exhibit sharp transitions through behavioural responses to habitat edges, leading to discontinuous population densities. Such systems can be modelled using reaction-diffusion equations with interface conditions that capture local behaviour at patch boundaries. In this work we develop a novel homogenization technique to approximate the large-scale dynamics of the system. We illustrate our approach, which also generalizes to multiple species, with an example of logistic growth within a periodic environment. We find that population persistence and the large-scale population carrying capacity is influenced by patch residence times that depend on patch preference, as well as movement rates in adjacent patches. The forms of the homogenized coefficients yield key theoretical insights into how large-scale dynamics arise from the small-scale features.

  8. Integration and magnitude homogenization of the Egyptian earthquake catalogue

    Hussein, H.M.; Abou Elenean, K.A.; Marzouk, I.A.; Abu El-Nader, E.; Peresan, A.; Korrat, I.M.; Panza, G.F.; El-Gabry, M.N.

    2008-03-01

    The aim of the present work is to compile and update a catalogue of the instrumentally recorded earthquakes in Egypt, with uniform and homogeneous source parameters as required for the analysis of seismicity and seismic hazard assessment. This in turn requires a detailed analysis and comparison of the properties of different available sources, including the distribution of events with time, the magnitude completeness and the scaling relations between different kinds of magnitude reported by different agencies. The observational data cover the time interval 1900- 2004 and an area between 22--33.5 deg N and 25--3 6 deg. E. The linear regressions between various magnitude types have been evaluated for different magnitude ranges. Using the best linear relationship determined for each available pair of magnitudes, as well as those identified between the magnitudes and the seismic moment, we convert the different magnitude types into moment magnitudes M W , through a multi-step conversion process. Analysis of the catalogue completeness, based on the MW thus estimated, allows us to identify two different time intervals with homogeneous properties. The first one (1900- 1984) appears to be complete for M W ≥ 4.5, while the second one (1985-2004) can be considered complete for magnitudes M W ≥ 3. (author)

  9. Fluidic delivery of homogeneous solutions through carbon tube bundles

    Srikar, R; Yarin, A L; Megaridis, C M

    2009-01-01

    A wide array of technological applications requires localized high-rate delivery of dissolved compounds (in particular, biological ones), which can be achieved by forcing the solutions or suspensions of such compounds through nano or microtubes and their bundled assemblies. Using a water-soluble compound, the fluorescent dye Rhodamine 610 chloride, frequently used as a model drug release compound, it is shown that deposit buildup on the inner walls of the delivery channels and its adverse consequences pose a severe challenge to implementing pressure-driven long-term fluidic delivery through nano and microcapillaries, even in the case of such homogeneous solutions. Pressure-driven delivery (3-6 bar) of homogeneous dye solutions through macroscopically-long (∼1 cm) carbon nano and microtubes with inner diameters in the range 100 nm-1 μm and their bundled parallel assemblies is studied experimentally and theoretically. It is shown that the flow delivery gradually shifts from fast convection-dominated (unobstructed) to slow jammed convection, and ultimately to diffusion-limited transport through a porous deposit. The jamming/clogging phenomena appear to be rather generic: they were observed in a wide concentration range for two fluorescent dyes in carbon nano and microtubes, as well as in comparable transparent glass microcapillaries. The aim of the present work is to study the physics of jamming, rather than the chemical reasons for the affinity of dye molecules to the tube walls.

  10. Layered Fiberconcrete with Non-Homogeneous Fibers Distribution

    Lūsis, V; Krasņikovs, A

    2013-01-01

    The aim of present research is to create fiberconcrete construction with non-homogeneous fibers distribution in it. Traditionally fibers are homogeneously dispersed in a concrete. At the same time in many situations fiberconcretes with homogeneously dispersed fibers are not optimal (majority of added fibers are not participating in a loads bearing process).

  11. Non-homogeneous dynamic Bayesian networks for continuous data

    Grzegorczyk, Marco; Husmeier, Dirk

    Classical dynamic Bayesian networks (DBNs) are based on the homogeneous Markov assumption and cannot deal with non-homogeneous temporal processes. Various approaches to relax the homogeneity assumption have recently been proposed. The present paper presents a combination of a Bayesian network with

  12. Accounting for Fiber Bending Effects in Homogenization of Long Fiber Reinforced Composites

    Poulios, Konstantinos; Niordson, Christian Frithiof

    2015-01-01

    The present work deals with homogenized finite-element models of long fiber reinforced composite materials in the context of studying compressive failure modes such as the formation of kink bands and fiber micro-buckling. Compared to finite-element models with an explicit discretization of the ma......The present work deals with homogenized finite-element models of long fiber reinforced composite materials in the context of studying compressive failure modes such as the formation of kink bands and fiber micro-buckling. Compared to finite-element models with an explicit discretization...... of the material micro-structure including individual fibers, homogenized models are computationally more efficient and hence more suitable for modeling of larger and complex structure. Nevertheless, the formulation of homogenized models is more complicated, especially if the bending stiffness of the reinforcing...... fibers is to be taken into account. In that case, so-called higher order strain terms need to be considered. In this paper, important relevant works from the literature are discussed and numerical results from a new homogenization model are presented. The new model accounts for two independent...

  13. Bounds for nonlinear composites via iterated homogenization

    Ponte Castañeda, P.

    2012-09-01

    Improved estimates of the Hashin-Shtrikman-Willis type are generated for the class of nonlinear composites consisting of two well-ordered, isotropic phases distributed randomly with prescribed two-point correlations, as determined by the H-measure of the microstructure. For this purpose, a novel strategy for generating bounds has been developed utilizing iterated homogenization. The general idea is to make use of bounds that may be available for composite materials in the limit when the concentration of one of the phases (say phase 1) is small. It then follows from the theory of iterated homogenization that it is possible, under certain conditions, to obtain bounds for more general values of the concentration, by gradually adding small amounts of phase 1 in incremental fashion, and sequentially using the available dilute-concentration estimate, up to the final (finite) value of the concentration (of phase 1). Such an approach can also be useful when available bounds are expected to be tighter for certain ranges of the phase volume fractions. This is the case, for example, for the "linear comparison" bounds for porous viscoplastic materials, which are known to be comparatively tighter for large values of the porosity. In this case, the new bounds obtained by the above-mentioned "iterated" procedure can be shown to be much improved relative to the earlier "linear comparison" bounds, especially at low values of the porosity and high triaxialities. Consistent with the way in which they have been derived, the new estimates are, strictly, bounds only for the class of multi-scale, nonlinear composites consisting of two well-ordered, isotropic phases that are distributed with prescribed H-measure at each stage in the incremental process. However, given the facts that the H-measure of the sequential microstructures is conserved (so that the final microstructures can be shown to have the same H-measure), and that H-measures are insensitive to length scales, it is conjectured

  14. Homogenization of the lipid profile values.

    Pedro-Botet, Juan; Rodríguez-Padial, Luis; Brotons, Carlos; Esteban-Salán, Margarita; García-Lerín, Aurora; Pintó, Xavier; Lekuona, Iñaki; Ordóñez-Llanos, Jordi

    Analytical reports from the clinical laboratory are essential to guide clinicians about what lipid profile values should be considered altered and, therefore, require intervention. Unfortunately, there is a great heterogeneity in the lipid values reported as "normal, desirable, recommended or referenced" by clinical laboratories. This can difficult clinical decisions and be a barrier to achieve the therapeutic goals for cardiovascular prevention. A recent international recommendation has added a new heterogeneity factor for the interpretation of lipid profile, such as the possibility of measuring it without previous fasting. All this justifies the need to develop a document that adapts the existing knowledge to the clinical practice of our health system. In this regard, professionals from different scientific societies involved in the measurement and use of lipid profile data have developed this document to establish recommendations that facilitate their homogenization. Copyright © 2017. Publicado por Elsevier España, S.L.U.

  15. The structure and homogeneity of Psalm 32

    J. Henk Potgieter

    2014-11-01

    Full Text Available Psalm 32 is widely regarded as a psalm of thanksgiving with elements of wisdom poetry intermingled into it. The wisdom elements are variously explained as having been present from the beginning, or as having been added to a foundational composition. Such views of the Gattung have had a decisive influence on the interpretation of the psalm. This article argues, on the basis of a structural analysis, that Psalm 32 should be understood as a homogeneous wisdom composition. The parallel and inverse structure of its two stanzas demonstrate that the aim of its author was to encourage the upright to foster an open, intimate relationship with Yahweh in which transgressions are confessed and Yahweh’s benevolent guidance on the way of life is wisely accepted.

  16. Precipitation of plutonium oxalate from homogeneous solutions

    Rao, V.K.; Pius, I.C.; Subbarao, M.; Chinnusamy, A.; Natarajan, P.R.

    1986-01-01

    A method for the precipitation of plutonium(IV) oxalate from homogeneous solutions using diethyl oxalate is reported. The precipitate obtained is crystalline and easily filterable with yields in the range of 92-98% for precipitations involving a few mg to g quantities of plutonium. Decontamination factors for common impurities such as U(VI), Am(III) and Fe(III) were determined. TGA and chemical analysis of the compound indicate its composition as Pu(Csub(2)Osub(4))sub(2).6Hsub(2)O. Data are obtained on the solubility of the oxalate in nitric acid and in mixtures of nitric acid and oxalic acid of varying concentrations. Green PuOsub(2) obtained by calcination of the oxalate has specifications within the recommended values for trace foreign substances such as chlorine, fluorine, carbon and nitrogen. (author)

  17. Homogenization in thermoelasticity: application to composite materials

    Peyroux, R [Lab. de Mecanique et Genie Civil, Univ. Montpellier 2, 34 Montpellier (France); Licht, C [Lab. de Mecanique et Genie Civil, Univ. Montpellier 2, 34 Montpellier (France)

    1993-11-01

    One of the obstacles to the industrial use of metal matrix composite materials is the damage they rapidly undergo when they are subjected to cyclic thermal loadings; local thermal stresses of high level can develop, sometimes nearby or over the elastic limit, due to the mismatch of elastic and thermal coefficients between the fibers and the matrix. For the same reasons, early cracks can appear in composites like ceramic-ceramic. Therefore, we investigate the linear thermoelastic behaviour of heterogeneous materials, taking account of the isentropic coupling term in the heat conduction equation. In the case of periodic materials, recent results, using the homogenization theory, allowed us to describe macroscopic and microscopic behaviours of such materials. This paper is concerned with the numerical simulation of this problem by a finite element method, using a multiscale approach. (orig.).

  18. Modelling of an homogeneous equilibrium mixture model

    Bernard-Champmartin, A.; Poujade, O.; Mathiaud, J.; Mathiaud, J.; Ghidaglia, J.M.

    2014-01-01

    We present here a model for two phase flows which is simpler than the 6-equations models (with two densities, two velocities, two temperatures) but more accurate than the standard mixture models with 4 equations (with two densities, one velocity and one temperature). We are interested in the case when the two-phases have been interacting long enough for the drag force to be small but still not negligible. The so-called Homogeneous Equilibrium Mixture Model (HEM) that we present is dealing with both mixture and relative quantities, allowing in particular to follow both a mixture velocity and a relative velocity. This relative velocity is not tracked by a conservation law but by a closure law (drift relation), whose expression is related to the drag force terms of the two-phase flow. After the derivation of the model, a stability analysis and numerical experiments are presented. (authors)

  19. Elastic full waveform inversion based on the homogenization method: theoretical framework and 2-D numerical illustrations

    Capdeville, Yann; Métivier, Ludovic

    2018-05-01

    Seismic imaging is an efficient tool to investigate the Earth interior. Many of the different imaging techniques currently used, including the so-called full waveform inversion (FWI), are based on limited frequency band data. Such data are not sensitive to the true earth model, but to a smooth version of it. This smooth version can be related to the true model by the homogenization technique. Homogenization for wave propagation in deterministic media with no scale separation, such as geological media, has been recently developed. With such an asymptotic theory, it is possible to compute an effective medium valid for a given frequency band such that effective waveforms and true waveforms are the same up to a controlled error. In this work we make the link between limited frequency band inversion, mainly FWI, and homogenization. We establish the relation between a true model and an FWI result model. This relation is important for a proper interpretation of FWI images. We numerically illustrate, in the 2-D case, that an FWI result is at best the homogenized version of the true model. Moreover, it appears that the homogenized FWI model is quite independent of the FWI parametrization, as long as it has enough degrees of freedom. In particular, inverting for the full elastic tensor is, in each of our tests, always a good choice. We show how the homogenization can help to understand FWI behaviour and help to improve its robustness and convergence by efficiently constraining the solution space of the inverse problem.

  20. Homogeneous wave turbulence driven by tidal flows

    Favier, B.; Le Reun, T.; Barker, A.; Le Bars, M.

    2017-12-01

    When a moon orbits around a planet, the rotation of the induced tidal bulge drives a homogeneous, periodic, large-scale flow. The combination of such an excitation with the rotating motion of the planet has been shown to drive parametric resonance of a pair of inertial waves in a mechanism called the elliptical instability. Geophysical fluid layers can also be stratified: this is the case for instance of the Earth's oceans and, as suggested by several studies, of the upper part of the Earth's liquid Outer Core. We thus investigate the stability of a rotating and stratified layer undergoing tidal distortion in the limit where either rotation or stratification is dominant. We show that the periodic tidal flow drives a parametric subharmonic resonance of inertial (resp. internal) waves in the rotating (resp. stratified) case. The instability saturates into a wave turbulence pervading the whole fluid layer. In such a state, the instability mechanism conveys the tidal energy from the large scale tidal flow to the resonant modes, which then feed a succession of triadic resonances also generating small spatial scales. In the rotating case, we observe a kinetic energy spectrum with a k-2 slope for which the Coriolis force is dominant at all spatial scales. In the stratified case, where the timescale separation is increased between the tidal excitation and the Brunt-Väisälä frequencies, the temporal spectrum decays with a ω-2 power law up to the cut-off frequency beyond which waves do not exist. This result is reminiscent of the Garrett and Munk spectrum measured in the oceans and theoretically described as a manifestation of internal wave turbulence. In addition to revealing an instability driving homogeneous turbulence in geophysical fluid layers, our approach is also an efficient numerical tool to investigate the possibly universal properties of wave turbulence in a geophysical context.

  1. Conformally compactified homogeneous spaces (Possible Observable Consequences)

    Budinich, P.

    1995-01-01

    Some arguments based on the possible spontaneous violation of the Cosmological Principles (represented by the observed large-scale structures of galaxies), the Cartan-geometry of simple spinors and on the Fock-formulation of hydrogen-atom wave-equation in momentum-space, are presented in favour of the hypothesis that space-time and momentum-space should be both conformally compactified and represented by the two four-dimensional homogeneous spaces of the conformal group, both isomorphic to (S 3 X S 1 )/Z 2 and correlated by conformal inversion. Within this framework, the possible common origin for the S0(4) symmetry underlying the geometrical structure of the Universe, of Kepler orbits and of the H-atom is discussed. On of the consequences of the proposed hypothesis could be that any quantum field theory should be naturally free from both infrared and ultraviolet divergences. But then physical spaces defined as those where physical phenomena may be best described, could be different from those homogeneous spaces. A simple, exactly soluble, toy model, valid for a two-dimensional space-time is presented where the conjecture conformally compactified space-time and momentum-space are both isomorphic to (S 1 X S 1 )/Z 2 , while the physical spaces are two finite lattice which are dual since Fourier transforms, represented by finite, discrete, sums may be well defined on them. Furthermore, a q-deformed SU q (1,1) may be represented on them if q is a root of unity. (author). 22 refs, 3 figs

  2. Value distribution of meromorphic solutions of homogeneous and non-homogeneous complex linear differential-difference equations

    Luo Li-Qin

    2016-01-01

    Full Text Available In this paper, we investigate the value distribution of meromorphic solutions of homogeneous and non-homogeneous complex linear differential-difference equations, and obtain the results on the relations between the order of the solutions and the convergence exponents of the zeros, poles, a-points and small function value points of the solutions, which show the relations in the case of non-homogeneous equations are sharper than the ones in the case of homogeneous equations.

  3. Homogenization of a storage and/or disposal site in an underground damage or fractured medium

    Khvoenkova, N.

    2007-07-01

    The aim of this work was to model the flow and the transport of a radionuclide in a fractured rock. In order to be able to simulate numerically these phenomena in an industrial context, it has been chosen to apply the homogenization method. The theoretical study has consisted in 1)determining a microscopic model in the fractured medium 2)homogenizing the microscopic model. In this study, two media have been studied: a granitic medium and a calcareous medium. With the obtained experimental data, six possible microscopic models have been deduced for each type of medium and in terms of the choice of the fracturing (thin or thick) and of the relation between the porosities and the delay coefficients. With the homogenization, three types of exchange of pollutant between the fractures and the porous blocks have been revealed: 1)the instantaneous exchange for which the presence of the porous blocks has no influence on the global behaviour of the system 2)the instantaneous exchange for which the porous blocks absorb a non-negligible quantity of pollutant. This influence is only determined by the fractures system 3)the non-instantaneous exchange. These homogenized models have been numerically studied (resolution with the Cast3M code). The simulation of the homogenized models has given results similar to those of the direct models. Moreover, the study of the homogenized diffusion tensor has shown that the homogenized model takes into account the dispersion produced by the fractures system. By all these results, it can be concluded that the risk estimation of the contamination of the fractured rock is possible for long times by the use of homogenized models. (O.M.)

  4. Dissolution test for homogeneity of mixed oxide fuel pellets

    Lerch, R.E.

    1979-08-01

    Experiments were performed to determine the relationship between fuel pellet homogeneity and pellet dissolubility. Although, in general, the amount of pellet residue decreased with increased homogeneity, as measured by the pellet figure of merit, the relationship was not absolute. Thus, all pellets with high figure of merit (excellent homogeneity) do not necessarily dissolve completely and all samples that dissolve completely do not necessarily have excellent homogeneity. It was therefore concluded that pellet dissolubility measurements could not be substituted for figure of merit determinations as a measurement of pellet homogeneity. 8 figures, 3 tables

  5. Analysis of spectral methods for the homogeneous Boltzmann equation

    Filbet, Francis

    2011-04-01

    The development of accurate and fast algorithms for the Boltzmann collision integral and their analysis represent a challenging problem in scientific computing and numerical analysis. Recently, several works were devoted to the derivation of spectrally accurate schemes for the Boltzmann equation, but very few of them were concerned with the stability analysis of the method. In particular there was no result of stability except when the method was modified in order to enforce the positivity preservation, which destroys the spectral accuracy. In this paper we propose a new method to study the stability of homogeneous Boltzmann equations perturbed by smoothed balanced operators which do not preserve positivity of the distribution. This method takes advantage of the "spreading" property of the collision, together with estimates on regularity and entropy production. As an application we prove stability and convergence of spectral methods for the Boltzmann equation, when the discretization parameter is large enough (with explicit bound). © 2010 American Mathematical Society.

  6. Homogeneity of a Global Multisatellite Soil Moisture Climate Data Record

    Su, Chun-Hsu; Ryu, Dongryeol; Dorigo, Wouter; Zwieback, Simon; Gruber, Alexander; Albergel, Clement; Reichle, Rolf H.; Wagner, Wolfgang

    2016-01-01

    Climate Data Records (CDR) that blend multiple satellite products are invaluable for climate studies, trend analysis and risk assessments. Knowledge of any inhomogeneities in the CDR is therefore critical for making correct inferences. This work proposes a methodology to identify the spatiotemporal extent of the inhomogeneities in a 36-year, global multisatellite soil moisture CDR as the result of changing observing systems. Inhomogeneities are detected at up to 24 percent of the tested pixels with spatial extent varying with satellite changeover times. Nevertheless, the contiguous periods without inhomogeneities at changeover times are generally longer than 10 years. Although the inhomogeneities have measurable impact on the derived trends, these trends are similar to those observed in ground data and land surface reanalysis, with an average error less than 0.003 cubic meters per cubic meter per year. These results strengthen the basis of using the product for long-term studies and demonstrate the necessity of homogeneity testing of multisatellite CDRs in general.

  7. Analysis of spectral methods for the homogeneous Boltzmann equation

    Filbet, Francis; Mouhot, Clé ment

    2011-01-01

    The development of accurate and fast algorithms for the Boltzmann collision integral and their analysis represent a challenging problem in scientific computing and numerical analysis. Recently, several works were devoted to the derivation of spectrally accurate schemes for the Boltzmann equation, but very few of them were concerned with the stability analysis of the method. In particular there was no result of stability except when the method was modified in order to enforce the positivity preservation, which destroys the spectral accuracy. In this paper we propose a new method to study the stability of homogeneous Boltzmann equations perturbed by smoothed balanced operators which do not preserve positivity of the distribution. This method takes advantage of the "spreading" property of the collision, together with estimates on regularity and entropy production. As an application we prove stability and convergence of spectral methods for the Boltzmann equation, when the discretization parameter is large enough (with explicit bound). © 2010 American Mathematical Society.

  8. The Copenhagen problem with a quasi-homogeneous potential

    Fakis, Demetrios; Kalvouridis, Tilemahos

    2017-05-01

    The Copenhagen problem is a well-known case of the famous restricted three-body problem. In this work instead of considering Newtonian potentials and forces we assume that the two primaries create a quasi-homogeneous potential, which means that we insert to the inverse square law of gravitation an inverse cube corrective term in order to approximate various phenomena as the radiation pressure of the primaries or the non-sphericity of them. Based on this new consideration we investigate the equilibrium locations of the small body and their parametric dependence, as well as the zero-velocity curves and surfaces for the planar motion, and the evolution of the regions where this motion is permitted when the Jacobian constant varies.

  9. Microstructural evolution during the homogenization heat treatment of 6XXX and 7XXX aluminum alloys

    Priya, Pikee

    Homogenization heat treatment of as-cast billets is an important step in the processing of aluminum extrusions. Microstructural evolution during homogenization involves elimination of the eutectic morphology by spheroidisation of the interdendritic phases, minimization of the microsegregation across the grains through diffusion, dissolution of the low-melting phases, which enhances the surface finish of the extrusions, and precipitation of nano-sized dispersoids (for Cr-, Zr-, Mn-, Sc-containing alloys), which inhibit grain boundary motion to prevent recrystallization. Post-homogenization cooling reprecipitates some of the phases, changing the flow stress required for subsequent extrusion. These precipitates, however, are deleterious for the mechanical properties of the alloy and also hamper the age-hardenability and are hence dissolved during solution heat treatment. Microstructural development during homogenization and subsequent cooling occurs both at the length scale of the Secondary Dendrite Arm Spacing (SDAS) in micrometers and dispersoids in nanometers. Numerical tools to simulate microstructural development at both the length scales have been developed and validated against experiments. These tools provide easy and convenient means to study the process. A Cellular Automaton-Finite Volume-based model for evolution of interdendritic phases is coupled with a Particle Size Distribution-based model for precipitation of dispersoids across the grain. This comprehensive model has been used to study the effect of temperature, composition, as-cast microstructure, and cooling rates during post-homogenization quenching on microstructural evolution. The numerical study has been complimented with experiments involving Scanning Electron Microscopy, Energy Dispersive Spectroscopy, X-Ray Diffraction and Differential Scanning Calorimetry and a good agreement has with numerical results has been found. The current work aims to study the microstructural evolution during

  10. Assembly homogenization techniques for light water reactor analysis

    Smith, K.S.

    1986-01-01

    Recent progress in development and application of advanced assembly homogenization methods for light water reactor analysis is reviewed. Practical difficulties arising from conventional flux-weighting approximations are discussed and numerical examples given. The mathematical foundations for homogenization methods are outlined. Two methods, Equivalence Theory and Generalized Equivalence Theory which are theoretically capable of eliminating homogenization error are reviewed. Practical means of obtaining approximate homogenized parameters are presented and numerical examples are used to contrast the two methods. Applications of these techniques to PWR baffle/reflector homogenization and BWR bundle homogenization are discussed. Nodal solutions to realistic reactor problems are compared to fine-mesh PDQ calculations, and the accuracy of the advanced homogenization methods is established. Remaining problem areas are investigated, and directions for future research are suggested. (author)

  11. Homogeneous deuterium exchange using rhenium and platinum chloride catalysts

    Fawdry, R.M.

    1979-01-01

    Previous studies of homogeneous hydrogen isotope exchange are mostly confined to one catalyst, the tetrachloroplatinite salt. Recent reports have indicated that chloride salts of iridium and rhodium may also be homogeneous exchange catalysts similar to the tetrachloroplatinite, but with much lower activities. Exchange by these homogeneous catalysts is frequently accompanied by metal precipitation with the termination of homogeneous exchange, particularly in the case of alkane exchange. The studies presented in this thesis describe two different approaches to overcome this limitation of homogeneous hydrogen isotope exchange catalysts. The first approach was to improve the stability of an existing homogeneous catalyst and the second was to develop a new homogeneous exchange catalyst which is free of the instability limitation

  12. Application of cryogenic grinding to achieve homogenization of transuranic wastes

    Atkins, W.H.; Hill, D.D.; Lucero, M.E.; Jaramillo, L.; Martinez, H.E.

    1996-08-01

    This paper describes work done at Los Alamos National Laboratory (LANL) in collaboration with the Department of Energy Rocky Flats Field Office (DOE/RFFO) and with the National Institute of Standards and Technology (NIST), Boulder, Colorado. Researchers on this project have developed a method for cryogenic grinding of mixed wastes to homogenize and, thereby, to acquire a representative sample of the materials. There are approximately 220,000 waste drums owned by the Rocky Flats Environmental Technology Site (RFETS)-50,000 at RFETS and 170,000 at the Idaho National Engineering Laboratory. The cost of sampling the heterogeneous distribution of waste in each drum is prohibitive. In an attempt to produce a homogeneous mixture of waste that would reduce greatly the cost of sampling, researchers at NIST and RFETS are developing a cryogenic grinder. The Los Alamos work herein described addresses the implementation issues of the task. The first issue was to ascertain whether samples of the open-quotes small particleclose quotes mixtures of materials present in the waste drums at RFETS were representative of actual drum contents. Second, it was necessary to determine at what temperature the grinding operation must be performed in order to minimize or to eliminate the release of volatile organic compounds present in the waste. Last, it was essential to evaluate any effect the liquid cryogen might have on the structural integrity and ventilation capacity of the glovebox system. Results of this study showed that representative samples could be and had been obtained, that some release of organics occurred below freezing because of sublimation, and that operation of the cryogenic grinding equipment inside the glovebox was feasible

  13. On the decay of homogeneous isotropic turbulence

    Skrbek, L.; Stalp, Steven R.

    2000-08-01

    Decaying homogeneous, isotropic turbulence is investigated using a phenomenological model based on the three-dimensional turbulent energy spectra. We generalize the approach first used by Comte-Bellot and Corrsin [J. Fluid Mech. 25, 657 (1966)] and revised by Saffman [J. Fluid Mech. 27, 581 (1967); Phys. Fluids 10, 1349 (1967)]. At small wave numbers we assume the spectral energy is proportional to the wave number to an arbitrary power. The specific case of power 2, which follows from the Saffman invariant, is discussed in detail and is later shown to best describe experimental data. For the spectral energy density in the inertial range we apply both the Kolmogorov -5/3 law, E(k)=Cɛ2/3k-5/3, and the refined Kolmogorov law by taking into account intermittency. We show that intermittency affects the energy decay mainly by shifting the position of the virtual origin rather than altering the power law of the energy decay. Additionally, the spectrum is naturally truncated due to the size of the wind tunnel test section, as eddies larger than the physical size of the system cannot exist. We discuss effects associated with the energy-containing length scale saturating at the size of the test section and predict a change in the power law decay of both energy and vorticity. To incorporate viscous corrections to the model, we truncate the spectrum at an effective Kolmogorov wave number kη=γ(ɛ/v3)1/4, where γ is a dimensionless parameter of order unity. We show that as the turbulence decays, viscous corrections gradually become more important and a simple power law can no longer describe the decay. We discuss the final period of decay within the framework of our model, and show that care must be taken to distinguish between the final period of decay and the change of the character of decay due to the saturation of the energy containing length scale. The model is applied to a number of experiments on decaying turbulence. These include the downstream decay of turbulence in

  14. Homogeneous Thorium Fuel Cycles in Candu Reactors

    Hyland, B.; Dyck, G.R.; Edwards, G.W.R.; Magill, M. [Chalk River Laboratories, Atomic Energy of Canada Limited (Canada)

    2009-06-15

    The CANDU{sup R} reactor has an unsurpassed degree of fuel-cycle flexibility, as a consequence of its fuel-channel design, excellent neutron economy, on-power refueling, and simple fuel bundle [1]. These features facilitate the introduction and full exploitation of thorium fuel cycles in Candu reactors in an evolutionary fashion. Because thorium itself does not contain a fissile isotope, neutrons must be provided by adding a fissile material, either within or outside of the thorium-based fuel. Those same Candu features that provide fuel-cycle flexibility also make possible many thorium fuel-cycle options. Various thorium fuel cycles can be categorized by the type and geometry of the added fissile material. The simplest of these fuel cycles are based on homogeneous thorium fuel designs, where the fissile material is mixed uniformly with the fertile thorium. These fuel cycles can be competitive in resource utilization with the best uranium-based fuel cycles, while building up a 'mine' of U-233 in the spent fuel, for possible recycle in thermal reactors. When U-233 is recycled from the spent fuel, thorium-based fuel cycles in Candu reactors can provide substantial improvements in the efficiency of energy production from existing fissile resources. The fissile component driving the initial fuel could be enriched uranium, plutonium, or uranium-233. Many different thorium fuel cycle options have been studied at AECL [2,3]. This paper presents the results of recent homogeneous thorium fuel cycle calculations using plutonium and enriched uranium as driver fuels, with and without U-233 recycle. High and low burnup cases have been investigated for both the once-through and U-233 recycle cases. CANDU{sup R} is a registered trademark of Atomic Energy of Canada Limited (AECL). 1. Boczar, P.G. 'Candu Fuel-Cycle Vision', Presented at IAEA Technical Committee Meeting on 'Fuel Cycle Options for LWRs and HWRs', 1998 April 28 - May 01, also Atomic Energy

  15. Fuel micro-mechanics: homogenization, cracking, granular media

    Monerie, Yann

    2010-01-01

    This work summarizes about fifteen years of research in the field of micro-mechanics of materials. Emphasis is placed on the most recent work carried out in the context of nuclear safety. Micro-mechanics finds a natural place there, aiming to predict the behavior of heterogeneous materials with an evolving microstructure. The applications concerned mainly involve the nuclear fuel and its tubular cladding. The uranium dioxide fuel is modeled, according to the scales under consideration, as a porous ceramic or a granular medium. The strongly irradiated Zircaloy claddings are identified with a composite medium with a metal matrix and a gradient of properties. The analysis of these classes of material is rich in problems of a more fundamental nature. Three main themes are discussed: 1/ Homogenization, 2/ cracking, rupture and fragmentation, 3/ discrete media and fluid-grain couplings. Homogenization: The analytical scale change methods proposed aim to estimate or limit the linear and equivalent nonlinear behaviors of isotropic porous media and anisotropic composites with a metal matrix. The porous media under consideration are saturated or drained, with a compressible or incompressible matrix, and have one or two scales of spherical or ellipsoid pores, or cracks. The composites studied have a macroscopic anisotropy related to that of the matrix, and to the shape and spatial distribution of the inclusions. Thermoelastic, elastoplastic, and viscoplastic behaviors and ductile damage of these media are examined using different techniques: extensions of classic approaches, linear in particular, variational approaches and approaches using elliptical potentials with thermally activated elementary mechanisms. The models developed are validated on numerical finite element simulations, and their functional relevance is illustrated in comparison to experimental data obtained from the literature. The significant results obtained include a plasticity criterion for Gurson matrix

  16. Persymmetric Adaptive Detectors of Subspace Signals in Homogeneous and Partially Homogeneous Clutter

    Ding Hao

    2015-08-01

    Full Text Available In the field of adaptive radar detection, an effective strategy to improve the detection performance is to exploit the structural information of the covariance matrix, especially in the case of insufficient reference cells. Thus, in this study, the problem of detecting multidimensional subspace signals is discussed by considering the persymmetric structure of the clutter covariance matrix, which implies that the covariance matrix is persymmetric about its cross diagonal. Persymmetric adaptive detectors are derived on the basis of the one-step principle as well as the two-step Generalized Likelihood Ratio Test (GLRT in homogeneous and partially homogeneous clutter. The proposed detectors consider the structural information of the covariance matrix at the design stage. Simulation results suggest performance improvement compared with existing detectors when reference cells are insufficient. Moreover, the detection performance is assessed with respect to the effects of the covariance matrix, signal subspace dimension, and mismatched performance of signal subspace as well as signal fluctuations.

  17. Synthesis and characterization of homogeneous interstitial solutions of nitrogen and carbon in iron-based lattices

    Brink, Bastian Klüge

    work in synthesis and characterization of interstitial solutions ofnitrogen and carbon in iron-based lattices. In order to avoid the influences of gradients incomposition and residual stresses, which are typically found in treated surface layers,homogenous samples are needed. These were prepared from...

  18. Theoretical studies of homogeneous catalysts mimicking nitrogenase.

    Sgrignani, Jacopo; Franco, Duvan; Magistrato, Alessandra

    2011-01-10

    The conversion of molecular nitrogen to ammonia is a key biological and chemical process and represents one of the most challenging topics in chemistry and biology. In Nature the Mo-containing nitrogenase enzymes perform nitrogen 'fixation' via an iron molybdenum cofactor (FeMo-co) under ambient conditions. In contrast, industrially, the Haber-Bosch process reduces molecular nitrogen and hydrogen to ammonia with a heterogeneous iron catalyst under drastic conditions of temperature and pressure. This process accounts for the production of millions of tons of nitrogen compounds used for agricultural and industrial purposes, but the high temperature and pressure required result in a large energy loss, leading to several economic and environmental issues. During the last 40 years many attempts have been made to synthesize simple homogeneous catalysts that can activate dinitrogen under the same mild conditions of the nitrogenase enzymes. Several compounds, almost all containing transition metals, have been shown to bind and activate N₂ to various degrees. However, to date Mo(N₂)(HIPTN)₃N with (HIPTN)₃N= hexaisopropyl-terphenyl-triamidoamine is the only compound performing this process catalytically. In this review we describe how Density Functional Theory calculations have been of help in elucidating the reaction mechanisms of the inorganic compounds that activate or fix N₂. These studies provided important insights that rationalize and complement the experimental findings about the reaction mechanisms of known catalysts, predicting the reactivity of new potential catalysts and helping in tailoring new efficient catalytic compounds.

  19. Theoretical Studies of Homogeneous Catalysts Mimicking Nitrogenase

    Alessandra Magistrato

    2011-01-01

    Full Text Available The conversion of molecular nitrogen to ammonia is a key biological and chemical process and represents one of the most challenging topics in chemistry and biology. In Nature the Mo-containing nitrogenase enzymes perform nitrogen ‘fixation’ via an iron molybdenum cofactor (FeMo-co under ambient conditions. In contrast, industrially, the Haber-Bosch process reduces molecular nitrogen and hydrogen to ammonia with a heterogeneous iron catalyst under drastic conditions of temperature and pressure. This process accounts for the production of millions of tons of nitrogen compounds used for agricultural and industrial purposes, but the high temperature and pressure required result in a large energy loss, leading to several economic and environmental issues. During the last 40 years many attempts have been made to synthesize simple homogeneous catalysts that can activate dinitrogen under the same mild conditions of the nitrogenase enzymes. Several compounds, almost all containing transition metals, have been shown to bind and activate N2 to various degrees. However, to date Mo(N2(HIPTN3N with (HIPTN3N= hexaisopropyl-terphenyl-triamidoamine is the only compound performing this process catalytically. In this review we describe how Density Functional Theory calculations have been of help in elucidating the reaction mechanisms of the inorganic compounds that activate or fix N2. These studies provided important insights that rationalize and complement the experimental findings about the reaction mechanisms of known catalysts, predicting the reactivity of new potential catalysts and helping in tailoring new efficient catalytic compounds.

  20. Elastic metamaterials and dynamic homogenization: a review

    Ankit Srivastava

    2015-01-01

    Full Text Available In this paper, we review the recent advances which have taken place in the understanding and applications of acoustic/elastic metamaterials. Metamaterials are artificially created composite materials which exhibit unusual properties that are not found in nature. We begin with presenting arguments from discrete systems which support the case for the existence of unusual material properties such as tensorial and/or negative density. The arguments are then extended to elastic continuums through coherent averaging principles. The resulting coupled and nonlocal homogenized relations, called the Willis relations, are presented as the natural description of inhomogeneous elastodynamics. They are specialized to Bloch waves propagating in periodic composites and we show that the Willis properties display the unusual behavior which is often required in metamaterial applications such as the Veselago lens. We finally present the recent advances in the area of transformation elastodynamics, charting its inspirations from transformation optics, clarifying its particular challenges, and identifying its connection with the constitutive relations of the Willis and the Cosserat types.

  1. Homogenization models for 2-D grid structures

    Banks, H. T.; Cioranescu, D.; Rebnord, D. A.

    1992-01-01

    In the past several years, we have pursued efforts related to the development of accurate models for the dynamics of flexible structures made of composite materials. Rather than viewing periodicity and sparseness as obstacles to be overcome, we exploit them to our advantage. We consider a variational problem on a domain that has large, periodically distributed holes. Using homogenization techniques we show that the solution to this problem is in some topology 'close' to the solution of a similar problem that holds on a much simpler domain. We study the behavior of the solution of the variational problem as the holes increase in number, but decrease in size in such a way that the total amount of material remains constant. The result is an equation that is in general more complex, but with a domain that is simply connected rather than perforated. We study the limit of the solution as the amount of material goes to zero. This second limit will, in most cases, retrieve much of the simplicity that was lost in the first limit without sacrificing the simplicity of the domain. Finally, we show that these results can be applied to the case of a vibrating Love-Kirchhoff plate with Kelvin-Voigt damping. We rely heavily on earlier results of (Du), (CS) for the static, undamped Love-Kirchhoff equation. Our efforts here result in a modification of those results to include both time dependence and Kelvin-Voigt damping.

  2. Homogeneous cosmology with aggressively expanding civilizations

    Jay Olson, S

    2015-01-01

    In the context of a homogeneous Universe, we note that the appearance of aggressively expanding advanced life is geometrically similar to the process of nucleation and bubble growth in a first-order cosmological phase transition. We exploit this similarity to describe the dynamics of life saturating the Universe on a cosmic scale, adapting the phase transition model to incorporate probability distributions of expansion and resource consumption strategies. Through a series of numerical solutions spanning several orders of magnitude in the input assumption parameters, the resulting cosmological model is used to address basic questions related to the intergalactic spreading of life, dealing with issues such as timescales, observability, competition between strategies, and first-mover advantage. Finally, we examine physical effects on the Universe itself, such as reheating and the backreaction on the evolution of the scale factor, if such life is able to control and convert a significant fraction of the available pressureless matter into radiation. We conclude that the existence of life, if certain advanced technologies are practical, could have a significant influence on the future large-scale evolution of the Universe. (paper)

  3. Numerical computation of homogeneous slope stability.

    Xiao, Shuangshuang; Li, Kemin; Ding, Xiaohua; Liu, Tong

    2015-01-01

    To simplify the computational process of homogeneous slope stability, improve computational accuracy, and find multiple potential slip surfaces of a complex geometric slope, this study utilized the limit equilibrium method to derive expression equations of overall and partial factors of safety. This study transformed the solution of the minimum factor of safety (FOS) to solving of a constrained nonlinear programming problem and applied an exhaustive method (EM) and particle swarm optimization algorithm (PSO) to this problem. In simple slope examples, the computational results using an EM and PSO were close to those obtained using other methods. Compared to the EM, the PSO had a small computation error and a significantly shorter computation time. As a result, the PSO could precisely calculate the slope FOS with high efficiency. The example of the multistage slope analysis indicated that this slope had two potential slip surfaces. The factors of safety were 1.1182 and 1.1560, respectively. The differences between these and the minimum FOS (1.0759) were small, but the positions of the slip surfaces were completely different than the critical slip surface (CSS).

  4. Numerical Computation of Homogeneous Slope Stability

    Shuangshuang Xiao

    2015-01-01

    Full Text Available To simplify the computational process of homogeneous slope stability, improve computational accuracy, and find multiple potential slip surfaces of a complex geometric slope, this study utilized the limit equilibrium method to derive expression equations of overall and partial factors of safety. This study transformed the solution of the minimum factor of safety (FOS to solving of a constrained nonlinear programming problem and applied an exhaustive method (EM and particle swarm optimization algorithm (PSO to this problem. In simple slope examples, the computational results using an EM and PSO were close to those obtained using other methods. Compared to the EM, the PSO had a small computation error and a significantly shorter computation time. As a result, the PSO could precisely calculate the slope FOS with high efficiency. The example of the multistage slope analysis indicated that this slope had two potential slip surfaces. The factors of safety were 1.1182 and 1.1560, respectively. The differences between these and the minimum FOS (1.0759 were small, but the positions of the slip surfaces were completely different than the critical slip surface (CSS.

  5. Thermal neutron diffusion parameters in homogeneous mixtures

    Drozdowicz, K.; Krynicka, E. [Institute of Nuclear Physics, Cracow (Poland)

    1995-12-31

    A physical background is presented for a computer program which calculates the thermal neutron diffusion parameters for homogeneous mixtures of any compounds. The macroscopic absorption, scattering and transport cross section of the mixture are defined which are generally function of the incident neutron energy. The energy-averaged neutron parameters are available when these energy dependences and the thermal neutron energy distribution are assumed. Then the averaged diffusion coefficient and the pulsed thermal neutron parameters (the absorption rare and the diffusion constant) are also defined. The absorption cross section is described by the 1/v law and deviations from this behaviour are considered. The scattering cross section can be assumed as being almost constant in the thermal neutron region (which results from the free gas model). Serious deviations are observed for hydrogen atoms bound in molecules and a special study in the paper is devoted to this problem. A certain effective scattering cross section is found in this case on a base of individual exact data for a few hydrogenous media. Approximations assumed for the average cosine of the scattering angle are also discussed. The macroscopic parameters calculated are averaged over the Maxwellian energy distribution for the thermal neutron flux. An information on the input data for the computer program is included. (author). 10 refs, 4 figs, 5 tabs.

  6. Forming homogeneous clusters for differential risk information

    Maardberg, B.

    1996-01-01

    Latent risk situations are always present in society. General information on these risk situations is supposed to be received differently by different groups of people in the population. In the aftermath of specific accidents different groups presumably have need of specific information about how to act to survive, to avoid injuries, to find more information, to obtain facts about the accidents etc. As targets for information these different groups could be defined in different ways. The conventional way is to divide the population according to demographic variables, such as age, sex, occupation etc. Another way would be to structure the population according to dependent variables measured in different studies. They may concern risk perception, emotional reactions, specific technical knowledge of the accidents, and belief in the information sources. One procedure for forming such groupings of people into homogeneous clusters would be by statistical clustering methods on dependent variables. Examples of such clustering procedures are presented and discussed. Data are from a Norwegian study on the perception of radiation from nuclear accidents and other radiation sources. Speculations are made on different risk information strategies. Elements of a research programme are proposed. (author)

  7. Homogeneous purely buoyancy driven turbulent flow

    Arakeri, Jaywant; Cholemari, Murali; Pawar, Shashikant

    2010-11-01

    An unstable density difference across a long vertical tube open at both ends leads to convection that is axially homogeneous with a linear density gradient. We report results from such tube convection experiments, with driving density caused by salt concentration difference or temperature difference. At high enough Rayleigh numbers (Ra) the convection is turbulent with zero mean flow and zero mean Reynolds shear stresses; thus turbulent production is purely by buoyancy. We observe different regimes of turbulent convection. At very high Ra the Nusselt number scales as the square root of the Rayleigh number, giving the so-called "ultimate regime" of convection predicted for Rayleigh-Benard convection in limit of infinite Ra. Turbulent convection at intermediate Ra, the Nusselt number scales as Ra^0.3. In both regimes, the flux and the Taylor scale Reynolds number are more than order of magnitude larger than those obtained in Rayleigh-Benard convection. Absence of a mean flow makes this an ideal flow to study shear free turbulence near a wall.

  8. Thermal neutron diffusion parameters in homogeneous mixtures

    Drozdowicz, K.; Krynicka, E.

    1995-01-01

    A physical background is presented for a computer program which calculates the thermal neutron diffusion parameters for homogeneous mixtures of any compounds. The macroscopic absorption, scattering and transport cross section of the mixture are defined which are generally function of the incident neutron energy. The energy-averaged neutron parameters are available when these energy dependences and the thermal neutron energy distribution are assumed. Then the averaged diffusion coefficient and the pulsed thermal neutron parameters (the absorption rare and the diffusion constant) are also defined. The absorption cross section is described by the 1/v law and deviations from this behaviour are considered. The scattering cross section can be assumed as being almost constant in the thermal neutron region (which results from the free gas model). Serious deviations are observed for hydrogen atoms bound in molecules and a special study in the paper is devoted to this problem. A certain effective scattering cross section is found in this case on a base of individual exact data for a few hydrogenous media. Approximations assumed for the average cosine of the scattering angle are also discussed. The macroscopic parameters calculated are averaged over the Maxwellian energy distribution for the thermal neutron flux. An information on the input data for the computer program is included. (author). 10 refs, 4 figs, 5 tabs

  9. Generalized quantum theory of recollapsing homogeneous cosmologies

    Craig, David; Hartle, James B.

    2004-01-01

    A sum-over-histories generalized quantum theory is developed for homogeneous minisuperspace type A Bianchi cosmological models, focusing on the particular example of the classically recollapsing Bianchi type-IX universe. The decoherence functional for such universes is exhibited. We show how the probabilities of decoherent sets of alternative, coarse-grained histories of these model universes can be calculated. We consider in particular the probabilities for classical evolution defined by a suitable coarse graining. For a restricted class of initial conditions and coarse grainings we exhibit the approximate decoherence of alternative histories in which the universe behaves classically and those in which it does not. For these situations we show that the probability is near unity for the universe to recontract classically if it expands classically. We also determine the relative probabilities of quasiclassical trajectories for initial states of WKB form, recovering for such states a precise form of the familiar heuristic 'J·dΣ' rule of quantum cosmology, as well as a generalization of this rule to generic initial states

  10. Radiation statistics in homogeneous isotropic turbulence

    Da Silva, C B; Coelho, P J; Malico, I

    2009-01-01

    An analysis of turbulence-radiation interaction (TRI) in statistically stationary (forced) homogeneous and isotropic turbulence is presented. A direct numerical simulation code was used to generate instantaneous turbulent scalar fields, and the radiative transfer equation (RTE) was solved to provide statistical data relevant in TRI. The radiation intensity is non-Gaussian and is not spatially correlated with any of the other turbulence or radiation quantities. Its power spectrum exhibits a power-law region with a slope steeper than the classical -5/3 law. The moments of the radiation intensity, Planck-mean and incident-mean absorption coefficients, and emission and absorption TRI correlations are calculated. The influence of the optical thickness of the medium, mean and variance of the temperature and variance of the molar fraction of the absorbing species is studied. Predictions obtained from the time-averaged RTE are also included. It was found that while turbulence yields an increase of the mean blackbody radiation intensity, it causes a decrease of the time-averaged Planck-mean absorption coefficient. The absorption coefficient self-correlation is small in comparison with the temperature self-correlation, and the role of TRI in radiative emission is more important than in radiative absorption. The absorption coefficient-radiation intensity correlation is small, which supports the optically thin fluctuation approximation, and justifies the good predictions often achieved using the time-averaged RTE.

  11. Radiation statistics in homogeneous isotropic turbulence

    Da Silva, C B; Coelho, P J [Mechanical Engineering Department, IDMEC/LAETA, Instituto Superior Tecnico, Technical University of Lisbon, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Malico, I [Physics Department, University of Evora, Rua Romao Ramalho, 59, 7000-671 Evora (Portugal)], E-mail: carlos.silva@ist.utl.pt, E-mail: imbm@uevora.pt, E-mail: pedro.coelho@ist.utl.pt

    2009-09-15

    An analysis of turbulence-radiation interaction (TRI) in statistically stationary (forced) homogeneous and isotropic turbulence is presented. A direct numerical simulation code was used to generate instantaneous turbulent scalar fields, and the radiative transfer equation (RTE) was solved to provide statistical data relevant in TRI. The radiation intensity is non-Gaussian and is not spatially correlated with any of the other turbulence or radiation quantities. Its power spectrum exhibits a power-law region with a slope steeper than the classical -5/3 law. The moments of the radiation intensity, Planck-mean and incident-mean absorption coefficients, and emission and absorption TRI correlations are calculated. The influence of the optical thickness of the medium, mean and variance of the temperature and variance of the molar fraction of the absorbing species is studied. Predictions obtained from the time-averaged RTE are also included. It was found that while turbulence yields an increase of the mean blackbody radiation intensity, it causes a decrease of the time-averaged Planck-mean absorption coefficient. The absorption coefficient self-correlation is small in comparison with the temperature self-correlation, and the role of TRI in radiative emission is more important than in radiative absorption. The absorption coefficient-radiation intensity correlation is small, which supports the optically thin fluctuation approximation, and justifies the good predictions often achieved using the time-averaged RTE.

  12. On the effects of gravity and sulfur content on the weld shape in horizontal narrow gap GTAW of stainless steels

    Traidia, Abderrazak; Roger, Frederic; Schroeder, Jeanne; Guyot, Evelyne; Marlaud, Thorsten

    2013-01-01

    A simplified 2D axisymmetric model and a comprehensive 3D weld pool model, accounting for the free surface deformation and the filler metal addition, have been developed to investigate the factors that lead to asymmetric bead shapes in horizontal

  13. Study of radiation defects by in-situ measurements of the Hall effect in narrow-gap semiconductors

    Favre, J.

    1990-01-01

    Semiconducting compounds of II-VI, III-V and IV-VI groups were irradiated in liquid hydrogen by high energy (0.7 to 2.7 MeV) electrons. The Hall coefficient and resistivity variations were measured in situ during irradiation. The doping by irradiation induced defects is of p-type in III-V group compounds, while n-type doping occurs in II-VI and IV-VI group materials. A semiconductor to insulator or reverse transition was observed under irradiation when the chemical potential crossed the band edges. In IV-VI group compounds the two successive transitions take place in initially p-type samples. A metastable behaviour, characteristic to strong compensation, appears in the vicinity of those semiconductor - insulator transitions in IV-VI compounds. The slope of free carrier concentration vs. fluence variation was analyzed. It was compared to defect creation rates, calculated in the framework of a cascade model. The charge state of created defects was deduced in this way. - In IV-VI group compounds, the presence of localized levels degenerated with the conduction band and, in PbTe, of additional defect associated levels in the forbidden gap, was demonstrated. Those results are consistent with the saturation of electron concentration increase at high fluence as well as with the analysis of annealing experiments. - In Hg 1-x Cd x Te compounds, the analysis of electron concentration versus fluence increase indicates that only mercury Frenkel pairs are electrically active. The variation with cadmium content of the defect associated level energy was deduced from the saturation values of the electron concentration [fr

  14. Spin polarization of a Ferromagnetic Narrow Gap p-(In,Mn)As Obtained from Andreev Reflection Spectroscopy

    Akazaki, T.; Munekata, H.; Yokoyama, T.; Tanaka, Y.; Takayanagi, H.

    2011-01-01

    Spin-polarized carrier transport across Nb/p-(In,Mn)As junctions has been studied. Suppressions of conductance in the superconductor sub-gap region and conductance peaks at the bias voltage around the edge of the sub-gap are observed. These features are well reproduced by a newly modified BTK model including both spin polarization and the inverse proximity effect. The value of spin polarization in p-(In,Mn)As extracted by the calculation is P = 0.725 at 0.5 K with Z = 0.25

  15. Experimental and Numerical Study of Windage Losses in the Narrow Gap Region of a High-Speed Electric Motor

    Kevin R. Anderson

    2018-03-01

    Full Text Available Windage (drag losses have been found to be a key design factor for high power density and high-speed electric motor development. Inducing axial flow between rotor and stator is a common method in cooling the rotor. Hence, it is necessary to understand the effect on windage while forced axial airflow is in present in the air gap. The current paper presents results from experimental testing and modeling of a high-speed motor designed to operate at 30,000 revolutions per minute (RPM and utilize axial air cooling of 200 Liters per minute (LPM to cool the motor. Details of the experimental apparatus and computational fluid dynamics (CFD modeling of the small gap narrow region of the stator/rotor are outlined in the paper. The experimental results are used to calibrate the CFD model. Results for windage losses, flow rate of cooling air, power and torque of the motor versus mass flow rate are given in the paper. Trade studies of CFD on the effect of inlet cooling flow rate, and parasitic heat transfer losses on the Taylor–Couette flow coherent flow structure breakdown are presented. Windage losses on the order of 20 W are found to be present in the configuration tested and simulated.

  16. Microstructural, Micro-hardness and Sensitization Evaluation in HAZ of Type 316L Stainless Steel Joint with Narrow Gap Welds

    Islam, Faisal Shafiqul; Jang, Changheui [KAIST, Daejeon (Korea, Republic of); Kang, Shi Chull [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2015-10-15

    From Micro-hardness measurement HAZ zone was found approximately 1-1.5 mm in NGW and DL-EPR test confirmed that 316L NGW HAZ was not susceptible to sensitization as DOS <1% according to sensitization criteria based on reference. In nuclear power plants 316L stainless steels are commonly used material for their metallurgical stability, high corrosion resistance, and good creep and ductility properties at elevated temperatures. Welding zone considered as the weakest and failure initiation source of the components. For safety and economy of nuclear power plants accurate and dependable structural integrity assessment of main components like pressure vessels and piping are need as it joined by different welding process. In similar and dissimilar metal weld it has been observed that weld microstructure cause the variation of mechanical properties through the thickness direction. In the Heat Affected Zone (HAZ) relative to the fusion line face a unique thermal experience during welding.

  17. Effect of geometric construction on residual stress distribution in designing a nuclear rotor joined by multipass narrow gap welding

    Tan, Long; Zhang, Linjie; Zhang, Jianxun; Zhuang, Dong

    2014-01-01

    Highlights: • The internal stress of the pipe is measured using local material removal method. • Bottom protrusion at weld seam can release the stress and mitigate stress evolution. The through-wall axial stress is bending type under the effect of the rotor discs. • The impact of geometric construction on the stress evolution begins after pass 15. - Abstract: The purpose of this study is to investigate the effect of geometric construction on the distribution of residual stresses before and after heat treatment in designing a nuclear welded rotor. The local material removal method was used to measure internal residual stress of the experimental pipe after post weld heat treatment. Three finite element models were employed as follows: a model of experimental pipe, a model with a bottom protrusion existed at the weld region, and a model of two rotor discs butt-welded with a bottom protrusion at the weld region. Investigated results showed that the bottom protrusion existed at the weld region can decrease the residual stress and mitigate the stress evolution significantly on the inner surface. Under the binding effect of the rotor discs, the axial stress of inner surface region is compressive stress; the through-wall axial stress at the weld center line can be deemed to a bending type; both the hoop stress and axial stress at the weld center line on the inner surface are compressive. The impact of geometric construction on the stress evolution at the root bead begins after pass 15 deposited

  18. Permittivity and soft mode in narrow-gap Pbsub(1-x)Snsub(x)Te(x<0.35) semiconductors

    Antkiv, Z.P.; Baginskij, V.M.; Tovstyuk, K.D.

    1979-01-01

    Presented are the results of theoretical studies of the effect of carrier concentration and composition X on static dielectric function and the frequency of transverse optical phonon in solid Pbsub(1-x)Snsub(x)Te solutions. It is shown that to calculate the dependence of the frequency of transverse phonon mode and the width of forbidden zone on solid solution composition and concentration it is sufficient to limit oneself to the simplest approximation for polarization operator, optical deformation potential being chosen as an adjusting parameter. The results of calculations are compared with available experimental data

  19. On-site SiH4 generator using hydrogen plasma generated in slit-type narrow gap

    Takei, Norihisa; Shinoda, Fumiya; Kakiuchi, Hiroaki; Yasutake, Kiyoshi; Ohmi, Hiromasa

    2018-06-01

    We have been developing an on-site silane (SiH4) generator based on use of the chemical etching reaction between solid silicon (Si) and the high-density H atoms that are generated in high-pressure H2 plasma. In this study, we have developed a slit-type plasma source for high-efficiency SiH4 generation. High-density H2 plasma was generated in a narrow slit-type discharge gap using a 2.45 GHz microwave power supply. The plasma’s optical emission intensity distribution along the slit was measured and the resulting distribution was reflected by both the electric power distribution and the hydrogen gas flow. Because the Si etching rate strongly affects the SiH4 generation rate, the Si etching behavior was investigated with respect to variations in the experimental parameters. The weight etch rate increased monotonically with increasing input microwave power. However, the weight etch rate decreased with increasing H2 pressure and an increasing plasma gap. This reduction in the etch rate appears to be related to shrinkage of the plasma generation area because increased input power is required to maintain a constant plasma area with increasing H2 pressure and the increasing plasma gap. Additionally, the weight etch rate also increases with increasing H2 flow rate. The SiH4 generation rate of the slit-type plasma source was also evaluated using gas-phase Fourier transform infrared absorption spectroscopy and the material utilization efficiencies of both Si and the H2 gas for SiH4 gas formation were discussed. The main etch product was determined to be SiH4 and the developed plasma source achieved a SiH4 generation rate of 10 sccm (standard cubic centimeters per minute) at an input power of 900 W. In addition, the Si utilization efficiency exceeded 60%.

  20. On the effects of gravity and sulfur content on the weld shape in horizontal narrow gap GTAW of stainless steels

    Traidia, Abderrazak

    2013-07-01

    A simplified 2D axisymmetric model and a comprehensive 3D weld pool model, accounting for the free surface deformation and the filler metal addition, have been developed to investigate the factors that lead to asymmetric bead shapes in horizontal GTA welding of stainless steels. Buoyancy-induced flow and the sagging of the pool free surface, under the action of gravity, are found to be responsible for the weld asymmetry and the decrease in the weld penetration at the bottom sidewall. The numerical results clearly emphasized the beneficial role of the Marangoni shear stress in limiting the asymmetry of horizontal GTA welds. An additional experimental investigation showed that the asymmetry in the weld shape can be reduced when placing the lowest sulfur content component at the bottom side. © 2013 Elsevier B.V. All rights reserved.

  1. A computational analysis on homogeneous-heterogeneous mechanism in Carreau fluid flow

    Khan, Imad; Rehman, Khalil Ur; Malik, M. Y.; Shafquatullah

    2018-03-01

    In this article magnetohydrodynamic Carreau fluid flow towards stretching cylinder is considered in the presence of homogeneous-heterogeneous reactions effect. The flow model is structured by utilizing theoretical grounds. For the numerical solution a shooting method along with Runge-Kutta algorithm is executed. The outcomes are provided through graphs. It is observed that the Carreau fluid concentration shows decline values via positive iterations of homogeneous-heterogeneous reaction parameters towards both shear thinning and thickening case. The present work is certified through comparison with already existing literature in a limiting sense.

  2. Toeplitz Operators, Pseudo-Homogeneous Symbols, and Moment Maps on the Complex Projective Space

    Miguel Antonio Morales-Ramos

    2017-01-01

    Full Text Available Following previous works for the unit ball due to Nikolai Vasilevski, we define quasi-radial pseudo-homogeneous symbols on the projective space and obtain the corresponding commutativity results for Toeplitz operators. A geometric interpretation of these symbols in terms of moment maps is developed. This leads us to the introduction of a new family of symbols, extended pseudo-homogeneous, that provide larger commutative Banach algebras generated by Toeplitz operators. This family of symbols provides new commutative Banach algebras generated by Toeplitz operators on the unit ball.

  3. Evolving controllers for a homogeneous system of physical robots: structured cooperation with minimal sensors.

    Quinn, Matt; Smith, Lincoln; Mayley, Giles; Husbands, Phil

    2003-10-15

    We report on recent work in which we employed artificial evolution to design neural network controllers for small, homogeneous teams of mobile autonomous robots. The robots were evolved to perform a formation-movement task from random starting positions, equipped only with infrared sensors. The dual constraints of homogeneity and minimal sensors make this a non-trivial task. We describe the behaviour of a successful system in which robots adopt and maintain functionally distinct roles in order to achieve the task. We believe this to be the first example of the use of artificial evolution to design coordinated, cooperative behaviour for real robots.

  4. Homogeneity of nuclear fuel containing burnable poison; Homogenost jedrskega goriva z gorljivim strupom

    Loose, A; Susnik, D; Ilic, R [Institut Jozef Stefan, Ljubljana (Yugoslavia)

    1988-07-01

    In this work the results of the microstructural investigations of the influence of the Gd{sub 2}O{sub 3} contents and the sintering conditions on the formation of the homogeneous (U,Gd)O{sub 2} solid solution, are presented. For this purpose sintering conditions, microstructure and diffusivity in UO{sub 2} -Gd{sub 2}O{sub 3} , were studied. It was found that, with a suitable preparation of powders and longer sintering times in dry hydrogen atmosphere above 1700 deg C, a homogeneous (U,Gd)O{sub 2} solid solution can be obtained. (author)

  5. Homogenization of neutronic diffusion models; Homogeneisation des modeles de diffusion en neutronique

    Capdebosq, Y

    1999-09-01

    In order to study and simulate nuclear reactor cores, one needs to access the neutron distribution in the core. In practice, the description of this density of neutrons is given by a system of diffusion equations, coupled by non differential exchange terms. The strong heterogeneity of the medium constitutes a major obstacle to the numerical computation of this models at reasonable cost. Homogenization appears as compulsory. Heuristic methods have been developed since the origin by nuclear physicists, under a periodicity assumption on the coefficients. They consist in doing a fine computation one a single periodicity cell, to solve the system on the whole domain with homogeneous coefficients, and to reconstruct the neutron density by multiplying the solutions of the two computations. The objectives of this work are to provide mathematically rigorous basis to this factorization method, to obtain the exact formulas of the homogenized coefficients, and to start on geometries where two periodical medium are placed side by side. The first result of this thesis concerns eigenvalue problem models which are used to characterize the state of criticality of the reactor, under a symmetry assumption on the coefficients. The convergence of the homogenization process is proved, and formulas of the homogenized coefficients are given. We then show that without symmetry assumptions, a drift phenomenon appears. It is characterized by the mean of a real Bloch wave method, which gives the homogenized limit in the general case. These results for the critical problem are then adapted to the evolution model. Finally, the homogenization of the critical problem in the case of two side by side periodic medium is studied on a one dimensional on equation model. (authors)

  6. Ceria powders by homogeneous precipitation technique

    Ramanathan, S.; Roy, S.K.

    2003-01-01

    Formation of precursors for ceria by two homogeneous precipitation reactions - (cerium chloride + urea at 95 degC - called reaction A and cerium chloride + hexamethylenetetramine at 85 degC - called reaction B) - has been studied. The variation of size of the colloidal particles formed and the zeta potential of the suspensions with progress of reactions exhibited similar trends for both the precipitation processes. Particle size increased from 100 to 300 nm with increasing temperature and extent of reaction. The zeta potential was found to decrease with increasing extent of precipitation in the pH range of 5 to 7. Filtration and drying led to agglomeration of the fine particles in case of the precursor from reaction B. The as-formed precursors were crystalline - a basic carbonate in case of reaction A and hydrous oxide in case of reaction B. It was found that nano-crystalline ceria powders (average crystallite size -10 nm) formed above 400 degC from both these precursors. The agglomerate size (D50) of the precursors and ceria powders formed after calcination at 600 degC varied from 0.7 to 3 μm. Increasing calcination temperature up to 800 degC, increased the crystallite size (50 nm). The zeta potential variation with pH and concentration of an anionic dispersant (Calgon) for the ceria powders formed was studied to determine the ideal conditions for suspension stability. It was found to be maximum (i.e., the suspensions stable) in the pH range of 3 to 4 or Calgon concentration of 0.01 to 0.1 weight percent. (author)

  7. A Modified Homogeneous Balance Method and Its Applications

    Liu Chunping

    2011-01-01

    A modified homogeneous balance method is proposed by improving some key steps in the homogeneous balance method. Bilinear equations of some nonlinear evolution equations are derived by using the modified homogeneous balance method. Generalized Boussinesq equation, KP equation, and mKdV equation are chosen as examples to illustrate our method. This approach is also applicable to a large variety of nonlinear evolution equations. (general)

  8. Micro-homogeneity evaluation of a bovine kidney candidate reference material

    Castro, Liliana; Moreira, Edson G.; Vasconcellos, Marina B.A., E-mail: lcastroesnal@usp.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil)

    2017-07-01

    The minimum sample intake for which a reference material remains homogeneous is one of the parameters that must be estimated in the homogeneity assessment study of reference materials. In this work, Instrumental Neutron Activation Analysis was used to evaluate this quantity in a bovine kidney candidate reference material. The mass fractions of 9 inorganic constituents were determined in subsamples between 1 and 2 mg in order to estimate the relative homogeneity factor (HE) and the minimum sample mass to achieve 5% and 10% precision on a 95% confidence level. Results obtained for H{sub E} in all the analyzed elements were satisfactory. The estimated minimum sample intake was between 2 mg and 40 mg, depending on the element. (author)

  9. Homogenization of a Directed Dispersal Model for Animal Movement in a Heterogeneous Environment.

    Yurk, Brian P

    2016-10-01

    The dispersal patterns of animals moving through heterogeneous environments have important ecological and epidemiological consequences. In this work, we apply the method of homogenization to analyze an advection-diffusion (AD) model of directed movement in a one-dimensional environment in which the scale of the heterogeneity is small relative to the spatial scale of interest. We show that the large (slow) scale behavior is described by a constant-coefficient diffusion equation under certain assumptions about the fast-scale advection velocity, and we determine a formula for the slow-scale diffusion coefficient in terms of the fast-scale parameters. We extend the homogenization result to predict invasion speeds for an advection-diffusion-reaction (ADR) model with directed dispersal. For periodic environments, the homogenization approximation of the solution of the AD model compares favorably with numerical simulations. Invasion speed approximations for the ADR model also compare favorably with numerical simulations when the spatial period is sufficiently small.

  10. A Correlated Random Effects Model for Non-homogeneous Markov Processes with Nonignorable Missingness.

    Chen, Baojiang; Zhou, Xiao-Hua

    2013-05-01

    Life history data arising in clusters with prespecified assessment time points for patients often feature incomplete data since patients may choose to visit the clinic based on their needs. Markov process models provide a useful tool describing disease progression for life history data. The literature mainly focuses on time homogeneous process. In this paper we develop methods to deal with non-homogeneous Markov process with incomplete clustered life history data. A correlated random effects model is developed to deal with the nonignorable missingness, and a time transformation is employed to address the non-homogeneity in the transition model. Maximum likelihood estimate based on the Monte-Carlo EM algorithm is advocated for parameter estimation. Simulation studies demonstrate that the proposed method works well in many situations. We also apply this method to an Alzheimer's disease study.

  11. Economical preparation of extremely homogeneous nuclear accelerator targets

    Maier, H.J.

    1983-01-01

    Techniques for target preparation with a minimum consumption of isotopic material are described. The rotating substrate method, which generates extremely homogeneous targets, is discussed in some detail

  12. Structural changes in heat resisting high nickel alloys during homogenization

    Kleshchev, A.S.; Korneeva, N.N.; Yurina, O.M.; Guzej, L.S.

    1981-01-01

    Effect of homogenization on the structure and technological plasticity of the KhN73MBTYu and KhN62BMKTYu alloys during treatment with pressure is investigated taking into account peculiarities if the phase composition. It is shown that homogenization of the KhN73MBTYu and KhN62BMKTYu alloys increases the technological plasticity. Homogenization efficiency is conditioned by the change of the grain boundaries and carbide morphology as well as by homogeneous distribution of the large γ'-phase [ru

  13. Sewage sludge solubilization by high-pressure homogenization.

    Zhang, Yuxuan; Zhang, Panyue; Guo, Jianbin; Ma, Weifang; Fang, Wei; Ma, Boqiang; Xu, Xiangzhe

    2013-01-01

    The behavior of sludge solubilization using high-pressure homogenization (HPH) treatment was examined by investigating the sludge solid reduction and organics solubilization. The sludge volatile suspended solids (VSS) decreased from 10.58 to 6.67 g/L for the sludge sample with a total solids content (TS) of 1.49% after HPH treatment at a homogenization pressure of 80 MPa with four homogenization cycles; total suspended solids (TSS) correspondingly decreased from 14.26 to 9.91 g/L. About 86.15% of the TSS reduction was attributed to the VSS reduction. The increase of homogenization pressure from 20 to 80 MPa or homogenization cycle number from 1 to 4 was favorable to the sludge organics solubilization, and the protein and polysaccharide solubilization linearly increased with the soluble chemical oxygen demand (SCOD) solubilization. More proteins were solubilized than polysaccharides. The linear relationship between SCOD solubilization and VSS reduction had no significant change under different homogenization pressures, homogenization cycles and sludge solid contents. The SCOD of 1.65 g/L was solubilized for the VSS reduction of 1.00 g/L for the three experimental sludge samples with a TS of 1.00, 1.49 and 2.48% under all HPH operating conditions. The energy efficiency results showed that the HPH treatment at a homogenization pressure of 30 MPa with a single homogenization cycle for the sludge sample with a TS of 2.48% was the most energy efficient.

  14. A non-asymptotic homogenization theory for periodic electromagnetic structures.

    Tsukerman, Igor; Markel, Vadim A

    2014-08-08

    Homogenization of electromagnetic periodic composites is treated as a two-scale problem and solved by approximating the fields on both scales with eigenmodes that satisfy Maxwell's equations and boundary conditions as accurately as possible. Built into this homogenization methodology is an error indicator whose value characterizes the accuracy of homogenization. The proposed theory allows one to define not only bulk, but also position-dependent material parameters (e.g. in proximity to a physical boundary) and to quantify the trade-off between the accuracy of homogenization and its range of applicability to various illumination conditions.

  15. Mechanized syringe homogenization of human and animal tissues.

    Kurien, Biji T; Porter, Andrew C; Patel, Nisha C; Kurono, Sadamu; Matsumoto, Hiroyuki; Scofield, R Hal

    2004-06-01

    Tissue homogenization is a prerequisite to any fractionation schedule. A plethora of hands-on methods are available to homogenize tissues. Here we report a mechanized method for homogenizing animal and human tissues rapidly and easily. The Bio-Mixer 1200 (manufactured by Innovative Products, Inc., Oklahoma City, OK) utilizes the back-and-forth movement of two motor-driven disposable syringes, connected to each other through a three-way stopcock, to homogenize animal or human tissue. Using this method, we were able to homogenize human or mouse tissues (brain, liver, heart, and salivary glands) in 5 min. From sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis and a matrix-assisted laser desorption/ionization time-of-flight mass spectrometric enzyme assay for prolidase, we have found that the homogenates obtained were as good or even better than that obtained used a manual glass-on-Teflon (DuPont, Wilmington, DE) homogenization protocol (all-glass tube and Teflon pestle). Use of the Bio-Mixer 1200 to homogenize animal or human tissue precludes the need to stay in the cold room as is the case with the other hands-on homogenization methods available, in addition to freeing up time for other experiments.

  16. Cross section homogenization analysis for a simplified Candu reactor

    Pounders, Justin; Rahnema, Farzad; Mosher, Scott; Serghiuta, Dumitru; Turinsky, Paul; Sarsour, Hisham

    2008-01-01

    The effect of using zero current (infinite medium) boundary conditions to generate bundle homogenized cross sections for a stylized half-core Candu reactor problem is examined. Homogenized cross section from infinite medium lattice calculations are compared with cross sections homogenized using the exact flux from the reference core environment. The impact of these cross section differences is quantified by generating nodal diffusion theory solutions with both sets of cross sections. It is shown that the infinite medium spatial approximation is not negligible, and that ignoring the impact of the heterogeneous core environment on cross section homogenization leads to increased errors, particularly near control elements and the core periphery. (authors)

  17. Design of Stirrer Impeller with Variable Operational Speed for a Food Waste Homogenizer

    Idris A. Kayode

    2016-05-01

    Full Text Available A conceptualized impeller called KIA is designed for impact agitation of food waste in a homogenizer. A comparative analysis of the performance of KIA is made with three conventional impeller types, Rushton, Anchor, and Pitched Blade. Solid–liquid mixing of a moisture-rich food waste is simulated under various operational speeds, in order to compare the dispersions and thermal distributions at homogenous slurry conditions. Using SolidWorks, the design of the impellers employs an Application Programming Interface (API which acts as the canvas for creating a graphical user interface (GUI for automation of its assembly. A parametric analysis of the homogenizer, at varying operational speeds, enables the estimation of the critical speed of the mixing shaft diameter and the deflection under numerous mixing conditions and impeller configurations. The numerical simulation of the moisture-rich food waste (approximated as a Newtonian carrot–orange soup is performed with ANSYS CFX v.15.0. The velocity and temperature field distribution of the homogenizer for various impeller rotational speeds are analyzed. It is anticipated that the developed model will help in the selection of a suitable impeller for efficient mixing of food waste in the homogenizer.

  18. Homogenous reactor, elaborations, not released up to end

    Takibayev, Zh.S.

    2002-01-01

    Nowadays the nuclear power uses mainly water moderated reactors, where water or heavy water works as neutron inhibitor or coolant, and fuel solid state is situated in reactor core discretely as fuel element packed in fuel assembly. Such fuel composition in solid state reactors leads to rise in price of reactor itself and, of course, many other inconveniences. Firstly, burning out depth is limited; secondary, agents absorbed neutrons are accumulated in fission products, i. e. it leads to poisoning slag derive and thirdly, there are too many outside agents in reactor core in the form of fuel elements and different constructional materials. It worsens neutron balance of reactor. There are many other inconveniences. Specialists understand this problem. They are looking for escaping of difficulty proposing to begin a wide-ranging design, for example, of a new generation of homogeneous reactor especially with salt liquid, liquid metal fuel. But this problem nowadays can not be nearly decided. It is clear enough that within at least 50-100 years the existing monopoly will not change its attitude to use of new elaboration, for example, reactor with salt liquid fuel unless a sharp necessity of opening up not only 1-2 % of uranium in the case of reactors on thermal neutrons or nearby 10-20 % for fast reactors as nowadays but effective use of all potential of nuclear fission energy contained in natural uranium and thorium resources will be realized. In the report the scheme of nuclear reactor with liquid metal or salt liquid is shown. Such approach can be in future one of possible variants of problem solution in effective opening up of all uranium-plutonium energy resource of our planet. The scheme shows only possible allocations of the container and the pipeline. Their proportioning is one of main problems of future elaborations. A mutual allocation of the container and pipelines was carried out in such way, that demand to the last ones where less than to the container

  19. Pi overlapping ring systems contained in a homogeneous assay: a novel homogeneous assay for antigens

    Kidwell, David A.

    1993-05-01

    A novel immunoassay, Pi overlapping ring systems contained in a homogeneous assay (PORSCHA), is described. This assay relies upon the change in fluorescent spectral properties that pyrene and its derivatives show with varying concentration. Because antibodies and other biomolecules can bind two molecules simultaneously, they can change the local concentration of the molecules that they bind. This concentration change may be detected spectrally as a change in the fluorescence emission wavelength of an appropriately labeled biomolecule. Several tests of PORSCHA have been performed which demonstrate this principle. For example: with streptavidin as the binding biomolecule and a biotin labeled pyrene derivative, the production of the excimer emitting at 470 nm is observed. Without the streptavidin present, only the monomer emitting at 378 and 390 nm is observed. The ratio of monomer to excimer provides the concentration of unlabeled biotin in the sample. Approximately 1 ng/mL of biotin may be detected with this system using a 50 (mu) l sample (2 X 10-16 moles biotin). The principles behind PORSCHA, the results with the streptavidin/biotin system are discussed and extensions of the PORSCHA concept to antibodies as the binding partner and DNA in homogeneous assays are suggested.

  20. On integral representation, relaxation and homogenization for unbounded functionals

    Carbone, L.; De Arcangelis, R.

    1997-01-01

    A theory of integral representation, relaxation and homogenization for some types of variational functionals taking extended real values and possibly being not finite also on large classes of regular functions is presented. Some applications to gradient constrained relaxation and homogenization problems are given

  1. Non-linear waves in heterogeneous elastic rods via homogenization

    Quezada de Luna, Manuel

    2012-03-01

    We consider the propagation of a planar loop on a heterogeneous elastic rod with a periodic microstructure consisting of two alternating homogeneous regions with different material properties. The analysis is carried out using a second-order homogenization theory based on a multiple scale asymptotic expansion. © 2011 Elsevier Ltd. All rights reserved.

  2. Is it possible to homogenize resonant chiral metamaterials ?

    Andryieuski, Andrei; Menzel, Christoph; Rockstuhl, Carsten

    2010-01-01

    Homogenization of metamaterials is very important as it makes possible description in terms of effective parameters. In this contribution we consider the homogenization of chiral metamaterials. We show that for some metamaterials there is an optimal meta-atom size which depends on the coupling...

  3. Large-scale Homogenization of Bulk Materials in Mammoth Silos

    Schott, D.L.

    2004-01-01

    This doctoral thesis concerns the large-scale homogenization of bulk materials in mammoth silos. The objective of this research was to determine the best stacking and reclaiming method for homogenization in mammoth silos. For this purpose a simulation program was developed to estimate the

  4. Homogeneous Buchberger algorithms and Sullivant's computational commutative algebra challenge

    Lauritzen, Niels

    2005-01-01

    We give a variant of the homogeneous Buchberger algorithm for positively graded lattice ideals. Using this algorithm we solve the Sullivant computational commutative algebra challenge.......We give a variant of the homogeneous Buchberger algorithm for positively graded lattice ideals. Using this algorithm we solve the Sullivant computational commutative algebra challenge....

  5. Iterative and variational homogenization methods for filled elastomers

    Goudarzi, Taha

    bonded or bonded through finite size interphases) at finite concentrations. Three-dimensional finite element simulations are also carried out to gain further insight into the proposed theoretical solutions. Inter alia, we make use of these solutions to examine the effects of particle concentration, mono- and poly-dispersity of the filler particle size, and the presence of finite size interphases on the macroscopic response of filled elastomers. The solutions are found able to explain and describe experimental results that to date have been understood only in part. More generally, the solutions provide a robust tool to efficiently guide the design of filled elastomers with desired macroscopic properties. The homogenization techniques developed in this work are not limited to nonlinear elasticity, but can be readily utilized to study multi-functional properties as well. For demonstration purposes, we work out a novel exact solution for the macroscopic dielectric response of filled elastomers with interphasial space charges.

  6. RSA Asymmetric Cryptosystem beyond Homogeneous Transformation

    computation of public and private keys, and privacy, using Turbo C++ 4.5. Our work was able to address up to 32 bits. The objective of this paper is to develop an encryption scheme which is heterogeneous compared with the current RSA system that is ...

  7. Rough flows and homogenization in stochastic turbulence

    Bailleul, I.; Catellier, R.

    2016-01-01

    We provide in this work a tool-kit for the study of homogenisation of random ordinary differential equations, under the form of a friendly-user black box based on the tehcnology of rough flows. We illustrate the use of this setting on the example of stochastic turbulence.

  8. Verification of homogenization in fast critical assembly analyses

    Chiba, Go

    2006-01-01

    In the present paper, homogenization procedures for fast critical assembly analyses are investigated. Errors caused by homogenizations are evaluated by the exact perturbation theory. In order to obtain reference solutions, three-dimensional plate-wise transport calculations are performed. It is found that the angular neutron flux along plate boundaries has a significant peak in the fission source energy range. To treat this angular dependence accurately, the double-Gaussian Chebyshev angular quadrature set with S 24 is applied. It is shown that the difference between the heterogeneous leakage theory and the homogeneous theory is negligible, and that transport cross sections homogenized with neutron flux significantly underestimate neutron leakage. The error in criticality caused by a homogenization is estimated at about 0.1%Δk/kk' in a small fast critical assembly. In addition, the neutron leakage is overestimated by both leakage theories when sodium plates in fuel lattices are voided. (author)

  9. Cosmic homogeneity: a spectroscopic and model-independent measurement

    Gonçalves, R. S.; Carvalho, G. C.; Bengaly, C. A. P., Jr.; Carvalho, J. C.; Bernui, A.; Alcaniz, J. S.; Maartens, R.

    2018-03-01

    Cosmology relies on the Cosmological Principle, i.e. the hypothesis that the Universe is homogeneous and isotropic on large scales. This implies in particular that the counts of galaxies should approach a homogeneous scaling with volume at sufficiently large scales. Testing homogeneity is crucial to obtain a correct interpretation of the physical assumptions underlying the current cosmic acceleration and structure formation of the Universe. In this letter, we use the Baryon Oscillation Spectroscopic Survey to make the first spectroscopic and model-independent measurements of the angular homogeneity scale θh. Applying four statistical estimators, we show that the angular distribution of galaxies in the range 0.46 < z < 0.62 is consistent with homogeneity at large scales, and that θh varies with redshift, indicating a smoother Universe in the past. These results are in agreement with the foundations of the standard cosmological paradigm.

  10. Turbulent Diffusion in Non-Homogeneous Environments

    Diez, M.; Redondo, J. M.; Mahjoub, O. B.; Sekula, E.

    2012-04-01

    Many experimental studies have been devoted to the understanding of non-homogeneous turbulent dynamics. Activity in this area intensified when the basic Kolmogorov self-similar theory was extended to two-dimensional or quasi 2D turbulent flows such as those appearing in the environment, that seem to control mixing [1,2]. The statistical description and the dynamics of these geophysical flows depend strongly on the distribution of long lived organized (coherent) structures. These flows show a complex topology, but may be subdivided in terms of strongly elliptical domains (high vorticity regions), strong hyperbolic domains (deformation cells with high energy condensations) and the background turbulent field of moderate elliptic and hyperbolic characteristics. It is of fundamental importance to investigate the different influence of these topological diverse regions. Relevant geometrical information of different areas is also given by the maximum fractal dimension, which is related to the energy spectrum of the flow. Using all the available information it is possible to investigate the spatial variability of the horizontal eddy diffusivity K(x,y). This information would be very important when trying to model numerically the behaviour in time of the oil spills [3,4] There is a strong dependence of horizontal eddy diffusivities with the Wave Reynolds number as well as with the wind stress measured as the friction velocity from wind profiles measured at the coastline. Natural sea surface oily slicks of diverse origin (plankton, algae or natural emissions and seeps of oil) form complicated structures in the sea surface due to the effects of both multiscale turbulence and Langmuir circulation. It is then possible to use the topological and scaling analysis to discriminate the different physical sea surface processes. We can relate higher orden moments of the Lagrangian velocity to effective diffusivity in spite of the need to calibrate the different regions determining the

  11. Homogenization of complex flows in porous media and applications

    Hutridurga-Ramaiah, Harsha

    2013-01-01

    Our work is a contribution to the understanding of transport of solutes in a porous medium. It has applications in groundwater contaminant transport, CO 2 sequestration, underground storage of nuclear waste, oil reservoir simulations. We derive expressions for the effective Taylor dispersion taking into account convection, diffusion, heterogeneous geometry of the porous medium and reaction phenomena. Microscopic phenomena at the pore scale are up-scaled to obtain effective behaviour at the observation scale. Method of two-scale convergence with drift from the theory of homogenization is employed as an up-scaling technique. In the first part of our work, we consider reactions of mass exchange type, adsorption/desorption, at the fluid-solid interface of the porous medium. Starting with coupled convection-diffusion equations for bulk and surface concentrations of a single solute, coupled via adsorption isotherms, at a microscopic scale we derive effective equations at the macroscopic scale. We consider the microscopic system with highly oscillating coefficients in a strong convection regime i.e., large Peclet regime. The presence of strong convection in the microscopic model leads to the induction of a large drift in the concentration profiles. Both linear and nonlinear adsorption isotherms are considered and the results are compared. In the second part of our work we generalize our results on single component flow to multicomponent flow in a linear setting. In the latter case, the effective parameters are obtained using Factorization principle and two-scale convergence with drift. The behaviour of effective parameters with respect to Peclet number and Damkohler number are numerically studied. Freefem++ is used to perform numerical tests in two dimensions. (author)

  12. Homogeneous samples of Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}}

    Hoogenboom, B.W.; Kadowaki, K.; Revaz, B.; Fischer, O

    2003-09-15

    Recently, much attention has been paid to inhomogeneity in samples of the high-temperature superconductor Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}}. In this work it is shown that homogeneous samples can indeed be obtained in the slightly overdoped range. However, the homogeneity critically depends on sample preparation.

  13. Parallel computing for homogeneous diffusion and transport equations in neutronics

    Pinchedez, K.

    1999-06-01

    Parallel computing meets the ever-increasing requirements for neutronic computer code speed and accuracy. In this work, two different approaches have been considered. We first parallelized the sequential algorithm used by the neutronics code CRONOS developed at the French Atomic Energy Commission. The algorithm computes the dominant eigenvalue associated with PN simplified transport equations by a mixed finite element method. Several parallel algorithms have been developed on distributed memory machines. The performances of the parallel algorithms have been studied experimentally by implementation on a T3D Cray and theoretically by complexity models. A comparison of various parallel algorithms has confirmed the chosen implementations. We next applied a domain sub-division technique to the two-group diffusion Eigen problem. In the modal synthesis-based method, the global spectrum is determined from the partial spectra associated with sub-domains. Then the Eigen problem is expanded on a family composed, on the one hand, from eigenfunctions associated with the sub-domains and, on the other hand, from functions corresponding to the contribution from the interface between the sub-domains. For a 2-D homogeneous core, this modal method has been validated and its accuracy has been measured. (author)

  14. Modeling environmental noise exceedances using non-homogeneous Poisson processes.

    Guarnaccia, Claudio; Quartieri, Joseph; Barrios, Juan M; Rodrigues, Eliane R

    2014-10-01

    In this work a non-homogeneous Poisson model is considered to study noise exposure. The Poisson process, counting the number of times that a sound level surpasses a threshold, is used to estimate the probability that a population is exposed to high levels of noise a certain number of times in a given time interval. The rate function of the Poisson process is assumed to be of a Weibull type. The presented model is applied to community noise data from Messina, Sicily (Italy). Four sets of data are used to estimate the parameters involved in the model. After the estimation and tuning are made, a way of estimating the probability that an environmental noise threshold is exceeded a certain number of times in a given time interval is presented. This estimation can be very useful in the study of noise exposure of a population and also to predict, given the current behavior of the data, the probability of occurrence of high levels of noise in the near future. One of the most important features of the model is that it implicitly takes into account different noise sources, which need to be treated separately when using usual models.

  15. Construction of a homogeneous phantom for radiographic image standardization

    Pina, Diana Rodrigues de

    1996-01-01

    The principle of radiodiagnosis consists in the fact the X-ray beam is attenuated at different degrees by distinct tissues. For this reason, the anatomical structures have distinct radiological opacities, that produce the radiographic image. The progresses in radiology are related to the development if new radiographic image formation systems that enable an amplification in the quality, with low dose and/or risk to the patient. The objective of this work is the sensitometric valuation of a screen-film combination, that is still the most used, for the standardization, of radiographic images. Thinking about this, were constructed homogeneous phantoms of the chest, skull and pelvis, for the calibration of X-ray beams, with the purpose of obtaining radiographic images of good quality, basing in the routine of a radiodiagnosis service and in the scientific knowledge. Questions were approached about the choice of the suitable equipment, that allow the obtention of k Vp and m As combinations, to produce radiographic images of good quality, and the reproduction of these combinations to any conventional equipment of diagnostic X-rays. Also presented are the comparison of the doses imparted by these combinations and those used in routine of the Hospital das Clinicas da Faculdade de Medicina de Ribeirao Preto's radiodiagnosis service. (author)

  16. A novel grain cluster-based homogenization scheme

    Tjahjanto, D D; Eisenlohr, P; Roters, F

    2010-01-01

    An efficient homogenization scheme, termed the relaxed grain cluster (RGC), for elasto-plastic deformations of polycrystals is presented. The scheme is based on a generalization of the grain cluster concept. A volume element consisting of eight (= 2 × 2 × 2) hexahedral grains is considered. The kinematics of the RGC scheme is formulated within a finite deformation framework, where the relaxation of the local deformation gradient of each individual grain is connected to the overall deformation gradient by the, so-called, interface relaxation vectors. The set of relaxation vectors is determined by the minimization of the constitutive energy (or work) density of the overall cluster. An additional energy density associated with the mismatch at the grain boundaries due to relaxations is incorporated as a penalty term into the energy minimization formulation. Effectively, this penalty term represents the kinematical condition of deformation compatibility at the grain boundaries. Simulations have been performed for a dual-phase grain cluster loaded in uniaxial tension. The results of the simulations are presented and discussed in terms of the effective stress–strain response and the overall deformation anisotropy as functions of the penalty energy parameters. In addition, the prediction of the RGC scheme is compared with predictions using other averaging schemes, as well as to the result of direct finite element (FE) simulation. The comparison indicates that the present RGC scheme is able to approximate FE simulation results of relatively fine discretization at about three orders of magnitude lower computational cost

  17. Pattern and process of biotic homogenization in the New Pangaea.

    Baiser, Benjamin; Olden, Julian D; Record, Sydne; Lockwood, Julie L; McKinney, Michael L

    2012-12-07

    Human activities have reorganized the earth's biota resulting in spatially disparate locales becoming more or less similar in species composition over time through the processes of biotic homogenization and biotic differentiation, respectively. Despite mounting evidence suggesting that this process may be widespread in both aquatic and terrestrial systems, past studies have predominantly focused on single taxonomic groups at a single spatial scale. Furthermore, change in pairwise similarity is itself dependent on two distinct processes, spatial turnover in species composition and changes in gradients of species richness. Most past research has failed to disentangle the effect of these two mechanisms on homogenization patterns. Here, we use recent statistical advances and collate a global database of homogenization studies (20 studies, 50 datasets) to provide the first global investigation of the homogenization process across major faunal and floral groups and elucidate the relative role of changes in species richness and turnover. We found evidence of homogenization (change in similarity ranging from -0.02 to 0.09) across nearly all taxonomic groups, spatial extent and grain sizes. Partitioning of change in pairwise similarity shows that overall change in community similarity is driven by changes in species richness. Our results show that biotic homogenization is truly a global phenomenon and put into question many of the ecological mechanisms invoked in previous studies to explain patterns of homogenization.

  18. Peripheral nerve magnetic stimulation: influence of tissue non-homogeneity

    Papazov Sava P

    2003-12-01

    Full Text Available Abstract Background Peripheral nerves are situated in a highly non-homogeneous environment, including muscles, bones, blood vessels, etc. Time-varying magnetic field stimulation of the median and ulnar nerves in the carpal region is studied, with special consideration of the influence of non-homogeneities. Methods A detailed three-dimensional finite element model (FEM of the anatomy of the wrist region was built to assess the induced currents distribution by external magnetic stimulation. The electromagnetic field distribution in the non-homogeneous domain was defined as an internal Dirichlet problem using the finite element method. The boundary conditions were obtained by analysis of the vector potential field excited by external current-driven coils. Results The results include evaluation and graphical representation of the induced current field distribution at various stimulation coil positions. Comparative study for the real non-homogeneous structure with anisotropic conductivities of the tissues and a mock homogeneous media is also presented. The possibility of achieving selective stimulation of either of the two nerves is assessed. Conclusion The model developed could be useful in theoretical prediction of the current distribution in the nerves during diagnostic stimulation and therapeutic procedures involving electromagnetic excitation. The errors in applying homogeneous domain modeling rather than real non-homogeneous biological structures are demonstrated. The practical implications of the applied approach are valid for any arbitrary weakly conductive medium.

  19. At-tank Low-Activity Feed Homogeneity Analysis Verification

    DOUGLAS, J.G.

    2000-01-01

    This report evaluates the merit of selecting sodium, aluminum, and cesium-137 as analytes to indicate homogeneity of soluble species in low-activity waste (LAW) feed and recommends possible analytes and physical properties that could serve as rapid screening indicators for LAW feed homogeneity. The three analytes are adequate as screening indicators of soluble species homogeneity for tank waste when a mixing pump is used to thoroughly mix the waste in the waste feed staging tank and when all dissolved species are present at concentrations well below their solubility limits. If either of these conditions is violated, then the three indicators may not be sufficiently chemically representative of other waste constituents to reliably indicate homogeneity in the feed supernatant. Additional homogeneity indicators that should be considered are anions such as fluoride, sulfate, and phosphate, total organic carbon/total inorganic carbon, and total alpha to estimate the transuranic species. Physical property measurements such as gamma profiling, conductivity, specific gravity, and total suspended solids are recommended as possible at-tank methods for indicating homogeneity. Indicators of LAW feed homogeneity are needed to reduce the U.S. Department of Energy, Office of River Protection (ORP) Program's contractual risk by assuring that the waste feed is within the contractual composition and can be supplied to the waste treatment plant within the schedule requirements

  20. Hierarchy compensation of non-homogeneous intermittent atmospheric turbulence

    Redondo, Jose M.; Mahjoub, Otman B.; Cantalapiedra, Inma R.

    2010-05-01

    In this work a study both the internal turbulence energy cascade intermittency evaluated from wind speed series in the atmospheric boundary layer, as well as the role of external or forcing intermittency based on the flatness (Vindel et al 2008)is carried out. The degree of intermittency in the stratified ABL flow (Cuxart et al. 2000) can be studied as the deviation, from the linear form, of the absolute scaling exponents of the structure functions as well as generalizing for non-isotropic and non-homogeneous turbulence, even in non-inertial ranges (in the Kolmogorov-Kraichnan sense) where the scaling exponents are not constant. The degree of intermittency, evaluated in the non-local quasi-inertial range, is explained from the variation with scale of the energy transfer as well as the dissipation. The scale to scale transfer and the structure function scaling exponents are calculated and from these the intermittency parametres. The turbulent diffusivity could also be estimated and compared with Richardson's law. Some two point correlations and time lag calculations are used to investigate the time and spatial integral length scales obtained from both Lagrangian and Eulerian correlations and functions, and we compare these results with both theoretical and laboratory data. We develop a theoretical description of how to measure the different levels of intermittency following (Mahjoub et al. 1998, 2000) and the role of locality in higher order exponents of structure function analysis. Vindel J.M., Yague C. and Redondo J.M. (2008) Structure function analysis and intermittency in the ABL. Nonlin. Processes Geophys., 15, 915-929. Cuxart J, Yague C, Morales G, Terradellas E, Orbe J, Calvo J, Fernández A, Soler M R, Infante C, Buenestado P, Espinalt A, Joergensen H E, Rees J M, Vilá J, Redondo J M, Cantalapiedra R and Conangla L (2000): Stable atmospheric boundary-layer experiment in Spain (Sables 98): a report, Boundary-Layer Meteorology 96, 337-370 Mahjoub O

  1. An iterative homogenization technique that preserves assembly core exchanges

    Mondot, Ph.; Sanchez, R.

    2003-01-01

    A new interactive homogenization procedure for reactor core calculations is proposed that requires iterative transport assembly and diffusion core calculations. At each iteration the transport solution of every assembly type is used to produce homogenized cross sections for the core calculation. The converged solution gives assembly fine multigroup transport fluxes that preserve macro-group assembly exchanges in the core. This homogenization avoids the periodic lattice-leakage model approximation and gives detailed assembly transport fluxes without need of an approximated flux reconstruction. Preliminary results are given for a one-dimensional core model. (authors)

  2. Hydrogen storage materials and method of making by dry homogenation

    Jensen, Craig M.; Zidan, Ragaiy A.

    2002-01-01

    Dry homogenized metal hydrides, in particular aluminum hydride compounds, as a material for reversible hydrogen storage is provided. The reversible hydrogen storage material comprises a dry homogenized material having transition metal catalytic sites on a metal aluminum hydride compound, or mixtures of metal aluminum hydride compounds. A method of making such reversible hydrogen storage materials by dry doping is also provided and comprises the steps of dry homogenizing metal hydrides by mechanical mixing, such as be crushing or ball milling a powder, of a metal aluminum hydride with a transition metal catalyst. In another aspect of the invention, a method of powering a vehicle apparatus with the reversible hydrogen storage material is provided.

  3. Homogenization and structural topology optimization theory, practice and software

    Hassani, Behrooz

    1999-01-01

    Structural topology optimization is a fast growing field that is finding numerous applications in automotive, aerospace and mechanical design processes. Homogenization is a mathematical theory with applications in several engineering problems that are governed by partial differential equations with rapidly oscillating coefficients Homogenization and Structural Topology Optimization brings the two concepts together and successfully bridges the previously overlooked gap between the mathematical theory and the practical implementation of the homogenization method. The book is presented in a unique self-teaching style that includes numerous illustrative examples, figures and detailed explanations of concepts. The text is divided into three parts which maintains the book's reader-friendly appeal.

  4. Effects of homogenization on microstructures and properties of a new type Al-Mg-Mn-Zr-Ti-Er alloy

    He, L.Z.; Li, X.H.; Liu, X.T.; Wang, X.J.; Zhang, H.T.; Cui, J.Z.

    2010-01-01

    Research highlights: These new type alloys are very potential for increased use in aerospace and automobile industries. However, most of published reports have focused on the effects of Cu, Sc, Zr, Ag, rare metals and Si additions, Portevin-LeChatelier effect, corrosion properties, friction stir welding and superplasticity in 5000-series aluminum alloy, few investigated on Er and stepped homogenization on the precipitation of dispersoids in Al-Mg-Mn alloy. The purpose of this work was to study the effects of Er and homogenization treatment on mechanical properties and microstructural evolution in new type Al-Mg-Mn-Er alloy. - Abstract: Microstructural evolutions and mechanical properties of Al-Mg-Mn-Zr-Ti-Er alloy after homogenization were investigated in detail by optical microscope (OM), scanning electronic microscope (SEM), transmission electronic microscope (TEM), energy dispersive spectrum (EDS) and tensile test. A maximum tensile strength is obtained when the alloy homogenized at 510 deg. C for 16 h. With increasing preheating temperature (200-400 deg. C), the strength of the alloy finial homogenized at 490 deg. C for 16 h increases. When the preheating temperature is ≥300 deg. C, the strengths of the two-step homogenized alloys are higher than those of the single homogenized alloys. The preheating stage plays an important role in the microstructures and properties of the final homogenized alloy. Many fine (Mn,Fe)Al 6 precipitates when the preheating temperature is 400 deg. C. ErAl 3 phase cannot be observed during preheating stage. Plenty of fine (Mn,Fe)Al 6 and ErAl 3 precipitate in finial homogenized alloy when the preheating temperature is ≥300 deg. C. The Al-Mg-Mn-Zr-Ti-Er alloy is effectively strengthened by substructure and dispersoids of (Mn,Fe)Al 6 and ErAl 3 .

  5. The Raychaudhuri equation in homogeneous cosmologies

    Albareti, F.D.; Cembranos, J.A.R.; Cruz-Dombriz, A. de la; Dobado, A.

    2014-01-01

    In this work we address the issue of studying the conditions required to guarantee the Focusing Theorem for both null and timelike geodesic congruences by using the Raychaudhuri equation. In particular we study the case of Friedmann-Robertson-Walker as well as more general Bianchi Type I spacetimes. The fulfillment of the Focusing Theorem is mandatory in small scales since it accounts for the attractive character of gravity. However, the Focusing Theorem is not satisfied at cosmological scales due to the measured negative deceleration parameter. The study of the conditions needed for congruences convergence is not only relevant at the fundamental level but also to derive the viability conditions to be imposed on extended theories of gravity describing the different expansion regimes of the universe. We illustrate this idea for f(R) gravity theories

  6. H-Metric: Characterizing Image Datasets via Homogenization Based on KNN-Queries

    Welington M da Silva

    2012-01-01

    Full Text Available Precision-Recall is one of the main metrics for evaluating content-based image retrieval techniques. However, it does not provide an ample perception of the properties of an image dataset immersed in a metric space. In this work, we describe an alternative metric named H-Metric, which is determined along a sequence of controlled modifications in the image dataset. The process is named homogenization and works by altering the homogeneity characteristics of the classes of the images. The result is a process that measures how hard it is to deal with a set of images in respect to content-based retrieval, offering support in the task of analyzing configurations of distance functions and of features extractors.

  7. Cheese milk low homogenization enhanced early lipolysis and volatiles compounds production in hard cooked cheeses.

    Vélez, María A; Hynes, Erica R; Meinardi, Carlos A; Wolf, Verónica I; Perotti, María C

    2017-06-01

    Homogenization applied to cheese milk has shown to increase lipolysis but its use is not spread as it can induce detrimental effects. The aim of this work was to assess the effect of low-pressure homogenization of the cream followed by pre-incubation of cheese milk on the composition, ripening index, lipolysis and volatile profiles of hard cooked cheeses. For that, control and experimental miniature Reggianito cheeses were made and analyzed during ripening (3, 45 and 90days). Homogenization had no impact on composition and proteolysis. An acceleration of the lipolysis reaction was clearly noticed in cheeses made with homogenized milk at the beginning of ripening, while both type of cheeses reached similar levels at 90days. We found the level of several compounds derived from fatty acid catabolism were noticeably influenced by the treatment applied: straight-chain aldehydes such as hexanal, heptanal and nonanal and methylketones from C 5 to C 9 were preferentially formed in experimental cheeses. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Evaluation of homogeneity and dose conformity in IMRT planning in prostate radiotherapy

    Lopes, Juliane S.; Leidens, Matheus; Estacio, Daniela R.; Razera, Ricardo A.Z.; Streck, Elaine E.; Silva, Ana M.M. da

    2015-01-01

    The goal of this study was to evaluate the dose distribution homogeneity and conformity of radiation therapy plans of prostate cancer using IMRT. Data from 34 treatment plans of Hospital Sao Lucas of PUCRS, where those plans were executed, were retrospectively analyzed. All of them were done with 6MV X-rays from a linear accelerator CLINAC IX, and the prescription doses varied between 60 and 74 Gy. Analyses showing the homogeneity and conformity indices for the dose distribution of those plans were made. During these analyses, some comparisons with the traditional radiation therapy planning technic, the 3D-CRT, were discussed. The results showed that there is no correlation between the prescribed dose and the homogeneity and conformity indices, indicating that IMRT works very well even for higher doses. Furthermore, a comparison between the results obtained and the recommendations of ICRU 83 was carried out. It has also been observed that the indices were really close to the ideal values. 82.4% of the cases showed a difference below 5% of the ideal value for the index of conformity, and 88.2% showed a difference below 10% for the homogeneity index. Concluding, it is possible to confirm the quality of the analyzed radiation therapy plans of prostate cancer using IMRT. (author)

  9. Improved Field Homogeneity for Transmission Line MRI Coils Using Series Capacitors

    Zhurbenko, Vitaliy; Dong, Yunfeng

    2015-01-01

    High field magnetic resonance imaging (MRI) systems often use short sections of transmission lines for generating and sensing alternating magnetic fields. Due to distributed nature of transmission lines, the generated field is inhomogeneous. This work investigates the application of series capaci...... capacitors to improve the field homogeneity. The resulting magnetic field distribution is estimated analytically and evaluated numerically. The results are compared to a case of a conventional transmission line coil realization....

  10. Time travel in the homogeneous Som-Raychaudhuri Universe

    Paiva, F.M.; Reboucas, M.J.; Teixeira, A.F.F.

    1987-01-01

    Properties of the rotating Som-Raychaudhuri homogeneous space-time are investigated: time-like and null geodesics, causality features, horizons and invariant characterization. An integral representation of its five isometries is also discussed. (author) [pt

  11. [Methods for enzymatic determination of triglycerides in liver homogenates].

    Höhn, H; Gartzke, J; Burck, D

    1987-10-01

    An enzymatic method is described for the determination of triacylglycerols in liver homogenate. In contrast to usual methods, higher reliability and selectivity are achieved by omitting the extraction step.

  12. A convenient procedure for magnetic field homogeneity evaluation

    Teles, J; Garrido, C E; Tannus, A

    2004-01-01

    In many areas of research that utilize magnetic fields in their studies, it is important to obtain fields with a spatial distribution as homogeneous as possible. A procedure usually utilized to evaluate and to optimize field homogeneity is the expansion of the measured field in spherical harmonic components. In addition to the methods proposed in the literature, we present a more convenient procedure for evaluation of field homogeneity inside a spherical volume. The procedure uses the orthogonality property of the spherical harmonics to find the field variance. It is shown that the total field variance is equal to the sum of the individual variances of each field component in the spherical harmonic expansion. Besides the advantages of the linear behaviour of the individual variances, there is the fact that the field variance and standard deviation are the best parameters to achieve global homogeneity field information

  13. Tests for homogeneity for multiple 2 x 2 contingency tables

    Carr, D.B.

    1986-01-01

    Frequently data are described by 2 x 2 contingency tables. For example, each 2 x 2 table arises from two dichotomous classifications such as control/treated and respond/did not respond. Multiple 2 x 2 tables result from stratifying the observational units on the basis of other characteristics. For example, stratifying by sex produces separate 2 x 2 tables for males and females. From each table a measure of difference between the response rates for the control and the treated groups is computed. The researcher usually wants to know if the response-rate difference is zero for each table. If the tables are homogeneous, the researcher can generalize from a statement concerning an average to a statement concerning each table. If tables are not homogeneous, homogeneous subsets of the tables should be described separately. This paper presents tests for homogeneity and illustrates their use. 11 refs., 6 tabs

  14. Engineered CHO cells for production of diverse, homogeneous glycoproteins

    Yang, Zhang; Wang, Shengjun; Halim, Adnan

    2015-01-01

    Production of glycoprotein therapeutics in Chinese hamster ovary (CHO) cells is limited by the cells' generic capacity for N-glycosylation, and production of glycoproteins with desirable homogeneous glycoforms remains a challenge. We conducted a comprehensive knockout screen of glycosyltransferas...

  15. Jordan's algebra of a facially homogeneous autopolar cone

    Bellissard, Jean; Iochum, Bruno

    1979-01-01

    It is shown that a Jordan-Banach algebra with predual may be canonically associated with a facially homogeneous autopolar cone. This construction generalizes the case where a trace vector exists in the cone [fr

  16. Homogeneous Nanodiamonds Are Different in Reality

    Wu, Chi-Chin; Gottfried, Jennifer; Pesce-Rodriguez, Rose; Advanced Energetic Materials Team

    Commercial detonation nanodiamonds (ND) have been investigated for many applications. They consist of carbon nanoparticles with diamond cores surrounded by onion-like graphitic shells. Unfortunately, variations in the purity and carbon structure between commercial ND samples due to variations in synthesis and purification conditions is an ongoing issue, since these differences can affect the resulting application-dependent ND behavior. Via characterization with transmission electron microscopy, this work investigates the structural and chemical differences among nominally homologous commercial detonation ND sold by a single vendor under the same item number. Significant discrepancies in the carbon structure and crystallinity between different batches with similar sizes and shapes were identified. The ND containing more non-carbon entities as impurities and oxygen-containing surface functional groups were found to possess thicker graphitic shells surrounding an unstable diamond core which quickly transforms to graphite under electron beam irradiation. However, the structure of ND with higher purities and thin onion shells remain unchanged over extended exposure to electron beams. This study demonstrates the structural and chemical differences between nominally identical commercial detonation ND samples and reveals their influence on the decomposition behavior of the particles.

  17. Reactions homogenes en phase gazeuse dans les lits fluidises

    Laviolette, Jean-Philippe

    This thesis presents a study on homogeneous gas-phase reactions in fluidized beds. The main objective is to develop new tools to model and characterize homogeneous gas-phase reactions in this type of reactor. In the first part of this work, the non-premixed combustion of C 1 to C4 n-alkanes with air was investigated inside a bubbling fluidized bed of inert sand particles at intermediate temperatures: 923 K ≤ TB ≤ 1123 K. For ethane, propane and n-butane, combustion occurred mainly in the freeboard region at bed temperatures below T1 = 923 K. On the other hand, complete conversion occurred within 0.2 m of the injector at: T2 = 1073 K. For methane, the measured values of T1 and T2 were significantly higher at 1023 K and above 1123 K, respectively. The fluidized bed combustion was accurately modeled with first-order global kinetics and two one-phase PFR models in series: one PFR to model the region close to the injector and another to represent the main fluidized bed body. The measured global reaction rates for C2 to C4 n-alkanes were characterized by a uniform Arrhenius expression, while the global reaction rate for methane was significantly slower. Reactions in the injector region either led to significant conversion in that zone or an autoignition delay inside the main fluidized bed body. The conversion in the injector region increased with rising fluidized bed temperature and decreased with increasing jet velocity. To account for the promoting and inhibiting effects, an analogy was made with the concept of induction time: the PFR length (bi) of the injector region was correlated to the fluidized bed temperature and jet velocity using an Arrhenius expression. In the second part of this work, propane combustion experiments were conducted in the freeboard of a fluidized bed of sand particles at temperatures between 818 K and 923 K and at superficial gas velocity twice the minimum fluidization velocity. The freeboard region was characterized by simultaneous

  18. Notes on a homogeneous reactor project; Idees sur un projet de reacteur homogene

    Benveniste, J; Bernot, J; Eidelman, D; Grenon, M; Portes, L; Raspaud, G; Tachon, J; Vendryes, G [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires; Berthod, L; Cohen de Lara, G; Delachanal, M; Fontanet, P; Halbronn, G [Societe Grenobloise d' Etudes et d' Applications Hydrauliques, 38 (France)

    1958-07-01

    An attempt has been made to develop certain ideas concerning homogeneous reactors. The project under consideration is based on the simultaneous use of a suspension of uranium dispersed in heavy or light water and of boiling in the reactor for heat extraction. However, the studies of suspensions and of boiling are relatively independent and can also be developed for reactors of different types using one or the other. Our aim is a minimum investment in fissile material; for this we propose to extract the steam directly from the core and to make use of a cyclone to accelerate this extraction; a cyclone-type circulation creating a field of increasing tangential velocities of the fluid towards the axis causes the droplets of vapour to accelerate towards the axial vortex in which they are collected; the steam output is then evacuated to the external heat utilisation system, for example an exchanger of the condenser-boiler type. The input speed of water into the reactor being one of the important parameters in the running of the pile, a spiral supply input chamber is used, allowing this speed to be regulated in amount and direction. (author)Fren. [French] Nous nous sommes attaches a developper certaines idees relatives aux piles homogenes. Le projet que nous etudions est base sur l'emploi simultane d'une suspension contenant de l'uranium disperse dans l'eau legere ou lourde et de l'ebullition dans le reacteur pour l'extraction de chaleur. Neanmoins, les etudes de suspensions et d'ebullition sont relativement independantes et peuvent egalement etre developpees pour des reacteurs de type different utilisant l'une ou l'autre. Le but que nous cherchons a atteindre est un investissement minimum en matiere fissile; pour cela, nous proposons d'extraire directement la vapeur dans le coeur et de recourir a un dispositif cyclone pour accelerer cette extraction; une circulation type cyclone creant un champ de vitesses tangentielles du fluide croissantes veraxe a pour effet d

  19. The Perron-Frobenius theorem for multi-homogeneous mappings

    Gautier, Antoine; Tudisco, Francesco; Hein, Matthias

    2018-01-01

    The Perron-Frobenius theory for nonnegative matrices has been generalized to order-preserving homogeneous mappings on a cone and more recently to nonnegative multilinear forms. We unify both approaches by introducing the concept of order-preserving multi-homogeneous mappings, their associated nonlinear spectral problems and spectral radii. We show several Perron-Frobenius type results for these mappings addressing existence, uniqueness and maximality of nonnegative and positive eigenpairs. We...

  20. Homogeneity in Luxury Fashion Consumption: an Exploration of Arab Women

    Marciniak, R.; Gad Mohsen, Marwa

    2014-01-01

    Consumer perceptions and consumer motivations are complex and whilst it is acknowledged within literature\\ud that heterogeneity exists, homogenous models dominate consumer behaviour research. The primary purpose of this\\ud paper is to explore the extent to which Arab women are a homogeneous group of consumers in regard to perceptions\\ud and motivations to consume luxury fashion goods. In particular, the paper seeks to present a critical review of luxury consumption frameworks. As part of the ...

  1. Matrix-dependent multigrid-homogenization for diffusion problems

    Knapek, S. [Institut fuer Informatik tu Muenchen (Germany)

    1996-12-31

    We present a method to approximately determine the effective diffusion coefficient on the coarse scale level of problems with strongly varying or discontinuous diffusion coefficients. It is based on techniques used also in multigrid, like Dendy`s matrix-dependent prolongations and the construction of coarse grid operators by means of the Galerkin approximation. In numerical experiments, we compare our multigrid-homogenization method with homogenization, renormalization and averaging approaches.

  2. Spray structure as generated under homogeneous flash boiling nucleation regime

    Levy, M.; Levy, Y.; Sher, E.

    2014-01-01

    We show the effect of the initial pressure and temperature on the spatial distribution of droplets size and their velocity profile inside a spray cloud that is generated by a flash boiling mechanism under homogeneous nucleation regime. We used TSI's Phase Doppler Particle Analyzer (PDPA) to characterize the spray. We conclude that the homogeneous nucleation process is strongly affected by the initial liquid temperature while the initial pressure has only a minor effect. The spray shape is not affected by temperature or pressure under homogeneous nucleation regime. We noted that the only visible effect is in the spray opacity. Finally, homogeneous nucleation may be easily achieved by using a simple atomizer construction, and thus is potentially suitable for fuel injection systems in combustors and engines. - Highlights: • We study the characteristics of a spray that is generated by a flash boiling process. • In this study, the flash boiling process occurs under homogeneous nucleation regime. • We used Phase Doppler Particle Analyzer (PDPA) to characterize the spray. • The SMD has been found to be strongly affected by the initial liquid temperature. • Homogeneous nucleation may be easily achieved by using a simple atomizer unit

  3. Applications of a systematic homogenization theory for nodal diffusion methods

    Zhang, Hong-bin; Dorning, J.J.

    1992-01-01

    The authors recently have developed a self-consistent and systematic lattice cell and fuel bundle homogenization theory based on a multiple spatial scales asymptotic expansion of the transport equation in the ratio of the mean free path to the reactor characteristics dimension for use with nodal diffusion methods. The mathematical development leads naturally to self-consistent analytical expressions for homogenized diffusion coefficients and cross sections and flux discontinuity factors to be used in nodal diffusion calculations. The expressions for the homogenized nuclear parameters that follow from the systematic homogenization theory (SHT) are different from those for the traditional flux and volume-weighted (FVW) parameters. The calculations summarized here show that the systematic homogenization theory developed recently for nodal diffusion methods yields accurate values for k eff and assembly powers even when compared with the results of a fine mesh transport calculation. Thus, it provides a practical alternative to equivalence theory and GET (Ref. 3) and to simplified equivalence theory, which requires auxiliary fine-mesh calculations for assemblies embedded in a typical environment to determine the discontinuity factors and the equivalent diffusion coefficient for a homogenized assembly

  4. Homogenization patterns of the world’s freshwater fish faunas

    Villéger, Sébastien; Blanchet, Simon; Beauchard, Olivier; Oberdorff, Thierry; Brosse, Sébastien

    2011-01-01

    The world is currently undergoing an unprecedented decline in biodiversity, which is mainly attributable to human activities. For instance, nonnative species introduction, combined with the extirpation of native species, affects biodiversity patterns, notably by increasing the similarity among species assemblages. This biodiversity change, called taxonomic homogenization, has rarely been assessed at the world scale. Here, we fill this gap by assessing the current homogenization status of one of the most diverse vertebrate groups (i.e., freshwater fishes) at global and regional scales. We demonstrate that current homogenization of the freshwater fish faunas is still low at the world scale (0.5%) but reaches substantial levels (up to 10%) in some highly invaded river basins from the Nearctic and Palearctic realms. In these realms experiencing high changes, nonnative species introductions rather than native species extirpations drive taxonomic homogenization. Our results suggest that the “Homogocene era” is not yet the case for freshwater fish fauna at the worldwide scale. However, the distressingly high level of homogenization noted for some biogeographical realms stresses the need for further understanding of the ecological consequences of homogenization processes. PMID:22025692

  5. Homogenization patterns of the world's freshwater fish faunas.

    Villéger, Sébastien; Blanchet, Simon; Beauchard, Olivier; Oberdorff, Thierry; Brosse, Sébastien

    2011-11-01

    The world is currently undergoing an unprecedented decline in biodiversity, which is mainly attributable to human activities. For instance, nonnative species introduction, combined with the extirpation of native species, affects biodiversity patterns, notably by increasing the similarity among species assemblages. This biodiversity change, called taxonomic homogenization, has rarely been assessed at the world scale. Here, we fill this gap by assessing the current homogenization status of one of the most diverse vertebrate groups (i.e., freshwater fishes) at global and regional scales. We demonstrate that current homogenization of the freshwater fish faunas is still low at the world scale (0.5%) but reaches substantial levels (up to 10%) in some highly invaded river basins from the Nearctic and Palearctic realms. In these realms experiencing high changes, nonnative species introductions rather than native species extirpations drive taxonomic homogenization. Our results suggest that the "Homogocene era" is not yet the case for freshwater fish fauna at the worldwide scale. However, the distressingly high level of homogenization noted for some biogeographical realms stresses the need for further understanding of the ecological consequences of homogenization processes.

  6. Homogenization models for thin rigid structured surfaces and films.

    Marigo, Jean-Jacques; Maurel, Agnès

    2016-07-01

    A homogenization method for thin microstructured surfaces and films is presented. In both cases, sound hard materials are considered, associated with Neumann boundary conditions and the wave equation in the time domain is examined. For a structured surface, a boundary condition is obtained on an equivalent flat wall, which links the acoustic velocity to its normal and tangential derivatives (of the Myers type). For a structured film, jump conditions are obtained for the acoustic pressure and the normal velocity across an equivalent interface (of the Ventcels type). This interface homogenization is based on a matched asymptotic expansion technique, and differs slightly from the classical homogenization, which is known to fail for small structuration thicknesses. In order to get insight into what causes this failure, a two-step homogenization is proposed, mixing classical homogenization and matched asymptotic expansion. Results of the two homogenizations are analyzed in light of the associated elementary problems, which correspond to problems of fluid mechanics, namely, potential flows around rigid obstacles.

  7. Toward whole-core neutron transport without spatial homogenization

    Lewis, E. E.

    2009-01-01

    Full text of publication follows: A long-term goal of computational reactor physics is the deterministic analysis of power reactor core neutronics without incurring significant discretization errors in the energy, spatial or angular variables. In principle, given large enough parallel configurations with unlimited CPU time and memory, this goal could be achieved using existing three-dimensional neutron transport codes. In practice, however, solving the Boltzmann equation for neutrons over the six-dimensional phase space is made intractable by the nature of neutron cross-sections and the complexity and size of power reactor cores. Tens of thousands of energy groups would be required for faithful cross section representation. Likewise, the numerous material interfaces present in power reactor lattices require exceedingly fine spatial mesh structures; these ubiquitous interfaces preclude effective implementation of adaptive grid, mesh-less methods and related techniques that have been applied so successfully in other areas of engineering science. These challenges notwithstanding, substantial progress continues in the pursuit for more robust deterministic methods for whole-core neutronics analysis. This paper examines the progress over roughly the last decade, emphasizing the space-angle variables and the quest to eliminate errors attributable to spatial homogenization. As prolog we briefly assess 1990's methods used in light water reactor analysis and review the lessons learned from the C5G7 benchmark exercises which were originated in 1999 to appraise the ability of transport codes to perform core calculations without homogenization. We proceed by examining progress over the last decade much of which falls into three areas. These may be broadly characterized as reduced homogenization, dynamic homogenization and planar-axial synthesis. In the first, homogenization in three-dimensional calculations is reduced from the fuel assembly to the pin-cell level. In the second

  8. Mitoxantrone removal by electrochemical method: A comparison of homogenous and heterogenous catalytic reactions

    Abbas Jafarizad

    2017-08-01

    Full Text Available Background: Mitoxantrone (MXT is a drug for cancer therapy and a hazardous pharmaceutical to the environment which must be removed from contaminated waste streams. In this work, the removal of MXT by the electro-Fenton process over heterogeneous and homogenous catalysts is reported. Methods: The effects of the operational conditions (reaction medium pH, catalyst concentration and utilized current intensity were studied. The applied electrodes were carbon cloth (CC without any processing (homogenous process, graphene oxide (GO coated carbon cloth (GO/CC (homogenous process and Fe3O4@GO nanocomposite coated carbon cloth (Fe3O4@GO/CC (heterogeneous process. The characteristic properties of the electrodes were determined by atomic force microscopy (AFM, field emission scanning electron microscopy (FE-SEM and cathode polarization. MXT concentrations were determined by using ultraviolet-visible (UV-Vis spectrophotometer. Results: In a homogenous reaction, the high concentration of Fe catalyst (>0.2 mM decreased the MXT degradation rate. The results showed that the Fe3O4@GO/CC electrode included the most contact surface. The optimum operational conditions were pH 3.0 and current intensity of 450 mA which resulted in the highest removal efficiency (96.9% over Fe3O4@GO/CC electrode in the heterogeneous process compared with the other two electrodes in a homogenous process. The kinetics of the MXT degradation was obtained as a pseudo-first order reaction. Conclusion: The results confirmed the high potential of the developed method to purify contaminated wastewaters by MXT.

  9. Thermal homogeneity of plastication processes in single-screw extruders

    Bu, L. X.; Agbessi, Y.; Béreaux, Y.; Charmeau, J.-Y.

    2018-05-01

    Single-screw plastication, used in extrusion and in injection moulding, is a major way of processing commodity thermoplastics. During the plastication phase, the polymeric material is melted by the combined effects of shear-induced self-heating (viscous dissipation) and heat conduction coming from the barrel. In injection moulding, a high level of reliability is usually achieved that makes this process ideally suited to mass market production. Nonetheless, process fluctuations still appear that make moulded part quality control an everyday issue. In this work, we used a combined modelling of plastication, throughput calculation and laminar dispersion, to investigate if, and how, thermal fluctuations could propagate along the screw length and affect the melt homogeneity at the end of the metering section. To do this, we used plastication models to relate changes in processing parameters to changes in the plastication length. Moreover, a simple model of throughput calculation is used to relate the screw geometry, the polymer rheology and the processing parameters to get a good estimate of the mass flow rate. Hence, we found that the typical residence time in a single screw is around one tenth of the thermal diffusion time scale. This residence time is too short for the dispersion coefficient to reach a steady state, but too long to be able to neglect radial thermal diffusion and resort to a purely convective solution. Therefore, a full diffusion/convection problem has to be solved with a base flow described by the classic pressure and drag velocity field. Preliminary results already show the major importance of the processing parameters in the breakthrough curve of an arbitrary temperature fluctuation at the end of the metering section of injection moulding screw. When the flow back-pressure is high, the temperature fluctuation is spread more evenly with time, whereas a pressure drop in the flow will results in a breakthrough curve which presents a larger peak of

  10. Spatial homogenization method based on the inverse problem

    Tóta, Ádám; Makai, Mihály

    2015-01-01

    Highlights: • We derive a spatial homogenization method in slab and cylindrical geometries. • The fluxes and the currents on the boundary are preserved. • The reaction rates and the integral of the fluxes are preserved. • We present verification computations utilizing two- and four-energy groups. - Abstract: We present a method for deriving homogeneous multi-group cross sections to replace a heterogeneous region’s multi-group cross sections; providing that the fluxes, the currents on the external boundary, the reaction rates and the integral of the fluxes are preserved. We consider one-dimensional geometries: a symmetric slab and a homogeneous cylinder. Assuming that the boundary fluxes are given, two response matrices (RMs) can be defined concerning the current and the flux integral. The first one derives the boundary currents from the boundary fluxes, while the second one derives the flux integrals from the boundary fluxes. Further RMs can be defined that connects reaction rates to the boundary fluxes. Assuming that these matrices are known, we present formulae that reconstruct the multi-group diffusion cross-section matrix, the diffusion coefficients and the reaction cross sections in case of one-dimensional (1D) homogeneous regions. We apply these formulae to 1D heterogeneous regions and thus obtain a homogenization method. This method produces such an equivalent homogeneous material, that the fluxes and the currents on the external boundary, the reaction rates and the integral of the fluxes are preserved for any boundary fluxes. We carry out the exact derivations in 1D slab and cylindrical geometries. Verification computations for the presented homogenization method were performed using two- and four-group material cross sections, both in a slab and in a cylindrical geometry

  11. Land-use intensification causes multitrophic homogenization of grassland communities.

    Gossner, Martin M; Lewinsohn, Thomas M; Kahl, Tiemo; Grassein, Fabrice; Boch, Steffen; Prati, Daniel; Birkhofer, Klaus; Renner, Swen C; Sikorski, Johannes; Wubet, Tesfaye; Arndt, Hartmut; Baumgartner, Vanessa; Blaser, Stefan; Blüthgen, Nico; Börschig, Carmen; Buscot, Francois; Diekötter, Tim; Jorge, Leonardo Ré; Jung, Kirsten; Keyel, Alexander C; Klein, Alexandra-Maria; Klemmer, Sandra; Krauss, Jochen; Lange, Markus; Müller, Jörg; Overmann, Jörg; Pašalić, Esther; Penone, Caterina; Perović, David J; Purschke, Oliver; Schall, Peter; Socher, Stephanie A; Sonnemann, Ilja; Tschapka, Marco; Tscharntke, Teja; Türke, Manfred; Venter, Paul Christiaan; Weiner, Christiane N; Werner, Michael; Wolters, Volkmar; Wurst, Susanne; Westphal, Catrin; Fischer, Markus; Weisser, Wolfgang W; Allan, Eric

    2016-12-08

    Land-use intensification is a major driver of biodiversity loss. Alongside reductions in local species diversity, biotic homogenization at larger spatial scales is of great concern for conservation. Biotic homogenization means a decrease in β-diversity (the compositional dissimilarity between sites). Most studies have investigated losses in local (α)-diversity and neglected biodiversity loss at larger spatial scales. Studies addressing β-diversity have focused on single or a few organism groups (for example, ref. 4), and it is thus unknown whether land-use intensification homogenizes communities at different trophic levels, above- and belowground. Here we show that even moderate increases in local land-use intensity (LUI) cause biotic homogenization across microbial, plant and animal groups, both above- and belowground, and that this is largely independent of changes in α-diversity. We analysed a unique grassland biodiversity dataset, with abundances of more than 4,000 species belonging to 12 trophic groups. LUI, and, in particular, high mowing intensity, had consistent effects on β-diversity across groups, causing a homogenization of soil microbial, fungal pathogen, plant and arthropod communities. These effects were nonlinear and the strongest declines in β-diversity occurred in the transition from extensively managed to intermediate intensity grassland. LUI tended to reduce local α-diversity in aboveground groups, whereas the α-diversity increased in belowground groups. Correlations between the β-diversity of different groups, particularly between plants and their consumers, became weaker at high LUI. This suggests a loss of specialist species and is further evidence for biotic homogenization. The consistently negative effects of LUI on landscape-scale biodiversity underscore the high value of extensively managed grasslands for conserving multitrophic biodiversity and ecosystem service provision. Indeed, biotic homogenization rather than local diversity

  12. Central Andean temperature and precipitation measurements and its homogenization

    Hunziker, Stefan; Gubler, Stefanie

    2015-04-01

    Observation of climatological parameters and the homogenization of these time series have a well-established history in western countries. This is not the case for many other countries, such as Bolivia and Peru. In Bolivia and Peru, the organization of measurements, quality of measurement equipment, equipment maintenance, training of staff and data management are fundamentally different compared to the western standard. The data needs special attention, because many problems are not detected by standard quality control procedures. Information about the weather stations, best achieved by station visits, is very beneficial. If the cause of the problem is known, some of the data may be corrected. In this study, cases of typical problems and measurement errors will be demonstrated. Much of research on homogenization techniques (up to subdaily scale) has been completed in recent years. However, data sets of the quality of western station networks have been used, and little is known about the performance of homogenization methods on data sets from countries such as Bolivia and Peru. HOMER (HOMogenizaton softwarE in R) is one of the most recent and widely used homogenization softwares. Its performance is tested on Peruvian-like data that has been sourced from Swiss stations (similar station density and metadata availability). The Swiss station network is a suitable test bed, because climate gradients are strong and the terrain is complex, as is also found in the Central Andes. On the other hand, the Swiss station network is dense, and long time series and extensive metadata are available. By subsampling the station network and omitting the metadata, the conditions of a Peruvian test region are mimicked. Results are compared to a dataset homogenized by THOMAS (Tool for Homogenization of Monthly Data Series), the homogenization tool used by MeteoSwiss.

  13. The horizontally homogeneous model equations of incompressible atmospheric flow in general orthogonal coordinates

    Jørgensen, Bo Hoffmann

    2003-01-01

    The goal of this brief report is to express the model equations for an incompressible flow which is horizontally homogeneous. It is intended as a computationally inexpensive starting point of a more complete solution for neutral atmospheric flow overcomplex terrain. This idea was set forth...... by Ayotte and Taylor (1995) and in the work of Beljaars et al. (1987). Unlike the previous models, the present work uses general orthogonal coordinates. Strong conservation form of the model equations is employedto allow a robust and consistent numerical procedure. An invariant tensor form of the model...

  14. Homogenization of Large-Scale Movement Models in Ecology

    Garlick, M.J.; Powell, J.A.; Hooten, M.B.; McFarlane, L.R.

    2011-01-01

    A difficulty in using diffusion models to predict large scale animal population dispersal is that individuals move differently based on local information (as opposed to gradients) in differing habitat types. This can be accommodated by using ecological diffusion. However, real environments are often spatially complex, limiting application of a direct approach. Homogenization for partial differential equations has long been applied to Fickian diffusion (in which average individual movement is organized along gradients of habitat and population density). We derive a homogenization procedure for ecological diffusion and apply it to a simple model for chronic wasting disease in mule deer. Homogenization allows us to determine the impact of small scale (10-100 m) habitat variability on large scale (10-100 km) movement. The procedure generates asymptotic equations for solutions on the large scale with parameters defined by small-scale variation. The simplicity of this homogenization procedure is striking when compared to the multi-dimensional homogenization procedure for Fickian diffusion,and the method will be equally straightforward for more complex models. ?? 2010 Society for Mathematical Biology.

  15. Automatic Control of the Concrete Mixture Homogeneity in Cycling Mixers

    Anatoly Fedorovich, Tikhonov; Drozdov, Anatoly

    2018-03-01

    The article describes the factors affecting the concrete mixture quality related to the moisture content of aggregates, since the effectiveness of the concrete mixture production is largely determined by the availability of quality management tools at all stages of the technological process. It is established that the unaccounted moisture of aggregates adversely affects the concrete mixture homogeneity and, accordingly, the strength of building structures. A new control method and the automatic control system of the concrete mixture homogeneity in the technological process of mixing components have been proposed, since the tasks of providing a concrete mixture are performed by the automatic control system of processing kneading-and-mixing machinery with operational automatic control of homogeneity. Theoretical underpinnings of the control of the mixture homogeneity are presented, which are related to a change in the frequency of vibrodynamic vibrations of the mixer body. The structure of the technical means of the automatic control system for regulating the supply of water is determined depending on the change in the concrete mixture homogeneity during the continuous mixing of components. The following technical means for establishing automatic control have been chosen: vibro-acoustic sensors, remote terminal units, electropneumatic control actuators, etc. To identify the quality indicator of automatic control, the system offers a structure flowchart with transfer functions that determine the ACS operation in transient dynamic mode.

  16. A unidirectional acoustic cloak for multilayered background media with homogeneous metamaterials

    Zhu, Jian; Chen, Tianning; Liang, Qingxuan; Wang, Xiaopeng; Xiong, Jie; Jiang, Ping

    2015-08-01

    The acoustic cloak, which can make an object hard to detect acoustically in a homogeneous background, has attracted great attention from researchers in recent years. The inhomogeneous background media were considered in this paper. The relative constitutive parameters were derived for acoustic cloaks working in multilayered media. And a unidirectional acoustic cloak for layered background media was proposed, designed and implemented successfully in a wide frequency range. In water and NaCl aqueous solution, the acoustic cloak was designed and realized with homogeneous metamaterials which were composed of steel and porous materials. The effective parameters of the unit cells of the cloak were determined by using the effective medium theory. Numerical results demonstrated excellent cloaking performance and showed that such a device could be physically realized with natural materials which will greatly promote the real applications of an invisibility cloak in inhomogeneous backgrounds.

  17. A unidirectional acoustic cloak for multilayered background media with homogeneous metamaterials

    Zhu, Jian; Chen, Tianning; Liang, Qingxuan; Wang, Xiaopeng; Xiong, Jie; Jiang, Ping

    2015-01-01

    The acoustic cloak, which can make an object hard to detect acoustically in a homogeneous background, has attracted great attention from researchers in recent years. The inhomogeneous background media were considered in this paper. The relative constitutive parameters were derived for acoustic cloaks working in multilayered media. And a unidirectional acoustic cloak for layered background media was proposed, designed and implemented successfully in a wide frequency range. In water and NaCl aqueous solution, the acoustic cloak was designed and realized with homogeneous metamaterials which were composed of steel and porous materials. The effective parameters of the unit cells of the cloak were determined by using the effective medium theory. Numerical results demonstrated excellent cloaking performance and showed that such a device could be physically realized with natural materials which will greatly promote the real applications of an invisibility cloak in inhomogeneous backgrounds. (paper)

  18. High-frequency homogenization of zero frequency stop band photonic and phononic crystals

    Antonakakis, Tryfon; Guenneau, Sebastien

    2013-01-01

    We present an accurate methodology for representing the physics of waves, for periodic structures, through effective properties for a replacement bulk medium: This is valid even for media with zero frequency stop-bands and where high frequency phenomena dominate. Since the work of Lord Rayleigh in 1892, low frequency (or quasi-static) behaviour has been neatly encapsulated in effective anisotropic media. However such classical homogenization theories break down in the high-frequency or stop band regime. Higher frequency phenomena are of significant importance in photonics (transverse magnetic waves propagating in infinite conducting parallel fibers), phononics (anti-plane shear waves propagating in isotropic elastic materials with inclusions), and platonics (flexural waves propagating in thin-elastic plates with holes). Fortunately, the recently proposed high-frequency homogenization (HFH) theory is only constrained by the knowledge of standing waves in order to asymptotically reconstruct dispersion curves an...

  19. Radical copolymerization in homogenous medium and emulsion system monomers acrylonitrile/styrene

    Boussehel H.

    2013-09-01

    Full Text Available This study examines the radical copolymerization in homogeneous and emulsion of the monomer system acrylonitrile/styrene. These copolymers are of great interest to the plastics industry, because they combine the good mechanical properties and implementation provided by the styrene units in the very high solvent resistance and extreme gas impermeability provided by the acrylonitrile units. The properties of a copolymer are directly related to its composition and distribution of monomer units in its macromolecular chains. Based on the reports of the couple reactivity's of monomers (AN/S found in the literature, the objective of the work is to provide theoretical simulation (by analytical and numerical integration of the equation of copolymerization: The kinetics of the reaction copolymerization of AN/S in a homogeneous medium and emulsion (drift composition, azeotropic and the microstructure (distribution of monomer sequences and the glass transition property of the macromolecular chains instant formed throughout the copolymerization reaction.

  20. Self-dispersible nanocrystals of albendazole produced by high pressure homogenization and spray-drying.

    Paredes, Alejandro Javier; Llabot, Juan Manuel; Sánchez Bruni, Sergio; Allemandi, Daniel; Palma, Santiago Daniel

    2016-10-01

    Albendazole (ABZ) is a broad-spectrum antiparasitic drug used in the treatment of human or animal infections. Although ABZ has shown a high efficacy for repeated doses in monogastric mammals, its low aqueous solubility leads to erratic bioavailability. The aim of this work was to optimize a procedure in order to obtain ABZ self-dispersible nanocrystals (SDNC) by combining high pressure homogenization (HPH) and spray-drying (SD). The material thus obtained was characterized and the variables affecting both the HPH and SD processes were studied. As expected, the homogenizing pressure and number of cycles influenced the final particle size, while the stabilizer concentration had a strong impact on SD output and redispersion of powders upon contact with water. ABZ SDNC were successfully obtained with high process yield and redispersibility. The characteristic peaks of ABZ were clearly identified in the X-ray patterns of the processed samples. A noticeable increase in the dissolution rate was observed in the aqueous environment.

  1. Homogeneous nucleation in 4He: A corresponding-states analysis

    Sinha, D.N.; Semura, J.S.; Brodie, L.C.

    1982-01-01

    We report homogeneous-nucleation-temperature measurements in liquid 4 He over a bath-temperature range 2.31 4 He, in a region far from the critical point. A simple empirical form is presented for estimating the homogeneous nucleation temperatures for any liquid with a spherically symmetric interatomic potential. The 4 He data are compared with nucleation data for Ar, Kr, Xe, and H; theoretical predictions for 3 He are given in terms of reduced quantities. It is shown that the nucleation data for both quantum and classical liquids obey a quantum law of corresponding states (QCS). On the basis of this QCS analysis, predictions of homogeneous nucleation temperatures are made for hydrogen isotopes such as HD, DT, HT, and T 2

  2. Radiotracer application in determining changes in cement mix homogeneity

    Breda, M.

    1979-01-01

    A small amount of cement labelled with 24 Na is added to the concrete mix and the relative activity of the mix is measured using a scintillation detector in preset points at different time intervals of the mixing process. The detector picks up information from a volume of 10 to 15 litres. The values characterize the degree of homogeneity of the cement component in the mix. Mathematical statistics methods are used for assessing mixing or the homogeneity changes. The technique is quick and simple and is used to advantage in determining the effect of the duration and method of transport of the cement mix on its homogeneity, and in monitoring the mixing process and determining the minimum mixing time for all types of concrete mix. (M.S.)

  3. Homogeneous-heterogeneous reactions in curved channel with porous medium

    Hayat, T.; Ayub, Sadia; Alsaedi, A.

    2018-06-01

    Purpose of the present investigation is to examine the peristaltic flow through porous medium in a curved conduit. Problem is modeled for incompressible electrically conducting Ellis fluid. Influence of porous medium is tackled via modified Darcy's law. The considered model utilizes homogeneous-heterogeneous reactions with equal diffusivities for reactant and autocatalysis. Constitutive equations are formulated in the presence of viscous dissipation. Channel walls are compliant in nature. Governing equations are modeled and simplified under the assumptions of small Reynolds number and large wavelength. Graphical results for velocity, temperature, heat transfer coefficient and homogeneous-heterogeneous reaction parameters are examined for the emerging parameters entering into the problem. Results reveal an activation in both homogenous-heterogenous reaction effect and heat transfer rate with increasing curvature of the channel.

  4. Cryogenic homogenization and sampling of heterogeneous multi-phase feedstock

    Doyle, Glenn Michael; Ideker, Virgene Linda; Siegwarth, James David

    2002-01-01

    An apparatus and process for producing a homogeneous analytical sample from a heterogenous feedstock by: providing the mixed feedstock, reducing the temperature of the feedstock to a temperature below a critical temperature, reducing the size of the feedstock components, blending the reduced size feedstock to form a homogeneous mixture; and obtaining a representative sample of the homogeneous mixture. The size reduction and blending steps are performed at temperatures below the critical temperature in order to retain organic compounds in the form of solvents, oils, or liquids that may be adsorbed onto or absorbed into the solid components of the mixture, while also improving the efficiency of the size reduction. Preferably, the critical temperature is less than 77 K (-196.degree. C.). Further, with the process of this invention the representative sample may be maintained below the critical temperature until being analyzed.

  5. Pyroxene Homogenization and the Isotopic Systematics of Eucrites

    Nyquist, L. E.; Bogard, D. D.

    1996-01-01

    The original Mg-Fe zoning of eucritic pyroxenes has in nearly all cases been partly homogenized, an observation that has been combined with other petrographic and compositional criteria to establish a scale of thermal "metamorphism" for eucrites. To evaluate hypotheses explaining development of conditions on the HED parent body (Vesta?) leading to pyroxene homogenization against their chronological implications, it is necessary to know whether pyroxene metamorphism was recorded in the isotopic systems. However, identifying the effects of the thermal metamorphism with specific effects in the isotopic systems has been difficult, due in part to a lack of correlated isotopic and mineralogical studies of the same eucrites. Furthermore, isotopic studies often place high demands on analytical capabilities, resulting in slow growth of the isotopic database. Additionally, some isotopic systems would not respond in a direct and sensitive way to pyroxene homogenization. Nevertheless, sufficient data exist to generalize some observations, and to identify directions of potentially fruitful investigations.

  6. Variable valve timing in a homogenous charge compression ignition engine

    Lawrence, Keith E.; Faletti, James J.; Funke, Steven J.; Maloney, Ronald P.

    2004-08-03

    The present invention relates generally to the field of homogenous charge compression ignition engines, in which fuel is injected when the cylinder piston is relatively close to the bottom dead center position for its compression stroke. The fuel mixes with air in the cylinder during the compression stroke to create a relatively lean homogeneous mixture that preferably ignites when the piston is relatively close to the top dead center position. However, if the ignition event occurs either earlier or later than desired, lowered performance, engine misfire, or even engine damage, can result. The present invention utilizes internal exhaust gas recirculation and/or compression ratio control to control the timing of ignition events and combustion duration in homogeneous charge compression ignition engines. Thus, at least one electro-hydraulic assist actuator is provided that is capable of mechanically engaging at least one cam actuated intake and/or exhaust valve.

  7. Radiation Resistance and Gain of Homogeneous Ring Quasi-Array

    Knudsen, H. L.

    1954-01-01

    In a previous paper homogeneous ring quasi-arrays of tangential or radial dipoles were introduced, i.e. systems of dipoles arranged equidistantly along a circle, the dipoles being oriented in tangential or radial directions and carrying currents with the same amplitude, but with a phase that incr......In a previous paper homogeneous ring quasi-arrays of tangential or radial dipoles were introduced, i.e. systems of dipoles arranged equidistantly along a circle, the dipoles being oriented in tangential or radial directions and carrying currents with the same amplitude, but with a phase...... that increases uniformly along the circle. Such quasi-arrays are azimuthally omnidirectional, and the radiated field will be mainly horizontally polarized and concentrated around the plane of the circle. In this paper expressions are obtained for the radiation resistance and the gain of homogeneous ring quasi...

  8. Heterogenization of Homogeneous Catalysts: the Effect of the Support

    Earl, W.L.; Ott, K.C.; Hall, K.A.; de Rege, F.M.; Morita, D.K.; Tumas, W.; Brown, G.H.; Broene, R.D.

    1999-06-29

    We have studied the influence of placing a soluble, homogeneous catalyst onto a solid support. We determined that such a 'heterogenized' homogeneous catalyst can have improved activity and selectivity for the asymmetric hydrogenation of enamides to amino acid derivatives. The route of heterogenization of RhDuPhos(COD){sup +} cations occurs via electrostatic interactions with anions that are capable of strong hydrogen bonding to silica surfaces. This is a novel approach to supported catalysis. Supported RhDuPhos(COD){sup +} is a recyclable, non-leaching catalyst in non-polar media. This is one of the few heterogenized catalysts that exhibits improved catalytic performance as compared to its homogeneous analog.

  9. Homogenization technique for strongly heterogeneous zones in research reactors

    Lee, J.T.; Lee, B.H.; Cho, N.Z.; Oh, S.K.

    1991-01-01

    This paper reports on an iterative homogenization method using transport theory in a one-dimensional cylindrical cell model developed to improve the homogenized cross sections fro strongly heterogeneous zones in research reactors. The flux-weighting homogenized cross sections are modified by a correction factor, the cell flux ratio under an albedo boundary condition. The albedo at the cell boundary is iteratively determined to reflect the geometry effects of the material properties of the adjacent cells. This method has been tested with a simplified core model of the Korea Multipurpose Research Reactor. The results demonstrate that the reaction rates of an off-center control shroud cell, the multiplication factor, and the power distribution of the reactor core are close to those of the fine-mesh heterogeneous transport model

  10. Soluble Molecularly Imprinted Nanorods for Homogeneous Molecular Recognition

    Rongning Liang

    2018-03-01

    Full Text Available Nowadays, it is still difficult for molecularly imprinted polymers (MIPs to achieve homogeneous recognition since they cannot be easily dissolved in organic or aqueous phase. To address this issue, soluble molecularly imprinted nanorods have been synthesized by using soluble polyaniline doped with a functionalized organic protonic acid as the polymer matrix. By employing 1-naphthoic acid as a model, the proposed imprinted nanorods exhibit an excellent solubility and good homogeneous recognition ability. The imprinting factor for the soluble imprinted nanoroads is 6.8. The equilibrium dissociation constant and the apparent maximum number of the proposed imprinted nanorods are 248.5 μM and 22.1 μmol/g, respectively. We believe that such imprinted nanorods may provide an appealing substitute for natural receptors in homogeneous recognition related fields.

  11. Soluble Molecularly Imprinted Nanorods for Homogeneous Molecular Recognition

    Liang, Rongning; Wang, Tiantian; Zhang, Huan; Yao, Ruiqing; Qin, Wei

    2018-03-01

    Nowadays, it is still difficult for molecularly imprinted polymer (MIPs) to achieve homogeneous recognition since they cannot be easily dissolved in organic or aqueous phase. To address this issue, soluble molecularly imprinted nanorods have been synthesized by using soluble polyaniline doped with a functionalized organic protonic acid as the polymer matrix. By employing 1-naphthoic acid as a model, the proposed imprinted nanorods exhibit an excellent solubility and good homogeneous recognition ability. The imprinting factor for the soluble imprinted nanoroads is 6.8. The equilibrium dissociation constant and the apparent maximum number of the proposed imprinted nanorods are 248.5 μM and 22.1 μmol/g, respectively. We believe that such imprinted nanorods may provide an appealing substitute for natural receptors in homogeneous recognition related fields.

  12. Homogeneous versus heterogeneous shielding modeling of spent-fuel casks

    Carbajo, J.J.; Lindner, C.N.

    1992-01-01

    The design of spent-fuel casks for storage and transport requires modeling the cask for criticality, shielding, thermal, and structural analyses. While some parts of the cask are homogeneous, other regions are heterogeneous with different materials intermixed. For simplicity, some of the heterogeneous regions may be modeled as homogeneous. This paper evaluates the effect of homogenizing some regions of a cask on calculating radiation dose rates outside the cask. The dose rate calculations were performed with the one-dimensional discrete ordinates shielding XSDRNPM code coupled with the XSDOSE code and with the three-dimensional QAD-CGGP code. Dose rates were calculated radially at the midplane of the cask at two locations, cask surface and 2.3 m from the radial surface. The last location corresponds to a point 2 m from the lateral sides of a transport railroad car

  13. Method of the characteristics for calculation of VVER without homogenization

    Suslov, I.R.; Komlev, O.G.; Novikova, N.N.; Zemskov, E.A.; Tormyshev, I.V.; Melnikov, K.G.; Sidorov, E.B. [Institute of Physics and Power Engineering, Obninsk (Russian Federation)

    2005-07-01

    The first stage of the development of characteristics code MCCG3D for calculation of the VVER-type reactor without homogenization is presented. The parallel version of the code for MPI was developed and tested on cluster PC with LINUX-OS. Further development of the MCCG3D code for design-level calculations with full-scale space-distributed feedbacks is discussed. For validation of the MCCG3D code we use the critical assembly VENUS-2. The geometrical models with and without homogenization have been used. With both models the MCCG3D results agree well with the experimental power distribution and with results generated by the other codes, but model without homogenization provides better results. The perturbation theory for MCCG3D code is developed and implemented in the module KEFSFGG. The calculations with KEFSFGG are in good agreement with direct calculations. (authors)

  14. Does prescribed burning result in biotic homogenization of coastal heathlands?

    Velle, Liv Guri; Nilsen, Liv Sigrid; Norderhaug, Ann; Vandvik, Vigdis

    2014-05-01

    Biotic homogenization due to replacement of native biodiversity by widespread generalist species has been demonstrated in a number of ecosystems and taxonomic groups worldwide, causing growing conservation concern. Human disturbance is a key driver of biotic homogenization, suggesting potential conservation challenges in seminatural ecosystems, where anthropogenic disturbances such as grazing and burning are necessary for maintaining ecological dynamics and functioning. We test whether prescribed burning results in biotic homogenization in the coastal heathlands of north-western Europe, a seminatural landscape where extensive grazing and burning has constituted the traditional land-use practice over the past 6000 years. We compare the beta-diversity before and after fire at three ecological scales: within local vegetation patches, between wet and dry heathland patches within landscapes, and along a 470 km bioclimatic gradient. Within local patches, we found no evidence of homogenization after fire; species richness increased, and the species that entered the burnt Calluna stands were not widespread specialists but native grasses and herbs characteristic of the heathland system. At the landscapes scale, we saw a weak homogenization as wet and dry heathland patches become more compositionally similar after fire. This was because of a decrease in habitat-specific species unique to either wet or dry habitats and postfire colonization by a set of heathland specialists that established in both habitat types. Along the bioclimatic gradient, species that increased after fire generally had more specific environmental requirements and narrower geographical distributions than the prefire flora, resulting in a biotic 'heterogenisation' after fire. Our study demonstrates that human disturbance does not necessarily cause biotic homogenization, but that continuation of traditional land-use practices can instead be crucial for the maintenance of the diversity and ecological

  15. A homogeneous cooling scheme investigation for high power slab laser

    He, Jianguo; Lin, Weiran; Fan, Zhongwei; Chen, Yanzhong; Ge, Wenqi; Yu, Jin; Liu, Hao; Mo, Zeqiang; Fan, Lianwen; Jia, Dan

    2017-10-01

    The forced convective heat transfer with the advantages of reliability and durability is widely used in cooling the laser gain medium. However, a flow direction induced temperature gradient always appears. In this paper, a novel cooling configuration based on longitudinal forced convective heat transfer is presented. In comparison with two different types of configurations, it shows a more efficient heat transfer and more homogeneous temperature distribution. The investigation of the flow rate reveals that the higher flow rate the better cooling performance. Furthermore, the simulation results with 20 L/min flow rate shows an adequate temperature level and temperature homogeneity which keeps a lower hydrostatic pressure in the flow path.

  16. Early capillary flux homogenization in response to neural activation.

    Lee, Jonghwan; Wu, Weicheng; Boas, David A

    2016-02-01

    This Brief Communication reports early homogenization of capillary network flow during somatosensory activation in the rat cerebral cortex. We used optical coherence tomography and statistical intensity variation analysis for tracing changes in the red blood cell flux over hundreds of capillaries nearly at the same time with 1-s resolution. We observed that while the mean capillary flux exhibited a typical increase during activation, the standard deviation of the capillary flux exhibited an early decrease that happened before the mean flux increase. This network-level data is consistent with the theoretical hypothesis that capillary flow homogenizes during activation to improve oxygen delivery. © The Author(s) 2015.

  17. Note on integrability of certain homogeneous Hamiltonian systems

    Szumiński, Wojciech [Institute of Physics, University of Zielona Góra, Licealna 9, PL-65-407, Zielona Góra (Poland); Maciejewski, Andrzej J. [Institute of Astronomy, University of Zielona Góra, Licealna 9, PL-65-407, Zielona Góra (Poland); Przybylska, Maria, E-mail: M.Przybylska@if.uz.zgora.pl [Institute of Physics, University of Zielona Góra, Licealna 9, PL-65-407, Zielona Góra (Poland)

    2015-12-04

    In this paper we investigate a class of natural Hamiltonian systems with two degrees of freedom. The kinetic energy depends on coordinates but the system is homogeneous. Thanks to this property it admits, in a general case, a particular solution. Using this solution we derive necessary conditions for the integrability of such systems investigating differential Galois group of variational equations. - Highlights: • Necessary integrability conditions for some 2D homogeneous Hamilton systems are given. • Conditions are obtained analysing differential Galois group of variational equations. • New integrable and superintegrable systems are identified.

  18. How to determine composite material properties using numerical homogenization

    Andreassen, Erik; Andreasen, Casper Schousboe

    2014-01-01

    Numerical homogenization is an efficient way to determine effective macroscopic properties, such as the elasticity tensor, of a periodic composite material. In this paper an educational description of the method is provided based on a short, self-contained Matlab implementation. It is shown how...... the basic code, which computes the effective elasticity tensor of a two material composite, where one material could be void, is easily extended to include more materials. Furthermore, extensions to homogenization of conductivity, thermal expansion, and fluid permeability are described in detail. The unit...

  19. Homogenization of long fiber reinforced composites including fiber bending effects

    Poulios, Konstantinos; Niordson, Christian Frithiof

    2016-01-01

    This paper presents a homogenization method, which accounts for intrinsic size effects related to the fiber diameter in long fiber reinforced composite materials with two independent constitutive models for the matrix and fiber materials. A new choice of internal kinematic variables allows...... of the reinforcing fibers is captured by higher order strain terms, resulting in an accurate representation of the micro-mechanical behavior of the composite. Numerical examples show that the accuracy of the proposed model is very close to a non-homogenized finite-element model with an explicit discretization...

  20. Preparation of homogeneous isotopic targets with rotating substrate

    Xu, G.J.; Zhao, Z.G.

    1993-01-01

    Isotopically enriched accelerator targets were prepared using the evaporation-condensation method from a resistance heating crucible. For high collection efficiency and good homogeneity the substrate was rotated at a vertical distance of 1.3 to 2.5 cm from the evaporation source. Measured collection efficiencies were 13 to 51 μg cm -2 mg -1 and homogeneity tests showed values close to the theoretically calculated ones for a point source. Targets, selfsupporting or on backings, could be fabricated with this method for elements and some compounds with evaporation temperatures up to 2300 K. (orig.)

  1. A critical review of homogenization techniques in reactor lattices

    Benoist, P.

    1983-01-01

    The determination of the shape of the neutron flux in a whole reactor is, at the time being, a much too complex problem to be treated by transport theory. Since the earlier times of reactor theory, the necessity appeared to solve the problem in two steps. First the reactor is divided into zones, each of them forming a regular lattice. In each of these zones, homogenized parameters are determined by transport theory, in order to define an equivalent smeared medium. In a second step, these parameters are introduced in a diffusion theory scheme in order to treat the reactor as a whole. This is the homogenization procedure. 14 refs

  2. Relativistic cosmologies with closed, locally homogeneous space sections

    Fagundes, H.V.

    1985-01-01

    The homogeneous Bianchi and Kantowski-Sachs metrics of relativistic cosmology are investigated through their correspondence with recent geometrical results of Thurston. These allow a partial classification of the topologies for closed, locally homogeneous spaces according to Thurston's eight geometric types. Besides, which of the Bianchi-Kantowski-Sachs metrics can be imposed on closed space sections of cosmological models are learned. This is seen as a progress toward implementation of a postulate of the closure of space for both classical and quantum gravity. (Author) [pt

  3. A critical review of homogenization techniques in reactor lattices

    Benoist, P.

    1983-01-01

    The determination of the shape of the neutron flux in a whole reactor is, at the time being, a much too complex problem to be treated by transport theory. Since the earlier times of reactor theory, the necessity appeared to solve the problem in two steps. First the reactor is divided into zones, each of them forming a regular lattice. In each of these zones, homogenized parameters are determined by transport theory, in order to define an equivalent smeared medium. In a second step, these parameters are introduced in a diffusion theory scheme in order to treat the reactor as a whole. This is the homogenization procedure

  4. A homogeneous catalogue of quasar candidates found with slitless spectroscopy

    Beauchemin, M.; Borra, E.F.; Edwards, G.

    1990-01-01

    This paper gives a list of all quasar candidates obtained from an automated computer search performed on 11 grens plates. The description of the main characteristics of the survey is given along with the latest improvements in the selection techniques. Particular attention has been paid to understanding and quantifying selection effects. This allows the construction of homogeneous samples having well-understood characteristics. The noteworthy aspect of our homogenization process is the correction that we apply to our probability classes in order to take into account the signal-to-noise differences; at a given magnitude, among plates of different limiting magnitudes. (author)

  5. Quantum-dot-based homogeneous time-resolved fluoroimmunoassay of alpha-fetoprotein

    Chen Meijun; Wu Yingsong; Lin Guanfeng; Hou Jingyuan; Li Ming [Institute of Antibody Engineering, School of Biotechnology, Southern Medical University, Guangzhou, 510515 (China); Liu Tiancai, E-mail: liutc@smu.edu.cn [Institute of Antibody Engineering, School of Biotechnology, Southern Medical University, Guangzhou, 510515 (China)

    2012-09-05

    .4 ng mL{sup -1}. By assaying test samples against the standard curve, the coefficient of variations was <5%, indicating that QDs were suitable for this homogenous time-resolved fluoroimmunoassay. This work extended the potential applications of QDs in future homogeneous analytical bioassays. In the coming research, hepatitis B surface antigen, another primary marker for hepatocellular carcinoma, will be studied for practical detection using a QD-based homogenous multiplex fluoroimmunoassay.

  6. A phenomenological study of ripening of salted herring. Assessing homogeneity of data from different countries and laboratories

    Bro, R.; Nielsen, Henrik Hauch; Stefánsson, G.

    2002-01-01

    of treatments and analyzed in different laboratories. The question considered here is whether these data can be assumed to be one homogeneous set of data pertaining to ripening of salted herring or whether data from different labs, stocks, etc. must be considered independently. This is of importance for further...... easily be envisioned, it was exactly the need for a more intuitive and visual test that prompted this work, developing different exploration tools that visually make it clear how well the data can be assumed to derive from the same population. Subsequently analyzing the data as one homogeneous group...

  7. Neutron diffraction radiation of solid solution of carbon and hydrogen in the α-titanium in the homogeneity domain

    Mirzaev, B.B.; Khidirov, I.; Mukhtarova, N.N.

    2005-01-01

    In the work by the neutron-graph the homogeneity domain of the introduction solid solution TiC x H y is determined. The sample neutron grams have been taken on the neutron diffractometer (λ=.1085 nm) installed at the thermal column of the WWR-SM reactor (INF AN RUz). For the phase analysis and estimation of solid solutions homogeneity the X-ray graph was used. X-ray grams were taken on the X-ray diffractometer DRON-3M with use of CuK α radiation (λ=0.015418 nm)

  8. On the calculation of single ion activity coefficients in homogeneous ionic systems by application of the grand canonical ensemble

    Sloth, Peter

    1993-01-01

    The grand canonical ensemble has been used to study the evaluation of single ion activity coefficients in homogeneous ionic fluids. In this work, the Coulombic interactions are truncated according to the minimum image approximation, and the ions are assumed to be placed in a structureless......, homogeneous dielectric continuum. Grand canonical ensemble Monte Carlo calculation results for two primitive model electrolyte solutions are presented. Also, a formula involving the second moments of the total correlation functions is derived from fluctuation theory, which applies for the derivatives...... of the individual ionic activity coefficients with respect to the total ionic concentration. This formula has previously been proposed on the basis of somewhat different considerations....

  9. Size-dependent homogenized diffusion parameters for a finite lattice

    Premuda, F.

    1980-01-01

    A numerical technique is reported for solving the transcendental equation for unknown Ysub(n+1). The solution is expressed in terms of quantities related to Ysub(n). This is an iterative reversion technique which has already been proven to converge rapidly in the homogeneous slab problem considered herein. (author)

  10. Isotopic homogeneity of iron in the early solar nebula.

    Zhu, X K; Guo, Y; O'Nions, R K; Young, E D; Ash, R D

    2001-07-19

    The chemical and isotopic homogeneity of the early solar nebula, and the processes producing fractionation during its evolution, are central issues of cosmochemistry. Studies of the relative abundance variations of three or more isotopes of an element can in principle determine if the initial reservoir of material was a homogeneous mixture or if it contained several distinct sources of precursor material. For example, widespread anomalies observed in the oxygen isotopes of meteorites have been interpreted as resulting from the mixing of a solid phase that was enriched in 16O with a gas phase in which 16O was depleted, or as an isotopic 'memory' of Galactic evolution. In either case, these anomalies are regarded as strong evidence that the early solar nebula was not initially homogeneous. Here we present measurements of the relative abundances of three iron isotopes in meteoritic and terrestrial samples. We show that significant variations of iron isotopes exist in both terrestrial and extraterrestrial materials. But when plotted in a three-isotope diagram, all of the data for these Solar System materials fall on a single mass-fractionation line, showing that homogenization of iron isotopes occurred in the solar nebula before both planetesimal accretion and chondrule formation.

  11. Homogeneity of Moral Judgment? Apprentices Solving Business Conflicts.

    Beck, Klaus; Heinrichs, Karin; Minnameier, Gerhard; Parche-Kawik, Kirsten

    In an ongoing longitudinal study that started in 1994, the moral development of business apprentices is being studied. The focal point of this project is a critical analysis of L. Kohlberg's thesis of homogeneity, according to which people should judge every moral issue from the point of view of their "modal" stage (the most frequently…

  12. Gauge freedom in perfect fluid spatially homogeneous spacetimes

    Jantzen, R.T.

    1983-01-01

    The class of reference systems compatible with the symmetry of a spatially homogeneous perfect fluid spacetime is discussed together with the associated class of symmetry adapted comoving ADM frames (or computational frames). The fluid equations of motion are related to the four functions on the space of fluid flow lines discovered by Taub and which characterize an isentropic flow. (Auth.)

  13. Lagrangian statistics of particle pairs in homogeneous isotropic turbulence

    Biferale, L.; Boffeta, G.; Celani, A.; Devenish, B.J.; Lanotte, A.; Toschi, F.

    2005-01-01

    We present a detailed investigation of the particle pair separation process in homogeneous isotropic turbulence. We use data from direct numerical simulations up to R????280 following the evolution of about two million passive tracers advected by the flow over a time span of about three decades. We

  14. Electromagnetic Radiation in a Uniformly Moving, Homogeneous Medium

    Johannsen, Günther

    1972-01-01

    A new method of treating radiation problems in a uniformly moving, homogeneous medium is presented. A certain transformation technique in connection with the four-dimensional Green's function method makes it possible to elaborate the Green's functions of the governing differential equations...

  15. Class Management and Homogeneous Grouping in Kindergarten Literacy Instruction

    Hong, Guanglei; Pelletier, Janette; Hong, Yihua; Corter, Carl

    2010-01-01

    The purpose of this study is two-fold. Firstly the authors examine, given the amount of time allocated to literacy instruction, whether homogeneous grouping helps improve class manageability over the kindergarten year and whether individual students' externalizing problem behaviors will decrease in tandem. Secondly, they investigate whether the…

  16. On superspinor structure of homogeneous superspace of orthosymplectic groups

    Volkov, D.V.; Soroka, V.A.; Tkach, V.I.

    1984-01-01

    Superspinor structure of homogeneous superspaces of orthosymplectic groups are considered. It is shown how the properties of orthosymplectic group superspaces of OSp(N, 2K) group playing an important role in the supersymmetry theory can be described using superspinors. An example confirming a possibility of the relation between . canonical ratios of Butten bracket and conventional methods of quantization is considered

  17. Molecular weight enlargement : a molecular approach to continuous homogeneous catalysis

    Janssen, M.C.C.

    2010-01-01

    Homogeneous catalysts play an increasingly important role in organic synthesis today, because of their high activity and selectivity. Usually, precious metals are used in combination with valuable ligands and since metal prices are expected to increase further in the future, methods for their

  18. Non-homogeneous polymer model for wave propagation and its ...

    user

    density are functions of space i.e. non-homogeneous engineering material. .... The Solution of equation Eq. (9) in the form of Eq. (10) can be obtained by taking a phase ..... Viscoelastic Model Applied to a Particular Case .... p m i exp m α α σ σ σ. = −. +. −. (35). The progressive harmonic wave which starts from the end. 0 x =.

  19. DNA Dynamics Studied Using the Homogeneous Balance Method

    Zayed, E. M. E.; Arnous, A. H.

    2012-01-01

    We employ the homogeneous balance method to construct the traveling waves of the nonlinear vibrational dynamics modeling of DNA. Some new explicit forms of traveling waves are given. It is shown that this method provides us with a powerful mathematical tool for solving nonlinear evolution equations in mathematical physics. Strengths and weaknesses of the proposed method are discussed. (general)

  20. Homogenization and isotropization of an inflationary cosmological model

    Barrow, J.D.; Groen, Oe.; Oslo Univ.

    1986-01-01

    A member of the class of anisotropic and inhomogeneous cosmological models constructed by Wainwright and Goode is investigated. It is shown to describe a universe containing a scalar field which is minimally coupled to gravitation and a positive cosmological constant. It is shown that this cosmological model evolves exponentially rapidly towards the homogeneous and isotropic de Sitter universe model. (orig.)

  1. Revisiting the homogenization of dammed rivers in the southeastern US

    Ryan A. McManamay; Donald J. Orth; Charles A. Dolloff

    2012-01-01

    For some time, ecologists have attempted to make generalizations concerning how disturbances influence natural ecosystems, especially river systems. The existing literature suggests that dams homogenize the hydrologic variability of rivers. However, this might insinuate that dams affect river systems similarly despite a large gradient in natural hydrologic character....

  2. Homogeneous axisymmetric model with a limitting stiff equation of state

    Korkina, M.P.; Martynenko, V.G.

    1976-01-01

    A solution is obtained for Einstein's equations in which all metric coefficients are time functions for a limiting stiff equation of the substance state. Thr solution describes a homogeneous cosmological model with cylindrical symmetry. It is shown that the same metrics can be induced by a massless scalar only time-dependent field. Analysis of this solution is presented

  3. Fraisse sequences: category-theoretic approach to universal homogeneous structures

    Kubiś, Wieslaw

    2014-01-01

    Roč. 165, č. 11 (2014), s. 1755-1811 ISSN 0168-0072 R&D Projects: GA ČR(CZ) GAP201/12/0290 Institutional support: RVO:67985840 Keywords : universal homogeneous object * Fraissé sequence * amalgamation Subject RIV: BA - General Mathematics Impact factor: 0.548, year: 2014 http://www.sciencedirect.com/science/article/pii/S0168007214000773

  4. KINETIC THEORY OF PLASMA WAVES: Part II: Homogeneous Plasma

    Westerhof, E.

    2010-01-01

    The theory of electromagnetic waves in a homogeneous plasma is reviewed. The linear response of the plasma to the waves is obtained in the form of the dielectric tensor. Waves ranging from the low frequency Alfven to the high frequency electron cyclotron waves are discussed in the limit of the cold

  5. Kinetic theory of plasma waves: Part II homogeneous plasma

    Westerhof, E.

    2000-01-01

    The theory of electromagnetic waves in a homogeneous plasma is reviewed. The linear response of the plasma to the waves is obtained in the form of the dielectric tensor. Waves ranging from the low frequency Alfven to the high frequency electron cyclotron waves are discussed in the limit of the cold

  6. Kinetic theory of plasma waves - Part II: Homogeneous plasma

    Westerhof, E.

    2008-01-01

    The theory of electromagnetic waves in a homogeneous plasma is reviewed. The linear response of the plasma to the waves is obtained in the form of the dielectric tensor. Waves ranging from the low frequency Alfven to the high frequency electron cyclotron waves axe discussed in the limit of the cold

  7. Homogeneous Nucleation Rate Measurements in Supersaturated Water Vapor

    Brus, David; Ždímal, Vladimír; Smolík, Jiří

    2008-01-01

    Roč. 129, č. 17 (2008), , 174501-1-174501-8 ISSN 0021-9606 R&D Projects: GA ČR GA101/05/2214 Institutional research plan: CEZ:AV0Z40720504 Keywords : homogeneous nucleation * water * diffusion chamber Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.149, year: 2008

  8. Homogenization and Optimal Control S. Kesavan The Institute of ...

    Homogenization permits us to study the global behaviour of heterogeneous bodies with a lot of heterogeneities whose dimen- sions are small compared to those of the body. • It describes the macroscopic behaviour of systems with a fine microstructure. 2 ...

  9. Exploring cosmic homogeneity with the BOSS DR12 galaxy sample

    Ntelis, Pierros; Hamilton, Jean-Christophe; Busca, Nicolas Guillermo; Aubourg, Eric [APC, Université Paris Diderot-Paris 7, CNRS/IN2P3, CEA, Observatoire de Paris, 10, rue A. Domon and L. Duquet, Paris (France); Goff, Jean-Marc Le; Burtin, Etienne; Laurent, Pierre; Rich, James; Bourboux, Hélion du Mas des; Delabrouille, Nathalie Palanque [CEA, Centre de Saclay, IRFU/SPP, F-91191 Gif-sur-Yvette (France); Tinker, Jeremy [Department of Physics and Center for Cosmology and Particle Physics, New York University, 726 Broadway, New York (United States); Bautista, Julian [Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112 (United States); Delubac, Timothée [Laboratoire d' astrophysique, Ecole Polytechnique Fédérale de Lausanne (EPFL), Observatoire de Sauverny, CH-1290 Versoix (Switzerland); Eftekharzadeh, Sarah; Myers, Adam [Department of Physics and Astronomy, University of Wyoming, Laramie, WY 82071 (United States); Hogg, David W. [Center for Cosmology and Particle Physics, New York University, 4 Washington Place, Meyer Hall of Physics, New York, NY 10003 (United States); Vargas-Magaña, Mariana [Instituto de Física, Universidad Nacional Autónoma de México, Apdo. Postal 20-364, México (Mexico); Pâris, Isabelle [Aix Marseille Universite, CNRS, LAM (Laboratoire d' Astrophysique de Marseille) UMR 7326, 13388, Marseille (France); Petitjean, Partick [Institut d' Astrophysique de Paris, CNRS-UPMC, UMR7095, 98bis bd Arago, Paris, 75014 France (France); Rossi, Graziano, E-mail: pntelis@apc.in2p3.fr, E-mail: jchamilton75@gmail.com [Department of Astronomy and Space Science, Sejong University, Seoul, 143-747 (Korea, Republic of); and others

    2017-06-01

    In this study, we probe the transition to cosmic homogeneity in the Large Scale Structure (LSS) of the Universe using the CMASS galaxy sample of BOSS spectroscopic survey which covers the largest effective volume to date, 3 h {sup −3} Gpc{sup 3} at 0.43 ≤ z ≤ 0.7. We study the scaled counts-in-spheres, N(< r ), and the fractal correlation dimension, D{sub 2}( r ), to assess the homogeneity scale of the universe using a Landy and Szalay inspired estimator. Defining the scale of transition to homogeneity as the scale at which D{sub 2}( r ) reaches 3 within 1%, i.e. D{sub 2}( r )>2.97 for r >R {sub H} , we find R {sub H} = (63.3±0.7) h {sup −1} Mpc, in agreement at the percentage level with the predictions of the ΛCDM model R {sub H} =62.0 h {sup −1} Mpc. Thanks to the large cosmic depth of the survey, we investigate the redshift evolution of the transition to homogeneity scale and find agreement with the ΛCDM prediction. Finally, we find that D{sub 2} is compatible with 3 at scales larger than 300 h {sup −1} Mpc in all redshift bins. These results consolidate the Cosmological Principle and represent a precise consistency test of the ΛCDM model.

  10. Homogenization of a thermo-diffusion system with Smoluchowski interactions

    Krehel, O.; Aiki, T.; Muntean, A.

    2014-01-01

    We study the solvability and homogenization of a thermal-diffusion reaction problem posed in a periodically perforated domain. The system describes the motion of populations of hot colloidal particles interacting together via Smoluchowski production terms. The upscaled system, obtained via two-scale

  11. Homogeneous optical cloak constructed with uniform layered structures

    Zhang, Jingjing; Liu, Liu; Luo, Yu

    2011-01-01

    , the majority of the invisibility cloaks reported so far have a spatially varying refractive index which requires complicated design processes. Besides, the size of the hidden object is usually small relative to that of the cloak device. Here we report the experimental realization of a homogenous invisibility...

  12. Homogenization of compacted blends of Ni and Mo powders

    Lanam, R.D.; Yeh, F.C.H.; Rovsek, J.E.; Smith, D.W.; Heckel, R.W.

    1975-01-01

    The homogenization behavior of compacted blends of Ni and Mo powders was studied primarily as a function of temperature, mean compact composition, and Mo powder particle size. All compact compositions were in the Ni-rich terminal solid-solution range; temperatures were between 950 and 1200 0 C (in the region of the phase diagram where only the Mo--Ni intermediate phase forms); average Mo particle sizes ranged from 8.4 mu m to 48 mu m. Homogenization was characterized in terms of the rate of decrease of the amounts of the Mo-rich terminal solid-solution phase and the Mo--Ni intermediate phase. The experimental results were compared to predictions based upon the three-phase, concentric-sphere homogenization model. In general, agreement between experimental data and model predictions was fairly good for high-temperature treatments and for compact compositions which were not close to the solubility limit of Mo in Ni. Departures from the model are discussed in terms of surface diffusion contributions to homogenization and non-uniform mixing effects. (U.S.)

  13. A new formulation for the problem of fuel cell homogenization

    Chao, Y.-A.; Martinez, A.S.

    1982-01-01

    A new homogenization method for reactor cells is described. This new method consists in eliminating the NR approximation for the fuel resonance and the Wigner approximation for the resonance escape probability; the background cross section is then redefined and the problem studied is reanalyzed. (E.G.) [pt

  14. Transient computational homogenization for heterogeneous materials under dynamic excitation

    Pham, N.K.H.; Kouznetsova, V.; Geers, M.G.D.

    2013-01-01

    This paper presents a novel transient computational homogenization procedure that is suitable for the modelling of the evolution in space and in time of materials with non-steady state microstructure, such as metamaterials. This transient scheme is an extension of the classical (first-order)

  15. Non-homogeneous polymer model for wave propagation and its ...

    This article concerns certain aspects of four parameter polymer models to study harmonic waves in the non-homogeneous polymer rods of varying density. There are two sections of this paper, in first section, the rheological behaviour of the model is discussed numerically and then it is solved analytically with the help of ...

  16. A characterization of Markovian homogeneous multicomponent Gaussian fields

    Ekhaguere, G.O.S.

    1980-01-01

    Necessary and sufficient conditions are given for a certain class of homogeneous multicomponent Gaussian generalized stochastic fields to possess a Markov property equivalent to Nelson's. The class of Markov fields so characterized has a as a cubclass the class of Markov fields which lead by Nelson's Reconstruction Theorem to some covariant (free) quantum fields. (orig.)

  17. Homogenization of Stokes and Navier-Stokes equations

    Allaire, G.

    1990-04-01

    This thesis is devoted to homogenization of Stokes and Navier-Stokes equations with a Dirichlet boundary condition in a domain containing many tiny obstacles. Tipycally those obstacles are distributed at the modes of a periodic lattice with same small period in each axe's direction, and their size is always asymptotically smaller than the lattice's step. With the help of the energy method, and thanks to a suitable pressure's extension, we prove the convergence of the homogenization process when the lattice's step tends to zero (and thus the number of obstacles tends to infinity). For a so-called critical size of the obstacles, the homogenized problem turns out to be a Brinkman's law (i.e. Stokes or Navier-Stokes equation plus a linear zero-order term for the velocity in the momentum equation). For obstacles which have a size smaller than the critical one, the limit problem reduces to the initial Stokes or Navier-Stokes equations, while for larger sizes the homogenized problem a Darcy's law. Furthermore, those results have been extended to the case of obstacles included in a hyperplane, and we establish a simple model of fluid flows through grids, which is based on a special form of Brinkman's law [fr

  18. Microsegregation and homogenization in U-Nb alloy

    Leal, J. Fernando; Nogueira, R.A.; Ambrozio Filho, F.

    1987-01-01

    Microsegregation results in U-4 w t% Nb alloys casted in nonconsumable electrode arc furnace are presented. The microsegregation is studied qualitatively by optical microscopy and quantitatively by electron microprobe. The degreee of homogenetization has been measured after 800 0 C heat treatments. The times required for homogeneization of the alloys are also discussed. (author) [pt

  19. Environmental Kuznets Curves for CO2 : Heterogeneity Versus Homogeneity

    Vollebergh, H.R.J.; Dijkgraaf, E.; Melenberg, B.

    2005-01-01

    We explore the emissions income relationship for CO2 in OECD countries using various modelling strategies.Even for this relatively homogeneous sample, we find that the inverted-U-shaped curve is quite sensitive to the degree of heterogeneity included in the panel estimations.This finding is robust,

  20. Subspace identification of distributed clusters of homogeneous systems

    Yu, C.; Verhaegen, M.H.G.

    2017-01-01

    This note studies the identification of a network comprised of interconnected clusters of LTI systems. Each cluster consists of homogeneous dynamical systems, and its interconnections with the rest of the network are unmeasurable. A subspace identification method is proposed for identifying a single

  1. Quasi-single-mode homogeneous 31-core fibre

    Sasaki, Y.; Saitoh, S.; Amma, Y.

    2015-01-01

    A homogeneous 31-core fibre with a cladding diameter of 230 μm for quasi-single-mode transmission is designed and fabricated. LP01-crosstalk of -38.4 dB/11 km at 1550 nm is achieved by using few-mode trench-assisted cores....

  2. Theory of Work Adjustment Personality Constructs.

    Lawson, Loralie

    1993-01-01

    To measure Theory of Work Adjustment personality and adjustment style dimensions, content-based scales were analyzed for homogeneity and successively reanalyzed for reliability improvement. Three sound scales were developed: inflexibility, activeness, and reactiveness. (SK)

  3. Collapse and dispersal of a homogeneous spin fluid in Einstein-Cartan theory

    Hashemi, M.; Jalalzadeh, S.; Ziaie, A. H.

    2015-02-01

    In the present work, we revisit the process of gravitational collapse of a spherically symmetric homogeneous dust fluid which is described by the Oppenheimer-Snyder (OS) model (Oppenheimer and Snyder in Phys Rev D 56:455, 1939). We show that such a scenario would not end in a spacetime singularity when the spin degrees of freedom of fermionic particles within the collapsing cloud are taken into account. To this purpose, we take the matter content of the stellar object as a homogeneous Weyssenhoff fluid. Employing the homogeneous and isotropic FLRW metric for the interior spacetime setup, it is shown that the spin of matter, in the context of a negative pressure, acts against the pull of gravity and decelerates the dynamical evolution of the collapse in its later stages. Our results show a picture of gravitational collapse in which the collapse process halts at a finite radius, whose value depends on the initial configuration. We thus show that the spacetime singularity that occurs in the OS model is replaced by a non-singular bounce beyond which the collapsing cloud re-expands to infinity. Depending on the model parameters, one can find a minimum value for the boundary of the collapsing cloud or correspondingly a threshold value for the mass content below which the horizon formation can be avoided. Our results are supported by a thorough numerical analysis.

  4. Collapse and dispersal of a homogeneous spin fluid in Einstein-Cartan theory

    Hashemi, M.; Jalalzadeh, S.; Ziaie, A.H.

    2015-01-01

    In the present work, we revisit the process of gravitational collapse of a spherically symmetric homogeneous dust fluid which is described by the Oppenheimer-Snyder (OS) model (Oppenheimer and Snyder in Phys Rev D 56:455, 1939). We show that such a scenario would not end in a spacetime singularity when the spin degrees of freedom of fermionic particles within the collapsing cloud are taken into account. To this purpose, we take the matter content of the stellar object as a homogeneous Weyssenhoff fluid. Employing the homogeneous and isotropic FLRW metric for the interior spacetime setup, it is shown that the spin of matter, in the context of a negative pressure, acts against the pull of gravity and decelerates the dynamical evolution of the collapse in its later stages. Our results show a picture of gravitational collapse in which the collapse process halts at a finite radius, whose value depends on the initial configuration. We thus show that the spacetime singularity that occurs in the OS model is replaced by a non-singular bounce beyond which the collapsing cloud re-expands to infinity. Depending on the model parameters, one can find a minimum value for the boundary of the collapsing cloud or correspondingly a threshold value for the mass content below which the horizon formation can be avoided. Our results are supported by a thorough numerical analysis. (orig.)

  5. Enhancement of Lipid Extraction from Marine Microalga, Scenedesmus Associated with High-Pressure Homogenization Process

    Cho, Seok-Cheol; Choi, Woon-Yong; Oh, Sung-Ho; Lee, Choon-Geun; Seo, Yong-Chang; Kim, Ji-Seon; Song, Chi-Ho; Kim, Ga-Vin; Lee, Shin-Young; Kang, Do-Hyung; Lee, Hyeon-Yong

    2012-01-01

    Marine microalga, Scenedesmus sp., which is known to be suitable for biodiesel production because of its high lipid content, was subjected to the conventional Folch method of lipid extraction combined with high-pressure homogenization pretreatment process at 1200 psi and 35°C. Algal lipid yield was about 24.9% through this process, whereas only 19.8% lipid can be obtained by following a conventional lipid extraction procedure using the solvent, chloroform : methanol (2 : 1, v/v). Present approach requires 30 min process time and a moderate working temperature of 35°C as compared to the conventional extraction method which usually requires >5 hrs and 65°C temperature. It was found that this combined extraction process followed second-order reaction kinetics, which means most of the cellular lipids were extracted during initial periods of extraction, mostly within 30 min. In contrast, during the conventional extraction process, the cellular lipids were slowly and continuously extracted for >5 hrs by following first-order kinetics. Confocal and scanning electron microscopy revealed altered texture of algal biomass pretreated with high-pressure homogenization. These results clearly demonstrate that the Folch method coupled with high-pressure homogenization pretreatment can easily destruct the rigid cell walls of microalgae and release the intact lipids, with minimized extraction time and temperature, both of which are essential for maintaining good quality of the lipids for biodiesel production. PMID:22969270

  6. Beyond homogenization discourse: Reconsidering the cultural consequences of globalized medical education.

    Gosselin, K; Norris, J L; Ho, M-J

    2016-07-01

    Global medical education standards, largely designed in the West, have been promoted across national boundaries with limited regard for cultural differences. This review aims to identify discourses on cultural globalization in medical education literature from non-Western countries. To explore the diversity of discourses related to globalization and culture in the field of medical education, the authors conducted a critical review of medical education research from non-Western countries published in Academic Medicine, Medical Education and Medical Teacher from 2006 to 2014. Key discourses about globalization and culture emerged from a preliminary analysis of this body of literature. A secondary analysis identified inductive sub-themes. Homogenization, polarization and hybridization emerged as key themes in the literature. These findings demonstrate the existence of discourses beyond Western-led homogenization and the co-existence of globalization discourses ranging from homogenization to syncretism to resistance. This review calls attention to the existence of manifold discourses about globalization and culture in non-Western medical education contexts. In refocusing global medical education processes to avoid Western cultural imperialism, it will also be necessary to avoid the pitfalls of other globalization discourses. Moving beyond existing discourses, researchers and educators should work towards equitable, context-sensitive and locally-driven approaches to global medical education.

  7. Enhancement of Lipid Extraction from Marine Microalga, Scenedesmus Associated with High-Pressure Homogenization Process

    Seok-Cheol Cho

    2012-01-01

    Full Text Available Marine microalga, Scenedesmus sp., which is known to be suitable for biodiesel production because of its high lipid content, was subjected to the conventional Folch method of lipid extraction combined with high-pressure homogenization pretreatment process at 1200 psi and 35°C. Algal lipid yield was about 24.9% through this process, whereas only 19.8% lipid can be obtained by following a conventional lipid extraction procedure using the solvent, chloroform : methanol (2 : 1, v/v. Present approach requires 30 min process time and a moderate working temperature of 35°C as compared to the conventional extraction method which usually requires >5 hrs and 65°C temperature. It was found that this combined extraction process followed second-order reaction kinetics, which means most of the cellular lipids were extracted during initial periods of extraction, mostly within 30 min. In contrast, during the conventional extraction process, the cellular lipids were slowly and continuously extracted for >5 hrs by following first-order kinetics. Confocal and scanning electron microscopy revealed altered texture of algal biomass pretreated with high-pressure homogenization. These results clearly demonstrate that the Folch method coupled with high-pressure homogenization pretreatment can easily destruct the rigid cell walls of microalgae and release the intact lipids, with minimized extraction time and temperature, both of which are essential for maintaining good quality of the lipids for biodiesel production.

  8. Non-homogeneous Markov process models with informative observations with an application to Alzheimer's disease.

    Chen, Baojiang; Zhou, Xiao-Hua

    2011-05-01

    Identifying risk factors for transition rates among normal cognition, mildly cognitive impairment, dementia and death in an Alzheimer's disease study is very important. It is known that transition rates among these states are strongly time dependent. While Markov process models are often used to describe these disease progressions, the literature mainly focuses on time homogeneous processes, and limited tools are available for dealing with non-homogeneity. Further, patients may choose when they want to visit the clinics, which creates informative observations. In this paper, we develop methods to deal with non-homogeneous Markov processes through time scale transformation when observation times are pre-planned with some observations missing. Maximum likelihood estimation via the EM algorithm is derived for parameter estimation. Simulation studies demonstrate that the proposed method works well under a variety of situations. An application to the Alzheimer's disease study identifies that there is a significant increase in transition rates as a function of time. Furthermore, our models reveal that the non-ignorable missing mechanism is perhaps reasonable. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Simulation of ferric ions transfer in dosemeter Fricke-Xylenol-Gel in means no homogeneous

    Milani, Caio J.; Bevilacqua, Joyce da Silva; Cavinato, Christianne C.; Rodrigues Junior, Orlando; Campos, Leticia L.

    2013-01-01

    Dosimetry in three dimensions using Fricke-Xilenol-Gel dosimeters (FXG) allows the confirmation and a better understanding of a treatment by Radiotherapy. The technique involves the assessment of the irradiated volumes by magnetic resonance imaging (MRI) or optical-CT. On both cases, the time elapsed between the irradiation and the measurement is an important factor in the quality of results. The quality of the images can be compromised by the mobility of the ferric ions (Fe 3+ ), formed during the the interaction of the radiation with the matter, increasing the uncertainty in the determination of the isodoses in the volume. In this work, the phenomenon of the diffusion of the ferric ions formed by an irradiated region is simulated in a bidimensional domain. The dynamic of the Fe 3+ in Fricke-Gel is modeled by a parabolic partial differential equation and solved by the ADI-Peaceman-Rachford algorithm. Stability and consistency of the method guarantee the convergence of the numerical solution for a pre-defined error magnitude, based on choices for the discretization values of time and space. Homogeneous and non-homogeneous cases are presented considering an irradiated region and a physical barrier that prevents the movement of the ions, on the non-homogeneous case. Graphical visualizations of the phenomenon are presented for better understanding of the process. (author)

  10. Microstructure evolution of the 1469 Al–Cu–Li–Sc alloy during homogenization

    Jia, Min, E-mail: jm_lushan@163.com; Zheng, Ziqiao, E-mail: csu1469@163.com; Gong, Zhu, E-mail: start123gz@163.com

    2014-11-25

    Highlights: • The formation of the W phase (AlCuSc) was found in the 1469 Al-Cu–Li–Sc alloy. • The W phase formed during the homogenization process. • We model the formation process of the W phase. • The formation of the W phase consumes lots of Cu and Sc atoms. - Abstract: The present work aims to clarify the formation of the W phase (AlCuSc) and its formation time in the high Cu content alloy with Sc addition. The microstructure evolution during the two-step homogenization annealing process was investigated in the 1469 Al–Cu–Li–Sc alloy. No evidences of the Al{sub 3}Sc phase and the W phase were found in the solidification structure. The arrays of the W phases were found to form after homogenization. The AlCu phases with traces of Sc that formed during solidification suppose to be the precursor of the W phases, and then transform into the W phases by consuming the Sc atoms that fixed in the supersaturate solid solution. The formation of the W phase inhibits the precipitation of the Al{sub 3}Sc phase. A corresponding model of the W phase formation mechanism is proposed.

  11. Biotic homogenization of three insect groups due to urbanization.

    Knop, Eva

    2016-01-01

    Cities are growing rapidly, thereby expected to cause a large-scale global biotic homogenization. Evidence for the homogenization hypothesis is mostly derived from plants and birds, whereas arthropods have so far been neglected. Here, I tested the homogenization hypothesis with three insect indicator groups, namely true bugs, leafhoppers, and beetles. In particular, I was interested whether insect species community composition differs between urban and rural areas, whether they are more similar between cities than between rural areas, and whether the found pattern is explained by true species turnover, species diversity gradients and geographic distance, by non-native or specialist species, respectively. I analyzed insect species communities sampled on birch trees in a total of six Swiss cities and six rural areas nearby. In all indicator groups, urban and rural community composition was significantly dissimilar due to native species turnover. Further, for bug and leafhopper communities, I found evidence for large-scale homogenization due to urbanization, which was driven by reduced species turnover of specialist species in cities. Species turnover of beetle communities was similar between cities and rural areas. Interestingly, when specialist species of beetles were excluded from the analyses, cities were more dissimilar than rural areas, suggesting biotic differentiation of beetle communities in cities. Non-native species did not affect species turnover of the insect groups. However, given non-native arthropod species are increasing rapidly, their homogenizing effect might be detected more often in future. Overall, the results show that urbanization has a negative large-scale impact on the diversity specialist species of the investigated insect groups. Specific measures in cities targeted at increasing the persistence of specialist species typical for the respective biogeographic region could help to stop the loss of biodiversity. © 2015 John Wiley & Sons Ltd.

  12. Homogenized description and retrieval method of nonlinear metasurfaces

    Liu, Xiaojun; Larouche, Stéphane; Smith, David R.

    2018-03-01

    A patterned, plasmonic metasurface can strongly scatter incident light, functioning as an extremely low-profile lens, filter, reflector or other optical device. When the metasurface is patterned uniformly, its linear optical properties can be expressed using effective surface electric and magnetic polarizabilities obtained through a homogenization procedure. The homogenized description of a nonlinear metasurface, however, presents challenges both because of the inherent anisotropy of the medium as well as the much larger set of potential wave interactions available, making it challenging to assign effective nonlinear parameters to the otherwise inhomogeneous layer of metamaterial elements. Here we show that a homogenization procedure can be developed to describe nonlinear metasurfaces, which derive their nonlinear response from the enhanced local fields arising within the structured plasmonic elements. With the proposed homogenization procedure, we are able to assign effective nonlinear surface polarization densities to a nonlinear metasurface, and link these densities to the effective nonlinear surface susceptibilities and averaged macroscopic pumping fields across the metasurface. These effective nonlinear surface polarization densities are further linked to macroscopic nonlinear fields through the generalized sheet transition conditions (GSTCs). By inverting the GSTCs, the effective nonlinear surface susceptibilities of the metasurfaces can be solved for, leading to a generalized retrieval method for nonlinear metasurfaces. The application of the homogenization procedure and the GSTCs are demonstrated by retrieving the nonlinear susceptibilities of a SiO2 nonlinear slab. As an example, we investigate a nonlinear metasurface which presents nonlinear magnetoelectric coupling in near infrared regime. The method is expected to apply to any patterned metasurface whose thickness is much smaller than the wavelengths of operation, with inclusions of arbitrary geometry

  13. Attitudinal travel demand model for non-work trips of homogeneously constrained segments of a population

    Recker, W.W.; Stevens, R.F.

    1977-06-01

    Market-segmentation techniques are used to capture effects of opportunity and availability constraints on urban residents' choice of mode for trips for major grocery shopping and for visiting friends and acquaintances. Attitudinal multinomial logit choice models are estimated for each market segment. Explanatory variables are individual's beliefs about attributes of four modal alternatives: bus, car, taxi and walking. Factor analysis is employed to identify latent dimensions of perception of the modal alternatives and to eliminate problems of multicollinearity in model estimation.

  14. High-density carbon nanotube wet-laid buckypapers with enhanced strength and conductivity using a high-pressure homogenization process

    Choi, Jun; Jang, Si Hoon; Park, No Hyung; Jeong, Won Young; Lim, Dae Young [Human and Culture Convergence Technology Group, Korea Institute of Industrial Technology (KITECH), Ansan (Korea, Republic of); Oh, Jun Young; Yang, Seung Jae [Dept. of Applied Organic Materials Engineering, Inha University, Incheon (Korea, Republic of)

    2017-04-15

    In this work, we prepared homogeneously dispersed carbon nanotubes in water using a high-pressure homogenizer, while high-density carbon nanotube buckypapers were prepared by wet-laid process. The strength and conductivity of the buckypaper were increased dramatically after the high-pressure homogenization because of the increased density and uniformity of the paper. In addition, the buckypapers containing various additives and treated with SOCl{sub 2} exhibited further increase of strength and conductivity resulting from the binding and the p-type doping effect. The buckypapers with high electrical conductivity exhibited superior electromagnetic interference shielding effectiveness that could be applied for structural shielding materials.

  15. Homogeneous nucleation limit on the bulk formation of metallic glasses

    Drehman, A.J.

    1983-01-01

    Glassy Pd 82 Si 18 spheres, of up to 1 mm diameter, were formed in a drop tube filled with He gas. The largest spheres were successfully cooled to a glass using a cooling rate of less than 800 K/sec. Even at this low cooling rate, crystallization (complete or partial) was the result of heterogeneous nucleation at a high temperature, relative to the temperature at which copious homogeneous nucleation would commence. Bulk underscoring experiments demonstrated that this alloy could be cooled to 385 K below its eutectic melting temperature (1083 K) without the occurrence of crystallization. If heterogeneous nucleation can be avoided, it is estimated that a cooling rate of at most 100 K/sec would be required to form this alloy in the glassy state. Ingots of glassy Pd 40 Ni 40 P 20 were formed from the liquid by cooling at a rate of only 1 K/sec. It was found that glassy samples of this alloy could be heated well above the glass transition temperature without the occurrence of rapid divitrification. This is a result due, in part of the low density of pre-existing nuclei, but, more importantly, due to the low homogeneous nucleation rate and the slow crystal growth kinetics. Based on the observed devitrification kinetics, the steady-state homogeneous nucleation rate is approximately 1 nuclei/cm 3 sec at 590 K (the temperature at which the homogeneous nucleation rate is estimated to be a maximum). Two iron-nickel based glass-forming alloys (Fe 40 Ni 40 P 14 B 6 and Fe 40 Ni 40 B 20 , were not successfully formed into glassy spheres, however, microstructural examination indicates that crystallization was not the result of copious homogeneous nucleation. In contrast, glass forming iron based alloys (Fe 80 B 20 and Fe/sub 79.3/B/sub 16.4/Si/sub 4.0/C/sub 0.3/) exhibit copious homogeneous nucleation when cooled at approximately the same rate

  16. On Implementing a Homogeneous Interior-Point Algorithm for Nonsymmetric Conic Optimization

    Skajaa, Anders; Jørgensen, John Bagterp; Hansen, Per Christian

    Based on earlier work by Nesterov, an implementation of a homogeneous infeasible-start interior-point algorithm for solving nonsymmetric conic optimization problems is presented. Starting each iteration from (the vicinity of) the central path, the method computes (nearly) primal-dual symmetric...... approximate tangent directions followed by a purely primal centering procedure to locate the next central primal-dual point. Features of the algorithm include that it makes use only of the primal barrier function, that it is able to detect infeasibilities in the problem and that no phase-I method is needed...

  17. Numerical study for melting heat transfer and homogeneous-heterogeneous reactions in flow involving carbon nanotubes

    Hayat, Tasawar; Muhammad, Khursheed; Alsaedi, Ahmed; Asghar, Saleem

    2018-03-01

    Present work concentrates on melting heat transfer in three-dimensional flow of nanofluid over an impermeable stretchable surface. Analysis is made in presence of porous medium and homogeneous-heterogeneous reactions. Single and multi-wall CNTs (carbon nanotubes) are considered. Water is chosen as basefluid. Adequate transformations yield the non-linear ordinary differential systems. Solution of emerging problems is obtained using shooting method. Impacts of influential variables on velocity and temperature are discussed graphically. Skin friction coefficient and Nusselt number are numerically discussed. The results for MWCNTs and SWCNTs are compared and examined.

  18. CMOS MAPS in a Homogeneous 3D Process for Charged Particle Tracking

    Manazza, A; Manghisoni, M; Re, V; Traversi, G; Bettarini, S; Forti, F; Morsani, F; Rizzo, G; 10.1109/TNS.2014.2299341

    2014-01-01

    This work presents the characterization of deep n-well (DNW) CMOS monolithic active pixel sensors (MAPS) fabricated in a 130 nm homogeneous, vertically integrated technology. An evaluation of the 3D MAPS device performance, designed for application of the experiments at the future high luminosity colliders, is provided through the characterization of the prototypes, including tests with infrared (IR) laser, 55Fe and 90Sr sources. The radiation hardness study of the technology will also be presented together with its impact on 3D DNW MAPS performance.

  19. Uncertainty analysis of infinite homogeneous lead and sodium cooled fast reactors at beginning of life

    Vanhanen, R.

    2015-01-01

    The objective of the present work is to estimate breeding ratio, radiation damage rate and minor actinide transmutation rate of infinite homogeneous lead and sodium cooled fast reactors. Uncertainty analysis is performed taking into account uncertainty in nuclear data and composition of the reactors. We use the recently released ENDF/B-VII.1 nuclear data library and restrict the work to the beginning of reactor life. We work under multigroup approximation. The Bondarenko method is used to acquire effective cross sections for the homogeneous reactor. Modeling error and numerical error are estimated. The adjoint sensitivity analysis is performed to calculate generalized adjoint fluxes for the responses. The generalized adjoint fluxes are used to calculate first order sensitivities of the responses to model parameters. The acquired sensitivities are used to propagate uncertainties in the input data to find out uncertainties in the responses. We show that the uncertainty in model parameters is the dominant source of uncertainty, followed by modeling error, input data precision and numerical error. The uncertainty due to composition of the reactor is low. We identify main sources of uncertainty and note that the low-fidelity evaluation of 16 O is problematic due to lack of correlation between total and elastic reactions

  20. Uncertainty analysis of infinite homogeneous lead and sodium cooled fast reactors at beginning of life

    Vanhanen, R., E-mail: risto.vanhanen@aalto.fi

    2015-03-15

    The objective of the present work is to estimate breeding ratio, radiation damage rate and minor actinide transmutation rate of infinite homogeneous lead and sodium cooled fast reactors. Uncertainty analysis is performed taking into account uncertainty in nuclear data and composition of the reactors. We use the recently released ENDF/B-VII.1 nuclear data library and restrict the work to the beginning of reactor life. We work under multigroup approximation. The Bondarenko method is used to acquire effective cross sections for the homogeneous reactor. Modeling error and numerical error are estimated. The adjoint sensitivity analysis is performed to calculate generalized adjoint fluxes for the responses. The generalized adjoint fluxes are used to calculate first order sensitivities of the responses to model parameters. The acquired sensitivities are used to propagate uncertainties in the input data to find out uncertainties in the responses. We show that the uncertainty in model parameters is the dominant source of uncertainty, followed by modeling error, input data precision and numerical error. The uncertainty due to composition of the reactor is low. We identify main sources of uncertainty and note that the low-fidelity evaluation of {sup 16}O is problematic due to lack of correlation between total and elastic reactions.

  1. Self-formed waterfall plunge pools in homogeneous rock

    Scheingross, Joel S.; Lo, Daniel Y.; Lamb, Michael P.

    2017-01-01

    Waterfalls are ubiquitous, and their upstream propagation can set the pace of landscape evolution, yet no experimental studies have examined waterfall plunge pool erosion in homogeneous rock. We performed laboratory experiments, using synthetic foam as a bedrock simulant, to produce self-formed waterfall plunge pools via particle impact abrasion. Plunge pool vertical incision exceeded lateral erosion by approximately tenfold until pools deepened to the point that the supplied sediment could not be evacuated and deposition armored the pool bedrock floor. Lateral erosion of plunge pool sidewalls continued after sediment deposition, but primarily at the downstream pool wall, which might lead to undermining of the plunge pool lip, sediment evacuation, and continued vertical pool floor incision in natural streams. Undercutting of the upstream pool wall was absent, and our results suggest that vertical drilling of successive plunge pools is a more efficient waterfall retreat mechanism than the classic model of headwall undercutting and collapse in homogeneous rock.

  2. Parametric dependence of two-plasmon decay in homogeneous plasma

    Dimitrijevic, Dejan R

    2010-01-01

    A hydrodynamic model of two-plasmon decay in a homogeneous plasma slab near the quarter-critical density is constructed in order to improve our understanding of the spatio-temporal evolution of the daughter electron plasma waves in plasma in the course of the instability. The scaling of the amplitudes of the participating waves with laser and plasma parameters is investigated. The secondary coupling of two daughter electron plasma waves with an ion-acoustic wave is assumed to be the principal mechanism of saturation of the instability. The impact of the inherently nonresonant nature of this secondary coupling on the development of two-plasmon decay is researched and it is shown to significantly influence the electron plasma wave dynamics. Its inclusion leads to nonuniformity of the spatial profile of the instability and causes the burst-like pattern of the instability development, which should result in the burst-like hot-electron production in homogeneous plasma.

  3. The coherent state on SUq(2) homogeneous space

    Aizawa, N; Chakrabarti, R

    2009-01-01

    The generalized coherent states for quantum groups introduced by Jurco and StovIcek are studied for the simplest example SU q (2) in full detail. It is shown that the normalized SU q (2) coherent states enjoy the property of completeness, and allow a resolution of the unity. This feature is expected to play a key role in the application of these coherent states in physical models. The homogeneous space of SU q (2), i.e. the q-sphere of Podles, is reproduced in complex coordinates by using the coherent states. Differential calculus in the complex form on the homogeneous space is developed. The high spin limit of the SU q (2) coherent states is also discussed.

  4. Homogenization of the critically spectral equation in neutron transport

    Allaire, G. [CEA Saclay, 91 - Gif-sur-Yvette (France). Dept. de Mecanique et de Technologie]|[Paris-6 Univ., 75 (France). Lab. d' Analyse Numerique; Bal, G. [Electricite de France (EDF), 92 - Clamart (France). Direction des Etudes et Recherches

    1998-07-01

    We address the homogenization of an eigenvalue problem for the neutron transport equation in a periodic heterogeneous domain, modeling the criticality study of nuclear reactor cores. We prove that the neutron flux, corresponding to the first and unique positive eigenvector, can be factorized in the product of two terms, up to a remainder which goes strongly to zero with the period. On terms is the first eigenvector of the transport equation in the periodicity cell. The other term is the first eigenvector of a diffusion equation in the homogenized domain. Furthermore, the corresponding eigenvalue gives a second order corrector for the eigenvalue of the heterogeneous transport problem. This result justifies and improves the engineering procedure used in practice for nuclear reactor cores computations. (author)

  5. Constructing Bridges between Computational Tools in Heterogeneous and Homogeneous Catalysis

    Falivene, Laura; Kozlov, Sergey M.; Cavallo, Luigi

    2018-01-01

    Better catalysts are needed to address numerous challenges faced by humanity. In this perspective, we review concepts and tools in theoretical and computational chemistry that can help to accelerate the rational design of homogeneous and heterogeneous catalysts. In particular, we focus on the following three topics: 1) identification of key intermediates and transition states in a reaction using the energetic span model, 2) disentanglement of factors influencing the relative stability of the key species using energy decomposition analysis and the activation strain model, and 3) discovery of new catalysts using volcano relationships. To facilitate wider use of these techniques across different areas, we illustrate their potentials and pitfalls when applied to the study of homogeneous and heterogeneous catalysts.

  6. Fourier-Accelerated Nodal Solvers (FANS) for homogenization problems

    Leuschner, Matthias; Fritzen, Felix

    2017-11-01

    Fourier-based homogenization schemes are useful to analyze heterogeneous microstructures represented by 2D or 3D image data. These iterative schemes involve discrete periodic convolutions with global ansatz functions (mostly fundamental solutions). The convolutions are efficiently computed using the fast Fourier transform. FANS operates on nodal variables on regular grids and converges to finite element solutions. Compared to established Fourier-based methods, the number of convolutions is reduced by FANS. Additionally, fast iterations are possible by assembling the stiffness matrix. Due to the related memory requirement, the method is best suited for medium-sized problems. A comparative study involving established Fourier-based homogenization schemes is conducted for a thermal benchmark problem with a closed-form solution. Detailed technical and algorithmic descriptions are given for all methods considered in the comparison. Furthermore, many numerical examples focusing on convergence properties for both thermal and mechanical problems, including also plasticity, are presented.

  7. Some variance reduction methods for numerical stochastic homogenization.

    Blanc, X; Le Bris, C; Legoll, F

    2016-04-28

    We give an overview of a series of recent studies devoted to variance reduction techniques for numerical stochastic homogenization. Numerical homogenization requires that a set of problems is solved at the microscale, the so-called corrector problems. In a random environment, these problems are stochastic and therefore need to be repeatedly solved, for several configurations of the medium considered. An empirical average over all configurations is then performed using the Monte Carlo approach, so as to approximate the effective coefficients necessary to determine the macroscopic behaviour. Variance severely affects the accuracy and the cost of such computations. Variance reduction approaches, borrowed from other contexts in the engineering sciences, can be useful. Some of these variance reduction techniques are presented, studied and tested here. © 2016 The Author(s).

  8. Modification of enzymes by use of high-pressure homogenization.

    Dos Santos Aguilar, Jessika Gonçalves; Cristianini, Marcelo; Sato, Helia Harumi

    2018-07-01

    High-pressure is an emerging and relatively new technology that can modify various molecules. High-pressure homogenization (HPH) has been used in several studies on protein modification, especially in enzymes used or found in food, from animal, plant or microbial resources. According to the literature, the enzymatic activity can be modulated under pressure causing inactivation, stabilization or activation of the enzymes, which, depending on the point of view could be very useful. Homogenization can generate changes in the structure of the enzyme modifying various chemical bonds (mainly weak bonds) causing different denaturation levels and, consequently, affecting the catalytic activity. This review aims to describe the various alterations due to HPH treatment in enzymes, to show the influence of high-pressure on proteins and to report the HPH effects on the enzymatic activity of different enzymes employed in the food industry and research. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Using homogenization, sonication and thermo-sonication to inactivate fungi

    Bevilacqua, Antonio; Sinigaglia, Milena; Corbo, Maria Rosaria

    2016-01-01

    Ultrasound (US), Thermo-sonication (TS) and High Pressure Homogenization (HPH) were studied as tools to inactivate the spores of Penicillium spp. and Mucor spp. inoculated in distilled water. For US, the power ranged from 40% to 100%, pulse from 2 to 10 s, and duration of the treatment from 2 to 10 min. TS was performed combining US (40–80% of power, for 8 min and pulse of 2 s) with a thermal treatment (50, 55 and 60°C at 4, 8 and 12 min). Homogenization was done at 30–150 MPa for 1, 2 and 3 times. Power was the most important factors to determine the antifungal effect of US and TS towards the conidia of Penicillium spp.; on the other hand, in US treatments Mucor spp. was also affected by pulse and time. HPH exerted a significant antifungal effect only if the highest pressures were applied for 2–3 times. PMID:27375964

  10. Induction, bounding, weak combinatorial principles, and the homogeneous model theorem

    Hirschfeldt, Denis R; Shore, Richard A

    2017-01-01

    Goncharov and Peretyat'kin independently gave necessary and sufficient conditions for when a set of types of a complete theory T is the type spectrum of some homogeneous model of T. Their result can be stated as a principle of second order arithmetic, which is called the Homogeneous Model Theorem (HMT), and analyzed from the points of view of computability theory and reverse mathematics. Previous computability theoretic results by Lange suggested a close connection between HMT and the Atomic Model Theorem (AMT), which states that every complete atomic theory has an atomic model. The authors show that HMT and AMT are indeed equivalent in the sense of reverse mathematics, as well as in a strong computability theoretic sense and do the same for an analogous result of Peretyat'kin giving necessary and sufficient conditions for when a set of types is the type spectrum of some model.

  11. Osteoarthritic cartilage is more homogeneous than healthy cartilage

    Qazi, Arish A; Dam, Erik B; Nielsen, Mads

    2007-01-01

    it evolves as a consequence to disease and thereby can be used as a progression biomarker. MATERIALS AND METHODS: A total of 283 right and left knees from 159 subjects aged 21 to 81 years were scanned using a Turbo 3D T1 sequence on a 0.18-T MRI Esaote scanner. The medial compartment of the tibial cartilage...... sheet was segmented using a fully automatic voxel classification scheme based on supervised learning. From the segmented cartilage sheet, homogeneity was quantified by measuring entropy from the distribution of signal intensities inside the compartment. Each knee was examined by radiography...... of the region was evaluated by testing for overfitting. Three different regularization techniques were evaluated for reducing overfitting errors. RESULTS: The P values for separating the different groups based on cartilage homogeneity were 2 x 10(-5) (KL 0 versus KL 1) and 1 x 10(-7) (KL 0 versus KL >0). Using...

  12. Non-Almost Periodicity of Parallel Transports for Homogeneous Connections

    Brunnemann, Johannes; Fleischhack, Christian

    2012-01-01

    Let A be the affine space of all connections in an SU(2) principal fibre bundle over ℝ 3 . The set of homogeneous isotropic connections forms a line l in A. We prove that the parallel transports for general, non-straight paths in the base manifold do not depend almost periodically on l. Consequently, the embedding l ↪ A does not continuously extend to an embedding l-bar ↪ A-bar of the respective compactifications. Here, the Bohr compactification l-bar corresponds to the configuration space of homogeneous isotropic loop quantum cosmology and A-bar to that of loop quantum gravity. Analogous results are given for the anisotropic case.

  13. Homogenization of the critically spectral equation in neutron transport

    Allaire, G.; Paris-6 Univ., 75; Bal, G.

    1998-01-01

    We address the homogenization of an eigenvalue problem for the neutron transport equation in a periodic heterogeneous domain, modeling the criticality study of nuclear reactor cores. We prove that the neutron flux, corresponding to the first and unique positive eigenvector, can be factorized in the product of two terms, up to a remainder which goes strongly to zero with the period. On terms is the first eigenvector of the transport equation in the periodicity cell. The other term is the first eigenvector of a diffusion equation in the homogenized domain. Furthermore, the corresponding eigenvalue gives a second order corrector for the eigenvalue of the heterogeneous transport problem. This result justifies and improves the engineering procedure used in practice for nuclear reactor cores computations. (author)

  14. Computer modeling of homogenization of boric acid in IRIS pressurizer

    Rives Sanz, Ronny; Montesinos Otero, Maria Elena; Gonzalez Mantecon, Javier

    2015-01-01

    Integral layout of nuclear reactor IRIS makes possible the elimination of the spray system; which is usually used to mitigate in-surge transient and help to boron homogenization. The study of transients with deficiencies in the boron homogenization in this technology is very important, because they can cause disturbances in the reactor power and insert a strong reactivity in the core. The aim of the present research is to model the IRIS pressurizer using the CFX code searching for designs alternatives that guaranteed its intrinsic security, focused on the phenomena before mentioned. A symmetric tri dimensional model equivalent to 1/8 of the total geometry was adopted to reduce mesh size and minimize processing time. The relationships are programmed and incorporated into the code. This paper discusses the model developed and the behavior of the system for representative transients sequences. The results of the analyzed IRIS transients could be applied to the design of the pressurizer internal structures and components. (Author)

  15. Oscillatory Dynamics of One-Dimensional Homogeneous Granular Chains

    Starosvetsky, Yuli; Jayaprakash, K. R.; Hasan, Md. Arif; Vakakis, Alexander F.

    The acoustics of the homogeneous granular chains has been studied extensively both numerically and experimentally in the references cited in the previous chapters. This chapter focuses on the oscillatory behavior of finite dimensional homogeneous granular chains. It is well known that normal vibration modes are the building blocks of the vibrations of linear systems due to the applicability of the principle of superposition. One the other hand, nonlinear theory is deprived of such a general superposition principle (although special cases of nonlinear superpositions do exist), but nonlinear normal modes ‒ NNMs still play an important role in the forced and resonance dynamics of these systems. In their basic definition [1], NNMs were defined as time-periodic nonlinear oscillations of discrete or continuous dynamical systems where all coordinates (degrees-of-freedom) oscillate in-unison with the same frequency; further extensions of this definition have been considered to account for NNMs of systems with internal resonances [2]...

  16. Homogeneous Catalysis with Metal Complexes Fundamentals and Applications

    Duca, Gheorghe

    2012-01-01

    The book about homogeneous catalysis with metal complexes deals with the description of the reductive-oxidative, metal complexes  in a liquid phase (in polar solvents, mainly in water, and less in nonpolar solvents). The exceptional importance of the redox processes in chemical systems, in the reactions occuring in living organisms, the environmental processes, atmosphere, water, soil, and in industrial technologies (especially in food-processing industries) is discussed. The detailed practical aspects of the established regularities are explained for solving the specific practical tasks in various fields of industrial chemistry, biochemistry, medicine, analytical chemistry and ecological chemistry. The main scope of the book is the survey and systematization of the latest advances in homogeneous catalysis with metal complexes. It gives an overview of the research results and practical experience accumulated by the author during the last decade.

  17. Constructing Bridges between Computational Tools in Heterogeneous and Homogeneous Catalysis

    Falivene, Laura

    2018-05-08

    Better catalysts are needed to address numerous challenges faced by humanity. In this perspective, we review concepts and tools in theoretical and computational chemistry that can help to accelerate the rational design of homogeneous and heterogeneous catalysts. In particular, we focus on the following three topics: 1) identification of key intermediates and transition states in a reaction using the energetic span model, 2) disentanglement of factors influencing the relative stability of the key species using energy decomposition analysis and the activation strain model, and 3) discovery of new catalysts using volcano relationships. To facilitate wider use of these techniques across different areas, we illustrate their potentials and pitfalls when applied to the study of homogeneous and heterogeneous catalysts.

  18. Assessment of the characteristics of MRI coils in terms of RF non-homogeneity using routine spin echo sequences

    Oghabian, M. A.; Mehdipour, Sh.; RiahicAlam, N.; Rafie, B.; Ghanaati, H.

    2005-01-01

    One of the major causes of image non-uniformity in MRI is due to the existence of non-homogeneity in RF receive and transmit. This can be the most effective source of error in quantitative studies in MRI imaging. Part of this non-homogeneity demonstrates the characteristics of RF coil and part of it is due to the interaction of RF field with the material being imaged. In this study, RF field non-homogeneity of surface and volume coils is measured using an oil phantom. The method employed in this work is based on a routine Spin Echo based sequence as proposed by this group previously. Materials and Methods: For the determination of RF non-uniformity, a method based on Spin Echo sequence (8θ-180) was used as reported previously by the same author. In this method, several images were obtained from one slice using different flip angles while keeping all other imaging parameters constant. Then, signal intensity at a ROI from all of these images were measured and fitted to the MRI defined mathematical model. Since this mathematical model describes the relation between signal intensity and flip angle in a (8θ-180) Spin Echo sequence, it is possible to obtain the variation in receive and transmit sensitivity in terms of the variation of signal intensity from the actual expected values. Since surface coils are functioning as only receiver (RF transmission is done by Body coil), first the results of receive coil homogeneity is measured, then characteristic of transmit coil (for the body coil) is evaluated Results: The coefficient of variation (C.V.) found for T(r) value obtained from images using head coils was in the order of 0.6%. Since the head coil is functioning as both transmitter and receiver, any non-uniformity in either transmit or receive stage can lead to non-homogeneity in RF field. A part from the surface coils, the amount of non-homogeneity due to receive coil was less than that of the transmit coil. In the case of the surface coils the variation in receive

  19. Advanced homogenization strategies in material modeling of thermally sprayed TBCs

    Bobzin, K.; Lugscheider, E.; Nickel, R.; Kashko, T.

    2006-01-01

    Thermal barrier coatings (TBC), obtained by atmospheric plasma spraying (APS), have a complex microstructure (lamellar, porous, micro-cracked). Process parameters take an influence on this microstructure. Two methods based on the homogenization for periodic structures are presented in this article. The methods are used to calculate the effective material behavior of APS-TBCs made of partially yttria stabilized zirconia (PYSZ) depending on the microstructure. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  20. Desertification, salinization, and biotic homogenization in a dryland river ecosystem.

    Miyazono, Seiji; Patiño, Reynaldo; Taylor, Christopher M

    2015-04-01

    This study determined long-term changes in fish assemblages, river discharge, salinity, and local precipitation, and examined hydrological drivers of biotic homogenization in a dryland river ecosystem, the Trans-Pecos region of the Rio Grande/Rio Bravo del Norte (USA/Mexico). Historical (1977-1989) and current (2010-2011) fish assemblages were analyzed by rarefaction analysis (species richness), nonmetric multidimensional scaling (composition/variability), multiresponse permutation procedures (composition), and paired t-test (variability). Trends in hydrological conditions (1970s-2010s) were examined by Kendall tau and quantile regression, and associations between streamflow and specific conductance (salinity) by generalized linear models. Since the 1970s, species richness and variability of fish assemblages decreased in the Rio Grande below the confluence with the Rio Conchos (Mexico), a major tributary, but not above it. There was increased representation of lower-flow/higher-salinity tolerant species, thus making fish communities below the confluence taxonomically and functionally more homogeneous to those above it. Unlike findings elsewhere, this biotic homogenization was due primarily to changes in the relative abundances of native species. While Rio Conchos discharge was>2-fold higher than Rio Grande discharge above their confluence, Rio Conchos discharge decreased during the study period causing Rio Grande discharge below the confluence to also decrease. Rio Conchos salinity is lower than Rio Grande salinity above their confluence and, as Rio Conchos discharge decreased, it caused Rio Grande salinity below the confluence to increase (reduced dilution). Trends in discharge did not correspond to trends in precipitation except at extreme-high (90th quantile) levels. In conclusion, decreasing discharge from the Rio Conchos has led to decreasing flow and increasing salinity in the Rio Grande below the confluence. This spatially uneven desertification and

  1. Exact Polynomial Eigenmodes for Homogeneous Spherical 3-Manifolds

    Weeks, Jeffrey R.

    2005-01-01

    Observational data hints at a finite universe, with spherical manifolds such as the Poincare dodecahedral space tentatively providing the best fit. Simulating the physics of a model universe requires knowing the eigenmodes of the Laplace operator on the space. The present article provides explicit polynomial eigenmodes for all globally homogeneous 3-manifolds: the Poincare dodecahedral space S3/I*, the binary octahedral space S3/O*, the binary tetrahedral space S3/T*, the prism manifolds S3/D...

  2. Transport and spin effects in homogeneous magnetic superlattice

    Cardoso, J.L.; Pereyra, P.; Anzaldo-Meneses, A.

    2000-09-01

    Homogeneous semiconductors under spacially periodic external magnetic fields exhibit spin-band splitting and displacements, more clearly defined than in diluted magnetic semiconductor superlattices. We study the influence of the geometrical parameters and the spin-field interaction on the electronic transport properties. We show that by varying the external magnetic field, one can easily block the transmission of either the spin-up or the spin-down electrons. (author)

  3. Homogeneous nucleation, growth and recrystallization of discharge products on electrodes

    Kappus, W.

    1983-11-01

    The early stage of discharge of electrodes with an electrodissolution/precipitation mechanism is investigated. A theory is proposed for quasi-classical homogeneous nucleation and the subsequent growth. Based on this theory the radii distribution function was calculated for the diffusion-controlled growth of crystallites. Recrystallization was included. The nucleation overpotential was calculated as a function of time for discharges under various conditions.

  4. Numerical Integration of the Transport Equation For Infinite Homogeneous Media

    Haakansson, Rune

    1962-01-15

    The transport equation for neutrons in infinite homogeneous media is solved by direct numerical integration. Accounts are taken to the anisotropy and the inelastic scattering. The integration has been performed by means of the trapezoidal rule and the length of the energy intervals are constant in lethargy scale. The machine used is a Ferranti Mercury computer. Results are given for water, heavy water, aluminium water mixture and iron-aluminium-water mixture.

  5. Heterogeneous skills and homogeneous land: segmentation and agglomeration

    Matthias Wrede

    2013-01-01

    This paper analyzes the impact of skill heterogeneity on regional patterns of production and housing in the presence of pecuniary externalities within a general-equilibrium framework assuming monopolistic competition at intermediate good markets. It shows that the interplay of heterogeneous skills and relatively homogeneous land demand triggers skill segmentation and agglomeration. The core region, being more attractive to high skilled workers, has a disproportionately large share of producti...

  6. Homogeneity and scale testing of generalized gamma distribution

    Stehlik, Milan

    2008-01-01

    The aim of this paper is to derive the exact distributions of the likelihood ratio tests of homogeneity and scale hypothesis when the observations are generalized gamma distributed. The special cases of exponential, Rayleigh, Weibull or gamma distributed observations are discussed exclusively. The photoemulsion experiment analysis and scale test with missing time-to-failure observations are present to illustrate the applications of methods discussed

  7. Color Segmentation of Homogeneous Areas on Colposcopical Images

    Kosteley Yana

    2016-01-01

    Full Text Available The article provides an analysis of image processing and color segmentation applied to the problem of selection of homogeneous regions in the parameters of the color model. Methods of image processing such as Gaussian filter, median filter, histogram equalization and mathematical morphology are considered. The segmentation algorithm with the parameters of color components is presented, followed by isolation of the resulting connected component of a binary segmentation mask. Analysis of methods performed on images colposcopic research.

  8. Homogenization of monthly precipitation time series in Croatia

    Zahradníček, Pavel; Rasol, D.; Cindric, K.; Štěpánek, Petr

    2014-01-01

    Roč. 34, č. 14 (2014), s. 3671-3682 ISSN 0899-8418 R&D Projects: GA MŠk(CZ) EE2.3.20.0248; GA MŠk(CZ) EE2.4.31.0056 Institutional support: RVO:67179843 Keywords : homogenization * Croatia * precipitation * inhomogeneities * break points Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 3.157, year: 2014

  9. Tidal Dissipation in a Homogeneous Spherical Body. 1. Methods

    2014-11-01

    mantle (with χ = χlmpq ≡ |ωlmpq| being the physical forcing frequency). The dependency J̄ (χ ) follows from the rheological model . Evidently, the... current paper. Key words: planets and satellites: dynamical evolution and stability – planets and satellites: formation – planets and satellites: general... modeling the body with a homogeneous sphere of a certain rheology. However, the simplistic nature of the approach limits the precision of the ensuing

  10. Niobium bonds as homogeneous catalysts for the cyclotrimerization of alkynes

    Du Toit, C.J.

    1984-05-01

    The activity and selectivity of the catalytic system MX 5 with M = Nb or Ta and X = Cl - or Br - and (CH 3 ) 3 TaCl 2 with regard to the reaction rate and product formation in the reaction with alkynes were evaluated. A measuring technique was developed with which the reaction path of the oligomerization reactions of alkynes with homogeneous catalysts in a nitrogen atmosphere can be followed spectrophotometrically

  11. Desertification, salinization, and biotic homogenization in a dryland river ecosystem

    Miyazono, S.; Patino, Reynaldo; Taylor, C.M.

    2015-01-01

    This study determined long-term changes in fish assemblages, river discharge, salinity, and local precipitation, and examined hydrological drivers of biotic homogenization in a dryland river ecosystem, the Trans-Pecos region of the Rio Grande/Rio Bravo del Norte (USA/Mexico). Historical (1977-1989) and current (2010-2011) fish assemblages were analyzed by rarefaction analysis (species richness), nonmetric multidimensional scaling (composition/variability), multiresponse permutation procedures (composition), and paired t-test (variability). Trends in hydrological conditions (1970s-2010s) were examined by Kendall tau and quantile regression, and associations between streamfiow and specific conductance (salinity) by generalized linear models. Since the 1970s, species richness and variability of fish assemblages decreased in the Rio Grande below the confluence with the Rio Conchos (Mexico), a major tributary, but not above it. There was increased representation of lower-flow/higher-salinity tolerant species, thus making fish communities below the confluence taxonomically and functionally more homogeneous to those above it. Unlike findings elsewhere, this biotic homogenization was due primarily to changes in the relative abundances of native species. While Rio Conchos discharge was > 2-fold higher than Rio Grande discharge above their confluence, Rio Conchos discharge decreased during the study period causing Rio Grande discharge below the confluence to also decrease. Rio Conchos salinity is lower than Rio Grande salinity above their confluence and, as Rio Conchos discharge decreased, it caused Rio Grande salinity below the confluence to increase (reduced dilution). Trends in discharge did not correspond to trends in precipitation except at extreme-high (90th quantile) levels. In conclusion, decreasing discharge from the Rio Conchos has led to decreasing flow and increasing salinity in the Rio Grande below the confluence. This spatially uneven desertification and

  12. Classification of compact homogeneous spaces with invariant G(2)-structures

    Le, Hong-Van; Munir, M.

    2012-01-01

    Roč. 12, č. 2 (2012), s. 303-328 ISSN 1615-715X R&D Projects: GA AV ČR IAA100190701 Institutional support: RVO:67985840 Keywords : compact homogeneous space * G(2)-structure Subject RIV: BA - General Mathematics Impact factor: 0.371, year: 2012 http://www.degruyter.com/view/j/advg.2012.12.issue-2/advgeom.2011.054/advgeom.2011.054. xml

  13. Evaluation of basic mitochondrial functions using rat tissue homogenates

    Pecinová, Alena; Drahota, Zdeněk; Nůsková, Hana; Pecina, Petr; Houštěk, Josef

    2011-01-01

    Roč. 11, č. 5 (2011), s. 722-728 ISSN 1567-7249 R&D Projects: GA MZd(CZ) NS9759; GA ČR(CZ) GAP303/11/0970; GA MŠk(CZ) 1M0520; GA MŠk OC08017 Institutional research plan: CEZ:AV0Z50110509 Keywords : oxidative phosphorylation * isolated mitochondria * tissue homogenates * respiratory control * membrane potential Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition Impact factor: 3.615, year: 2011

  14. Homogeneity evaluation of mesenchymal stem cells based on electrotaxis analysis

    Kim, Min Sung; Lee, Mi Hee; Kwon, Byeong-Ju; Kim, Dohyun; Koo, Min-Ah; Seon, Gyeung Mi; Park, Jong-Chul

    2017-01-01

    Stem cell therapy that can restore function to damaged tissue, avoid host rejection and reduce inflammation throughout body without use of immunosuppressive drugs. The established methods were used to identify and to isolate specific stem cell markers by FACS or by immunomagnetic cell separation. The procedures for distinguishing population of stem cells took a time and needed many preparations. Here we suggest an electrotaxis analysis as a new method to evaluate the homogeneity of mesenchyma...

  15. Homogenized boundary conditions and resonance effects in Faraday cages

    Hewett, DP; Hewitt, IJ

    2016-01-01

    We present a mathematical study of two-dimensional electrostatic and electromagnetic shielding by a cage of conducting wires (the so-called `Faraday cage e ect'). Taking the limit as the number of wires in the cage tends to in nity we use the asymptotic method of multiple scales to derive continuum models for the shielding, involving homogenized boundary conditions on an e ective cage boundary. We show how the resulting models depend on key cage parameters such as the...

  16. Homogeneity Property of Besov and Triebel-Lizorkin Spaces

    Cornelia Schneider

    2012-01-01

    Full Text Available We consider the classical Besov and Triebel-Lizorkin spaces defined via differences and prove a homogeneity property for functions with bounded support in the frame of these spaces. As the proof is based on compact embeddings between the studied function spaces, we present also some results on the entropy numbers of these embeddings. Moreover, we derive some applications in terms of pointwise multipliers.

  17. Electromagnetic illusion with isotropic and homogeneous materials through scattering manipulation

    Yang, Fan; Mei, Zhong Lei; Jiang, Wei Xiang; Cui, Tie Jun

    2015-01-01

    A new isotropic and homogeneous illusion device for electromagnetic waves is proposed. This single-shelled device can change the fingerprint of the covered object into another one by manipulating the scattering of the composite structure. We show that an electrically small sphere can be disguised as another small one with different electromagnetic parameters. The device can even make a dielectric sphere (electrically small) behave like a conducting one. Full-wave simulations confirm the performance of proposed illusion device. (paper)

  18. Lower bounds for the circuit size of partially homogeneous polynomials

    Le, Hong-Van

    2017-01-01

    Roč. 225, č. 4 (2017), s. 639-657 ISSN 1072-3374 Institutional support: RVO:67985840 Keywords : partially homogeneous polynomials * polynomials Subject RIV: BA - General Mathematics OBOR OECD: Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8) https://link.springer.com/article/10.1007/s10958-017-3483-4

  19. Homogeneous CdTe quantum dots-carbon nanotubes heterostructures

    Vieira, Kayo Oliveira [Grupo de Pesquisa em Química de Materiais – (GPQM), Departamento de Ciências Naturais, Universidade Federal de São João del-Rei, Campus Dom Bosco, Praça Dom Helvécio, 74, CEP 36301-160, São João del-Rei, MG (Brazil); Bettini, Jefferson [Laboratório Nacional de Nanotecnologia, Centro Nacional de Pesquisa em Energia e Materiais, CEP 13083-970, Campinas, SP (Brazil); Ferrari, Jefferson Luis [Grupo de Pesquisa em Química de Materiais – (GPQM), Departamento de Ciências Naturais, Universidade Federal de São João del-Rei, Campus Dom Bosco, Praça Dom Helvécio, 74, CEP 36301-160, São João del-Rei, MG (Brazil); Schiavon, Marco Antonio, E-mail: schiavon@ufsj.edu.br [Grupo de Pesquisa em Química de Materiais – (GPQM), Departamento de Ciências Naturais, Universidade Federal de São João del-Rei, Campus Dom Bosco, Praça Dom Helvécio, 74, CEP 36301-160, São João del-Rei, MG (Brazil)

    2015-01-15

    The development of homogeneous CdTe quantum dots-carbon nanotubes heterostructures based on electrostatic interactions has been investigated. We report a simple and reproducible non-covalent functionalization route that can be accomplished at room temperature, to prepare colloidal composites consisting of CdTe nanocrystals deposited onto multi-walled carbon nanotubes (MWCNTs) functionalized with a thin layer of polyelectrolytes by layer-by-layer technique. Specifically, physical adsorption of polyelectrolytes such as poly (4-styrene sulfonate) and poly (diallyldimethylammonium chloride) was used to deagglomerate and disperse MWCNTs, onto which we deposited CdTe quantum dots coated with mercaptopropionic acid (MPA), as surface ligand, via electrostatic interactions. Confirmation of the CdTe quantum dots/carbon nanotubes heterostructures was done by transmission and scanning electron microscopies (TEM and SEM), dynamic-light scattering (DLS) together with absorption, emission, Raman and infrared spectroscopies (UV–vis, PL, Raman and FT-IR). Almost complete quenching of the PL band of the CdTe quantum dots was observed after adsorption on the MWCNTs, presumably through efficient energy transfer process from photoexcited CdTe to MWCNTs. - Highlights: • Highly homogeneous CdTe-carbon nanotubes heterostructures were prepared. • Simple and reproducible non-covalent functionalization route. • CdTe nanocrystals homogeneously deposited onto multi-walled carbon nanotubes. • Efficient energy transfer process from photoexcited CdTe to MWCNTs.

  20. Collision-free gases in spatially homogeneous space-times

    Maartens, R.; Maharaj, S.D.

    1985-01-01

    The kinematical and dynamical properties of one-component collision-free gases in spatially homogeneous, locally rotationally symmetric (LRS) space-times are analyzed. Following Ray and Zimmerman [Nuovo Cimento B 42, 183 (1977)], it is assumed that the distribution function f of the gas inherits the symmetry of space-time, in order to construct solutions of Liouville's equation. The redundancy of their further assumption that f be based on Killing vector constants of the motion is shown. The Ray and Zimmerman results for Kantowski--Sachs space-time are extended to all spatially homogeneous LRS space-times. It is shown that in all these space-times the kinematic average four-velocity u/sup i/ can be tilted relative to the homogeneous hypersurfaces. This differs from the perfect fluid case, in which only one space-time admits tilted u/sup i/, as shown by King and Ellis [Commun. Math. Phys. 31, 209 (1973)]. As a consequence, it is shown that all space-times admit nonzero acceleration and heat flow, while a subclass admits nonzero vorticity. The stress π/sub i/j is proportional to the shear sigma/sub i/j by virtue of the invariance of the distribution function. The evolution of tilt and the existence of perfect fluid solutions is also discussed