WorldWideScience

Sample records for narrow time-of-flight tof

  1. Neutron Time-Of-Flight (n_TOF) experiment

    CERN Multimedia

    Brugger, M; Kaeppeler, F K; Jericha, E; Cortes rossell, G P; Riego perez, A; Baccomi, R; Laurent, B G; Griesmayer, E; Leeb, H; Dressler, M; Cano ott, D; Variale, V; Ventura, A; Carrillo de albornoz trillo, A; Andrzejewski, J J; Pavlik, A F; Kadi, Y; Zanni vlastou, R; Krticka, M; Kokkoris, M; Praena rodriguez, A J; Cortes giraldo, M A; Perkowski, J; Losito, R; Audouin, L; Weiss, C; Tagliente, G; Wallner, A; Woods, P J; Mengoni, A; Guerrero sanchez, C G; Tain enriquez, J L; Vlachoudis, V; Calviani, M; Junghans, A R; Reifarth, R; Mendoza cembranos, E; Quesada molina, J M; Babiano suarez, V; Schumann, M D; Tsinganis, A; Rauscher, T; Calvino tavares, F; Mingrone, F; Gonzalez romero, E M; Colonna, N; Negret, A L; Chiaveri, E; Milazzo, P M; De almeida carrapico, C A; Castelluccio, D M

    The neutron time-of-flight facility n_TOF at CERN, Switzerland, operational since 2001, delivers neutrons using the Proton Synchrotron (PS) 20 GeV/c proton beam impinging on a lead spallation target. The facility combines a very high instantaneous neutron flux, an excellent time of flight resolution due to the distance between the experimental area and the production target (185 meters), a low intrinsic background and a wide range of neutron energies, from thermal to GeV neutrons. These characteristics provide a unique possibility to perform neutron-induced capture and fission cross-section measurements for applications in nuclear astrophysics and in nuclear reactor technology.

  2. Accelerated time-of-flight (TOF) PET image reconstruction using TOF bin subsetization and TOF weighting matrix pre-computation

    International Nuclear Information System (INIS)

    Mehranian, Abolfazl; Kotasidis, Fotis; Zaidi, Habib

    2016-01-01

    Time-of-flight (TOF) positron emission tomography (PET) technology has recently regained popularity in clinical PET studies for improving image quality and lesion detectability. Using TOF information, the spatial location of annihilation events is confined to a number of image voxels along each line of response, thereby the cross-dependencies of image voxels are reduced, which in turns results in improved signal-to-noise ratio and convergence rate. In this work, we propose a novel approach to further improve the convergence of the expectation maximization (EM)-based TOF PET image reconstruction algorithm through subsetization of emission data over TOF bins as well as azimuthal bins. Given the prevalence of TOF PET, we elaborated the practical and efficient implementation of TOF PET image reconstruction through the pre-computation of TOF weighting coefficients while exploiting the same in-plane and axial symmetries used in pre-computation of geometric system matrix. In the proposed subsetization approach, TOF PET data were partitioned into a number of interleaved TOF subsets, with the aim of reducing the spatial coupling of TOF bins and therefore to improve the convergence of the standard maximum likelihood expectation maximization (MLEM) and ordered subsets EM (OSEM) algorithms. The comparison of on-the-fly and pre-computed TOF projections showed that the pre-computation of the TOF weighting coefficients can considerably reduce the computation time of TOF PET image reconstruction. The convergence rate and bias-variance performance of the proposed TOF subsetization scheme were evaluated using simulated, experimental phantom and clinical studies. Simulations demonstrated that as the number of TOF subsets is increased, the convergence rate of MLEM and OSEM algorithms is improved. It was also found that for the same computation time, the proposed subsetization gives rise to further convergence. The bias-variance analysis of the experimental NEMA phantom and a clinical

  3. New developments in molecular imaging: positron emission tomography time-of-flight (TOF-PET)

    International Nuclear Information System (INIS)

    Aguilar, P.; Couce, B.; Iglesias, A.; Lois, C.

    2011-01-01

    Positron Emission tomography (PET) in increasingly being used in oncology for the diagnosis and staging of disease, as well as in monitoring response to therapy. One of the last advances in PET is the incorporation of Time-of-Flight (TOF) information, which improves the tomographic reconstruction process and subsequently the quality of the final image. In this work, we explain the principles of PET and the fundamentals of TOF-PET. Clinical images are shown in order to illustrate how TOF-PET improves the detectability of small lesions, particularly in patients with high body mass index. (Author) 20 refs

  4. Physical properties of the TOF (time of flight) scintillation counters of DELPHI

    International Nuclear Information System (INIS)

    Benlloch, J.M.; Castillo, M.V.; Ferrer, A.; Fuster, J.; Higon, E.; Llopis, A.; Salt, J.; Sanchez, E.; Sanchis, E.; Silvestre, E.; Cuevas, J.

    1990-01-01

    In this paper we report the physical properties of the time of flight (TOF) scintillator counters used for the DELPHI Experiment at CERN. We discuss the different choices studied for the wrapping of the counters in order to obtain best efficiencies for light transmission. A very good agreement of the performances of the counters has been found with the results of an original Monte Carlo program. The main characteristics of the TOF counters of DELPHI are: an effective light attenuation length of 135 cm, effective light speed of 15.91 cm/ns, a time resolution of 1.2 ns, and an efficiency for detection of minimum ionizing particles of 99.9%. (orig.)

  5. High resolution time-of-flight (TOF) detector for particle identification

    Energy Technology Data Exchange (ETDEWEB)

    Boehm, Merlin; Lehmann, Albert; Pfaffinger, Markus; Uhlig, Fred [Physikalisches Institut, Universitaet Erlangen-Nuernberg (Germany); Collaboration: PANDA-Collaboration

    2016-07-01

    Several prototype tests were performed with the PANDA DIRC detectors at the CERN T9 beam line. A mixed hadron beam with pions, kaons and protons was used at momenta from 2 to 10 GeV/c. For these tests a good particle identification was mandatory. We report about a high resolution TOF detector built especially for this purpose. It consists of two stations each consisting of a Cherenkov radiator read out by a Microchannel-Plate Photomultiplier (MCP-PMT) and a Scintillating Tile (SciTil) counter read out by silicon photomultipliers (SiPMs). With a flight path of 29 m a pion/kaon separation up to 5 GeV/c and a pion/proton separation up to 10 GeV/c was obtained. From the TOF resolutions of different counter combinations the time resolution (sigma) of the individual MCP-PMTs and SciTils was determined. The best counter reached a time resolution of 50 ps.

  6. Analytical properties of time-of-flight PET data

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Sanghee; Ahn, Sangtae; Quanzheng, Li; Leahy, Richard M [Signal and Image Processing Institute, University of Southern California, Los Angeles, CA 90089 (United States)], E-mail: leahy@sipi.usc.edu

    2008-06-07

    We investigate the analytical properties of time-of-flight (TOF) positron emission tomography (PET) sinograms, where the data are modeled as line integrals weighted by a spatially invariant TOF kernel. First, we investigate the Fourier transform properties of 2D TOF data and extend the 'bow-tie' property of the 2D Radon transform to the time-of-flight case. Second, we describe a new exact Fourier rebinning method, TOF-FOREX, based on the Fourier transform in the time-of-flight variable. We then combine TOF-FOREX rebinning with a direct extension of the projection slice theorem to TOF data, to perform fast 3D TOF PET image reconstruction. Finally, we illustrate these properties using simulated data.

  7. Analytical properties of time-of-flight PET data

    Science.gov (United States)

    Cho, Sanghee; Ahn, Sangtae; Li, Quanzheng; Leahy, Richard M.

    2008-06-01

    We investigate the analytical properties of time-of-flight (TOF) positron emission tomography (PET) sinograms, where the data are modeled as line integrals weighted by a spatially invariant TOF kernel. First, we investigate the Fourier transform properties of 2D TOF data and extend the 'bow-tie' property of the 2D Radon transform to the time-of-flight case. Second, we describe a new exact Fourier rebinning method, TOF-FOREX, based on the Fourier transform in the time-of-flight variable. We then combine TOF-FOREX rebinning with a direct extension of the projection slice theorem to TOF data, to perform fast 3D TOF PET image reconstruction. Finally, we illustrate these properties using simulated data.

  8. Analytical properties of time-of-flight PET data

    International Nuclear Information System (INIS)

    Cho, Sanghee; Ahn, Sangtae; Li Quanzheng; Leahy, Richard M

    2008-01-01

    We investigate the analytical properties of time-of-flight (TOF) positron emission tomography (PET) sinograms, where the data are modeled as line integrals weighted by a spatially invariant TOF kernel. First, we investigate the Fourier transform properties of 2D TOF data and extend the 'bow-tie' property of the 2D Radon transform to the time-of-flight case. Second, we describe a new exact Fourier rebinning method, TOF-FOREX, based on the Fourier transform in the time-of-flight variable. We then combine TOF-FOREX rebinning with a direct extension of the projection slice theorem to TOF data, to perform fast 3D TOF PET image reconstruction. Finally, we illustrate these properties using simulated data

  9. Analytical properties of time-of-flight PET data

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Sanghee; Ahn, Sangtae; Li Quanzheng; Leahy, Richard M [Signal and Image Processing Institute, University of Southern California, Los Angeles, CA 90089 (United States)], E-mail: leahy@sipi.usc.edu

    2008-06-07

    We investigate the analytical properties of time-of-flight (TOF) positron emission tomography (PET) sinograms, where the data are modeled as line integrals weighted by a spatially invariant TOF kernel. First, we investigate the Fourier transform properties of 2D TOF data and extend the 'bow-tie' property of the 2D Radon transform to the time-of-flight case. Second, we describe a new exact Fourier rebinning method, TOF-FOREX, based on the Fourier transform in the time-of-flight variable. We then combine TOF-FOREX rebinning with a direct extension of the projection slice theorem to TOF data, to perform fast 3D TOF PET image reconstruction. Finally, we illustrate these properties using simulated data.

  10. ALICE Time Of Flight Detector

    CERN Multimedia

    Alici, A

    2013-01-01

    Charged particles in the intermediate momentum range are identified in ALICE by the Time Of Flight (TOF) detector. The time measurement with the TOF, in conjunction with the momentum and track length measured by the tracking detector, is used to calculate the particle mass.

  11. New developments in molecular imaging: positron emission tomography time-of-flight (TOF-PET); Nuevos desarrollos en imagen molecular: Tomografia por Emision de Positrones con Teimpo de Vuelo (TOF-PET)

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar, P.; Couce, B.; Iglesias, A.; Lois, C.

    2011-07-01

    Positron Emission tomography (PET) in increasingly being used in oncology for the diagnosis and staging of disease, as well as in monitoring response to therapy. One of the last advances in PET is the incorporation of Time-of-Flight (TOF) information, which improves the tomographic reconstruction process and subsequently the quality of the final image. In this work, we explain the principles of PET and the fundamentals of TOF-PET. Clinical images are shown in order to illustrate how TOF-PET improves the detectability of small lesions, particularly in patients with high body mass index. (Author) 20 refs.

  12. The measurement programme at the neutron time-of-flight facility n_TOF at CERN

    Directory of Open Access Journals (Sweden)

    Gunsing F.

    2017-01-01

    Full Text Available Neutron-induced reaction cross sections are important for a wide variety of research fields ranging from the study of nuclear level densities, nucleosynthesis to applications of nuclear technology like design, and criticality and safety assessment of existing and future nuclear reactors, radiation dosimetry, medical applications, nuclear waste transmutation, accelerator-driven systems and fuel cycle investigations. Simulations and calculations of nuclear technology applications largely rely on evaluated nuclear data libraries. The evaluations in these libraries are based both on experimental data and theoretical models. CERN’s neutron time-of-flight facility n_TOF has produced a considerable amount of experimental data since it has become fully operational with the start of its scientific measurement programme in 2001. While for a long period a single measurement station (EAR1 located at 185 m from the neutron production target was available, the construction of a second beam line at 20 m (EAR2 in 2014 has substantially increased the measurement capabilities of the facility. An outline of the experimental nuclear data activities at n_TOF will be presented.

  13. Development of the STEFF detector for the neutron Time Of Flight facility (n_TOF), CERN

    CERN Document Server

    AUTHOR|(CDS)2092031

    Signicant work has been performed on the development of STEFF (SpecTrometer for Exotic Fission Fragments), a 2E2V (2-Energy 2-Velocity) spectrometer built by the University of Manchester Fission Group. The majority of this work was in the development of the time-of-flight systems, in particular the stop detector; with the main goals of improving the timing resolution and the detection eciency of the ssion fragments. Further development of the STEFF spectrometer was done to enable 2E2V measurements of the $^{235}$U(n,f) reaction with coincident measurements using a white neutron spectra of energies ranging from 10 meV to 200 MeV provided by the n_TOF (neutron Time Of Flight) facility, CERN. The STEFF spectrometer was successfully operated twice on the Experimental Area-2 high flux pulsed neutron beam line resulting in 2E2V measurements for ssion events with neutron energies ranging from 20 meV to 10 MeV. The first experiment received 1.36 X 10$^{18}$ POT (Protons On Target) with stable conditions and the seco...

  14. APD Response Time Measurements for Future TOF-E Systems

    Science.gov (United States)

    Starkey, M. J.; Ogasawara, K.; Dayeh, M. A.; Desai, M. I.

    2017-12-01

    In space physics, the ability to detect ions is crucial to understanding plasma distributions in the solar wind. This usually typically requires the determination of the particle's mass, charge, and total energy. Current ion detection schemes are implemented in three sequential parts; an electrostatic analyzer for energy per charge (E/Q) measurements, a time-of-flight (TOF) for mass per charge (M/Q) measurements, and a solid-state detector (SSD) for total energy (E) measurements. Recent work has suggested the use of avalanche photodiode detectors (APD) for a simultaneous TOF and total energy (TOF-E) measurement system, which would replace traditional SSDs, simplify design, and reduce costs. Although TOF based ion spectrometry typically requires timing resolution of systems.

  15. Novel, Improved Sample Preparation for Rapid, Direct Identification from Positive Blood Cultures Using Matrix-Assisted Laser Desorption/Ionization Time-of-Flight (MALDI-TOF) Mass Spectrometry

    OpenAIRE

    Schubert, Sören; Weinert, Kirsten; Wagner, Chris; Gunzl, Beatrix; Wieser, Andreas; Maier, Thomas; Kostrzewa, Markus

    2011-01-01

    Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) is widely used for rapid and reliable identification of bacteria and yeast grown on agar plates. Moreover, MALDI-TOF MS also holds promise for bacterial identification from blood culture (BC) broths in hospital laboratories. The most important technical step for the identification of bacteria from positive BCs by MALDI-TOF MS is sample preparation to remove blood cells and host proteins. We present a m...

  16. Ion microtomography using ion time-of-flight

    International Nuclear Information System (INIS)

    Roberts, M.L.; Heikkinen, D.W.; Proctor, I.D.; Pontau, A.E.; Olona, G.T.; Felter, T.E.; Morse, D.H.; Hess, B.V.

    1992-01-01

    We have developed and are in the process of testing an ion time-of-flight (TOF) detector system for use in our ion microtomography measurements. Using TOF, ion energy is determined by measurement of the ion's flight time over a certain path length. For ion microtomography, the principle advantage of TOF analysis is that ion count rates of several hundred thousand counts per second can be achieved as compared to a limit of about ten thousand ions per second when using a solid-state silicon surface barrier detector and associated electronics. This greater than 10 fold increase in count rate correspondingly shortens sample analysis time or increases the amount of data that can be collected on a given sample. Details of the system and progress to date are described

  17. Material Classification Using Raw Time-of-Flight Measurements

    KAUST Repository

    Su, Shuochen; Heide, Felix; Swanson, Robin J.; Klein, Jonathan; Callenberg, Clara; Hullin, Matthias; Heidrich, Wolfgang

    2016-01-01

    We propose a material classification method using raw time-of-flight (ToF) measurements. ToF cameras capture the correlation between a reference signal and the temporal response of material to incident illumination. Such measurements encode unique

  18. Time-of-flight positron emission tomography (T.O.F. P.E.T.)

    International Nuclear Information System (INIS)

    Allemand, R.

    1984-10-01

    A new important step has been made in the performances of the time-of-flight positron imaging for the two last years. It has been proved that a high spatial resolution can be obtained with the T.O.F. technique. It has also been shown that the overall sensitivity (taking into account the sensitivity gain and BaF2 detection characteristics) is quite close to the one of conventional methods. On the other hand, the basic advantages related to the high counting rate capability, the random coincidences rejection etc... of course remain. It is probably safe to assume that significant improvements can be expected if new technological efforts are invested. Unfortunately, P.E.T. is a complex and expensive tool which has been only used up to now in the research groups (about 50 centers in the world). The justification of new technical developments will be quite clear when this modality will be considered in the assessment of diseases and in clinical diagnostic applications

  19. Identification of protein biomarkers in Dupuytren's contracture using surface enhanced laser desorption ionization time-of-flight mass spectrometry (SELDI-TOF-MS).

    Science.gov (United States)

    O'Gorman, David; Howard, Jeffrey C; Varallo, Vincenzo M; Cadieux, Peter; Bowley, Erin; McLean, Kris; Pak, Brian J; Gan, Bing Siang

    2006-06-01

    To study the protein expression profiles associated with Dupuytren's contracture (DC) to identify potential disease protein biomarkers (PBM) using a proteomic technology--Surface Enhanced Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (SELDI-TOF-MS). Normal and disease palmar fascia from DC patients were analyzed using Ciphergen's SELDI-TOF-MS Protein Biological System II (PBSII) ProteinChip reader. Analysis of the resulting SELDI-TOF spectra was carried out using the peak cluster analysis program (BioMarker Wizard, Ciphergen). Common peak clusters were then filtered using a bootstrap algorithm called SAM (Significant Analysis of Microarrays) for increased fidelity in our analysis. Several differentially expressed low molecular weight (mass standard deviation for both methods of biomarker-rich low molecular weight region of the human proteome. Application of such novel technology may help clinicians to focus on specific molecular abnormalities in diseases with no known molecular pathogenesis, and uncover therapeutic and/or diagnostic targets.

  20. Screening of 439 Pesticide Residues in Fruits and Vegetables by Gas Chromatography-Quadrupole-Time-of-Flight Mass Spectrometry Based on TOF Accurate Mass Database and Q-TOF Spectrum Library.

    Science.gov (United States)

    Li, Jian-Xun; Li, Xiao-Ying; Chang, Qiao-Ying; Li, Yan; Jin, Ling-He; Pang, Guo-Fang; Fan, Chun-Lin

    2018-05-03

    Because of its unique characteristics of accurate mass full-spectrum acquisition, high resolution, and fast acquisition rates, GC-quadrupole-time-of-flight MS (GC-Q-TOF/MS) has become a powerful tool for pesticide residue analysis. In this study, a TOF accurate mass database and Q-TOF spectrum library of 439 pesticides were established, and the parameters of the TOF database were optimized. Through solid-phase extraction (SPE), whereby pesticides are extracted from fruit and vegetable substrates by using 40 mL 1% acetic acid in acetonitrile (v/v), purified by the Carbon/NH₂ SPE cartridge, and finally detected by GC-Q-TOF/MS, the rapid analysis of 439 pesticides in fruits and vegetables can be achieved. The methodology verification results show that more than 70 and 91% of pesticides, spiked in fruits and vegetables with concentrations of 10 and 100 μg/kg, respectively, saw recoveries that conform to the European Commission's criterion of between 70 and 120% with RSD ≤20%. Eighty-one percent of pesticides have screening detection limits lower than 10 μg/kg, which makes this a reliable analysis technology for the monitoring of pesticide residues in fruits and vegetables. This technology was further validated for its characteristics of high precision, high speed, and high throughput through successful detection of 9817 samples during 2013-2015.

  1. Radio frequency (RF) time-of-flight ranging for wireless sensor networks

    International Nuclear Information System (INIS)

    Thorbjornsen, B; White, N M; Brown, A D; Reeve, J S

    2010-01-01

    Position information of nodes within wireless sensor networks (WSNs) is often a requirement in order to make use of the data recorded by the sensors themselves. On deployment the nodes normally have no prior knowledge of their position and thus a locationing mechanism is required to determine their positions. In this paper, we describe a method to determine the point-to-point range between sensor nodes as part of the locationing process. A two-way time-of-flight (TOF) ranging scheme is presented using narrow-band RF. The frequency difference between the transceivers involved with the point-to-point measurement is used to obtain a sub-clock TOF phase offset measurement in order to achieve high resolution TOF measurements. The ranging algorithm has been developed and prototyped on a TI CC2430 development kit with no additional hardware being required. Performance results have been obtained for the line-of-sight (LOS), non-line-of-sight (NLOS) and indoor conditions. Accuracy is typically better than 7.0 m RMS for the LOS condition over 250.0 m and 15.8 m RMS for the NLOS condition over 120.0 m using a 100 sample average. Indoor accuracy is measured to 1.7 m RMS using a 1000 sample average over 8.0 m. Ranging error is linear and does not increase with the increased transmitter–receiver distance. Our TOA ranging scheme demonstrates a novel system where resolution and accuracy are time dependent in comparison with alternative frequency-dependent methods using narrow-band RF

  2. [Separation and identification of bovine lactoferricin by high performance liquid chromatography-matrix-assisted laser desorption/ionization time of flight/ time of flight mass spectrometry].

    Science.gov (United States)

    An, Meichen; Liu, Ning

    2010-02-01

    A high performance liquid chromatography-matrix-assisted laser desorption/ionization time of flight/time of flight mass spectrometry (HPLC-MALDI-TOF/TOF MS) method was developed for the separation and identification of bovine lactoferricin (LfcinB). Bovine lactoferrin was hydrolyzed by pepsin and then separated by ion exchange chromatography and reversed-phase liquid chromatography (RP-LC). The antibacterial activities of the fractions from RP-LC separation were determined and the protein concentration of the fraction with the highest activity was measured, whose sequence was indentified by MALDI-TOF/TOF MS. The relative molecular mass of LfcinB was 3 124.89 and the protein concentration was 18.20 microg/mL. The method of producing LfcinB proposed in this study has fast speed, high accuracy and high resolution.

  3. Differentiation of Clinically Relevant mucorales Rhizopus microsporus and R. arrhizus by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS)

    NARCIS (Netherlands)

    Dolatabadi, S.; Kolecka, A.; Versteeg, Matthijs; de Hoog, Sybren G; Boekhout, Teun

    This study addresses the usefulness of Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS) for reliable identification of the two most frequently occuring clinical species of Rhizopus, namely R. arrhizus with its two varieties arrhizus and delemar and R.

  4. Time-Based Readout of a Silicon Photomultiplier (SiPM) for Time of Flight Positron Emission Tomography (TOF-PET)

    CERN Document Server

    Powolny, F; Brunner, S E; Hillemanns, H; Meyer, T; Garutti, E; Williams, M C S; Auffray, E; Shen, W; Goettlich, M; Jarron, P; Schultz-Coulon, H C

    2011-01-01

    Time of flight (TOF) measurements in positron emission tomography (PET) are very challenging in terms of timing performance, and should ideally achieve less than 100 ps FWHM precision. We present a time-based differential technique to read out silicon photomultipliers (SiPMs) which has less than 20 ps FWHM electronic jitter. The novel readout is a fast front end circuit (NINO) based on a first stage differential current mode amplifier with 20 Omega input resistance. Therefore the amplifier inputs are connected differentially to the SiPM's anode and cathode ports. The leading edge of the output signal provides the time information, while the trailing edge provides the energy information. Based on a Monte Carlo photon-generation model, HSPICE simulations were run with a 3 x 3 mm(2) SiPM-model, read out with a differential current amplifier. The results of these simulations are presented here and compared with experimental data obtained with a 3 x 3 x 15 mm(3) LSO crystal coupled to a SiPM. The measured time coi...

  5. The IPNS rietveld analysis software package for TOF [time-of-flight] powder diffraction data: Recent developments

    International Nuclear Information System (INIS)

    Rotella, F.J.; Richardson, J.W. Jr.

    1987-01-01

    A system of FORTRAN programs for the analysis of time-of-flight (TOF) neutron powder diffraction data via the Rietveld method at IPNS has been modified recently, making it possible to analyze data that exhibit diffraction maxima broadened due to anisotropic strain and that can be modeled by individual atomic anharmonic thermal vibrations. The observation of noncrystalline scattering in data from some powder samples has led to the development of software to fit such scattering by a function related to a radial distribution function through Fourier-filtering techniques. The ''user friendliness'' of the IPNS Rietveld package has been enhanced by the development of ''RIETVELD,'' a menu-based VAX/VMS command language routine for interactive file manipulation and program execution

  6. Multivariate Sensitivity Analysis of Time-of-Flight Sensor Fusion

    Science.gov (United States)

    Schwarz, Sebastian; Sjöström, Mårten; Olsson, Roger

    2014-09-01

    Obtaining three-dimensional scenery data is an essential task in computer vision, with diverse applications in various areas such as manufacturing and quality control, security and surveillance, or user interaction and entertainment. Dedicated Time-of-Flight sensors can provide detailed scenery depth in real-time and overcome short-comings of traditional stereo analysis. Nonetheless, they do not provide texture information and have limited spatial resolution. Therefore such sensors are typically combined with high resolution video sensors. Time-of-Flight Sensor Fusion is a highly active field of research. Over the recent years, there have been multiple proposals addressing important topics such as texture-guided depth upsampling and depth data denoising. In this article we take a step back and look at the underlying principles of ToF sensor fusion. We derive the ToF sensor fusion error model and evaluate its sensitivity to inaccuracies in camera calibration and depth measurements. In accordance with our findings, we propose certain courses of action to ensure high quality fusion results. With this multivariate sensitivity analysis of the ToF sensor fusion model, we provide an important guideline for designing, calibrating and running a sophisticated Time-of-Flight sensor fusion capture systems.

  7. A time of flight detector for high energy heavy particles

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Z.; O`Connor, D.J. [Newcastle Univ., NSW (Australia). Dept. of Physics

    1993-12-31

    As a commonly used method to measure the energy of a particle with known mass, the flight time of the particle travelling over a certain distance is measured. A detector based on this principle is called a time-of-flight (TOF) detector which has attracted interests constantly during the last 15 years. For high energy heavy particle energy detection, TOF detector is an appropriated choice and such a system, developed recently, is described in this paper. 8 refs., 3 figs.

  8. A time of flight detector for high energy heavy particles

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Z; O` Connor, D J [Newcastle Univ., NSW (Australia). Dept. of Physics

    1994-12-31

    As a commonly used method to measure the energy of a particle with known mass, the flight time of the particle travelling over a certain distance is measured. A detector based on this principle is called a time-of-flight (TOF) detector which has attracted interests constantly during the last 15 years. For high energy heavy particle energy detection, TOF detector is an appropriated choice and such a system, developed recently, is described in this paper. 8 refs., 3 figs.

  9. Design and performance of a new positron computed tomograph (P.C.T.) using the time-of-flight (T.O.F.) information

    International Nuclear Information System (INIS)

    Laval, M.; Allemand, R.; Bouvier, A.

    1982-09-01

    A new tomograph for positron imaging using the time of flight measurement is described. Fast CsF crystals are used in this first prototype. Compared to the classical reconstruction method, the results of adding this information is a substantial increase of sensitivity, a reduced random coincidence count rate, and slight decrease of a scatter contribution in the images. Further improvements in the T.O.F. accuracy can be expected in using faster crystals

  10. Time-of-flight scattering and recoiling spectrometry

    International Nuclear Information System (INIS)

    Rabalais, J.W.

    1991-01-01

    Ion scattering and recoiling spectrometry consists of directing a collimated beam of monoenergetic ions towards a surface and measuring the flux of scattered and recoiled particles from this surface. When the neutral plus ion flux is velocity selected by measuring the flight times from the sample to the detector, the technique is called time-of-flight scattering and recoiling spectrometry (TOF-SARS). TOF-SARS is capable of (1) surface elemental analysis by applying classical mechanics to the velocities of the particles, (2) surface structural analysis by monitoring the angular anisotropies in the particle flux, and (3) ion-surface electron exchange probabilities by analysis of the ion/neutral fractions in the particle flux. Examples of these three areas are presented herein

  11. arXiv Performance of the ALICE Time-Of-Flight detector at the LHC

    CERN Document Server

    INSPIRE-00531272

    The ALICE Time-Of-Flight (TOF) detector at LHC is based on the Multigap Resistive Plate Chambers (MRPCs). The TOF performance during LHC Run 2 is here reported. Particular attention is given to the improved time resolution reached by TOF detector of $56$ ps, with the consequently improved particle identification capabilities.

  12. Analysis of Phospholipid Mixtures from Biological Tissues by Matrix-Assisted Laser Desorption and Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS): A Laboratory Experiment

    Science.gov (United States)

    Eibisch, Mandy; Fuchs, Beate; Schiller, Jurgen; Sub, Rosmarie; Teuber, Kristin

    2011-01-01

    Matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI-TOF MS) is increasingly used to investigate the phospholipid (PL) compositions of tissues and body fluids, often without previous separation of the total mixture into the individual PL classes. Therefore, the questions of whether all PL classes are detectable…

  13. History and current status of PET development based on time of flight

    International Nuclear Information System (INIS)

    Yun Mingkai; Li Ting; Zhang Zhiming; Zhang Yubao; Shan Baoci; Wei Long

    2012-01-01

    The principle of time of flight (TOF) positron emission tomography (PET) and a brief review of the history of TOF-PET are introduced. The factors influencing the time resolution of a TOF-PET scanner are presented, especially focus on the intrinsic properties of scintillators and front-end electronics. Challenges and achievements of the structure of data organization and image reconstruction are reviewed. Finally, the benefits of TOF-PET on image quality improvement and tumor detection are emphasized. (authors)

  14. MALDI-TOF MS/MS measurements of PMMA

    NARCIS (Netherlands)

    Becer, C.R.; Baumgaertel, A.; Gottschaldt, M.; Schubert, U.S.

    2008-01-01

    The polymer poly(Me methacrylate) (PMMA) was analyzed using the matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) technique. The MALDI-TOF MS app. was coupled with a collision-induced dissocn. (CID) unit. The performance of the MALDI-TOF/TOF MS method in

  15. Timing Calibration for Time-of-Flight PET Using Positron-Emitting Isotopes and Annihilation Targets

    Science.gov (United States)

    Li, Xiaoli; Burr, Kent C.; Wang, Gin-Chung; Du, Huini; Gagnon, Daniel

    2016-06-01

    Adding time-of-flight (TOF) technology has been proven to improve image quality in positron emission tomography (PET). In order for TOF information to significantly reduce the statistical noise in reconstructed PET images, good timing resolution is needed across the scanner field of view (FOV). This work proposes an accurate, robust, and practical crystal-based timing calibration method using 18F - FDG positron-emitting sources together with a spatially separated annihilation target. We calibrated a prototype Toshiba TOF PET scanner using this method and then assessed its timing resolution at different locations in the scanner FOV.

  16. Time-of-flight range imaging for underwater applications

    Science.gov (United States)

    Merbold, Hannes; Catregn, Gion-Pol; Leutenegger, Tobias

    2018-02-01

    Precise and low-cost range imaging in underwater settings with object distances on the meter level is demonstrated. This is addressed through silicon-based time-of-flight (TOF) cameras operated with light emitting diodes (LEDs) at visible, rather than near-IR wavelengths. We find that the attainable performance depends on a variety of parameters, such as the wavelength dependent absorption of water, the emitted optical power and response times of the LEDs, or the spectral sensitivity of the TOF chip. An in-depth analysis of the interplay between the different parameters is given and the performance of underwater TOF imaging using different visible illumination wavelengths is analyzed.

  17. A novel cluster of Mycobacterium abscessus complex revealed by matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS).

    Science.gov (United States)

    Suzuki, Hiromichi; Yoshida, Shiomi; Yoshida, Atsushi; Okuzumi, Katsuko; Fukusima, Atsuhito; Hishinuma, Akira

    2015-12-01

    Mycobacterium abscessus complex is a rapidly growing mycobacterium consisting of 3 subspecies, M. abscessus, Mycobacterium massiliense, and Mycobacterium bolletii. However, rapid and accurate species identification is difficult. We first evaluated a suitable protocol of matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS) for distinguishing these subspecies. Then, we studied spectral signals by MALDI-TOF MS in 59 M. abscessus, 42 M. massiliense, and 2 M. bolletii. Among several specific spectral signals, 4 signals clearly differentiate M. massiliense from the other 2 subspecies, M. abscessus and M. bolletii. Moreover, 6 of the 42 M. massiliense isolates showed a spectral pattern similar to M. abscessus. These isolates correspond to the distinctive class of M. massiliense (cluster D) which is closer to M. abscessus by the previous variable number tandem repeat analysis. These results indicate that MALDI-TOF MS is not only useful for the identification of 3 subspecies of M. abscessus complex but also capable of distinguishing clusters of M. massiliense. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Recent developments in time-of-flight PET

    International Nuclear Information System (INIS)

    Vandenberghe, S.; Mikhaylova, E.; D’Hoe, E.; Mollet, P.; Karp, J. S.

    2016-01-01

    While the first time-of-flight (TOF)-positron emission tomography (PET) systems were already built in the early 1980s, limited clinical studies were acquired on these scanners. PET was still a research tool, and the available TOF-PET systems were experimental. Due to a combination of low stopping power and limited spatial resolution (caused by limited light output of the scintillators), these systems could not compete with bismuth germanate (BGO)-based PET scanners. Developments on TOF system were limited for about a decade but started again around 2000. The combination of fast photomultipliers, scintillators with high density, modern electronics, and faster computing power for image reconstruction have made it possible to introduce this principle in clinical TOF-PET systems. This paper reviews recent developments in system design, image reconstruction, corrections, and the potential in new applications for TOF-PET. After explaining the basic principles of time-of-flight, the difficulties in detector technology and electronics to obtain a good and stable timing resolution are shortly explained. The available clinical systems and prototypes under development are described in detail. The development of this type of PET scanner also requires modified image reconstruction with accurate modeling and correction methods. The additional dimension introduced by the time difference motivates a shift from sinogram- to listmode-based reconstruction. This reconstruction is however rather slow and therefore rebinning techniques specific for TOF data have been proposed. The main motivation for TOF-PET remains the large potential for image quality improvement and more accurate quantification for a given number of counts. The gain is related to the ratio of object size and spatial extent of the TOF kernel and is therefore particularly relevant for heavy patients, where image quality degrades significantly due to increased attenuation (low counts) and high scatter fractions. The

  19. Time-of-flight cameras principles, methods and applications

    CERN Document Server

    Hansard, Miles; Choi, Ouk; Horaud, Radu

    2012-01-01

    Time-of-flight (TOF) cameras provide a depth value at each pixel, from which the 3D structure of the scene can be estimated. This new type of active sensor makes it possible to go beyond traditional 2D image processing, directly to depth-based and 3D scene processing. Many computer vision and graphics applications can benefit from TOF data, including 3D reconstruction, activity and gesture recognition, motion capture and face detection. It is already possible to use multiple TOF cameras, in order to increase the scene coverage, and to combine the depth data with images from several colour came

  20. Monte-Carlo studies of the performance of scintillator detectors for time-of-flight measurements

    International Nuclear Information System (INIS)

    Yang, X.H.

    1995-01-01

    In this paper we report on a Monte-Carlo program, SToF, developed to evaluate the performance of scintillator-based Time-of-Flight (TOF) detectors. This program has been used in the design of the TOF system for the PHENIX experiment at RHIC. The program was used to evaluate the intrinsic time-of-flight resolution of various scintillator and light-guide geometries, and the results of these simulations are presented here. The simulation results agree extremely well with measured pulse-height and time distributions with one adjustable parameter. These results, thus, explain also the reduced quantities, such as the position dependence of the time resolution, etc, implying that SToF will be generally useful for estimating the performance of TOF detectors. ((orig.))

  1. Timing properties of a time-of-flight detector

    International Nuclear Information System (INIS)

    Nakagawa, Takahide; Yuasa-Nakagawa, Keiko.

    1989-01-01

    The time resolution of a time-of-flight (T.O.F.) detector which consists of a channel plate detector (CPD) with a central hole and a surface barrier detector (SBD) was measured. A time resolution of 80 psec fwhm was obtained for 8.78 MeV alpha particles. The influence on fast timing of the SBD of alpha particles was carefully studied. The plasma delay time and time resolution of the SBD were found to strongly depend on the electric field strength and properties of the SBD. (author)

  2. Sensitivity of peak positions to flight-path parameters in a deep-inelastic scattering neutron TOF spectrometer

    International Nuclear Information System (INIS)

    Gray, E.MacA.; Chatzidimitriou-Dreismann, C.A.; Blach, T.P.

    2012-01-01

    The effects of small changes in flight-path parameters (primary and secondary flight paths, detector angles), and of displacement of the sample along the beam axis away from its ideal position, are examined for an inelastic time-of-flight (TOF) neutron spectrometer, emphasising the deep-inelastic regime. The aim was to develop a rational basis for deciding what measured shifts in the positions of spectral peaks could be regarded as reliable in the light of the uncertainties in the calibrated flight-path parameters. Uncertainty in the length of the primary or secondary flight path has the least effect on the positions of the peaks of H, D and He, which are dominated by the accuracy of the calibration of the detector angles. This aspect of the calibration of a TOF spectrometer therefore demands close attention to achieve reliable outcomes where the position of the peaks is of significant scientific interest and is discussed in detail. The corresponding sensitivities of the position of peak of the Compton profile, J(y), to flight-path parameters and sample position are also examined, focusing on the comparability across experiments of results for H, D and He. We show that positioning the sample to within a few mm of the ideal position is required to ensure good comparability between experiments if data from detectors at high forward angles are to be reliably interpreted.

  3. Real-time analysis of aromatics in combustion engine exhaust by resonance-enhanced multiphoton ionisation time-of-flight mass spectrometry (REMPI-TOF-MS): a robust tool for chassis dynamometer testing

    Energy Technology Data Exchange (ETDEWEB)

    Adam, T.W. [European Commission Joint Research Centre, Institute for Environment and Sustainability, Transport and Air Quality Unit, Ispra, VA (Italy); Clairotte, M.; Manfredi, U.; Carriero, M.; Martini, G.; Krasenbrink, A.; Astorga, C. [European Commission Joint Research Centre, Institute for Environment and Sustainability, Transport and Air Quality Unit, Ispra, VA (Italy); European Commission Joint Research Centre, Institute for Energy and Transport, Sustainable Transport Unit, Ispra, Varese (Italy); Streibel, T.; Pommeres, A.; Sklorz, M. [University of Rostock, Analytical Chemistry/Joint Mass Spectrometry Centre, Institute of Chemistry, Rostock (Germany); Elsasser, M.; Zimmermann, R. [Cooperation Group Complex Molecular Systems (CMA)/Joint Mass Spectrometry Centre (JMSC), Neuherberg (Germany); University of Rostock, Analytical Chemistry/Joint Mass Spectrometry Centre, Institute of Chemistry, Rostock (Germany)

    2012-07-15

    Resonance-enhanced multiphoton ionisation time-of-flight mass spectrometry (REMPI-TOF-MS) is a robust method for real-time analysis of monocyclic and polycyclic aromatic hydrocarbons in complex emissions. A mobile system has been developed which enables direct analysis on site. In this paper, we utilize a multicomponent calibration scheme based on the analytes' photo-ionisation cross-sections relative to a calibrated species. This allows semi-quantification of a great number of components by only calibrating one compound of choice, here toluene. The cross-sections were determined by injecting nebulised solutions of aromatic compounds into the TOF-MS ion source with the help of a HPLC pump. Then, REMPI-TOF-MS was implemented at various chassis dynamometers and test cells and the exhaust of the following vehicles and engines investigated: a compression ignition light-duty (LD) passenger car, a compression ignition LD van, two spark ignition LD passenger cars, 2 two-stroke mopeds, and a two-stroke engine of a string gas trimmer. The quantitative time profiles of benzene are shown. The results indicate that two-stroke engines are a significant source for toxic and cancerogenic compounds. Air pollution and health effects caused by gardening equipment might still be underestimated. (orig.)

  4. Feasibility of matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS) networking in university hospitals in Brussels.

    Science.gov (United States)

    Martiny, D; Cremagnani, P; Gaillard, A; Miendje Deyi, V Y; Mascart, G; Ebraert, A; Attalibi, S; Dediste, A; Vandenberg, O

    2014-05-01

    The mutualisation of analytical platforms might be used to address rising healthcare costs. Our study aimed to evaluate the feasibility of networking a unique matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS) system for common use in several university hospitals in Brussels, Belgium. During a one-month period, 1,055 successive bacterial isolates from the Brugmann University Hospital were identified on-site using conventional techniques; these same isolates were also identified using a MALDI-TOF MS system at the Porte de Hal Laboratory by sending target plates and identification projects via transportation and the INFECTIO_MALDI software (Infopartner, Nancy, France), respectively. The occurrence of transmission problems (MS networking always provided a faster identification result than conventional techniques, except when chromogenic culture media and oxidase tests were used (p MS networking could lead to substantial annual cost savings. MALDI-TOF MS networking presents many advantages, and few conventional techniques (optochin and oxidase tests) are required to ensure the same quality in patient care from the distant laboratory. Nevertheless, such networking should not be considered unless there is a reorganisation of workflow, efficient communication between teams, qualified technologists and a reliable IT department and helpdesk to manage potential connectivity problems.

  5. Avalanche photodiode based time-of-flight mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Ogasawara, Keiichi, E-mail: kogasawara@swri.edu; Livi, Stefano A.; Desai, Mihir I.; Ebert, Robert W.; McComas, David J.; Walther, Brandon C. [Southwest Research Institute, 6220 Culebra Road, San Antonio, Texas 78238 (United States)

    2015-08-15

    This study reports on the performance of Avalanche Photodiodes (APDs) as a timing detector for ion Time-of-Flight (TOF) mass spectroscopy. We found that the fast signal carrier speed in a reach-through type APD enables an extremely short timescale response with a mass or energy independent <2 ns rise time for <200 keV ions (1−40 AMU) under proper bias voltage operations. When combined with a microchannel plate to detect start electron signals from an ultra-thin carbon foil, the APD comprises a novel TOF system that successfully operates with a <0.8 ns intrinsic timing resolution even using commercial off-the-shelf constant-fraction discriminators. By replacing conventional total-energy detectors in the TOF-Energy system, APDs offer significant power and mass savings or an anti-coincidence background rejection capability in future space instrumentation.

  6. Application of targeted quantitative proteomics analysis in human cerebrospinal fluid using a liquid chromatography matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometer (LC MALDI TOF/TOF) platform.

    Science.gov (United States)

    Pan, Sheng; Rush, John; Peskind, Elaine R; Galasko, Douglas; Chung, Kathryn; Quinn, Joseph; Jankovic, Joseph; Leverenz, James B; Zabetian, Cyrus; Pan, Catherine; Wang, Yan; Oh, Jung Hun; Gao, Jean; Zhang, Jianpeng; Montine, Thomas; Zhang, Jing

    2008-02-01

    Targeted quantitative proteomics by mass spectrometry aims to selectively detect one or a panel of peptides/proteins in a complex sample and is particularly appealing for novel biomarker verification/validation because it does not require specific antibodies. Here, we demonstrated the application of targeted quantitative proteomics in searching, identifying, and quantifying selected peptides in human cerebrospinal spinal fluid (CSF) using a matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometer (MALDI TOF/TOF)-based platform. The approach involved two major components: the use of isotopic-labeled synthetic peptides as references for targeted identification and quantification and a highly selective mass spectrometric analysis based on the unique characteristics of the MALDI instrument. The platform provides high confidence for targeted peptide detection in a complex system and can potentially be developed into a high-throughput system. Using the liquid chromatography (LC) MALDI TOF/TOF platform and the complementary identification strategy, we were able to selectively identify and quantify a panel of targeted peptides in the whole proteome of CSF without prior depletion of abundant proteins. The effectiveness and robustness of the approach associated with different sample complexity, sample preparation strategies, as well as mass spectrometric quantification were evaluated. Other issues related to chromatography separation and the feasibility for high-throughput analysis were also discussed. Finally, we applied targeted quantitative proteomics to analyze a subset of previously identified candidate markers in CSF samples of patients with Parkinson's disease (PD) at different stages and Alzheimer's disease (AD) along with normal controls.

  7. Novel, improved sample preparation for rapid, direct identification from positive blood cultures using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry.

    Science.gov (United States)

    Schubert, Sören; Weinert, Kirsten; Wagner, Chris; Gunzl, Beatrix; Wieser, Andreas; Maier, Thomas; Kostrzewa, Markus

    2011-11-01

    Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) is widely used for rapid and reliable identification of bacteria and yeast grown on agar plates. Moreover, MALDI-TOF MS also holds promise for bacterial identification from blood culture (BC) broths in hospital laboratories. The most important technical step for the identification of bacteria from positive BCs by MALDI-TOF MS is sample preparation to remove blood cells and host proteins. We present a method for novel, rapid sample preparation using differential lysis of blood cells. We demonstrate the efficacy and ease of use of this sample preparation and subsequent MALDI-TOF MS identification, applying it to a total of 500 aerobic and anaerobic BCs reported to be positive by a Bactec 9240 system. In 86.5% of all BCs, the microorganism species were correctly identified. Moreover, in 18/27 mixed cultures at least one isolate was correctly identified. A novel method that adjusts the score value for MALDI-TOF MS results is proposed, further improving the proportion of correctly identified samples. The results of the present study show that the MALDI-TOF MS-based method allows rapid (directly from positive BCs and with high accuracy. Copyright © 2011 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  8. Analytical detection of explosives and illicit, prescribed and designer drugs using proton transfer reaction time-of-flight mass spectrometry (PTR-TOF-MS)

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, Bishu; Petersson, Fredrik; Juerschik, Simone [Institut fuer Ionenphysik und Angewandte Physik, Universitaet Innsbruck, Technikerstr. 25, 6020 Innsbruck (Austria); Sulzer, Philipp; Jordan, Alfons [IONICON Analytik GmbH, Eduard-Bodem-Gasse 3, 6020 Innsbruck (Austria); Maerk, Tilmann D. [Institut fuer Ionenphysik und Angewandte Physik, Universitaet Innsbruck, Technikerstr. 25, 6020 Innsbruck (Austria); IONICON Analytik GmbH, Eduard-Bodem-Gasse 3, 6020 Innsbruck (Austria); Watts, Peter; Mayhew, Chris A. [School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 4TT (United Kingdom)

    2011-07-01

    This work demonstrates the extremely favorable features of Proton Transfer Reaction Time-of-flight Mass Spectrometry (PTR-TOF-MS) for the detection and identification of solid explosives, chemical warfare agent simulants and illicit, prescribed and designer drugs in real time. Here, we report the use of PTR-TOF, for the detection of explosives (e.g., trinitrotoluene, trinitrobenzene) and illicit, prescribed and designer drugs (e.g., ecstasy, morphine, heroin, ethcathinone, 2C-D). For all substances, the protonated parent ion (as we used H{sub 3}O{sup +} as a reagent ion) could be detected, providing a high level of confidence in their identification since the high mass resolution allows compounds having the same nominal mass to be separated. We varied the E/N from 90 to 220 T{sub d} (1 T{sub d}=10{sup -17} Vcm{sup -1}). This allowed us to study fragmentation pathways as a function of E/N (reduced electric field). For a few compounds rather unusual E/N dependencies were also discovered.

  9. The development of a gas-filled time-of-flight detector

    International Nuclear Information System (INIS)

    Guan Yongjing; He Ming; Ruan Xiangdong; Wang Huijuan; Wu Shaoyong; Dong Kejun; Lin Min; Yuan Jian; Jiang Shan

    2007-01-01

    A gas-filled time-of-flight (GF-TOF) detector system for isobaric identification has been developed at the AMS facility of the China Institute of Atomic Energy (CIAE). The newly built GF-TOF detector was tested by using a 36 Cl standard sample ( 36 Cl/Cl = 2.88 x 10 -11 ) with the 36 Cl ion energies of 64, 49 and 33 MeV. Time resolutions of 350 ps, 580 ps and 920 ps were obtained for 64, 49 and 33 MeV 36 S, respectively, without gas. 36 Cl and 36 S particles were successfully separated in the TOF spectra from the GF-TOF detector at the three different incident energies. The dependence of time resolution and separation power of GF-TOF method on the incidence energy and the residual energy is discussed. The comparison of separation power for isobars between the GF-TOF method and the ΔE-E method is described. A combination of GF-TOF method and ΔE-E method may further improve the separation power for isobars. The results show that the sensitivity for 36 Cl AMS measurements is 10 -14 at the energy of 33 MeV. Some results obtained with the GF-TOF method are given

  10. First records of thermal neutrons with the spectrometer for time of flight (TOF) in the RP-10 Nuclear Reactor

    International Nuclear Information System (INIS)

    Munive, M.; Baltuano, O; Soto, C; Ravello, Y

    2002-01-01

    To obtain the first spectrum of an emergent beam of neutrons of a nuclear reactor is the main parameter of the characterization in the use of this reactor; one of ways to get this spectrum is for the technique of time of flight, TOF, which registers the time that a neutron need to cover a certain distance, associating this time then to the kinetic energy of the neutron. The kinetic study of the beam of neutrons is carried out on neutron pulses that are generated by a revolving choke called Chopper; and the analysis in the time of the detected pulses is carried out for a system MCS. Using this technique it is achieved the record of the spectra in energy, or in wavelength , of the irradiation facilities No 2 and 4, and of the exit N o 5 of the thermal column of the Nuclear Reactor RP-10 of the Nuclear Center Oscar de la Guerra RACSO, Peru (au)

  11. Material Classification Using Raw Time-of-Flight Measurements

    KAUST Repository

    Su, Shuochen

    2016-12-13

    We propose a material classification method using raw time-of-flight (ToF) measurements. ToF cameras capture the correlation between a reference signal and the temporal response of material to incident illumination. Such measurements encode unique signatures of the material, i.e. the degree of subsurface scattering inside a volume. Subsequently, it offers an orthogonal domain of feature representation compared to conventional spatial and angular reflectance-based approaches. We demonstrate the effectiveness, robustness, and efficiency of our method through experiments and comparisons of real-world materials.

  12. Doppler time-of-flight imaging

    KAUST Repository

    Heide, Felix

    2015-07-30

    Over the last few years, depth cameras have become increasingly popular for a range of applications, including human-computer interaction and gaming, augmented reality, machine vision, and medical imaging. Many of the commercially-available devices use the time-of-flight principle, where active illumination is temporally coded and analyzed on the camera to estimate a per-pixel depth map of the scene. In this paper, we propose a fundamentally new imaging modality for all time-of-flight (ToF) cameras: per-pixel velocity measurement. The proposed technique exploits the Doppler effect of objects in motion, which shifts the temporal frequency of the illumination before it reaches the camera. Using carefully coded illumination and modulation frequencies of the ToF camera, object velocities directly map to measured pixel intensities. We show that a slight modification of our imaging system allows for color, depth, and velocity information to be captured simultaneously. Combining the optical flow computed on the RGB frames with the measured metric axial velocity allows us to further estimate the full 3D metric velocity field of the scene. We believe that the proposed technique has applications in many computer graphics and vision problems, for example motion tracking, segmentation, recognition, and motion deblurring.

  13. Proteome-based bacterial identification using matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS): A revolutionary shift in clinical diagnostic microbiology.

    Science.gov (United States)

    Nomura, Fumio

    2015-06-01

    Rapid and accurate identification of microorganisms, a prerequisite for appropriate patient care and infection control, is a critical function of any clinical microbiology laboratory. Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) is a quick and reliable method for identification of microorganisms, including bacteria, yeast, molds, and mycobacteria. Indeed, there has been a revolutionary shift in clinical diagnostic microbiology. In the present review, the state of the art and advantages of MALDI-TOF MS-based bacterial identification are described. The potential of this innovative technology for use in strain typing and detection of antibiotic resistance is also discussed. This article is part of a Special Issue entitled: Medical Proteomics. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. BGO as a hybrid scintillator / Cherenkov radiator for cost-effective time-of-flight PET

    NARCIS (Netherlands)

    Brunner, S.E.K.; Schaart, D.R.

    2017-01-01

    Due to detector developments in the last decade, the time-of-flight (TOF) method is now commonly used to improve the quality of positron emission tomography (PET) images. Clinical TOF-PET systems based on L(Y)SO:Ce crystals and silicon photomultipliers (SiPMs) with coincidence resolving times

  15. Computational imaging with multi-camera time-of-flight systems

    KAUST Repository

    Shrestha, Shikhar

    2016-07-11

    Depth cameras are a ubiquitous technology used in a wide range of applications, including robotic and machine vision, human computer interaction, autonomous vehicles as well as augmented and virtual reality. In this paper, we explore the design and applications of phased multi-camera time-of-flight (ToF) systems. We develop a reproducible hardware system that allows for the exposure times and waveforms of up to three cameras to be synchronized. Using this system, we analyze waveform interference between multiple light sources in ToF applications and propose simple solutions to this problem. Building on the concept of orthogonal frequency design, we demonstrate state-of-the-art results for instantaneous radial velocity capture via Doppler time-of-flight imaging and we explore new directions for optically probing global illumination, for example by de-scattering dynamic scenes and by non-line-of-sight motion detection via frequency gating. © 2016 ACM.

  16. Heterotrophic monitoring at a drinking water treatment plant by matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry after different drinking water treatments.

    Science.gov (United States)

    Sala-Comorera, Laura; Blanch, Anicet R; Vilaró, Carles; Galofré, Belén; García-Aljaro, Cristina

    2017-10-01

    The aim of this work was to assess the suitability of matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) for routine heterotrophic monitoring in a drinking water treatment plant. Water samples were collected from raw surface water and after different treatments during two campaigns over a 1-year period. Heterotrophic bacteria were studied and isolates were identified by MALDI-TOF MS. Moreover, the diversity index and the coefficient of population similarity were also calculated using biochemical fingerprinting of the populations studied. MALDI-TOF MS enabled us to characterize and detect changes in the bacterial community composition throughout the water treatment plant. Raw water showed a large and diverse population which was slightly modified after initial treatment steps (sand filtration and ultrafiltration). Reverse osmosis had a significant impact on the microbial diversity, while the final chlorination step produced a shift in the composition of the bacterial community. Although MALDI-TOF MS could not identify all the isolates since the available MALDI-TOF MS database does not cover all the bacterial diversity in water, this technique could be used to monitor bacterial changes in drinking water treatment plants by creating a specific protein profile database for tracking purposes.

  17. Rapid identification and typing of Yersinia pestis and other Yersinia species by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry.

    Science.gov (United States)

    Ayyadurai, Saravanan; Flaudrops, Christophe; Raoult, Didier; Drancourt, Michel

    2010-11-12

    Accurate identification is necessary to discriminate harmless environmental Yersinia species from the food-borne pathogens Yersinia enterocolitica and Yersinia pseudotuberculosis and from the group A bioterrorism plague agent Yersinia pestis. In order to circumvent the limitations of current phenotypic and PCR-based identification methods, we aimed to assess the usefulness of matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) protein profiling for accurate and rapid identification of Yersinia species. As a first step, we built a database of 39 different Yersinia strains representing 12 different Yersinia species, including 13 Y. pestis isolates representative of the Antiqua, Medievalis and Orientalis biotypes. The organisms were deposited on the MALDI-TOF plate after appropriate ethanol-based inactivation, and a protein profile was obtained within 6 minutes for each of the Yersinia species. When compared with a 3,025-profile database, every Yersinia species yielded a unique protein profile and was unambiguously identified. In the second step of analysis, environmental and clinical isolates of Y. pestis (n = 2) and Y. enterocolitica (n = 11) were compared to the database and correctly identified. In particular, Y. pestis was unambiguously identified at the species level, and MALDI-TOF was able to successfully differentiate the three biotypes. These data indicate that MALDI-TOF can be used as a rapid and accurate first-line method for the identification of Yersinia isolates.

  18. KELVIN rare gas time-of-flight program

    International Nuclear Information System (INIS)

    Vernon, M.

    1981-03-01

    The purpose of this appendix is to explain in detail the procedure for performing time-of-flight (TOF) calibration measurements. The result of the calibration measurements is to assign a correct length (L) to the path the molecules travel in a particular experimental configuration. In conjunction with time information (t) a velocity distribution (L/t) can then be determined. The program KELVIN is listed

  19. Eddy covariance emission and deposition flux measurements using proton transfer reaction – time of flight – mass spectrometry (PTR-TOF-MS): comparison with PTR-MS measured vertical gradients and fluxes

    NARCIS (Netherlands)

    Park, J.H.; Goldstein, A.H.; Timkovsky, J|info:eu-repo/dai/nl/330541676; Fares, S.; Weber, R.; Karlik, J.; Holzinger, R.|info:eu-repo/dai/nl/337989338

    2013-01-01

    During summer 2010, a proton transfer reaction – time of flight – mass spectrometer (PTR-TOF-MS) and a quadrupole proton transfer reaction mass spectrometer (PTR-MS) were deployed simultaneously for one month in an orange orchard in the Central Valley of California to collect continuous data

  20. Plant Leaf Imaging using Time of Flight Camera under Sunlight, Shadow and Room Conditions

    DEFF Research Database (Denmark)

    Kazmi, Wajahat; Foix, Sergi; Alenya, Guillem

    2012-01-01

    In this article, we analyze the effects of ambient light on Time of Flight (ToF) depth imaging for a plant's leaf in sunlight, shadow and room conditions. ToF imaging is sensitive to ambient light and we try to find the best possible integration times (IT) for each condition. This is important in...

  1. Evaluation of repetitive-PCR and matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) for rapid strain typing of Bacillus coagulans.

    Science.gov (United States)

    Sato, Jun; Nakayama, Motokazu; Tomita, Ayumi; Sonoda, Takumi; Hasumi, Motomitsu; Miyamoto, Takahisa

    2017-01-01

    In order to establish rapid and accurate typing method for Bacillus coagulans strains which is important for controlling in some canned foods and tea-based beverages manufacturing because of the high-heat resistance of the spores and high tolerance of the vegetative cells to catechins and chemicals, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and repetitive-PCR (rep-PCR) were evaluated. For this purpose, 28 strains of B. coagulans obtained from various culture collections were tested. DNA sequence analyses of the genes encoding 16S rRNA and DNA gyrase classified the test strains into two and three groups, respectively, regardless of their phenotypes. Both MALDI-TOF MS and rep-PCR methods classified the test strains in great detail. Strains classified in each group showed similar phenotypes, such as carbohydrate utilization determined using API 50CH. In particular, the respective two pairs of strains which showed the same metabolic characteristic were classified into the same group by both MALDI-TOF MS and rep-PCR methods separating from the other strains. On the other hand, the other strains which have the different profiles of carbohydrate utilization were separated into different groups by these methods. These results suggested that the combination of MALDI-TOF MS and rep-PCR analyses was advantageous for the rapid and detailed typing of bacterial strains in respect to both phenotype and genotype.

  2. Identification of clinical isolates of Aspergillus, including cryptic species, by matrix assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS).

    Science.gov (United States)

    Vidal-Acuña, M Reyes; Ruiz-Pérez de Pipaón, Maite; Torres-Sánchez, María José; Aznar, Javier

    2017-12-08

    An expanded library of matrix assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) has been constructed using the spectra generated from 42 clinical isolates and 11 reference strains, including 23 different species from 8 sections (16 cryptic plus 7 noncryptic species). Out of a total of 379 strains of Aspergillus isolated from clinical samples, 179 strains were selected to be identified by sequencing of beta-tubulin or calmodulin genes. Protein spectra of 53 strains, cultured in liquid medium, were used to construct an in-house reference database in the MALDI-TOF MS. One hundred ninety strains (179 clinical isolates previously identified by sequencing and the 11 reference strains), cultured on solid medium, were blindy analyzed by the MALDI-TOF MS technology to validate the generated in-house reference database. A 100% correlation was obtained with both identification methods, gene sequencing and MALDI-TOF MS, and no discordant identification was obtained. The HUVR database provided species level (score of ≥2.0) identification in 165 isolates (86.84%) and for the remaining 25 (13.16%) a genus level identification (score between 1.7 and 2.0) was obtained. The routine MALDI-TOF MS analysis with the new database, was then challenged with 200 Aspergillus clinical isolates grown on solid medium in a prospective evaluation. A species identification was obtained in 191 strains (95.5%), and only nine strains (4.5%) could not be identified at the species level. Among the 200 strains, A. tubingensis was the only cryptic species identified. We demonstrated the feasibility and usefulness of the new HUVR database in MALDI-TOF MS by the use of a standardized procedure for the identification of Aspergillus clinical isolates, including cryptic species, grown either on solid or liquid media. © The Author 2017. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For

  3. Time-of-flight discrimination between gamma-rays and neutrons by using artificial neural networks

    International Nuclear Information System (INIS)

    Akkoyun, S.

    2013-01-01

    Highlights: ► Time-of-flight (tof) is an obvious method for separation between gamma and neutron particles. ► tof distributions are obtained by neural networks. ► Neural network method is consistent with the experimental results. ► Neural networks can classify different events for discrimination. - Abstract: In gamma-ray spectroscopy, a number of neutrons are emitted from the nuclei together with the gamma-rays. These neutrons influence gamma-ray spectra. An obvious method for discrimination between neutrons and gamma-rays is based on the time-of-flight (tof) technique. In this work, the tof distributions of gamma-rays and neutrons were obtained both experimentally and by using artificial neural networks (ANNs). It was shown that, ANN can correctly classify gamma-ray and neutron events. Also, for highly nonlinear detector response for tof, we have constructed consistent empirical physical formulas (EPFs) by appropriate ANNs. These ANN–EPFs can be used to derive further physical functions which could be relevant to discrimination between gamma-rays and neutrons

  4. Large strip RPCs for the LEPS2 TOF system

    Energy Technology Data Exchange (ETDEWEB)

    Tomida, N., E-mail: natsuki@scphys.kyoto-u.ac.jp [Department of Physics, Kyoto University, Kyoto 606-8502 (Japan); Niiyama, M. [Department of Physics, Kyoto University, Kyoto 606-8502 (Japan); Ohnishi, H. [RIKEN (The Institute of Physical and Chemical Research), Wako, Saitama 351-0198 (Japan); Tran, N. [Research Center for Nuclear Physics (RCNP), Osaka University, Ibaraki, Osaka 567-0047 (Japan); Hsieh, C.-Y.; Chu, M.-L.; Chang, W.-C. [Institute of Physics, Academia Sinica, Nankang, Taipei 11529, Taiwan (China); Chen, J.-Y. [National Synchrotron Radiation Research Center (NSRRC), Hsinchu 30076, Taiwan (China)

    2014-12-01

    High time-resolution resistive plate chambers (RPCs) with large-size readout strips are developed for the time-of-flight (TOF) detector system of the LEPS2 experiment at SPring-8. The experimental requirement is a 50-ps time resolution for a strip size larger than 100 cm{sup 2}/channel. We are able to achieve 50-ps time resolutions with 2.5×100 cm{sup 2} strips by directly connecting the amplifiers to strips. With the same time resolution, the number of front-end electronics (FEE) is also reduced by signal addition. - Highlights: • Find a way to achieve a good time resolution with a large strip RPC. • 2.5 cm narrow strips have better resolutions than 5.0 cm ones. • The 0.5 mm narrow strip interval shows flat time resolutions between strips. • FEEs directly connected to strips make the signal reflection at the strip edge small. • A time resolution of 50 ps was achieved with 2.5 cm×100 cm strips.

  5. Absolute calibration of a time-of-flight spectrometer and imaging plate for the characterization of laser-accelerated protons

    International Nuclear Information System (INIS)

    Choi, I W; Kim, C M; Sung, J H; Kim, I J; Yu, T J; Lee, S K; Jin, Y-Y; Pae, K H; Hafz, N; Lee, J

    2009-01-01

    A proton energy spectrometer system is composed of a time-of-flight spectrometer (TOFS) and a Thomson parabola spectrometer (TPS), and is used to characterize laser-accelerated protons. The TOFS detects protons with a plastic scintillator, and the TPS with a CR-39 or imaging plate (IP). The two spectrometers can operate simultaneously and give separate time-of-flight (TOF) and Thomson parabola (TP) data. We propose a method to calibrate the TOFS and IP by comparing the TOF data and the TP data taken with CR-39 and IP. The absolute response of the TOFS as a function of proton energy is calculated from the proton number distribution measured with CR-39. The sensitivity of IP to protons is obtained from the proton number distribution estimated with the calibrated TOFS. This method, based on the comparison of the simultaneously measured data, gives more reliable results when using laser-accelerated protons as a calibration source. The calibrated spectrometer system can be used to measure absolutely calibrated energy spectra for the optimization of laser-accelerated protons

  6. Evaluation of repetitive-PCR and matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS for rapid strain typing of Bacillus coagulans.

    Directory of Open Access Journals (Sweden)

    Jun Sato

    Full Text Available In order to establish rapid and accurate typing method for Bacillus coagulans strains which is important for controlling in some canned foods and tea-based beverages manufacturing because of the high-heat resistance of the spores and high tolerance of the vegetative cells to catechins and chemicals, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS and repetitive-PCR (rep-PCR were evaluated. For this purpose, 28 strains of B. coagulans obtained from various culture collections were tested. DNA sequence analyses of the genes encoding 16S rRNA and DNA gyrase classified the test strains into two and three groups, respectively, regardless of their phenotypes. Both MALDI-TOF MS and rep-PCR methods classified the test strains in great detail. Strains classified in each group showed similar phenotypes, such as carbohydrate utilization determined using API 50CH. In particular, the respective two pairs of strains which showed the same metabolic characteristic were classified into the same group by both MALDI-TOF MS and rep-PCR methods separating from the other strains. On the other hand, the other strains which have the different profiles of carbohydrate utilization were separated into different groups by these methods. These results suggested that the combination of MALDI-TOF MS and rep-PCR analyses was advantageous for the rapid and detailed typing of bacterial strains in respect to both phenotype and genotype.

  7. Timing resolution improvement using DOI information in a four-layer scintillation detector for TOF-PET

    Energy Technology Data Exchange (ETDEWEB)

    Shibuya, Kengo [jPET Project Team, Molecular Imaging Center, National Institute of Radiological Sciences, Anagawa 4-9-1, Inage-ku, Chiba 263-0024 (Japan)], E-mail: shibuken@gakushikai.jp; Nishikido, Fumihiko [jPET Project Team, Molecular Imaging Center, National Institute of Radiological Sciences, Anagawa 4-9-1, Inage-ku, Chiba 263-0024 (Japan); Tsuda, Tomoaki [Technology Research Laboratory, Shimadzu Corporation, Hikaridai 3-9-4, Seika-cho, Kyoto 619-0237 (Japan); Kobayashi, Tetsuya [Department of Medical System Engineering, Graduate School of Engineering, Chiba University, Yayoi 1-33, Inage-ku, Chiba 263-8522 (Japan); Lam, Chihfung; Yamaya, Taiga; Yoshida, Eiji; Inadama, Naoko; Murayama, Hideo [jPET Project Team, Molecular Imaging Center, National Institute of Radiological Sciences, Anagawa 4-9-1, Inage-ku, Chiba 263-0024 (Japan)

    2008-08-11

    Depth-of-interaction (DOI) detectors are considered to be advantageous for time-of-flight positron emission tomography (TOF-PET) because they can correct timing errors arising in the scintillation crystals due to a propagation speed difference between annihilation radiation and scintillation photons. We experimentally measured this timing error, using our four-layer DOI encoding method. The upper layers exhibited the larger timing delays due to the longer path lengths after conversion from annihilation radiation into scintillation photons that traveled by zigzag paths at a speed decreased by a factor of the refractive index (n). The maximum timing delay between the uppermost and the lowermost layers was evaluated as 164 ps when n=1.47. A TOF error correction was demonstrated to improve the timing resolution of the four-layer DOI detector by 10.3%, which would increase the effective sensitivity of the scanner by about 12% comparison with a non-DOI TOF-PET scanner. This is the first step towards combining these two important fields in PET instrumentation, namely DOI and TOF, for the purpose of achieving a higher sensitivity as well as a more uniform spatial resolution.

  8. Novel time-of-flight spectrometer for the analysis of positron annihilation induced Auger electrons

    International Nuclear Information System (INIS)

    Hugenschmidt, Christoph; Legl, Stefan

    2006-01-01

    Positron annihilation induced Auger-electron spectroscopy (PAES) has several advantages over conventional Auger-electron spectroscopy such as extremely high surface sensitivity and outstanding signal-to-noise ratio at the Auger-transition energy. In order to benefit from these prominent features a low-energy positron beam of high intensity is required for surface sensitive PAES studies. In addition, an electron energy analyzer is required, which efficiently detects the Auger electrons with acceptable energy resolution. For this reason a novel time-of-flight (TOF) spectrometer has been developed at the intense positron source NEPOMUC that allows PAES studies within short measurement time. This TOF-PAES setup combines a trochoidal filter and a flight tube in a Faraday cage in order to achieve an improved energy resolution of about 1 eV at high electron energies up to E≅1000 eV. The electron flight time is the time between the annihilation radiation at the sample and when the electron hits a microchannel plate detector at the end of the flight tube

  9. Time of flight measurement in heavy-ion collisions with the HADES RPC TOF wall

    Czech Academy of Sciences Publication Activity Database

    Kornakov, G.; Arnold, O.; Atomssa, E. T.; Krása, Antonín; Křížek, Filip; Kugler, Andrej; Sobolev, Yuri, G.; Svoboda, Ondřej; Tlustý, Pavel; Wagner, Vladimír

    2014-01-01

    Roč. 9, NOV (2014), C11015 ISSN 1748-0221 R&D Projects: GA ČR GA13-06759S Institutional support: RVO:61389005 Keywords : resistive-plate chambers * particle identification methods * instrumentation and methods for time-of-flicht (TOF) spectroscopy Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.399, year: 2014

  10. The identification of anaerobic bacteria using MALDI-TOF MS

    NARCIS (Netherlands)

    Veloo, A. C. M.; Welling, G. W.; Degener, J. E.

    Matrix Assisted Laser Desorption and Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS) has gained more and more popularity for the identification of bacteria. Several studies show that bacterial diagnosticis is being revolutionized by the application of MALDI-TOF MS. For anaerobic bacteria,

  11. Defocus Deblurring and Superresolution for Time-of-Flight Depth Cameras

    KAUST Repository

    Xiao, Lei

    2015-06-07

    Continuous-wave time-of-flight (ToF) cameras show great promise as low-cost depth image sensors in mobile applications. However, they also suffer from several challenges, including limited illumination intensity, which mandates the use of large numerical aperture lenses, and thus results in a shallow depth of field, making it difficult to capture scenes with large variations in depth. Another shortcoming is the limited spatial resolution of currently available ToF sensors. In this paper we analyze the image formation model for blurred ToF images. By directly working with raw sensor measurements but regularizing the recovered depth and amplitude images, we are able to simultaneously deblur and super-resolve the output of ToF cameras. Our method outperforms existing methods on both synthetic and real datasets. In the future our algorithm should extend easily to cameras that do not follow the cosine model of continuous-wave sensors, as well as to multi-frequency or multi-phase imaging employed in more recent ToF cameras.

  12. Defocus Deblurring and Superresolution for Time-of-Flight Depth Cameras

    KAUST Repository

    Xiao, Lei; Heide, Felix; O'Toole, Matthew; Kolb, Andreas; Hullin, Matthias B.; Kutulakos, Kyros; Heidrich, Wolfgang

    2015-01-01

    Continuous-wave time-of-flight (ToF) cameras show great promise as low-cost depth image sensors in mobile applications. However, they also suffer from several challenges, including limited illumination intensity, which mandates the use of large numerical aperture lenses, and thus results in a shallow depth of field, making it difficult to capture scenes with large variations in depth. Another shortcoming is the limited spatial resolution of currently available ToF sensors. In this paper we analyze the image formation model for blurred ToF images. By directly working with raw sensor measurements but regularizing the recovered depth and amplitude images, we are able to simultaneously deblur and super-resolve the output of ToF cameras. Our method outperforms existing methods on both synthetic and real datasets. In the future our algorithm should extend easily to cameras that do not follow the cosine model of continuous-wave sensors, as well as to multi-frequency or multi-phase imaging employed in more recent ToF cameras.

  13. Time-of-flight and vector polarization analysis for diffuse neutron scattering

    International Nuclear Information System (INIS)

    Schweika, W.

    2003-01-01

    The potential of pulsed neutron sources for diffuse scattering including time-of-flight (TOF) and polarization analysis is discussed in comparison to the capabilities of the present instrument diffuse neutron scattering at the research center Juelich. We present first results of a new method for full polarization analysis using precessing neutron polarization. A proposal is made for a new type of instrument at pulsed sources, which allows for vector polarization analysis in TOF instruments with multi-detectors

  14. Direct identification of microorganisms from positive blood cultures using the lysis-filtration technique and matrix assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS): a multicentre study.

    Science.gov (United States)

    Farina, Claudio; Arena, Fabio; Casprini, Patrizia; Cichero, Paola; Clementi, Massimo; Cosentino, Marina; Degl'Innocenti, Roberto; Giani, Tommaso; Luzzaro, Francesco; Mattei, Romano; Mauri, Carola; Nardone, Maria; Rossolini, Gian Maria; Serna Ortega, Paula Andrea; Vailati, Francesca

    2015-04-01

    Microbial identification from blood cultures is essential to institute optimal antibiotic therapy and improve survival possibilities. Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has been successfully applied to identify bacteria and yeasts from positive blood cultures broths. The aim of this multicentre study was to evaluate the reliability of the lysis-filtration technique associated with MALDI-TOF MS to directly identify microorganisms from 765 positive blood cultures collected in six Italian hospitals. Overall, 675/765 (78.1%) blood isolates were correctly identified at the species level, with significant differences between Gram-negative and Gram-positive bacteria (92.6%, and 69.8%, respectively). Some difficulties arise in identifying Streptococcus pneumoniae, Staphylococcus aureus, yeasts and anaerobes. The lysis-filtration protocol is a suitable procedure in terms of performance in identifying microorganisms, but it is quite expensive and technically time-consuming since the time of filtration is not regular for all the samples. The application of the MALDI-TOF MS technique to the direct microbial identification from positive blood cultures is a very promising approach, even if more experience must be gained to minimize errors and costs.

  15. Rapid high-resolution spin- and angle-resolved photoemission spectroscopy with pulsed laser source and time-of-flight spectrometer

    Science.gov (United States)

    Gotlieb, K.; Hussain, Z.; Bostwick, A.; Lanzara, A.; Jozwiak, C.

    2013-09-01

    A high-efficiency spin- and angle-resolved photoemission spectroscopy (spin-ARPES) spectrometer is coupled with a laboratory-based laser for rapid high-resolution measurements. The spectrometer combines time-of-flight (TOF) energy measurements with low-energy exchange scattering spin polarimetry for high detection efficiencies. Samples are irradiated with fourth harmonic photons generated from a cavity-dumped Ti:sapphire laser that provides high photon flux in a narrow bandwidth, with a pulse timing structure ideally matched to the needs of the TOF spectrometer. The overall efficiency of the combined system results in near-EF spin-resolved ARPES measurements with an unprecedented combination of energy resolution and acquisition speed. This allows high-resolution spin measurements with a large number of data points spanning multiple dimensions of interest (energy, momentum, photon polarization, etc.) and thus enables experiments not otherwise possible. The system is demonstrated with spin-resolved energy and momentum mapping of the L-gap Au(111) surface states, a prototypical Rashba system. The successful integration of the spectrometer with the pulsed laser system demonstrates its potential for simultaneous spin- and time-resolved ARPES with pump-probe based measurements.

  16. Multiple-reflection time-of-flight mass spectrometry for in situ applications

    Science.gov (United States)

    Dickel, T.; Plaß, W. R.; Lang, J.; Ebert, J.; Geissel, H.; Haettner, E.; Jesch, C.; Lippert, W.; Petrick, M.; Scheidenberger, C.; Yavor, M. I.

    2013-12-01

    Multiple-reflection time-of-flight mass spectrometers (MR-TOF-MS) have recently been installed at different low-energy radioactive ion beam facilities. They are used as isobar separators with high ion capacity and as mass spectrometers with high mass resolving power and accuracy for short-lived nuclei. Furthermore, MR-TOF-MS have a huge potential for applications in other fields, such as chemistry, biology, medicine, space science, and homeland security. The development, commissioning and results of an MR-TOF-MS is presented, which serves as proof-of-principle to show that very high mass resolving powers (∼105) can be achieved in a compact device (length ∼30 cm). Based on this work, an MR-TOF-MS for in situ application has been designed. For the first time, this device combines very high mass resolving power (>105), mobility, and an atmospheric pressure inlet in one instrument. It will enable in situ measurements without sample preparation at very high mass accuracy. Envisaged applications of this mobile MR-TOF-MS are discussed.

  17. High-performance multiple-reflection time-of-flight mass spectrometers for research with exotic nuclei and for analytical mass spectrometry

    Science.gov (United States)

    Plaß, Wolfgang R.; Dickel, Timo; Ayet San Andres, Samuel; Ebert, Jens; Greiner, Florian; Hornung, Christine; Jesch, Christian; Lang, Johannes; Lippert, Wayne; Majoros, Tamas; Short, Devin; Geissel, Hans; Haettner, Emma; Reiter, Moritz P.; Rink, Ann-Kathrin; Scheidenberger, Christoph; Yavor, Mikhail I.

    2015-11-01

    A class of multiple-reflection time-of-flight mass spectrometers (MR-TOF-MSs) has been developed for research with exotic nuclei at present and future accelerator facilities such as GSI and FAIR (Darmstadt), and TRIUMF (Vancouver). They can perform highly accurate mass measurements of exotic nuclei, serve as high-resolution, high-capacity mass separators and be employed as diagnostics devices to monitor the production, separation and manipulation of beams of exotic nuclei. In addition, a mobile high-resolution MR-TOF-MS has been developed for in situ applications in analytical mass spectrometry ranging from environmental research to medicine. Recently, the MR-TOF-MS for GSI and FAIR has been further developed. A novel RF quadrupole-based ion beam switchyard has been developed that allows merging and splitting of ion beams as well as transport of ions into different directions. It efficiently connects a test and reference ion source and an auxiliary detector to the system. Due to an increase in the kinetic energy of the ions in the time-of-flight analyzer of the MR-TOF-MS, a given mass resolving power is now achieved in less than half the time-of-flight. Conversely, depending on the time-of-flight, the mass resolving power has been increased by a factor of more than two.

  18. Differentiation of clinically relevant Mucorales Rhizopus microsporus and R. arrhizus by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS).

    Science.gov (United States)

    Dolatabadi, Somayeh; Kolecka, Anna; Versteeg, Matthijs; de Hoog, Sybren G; Boekhout, Teun

    2015-07-01

    This study addresses the usefulness of matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) MS for reliable identification of the two most frequently occurring clinical species of Rhizopus, namely Rhizopus arrhizus with its two varieties, arrhizus and delemar, and Rhizopus microsporus. The test-set comprised 38 isolates of clinical and environmental origin previously identified by internal transcribed spacer (ITS) sequencing of rDNA. Multi-locus sequence data targeting three gene markers (ITS, ACT, TEF ) showed two monophylic clades for Rhizopus arrhizus and Rhizopus microsporus (bootstrap values of 99 %). Cluster analysis confirmed the presence of two distinct clades within Rhizopus arrhizus representing its varieties arrhizus and delemar. The MALDI Biotyper 3.0 Microflex LT platform (Bruker Daltonics) was used to confirm the distinction between Rhizopus arrhizus and Rhizopus microsporus and the presence of two varieties within the species Rhizopus arrhizus. An in-house database of 30 reference main spectra (MSPs) was initially tested for correctness using commercially available databases of Bruker Daltonics. By challenging the database with the same strains of which an in-house database was created, automatic identification runs confirmed that MALDI-TOF MS is able to recognize the strains at the variety level. Based on principal component analysis, two MSP dendrograms were created and showed concordance with the multi-locus tree; thus, MALDI-TOF MS is a useful tool for diagnostics of mucoralean species.

  19. A mechanical nanomembrane detector for time-of-flight mass spectrometry.

    Science.gov (United States)

    Park, Jonghoo; Qin, Hua; Scalf, Mark; Hilger, Ryan T; Westphall, Michael S; Smith, Lloyd M; Blick, Robert H

    2011-09-14

    We describe here a new principle for ion detection in time-of-flight (TOF) mass spectrometry in which an impinging ion packet excites mechanical vibrations in a silicon nitride (Si(3)N(4)) nanomembrane. The nanomembrane oscillations are detected by means of time-varying field emission of electrons from the mechanically oscillating nanomembrane. Ion detection is demonstrated in the MALDI-TOF analysis of proteins varying in mass from 5729 (insulin) to 150,000 (Immunoglobulin G) daltons. The detector response agrees well with the predictions of a thermomechanical model in which the impinging ion packet causes a nonuniform temperature distribution in the nanomembrane, exciting both fundamental and higher order oscillations.

  20. Quasi-dynamic mode of nanomembranes for time-of-flight mass spectrometry of proteins.

    Science.gov (United States)

    Park, Jonghoo; Kim, Hyunseok; Blick, Robert H

    2012-04-21

    Mechanical resonators realized on the nano-scale by now offer applications in mass-sensing of biomolecules with extraordinary sensitivity. The general idea is that perfect mechanical biosensors should be of extremely small size to achieve zeptogram sensitivity in weighing single molecules similar to a balance. However, the small scale and long response time of weighing biomolecules with a cantilever restrict their usefulness as a high-throughput method. Commercial mass spectrometry (MS) such as electro-spray ionization (ESI)-MS and matrix-assisted laser desorption/ionization (MALDI)-time of flight (TOF)-MS are the gold standards to which nanomechanical resonators have to live up to. These two methods rely on the ionization and acceleration of biomolecules and the following ion detection after a mass selection step, such as time-of-flight (TOF). Hence, the spectrum is typically represented in m/z, i.e. the mass to ionization charge ratio. Here, we describe the feasibility and mass range of detection of a new mechanical approach for ion detection in time-of-flight mass spectrometry, the principle of which is that the impinging ion packets excite mechanical oscillations in a silicon nitride nanomembrane. These mechanical oscillations are henceforth detected via field emission of electrons from the nanomembrane. Ion detection is demonstrated in MALDI-TOF analysis over a broad range with angiotensin, bovine serum albumin (BSA), and an equimolar protein mixture of insulin, BSA, and immunoglobulin G (IgG). We find an unprecedented mass range of operation of the nanomembrane detector.

  1. Multiple-reflection time-of-flight mass spectrometry for in situ applications

    International Nuclear Information System (INIS)

    Dickel, T.; Plaß, W.R.; Lang, J.; Ebert, J.; Geissel, H.; Haettner, E.; Jesch, C.; Lippert, W.; Petrick, M.; Scheidenberger, C.; Yavor, M.I.

    2013-01-01

    Highlights: • MR-TOF-MS: huge potential in chemistry, medicine, space science, homeland security. • Compact MR-TOF-MS (length ∼30 cm) with very high mass resolving powers (10 5 ). • Combination of high resolving power (>10 5 ), mobility, API for in situ measurements. • Envisaged applications of mobile MR-TOF-MS. -- Abstract: Multiple-reflection time-of-flight mass spectrometers (MR-TOF-MS) have recently been installed at different low-energy radioactive ion beam facilities. They are used as isobar separators with high ion capacity and as mass spectrometers with high mass resolving power and accuracy for short-lived nuclei. Furthermore, MR-TOF-MS have a huge potential for applications in other fields, such as chemistry, biology, medicine, space science, and homeland security. The development, commissioning and results of an MR-TOF-MS is presented, which serves as proof-of-principle to show that very high mass resolving powers (∼10 5 ) can be achieved in a compact device (length ∼30 cm). Based on this work, an MR-TOF-MS for in situ application has been designed. For the first time, this device combines very high mass resolving power (>10 5 ), mobility, and an atmospheric pressure inlet in one instrument. It will enable in situ measurements without sample preparation at very high mass accuracy. Envisaged applications of this mobile MR-TOF-MS are discussed

  2. Multiple-reflection time-of-flight mass spectrometry for in situ applications

    Energy Technology Data Exchange (ETDEWEB)

    Dickel, T., E-mail: t.dickel@gsi.de [II. Physikalisches Institut, Justus-Liebig-Universität Gießen, 35392 Gießen (Germany); GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, 64291 Darmstadt (Germany); Plaß, W.R. [II. Physikalisches Institut, Justus-Liebig-Universität Gießen, 35392 Gießen (Germany); GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, 64291 Darmstadt (Germany); Lang, J.; Ebert, J. [II. Physikalisches Institut, Justus-Liebig-Universität Gießen, 35392 Gießen (Germany); Geissel, H.; Haettner, E. [II. Physikalisches Institut, Justus-Liebig-Universität Gießen, 35392 Gießen (Germany); GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, 64291 Darmstadt (Germany); Jesch, C.; Lippert, W.; Petrick, M. [II. Physikalisches Institut, Justus-Liebig-Universität Gießen, 35392 Gießen (Germany); Scheidenberger, C. [II. Physikalisches Institut, Justus-Liebig-Universität Gießen, 35392 Gießen (Germany); GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, 64291 Darmstadt (Germany); Yavor, M.I. [Institute for Analytical Instrumentation, Russian Academy of Sciences, 190103 St. Petersburg (Russian Federation)

    2013-12-15

    Highlights: • MR-TOF-MS: huge potential in chemistry, medicine, space science, homeland security. • Compact MR-TOF-MS (length ∼30 cm) with very high mass resolving powers (10{sup 5}). • Combination of high resolving power (>10{sup 5}), mobility, API for in situ measurements. • Envisaged applications of mobile MR-TOF-MS. -- Abstract: Multiple-reflection time-of-flight mass spectrometers (MR-TOF-MS) have recently been installed at different low-energy radioactive ion beam facilities. They are used as isobar separators with high ion capacity and as mass spectrometers with high mass resolving power and accuracy for short-lived nuclei. Furthermore, MR-TOF-MS have a huge potential for applications in other fields, such as chemistry, biology, medicine, space science, and homeland security. The development, commissioning and results of an MR-TOF-MS is presented, which serves as proof-of-principle to show that very high mass resolving powers (∼10{sup 5}) can be achieved in a compact device (length ∼30 cm). Based on this work, an MR-TOF-MS for in situ application has been designed. For the first time, this device combines very high mass resolving power (>10{sup 5}), mobility, and an atmospheric pressure inlet in one instrument. It will enable in situ measurements without sample preparation at very high mass accuracy. Envisaged applications of this mobile MR-TOF-MS are discussed.

  3. Topochemical Analysis of Cell Wall Components by TOF-SIMS.

    Science.gov (United States)

    Aoki, Dan; Fukushima, Kazuhiko

    2017-01-01

    Time-of-flight secondary ion mass spectrometry (TOF-SIMS) is a recently developing analytical tool and a type of imaging mass spectrometry. TOF-SIMS provides mass spectral information with a lateral resolution on the order of submicrons, with widespread applicability. Sometimes, it is described as a surface analysis method without the requirement for sample pretreatment; however, several points need to be taken into account for the complete utilization of the capabilities of TOF-SIMS. In this chapter, we introduce methods for TOF-SIMS sample treatments, as well as basic knowledge of wood samples TOF-SIMS spectral and image data analysis.

  4. Rotation stability of high speed neutron time-of-flight mechanical chopper

    International Nuclear Information System (INIS)

    Habib, N.; Adib, M.

    1998-01-01

    A modified rotation stabilization system has been designed to maintain the stability of a neutron time-of-flight (TOF) mechanical chopper rates from 460 rpm to 16000 rpm. The main principle of the system is based on comparing the chopper's rotation period with the preselected one from a quartz timer. The result of comparison is used to control the current driver of the chopper's motor. A 600 Hz three phase generator controlled by a magnetic amplifier was used as a current driver. The stability of the chopper's rotation rate at 16000 rpm was 0.02%. An improved method precise time scale calibration of the TOF spectrometer is applied

  5. Matrix-assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS) Can Precisely Discriminate the Lineages of Listeria monocytogenes and Species of Listeria.

    Science.gov (United States)

    Ojima-Kato, Teruyo; Yamamoto, Naomi; Takahashi, Hajime; Tamura, Hiroto

    2016-01-01

    The genetic lineages of Listeria monocytogenes and other species of the genus Listeria are correlated with pathogenesis in humans. Although matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has become a prevailing tool for rapid and reliable microbial identification, the precise discrimination of Listeria species and lineages remains a crucial issue in clinical settings and for food safety. In this study, we constructed an accurate and reliable MS database to discriminate the lineages of L. monocytogenes and the species of Listeria (L. monocytogenes, L. innocua, L. welshimeri, L. seeligeri, L. ivanovii, L. grayi, and L. rocourtiae) based on the S10-spc-alpha operon gene encoded ribosomal protein mass spectrum (S10-GERMS) proteotyping method, which relies on both genetic information (genomics) and observed MS peaks in MALDI-TOF MS (proteomics). The specific set of eight biomarkers (ribosomal proteins L24, L6, L18, L15, S11, S9, L31 type B, and S16) yielded characteristic MS patterns for the lineages of L. monocytogenes and the different species of Listeria, and led to the construction of a MS database that was successful in discriminating between these organisms in MALDI-TOF MS fingerprinting analysis followed by advanced proteotyping software Strain Solution analysis. We also confirmed the constructed database on the proteotyping software Strain Solution by using 23 Listeria strains collected from natural sources.

  6. Measurement of the depth of narrow slotted sections in eddy current reference standards

    Science.gov (United States)

    Kim, Young-Joo; Kim, Young-gil; Ahn, Bongyoung; Yoon, Dong-Jin

    2007-02-01

    The dimensions of the slots in eddy current (EC) reference standards are too narrow to be measured by general depth measurement methods such as the optical (laser) or stylus methods. However, measurement of the dimensions of the machined slots is a prerequisite to using the blocks as references. The present paper suggests a measurement method for the slotted section using an ultrasonic test. The width and depth of the slots measured in our study are roughly 0.1 mm and 0.5 mm, respectively. The time of flight (TOF) of the ultrasonic wave was measured precisely. The ultrasonic velocity in the material of the EC reference standard was calculated with the measured values of the TOF and its thickness. Reflected waves from the tip of the slot and the bottom surface of the EC standard were successfully classified. Using this method we have successfully determined the depth of the slotted section.

  7. An in-house assay is superior to Sepsityper for direct matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry identification of yeast species in blood cultures.

    Science.gov (United States)

    Bidart, Marie; Bonnet, Isabelle; Hennebique, Aurélie; Kherraf, Zine Eddine; Pelloux, Hervé; Berger, François; Cornet, Muriel; Bailly, Sébastien; Maubon, Danièle

    2015-05-01

    We developed an in-house assay for the direct identification, by matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry, of yeasts in blood culture. Sixty-one representative strains from 12 species were analyzed in spiked blood cultures. Our assay accurately identified 95 of 107 (88.8%) positive blood cultures and outperformed the commercial Sepsityper kit (81.7% identification). Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  8. Time-of-flight positron emission tomography using optical fiber circuit

    International Nuclear Information System (INIS)

    Yamawaki, Masato; Katsumura, Yousuke; Suzuki, Takenori

    2008-01-01

    The measurement method and system architecture of a new time-of-flight positron emission tomography (TOF-PET) system are proposed. This system collects scintillation light using optical fibers connected directly to scintillators and measures the position of positron annihilation. Many scintillators are placed cylindrically whereby a pair of scintillators detects a pair of γ-rays generated at the positron annihilation point. Optical fiber circuits, most of which are bundles of optical fibers bound clockwise or counterclockwise around the cylinder of scintillators, collect light signals generated by γ-rays. These light signals are amplified by several photomultiplier tubes and processed using a single digital oscilloscope to determine the TOF of the positron annihilation γ-rays. One of the most important factors in the performance of the TOF-PET system is the TOF resolution. When fiber circuits are used for transmitting light signals, the dispersion of light signals and the decrease in light intensity are the major factors in the deterioration of the TOF resolution. The result of the preliminary experiment leads to the conclusion that the use of optical fibers degrades the intensity of light but does not severely degrade the TOF resolution. (author)

  9. The CERN n_TOF Facility: Neutron Beams Performances for Cross Section Measurements

    CERN Document Server

    Chiaveri, E; Andrzejewski, J; Audouin, L; Barbagallo, M; Bécares, V; Bečvář, F; Belloni, F; Berthoumieux, E; Billowes, J; Boccone, V; Bosnar, D; Brugger, M; Calviani, M; Calviño, F; Cano-Ott, D; Carrapiço, C; Cerutti, F; Chin, M; Colonna, N; Cortés, G; Cortés-Giraldo, M A; Diakaki, M; Domingo-Pardo, C; Duran, I; Dressler, R; Dzysiuk, N; Eleftheriadis, C; Ferrari, A; Fraval, K; Ganesan, S; García, A R; Giubrone, G; Gómez-Hornillos, M B; Gonçalves, I F; González-Romero, E; Griesmayer, E; Guerrero, C; Gunsing, F; Gurusamy, P; Hernández-Prieto, A; Jenkins, D G; Jericha, E; Kadi, Y; Käppeler, F; Karadimos, D; Kivel, N; Koehler, P; Kokkoris, M; Krtička, M; Kroll, J; Lampoudis, C; Langer, C; Leal-Cidoncha, E; Lederer, C; Leeb, H; Leong, L S; Losito, R; Mallick, A; Manousos, A; Marganiec, J; Martínez, T; Massimi, C; Mastinu, P F; Mastromarco, M; Meaze, M; Mendoza, E; Mengoni, A; Milazzo, P M; Mingrone, F; Mirea, M; Mondalaers, W; Paradela, C; Pavlik, A; Perkowski, J; Plompen, A; Praena, J; Quesada, J M; Rauscher, T; Reifarth, R; Riego, A; Robles, M S; Roman, F; Rubbia, C; Sabaté-Gilarte, M; Sarmento, R; Saxena, A; Schillebeeckx, P; Schmidt, S; Schumann, D; Tagliente, G; Tain, J L; Tarrío, D; Tassan-Got, L; Tsinganis, A; Valenta, S; Vannini, G; Variale, V; Vaz, P; Ventura, A; Versaci, R; Vermeulen, M J; Vlachoudis, V; Vlastou, R; Wallner, A; Ware, T; Weigand, M; Weiss, C; Wright, T; Žugec, P

    2014-01-01

    This paper presents the characteristics of the existing CERN n\\_TOF neutron beam facility (n\\_TOF-EAR1 with a flight path of 185 meters) and the future one (n\\_TOF EAR-2 with a flight path of 19 meters), which will operate in parallel from Summer 2014. The new neutron beam will provide a 25 times higher neutron flux delivered in 10 times shorter neutron pulses, thus offering more powerful capabilities for measuring small mass, low cross section and/or high activity samples.

  10. Time-of-Flight Three Dimensional Neutron Diffraction in Transmission Mode for Mapping Crystal Grain Structures

    DEFF Research Database (Denmark)

    Cereser, Alberto; Strobl, Markus; Hall, Stephen A.

    2017-01-01

    constituting the material. This article presents a new non-destructive 3D technique to study centimeter-sized bulk samples with a spatial resolution of hundred micrometers: time-of-flight three-dimensional neutron diffraction (ToF 3DND). Compared to existing analogous X-ray diffraction techniques, ToF 3DND......-of-flight neutron beamline. The technique was developed and tested with data collected at the Materials and Life Science Experimental Facility of the Japan Proton Accelerator Complex (J-PARC) for an iron sample. We successfully reconstructed the shape of 108 grains and developed an indexing procedure...

  11. Miniature Time of Flight Mass Spectrometer for Space and Extraterrestrial Applications, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The PI has developed a miniature time-of-flight mass spectrometer (TOF-MS), which can be op-timized for space and extraterrestrial applications, by using a...

  12. Computer simulation of different designs of pseudo-random time-of-flight velocity analysers for molecular beam scattering experiments

    International Nuclear Information System (INIS)

    Rotzoll, G.

    1982-01-01

    After a brief summary of the pseudo-random time-of-flight (TOF) method, the design criteria for construction of a pseudo-random TOF disc are considered and complemented by computer simulations. The question of resolution and the choice of the sequence length and number of time channels per element are discussed. Moreover, the stability requirements of the chopper motor frequency are investigated. (author)

  13. Modelling the line shape of very low energy peaks of positron beam induced secondary electrons measured using a time of flight spectrometer

    International Nuclear Information System (INIS)

    Fairchild, A J; Chirayath, V A; Gladen, R W; Chrysler, M D; Koymen, A R; Weiss, A H

    2017-01-01

    In this paper, we present results of numerical modelling of the University of Texas at Arlington’s time of flight positron annihilation induced Auger electron spectrometer (UTA TOF-PAES) using SIMION® 8.1 Ion and Electron Optics Simulator. The time of flight (TOF) spectrometer measures the energy of electrons emitted from the surface of a sample as a result of the interaction of low energy positrons with the sample surface. We have used SIMION® 8.1 to calculate the times of flight spectra of electrons leaving the sample surface with energies and angles dispersed according to distribution functions chosen to model the positron induced electron emission process and have thus obtained an estimate of the true electron energy distribution. The simulated TOF distribution was convolved with a Gaussian timing resolution function and compared to the experimental distribution. The broadening observed in the simulated TOF spectra was found to be consistent with that observed in the experimental secondary electron spectra of Cu generated as a result of positrons incident with energy 1.5 eV to 901 eV, when a timing resolution of 2.3 ns was assumed. (paper)

  14. A fast preamplifier concept for SiPM-based time-of-flight PET detectors

    NARCIS (Netherlands)

    Huizenga, J.; Seifert, S.; Schreuder, F.; Dendooven, P.; Löhner, H.; Vinke, R.; Schaart, D. R.; van Dam, H.T.

    2012-01-01

    Silicon photomultipliers (SiPMs) offer high gain and fast response to light, making them interesting for fast timing applications such as time-of-flight (TOF) PET. To fully exploit the potential of these photosensors, dedicated preamplifiers that do not deteriorate the rise time and signal-to-noise

  15. TOFPET 2: A high-performance circuit for PET time-of-flight

    Energy Technology Data Exchange (ETDEWEB)

    Di Francesco, Agostino, E-mail: agodifra@lip.pt [LIP, Lisbon (Portugal); Bugalho, Ricardo [LIP, Lisbon (Portugal); PETsys Electronics, Oeiras (Portugal); Oliveira, Luis [CTS-UNINOVA, DEE FCT-UNL, Caparica (Portugal); Rivetti, Angelo [INFN - sez. Torino (Italy); Rolo, Manuel [LIP, Lisbon (Portugal); INFN - sez. Torino (Italy); Silva, Jose C.; Varela, Joao [LIP, Lisbon (Portugal); PETsys Electronics, Oeiras (Portugal)

    2016-07-11

    We present a readout and digitization ASIC featuring low-noise and low-power for time-of flight (TOF) applications using SiPMs. The circuit is designed in standard CMOS 110 nm technology, has 64 independent channels and is optimized for time-of-flight measurement in Positron Emission Tomography (TOF-PET). The input amplifier is a low impedance current conveyor based on a regulated common-gate topology. Each channel has quad-buffered analogue interpolation TDCs (time binning 20 ps) and charge integration ADCs with linear response at full scale (1500 pC). The signal amplitude can also be derived from the measurement of time-over-threshold (ToT). Simulation results show that for a single photo-electron signal with charge 200 (550) fC generated by a SiPM with (320 pF) capacitance the circuit has 24 (30) dB SNR, 75 (39) ps r.m.s. resolution, and 4 (8) mW power consumption. The event rate is 600 kHz per channel, with up to 2 MHz dark counts rejection.

  16. Study on time of flight property of electron optical systems by differential algebraic method

    International Nuclear Information System (INIS)

    Cheng Min; Tang Tiantong; Yao Zhenhua

    2002-01-01

    Differential algebraic method is a powerful and promising technique in computer numerical analysis. When applied to nonlinear dynamics systems, the arbitrary high-order transfer properties of the systems can be computed directly with high precision. In this paper, the principle of differential algebra is applied to study on the time of flight (TOF) property of electron optical systems and their arbitrary order TOF transfer properties can be numerically calculated out. As an example, TOF transfer properties of a uniform magnetic sector field analyzer have been studied by differential algebraic method. Relative errors of the first-order and second-order TOF transfer coefficients of the magnetic sector field analyzer are of the order 10 -11 or smaller compared with the analytic solutions. It is proved that differential algebraic TOF method is of high accuracy and very helpful for high-order TOF transfer property analysis of electron optical systems. (author)

  17. Time-of-flight depth image enhancement using variable integration time

    Science.gov (United States)

    Kim, Sun Kwon; Choi, Ouk; Kang, Byongmin; Kim, James Dokyoon; Kim, Chang-Yeong

    2013-03-01

    Time-of-Flight (ToF) cameras are used for a variety of applications because it delivers depth information at a high frame rate. These cameras, however, suffer from challenging problems such as noise and motion artifacts. To increase signal-to-noise ratio (SNR), the camera should calculate a distance based on a large amount of infra-red light, which needs to be integrated over a long time. On the other hand, the integration time should be short enough to suppress motion artifacts. We propose a ToF depth imaging method to combine advantages of short and long integration times exploiting an imaging fusion scheme proposed for color imaging. To calibrate depth differences due to the change of integration times, a depth transfer function is estimated by analyzing the joint histogram of depths in the two images of different integration times. The depth images are then transformed into wavelet domains and fused into a depth image with suppressed noise and low motion artifacts. To evaluate the proposed method, we captured a moving bar of a metronome with different integration times. The experiment shows the proposed method could effectively remove the motion artifacts while preserving high SNR comparable to the depth images acquired during long integration time.

  18. Validation of LC–TOF-MS Screening for Drugs, Metabolites, and Collateral Compounds in Forensic Toxicology Specimens

    Science.gov (United States)

    Guale, Fessessework; Shahreza, Shahriar; Walterscheid, Jeffrey P.; Chen, Hsin-Hung; Arndt, Crystal; Kelly, Anna T.; Mozayani, Ashraf

    2013-01-01

    Liquid chromatography time-of-flight mass spectrometry (LC–TOF-MS) analysis provides an expansive technique for identifying many known and unknown analytes. This study developed a screening method that utilizes automated solid-phase extraction to purify a wide array of analytes involving stimulants, benzodiazepines, opiates, muscle relaxants, hypnotics, antihistamines, antidepressants and newer synthetic “Spice/K2” cannabinoids and cathinone “bath salt” designer drugs. The extract was applied to LC–TOF-MS analysis, implementing a 13 min chromatography gradient with mobile phases of ammonium formate and methanol using positive mode electrospray. Several common drugs and metabolites can share the same mass and chemical formula among unrelated compounds, but they are structurally different. In this method, the LC–TOF-MS was able to resolve many isobaric compounds by accurate mass correlation within 15 ppm mass units and a narrow retention time interval of less than 10 s of separation. Drug recovery yields varied among spiked compounds, but resulted in overall robust area counts to deliver an average match score of 86 when compared to the retention time and mass of authentic standards. In summary, this method represents a rapid, enhanced screen for blood and urine specimens in postmortem, driving under the influence, and drug facilitated sexual assault forensic toxicology casework. PMID:23118149

  19. Validation of LC-TOF-MS screening for drugs, metabolites, and collateral compounds in forensic toxicology specimens.

    Science.gov (United States)

    Guale, Fessessework; Shahreza, Shahriar; Walterscheid, Jeffrey P; Chen, Hsin-Hung; Arndt, Crystal; Kelly, Anna T; Mozayani, Ashraf

    2013-01-01

    Liquid chromatography time-of-flight mass spectrometry (LC-TOF-MS) analysis provides an expansive technique for identifying many known and unknown analytes. This study developed a screening method that utilizes automated solid-phase extraction to purify a wide array of analytes involving stimulants, benzodiazepines, opiates, muscle relaxants, hypnotics, antihistamines, antidepressants and newer synthetic "Spice/K2" cannabinoids and cathinone "bath salt" designer drugs. The extract was applied to LC-TOF-MS analysis, implementing a 13 min chromatography gradient with mobile phases of ammonium formate and methanol using positive mode electrospray. Several common drugs and metabolites can share the same mass and chemical formula among unrelated compounds, but they are structurally different. In this method, the LC-TOF-MS was able to resolve many isobaric compounds by accurate mass correlation within 15 ppm mass units and a narrow retention time interval of less than 10 s of separation. Drug recovery yields varied among spiked compounds, but resulted in overall robust area counts to deliver an average match score of 86 when compared to the retention time and mass of authentic standards. In summary, this method represents a rapid, enhanced screen for blood and urine specimens in postmortem, driving under the influence, and drug facilitated sexual assault forensic toxicology casework.

  20. A Liquid Chromatography-Quadrupole-Time of Flight Mass Spectrometry (LC-Q-TOF MS) Study for Analyzing 35 Corticosteroid Compounds: Elucidation of MS/MS Fragmentation Pathways

    International Nuclear Information System (INIS)

    Noh, Eunyoung; Yoon, Chang-Yong; Lee, Ji Hyun; Baek, Sun-Young; Do, Jung-Ah; Lee, Jung-min; Oh, Han Bin

    2016-01-01

    Corticosteroids have been often found to be added to a dietary supplement for the purpose of illegally improving the effect of their products. Thus, it is imperative to develop or improve a method that enables one to rapidly and reliably analyze corticosteroids in health or dietary supplements, for the safety management purpose. In the present study, results from liquid chromatography-quadrupole time-of-flight mass spectrometry (LC-Q-TOF-MS) experiments for the selected 35 corticosteroid compounds are presented, which can be useful for the qualitative screening of corticosteroids in health or dietary supplements. Specifically, retention times, accurate mass data of the protonated steroids, m/z values of major fragment ions are given for the 35 corticosteroids. Further, fragmentation pathways for the selected steroids are also suggested. Based on the suggested fragmentation pathways, it was shown that an unknown steroid compound can be readily identified using the knowledge of a group of unique and specific common skeletal fragments. The high selectivity and sensitivity of the LC-Q-TOF-MS/MS results combined with the knowledge of the fragmentation pathways can offer a new opportunity for rapid and accurate screening of corticosteroids, thus preventing health-related incidents involving adulterated products and clamping down on illegally circulated health products.

  1. A Liquid Chromatography-Quadrupole-Time of Flight Mass Spectrometry (LC-Q-TOF MS) Study for Analyzing 35 Corticosteroid Compounds: Elucidation of MS/MS Fragmentation Pathways

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Eunyoung; Yoon, Chang-Yong; Lee, Ji Hyun; Baek, Sun-Young; Do, Jung-Ah [Ministry of Food and Drug Safety, Cheongju (Korea, Republic of); Lee, Jung-min; Oh, Han Bin [Sogang University, Seoul (Korea, Republic of)

    2016-07-15

    Corticosteroids have been often found to be added to a dietary supplement for the purpose of illegally improving the effect of their products. Thus, it is imperative to develop or improve a method that enables one to rapidly and reliably analyze corticosteroids in health or dietary supplements, for the safety management purpose. In the present study, results from liquid chromatography-quadrupole time-of-flight mass spectrometry (LC-Q-TOF-MS) experiments for the selected 35 corticosteroid compounds are presented, which can be useful for the qualitative screening of corticosteroids in health or dietary supplements. Specifically, retention times, accurate mass data of the protonated steroids, m/z values of major fragment ions are given for the 35 corticosteroids. Further, fragmentation pathways for the selected steroids are also suggested. Based on the suggested fragmentation pathways, it was shown that an unknown steroid compound can be readily identified using the knowledge of a group of unique and specific common skeletal fragments. The high selectivity and sensitivity of the LC-Q-TOF-MS/MS results combined with the knowledge of the fragmentation pathways can offer a new opportunity for rapid and accurate screening of corticosteroids, thus preventing health-related incidents involving adulterated products and clamping down on illegally circulated health products.

  2. Identification of Low Molecular Weight Glutenin Alleles by Matrix-Assisted Laser Desorption/Ionization Time-Of-Flight Mass Spectrometry (MALDI-TOF-MS) in Common Wheat (Triticum aestivum L.)

    Science.gov (United States)

    Islam, Shahidul; Applebee, Marie; Appels, Rudi; Yan, Yueming; Ma, Wujun

    2015-01-01

    Low molecular weight glutenin subunits (LMW-GS) play an important role in determining dough properties and breadmaking quality. However, resolution of the currently used methodologies for analyzing LMW-GS is rather low which prevents an efficient use of genetic variations associated with these alleles in wheat breeding. The aim of the current study is to evaluate and develop a rapid, simple, and accurate method to differentiate LMW-GS alleles using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. A set of standard single LMW-GS allele lines as well as a suite of well documented wheat cultivars were collected from France, CIMMYT, and Canada. Method development and optimization were focused on protein extraction procedures and MALDI-TOF instrument settings to generate reproducible diagnostic spectrum peak profiles for each of the known wheat LMW-GS allele. Results revealed a total of 48 unique allele combinations among the studied genotypes. Characteristic MALDI-TOF peak patterns were obtained for 17 common LMW-GS alleles, including 5 (b, a or c, d, e, f), 7 (a, b, c, d or i, f, g, h) and 5 (a, b, c, d, f) patterns or alleles for the Glu-A3, Glu-B3, and Glu-D3 loci, respectively. In addition, some reproducible MALDI-TOF peak patterns were also obtained that did not match with any known alleles. The results demonstrated a high resolution and throughput nature of MALDI-TOF technology in analyzing LMW-GS alleles, which is suitable for application in wheat breeding programs in processing a large number of wheat lines with high accuracy in limited time. It also suggested that the variation of LMW-GS alleles is more abundant than what has been defined by the current nomenclature system that is mainly based on SDS-PAGE system. The MALDI-TOF technology is useful to differentiate these variations. An international joint effort may be needed to assign allele symbols to these newly identified alleles and determine their effects on end

  3. PHENIX Fast TOF

    Energy Technology Data Exchange (ETDEWEB)

    Soha, Aria [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Chiu, Mickey [Brookhaven National Lab. (BNL), Upton, NY (United States); Mannel, Eric [Brookhaven National Lab. (BNL), Upton, NY (United States); Stoll, Sean [Brookhaven National Lab. (BNL), Upton, NY (United States); Lynch, Don [Brookhaven National Lab. (BNL), Upton, NY (United States); Boose, Steve [Brookhaven National Lab. (BNL), Upton, NY (United States); Northacker, Dave [Brookhaven National Lab. (BNL), Upton, NY (United States); Alfred, Marcus [Howard Univ., Washington, DC (United States); Lindesay, James [Howard Univ., Washington, DC (United States); Chujo, Tatsuya [Univ. of Tsukuba (Japan); Inaba, Motoi [Univ. of Tsukuba (Japan); Nonaka, Toshihiro [Univ. of Tsukuba (Japan); Sato, Wataru [Univ. of Tsukuba (Japan); Sakatani, Ikumi [Univ. of Tsukuba (Japan); Hirano, Masahiro [Univ. of Tsukuba (Japan); Choi, Ihnjea [Univ. of Illinois, Urbana-Champaign, IL (United States)

    2014-01-15

    This is a technical scope of work (TSW) between the Fermi National Accelerator Laboratory (Fermilab) and the experimenters of PHENIX Fast TOF group who have committed to participate in beam tests to be carried out during the FY2014 Fermilab Test Beam Facility program. The goals for this test beam experiment are to verify the timing performance of the two types of time-of-flight detector prototypes.

  4. A new Time-of-Flight mass measurement project for exotic nuclei and ultra-high precision detector development

    Directory of Open Access Journals (Sweden)

    Sun Bao-Hua

    2016-01-01

    Full Text Available The time-of-flight (TOF mass spectrometry (MS, a high-resolution magnetic spectrometer equipped with a fast particle tracking system, is well recognized by its ability in weighing the most exotic nuclei. Currently such TOF-MS can achieve a mass resolution power of about 2×10−4. We show that the mass resolution can be further improved by one order of magnitude with augmented timing and position detectors. We report the progress in developing ultra-fast detectors to be used in TOF-MS.

  5. Detection of Bacteriocins by Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry

    OpenAIRE

    Rose, Natisha L.; Sporns, Peter; McMullen, Lynn M.

    1999-01-01

    The use of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) for the detection of bacteriocins was investigated. A 30-s water wash of the sample on the MALDI-TOF MS probe was effective in removing contaminants of the analyte. This method was used for rapid detection of nisin, pediocin, brochocin A and B, and enterocin A and B from culture supernatants and for detection of enterocin B throughout its purification.

  6. The Time-Of-Flight detector of ALICE at LHC: construction, test and commissioning with cosmic rays

    CERN Document Server

    Preghenella, Roberto

    2009-01-01

    After several years of research and development the Time-Of-Flight detector of ALICE (A Large Ion Collider Experiment) has been constructed and is presently fully installed and operative in the experimental area located at the interaction point n.2 of the LHC (Large Hadron Collider) at CERN. Particle identification in ALICE is essential, as many observables are either mass or flavour dependent, therefore many different techniques are used to cover the largest possible momentum range. As said, the TOF (Time- Of-Flight) detector, of which a comprehensive review is given in Chapter 2, is dedicated to hadron identification at medium momenta. The detector exploits the novel technology based on the Multigap Resistive Plate Chamber (MRPC) which guarantees the excellent performance required for a very large time-of-flight array. The construction of the ALICE TOF detector has required the assembly of a large number of MRPC detectors which has been successfully carried out thanks to a careful mass production controlled...

  7. Detection and quantification of neurotensin in human brain tissue by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry

    DEFF Research Database (Denmark)

    Gobom, J; Kraeuter, K O; Persson, R

    2000-01-01

    A method was developed for mass spectrometric detection of neurotensin (NT)-like immunoreactivity and quantification of NT in human brain tissue. The method is based on immunoprecipitation followed by analysis using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF......-MS). The identity of the major component of the immunoprecipitates as neurotensin was confirmed by fragment ion analysis on an electrospray ionization quadrupole time-of-flight instrument. MALDI-TOF-MS quantification of NT was achieved using stable-isotope-labeled NT as the internal standard, yielding an error...

  8. Deconvolution based attenuation correction for time-of-flight positron emission tomography

    Science.gov (United States)

    Lee, Nam-Yong

    2017-10-01

    For an accurate quantitative reconstruction of the radioactive tracer distribution in positron emission tomography (PET), we need to take into account the attenuation of the photons by the tissues. For this purpose, we propose an attenuation correction method for the case when a direct measurement of the attenuation distribution in the tissues is not available. The proposed method can determine the attenuation factor up to a constant multiple by exploiting the consistency condition that the exact deconvolution of noise-free time-of-flight (TOF) sinogram must satisfy. Simulation studies shows that the proposed method corrects attenuation artifacts quite accurately for TOF sinograms of a wide range of temporal resolutions and noise levels, and improves the image reconstruction for TOF sinograms of higher temporal resolutions by providing more accurate attenuation correction.

  9. Time-of-flight small-angle scattering spectrometers on pulsed neutron sources

    International Nuclear Information System (INIS)

    Ostanevich, Yu.M.

    1987-01-01

    The operation principles, constructions, advantages and shortcomings of known time-of-flight small angle neutron scattering (TOF SANS) spectrometers built up with pulsed neutron sources are reviewed. The most important characteristics of TOF SANS apparatuses are rather a high luminosity and the possibility for the measurement in an extremely wide range of scattering vector at a single exposure. This is achieved by simultaneous employment of white beam, TOF technique for wave length-scan and the commonly known angle-scan. However, the electronic equipment, data-matching programs, and the measurement procedure, necessary for accurate normalization of experimental data and their transformation into absolute cross-section scale, they all become more complex, as compared with those for SANS apparatuses operating on steady-state neutron sources, where only angle-scan is used

  10. Dissemination of data measured at the CERN n_TOF facility

    Science.gov (United States)

    Dupont, E.; Otuka, N.; Cabellos, O.; Aberle, O.; Aerts, G.; Altstadt, S.; Alvarez, H.; Alvarez-Velarde, F.; Andriamonje, S.; Andrzejewski, J.; Audouin, L.; Bacak, M.; Badurek, G.; Balibrea, J.; Barbagallo, M.; Barros, S.; Baumann, P.; Bécares, V.; Bečvář, F.; Beinrucker, C.; Belloni, F.; Berthier, B.; Berthoumieux, E.; Billowes, J.; Boccone, V.; Bosnar, D.; Brown, A.; Brugger, M.; Caamaño, M.; Calviani, M.; Calviño, F.; Cano-Ott, D.; Capote, R.; Cardella, R.; Carrapiço, C.; Casanovas, A.; Castelluccio, D. M.; Cennini, P.; Cerutti, F.; Chen, Y. H.; Chiaveri, E.; Chin, M.; Colonna, N.; Cortés, G.; Cortés-Giraldo, M. A.; Cosentino, L.; Couture, A.; Cox, J.; Damone, L. A.; David, S.; Deo, K.; Diakaki, M.; Dillmann, I.; Domingo-Pardo, C.; Dressler, R.; Dridi, W.; Duran, I.; Eleftheriadis, C.; Embid-Segura, M.; Fernández-Domínguez, B.; Ferrant, L.; Ferrari, A.; Ferreira, P.; Finocchiaro, P.; Fraval, K.; Frost, R. J. W.; Fujii, K.; Furman, W.; Ganesan, S.; Garcia, A. R.; Gawlik, A.; Gheorghe, I.; Gilardoni, S.; Giubrone, G.; Glodariu, T.; Göbel, K.; Gomez-Hornillos, M. B.; Goncalves, I. F.; Gonzalez-Romero, E.; Goverdovski, A.; Gramegna, F.; Griesmayer, E.; Guerrero, C.; Gunsing, F.; Gurusamy, P.; Haight, R.; Harada, H.; Heftrich, T.; Heil, M.; Heinitz, S.; Hernández-Prieto, A.; Heyse, J.; Igashira, M.; Isaev, S.; Jenkins, D. G.; Jericha, E.; Kadi, Y.; Kaeppeler, F.; Kalamara, A.; Karadimos, D.; Karamanis, D.; Katabuchi, T.; Kavrigin, P.; Kerveno, M.; Ketlerov, V.; Khryachkov, V.; Kimura, A.; Kivel, N.; Kokkoris, M.; Konovalov, V.; Krtička, M.; Kroll, J.; Kurtulgil, D.; Lampoudis, C.; Langer, C.; Leal-Cidoncha, E.; Lederer, C.; Leeb, H.; Naour, C. Le; Lerendegui-Marco, J.; Leong, L. S.; Licata, M.; Meo, S. Lo; Lonsdale, S. J.; Losito, R.; Lozano, M.; Macina, D.; Manousos, A.; Marganiec, J.; Martinez, T.; Marrone, S.; Masi, A.; Massimi, C.; Mastinu, P.; Mastromarco, M.; Matteucci, F.; Maugeri, E. A.; Mazzone, A.; Mendoza, E.; Mengoni, A.; Milazzo, P. M.; Mingrone, F.; Mirea, M.; Mondelaers, W.; Montesano, S.; Moreau, C.; Mosconi, M.; Musumarra, A.; Negret, A.; Nolte, R.; O'Brien, S.; Oprea, A.; Palomo-Pinto, F. R.; Pancin, J.; Paradela, C.; Patronis, N.; Pavlik, A.; Pavlopoulos, P.; Perkowski, J.; Perrot, L.; Pigni, M. T.; Plag, R.; Plompen, A.; Plukis, L.; Poch, A.; Porras, I.; Praena, J.; Pretel, C.; Quesada, J. M.; Radeck, D.; Rajeev, K.; Rauscher, T.; Reifarth, R.; Riego, A.; Robles, M.; Roman, F.; Rout, P. C.; Rudolf, G.; Rubbia, C.; Rullhusen, P.; Ryan, J. A.; Sabaté-Gilarte, M.; Salgado, J.; Santos, C.; Sarchiapone, L.; Sarmento, R.; Saxena, A.; Schillebeeckx, P.; Schmidt, S.; Schumann, D.; Sedyshev, P.; Smith, A. G.; Sosnin, N. V.; Stamatopoulos, A.; Stephan, C.; Suryanarayana, S. V.; Tagliente, G.; Tain, J. L.; Tarifeño-Saldivia, A.; Tarrío, D.; Tassan-Got, L.; Tavora, L.; Terlizzi, R.; Tsinganis, A.; Valenta, S.; Vannini, G.; Variale, V.; Vaz, P.; Ventura, A.; Versaci, R.; Vermeulen, M. J.; Villamarin, D.; Vicente, M. C.; Vlachoudis, V.; Vlastou, R.; Voss, F.; Wallner, A.; Walter, S.; Ware, T.; Warren, S.; Weigand, M.; Weiß, C.; Wolf, C.; Wiesher, M.; Wisshak, K.; Woods, P. J.; Wright, T.; Žugec, P.

    2017-09-01

    The n_TOF neutron time-of-flight facility at CERN is used for high quality nuclear data measurements from thermal energy up to hundreds of MeV. In line with the CERN open data policy, the n_TOF Collaboration takes actions to preserve its unique data, facilitate access to them in standardised format, and allow their re-use by a wide community in the fields of nuclear physics, nuclear astrophysics and various nuclear technologies. The present contribution briefly describes the n_TOF outcomes, as well as the status of dissemination and preservation of n_TOF final data in the international EXFOR library.

  11. Time-based MRPC detector response simulations for the CBM time-of-flight system

    Energy Technology Data Exchange (ETDEWEB)

    Simon, Christian; Herrmann, Norbert [Physikalisches Institut und Fakultaet fuer Physik und Astronomie, Ruprecht-Karls-Universitaet Heidelberg (Germany); Collaboration: CBM-Collaboration

    2016-07-01

    The design goal of the future Compressed Baryonic Matter (CBM) experiment is to measure rare probes of dense strongly interacting matter with an unprecedented accuracy. Target interaction rates of up to 10 MHz need to be processed by the detector. The time-of-flight (TOF) wall of CBM which should provide hadron identification at particle fluxes of up to a few tens of kHz/cm{sup 2} is composed of high-resolution timing multi-gap resistive plate chambers (MRPCs). Due to the self-triggered digitization and readout scheme of CBM comprising online event reconstruction preparatory Monte Carlo (MC) transport and response simulations including the MRPC array need to be carried out in a time-based fashion. While in an event-based simulation mode interference between MC tracks in a detector volume owing to rate effects or electronics dead time is confined to a single event, time-based response simulations need to take into account track pile-up and interference across events. A proposed time-based digitizer class for CBM-TOF within the CbmRoot software framework is presented.

  12. Ion-neutral potential models in atmospheric pressure ion mobility time-of-flight mass spectrometry IM(tof)MS.

    Science.gov (United States)

    Steiner, Wes E; English, William A; Hill, Herbert H

    2006-02-09

    The ion mobilities and their respective masses of several classes of amines (primary, secondary, and tertiary) were measured by electrospray ionization atmospheric pressure ion mobility time-of-flight mass spectrometry IM(tof)MS. The experimental data obtained were comparatively analyzed by the one-temperature kinetic theory of Chapman-Enskog. Several theoretical models were used to estimate the collision cross-sections; they include the rigid-sphere, polarization-limit, 12-6-4, and 12-4 potential models. These models were investigated to represent the interaction potentials contained within the collision integral that occurs between the polyatomic ions and the neutral drift gas molecules. The effectiveness of these collision cross-section models on predicting the mobility of these amine ions was explored. Moreover, the effects of drift gas selectivity on the reduced-mass term and in the collision cross-section term was examined. Use of a series of drift gases, namely, helium, neon, argon, nitrogen, and carbon dioxide, made it possible to distinguish between mass effects and polarizability effects. It was found that the modified 12-4 potential that compensates for the center of charge not being at the same location as the centers of mass showed improved agreement over the other collision cross-section models with respect to experimental data.

  13. Direct bacterial identification from positive blood cultures using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry: A systematic review and meta-analysis.

    Science.gov (United States)

    Ruiz-Aragón, Jesús; Ballestero-Téllez, Mónica; Gutiérrez-Gutiérrez, Belén; de Cueto, Marina; Rodríguez-Baño, Jesús; Pascual, Álvaro

    2017-10-27

    The rapid identification of bacteraemia-causing pathogens could assist clinicians in the timely prescription of targeted therapy, thereby reducing the morbidity and mortality of this infection. In recent years, numerous techniques that rapidly and directly identify positive blood cultures have been marketed, with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) being one of the most commonly used. The aim of this systematic review and meta-analysis was to evaluate the accuracy of MALDI-TOF (Bruker ® ) for the direct identification of positive blood culture bottles. A meta-analysis was performed to summarize the results of the 32 studies evaluated. The overall quality of the studies was moderate. For Gram-positive bacteria, overall rates of correct identification of the species ranged from 0.17 to 0.98, with a cumulative rate (random-effects model) of 0.72 (95% CI: 0.64-0.80). For Gram-negative bacteria, correct identification rates ranged from 0.66 to 1.00, with a cumulative effect of 0.92 (95% CI: 0.88-0.95). For Enterobacteriaceae, the rate was 0.96 (95% CI: 0.94-0.97). MALDI-TOF mass spectrometry shows high accuracy for the correct identification of Gram-negative bacteria, particularly Enterobacteriaceae, directly from positive blood culture bottles, and moderate accuracy for the identification of Gram-positive bacteria (low for some species). Copyright © 2017 Elsevier España, S.L.U. and Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  14. A unified Fourier theory for time-of-flight PET data.

    Science.gov (United States)

    Li, Yusheng; Matej, Samuel; Metzler, Scott D

    2016-01-21

    Fully 3D time-of-flight (TOF) PET scanners offer the potential of previously unachievable image quality in clinical PET imaging. TOF measurements add another degree of redundancy for cylindrical PET scanners and make photon-limited TOF-PET imaging more robust than non-TOF PET imaging. The data space for 3D TOF-PET data is five-dimensional with two degrees of redundancy. Previously, consistency equations were used to characterize the redundancy of TOF-PET data. In this paper, we first derive two Fourier consistency equations and Fourier-John equation for 3D TOF PET based on the generalized projection-slice theorem; the three partial differential equations (PDEs) are the dual of the sinogram consistency equations and John's equation. We then solve the three PDEs using the method of characteristics. The two degrees of entangled redundancy of the TOF-PET data can be explicitly elicited and exploited by the solutions of the PDEs along the characteristic curves, which gives a complete understanding of the rich structure of the 3D x-ray transform with TOF measurement. Fourier rebinning equations and other mapping equations among different types of PET data are special cases of the general solutions. We also obtain new Fourier rebinning and consistency equations (FORCEs) from other special cases of the general solutions, and thus we obtain a complete scheme to convert among different types of PET data: 3D TOF, 3D non-TOF, 2D TOF and 2D non-TOF data. The new FORCEs can be used as new Fourier-based rebinning algorithms for TOF-PET data reduction, inverse rebinnings for designing fast projectors, or consistency conditions for estimating missing data. Further, we give a geometric interpretation of the general solutions--the two families of characteristic curves can be obtained by respectively changing the azimuthal and co-polar angles of the biorthogonal coordinates in Fourier space. We conclude the unified Fourier theory by showing that the Fourier consistency equations are

  15. A unified Fourier theory for time-of-flight PET data

    International Nuclear Information System (INIS)

    Li, Yusheng; Matej, Samuel; Metzler, Scott D

    2016-01-01

    Fully 3D time-of-flight (TOF) PET scanners offer the potential of previously unachievable image quality in clinical PET imaging. TOF measurements add another degree of redundancy for cylindrical PET scanners and make photon-limited TOF-PET imaging more robust than non-TOF PET imaging. The data space for 3D TOF-PET data is five-dimensional with two degrees of redundancy. Previously, consistency equations were used to characterize the redundancy of TOF-PET data. In this paper, we first derive two Fourier consistency equations and Fourier–John equation for 3D TOF PET based on the generalized projection-slice theorem; the three partial differential equations (PDEs) are the dual of the sinogram consistency equations and John’s equation. We then solve the three PDEs using the method of characteristics. The two degrees of entangled redundancy of the TOF-PET data can be explicitly elicited and exploited by the solutions of the PDEs along the characteristic curves, which gives a complete understanding of the rich structure of the 3D x-ray transform with TOF measurement. Fourier rebinning equations and other mapping equations among different types of PET data are special cases of the general solutions. We also obtain new Fourier rebinning and consistency equations (FORCEs) from other special cases of the general solutions, and thus we obtain a complete scheme to convert among different types of PET data: 3D TOF, 3D non-TOF, 2D TOF and 2D non-TOF data. The new FORCEs can be used as new Fourier-based rebinning algorithms for TOF-PET data reduction, inverse rebinnings for designing fast projectors, or consistency conditions for estimating missing data. Further, we give a geometric interpretation of the general solutions—the two families of characteristic curves can be obtained by respectively changing the azimuthal and co-polar angles of the biorthogonal coordinates in Fourier space. We conclude the unified Fourier theory by showing that the Fourier consistency equations

  16. Non-Halal biomarkers identification based on Fourier Transform Infrared Spectroscopy (FTIR) and Gas Chromatography-Time of Flight Mass Spectroscopy (GC-TOF MS) techniques

    Science.gov (United States)

    Witjaksono, Gunawan; Saputra, Irwan; Latief, Marsad; Jaswir, Irwandi; Akmeliawati, Rini; Abdelkreem Saeed Rabih, Almur

    2017-11-01

    Consumption of meat from halal (lawful) sources is essential for Muslims. The identification of non-halal meat is one of the main issues that face consumers in meat markets, especially in non-Islamic countries. Pig is one of the non-halal sources of meat, and hence pig meat and its derivatives are forbidden for Muslims to consume. Although several studies have been conducted to identify the biomarkers for nonhalal meats like pig meat, these studies are still in their infancy stages, and as a result there is no universal biomarker which could be used for clear cut identification. The purpose of this paper is to use Fourier Transform Infrared Spectroscopy (FTIR) and Gas Chromatography-Time of Flight Mass Spectroscopy (GC-TOF MS) techniques to study fat of pig, cow, lamb and chicken to find possible biomarkers for pig fat (lard) identification. FTIR results showed that lard and chicken fat have unique peaks at wavenumbers 1159.6 cm-1, 1743.4 cm-1, 2853.1 cm-1 and 2922.5 cm-1 compared to lamb and beef fats which did not show peaks at these wavenumbers. On the other hand, GC/MS-TOF results showed that the concentration of 1,2,3-trimethyl-Benzene, Indane, and Undecane in lard are 250, 14.5 and 1.28 times higher than their concentrations in chicken fat, respectively, and 91.4, 2.3 and 1.24 times higher than their concentrations in cow fat, respectively. These initial results clearly indicate that there is a possibility to find biomarkers for non-halal identification.

  17. Neutron Spectroscopy for pulsed beams with frame overlap using a double time-of-flight technique

    Science.gov (United States)

    Harrig, K. P.; Goldblum, B. L.; Brown, J. A.; Bleuel, D. L.; Bernstein, L. A.; Bevins, J.; Harasty, M.; Laplace, T. A.; Matthews, E. F.

    2018-01-01

    A new double time-of-flight (dTOF) neutron spectroscopy technique has been developed for pulsed broad spectrum sources with a duty cycle that results in frame overlap, where fast neutrons from a given pulse overtake slower neutrons from previous pulses. Using a tunable beam at the 88-Inch Cyclotron at Lawrence Berkeley National Laboratory, neutrons were produced via thick-target breakup of 16 MeV deuterons on a beryllium target in the cyclotron vault. The breakup spectral shape was deduced from a dTOF measurement using an array of EJ-309 organic liquid scintillators. Simulation of the neutron detection efficiency of the scintillator array was performed using both GEANT4 and MCNP6. The efficiency-corrected spectral shape was normalized using a foil activation technique to obtain the energy-dependent flux of the neutron beam at zero degrees with respect to the incoming deuteron beam. The dTOF neutron spectrum was compared to spectra obtained using HEPROW and GRAVEL pulse height spectrum unfolding techniques. While the unfolding and dTOF results exhibit some discrepancies in shape, the integrated flux values agree within two standard deviations. This method obviates neutron time-of-flight spectroscopy challenges posed by pulsed beams with frame overlap and opens new opportunities for pulsed white neutron source facilities.

  18. Time-of-flight mass spectrographs—From ions to neutral atoms

    Science.gov (United States)

    Möbius, E.; Galvin, A. B.; Kistler, L. M.; Kucharek, H.; Popecki, M. A.

    2016-12-01

    After their introduction to space physics in the mid 1980s time-of-flight (TOF) spectrographs have become a main staple in spaceborne mass spectrometry. They have largely replaced magnetic spectrometers, except when extremely high mass resolution is required to identify complex molecules, for example, in the vicinity of comets or in planetary atmospheres. In combination with electrostatic analyzers and often solid state detectors, TOF spectrographs have become key instruments to diagnose space plasma velocity distributions, mass, and ionic charge composition. With a variety of implementation schemes that also include isochronous electric field configurations, TOF spectrographs can respond to diverse science requirements. This includes a wide range in mass resolution to allow the separation of medium heavy isotopes or to simply provide distributions of the major species, such as H, He, and O, to obtain information on source tracers or mass fluxes. With a top-hat analyzer at the front end, or in combination with deflectors for three-axis stabilized spacecraft, the distribution function of ions can be obtained with good time resolution. Most recently, the reach of TOF ion mass spectrographs has been extended to include energetic neutral atoms. After selecting the arrival direction with mechanical collimation, followed by conversion to ions, adapted TOF sensors form a new branch of the spectrograph family tree. We review the requirements, challenges, and implementation schemes for ion and neutral atom spectrographs, including potential directions for the future, while largely avoiding overlap with complementary contributions in this special issue.

  19. Time-of-flight PET image reconstruction using origin ensembles

    Science.gov (United States)

    Wülker, Christian; Sitek, Arkadiusz; Prevrhal, Sven

    2015-03-01

    The origin ensemble (OE) algorithm is a novel statistical method for minimum-mean-square-error (MMSE) reconstruction of emission tomography data. This method allows one to perform reconstruction entirely in the image domain, i.e. without the use of forward and backprojection operations. We have investigated the OE algorithm in the context of list-mode (LM) time-of-flight (TOF) PET reconstruction. In this paper, we provide a general introduction to MMSE reconstruction, and a statistically rigorous derivation of the OE algorithm. We show how to efficiently incorporate TOF information into the reconstruction process, and how to correct for random coincidences and scattered events. To examine the feasibility of LM-TOF MMSE reconstruction with the OE algorithm, we applied MMSE-OE and standard maximum-likelihood expectation-maximization (ML-EM) reconstruction to LM-TOF phantom data with a count number typically registered in clinical PET examinations. We analyzed the convergence behavior of the OE algorithm, and compared reconstruction time and image quality to that of the EM algorithm. In summary, during the reconstruction process, MMSE-OE contrast recovery (CRV) remained approximately the same, while background variability (BV) gradually decreased with an increasing number of OE iterations. The final MMSE-OE images exhibited lower BV and a slightly lower CRV than the corresponding ML-EM images. The reconstruction time of the OE algorithm was approximately 1.3 times longer. At the same time, the OE algorithm can inherently provide a comprehensive statistical characterization of the acquired data. This characterization can be utilized for further data processing, e.g. in kinetic analysis and image registration, making the OE algorithm a promising approach in a variety of applications.

  20. Investigation of time-of-flight benefits in an LYSO-based PET/CT scanner: A Monte Carlo study using GATE

    International Nuclear Information System (INIS)

    Geramifar, P.; Ay, M.R.; Shamsaie Zafarghandi, M.; Sarkar, S.; Loudos, G.; Rahmim, A.

    2011-01-01

    The advent of fast scintillators yielding great light yield and/or stopping power, along with advances in photomultiplier tubes and electronics, have rekindled interest in time-of-flight (TOF) PET. Because the potential performance improvements offered by TOF PET are substantial, efforts to improve PET timing should prove very fruitful. In this study, we performed Monte Carlo simulations to explore what gains in PET performance could be achieved if the coincidence resolving time (CRT) in the LYSO-based PET component of Discovery RX PET/CT scanner were improved. For this purpose, the GATE Monte Carlo package was utilized, providing the ability to model and characterize various physical phenomena in PET imaging. For the present investigation, count rate performance and signal to noise ratio (SNR) values in different activity concentrations were simulated for different coincidence timing windows of 4, 5.85, 6, 6.5, 8, 10 and 12 ns and with different CRTs of 100-900 ps FWHM involving 50 ps FWHM increments using the NEMA scatter phantom. Strong evidence supporting robustness of the simulations was found as observed in the good agreement between measured and simulated data for the cases of estimating axial sensitivity, axial and transaxial detection position, gamma non-collinearity angle distribution and positron annihilation distance. In the non-TOF context, the results show that the random event rate can be reduced by using narrower coincidence timing window widths, demonstrating considerable enhancements in the peak noise equivalent count rate (NECR) performance. The peak NECR had increased by ∼50% when utilizing the coincidence window width of 4 ns. At the same time, utilization of TOF information resulted in improved NECR and SNR with the dramatic reduction of random coincidences as a function of CRT. For example, with CRT of 500 ps FWHM, a factor of 2.3 reduction in random rates, factor of 1.5 increase in NECR and factor of 2.1 improvement in SNR is achievable

  1. Investigation of time-of-flight benefits in an LYSO-based PET/CT scanner: A Monte Carlo study using GATE

    Energy Technology Data Exchange (ETDEWEB)

    Geramifar, P. [Faculty of Physics and Nuclear Engineering, Amir Kabir University of Technology (Tehran Polytechnic), Tehran (Iran, Islamic Republic of); Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Research Institute for Nuclear Medicine, Tehran University of Medical Sciences, Shariati Hospital, Tehran (Iran, Islamic Republic of); Ay, M.R., E-mail: mohammadreza_ay@tums.ac.ir [Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Research Institute for Nuclear Medicine, Tehran University of Medical Sciences, Shariati Hospital, Tehran (Iran, Islamic Republic of); Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Shamsaie Zafarghandi, M. [Faculty of Physics and Nuclear Engineering, Amir Kabir University of Technology (Tehran Polytechnic), Tehran (Iran, Islamic Republic of); Sarkar, S. [Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Research Institute for Nuclear Medicine, Tehran University of Medical Sciences, Shariati Hospital, Tehran (Iran, Islamic Republic of); Loudos, G. [Department of Medical Instruments Technology, Technological Educational Institute, Athens (Greece); Rahmim, A. [Department of Radiology, School of Medicine, Johns Hopkins University, Baltimore (United States); Department of Electrical and Computer Engineering, School of Engineering, Johns Hopkins University, Baltimore (United States)

    2011-06-11

    The advent of fast scintillators yielding great light yield and/or stopping power, along with advances in photomultiplier tubes and electronics, have rekindled interest in time-of-flight (TOF) PET. Because the potential performance improvements offered by TOF PET are substantial, efforts to improve PET timing should prove very fruitful. In this study, we performed Monte Carlo simulations to explore what gains in PET performance could be achieved if the coincidence resolving time (CRT) in the LYSO-based PET component of Discovery RX PET/CT scanner were improved. For this purpose, the GATE Monte Carlo package was utilized, providing the ability to model and characterize various physical phenomena in PET imaging. For the present investigation, count rate performance and signal to noise ratio (SNR) values in different activity concentrations were simulated for different coincidence timing windows of 4, 5.85, 6, 6.5, 8, 10 and 12 ns and with different CRTs of 100-900 ps FWHM involving 50 ps FWHM increments using the NEMA scatter phantom. Strong evidence supporting robustness of the simulations was found as observed in the good agreement between measured and simulated data for the cases of estimating axial sensitivity, axial and transaxial detection position, gamma non-collinearity angle distribution and positron annihilation distance. In the non-TOF context, the results show that the random event rate can be reduced by using narrower coincidence timing window widths, demonstrating considerable enhancements in the peak noise equivalent count rate (NECR) performance. The peak NECR had increased by {approx}50% when utilizing the coincidence window width of 4 ns. At the same time, utilization of TOF information resulted in improved NECR and SNR with the dramatic reduction of random coincidences as a function of CRT. For example, with CRT of 500 ps FWHM, a factor of 2.3 reduction in random rates, factor of 1.5 increase in NECR and factor of 2.1 improvement in SNR is

  2. System architecture for high speed reconstruction in time-of-flight positron tomography

    International Nuclear Information System (INIS)

    Campagnolo, R.E.; Bouvier, A.; Chabanas, L.; Robert, C.

    1985-06-01

    A new generation of Time Of Flight (TOF) positron tomograph with high resolution and high count rate capabilities is under development in our group. After a short recall of the data acquisition process and image reconstruction in a TOF PET camera, we present the data acquisition system which achieves a data transfer rate of 0.8 mega events per second or more if necessary in list mode. We describe the reconstruction process based on a five stages pipe line architecture using home made processors. The expected performance with this architecture is a time reconstruction of six seconds per image (256x256 pixels) of one million events. This time could be reduce to 4 seconds. We conclude with the future developments of the system

  3. Direct identification by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) from positive blood culture bottles: An opportunity to customize growth conditions for fastidious organisms causing bloodstream infections.

    Science.gov (United States)

    Sharma, Megha; Gautam, Vikas; Mahajan, Monika; Rana, Sudesh; Majumdar, Manasi; Ray, Pallab

    2017-10-01

    Culture-negative bacteraemia has been an enigmatic entity with respect to its aetiological agents. In an attempt to actively identify those positive blood cultures that escape isolation and detection on routine workflow, an additional step of MALDI-TOF MS (matrix-assisted laser desorption ionization-time of flight mass spectrometry) based detection was carried out directly from the flagged blood culture bottles. Blood samples from 200 blood culture bottles that beeped positive with automated (BACTEC) system and showed no growth of organism on routine culture media, were subjected to analysis by MALDI-TOF MS. Forty seven of the 200 (23.5%) bacterial aetiology could be established by bottle-based method. Based on these results, growth on culture medium could be achieved for the isolates by providing special growth conditions to the fastidious organisms. Direct identification by MALDI-TOF MS from BACTEC-positive bottles provided an opportunity to isolate those fastidious organisms that failed to grow on routine culture medium by providing them with necessary alterations in growth environment.

  4. A High-Precision RF Time-of-Flight Measurement Method based on Vernier Effect for Localization of Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Sang-il KO

    2011-12-01

    Full Text Available This paper presents the fundamental principles of a high-precision RF time-of-flight (ToF measurement method based on the vernier effect, which enables the improvement of time measurement resolution, for accurate distance measurement between sensor nodes in wireless sensor networks. Similar to the two scales of the vernier caliper, two heterogeneous clocks are employed to induce a new virtual time resolution that is much finer than clocks’ intrinsic time resolution. Consecutive RF signal transmission and sensing using two heterogeneous clocks generates a unique sensing pattern for the RF ToF, so that the size of the RF ToF can be estimated by comparing the measured sensing pattern with the predetermined sensing patterns for the RF ToF. RF ToF measurement experiments using this heterogeneous clock system, which has low operating frequencies of several megahertz, certify the proposed RF ToF measurement method through the evaluation of the measured sensing patterns with respect to an RF round-trip time of several nanoseconds.

  5. Design of the multi-reflection time-of-flight mass spectrometer for the RAON facility

    International Nuclear Information System (INIS)

    Yoon, J.W.; Park, Y.H.; Park, S.J.; Kim, G.D.; Kim, Y.K.

    2014-01-01

    A multi-reflection time-of-flight mass spectrometer (MR-TOF-MS) has been proposed for high precision mass measurements on the future Korean heavy ion accelerator called RAON. MR-TOF-MS will allow us to reach very high mass resolving power (> 10 5 ) with extremely short measurement times (several ms) in a compact device. The MR-TOF-MS is composed of two electrostatic ion mirrors in combination with einzel lenses. The principle is that the injected ions travel for hundreds of revolutions inside MR-TOF-MS and ions with different masses are temporally separated. When temporal separation becomes larger than the ion bunch width, ions are extracted from the MR-TOF-MS by switching off the mirror voltages, and then arrive at a detector plane located at time focus, where an MCP detector for the mass measurement or an ion gate for the isobar separation is deployed. In this paper, simulation results for the MR-TOF-MS design using SIMION code are presented. Temporal broadenings, caused by the kinetic energy spread and the transverse emittance, were minimized by optimization of the electrode potentials, and it was demonstrated that the mass resolving power of 10 5 is achievable for the condition of an energy spread of ±30 eV and an emittance of 0.75 π*mm*mrad

  6. Clinical evaluation of TOF versus non-TOF on PET artifacts in simultaneous PET/MR: a dual centre experience

    Energy Technology Data Exchange (ETDEWEB)

    Voert, Edwin E.G.W. ter [University Hospital Zurich, Department of Nuclear Medicine, Zurich (Switzerland); University of Zurich, Zurich (Switzerland); Veit-Haibach, Patrick [University Hospital Zurich, Department of Nuclear Medicine, Zurich (Switzerland); University of Zurich, Zurich (Switzerland); University Hospital Zurich, Department of Diagnostic and Interventional Radiology, Zurich (Switzerland); Ahn, Sangtae [GE Global Research, Niskayuna, NY (United States); Wiesinger, Florian [GE Global Research, Muenchen (Germany); Khalighi, M.M.; Delso, Gaspar [GE Healthcare, Waukesha, WI (United States); Levin, Craig S. [Stanford University, Department of Radiology, Molecular Imaging Program at Stanford, Stanford, CA (United States); Iagaru, Andrei H. [Stanford University, Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, Stanford, CA (United States); Zaharchuk, Greg [Stanford University, Department of Radiology, Neuroradiology, Stanford, CA (United States); Huellner, Martin [University Hospital Zurich, Department of Nuclear Medicine, Zurich (Switzerland); University of Zurich, Zurich (Switzerland); University Hospital Zurich, Department of Neuroradiology, Zurich (Switzerland)

    2017-07-15

    Our objective was to determine clinically the value of time-of-flight (TOF) information in reducing PET artifacts and improving PET image quality and accuracy in simultaneous TOF PET/MR scanning. A total 65 patients who underwent a comparative scan in a simultaneous TOF PET/MR scanner were included. TOF and non-TOF PET images were reconstructed, clinically examined, compared and scored. PET imaging artifacts were categorized as large or small implant-related artifacts, as dental implant-related artifacts, and as implant-unrelated artifacts. Differences in image quality, especially those related to (implant) artifacts, were assessed using a scale ranging from 0 (no artifact) to 4 (severe artifact). A total of 87 image artifacts were found and evaluated. Four patients had large and eight patients small implant-related artifacts, 27 patients had dental implants/fillings, and 48 patients had implant-unrelated artifacts. The average score was 1.14 ± 0.82 for non-TOF PET images and 0.53 ± 0.66 for TOF images (p < 0.01) indicating that artifacts were less noticeable when TOF information was included. Our study indicates that PET image artifacts are significantly mitigated with integration of TOF information in simultaneous PET/MR. The impact is predominantly seen in patients with significant artifacts due to metal implants. (orig.)

  7. Current status of matrix-assisted laser desorption ionisation-time of flight mass spectrometry in the clinical microbiology laboratory.

    Science.gov (United States)

    Kok, Jen; Chen, Sharon C A; Dwyer, Dominic E; Iredell, Jonathan R

    2013-01-01

    The integration of matrix-assisted laser desorption ionisation-time of flight mass spectrometry (MALDI-TOF MS) into many clinical microbiology laboratories has revolutionised routine pathogen identification. MALDI-TOF MS complements and has good potential to replace existing phenotypic identification methods. Results are available in a more clinically relevant timeframe, particularly in bacteraemic septic shock. Novel applications include strain typing and the detection of antimicrobial resistance, but these are not widely used. This review discusses the technical aspects, current applications, and limitations of MALDI-TOF MS.

  8. Dissemination of data measured at the CERN n_TOF facility

    Directory of Open Access Journals (Sweden)

    Dupont E.

    2017-01-01

    Full Text Available The n_TOF neutron time-of-flight facility at CERN is used for high quality nuclear data measurements from thermal energy up to hundreds of MeV. In line with the CERN open data policy, the n_TOF Collaboration takes actions to preserve its unique data, facilitate access to them in standardised format, and allow their re-use by a wide community in the fields of nuclear physics, nuclear astrophysics and various nuclear technologies. The present contribution briefly describes the n_TOF outcomes, as well as the status of dissemination and preservation of n_TOF final data in the international EXFOR library.

  9. Development of DC-TOF control software framework

    International Nuclear Information System (INIS)

    Kim, Hong Joo; Kim, Hyun Ok

    2010-06-01

    Disk-Chopper Time-of-Flight spectrometer (DC-TOF) is a new cold neutron instrument under construction at the Korea Atomic Energy Research Institute (KAERI). It will be equipped with a total of 352 2m PSDs(Position Sensitive Detectors), which are grouped into 11 panels. We developed the main DAQ/Control software works well between multi-DSPs of electronics and user. It is convenient to operate DC-TOF system and monitor it's data quality using GUI(Graphical User Interface). Also it satisfies design throughout with test result of 100K events/s

  10. submitter Dissemination of data measured at the CERN n_TOF facility

    CERN Document Server

    Dupont, E; Cabellos, O; Aberle, O; Aerts, G; Altstadt, S; Alvarez, H; Alvarez-Velarde, F; Andriamonje, S; Andrzejewski, J; Audouin, L; Bacak, M; Badurek, G; Balibrea, J; Barbagallo, M; Barros, S; Baumann, P; Bécares, V; Bečvář, F; Beinrucker, C; Belloni, F; Berthier, B; Berthoumieux, E; Billowes, J; Boccone, V; Bosnar, D; Brown, A; Brugger, M; Caamaño, M; Calviani, M; Calviño, F; Cano-Ott, D; Capote, R; Cardella, R; Carrapiço, C; Casanovas, A; Castelluccio, D M; Cennini, P; Cerutti, F; Chen, Y H; Chiaveri, E; Chin, M; Colonna, N; Cortés, G; Cortés-Giraldo, M A; Cosentino, L; Couture, A; Cox, J; Damone, L A; David, S; Deo, K; Diakaki, M; Dillmann, I; Domingo-Pardo, C; Dressler, R; Dridi, W; Duran, I; Eleftheriadis, C; Embid-Segura, M; Fernández-Domínguez, B; Ferrant, L; Ferrari, A; Ferreira, P; Finocchiaro, P; Fraval, K; Frost, R J W; Fujii, K; Furman, W; Ganesan, S; Garcia, A R; Gawlik, A; Gheorghe, I; Gilardoni, S; Giubrone, G; Glodariu, T; Göbel, K; Gomez-Hornillos, M B; Goncalves, I F; Gonzalez-Romero, E; Goverdovski, A; Gramegna, F; Griesmayer, E; Guerrero, C; Gunsing, F; Gurusamy, P; Haight, R; Harada, H; Heftrich, T; Heil, M; Heinitz, S; Hernández-Prieto, A; Heyse, J; Igashira, M; Isaev, S; Jenkins, D G; Jericha, E; Kadi, Y; Kaeppeler, F; Kalamara, A; Karadimos, D; Karamanis, D; Katabuchi, T; Kavrigin, P; Kerveno, M; Ketlerov, V; Khryachkov, V; Kimura, A; Kivel, N; Kokkoris, M; Konovalov, V; Krtička, M; Kroll, J; Kurtulgil, D; Lampoudis, C; Langer, C; Leal-Cidoncha, E; Lederer, C; Leeb, H; Le Naour, C; Lerendegui-Marco, J; Leong, L S; Licata, M; Lo Meo, S; Lonsdale, S J; Losito, R; Lozano, M; Macina, D; Manousos, A; Marganiec, J; Martinez, T; Marrone, S; Masi, A; Massimi, C; Mastinu, P; Mastromarco, M; Matteucci, F; Maugeri, E A; Mazzone, A; Mendoza, E; Mengoni, A; Milazzo, P M; Mingrone, F; Mirea, M; Mondelaers, W; Montesano, S; Moreau, C; Mosconi, M; Musumarra, A; Negret, A; Nolte, R; O'Brien, S; Oprea, A; Palomo-Pinto, F R; Pancin, J; Paradela, C; Patronis, N; Pavlik, A; Pavlopoulos, P; Perkowski, J; Perrot, L; Pigni, M T; Plag, R; Plompen, A; Plukis, L; Poch, A; Porras, I; Praena, J; Pretel, C; Quesada, J M; Radeck, D; Rajeev, K; Rauscher, T; Reifarth, R; Riego, A; Robles, M; Roman, F; Rout, P C; Rudolf, G; Rubbia, C; Rullhusen, P; Ryan, J A; Sabaté-Gilarte, M; Salgado, J; Santos, C; Sarchiapone, L; Sarmento, R; Saxena, A; Schillebeeckx, P; Schmidt, S; Schumann, D; Sedyshev, P; Smith, A G; Sosnin, N V; Stamatopoulos, A; Stephan, C; Suryanarayana, S V; Tagliente, G; Tain, J L; Tarifeño-Saldivia, A; Tarrío, D; Tassan-Got, L; Tavora, L; Terlizzi, R; Tsinganis, A; Valenta, S; Vannini, G; Variale, V; Vaz, P; Ventura, A; Versaci, R; Vermeulen, M J; Villamarin, D; Vicente, M C; Vlachoudis, V; Vlastou, R; Voss, F; Wallner, A; Walter, S; Ware, T; Warren, S; Weigand, M; Weiß, C; Wolf, C; Wiesher, M; Wisshak, K; Woods, P J; Wright, T; Žugec, P

    2017-01-01

    The n_TOF neutron time-of-flight facility at CERN is used for high quality nuclear data measurements from thermal energy up to hundreds of MeV. In line with the CERN open data policy, the n_TOF Collaboration takes actions to preserve its unique data, facilitate access to them in standardised format, and allow their re-use by a wide community in the fields of nuclear physics, nuclear astrophysics and various nuclear technologies. The present contribution briefly describes the n_TOF outcomes, as well as the status of dissemination and preservation of n_TOF final data in the international EXFOR library.

  11. Evaluation of MALDI-TOF MS (Matrix-Assisted Laser Desorption-Ionization Time-of-Flight Mass Spectrometry) for routine identification of anaerobic bacteria.

    Science.gov (United States)

    Rodríguez-Sánchez, Belén; Alcalá, Luis; Marín, Mercedes; Ruiz, Adrián; Alonso, Elena; Bouza, Emilio

    2016-12-01

    Information regarding the use of MALDI-TOF MS as an alternative to conventional laboratory methods for the rapid and reliable identification of bacterial isolates is still limited. In this study, MALDI-TOF MS was evaluated on 295 anaerobic isolates previously identified by 16S rRNA gene sequencing and with biochemical tests (Rapid ID 32A system, BioMérieux). In total, 85.8% of the isolates were identified by MALDI-TOF MS at the species level vs 49.8% using the Rapid ID 32A system (p anaerobic isolates in the microbiology laboratory. Its implementation will reduce the turnaround time for a final identification and the number of isolates that require 16S rRNA sequencing. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. A novel particle time of flight diagnostic for measurements of shock- and compression-bang times in D3He and DT implosions at the NIF.

    Science.gov (United States)

    Rinderknecht, H G; Johnson, M Gatu; Zylstra, A B; Sinenian, N; Rosenberg, M J; Frenje, J A; Waugh, C J; Li, C K; Sèguin, F H; Petrasso, R D; Rygg, J R; Kimbrough, J R; MacPhee, A; Collins, G W; Hicks, D; Mackinnon, A; Bell, P; Bionta, R; Clancy, T; Zacharias, R; Döppner, T; Park, H S; LePape, S; Landen, O; Meezan, N; Moses, E I; Glebov, V U; Stoeckl, C; Sangster, T C; Olson, R; Kline, J; Kilkenny, J

    2012-10-01

    The particle-time-of-flight (pTOF) diagnostic, fielded alongside a wedge range-filter (WRF) proton spectrometer, will provide an absolute timing for the shock-burn weighted ρR measurements that will validate the modeling of implosion dynamics at the National Ignition Facility (NIF). In the first phase of the project, pTOF has recorded accurate bang times in cryogenic DT, DT exploding pusher, and D(3)He implosions using DD or DT neutrons with an accuracy better than ±70 ps. In the second phase of the project, a deflecting magnet will be incorporated into the pTOF design for simultaneous measurements of shock- and compression-bang times in D(3)He-filled surrogate implosions using D(3)He protons and DD-neutrons, respectively.

  13. Modeling the neutron spin-flip process in a time-of-flight spin-resonance energy filter

    CERN Document Server

    Parizzi, A A; Klose, F

    2002-01-01

    A computer program for modeling the neutron spin-flip process in a novel time-of-flight (TOF) spin-resonance energy filter has been developed. The software allows studying the applicability of the device in various areas of spallation neutron scattering instrumentation, for example as a dynamic TOF monochromator. The program uses a quantum-mechanical approach to calculate the local spin-dependent spectra and is essential for optimizing the magnetic field profiles along the resonator axis. (orig.)

  14. UTOFIA: an underwater time-of-flight image acquisition system

    Science.gov (United States)

    Driewer, Adrian; Abrosimov, Igor; Alexander, Jonathan; Benger, Marc; O'Farrell, Marion; Haugholt, Karl Henrik; Softley, Chris; Thielemann, Jens T.; Thorstensen, Jostein; Yates, Chris

    2017-10-01

    In this article the development of a newly designed Time-of-Flight (ToF) image sensor for underwater applications is described. The sensor is developed as part of the project UTOFIA (underwater time-of-flight image acquisition) funded by the EU within the Horizon 2020 framework. This project aims to develop a camera based on range gating that extends the visible range compared to conventional cameras by a factor of 2 to 3 and delivers real-time range information by means of a 3D video stream. The principle of underwater range gating as well as the concept of the image sensor are presented. Based on measurements on a test image sensor a pixel structure that suits best to the requirements has been selected. Within an extensive characterization underwater the capability of distance measurements in turbid environments is demonstrated.

  15. Multi-Reflection Time-of-Flight Mass Separation and Spectrometry

    CERN Document Server

    Kreim, Susanne; Wolf, R N

    2014-01-01

    The mass of a nucleus is one of its most fundamental ground-state properties and reveals the strength of nuclear binding. Investigating the binding energy of nuclei with respect to the number of protons and neutrons in a nucleus is important for advancing nuclear theory and increases our understanding of nucleosynthesis in supernovae and neutron stars. Precision mass measurements on radioactive nuclides belong to the state-of-the-art techniques [1, 2]. Presently, four complementary techniques are applied: isochronous and Schottky mass spectrometry in storage rings (IMS and SMS, respectively), magnetic-rigidity time-of-flight (TOF-ρ) measurements, and Penning-trap mass spectrometry (PTMS). With measurement cycles in the sub-ms range, IMS and TOF-Bρ MS are well suited for very short-lived species while offering moderate relative precision on the level of 10−6. A higher precision is achieved by SMS but with the need for measurement times on the order of several seconds. As soon as masses with a relative prec...

  16. FOCUS: time-of-flight spectrometer for cold neutrons at SINQ

    Energy Technology Data Exchange (ETDEWEB)

    Janssen, S; Mesot, J [Lab. for Neutron Scattering ETH Zurich, Zurich (Switzerland) and Paul Scherrer Institute, Villigen (Switzerland); Hempelmann, R [Saarbruecken Univ., Physical Chemistry, Saarbruecken (Germany)

    1996-11-01

    The physical layout of the Time-Of-Flight spectrometer at the new spallation source SINQ is presented. The concept shows up a hybrid-TOF combining a Fermi-chopper with a crystal monochromator. The demand of a versatile and flexible instrument for several applications is taken into account by the option of switching from time-focusing to monochromatic focusing mode such that the spectrometer can be optimised for both quasielastic and inelastic scattering applications. (author) 5 figs., 2 tabs., 16 refs.

  17. Secondary metabolite profiling of Curcuma species grown at different locations using GC/TOF and UPLC/Q-TOF MS.

    Science.gov (United States)

    Lee, Jueun; Jung, Youngae; Shin, Jeoung-Hwa; Kim, Ho Kyoung; Moon, Byeong Cheol; Ryu, Do Hyun; Hwang, Geum-Sook

    2014-07-04

    Curcuma, a genus of rhizomatous herbaceous species, has been used as a spice, traditional medicine, and natural dye. In this study, the metabolite profile of Curcuma extracts was determined using gas chromatography-time of flight mass spectrometry (GC/TOF MS) and ultrahigh-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC/Q-TOF MS) to characterize differences between Curcuma aromatica and Curcuma longa grown on the Jeju-do or Jin-do islands, South Korea. Previous studies have performed primary metabolite profiling of Curcuma species grown in different regions using NMR-based metabolomics. This study focused on profiling of secondary metabolites from the hexane extract of Curcuma species. Principal component analysis (PCA) and partial least-squares discriminant analysis (PLS-DA) plots showed significant differences between the C. aromatica and C. longa metabolite profiles, whereas geographical location had little effect. A t-test was performed to identify statistically significant metabolites, such as terpenoids. Additionally, targeted profiling using UPLC/Q-TOF MS showed that the concentration of curcuminoids differed depending on the plant origin. Based on these results, a combination of GC- and LC-MS allowed us to analyze curcuminoids and terpenoids, the typical bioactive compounds of Curcuma, which can be used to discriminate Curcuma samples according to species or geographical origin.

  18. Secondary Metabolite Profiling of Curcuma Species Grown at Different Locations Using GC/TOF and UPLC/Q-TOF MS

    Directory of Open Access Journals (Sweden)

    Jueun Lee

    2014-07-01

    Full Text Available Curcuma, a genus of rhizomatous herbaceous species, has been used as a spice, traditional medicine, and natural dye. In this study, the metabolite profile of Curcuma extracts was determined using gas chromatography-time of flight mass spectrometry (GC/TOF MS and ultrahigh-performance liquid chromatography–quadrupole time-of-flight mass spectrometry (UPLC/Q-TOF MS to characterize differences between Curcuma aromatica and Curcuma longa grown on the Jeju-do or Jin-do islands, South Korea. Previous studies have performed primary metabolite profiling of Curcuma species grown in different regions using NMR-based metabolomics. This study focused on profiling of secondary metabolites from the hexane extract of Curcuma species. Principal component analysis (PCA and partial least-squares discriminant analysis (PLS-DA plots showed significant differences between the C. aromatica and C. longa metabolite profiles, whereas geographical location had little effect. A t-test was performed to identify statistically significant metabolites, such as terpenoids. Additionally, targeted profiling using UPLC/Q-TOF MS showed that the concentration of curcuminoids differed depending on the plant origin. Based on these results, a combination of GC- and LC-MS allowed us to analyze curcuminoids and terpenoids, the typical bioactive compounds of Curcuma, which can be used to discriminate Curcuma samples according to species or geographical origin.

  19. The data acquisition system of the neutron time-of-flight facility nTOF at CERN

    CERN Document Server

    Abbondanno, U; Alvarez, F; Alvarez, H; Andriamonje, Samuel A; Andrzejewski, J; Badurek, G; Baumann, P; Becvar, F; Benlliure, J; Berthomieux, E; Betev, B; Calviño, F; Cano-Ott, D; Capote, R; Cennini, P; Chepel, V Yu; Chiaveri, Enrico; Colonna, N; Cortés, G; Cortina-Gil, D; Couture, A; Cox, J; Dababneh, S; David, S; Dolfini, R; Domingo-Pardo, C; Durán, I; Embid-Segura, M; Ferrant, L; Ferrari, A; Ferreira-Marques, R; Frais-Kölbl, H; Furman, W; Gonçalves, I; González-Romero, E M; Goverdovski, A A; Gramegna, F; Griesmayer, E; Gunsing, F; Haas, B; Haight, R; Heil, M; Herrera-Martínez, A; Isaev, S; Jericha, E; Kadi, Y; Käppeler, F K; Kerveno, M; Ketlerov, V; Köhler, P E; Konovalov, V; Krticka, M; Leeb, H; Lindote, A; Lopes, M I; Lozano, M; Lukic, S; Marganiec, J; Marrone, S; Martínez-Val, J M; Mastinu, P; Mengoni, A; Milazzo, P M; Molina-Coballes, A; Moreau, C; Mosconi, M; Neves, F; Oberhummer, Heinz; O'Brien, S; Pancin, J; Papaevangelou, T; Paradela, C; Pavlik, A; Pavlopoulos, P; Perlado, J M; Perrot, L; Peskov, Vladimir; Plag, R; Plompen, A; Plukis, A; Poch, A; Policarpo, Armando; Pretel, C; Quesada, J M; Rapp, W; Rauscher, T; Reifarth, R; Rosetti, M; Rubbia, Carlo; Rudolf, G; Rullhusen, P; Salgado, V; Schäfer, E; Soares, J C; Stephanq, C; Tagliente, G; Taín, J L; Tassan-Got, L; Tavora, L M N; Terlizzi, R; Vannini, G; Vaz, P; Ventura, A; Villamarín-Fernández, D; Vincente-Vincente, M; Vlachoudis, V; Voss, F; Wendler, H; Wiescher, M; Wisshak, K

    2005-01-01

    The n_TOF facility at CERN has been designed for the measurement of neutron capture, fission and (n, multiplied by n) cross-sections with high accuracy. This requires a flexible and - due to the high instantaneous neutron flux - almost dead time free data acquisition system. A scalable and versatile data solution has been designed based on 8-bit flash-ADCs with sampling rates up to 2 GHz and 8 Mbyte memory buffer. The software is written in C and C++ and is running on PCs equipped with RedHat Linux.

  20. The influence of incubation time, sample preparation and exposure to oxygen on the quality of the MALDI-TOF MS spectrum of anaerobic bacteria

    NARCIS (Netherlands)

    Veloo, A. C. M.; Elgersma, P. E.; Friedrich, A. W.; Nagy, E.; van Winkelhoff, A. J.

    2014-01-01

    With matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), bacteria can be identified quickly and reliably. This accounts especially for anaerobic bacteria. Because growth rate and oxygen sensitivity differ among anaerobic bacteria, we aimed to study the

  1. Neutron resonance spectroscopy at n-TOF at CERN

    International Nuclear Information System (INIS)

    Gunsing, F.; Abbondanno, U.; Aerts, G.; Alvarez, H.; Alvarez-Velarde, F.; Andriamonje, S.; Andrzejewski, J.; Assimakopoulos, P.; Audouin, L.; Badurek, G.; Baumann, P.; Becvar, F.; Berthoumieux, E.; Calvino, F.; Calviani, M.; Cano-Ott, D.; Capote, R.; Carrapic, C.; Cennini, P.; Chepel, V.; Chiaveri, E.; Colonna, N.; Cortes, G.; Couture, A.; Cox, J.; Dahlfors, M.; David, S.; Dillmann, I.; Domingo-Pardo, C.; Dridi, W.; Duran, I.; Eleftheriadis, C.; Embid-Segura, M.; Ferrant, L.; Ferrari, A.; Ferreira-Marques, R.; Fujii, K.; Furman, W.; Goncalves, I.; Gonzalez-Romero, E.; Gramegna, F.; Guerrero, C.; Haas, B.; Haight, R.; Heil, M.; Herrera-Martinez, A.; Igashira, M.; Jericha, E.; Kappeler, F.; Kadi, Y.; Karadimos, D.; Karamanis, D.; Kerveno, M.; Koehler, P.; Kossionides, E.; Krticka, M.; Lampoudis, C.; Leeb, H.; Lindote, A.; Lopes, I.; Lozano, M.; Lukic, S.; Marganiec, J.; Marrone, S.; Martinez, T.; Massimi, C.; Mastinu, P.; Mengoni, A.; Milazzo, P.M.; Moreau, C.; Mosconi, M.; Neves, F.; Oberhummer, H.; O'Brien, S.; Pancin, J.; Papachristodoulou, C.; Papadopoulos, C.; Paradela, C.; Patronis, N.; Pavlik, A.; Pavlopoulos, P.; Perrot, L.; Pigni, M.T.; Plag, R.; Plompen, A.; Plukis, A.; Poch, A.; Praena, J.; Pretel, C.; Quesada, J.; Rauscher, T.; Reifarth, R.; Rubbia, C.; Rudolf, G.; Rullhusen, P.; Salgado, J.; Santos, C.; Sarchiapone, L.; Savvidis, I.; Stephan, C.; Tagliente, G.; Tain, J.L.; Tassan-Got, L.; Tavora, L.; Terlizzi, R.; Vannini, G.; Vaz, P.; Ventura, A.; Villamarin, D.; Vincente, M.C.; Vlachoudis, V.; Vlastou, R.; Voss, F.; Walter, S.; Wiescher, M.; Wisshak, K.

    2008-01-01

    Neutron resonance spectroscopy plays an important role in the investigation of neutron induced reaction cross sections and nuclear structure in the MeV excitation range. Neutron time-of-flight facilities are the most used installations to explore neutron resonances. In this paper we describe the basic features of neutron resonance spectroscopy together with recent results from the time-of-flight facility n-TOF at CERN. (authors)

  2. Precise Time-of-Flight Calculation For 3-D Synthetic Aperture Focusing

    DEFF Research Database (Denmark)

    Andresen, Henrik; Nikolov, Svetoslav; Jensen, Jørgen Arendt

    2009-01-01

    in elevation can be achieved by applying synthetic aperture (SA) focusing to the beamformed in-plane RF-data. The proposed method uses a virtual source (VS) placed at the elevation focus for postbeamforming. This has previously been done in two steps, in plane focusing followed by SA post-focusing in elevation......, because of a lack of a simple expression for the exact time of flight (ToF). This paper presents a new method for calculating the ToF for a 3D case in a single step using a linear array. This method is more flexible than the previously proposed method and is able to beamform a fewer number of points much...

  3. Detailed analysis of the KAERI nTOF facility

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Woon; Lee, Young Ouk [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-06-15

    A project for building a neutron time-of-flight (nTOF) facility is progressing. We expect that the construction will start in early 2016. Before that, a detailed simulation based on the current architectural drawings was performed to optimize the performance of our facility. Currently, several parts had been modified or changed from the original design to reflect requirements such as the layout of the electron beam line, shape of the vacuum chamber producing a neutron beam, and the underground layout of the nTOF facility. Detailed analysis for these modifications has been done with MCNP simulation. An overview of our photo-neutron source and KAERI nTOF facility were introduced. The numerical simulations for heat deposition, source term, and radiation shielding of KAERI nTOF facility were performed and the results are discussed. We are expecting that the construction of the KAERI nTOF facility will start in early 2016, and these results will be used as basic data.

  4. Time of flight measurement on the SOFIA experiment

    International Nuclear Information System (INIS)

    Bail, A.; Taieb, J.; Chatillon, A.; Belier, G.; Laurent, B.; Pellereau, E.

    2011-01-01

    The SOFIA experiment, which will be held at GSI (Darmstadt (Germany)) will allow to completely determine the mass and charge numbers of fragments produced in the fission reaction of radioactive actinides in reverse kinematics. Therefore, a dedicated setup has been developed for the Time of Flight measurement of relativistic heavy ions. The studies, which led to the choice of the adequate plastic scintillators and photomultipliers, are presented. Tests have been undertaken with the ELSA laser and electron beam facility. They shown that a suitable choice would be EJ-232 plastic scintillator for the ToF wall and EJ-232Q for the start detector and Hamamatsu H6533 and H10580 photomultipliers. This was confirmed by two test experiments realized at GSI with relativistic heavy ion beam ( 56 Fe and 238 U), where a time of flight resolution better than 20 ps FWHM was reached. (authors)

  5. Time of flight measurement on the SOFIA experiment

    Energy Technology Data Exchange (ETDEWEB)

    Bail, A.; Taieb, J.; Chatillon, A.; Belier, G.; Laurent, B.; Pellereau, E. [CEA/DAM/DIF, Arpajon (France)

    2011-07-01

    The SOFIA experiment, which will be held at GSI (Darmstadt (Germany)) will allow to completely determine the mass and charge numbers of fragments produced in the fission reaction of radioactive actinides in reverse kinematics. Therefore, a dedicated setup has been developed for the Time of Flight measurement of relativistic heavy ions. The studies, which led to the choice of the adequate plastic scintillators and photomultipliers, are presented. Tests have been undertaken with the ELSA laser and electron beam facility. They shown that a suitable choice would be EJ-232 plastic scintillator for the ToF wall and EJ-232Q for the start detector and Hamamatsu H6533 and H10580 photomultipliers. This was confirmed by two test experiments realized at GSI with relativistic heavy ion beam ({sup 56}Fe and {sup 238}U), where a time of flight resolution better than 20 ps FWHM was reached. (authors)

  6. Fourier rebinning and consistency equations for time-of-flight PET planograms

    International Nuclear Information System (INIS)

    Li, Yusheng; Matej, Samuel; Metzler, Scott D; Defrise, Michel

    2016-01-01

    Due to the unique geometry, dual-panel PET scanners have many advantages in dedicated breast imaging and on-board imaging applications since the compact scanners can be combined with other imaging and treatment modalities. The major challenges of dual-panel PET imaging are the limited-angle problem and data truncation, which can cause artifacts due to incomplete data sampling. The time-of-flight (TOF) information can be a promising solution to reduce these artifacts. The TOF planogram is the native data format for dual-panel TOF PET scanners, and the non-TOF planogram is the 3D extension of linogram. The TOF planograms is five-dimensional while the objects are three-dimensional, and there are two degrees of redundancy. In this paper, we derive consistency equations and Fourier-based rebinning algorithms to provide a complete understanding of the rich structure of the fully 3D TOF planograms. We first derive two consistency equations and John’s equation for 3D TOF planograms. By taking the Fourier transforms, we obtain two Fourier consistency equations (FCEs) and the Fourier–John equation (FJE), which are the duals of the consistency equations and John’s equation, respectively. We then solve the FCEs and FJE using the method of characteristics. The two degrees of entangled redundancy of the 3D TOF data can be explicitly elicited and exploited by the solutions along the characteristic curves. As the special cases of the general solutions, we obtain Fourier rebinning and consistency equations (FORCEs), and thus we obtain a complete scheme to convert among different types of PET planograms: 3D TOF, 3D non-TOF, 2D TOF and 2D non-TOF planograms. The FORCEs can be used as Fourier-based rebinning algorithms for TOF-PET data reduction, inverse rebinnings for designing fast projectors, or consistency conditions for estimating missing data. As a byproduct, we show the two consistency equations are necessary and sufficient for 3D TOF planograms. Finally, we give

  7. Fourier rebinning and consistency equations for time-of-flight PET planograms.

    Science.gov (United States)

    Li, Yusheng; Defrise, Michel; Matej, Samuel; Metzler, Scott D

    2016-01-01

    Due to the unique geometry, dual-panel PET scanners have many advantages in dedicated breast imaging and on-board imaging applications since the compact scanners can be combined with other imaging and treatment modalities. The major challenges of dual-panel PET imaging are the limited-angle problem and data truncation, which can cause artifacts due to incomplete data sampling. The time-of-flight (TOF) information can be a promising solution to reduce these artifacts. The TOF planogram is the native data format for dual-panel TOF PET scanners, and the non-TOF planogram is the 3D extension of linogram. The TOF planograms is five-dimensional while the objects are three-dimensional, and there are two degrees of redundancy. In this paper, we derive consistency equations and Fourier-based rebinning algorithms to provide a complete understanding of the rich structure of the fully 3D TOF planograms. We first derive two consistency equations and John's equation for 3D TOF planograms. By taking the Fourier transforms, we obtain two Fourier consistency equations and the Fourier-John equation, which are the duals of the consistency equations and John's equation, respectively. We then solve the Fourier consistency equations and Fourier-John equation using the method of characteristics. The two degrees of entangled redundancy of the 3D TOF data can be explicitly elicited and exploited by the solutions along the characteristic curves. As the special cases of the general solutions, we obtain Fourier rebinning and consistency equations (FORCEs), and thus we obtain a complete scheme to convert among different types of PET planograms: 3D TOF, 3D non-TOF, 2D TOF and 2D non-TOF planograms. The FORCEs can be used as Fourier-based rebinning algorithms for TOF-PET data reduction, inverse rebinnings for designing fast projectors, or consistency conditions for estimating missing data. As a byproduct, we show the two consistency equations are necessary and sufficient for 3D TOF planograms

  8. Applied physics measurements at the CERN n-TOF facility

    CERN Document Server

    González, E

    2002-01-01

    The present experimental program of the recently constructed neutron time-of-flight installation at CERN, n_TOF, is dominated by the objectives of a shared cost action project of the EU for the measurement of neutron cross section needed for ADS development and nuclear waste transmutation, nTOF-ADS. This paper presents the motivations and the list of reactions and isotopes considered in this part of the n_TOF program. The experimental methods and the present measurement schedule are also briefly discussed. (7 refs).

  9. Quantitative myocardial blood flow imaging with integrated time-of-flight PET-MR.

    Science.gov (United States)

    Kero, Tanja; Nordström, Jonny; Harms, Hendrik J; Sörensen, Jens; Ahlström, Håkan; Lubberink, Mark

    2017-12-01

    The use of integrated PET-MR offers new opportunities for comprehensive assessment of cardiac morphology and function. However, little is known on the quantitative accuracy of cardiac PET imaging with integrated time-of-flight PET-MR. The aim of the present work was to validate the GE Signa PET-MR scanner for quantitative cardiac PET perfusion imaging. Eleven patients (nine male; mean age 59 years; range 46-74 years) with known or suspected coronary artery disease underwent 15 O-water PET scans at rest and during adenosine-induced hyperaemia on a GE Discovery ST PET-CT and a GE Signa PET-MR scanner. PET-MR images were reconstructed using settings recommended by the manufacturer, including time-of-flight (TOF). Data were analysed semi-automatically using Cardiac VUer software, resulting in both parametric myocardial blood flow (MBF) images and segment-based MBF values. Correlation and agreement between PET-CT-based and PET-MR-based MBF values for all three coronary artery territories were assessed using regression analysis and intra-class correlation coefficients (ICC). In addition to the cardiac PET-MR reconstruction protocol as recommended by the manufacturer, comparisons were made using a PET-CT resolution-matched reconstruction protocol both without and with TOF to assess the effect of time-of-flight and reconstruction parameters on quantitative MBF values. Stress MBF data from one patient was excluded due to movement during the PET-CT scanning. Mean MBF values at rest and stress were (0.92 ± 0.12) and (2.74 ± 1.37) mL/g/min for PET-CT and (0.90 ± 0.23) and (2.65 ± 1.15) mL/g/min for PET-MR (p = 0.33 and p = 0.74). ICC between PET-CT-based and PET-MR-based regional MBF was 0.98. Image quality was improved with PET-MR as compared to PET-CT. ICC between PET-MR-based regional MBF with and without TOF and using different filter and reconstruction settings was 1.00. PET-MR-based MBF values correlated well with PET-CT-based MBF values and

  10. Preanalytical and analytical variation of surface-enhanced laser desorption-ionization time-of-flight mass spectrometry of human serum

    DEFF Research Database (Denmark)

    Albrethsen, Jakob; Bøgebo, Rikke; Olsen, Jesper

    2006-01-01

    BACKGROUND: Surface-enhanced laser desorption-ionization time-of-flight (SELDI-TOF) mass spectrometry of human serum is a potential diagnostic tool in human diseases. In the present study, the preanalytical and analytical variation of SELDI-TOF mass spectrometry of serum was assessed in healthy...... was 18% (6%-34%, n=4) for 16 peaks, and inter-individual CV was 38% (16%-56%, n=16) for 20 peaks. CONCLUSIONS: The pre-analytical and analytical conditions of SELDI-TOF mass spectrometry of serum have a significant impact on the protein peaks, with the number of peaks low and the assay variation high...

  11. ICF implosion hotspot ion temperature diagnostic techniques based on neutron time-of-flight method

    International Nuclear Information System (INIS)

    Tang Qi; Song Zifeng; Chen Jiabin; Zhan Xiayu

    2013-01-01

    Ion temperature of implosion hotspot is a very important parameter for inertial confinement fusion. It reflects the energy level of the hotspot, and it is very sensitive to implosion symmetry and implosion speed. ICF implosion hotspot ion temperature diagnostic techniques based on neutron time-of-flight method were described. A neutron TOF spectrometer was developed using a ultrafast plastic scintillator as the neutron detector. Time response of the spectrometer has 1.1 ns FWHM and 0.5 ns rising time. TOF spectrum resolving method based on deconvolution and low pass filter was illuminated. Implosion hotspot ion temperature in low neutron yield and low ion temperature condition at Shenguang-Ⅲ facility was acquired using the diagnostic techniques. (authors)

  12. Performance of a high sensitivity time-of-flight PET ring operating simultaneously within a 3T MR system

    International Nuclear Information System (INIS)

    Levin, Craig S; Jansen, Floris; Deller, Tim; Maramraju, Sri Harsha; Grant, Alex; Iagaru, Andrei

    2014-01-01

    A time-of-flight (TOF)-PET/MR research system installed at Stanford will be used to test the hypotheses that (a) it is possible to acquire simultaneous TOF-PET and 3T MR data while achieving uncompromised performance in both modalities and (b) simultaneous TOF-PET/MR is a tool for multi-parameter characterization of disease. In this paper we will describe the design as well as performance measurements both for the standalone PET ring, and with the two systems integrated. We will also show a selection of clinical images to compare the performance of the integrated TOF-PET/MR system with that of a state-of-the-art PET/CT system.

  13. TOF-SEMSANS—Time-of-flight spin-echo modulated small-angle neutron scattering

    NARCIS (Netherlands)

    Strobl, M.; Tremsin, A.S.; Hilger, A.; Wieder, F.; Kardjilov, N.; Manke, I.; Bouwman, W.G.; Plomp, J.

    2012-01-01

    We report on measurements of spatial beam modulation of a polarized neutron beam induced by triangular precession regions in time-of-flight mode and the application of this novel technique spin-echo modulated small-angle neutron scattering (SEMSANS) to small-angle neutron scattering in the very

  14. Characterizing Scintillator Response with Neutron Time-of-Flight

    Science.gov (United States)

    Palmisano, Kevin; Visca, Hannah; Caves, Louis; Wilkinson, Corey; McClow, Hannah; Padalino, Stephen; Forrest, Chad; Katz, Joe; Sangster, Craig; Regan, Sean

    2017-10-01

    Neutron scintillator diagnostics for ICF can be characterized using the neutron time-of-flight (nTOF) line on Geneseo's 1.7 MV Tandem Pelletron Accelerator. Neutron signals can be differentiated from gamma signals by employing a coincidence method called the associated particle technique (APT). In this measurement, a 2.1 MeV beam of deuterons incident on a deuterated polyethylene target produces neutrons via the d(d,n)3He reaction. A BC-412 plastic scintillator, placed at a scattering angle of 152º, detects 1.76 MeV neutrons in coincidence with the 2.56 MeV 3He ions at an associated angle of 10º. The APT is used to identify the 1.76 MeV neutron while the nTOF line determines its energy. By gating only mono-energetic neutrons, the instrument response function of the scintillator can be determined free from background scattered neutrons and gamma rays. Funded in part by a Grant from the DOE, through the Laboratory for Laser Energetics.

  15. ATLAS Forward Proton (AFP) time-of-flight (ToF) detector: construction & existing experiences

    CERN Document Server

    Sykora, Tomas; The ATLAS collaboration

    2018-01-01

    In 2017 the ATLAS collaboration successfully completed the installation of the ATLAS Forward Proton (AFP) detector to measure diffractive protons leaving under very small angles (hundreds of micro radians) the ATLAS proton-proton interaction point. The AFP tags and measures forward protons scattered in single diffraction or hard central diffraction, where two protons are emitted and a central system is created. In addition, the AFP has a potential to measure two-photon exchange processes, and to be sensitive to eventual anomalous quartic couplings of Vector Bosons: γγW+W−, γγZZ, and γγγγ. Such measurements at high luminosities will be possible only due the combination of high resolution tracking (semi-edgeless 3D Silicon pixel) detectors and ultra-high precision ToF (Quartz-Cherenkov) detectors at both sides of the ATLAS detector. The ToF detector construction and experiences with its operation represent the subject of the talk.

  16. Finding an analytic description of the resolution function for n_TOF-EAR2 at CERN

    CERN Document Server

    Eriksson, John Benjamin

    2017-01-01

    At CERN's neutron time-of-flight facility n_TOF a high intensity pulsed neutron source is used to measure energy-dependent neutron-induced reaction cross sections of isotopes relevant to various fields of research such as nuclear astrophysics, -technology or -medicine. Neutron kinetic energies are determined using the time-of-flight (ToF) technique. A correct ToF to energy conversion is essential and is influenced by many factors, one of which is the so-called resolution function (RF). The RF is a characteristic unique to each experimental facility and can only be determined through simulations using Monte Carlo codes. The goal of this project is to find an analytic description of the RF for n_TOF-EAR2. Two functions for two different energy ranges were found, each a combination of linear, polynomial and exponential functions. Furthermore, the energy dependence of the function's parameters was investigated.

  17. Indoor and Outdoor Depth Imaging of Leaves With Time-of-Flight and Stereo Vision Sensors

    DEFF Research Database (Denmark)

    Kazmi, Wajahat; Foix, Sergi; Alenya, Guilliem

    2014-01-01

    In this article we analyze the response of Time-of-Flight (ToF) cameras (active sensors) for close range imaging under three different illumination conditions and compare the results with stereo vision (passive) sensors. ToF cameras are sensitive to ambient light and have low resolution but deliver...... poorly under sunlight. Stereo vision is comparatively more robust to ambient illumination and provides high resolution depth data but is constrained by texture of the object along with computational efficiency. Graph cut based stereo correspondence algorithm can better retrieve the shape of the leaves...

  18. Direct identification by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS from positive blood culture bottles: An opportunity to customize growth conditions for fastidious organisms causing bloodstream infections

    Directory of Open Access Journals (Sweden)

    Megha Sharma

    2017-01-01

    Full Text Available Culture-negative bacteraemia has been an enigmatic entity with respect to its aetiological agents. In an attempt to actively identify those positive blood cultures that escape isolation and detection on routine workflow, an additional step of MALDI-TOF MS (matrix-assisted laser desorption ionization-time of flight mass spectrometry based detection was carried out directly from the flagged blood culture bottles. Blood samples from 200 blood culture bottles that beeped positive with automated (BACTEC system and showed no growth of organism on routine culture media, were subjected to analysis by MALDI-TOF MS. Forty seven of the 200 (23.5% bacterial aetiology could be established by bottle-based method. Based on these results, growth on culture medium could be achieved for the isolates by providing special growth conditions to the fastidious organisms. Direct identification by MALDI-TOF MS from BACTEC-positive bottles provided an opportunity to isolate those fastidious organisms that failed to grow on routine culture medium by providing them with necessary alterations in growth environment.

  19. TOF-PET/MR和TOF-PET/CT在体部恶性肿瘤SUVmax值的比较%Comparision of SUVmax of TOF-PET/MR and TOF-PET/CT in body malignant tumor

    Institute of Scientific and Technical Information of China (English)

    宋天彬; 卢洁; 崔碧霄; 马杰; 杨宏伟; 马蕾; 梁志刚

    2017-01-01

    目的 探讨时间飞行(TOF)技术PET/CT和PET/MR检查体部恶性病变SUVmax值的一致性.方法 回顾性分析接受TOF-PET/CT和TOF-PET/MR检查的体部恶性肿瘤患者20例,分为先PET/CT后PET/MR组和先PET/MR后PET/CT组,每组10例.采用Bland-Altma图评价两次检查病灶SUVmax值的一致性,采用多因素方差分析评价扫描顺序和机器类型对病灶的SUVmax测量值的影响.结果 TOF-PET/CT与TOF-PET/MR检查病灶的SUVmax值有较好的一致性[先PET/CT后PET/MR组:均值差为3.06,95%CI(-7.5,13.6),先PET/MR后PET/CT组:均值差3.0,95%CI(-2.4,8.3)].扫描顺序对于恶性病灶的SUVmax有影响(F=46.00,P<0.001),而机器类型对恶性病灶的SUVmax值无影响(F=0.005,P=0.95).结论 TOF-PET/MR和TOF-PET/CT在体部恶性病变SUVmax值测量方面具有相当的诊断价值,且延迟显像SUVmax的增加与采集时间有关,而与检查机器类型无关.%Objective To explore the consistency of time-of-flight (TOF) technology of PET/MRI and PET/CT for max standardized uptake value (SUVmax) of body malignant tumors.Methods A retrospective analysis of TOF-PET/CT and TOF-PET/MR imaging data about twenty patients with body malignant tumors was performed.Patients were divided into two groups (each n=10),including PET/CT first and sequentially PET/MR group and PET/MR first and sequentially PET/CT group.Bland-Altman figure was used to evaluate consistency of SUVmax of malignant lesions between TOF-PET/CT and TOF-PET/MR.Multi-way ANOVA was used to analysis effect of machine type and exam order on SUVmaxof malignant lesions in TOF-PET/CT and TOF-PET/MR.Results SUVmax of malignant lesions in TOF-PET/CT and TOF-PET/MR had good consistency in two groups (PET/CT first and sequentially PET/MR group:Mean difference was 3.06,95%CI was [-7.5,13.6];PET/MR first and sequentially PET/CT group:Mean difference was 3.0,95%CI was [-2.4,8.3]).SUVmax was not influenced by machine type (F=0.005,P=0.95),but exam order (F=46.00,P<0

  20. High-performance electronics for time-of-flight PET systems

    International Nuclear Information System (INIS)

    Choong, W-S; Peng, Q; Vu, C Q; Turko, B T; Moses, W W

    2013-01-01

    We have designed and built a high-performance readout electronics system for time-of-flight positron emission tomography (TOF PET) cameras. The electronics architecture is based on the electronics for a commercial whole-body PET camera (Siemens/CPS Cardinal electronics), modified to improve the timing performance. The fundamental contributions in the electronics that can limit the timing resolution include the constant fraction discriminator (CFD), which converts the analog electrical signal from the photo-detector to a digital signal whose leading edge is time-correlated with the input signal, and the time-to-digital converter (TDC), which provides a time stamp for the CFD output. Coincident events are identified by digitally comparing the values of the time stamps. In the Cardinal electronics, the front-end processing electronics are performed by an Analog subsection board, which has two application-specific integrated circuits (ASICs), each servicing a PET block detector module. The ASIC has a built-in CFD and TDC. We found that a significant degradation in the timing resolution comes from the ASIC's CFD and TDC. Therefore, we have designed and built an improved Analog subsection board that replaces the ASIC's CFD and TDC with a high-performance CFD (made with discrete components) and TDC (using the CERN high-performance TDC ASIC). The improved Analog subsection board is used in a custom single-ring LSO-based TOF PET camera. The electronics system achieves a timing resolution of 60 ps FWHM. Prototype TOF detector modules are read out with the electronics system and give coincidence timing resolutions of 259 ps FWHM and 156 ps FWHM for detector modules coupled to LSO and LaBr 3 crystals respectively.

  1. TOF powder diffractometer on a reactor source

    International Nuclear Information System (INIS)

    Bleif, H.J.; Wechsler, D.; Mezei, F.

    1999-01-01

    Complete text of publication follows. The performance of time-of-flight (TOF) methods on Long Pulse Spallation Sources can be studied at a reactor source. For this purpose a prototype TOF monochromator instrument will be installed at the KFKI reactor in Budapest. The initial setup will be a powder diffractometer with a resolution of δd/d down to 2 x 10 -3 at a wavelength of 1 A. The instrument uses choppers to produce neutron pulses of down to 10 μs FWHM. The optimal neutron source for a chopper instrument is a Long Pulse Spallation Source, but even on a continuous source simulations have shown that this instrument outperforms a conventional crystal monochromator powder diffractometer at high resolution. The main components of the TOF instrument are one double chopper defining the time resolution and two single choppers to select the wavelength range and to prevent frame overlap. For inelastic experiments a further chopper can be added in front of the sample. The neutron guide has a super-mirror coating and a curvature of 3500m. The total flight path is 20m and there are 24 single detectors in backscattering geometry. (author)

  2. Space-charge effect in electron time-of-flight analyzer for high-energy photoemission spectroscopy

    International Nuclear Information System (INIS)

    Greco, G.; Verna, A.; Offi, F.; Stefani, G.

    2016-01-01

    Highlights: • Two methods for the simulation of space-charge effect in time-resolved PES. • Reliability and advantages in the use of the SIMION"® software. • Simulation of the space-charge effect in an electron TOF analyzer. • Feasibility of a TOF analyzer in time-resolved high-energy PES experiments at FEL. - Abstract: The space-charge effect, due to the instantaneous emission of many electrons after the absorption of a single photons pulse, causes distortion in the photoelectron energy spectrum. Two calculation methods have been applied to simulate the expansion during a free flight of clouds of mono- and bi-energetic electrons generated by a high energy pulse of light and their results have been compared. The accuracy of a widely used tool, such as SIMION"®, in predicting the energy distortion caused by the space-charge has been tested and the reliability of its results is verified. Finally we used SIMION"® to take into account the space-charge effects in the simulation of simple photoemission experiments with a time-of-flight analyzer.

  3. Evaluation of matrix-assisted laser desorption ionization-time of flight mass spectrometry for identification of clinically important yeast species.

    Science.gov (United States)

    Stevenson, Lindsay G; Drake, Steven K; Shea, Yvonne R; Zelazny, Adrian M; Murray, Patrick R

    2010-10-01

    We evaluated the use of matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) for the rapid identification of yeast species. Using Bruker Daltonics MALDI BioTyper software, we created a spectral database library with m/z ratios of 2,000 to 20,000 Da for 109 type and reference strains of yeast (44 species in 8 genera). The database was tested for accuracy by use of 194 clinical isolates (23 species in 6 genera). A total of 192 (99.0%) of the clinical isolates were identified accurately by MALDI-TOF MS. The MALDI-TOF MS-based method was found to be reproducible and accurate, with low consumable costs and minimal preparation time.

  4. IPNS time-of-flight single crystal diffractometer

    International Nuclear Information System (INIS)

    Schultz, A.J.; Teller, R.G.; Williams, J.M.

    1983-01-01

    The single crystal diffractometer (SCD) at the Argonne Intense Pulsed Neutron Source (IPNS) utilizes the time-of-flight (TOF) Laue technique to provide a three-dimensional sampling of reciprocal space during each pulse. The instrument contains a unique neutron position-sensitive 6 Li-glass scintillation detector with an active area of 30 x 30 cm. The three-dimensional nature of the data is very useful for fast, efficient measurement of Bragg intensities and for the studies of superlattice and diffuse scattering. The instrument was designed to achieve a resolution of 2% or better (R = δQ/Q) with 2 THETA > 60 0 and lambda > 0.7A

  5. A study of aging effects of barrel Time-Of-Flight system in the BESIII experiment

    Science.gov (United States)

    Liu, Huan-Huan; Sun, Sheng-Sen; Fang, Shuang-Shi; Wu, Zhi; Dai, Hong-Liang; Heng, Yue-Kun; Zhou, Ming; Deng, Zi-Yan; Liu, Huai-Min

    2018-02-01

    The Time-Of-Flight system consisting of plastic scintillation counters plays an important role for particle identification in the BESIII experiment at the BEPCII double ring e+e- collider. Degradation of the detection efficiency of the barrel TOF system has been observed since the start of physical data taking and this effect has triggered intensive and systematic studies about aging effects of the detector. The aging rates of the attenuation lengths and relative gains are obtained based on the data acquired in past several years. This study is essential for ensuring an extended operation of the barrel TOF system in optimal conditions.

  6. A new beam profile monitor and time of flight system for CologneAMS

    Energy Technology Data Exchange (ETDEWEB)

    Pascovici, G. [CologneAMS, University of Cologne (Germany); Dewald, A., E-mail: dewald@ikp.uni-koeln.de [CologneAMS, University of Cologne (Germany); Institute of Nuclear Physics, University of Cologne (Germany); Heinze, S., E-mail: heinze@ikp.uni-koeln.de [CologneAMS, University of Cologne (Germany); Fink, L.; Mueller-Gatermann, C.; Schiffer, M.; Feuerstein, C. [CologneAMS, University of Cologne (Germany); Pfeiffer, M.; Jolie, J.; Thiel, S.; Zell, K.O.; Arnopolina, O. [Institute of Nuclear Physics, University of Cologne (Germany); Blanckenburg, F. von [GFZ, German Research Centre for Geosciences, Potsdam (Germany)

    2013-01-15

    A complex beam detector consisting of a high-resolution beam profile monitor (BPM) and a time of flight (TOF) spectrometer with tracking capabilities was designed especially for the special needs of the Cologne center for accelerator mass spectrometry (CologneAMS). The beam detector assembly is designed to match the beam specifications of the 6 MV Tandetron AMS setup and its data acquisition system. It will have a reconfigurable structure, either as a fast TOF subsystem with a ca. 10 cm{sup 2} equivalent active area, or as a more complex BPM-TOF detector with beam tracking capabilities and a larger active area (16 cm{sup 2}). The purpose of this detector is to suppress background during spectrometry of heavy ions (U, Cm, Pu, Am etc.) and to suppress isobaric interferences such as {sup 36}S in {sup 36}Cl spectra.

  7. Phenotypic identification of Porphyromonas gingivalis validated with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry

    NARCIS (Netherlands)

    Rams, Thomas E; Sautter, Jacqueline D; Getreu, Adam; van Winkelhoff, Arie J

    OBJECTIVE: Porphyromonas gingivalis is a major bacterial pathogen in human periodontitis. This study used matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry to assess the accuracy of a rapid phenotypic identification scheme for detection of cultivable P.

  8. Matrix-assisted laser desorption ionization-time of flight mass spectrometry for direct bacterial identification from positive blood culture pellets.

    Science.gov (United States)

    Prod'hom, Guy; Bizzini, Alain; Durussel, Christian; Bille, Jacques; Greub, Gilbert

    2010-04-01

    An ammonium chloride erythrocyte-lysing procedure was used to prepare a bacterial pellet from positive blood cultures for direct matrix-assisted laser desorption-ionization time of flight (MALDI-TOF) mass spectrometry analysis. Identification was obtained for 78.7% of the pellets tested. Moreover, 99% of the MALDI-TOF identifications were congruent at the species level when considering valid scores. This fast and accurate method is promising.

  9. Control of Strobilurin Fungicides in Wheat Using Direct Analysis in Real Time Accurate Time-of-Flight and Desorption Electrospray Ionization Linear Ion Trap Mass Spectrometry

    NARCIS (Netherlands)

    Schurek, J.; Vaclavik, L.; Hooijerink, H.; Lacina, O.; Poustka, J.; Sharman, M.; Caldow, M.; Nielen, M.W.F.; Hajslova, J.

    2008-01-01

    Ambient mass spectrometry has been used for the analysis of strobilurin residues in wheat. The use of this novel, challenging technique, employing a direct analysis in a real time (DART) ion-source coupled with a time-of-flight mass spectrometer (TOF MS) and a desorption electrospray ionization

  10. A real time scintillating fiber Time of Flight spectrometer for LINAC photoproduced neutrons

    Science.gov (United States)

    Maspero, M.; Berra, A.; Conti, V.; Giannini, G.; Ostinelli, A.; Prest, M.; Vallazza, E.

    2015-03-01

    The use of high-energy (> 8 MeV) LINear ACcelerators (LINACs) for medical cancer treatments causes the photoproduction of secondary neutrons, whose unwanted dose to the patient has to be calculated. The characterization of the neutron spectra is necessary to allow the dosimetric evaluation of the neutron beam contamination. The neutron spectrum in a hospital environment is usually measured with integrating detectors such as bubble dosimeters, Thermo Luminescent Dosimeters (TLDs) or Bonner Spheres, which integrate the information over a time interval and an energy one. This paper presents the development of a neutron spectrometer based on the Time of Flight (ToF) technique in order to perform a real time characterization of the neutron contamination. The detector measures the neutron spectrum exploiting the fact that the LINAC beams are pulsed and arranged in bunches with a rate of 100-300 Hz depending on the beam type and energy. The detector consists of boron loaded scintillating fibers readout by a MultiAnode PhotoMultiplier Tube (MAPMT). A detailed description of the detector and the acquisition system together with the results in terms of ToF spectra and number of neutrons with a Varian Clinac iX are presented.

  11. The role of vacuum in the quality of TOF mass spectrometer

    International Nuclear Information System (INIS)

    Bhowmick, A.; Gadkari, S.C.; Yakhmi, J.V.; Sahni, V.C.

    2005-01-01

    The art in the designing of time-of-flight mass spectrometers has come across a long course of development. The present day state-of-the-art machines are essentially the outcome of knowledge from the advances in different other areas of technology. This article discusses exclusively the role of UHV to enhance the quality of the TOF mass spectrometers and its application to the recently developed high resolution TOF mass spectrometer at TP and PED-BARC. (author)

  12. Sequencing of Isotope-Labeled Small RNA Using Femtosecond Laser Ablation Time-of-Flight Mass Spectrometry

    Science.gov (United States)

    Kurata-Nishimura, Mizuki; Ando, Yoshinari; Kobayashi, Tohru; Matsuo, Yukari; Suzuki, Harukazu; Hayashizaki, Yoshihide; Kawai, Jun

    2010-04-01

    A novel method for the analysis of sequences of small RNAs using nucleotide triphosphates labeled with stable isotopes has been developed using time-of-flight mass spectroscopy combined with femtosecond laser ablation (fsLA-TOF-MS). Small RNAs synthesized with nucleotides enriched in 13C and 15N were efficiently atomized and ionized by single-shot fsLA and the isotope ratios 13C/12C and 15N/14N were evaluated using the TOF-MS method. By comparing the isotope ratios among four different configurations, the number of nucleotide contents of the control RNA sample were successfully reproduced.

  13. Multi-residue analysis method for analysis of pharmaceuticals using liquid chromatography-time of flight/mass spectrometry (LC-TOF/MS) in water sample

    Science.gov (United States)

    Al-Qaim, Fouad Fadhil; Abdullah, Md Pauzi; Othman, Mohamed Rozali

    2013-11-01

    In this work, a developed method using solid - phase extraction (SPE) followed by liquid chromatography - time of flight mass spectrometry (LC-ESI-TOF/MS) was developed and validated for quantification and confirmation of eleven pharmaceuticals with different therapeutic classes in water samples, Malaysia. These compounds are caffeine (CAF), prazosin (PRZ), enalapril (ENL), carbamazepine (CBZ), nifedipine (NFD), levonorgestrel (LNG), simvastatin (SMV), hydrochlorothiazide (HYD), gliclazide (GLIC), diclofenac-Na (DIC-Na) and mefenamic acid (MEF). LC was performed on a Dionex Ultimate 3000/LC 09115047 (USA) system. Chromatography was performed on a Thermo Scientific C18 (250 mm × 2.1 mm, i.d.: 5μm) column. Several parameters were optimised such as; mobile phase, gradient elution, collision energy and solvent elution for extraction of compounds from water. The recoveries obtained ranged from 30-148 % in river water. Five pharmaceutical compounds were detected in the surface water samples: caffeine, prazosin, enalpril, diclofenac-Na and mefenamic acid. The developed method is precise and accepted recoveries were got. In addition, this method is suitable to identify and quantify trace concentrations of pharmaceuticals in surface water.

  14. A homemade high-resolution orthogonal-injection time-of-flight mass spectrometer with a heated capillary inlet

    International Nuclear Information System (INIS)

    Guo Changjuan; Huang Zhengxu; Gao Wei; Nian Huiqing; Chen Huayong; Dong Junguo; Shen Guoying; Fu Jiamo; Zhou Zhen

    2008-01-01

    We describe a homemade high-resolution orthogonal-injection time-of-flight (O-TOF) mass spectrometer combing a heated capillary inlet. The O-TOF uses a heated capillary tube combined with a radio-frequency only quadrupole (rf-only quadrupole) as an interface to help the ion transmission from the atmospheric pressure to the low-pressure regions. The principle, configuration of the O-TOF, and the performance of the instrument are introduced in this paper. With electrospray ion source, the performances of the mass resolution, the sensitivity, the mass range, and the mass accuracy are described. We also include our results obtained by coupling atmospheric pressure matrix-assisted laser deporption ionization with this instrument

  15. An improvement of isochronous mass spectrometry: Velocity measurements using two time-of-flight detectors

    International Nuclear Information System (INIS)

    Shuai, P.; Xu, X.; Zhang, Y.H.; Xu, H.S.; Litvinov, Yu. A.; Wang, M.

    2016-01-01

    Isochronous mass spectrometry (IMS) in storage rings is a powerful tool for mass measurements of exotic nuclei with very short half-lives down to several tens of microseconds, using a multicomponent secondary beam separated in-flight without cooling. However, the inevitable momentum spread of secondary ions limits the precision of nuclear masses determined by using IMS. Therefore, the momentum measurement in addition to the revolution period of stored ions is crucial to reduce the influence of the momentum spread on the standard deviation of the revolution period, which would lead to a much improved mass resolving power of IMS. One of the proposals to upgrade IMS is that the velocity of secondary ions could be directly measured by using two time-of-flight (double TOF) detectors installed in a straight section of a storage ring. In this paper, we outline the principle of IMS with double TOF detectors and the method to correct the momentum spread of stored ions.

  16. A new approach for improved time and position measurements for TOF-PET: Time-stamping of the photo-electrons using analogue SiPMs

    CERN Document Server

    Doroud, K

    2017-01-01

    Measurement of the Time-of-Flight (TOF) of the 511 keV gammas brings an important reduction of statistical noise in the PET image, with higher precision time measurements producing clearer images. The common method of coupling a photodetector to scintillating crystals is to have two matching matrices, with a one-to-one coupling between the crystal and the photodetector. We propose a new geometry based on analogue strip SiPMs reading out a scintillator cut into slabs. This technique allows the time stamping of individual photo-electrons and extracts the best time resolution using a specific algorithm. Here we present the results from the first ‘slab module’ test.

  17. A new approach for improved time and position measurements for TOF-PET: Time-stamping of the photo-electrons using analogue SiPMs

    Energy Technology Data Exchange (ETDEWEB)

    Doroud, K., E-mail: Katayoun.Doroud@cern.ch [CERN Geneva (Switzerland); Williams, M.C.S. [CERN Geneva (Switzerland); INFN, Bologna (Italy)

    2017-03-21

    Measurement of the Time-of-Flight (TOF) of the 511 keV gammas brings an important reduction of statistical noise in the PET image, with higher precision time measurements producing clearer images. The common method of coupling a photodetector to scintillating crystals is to have two matching matrices, with a one-to-one coupling between the crystal and the photodetector. We propose a new geometry based on analogue strip SiPMs reading out a scintillator cut into slabs. This technique allows the time stamping of individual photo-electrons and extracts the best time resolution using a specific algorithm. Here we present the results from the first ‘slab module’ test.

  18. Fluence measurement at the neutron time of flight experiment at CERN

    CERN Document Server

    Weiss, Christina; Jericha, Erwin

    At the neutron time of flight facility n_TOF at CERN a new spallation target was installed in 2008. In 2008 and 2009 the commissioning of the new target took place. During the summer 2009 a fission chamber of the Physikalisch Technische Bundesanstalt (PTB) Braunschweig was used for the neutron fluence measurement. The evaluation of the data recorded with this detector is the primary topic of this thesis. Additionally a neutron transmission experiment with air has been performed at the TRIGA Mark II reactor of the Atomic Institute of the Austrian Universities (ATI). The experiment was implemented to clarify a question about the scattering cross section of molecular gas which could not be answered clearly via the literature. This problem came up during the evaluations for n_TOF.

  19. Characterization of Bacteria in Ballast Water Using MALDI-TOF Mass Spectrometry

    Digital Repository Service at National Institute of Oceanography (India)

    Emami, K.; Askari, V.; Ullrich, M.; Mohinudeen, K.; Anil, A.C.; Khandeparker, L.; Burgess, J.G.; Mesbahi, E.

    To evaluate a rapid and cost-effective method for monitoring bacteria in ballast water, several marine bacterial isolates were characterized by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). Since...

  20. Lesion detection and quantification performance of the Tachyon-I time-of-flight PET scanner: phantom and human studies

    Science.gov (United States)

    Zhang, Xuezhu; Peng, Qiyu; Zhou, Jian; Huber, Jennifer S.; Moses, William W.; Qi, Jinyi

    2018-03-01

    The first generation Tachyon PET (Tachyon-I) is a demonstration single-ring PET scanner that reaches a coincidence timing resolution of 314 ps using LSO scintillator crystals coupled to conventional photomultiplier tubes. The objective of this study was to quantify the improvement in both lesion detection and quantification performance resulting from the improved time-of-flight (TOF) capability of the Tachyon-I scanner. We developed a quantitative TOF image reconstruction method for the Tachyon-I and evaluated its TOF gain for lesion detection and quantification. Scans of either a standard NEMA torso phantom or healthy volunteers were used as the normal background data. Separately scanned point source and sphere data were superimposed onto the phantom or human data after accounting for the object attenuation. We used the bootstrap method to generate multiple independent noisy datasets with and without a lesion present. The signal-to-noise ratio (SNR) of a channelized hotelling observer (CHO) was calculated for each lesion size and location combination to evaluate the lesion detection performance. The bias versus standard deviation trade-off of each lesion uptake was also calculated to evaluate the quantification performance. The resulting CHO-SNR measurements showed improved performance in lesion detection with better timing resolution. The detection performance was also dependent on the lesion size and location, in addition to the background object size and shape. The results of bias versus noise trade-off showed that the noise (standard deviation) reduction ratio was about 1.1–1.3 over the TOF 500 ps and 1.5–1.9 over the non-TOF modes, similar to the SNR gains for lesion detection. In conclusion, this Tachyon-I PET study demonstrated the benefit of improved time-of-flight capability on lesion detection and ROI quantification for both phantom and human subjects.

  1. A high-resolution time-of-flight spectrometer for fission fragments and ion beams

    International Nuclear Information System (INIS)

    Kosev, Krasimir Milchev

    2007-01-01

    For the purpose of fission-fragment detection a double time-of-flight (TOF) spectrometer has been developed. The key component of the TOF spectrometer is a TOF detector consisting of multichannel-plate (MCP) detectors with a position-sensitive readout, a foil for secondary electron (SE) production and an electrostatic mirror. The fission fragments are detected by measuring the SEs impinging on the position-sensitive anode after emission from the foil, acceleration and deflection by the electrostatic mirror. The functionality of the different detector components is proven in detail. Optimised schemes for the high-voltage supplies of the MCP detectors have been implemented successfully. In order to process the multichannel-plate detector signals optimally, a new state-of-the-art constant-fraction discriminator based on the amplitude and rise time compensated technique with very low threshold capabilities and optimised walk properties has been developed and incorporated into the setup. In a setup consisting of two mirror MCP detectors, we could successfully observe the TOF spectrum of a mixed ( 226 Ra, 222 Rn, 210 Po, 218 Po, 214 Po) α-source. Testing photo-fission experiments were performed at the bremsstrahlung facility at the ELBE accelerator. The setup consisted of two mirror detectors (first arm) and a 80 mm diameter MCP detector (second arm) with a 238 U target positioned in between. TOF measurements with two bremsstrahlung end-point energies of 12.9 and 16.0 MeV were carried out. A clear cut separation of the TOF peaks for the medium-mass and heavy fission fragments was observed. (orig.)

  2. A high-resolution time-of-flight spectrometer for fission fragments and ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Kosev, Krasimir Milchev

    2007-07-01

    For the purpose of fission-fragment detection a double time-of-flight (TOF) spectrometer has been developed. The key component of the TOF spectrometer is a TOF detector consisting of multichannel-plate (MCP) detectors with a position-sensitive readout, a foil for secondary electron (SE) production and an electrostatic mirror. The fission fragments are detected by measuring the SEs impinging on the position-sensitive anode after emission from the foil, acceleration and deflection by the electrostatic mirror. The functionality of the different detector components is proven in detail. Optimised schemes for the high-voltage supplies of the MCP detectors have been implemented successfully. In order to process the multichannel-plate detector signals optimally, a new state-of-the-art constant-fraction discriminator based on the amplitude and rise time compensated technique with very low threshold capabilities and optimised walk properties has been developed and incorporated into the setup. In a setup consisting of two mirror MCP detectors, we could successfully observe the TOF spectrum of a mixed ({sup 226}Ra,{sup 222}Rn,{sup 210}Po,{sup 218}Po,{sup 214}Po) {alpha}-source. Testing photo-fission experiments were performed at the bremsstrahlung facility at the ELBE accelerator. The setup consisted of two mirror detectors (first arm) and a 80 mm diameter MCP detector (second arm) with a {sup 238}U target positioned in between. TOF measurements with two bremsstrahlung end-point energies of 12.9 and 16.0 MeV were carried out. A clear cut separation of the TOF peaks for the medium-mass and heavy fission fragments was observed. (orig.)

  3. Real-time observation of coadsorption layers on Ru(001) using a temperature-programmed ESDIAD/TOF system

    Science.gov (United States)

    Sasaki, T.; Itai, Y.; Iwasawa, Y.

    1997-11-01

    For the purpose of utilizing ESDIAD as a real-time probe for surface processes, we have developed an instrument which can measure ESDIAD images and time of flight (TOF) spectra of desorbing ions in temperature-programmed surface processes. TOF measurements are carried out to identify the mass and to determine the kinetic energy distribution of the desorbed ions. This temperature-programmed (TP-) ESDIAD/TOF system was used to observe coadsorption layers of methylamine and CO on Ru(001) which have been previously studied by our group using LEED, TPD and HREELS, also drawing upon a comparison of findings with the coadsorption system of CO and ammonia. ESDIAD images acquired for temperature-programmed surface processes in real time were found to provide new insight into the dynamic behaviour of the coadsorption layers. As to the pure adsorption of ammonia and methylamine, the second and the first (chemisorbed) layers can be easily discriminated in their different ESD detection efficiency due to the difference in neutralization rate. The intensity change of H + ions with temperature shows the process of the decomposition of methylamine to be dependent on CO coverage. The intensity of O + originating from CO changes due to the change of CO adsorption site in the reaction process. The angular distribution of H + ions which correspond to CH2NH…Ru species appears at 250-300 K in the presence of high CO pre-coverage.

  4. Calibration and adjustment of the EGRET coincidence/time-of-flight system

    International Nuclear Information System (INIS)

    Hunter, S.D.

    1991-01-01

    The coincidence/time-of-flight system of the energetic gamma ray experiment telescope (EGRET) on NASA's Gamma Ray Observatory (GRO) consists of two layers of sixteen scintillator tiles. These tiles are paired into 96 coincidence telescopes. Valid coincidence and time-of-flight values (indicating downward moving particles) from one of these telescopes are two of the requirements for an EGRET event trigger. To maximize up-down discrimination, variations in the mean timing value of the telescopes must be minimized. The timing values of the 96 telescopes are not independent, hence they cannot be individually adjusted to calibrate the system. An iterative approach was devised to determine adjustments to the length of the photomultiplier signal cables. These adjustments were made directly in units of time using a time domain reflectometry technique, by timing the reflection of a fast pulse from the unterminated end of eable, and observing the charge in signal propagation time as the length of the cable was shortened. Two constant fraction discriminators, a time-to-amplitude converter and a pulse height analyzer were used for these measurements. Using this direct time measuring approach, the timing values for the 96 EGRET coincidence/time-of-flight telescopes were adjusted with an FWHM variation of less than 450 ps (± 1 TOF timing channel). (orig.)

  5. Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry for Direct Bacterial Identification from Positive Blood Culture Pellets ▿

    OpenAIRE

    Prod'hom, Guy; Bizzini, Alain; Durussel, Christian; Bille, Jacques; Greub, Gilbert

    2010-01-01

    An ammonium chloride erythrocyte-lysing procedure was used to prepare a bacterial pellet from positive blood cultures for direct matrix-assisted laser desorption-ionization time of flight (MALDI-TOF) mass spectrometry analysis. Identification was obtained for 78.7% of the pellets tested. Moreover, 99% of the MALDI-TOF identifications were congruent at the species level when considering valid scores. This fast and accurate method is promising.

  6. Ribosomal subunit protein typing using matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) for the identification and discrimination of Aspergillus species.

    Science.gov (United States)

    Nakamura, Sayaka; Sato, Hiroaki; Tanaka, Reiko; Kusuya, Yoko; Takahashi, Hiroki; Yaguchi, Takashi

    2017-04-26

    Accurate identification of Aspergillus species is a very important subject. Mass spectral fingerprinting using matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) is generally employed for the rapid identification of fungal isolates. However, the results are based on simple mass spectral pattern-matching, with no peak assignment and no taxonomic input. We propose here a ribosomal subunit protein (RSP) typing technique using MALDI-TOF MS for the identification and discrimination of Aspergillus species. The results are concluded to be phylogenetic in that they reflect the molecular evolution of housekeeping RSPs. The amino acid sequences of RSPs of genome-sequenced strains of Aspergillus species were first verified and compared to compile a reliable biomarker list for the identification of Aspergillus species. In this process, we revealed that many amino acid sequences of RSPs (about 10-60%, depending on strain) registered in the public protein databases needed to be corrected or newly added. The verified RSPs were allocated to RSP types based on their mass. Peak assignments of RSPs of each sample strain as observed by MALDI-TOF MS were then performed to set RSP type profiles, which were then further processed by means of cluster analysis. The resulting dendrogram based on RSP types showed a relatively good concordance with the tree based on β-tubulin gene sequences. RSP typing was able to further discriminate the strains belonging to Aspergillus section Fumigati. The RSP typing method could be applied to identify Aspergillus species, even for species within section Fumigati. The discrimination power of RSP typing appears to be comparable to conventional β-tubulin gene analysis. This method would therefore be suitable for species identification and discrimination at the strain to species level. Because RSP typing can characterize the strains within section Fumigati, this method has potential as a powerful and reliable tool in

  7. Use of matrix-assisted laser desorption ionization-time of flight mass spectrometry for caspofungin susceptibility testing of Candida and Aspergillus species.

    Science.gov (United States)

    De Carolis, Elena; Vella, Antonietta; Florio, Ada R; Posteraro, Patrizia; Perlin, David S; Sanguinetti, Maurizio; Posteraro, Brunella

    2012-07-01

    Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) was evaluated for testing susceptibility to caspofungin of wild-type and fks mutant isolates of Candida and Aspergillus. Complete essential agreement was observed with the CLSI reference method, with categorical agreement for 94.1% of the Candida isolates tested. Thus, MALDI-TOF MS is a reliable and accurate method to detect fungal isolates with reduced caspofungin susceptibility.

  8. Online control package for COSY-TOF experiment

    Energy Technology Data Exchange (ETDEWEB)

    Borodina, Ekaterina [Institute fuer Kernphysik I, Forschungszentrum Juelich GmbH, 52325, Juelich (Germany); Moscow State Institute of Electronics and Mathematics (Russian Federation); Roderburg, Eduard; Ritman, James [Institute fuer Kernphysik I, Forschungszentrum Juelich GmbH, 52325, Juelich (Germany)

    2009-07-01

    The new Straw Tube Tracker and Quirl Microstrip detectors have been installed at the TOF (Time Of Flight) experiment at the COSY accelerator in IKP FZ-Juelich. These new detectors increase the number of channels of the COSY-TOF detector by about a factor of 3. Therefore, a new control package to adjust electronic parameters and for control the proper functionality of all channels is being developed. The online controlling based on visualization of key parameters of detectors plays an important role. The concept and the techniques of the online software package are developed for the COSY-TOF experiment. It consists of conversion software, which transforms a binary data stream from the DAQ to detector oriented event format, methods of IPC (Inter-Process Communications), and GUI (graphical user interface). To achieve data transfer through the network and real time data performance the IPC tools - sockets and shared memory are used. A special GUI, TOF-ONLINE has been developed, based on ROOT. The GUI allows the detectors, plotting spectra, resetting data, etc., to be selected in an intuitive way. Examples of the visualization and the results of the first beam time will be introduced.

  9. Testing a new NIF neutron time-of-flight detector with a bibenzyl scintillator on OMEGA.

    Science.gov (United States)

    Glebov, V Yu; Forrest, C; Knauer, J P; Pruyne, A; Romanofsky, M; Sangster, T C; Shoup, M J; Stoeckl, C; Caggiano, J A; Carman, M L; Clancy, T J; Hatarik, R; McNaney, J; Zaitseva, N P

    2012-10-01

    A new neutron time-of-flight (nTOF) detector with a bibenzyl crystal as a scintillator has been designed and manufactured for the National Ignition Facility (NIF). This detector will replace a nTOF20-Spec detector with an oxygenated xylene scintillator currently operational on the NIF to improve the areal-density measurements. In addition to areal density, the bibenzyl detector will measure the D-D and D-T neutron yield and the ion temperature of indirect- and direct-drive-implosion experiments. The design of the bibenzyl detector and results of tests on the OMEGA Laser System are presented.

  10. Gas chromatography time-of-flight mass spectrometry (GC-TOF-MS)-based metabolomics for comparison of caffeinated and decaffeinated coffee and its implications for Alzheimer's disease.

    Science.gov (United States)

    Chang, Kai Lun; Ho, Paul C

    2014-01-01

    Findings from epidemiology, preclinical and clinical studies indicate that consumption of coffee could have beneficial effects against dementia and Alzheimer's disease (AD). The benefits appear to come from caffeinated coffee, but not decaffeinated coffee or pure caffeine itself. Therefore, the objective of this study was to use metabolomics approach to delineate the discriminant metabolites between caffeinated and decaffeinated coffee, which could have contributed to the observed therapeutic benefits. Gas chromatography time-of-flight mass spectrometry (GC-TOF-MS)-based metabolomics approach was employed to characterize the metabolic differences between caffeinated and decaffeinated coffee. Orthogonal partial least squares discriminant analysis (OPLS-DA) showed distinct separation between the two types of coffee (cumulative Q(2) = 0.998). A total of 69 discriminant metabolites were identified based on the OPLS-DA model, with 37 and 32 metabolites detected to be higher in caffeinated and decaffeinated coffee, respectively. These metabolites include several benzoate and cinnamate-derived phenolic compounds, organic acids, sugar, fatty acids, and amino acids. Our study successfully established GC-TOF-MS based metabolomics approach as a highly robust tool in discriminant analysis between caffeinated and decaffeinated coffee samples. Discriminant metabolites identified in this study are biologically relevant and provide valuable insights into therapeutic research of coffee against AD. Our data also hint at possible involvement of gut microbial metabolism to enhance therapeutic potential of coffee components, which represents an interesting area for future research.

  11. Electrostatic mirror of time-of-flight focusing of charged particles and its application to mass spectrometry

    International Nuclear Information System (INIS)

    Berger, C.

    1985-01-01

    This invention is more particularly aimed at the electrostatic devices used in time-of-flight mass spectrometers. To obtain a better resolution and a maximum transmission, the mirror is characterized by three annular electrodes with same radius R: - having at least an inner conductor surface related to an electric source, - delimiting by their facing ends cross-sections, - spaced successively with coaxial arrangement, - having an axial length for the center electrode equal to 0,9 R and for the end electrodes a length enough to give to them a behaviour equivalent to a infinite length tube cylinder. Ion beams are reflected by the mirror which in the same time realizes the time-of-flight unicity for ion. TOF unicity means that time of flight will be the same for equal mass ions [fr

  12. Time-of-flight secondary ion mass spectrometry with energetic cluster ion impact ionization for highly sensitive chemical structure characterization

    Energy Technology Data Exchange (ETDEWEB)

    Hirata, K., E-mail: k.hirata@aist.go.jp [National Metrology Institute of Japan, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565 (Japan); Saitoh, Y.; Chiba, A.; Yamada, K.; Narumi, K. [Takasaki Advanced Radiation Research Institute (TARRI), Japan Atomic Energy Agency (JAEA), Takasaki, Gumma 370-1292 (Japan)

    2013-11-01

    Energetic cluster ions with energies of the order of sub MeV or greater were applied to time-of-flight (TOF) secondary ion (SI) mass spectrometry. This gave various advantages including enhancement of SIs required for chemical structure characterization and prevention of charging effects in SI mass spectra for organic targets. We report some characteristic features of TOF SI mass spectrometry using energetic cluster ion impact ionization and discuss two future applications of it.

  13. Matrix-assisted Laser Desorption Ionization-Time-of-Flight Mass Spectrometry (MALDI-TOF MS) as a Reliable Tool to Identify Species of Catalase-negative Gram-positive Cocci not Belonging to the Streptococcus Genus.

    Science.gov (United States)

    Almuzara, Marisa; Barberis, Claudia; Velázquez, Viviana Rojas; Ramirez, Maria Soledad; Famiglietti, Angela; Vay, Carlos

    2016-01-01

    To evaluate the performance of matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS) by using 190 Catalase-negative Gram-Positive Cocci (GPC) clinical isolates. All isolates were identified by conventional phenotypic tests following the proposed scheme by Ruoff and Christensen and MALDI-TOF MS (Bruker Daltonics, BD, Bremen, Germany). Two different extraction methods (direct transfer formic acid method on spot and ethanol formic acid extraction method) and different cut-offs for genus/specie level identification were used. The score cut-offs recommended by the manufacturer (≥ 2.000 for species-level, 1.700 to 1.999 for genus level and genus level, ≥ 1.700 for species-level and score genus or species. MALDI-TOF MS identification was considered correct when the result obtained from MS database agreed with the phenotypic identification result. When both methods gave discordant results, the 16S rDNA or sodA genes sequencing was considered as the gold standard identification method. The results obtained by MS concordant with genes sequencing, although discordant with conventional phenotyping, were considered correct. MS results discordant with 16S or sod A identification were considered incorrect. Using the score cut-offs recommended by the manufacturer, 97.37% and 81.05% were correctly identified to genus and species level, respectively. On the other hand, using lower cut-off scores for identification, 97.89% and 94.21% isolates were correctly identified to genus and species level respectively by MALDI-TOF MS and no significant differences between the results obtained with two extraction methods were obtained. The results obtained suggest that MALDI-TOF MS has the potential of being an accurate tool for Catalase-negative GPC identification even for those species with difficult diagnosis as Helcococcus , Abiotrophia , Granulicatella , among others. Nevertheless, expansion of the library, especially including more strains with

  14. Direct matrix-assisted laser desorption ionization time-of-flight mass spectrometry improves appropriateness of antibiotic treatment of bacteremia.

    Directory of Open Access Journals (Sweden)

    Anne L M Vlek

    Full Text Available Matrix assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS allows the identification of microorganisms directly from positive blood culture broths. Use of the MALDI-TOF MS for rapid identification of microorganisms from blood culture broths can reduce the turnaround time to identification and may lead to earlier appropriate treatment of bacteremia. During February and April 2010, direct MALDI-TOF MS was routinely performed on all positive blood cultures. During December 2009 and March 2010 no direct MALDI-TOF MS was used. Information on antibiotic therapy was collected from the hospital and intensive care units' information systems from all positive blood cultures during the study period. In total, 253 episodes of bacteremia were included of which 89 during the intervention period and 164 during the control period. Direct performance of MALDI-TOF MS on positive blood culture broths reduced the time till species identification by 28.8-h and was associated with an 11.3% increase in the proportion of patients receiving appropriate antibiotic treatment 24 hours after blood culture positivity (64.0% in the control period versus 75.3% in the intervention period (p0.01. Routine implementation of this technique increased the proportion of patients on adequate antimicrobial treatment within 24 hours.

  15. Direct matrix-assisted laser desorption ionization time-of-flight mass spectrometry improves appropriateness of antibiotic treatment of bacteremia.

    Science.gov (United States)

    Vlek, Anne L M; Bonten, Marc J M; Boel, C H Edwin

    2012-01-01

    Matrix assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) allows the identification of microorganisms directly from positive blood culture broths. Use of the MALDI-TOF MS for rapid identification of microorganisms from blood culture broths can reduce the turnaround time to identification and may lead to earlier appropriate treatment of bacteremia. During February and April 2010, direct MALDI-TOF MS was routinely performed on all positive blood cultures. During December 2009 and March 2010 no direct MALDI-TOF MS was used. Information on antibiotic therapy was collected from the hospital and intensive care units' information systems from all positive blood cultures during the study period. In total, 253 episodes of bacteremia were included of which 89 during the intervention period and 164 during the control period. Direct performance of MALDI-TOF MS on positive blood culture broths reduced the time till species identification by 28.8-h and was associated with an 11.3% increase in the proportion of patients receiving appropriate antibiotic treatment 24 hours after blood culture positivity (64.0% in the control period versus 75.3% in the intervention period (p0.01)). Routine implementation of this technique increased the proportion of patients on adequate antimicrobial treatment within 24 hours.

  16. Identification of Blood Culture Isolates Directly from Positive Blood Cultures by Use of Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry and a Commercial Extraction System: Analysis of Performance, Cost, and Turnaround Time

    OpenAIRE

    Lagacé-Wiens, Philippe R. S.; Adam, Heather J.; Karlowsky, James A.; Nichol, Kimberly A.; Pang, Paulette F.; Guenther, Jodi; Webb, Amanda A.; Miller, Crystal; Alfa, Michelle J.

    2012-01-01

    Matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) mass spectrometry represents a revolution in the rapid identification of bacterial and fungal pathogens in the clinical microbiology laboratory. Recently, MALDI-TOF has been applied directly to positive blood culture bottles for the rapid identification of pathogens, leading to reductions in turnaround time and potentially beneficial patient impacts. The development of a commercially available extraction kit (Bruker Sepsit...

  17. Particle identification by time-of-flight measurement in the SAPHIR

    International Nuclear Information System (INIS)

    Hoffmann-Rothe, P.

    1993-02-01

    Using photoproduction data which have been measured with the SAPHIR-detector with different target materials (C H 2 solid , H 2 liquid , D 2 liquid ) a detailed investigation and discussion of the detectors performance to measure the time of flight of charged particles and to separate between particles of different mass has been accomplished. A FORTRAN program has been written which provides a calibration of the scintillator panels of the TOF hodoscopes, calculates correction factors for the time-walk effect an finally, by combining the time of flight with track momentum measurement, determines particle masses. The current configuration of the detector makes it possible to separate between proton and pion up to a particle momentum of 1.6 GeV/c. Proton and kaon can be separated up to a momentum of 1.3 GeV/c, kaon and pion up to a momentum of 0.85 GeV/c. (prog.) [de

  18. An evaluation of three processing methods and the effect of reduced culture times for faster direct identification of pathogens from BacT/ALERT blood cultures by MALDI-TOF MS

    NARCIS (Netherlands)

    M.Sc. A. Jansz; Dr. A.J.C. van den Brule, van den; Dr. P.F.G. Wolffs; Ing J. Stalpers; Drs A.J.M. Loonen

    2011-01-01

    Matrix-assisted laser desorption/ionisation time of-flight mass spectrometry (MALDI-TOF MS) is a fast and reliable method for the identification of bacteria from agar media. Direct identification from positive blood cultures should decrease the time to obtaining the result. In this study, three

  19. A high-efficiency spin-resolved photoemission spectrometer combining time-of-flight spectroscopy with exchange-scattering polarimetry

    Energy Technology Data Exchange (ETDEWEB)

    Jozwiak, Chris M.; Graff, Jeff; Lebedev, Gennadi; Andresen, Nord; Schmid, Andreas; Fedorov, Alexei; El Gabaly, Farid; Wan, Weishi; Lanzara, Alessandra; Hussain, Zahid

    2010-04-13

    We describe a spin-resolved electron spectrometer capable of uniquely efficient and high energy resolution measurements. Spin analysis is obtained through polarimetry based on low-energy exchange scattering from a ferromagnetic thin-film target. This approach can achieve a similar analyzing power (Sherman function) as state-of-the-art Mott scattering polarimeters, but with as much as 100 times improved efficiency due to increased reflectivity. Performance is further enhanced by integrating the polarimeter into a time-of-flight (TOF) based energy analysis scheme with a precise and flexible electrostatic lens system. The parallel acquisition of a range of electron kinetic energies afforded by the TOF approach results in an order of magnitude (or more) increase in efficiency compared to hemispherical analyzers. The lens system additionally features a 90 degrees bandpass filter, which by removing unwanted parts of the photoelectron distribution allows the TOF technique to be performed at low electron drift energy and high energy resolution within a wide range of experimental parameters. The spectrometer is ideally suited for high-resolution spin- and angle-resolved photoemission spectroscopy (spin-ARPES), and initial results are shown. The TOF approach makes the spectrometer especially ideal for time-resolved spin-ARPES experiments.

  20. Characterization of gate oxynitrides by means of time of flight secondary ion mass spectrometry and x-ray photoelectron spectroscopy. Quantification of nitrogen

    International Nuclear Information System (INIS)

    Ferrari, S.; Perego, M.; Fanciulli, M.

    2002-01-01

    We present a methodology for the quantitative estimation of nitrogen in ultrathin oxynitrides by means of time of flight secondary ion mass spectrometry (TOF-SIMS) and x-ray photoelectron spectroscopy (XPS). We consider an innovative approach to TOF-SIMS depth profiling, by elemental distribution of single species as sum of peaks containing such species. This approach is very efficient in overcoming matrix effect arising when quantifying elements were distributed in silicon and silicon oxide. We use XPS to calibrate TOF-SIMS and to obtain quantitative information on nitrogen distribution in oxynitride thin layers. In the method we propose we process TOF-SIMS and XPS data simultaneously to obtain a quantitative depth profile

  1. Use of Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry for Caspofungin Susceptibility Testing of Candida and Aspergillus Species

    Science.gov (United States)

    De Carolis, Elena; Vella, Antonietta; Florio, Ada R.; Posteraro, Patrizia; Perlin, David S.; Posteraro, Brunella

    2012-01-01

    Matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) was evaluated for testing susceptibility to caspofungin of wild-type and fks mutant isolates of Candida and Aspergillus. Complete essential agreement was observed with the CLSI reference method, with categorical agreement for 94.1% of the Candida isolates tested. Thus, MALDI-TOF MS is a reliable and accurate method to detect fungal isolates with reduced caspofungin susceptibility. PMID:22535984

  2. Highly accurate adaptive TOF determination method for ultrasonic thickness measurement

    Science.gov (United States)

    Zhou, Lianjie; Liu, Haibo; Lian, Meng; Ying, Yangwei; Li, Te; Wang, Yongqing

    2018-04-01

    Determining the time of flight (TOF) is very critical for precise ultrasonic thickness measurement. However, the relatively low signal-to-noise ratio (SNR) of the received signals would induce significant TOF determination errors. In this paper, an adaptive time delay estimation method has been developed to improve the TOF determination’s accuracy. An improved variable step size adaptive algorithm with comprehensive step size control function is proposed. Meanwhile, a cubic spline fitting approach is also employed to alleviate the restriction of finite sampling interval. Simulation experiments under different SNR conditions were conducted for performance analysis. Simulation results manifested the performance advantage of proposed TOF determination method over existing TOF determination methods. When comparing with the conventional fixed step size, and Kwong and Aboulnasr algorithms, the steady state mean square deviation of the proposed algorithm was generally lower, which makes the proposed algorithm more suitable for TOF determination. Further, ultrasonic thickness measurement experiments were performed on aluminum alloy plates with various thicknesses. They indicated that the proposed TOF determination method was more robust even under low SNR conditions, and the ultrasonic thickness measurement accuracy could be significantly improved.

  3. Current generation time-of-flight 18F-FDG PET/CT provides higher SUVs for normal adrenal glands, while maintaining an accurate characterization of benign and malignant glands

    NARCIS (Netherlands)

    Koopman, Daniëlle; Koopman, Daniëlle; van Dalen, Jorn A.; Stigt, Jos A.; Slump, Cornelis H.; Knollema, Siert; Jager, Pieter L.

    ObjectiveModern PET/CT scanners have significantly improved detectors and fast time-of-flight (TOF) performance and this may improve clinical performance. The aim of this study was to analyze the impact of a current generation TOF PET/CT scanner on standardized uptake values (SUV), lesion-background

  4. Development of time-of-flight RBS system using multi microchannel plates

    International Nuclear Information System (INIS)

    Nguyen, N.V.; Abo, S.; Lohner, T.; Sawaragi, H.; Wakaya, F.; Takai, M.

    2007-01-01

    A new time-of-flight Rutherford backscattering spectroscopy (TOF-RBS) system with two circular microchannel plates (MCPs) installed at a distance of 140 mm from a sample holder and a scattering angle of 125 o and a 100 kV focused ion beam column having a liquid metal ion source (LMIS) of AuSiBe alloy has been assembled to obtain high counting rate and enhanced mass resolution. The possible influence of the two MCPs by logical summation of the output signals on the time resolution was investigated by measuring dedicated thin deposited metallic samples. And, the time resolution was found in the range of 1.5-2 ns

  5. Laser desorption/ionization time-of-flight mass spectrometry of triacylglycerols and other components in fingermark samples.

    Science.gov (United States)

    Emerson, Beth; Gidden, Jennifer; Lay, Jackson O; Durham, Bill

    2011-03-01

    The chemical composition of fingermarks could potentially be important for determining investigative leads, placing individuals at the time of a crime, and has applications as biomarkers of disease. Fingermark samples containing triacylglycerols (TAGs) and other components were analyzed using laser desorption/ionization (LDI) time-of-flight mass spectrometry (TOF MS). Only LDI appeared to be useful for this application while conventional matrix-assisted LDI-TOF MS was not. Tandem MS was used to identify/confirm selected TAGs. A limited gender comparison, based on a simple t-distribution and peaks intensities, indicated that two TAGs showed gender specificity at the 95% confidence level and two others at 97.5% confidence. Because gender-related TAGs differences were most often close to the standard deviation of the measurements, the majority of the TAGs showed no gender specificity. Thus, LDI-TOF MS is not a reliable indicator of gender based on fingermark analysis. Cosmetic ingredients present in some samples were identified. © 2011 American Academy of Forensic Sciences.

  6. Identification of molecules in graphite furnace by laser ionization time-of-flight mass spectrometry: sulfur and chlorine containing compounds

    CSIR Research Space (South Africa)

    Raseleka, RM

    2004-01-01

    Full Text Available An electro thermal vaporizer (ETV) coupled to a time-of-flight mass spectrometer (TOF-MS) with laser ionization (LI) was applied to the identification of molecules from sulphur and chlorine matrices in the furnace. An interface was developed...

  7. A solution for the inner area of CBM-TOF with pad-MRPC

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y. [Key Laboratory of Particle & Radiation Imaging (Tsinghua University), Ministry of Education Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Huang, X.J., E-mail: huangxj12@mails.tsinghua.edu.cn [Key Laboratory of Particle & Radiation Imaging (Tsinghua University), Ministry of Education Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Lyu, P.F.; Han, D.; Xie, B.; Li, Y.J. [Key Laboratory of Particle & Radiation Imaging (Tsinghua University), Ministry of Education Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Herrmann, N.; Deppner, I.; Loizeau, P.; Simon, C. [Physikalisches Institute, University Heidelberg, Heidelberg (Germany); Frühauf, J.; Kiš, M. [GSI Helmholtzzentrum fr Schwerionenforschung, GSI, Damstadt (Germany)

    2017-02-11

    The Compressed Baryonic Matter (CBM) experiment has decided to use the Multi-gap Resistive Plate Chambers(MRPC) technology to build its Time-Of-Flight (TOF) wall. CBM-TOF requires a rate capability over 20 kHz/cm{sup 2} for inner region. A 10-gap pad-MRPC assembled with low resistive glass is designed to construct this area. The prototypes, which consist of 10×0.22 mm gas gaps and 2×8 20 mm×20 mm readout pads, require fewer electronic channels compared to the strip design. A timing resolution of around 60 ps and an efficiency above 98% were obtained in a cosmic test and a beam test taken in 2014 October GSI beam time. The results show that the real-size prototypes fulfill the requirements of the CBM-TOF.

  8. Characterization of polymer solar cells by TOF-SIMS depth profiling

    NARCIS (Netherlands)

    Bulle-Lieuwma, C.W.T.; Gennip, van W.J.H.; Duren, van J.K.J.; Jonkheijm, P.; Janssen, R.A.J.; Niemantsverdriet, J.W.

    2003-01-01

    Solar cells consisting of polymer layers sandwiched between a transparent electrode on glass and a metal top electrode are studied using dynamic time-of-flight secondary ion mass spectrometry (TOF-SIMS) in dual-beam mode. Because depth profiling of polymers and polymer-metal stacks is a relatively

  9. Fast reconstruction of 3D time-of-flight PET data by axial rebinning and transverse mashing

    International Nuclear Information System (INIS)

    Vandenberghe, Stefaan; Daube-Witherspoon, Margaret E; Lewitt, Robert M; Karp, Joel S

    2006-01-01

    Faster scintillators like LaBr 3 and LSO have sparked renewed interest in PET scanners with time-of-flight (TOF) information. The TOF information adds another dimension to the data set compared to conventional three-dimensional (3D) PET with the size of the projection data being multiplied by the number of TOF bins. Here we show by simulations and analytical reconstruction that angular sampling for two-dimensional (2D) TOF PET can be reduced significantly compared to what is required for conventional 2D PET. Fully 3D TOF PET data, however, have a wide range of oblique and transverse angles. To make use of the smaller necessary angular sampling we reduce the 3D data to a set of 2D histoprojections. This is done by rebinning the 3D data to 2D data and by mashing these 2D data into a limited number of angles. Both methods are based on the most likely point given by the TOF measurement. It is shown that the axial resolution loss associated with rebinning reduces with improved timing resolution and becomes less than 1 mm for a TOF resolution below 300 ps. The amount of angular mashing that can be applied without tangential resolution loss increases with improved TOF resolution. Even quite coarse angular mashing (18 angles out of 324 measured angles for 424 ps) does not significantly reduce image quality in terms of the contrast or noise. The advantages of the proposed methods are threefold. Data storage is reduced to a limited number of 2D histoprojections with TOF information. Compared to listmode format we have the advantage of a predetermined storage space and faster reconstruction. The method does not require the normalization of projections prior to rebinning and can be applied directly to measured listmode data

  10. Source-identifying biomarker ions between environmental and clinical Burkholderia pseudomallei using whole-cell matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS).

    Science.gov (United States)

    Niyompanich, Suthamat; Jaresitthikunchai, Janthima; Srisanga, Kitima; Roytrakul, Sittiruk; Tungpradabkul, Sumalee

    2014-01-01

    Burkholderia pseudomallei is the causative agent of melioidosis, which is an endemic disease in Northeast Thailand and Northern Australia. Environmental reservoirs, including wet soils and muddy water, serve as the major sources for contributing bacterial infection to both humans and animals. The whole-cell matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (whole-cell MALDI-TOF MS) has recently been applied as a rapid, accurate, and high-throughput tool for clinical diagnosis and microbiological research. In this present study, we employed a whole-cell MALDI-TOF MS approach for assessing its potency in clustering a total of 11 different B. pseudomallei isolates (consisting of 5 environmental and 6 clinical isolates) with respect to their origins and to further investigate the source-identifying biomarker ions belonging to each bacterial group. The cluster analysis demonstrated that six out of eleven isolates were grouped correctly to their sources. Our results revealed a total of ten source-identifying biomarker ions, which exhibited statistically significant differences in peak intensity between average environmental and clinical mass spectra using ClinProTools software. Six out of ten mass ions were assigned as environmental-identifying biomarker ions (EIBIs), including, m/z 4,056, 4,214, 5,814, 7,545, 7,895, and 8,112, whereas the remaining four mass ions were defined as clinical-identifying biomarker ions (CIBIs) consisting of m/z 3,658, 6,322, 7,035, and 7,984. Hence, our findings represented, for the first time, the source-specific biomarkers of environmental and clinical B. pseudomallei.

  11. Sensitivity estimation in time-of-flight list-mode positron emission tomography.

    Science.gov (United States)

    Herraiz, J L; Sitek, A

    2015-11-01

    An accurate quantification of the images in positron emission tomography (PET) requires knowing the actual sensitivity at each voxel, which represents the probability that a positron emitted in that voxel is finally detected as a coincidence of two gamma rays in a pair of detectors in the PET scanner. This sensitivity depends on the characteristics of the acquisition, as it is affected by the attenuation of the annihilation gamma rays in the body, and possible variations of the sensitivity of the scanner detectors. In this work, the authors propose a new approach to handle time-of-flight (TOF) list-mode PET data, which allows performing either or both, a self-attenuation correction, and self-normalization correction based on emission data only. The authors derive the theory using a fully Bayesian statistical model of complete data. The authors perform an initial evaluation of algorithms derived from that theory and proposed in this work using numerical 2D list-mode simulations with different TOF resolutions and total number of detected coincidences. Effects of randoms and scatter are not simulated. The authors found that proposed algorithms successfully correct for unknown attenuation and scanner normalization for simulated 2D list-mode TOF-PET data. A new method is presented that can be used for corrections for attenuation and normalization (sensitivity) using TOF list-mode data.

  12. Sensitivity estimation in time-of-flight list-mode positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Herraiz, J. L. [Madrid-MIT M+Visión Consortium, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 and Grupo de Física Nuclear, Departamento de Física Atómica, Molecular y Nuclear, Universidad Complutense de Madrid, CEI Moncloa, Madrid 28040 (Spain); Sitek, A., E-mail: sarkadiu@gmail.com [Center for Advanced Medical Imaging Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114 (United States)

    2015-11-15

    Purpose: An accurate quantification of the images in positron emission tomography (PET) requires knowing the actual sensitivity at each voxel, which represents the probability that a positron emitted in that voxel is finally detected as a coincidence of two gamma rays in a pair of detectors in the PET scanner. This sensitivity depends on the characteristics of the acquisition, as it is affected by the attenuation of the annihilation gamma rays in the body, and possible variations of the sensitivity of the scanner detectors. In this work, the authors propose a new approach to handle time-of-flight (TOF) list-mode PET data, which allows performing either or both, a self-attenuation correction, and self-normalization correction based on emission data only. Methods: The authors derive the theory using a fully Bayesian statistical model of complete data. The authors perform an initial evaluation of algorithms derived from that theory and proposed in this work using numerical 2D list-mode simulations with different TOF resolutions and total number of detected coincidences. Effects of randoms and scatter are not simulated. Results: The authors found that proposed algorithms successfully correct for unknown attenuation and scanner normalization for simulated 2D list-mode TOF-PET data. Conclusions: A new method is presented that can be used for corrections for attenuation and normalization (sensitivity) using TOF list-mode data.

  13. Heavy ion time-of-flight ERDA of high dose metal implanted germanium

    Energy Technology Data Exchange (ETDEWEB)

    Dytlewski, N.; Evans, P.J.; Noorman, J.T. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia); Wielunski, L.S. [Commonwealth Scientific and Industrial Research Organisation (CSIRO), Lindfield, NSW (Australia). Div. of Applied Physics; Bunder, J. [New South Wales Univ., Wollongong, NSW (Australia). Wollongong Univ. Coll

    1996-12-31

    With the thick Ge substrates used in ion implantation, RBS can have difficulty in resolving the mass-depth ambiguities when analysing materials composed of mixtures of elements with nearly equal masses. Additional, and complimentary techniques are thus required. This paper reports the use of heavy ion time-of-flight elastic recoil detection analysis (ToF- ERDA), and conventional RBS in the analysis of Ge(100) implanted with high dose Ti and Cu ions from a MEWA ion source . Heavy ion ToF ERDA has been used to resolve, and profile the implanted transition metal species, and also to study any oxygen incorporation into the sample resulting from the implantation, or subsequential reactions with air or moisture. This work is part of a study on high dose metal ion implantation of medium atomic weight semiconductor materials. 13 refs., 6 figs.

  14. Heavy ion time-of-flight ERDA of high dose metal implanted germanium

    Energy Technology Data Exchange (ETDEWEB)

    Dytlewski, N; Evans, P J; Noorman, J T [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia); Wielunski, L S [Commonwealth Scientific and Industrial Research Organisation (CSIRO), Lindfield, NSW (Australia). Div. of Applied Physics; Bunder, J [New South Wales Univ., Wollongong, NSW (Australia). Wollongong Univ. Coll

    1997-12-31

    With the thick Ge substrates used in ion implantation, RBS can have difficulty in resolving the mass-depth ambiguities when analysing materials composed of mixtures of elements with nearly equal masses. Additional, and complimentary techniques are thus required. This paper reports the use of heavy ion time-of-flight elastic recoil detection analysis (ToF- ERDA), and conventional RBS in the analysis of Ge(100) implanted with high dose Ti and Cu ions from a MEWA ion source . Heavy ion ToF ERDA has been used to resolve, and profile the implanted transition metal species, and also to study any oxygen incorporation into the sample resulting from the implantation, or subsequential reactions with air or moisture. This work is part of a study on high dose metal ion implantation of medium atomic weight semiconductor materials. 13 refs., 6 figs.

  15. Differentiation of isomeric N-glycan structures by normal-phase liquid chromatography-MALDI-TOF/TOF tandem mass spectrometry.

    Science.gov (United States)

    Maslen, Sarah; Sadowski, Pawel; Adam, Alex; Lilley, Kathryn; Stephens, Elaine

    2006-12-15

    The detailed characterization of protein N-glycosylation is very demanding given the many different glycoforms and structural isomers that can exist on glycoproteins. Here we report a fast and sensitive method for the extensive structure elucidation of reducing-end labeled N-glycan mixtures using a combination of capillary normal-phase HPLC coupled off-line to matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and TOF/TOF-MS/MS. Using this method, isobaric N-glycans released from honey bee phospholipase A2 and Arabidopsis thaliana glycoproteins were separated by normal-phase chromatography and subsequently identified by key fragment ions in the MALDI-TOF/TOF tandem mass spectra. In addition, linkage and branching information were provided by abundant cross-ring and "elimination" fragment ions in the MALDI-CID spectra that gave extensive structural information. Furthermore, the fragmentation characteristics of N-glycans reductively aminated with 2-aminobenzoic acid and 2-aminobenzamide were compared. The identification of N-glycans containing 3-linked core fucose was facilitated by distinctive ions present only in the MALDI-CID spectra of 2-aminobenzoic acid-labeled oligosaccharides. To our knowledge, this is the first MS/MS-based technique that allows confident identification of N-glycans containing 3-linked core fucose, which is a major allergenic determinant on insect and plant glycoproteins.

  16. Benefits and Impact of Joint Metric of AOA/RSS/TOF on Indoor Localization Error

    Directory of Open Access Journals (Sweden)

    Qing Jiang

    2016-10-01

    Full Text Available The emerging techniques in the Fifth Generation (5G communication system, like the millimeter-Wave (mmWave and massive Multiple Input Multiple Output (MIMO, make it possible to measure the Angle-Of-arrival (AOA, Receive Signal Strength (RSS and Time-Of-flight (TOF by using various types of mobile devices. At the same time, there is always significant interest in the high-precision localization techniques based on the joint metric of AOA/RSS/TOF, which enable one to overcome the drawback of the single metric-based localization. Motivated by this concern, we rely on the Cramer–Rao Lower Bound (CRLB to analyze the localization errors of RSS/AOA, RSS/TOF, AOA/TOF and the Joint Metric of AOA/RSS/TOF (JMART-based localization. The error bounds derived in this paper can be selected as the benchmarking results to evaluate the indoor localization performance. Finally, extensive simulations are conducted to support our claim.

  17. The MR-TOF-MS isobar separator for the TITAN facility at TRIUMF

    Energy Technology Data Exchange (ETDEWEB)

    Jesch, Christian; Dickel, Timo, E-mail: t.dickel@gsi.de; Plaß, Wolfgang R. [Justus-Liebig-University (Germany); Short, Devin [Simon Fraser University (Canada); Ayet San Andres, Samuel [Justus-Liebig-University (Germany); Dilling, Jens [TRIUMF (Canada); Geissel, Hans; Greiner, Florian; Lang, Johannes [Justus-Liebig-University (Germany); Leach, Kyle G. [Simon Fraser University (Canada); Lippert, Wayne; Scheidenberger, Christoph [Justus-Liebig-University (Germany); Yavor, Mikhail I. [Institute for Analytical Instrumentation, Russian Academy of Science (Russian Federation)

    2015-11-15

    At TRIUMF’s Ion Trap for Atomic and Nuclear Science (TITAN) a multiple-reflection time-of-flight mass spectrometer (MR-TOF-MS) will extend TITAN’s capabilities and facilitate mass measurements and in-trap decay spectroscopy of exotic nuclei that so far have not been possible due to strong isobaric contamination. This MR-TOF-MS will also enable mass measurements of very short-lived nuclides (half-life > 1 ms) that are produced in very low quantities (a few detected ions overall). In order to allow the installation of an MR-TOF-MS in the restricted space on the platform, on which the TITAN facility is located, novel mass spectrometric methods have been developed. Transport, cooling and distribution of the ions inside the device is done using a buffer gas-filled RFQ-based ion beam switchyard. Mass selection is achieved using a dynamic retrapping technique after time-of-flight analysis in an electrostatic isochronous reflector system. Only due to the combination of these novel methods the realization of an MR-TOF-MS based isobar separator at TITAN has become possible. The device has been built, commissioned off-line and is currently under installation at TITAN.

  18. The MR-TOF-MS isobar separator for the TITAN facility at TRIUMF

    Science.gov (United States)

    Jesch, Christian; Dickel, Timo; Plaß, Wolfgang R.; Short, Devin; Ayet San Andres, Samuel; Dilling, Jens; Geissel, Hans; Greiner, Florian; Lang, Johannes; Leach, Kyle G.; Lippert, Wayne; Scheidenberger, Christoph; Yavor, Mikhail I.

    2015-11-01

    At TRIUMF's Ion Trap for Atomic and Nuclear Science (TITAN) a multiple-reflection time-of-flight mass spectrometer (MR-TOF-MS) will extend TITAN's capabilities and facilitate mass measurements and in-trap decay spectroscopy of exotic nuclei that so far have not been possible due to strong isobaric contamination. This MR-TOF-MS will also enable mass measurements of very short-lived nuclides (half-life > 1 ms) that are produced in very low quantities (a few detected ions overall). In order to allow the installation of an MR-TOF-MS in the restricted space on the platform, on which the TITAN facility is located, novel mass spectrometric methods have been developed. Transport, cooling and distribution of the ions inside the device is done using a buffer gas-filled RFQ-based ion beam switchyard. Mass selection is achieved using a dynamic retrapping technique after time-of-flight analysis in an electrostatic isochronous reflector system. Only due to the combination of these novel methods the realization of an MR-TOF-MS based isobar separator at TITAN has become possible. The device has been built, commissioned off-line and is currently under installation at TITAN.

  19. Reducing time to identification of positive blood cultures with MALDI-TOF MS analysis after a 5-h subculture.

    Science.gov (United States)

    Verroken, A; Defourny, L; Lechgar, L; Magnette, A; Delmée, M; Glupczynski, Y

    2015-02-01

    Speeding up the turn-around time of positive blood culture identifications is essential in order to optimize the treatment of septic patients. Several sample preparation techniques have been developed allowing direct matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) identification of positive blood cultures. Yet, the hands-on time restrains their routine workflow. In this study, we evaluated an approach whereby MALDI-TOF MS identification without any additional steps was carried out on short subcultured colonies from positive blood bottles with the objective of allowing results reporting on the day of positivity detection. Over a 7-month period in 2012, positive blood cultures detected by 9 am with an automated system were inoculated onto a Columbia blood agar and processed after a 5-h incubation on a MALDI-TOF MicroFlex platform (Bruker Daltonik GmbH). Single-spotted colonies were covered with 1 μl formic acid and 1 μl matrix solution. The results were compared to the validated identification techniques. A total of 925 positive blood culture bottles (representing 470 bacteremic episodes) were included. Concordant identification was obtained in 727 (81.1 %) of the 896 monomicrobial blood cultures, with failure being mostly observed with anaerobes and yeasts. In 17 episodes of polymicrobic bacteremia, the identification of one of the two isolates was achieved in 24/29 (82.7 %) positive cultures. Routine implementation of MALDI-TOF MS identification on young positive blood subcultures provides correct results to the clinician in more than 80 % of the bacteremic episodes and allows access to identification results on the day of blood culture positivity detection, potentially accelerating the implementation of targeted clinical treatments.

  20. TOF Imaging in Smart Room Environments towards Improved People Tracking

    DEFF Research Database (Denmark)

    Guðmundsson, Sigurjón Árni; Larsen, Rasmus; Aanæs, Henrik

    2008-01-01

    In this Paper we present the use of Time-of-Flight (TOF) cameras in Smart-rooms and how this leads to improved results in segmenting the people in the room from the background and consequently better 3D reconstruction of the people. A calibrated rig of one Swissranger SR3100 Time-of-flight range ...... regional artifacts and therefore a more robust input for higher level applications such people tracking or human motion analysis....

  1. Gas Chromatography Time-Of-Flight Mass Spectrometry (GC-TOF-MS)-Based Metabolomics for Comparison of Caffeinated and Decaffeinated Coffee and Its Implications for Alzheimer’s Disease

    Science.gov (United States)

    Chang, Kai Lun; Ho, Paul C.

    2014-01-01

    Findings from epidemiology, preclinical and clinical studies indicate that consumption of coffee could have beneficial effects against dementia and Alzheimer’s disease (AD). The benefits appear to come from caffeinated coffee, but not decaffeinated coffee or pure caffeine itself. Therefore, the objective of this study was to use metabolomics approach to delineate the discriminant metabolites between caffeinated and decaffeinated coffee, which could have contributed to the observed therapeutic benefits. Gas chromatography time-of-flight mass spectrometry (GC-TOF-MS)-based metabolomics approach was employed to characterize the metabolic differences between caffeinated and decaffeinated coffee. Orthogonal partial least squares discriminant analysis (OPLS-DA) showed distinct separation between the two types of coffee (cumulative Q2 = 0.998). A total of 69 discriminant metabolites were identified based on the OPLS-DA model, with 37 and 32 metabolites detected to be higher in caffeinated and decaffeinated coffee, respectively. These metabolites include several benzoate and cinnamate-derived phenolic compounds, organic acids, sugar, fatty acids, and amino acids. Our study successfully established GC-TOF-MS based metabolomics approach as a highly robust tool in discriminant analysis between caffeinated and decaffeinated coffee samples. Discriminant metabolites identified in this study are biologically relevant and provide valuable insights into therapeutic research of coffee against AD. Our data also hint at possible involvement of gut microbial metabolism to enhance therapeutic potential of coffee components, which represents an interesting area for future research. PMID:25098597

  2. [Applications of MALDI-TOF technology in clinical microbiology].

    Science.gov (United States)

    Suarez, S; Nassif, X; Ferroni, A

    2015-02-01

    Until now, the identification of micro-organisms has been based on the cultural and biochemical characteristics of bacterial and fungal species. Recently, Mass Spectrometry type Matrix-Assisted Laser Desorption Ionization-Time of Flight (MALDI-TOF MS) was developed in clinical microbiology laboratories. This new technology allows identification of micro-organisms directly from colonies of bacteria and fungi within few minutes. In addition, it can be used to identify germs directly from positive blood culture bottles or directly from urine samples. Other ways are being explored to expand the use of MALDI-TOF in clinical microbiology laboratories. Indeed, some studies propose to detect bacterial antibiotic resistance while others compare strains within species for faster strain typing. The main objective of this review is to update data from the recent literature for different applications of MALDI-TOF technique in microbiological diagnostic routine. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  3. Two-dimensional time-of-flight MR angiography of mediastinum and pulmonary hilar vessels

    International Nuclear Information System (INIS)

    Honda, Norinari; Machida, Kikuo; Mamiya, Toshio

    1992-01-01

    Two-dimensional time-of-flight magnetic resonance angiography (2D TOF MRA) of mediastinal and pulmonary hilar vessels was performed in 10 patients, seven men and three women with a mean age (range) of 65.7 (48-88) years. The rate of visualization of the vessels and the diagnostic ability of 2D TOF MRA were assessed in comparison with contrast-enhanced CT. A radiofrequency-spoiled gradient echo sequence (SPGR) was used during repeated breath-holding (8-27 seconds) in coronal (8 patients) and axial (2 patients) imaging planes on a 1.5 Tesla superconducting scanner under the following conditions: repetition time/echo time/flip angle/excitation: 25-33/7-8 ms/45deg/1, field-of-view: 30 x 30 cm, slice thickness: 2.5 mm, 32 slices, 256 (frequency) x 192 (phase) matrix, with gradient moment nulling technique. Visualization sufficient to enable diagnosis of the vascular lesion was obtained in 95 (52%) vessels, mere visualization in 63 (35%), and non-visualization in 24 (13%) of the 182 evaluable vessels. The rates of good visualization of pulmonary hilar vessels (26/86, 30%) and veins (26/48, 54%) were significantly lower than that of arteries (43/48, 90%, p<0.05). The sensitivity and specificity of 2D TOF MRA were 77% (10/13) and 100% (83/83), respectively, in 96 evaluable vessels of nine patients. 2D TOF MRA of mediastinum and pulmonary hili is clinically feasible, and may be useful because of its high specificity. (author)

  4. Cherenkov TOF PET with silicon photomultipliers

    Science.gov (United States)

    Dolenec, R.; Korpar, S.; Križan, P.; Pestotnik, R.

    2015-12-01

    As previously demonstrated, an excellent timing resolution below 100 ps FWHM is possible in time-of-flight positron emission tomography (TOF PET) if the detection method is based on the principle of detecting photons of Cherenkov light, produced in a suitable material and detected by microchannel plate photomultipliers (MCP PMTs). In this work, the silicon photomultipliers (SiPMs) were tested for the first time as the photodetectors in Cherenkov TOF PET. The high photon detection efficiency (PDE) of SiPMs led to a large improvement in detection efficiency. On the other hand, the time response of currently available SiPMs is not as good as that of MCP PMTs. The SiPM dark counts introduce a new source of random coincidences in Cherenkov method, which would be overwhelming with present SiPM technology at room temperature. When the apparatus was cooled, its performance significantly improved.

  5. Quantified, Interactive Simulation of AMCW ToF Camera Including Multipath Effects.

    Science.gov (United States)

    Bulczak, David; Lambers, Martin; Kolb, Andreas

    2017-12-22

    In the last decade, Time-of-Flight (ToF) range cameras have gained increasing popularity in robotics, automotive industry, and home entertainment. Despite technological developments, ToF cameras still suffer from error sources such as multipath interference or motion artifacts. Thus, simulation of ToF cameras, including these artifacts, is important to improve camera and algorithm development. This paper presents a physically-based, interactive simulation technique for amplitude modulated continuous wave (AMCW) ToF cameras, which, among other error sources, includes single bounce indirect multipath interference based on an enhanced image-space approach. The simulation accounts for physical units down to the charge level accumulated in sensor pixels. Furthermore, we present the first quantified comparison for ToF camera simulators. We present bidirectional reference distribution function (BRDF) measurements for selected, purchasable materials in the near-infrared (NIR) range, craft real and synthetic scenes out of these materials and quantitatively compare the range sensor data.

  6. Quantified, Interactive Simulation of AMCW ToF Camera Including Multipath Effects

    Directory of Open Access Journals (Sweden)

    David Bulczak

    2017-12-01

    Full Text Available In the last decade, Time-of-Flight (ToF range cameras have gained increasing popularity in robotics, automotive industry, and home entertainment. Despite technological developments, ToF cameras still suffer from error sources such as multipath interference or motion artifacts. Thus, simulation of ToF cameras, including these artifacts, is important to improve camera and algorithm development. This paper presents a physically-based, interactive simulation technique for amplitude modulated continuous wave (AMCW ToF cameras, which, among other error sources, includes single bounce indirect multipath interference based on an enhanced image-space approach. The simulation accounts for physical units down to the charge level accumulated in sensor pixels. Furthermore, we present the first quantified comparison for ToF camera simulators. We present bidirectional reference distribution function (BRDF measurements for selected, purchasable materials in the near-infrared (NIR range, craft real and synthetic scenes out of these materials and quantitatively compare the range sensor data.

  7. High-resolution, time-resolved MRA provides superior definition of lower-extremity arterial segments compared to 2D time-of-flight imaging.

    Science.gov (United States)

    Thornton, F J; Du, J; Suleiman, S A; Dieter, R; Tefera, G; Pillai, K R; Korosec, F R; Mistretta, C A; Grist, T M

    2006-08-01

    To evaluate a novel time-resolved contrast-enhanced (CE) projection reconstruction (PR) magnetic resonance angiography (MRA) method for identifying potential bypass graft target vessels in patients with Class II-IV peripheral vascular disease. Twenty patients (M:F = 15:5, mean age = 58 years, range = 48-83 years), were recruited from routine MRA referrals. All imaging was performed on a 1.5 T MRI system with fast gradients (Signa LX; GE Healthcare, Waukesha, WI). Images were acquired with a novel technique that combined undersampled PR with a time-resolved acquisition to yield an MRA method with high temporal and spatial resolution. The method is called PR hyper time-resolved imaging of contrast kinetics (PR-hyperTRICKS). Quantitative and qualitative analyses were used to compare two-dimensional (2D) time-of-flight (TOF) and PR-hyperTRICKS in 13 arterial segments per lower extremity. Statistical analysis was performed with the Wilcoxon signed-rank test. Fifteen percent (77/517) of the vessels were scored as missing or nondiagnostic with 2D TOF, but were scored as diagnostic with PR-hyperTRICKS. Image quality was superior with PR-hyperTRICKS vs. 2D TOF (on a four-point scale, mean rank = 3.3 +/- 1.2 vs. 2.9 +/- 1.2, P < 0.0001). PR-hyperTRICKS produced images with high contrast-to-noise ratios (CNR) and high spatial and temporal resolution. 2D TOF images were of inferior quality due to moderate spatial resolution, inferior CNR, greater flow-related artifacts, and absence of temporal resolution. PR-hyperTRICKS provides superior preoperative assessment of lower limb ischemia compared to 2D TOF.

  8. In cleanroom, sub-ppb real-time monitoring of volatile organic compounds using proton-transfer reaction/time of flight/mass spectrometry

    Science.gov (United States)

    Hayeck, Nathalie; Maillot, Philippe; Vitrani, Thomas; Pic, Nicolas; Wortham, Henri; Gligorovski, Sasho; Temime-Roussel, Brice; Mizzi, Aurélie; Poulet, Irène

    2014-04-01

    Refractory compounds such as Trimethylsilanol (TMS) and other organic compounds such as propylene glycol methyl ether acetate (PGMEA) used in the photolithography area of microelectronic cleanrooms have irreversible dramatic impact on optical lenses used on photolithography tools. There is a need for real-time, continuous measurements of organic contaminants in representative cleanroom environment especially in lithography zone. Such information is essential to properly evaluate the impact of organic contamination on optical lenses. In this study, a Proton-Transfer Reaction-Time-of-Flight Mass spectrometer (PTR-TOF-MS) was applied for real-time and continuous monitoring of fugitive organic contamination induced by the fabrication process. Three types of measurements were carried out using the PTR-TOF-MS in order to detect the volatile organic compounds (VOCs) next to the tools in the photolithography area and at the upstream and downstream of chemical filters used to purge the air in the cleanroom environment. A validation and verification of the results obtained with PTR-TOF-MS was performed by comparing these results with those obtained with an off-line technique that is Automated Thermal Desorber - Gas Chromatography - Mass Spectrometry (ATD-GC-MS) used as a reference analytical method. The emerged results from the PTR-TOF-MS analysis exhibited the temporal variation of the VOCs levels in the cleanroom environment during the fabrication process. While comparing the results emerging from the two techniques, a good agreement was found between the results obtained with PTR-TOF-MS and those obtained with ATD-GC-MS for the PGMEA, toluene and xylene. Regarding TMS, a significant difference was observed ascribed to the technical performance of both instruments.

  9. Four-Spot Time-Of-Flight Laser Anemometer For Turbomachinery

    Science.gov (United States)

    Wernet, Mark P.; Skoch, Gary J.

    1995-01-01

    Two-color, four-spot time-of-flight laser anemometer designed for measuring flow velocity within narrow confines of small centrifugal compressor. Apparatus well suited for measuring fast (typical speeds 160 to 700 m/s), highly turbulent gas flows in turbomachinery. Other potential applications include measurement of gas flows in pipelines and in flows from explosions.

  10. In situ analysis of thin film deposition processes using time-of-flight (TOF) ion beam analysis methods

    International Nuclear Information System (INIS)

    Im, J.; Lin, Y.; Schultz, J.A.; Auciello, O.H.; Chang, R.P.H.

    1995-05-01

    Non-destructive, in situ methods for characterization of thin film growth phenomena is key to understand thin film growth processes and to develop more reliable deposition procedures, especially for complex layered structures involving multi-phase materials. However, surface characterization methods that use either electrons (e.g. AES or XPS) or low energy ions (SIMS) require an UHV environment and utilize instrumentation which obstructs line of sight access to the substrate and are therefore incompatible with line of sight deposition methods and thin film deposition processes which introduce gas, either part of the deposition or in order to produce the desired phase. We have developed a means of differentially pumping both the ion beam source and detectors of a TOF ion beam surface analysis spectrometer that does not interfere with the deposition process and permits compositional and structural analysis of the growing film in the present system, at pressures up to several mTorr. Higher pressures are feasible with modified source-detector geometry. In order to quantify the sensitivity of Ion Scattering Spectroscopy (ISS) and Direct Recoil Spectroscopy (DRS), we have measured the signal intensity for stabilized clean metals in a variety of gas environments as a function of the ambient gas species and pressure, and ion beam species and kinetic energy. Results are interpreted in terms of collision cross sections which are compared with known gas phase scattering data and provide an apriori basis for the evaluation of time-of-flight ion scattering and recoil spectroscopies (ToF-ISARS) for various industrial processing environments which involve both inert and reactive cases. The cross section data for primary ion-gas molecule and recoiled atom-gas molecule interactions are also provided. from which the maximum operating pressure in any experimental configuration can be obtained

  11. Towards Spectral Library-free MALDI-TOF MS Bacterial Identification.

    Science.gov (United States)

    Cheng, Ding; Qiao, Liang; Horvatovich, Péter

    2018-05-11

    Bacterial identification is of great importance in clinical diagnosis, environmental monitoring and food safety control. Among various strategies, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has drawn significant interests, and has been clinically used. Nevertheless, current bioinformatics solutions use spectral libraries for the identification of bacterial strains. Spectral library generation requires acquisition of MALDI-TOF spectra from monoculture bacterial colonies, which is time-consuming and not possible for many species and strains. We propose a strategy for bacterial typing by MALDI-TOF using protein sequences from public database, i.e. UniProt. Ten genes were identified to encode proteins most often observed by MALD-TOF from bacteria through 500 times repeated a 10-fold double cross-validation procedure, using 403 MALDI-TOF spectra corresponding to 14 genera, 81 species and 403 strains, and the protein sequences of 1276 species in UniProt. The 10 genes were then used to annotate peaks on MALDI-TOF spectra of bacteria for bacterial identification. With the approach, bacteria can be identified at the genus level by searching against a database containing the protein sequences of 42 genera of bacteria from UniProt. Our approach identified 84.1% of the 403 spectra correctly at the genus level. Source code of the algorithm is available at https://github.com/dipcarbon/BacteriaMSLF.

  12. Development of TOF-PET using Compton scattering by plastic scintillators

    International Nuclear Information System (INIS)

    Kuramoto, M.; Nakamori, T.; Kimura, S.; Gunji, S.; Takakura, M.; Kataoka, J.

    2017-01-01

    We propose a time-of-flight (TOF) technique using plastic scintillators which have fast decay time of a few ns for positron emission tomography (PET). While the photoelectric absorption probability of the plastic for 511 keV gamma rays are extremely low due to its small density and effective atomic number, the cross section of Compton scattering is comparable to that of absorption by conventional inorganic scintillators. We thus propose TOF-PET using Compton scattering with plastic scintillators (Compton-PET), and performed fundamental experiments towards exploration of the Compton-PET capability. We demonstrated that the plastic scintillators achieved the better time resolution in comparison to LYSO(Ce) and GAGG(Ce) scintillators. In addition we evaluated the depth-of-interaction resolving capability with the plastic scintillators.

  13. Development of TOF-PET using Compton scattering by plastic scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Kuramoto, M., E-mail: kuramoto@maxwell.kj.yamagata-u.ac.jp [Yamagata University, Kojirakawa 1-4-12, Yamagata 990-8560 (Japan); Nakamori, T., E-mail: nakamori@maxwell.kj.yamagata-u.ac.jp [Yamagata University, Kojirakawa 1-4-12, Yamagata 990-8560 (Japan); Kimura, S.; Gunji, S.; Takakura, M. [Yamagata University, Kojirakawa 1-4-12, Yamagata 990-8560 (Japan); Kataoka, J. [Waseda University, Okubo 3-4-1, Shinjuku, Tokyo 169-8555 (Japan)

    2017-02-11

    We propose a time-of-flight (TOF) technique using plastic scintillators which have fast decay time of a few ns for positron emission tomography (PET). While the photoelectric absorption probability of the plastic for 511 keV gamma rays are extremely low due to its small density and effective atomic number, the cross section of Compton scattering is comparable to that of absorption by conventional inorganic scintillators. We thus propose TOF-PET using Compton scattering with plastic scintillators (Compton-PET), and performed fundamental experiments towards exploration of the Compton-PET capability. We demonstrated that the plastic scintillators achieved the better time resolution in comparison to LYSO(Ce) and GAGG(Ce) scintillators. In addition we evaluated the depth-of-interaction resolving capability with the plastic scintillators.

  14. Development of TOF-PET using Compton scattering by plastic scintillators

    Science.gov (United States)

    Kuramoto, M.; Nakamori, T.; Kimura, S.; Gunji, S.; Takakura, M.; Kataoka, J.

    2017-02-01

    We propose a time-of-flight (TOF) technique using plastic scintillators which have fast decay time of a few ns for positron emission tomography (PET). While the photoelectric absorption probability of the plastic for 511 keV gamma rays are extremely low due to its small density and effective atomic number, the cross section of Compton scattering is comparable to that of absorption by conventional inorganic scintillators. We thus propose TOF-PET using Compton scattering with plastic scintillators (Compton-PET), and performed fundamental experiments towards exploration of the Compton-PET capability. We demonstrated that the plastic scintillators achieved the better time resolution in comparison to LYSO(Ce) and GAGG(Ce) scintillators. In addition we evaluated the depth-of-interaction resolving capability with the plastic scintillators.

  15. Real-time image processing of TOF range images using a reconfigurable processor system

    Science.gov (United States)

    Hussmann, S.; Knoll, F.; Edeler, T.

    2011-07-01

    During the last years, Time-of-Flight sensors achieved a significant impact onto research fields in machine vision. In comparison to stereo vision system and laser range scanners they combine the advantages of active sensors providing accurate distance measurements and camera-based systems recording a 2D matrix at a high frame rate. Moreover low cost 3D imaging has the potential to open a wide field of additional applications and solutions in markets like consumer electronics, multimedia, digital photography, robotics and medical technologies. This paper focuses on the currently implemented 4-phase-shift algorithm in this type of sensors. The most time critical operation of the phase-shift algorithm is the arctangent function. In this paper a novel hardware implementation of the arctangent function using a reconfigurable processor system is presented and benchmarked against the state-of-the-art CORDIC arctangent algorithm. Experimental results show that the proposed algorithm is well suited for real-time processing of the range images of TOF cameras.

  16. TOF spectrometer with improved sensitivity for ERDA of light isotopes

    International Nuclear Information System (INIS)

    Siketic, Z.; Bogdanovic Radovic, I.; Jaksic, M.

    2009-01-01

    Time-of-Flight Elastic Recoil Detection Analysis (TOF ERDA) is a well established and powerful ion beam analytical technique. It is used for simultaneous and quantitative analysis of elemental depth distributions of light and medium mass elements in both light and heavy matrices. Contrary to silicon particle detectors, the efficiency of the carbon-foil MCP time detectors in TOF system depends on energy and electronic stopping power of analyzing recoil atoms in the C foil and it is often less than 100% for light elements (H, He, Li). This is particularly critical for hydrogen isotopes where detection efficiency can be drastically reduced (∼ 10%). Therefore, TOF ERDA spectrometers were so far not the best choice for depth profiling and quantification of light elements. To improve the detection efficiency of TOF ERDA, the electron emission of C foils (∼ 0.3 μg/cm 2 ) has been enhanced by evaporating a thin LiF layer on the foil. That procedure improved significantly detection efficiency of hydrogen and other light elements, making TOF ERDA spectrometer more suitable for multielemental analysis applications. The capabilities of upgraded spectrometer were demonstrated on samples with well known as well as unknown concentration and depth distribution of H and D.(author)

  17. Adaptive bilateral filter for image denoising and its application to in-vitro Time-of-Flight data

    Science.gov (United States)

    Seitel, Alexander; dos Santos, Thiago R.; Mersmann, Sven; Penne, Jochen; Groch, Anja; Yung, Kwong; Tetzlaff, Ralf; Meinzer, Hans-Peter; Maier-Hein, Lena

    2011-03-01

    Image-guided therapy systems generally require registration of pre-operative planning data with the patient's anatomy. One common approach to achieve this is to acquire intra-operative surface data and match it to surfaces extracted from the planning image. Although increasingly popular for surface generation in general, the novel Time-of-Flight (ToF) technology has not yet been applied in this context. This may be attributed to the fact that the ToF range images are subject to considerable noise. The contribution of this study is two-fold. Firstly, we present an adaption of the well-known bilateral filter for denoising ToF range images based on the noise characteristics of the camera. Secondly, we assess the quality of organ surfaces generated from ToF range data with and without bilateral smoothing using corresponding high resolution CT data as ground truth. According to an evaluation on five porcine organs, the root mean squared (RMS) distance between the denoised ToF data points and the reference computed tomography (CT) surfaces ranged from 3.0 mm (lung) to 9.0 mm (kidney). This corresponds to an error-reduction of up to 36% compared to the error of the original ToF surfaces.

  18. Application of lidar techniques to time-of-flight range imaging.

    Science.gov (United States)

    Whyte, Refael; Streeter, Lee; Cree, Michael J; Dorrington, Adrian A

    2015-11-20

    Amplitude-modulated continuous wave (AMCW) time-of-flight (ToF) range imaging cameras measure distance by illuminating the scene with amplitude-modulated light and measuring the phase difference between the transmitted and reflected modulation envelope. This method of optical range measurement suffers from errors caused by multiple propagation paths, motion, phase wrapping, and nonideal amplitude modulation. In this paper a ToF camera is modified to operate in modes analogous to continuous wave (CW) and stepped frequency continuous wave (SFCW) lidar. In CW operation the velocity of objects can be measured. CW measurement of velocity was linear with true velocity (R2=0.9969). Qualitative analysis of a complex scene confirms that range measured by SFCW is resilient to errors caused by multiple propagation paths, phase wrapping, and nonideal amplitude modulation which plague AMCW operation. In viewing a complicated scene through a translucent sheet, quantitative comparison of AMCW with SFCW demonstrated a reduction in the median error from -1.3  m to -0.06  m with interquartile range of error reduced from 4.0 m to 0.18 m.

  19. A new BPM-TOF system for CologneAMS

    Energy Technology Data Exchange (ETDEWEB)

    Pascovici, Gheorghe; Dewald, Alfred; Heinze, Stefan; Schiffer, Markus; Feuerstein, Mark [CologneAMS, Universitaet Koeln (Germany); Pfeiffer, Michael; Jolie, Jan; Zell, Karl Oskar [IKP, Universitaet Koeln (Germany); Blanckenburg, Friedhelm von [GFZ, Potsdam (Germany)

    2011-07-01

    At the center for accelerator mass spectrometry (CologneAMS) a complex beam detector consisting of a high resolution Beam Profile Monitor (BPM) and a Time of Flight (TOF) spectrometer with tracking capabilities was designed especially for the needs of the Cologne AMS facility. The complex beam detector assembly is designed to match the beam specifications of the 6MV Tandetron AMS setup and its DAQ system, which is presently in the commissioning phase at the IKP of the University of Cologne. The BPM-TOF system will have a reconfigurable structure, namely: either a very fast TOF subsystem with a small active area or a more complex BPM -TOF detector with beam tracking capabilities and with a large active area. The systems aims for background suppression in case of the spectrometry of heavy ions, e.g. U, Cm, Pu, Am etc. and could also be used as an additional filter e.g., for the isobar {sup 36}S in case of the spectrometry of {sup 36}Cl.

  20. Calculations of time-of-flight aberrations in practical electrostatic electron lenses using the differential algebraic method

    International Nuclear Information System (INIS)

    Kang, Yongfeng; Zhao, Jingyi; Tang, Tiantong

    2013-01-01

    The high order time-of-flight (TOF) aberrations in a practical electrostatic electron lens are calculated using the differential algebraic (DA) method. The electrostatic fields of the electrostatic lens, which are calculated by the FEM methods, are in the form of discrete arrays. Thus, the proposed DA method is applicable for engineering designs, and programs are written to compute up to fifth order TOF aberrations of practical electrostatic electron lenses. An example is given, and TOF aberrations up to the fifth order are calculated. It is proven that the numerical results for the electrostatic fields in the form of discrete arrays have a good accuracy compared with the theoretical solutions. The accuracy is limited only by the accuracy of the numerical computation of the fields and the numerical computation algorithms for interpolation and integration. Finally, a practical electrostatic electron lens is analysed and discussed as an example.

  1. Transmission-less attenuation estimation from time-of-flight PET histo-images using consistency equations

    Science.gov (United States)

    Li, Yusheng; Defrise, Michel; Metzler, Scott D.; Matej, Samuel

    2015-08-01

    In positron emission tomography (PET) imaging, attenuation correction with accurate attenuation estimation is crucial for quantitative patient studies. Recent research showed that the attenuation sinogram can be determined up to a scaling constant utilizing the time-of-flight information. The TOF-PET data can be naturally and efficiently stored in a histo-image without information loss, and the radioactive tracer distribution can be efficiently reconstructed using the DIRECT approaches. In this paper, we explore transmission-less attenuation estimation from TOF-PET histo-images. We first present the TOF-PET histo-image formation and the consistency equations in the histo-image parameterization, then we derive a least-squares solution for estimating the directional derivatives of the attenuation factors from the measured emission histo-images. Finally, we present a fast solver to estimate the attenuation factors from their directional derivatives using the discrete sine transform and fast Fourier transform while considering the boundary conditions. We find that the attenuation histo-images can be uniquely determined from the TOF-PET histo-images by considering boundary conditions. Since the estimate of the attenuation directional derivatives can be inaccurate for LORs tangent to the patient boundary, external sources, e.g. a ring or annulus source, might be needed to give an accurate estimate of the attenuation gradient for such LORs. The attenuation estimation from TOF-PET emission histo-images is demonstrated using simulated 2D TOF-PET data.

  2. The performance of silicon photomultipliers in Cherenkov TOF PET

    International Nuclear Information System (INIS)

    Dolenec, Rok; Korpar, Samo; Krizan, Peter; Pestotink, Rok

    2015-01-01

    In time-of-flight positron emission tomography (TOF PET) one of the main factors limiting the time resolution is the time evolution of the scintillation process. This can be avoided by using exclusively the Cherenkov light produced in a suitable material. Sub 100 ps FWHM timing has already been experimentally demonstrated but with a drawback of relatively low detection efficiency due to the photodetectors used. In this work silicon photomultipliers (SiPMs) are considered as a photodetector in Cherenkov TOF PET. The detection efficiency can be significantly improved by using SiPMs, however, at room temperature the SiPM dark counts introduce a significant source of fake coincidences. SiPM samples from different producers were tested in a simple back-to-back setup in combination with lead fluoride Cherenkov radiators. Results for coincidence timing, detection efficiency and effects of dark counts at different temperatures and SiPM overvoltages are presented.

  3. Shock tube/time-of-flight mass spectrometer for high temperature kinetic studies

    International Nuclear Information System (INIS)

    Tranter, Robert S.; Giri, Binod R.; Kiefer, John H.

    2007-01-01

    A shock tube (ST) with online, time-of-flight mass spectrometric (TOF-MS) detection has been constructed for the study of elementary reactions at high temperature. The ST and TOF-MS are coupled by a differentially pumped molecular beam sampling interface, which ensures that the samples entering the TOF-MS are not contaminated by gases drawn from the cold end wall thermal boundary layer in the ST. Additionally, the interface allows a large range of postshock pressures to be used in the shock tube while maintaining high vacuum in the TOF-MS. The apparatus and the details of the sampling system are described along with an analysis in which cooling of the sampled gases and minimization of thermal boundary layer effects are discussed. The accuracy of kinetic measurements made with the apparatus has been tested by investigating the thermal unimolecular dissociation of cyclohexene to ethylene and 1,3-butadiene, a well characterized reaction for which considerable literature data that are in good agreement exist. The experiments were performed at nominal reflected shock wave pressures of 600 and 1300 Torr, and temperatures ranging from 1260 to 1430 K. The rate coefficients obtained are compared with the earlier shock tube studies and are found to be in very good agreement. As expected no significant difference is observed in the rate constant between pressures of 600 and 1300 Torr

  4. Development of a broad toxicological screening technique for urine using ultra-performance liquid chromatography and time-of-flight mass spectrometry

    DEFF Research Database (Denmark)

    Lee, Hon Kit; Ho, Chung Shun; Iu, Yan Ping Heidi

    2009-01-01

    Withdrawal of the support for the REMEDi HS drug profiling system has necessitated its replacement within our laboratories with an alternative broad toxicological screening technique. To this end, a novel method, based on ultra-performance liquid chromatography (UPLC) and time-of-flight (TOF) mass...

  5. Initial experience with 3T 3D-TOF MRA in the diagnosis of intracranial aneurysms

    International Nuclear Information System (INIS)

    Senba, Yoshiki; Takahashi, Shizue; Matsubara, Ichiro; Sadamoto, Kazuhiko; Miki, Hitoshi; Mochizuki, Teruhito

    2006-01-01

    We assessed the value of 3T 3D-time of flight (TOF) MR angiography (MRA) in the diagnosis of intracranial aneurysms compared with 1.5T 3D-TOF MRA. Twenty-one patients with 22 aneurysms underwent MRA at 1.5T and 3T. Images were interpreted by two radiologists. Each of nine aneurysms that had been considered ''definite'' at 1.5T 3D-TOF MRA were considered ''definite'' at 3T 3D-TOF MRA. Seven aneurysms that had been considered ''suspicious'' at 1.5T MRA were considered ''definite'' at 3T. And four aneurysms that had been considered ''suspicious'' at 1.5T were considered ''negative'' at 3T. We concluded that 3T 3D-TOF MRA is superior to 1.5T 3D-TOF MRA in the diagnosis of intracranial aneurysms. (author)

  6. Physical characterization and preliminary results of a PET system using time-of-flight for quantitative studies

    International Nuclear Information System (INIS)

    Soussaline, F.; Verrey, B.; Comar, D.; Campagnolo, R.; Bouvier, A.; Lecomte, J.L.

    1984-01-01

    A positron camera was designed to meet the needs for a high sensitivity, high resolution, dynamic imaging at high count rate, multislice system, for quantitative measurements. Actually, the goals of present positron camera design are clearly to provide accurate quantitative images of physiological or biochemical parameters with dramatically improved spatial, temporal and contrast resolutions. The use of the time-of-flight (TOF) information which produces more accurate images with fewer detected events, provides an approach to such idenfied needs. This paper first presents the physical characterization of this system, so-called TTVO1, which confirms the TOF system capabilities and main advantages on the system without use of TOF, namely: the improvement of the signal-to-noise ratio due to the better, however approximate, localization of the source position, providing an equivalent gain in sensitivity; the good elimination of accidental -or random- coincidences due to the short time-window (3 nsec for a whole body inner ring); the ability to handle very high count rates without pile up of the detectors or electronic, due to the short scintillation decay time in fast crystals such as CsF or BaF 2 (Baryum fluoride)

  7. Wide-angle NSE and TOF the spectrometer SPAN at BENSC

    CERN Document Server

    Pappas, C; Kischnik, R; Mezei, F

    2002-01-01

    The cylindrical symmetry of the magnetic field configuration of SPAN allows for simultaneous neutron spin echo (NSE) measurements over the whole range of scattering angles accessible by a spectrometer. The open construction also allows for time-of-flight (TOF) measurements, which can be performed under the same conditions as NSE, in particular with polarization analysis. TOF and NSE spectra are then directly comparable with each other, without any adjustable parameters, covering a dynamic range of more than four orders of magnitude at a single wavelength. (orig.)

  8. Wide-angle NSE and TOF: the spectrometer SPAN at BENSC

    International Nuclear Information System (INIS)

    Pappas, C.; Triolo, A.; Kischnik, R.; Mezei, F.

    2002-01-01

    The cylindrical symmetry of the magnetic field configuration of SPAN allows for simultaneous neutron spin echo (NSE) measurements over the whole range of scattering angles accessible by a spectrometer. The open construction also allows for time-of-flight (TOF) measurements, which can be performed under the same conditions as NSE, in particular with polarization analysis. TOF and NSE spectra are then directly comparable with each other, without any adjustable parameters, covering a dynamic range of more than four orders of magnitude at a single wavelength. (orig.)

  9. Design tool for TOF and SL based 3D cameras.

    Science.gov (United States)

    Bouquet, Gregory; Thorstensen, Jostein; Bakke, Kari Anne Hestnes; Risholm, Petter

    2017-10-30

    Active illumination 3D imaging systems based on Time-of-flight (TOF) and Structured Light (SL) projection are in rapid development, and are constantly finding new areas of application. In this paper, we present a theoretical design tool that allows prediction of 3D imaging precision. Theoretical expressions are developed for both TOF and SL imaging systems. The expressions contain only physically measurable parameters and no fitting parameters. We perform 3D measurements with both TOF and SL imaging systems, showing excellent agreement between theoretical and measured distance precision. The theoretical framework can be a powerful 3D imaging design tool, as it allows for prediction of 3D measurement precision already in the design phase.

  10. Research and development on a sub 100 PICO second time-of-flight system based on silicon avalanche diodes

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Y.; Hirsch, A.; Hauger, A.; Scharenberg, R.; Tincknell, M. [Purdue Univ., West Lafayette, IN (United States); Rai, G. [Lawrence Berkeley Lab., CA (United States)

    1991-12-31

    Particle identification requires a momentum measurement and a second independent determination either energy loss (dE/dx) or time of flight (TOF). To cover a momentum range from 0.1 GeV/c to 1.5 GeV/c in the STAR detector requires both the dE/dx and TOF techniques. This research is designed to develop the avalanche diode (AVD) detectors for TOF systems and evaluate their performance. The test of a small prototype system would be carried out at Purdue and at accelerator test beam sites. The Purdue group has developed a complete test setup for evaluating the time resolution of the AVD`s which includes fast-slow electronic channels, CAMAC based electronic modules and a temperature controlled environment. The AVDs also need to be tested in a 0.5 tesla magnetic field. The Purdue group would augment this test set up to include a magnetic field.

  11. Time resolution deterioration with increasing crystal length in a TOF-PET system

    CERN Document Server

    Gundacker, S; Auffray, E; Jarron, P; Meyer, T; Lecoq, P

    2014-01-01

    Highest time resolution in scintillator based detectors is becoming more and more important. In medical detector physics L(Y)SO scintillators are commonly used for time of flight positron emission tomography (TOF-PET). Coincidence time resolutions (CTRs) smaller than 100 ps FWHM are desirable in order to improve the image signal to noise ratio and thus give benefit to the patient by shorter scanning times. Also in high energy physics there is the demand to improve the timing capabilities of calorimeters down to 10 ps. To achieve these goals it is important to study the whole chain, i.e. the high energy particle interaction in the crystal, the scintillation process itself, the scintillation light transfer in the crystal, the photodetector and the electronics. Time resolution measurements for a PET like system are performed with the time-over-threshold method in a coincidence setup utilizing the ultra-fast amplifier-discriminator NINO. With 2×2×3 mm3 LSO:Ce codoped 0.4%Ca crystals coupled to commercially avai...

  12. Toxicological screening of basic drugs in whole blood using UPLC-TOF-MS

    DEFF Research Database (Denmark)

    Dalsgaard, Petur Weihe; Rasmussen, Brian Schou; Müller, Irene Breum

    2012-01-01

    Ultra performance liquid chromatography (UPLC) coupled with time-of-flight (TOF) mass spectrometry (MS) was established for toxicological screening of basic drugs in whole blood and tested on authentic samples. Whole blood samples (0.2 ml) were extracted using a Gilson apparatus equipped with Bond...

  13. Proton Transfer Time-of-Flight Mass Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Watson, Thomas B. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-03-01

    The Proton Transfer Reaction Mass Spectrometer (PTRMS) measures gas-phase compounds in ambient air and headspace samples before using chemical ionization to produce positively charged molecules, which are detected with a time-of-flight (TOF) mass spectrometer. This ionization method uses a gentle proton transfer reaction method between the molecule of interest and protonated water, or hydronium ion (H3O+), to produce limited fragmentation of the parent molecule. The ions produced are primarily positively charged with the mass of the parent ion, plus an additional proton. Ion concentration is determined by adding the number of ions counted at the molecular ion’s mass-to-charge ratio to the number of air molecules in the reaction chamber, which can be identified according to the pressure levels in the reaction chamber. The PTRMS allows many volatile organic compounds in ambient air to be detected at levels from 10–100 parts per trillion by volume (pptv). The response time is 1 to 10 seconds.

  14. Ion optics of a time-of-flight mass spectrometer with electrostatic sector analyzers

    International Nuclear Information System (INIS)

    Sakurai, T.; Ito, H.; Matsuo, T.

    1995-01-01

    The ion optics for a high resolution time-of-flight mass spectrometer with electrostatic sector analyzers have been investigated. The multiple focusing (triple isochronous focusing and triple spacial focusing) conditions can be achieved by using a symmetrical arrangement of the sectors in a mass spectrometer. Both high mass resolution and high ion transmission can be accomplished simultaneously. The principles of MS/MS and MS/MS/MS analyses using a TOF mass spectrometer with electrostatic sector analyzers have been proposed. Product ion spectra can be obtained by measuring the total flight times and the kinetic energy of the products without any additional separation processes, any coincidence techniques or any special timing circuits. In an experiment, MS/MS and MS/MS/MS mass spectra have been obtained. The first generation product ions have been produced by a metastable decay, and the second generation products have been produced by a sequential decay. (orig.)

  15. Recent Results In Nuclear Astrophysics At The n_TOF Facility At CERN

    CERN Document Server

    Tagliente, Giuseppe; Andrzejewski, J; Audouin, L; Bacak, M; Balibrea, J; Barbagallo, M; Bečvář, F; Berthoumieux, E; Billowes, J; Bosnar, D; Brown, A; Caamaño, M; Calviño, F; Calviani, M; Cano-Ott, D; Cardella, R; Casanovas, A; Cerutti, F; Chen, Y H; Chiaveri, E; Colonna, N; Cortés, G; Cortés-Giraldo, M A; Cosentino; Damone, L A; Diakaki, M; Domingo-Pardo, C; Dressler, L R; Dupont, E; Durán, I; Fernández-Domínguez, B; Ferrari, A; Ferreira, P; Finocchiaro, P; Furman, V; Göbel, K; García, A R; Gawlik, A; Gilardoni, S; Glodariu, T; Gonçalves, I F; González, E; Griesmayer, E; Guerrero, C; Gunsing, F; Harada, H; Heinitz, S; Heyse, J; Jenkins, D G; Jericha, E; Käppeler, F; Kadi, Y; Kalamara, A; Kavrigin, P; Kimura, A; Kivel, N; Kokkoris, M; Krtička, M; Kurtulgil, D; Leal-Cidoncha, E; Lederer, C; Lerendegui-Marco, J; Leeb, H; Lo Meo, S; Lonsdale, S J; Macina, D; Marganiec, J; Martínez, T; Masi, A; Massimi, C; Mastinu, P; Mastromarco, M; Maugeri, E A; Mazzone, A; Mendoza, E; Mengoni, A; Mingrone, F; Milazzo, P M; Musumarra, A; Negret, A; Nolte, R; Oprea, A; Patronis, N; Pavlik, A; Perkowski, J; Porras, I; Praena, J; Quesada, J M; Radeck, D; Rauscher, T; Reifarth, R; Rubbia, C; Ryan, J A; Sabaté-Gilarte, M; Saxena, A; Schillebeeckx, P; Schumann, D; Sedyshev, P; Smith, A G; Sosnin, N V; Stamatopoulos, A; Tain, J L; Tarifeño-Saldivia, A; Valenta, S; Vannini, G; Variale, V; Vaz, P; Ventura, A; Vlachoudis, V; Vlastou, R; Wallner, A; Warren, S; Woods, P J; Żugec, P Č

    2017-01-01

    The neutron time of flight (n_TOF) facility at CERN is a spallation source characterized by a white neutron spectrum. The innovative features of the facility, in the two experimental areas, (20 m and 185 m), allow for an accurate determination of the neutron cross section for radioactive samples or for isotopes with small neutron capture cross section, of interest for Nuclear Astrophysics. The recent results obtained at n_TOF facility are presented.

  16. TOF-SIMS characterization of planktonic foraminifera

    International Nuclear Information System (INIS)

    Vering, G.; Crone, C.; Bijma, J.; Arlinghaus, H.F.

    2003-01-01

    Oceanic sediment properties that are closely related to former environmental (e.g. climatic) parameters are called 'proxies'. Planktonic foraminifera are small protists which make up part of the plankton. Certain element concentrations, element ratios and isotopic ratios of their calcite shell found in the sediment can be used as proxies reflecting the state of the ocean during the life of the animal; they supply useful information for the reconstruction of environmental parameters. Time-of-flight secondary ion mass spectrometry (TOF-SIMS) was used to examine the inner and outer part of foraminiferal shells, as well as foraminiferal shells dissolved in HCl. High resolution elemental images and mass spectra were obtained from the foraminifera. The data show that TOF-SIMS is a useful technique for determining the elemental distribution and for measuring isotope ratios such as δ 11 B with high precision in a single foraminiferal shell

  17. TOF-SIMS characterization of planktonic foraminifera

    Energy Technology Data Exchange (ETDEWEB)

    Vering, G.; Crone, C.; Bijma, J.; Arlinghaus, H.F

    2003-01-15

    Oceanic sediment properties that are closely related to former environmental (e.g. climatic) parameters are called 'proxies'. Planktonic foraminifera are small protists which make up part of the plankton. Certain element concentrations, element ratios and isotopic ratios of their calcite shell found in the sediment can be used as proxies reflecting the state of the ocean during the life of the animal; they supply useful information for the reconstruction of environmental parameters. Time-of-flight secondary ion mass spectrometry (TOF-SIMS) was used to examine the inner and outer part of foraminiferal shells, as well as foraminiferal shells dissolved in HCl. High resolution elemental images and mass spectra were obtained from the foraminifera. The data show that TOF-SIMS is a useful technique for determining the elemental distribution and for measuring isotope ratios such as {delta}{sup 11}B with high precision in a single foraminiferal shell.

  18. Bactec™ blood culture bottles allied to MALDI-TOF mass spectrometry: rapid etiologic diagnosis of bacterial endophthalmitis.

    Science.gov (United States)

    Tanaka, Tatiana; Oliveira, Luiza Manhezi de Freitas; Ferreira, Bruno Fortaleza de Aquino; Kato, Juliana Mika; Rossi, Flavia; Correa, Karoline de Lemes Giuntini; Pimentel, Sergio Luis Gianotti; Yamamoto, Joyce Hisae; Almeida Junior, João Nóbrega

    2017-07-01

    Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry (MS) has been used for direct identification of pathogens from blood-inoculated blood culture bottles (BCBs). We showed that MALDI-TOF MS is an useful technique for rapid identification of the causative agents of endophthalmitis from vitreous humor-inoculated BCBs with a simple protocol. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Use of Maldi-Tof Mass spectrometry in direct microorganism identification in clinical laboratories

    Directory of Open Access Journals (Sweden)

    Tamara Brunelli

    2010-09-01

    Full Text Available Mass Spectrometry is an old technique that has recently been introduced in the clinical microbiology laboratory as Matrix Assisted Laser Desorption Ionization Time of Flight Mass Spectrometry (MALDI-TOF MS. MALDI is a soft ionization technique used in mass spectrometry that allows the analysis of biomolecules and large organic molecules which tend to be fragile and fragment when ionized.To obtain ions biological specimens are mixed with a matrix which specifically absorbs the ionization source (a laser beam. The high energy impact is followed by the formation of ions which are extract through an elastic field, focussed and detected as mass/charge (m/z spectrum.The differences between ions are seen with TOF, a revelation system that relates the time of flight of a ion to the charge/mass value: ion with a higher m/z have are slower (a bigger time of flight than ions with lower m/z. MALDI-TOF MS, in clinical microbiology laboratory, is used to identify bacteria and fungi directly from samples. The identification of microorganisms can be performed directly from body fluids (e.g. urine, blood culture, after centrifugation and recovery of microorganisms or from colonies (after cultivation. The rapidity of identification is of great importance in blood cultures. Positive cultures with one microorganism are processed in a different way than those with more than one microorganism. In positive monomicrobial cultures, after separation of microbs from blood cells,we can perform an immediate identification with MALDI-TOF MS that we can communicate to the clinician, and that gives indication to perform the correct antibiogram. Major problems are present when more than one microorganism are in the culture: in this case we have to use the method of subcultivation and then the identification with mass-spectrometry can be performed. MALDI-TOF MS is a rapid, reliable and low cost technique, that can identify a growing number of microorganisms. This technique can

  20. A magnetic particle time-of-flight (MagPTOF) diagnostic for measurements of shock- and compression-bang time at the NIF (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Rinderknecht, H. G., E-mail: hgr@mit.edu; Sio, H.; Frenje, J. A.; Gatu Johnson, M.; Zylstra, A. B.; Sinenian, N.; Rosenberg, M. J.; Li, C. K.; Sèguin, F. H.; Petrasso, R. D. [Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Magoon, J.; Agliata, A.; Shoup, M.; Glebov, V. U.; Hohenberger, M.; Stoeckl, C.; Sangster, T. C. [Laboratory for Laser Energetics, Rochester, New York 14623 (United States); Ayers, S.; Bailey, C. G.; Rygg, J. R. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); and others

    2014-11-15

    A magnetic particle time-of-flight (MagPTOF) diagnostic has been designed to measure shock- and compression-bang time using D{sup 3}He-fusion protons and DD-fusion neutrons, respectively, at the National Ignition Facility (NIF). This capability, in combination with shock-burn weighted areal density measurements, will significantly constrain the modeling of the implosion dynamics. This design is an upgrade to the existing particle time-of-flight (pTOF) diagnostic, which records bang times using DD or DT neutrons with an accuracy better than ±70 ps [H. G. Rinderknecht et al., Rev. Sci. Instrum. 83, 10D902 (2012)]. The inclusion of a deflecting magnet will increase D{sup 3}He-proton signal-to-background by a factor of 1000, allowing for the first time simultaneous measurements of shock- and compression-bang times in D{sup 3}He-filled surrogate implosions at the NIF.

  1. A magnetic particle time-of-flight (MagPTOF) diagnostic for measurements of shock- and compression-bang time at the NIF (invited).

    Science.gov (United States)

    Rinderknecht, H G; Sio, H; Frenje, J A; Magoon, J; Agliata, A; Shoup, M; Ayers, S; Bailey, C G; Gatu Johnson, M; Zylstra, A B; Sinenian, N; Rosenberg, M J; Li, C K; Sèguin, F H; Petrasso, R D; Rygg, J R; Kimbrough, J R; Mackinnon, A; Bell, P; Bionta, R; Clancy, T; Zacharias, R; House, A; Döppner, T; Park, H S; LePape, S; Landen, O; Meezan, N; Robey, H; Glebov, V U; Hohenberger, M; Stoeckl, C; Sangster, T C; Li, C; Parat, J; Olson, R; Kline, J; Kilkenny, J

    2014-11-01

    A magnetic particle time-of-flight (MagPTOF) diagnostic has been designed to measure shock- and compression-bang time using D(3)He-fusion protons and DD-fusion neutrons, respectively, at the National Ignition Facility (NIF). This capability, in combination with shock-burn weighted areal density measurements, will significantly constrain the modeling of the implosion dynamics. This design is an upgrade to the existing particle time-of-flight (pTOF) diagnostic, which records bang times using DD or DT neutrons with an accuracy better than ±70 ps [H. G. Rinderknecht et al., Rev. Sci. Instrum. 83, 10D902 (2012)]. The inclusion of a deflecting magnet will increase D(3)He-proton signal-to-background by a factor of 1000, allowing for the first time simultaneous measurements of shock- and compression-bang times in D(3)He-filled surrogate implosions at the NIF.

  2. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry for rapid identification of fungal rhinosinusitis pathogens.

    Science.gov (United States)

    Huang, Yanfei; Wang, Jinglin; Zhang, Mingxin; Zhu, Min; Wang, Mei; Sun, Yufeng; Gu, Haitong; Cao, Jingjing; Li, Xue; Zhang, Shaoya; Lu, Xinxin

    2017-03-01

    Filamentous fungi are among the most important pathogens, causing fungal rhinosinusitis (FRS). Current laboratory diagnosis of FRS pathogens mainly relies on phenotypic identification by culture and microscopic examination, which is time consuming and expertise dependent. Although matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) MS has been employed to identify various fungi, its efficacy in the identification of FRS fungi is less clear. A total of 153 FRS isolates obtained from patients were analysed at the Clinical Laboratory at the Beijing Tongren Hospital affiliated to the Capital Medical University, between January 2014 and December 2015. They were identified by traditional phenotypic methods and Bruker MALDI-TOF MS (Bruker, Biotyper version 3.1), respectively. Discrepancies between the two methods were further validated by sequencing. Among the 153 isolates, 151 had correct species identification using MALDI-TOF MS (Bruker, Biot 3.1, score ≥2.0 or 2.3). MALDI-TOF MS enabled identification of some very closely related species that were indistinguishable by conventional phenotypic methods, including 1/10 Aspergillus versicolor, 3/20 Aspergillus flavus, 2/30 Aspergillus fumigatus and 1/20 Aspergillus terreus, which were misidentified by conventional phenotypic methods as Aspergillus nidulans, Aspergillus oryzae, Aspergillus japonicus and Aspergillus nidulans, respectively. In addition, 2/2 Rhizopus oryzae and 1/1 Rhizopus stolonifer that were identified only to the genus level by the phenotypic method were correctly identified by MALDI-TOF MS. MALDI-TOF MS is a rapid and accurate technique, and could replace the conventional phenotypic method for routine identification of FRS fungi in clinical microbiology laboratories.

  3. Rapid detection of AAC(6')-Ib-cr production using a MALDI-TOF MS strategy.

    Science.gov (United States)

    Pardo, C-A; Tan, R N; Hennequin, C; Beyrouthy, R; Bonnet, R; Robin, F

    2016-12-01

    Plasmid-mediated quinolone resistance mechanisms have become increasingly prevalent among Enterobacteriaceae strains since the 1990s. Among these mechanisms, AAC(6')-Ib-cr is the most difficult to detect. Different detection methods have been developed, but they require expensive procedures such as Sanger sequencing, pyrosequencing, polymerase chain reaction (PCR) restriction, or the time-consuming phenotypic method of Wachino. In this study, we describe a simple matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) method which can be easily implemented in clinical laboratories that use the MALDI-TOF technique for bacterial identification. We tested 113 strains of Enterobacteriaceae, of which 64 harbored the aac(6')-Ib-cr gene. We compared two MALDI-TOF strategies, which differed by their norfloxacin concentration (0.03 vs. 0.5 g/L), and the method of Wachino with the PCR and sequencing strategy used as the reference. The MALDI-TOF strategy, performed with 0.03 g/L norfloxacin, and the method of Wachino yielded the same high performances (Se = 98 %, Sp = 100 %), but the turnaround time of the MALDI-TOF strategy was faster (<5 h), simpler, and inexpensive (<1 Euro). Our study shows that the MALDI-TOF strategy has the potential to become a major method for the detection of many different enzymatic resistance mechanisms.

  4. Flavonoids as matrices for MALDI-TOF mass spectrometric analysis of transition metal complexes

    Science.gov (United States)

    Petkovic, Marijana; Petrovic, Biljana; Savic, Jasmina; Bugarcic, Zivadin D.; Dimitric-Markovic, Jasmina; Momic, Tatjana; Vasic, Vesna

    2010-02-01

    Matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI-TOF MS) is a suitable method for the analysis of inorganic and organic compounds and biomolecules. This makes MALDI-TOF MS convenient for monitoring the interaction of metallo-drugs with biomolecules. Results presented in this manuscript demonstrate that flavonoids such as apigenin, kaempferol and luteolin are suitable for MALDI-TOF MS analysis of Pt(II), Pd(II), Pt(IV) and Ru(III) complexes, giving different signal-to-noise ratios of the analyte peak. The MALDI-TOF mass spectra of inorganic complexes acquired with these flavonoid matrices are easy to interpret and have some advantages over the application of other commonly used matrices: a low number of matrix peaks are detectable and the coordinative metal-ligand bond is, in most cases, preserved. On the other hand, flavonoids do not act as typical matrices, as their excess is not required for the acquisition of MALDI-TOF mass spectra of inorganic complexes.

  5. MALDI-TOF MS in the Microbiology Laboratory: Current Trends.

    Science.gov (United States)

    Schubert, Sören; Kostrzewa, Markus

    2017-01-01

    Within less than a decade matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has become a gold standard for microbial identification in clinical microbiology laboratories. Besides identification of microorganisms the typing of single strains as well as the antibiotic and antimycotic resistance testing has come into focus in order to speed up the microbiological diagnostic. However, the full potential of MALDI-TOF MS has not been tapped yet and future technological advancements will certainly expedite this method towards novel applications and enhancement of current practice. So, the following chapter shall be rather a brainstorming and forecast of how MALDI-TOF MS will develop to influence clinical diagnostics and microbial research in the future. It shall open up the stage for further discussions and does not claim for overall validity.

  6. Integrated intensities in inverse time-of-flight technique

    International Nuclear Information System (INIS)

    Dorner, Bruno

    2006-01-01

    In traditional data analysis a model function, convoluted with the resolution, is fitted to the measured data. In case that integrated intensities of signals are of main interest, one can use an approach which does not require a model function for the signal nor detailed knowledge of the resolution. For inverse TOF technique, this approach consists of two steps: (i) Normalisation of the measured spectrum with the help of a monitor, with 1/k sensitivity, which is positioned in front of the sample. This means at the same time a conversion of the data from time of flight to energy transfer. (ii) A Jacobian [I. Waller, P.O. Froeman, Ark. Phys. 4 (1952) 183] transforms data collected at constant scattering angle into data as if measured at constant momentum transfer Q. This Jacobian works correctly for signals which have a constant width at different Q along the trajectory of constant scattering angle. The approach has been tested on spectra of Compton scattering with neutrons, having epithermal energies, obtained on the inverse TOF spectrometer VESUVIO/ISIS. In this case the width of the signal is increasing proportional to Q and in consequence the application of the Jacobian leads to integrated intensities slightly too high. The resulting integrated intensities agree very well with results derived in the traditional way. Thus this completely different approach confirms the observation that signals from recoil by H-atoms at large momentum transfers are weaker than expected

  7. Analysis of phosphatidylcholine oxidation products in human plasma using quadrupole time-of flight mass spectrometry

    OpenAIRE

    Adachi, Junko; Asano, Migiwa; Yoshioka, Naoki; Nushida, Hideyuki; Ueno, Yasuhiro

    2006-01-01

    We report here an application of the previous method for the analysis ofphosphatidylcholine (PC) and lysophosphatidylcholine (lysoPC) oxidation products inhuman plasma using quadrupole time of flight (Q-TOF) mass spectrometry withelectrospray ionization. We separated these products using an HPLC C8 column witha gradient of methanol and 10 mM aqueous ammonium acetate. Monohydroperoxides,epoxyhydroxy derivatives, oxo derivatives, and trihydroxides of palmitoyl-linoleoyl(C16:0/C18:2) PC and stea...

  8. Serum amyloid beta peptides in patients with dementia and age-matched non-demented controls as detected by surface-enhanced laser desorption ionisation-time of flight mass spectrometry (SELDI-TOF MS).

    Science.gov (United States)

    Frankfort, Suzanne V; van Campen, Jos P C M; Tulner, Linda R; Beijnen, Jos H

    2008-09-01

    By using surface enhanced laser desorption/ionisation- time of flight mass spectrometry (SELDI-TOF MS) an amyloid beta (Abeta) profile was shown in cerebrospinal fluid (CSF) of patients with dementia. To investigate the Abeta-profile in serum with SELDI-TOF MS, to evaluate if this profile resembles CSF profiles and to investigate the correlation between intensity of Abeta-peptide-peaks in serum and clinical, demographical and genetic variables. Duplicate profiling of Abeta by an SELDI-TOF MS immunocapture assay was performed in 106 patients, suffering from Alzheimer's Disease or Vascular Dementia and age-matched non-demented control patients. Linear regression analyses were performed to investigate the intensities of four selected Abeta peaks as dependent variables in relation to the independent clinical, demographic or genetic variables. Abeta37, Abeta38 and Abeta40 were found among additional unidentified Abeta peptides, with the most pronounced Abeta peak at a molecular mass of 7752. This profile partly resembled the CSF profile. The clinical diagnosis was not a predictive independent variable, however ABCB1 genotypes C1236T, G2677T/A, age and creatinine level showed to be related to Abeta peak intensities in multivariate analyses. We found an Abeta profile in serum that partly resembled the CSF profile in demented patients. Age, creatinine levels, presence of the APOE epsilon4 allele and ABCB1 genotypes (C1236T and G2677T/A) were correlated with the Abeta serum profile. The role of P-gp as an Abeta transporter and the role of ABCB1 genotypes deserves further research. The investigated serum Abeta profile is probably not useful in the diagnosis of dementia.

  9. 2D time-of-flight MR angiography using concatenated saturation bands for determining direction of flow in the intracranial vessels

    International Nuclear Information System (INIS)

    Nesbit, G.M.; DeMarco, J.K.

    1997-01-01

    We prospectively studied 15 patients to assess 2D time-of-flight (TOF) magnetic resonance angiography (MRA) with concatenated saturation bands for determining the direction of intracranial blood flow. This MRA sequence was compared to T2-weighted spin-echo MRI, 3D-TOF MRA, and intra-arterial angiography (IAA) as regards demonstration of vessels and determination of the direction of flow in the circle of Willis and its branches. The 2D-TOF MRA sequence demonstrated flow in 98.5 % vessel segments identified on IAA, 3D-TOF demonstrating 92 % and spin-echo images 77 %. The direction of flow shown on the 2D-TOF sequence was correct in 94 % when compared to conventional angiography, the remaining six segments not demonstrating flow. In ten patients, the flow abnormalities demonstrated by this MRA technique provided clinical information similar to that of conventional angiography in nine, but it was incomplete in three, and misleading in one. Slow retrograde flow in ophthalmic artery collaterals and differentiation of arteries and veins presented some problems. 2D-TOF MRA with concatenated saturation bands provides flow direction information using widely available, easily applicable TOF techniques, and can be a useful adjunct to MRI and MRA if information on flow direction is needed. (orig.). With 5 figs., 3 tabs

  10. TOF-SIMS imaging technique with information entropy

    International Nuclear Information System (INIS)

    Aoyagi, Satoka; Kawashima, Y.; Kudo, Masahiro

    2005-01-01

    Time-of-flight secondary ion mass spectrometry (TOF-SIMS) is capable of chemical imaging of proteins on insulated samples in principal. However, selection of specific peaks related to a particular protein, which are necessary for chemical imaging, out of numerous candidates had been difficult without an appropriate spectrum analysis technique. Therefore multivariate analysis techniques, such as principal component analysis (PCA), and analysis with mutual information defined by information theory, have been applied to interpret SIMS spectra of protein samples. In this study mutual information was applied to select specific peaks related to proteins in order to obtain chemical images. Proteins on insulated materials were measured with TOF-SIMS and then SIMS spectra were analyzed by means of the analysis method based on the comparison using mutual information. Chemical mapping of each protein was obtained using specific peaks related to each protein selected based on values of mutual information. The results of TOF-SIMS images of proteins on the materials provide some useful information on properties of protein adsorption, optimality of immobilization processes and reaction between proteins. Thus chemical images of proteins by TOF-SIMS contribute to understand interactions between material surfaces and proteins and to develop sophisticated biomaterials

  11. A new approach for accurate mass assignment on a multi-turn time-of-flight mass spectrometer.

    Science.gov (United States)

    Hondo, Toshinobu; Jensen, Kirk R; Aoki, Jun; Toyoda, Michisato

    2017-12-01

    A simple, effective accurate mass assignment procedure for a time-of-flight mass spectrometer is desirable. External mass calibration using a mass calibration standard together with an internal mass reference (lock mass) is a common technique for mass assignment, however, using polynomial fitting can result in mass-dependent errors. By using the multi-turn time-of-flight mass spectrometer infiTOF-UHV, we were able to obtain multiple time-of-flight data from an ion monitored under several different numbers of laps that was then used to calculate a mass calibration equation. We have developed a data acquisition system that simultaneously monitors spectra at several different lap conditions with on-the-fly centroid determination and scan law estimation, which is a function of acceleration voltage, flight path, and instrumental time delay. Less than 0.9 mDa mass errors were observed for assigned mass to charge ratios ( m/z) ranging between 4 and 134 using only 40 Ar + as a reference. It was also observed that estimating the scan law on-the-fly provides excellent mass drift compensation.

  12. Cost Analysis of Implementing Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry Plus Real-Time Antimicrobial Stewardship Intervention for Bloodstream Infections.

    Science.gov (United States)

    Patel, Twisha S; Kaakeh, Rola; Nagel, Jerod L; Newton, Duane W; Stevenson, James G

    2017-01-01

    Studies evaluating rapid diagnostic testing plus stewardship intervention have consistently demonstrated improved clinical outcomes for patients with bloodstream infections. However, the cost of implementing new rapid diagnostic testing can be significant, and such testing usually does not generate additional revenue. There are minimal data evaluating the impact of adding matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) for rapid organism identification and dedicating pharmacy stewardship personnel time on the total hospital costs. A cost analysis was performed utilizing patient data generated from the hospital cost accounting system and included additional costs of MALDI-TOF equipment, supplies and personnel, and dedicated pharmacist time for blood culture review and of making interventions to antimicrobial therapy. The cost analysis was performed from a hospital perspective for 3-month blocks before and after implementation of MALDI-TOF plus stewardship intervention. A total of 480 patients with bloodstream infections were included in the analysis: 247 in the preintervention group and 233 in the intervention group. Thirty-day mortality was significantly improved in the intervention group (12% versus 21%, P cost per bloodstream infection was lower in the intervention group ($42,580 versus $45,019). Intensive care unit cost per bloodstream infection accounted for the largest share of the total costs in each group and was also lower in the intervention group ($10,833 versus $13,727). Implementing MALDI-TOF plus stewardship review and intervention decreased mortality for patients with bloodstream infections. Despite the additional costs of implementing MALDI-TOF and of dedicating pharmacy stewardship personnel time to interventions, the total hospital costs decreased by $2,439 per bloodstream infection, for an approximate annual cost savings of $2.34 million. Copyright © 2016 American Society for Microbiology.

  13. MALDI-TOF and SELDI-TOF analysis: “tandem” techniques to identify potential biomarker in fibromyalgia

    Directory of Open Access Journals (Sweden)

    A. Lucacchini

    2011-11-01

    Full Text Available Fibromyalgia (FM is characterized by the presence of chronic widespread pain throughout the musculoskeletal system and diffuse tenderness. Unfortunately, no laboratory tests have been appropriately validated for FM and correlated with the subsets and activity. The aim of this study was to apply a proteomic technique in saliva of FM patients: the Surface Enhance Laser Desorption/Ionization Time-of-Flight (SELDI-TOF. For this study, 57 FM patients and 35 HC patients were enrolled. The proteomic analysis of saliva was carried out using SELDI-TOF. The analysis was performed using different chip arrays with different characteristics of binding. The statistical analysis was performed using cluster analysis and the difference between two groups was underlined using Student’s t-test. Spectra analysis highlighted the presence of several peaks differently expressed in FM patients compared with controls. The preliminary results obtained by SELDI-TOF analysis were compared with those obtained in our previous study performed on whole saliva of FM patients by using electrophoresis. The m/z of two peaks, increased in FM patients, seem to overlap well with the molecular weight of calgranulin A and C and Rho GDP-dissociation inhibitor 2, which we had found up-regulated in our previous study. These preliminary results showed the possibility of identifying potential salivary biomarker through salivary proteomic analysis with MALDI-TOF and SELDI-TOF in FM patients. The peaks observed allow us to focus on some of the particular pathogenic aspects of FM, the oxidative stress which contradistinguishes this condition, the involvement of proteins related to the cytoskeletal arrangements, and central sensibilization.

  14. Reduction of the jitter of single-flux-quantum time-to-digital converters for time-of-flight mass spectrometry

    International Nuclear Information System (INIS)

    Sano, K.; Muramatsu, Y.; Yamanashi, Y.; Yoshikawa, N.; Zen, N.; Ohkubo, M.

    2014-01-01

    Highlights: • We proposed single-flux-quantum (SFQ) time-to-digital converters (TDCs) for TOF-MS. • SFQ TDC can measure time intervals between multiple signals with high-resolution. • SFQ TDC can directly convert the time intervals into binary data. • We designed two types of SFQ TDCs to reduce the jitter. • The jitter is reduced to less than 100 ps. - Abstract: We have been developing a high-resolution superconducting time-of-flight mass spectrometry (TOF-MS) system, which utilizes a superconducting strip ion detector (SSID) and a single-flux-quantum (SFQ) time-to-digital converter (TDC). The SFQ TDC can measure time intervals between multiple input signals and directly convert them into binary data. In our previous study, 24-bit SFQ TDC with a 3 × 24-bit First-In First-Out (FIFO) buffer was designed and implemented using the AIST Nb standard process 2 (STP2), whose time resolution and dynamic range are 100 ps and 1.6 ms, respectively. In this study we reduce the jitter of the TDC by using two different approaches: one uses an on-chip clock generator with an on-chip low-pass filter for reducing the noise in the bias current, and the other uses a low-jitter external clock source at room temperature. We confirmed that the jitter is reduced to less than 100 ps in the latter approach

  15. Reduction of the jitter of single-flux-quantum time-to-digital converters for time-of-flight mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Sano, K., E-mail: sano-kyosuke-cw@ynu.jp [Department Electrical and Computer Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya, Yokohama 240-8501 (Japan); Muramatsu, Y.; Yamanashi, Y.; Yoshikawa, N. [Department Electrical and Computer Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya, Yokohama 240-8501 (Japan); Zen, N.; Ohkubo, M. [Research Institute of Instrumentation Frontier, National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba 305-8568 (Japan)

    2014-09-15

    Highlights: • We proposed single-flux-quantum (SFQ) time-to-digital converters (TDCs) for TOF-MS. • SFQ TDC can measure time intervals between multiple signals with high-resolution. • SFQ TDC can directly convert the time intervals into binary data. • We designed two types of SFQ TDCs to reduce the jitter. • The jitter is reduced to less than 100 ps. - Abstract: We have been developing a high-resolution superconducting time-of-flight mass spectrometry (TOF-MS) system, which utilizes a superconducting strip ion detector (SSID) and a single-flux-quantum (SFQ) time-to-digital converter (TDC). The SFQ TDC can measure time intervals between multiple input signals and directly convert them into binary data. In our previous study, 24-bit SFQ TDC with a 3 × 24-bit First-In First-Out (FIFO) buffer was designed and implemented using the AIST Nb standard process 2 (STP2), whose time resolution and dynamic range are 100 ps and 1.6 ms, respectively. In this study we reduce the jitter of the TDC by using two different approaches: one uses an on-chip clock generator with an on-chip low-pass filter for reducing the noise in the bias current, and the other uses a low-jitter external clock source at room temperature. We confirmed that the jitter is reduced to less than 100 ps in the latter approach.

  16. Time of flight spectra of electrons emitted from graphite after positron annihilation

    International Nuclear Information System (INIS)

    Gladen, R W; Chirayath, V A; Chrysler, M D; Mcdonald, A D; Fairchild, A J; Shastry, K; Koymen, A R; Weiss, A H

    2017-01-01

    Low energy (∼2 eV) positrons were deposited onto the surface of highly oriented pyrolytic graphite (HOPG) using a positron beam equipped with a time of flight (TOF) spectrometer. The energy of the electrons emitted as a result of various secondary processes due to positron annihilation was measured using the University of Texas at Arlington’s (UTA) TOF spectrometer. The positron annihilation-induced electron spectra show the presence of a carbon KLL Auger peak at ∼263 eV. The use of a very low energy beam allowed us to observe a new feature not previously seen: a broad peak which reached to a maximum intensity at ∼4 eV and extended up to a maximum energy of ∼15 eV. The low energy nature of the peak was confirmed by the finding that the peak was eliminated when a tube in front of the sample was biased at -15 V. The determination that the electrons in the peak are leaving the surface with energies up to 7 times the incoming positron energy indicates that the electrons under the broad peak were emitted as a result of a positron annihilation related process. (paper)

  17. Organic scintillators response function modeling for Monte Carlo simulation of Time-of-Flight measurements

    Energy Technology Data Exchange (ETDEWEB)

    Carasco, C., E-mail: cedric.carasco@cea.fr [CEA, DEN, Cadarache, Nuclear Measurement Laboratory, F-13108 Saint-Paul-lez-Durance (France)

    2012-07-15

    In neutron Time-of-Flight (TOF) measurements performed with fast organic scintillation detectors, both pulse arrival time and amplitude are relevant. Monte Carlo simulation can be used to calculate the time-energy dependant neutron flux at the detector position. To convert the flux into a pulse height spectrum, one must calculate the detector response function for mono-energetic neutrons. MCNP can be used to design TOF systems, but standard MCNP versions cannot reliably calculate the energy deposited by fast neutrons in the detector since multiple scattering effects must be taken into account in an analog way, the individual recoil particles energy deposit being summed with the appropriate scintillation efficiency. In this paper, the energy response function of 2 Double-Prime Multiplication-Sign 2 Double-Prime and 5 Double-Prime Multiplication-Sign 5 Double-Prime liquid scintillation BC-501 A (Bicron) detectors to fast neutrons ranging from 20 keV to 5.0 MeV is computed with GEANT4 to be coupled with MCNPX through the 'MCNP Output Data Analysis' software developed under ROOT (). - Highlights: Black-Right-Pointing-Pointer GEANT4 has been used to model organic scintillators response to neutrons up to 5 MeV. Black-Right-Pointing-Pointer The response of 2 Double-Prime Multiplication-Sign 2 Double-Prime and 5 Double-Prime Multiplication-Sign 5 Double-Prime BC501A detectors has been parameterized with simple functions. Black-Right-Pointing-Pointer Parameterization will allow the modeling of neutron Time of Flight measurements with MCNP using tools based on CERN's ROOT.

  18. Intracranial MRA: single volume vs. multiple thin slab 3D time-of-flight acquisition.

    Science.gov (United States)

    Davis, W L; Warnock, S H; Harnsberger, H R; Parker, D L; Chen, C X

    1993-01-01

    Single volume three-dimensional (3D) time-of-flight (TOF) MR angiography is the most commonly used noninvasive method for evaluating the intracranial vasculature. The sensitivity of this technique to signal loss from flow saturation limits its utility. A recently developed multislab 3D TOF technique, MOTSA, is less affected by flow saturation and would therefore be expected to yield improved vessel visualization. To study this hypothesis, intracranial MR angiograms were obtained on 10 volunteers using three techniques: MOTSA, single volume 3D TOF using a standard 4.9 ms TE (3D TOFA), and single volume 3D TOF using a 6.8 ms TE (3D TOFB). All three sets of axial source images and maximum intensity projection (MIP) images were reviewed. Each exam was evaluated for the number of intracranial vessels visualized. A total of 502 vessel segments were studied with each technique. With use of the MIP images, 86% of selected vessels were visualized with MOTSA, 64% with 3D TOFA (TE = 4.9 ms), and 67% with TOFB (TE = 6.8 ms). Similarly, with the axial source images, 91% of selected vessels were visualized with MOTSA, 77% with 3D TOFA (TE = 4.9 ms), and 82% with 3D TOFB (TE = 6.8 ms). There is improved visualization of selected intracranial vessels in normal volunteers with MOTSA as compared with single volume 3D TOF. These improvements are believed to be primarily a result of decreased sensitivity to flow saturation seen with the MOTSA technique. No difference in overall vessel visualization was noted for the two single volume 3D TOF techniques.

  19. Species identification of clinical isolates of anaerobic bacteria: a comparison of two matrix-assisted laser desorption ionization-time of flight mass spectrometry systems

    DEFF Research Database (Denmark)

    Justesen, Ulrik Stenz; Holm, Anette; Knudsen, Elisa

    2011-01-01

    We compared two matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) systems (Shimadzu/SARAMIS and Bruker) on a collection of consecutive clinically important anaerobic bacteria (n = 290). The Bruker system had more correct identifications to the species level...... (67.2% versus 49.0%), but also more incorrect identifications (7.9% versus 1.4%). The system databases need to be optimized to increase identification levels. However, MALDI-TOF MS in its present version seems to be a fast and inexpensive method for identification of most clinically important...

  20. Fast and reliable diagnosis of XDR Acinetobacter baumannii meningitis by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    Science.gov (United States)

    Brunetti, Grazia; Ceccarelli, Giancarlo; Giordano, Alessandra; Navazio, Anna Sara; Vittozzi, Pietro; Venditti, Mario; Raponi, Giammarco

    2018-01-01

    Bacterial meningitis is a medical emergency needing quick and timely diagnosis. Even though meningitis caused by Acinetobacter baumannii is relatively rare, it is associated with high mortality rates especially in neurosurgery patients and represents a serious therapeutic problem due to the limited penetration of effective antibiotics into the cerebrospinal fluid. Recently, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF) has been effectively used as a rapid method for microbial identification. In this case report we identified A. baumanni by MALDI-TOF technique directly from the CSF drawn from the external ventricular drainage of a patient with severe confusional state and signs of meningism. Simultaneously the antibiotic susceptibility test was performed by automated method from the pellet of the broth-enriched sample. The MALDI-TOF technique allowed microbial identification in less than 30 minutes, and the susceptibility test result was available in eight hours, thus allowing a fast diagnosis ready for prompt and targeted antimicrobial therapy.

  1. Design Optimization of a TOF, Breast PET Scanner

    OpenAIRE

    Lee, Eunsin; Werner, Matthew E.; Karp, Joel S.; Surti, Suleman

    2013-01-01

    A dedicated breast positron emission tomography (PET) scanner with limited angle geometry can provide flexibility in detector placement around the patient as well as the ability to combine it with other imaging modalities. A primary challenge of a stationary limited angle scanner is the reduced image quality due to artifacts present in the reconstructed image leading to a loss in quantitative information. Previously it has been shown that using time-of-flight (TOF) information in image recons...

  2. A Proposal for an Integrated TDC for the ALICE TOF System

    CERN Document Server

    Earle, W E; CERN. Geneva; Hazen, E; Miller, J P

    1994-01-01

    An architecture for an integrated Time-to-Digital (TDC) converter is proposed in this note for a Time-of-Flight (TOF) system, used as the Particle Identification Device (PID) of the ALICE experiment. The proposed 16-channel, 25 ps resolution ASIC chip-set is described, suitable for high-density, on-detector mounting of the required Å 169 k channels.

  3. A multi-center ring trial for the identification of anaerobic bacteria using MALDI-TOF MS

    DEFF Research Database (Denmark)

    Veloo, A; Jean-Pierre, H; Justesen, U S

    2017-01-01

    Inter-laboratory reproducibility of Matrix Assisted Laser Desorption Time-of-Flight Mass Spectrometry (MALDI-TOF MS) of anaerobic bacteria has not been shown before. Therefore, ten anonymized anaerobic strains were sent to seven participating laboratories, an initiative of the European Network...

  4. Matrix-Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry in Clinical Microbiology: What Are the Current Issues?

    Science.gov (United States)

    van Belkum, Alex; Welker, Martin; Pincus, David; Charrier, Jean Philippe; Girard, Victoria

    2017-11-01

    Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) has revolutionized the identification of microbial species in clinical microbiology laboratories. MALDI-TOF-MS has swiftly become the new gold-standard method owing to its key advantages of simplicity and robustness. However, as with all new methods, adoption of the MALDI-TOF MS approach is still not widespread. Optimal sample preparation has not yet been achieved for several applications, and there are continuing discussions on the need for improved database quality and the inclusion of additional microbial species. New applications such as in the field of antimicrobial susceptibility testing have been proposed but not yet translated to the level of ease and reproducibility that one should expect in routine diagnostic systems. Finally, during routine identification testing, unexpected results are regularly obtained, and the best methods for transmitting these results into clinical care are still evolving. We here discuss the success of MALDI-TOF MS in clinical microbiology and highlight fields of application that are still amenable to improvement. © The Korean Society for Laboratory Medicine.

  5. Typing of vancomycin-resistant enterococci with MALDI-TOF mass spectrometry in a nosocomial outbreak setting

    DEFF Research Database (Denmark)

    Holzknecht, B J; Dargis, R; Pedersen, M

    2018-01-01

    OBJECTIVES: To investigate the usefulness of matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS) typing as a first-line epidemiological tool in a nosocomial outbreak of vancomycin-resistant Enterococcus faecium (VREfm). METHODS: Fifty-five VREfm isolates...

  6. MALDI-TOF MS coupled with collision-induced dissociation (CID) measurements of poly(methyl methacrylate)

    NARCIS (Netherlands)

    Baumgaertel, A.; Becer, C.R.; Gottschaldt, M.; Schubert, U.S.

    2008-01-01

    Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) was chosen for an in-detail analysis of poly(methyl methacrylate) (PMMA) in order to determine the possible fragmentation mechanism with the help of collision-induced dissociation (CID). All experiments were

  7. Neutron cross-section measurements at the nTOF facility at CERN

    CERN Document Server

    Colonna, N

    2004-01-01

    A neutron Time-of-Flight facility (n_TOF) has recently become operative at CERN. The innovative features of the neutron beam, in particular the high instantaneous flux, the wide energy range, the high resolution and the low background, make this facility unique for measurements of neutron-induced reactions relevant to the field of emerging nuclear technologies, as well as to Nuclear Astrophysics and fundamental Nuclear Physics. The n_TOF facility is here described, together with the main features of the experimental apparata used for cross-section measurements. The results of the first measurement campaign, which have confirmed the innovative aspects of the facility, are presented. The measurement plan of the n_TOF collaboration, in particular with regard to implications to ADS, is briefly discussed.

  8. [Utility of MALDI-TOF MS for the identification of anaerobic bacteria].

    Science.gov (United States)

    Zárate, Mariela S; Romano, Vanesa; Nievas, Jimena; Smayevsky, Jorgelina

    2014-01-01

    The analysis by MALDI-TOF MS (Matrix-assited laser desorption/ionization time-of-flight mass spectrometry) has become a reference method for the identification of microorganisms in Clinical Microbiology. However, data on some groups of microorganisms are still controversial. The aim of this study is to determine the utility of MALDI-TOF MS for the identification of clinical isolates of anaerobic bacteria. One-hundred and six anaerobic bacteria isolates were analyzed by MALDI-TOF MS and by conventional biochemical tests. In those cases where identification by conventional methodology was not applicable or in the face of discordance between sequencing methodologies, 16 S rRNA gene sequence analysis was performed. The conventional method and MALDI-TOF MS agreed at genus and species level by 95.3 %. Concordance in gram-negative bacilli was 91.4% and 100% among gram-positive bacilli; there was also concordance both in the 8 isolates studied in gram-positive cocci and in the single gram-negative cocci included. The data obtained in this study demonstrate that MALDI-TOF MS offers the possibility of adequate identification of anaerobic bacteria. Copyright © 2014 Asociación Colombiana de Psiquiatría. Publicado por Elsevier España. All rights reserved.

  9. Site-specific glycoprofiling of N-linked glycopeptides using MALDI-TOF MS: strong correlation between signal strength and glycoform quantities

    DEFF Research Database (Denmark)

    Thaysen-Andersen, Morten; Mysling, Simon; Højrup, Peter

    2009-01-01

    Site-specific glycoprofiling of N-linked glycopeptides using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is an emerging technique, but its quantitative accuracy lacks documentation. Thus, a systematic study of widely different glycopeptides was perf......Site-specific glycoprofiling of N-linked glycopeptides using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is an emerging technique, but its quantitative accuracy lacks documentation. Thus, a systematic study of widely different glycopeptides...... was performed to determine the relationship between the relative abundances of the individual glycoforms and the MALDI-TOF MS signal strength. Glycopeptides derived from glycoproteins containing neutral glycans (ribonuclease B, IgG, and ovalbumin) were initially profiled and yielded excellent and reproducible...... quantitation (correlation coefficient r = 0.9958, n = 5) when evaluated against a normal phase HPLC 2-AB glycan profile. Similarly, precise quantitation was observed for various forms of N-glycans (free, permethylated, and fluorescence-labeled) using MS. In addition, three different sialoglycopeptides from...

  10. High precision mass measurements of thermalized relativistic uranium projectile and fission fragments with a multiple-reflection time-of-flight mass spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Ayet San Andres, Samuel [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Justus Liebig Universitaet, Giessen (Germany); Collaboration: FRS Ion Catcher-Collaboration

    2016-07-01

    At the FRS Ion Catcher at GSI, a relativistic beam of {sup 238}U at 1GeV/u was used to produce fission and projectile fragments on a beryllium target. The ions were separated in-flight at the FRS, thermalized in a cryogenic stopping cell and transferred to a multiple-reflection time-of-flight mass spectrometer (MR-TOF-MS) where high precision mass measurements were performed. The masses of several fission and projectile fragments were measured (including short-lived nuclei with half-lives down to 18 ms) and the possibility of tailoring an isomerically clean beam for other experiments was demonstrated. With the demonstrated performance of the MR-TOF-MS and the expected production rates of exotic nuclei far from stability at the next-generation facilities such as FAIR, novel mass measurements of nuclei close to the neutron drip line will be possible and key information for understanding the r-process will be available. The results from the last experiment and an outlook of possible future mass measurements close to the neutron drip line at FAIR with the MR-TOF-MS are presented.

  11. Comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry peak sorting algorithm.

    Science.gov (United States)

    Oh, Cheolhwan; Huang, Xiaodong; Regnier, Fred E; Buck, Charles; Zhang, Xiang

    2008-02-01

    We report a novel peak sorting method for the two-dimensional gas chromatography/time-of-flight mass spectrometry (GC x GC/TOF-MS) system. The objective of peak sorting is to recognize peaks from the same metabolite occurring in different samples from thousands of peaks detected in the analytical procedure. The developed algorithm is based on the fact that the chromatographic peaks for a given analyte have similar retention times in all of the chromatograms. Raw instrument data are first processed by ChromaTOF (Leco) software to provide the peak tables. Our algorithm achieves peak sorting by utilizing the first- and second-dimension retention times in the peak tables and the mass spectra generated during the process of electron impact ionization. The algorithm searches the peak tables for the peaks generated by the same type of metabolite using several search criteria. Our software also includes options to eliminate non-target peaks from the sorting results, e.g., peaks of contaminants. The developed software package has been tested using a mixture of standard metabolites and another mixture of standard metabolites spiked into human serum. Manual validation demonstrates high accuracy of peak sorting with this algorithm.

  12. A new strategy for faster urinary biomarkers identification by Nano-LC-MALDI-TOF/TOF mass spectrometry

    Directory of Open Access Journals (Sweden)

    Le Meur Y

    2008-11-01

    Full Text Available Abstract Background LC-MALDI-TOF/TOF analysis is a potent tool in biomarkers discovery characterized by its high sensitivity and high throughput capacity. However, methods based on MALDI-TOF/TOF for biomarkers discovery still need optimization, in particular to reduce analysis time and to evaluate their reproducibility for peak intensities measurement. The aims of this methodological study were: (i to optimize and critically evaluate each step of urine biomarker discovery method based on Nano-LC coupled off-line to MALDI-TOF/TOF, taking full advantage of the dual decoupling between Nano-LC, MS and MS/MS to reduce the overall analysis time; (ii to evaluate the quantitative performance and reproducibility of nano-LC-MALDI analysis in biomarker discovery; and (iii to evaluate the robustness of biomarkers selection. Results A pool of urine sample spiked at increasing concentrations with a mixture of standard peptides was used as a specimen for biological samples with or without biomarkers. Extraction and nano-LC-MS variabilities were estimated by analyzing in triplicates and hexaplicates, respectively. The stability of chromatographic fractions immobilised with MALDI matrix on MALDI plates was evaluated by successive MS acquisitions after different storage times at different temperatures. Low coefficient of variation (CV%: 10–22% and high correlation (R2 > 0.96 values were obtained for the quantification of the spiked peptides, allowing quantification of these peptides in the low fentomole range, correct group discrimination and selection of "specific" markers using principal component analysis. Excellent peptide integrity and stable signal intensity were found when MALDI plates were stored for periods of up to 2 months at +4°C. This allowed storage of MALDI plates between LC separation and MS acquisition (first decoupling, and between MS and MSMS acquisitions while the selection of inter-group discriminative ions is done (second decoupling

  13. A new strategy for faster urinary biomarkers identification by Nano-LC-MALDI-TOF/TOF mass spectrometry

    Science.gov (United States)

    Benkali, K; Marquet, P; Rérolle, JP; Le Meur, Y; Gastinel, LN

    2008-01-01

    Background LC-MALDI-TOF/TOF analysis is a potent tool in biomarkers discovery characterized by its high sensitivity and high throughput capacity. However, methods based on MALDI-TOF/TOF for biomarkers discovery still need optimization, in particular to reduce analysis time and to evaluate their reproducibility for peak intensities measurement. The aims of this methodological study were: (i) to optimize and critically evaluate each step of urine biomarker discovery method based on Nano-LC coupled off-line to MALDI-TOF/TOF, taking full advantage of the dual decoupling between Nano-LC, MS and MS/MS to reduce the overall analysis time; (ii) to evaluate the quantitative performance and reproducibility of nano-LC-MALDI analysis in biomarker discovery; and (iii) to evaluate the robustness of biomarkers selection. Results A pool of urine sample spiked at increasing concentrations with a mixture of standard peptides was used as a specimen for biological samples with or without biomarkers. Extraction and nano-LC-MS variabilities were estimated by analyzing in triplicates and hexaplicates, respectively. The stability of chromatographic fractions immobilised with MALDI matrix on MALDI plates was evaluated by successive MS acquisitions after different storage times at different temperatures. Low coefficient of variation (CV%: 10–22%) and high correlation (R2 > 0.96) values were obtained for the quantification of the spiked peptides, allowing quantification of these peptides in the low fentomole range, correct group discrimination and selection of "specific" markers using principal component analysis. Excellent peptide integrity and stable signal intensity were found when MALDI plates were stored for periods of up to 2 months at +4°C. This allowed storage of MALDI plates between LC separation and MS acquisition (first decoupling), and between MS and MSMS acquisitions while the selection of inter-group discriminative ions is done (second decoupling). Finally the recording of

  14. Peptidylation for the determination of low-molecular-weight compounds by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    Science.gov (United States)

    Tang, Feng; Cen, Si-Ying; He, Huan; Liu, Yi; Yuan, Bi-Feng; Feng, Yu-Qi

    2016-05-23

    Determination of low-molecular-weight compounds by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) has been a great challenge in the analytical research field. Here we developed a universal peptide-based derivatization (peptidylation) strategy for the sensitive analysis of low-molecular-weight compounds by MALDI-TOF-MS. Upon peptidylation, the molecular weights of target analytes increase, thus avoiding serious matrix ion interference in the low-molecular-weight region in MALDI-TOF-MS. Since peptides typically exhibit good signal response during MALDI-TOF-MS analysis, peptidylation endows high detection sensitivities of low-molecular-weight analytes. As a proof-of-concept, we analyzed low-molecular-weight compounds of aldehydes and thiols by the developed peptidylation strategy. Our results showed that aldehydes and thiols can be readily determined upon peptidylation, thus realizing the sensitive and efficient determination of low-molecular-weight compounds by MALDI-TOF-MS. Moreover, target analytes also can be unambiguously detected in biological samples using the peptidylation strategy. The established peptidylation strategy is a universal strategy and can be extended to the sensitive analysis of various low-molecular-weight compounds by MALDI-TOF-MS, which may be potentially used in areas such as metabolomics.

  15. Identification of blood culture isolates directly from positive blood cultures by use of matrix-assisted laser desorption ionization-time of flight mass spectrometry and a commercial extraction system: analysis of performance, cost, and turnaround time.

    Science.gov (United States)

    Lagacé-Wiens, Philippe R S; Adam, Heather J; Karlowsky, James A; Nichol, Kimberly A; Pang, Paulette F; Guenther, Jodi; Webb, Amanda A; Miller, Crystal; Alfa, Michelle J

    2012-10-01

    Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry represents a revolution in the rapid identification of bacterial and fungal pathogens in the clinical microbiology laboratory. Recently, MALDI-TOF has been applied directly to positive blood culture bottles for the rapid identification of pathogens, leading to reductions in turnaround time and potentially beneficial patient impacts. The development of a commercially available extraction kit (Bruker Sepsityper) for use with the Bruker MALDI BioTyper has facilitated the processing required for identification of pathogens directly from positive from blood cultures. We report the results of an evaluation of the accuracy, cost, and turnaround time of this method for 61 positive monomicrobial and 2 polymicrobial cultures representing 26 species. The Bruker MALDI BioTyper with the Sepsityper gave a valid (score, >1.7) identification for 85.2% of positive blood cultures with no misidentifications. The mean reduction in turnaround time to identification was 34.3 h (P MALDI-TOF was used for all blood cultures and 26.5 h in a more practical setting where conventional identification or identification from subcultures was required for isolates that could not be directly identified by MALDI-TOF. Implementation of a MALDI-TOF-based identification system for direct identification of pathogens from blood cultures is expected to be associated with a marginal increase in operating costs for most laboratories. However, the use of MALDI-TOF for direct identification is accurate and should result in reduced turnaround time to identification.

  16. Solid-supported enzymatic synthesis of pectic oligogalacturonides and their analysis by MALDI-TOF mass spectrometry

    DEFF Research Database (Denmark)

    Guillaumie, Fanny; Sterling, J.D.; Jensen, K.J.

    2003-01-01

    Solid-phase biosynthetic reactions, followed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis (MALDI-TOF), was used to gain insight into the biosynthesis of pectin oligomers. Sepharose supports bearing long pectic oligogalacturonides (OGAs) anchored through...... into the liquid phases by MALDI-TOF mass spectrometry. In time course studies conducted with an immobilized (alpha-D-GalA)(14) and limiting amounts of the glycosyl donor, the predominant product was an OGA extended by one GalA residue at the non-reducing end (i.e., (GalA)(15)). When UDP-GalA was added...

  17. Carotid Artery Stenosis: Comparison of 3D Time-of-Flight MR Angiography and Contrast-Enhanced MR Angiography at 3T

    Directory of Open Access Journals (Sweden)

    Ivan Platzek

    2014-01-01

    Full Text Available Purpose. The aim of this study was to assess the correlation of 3D time-of-flight MR angiography (TOF MRA and contrast-enhanced MR angiography (CEMRA for carotid artery stenosis evaluation at 3T. Material and Methods. Twenty-three patients (5 f, 18 m; mean age 61 y, age range 45–78 y with internal carotid artery stenosis detected with ultrasonography were examined on a 3.0T MR system. The MR examination included both 3D TOF MRA and CEMRA of the carotid arteries. MR images were evaluated independently by two board-certified radiologists. Stenosis evaluation was based on a five-point scale. Stenosis grades determined by TOF and CEMRA were compared using Spearman’s rank correlation coefficient and the Wilcoxon test. Cohen’s Kappa was used to evaluate interrater reliability. Results. CEMRA detected stenosis in 24 (52% of 46 carotids evaluated, while TOF detected stenosis in 27 (59% of 46 carotids. TOF MRA yielded significantly higher results for stenosis grade in comparison to CEMRA (P=0.014. Interrater agreement was very good for both TOF MRA (κ=0.93 and CEMRA (κ=0.93. Conclusion. At 3T, 3D TOF MRA should not be used as replacement for contrast-enhanced MRA of the carotid arteries, as it results in significantly higher stenosis grades.

  18. BGO as a hybrid scintillator / Cherenkov radiator for cost-effective time-of-flight PET

    Science.gov (United States)

    Brunner, S. E.; Schaart, D. R.

    2017-06-01

    Due to detector developments in the last decade, the time-of-flight (TOF) method is now commonly used to improve the quality of positron emission tomography (PET) images. Clinical TOF-PET systems based on L(Y)SO:Ce crystals and silicon photomultipliers (SiPMs) with coincidence resolving times (CRT) between 325 ps and 400 ps FWHM have recently been developed. Before the introduction of L(Y)SO:Ce, BGO was used in many PET systems. In addition to a lower price, BGO offers a superior attenuation coefficient and a higher photoelectric fraction than L(Y)SO:Ce. However, BGO is generally considered an inferior TOF-PET scintillator. In recent years, TOF-PET detectors based on the Cherenkov effect have been proposed. However, the low Cherenkov photon yield in the order of  ˜10 photons per event complicates energy discrimination-a severe disadvantage in clinical PET. The optical characteristics of BGO, in particular its high transparency down to 310 nm and its high refractive index of  ˜2.15, are expected to make it a good Cherenkov radiator. Here, we study the feasibility of combining event timing based on Cherenkov emission with energy discrimination based on scintillation in BGO, as a potential approach towards a cost-effective TOF-PET detector. Rise time measurements were performed using a time-correlated single photon counting (TCSPC) setup implemented on a digital photon counter (DPC) array, revealing a prompt luminescent component likely to be due to Cherenkov emission. Coincidence timing measurements were performed using BGO crystals with a cross-section of 3 mm  ×  3 mm and five different lengths between 3 mm and 20 mm, coupled to DPC arrays. Non-Gaussian coincidence spectra with a FWHM of 200 ps were obtained with the 27 mm3 BGO cubes, while FWHM values as good as 330 ps were achieved with the 20 mm long crystals. The FWHM value was found to improve with decreasing temperature, while the FWTM value showed the opposite trend.

  19. BGO as a hybrid scintillator / Cherenkov radiator for cost-effective time-of-flight PET.

    Science.gov (United States)

    Brunner, S E; Schaart, D R

    2017-06-07

    Due to detector developments in the last decade, the time-of-flight (TOF) method is now commonly used to improve the quality of positron emission tomography (PET) images. Clinical TOF-PET systems based on L(Y)SO:Ce crystals and silicon photomultipliers (SiPMs) with coincidence resolving times (CRT) between 325 ps and 400 ps FWHM have recently been developed. Before the introduction of L(Y)SO:Ce, BGO was used in many PET systems. In addition to a lower price, BGO offers a superior attenuation coefficient and a higher photoelectric fraction than L(Y)SO:Ce. However, BGO is generally considered an inferior TOF-PET scintillator. In recent years, TOF-PET detectors based on the Cherenkov effect have been proposed. However, the low Cherenkov photon yield in the order of  ∼10 photons per event complicates energy discrimination-a severe disadvantage in clinical PET. The optical characteristics of BGO, in particular its high transparency down to 310 nm and its high refractive index of  ∼2.15, are expected to make it a good Cherenkov radiator. Here, we study the feasibility of combining event timing based on Cherenkov emission with energy discrimination based on scintillation in BGO, as a potential approach towards a cost-effective TOF-PET detector. Rise time measurements were performed using a time-correlated single photon counting (TCSPC) setup implemented on a digital photon counter (DPC) array, revealing a prompt luminescent component likely to be due to Cherenkov emission. Coincidence timing measurements were performed using BGO crystals with a cross-section of 3 mm  ×  3 mm and five different lengths between 3 mm and 20 mm, coupled to DPC arrays. Non-Gaussian coincidence spectra with a FWHM of 200 ps were obtained with the 27 mm 3 BGO cubes, while FWHM values as good as 330 ps were achieved with the 20 mm long crystals. The FWHM value was found to improve with decreasing temperature, while the FWTM value showed the opposite

  20. Calibration of the time response functions of a quenched plastic scintillator for neutron time of flight

    CERN Document Server

    Chen, J B; Peng, H S; Tang, C H; Zhang, B H; Ding, Y K; Chen, M; Chen, H S; Li, C G; Wen, T S; Yu, R Z

    2002-01-01

    The time response functions of an ultrafast quenched plastic scintillation detector used to measure neutron time of flight spectra were calibrated by utilizing cosmic rays and implosion neutrons from DT-filled capsules at the Shenguang II laser facility. These sources could be regarded as delta function pulses due to their much narrower time widths than those of the time response functions of the detection system. The results showed that the detector responses to DT neutrons and to cosmic rays were 1.18 and 0.96 ns FWHM, respectively.

  1. RPC HADES-TOF wall cosmic ray test performance

    Energy Technology Data Exchange (ETDEWEB)

    Blanco, A., E-mail: alberto@coimbra.lip.pt [Laboratorio de Instrumentacao e Fisica Experimental de Particulas, LIP, Coimbra (Portugal); Belver, D.; Cabanelas, P. [LabCAF, Universidade de Santiago de Compostela, USC, Santiago de Compostela (Spain); Diaz, J. [Instituto de Fisica Corpuscular IFIC (CSIC-Universidad de Valencia), Valencia (Spain); Fonte, P. [Laboratorio de Instrumentacao e Fisica Experimental de Particulas, LIP, Coimbra (Portugal); Instituto Superior de Engenharia de Coimbra, ISEC, Coimbra (Portugal); Garzon, J.A. [LabCAF, Universidade de Santiago de Compostela, USC, Santiago de Compostela (Spain); Gil, A. [Instituto de Fisica Corpuscular IFIC (CSIC-Universidad de Valencia), Valencia (Spain); Gonzalez-Diaz, D.; Koenig, W.; Kolb, B. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Lopes, L. [Laboratorio de Instrumentacao e Fisica Experimental de Particulas, LIP, Coimbra (Portugal); Palka, M. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Pereira, A. [Laboratorio de Instrumentacao e Fisica Experimental de Particulas, LIP, Coimbra (Portugal); and others

    2012-01-01

    In this work we present results concerning the cosmic ray test, prior to the final installation and commissioning of the new Resistive Plate Chamber (RPC) Time of Flight (TOF) wall for the High-Acceptance DiElectron Spectrometer (HADES) at GSI. The TOF wall is composed of six equal sectors, each one constituted by 186 individual 4-gaps glass-aluminium shielded RPC cells distributed in six columns and 31 rows in two partially overlapping layers, covering an area of 1.26 m{sup 2}. All sectors were tested with the final Front End Electronic (FEE) and Data AcQuisition system (DAQ) together with Low Voltage (LV) and High Voltage (HV) systems. Results confirm a very uniform average system time resolution of 77 ps sigma together with an average multi-hit time resolution of 83 ps. Crosstalk levels below 1% (in average), moderate timing tails along with an average longitudinal position resolution of 8.4 mm sigma are also confirmed.

  2. RPC HADES-TOF wall cosmic ray test performance

    International Nuclear Information System (INIS)

    Blanco, A.; Belver, D.; Cabanelas, P.; Díaz, J.; Fonte, P.; Garzon, J.A.; Gil, A.; Gonzalez-Díaz, D.; Koenig, W.; Kolb, B.; Lopes, L.; Palka, M.; Pereira, A.

    2012-01-01

    In this work we present results concerning the cosmic ray test, prior to the final installation and commissioning of the new Resistive Plate Chamber (RPC) Time of Flight (TOF) wall for the High-Acceptance DiElectron Spectrometer (HADES) at GSI. The TOF wall is composed of six equal sectors, each one constituted by 186 individual 4-gaps glass-aluminium shielded RPC cells distributed in six columns and 31 rows in two partially overlapping layers, covering an area of 1.26 m 2 . All sectors were tested with the final Front End Electronic (FEE) and Data AcQuisition system (DAQ) together with Low Voltage (LV) and High Voltage (HV) systems. Results confirm a very uniform average system time resolution of 77 ps sigma together with an average multi-hit time resolution of 83 ps. Crosstalk levels below 1% (in average), moderate timing tails along with an average longitudinal position resolution of 8.4 mm sigma are also confirmed.

  3. Modeling of a 3D CMOS sensor for time-of-flight measurements

    Science.gov (United States)

    Kuhla, Rico; Hosticka, Bedrich J.; Mengel, Peter; Listl, Ludwig

    2004-02-01

    A solid state 3D-CMOS camera system for direct time-of-flight image acquisition consisting of a CMOS imaging sensor, a laser diode module for active laser pulse illumination and all optics for image forming is presented, including MDSI & CDS algorithms for time-of-flight evaluation from intensity imaging. The investigation is carried out using ideal and real signals. For real signals the narrow infrared laser pulse of the laser diode module and the shutter function of the sensors column circuit were sampled by a new sampling procedure. A discrete sampled shutter function was recorded by using the impulse response of a narrow pulse of FWHM=50ps and an additional delay block with step size of Δτ = 0.25ns. A deterministic system model based on LTI transfer functions was developed. The visual shutter windows give a good understanding of differences between ideal and real output functions of measurement system. Simulations of shutter and laser pulse brought out an extended linear delay domain from MDSI. A stochastic model for the transfer function and photon noise in time domain was developed. We used the model to investigate noise in variation the laser pulse shutter configuration.

  4. Neutron diffraction utilizing the T-O-F method

    Energy Technology Data Exchange (ETDEWEB)

    Niimura, N [Tohoku Univ., Sendai (Japan). Lab. of Nuclear Science

    1974-12-01

    Characteristic features of the TOF (time of flight) neutron diffraction are summarized. In this method, i) all the reciprocal points on the rod passing through the origin in the reciprocal space can be scanned by each burst of white neutrons, ii) it is easy to measure high index reflections at the large scattering angle, iii) each reflection is not affected by the higher-order harmonics, and iv) it is easy to measure the physical properties depending on the neutron wavelength. The pulse neutron generator as well as the data acquisition system in the Laboratory of Nuclear Science of Tohoku University is described. The TOF method seems to be very powerful if it is applied to accurate structure analysis. The data correction methods are discussed. The TOF method is prospective to the study of transient phenomena. In this method one can apply to the crystalline sample an external field pulsed with the same frequency as the neutrons. By using this method, the transient state of the polarization reversal of the ferroelectric NaNO/sub 2/ has been observed. The magnetically pulsed neutron TOF spectrometer is briefly introduced after a review of the chopper history.

  5. Dual Source Time-of-flight Mass Spectrometer and Sample Handling System

    Science.gov (United States)

    Brinckerhoff, W.; Mahaffy, P.; Cornish, T.; Cheng, A.; Gorevan, S.; Niemann, H.; Harpold, D.; Rafeek, S.; Yucht, D.

    We present details of an instrument under development for potential NASA missions to planets and small bodies. The instrument comprises a dual ionization source (laser and electron impact) time-of-flight mass spectrometer (TOF-MS) and a carousel sam- ple handling system for in situ analysis of solid materials acquired by, e.g., a coring drill. This DSTOF instrument could be deployed on a fixed lander or a rover, and has an open design that would accommodate measurements by additional instruments. The sample handling system (SHS) is based on a multi-well carousel, originally de- signed for Champollion/DS4. Solid samples, in the form of drill cores or as loose chips or fines, are inserted through an access port, sealed in vacuum, and transported around the carousel to a pyrolysis cell and/or directly to the TOF-MS inlet. Samples at the TOF-MS inlet are xy-addressable for laser or optical microprobe. Cups may be ejected from their holders for analyzing multiple samples or caching them for return. Samples are analyzed with laser desorption and evolved-gas/electron-impact sources. The dual ion source permits studies of elemental, isotopic, and molecular composition of unprepared samples with a single mass spectrometer. Pulsed laser desorption per- mits the measurement of abundance and isotope ratios of refractory elements, as well as the detection of high-mass organic molecules in solid samples. Evolved gas analysis permits similar measurements of the more volatile species in solids and aerosols. The TOF-MS is based on previous miniature prototypes at JHU/APL that feature high sensitivity and a wide mass range. The laser mode, in which the sample cup is directly below the TOF-MS inlet, permits both ablation and desorption measurements, to cover elemental and molecular species, respectively. In the evolved gas mode, sample cups are raised into a small pyrolysis cell and heated, producing a neutral gas that is elec- tron ionized and pulsed into the TOF-MS. (Any imaging

  6. Deuterium-tritium neutron yield measurements with the 4.5 m neutron-time-of-flight detectors at NIF.

    Science.gov (United States)

    Moran, M J; Bond, E J; Clancy, T J; Eckart, M J; Khater, H Y; Glebov, V Yu

    2012-10-01

    The first several campaigns of laser fusion experiments at the National Ignition Facility (NIF) included a family of high-sensitivity scintillator∕photodetector neutron-time-of-flight (nTOF) detectors for measuring deuterium-deuterium (DD) and DT neutron yields. The detectors provided consistent neutron yield (Y(n)) measurements from below 10(9) (DD) to nearly 10(15) (DT). The detectors initially demonstrated detector-to-detector Y(n) precisions better than 5%, but lacked in situ absolute calibrations. Recent experiments at NIF now have provided in situ DT yield calibration data that establish the absolute sensitivity of the 4.5 m differential tissue harmonic imaging (DTHI) detector with an accuracy of ± 10% and precision of ± 1%. The 4.5 m nTOF calibration measurements also have helped to establish improved detector impulse response functions and data analysis methods, which have contributed to improving the accuracy of the Y(n) measurements. These advances have also helped to extend the usefulness of nTOF measurements of ion temperature and downscattered neutron ratio (neutron yield 10-12 MeV divided by yield 13-15 MeV) with other nTOF detectors.

  7. Impact of time-of-flight PET on whole-body oncologic studies: a human observer lesion detection and localization study.

    Science.gov (United States)

    Surti, Suleman; Scheuermann, Joshua; El Fakhri, Georges; Daube-Witherspoon, Margaret E; Lim, Ruth; Abi-Hatem, Nathalie; Moussallem, Elie; Benard, Francois; Mankoff, David; Karp, Joel S

    2011-05-01

    Phantom studies have shown improved lesion detection performance with time-of-flight (TOF) PET. In this study, we evaluate the benefit of fully 3-dimensional, TOF PET in clinical whole-body oncology using human observers to localize and detect lesions in realistic patient anatomic backgrounds. Our hypothesis is that with TOF imaging we achieve improved lesion detection and localization for clinically challenging tasks, with a bigger impact in large patients. One hundred patient studies with normal (18)F-FDG uptake were chosen. Spheres (diameter, 10 mm) were imaged in air at variable locations in the scanner field of view corresponding to lung and liver locations within each patient. Sphere data were corrected for attenuation and merged with patient data to produce fused list-mode data files with lesions added to normal-uptake scans. All list files were reconstructed with full corrections and with or without the TOF kernel using a list-mode iterative algorithm. The images were presented to readers to localize and report the presence or absence of a lesion and their confidence level. The interpretation results were then analyzed to calculate the probability of correct localization and detection, and the area under the localized receiver operating characteristic (LROC) curve. The results were analyzed as a function of scan time per bed position, patient body mass index (BMI patient sizes. With TOF imaging, there was a bigger increase in the area under the LROC curve for larger patients (BMI ≥ 26). Finally, we saw smaller differences in the area under the LROC curve for large and small patients when longer scan times were combined with TOF imaging. A combination of longer scan time (3 min in this study) and TOF imaging provides the best performance for imaging large patients or a low-uptake lesion in small or large patients. This imaging protocol also provides similar performance for all patient sizes for lesions in the same organ type with similar relative uptake

  8. Applications of TOF neutron diffraction in archaeometry

    Energy Technology Data Exchange (ETDEWEB)

    Kockelmann, W. [Rutherford Appleton Laboratory, ISIS Facility, Chilton (United Kingdom); Siano, S.; Bartoli, L. [Istituto di Fisica Applicata - CNR, Sesto Fiorentino (Italy); Visser, D. [Rutherford Appleton Laboratory, ISIS Facility, Chilton (United Kingdom); Netherlands Organisation for Scientific Research (NWO), Den Haag (Netherlands); Hallebeek, P. [Netherlands Institute for Cultural Heritage (ICN), Amsterdam (Netherlands); Traum, R. [Kunsthistorisches Museum Wien, Muenzkabinett, Vienna (Austria); Linke, R.; Schreiner, M. [Akademie der Bildenden Kuenste, Institut fuer Wissenschaften und Technologien in der Kunst, Vienna (Austria); Kirfel, A. [Universitaet Bonn, Mineralogisch-Petrologisches Institut, Bonn (Germany)

    2006-05-15

    Neutron radiation meets the demand for a versatile diagnostic probe for collecting information from the interior of large, undisturbed museum objects or archaeological findings. Neutrons penetrate through coatings and corrosion layers deep into centimetre-thick materials, a property that makes them ideal for non-destructive examination of objects for which sampling is impractical or unacceptable. A particular attraction of neutron techniques for archaeologists and conservation scientists is the prospect of locating hidden materials and structures inside objects. Time-of-flight (TOF) neutron diffraction allows for the examination of mineral and metal phase contents, crystal structures, grain orientations, and microstructures as well as micro- and macro strains. A promising application is texture analysis which may provide clues to the deformation history of the material, and hence to specific working processes. Here we report on instructive examples of TOF neutron diffraction, including phase analyses of medieval Dutch tin-lead spoons, texture analyses of bronze specimens as well as of 16th-century silver coins. (orig.)

  9. Performance of matrix-assisted laser desorption-time of flight mass spectrometry for identification of clinical yeast isolates

    DEFF Research Database (Denmark)

    Rosenvinge, Flemming S; Dzajic, Esad; Knudsen, Elisa

    2013-01-01

    Accurate and fast yeast identification is important when treating patients with invasive fungal disease as susceptibility to antifungal agents is highly species related. Matrix-assisted laser desorption-time of flight mass spectrometry (MALDI-TOF-MS) provides a powerful tool with a clear potential...... spectra output, all 13 isolates were correctly identified, resulting in an overall identification performance of 92%. No misidentifications occurred with the two systems. Of the routine isolates one laboratory identified 99/99 (100%) and 90/99 (91%) to species level by Saramis/Axima and conventional...... identification, respectively, whereas the other laboratory identified 83/98 (85%) to species level by both BioTyper/Bruker and conventional identification. Both MALDI-TOF-MS systems are fast, have built-in databases that cover the majority of clinically relevant Candida species, and have an accuracy...

  10. Application of MALDI-TOF mass spectrometry in clinical diagnostic microbiology.

    Science.gov (United States)

    De Carolis, Elena; Vella, Antonietta; Vaccaro, Luisa; Torelli, Riccardo; Spanu, Teresa; Fiori, Barbara; Posteraro, Brunella; Sanguinetti, Maurizio

    2014-09-12

    Matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) has recently emerged as a powerful technique for identification of microorganisms, changing the workflow of well-established laboratories so that its impact on microbiological diagnostics has been unparalleled. In comparison with conventional identification methods that rely on biochemical tests and require long incubation procedures, MALDI-TOF MS has the advantage of identifying bacteria and fungi directly from colonies grown on culture plates in a few minutes and with simple procedures. Numerous studies on different systems available demonstrate the reliability and accuracy of the method, and new frontiers have been explored besides microbial species level identification, such as direct identification of pathogens from positive blood cultures, subtyping, and drug susceptibility detection.

  11. Identification of Candida species isolated from vulvovaginitis using matrix assisted laser desorption ionization-time of flight mass spectrometry.

    Science.gov (United States)

    Alizadeh, Majid; Kolecka, Anna; Boekhout, Teun; Zarrinfar, Hossein; Ghanbari Nahzag, Mohamad A; Badiee, Parisa; Rezaei-Matehkolaei, Ali; Fata, Abdolmajid; Dolatabadi, Somayeh; Najafzadeh, Mohammad J

    2017-12-01

    Vulvovaginal candidiasis (VVC) is a common problem in women. The purpose of this study was to identify Candida isolates by matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) from women with vulvovaginitis that were referred to Ghaem Hospital, Mashhad, Iran. This study was conducted on 65 clinical samples isolated from women that were referred to Ghaem Hospital. All specimens were identified using phenotyping techniques, such as microscopy and culture on Sabouraud dextrose agar and corn meal agar. In addition, all isolates were processed for MALDI-TOF MS identification. Out of the 65 analyzed isolates, 61 (94%) samples were recognized by MALDI-TOF MS. However, the remaining four isolates (6%) had no reliable identification. According to the results, C. albicans (58.5%) was the most frequently isolated species, followed by C. tropicalis (16.9%), C. glabrata (7.7%), C. parapsilosis (7.7%), and guilliermondii (3.1%). As the findings indicated, MALDI TOF MS was successful in the identification of clinical Candida species. C. albicans was identified as the most common Candida species isolated from the women with VVC. Moreover, C. tropicalis was the most common species among the non- albicans Candida species.

  12. Study of a Cherenkov TOF-PET module

    Science.gov (United States)

    Korpar, S.; Dolenec, R.; Križan, P.; Pestotnik, R.; Stanovnik, A.

    2013-12-01

    An apparatus, consisting of two PbF2 crystals, each coupled to a multichannel plate photomultiplier (MCP-PMT), has been constructed in order to measure the time-of-flight (TOF) of the two 511 keV annihilation photons produced in positron emission tomography (PET). Excellent timing is achieved by detecting the prompt Cherenkov photons produced by the absorption of the 511 keV gamma photons. The present work describes the measurement and image reconstruction of two 22Na point sources. In addition, the influence of the radiator thickness and the Cherenkov light absorption cut-off of the crystal on the efficiency and the timing resolution have been studied by Monte Carlo simulation.

  13. The mass spectral density in quantitative time-of-flight mass spectrometry of polymers

    Science.gov (United States)

    Tate, Ranjeet S.; Ebeling, Dan; Smith, Lloyd M.

    2001-03-01

    Time-of-flight mass spectrometry (TOF-MS) is being increasingly used for the study of polymers, for example to obtain the distribution of molecular masses for polymer samples. Serious efforts have also been underway to use TOF-MS for DNA sequencing. In TOF-MS the data is obtained in the form of a time-series that represents the distribution in arrival times of ions of various m/z ratios. This time-series data is then converted to a "mass-spectrum" via a coordinate transformation from the arrival time (t) to the corresponding mass-to-charge ratio (m/z = const. t^2). In this transformation, it is important to keep in mind that spectra are distributions, or densities of weight +1, and thus do not transform as functions. To obtain the mass-spectral density, it is necessary to include a multiplicative factor of √m/z. Common commercial instruments do not take this factor into account. Dropping this factor has no effect on qualitative analysis (detection) or local quantitative measurements, since S/N or signal-to-baseline ratios are unaffected for peaks with small dispersions. However, there are serious consequences for general quantitative analyses. In DNA sequencing applications, loss of signal intensity is in part attributed to multiple charging; however, since the √m/z factor is not taken into account, this conclusion is based on an overestimate (by a factor of √z) of the relative amount of the multiply charged species. In the study of polymers, the normalized dispersion is underestimated by approximately (M_w/Mn -1)/2. In terms of M_w/Mn itself, for example, a M_w/M_n=1.5 calculated without the √m factor corresponds in fact to a M_w/M_n=1.88.

  14. TOF MR angiography of cerebral arteriovenous malformations before and after radiotherapy

    International Nuclear Information System (INIS)

    Schlemmer, H.P.; Hess, T.; Debus, J.; Knopp, M.V.; Schad, L.R.; Engenhart, R.

    1994-01-01

    We studied whether 3D time-of-flight (TOF) MR angiography can be used for therapy planning and monitoring. MRI and TOF-MRA studies of 28 patients undergoing radiotherapy were evaluated. They were compared to conventional angiography to assess the MRA study. A correct identification of the arterial feeder and the nidus was possible in about 75% of the patients. In combination with the MRI study, an important 3D dataset for treatment planning could be obtained that includes therapeutically relevant information on the localization and spatial structure of the AVM as well as the adjacent brain tissue. As a noninvasive technique, close-meshed follow-up studies could be performed with MRA. (orig./MG) [de

  15. Efficiency and rate capability studies of the time-of-flight detector for isochronous mass measurements of stored short-lived nuclei with the FRS-ESR facility

    Energy Technology Data Exchange (ETDEWEB)

    Kuzminchuk-Feuerstein, Natalia; Fabian, Benjamin [II. Physikalisches Institut, Justus-Liebig-Universität, 35392 Gießen (Germany); GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt (Germany); Diwisch, Marcel [II. Physikalisches Institut, Justus-Liebig-Universität, 35392 Gießen (Germany); Plaß, Wolfgang R., E-mail: Wolfgang.R.Plass@exp2.physik.uni-giessen.de [II. Physikalisches Institut, Justus-Liebig-Universität, 35392 Gießen (Germany); GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt (Germany); Geissel, Hans; Ayet San Andrés, Samuel; Dickel, Timo; Knöbel, Ronja; Scheidenberger, Christoph [II. Physikalisches Institut, Justus-Liebig-Universität, 35392 Gießen (Germany); GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt (Germany); Sun, Baohua [II. Physikalisches Institut, Justus-Liebig-Universität, 35392 Gießen (Germany); Weick, Helmut [GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt (Germany)

    2016-06-11

    A time-of-flight (TOF) detector is used for Isochronous Mass Spectrometry (IMS) with the projectile fragment separator FRS and the heavy-ion storage ring ESR. Exotic nuclei are spatially separated in flight with the FRS at about 70% of the speed of light and are injected into the ESR. The revolution times of the stored ions circulating in the ESR are measured with a thin transmission foil detector. When the ions penetrate the thin detector foil, secondary electrons (SEs) are emitted from the surface and provide the timing information in combination with microchannel plate (MCP) detectors. The isochronous transport of the SEs is performed by perpendicular superimposed electric and magnetic fields. The detection efficiency and the rate capability of the TOF detector have been studied in simulations and experiments. As a result the performance of the TOF detector has been improved substantially: (i) The SE collection efficiency was doubled by use of an optimized set of electric and magnetic field values; now SEs from almost the full area of the foil are transmitted to the MCP detectors. (ii) The rate capability of the TOF detector was improved by a factor of four by the use of MCPs with 5 μm pore size. (iii) With these MCPs and a carbon foil with a reduced thickness of 10 μg/cm{sup 2} the number of recorded revolutions in the ESR has been increased by nearly a factor of 10. The number of recorded revolutions determine the precision of the IMS experiments. Heavy-ion measurements were performed with neon ions at 322 MeV/u and uranium fission fragments at about 370 MeV/u. In addition, measurements with an alpha source were performed in the laboratory with a duplicate of the TOF detector.

  16. Efficiency and rate capability studies of the time-of-flight detector for isochronous mass measurements of stored short-lived nuclei with the FRS-ESR facility

    International Nuclear Information System (INIS)

    Kuzminchuk-Feuerstein, Natalia; Fabian, Benjamin; Diwisch, Marcel; Plaß, Wolfgang R.; Geissel, Hans; Ayet San Andrés, Samuel; Dickel, Timo; Knöbel, Ronja; Scheidenberger, Christoph; Sun, Baohua; Weick, Helmut

    2016-01-01

    A time-of-flight (TOF) detector is used for Isochronous Mass Spectrometry (IMS) with the projectile fragment separator FRS and the heavy-ion storage ring ESR. Exotic nuclei are spatially separated in flight with the FRS at about 70% of the speed of light and are injected into the ESR. The revolution times of the stored ions circulating in the ESR are measured with a thin transmission foil detector. When the ions penetrate the thin detector foil, secondary electrons (SEs) are emitted from the surface and provide the timing information in combination with microchannel plate (MCP) detectors. The isochronous transport of the SEs is performed by perpendicular superimposed electric and magnetic fields. The detection efficiency and the rate capability of the TOF detector have been studied in simulations and experiments. As a result the performance of the TOF detector has been improved substantially: (i) The SE collection efficiency was doubled by use of an optimized set of electric and magnetic field values; now SEs from almost the full area of the foil are transmitted to the MCP detectors. (ii) The rate capability of the TOF detector was improved by a factor of four by the use of MCPs with 5 μm pore size. (iii) With these MCPs and a carbon foil with a reduced thickness of 10 μg/cm 2 the number of recorded revolutions in the ESR has been increased by nearly a factor of 10. The number of recorded revolutions determine the precision of the IMS experiments. Heavy-ion measurements were performed with neon ions at 322 MeV/u and uranium fission fragments at about 370 MeV/u. In addition, measurements with an alpha source were performed in the laboratory with a duplicate of the TOF detector.

  17. The IRK time-of-flight facility for measurements of double-differential neutron emission cross sections

    International Nuclear Information System (INIS)

    Pavlik, A.; Priller, A.; Steier, P.; Vonach, H.; Winkler, G.

    1994-01-01

    In order to improve the present experimental data base of energy- and angle-differential neutron emission cross sections at 14 MeV incident-neutron energy, a new time-of-flight (TOF) facility was installed at the Institut fuer Radiumforschung und Kernphysik (IRK), Vienna. The set-up was particularly designed to more precisely measure the high-energy part of the secondary neutron spectra and consists of three main components: (1) a pulsed neutron generator of Cockcroft-Walton type producing primary neutrons via the T(d,n)-reaction, (2) a tube system which can be evacuated containing the neutron flight path, the sample, collimators and the sample positioning system, and (3) the neutron detectors with the data acquisition equipment. Removing the air along the neutron flight path results in a drastic suppression of background due to air-scattered neutrons in the spectrum of the secondary neutrons. For every secondary neutron detected in the main detector, the time-of-flight, the pulse-shape information and the recoil energy are recorded in list-mode via a CAMAC system connected to a PDP 11/34 on-line computer. Using a Micro VAX, the multiparameter data are sorted and reduced to double-differential cross sections

  18. Nuclear Forensics: Measurements of Uranium Oxides Using Time-of-Flight Secondary Ion Mass Spectrometry (TOF-SIMS)

    Science.gov (United States)

    2010-03-01

    Isotope Ratio Analysis of Actinides , Fission Products, and Geolocators by High- efficiency Multi-collector Thermal Ionization Mass Spectrometry...Information, 1999. Hou, Xiaolin, and Per Roos. “ Critical Comparison of radiometric and Mass Spectrometric Methods for the Determination of...NUCLEAR FORENSICS: MEASUREMENTS OF URANIUM OXIDES USING TIME-OF-FLIGHT SECONDARY ION MASS

  19. [Applications of MALDI-TOF-MS in clinical microbiology laboratory].

    Science.gov (United States)

    Carbonnelle, Etienne; Nassif, Xavier

    2011-10-01

    For twenty years, mass spectrometry (MS) has emerged as a particularly powerful tool for analysis and characterization of proteins in research. It is only recently that this technology, especially MALDI-TOF-MS (Matrix Assisted Laser Desorption Ionization Time-Of-Flight) has entered the field of routine microbiology. This method has proven to be reliable and safe for the identification of bacteria, yeasts, filamentous fungi and dermatophytes. MALDI-TOF-MS is a rapid, precise and cost-effective method for identification, compared to conventional phenotypic techniques or molecular biology. Its ability to analyse whole microorganisms with few sample preparation has greatly reduced the time to identification (1-2 min). Furthermore, this technology can be used to identify bacteria directly from clinical samples as blood culture bottles or urines. Future applications will be developed in order to provide direct information concerning virulence or resistance protein markers. © 2011 médecine/sciences – Inserm / SRMS.

  20. Investigation of Neutron-induced Reactions at n_TOF: an Overview of the 2009–2012 Experimental Program

    CERN Document Server

    Guerrero, C; Andrzejewski, J; Audouin, L; Barbagallo, M; Bécares, V; Bečvář, F; Belloni, F; Berthoumieux, E; Billowes, J; Boccone, V; Bosnar, D; Brugger, M; Calviani, M; Calviño, F; Cano-Ott, D; Carrapiço, C; Cerutti, F; Chiaveri, E; Chin, M; Colonna, N; Cortés, G; Cortés-Giraldo, M A; Diakaki, M; Domingo-Pardo, C; Duran, I; Dressler, R; Dzysiuk, N; Eleftheriadis, C; Ferrari, A; Fraval, K; Ganesan, S; García, A R; Giubrone, G; Gómez-Hornillos, M B; Gonçalves, I F; González-Romero, E; Griesmayer, E; Gunsing, F; Gurusamy, P; Jenkins, D G; Jericha, E; Kadi, Y; Käppeler, F; Karadimos, D; Kivel, N; Koehler, P; Kokkoris, M; Korschinek, G; Krtička, M; Kroll, J; Langer, C; Lederer, C; Leeb, H; Leong, L S; Losito, R; Manousos, A; Marganiec, J; Martínez, T; Mastinu, P F; Mastromarco, M; Massimi, C; Meaze, M; Mendoza, E; Mengoni, A; Milazzo, P M; Mingrone, F; Mirea, M; Mondelaers, W; Paradela, C; Pavlik, A; Perkowski, J; Pignatari, M; Plompen, A; Praena, J; Quesada, J M; Rauscher, T; Reifarth, R; Riego, A; Roman, F; Rubbia, C; Sarmento, R; Schillebeeckx, P; Schmidt, S; Schumann, D; Tagliente, G; Tain, J L; Tarrío, D; Tassan-Got, L; Tsinganis, A; Valenta, S; Vannini, G; Variale, V; Vaz, P; Ventura, A; Versaci, R; Vermeulen, M J; Vlachoudis, V; Vlastou, R; Wallner, A; Ware, T; Weigand, M; Weiß, C; Wright, T J; Žugec, P

    2014-01-01

    The neutron time-of-flight facility n\\_TOF is operating at CERN (Switzerland) since 2001, having started in 2009 a new campaign with an upgraded spallation target. The ambitious program carried out includes a large number of experiments in nuclear technology, astrophysics, basic physics, detector development and medical applications. This paper is devoted to the physics program at n\\_TOF and the measurements performed between 2009 and 2012. Special attention is given to those experiments that have been most challenging, are more important for a particular field, have reached unprecedented levels of accuracy, or have been carried out for the first time ever.

  1. Characterization of foot- and mouth disease virus antigen by surface-enhanced laser desorption ionization-time of flight-mass spectrometry in aqueous and oil-emulsion formulations

    NARCIS (Netherlands)

    Harmsen, M.M.; Jansen, J.; Westra, D.F.; Coco-Martin, J.M.

    2010-01-01

    We have used a novel method, surface-enhanced laser desorption ionization-time of flight-mass spectrometry (SELDI-TOF-MS), to characterize foot-and-mouth disease virus (FMDV) vaccine antigens. Using specific capture with FMDV binding recombinant antibody fragments and tryptic digestion of FMDV

  2. A Silicon Nanomembrane Detector for Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS) of Large Proteins

    OpenAIRE

    Park, Jonghoo; Blick, Robert

    2013-01-01

    We describe a MALDI-TOF ion detector based on freestanding silicon nanomembrane technology. The detector is tested in a commercial MALDI-TOF mass spectrometer with equimolar mixtures of proteins. The operating principle of the nanomembrane detector is based on phonon-assisted field emission from these silicon nanomembranes, in which impinging ion packets excite electrons in the nanomembrane to higher energy states. Thereby the electrons can overcome the vacuum barrier and escape from the surf...

  3. Species level identification of coagulase negative Staphylococcus spp. from buffalo using matrix-assisted laser desorption ionization-time of flight mass spectrometry and cydB real-time quantitative PCR.

    Science.gov (United States)

    Pizauro, Lucas J L; de Almeida, Camila C; Soltes, Glenn A; Slavic, Durda; Rossi-Junior, Oswaldo D; de Ávila, Fernando A; Zafalon, Luiz F; MacInnes, Janet I

    2017-05-01

    Incorrect identification of Staphylococcus spp. can have serious clinical and zoonotic repercussions. Accordingly, the aim of this study was to determine if matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) and/or cydB real- time quantitative PCR (qPCR) could be used to accurately identify coagulase negative Staphylococcus spp. (CoNS) obtained from buffalo milk and milking environment samples. Seventy-five of 84 CoNS isolates could be identified to the species level (score value >1.99) using MALDI-TOF MS. However, as determined by cytochrome d ubiquinol oxidase subunit II (cydB) qPCR and by 16S RNA and cydB gene sequencing, 10S. agnetis strains were wrongly identified as S. hyicus by MALDI-TOF MS. In addition, 9 isolates identified by MALDI-TOF only to the genus level (score values between 1.70 and 1.99) could be identified to species by cydB qPCR. Our findings suggest that MALDI-TOF MS is a reliable method for rapid identification of S. chromogenes and S. epidermidis (species of interest both in human and veterinary medicine) and may be able to correctly identify other Staphylococcus spp. However, at present not all Staphylococcus spp. found in buffalo milk can be accurately identified by MALDI-TOF MS and for these organisms, the cydB qPCR developed in the current study may provide a reliable alternative method for rapid identification of CoNS species. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. A SIMPLE AND RAPID MATRIX-ASSISTED LASER DESORPTION/IONIZATION TIME OF FLIGHT MASS SPECTROMETRY METHOD TO SCREEN FISH PLASMA SAMPLES FOR ESTROGEN-RESPONSIVE BIOMARKERS

    Science.gov (United States)

    In this study, we describe and evaluate the performance of a simple and rapid mass spectral method for screening fish plasma for estrogen-responsive biomarkers using matrix assisted laster desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS) couopled with a short...

  5. Mass measurements of {sup 238}U-projectile fragments for the first time with a multiple-reflection time-of-flight mass spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Ebert, Jens

    2016-07-01

    Mass measurements of short-lived uranium projectile fragments were performed for the first time with a Multiple-Reflexion-Time-of-Flight Mass Spectrometer (MR-TOF-MS). A major part of this doctoral work was a novel development of a data analysis method for the MR-TOF-MS mass measurements of exotic nuclei at the fragment separator FRS at GSI. The developed method was successfully applied to the data obtained from two pilot experiments with the MR-TOF-MS at the FRS in 2012 and 2014. A substantial upgrade of the experimental setup of the MR-TOF-MS was also performed in the frame work of this doctoral thesis after the first run. In the experiments projectile fragments were created with 1000 MeV/u {sup 238}U ions in a Be/Nb target at the entrance of the in-flight separator FRS. The exotic nuclei were spatially separated, energy bunched and slowed down with the ion-optical system of the FRS combined with monoenergetic and homogeneous degraders. At the final focal plane of the FRS the fragments were completely slowed down and thermalized in a cryogenic stopping cell (CSC) filled with 3-5 mg/cm{sup 2} pure helium gas. The exotic nuclei were fast extracted from the CSC to enable mass measurements of very short-lived fragments with the MR-TOF-MS. The achievement of this goal was successfully demonstrated with the mass measurement of {sup 220}Ra ions with a half-life of 17.9 ms and 11 detected events. The mass measurements of the isobars {sup 211}Fr, {sup 211}Po and {sup 211}Rn have clearly demonstrated the scientific potential of the MR-TOF-MS for the investigation of exotic nuclei and the power of the data analysis system. Difficult measurements with overlapping mass distributions with only a few counts in the measured spectra were the challenge for the new data analysis method based on the maximum likelihood method. The drifts during the measurements were corrected with the developed time-resolved calibration method. After the improvements of the setup as a consequence of

  6. Developments for the TOF Straw Tracker

    Energy Technology Data Exchange (ETDEWEB)

    Ucar, A.

    2006-07-01

    COSY-TOF is a very large acceptance spectrometer for charged particles using precise information on track geometry and time of flight of reaction products. It is an external detector system at the Cooler Synchrotron and storage ring COSY in Juelich. In order to improve the performance of the COSY-TOF, a new tracking detector ''Straw Tracker'' is being constructed which combines very low mass, operation in vacuum, very good resolution, high sampling density and very high acceptance. A comparison of pp{yields}d{pi}{sup +} data and a simulation using the straw tracker with geometry alone indicates big improvements with the new tracker. In order to investigate the straw tracker properties a small tracking hodoscope ''cosmic ray test facility'' was constructed in advance. It is made of two crossed hodoscopes consisting of 128 straw tubes arranged in 4 double planes. For the first time Juelich straws have been used for 3 dimensional reconstruction of cosmic ray tracks. In this illuminating field the space dependent response of scintillators and a straw tube were studied. (orig.)

  7. Developments for the TOF Straw Tracker

    International Nuclear Information System (INIS)

    Ucar, A.

    2006-01-01

    COSY-TOF is a very large acceptance spectrometer for charged particles using precise information on track geometry and time of flight of reaction products. It is an external detector system at the Cooler Synchrotron and storage ring COSY in Juelich. In order to improve the performance of the COSY-TOF, a new tracking detector ''Straw Tracker'' is being constructed which combines very low mass, operation in vacuum, very good resolution, high sampling density and very high acceptance. A comparison of pp→dπ + data and a simulation using the straw tracker with geometry alone indicates big improvements with the new tracker. In order to investigate the straw tracker properties a small tracking hodoscope ''cosmic ray test facility'' was constructed in advance. It is made of two crossed hodoscopes consisting of 128 straw tubes arranged in 4 double planes. For the first time Juelich straws have been used for 3 dimensional reconstruction of cosmic ray tracks. In this illuminating field the space dependent response of scintillators and a straw tube were studied. (orig.)

  8. LVGEMS Time-of-Flight Mass Spectrometry on Satellites

    Science.gov (United States)

    Herrero, Federico

    2013-01-01

    NASA fs investigations of the upper atmosphere and ionosphere require measurements of composition of the neutral air and ions. NASA is able to undertake these observations, but the instruments currently in use have their limitations. NASA has extended the scope of its research in the atmosphere and now requires more measurements covering more of the atmosphere. Out of this need, NASA developed multipoint measurements using miniaturized satellites, also called nanosatellites (e.g., CubeSats), that require a new generation of spectrometers that can fit into a 4 4 in. (.10 10 cm) cross-section in the upgraded satellites. Overall, the new mass spectrometer required for the new depth of atmospheric research must fulfill a new level of low-voltage/low-power requirements, smaller size, and less risk of magnetic contamination. The Low-Voltage Gated Electrostatic Mass Spectrometer (LVGEMS) was developed to fulfill these requirements. The LVGEMS offers a new spectrometer that eliminates magnetic field issues associated with magnetic sector mass spectrometers, reduces power, and is about 1/10 the size of previous instruments. LVGEMS employs the time of flight (TOF) technique in the GEMS mass spectrometer previously developed. However, like any TOF mass spectrometer, GEMS requires a rectangular waveform of large voltage amplitude, exceeding 100 V -- that means that the voltage applied to one of the GEMS electrodes has to change from 0 to 100 V in a time of only a few nanoseconds. Such electronic speed requires more power than can be provided in a CubeSat. In the LVGEMS, the amplitude of the rectangular waveform is reduced to about 1 V, compatible with digital electronics supplies and requiring little power.

  9. Development and test of a free-streaming readout chain for the CBM time of flight wall

    International Nuclear Information System (INIS)

    Loizeau, Pierre-Alain

    2014-01-01

    This thesis presents the development and test of a free-streaming readout chain for the Time of Flight (TOF) Wall of the Compressed Baryonic Matter (CBM) experiment. In order to contribute to the exploration of the phase diagram of strongly interacting matter, CBM aims at the measurement of rare probes, whose yields and phase space distributions are significantly influenced by their environment. Many of the possible signals, of which the antiprotons was investigated within this thesis, require an excellent Particle Identification (PID) and a new readout paradigm called free-streaming. In CBM, the PID for charged particles is provided by a TOF wall based on Multi-gap Resistive Plate Chambers (MRPC). Within the thesis, a central component of the TOF readout chain, the free-streaming ASIC-TDC, was evaluated and pushed from the prototype level to a close to final design, for which it could be demonstrated that it fulfill all the CBM requirements: resolution, rate capability and stability. Additionally, the CBM TOF software in the CBMROOT software framework was reorganized to merge the processing and analysis of real and simulated data. A data unpacker and a realistic digitizer were implemented with a common output data format. The digitizer was used to estimate the data rates and number of components in a free-streaming readout chain for the full wall.

  10. TOF plotter - a program to perform routine analysis time-of-flight mass spectral data

    International Nuclear Information System (INIS)

    Knippel, Brad C.; Padgett, Clifford W.; Marcus, R. Kenneth

    2004-01-01

    The main article discusses the operation and application of the program to mass spectral data files. This laboratory has recently reported the construction and characterization of a linear time-of-flight mass spectrometer (ToF-MS) utilizing a radio frequency glow discharge ionization source. Data acquisition and analysis was performed using a digital oscilloscope and Microsoft Excel, respectively. Presently, no software package is available that is specifically designed for time-of-flight mass spectral analysis that is not instrument dependent. While spreadsheet applications such as Excel offer tremendous utility, they can be cumbersome when repeatedly performing tasks which are too complex or too user intensive for macros to be viable. To address this situation and make data analysis a faster, simpler task, our laboratory has developed a Microsoft Windows-based software program coded in Microsoft Visual Basic. This program enables the user to rapidly perform routine data analysis tasks such as mass calibration, plotting and smoothing on x-y data sets. In addition to a suite of tools for data analysis, a number of calculators are built into the software to simplify routine calculations pertaining to linear ToF-MS. These include mass resolution, ion kinetic energy and single peak identification calculators. A detailed description of the software and its associated functions is presented followed by a characterization of its performance in the analysis of several representative ToF-MS spectra obtained from different GD-ToF-MS systems

  11. Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry: a Fundamental Shift in the Routine Practice of Clinical Microbiology

    Science.gov (United States)

    Clark, Andrew E.; Kaleta, Erin J.; Arora, Amit

    2013-01-01

    SUMMARY Within the past decade, clinical microbiology laboratories experienced revolutionary changes in the way in which microorganisms are identified, moving away from slow, traditional microbial identification algorithms toward rapid molecular methods and mass spectrometry (MS). Historically, MS was clinically utilized as a high-complexity method adapted for protein-centered analysis of samples in chemistry and hematology laboratories. Today, matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) MS is adapted for use in microbiology laboratories, where it serves as a paradigm-shifting, rapid, and robust method for accurate microbial identification. Multiple instrument platforms, marketed by well-established manufacturers, are beginning to displace automated phenotypic identification instruments and in some cases genetic sequence-based identification practices. This review summarizes the current position of MALDI-TOF MS in clinical research and in diagnostic clinical microbiology laboratories and serves as a primer to examine the “nuts and bolts” of MALDI-TOF MS, highlighting research associated with sample preparation, spectral analysis, and accuracy. Currently available MALDI-TOF MS hardware and software platforms that support the use of MALDI-TOF with direct and precultured specimens and integration of the technology into the laboratory workflow are also discussed. Finally, this review closes with a prospective view of the future of MALDI-TOF MS in the clinical microbiology laboratory to accelerate diagnosis and microbial identification to improve patient care. PMID:23824373

  12. Matrix-assisted laser desorption ionization-time of flight mass spectrometry: a fundamental shift in the routine practice of clinical microbiology.

    Science.gov (United States)

    Clark, Andrew E; Kaleta, Erin J; Arora, Amit; Wolk, Donna M

    2013-07-01

    Within the past decade, clinical microbiology laboratories experienced revolutionary changes in the way in which microorganisms are identified, moving away from slow, traditional microbial identification algorithms toward rapid molecular methods and mass spectrometry (MS). Historically, MS was clinically utilized as a high-complexity method adapted for protein-centered analysis of samples in chemistry and hematology laboratories. Today, matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) MS is adapted for use in microbiology laboratories, where it serves as a paradigm-shifting, rapid, and robust method for accurate microbial identification. Multiple instrument platforms, marketed by well-established manufacturers, are beginning to displace automated phenotypic identification instruments and in some cases genetic sequence-based identification practices. This review summarizes the current position of MALDI-TOF MS in clinical research and in diagnostic clinical microbiology laboratories and serves as a primer to examine the "nuts and bolts" of MALDI-TOF MS, highlighting research associated with sample preparation, spectral analysis, and accuracy. Currently available MALDI-TOF MS hardware and software platforms that support the use of MALDI-TOF with direct and precultured specimens and integration of the technology into the laboratory workflow are also discussed. Finally, this review closes with a prospective view of the future of MALDI-TOF MS in the clinical microbiology laboratory to accelerate diagnosis and microbial identification to improve patient care.

  13. A sample preparation method for recovering suppressed analyte ions in MALDI TOF MS

    NARCIS (Netherlands)

    Lou, X.; Waal, de B.F.M.; Milroy, L.G.; Dongen, van J.L.J.

    2015-01-01

    In matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI TOF MS), analyte signals can be substantially suppressed by other compounds in the sample. In this technical note, we describe a modified thin-layer sample preparation method that significantly reduces the analyte

  14. MALDI-TOF Baseline Drift Removal Using Stochastic Bernstein Approximation

    Directory of Open Access Journals (Sweden)

    Howard Daniel

    2006-01-01

    Full Text Available Stochastic Bernstein (SB approximation can tackle the problem of baseline drift correction of instrumentation data. This is demonstrated for spectral data: matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF data. Two SB schemes for removing the baseline drift are presented: iterative and direct. Following an explanation of the origin of the MALDI-TOF baseline drift that sheds light on the inherent difficulty of its removal by chemical means, SB baseline drift removal is illustrated for both proteomics and genomics MALDI-TOF data sets. SB is an elegant signal processing method to obtain a numerically straightforward baseline shift removal method as it includes a free parameter that can be optimized for different baseline drift removal applications. Therefore, research that determines putative biomarkers from the spectral data might benefit from a sensitivity analysis to the underlying spectral measurement that is made possible by varying the SB free parameter. This can be manually tuned (for constant or tuned with evolutionary computation (for .

  15. Identification of Cronobacter species by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry with an optimized analysis method.

    Science.gov (United States)

    Wang, Qi; Zhao, Xiao-Juan; Wang, Zi-Wei; Liu, Li; Wei, Yong-Xin; Han, Xiao; Zeng, Jing; Liao, Wan-Jin

    2017-08-01

    Rapid and precise identification of Cronobacter species is important for foodborne pathogen detection, however, commercial biochemical methods can only identify Cronobacter strains to genus level in most cases. To evaluate the power of mass spectrometry based on matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF MS) for Cronobacter species identification, 51 Cronobacter strains (eight reference and 43 wild strains) were identified by both MALDI-TOF MS and 16S rRNA gene sequencing. Biotyper RTC provided by Bruker identified all eight reference and 43 wild strains as Cronobacter species, which demonstrated the power of MALDI-TOF MS to identify Cronobacter strains to genus level. However, using the Bruker's database (6903 main spectra products) and Biotyper software, the MALDI-TOF MS analysis could not identify the investigated strains to species level. When MALDI-TOF MS analysis was performed using the combined in-house Cronobacter database and Bruker's database, bin setting, and unweighted pair group method with arithmetic mean (UPGMA) clustering, all the 51 strains were clearly identified into six Cronobacter species and the identification accuracy increased from 60% to 100%. We demonstrated that MALDI-TOF MS was reliable and easy-to-use for Cronobacter species identification and highlighted the importance of establishing a reliable database and improving the current data analysis methods by integrating the bin setting and UPGMA clustering. Copyright © 2017. Published by Elsevier B.V.

  16. Prototype of time digitizing system for BESⅢ endcap TOF upgrade

    International Nuclear Information System (INIS)

    Cao Ping; Sun Weijia; Fan Huanhuan; Wang Siyu; Liu Shubin; An Qi; Ji Xiaolu

    2014-01-01

    The prototype of a time digitizing system for the BESⅢ endcap TOF (ETOF) upgrade is introduced in this paper. The ETOF readout electronics has a distributed architecture. Hit signals from the multi-gap resistive plate chamber (MRPC) are signaled as LVDS by front-end electronics (FEE) and are then sent to the back-end time digitizing system via long shield differential twisted pair cables. The ETOF digitizing system consists of two VME crates, each of which contains modules for time digitization, clock, trigger, fast control, etc. The time digitizing module (TDIG) of this prototype can support up to 72 electrical channels for hit information measurement. The fast control (FCTL) module can operate in barrel or endcap mode. The barrel FCTL fans out fast control signals from the trigger system to the endcap FCTLs, merges data from the endcaps and then transfers to the trigger system. Without modifying the barrel TOF (BTOF) structure, this time digitizing architecture benefits from improved ETOF performance without degrading the BTOF performance. Lab experiments show that the time resolution of this digitizing system can be lower than 20 ps, and the data throughput to the DAQ can be about 92 Mbps. Beam experiments show that the total time resolution can be lower than 45 ps. (authors)

  17. A method for the determination of detector channel dead time for a neutron time-of-flight spectrometer

    International Nuclear Information System (INIS)

    Adib, M.; Salama, M.; Abd-Kawi, A.; Sadek, S.; Hamouda, I.

    1975-01-01

    A new method is developed to measure the dead time of a detector channel for a neutron time-of-flight spectrometer. The method is based on the simultaneous use of two identical BF 3 detectors but with two different efficiencies, due to their different enrichment in B 10 . The measurements were performed using the T.O.F. spectrometer installed at channel No. 6 of the ET-RR-1 reactor. The main contribution to the dead time was found to be due to the time analyser and the neutron detector used. The analyser dead time has been determined using a square wave pulse generator with frequency of 1 MC/S. For channel widths of 24.4 us, 48.8 ud and 97.6 us, the weighted dead times for statistical pulse distribution were found to be 3.25 us, 1.87 us respectively. The dead time of the detector contributes mostly to the counting losses and its value was found to be (33+-3) us

  18. A method for in situ absolute DD yield calibration of neutron time-of-flight detectors on OMEGA using CR-39-based proton detectors

    Energy Technology Data Exchange (ETDEWEB)

    Waugh, C. J., E-mail: cjwaugh@mit.edu; Zylstra, A. B.; Frenje, J. A.; Séguin, F. H.; Petrasso, R. D. [Plasma Science and Fusion Center, MIT, Cambridge, Massachusetts 02139 (United States); Rosenberg, M. J.; Glebov, V. Yu.; Sangster, T. C.; Stoeckl, C. [Laboratory for Laser Energetics, Rochester, New York 14623 (United States)

    2015-05-15

    Neutron time of flight (nTOF) detectors are used routinely to measure the absolute DD neutron yield at OMEGA. To check the DD yield calibration of these detectors, originally calibrated using indium activation systems, which in turn were cross-calibrated to NOVA nTOF detectors in the early 1990s, a direct in situ calibration method using CR-39 range filter proton detectors has been successfully developed. By measuring DD neutron and proton yields from a series of exploding pusher implosions at OMEGA, a yield calibration coefficient of 1.09 ± 0.02 (relative to the previous coefficient) was determined for the 3m nTOF detector. In addition, comparison of these and other shots indicates that significant reduction in charged particle flux anisotropies is achieved when bang time occurs significantly (on the order of 500 ps) after the trailing edge of the laser pulse. This is an important observation as the main source of the yield calibration error is due to particle anisotropies caused by field effects. The results indicate that the CR-39-nTOF in situ calibration method can serve as a valuable technique for calibrating and reducing the uncertainty in the DD absolute yield calibration of nTOF detector systems on OMEGA, the National Ignition Facility, and laser megajoule.

  19. A method for in situ absolute DD yield calibration of neutron time-of-flight detectors on OMEGA using CR-39-based proton detectors.

    Science.gov (United States)

    Waugh, C J; Rosenberg, M J; Zylstra, A B; Frenje, J A; Séguin, F H; Petrasso, R D; Glebov, V Yu; Sangster, T C; Stoeckl, C

    2015-05-01

    Neutron time of flight (nTOF) detectors are used routinely to measure the absolute DD neutron yield at OMEGA. To check the DD yield calibration of these detectors, originally calibrated using indium activation systems, which in turn were cross-calibrated to NOVA nTOF detectors in the early 1990s, a direct in situ calibration method using CR-39 range filter proton detectors has been successfully developed. By measuring DD neutron and proton yields from a series of exploding pusher implosions at OMEGA, a yield calibration coefficient of 1.09 ± 0.02 (relative to the previous coefficient) was determined for the 3m nTOF detector. In addition, comparison of these and other shots indicates that significant reduction in charged particle flux anisotropies is achieved when bang time occurs significantly (on the order of 500 ps) after the trailing edge of the laser pulse. This is an important observation as the main source of the yield calibration error is due to particle anisotropies caused by field effects. The results indicate that the CR-39-nTOF in situ calibration method can serve as a valuable technique for calibrating and reducing the uncertainty in the DD absolute yield calibration of nTOF detector systems on OMEGA, the National Ignition Facility, and laser megajoule.

  20. A method for in situ absolute DD yield calibration of neutron time-of-flight detectors on OMEGA using CR-39-based proton detectors

    International Nuclear Information System (INIS)

    Waugh, C. J.; Zylstra, A. B.; Frenje, J. A.; Séguin, F. H.; Petrasso, R. D.; Rosenberg, M. J.; Glebov, V. Yu.; Sangster, T. C.; Stoeckl, C.

    2015-01-01

    Neutron time of flight (nTOF) detectors are used routinely to measure the absolute DD neutron yield at OMEGA. To check the DD yield calibration of these detectors, originally calibrated using indium activation systems, which in turn were cross-calibrated to NOVA nTOF detectors in the early 1990s, a direct in situ calibration method using CR-39 range filter proton detectors has been successfully developed. By measuring DD neutron and proton yields from a series of exploding pusher implosions at OMEGA, a yield calibration coefficient of 1.09 ± 0.02 (relative to the previous coefficient) was determined for the 3m nTOF detector. In addition, comparison of these and other shots indicates that significant reduction in charged particle flux anisotropies is achieved when bang time occurs significantly (on the order of 500 ps) after the trailing edge of the laser pulse. This is an important observation as the main source of the yield calibration error is due to particle anisotropies caused by field effects. The results indicate that the CR-39-nTOF in situ calibration method can serve as a valuable technique for calibrating and reducing the uncertainty in the DD absolute yield calibration of nTOF detector systems on OMEGA, the National Ignition Facility, and laser megajoule

  1. Thermal diffuse scattering in time-of-flight neutron diffraction studied on SBN single crystals

    International Nuclear Information System (INIS)

    Prokert, F.; Savenko, B.N.; Balagurov, A.M.

    1994-01-01

    At time-of-flight (TOF) diffractometer D N-2, installed at the pulsed reactor IBR-2 in Dubna, Sr x Ba 1-x Nb 2 O 6 mixed single crystals (SBN-x) of different compositions (0.50 < x< 0.75) were investigated between 15 and 773 K. The diffraction patterns were found to be strongly influenced by the thermal diffuse scattering (TDS). The appearance of the TDS from the long wavelength acoustic models of vibration in single crystals is characterized by the ratio of the velocity of sound to the velocity of neutron. Due to the nature of the TOF Laue diffraction technique used on D N-2, the TDS around Bragg peaks has rather a complex profile. An understanding of the TDS close to Bragg peaks is essential in allowing the extraction of the diffuse scattering occurring at the diffuse ferroelectric phase transition in SBN crystals. 11 refs.; 9 figs.; 1 tab. (author)

  2. Identification of clinically relevant Corynebacterium strains by Api Coryne, MALDI-TOF-mass spectrometry and molecular approaches.

    Science.gov (United States)

    Alibi, S; Ferjani, A; Gaillot, O; Marzouk, M; Courcol, R; Boukadida, J

    2015-09-01

    We evaluated the Bruker Biotyper matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry (MS) for the identification of 97 Corynebacterium clinical in comparison to identification strains by Api Coryne and MALDI-TOF-MS using 16S rRNA gene and hypervariable region of rpoB genes sequencing as a reference method. C. striatum was the predominant species isolated followed by C. amycolatum. There was an agreement between Api Coryne strips and MALDI-TOF-MS identification in 88.65% of cases. MALDI-TOF-MS was unable to differentiate C. aurimucosum from C. minutissimum and C. minutissimum from C. singulare but reliably identify 92 of 97 (94.84%) strains. Two strains remained incompletely identified to the species level by MALDI-TOF-MS and molecular approaches. They belonged to Cellulomonas and Pseudoclavibacter genus. In conclusion, MALDI-TOF-MS is a rapid and reliable method for the identification of Corynebacterium species. However, some limits have been noted and have to be resolved by the application of molecular methods. Copyright © 2015. Published by Elsevier SAS.

  3. A multi-center ring trial for the identification of anaerobic bacteria using MALDI-TOF MS.

    Science.gov (United States)

    Veloo, A C M; Jean-Pierre, H; Justesen, U S; Morris, T; Urban, E; Wybo, I; Shah, H N; Friedrich, A W; Morris, T; Shah, H N; Jean-Pierre, H; Justesen, U S; Nagy, E; Urban, E; Kostrzewa, M; Veloo, A; Friedrich, A W

    2017-12-01

    Inter-laboratory reproducibility of Matrix Assisted Laser Desorption Time-of-Flight Mass Spectrometry (MALDI-TOF MS) of anaerobic bacteria has not been shown before. Therefore, ten anonymized anaerobic strains were sent to seven participating laboratories, an initiative of the European Network for the Rapid Identification of Anaerobes (ENRIA). On arrival the strains were cultured and identified using MALDI-TOF MS. The spectra derived were compared with two different Biotyper MALDI-TOF MS databases, the db5627 and the db6903. The results obtained using the db5627 shows a reasonable variation between the different laboratories. However, when a more optimized database is used, the variation is less pronounced. In this study we show that an optimized database not only results in a higher number of strains which can be identified using MALDI-TOF MS, but also corrects for differences in performance between laboratories. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Magnetic Resonance Angiography of the pulmonary veins: TOF 3D versus 2D

    International Nuclear Information System (INIS)

    Carriero, Alessandro; Magarelli, Nicola; Gatta, Stefania; Pinto, Dario; Bonomo, Lorenzo; Baratto, Michele; Scapati, Carmelo

    1997-01-01

    The aim of this work was to optimize the magnetic resonance angiography (MRA) technique for the selective study of the pulmonary veins. Twenty patients (13 men and 7 women; mean age: 30.5 years) were examined. MRA was performed with a 1 T superconductive magnet and the 3D time of flight (TOF) technique. Fast sequences (3D FISP : TR 58 ms, TE 6 ms, FA 20 deg, matrix 192 x 256; and 2D FLASH: TR 44 ms, TE 10 ms, FA 30 deg, matrix 192 x 256) were used. Coronal and sagittal images were submitted to MIP processing; presaturation pulses for the pulmonary arteries were located in the mediastinal region. In the right lung 3D TOF on the coronal plane well showed 124 veins, while sagittal images showed 106 veins. In the left lung, 3D TOF on the coronal plane well showed 96 vessels, while sagittal images showed 44 vessels. In the right lung, 2D TOF on the coronal plane well showed 54 veins, while sagittal images showed 36 vessels. In the left lung, 2D TOF on the coronal plane well showed 22 vessels, while sagittal images showed 21 vessels. Therefore 3D TOF yielded better than 2D TOF (p<0.05). To conclude, 3D TOF with contrast agent administration is a useful tool to study the pulmonary veins; those with a larger caliber are better depicted and the integration of coronal and sagittal images depicts more veins

  5. Comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry in the identification of organic compounds in atmospheric aerosols from coniferous forest

    NARCIS (Netherlands)

    Kallio, M.; Jussila, M.; Rissanen, T.; Anttila, P.; Hartonen, K.; Reissell, A.; Vreuls, R.J.J.; Adahchour, M.; Hyotylainen, T.

    2006-01-01

    Comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (GC × GC-TOF-MS) was applied in the identification of organic compounds in atmospheric aerosols from coniferous forest. The samples were collected at Hyytiälä, Finland, as part of the QUEST campaign, in

  6. Matrix-assisted laser desorption ionisation time-of-flight mass spectrometry rapid detection of carbapenamase activity in Acinetobacter baumannii isolates

    Directory of Open Access Journals (Sweden)

    Noha Abouseada

    2017-01-01

    Full Text Available Introduction: Carbapenamase-producing Acinetobacter baumannii are an increasing threat in hospitals and Intensive Care Units. Accurate and rapid detection of carbapenamase producers has a great impact on patient improvement and aids in implementation of infection control measures. Aim: In this study, we describe the use of matrix-assisted laser desorption ionisation time-of-flight mass spectrometry (MALDI TOF MS to identify carbapenamase-producing A. baumannii isolates in up to 3 h. Isolates and Methods: A total of 50 A. baumannii isolates (of which 39 were carabapenamase producers were tested using MALDI TOF MS. Isolates were incubated for 3 h with 0.25 mg/ml up to 2 mg/ml of imipenem (IMP at 37°C. Supernatants were analysed by MALDI TOF to analyse peaks corresponding to IMP (300 Da and an IMP metabolite (254 Da using UltrafleXtreme (Bruker Daltonics, Bremen, Germany. Results: All carbapenamase-producing isolates were evidenced by the disappearance or reduction in intensity of the 300 Da peak of IPM and the appearance of a 254 Da peak of the IPM metabolite. In isolates that did not produce carbapenamase, the IPM 300 Da peak remained intact. Conclusion: MALDI TOF is a promising tool in the field of diagnostic microbiology that has the ability to transfer identification and antimicrobial susceptibility testing time from days to hours.

  7. Use of matrix assisted laser desorption ionisation-time of flight mass spectrometry in a paediatric clinical laboratory for identification of bacteria commonly isolated from cystic fibrosis patients.

    Science.gov (United States)

    Desai, Ankita Patel; Stanley, Theresa; Atuan, Maria; McKey, Jonelle; Lipuma, John J; Rogers, Beverly; Jerris, Robert

    2012-09-01

    Matrix-assisted laser desorption ionisation-time of flight mass spectrometry (MALDI-TOF MS) has been described as a rapid, accurate method for bacterial identification. To investigate the ability of the technique, using the unamended database supplied with the system, to identify bacteria commonly isolated in cystic fibrosis (CF) patients. Organisms commonly isolated from CF patients identified by MALDI-TOF MS were compared to conventional phenotypic and genotypic analyses. For MALDI-TOF MS, the direct colony technique was used routinely with one extraction procedure performed on a mucoid Pseudomonas aeruginosa. For 24 unique CF specimens, workload comparison and time to identification were assessed. Of 464 tested isolates, conventional (phenotypic and genotypic) identification compared to MALDI-TOF MS showed complete genus, species agreement in 92%, with genus agreement in 98%. This included 29 isolates within the Burkholderia cepacia complex. All 29 were correctly identified to the genus level and 24 of these were speciated. Time to identification with 47 bacterial isolates from 24 CF patients showed identification of 85% of isolates by MALDI-TOF MS at 48 h of incubation, compared to only 34% with conventional methods. Using the unamended database supplied with the system, MALDI-TOF MS provides rapid and reliable identification of bacteria isolated from CF specimens. Time to identification studies showed that the use of same day, same method for organism identification will decrease time to result and optimise microbiology workflow.

  8. Cost Savings Realized by Implementation of Routine Microbiological Identification by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry.

    Science.gov (United States)

    Tran, Anthony; Alby, Kevin; Kerr, Alan; Jones, Melissa; Gilligan, Peter H

    2015-08-01

    Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry (MS) is an emerging technology for rapid identification of bacterial and fungal isolates. In comparison to conventional methods, this technology is much less labor intensive and can provide accurate and reliable results in minutes from a single isolated colony. We compared the cost of performing the bioMérieux Vitek MALDI-TOF MS with conventional microbiological methods to determine the amount saved by the laboratory by converting to the new technology. Identification costs for 21,930 isolates collected between April 1, 2013, and March 31, 2014, were directly compared for MALDI-TOF MS and conventional methodologies. These isolates were composed of commonly isolated organisms, including commonly encountered aerobic and facultative bacteria and yeast but excluding anaerobes and filamentous fungi. Mycobacterium tuberculosis complex and rapidly growing mycobacteria were also evaluated for a 5-month period during the study. Reagent costs and a total cost analysis that included technologist time in addition to reagent expenses and maintenance service agreement costs were analyzed as part of this study. The use of MALDI-TOF MS equated to a net savings of $69,108.61, or 87.8%, in reagent costs annually compared to traditional methods. When total costs are calculated to include technologist time and maintenance costs, traditional identification would have cost $142,532.69, versus $68,886.51 with the MALDI-TOF MS method, resulting in a laboratory savings of $73,646.18, or 51.7%, annually by adopting the new technology. The initial cost of the instrument at our usage level would be offset in about 3 years. MALDI-TOF MS not only represents an innovative technology for the rapid and accurate identification of bacterial and fungal isolates, it also provides a significant cost savings for the laboratory. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  9. Functionality of novel black silicon based nanostructured surfaces studied by TOF SIMS

    DEFF Research Database (Denmark)

    Talian, Ivan; Aranyosiova, M.; Orinak, A.

    2010-01-01

    A functionality of the novel black silicon based nanostructured surfaces (BS 2) with different metal surface modifications was tested by time-of-flight secondary ion mass spectrometry (TOF SIMS). Mainly two surface functions were studied: analytical signal enhancement and analyte pre-ionization e......A functionality of the novel black silicon based nanostructured surfaces (BS 2) with different metal surface modifications was tested by time-of-flight secondary ion mass spectrometry (TOF SIMS). Mainly two surface functions were studied: analytical signal enhancement and analyte pre......-ionization effect in SIMS due to nanostructure type and the assistance of the noble metal surface coating (Ag or Au) for secondary ion formation. As a testing analyte a Rhodamine 6G was applied. Bi+ has been used as SIMS primary ions. It was found out that SIMS signal enhancement of the analyte significantly...... depends on Ag layer thickness and measured ion mode (negative, positive). The best SIMS signal enhancement was obtained at BS2 surface coated with 400 nm of Ag layer. SIMS fragmentation schemes were developed for a model analyte deposited onto a silver and gold surface. Significant differences in pre...

  10. Supra-aortic low-dose contrast-enhanced time-resolved magnetic resonance (MR) angiography at 3 T: comparison with time-of-flight MR angiography and high-resolution contrast-enhanced MR angiography.

    Science.gov (United States)

    Lee, Youn-Joo; Kim, Bum-soo; Koo, Ja-Sung; Kim, Bom-Yi; Jang, Jinhee; Choi, Hyun Seok; Jung, So-Lyung; Ahn, Kook-Jin

    2015-06-01

    Low-dose, time-resolved, contrast-enhanced, magnetic resonance angiography (TR-CEMRA) has been described previously; however, a comparative study between low dose TR-CEMRA and time-of-flight MRA (TOF-MRA) in the diagnosis of supra-aortic arterial stenosis has not yet been published. To demonstrate the feasibility and effectiveness of low-dose TR-CEMRA compared with TOF-MRA, using high-resolution contrast-enhanced MRA (HR-CEMRA) as the reference standard. This prospective study consisted of 30 consecutive patients. All patients underwent TOF-MRA of the neck and circle of Willis and supra-aortic HR-CEMRA, followed by supra-aortic low-dose TR-CEMRA. Gadoterate meglumine (Gd-DOTA, Dotarem(®), Guerbet, Roissy CdG Cedex, France) was injected at a dose of 0.1 mmol/kg for HR-CEMRA, followed by a 0.03 mmol/kg bolus for low-dose TR-CEMRA. Three readers evaluated the assessibility and image quality, and then two readers classified each stenosis into the following categories: normal (0-30%), mild stenosis (31-50%), moderate (51-70%), severe (71-99%), and occlusion. TR-CEMRA and HR-CEMRA showed a greater number of assessable arterial segments than TOF-MRA (P supra-aortic arterial stenosis, and could be more useful option than TOF-MRA. © The Foundation Acta Radiologica 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  11. Characterization of olive oil volatiles by multi-step direct thermal desorption-comprehensive gas chromatography-time-of-flight mass spectrometry using a programmed temperature vaporizing injector

    NARCIS (Netherlands)

    de Koning, S.; Kaal, E.; Janssen, H.-G.; van Platerink, C.; Brinkman, U.A.Th.

    2008-01-01

    The feasibility of a versatile system for multi-step direct thermal desorption (DTD) coupled to comprehensive gas chromatography (GC × GC) with time-of-flight mass spectrometric (TOF-MS) detection is studied. As an application the system is used for the characterization of fresh versus aged olive

  12. A Time of flight spectrometer for measurements of double differential neutron scattering cross sections

    International Nuclear Information System (INIS)

    Padron, I.; Dominguez, O.; Sarria, P. Sandin, C.

    1996-01-01

    The time -of-Flight neutron spectrometry technique by associated particle method was improved using a D-T neutron generator at Laboratory of Nuclear Analysis. This technique was implemented for double differential cross section measurements and supported by the IAEA Project CUB/01/005. An stilbene scintillation detector (dia=100 mm, length=50 mm) was used as principal neutron detector detector and was situated outside a hole in the concrete wall. This way the fligth path was extended and the scattered neutron cone accurate collimated throught the 2 m concrete wall. For the associated particle α detection a thin plastic NE-102 scint illator was used, as well as, two scintilation detectors and a long counter for the neutron flux monitoring. In this TOF neutron spectrometer (3.40 m flight path) a 1.7 nseg. temporal resolution was obtained

  13. Discrimination of Aspergillus isolates at the species and strain level by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry fingerprinting.

    Science.gov (United States)

    Hettick, Justin M; Green, Brett J; Buskirk, Amanda D; Kashon, Michael L; Slaven, James E; Janotka, Erika; Blachere, Francoise M; Schmechel, Detlef; Beezhold, Donald H

    2008-09-15

    Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) was used to generate highly reproducible mass spectral fingerprints for 12 species of fungi of the genus Aspergillus and 5 different strains of Aspergillus flavus. Prior to MALDI-TOF MS analysis, the fungi were subjected to three 1-min bead beating cycles in an acetonitrile/trifluoroacetic acid solvent. The mass spectra contain abundant peaks in the range of 5 to 20kDa and may be used to discriminate between species unambiguously. A discriminant analysis using all peaks from the MALDI-TOF MS data yielded error rates for classification of 0 and 18.75% for resubstitution and cross-validation methods, respectively. If a subset of 28 significant peaks is chosen, resubstitution and cross-validation error rates are 0%. Discriminant analysis of the MALDI-TOF MS data for 5 strains of A. flavus using all peaks yielded error rates for classification of 0 and 5% for resubstitution and cross-validation methods, respectively. These data indicate that MALDI-TOF MS data may be used for unambiguous identification of members of the genus Aspergillus at both the species and strain levels.

  14. Identification of rare pathogenic bacteria in a clinical microbiology laboratory: impact of matrix-assisted laser desorption ionization-time of flight mass spectrometry.

    Science.gov (United States)

    Seng, Piseth; Abat, Cedric; Rolain, Jean Marc; Colson, Philippe; Lagier, Jean-Christophe; Gouriet, Frédérique; Fournier, Pierre Edouard; Drancourt, Michel; La Scola, Bernard; Raoult, Didier

    2013-07-01

    During the past 5 years, matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry (MS) has become a powerful tool for routine identification in many clinical laboratories. We analyzed our 11-year experience in routine identification of clinical isolates (40 months using MALDI-TOF MS and 91 months using conventional phenotypic identification [CPI]). Among the 286,842 clonal isolates, 284,899 isolates of 459 species were identified. The remaining 1,951 isolates were misidentified and required confirmation using a second phenotypic identification for 670 isolates and using a molecular technique for 1,273 isolates of 339 species. MALDI-TOF MS annually identified 112 species, i.e., 36 species/10,000 isolates, compared to 44 species, i.e., 19 species/10,000 isolates, for CPI. Only 50 isolates required second phenotypic identifications during the MALDI-TOF MS period (i.e., 4.5 reidentifications/10,000 isolates) compared with 620 isolates during the CPI period (i.e., 35.2/10,000 isolates). We identified 128 bacterial species rarely reported as human pathogens, including 48 using phenotypic techniques (22 using CPI and 37 using MALDI-TOF MS). Another 75 rare species were identified using molecular methods. MALDI-TOF MS reduced the time required for identification by 55-fold and 169-fold and the cost by 5-fold and 96-fold compared with CPI and gene sequencing, respectively. MALDI-TOF MS was a powerful tool not only for routine bacterial identification but also for identification of rare bacterial species implicated in human infectious diseases. The ability to rapidly identify bacterial species rarely described as pathogens in specific clinical specimens will help us to study the clinical burden resulting from the emergence of these species as human pathogens, and MALDI-TOF MS may be considered an alternative to molecular methods in clinical laboratories.

  15. A method for calibration and test of the time-of-flight detectors for DELPHI

    International Nuclear Information System (INIS)

    Benlloch, J.M.; Castillo, M.V.; Ferrer, A.; Fuster, J.; Higon, E.; Lozano, J.; Salt, J.; Sanchez, E.; Sanchis, E.; Cuevas, J.

    1990-01-01

    We describe a method for calibration and test of large-area TOF counters using cosmic radiation. We applied the method to the time-of-flight system of the DELPHI detector at the LEP e + e - storage ring, made of scintillation (NE110) counters (20x350 cm 2 ). The photomultipliers used (EMI 9902KB) reach an average gain of 5x10 8 at 1700 V and the time resolution achieved is 1.2 ns. Using this method we measured the counter efficiencies as a function of the position; we obtained 135 cm for the effective attenuation length and 40 photoelectrons for a minimum-ionizing particle crossing the center of the counter. (orig.)

  16. ATR-FTIR Spectroscopy Highlights the Problem of Distinguishing Between Exophiala dermatitidis and E. phaeomuriformis Using MALDI-TOF MS

    NARCIS (Netherlands)

    Ergin, C.; Gok, Y.; Baygu, Y.; Gumral, R.; Ozhak-Baysan, B.; Dogen, A.; Ogunc, D.; Ilkit, M.; Seyedmousavi, S.

    2016-01-01

    The present study compared two chemical-based methods, namely, matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS) and attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, to understand the misidentification of Exophiala

  17. The Technical and Biological Reproducibility of Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS) Based Typing: Employment of Bioinformatics in a Multicenter Study.

    Science.gov (United States)

    Oberle, Michael; Wohlwend, Nadia; Jonas, Daniel; Maurer, Florian P; Jost, Geraldine; Tschudin-Sutter, Sarah; Vranckx, Katleen; Egli, Adrian

    2016-01-01

    The technical, biological, and inter-center reproducibility of matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI TOF MS) typing data has not yet been explored. The aim of this study is to compare typing data from multiple centers employing bioinformatics using bacterial strains from two past outbreaks and non-related strains. Participants received twelve extended spectrum betalactamase-producing E. coli isolates and followed the same standard operating procedure (SOP) including a full-protein extraction protocol. All laboratories provided visually read spectra via flexAnalysis (Bruker, Germany). Raw data from each laboratory allowed calculating the technical and biological reproducibility between centers using BioNumerics (Applied Maths NV, Belgium). Technical and biological reproducibility ranged between 96.8-99.4% and 47.6-94.4%, respectively. The inter-center reproducibility showed a comparable clustering among identical isolates. Principal component analysis indicated a higher tendency to cluster within the same center. Therefore, we used a discriminant analysis, which completely separated the clusters. Next, we defined a reference center and performed a statistical analysis to identify specific peaks to identify the outbreak clusters. Finally, we used a classifier algorithm and a linear support vector machine on the determined peaks as classifier. A validation showed that within the set of the reference center, the identification of the cluster was 100% correct with a large contrast between the score with the correct cluster and the next best scoring cluster. Based on the sufficient technical and biological reproducibility of MALDI-TOF MS based spectra, detection of specific clusters is possible from spectra obtained from different centers. However, we believe that a shared SOP and a bioinformatics approach are required to make the analysis robust and reliable.

  18. The Technical and Biological Reproducibility of Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS Based Typing: Employment of Bioinformatics in a Multicenter Study.

    Directory of Open Access Journals (Sweden)

    Michael Oberle

    Full Text Available The technical, biological, and inter-center reproducibility of matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI TOF MS typing data has not yet been explored. The aim of this study is to compare typing data from multiple centers employing bioinformatics using bacterial strains from two past outbreaks and non-related strains.Participants received twelve extended spectrum betalactamase-producing E. coli isolates and followed the same standard operating procedure (SOP including a full-protein extraction protocol. All laboratories provided visually read spectra via flexAnalysis (Bruker, Germany. Raw data from each laboratory allowed calculating the technical and biological reproducibility between centers using BioNumerics (Applied Maths NV, Belgium.Technical and biological reproducibility ranged between 96.8-99.4% and 47.6-94.4%, respectively. The inter-center reproducibility showed a comparable clustering among identical isolates. Principal component analysis indicated a higher tendency to cluster within the same center. Therefore, we used a discriminant analysis, which completely separated the clusters. Next, we defined a reference center and performed a statistical analysis to identify specific peaks to identify the outbreak clusters. Finally, we used a classifier algorithm and a linear support vector machine on the determined peaks as classifier. A validation showed that within the set of the reference center, the identification of the cluster was 100% correct with a large contrast between the score with the correct cluster and the next best scoring cluster.Based on the sufficient technical and biological reproducibility of MALDI-TOF MS based spectra, detection of specific clusters is possible from spectra obtained from different centers. However, we believe that a shared SOP and a bioinformatics approach are required to make the analysis robust and reliable.

  19. Rapid identification of bacteria in positive blood culture broths by matrix-assisted laser desorption ionization-time of flight mass spectrometry.

    Science.gov (United States)

    Stevenson, Lindsay G; Drake, Steven K; Murray, Patrick R

    2010-02-01

    Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry is a rapid, accurate method for identifying bacteria and fungi recovered on agar culture media. We report herein a method for the direct identification of bacteria in positive blood culture broths by MALDI-TOF mass spectrometry. A total of 212 positive cultures were examined, representing 32 genera and 60 species or groups. The identification of bacterial isolates by MALDI-TOF mass spectrometry was compared with biochemical testing, and discrepancies were resolved by gene sequencing. No identification (spectral score of blood culture broth. Of the bacteria with a spectral score of > or = 1.7, 162 (95.3%) of 170 isolates were correctly identified. All 8 isolates of Streptococcus mitis were misidentified as being Streptococcus pneumoniae isolates. This method provides a rapid, accurate, definitive identification of bacteria within 1 h of detection in positive blood cultures with the caveat that the identification of S. pneumoniae would have to be confirmed by an alternative test.

  20. Identification of pathogenic microorganisms directly from positive blood vials by matrix-assisted laser desorption/ionization time of flight mass spectrometry

    DEFF Research Database (Denmark)

    Nonnemann, Bettina; Tvede, Michael; Bjarnsholt, Thomas

    2013-01-01

    Matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) is a promising and fast method for identifying fungi and bacteria directly from positive blood cultures. Various pre-treatment methods for MALDI-TOF MS identification have been reported for this purpose. In......-house results for identification of bacterial colonies by MALDI-TOF MS using a cut-off score of 1.5 did not reduce the diagnostic accuracy compared with the recommended cut-off score of 1.8. A 3-month consecutive study of positive blood cultures was carried out in our laboratory to evaluate whether...... the Sepsityper™ Kit (Bruker Daltonics) with Biotyper 2.0 software could be used as a fast diagnostic tool for bacteria and fungi and whether a 1.5 cut-off score could improve species identification compared with the recommended score of 1.8. Two hundred and fifty-six positive blood vials from 210 patients and 19...

  1. Correlation between phosphorylation ratios by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis and radioactivities by radioactive assay.

    Science.gov (United States)

    Tsuchiya, Akira; Asai, Daisuke; Kang, Jeong-Hun; Mori, Takeshi; Niidome, Takuro; Katayama, Yoshiki

    2012-02-15

    To investigate the correlation between the counts per minute (CPM) by radioactivity assay and the phosphorylation ratio by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) analysis, we prepared 136 peptide substrates. The correlation coefficient of phosphorylation ratios to CPM was 0.77 for all samples. However, the more the numbers of positively charged amino acids increased, the more the correlation coefficient increased. Although positively charged amino acids can have an effect on the correlation results, MALDI-TOF MS analysis is a useful means for monitoring phosphorylated peptide and protein kinase activity instead of radioactivity assays. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Enhanced MALDI-TOF MS Analysis of Phosphopeptides Using an Optimized DHAP/DAHC Matrix

    Science.gov (United States)

    Hou, Junjie; Xie, Zhensheng; Xue, Peng; Cui, Ziyou; Chen, Xiulan; Li, Jing; Cai, Tanxi; Wu, Peng; Yang, Fuquan

    2010-01-01

    Selecting an appropriate matrix solution is one of the most effective means of increasing the ionization efficiency of phosphopeptides in matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). In this study, we systematically assessed matrix combinations of 2, 6-dihydroxyacetophenone (DHAP) and diammonium hydrogen citrate (DAHC), and demonstrated that the low ratio DHAP/DAHC matrix was more effective in enhancing the ionization of phosphopeptides. Low femtomole level of phosphopeptides from the tryptic digests of α-casein and β-casein was readily detected by MALDI-TOF-MS in both positive and negative ion mode without desalination or phosphopeptide enrichment. Compared with the DHB/PA matrix, the optimized DHAP/DAHC matrix yielded superior sample homogeneity and higher phosphopeptide measurement sensitivity, particularly when multiple phosphorylated peptides were assessed. Finally, the DHAP/DAHC matrix was applied to identify phosphorylation sites from α-casein and β-casein and to characterize two phosphorylation sites from the human histone H1 treated with Cyclin-Dependent Kinase-1 (CDK1) by MALDI-TOF/TOF MS. PMID:20339515

  3. Enhanced MALDI-TOF MS Analysis of Phosphopeptides Using an Optimized DHAP/DAHC Matrix

    Directory of Open Access Journals (Sweden)

    Junjie Hou

    2010-01-01

    Full Text Available Selecting an appropriate matrix solution is one of the most effective means of increasing the ionization efficiency of phosphopeptides in matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS. In this study, we systematically assessed matrix combinations of 2, 6-dihydroxyacetophenone (DHAP and diammonium hydrogen citrate (DAHC, and demonstrated that the low ratio DHAP/DAHC matrix was more effective in enhancing the ionization of phosphopeptides. Low femtomole level of phosphopeptides from the tryptic digests of α-casein and β-casein was readily detected by MALDI-TOF-MS in both positive and negative ion mode without desalination or phosphopeptide enrichment. Compared with the DHB/PA matrix, the optimized DHAP/DAHC matrix yielded superior sample homogeneity and higher phosphopeptide measurement sensitivity, particularly when multiple phosphorylated peptides were assessed. Finally, the DHAP/DAHC matrix was applied to identify phosphorylation sites from α-casein and β-casein and to characterize two phosphorylation sites from the human histone H1 treated with Cyclin-Dependent Kinase-1 (CDK1 by MALDI-TOF/TOF MS.

  4. Tandem Mass Spectrometry on a Miniaturized Laser Desorption Time-of-Flight Mass Spectrometer

    Science.gov (United States)

    Li, Xiang; Cornish, Timothy; Getty, Stephanie A.; Brinckerhoff, William B.

    2016-01-01

    Tandem mass spectrometry (MSMS) is a powerful and widely-used technique for identifying the molecular structure of organic constituents of a complex sample. Application of MSMS to the study of unknown planetary samples on a remote space mission would contribute to our understanding of the origin, evolution, and distribution of extraterrestrial organics in our solar system. Here we report on the realization of MSMS on a miniaturized laser desorption time-of-flight mass spectrometer (LD-TOF-MS), which is one of the most promising instrument types for future planetary missions. This achievement relies on two critical components: a curved-field reflectron and a pulsed-pin ion gate. These enable use of the complementary post-source decay (PSD) and laser-assisted collision induced dissociation (L-CID) MSMS methods on diverse measurement targets with only modest investment in instrument resources such as volume and weight. MSMS spectra of selected molecular targets in various organic standards exhibit excellent agreement when compared with results from a commercial, laboratory-scale TOF instrument, demonstrating the potential of this powerful technique in space and planetary environments.

  5. Processing of MRI images weighted in TOF for blood vessels analysis: 3-D reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez D, J.; Cordova F, T. [Universidad de Guanajuato, Campus Leon, Departamento de Ingenieria Fisica, Loma del Bosque No. 103, Lomas del Campestre, 37150 Leon, Guanajuato (Mexico); Cruz A, I., E-mail: hernandezdj.gto@gmail.com [CONACYT, Centro de Investigacion en Matematicas, A. C., Jalisco s/n, Col. Valenciana, 36000 Guanajuato, Gto. (Mexico)

    2015-10-15

    This paper presents a novel presents an approach based on differences of intensities for the identification of vascular structures in medical images from MRI studies of type time of flight method (TOF). The plating method hypothesis gave high intensities belonging to the vascular system image type TOF can be segmented by thresholding of the histogram. The enhanced vascular structures is performed using the filter Vesselness, upon completion of a decision based on fuzzy thresholding minimizes error in the selection of vascular structures. It will give a brief introduction to the vascular system problems and how the images have helped diagnosis, is summarized the physical history of the different imaging modalities and the evolution of digital images with computers. Segmentation and 3-D reconstruction became image type time of flight; these images are typically used in medical diagnosis of cerebrovascular diseases. The proposed method has less error in segmentation and reconstruction of volumes related to the vascular system, clear images and less noise compared with edge detection methods. (Author)

  6. Processing of MRI images weighted in TOF for blood vessels analysis: 3-D reconstruction

    International Nuclear Information System (INIS)

    Hernandez D, J.; Cordova F, T.; Cruz A, I.

    2015-10-01

    This paper presents a novel presents an approach based on differences of intensities for the identification of vascular structures in medical images from MRI studies of type time of flight method (TOF). The plating method hypothesis gave high intensities belonging to the vascular system image type TOF can be segmented by thresholding of the histogram. The enhanced vascular structures is performed using the filter Vesselness, upon completion of a decision based on fuzzy thresholding minimizes error in the selection of vascular structures. It will give a brief introduction to the vascular system problems and how the images have helped diagnosis, is summarized the physical history of the different imaging modalities and the evolution of digital images with computers. Segmentation and 3-D reconstruction became image type time of flight; these images are typically used in medical diagnosis of cerebrovascular diseases. The proposed method has less error in segmentation and reconstruction of volumes related to the vascular system, clear images and less noise compared with edge detection methods. (Author)

  7. Rapid identification of acetic acid bacteria using MALDI-TOF mass spectrometry fingerprinting.

    Science.gov (United States)

    Andrés-Barrao, Cristina; Benagli, Cinzia; Chappuis, Malou; Ortega Pérez, Ruben; Tonolla, Mauro; Barja, François

    2013-03-01

    Acetic acid bacteria (AAB) are widespread microorganisms characterized by their ability to transform alcohols and sugar-alcohols into their corresponding organic acids. The suitability of matrix-assisted laser desorption-time of flight mass spectrometry (MALDI-TOF MS) for the identification of cultured AAB involved in the industrial production of vinegar was evaluated on 64 reference strains from the genera Acetobacter, Gluconacetobacter and Gluconobacter. Analysis of MS spectra obtained from single colonies of these strains confirmed their basic classification based on comparative 16S rRNA gene sequence analysis. MALDI-TOF analyses of isolates from vinegar cross-checked by comparative sequence analysis of 16S rRNA gene fragments allowed AAB to be identified, and it was possible to differentiate them from mixed cultures and non-AAB. The results showed that MALDI-TOF MS analysis was a rapid and reliable method for the clustering and identification of AAB species. Copyright © 2012 Elsevier GmbH. All rights reserved.

  8. Compton scatter tomography in TOF-PET

    Science.gov (United States)

    Hemmati, Hamidreza; Kamali-Asl, Alireza; Ay, Mohammadreza; Ghafarian, Pardis

    2017-10-01

    Scatter coincidences contain hidden information about the activity distribution on the positron emission tomography (PET) imaging system. However, in conventional reconstruction, the scattered data cause the blurring of images and thus are estimated and subtracted from detected coincidences. List mode format provides a new aspect to use time of flight (TOF) and energy information of each coincidence in the reconstruction process. In this study, a novel approach is proposed to reconstruct activity distribution using the scattered data in the PET system. For each single scattering coincidence, a scattering angle can be determined by the recorded energy of the detected photons, and then possible locations of scattering can be calculated based on the scattering angle. Geometry equations show that these sites lie on two arcs in 2D mode or the surface of a prolate spheroid in 3D mode, passing through the pair of detector elements. The proposed method uses a novel and flexible technique to estimate source origin locations from the possible scattering locations, using the TOF information. Evaluations were based on a Monte-Carlo simulation of uniform and non-uniform phantoms at different resolutions of time and detector energy. The results show that although the energy uncertainties deteriorate the image spatial resolution in the proposed method, the time resolution has more impact on image quality than the energy resolution. With progress of the TOF system, the reconstruction using the scattered data can be used in a complementary manner, or to improve image quality in the next generation of PET systems.

  9. A comparison of four dimensional time-resolved with keyhole and three dimensional time-of-flight MR angiography for the evaluation of cerebral aneurysms

    International Nuclear Information System (INIS)

    Wu Qian; Li Minghua; Zhang Jiayin; Li Yongdong

    2012-01-01

    Objective: To evaluate the accuracy and reliability of 4D time-resolved MRA with keyhole (4D-TRAK) for the detection and characterization of cerebral aneurysms (CAs), with a comparison of 3D time-of-flight MRA (3D-TOF-MRA). Methods: 3D-TOF-MRA, 4D-TRAK and 3D-DSA were performed sequentially in 52 patients with suspected CAs. 4D-TRAK was acquired using a combination of sensitivity encoding (SENSE) and contrast-enhanced (CE) timing robust angiography (CENTRA) k-space sampling techniques at a contrast dose of 10 ml at 3 T scanner. Accuracy, sensitivity, specificity of 4D-TRAK and 3D-TOF-MRA were calculated and compared for the detection of CAs on patient-based and aneurysm-based evaluation using 3D-DSA as a reference. Wilcoxon signed rank test were used. Results: The overall image quality of 4D-TRAK was appropriate for the diagnostic purpose, but yet not comparable with that of 3D-TOF-MRA. In 52 patients with suspected GAs, 58 CAs were confirmed on 3D-DSA finally.Fifty-one (with 2 false-positives and 9 false-negatives) and 58 (with 1 false-positive and 1 false-negative) CAs were visualized on 4D-TRAK and 3D-TOF-MRA, respectively. Accuracy, sensitivity and specificity on patient-based evaluation of 4D-TRAK and 3D-TOF-MRA were 92.31% (48/52), 93.33% (42/45), 85.71 % (6/7) and 98.08% (51/52), 100.00% (45/45), 85.71% (6/7), respectively, and 74.07% (20/27), 75.00% (18/24), 66.67% (2/3) and 96.30% (26/27), 95.83% (26/27), 100.00% (3/3) on aneurysm-based evaluation in patients with multiple CAs, respectively. Subgroup analysis revealed that for 19 very small CAs (maximal diameter <3 mm,measured on 3D-DSA), 9 were missed on 4D-TRAK and 1 on 3D-TOF-MRA (Z=-2.464, PTOF-MRA) (Z=0.000, P>0.05). In 4 large CAs with maximal diameter more than 10 mm, 4D-TRAK provided a better characterization of morphology than 3D-TOF

  10. Urinary metabolomic profiling in rats exposed to dietary di(2-ethylhexyl) phthalate (DEHP) using ultra-performance liquid chromatography quadrupole time-of-flight tandem mass spectrometry (UPLC/Q-TOF-MS).

    Science.gov (United States)

    Dong, Xinwen; Zhang, Yunbo; Dong, Jin; Zhao, Yue; Guo, Jipeng; Wang, Zhanju; Liu, Mingqi; Na, Xiaolin; Wang, Cheng

    2017-07-01

    Di(2-ethylhexyl) phthalate (DEHP) is an omnipresent environmental chemical with widespread nonoccupational human exposure through multiple ways. Although considerable efforts have been invested to investigate mechanisms of DEHP toxicity, the key metabolic biomarkers of DEHP toxicity remain to be identified. The aim of this study was to assess the urinary metabonomics of dietary DEHP in rats using the technique of ultra-performance liquid chromatography quadrupole time-of-flight tandem mass spectrometry (UPLC/Q-TOF-MS). Fourteen female Wistar rats were divided into two groups and given increasing dietary doses of DEHP for 30 consecutive days. The urinary metabolite profile was studied using ultra-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry. Principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) enabled clusters to be clearly separated. Eleven principal urinary metabolites were identified as contributing to the clusters. The clusters in the positive electrospray ionization (ESI) mode were xanthurenic acid, kynurenic acid, nonate, N6-methyladenosine, and L-isoleucyl-L-proline. The clusters in the negative ESI mode were hippuric acid, tetrahydrocortisol, citric acid, phenylpropionylglycine, cPA(18:2(9Z, 12Z)/0:0), and LysoPC(14:1(9Z)). The urinary metabonomic changes indicated that exposure to dietary DEHP can affect energy-related metabolism, liver and renal function, fatty acid metabolism, and cause DNA damage in rats. The findings of this study on the urinary metabolites and metabolic pathways of DEHP may form the basis for future studies on the mechanisms of toxicity of this commonly found environmental chemical.

  11. Retrograde flow in the dural sinuses detected by three-dimensional time-of-flight MR angiography

    International Nuclear Information System (INIS)

    Uchino, Akira; Nomiyama, Keita; Takase, Yukinori; Nakazono, Takahiko; Tominaga, Yukiko; Imaizumi, Takeshi; Kudo, Sho

    2007-01-01

    Retrograde flow in the left dural sinuses is sometimes detected by three-dimensional time-of-flight (3D-TOF) magnetic resonance (MR) angiography. The purpose of this study was to evaluate the incidence of this phenomenon and its characteristic features on 3D-TOF MR angiograms. We retrospectively reviewed cranial MR angiography images of 1,078 patients examined at our institution. All images were obtained by the 3D-TOF technique with one of two 1.5-T scanners. Maximum intensity projection (MIP) images in the horizontal rotation view were displayed stereoscopically. We reviewed the source images, inferosuperior MIP images, and horizontal MIP images and identified retrograde flow in the dural sinuses. We found retrograde flow in the dural sinuses of 67 patients on the source images from 3D-TOF MR angiography; the incidence was 6.2%. In 47 of the 67 patients, retrograde flow was identified in the left inferior petrosal sinus, in 13, it was seen in the left sigmoid sinus, and in 6, it was seen in the left inferior petrosal and left sigmoid sinuses. The remaining patient had retrograde flow in the left inferior petrosal and left and right sigmoid sinuses. The mean age of the patients with retrograde flow was slightly greater than that of the patients without this phenomenon (70 years vs 63 years). Retrograde flow in the dural sinuses frequently occurs on the left side in middle-aged and elderly patients during 3D-TOF MR angiography performed with the patient in the supine position. This phenomenon should not be misdiagnosed as a dural arteriovenous fistula. (orig.)

  12. Crystal timing offset calibration method for time of flight PET scanners

    Science.gov (United States)

    Ye, Jinghan; Song, Xiyun

    2016-03-01

    In time-of-flight (TOF) positron emission tomography (PET), precise calibration of the timing offset of each crystal of a PET scanner is essential. Conventionally this calibration requires a specially designed tool just for this purpose. In this study a method that uses a planar source to measure the crystal timing offsets (CTO) is developed. The method uses list mode acquisitions of a planar source placed at multiple orientations inside the PET scanner field-of-view (FOV). The placement of the planar source in each acquisition is automatically figured out from the measured data, so that a fixture for exactly placing the source is not required. The expected coincidence time difference for each detected list mode event can be found from the planar source placement and the detector geometry. A deviation of the measured time difference from the expected one is due to CTO of the two crystals. The least squared solution of the CTO is found iteratively using the list mode events. The effectiveness of the crystal timing calibration method is evidenced using phantom images generated by placing back each list mode event into the image space with the timing offset applied to each event. The zigzagged outlines of the phantoms in the images become smooth after the crystal timing calibration is applied. In conclusion, a crystal timing calibration method is developed. The method uses multiple list mode acquisitions of a planar source to find the least squared solution of crystal timing offsets.

  13. The resolution of TOF low-Q diffractometers: Instrumental, data acquisition and reduction factors

    International Nuclear Information System (INIS)

    Hjelm, R.P. Jr.

    1988-01-01

    The resolution of scattering vector, Q, in small-angle neutron scattering (SANS) measurements derives from uncertainties in scattered neutron wavelength and direction. The manner in which these are manifest on brod-band time-of-flight (TOF) spectrometers at pulsed sources is different from that for instruments using monochromated sources. In TOF instruments the uncertainties arise from the TOF measurement as well as the directional uncertainties due to collimation, finite sample and detector-element size that are present in any small-angle scattering instrument. Further, data from a TOF instrument must be mapped into Q space, and the strategy used to accomplish this affects the final resolution of the measurement. Thus for TOF-SANS instruments the question of resolution is more complicated than for instruments on monochromated sources. There is considerable flexibility in TOF data acquisition and Q mapping that can be utilized to optimize for intensity and Q resolution requirements of a particular measurement. In this work, present understanding of the effects of instrument geometry, TOF data acquisition and Q mapping strategies on the precision of the measurement is outlined. The goal is to establish guidelines on the best manner in which a particular measurement can be set up. Toward this end some new aspects are presented of optimal Q-mapping procedures, the effect of inelastic scattering on the measurement, and the calculation of instrument resolution functions. Some of these ideas are tested by comparison of simulations with measurement. (orig.)

  14. Time of flight MR angiography assessment casts doubt on the association between transient global amnesia and intracranial jugular venous reflux

    International Nuclear Information System (INIS)

    Kang, Yeonah; Kim, Eunhee; Kim, Jae Hyoung; Choi, Byung Se; Jung, Cheolkyu; Bae, Yun Jung; Lee, Kyung Mi; Lee, Dong Hoon

    2015-01-01

    Evidence of intracranial venous reflux flow due to jugular venous reflux (JVR) on time of flight (TOF) MR angiography (MRA) is thought to be highly associated with transient global amnesia (TGA) - evidence that supports the venous congestion theory of TGA pathophysiology. However, recent studies indicate that intracranial JVR on TOF MRA is occasionally observed in normal elderly. Therefore, the purpose of this study was to compare the prevalence of intracranial JVR on TOF MRA in patients with TGA and two control groups. Three age- and sex-matched groups of subjects that received MRI and MRA were enrolled. The groups comprised 167 patients with TGA, 167 visitors to the emergency room (ER) and 167 visitors to a health promotion centre (HPC). Intracranial JVR was defined as abnormal venous signals in the inferior petrosal, sigmoid and/or transverse sinuses on TOF MRA. The prevalence of intracranial JVR was assessed across the three groups. Intracranial JVR was seen in seven (4.2 %) TGA patients, eight (4.8 %) ER visitors and three (1.8 %) HPC visitors, respectively. No statistically significant differences were observed among the three groups. TGA patients showed a low prevalence of intracranial JVR on TOF MRA, and no statistical differences were found in comparison with control groups. (orig.)

  15. Time of flight MR angiography assessment casts doubt on the association between transient global amnesia and intracranial jugular venous reflux

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Yeonah; Kim, Eunhee; Kim, Jae Hyoung; Choi, Byung Se; Jung, Cheolkyu; Bae, Yun Jung; Lee, Kyung Mi [Seoul National University College of Medicine, Seoul National University Bundang Hospital, Department of Radiology, Seongnam-si, Gyeonggi-do (Korea, Republic of); Lee, Dong Hoon [Seoul Medical Center, Department of Radiology, Seoul (Korea, Republic of)

    2014-10-03

    Evidence of intracranial venous reflux flow due to jugular venous reflux (JVR) on time of flight (TOF) MR angiography (MRA) is thought to be highly associated with transient global amnesia (TGA) - evidence that supports the venous congestion theory of TGA pathophysiology. However, recent studies indicate that intracranial JVR on TOF MRA is occasionally observed in normal elderly. Therefore, the purpose of this study was to compare the prevalence of intracranial JVR on TOF MRA in patients with TGA and two control groups. Three age- and sex-matched groups of subjects that received MRI and MRA were enrolled. The groups comprised 167 patients with TGA, 167 visitors to the emergency room (ER) and 167 visitors to a health promotion centre (HPC). Intracranial JVR was defined as abnormal venous signals in the inferior petrosal, sigmoid and/or transverse sinuses on TOF MRA. The prevalence of intracranial JVR was assessed across the three groups. Intracranial JVR was seen in seven (4.2 %) TGA patients, eight (4.8 %) ER visitors and three (1.8 %) HPC visitors, respectively. No statistically significant differences were observed among the three groups. TGA patients showed a low prevalence of intracranial JVR on TOF MRA, and no statistical differences were found in comparison with control groups. (orig.)

  16. Species Identification and Delineation of Pathogenic Mucorales by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry.

    Science.gov (United States)

    Shao, Jin; Wan, Zhe; Li, Ruoyu; Yu, Jin

    2018-04-01

    This study aimed to validate the effectiveness of matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS)-based identification of filamentous fungi of the order Mucorales. A total of 111 isolates covering six genera preserved at the Research Center for Medical Mycology of Peking University were selected for MALDI-TOF MS analysis. We emphasized the study of 23 strains of Mucor irregularis predominantly isolated from patients in China. We first used the Bruker Filamentous Fungi library (v1.0) to identify all 111 isolates. To increase the identification rate, we created a compensatory in-house database, the Beijing Medical University (BMU) database, using 13 reference strains covering 6 species, including M. irregularis , Mucor hiemalis , Mucor racemosus , Cunninghamella bertholletiae , Cunninghamella phaeospora , and Cunninghamella echinulata All 111 isolates were then identified by MALDI-TOF MS using a combination of the Bruker library and BMU database. MALDI-TOF MS identified 55 (49.5%) and 74 (66.7%) isolates at the species and genus levels, respectively, using the Bruker Filamentous Fungi library v1.0 alone. A combination of the Bruker library and BMU database allowed MALDI-TOF MS to identify 90 (81.1%) and 111 (100%) isolates at the species and genus levels, respectively, with a significantly increased accuracy rate. MALDI-TOF MS poorly identified Mucorales when the Bruker library was used alone due to its lack of some fungal species. In contrast, this technique perfectly identified M. irregularis after main spectrum profiles (MSPs) of relevant reference strains were added to the Bruker library. With an expanded Bruker library, MALDI-TOF MS is an effective tool for the identification of pathogenic Mucorales. Copyright © 2018 American Society for Microbiology.

  17. CERN n_TOF Facility: Performance Report

    CERN Document Server

    n_TOF, Collaboration

    2003-01-01

    This report describes the basic characteristics and the performances of the new neutron time-of-flight facility, n_TOF, recently set in operation at CERN. The report is divided into three parts. In the first part, a description of the characteristics of the installation, up to the experimental area (EAR-1) is presented. This includes the proton extraction line from the PS, the spallation module (the lead target and its cooling and moderation systems) and the neutron beam window. A description of the neutron time-of-flight line with the vacuum system, shielding and collimation is also included in this part. In the second part, matters related to safety issues, including radiation and dose estimates and measurements in the target area are discussed. In the third part, a description of the experimental set up in EAR-1 is presented. This includes the data acquisition systems, the beam monitoring systems and the detectors for capture and for fission measurements. The measurements performed in order to derive the m...

  18. TOF-SIMS Analysis of Red Color Inks of Writing and Printing Tools on Questioned Documents.

    Science.gov (United States)

    Lee, Jihye; Nam, Yun Sik; Min, Jisook; Lee, Kang-Bong; Lee, Yeonhee

    2016-05-01

    Time-of-flight secondary ion mass spectrometry (TOF-SIMS) is a well-established surface technique that provides both elemental and molecular information from several monolayers of a sample surface while also allowing depth profiling or image mapping to be performed. Static TOF-SIMS with improved performances has expanded the application of TOF-SIMS to the study of a variety of organic, polymeric, biological, archaeological, and forensic materials. In forensic investigation, the use of a minimal sample for the analysis is preferable. Although the TOF-SIMS technique is destructive, the probing beams have microsized diameters so that only small portion of the questioned sample is necessary for the analysis, leaving the rest available for other analyses. In this study, TOF-SIMS and attenuated total reflectance Fourier transform infrared (ATR-FTIR) were applied to the analysis of several different pen inks, red sealing inks, and printed patterns on paper. The overlapping areas of ballpoint pen writing, red seal stamping, and laser printing in a document were investigated to identify the sequence of recording. The sequence relations for various cases were determined from the TOF-SIMS mapping image and the depth profile. TOF-SIMS images were also used to investigate numbers or characters altered with two different red pens. TOF-SIMS was successfully used to determine the sequence of intersecting lines and the forged numbers on the paper. © 2016 American Academy of Forensic Sciences.

  19. Screening and confirmation criteria for hormone residue analysis using liquid chromatography accurate mass time-of-flight, Fourier transform ion cyclotron resonance and orbitrap mass spectrometry techniques

    NARCIS (Netherlands)

    Nielen, M.W.F.; Engelen, M.C. van; Zuiderent, R.; Ramaker, R.

    2007-01-01

    An emerging trend is recognised in hormone and veterinary drug residue analysis from liquid chromatography tandem mass spectrometry (LC/MS/MS) based screening and confirmation towards accurate mass alternatives such as LC coupled with time-of-flight (TOF), Fourier transform ion cyclotron resonance

  20. A modified time-of-flight method for precise determination of high speed ratios in molecular beams

    Energy Technology Data Exchange (ETDEWEB)

    Salvador Palau, A.; Eder, S. D., E-mail: sabrina.eder@uib.no; Kaltenbacher, T.; Samelin, B.; Holst, B. [Department of Physics and Technology, University of Bergen, Allégaten 55, 5007 Bergen (Norway); Bracco, G. [Department of Physics and Technology, University of Bergen, Allégaten 55, 5007 Bergen (Norway); CNR-IMEM, Department of Physics, University of Genova, V. Dodecaneso 33, 16146 Genova (Italy)

    2016-02-15

    Time-of-flight (TOF) is a standard experimental technique for determining, among others, the speed ratio S (velocity spread) of a molecular beam. The speed ratio is a measure for the monochromaticity of the beam and an accurate determination of S is crucial for various applications, for example, for characterising chromatic aberrations in focussing experiments related to helium microscopy or for precise measurements of surface phonons and surface structures in molecular beam scattering experiments. For both of these applications, it is desirable to have as high a speed ratio as possible. Molecular beam TOF measurements are typically performed by chopping the beam using a rotating chopper with one or more slit openings. The TOF spectra are evaluated using a standard deconvolution method. However, for higher speed ratios, this method is very sensitive to errors related to the determination of the slit width and the beam diameter. The exact sensitivity depends on the beam diameter, the number of slits, the chopper radius, and the chopper rotation frequency. We present a modified method suitable for the evaluation of TOF measurements of high speed ratio beams. The modified method is based on a systematic variation of the chopper convolution parameters so that a set of independent measurements that can be fitted with an appropriate function are obtained. We show that with this modified method, it is possible to reduce the error by typically one order of magnitude compared to the standard method.

  1. Validity of computational hemodynamics in human arteries based on 3D time-of-flight MR angiography and 2D electrocardiogram gated phase contrast images

    Science.gov (United States)

    Yu, Huidan (Whitney); Chen, Xi; Chen, Rou; Wang, Zhiqiang; Lin, Chen; Kralik, Stephen; Zhao, Ye

    2015-11-01

    In this work, we demonstrate the validity of 4-D patient-specific computational hemodynamics (PSCH) based on 3-D time-of-flight (TOF) MR angiography (MRA) and 2-D electrocardiogram (ECG) gated phase contrast (PC) images. The mesoscale lattice Boltzmann method (LBM) is employed to segment morphological arterial geometry from TOF MRA, to extract velocity profiles from ECG PC images, and to simulate fluid dynamics on a unified GPU accelerated computational platform. Two healthy volunteers are recruited to participate in the study. For each volunteer, a 3-D high resolution TOF MRA image and 10 2-D ECG gated PC images are acquired to provide the morphological geometry and the time-varying flow velocity profiles for necessary inputs of the PSCH. Validation results will be presented through comparisons of LBM vs. 4D Flow Software for flow rates and LBM simulation vs. MRA measurement for blood flow velocity maps. Indiana University Health (IUH) Values Fund.

  2. Use of matrix-assisted laser desorption ionization-time of flight mass spectrometry for identification of molds of the Fusarium genus.

    Science.gov (United States)

    Triest, David; Stubbe, Dirk; De Cremer, Koen; Piérard, Denis; Normand, Anne-Cécile; Piarroux, Renaud; Detandt, Monique; Hendrickx, Marijke

    2015-02-01

    The rates of infection with Fusarium molds are increasing, and a diverse number of Fusarium spp. belonging to different species complexes can cause infection. Conventional species identification in the clinical laboratory is time-consuming and prone to errors. We therefore evaluated whether matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) is a useful alternative. The 289 Fusarium strains from the Belgian Coordinated Collections of Microorganisms (BCCM)/Institute of Hygiene and Epidemiology Mycology (IHEM) culture collection with validated sequence-based identities and comprising 40 species were used in this study. An identification strategy was developed, applying a standardized MALDI-TOF MS assay and an in-house reference spectrum database. In vitro antifungal testing was performed to assess important differences in susceptibility between clinically relevant species/species complexes. We observed that no incorrect species complex identifications were made by MALDI-TOF MS, and 82.8% of the identifications were correct to the species level. This success rate was increased to 91% by lowering the cutoff for identification. Although the identification of the correct species complex member was not always guaranteed, antifungal susceptibility testing showed that discriminating between Fusarium species complexes can be important for treatment but is not necessarily required between members of a species complex. With this perspective, some Fusarium species complexes with closely related members can be considered as a whole, increasing the success rate of correct identifications to 97%. The application of our user-friendly MALDI-TOF MS identification approach resulted in a dramatic improvement in both time and accuracy compared to identification with the conventional method. A proof of principle of our MALDI-TOF MS approach in the clinical setting using recently isolated Fusarium strains demonstrated its validity. Copyright © 2015

  3. Use of Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry for Identification of Molds of the Fusarium Genus

    Science.gov (United States)

    Stubbe, Dirk; De Cremer, Koen; Piérard, Denis; Normand, Anne-Cécile; Piarroux, Renaud; Detandt, Monique; Hendrickx, Marijke

    2014-01-01

    The rates of infection with Fusarium molds are increasing, and a diverse number of Fusarium spp. belonging to different species complexes can cause infection. Conventional species identification in the clinical laboratory is time-consuming and prone to errors. We therefore evaluated whether matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) is a useful alternative. The 289 Fusarium strains from the Belgian Coordinated Collections of Microorganisms (BCCM)/Institute of Hygiene and Epidemiology Mycology (IHEM) culture collection with validated sequence-based identities and comprising 40 species were used in this study. An identification strategy was developed, applying a standardized MALDI-TOF MS assay and an in-house reference spectrum database. In vitro antifungal testing was performed to assess important differences in susceptibility between clinically relevant species/species complexes. We observed that no incorrect species complex identifications were made by MALDI-TOF MS, and 82.8% of the identifications were correct to the species level. This success rate was increased to 91% by lowering the cutoff for identification. Although the identification of the correct species complex member was not always guaranteed, antifungal susceptibility testing showed that discriminating between Fusarium species complexes can be important for treatment but is not necessarily required between members of a species complex. With this perspective, some Fusarium species complexes with closely related members can be considered as a whole, increasing the success rate of correct identifications to 97%. The application of our user-friendly MALDI-TOF MS identification approach resulted in a dramatic improvement in both time and accuracy compared to identification with the conventional method. A proof of principle of our MALDI-TOF MS approach in the clinical setting using recently isolated Fusarium strains demonstrated its validity. PMID:25411180

  4. Two-step Laser Time-of-Flight Mass Spectrometry to Elucidate Organic Diversity in Planetary Surface Materials.

    Science.gov (United States)

    Getty, Stephanie A.; Brinckerhoff, William B.; Cornish, Timothy; Li, Xiang; Floyd, Melissa; Arevalo, Ricardo Jr.; Cook, Jamie Elsila; Callahan, Michael P.

    2013-01-01

    Laser desorption/ionization time-of-flight mass spectrometry (LD-TOF-MS) holds promise to be a low-mass, compact in situ analytical capability for future landed missions to planetary surfaces. The ability to analyze a solid sample for both mineralogical and preserved organic content with laser ionization could be compelling as part of a scientific mission pay-load that must be prepared for unanticipated discoveries. Targeted missions for this instrument capability include Mars, Europa, Enceladus, and small icy bodies, such as asteroids and comets.

  5. One Hundred False-Positive Amphetamine Specimens Characterized by Liquid Chromatography Time-of-Flight Mass Spectrometry.

    Science.gov (United States)

    Marin, Stephanie J; Doyle, Kelly; Chang, Annie; Concheiro-Guisan, Marta; Huestis, Marilyn A; Johnson-Davis, Kamisha L

    2016-01-01

    Some amphetamine (AMP) and ecstacy (MDMA) urine immunoassay (IA) kits are prone to false-positive results due to poor specificity of the antibody. We employed two techniques, high-resolution mass spectrometry (HRMS) and an in silico structure search, to identify compounds likely to cause false-positive results. Hundred false-positive IA specimens for AMP and/or MDMA were analyzed by an Agilent 6230 time-of-flight (TOF) mass spectrometer. Separately, SciFinder (Chemical Abstracts) was used as an in silico structure search to generate a library of compounds that are known to cross-react with AMP/MDMA IAs. Chemical formulas and exact masses of 145 structures were then compared against masses identified by TOF. Compounds known to have cross-reactivity with the IAs were identified in the structure-based search. The chemical formulas and exact masses of 145 structures (of 20 chemical formulas) were compared against masses identified by TOF. Urine analysis by HRMS correlates accurate mass with chemical formulae, but provides little information regarding compound structure. Structural data of targeted antigens can be utilized to correlate HRMS-derived chemical formulas with structural analogs. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. AMOR - the time-of-flight neutron reflectometer at SINQ/PSI

    Science.gov (United States)

    Gupta, Mukul; Gutberlet, T.; Stahn, J.; Keller, P.; Clemens, D.

    2004-07-01

    The apparatus for multioptional reflectometry (AMOR) at SINQ/PSI is a versatile reflectometer operational in the time-of-flight (TOF) mode (in a wavelength range of 0.15 nm <λ < 1.3 nm) as well as in the monochromatic (theta-2theta) mode with both polarized and unpolarized neutrons. AMOR is designed to perform reflectometry measurements in horizontal sample-plane geometry which allows studying both solid-liquid and liquid-liquid interfaces. A pulsed cold neutron beam from the end position of the neutron guide is produced by a dual-chopper system (side-by-side) having two windows at 180^{circ} and rotatable with a maximum frequency of 200 Hz. In the TOF mode, the chopper frequency, width of the gating window and the chopper-detector distance can be selected independently providing a wide range of q-resolution (Delta q/q=1-10&%slash;). Remanent FeCoV/Ti : N supermirrors are used as polarizer/analyzer with a polarization efficiency of sim97&%slash;. For the monochromatic wavelength mode, a Ni/Ti multilayer is used as a monochromator, giving sim50&%slash; reflectivity at a wavelength of 0.47 nm. In the present work, a detailed description of the instrument and setting-up of the polarization option is described. Results from some of the recent studies with polarized neutrons and measurements on liquid surfaces are presented.

  7. Development of a TOF SIMS setup at the Zagreb heavy ion microbeam facility

    Science.gov (United States)

    Tadić, Tonči; Bogdanović Radović, Iva; Siketić, Zdravko; Cosic, Donny Domagoj; Skukan, Natko; Jakšić, Milko; Matsuo, Jiro

    2014-08-01

    We describe a new Time-of-flight Secondary Ion Mass Spectrometry (TOF SIMS) setup for MeV SIMS application, which is constructed and installed at the heavy ion microbeam facility at the Ruđer Bošković Institute in Zagreb. The TOF-SIMS setup is developed for high sensitivity molecular imaging using a heavy ion microbeam that focuses ion beams (from C to I) with sub-micron resolution. Dedicated pulse processing electronics for MeV SIMS application have been developed, enabling microbeam-scanning control, incoming ion microbeam pulsing and molecular mapping. The first results showing measured MeV SIMS spectra as well as molecular maps for samples of interest are presented and discussed.

  8. Development of a TOF SIMS setup at the Zagreb heavy ion microbeam facility

    International Nuclear Information System (INIS)

    Tadić, Tonči; Bogdanović Radović, Iva; Siketić, Zdravko; Cosic, Donny Domagoj; Skukan, Natko; Jakšić, Milko; Matsuo, Jiro

    2014-01-01

    We describe a new Time-of-flight Secondary Ion Mass Spectrometry (TOF SIMS) setup for MeV SIMS application, which is constructed and installed at the heavy ion microbeam facility at the Ruđer Bošković Institute in Zagreb. The TOF-SIMS setup is developed for high sensitivity molecular imaging using a heavy ion microbeam that focuses ion beams (from C to I) with sub-micron resolution. Dedicated pulse processing electronics for MeV SIMS application have been developed, enabling microbeam-scanning control, incoming ion microbeam pulsing and molecular mapping. The first results showing measured MeV SIMS spectra as well as molecular maps for samples of interest are presented and discussed

  9. Capsule Typing of Haemophilus influenzae by Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry.

    Science.gov (United States)

    Månsson, Viktor; Gilsdorf, Janet R; Kahlmeter, Gunnar; Kilian, Mogens; Kroll, J Simon; Riesbeck, Kristian; Resman, Fredrik

    2018-03-01

    Encapsulated Haemophilus influenzae strains belong to type-specific genetic lineages. Reliable capsule typing requires PCR, but a more efficient method would be useful. We evaluated capsule typing by using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. Isolates of all capsule types (a-f and nontypeable; n = 258) and isogenic capsule transformants (types a-d) were investigated. Principal component and biomarker analyses of mass spectra showed clustering, and mass peaks correlated with capsule type-specific genetic lineages. We used 31 selected isolates to construct a capsule typing database. Validation with the remaining isolates (n = 227) showed 100% sensitivity and 92.2% specificity for encapsulated strains (a-f; n = 61). Blinded validation of a supplemented database (n = 50) using clinical isolates (n = 126) showed 100% sensitivity and 100% specificity for encapsulated strains (b, e, and f; n = 28). MALDI-TOF mass spectrometry is an accurate method for capsule typing of H. influenzae.

  10. Evaluation of matrix-assisted laser desorption ionization-time-of-flight mass spectrometry in comparison to rpoB gene sequencing for species identification of bloodstream infection staphylococcal isolates.

    Science.gov (United States)

    Spanu, T; De Carolis, E; Fiori, B; Sanguinetti, M; D'Inzeo, T; Fadda, G; Posteraro, B

    2011-01-01

    As a result of variable expression of biochemical characters, misidentification by conventional phenotypic means often occurs with clinical isolates belonging to Staphylococcus species. Therefore, we evaluated the use of matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS) for the identification of 450 blood isolates of the most relevant staphylococcal species, using sequence analysis of the rpoB gene as the reference method. A correct species identification by MALDI-TOF was obtained in 99.3% (447/450), with only three isolates being misidentified. In addition, MALDI-TOF correctly identified all the staphylococcal subspecies studied, including Staphylococcus capitis subsp. capitis and subsp. urealyticus, Staphylococcus cohnii subsp. urealyticus, Staphylococcus hominis subsp. novobiosepticus and subsp. hominis, Staphylococcus saprophyticus subsp. saprophyticus, Staphylococcus schleiferi subsp. schleiferi and Staphylococcus sciuri subsp. sciuri. Thus, MALDI-TOF MS-based species identification of staphylococci can be routinely achieved without any substantial costs for consumables or the time needed for labour-intensive DNA sequence analysis. © 2010 The Authors. Journal Compilation © 2010 European Society of Clinical Microbiology and Infectious Diseases.

  11. Nanoscale Affinity Chip Interface for Coupling Inhibition SPR Immunosensor Screening with Nano-LC TOF MS

    NARCIS (Netherlands)

    Marchesini, G.R.; Buijs, J.; Haasnoot, W.; Hooijerink, H.; Jansson, O.; Nielen, M.W.F.

    2008-01-01

    The on-line nanoscale coupling of a surface plasmon resonance (SPR)-based inhibition biosensor immunoassay (iBIA) for the screening of low molecular weight molecules with nano-liquid-chromatography electrospray ionization time-of-flight mass spectrometry (nano-LC ESI TOF MS) for identification is

  12. PROCEDURE ENABLING SIMULATION AND IN-DEPTH ANALYSIS OF OPTICAL EFFECTS IN CAMERA-BASED TIME-OF-FLIGHT SENSORS

    Directory of Open Access Journals (Sweden)

    M. Baumgart

    2018-05-01

    Full Text Available This paper presents a simulation approach for Time-of-Flight cameras to estimate sensor performance and accuracy, as well as to help understanding experimentally discovered effects. The main scope is the detailed simulation of the optical signals. We use a raytracing-based approach and use the optical path length as the master parameter for depth calculations. The procedure is described in detail with references to our implementation in Zemax OpticStudio and Python. Our simulation approach supports multiple and extended light sources and allows accounting for all effects within the geometrical optics model. Especially multi-object reflection/scattering ray-paths, translucent objects, and aberration effects (e.g. distortion caused by the ToF lens are supported. The optical path length approach also enables the implementation of different ToF senor types and transient imaging evaluations. The main features are demonstrated on a simple 3D test scene.

  13. Applications of MALDI-TOF MS in Microbiological identification

    Directory of Open Access Journals (Sweden)

    Soner Yilmaz

    2014-10-01

    Full Text Available MALDI-TOF MS (Matriks assisted laser desorption ionization time of flight mass spectrometry is a new metohod for identification of microorganisms nowadays. This method is based revealing of microorganisms protein profile with ionization of protein structure and these ionized mass pass through the electrical field. Profiles which were obtained from microorganisms compare with database of system thus identification is made by this way. Ribosomal proteins are used in identification which are less affected by enviromental conditions. Fresh culture should preferably use in MALDI-TOF MS identification. Ribosomal proteins can be deteriorate in old cultures. The correct identification rates are changing between 84,1% to 95,2% in routine bacterial isolates. The correct identification rates in yeasts are changing between 85% to 100%. It makes identification in positive blood culture bottles without the need of subculture, also makes identification on urine samples without the need of culture which has greater than 105 microorganisms in a microliter. When it compared with conventional and molecular identification methods, it is more effective on per sample costs and elapsed time on working [TAF Prev Med Bull 2014; 13(5.000: 421-426

  14. TOF-PET scanner configurations for quality assurance in proton therapy: a patient case study

    NARCIS (Netherlands)

    Dendooven, Peter; Diblen, Faruk; Buitenhuis, H.J.T.; Oxley, D.C.; Biegun, A.K.; van der Borden, A.J.; Brandenburg, Sijtze; Cambraia Lopes, P.; van der Schaaf, A.; Schaart, D.R.; Vandenberghe, S.; van 't Veld, A.A.

    2014-01-01

    In order to determine the clinical benefit of positron emission tomography (PET) for dose delivery verification in proton therapy, we performed a patient case study comparing in-situ with in-room time-of-flight (TOF) PET. For the in-situ option, we consider both a (limited-angle) clinical scanner

  15. Microorganisms direct identification from blood culture by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    Science.gov (United States)

    Ferreira, L; Sánchez-Juanes, F; Porras-Guerra, I; García-García, M I; García-Sánchez, J E; González-Buitrago, J M; Muñoz-Bellido, J L

    2011-04-01

    Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) allows a fast and reliable bacterial identification from culture plates. Direct analysis of clinical samples may increase its usefulness in samples in which a fast identification of microorganisms can guide empirical treatment, such as blood cultures (BC). Three hundred and thirty BC, reported as positive by the automated BC incubation device, were processed by conventional methods for BC processing, and by a fast method based on direct MALDI-TOF MS. Three hundred and eighteen of them yield growth on culture plates, and 12 were false positive. The MALDI-TOF MS-based method reported that no peaks were found, or the absence of a reliable identification profile, in all these false positive BC. No mixed cultures were found. Among these 318 BC, we isolated 61 Gram-negatives (GN), 239 Gram-positives (GP) and 18 fungi. Microorganism identifications in GN were coincident with conventional identification, at the species level, in 83.3% of BC and, at the genus level, in 96.6%. In GP, identifications were coincident with conventional identification in 31.8% of BC at the species level, and in 64.8% at the genus level. Fungaemia was not reliably detected by MALDI-TOF. In 18 BC positive for Candida species (eight C. albicans, nine C. parapsilosis and one C. tropicalis), no microorganisms were identified at the species level, and only one (5.6%) was detected at the genus level. The results of the present study show that this fast, MALDI-TOF MS-based method allows bacterial identification directly from presumptively positive BC in a short time (<30 min), with a high accuracy, especially when GN bacteria are involved. © 2010 The Authors. Clinical Microbiology and Infection © 2010 European Society of Clinical Microbiology and Infectious Diseases.

  16. Characterizing Neutron Diagnostics on the nTOF Line at SUNY Geneseo

    Science.gov (United States)

    Harrison, Hannah; Seppala, Hannah; Visca, Hannah; Wakwella, Praveen; Fletcher, Kurt; Padalino, Stephen; Forrest, Chad; Regan, Sean; Sangster, Craig

    2016-10-01

    Charged particle beams from SUNY Geneseo's 1.7 MV Tandem Pelletron Accelerator induce nuclear reactions that emit neutrons ranging from 0.5 to 17.9 MeV via 2H(d,n)3He and 11B(d,n)12C. This adjustable neutron source can be used to calibrate ICF and HEDP neutron scintillators for ICF diagnostics. However, gamma rays and muons, which are often present during an accelerator-based calibration, are difficult to differentiate from neutron signals in scintillators. To mitigate this problem, a new neutron time-of-flight (nTOF) line has been constructed. The nTOF timing is measured using the associated particle technique. A charged particle produced by the nuclear reaction serves as a start signal, while its associated neutron is the stop signal. Each reaction is analyzed event-by-event to determine whether the scintillator signal was generated by a neutron, gamma or muon. Using this nTOF technique, the neutron response for different scintillation detectors can be determined. Funded in part by a LLE contract through the DOE.

  17. Polymer Analysis by Liquid Chromatography/Electrospray Ionization Time-of-Flight Mass Spectrometry.

    Science.gov (United States)

    Nielen, M W; Buijtenhuijs, F A

    1999-05-01

    Hyphenation of liquid chromatography (LC) techniques with electrospray ionization (ESI) orthogonal acceleration time-of-flight (oa-TOF) mass spectrometry (MS) provides both MS-based structural information and LC-based quantitative data in polymer analysis. In one experimental setup, three different LC modes are interfaced with MS:  size-exclusion chromatography (SEC/MS), gradient polymer elution chromatography (GPEC/MS), and liquid chromatography at the critical point of adsorption (LCCC/MS). In SEC/MS, both absolute mass calibration of the SEC column based on the polymer itself and determination of monomers and end groups from the mass spectra are achieved. GPEC/MS shows detailed chemical heterogeneity of the polymer and the chemical composition distribution within oligomer groups. In LCCC/MS, the retention behavior is primarily governed by chemical heterogeneities, such as different end group functionalities, and quantitative end group calculations can be easily made. The potential of these methods and the benefit of time-of-flight analyzers in polymer analysis are discussed using SEC/MS of a polydisperse poly(methyl methacrylate) sample, GPEC/MS of dipropoxylated bisphenol A/adipic acid polyester resin, LCCC/MS of alkylated poly(ethylene glycol), and LCCC/MS of terephthalic acid/neopentyl glycol polyester resin.

  18. Clinical evaluation of whole-body oncologic PET with time-of-flight and point-spread function for the hybrid PET/MR system.

    Science.gov (United States)

    Shang, Kun; Cui, Bixiao; Ma, Jie; Shuai, Dongmei; Liang, Zhigang; Jansen, Floris; Zhou, Yun; Lu, Jie; Zhao, Guoguang

    2017-08-01

    Hybrid positron emission tomography/magnetic resonance (PET/MR) imaging is a new multimodality imaging technology that can provide structural and functional information simultaneously. The aim of this study was to investigate the effects of the time-of-flight (TOF) and point-spread function (PSF) on small lesions observed in PET/MR images from clinical patient image sets. This study evaluated 54 small lesions in 14 patients who had undergone 18 F-fluorodeoxyglucose (FDG) PET/MR. Lesions up to 30mm in diameter were included. The PET data were reconstructed with a baseline ordered-subsets expectation-maximization (OSEM) algorithm, OSEM+PSF, OSEM+TOF and OSEM+TOF+PSF. PET image quality and small lesions were visually evaluated and scored by a 3-point scale. A quantitative analysis was then performed using the mean and maximum standardized uptake value (SUV) of the small lesions (SUV mean and SUV max ). The lesions were divided into two groups according to the long-axis diameter and the location respectively and evaluated with each reconstruction algorithm. We also evaluated the background signal by analyzing the SUV liver . OSEM+TOF+PSF provided the highest value and OSEM+TOF or PSF showed a higher value than OSEM for the visual assessment and quantitative analysis. The combination of TOF and PSF increased the SUV mean by 26.6% and the SUV max by 30.0%. The SUV liver was not influenced by PSF or TOF. For the OSEM+TOF+PSF model, the change in SUV mean and SUV max for lesions PET/MR images, potentially improving small lesion detectability. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. A compact Ultra-High Vacuum (UHV) compatible instrument for time of flight-energy measurements of slow heavy reaction products

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsov, A.V.; Veldhuizen, E.J. van; Westerberg, L.; Lyapin, V.G.; Aleklett, K.; Loveland, W.; Bondorf, J.; Jakobsson, B.; Whitlow, H.J.; El Bouanani, M

    2000-10-01

    A compact Ultra-High Vacuum (UHV) compatible instrument for time of flight-energy measurements of slow heavy reaction products from nuclear reactions has been designed and tested at the CELSIUS storage ring in Uppsala. The construction is based on MicroChannel Plate (MCP) time detectors of the electron mirror type and silicon p-i-n diodes, and permits the detectors to be stacked side-by-side to achieve large solid angle coverage. This kind of telescope measures the Time of Flight (ToF) and Energy (E) of the particle from which one can reconstruct mass. The combination of an ultra-thin cluster gas-jet target and thin carbon emitter foils allows one to measure heavy residues down to an energy of {approx}35 keV/nucleon from the interactions of 400 MeV/nucleon {sup 16}O with {sup nat}Xe gas targets.

  20. A compact Ultra High Vacuum (UHV) compatible instrument for time of flight energy measurements of slow heavy reaction products

    International Nuclear Information System (INIS)

    Kuznetsov, A.V.; Loveland, W.; Jakobsson, B.; Whitlow, H.J.; Bouanani, M. El; Univ. of North Texas, Denton, TX

    2000-01-01

    A compact Ultra High Vacuum (UHV) compatible instrument for time of flight energy measurements of slow heavy reaction products from nuclear reactions has been designed and tested at the CELSIUS storage ring in Uppsala. The construction is based on MicroChannel Plate time detectors of the electron mirror type and silicon p-i-n diodes, and permits the detectors to be stacked side-by-side to achieve large solid angle coverage. This kind of telescope measures the Time of Flight (ToF) and Energy (E) of the particle from which one can reconstruct mass. The combination of an ultra-thin cluster gas-jet target and thin carbon emitter foils allows one to measure heavy residues down to an energy of ∼ 35 keV/nucleon from the interactions of 400 MeV/nucleon 16 O with nat Xe gas targets

  1. A compact Ultra High Vacuum (UHV) compatible instrument for time of flight energy measurements of slow heavy reaction products

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsov, A.V. [V.G.Khlopin Radium Institute, St. Petersburg (Russian Federation); Uppsala Univ. (Sweden). The Svedberg Lab.; Veldhuizen, E.J. van; Aleklett, K. [Uppsala Univ., (Sweden). Dept. of Radiation Sciences; Westerberg, L. [Uppsala University (Sweden). The Svedberg Lab.; Lyapin, V.G. [V.G.Khlopin Radium Institute, St. Petersburg (Russian Federation); Loveland, W. [Oregon State Univ., Corvallis, OR (United States). Dept. of Chemistry; Bondorf, J. [Niels Bohr Inst., Copenhagen (Denmark); Jakobsson, B. [Lund Univ. (Sweden). Dept. of Physics; Whitlow, H.J. [Lund Univ. (Sweden). Dept. of Nuclear Physics; Bouanani, M. El [Lund Univ. (Sweden). Dept. of Nuclear Physics; Univ. of North Texas, Denton, TX (United States). Dept. of Physics

    2000-07-01

    A compact Ultra High Vacuum (UHV) compatible instrument for time of flight energy measurements of slow heavy reaction products from nuclear reactions has been designed and tested at the CELSIUS storage ring in Uppsala. The construction is based on MicroChannel Plate time detectors of the electron mirror type and silicon p-i-n diodes, and permits the detectors to be stacked side-by-side to achieve large solid angle coverage. This kind of telescope measures the Time of Flight (ToF) and Energy (E) of the particle from which one can reconstruct mass. The combination of an ultra-thin cluster gas-jet target and thin carbon emitter foils allows one to measure heavy residues down to an energy of {approx} 35 keV/nucleon from the interactions of 400 MeV/nucleon {sup 16}O with {sup nat} Xe gas targets.

  2. A compact Ultra-High Vacuum (UHV) compatible instrument for time of flight-energy measurements of slow heavy reaction products

    International Nuclear Information System (INIS)

    Kuznetsov, A.V.; Veldhuizen, E.J. van; Westerberg, L.; Lyapin, V.G.; Aleklett, K.; Loveland, W.; Bondorf, J.; Jakobsson, B.; Whitlow, H.J.; El Bouanani, M.

    2000-01-01

    A compact Ultra-High Vacuum (UHV) compatible instrument for time of flight-energy measurements of slow heavy reaction products from nuclear reactions has been designed and tested at the CELSIUS storage ring in Uppsala. The construction is based on MicroChannel Plate (MCP) time detectors of the electron mirror type and silicon p-i-n diodes, and permits the detectors to be stacked side-by-side to achieve large solid angle coverage. This kind of telescope measures the Time of Flight (ToF) and Energy (E) of the particle from which one can reconstruct mass. The combination of an ultra-thin cluster gas-jet target and thin carbon emitter foils allows one to measure heavy residues down to an energy of ∼35 keV/nucleon from the interactions of 400 MeV/nucleon 16 O with nat Xe gas targets

  3. keV-Scale sterile neutrino sensitivity estimation with time-of-flight spectroscopy in KATRIN using self-consistent approximate Monte Carlo

    Science.gov (United States)

    Steinbrink, Nicholas M. N.; Behrens, Jan D.; Mertens, Susanne; Ranitzsch, Philipp C.-O.; Weinheimer, Christian

    2018-03-01

    We investigate the sensitivity of the Karlsruhe Tritium Neutrino Experiment (KATRIN) to keV-scale sterile neutrinos, which are promising dark matter candidates. Since the active-sterile mixing would lead to a second component in the tritium β-spectrum with a weak relative intensity of order sin ^2θ ≲ 10^{-6}, additional experimental strategies are required to extract this small signature and to eliminate systematics. A possible strategy is to run the experiment in an alternative time-of-flight (TOF) mode, yielding differential TOF spectra in contrast to the integrating standard mode. In order to estimate the sensitivity from a reduced sample size, a new analysis method, called self-consistent approximate Monte Carlo (SCAMC), has been developed. The simulations show that an ideal TOF mode would be able to achieve a statistical sensitivity of sin ^2θ ˜ 5 × 10^{-9} at one σ , improving the standard mode by approximately a factor two. This relative benefit grows significantly if additional exemplary systematics are considered. A possible implementation of the TOF mode with existing hardware, called gated filtering, is investigated, which, however, comes at the price of a reduced average signal rate.

  4. Physical characterization of a time-of-flight positron emission tomography system for whole-body quantitative studies

    International Nuclear Information System (INIS)

    Soussaline, F.; Campagnolo, R.; Verrey, B.; Bendriem, B.; Bouvier, A.; Lecomte, J.L.; Comar, D.

    1984-01-01

    The design of a first PET system using the time of flight (TOF) information, is aimed at whole-body, quantitative, dynamic, 3D studies. It comprises 3 rings of 96 CsF probes and a ring of 96 BaF/sub 2/ probes. The physical performance was measured: spatial transverse and longitudinal resolution for a reconstructed source, sensitivity, time resolution (480 psec +- 28 psec for CsF and 380 psec +-28 psec for BaF/sub 2/), interplane (< 5% for the means difference for a uniform ring source) and intraplane uniformity (< 4% RMS uncertainty). Calibration in absolute concentration was performed with a precision of 2%. Special attention was directed to the specific advantages of the use of fast crystal -PM tubes for TOF measurements: very fast count rate studies, elimination of random events, and improvement of the S/N ratio. Counts rates up to a million counts per sec for each detector are feasible, without loss due to pile up. Actually, the maximum count rate is 450000 events/sec due to the transfert time to magnetic disc in list mode (30 μCi/cc). At these rates, the random fraction is 30% of the true coincidences rate, while it is less than 3% for concentration of 1 μCi/cc. The sensitivity gain was measured as a function of the object size: 2 for the head of 4.8 the wholebody. Other advantages of TOF as Compton events reduction and the accuracy of attenuation correction coefficients are evaluated for thoracic studies

  5. An improved pseudotargeted metabolomics approach using multiple ion monitoring with time-staggered ion lists based on ultra-high performance liquid chromatography/quadrupole time-of-flight mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yang; Liu, Fang; Li, Peng; He, Chengwei; Wang, Ruibing; Su, Huanxing; Wan, Jian-Bo, E-mail: jbwan@umac.mo

    2016-07-13

    Pseudotargeted metabolomics is a novel strategy integrating the advantages of both untargeted and targeted methods. The conventional pseudotargeted metabolomics required two MS instruments, i.e., ultra-high performance liquid chromatography/quadrupole-time- of-flight mass spectrometry (UHPLC/Q-TOF MS) and UHPLC/triple quadrupole mass spectrometry (UHPLC/QQQ-MS), which makes method transformation inevitable. Furthermore, the picking of ion pairs from thousands of candidates and the swapping of the data between two instruments are the most labor-intensive steps, which greatly limit its application in metabolomic analysis. In the present study, we proposed an improved pseudotargeted metabolomics method that could be achieved on an UHPLC/Q-TOF/MS instrument operated in the multiple ion monitoring (MIM) mode with time-staggered ion lists (tsMIM). Full scan-based untargeted analysis was applied to extract the target ions. After peak alignment and ion fusion, a stepwise ion picking procedure was used to generate the ion lists for subsequent single MIM and tsMIM. The UHPLC/Q-TOF tsMIM MS-based pseudotargeted approach exhibited better repeatability and a wider linear range than the UHPLC/Q-TOF MS-based untargeted metabolomics method. Compared to the single MIM mode, the tsMIM significantly increased the coverage of the metabolites detected. The newly developed method was successfully applied to discover plasma biomarkers for alcohol-induced liver injury in mice, which indicated its practicability and great potential in future metabolomics studies. - Highlights: • An UHPLC/Q-TOF tsMIM MS-based pseudotargeted metabolomics was proposed. • Compared to full scan, the improved method exhibits better repeatability and a wider linear range. • The proposed method could achieve pseudotargeted analysis on one UHPLC/Q-TOF/MS instrument. • The developed method was successfully used to discover biomarkers for alcohol-induced liver injury.

  6. An improved pseudotargeted metabolomics approach using multiple ion monitoring with time-staggered ion lists based on ultra-high performance liquid chromatography/quadrupole time-of-flight mass spectrometry

    International Nuclear Information System (INIS)

    Wang, Yang; Liu, Fang; Li, Peng; He, Chengwei; Wang, Ruibing; Su, Huanxing; Wan, Jian-Bo

    2016-01-01

    Pseudotargeted metabolomics is a novel strategy integrating the advantages of both untargeted and targeted methods. The conventional pseudotargeted metabolomics required two MS instruments, i.e., ultra-high performance liquid chromatography/quadrupole-time- of-flight mass spectrometry (UHPLC/Q-TOF MS) and UHPLC/triple quadrupole mass spectrometry (UHPLC/QQQ-MS), which makes method transformation inevitable. Furthermore, the picking of ion pairs from thousands of candidates and the swapping of the data between two instruments are the most labor-intensive steps, which greatly limit its application in metabolomic analysis. In the present study, we proposed an improved pseudotargeted metabolomics method that could be achieved on an UHPLC/Q-TOF/MS instrument operated in the multiple ion monitoring (MIM) mode with time-staggered ion lists (tsMIM). Full scan-based untargeted analysis was applied to extract the target ions. After peak alignment and ion fusion, a stepwise ion picking procedure was used to generate the ion lists for subsequent single MIM and tsMIM. The UHPLC/Q-TOF tsMIM MS-based pseudotargeted approach exhibited better repeatability and a wider linear range than the UHPLC/Q-TOF MS-based untargeted metabolomics method. Compared to the single MIM mode, the tsMIM significantly increased the coverage of the metabolites detected. The newly developed method was successfully applied to discover plasma biomarkers for alcohol-induced liver injury in mice, which indicated its practicability and great potential in future metabolomics studies. - Highlights: • An UHPLC/Q-TOF tsMIM MS-based pseudotargeted metabolomics was proposed. • Compared to full scan, the improved method exhibits better repeatability and a wider linear range. • The proposed method could achieve pseudotargeted analysis on one UHPLC/Q-TOF/MS instrument. • The developed method was successfully used to discover biomarkers for alcohol-induced liver injury.

  7. In-beam test of the RPC architecture foreseen to be used for the CBM-TOF inner wall

    Science.gov (United States)

    Petriş, M.; Bartoş, D.; Petrovici, M.; Rădulescu, L.; Simion, V.; Deppner, I.; Herrmann, N.; Simon, C.; Frühauf, J.; Kiš, M.; Loizeau, P.-A.

    2018-05-01

    The Time Of Flight (TOF) subsystem is one of the main detectors of the CBM experiment. The TOF wall in conjunction with Silicon Tracking System (STS) is foreseen to identify charged hadrons, i.e. pions, kaons and protons, with a full azimuthal coverage at 2.50 - 250 polar angles. A system time resolution of at least 80 ps, including all contributions, such as electronics jitter and the resolution of the time reference system, is required. Such a performance should be maintained up to a counting rate larger than 30 kHz/cm2 at the most inner region of TOF wall. Our R&D activity has been focused on the development of two-dimensional position sensitive Multi-gap Resistive Plate Counter (MRPC) prototypes for the forward region of the CBM-TOF subdetector, the most demanding zone in terms of granularity and counting rate. The in-beam tests using secondary particles produced in 30 GeV/u Pb ion collisions on a Pb target at SPS - CERN aimed to test the performance of these prototypes in conditions similar to the ones expected at SIS100 at FAIR. The performance of the prototypes is studied in conditions of exposure of the whole active area of the chamber to high multiplicity of reaction products. The results show that this type of MRPC fulfill the challenging requirements of the CBM-TOF wall. Therefore, such an architecture is recommended as basic solution for CBM-TOF inner zone.

  8. Data recording programme for a time-of-flight neutron spectrometer

    International Nuclear Information System (INIS)

    Smit, J.G.

    1975-04-01

    A modular program was written for the acquisition of the measurement data of a rotating crystal neutron spectrometer in a PDP-11/20 computer (16 K core memory). The modules are subroutines called by the higher-order FORTRAN programs. This program, which is carried out under the version 08/02 disk operating system, collects the data of a maximum number of 7 detectors in the core memory via interrupts in the on line mode. The detectors are connected to a time-of-flight unit which assigns the time and the detector number to the signals (minimum width of time channel 0.5 μs). From the T.O.F. unit the signals are passed on to the computer via a CAMAC input register and the CA-11 a branch driver manufactured by DEC. All the measurement data can be graphically displayed on a Tektronix visual display unit (keyboard interrupt). Relevant data are stored on disk and passed on to the central computer (S 4004) for further processing at the end of the experiment. (orig./RF) [de

  9. Time expanding multihit TDC for the BELLE TOF detector at the KEK B-factory

    International Nuclear Information System (INIS)

    Varner, G.; Kichimi, H.; Yamaguchi, H.

    1997-01-01

    Utilizing a time expansion technique, a multihit TDC has been developed for readout of the BELLE TOF detector at the KEK B-Factory. Time digitization consists of three steps: tagging an input signal with respect to a beam collision synchronized reference clock, expansion of this time interval, and readout by a conventional multihit TDC. Using a time expansion factor of 20 and a multihit TDC with a 500 ps LSB, this system provides a precision TOF measurement of 25 ps LSB, ∼20 ps resolution, and with a dead time of less than 1 μs

  10. Development and validation of AccuTOF-DART™ as a screening method for analysis of bank security device and pepper spray components.

    Science.gov (United States)

    Pfaff, Allison M; Steiner, Robert R

    2011-03-20

    Analysis of bank security devices, containing 1-methylaminoanthraquinone (MAAQ) and o-chlorobenzylidenemalononitrile (CS), and pepper sprays, containing capsaicin, is a lengthy process with no specific screening technique to aid in identifying samples of interest. Direct Analysis in Real Time (DART™) ionization coupled with an Accurate Time of Flight (AccuTOF) mass detector is a fast, ambient ionization source that could significantly reduce time spent on these cases and increase the specificity of the screening process. A new method for screening clothing for bank dye and pepper spray, using AccuTOF-DART™ analysis, has been developed. Detection of MAAQ, CS, and capsaicin was achieved via extraction of each compound onto cardstock paper, which was then sampled in the AccuTOF-DART™. All results were verified using gas chromatography coupled with electron impact mass spectrometry. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  11. Quantitative analysis of a brass alloy using CF-LIBS and a laser ablation time-of-flight mass spectrometer

    Science.gov (United States)

    Ahmed, Nasar; Abdullah, M.; Ahmed, Rizwan; Piracha, N. K.; Aslam Baig, M.

    2018-01-01

    We present a quantitative analysis of a brass alloy using laser induced breakdown spectroscopy, energy dispersive x-ray spectroscopy (EDX) and laser ablation time-of-flight mass spectrometry (LA-TOF-MS). The emission lines of copper (Cu I) and zinc (Zn I), and the constituent elements of the brass alloy were used to calculate the plasma parameters. The plasma temperature was calculated from the Boltzmann plot as (10 000  ±  1000) K and the electron number density was determined as (2.0  ±  0.5)  ×  1017 cm-3 from the Stark-broadened Cu I line as well as using the Saha-Boltzmann equation. The elemental composition was deduced using these techniques: the Boltzmann plot method (70% Cu and 30% Zn), internal reference self-absorption correction (63.36% Cu and 36.64% Zn), EDX (61.75% Cu and 38.25% Zn), and LA-TOF (62% Cu and 38% Zn), whereas, the certified composition is (62% Cu and 38% Zn). It was observed that the internal reference self-absorption correction method yields analytical results comparable to that of EDX and LA-TOF-MS.

  12. Quantification, confirmation and screening capability of UHPLC coupled to triple quadrupole and hybrid quadrupole time-of-flight mass spectrometry in pesticide residue analysis.

    Science.gov (United States)

    Grimalt, Susana; Sancho, Juan V; Pozo, Oscar J; Hernández, Félix

    2010-04-01

    The potential of three mass spectrometry (MS) analyzers (triple quadrupole, QqQ; time of flight, TOF; and quadrupole time of flight, QTOF) has been investigated and compared for quantification, confirmation and screening purposes in pesticide residue analysis of fruit and vegetable samples. For this purpose, analytical methodology for multiresidue determination of 11 pesticides, taken as a model, has been developed and validated in nine food matrices for the three mass analyzers coupled to ultra high pressure liquid chromatography. In all cases, limits of quantification around 0.01 mg/kg were reached, fulfilling the most restrictive case of baby-food analysis. Regarding absolute sensitivity, the lower limits of detection were obtained, as expected, for QqQ (100 fg), whereas slightly higher limits (300 fg) were obtained for both TOF and QTOF. Confirmative capacity of each analyzer was studied for each analyte based on the identification points (IPs) criterion, useful for a comprehensive comparison. QTOF mass analyzer showed the highest confirmatory capacity, although QqQ normally led to sufficient number of IPs, even at lower concentration levels. The potential of TOF MS was also investigated for screening purposes. To this aim, around 50 commercial fruits and vegetables samples were analyzed, searching for more than 400 pesticides. TOF MS proved to be an attractive analytical tool for rapid detection and reliable identification of a large number of pesticides thanks to the full spectrum acquisition at accurate mass with satisfactory sensitivity. This process is readily boosted when combined with specialized software packages, together with theoretical exact mass databases. Several pesticides (e.g. carbendazim in citrus and indoxacarb in grape) were detected in the samples. Further unequivocal confirmation of the identity was performed using reference standards and/or QTOF MS/MS experiments. Copyright 2010 John Wiley & Sons, Ltd.

  13. Short communication: Identification of subclinical cow mastitis pathogens in milk by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    Science.gov (United States)

    Barreiro, J R; Ferreira, C R; Sanvido, G B; Kostrzewa, M; Maier, T; Wegemann, B; Böttcher, V; Eberlin, M N; dos Santos, M V

    2010-12-01

    Subclinical mastitis is a common and easily disseminated disease in dairy herds. Its routine diagnosis via bacterial culture and biochemical identification is a difficult and time-consuming process. In this work, we show that matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) allows bacterial identification with high confidence and speed (1 d for bacterial growth and analysis). With the use of MALDI-TOF MS, 33 bacterial culture isolates from milk of different dairy cows from several farms were analyzed, and the results were compared with those obtained by classical biochemical methods. This proof-of-concept case demonstrates the reliability of MALDI-TOF MS bacterial identification, and its increased selectivity as illustrated by the additional identification of coagulase-negative Staphylococcus species and mixed bacterial cultures. Matrix-assisted laser desorption-ionization mass spectrometry considerably accelerates the diagnosis of mastitis pathogens, especially in cases of subclinical mastitis. More immediate and efficient animal management strategies for mastitis and milk quality control in the dairy industry can therefore be applied. Copyright © 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  14. Gram-stain plus MALDI-TOF MS (Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry for a rapid diagnosis of urinary tract infection.

    Directory of Open Access Journals (Sweden)

    Almudena Burillo

    Full Text Available Microbiological confirmation of a urinary tract infection (UTI takes 24-48 h. In the meantime, patients are usually given empirical antibiotics, sometimes inappropriately. We assessed the feasibility of sequentially performing a Gram stain and MALDI-TOF MS mass spectrometry (MS on urine samples to anticipate clinically useful information. In May-June 2012, we randomly selected 1000 urine samples from patients with suspected UTI. All were Gram stained and those yielding bacteria of a single morphotype were processed for MALDI-TOF MS. Our sequential algorithm was correlated with the standard semiquantitative urine culture result as follows: Match, the information provided was anticipative of culture result; Minor error, the information provided was partially anticipative of culture result; Major error, the information provided was incorrect, potentially leading to inappropriate changes in antimicrobial therapy. A positive culture was obtained in 242/1000 samples. The Gram stain revealed a single morphotype in 207 samples, which were subjected to MALDI-TOF MS. The diagnostic performance of the Gram stain was: sensitivity (Se 81.3%, specificity (Sp 93.2%, positive predictive value (PPV 81.3%, negative predictive value (NPV 93.2%, positive likelihood ratio (+LR 11.91, negative likelihood ratio (-LR 0.20 and accuracy 90.0% while that of MALDI-TOF MS was: Se 79.2%, Sp 73.5, +LR 2.99, -LR 0.28 and accuracy 78.3%. The use of both techniques provided information anticipative of the culture result in 82.7% of cases, information with minor errors in 13.4% and information with major errors in 3.9%. Results were available within 1 h. Our serial algorithm provided information that was consistent or showed minor errors for 96.1% of urine samples from patients with suspected UTI. The clinical impacts of this rapid UTI diagnosis strategy need to be assessed through indicators of adequacy of treatment such as a reduced time to appropriate empirical treatment or

  15. Studies of charge transport in DNA films using the time-of-flight (TOF) technique

    Science.gov (United States)

    Yaney, Perry P.; Gorman, Timothy; Ouchen, Fahima; Grote, James G.

    2011-09-01

    Measurements were carried out on salmon DNA-based films, including as-received DNA (molecular weight, MW>2000 kDa) without and with hexacetyltrimethl-ammonium chloride (CTMA) surfactant, and sonicated DNA of MW~200 kDa with CTMA. The test specimens were spin-coated or drop-cast films on ITO-coated quartz slides with a gold charge-collecting electrode. To protect the films from atmospheric influences, the TOF devices were coated with a 200-400 nm polyurethane passivation layer. A quadrupled 20 ns, pulsed Nd:YAG laser with output at 266 nm was used for charge injection. The room temperature photoconductive transients were dispersive to varying degrees with hole mobilities in DNA materials films ranging between 2E-5 to 6E-3 cm2/Vs for fields ranging from 8 to 58 kV/cm. Only hole response was observed in DNA. The dispersive data were analyzed using a simple, quasi-empirical equation for the photocurrent transient data.

  16. Clinical Evaluation of PET Image Quality as a Function of Acquisition Time in a New TOF-PET/MRI Compared to TOF-PET/CT--Initial Results.

    Science.gov (United States)

    Zeimpekis, Konstantinos G; Barbosa, Felipe; Hüllner, Martin; ter Voert, Edwin; Davison, Helen; Veit-Haibach, Patrick; Delso, Gaspar

    2015-10-01

    The purpose of this study was to compare only the performance of the PET component between a TOF-PET/CT (henceforth noted as PET/CT) scanner and an integrated TOF-PET/MRI (henceforth noted as PET/MRI) scanner concerning image quality parameters and quantification in terms of standardized uptake value (SUV) as a function of acquisition time (a surrogate of dose). The CT and MR image quality were not assessed, and that is beyond the scope of this study. Five brain and five whole-body patients were included in the study. The PET/CT scan was used as a reference and the PET/MRI acquisition time was consecutively adjusted, taking into account the decay between the scans in order to expose both systems to the same amount of the emitted signal. The acquisition times were then retrospectively reduced to assess the performance of the PET/MRI for lower count rates. Image quality, image sharpness, artifacts, and noise were evaluated. SUV measurements were taken in the liver and in the white matter to compare quantification. Quantitative evaluation showed strong correlation between PET/CT and PET/MRI brain SUVs. Liver correlation was good, however, with lower uptake estimation in PET/MRI, partially justified by bio-redistribution. The clinical evaluation showed that PET/MRI offers higher image quality and sharpness with lower levels of noise and artifacts compared to PET/CT with reduced acquisition times for whole-body scans while for brain scans there is no significant difference. The TOF-PET/MRI showed higher image quality compared to TOF-PET/CT as tested with reduced imaging times. However, this result accounts mainly for body imaging, while no significant differences were found in brain imaging.

  17. n_TOF facility past and future

    CERN Document Server

    Vlachoudis, V

    2010-01-01

    The neutron Time of Flight (n_TOF) facility at CERN is a source of high flux of neutrons obtained by the spallation process of 20 GeV/c protons onto a solid lead target and the remarkable beam intensity of the Proton Synchrotron (PS). From November 2008 the n_TOF facility resumed operation after a halt of 4 years due to radio-protection issues. It features a new lead spallation target with a more robust design, more efficient cooling, separate moderator circuit, target area ventilation and most important without any loss of the unique neutron performances of the previous target. Moreover the separate moderator circuit will permit in the future the use of borated or heavy water instead of normal water to reduce the 2.2 MeV gamma background for the neutron capture measurements. The facility has been commissioned in Nov 2008, with performances similar of the previous target and predicted by Monte Carlo simulations. The facility will resume operation for physics from May 2009 with 4 experimental proposals already...

  18. High-throughput identification of bacteria and yeast by matrix-assisted laser desorption ionization-time of flight mass spectrometry in conventional medical microbiology laboratories.

    Science.gov (United States)

    van Veen, S Q; Claas, E C J; Kuijper, Ed J

    2010-03-01

    Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) is suitable for high-throughput and rapid diagnostics at low costs and can be considered an alternative for conventional biochemical and molecular identification systems in a conventional microbiological laboratory. First, we evaluated MALDI-TOF MS using 327 clinical isolates previously cultured from patient materials and identified by conventional techniques (Vitek-II, API, and biochemical tests). Discrepancies were analyzed by molecular analysis of the 16S genes. Of 327 isolates, 95.1% were identified correctly to genus level, and 85.6% were identified to species level by MALDI-TOF MS. Second, we performed a prospective validation study, including 980 clinical isolates of bacteria and yeasts. Overall performance of MALDI-TOF MS was significantly better than conventional biochemical systems for correct species identification (92.2% and 83.1%, respectively) and produced fewer incorrect genus identifications (0.1% and 1.6%, respectively). Correct species identification by MALDI-TOF MS was observed in 97.7% of Enterobacteriaceae, 92% of nonfermentative Gram-negative bacteria, 94.3% of staphylococci, 84.8% of streptococci, 84% of a miscellaneous group (mainly Haemophilus, Actinobacillus, Cardiobacterium, Eikenella, and Kingella [HACEK]), and 85.2% of yeasts. MALDI-TOF MS had significantly better performance than conventional methods for species identification of staphylococci and genus identification of bacteria belonging to HACEK group. Misidentifications by MALDI-TOF MS were clearly associated with an absence of sufficient spectra from suitable reference strains in the MALDI-TOF MS database. We conclude that MALDI-TOF MS can be implemented easily for routine identification of bacteria (except for pneumococci and viridans streptococci) and yeasts in a medical microbiological laboratory.

  19. Early identification of microorganisms in blood culture prior to the detection of a positive signal in the BACTEC FX system using matrix-assisted laser desorption/ionization-time of flight mass spectrometry.

    Science.gov (United States)

    Wang, Ming-Cheng; Lin, Wei-Hung; Yan, Jing-Jou; Fang, Hsin-Yi; Kuo, Te-Hui; Tseng, Chin-Chung; Wu, Jiunn-Jong

    2015-08-01

    Matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) is a valuable method for rapid identification of blood stream infection (BSI) pathogens. Integration of MALDI-TOF MS and blood culture system can speed the identification of causative BSI microorganisms. We investigated the minimal microorganism concentrations of common BSI pathogens required for positive blood culture using BACTEC FX and for positive identification using MALDI-TOF MS. The time to detection with positive BACTEC FX and minimal incubation time with positive MALDI-TOF MS identification were determined for earlier identification of common BSI pathogens. The minimal microorganism concentrations required for positive blood culture using BACTEC FX were >10(7)-10(8) colony forming units/mL for most of the BSI pathogens. The minimal microorganism concentrations required for identification using MALDI-TOF MS were > 10(7) colony forming units/mL. Using simulated BSI models, one can obtain enough bacterial concentration from blood culture bottles for successful identification of five common Gram-positive and Gram-negative bacteria using MALDI-TOF MS 1.7-2.3 hours earlier than the usual time to detection in blood culture systems. This study provides an approach to earlier identification of BSI pathogens prior to the detection of a positive signal in the blood culture system using MALDI-TOF MS, compared to current methods. It can speed the time for identification of BSI pathogens and may have benefits of earlier therapy choice and on patient outcome. Copyright © 2013. Published by Elsevier B.V.

  20. Implementation of a new data acquisition and exclusive measurement of the reaction vector pp → ppπ+π- at the time of flight spectrometer COSY-TOF

    International Nuclear Information System (INIS)

    Erhardt, Arthur

    2009-01-01

    The two-pion production pp ppπ + π - was measured exclusively at T p =793 MeV using the short version of the COSY-TOF spectrometer. In this measurement both the new EMS-based data acquisition system and a delayed pulse technique have been used, which, in addition to particle identification, energy, time of flight, and angle determination provides pi+ identification for pions in the theta lab range from 2 to 28 degrees. The measured total cross section for this reaction is σ=4.1(4) μb at T p =793 MeV. Due to an improved efficiency correction, the earlier measured total cross section has been corrected to σ=1.6 μb at T p =747 MeV. This value agrees nicely with the results from WASA/PROMICE. The data are compared to previous data and theoretical models which have been developed to understand the results from WASA/PROMICE measurements. The measurements have been carried out with transversally polarized proton beam which made it possible to determine analyzing powers for different subsystems of the two pion production reaction. In contrast to predictions we find significant analyzing power values up to A y =0.3. The data in the range of Roper excitation confirm that the dominating π π decay channel is N * →Nσ. (orig.)

  1. Simplifying the Preparation of Pollen Grains for MALDI-TOF MS Classification

    Directory of Open Access Journals (Sweden)

    Franziska Lauer

    2017-03-01

    Full Text Available Matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS is a well-implemented analytical technique for the investigation of complex biological samples. In MS, the sample preparation strategy is decisive for the success of the measurements. Here, sample preparation processes and target materials for the investigation of different pollen grains are compared. A reduced and optimized sample preparation process prior to MALDI-TOF measurement is presented using conductive carbon tape as target. The application of conductive tape yields in enhanced absolute signal intensities and mass spectral pattern information, which leads to a clear separation in subsequent pattern analysis. The results will be used to improve the taxonomic differentiation and identification, and might be useful for the development of a simple routine method to identify pollen based on mass spectrometry.

  2. Joint Temperature-Lasing Mode Compensation for Time-of-Flight LiDAR Sensors

    Directory of Open Access Journals (Sweden)

    Anas Alhashimi

    2015-12-01

    Full Text Available We propose an expectation maximization (EM strategy for improving the precision of time of flight (ToF light detection and ranging (LiDAR scanners. The novel algorithm statistically accounts not only for the bias induced by temperature changes in the laser diode, but also for the multi-modality of the measurement noises that is induced by mode-hopping effects. Instrumental to the proposed EM algorithm, we also describe a general thermal dynamics model that can be learned either from just input-output data or from a combination of simple temperature experiments and information from the laser’s datasheet. We test the strategy on a SICK LMS 200 device and improve its average absolute error by a factor of three.

  3. Improved 3D reconstruction in smart-room environments using ToF imaging

    DEFF Research Database (Denmark)

    Guðmundsson, Sigurjón Árni; Pardas, Montse; Casas, Josep R.

    2010-01-01

    This paper presents the use of Time-of-Flight (ToF) cameras in smart-rooms and how this leads to improved results in segmenting the people in the room from the background and consequently better 3D reconstruction of foreground objects. A calibrated rig consisting of one Swissranger SR3100 Time-of...... of eliminating regional artifacts and therefore creating a more robust input for higher level applications such as people tracking or human motion analysis....

  4. Neutral particle time-of-flight analyzer for the Tandem Mirror Experiment Upgrade (TMX-U)

    International Nuclear Information System (INIS)

    Hibbs, S.M.; Carter, M.R.; Coutts, G.W.

    1985-01-01

    We describe the design and performance of a time-of-flight (ToF) analyzer being built for installation on the east end cell of the Tandem Mirror Experiment Upgrade (TMX-U). Its primary purpose is to measure the velocity distribution of escaping charge exchange neutral particles having energies between 20 and 5000 electron volts (eV). It also enables direct determination of the thermal barrier potential when used in conjunction with the plasma potential diagnostic and the end loss ion spectrometer. In addition, it can measure the velocity distribution of passing ions leaving the central cell and of ions trapped in the thermal barrier

  5. Chemical Visualization of Sweat Pores in Fingerprints Using GO-Enhanced TOF-SIMS.

    Science.gov (United States)

    Cai, Lesi; Xia, Meng-Chan; Wang, Zhaoying; Zhao, Ya-Bin; Li, Zhanping; Zhang, Sichun; Zhang, Xinrong

    2017-08-15

    Time-of-flight secondary ion mass spectrometry (TOF-SIMS) has been used in imaging of small molecules (SIMS was used to detect and image relatively high mass molecules such as poison, alkaloids (>600 Da) and controlled drugs, and antibiotics (>700 Da) in fingerprints. Detail features of fingerprints such as the number and distribution of sweat pores in a ridge and even the delicate morphology of one pore were clearly revealed in SIMS images of relatively high mass molecules. The detail features combining with identified chemical composition were sufficient to establish a human identity and link the suspect to a crime scene. The wide detectable mass range and high spatial resolution make GO-enhanced TOF-SIMS a promising tool in accurate and fast analysis of fingerprints, especially in fragmental fingerprint analysis.

  6. A high-resolution, multi-stop, time-to-digital converter for nuclear time-of-flight measurements

    International Nuclear Information System (INIS)

    Spencer, D.F.; Cole, J.; Drigert, M.; Aryaeinejad, R.

    2006-01-01

    A high-resolution, multi-stop, time-to-digital converter (TDC) was designed and developed to precisely measure the times-of-flight (TOF) of incident neutrons responsible for induced fission and capture reactions on actinide targets. The minimum time resolution is ±1 ns. The TDC design was implemented into a single, dual-wide CAMAC module. The CAMAC bus is used for command and control as well as an alternative data output. A high-speed ECL interface, compatible with LeCroy FERA modules, was also provided for the principle data output path. An Actel high-speed field programmable gate array (FPGA) chip was incorporated with an external oscillator and an internal multiple clock phasing system. This device implemented the majority of the high-speed register functions, the state machine for the FERA interface, and the high-speed counting circuit used for the TDC conversion. An external microcontroller was used to monitor and control system-level changes. In this work we discuss the performance of this TDC module as well as its application

  7. Time is of essence; rapid identification of veterinary pathogens using MALDI TOF

    DEFF Research Database (Denmark)

    Nonnemann, Bettina; Dalsgaard, Inger; Pedersen, Karl

    Rapid and accurate identification of microbial pathogens is a cornerstone for timely and correct treatment of diseases of livestock and fish. The utility of the MALDI-TOF technique in the diagnostic laboratory is directly related to the quality of mass spectra and quantity of different microbial...

  8. An improved pseudotargeted metabolomics approach using multiple ion monitoring with time-staggered ion lists based on ultra-high performance liquid chromatography/quadrupole time-of-flight mass spectrometry.

    Science.gov (United States)

    Wang, Yang; Liu, Fang; Li, Peng; He, Chengwei; Wang, Ruibing; Su, Huanxing; Wan, Jian-Bo

    2016-07-13

    Pseudotargeted metabolomics is a novel strategy integrating the advantages of both untargeted and targeted methods. The conventional pseudotargeted metabolomics required two MS instruments, i.e., ultra-high performance liquid chromatography/quadrupole-time- of-flight mass spectrometry (UHPLC/Q-TOF MS) and UHPLC/triple quadrupole mass spectrometry (UHPLC/QQQ-MS), which makes method transformation inevitable. Furthermore, the picking of ion pairs from thousands of candidates and the swapping of the data between two instruments are the most labor-intensive steps, which greatly limit its application in metabolomic analysis. In the present study, we proposed an improved pseudotargeted metabolomics method that could be achieved on an UHPLC/Q-TOF/MS instrument operated in the multiple ion monitoring (MIM) mode with time-staggered ion lists (tsMIM). Full scan-based untargeted analysis was applied to extract the target ions. After peak alignment and ion fusion, a stepwise ion picking procedure was used to generate the ion lists for subsequent single MIM and tsMIM. The UHPLC/Q-TOF tsMIM MS-based pseudotargeted approach exhibited better repeatability and a wider linear range than the UHPLC/Q-TOF MS-based untargeted metabolomics method. Compared to the single MIM mode, the tsMIM significantly increased the coverage of the metabolites detected. The newly developed method was successfully applied to discover plasma biomarkers for alcohol-induced liver injury in mice, which indicated its practicability and great potential in future metabolomics studies. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Reliable identification at the species level of Brucella isolates with MALDI-TOF-MS

    Directory of Open Access Journals (Sweden)

    Lista Florigio

    2011-12-01

    Full Text Available Abstract Background The genus Brucella contains highly infectious species that are classified as biological threat agents. The timely detection and identification of the microorganism involved is essential for an effective response not only to biological warfare attacks but also to natural outbreaks. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS is a rapid method for the analysis of biological samples. The advantages of this method, compared to conventional techniques, are rapidity, cost-effectiveness, accuracy and suitability for the high-throughput identification of bacteria. Discrepancies between taxonomy and genetic relatedness on the species and biovar level complicate the development of detection and identification assays. Results In this study, the accurate identification of Brucella species using MALDI-TOF-MS was achieved by constructing a Brucella reference library based on multilocus variable-number tandem repeat analysis (MLVA data. By comparing MS-spectra from Brucella species against a custom-made MALDI-TOF-MS reference library, MALDI-TOF-MS could be used as a rapid identification method for Brucella species. In this way, 99.3% of the 152 isolates tested were identified at the species level, and B. suis biovar 1 and 2 were identified at the level of their biovar. This result demonstrates that for Brucella, even minimal genomic differences between these serovars translate to specific proteomic differences. Conclusions MALDI-TOF-MS can be developed into a fast and reliable identification method for genetically highly related species when potential taxonomic and genetic inconsistencies are taken into consideration during the generation of the reference library.

  10. TOF neutron diffraction study of archaeological ceramics

    International Nuclear Information System (INIS)

    Kockelmann, W.; Kirfel, A.

    1999-01-01

    Complete text of publication follows. The time-of flight (TOF) neutron diffractometer ROTAX [1] at ISIS has been used for identification and quantitative phase analysis of archaeological pottery. Neutron diffraction yields mineral phase fractions which, in parallel with information obtained from other archaeometric examination techniques, can provide a fingerprint that can be used to identify provenance and reconstruct methods of manufacturing of an archaeological ceramic product. Phase fractions obtained from a 13th century Rhenish stoneware jar compare well with those obtained from a powder sample prepared from the same fragment. This indicates that reliable results can be obtained by illuminating a large piece or even an intact ceramic object making TOF neutron diffraction a truly non-destructive examination technique. In comparison to X-ray diffraction, information from the bulk sample rather than from surface regions is obtained. ROTAX allows for a simple experimental set-up, free of sample movements. Programmes of archaeological study on ROTAX involve Russian samples (Upper-Volga culture, 5000-2000 BC), Greek pottery, (Agora/Athens, 500-300 BC), and medieval German earthenware and stoneware ceramics (Siegburg waster heap, 13-15th century). (author)

  11. Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry Analysis of Gram-Positive, Catalase-Negative Cocci Not Belonging to the Streptococcus or Enterococcus Genus and Benefits of Database Extension

    DEFF Research Database (Denmark)

    Christensen, Jens Jørgen; Dargis, Rimtas; Hammer, Monja

    2012-01-01

    Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry with a Bruker Daltonics microflex LT system was applied to 90 well-characterized catalase-negative, Gram-positive cocci not belonging to the streptococci or enterococci. Biotyper version 2.0.43.1 software...

  12. Neutron cross-sections for next generation reactors: New data from n_TOF

    CERN Document Server

    Colonna, N; Eleftheriadis, C; Leeb, H; Tain, J L; Calvino, F; Herrera-Martinez, A; Savvidis, I; Vlachoudis, V; Haas, B; Abbondanno, U; Vannini, G; Konovalov, V; Marques, L; Wiescher, M; de Albornoz, A Carrillo; Audouin, L; Mengoni, A; Quesada, J; Becvar, F; Plag, R; Cennini, P; Mosconi, M; Duran, I; Rauscher, T; Ketlerov, V; Couture, A; Capote, R; Sarchiapone, L; Pigni, M T; Vlastou, R; Domingo-Pardo, C; Pavlopoulos, P; Karamanis, D; Krticka, M; Jericha, E; Ferrari, A; Martinez, T; Oberhummer, H; Karadimos, D; Plompen, A; Isaev, S; Terlizzi, R; Kaeppeler, F; Cortes, G; Cox, J; Voss, F; Pretel, C; Berthoumieux, E; Dolfini, R; Vaz, P; Griesmayer, E; Heil, M; Lopes, I; Lampoudis, C; Walter, S; Calviani, M; Gonzalez-Romero, E; Stephan, C; Igashira, M; Papachristodoulou, C; Aerts, G; Tavora, L; Wendler, H; Milazzo, P M; Rudolf, G; Andrzejewski, J; Villamarin, D; Ferreira-Marques, R; O'Brien, S; Gunsing, F; Reifarth, R; Perrot, L; Lindote, A; Neves, F; Poch, A; Gramegna, F; Kerveno, M; Rubbia, C; Koehler, P; Dahlfors, M; Wisshak, K; Fujii, K; Salgado, J; Dridi, W; Ventura, A; Andriamonje, S; Dillman, I; Assimakopoulos, P; Ferrant, L; Lozano, M; Patronis, N; Chiaveri, E; Guerrero, C; Kadi, Y; Baumann, P; Moreau, C; Oshima, M; Rullhusen, P; Furman, W; David, S; Marrone, S; Paradela, C; Vicente, M C; Tassan-Got, L; Cano-Ott, D; Alvarez-Velarde, F; Massimi, C; Mastinu, P; Pancin, J; Papadopoulos, C; Tagliente, G; Alvarez, H; Haight, R; Goverdovski, A; Chepel, V; Rosetti, M; Kossionides, E; Badurek, G; Marganiec, J; Lukic, S; Frais-Koelbl, H; Pavlik, A; Goncalves, I

    2010-01-01

    In 2002, an innovative neutron time-of-flight facility started operation at CERN: n\\_TOF. The main characteristics that make the new facility unique are the high instantaneous neutron flux, high resolution and wide energy range. Combined with state-of-the-art detectors and data acquisition system, these features have allowed to collect high accuracy neutron cross-section data on a variety of isotopes, many of which radioactive, of interest for Nuclear Astrophysics and for applications to advanced reactor technologies. A review of the most important results on capture and fission reactions obtained so far at n\\_TOF is presented, together with plans for new measurements related to nuclear industry. (C) 2010 Elsevier Ltd. All rights reserved.

  13. Bayesian Peptide Peak Detection for High Resolution TOF Mass Spectrometry.

    Science.gov (United States)

    Zhang, Jianqiu; Zhou, Xiaobo; Wang, Honghui; Suffredini, Anthony; Zhang, Lin; Huang, Yufei; Wong, Stephen

    2010-11-01

    In this paper, we address the issue of peptide ion peak detection for high resolution time-of-flight (TOF) mass spectrometry (MS) data. A novel Bayesian peptide ion peak detection method is proposed for TOF data with resolution of 10 000-15 000 full width at half-maximum (FWHW). MS spectra exhibit distinct characteristics at this resolution, which are captured in a novel parametric model. Based on the proposed parametric model, a Bayesian peak detection algorithm based on Markov chain Monte Carlo (MCMC) sampling is developed. The proposed algorithm is tested on both simulated and real datasets. The results show a significant improvement in detection performance over a commonly employed method. The results also agree with expert's visual inspection. Moreover, better detection consistency is achieved across MS datasets from patients with identical pathological condition.

  14. The time-of-flight small-angle neutron diffractometer (SAD) at IPNS, Argonne National Laboratory

    International Nuclear Information System (INIS)

    Thiyagarajan, P.; Epperson, J.E.; Crawford, R.K.; Carpenter, J.M.; Klippert, T.E.; Wozniak, D.G.

    1997-01-01

    The design, development and performance of the time-of-flight (TOF) small-angle diffractometer (SAD) at the Intense Pulsed Neutron Source (IPNS) at Argonne National Laboratory are described. Similar TOF-SANS instruments are in operation at the pulsed neutron sources at Los Alamos National Laboratory, USA, at Rutherford Appleton Laboratory, England, and at KEK, Japan. These instruments have an advantage by comparison with their steady-state counterparts in that a relatively wide range of momentum transfer (q) can be monitored in a single experiment without the need to alter the collimation or the sample-to-detector distance. This feature makes SANS experiments easy and very effective for studying systems such as those undergoing phase transitions under different conditions, samples that cannot be easily reproduced for repetitive experiments, and systems under high temperature, pressure or shear. Three standard samples are used to demonstrate that the quality of the SANS data from SAD is comparable with those from other established steady-state SANS facilities. Two examples are given to illustrate that the wide q region accessible in a single measurement at SAD is very effective for following the time-dependent phase transitions in paraffins and temperature- and pressure-dependent phase transitions in model biomembranes. (orig.)

  15. Rapid identification of bacteria in positive blood culture by matrix-assisted laser desorption ionization time-of-flight mass spectrometry.

    Science.gov (United States)

    Schmidt, V; Jarosch, A; März, P; Sander, C; Vacata, V; Kalka-Moll, W

    2012-03-01

    Blood culture is probably the most significant specimen used for the diagnosis of bacterial infections, especially for bloodstream infections. In the present study, we compared the resin-containing BD BACTEC™ Plus-Aerobic (Becton Dickinson), non-charcoal-containing BacT/Alert(®) SA (bioMérieux), and charcoal-containing BacT/Alert(®) FA (bioMérieux) blood culture bottles with direct identification by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). A total of 103 bacterial isolates, from clinical blood cultures, representing the most frequent 13 genera and 24 species were examined. Bacteria were extracted from positive blood culture broth by density centrifugation and then subjected to identification by MALDI-TOF MS using two different volumes and chemical treatments. Overall, correct identification by MALDI-TOF MS was obtained for the BD BACTEC™ Plus-Aerobic, BacT/Alert(®) SA, and BacT/Alert(®) FA blood culture bottles in 72%, 45.6%, and 23%, respectively, for gram-negative bacteria in 86.6%, 69.2%, and 47.1%, respectively, and for gram-positive bacteria in 60.0%, 28.8%, and 5.4%, respectively. The lack of identification was observed mainly with viridans streptococci. Depending on the blood culture bottles used in routine diagnostic procedures and the protocol for bacterial preparation, the applied MALDI-TOF MS represents an efficient and rapid method for direct bacterial identification.

  16. Detection of Rickettsia spp in Ticks by MALDI-TOF MS

    Science.gov (United States)

    Yssouf, Amina; Almeras, Lionel; Terras, Jérôme; Socolovschi, Cristina; Raoult, Didier; Parola, Philippe

    2015-01-01

    Background Matrix Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS) has been shown to be an effective tool for the rapid identification of arthropods, including tick vectors of human diseases. Methodology/Principal Findings The objective of the present study was to evaluate the use of MALDI-TOF MS to identify tick species, and to determine the presence of rickettsia pathogens in the infected Ticks. Rhipicephalus sanguineus and Dermacentor marginatus Ticks infected or not by R. conorii conorii or R. slovaca, respectively, were used as experimental models. The MS profiles generated from protein extracts prepared from tick legs exhibited mass peaks that distinguished the infected and uninfected Ticks, and successfully discriminated the Rickettsia spp. A blind test was performed using Ticks that were laboratory-reared, collected in the field or removed from patients and infected or not by Rickettsia spp. A query against our in-lab arthropod MS reference database revealed that the species and infection status of all Ticks were correctly identified at the species and infection status levels. Conclusions/Significance Taken together, the present work demonstrates the utility of MALDI-TOF MS for a dual identification of tick species and intracellular bacteria. Therefore, MALDI-TOF MS is a relevant tool for the accurate detection of Rickettsia spp in Ticks for both field monitoring and entomological diagnosis. The present work offers new perspectives for the monitoring of other vector borne diseases that present public health concerns. PMID:25659152

  17. Direct identification of pathogens from positive blood cultures using matrix-assisted laser desorption-ionization time-of-flight mass spectrometry.

    Science.gov (United States)

    Rodríguez-Sánchez, B; Sánchez-Carrillo, C; Ruiz, A; Marín, M; Cercenado, E; Rodríguez-Créixems, M; Bouza, E

    2014-07-01

    In recent years, matrix-assisted laser desorption-ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) has proved a rapid and reliable method for the identification of bacteria and yeasts that have already been isolated. The objective of this study was to evaluate this technology as a routine method for the identification of microorganisms directly from blood culture bottles (BCBs), before isolation, in a large collection of samples. For this purpose, 1000 positive BCBs containing 1085 microorganisms have been analysed by conventional phenotypic methods and by MALDI-TOF MS. Discrepancies have been resolved using molecular methods: the amplification and sequencing of the 16S rRNA gene or the Superoxide Dismutase gene (sodA) for streptococcal isolates. MALDI-TOF predicted a species- or genus-level identification of 81.4% of the analysed microorganisms. The analysis by episode yielded a complete identification of 814 out of 1000 analysed episodes (81.4%). MALDI-TOF identification is available for clinicians within hours of a working shift, as oppose to 18 h later when conventional identification methods are performed. Moreover, although further improvement of sample preparation for polymicrobial BCBs is required, the identification of more than one pathogen in the same BCB provides a valuable indication of unexpected pathogens when their presence may remain undetected in Gram staining. Implementation of MALDI-TOF identification directly from the BCB provides a rapid and reliable identification of the causal pathogen within hours. © 2013 The Authors Clinical Microbiology and Infection © 2013 European Society of Clinical Microbiology and Infectious Diseases.

  18. Discrimination of Bacillus anthracis Spores by Direct in-situ Analysis of Matrix-Assisted Laser Desorption/Ionization Time-Of-Flight Mass Spectrometry

    International Nuclear Information System (INIS)

    Jeong, Youngsu; Lee, Jonghee; Kim, Seongsoo

    2013-01-01

    The rapid and accurate identification of biological agents is a critical step in the case of bio-terror and biological warfare attacks. Recently, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry has been widely used for the identification of microorganisms. In this study, we describe a method for the rapid and accurate discrimination of Bacillus anthracis spores using MALDI-TOF MS. Our direct in-situ analysis of MALDI-TOF MS does not involve subsequent high-resolution mass analyses and sample preparation steps. This method allowed the detection of species-specific biomarkers from each Bacillus spores. Especially, B. anthracis spores had specific biomarker peaks at 2503, 3089, 3376, 6684, 6698, 6753, and 6840 m/z. Cluster and PCA analyses of the mass spectra of Bacillus spores revealed distinctively separated clusters and within-groups similarity. Therefore, we believe that this method is effective in the real-time identification of biological warfare agents such as B. anthracis as well as other microorganisms in the field

  19. Discrimination of Bacillus anthracis Spores by Direct in-situ Analysis of Matrix-Assisted Laser Desorption/Ionization Time-Of-Flight Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Youngsu; Lee, Jonghee; Kim, Seongsoo [Agency for Defense Development, Daejeon (Korea, Republic of)

    2013-09-15

    The rapid and accurate identification of biological agents is a critical step in the case of bio-terror and biological warfare attacks. Recently, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry has been widely used for the identification of microorganisms. In this study, we describe a method for the rapid and accurate discrimination of Bacillus anthracis spores using MALDI-TOF MS. Our direct in-situ analysis of MALDI-TOF MS does not involve subsequent high-resolution mass analyses and sample preparation steps. This method allowed the detection of species-specific biomarkers from each Bacillus spores. Especially, B. anthracis spores had specific biomarker peaks at 2503, 3089, 3376, 6684, 6698, 6753, and 6840 m/z. Cluster and PCA analyses of the mass spectra of Bacillus spores revealed distinctively separated clusters and within-groups similarity. Therefore, we believe that this method is effective in the real-time identification of biological warfare agents such as B. anthracis as well as other microorganisms in the field.

  20. High intensity TOF spectrometer for cold neutrons

    International Nuclear Information System (INIS)

    Maayouf, R.M.; Abd El-Kawy, A.; Habib, N.; Adib, M.; Hamouda, I.

    1984-01-01

    This work presents a neutron time-of-flight (TOF) spectrometer developed specially for total neutron cross-section measurements at neutron energies below 5 MeV and sample's temperature varying from the liquid nitrogen one and up to 500 0 K. The spectrometer is equipped by remote control unit, designed especially, in order to move the sample in and out of the beam during the experimental measurements. The spectrometer has proved to be useful for transmission measurements at neutron energies below 5 MeV. It has a reasonable energy resolution (4.4%) and high effect to background ratio (11.1) at 5 MeV

  1. Diagnostic value of 3D time-of-flight magnetic resonance angiography for detecting intracranial aneurysm: a meta-analysis.

    Science.gov (United States)

    HaiFeng, Liu; YongSheng, Xu; YangQin, Xun; Yu, Dou; ShuaiWen, Wang; XingRu, Lu; JunQiang, Lei

    2017-11-01

    This meta-analysis is to comprehensively evaluate the diagnostic performance of three-dimensional time-of-flight magnetic resonance angiography (3D-TOF-MRA) for detecting intracranial aneurysm (IA). PubMed, Embase, Web of Science, and the Cochrane library were systematically searched for retrieving eligible studies. Study inclusion, data extraction, and risk of bias assessment were performed by two researchers independently. Pooled sensitivity (SEN), specificity (SPE), positive likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic odds ratio (DOR), and area under the curve (AUC) were calculated to assess the diagnostic value. In addition, heterogeneity and subgroup analysis were carried out. In total, 18 studies comprising 3463 patients were selected. The results of 3D-TOF-MRA for diagnosing IA were SEN 0.89 (95% CI 0.82-0.94), SPE 0.94 (0.86-0.97), PLR 13.79 (5.92-32.12), NLR 0.11 (0.07-0.19), DOR 121.90 (38.81-382.94), and AUC 0.96 (0.94-0.98), respectively. In the subgroup analysis, studies without subarachnoid hemorrhage (SAH) tend to perform statistical significantly better (P 3D-TOF-MRA had better SEN in aneurysms > 3 mm than the aneurysms ≤ 3 mm in diameter: 0.89 (0.87-0.92) vs. 0.78 (0.71-0.84) with P 3D-TOF-MRA has an excellent diagnostic performance for the overall assessment of IA and may serve as an alternative for further patient management with IA.

  2. TOF technique for laser-driven proton beam diagnostics for the ELIMED beamline

    International Nuclear Information System (INIS)

    Milluzzo, G.; Scuderi, V.; Amico, A.G.; Cirrone, G.A.P.; Cuttone, G.; Larosa, G.; Leanza, R.; Petringa, G.; Pipek, J.; Romano, F.; Napoli, M. De; Dostal, J.; Margarone, D.; Schillaci, F.; Velyhan, A.

    2017-01-01

    The Time of Flight (TOF) method for laser-driven ion beam diagnostics has been extensively investigated so far for low energy ion diagnostics and several works, reported in literature [1,2], have shown its efficiency in the measurement of particle beam characteristics such as ion species, energy spectrum and current. Moreover, such technique allows obtaining a shot-to-shot on-line monitoring of optically accelerated particles, necessary to control the reproducibility of the accelerated beam and to deliver a beam suitable for any kind of applications. For this reason, the ELIMED beamline [3,4], which will be entirely developed at INFN-LNS and installed in 2017 within the ion beamline ELIMAIA (ELI Multidisciplinary Applications of laser-Ion Acceleration) experimental hall at ELI-Beamlines in Prague, will be equipped with an on-line diagnostics system composed by silicon carbide and diamond detectors, using the TOF technique. In this contribution, the procedure developed for TOF signal analysis will be briefly reported.

  3. Action spectroscopy of SrCl{sup +} using an integrated ion trap time-of-flight mass spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Puri, Prateek, E-mail: teek24@ucla.edu; Schowalter, Steven J.; Hudson, Eric R. [Department of Physics and Astronomy, University of California, Los Angeles, California 90095 (United States); Kotochigova, Svetlana; Petrov, Alexander [Department of Physics, Temple University, Philadelphia, Pennsylvania 19122 (United States)

    2014-07-07

    The photodissociation cross-section of SrCl{sup +} is measured in the spectral range of 36 000–46 000 cm{sup −1} using a modular time-of-flight mass spectrometer (TOF-MS). By irradiating a sample of trapped SrCl{sup +} molecular ions with a pulsed dye laser, X{sup 1}Σ{sup +} state molecular ions are electronically excited to the repulsive wall of the A{sup 1}Π state, resulting in dissociation. Using the TOF-MS, the product fragments are detected and the photodissociation cross-section is determined for a broad range of photon energies. Detailed ab initio calculations of the SrCl{sup +} molecular potentials and spectroscopic constants are also performed and are found to be in good agreement with experiment. The spectroscopic constants for SrCl{sup +} are also compared to those of another alkaline earth halogen, BaCl{sup +}, in order to highlight structural differences between the two molecular ions. This work represents the first spectroscopy and ab initio calculations of SrCl{sup +}.

  4. High mass resolution, high angular acceptance time-of-flight mass spectroscopy for planetary missions under the Planetary Instrument Definition and Development Program (PIDDP)

    Science.gov (United States)

    Young, David T.

    1991-01-01

    This final report covers three years and several phases of work in which instrumentation for the Planetary Instrument Definition and Development Program (PIDDP) were successfully developed. There were two main thrusts to this research: (1) to develop and test methods for electrostatically scanning detector field-of-views, and (2) to improve the mass resolution of plasma mass spectrometers to M/delta M approximately 25, their field-of-view (FOV) to 360 degrees, and their E-range to cover approximately 1 eV to 50 keV. Prototypes of two different approaches to electrostatic scanning were built and tested. The Isochronous time-of-flight (TOF) and the linear electric field 3D TOF devices were examined.

  5. The use of time-of-flight camera for navigating robots in computer-aided surgery: monitoring the soft tissue envelope of minimally invasive hip approach in a cadaver study.

    Science.gov (United States)

    Putzer, David; Klug, Sebastian; Moctezuma, Jose Luis; Nogler, Michael

    2014-12-01

    Time-of-flight (TOF) cameras can guide surgical robots or provide soft tissue information for augmented reality in the medical field. In this study, a method to automatically track the soft tissue envelope of a minimally invasive hip approach in a cadaver study is described. An algorithm for the TOF camera was developed and 30 measurements on 8 surgical situs (direct anterior approach) were carried out. The results were compared to a manual measurement of the soft tissue envelope. The TOF camera showed an overall recognition rate of the soft tissue envelope of 75%. On comparing the results from the algorithm with the manual measurements, a significant difference was found (P > .005). In this preliminary study, we have presented a method for automatically recognizing the soft tissue envelope of the surgical field in a real-time application. Further improvements could result in a robotic navigation device for minimally invasive hip surgery. © The Author(s) 2014.

  6. Application of the compress sensing theory for improvement of the TOF resolution in a novel J-PET instrument

    Directory of Open Access Journals (Sweden)

    Raczyński Lech

    2016-03-01

    Full Text Available Nowadays, in positron emission tomography (PET systems, a time of flight (TOF information is used to improve the image reconstruction process. In TOF-PET, fast detectors are able to measure the difference in the arrival time of the two gamma rays, with the precision enabling to shorten significantly a range along the line-of-response (LOR where the annihilation occurred. In the new concept, called J-PET scanner, gamma rays are detected in plastic scintillators. In a single strip of J-PET system, time values are obtained by probing signals in the amplitude domain. Owing to compressive sensing (CS theory, information about the shape and amplitude of the signals is recovered. In this paper, we demonstrate that based on the acquired signals parameters, a better signal normalization may be provided in order to improve the TOF resolution. The procedure was tested using large sample of data registered by a dedicated detection setup enabling sampling of signals with 50-ps intervals. Experimental setup provided irradiation of a chosen position in the plastic scintillator strip with annihilation gamma quanta.

  7. Reflux venous flow in dural sinus and internal jugular vein on 3D time-of-flight MR angiography

    International Nuclear Information System (INIS)

    Jang, Jinhee; Kim, Bum-soo; Kim, Bom-yi; Choi, Hyun Seok; Jung, So-Lyung; Ahn, Kook-Jin; Byun, Jae Young

    2013-01-01

    Reflux venous signal on the brain and neck time-of-flight magnetic resonance angiography (TOF MRA) is thought to be related to a compressed left brachiocephalic vein. This study is aimed to assess the prevalence of venous reflux flow in internal jugular vein (IJV), sigmoid sinus/transverse sinus (SS/TS), and inferior petrosal sinus (IPS) on the brain and neck TOF MRA and its pattern. From the radiology database, 3,475 patients (1,526 men, 1,949 women, age range 19-94, median age 62 years) with brain and neck standard 3D TOF MRA at 3 T and 1.5 T were identified. Rotational maximal intensity projection images of 3D TOF MRA were assessed for the presence of reflux flow in IJV, IPS, and SS/TS. Fifty-five patients (1.6 %) had reflux flow, all in the left side. It was more prevalent in females (n = 43/1,949, 2.2 %) than in males (n = 12/1,526, 0.8 %) (p = 0.001). The mean age of patients with reflux flow (66 years old) was older than those (60 years old) without reflux flow (p = 0.001). Three patients had arteriovenous shunt in the left arm for hemodialysis. Of the remaining 52 patients, reflux was seen on IJV in 35 patients (67.3 %). There were more patients with reflux flow seen on SS/TS (n = 34) than on IPS (n = 25). Venous reflux flow on TOF MRA is infrequently observed, and reflux pattern is variable. Because it is exclusively located in the left side, the reflux signal on TOF MRA could be an alarm for an undesirable candidate for a contrast injection on the left side for contrast-enhanced imaging study. (orig.)

  8. Rapid and reliable MALDI-TOF mass spectrometry identification of Candida non-albicans isolates from bloodstream infections.

    Science.gov (United States)

    Pulcrano, Giovanna; Iula, Dora Vita; Vollaro, Antonio; Tucci, Alessandra; Cerullo, Monica; Esposito, Matilde; Rossano, Fabio; Catania, Maria Rosaria

    2013-09-01

    Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) fingerprinting has recently become an effective instrument for rapid microbiological diagnostics and in particular for identification of micro-organisms directly in a positive blood culture. The aim of the study was to evaluate a collection of 82 stored yeast isolates from bloodstream infection, by MALDI-TOF MS; 21 isolates were identified also directly from positive blood cultures and in the presence of other co-infecting micro-organisms. Of the 82 isolates grown on plates, 64 (76%) were correctly identified by the Vitek II system and 82 (100%) by MALDI-TOF MS; when the two methods gave different results, the isolate was identified by PCR. MALDI-TOF MS was unreliable in identifying two isolates (Candida glabrata and Candida parapsilosis) directly from blood culture; however, direct analysis from positive blood culture samples was fast and effective for the identification of yeast, which is of great importance for early and adequate treatment. © 2013. Published by Elsevier B.V. All rights reserved.

  9. Identification and quantification of flavonoids and chromes in Baeckea frutescens by using HPLC coupled with diode-array detection and quadruple time-of-flight mass spectrometry.

    Science.gov (United States)

    Jia, Bei-Xi; Huangfu, Qian-Qian; Ren, Feng-Xiao; Jia, Lu; Zhang, Yan-Bing; Liu, Hong-Min; Yang, Jie; Wang, Qiang

    2015-01-01

    This article marks the first report on high-performance liquid chromatography (HPLC) coupled with diode-array detection (DAD) and quadruple time-of-flight mass spectrometry (Q-TOF/MS) for the identification and quantification of main bioactive constituents in Baeckea frutescens. In total, 24 compounds were identified or tentatively characterised based on their retention behaviours, UV profiles and MS fragment information. Furthermore, a validated method with good linearity, sensitivity, precision, stability, repeatability and accuracy was successfully applied for simultaneous determination of five flavonoids and one chromone in different plant parts of B. frutescens collected at different harvest times, and their dynamic contents revealed the appropriate harvest times. The established HPLC-DAD-Q-TOF/MS using multi-bioactive markers was proved to be a validated strategy for the quality evaluation on both raw materials and related products of B. frutescens.

  10. Evaluation of MALDI-TOF mass spectrometry and Sepsityper Kit™ for the direct identification of organisms from sterile body fluids in a Canadian pediatric hospital

    OpenAIRE

    Tadros, Manal; Petrich, Astrid

    2013-01-01

    Matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) can be used to identify bacteria directly from positive blood and sterile fluid cultures. The authors evaluated a commercially available kit – the Sepsityper Kit (Bruker Daltonik, Germany) – and MALDI-TOF MS for the rapid identification of organisms from 80 flagged positive blood culture broths, of which 73 (91.2%) were blood culture specimens and seven (8.7%) were cerebrospinal fluid specimens, in com...

  11. A silicon nanomembrane detector for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) of large proteins.

    Science.gov (United States)

    Park, Jonghoo; Blick, Robert H

    2013-10-11

    We describe a MALDI-TOF ion detector based on freestanding silicon nanomembrane technology. The detector is tested in a commercial MALDI-TOF mass spectrometer with equimolar mixtures of proteins. The operating principle of the nanomembrane detector is based on phonon-assisted field emission from these silicon nanomembranes, in which impinging ion packets excite electrons in the nanomembrane to higher energy states. Thereby the electrons can overcome the vacuum barrier and escape from the surface of the nanomembrane via field emission. Ion detection is demonstrated of apomyoglobin (16,952 Da), aldolase (39,212 Da), bovine serum albumin (66,430 Da), and their equimolar mixtures. In addition to the three intact ions, a large number of fragment ions are also revealed by the silicon nanomembrane detector, which are not observable with conventional detectors.

  12. A Silicon Nanomembrane Detector for Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS of Large Proteins

    Directory of Open Access Journals (Sweden)

    Jonghoo Park

    2013-10-01

    Full Text Available We describe a MALDI-TOF ion detector based on freestanding silicon nanomembrane technology. The detector is tested in a commercial MALDI-TOF mass spectrometer with equimolar mixtures of proteins. The operating principle of the nanomembrane detector is based on phonon-assisted field emission from these silicon nanomembranes, in which impinging ion packets excite electrons in the nanomembrane to higher energy states. Thereby the electrons can overcome the vacuum barrier and escape from the surface of the nanomembrane via field emission. Ion detection is demonstrated of apomyoglobin (16,952 Da, aldolase (39,212 Da, bovine serum albumin (66,430 Da, and their equimolar mixtures. In addition to the three intact ions, a large number of fragment ions are also revealed by the silicon nanomembrane detector, which are not observable with conventional detectors.

  13. Applications of copolymer for rapid identification of bacteria in blood culture broths using matrix-assisted laser desorption ionization time-of-flight mass spectrometry.

    Science.gov (United States)

    Ashizawa, Kazuho; Murata, Syota; Terada, Takashi; Ito, Daisuke; Bunya, Masaru; Watanabe, Koji; Teruuchi, Yoko; Tsuchida, Sachio; Satoh, Mamoru; Nishimura, Motoi; Matsushita, Kazuyuki; Sugama, Yuji; Nomura, Fumio

    2017-08-01

    Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) can be used to identify pathogens in blood culture samples. However, sample pretreatment is needed for direct identification of microbes in blood culture bottles. Conventional protocols are complex and time-consuming. Therefore, in this study, we developed a method for collecting bacteria using polyallylamine-polystyrene copolymer for application in wastewater treatment technology. Using representative bacterial species Escherichia coli and Staphylococcus capitis, we found that polyallylamine-polystyrene can form visible aggregates with bacteria, which can be identified using MALDI-TOF MS. The processing time of our protocol was as short as 15min. Hemoglobin interference in MALDI spectra analysis was significantly decreased in our method compared with the conventional method. In a preliminary experiment, we evaluated the use of our protocol to identify clinical isolates from blood culture bottles. MALDI-TOF MS-based identification of 17 strains from five bacterial species (E. coli, Klebsiella pneumoniae, Enterococcus faecalis, S. aureus, and S. capitis) collected by our protocol was satisfactory. Prospective large-scale studies are needed to further evaluate the clinical application of this novel and simple method of collecting bacteria in blood culture bottles. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Cocoa content influences chocolate molecular profile investigated by MALDI-TOF mass spectrometry.

    Science.gov (United States)

    Bonatto, Cínthia C; Silva, Luciano P

    2015-06-01

    Chocolate authentication is a key aspect of quality control and safety. Matrix-assisted laser desorption ionization time-of flight (MALDI-TOF) mass spectrometry (MS) has been demonstrated to be useful for molecular profiling of cells, tissues, and even food. The present study evaluated if MALDI-TOF MS analysis on low molecular mass profile may classify chocolate samples according to the cocoa content. The molecular profiles of seven processed commercial chocolate samples were compared by using MALDI-TOF MS. Some ions detected exclusively in chocolate samples corresponded to the metabolites of cocoa or other constituents. This method showed the presence of three distinct clusters according to confectionery and sensorial features of the chocolates and was used to establish a mass spectra database. Also, novel chocolate samples were evaluated in order to check the validity of the method and to challenge the database created with the mass spectra of the primary samples. Thus, the method was shown to be reliable for clustering unknown samples into the main chocolate categories. Simple sample preparation of the MALDI-TOF MS approach described will allow the surveillance and monitoring of constituents during the molecular profiling of chocolates. © 2014 Society of Chemical Industry.

  15. Time of flight measurements based on FPGA using a breast dedicated PET

    International Nuclear Information System (INIS)

    Aguilar, A; García-Olcina, R; Martos, J; Soret, J; Torres, J; Benlloch, J M; González, A J; Sánchez, F

    2014-01-01

    In this work the implementation of a Time-to-Digital Converter (TDC) using a Nutt delay line FPGA-based and applied on a Positron Emission Tomography (PET) device is going to be presented in order to check the system's suitability for Time of Flight (TOF) measurements. In recent years, FPGAs have shown great advantages for precise time measurements in PET. The architecture employed for these measurements is described in detail. The system developed was tested on a dedicated breast PET prototype, composed of LYSO crystals and Positive Sensitive Photomultipliers (PSPMTs). Two distinct experiments were carried out for this purpose. In the first test, system linearity was evaluated in order to calibrate the time measurements, providing a linearity error of less than 2% and an average time resolution of 1.4 ns FWHM. The second set of measurements tested system resolution, resulting in a FWHM as good as 1.35 ns. The results suggest that the coincidence window for the current PET can be reduced in order to minimize the random events and thus, achieve better image quality

  16. Bacterial flora analysis of coliforms in sewage, river water, and ground water using MALDI-TOF mass spectrometry.

    Science.gov (United States)

    Suzuki, Yoshihiro; Niina, Kouki; Matsuwaki, Tomonori; Nukazawa, Kei; Iguchi, Atsushi

    2018-01-28

    The aim of this study was to rapidly and effectively analyze coliforms, which are the most fundamental indicators of water quality for fecal pollution, using matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). Coliform bacteria were isolated from municipal sewage, river water, and groundwater. For each sample, 100 isolates were determined by MALDI-TOF MS. In addition, these same 100 isolates were also identified via 16S rRNA gene sequence analysis. Obtained MALDI-TOF MS data were compared with the 16S rRNA sequencing analysis, and the validity of MALDI-TOF MS for classification of coliform bacteria was examined. The concordance rate of bacterial identification for the 100 isolates obtained by MALDI-TOF MS analysis and 16S rRNA gene sequence analysis for sewage, river water, and ground water were 96%, 74%, and 62% at the genus level, respectively. Among the sewage, river water, and ground water samples, the coliform bacterial flora were distinct. The dominant genus of coliforms in sewage, river water, and groundwater were Klebsiella spp., Enterobacter spp., and Serratia spp., respectively. We determined that MALDI-TOF MS is a rapid and accurate tool that can be used to identify coliforms. Therefore, without using conventional 16S rRNA sequencing, it is possible to rapidly and effectively classify coliforms in water using MALDI-TOF MS.

  17. [Evaluation of mass spectrometry: MALDI-TOF MS for fast and reliable yeast identification].

    Science.gov (United States)

    Relloso, María S; Nievas, Jimena; Fares Taie, Santiago; Farquharson, Victoria; Mujica, María T; Romano, Vanesa; Zarate, Mariela S; Smayevsky, Jorgelina

    2015-01-01

    The matrix-assisted laser desorption/ionization time-of-flight mass spectrometry technique known as MALDI-TOF MS is a tool used for the identification of clinical pathogens by generating a protein spectrum that is unique for a given species. In this study we assessed the identification of clinical yeast isolates by MALDI-TOF MS in a university hospital from Argentina and compared two procedures for protein extraction: a rapid method and a procedure based on the manufacturer's recommendations. A short protein extraction procedure was applied in 100 isolates and the rate of correct identification at genus and species level was 98.0%. In addition, we analyzed 201 isolates, previously identified by conventional methods, using the methodology recommended by the manufacturer and there was 95.38% coincidence in the identification at species level. MALDI TOF MS showed to be a fast, simple and reliable tool for yeast identification. Copyright © 2014 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  18. Proteogenomic biomarkers for identification of Francisella species and subspecies by matrix-assisted laser desorption ionization-time-of-flight mass spectrometry.

    Science.gov (United States)

    Durighello, Emie; Bellanger, Laurent; Ezan, Eric; Armengaud, Jean

    2014-10-07

    Francisella tularensis is the causative agent of tularemia. Because some Francisella strains are very virulent, this species is considered by the Centers for Disease Control and Prevention to be a potential category A bioweapon. A mass spectrometry method to quickly and robustly distinguish between virulent and nonvirulent Francisella strains is desirable. A combination of shotgun proteomics and whole-cell matrix-assisted laser desorption ionization-time-of-flight (MALDI-TOF) mass spectrometry on the Francisella tularensis subsp. holarctica LVS defined three protein biomarkers that allow such discrimination: the histone-like protein HU form B, the 10 kDa chaperonin Cpn10, and the 50S ribosomal protein L24. We established that their combined detection by whole-cell MALDI-TOF spectrum could enable (i) the identification of Francisella species, and (ii) the prediction of their virulence level, i.e., gain of a taxonomical level with the identification of Francisella tularensis subspecies. The detection of these biomarkers by MALDI-TOF mass spectrometry is straightforward because of their abundance and the absence of other abundant protein species closely related in terms of m/z. The predicted molecular weights for the three biomarkers and their presence as intense peaks were confirmed with MALDI-TOF/MS spectra acquired on Francisella philomiragia ATCC 25015 and on Francisella tularensis subsp. tularensis CCUG 2112, the most virulent Francisella subspecies.

  19. The mass spectrometry technology MALDI-TOF (Matrix-Assisted Laser Desorption/Ionization Time- Of-Flight for a more rapid and economic workflow in the clinical microbiology laboratory

    Directory of Open Access Journals (Sweden)

    Simona Barnini

    2012-12-01

    Full Text Available Introduction: In order to improve the outcome of patients, reduce length of stay, costs and resources engaged in diagnostics, more rapid reports are requested to the clinical microbiologists.The purpose of this study is to assess the impact on workflow of MALDI-TOF technology, recently made available for use in routine diagnostics. Methods:The work list by the management information system is sent to the instrument MALDI-TOF, where are held at least three successive analytic sessions: the first includes bacteria isolated from CSF, blood cultures, and cases already reported as serious/urgent, the second includes all other germs isolated, the third, microorganisms that require extraction with trifluoroacetic acid (TFA or formic acid (FA for identification.The results of each session direct to the execution of different types of susceptibility testing. Results:The times of microbial identifications are reduced by 24 or 48 hours and made available to the clinician for the rational empirical therapy.The reagent costs are reduced by 40%.The subcultures were reduced by 80%, and microscopic examinations by 50%.The antibiotic susceptibility tests were immediately performed with the most appropriate method, based on the knowledge of local epidemiology and microbial species. Conclusion:The bacteriology is the less automated discipline among the clinical laboratory activities and results of diagnostic tests are poorly well-timed. The new interpretative algorithms of MALDI-TOF spectra, now available, allow the correct identification of bacteria in near real time, completely eliminating the wait is necessary for biochemical identification and guiding the operator in selecting the most appropriate antibiotic susceptibility tests. This technology makes work more rapid, economic and efficient, eliminating errors and, together with effective computerization of data, transforms the information content of the microbiological report, making it much more effective

  20. Triple Quadrupole Versus High Resolution Quadrupole-Time-of-Flight Mass Spectrometry for Quantitative LC-MS/MS Analysis of 25-Hydroxyvitamin D in Human Serum

    Science.gov (United States)

    Geib, Timon; Sleno, Lekha; Hall, Rabea A.; Stokes, Caroline S.; Volmer, Dietrich A.

    2016-08-01

    We describe a systematic comparison of high and low resolution LC-MS/MS assays for quantification of 25-hydroxyvitamin D3 in human serum. Identical sample preparation, chromatography separations, electrospray ionization sources, precursor ion selection, and ion activation were used; the two assays differed only in the implemented final mass analyzer stage; viz. high resolution quadrupole-quadrupole-time-of-flight (QqTOF) versus low resolution triple quadrupole instruments. The results were assessed against measured concentration levels from a routine clinical chemiluminescence immunoassay. Isobaric interferences prevented the simple use of TOF-MS spectra for extraction of accurate masses and necessitated the application of collision-induced dissociation on the QqTOF platform. The two mass spectrometry assays provided very similar analytical figures of merit, reflecting the lack of relevant isobaric interferences in the MS/MS domain, and were successfully applied to determine the levels of 25-hydroxyvitamin D for patients with chronic liver disease.

  1. Measurement of Neutron Energy Spectrum Emitted by Cf-252 Source Using Time-of-Flight Method

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Cheol Ho; Son, Jaebum; Kim, Tae Hoon; Lee, Sangmin; Kim, Yong-Kyun [Hanyang University, Seoul (Korea, Republic of)

    2016-10-15

    The techniques proposed to detect the neutrons usually require the detection of a secondary recoiling nucleus in a scintillator (or other type of detector) to indicate the rare collision of a neutron with a nucleus. This is the same basic technique, in this case detection of a recoil proton that was used by Chadwick in the 1930 s to discover and identify the neutron and determine its mass. It is primary technique still used today for detection of fast neutron, which typically involves the use of a hydrogen based organic plastic or liquid scintillator coupled to a photo-multiplier tube. The light output from such scintillators is a function of the cross section and nuclear kinematics of the n + nucleus collision. With the exception of deuterated scintillators, the scintillator signal does not necessarily produce a distinct peak in the scintillator spectrum directly related to the incident neutron energy. Instead neutron time-of-flight (TOF) often must be utilized to determine the neutron energy, which requires generation of a prompt start signal from the nuclear source emitting the neutrons. This method takes advantage of the high number of prompt gamma rays. The Time-of-Flight method was used to measure neutron energy spectrum emitted by the Cf-252 neutron source. Plastic scintillator that has a superior discrimination ability of neutron and gamma-ray was used as a stop signal detector and liquid scintillator was used as a stat signal detector. In experiment, neutron and gamma-ray spectrum was firstly measured and discriminated using the TOF method. Secondly, neutron energy spectrum was obtained through spectrum analysis. Equation of neutron energy spectrum that was emitted by Cf-252 source using the Gaussian fitting was obtained.

  2. MALDI-TOF MS identification of anaerobic bacteria: assessment of pre-analytical variables and specimen preparation techniques.

    Science.gov (United States)

    Hsu, Yen-Michael S; Burnham, Carey-Ann D

    2014-06-01

    Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has emerged as a tool for identifying clinically relevant anaerobes. We evaluated the analytical performance characteristics of the Bruker Microflex with Biotyper 3.0 software system for identification of anaerobes and examined the impact of direct formic acid (FA) treatment and other pre-analytical factors on MALDI-TOF MS performance. A collection of 101 anaerobic bacteria were evaluated, including Clostridium spp., Propionibacterium spp., Fusobacterium spp., Bacteroides spp., and other anaerobic bacterial of clinical relevance. The results of our study indicate that an on-target extraction with 100% FA improves the rate of accurate identification without introducing misidentification (Panaerobes grown in suboptimal conditions, such as on selective culture media and following oxygen exposure. In conclusion, we report on a number of simple and cost-effective pre- and post-analytical modifications could enhance MALDI-TOF MS identification for anaerobic bacteria. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Direct detection of the plant pathogens Burkholderia glumae, Burkholderia gladioli pv. gladioli, and Erwinia chrysanthemi pv. zeae in infected rice seedlings using matrix assisted laser desorption/ionization time-of-flight mass spectrometry.

    Science.gov (United States)

    Kajiwara, Hideyuki

    2016-01-01

    The plant pathogens Burkholderia glumae, Burkholderia gladioli pv. gladioli, and Erwinia chrysanthemi pv. zeae were directly detected in extracts from infected rice seedlings by matrix assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). This method did not require culturing of the pathogens on artificial medium. In the MALDI-TOF MS analysis, peaks originating from bacteria were found in extracts from infected rice seedlings. The spectral peaks showed significantly high scores, in spite of minor differences in spectra. The spectral peaks originating from host plant tissues did not affect this direct MALDI-TOF MS analysis for the rapid identification of plant pathogens. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Three-dimensional black blood MR angiography of the liver during breath holding. A comparison with two-dimensional time-of-flight MR angiography

    International Nuclear Information System (INIS)

    Suto, Y.; Ohuchi, Y.; Kimura, T.; Shirakawa, T.; Mizuuchi, N.; Takizawa, O.; Yamane, T.; Kamba, M.; Moriyama, S.; Ohta, Y.

    1994-01-01

    In 2-D time-of-flight MR angiography (2-D TOF MRA) of the liver, artifacts caused by respiratory motion are unavoidable. Therefore, a 3-D black blood MRA of the liver was attempted in 7 healthy volunteers, using a 3-D gradient echo sequence which allows imaging during breath holding. 2-D TOF MRA was performed as well. In all subjects, 3-D MRA allowed visualization of the trunk, 1st-, and 2nd-order branches of the portal vein without interruption. Right 3rd-order branches were visualized without interruption in 6 of 7 subjects (85%). However, with 2-D MRA, the transverse portion of the left main portal vein could not be visualized in any subject, and the periphery of the portal vein was less clear than with 3-D MRA. (orig.)

  5. New Insights for Diagnosis of Pineapple Fusariosis by MALDI-TOF MS Technique.

    Science.gov (United States)

    Santos, Cledir; Ventura, José Aires; Lima, Nelson

    2016-08-01

    Fusarium is one of the most economically important fungal genus, since it includes many pathogenic species which cause a wide range of plant diseases. Morphological or molecular biology identification of Fusarium species is a limiting step in the fast diagnosis and treatment of plant disease caused by these fungi. Mass spectrometry by matrix-assisted laser/desorption ionisation-time-of-flight (MALDI-TOF)-based fingerprinting approach was applied to the fungal growth monitoring and direct detection of strain Fusarium guttiforme E-480 inoculated in both pineapple cultivars Pérola and Imperial side shoots, that are susceptible and resistant, respectively, to this fungal strain. MALDI-TOF MS technique was capable to detect fungal molecular mass peaks in the susceptible pineapple stem side shoot tissue. It is assumed that these molecular masses are mainly constituted by ribosomal proteins. MALDI-TOF-based fingerprinting approach has herein been demonstrated to be sensitive and accurate for the direct detection of F. guttiforme E-480 molecular masses on both susceptible and resistant pineapple side stem free of any pre-treatment. According to the results obtained, the changing on molecular mass peaks of infected susceptible pineapple tissue together with the possibility of fungal molecular masses analysis into this pineapple tissue can be a good indication for an early diagnosis by MALDI-TOF MS of pineapple fusariosis.

  6. Cassini Ion Mass Spectrometer Peak Calibrations from Statistical Analysis of Flight Data

    Science.gov (United States)

    Woodson, A. K.; Johnson, R. E.

    2017-12-01

    The Cassini Ion Mass Spectrometer (IMS) is an actuating time-of-flight (TOF) instrument capable of resolving ion mass, energy, and trajectory over a field of view that captures nearly the entire sky. One of three instruments composing the Cassini Plasma Spectrometer, IMS sampled plasma throughout the Kronian magnetosphere from 2004 through 2012 when it was permanently disabled due to an electrical malfunction. Initial calibration of the flight instrument at Southwest Research Institute (SwRI) was limited to a handful of ions and energies due to time constraints, with only about 30% of planned measurements carried out prior to launch. Further calibration measurements were subsequently carried out after launch at SwRI and Goddard Space Flight Center using the instrument prototype and engineering model, respectively. However, logistical differences among the three calibration efforts raise doubts as to how accurately the post-launch calibrations describe the behavior of the flight instrument. Indeed, derived peak parameters for some ion species differ significantly from one calibration to the next. In this study we instead perform a statistical analysis on 8 years of flight data in order to extract ion peak parameters that depend only on the response of the flight instrument itself. This is accomplished by first sorting the TOF spectra based on their apparent compositional similarities (e.g. primarily water group ions, primarily hydrocarbon ions, etc.) and normalizing each spectrum. The sorted, normalized data are then binned according to TOF, energy, and counts in order to generate energy-dependent probability density maps of each ion peak contour. Finally, by using these density maps to constrain a stochastic peak fitting algorithm we extract confidence intervals for the model parameters associated with various measured ion peaks, establishing a logistics-independent calibration of the body of IMS data gathered over the course of the Cassini mission.

  7. Characterizing ICF Neutron Scintillation Diagnostics on the nTOF line at SUNY Geneseo

    Science.gov (United States)

    Lawson-Keister, Pat; Padawar-Curry, Jonah; Visca, Hannah; Fletcher, Kurt; Padalino, Stephen; Sangster, T. Craig; Regan, Sean

    2015-11-01

    Neutron scintillator diagnostics for ICF and HEDP can be characterized using the neutron time-of-flight (nTOF) line on Geneseo's 1.7 MV tandem Pelletron accelerator. Neutron signals can be differentiated from gamma signals by employing coincidence methods. A 1.8-MeV beam of deuterons incident on a deuterated polyethylene target produces neutrons via the 2H(d,n)3He reaction. Neutrons emerging at a lab angle of 88° have an energy of 2.96 MeV; the 3He ions associated with these neutrons are detected at a scattering angle of 43° using a surface barrier detector. The time of flight of the neutron can be measured by using the 3He detection as a ``start'' signal and the scintillation detection as a ``stop'' signal. This time of flight requirement is used to identify the 2.96-MeV neutron signals in the scintillator. To measure the light curve produced by these monoenergetic neutrons, two photomultiplier (PMT) tubes are attached to the scintillator. The full aperture PMT establishes the nTOF coincidence. The other PMT is fitted with a pinhole to collect single events. The time between the full aperture PMT signal and the arrival of the signal in the pinhole PMT is used to determine the light curve for the scintillator. This system will enable the neutron response of various scintillators to be compared. Supported in part by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  8. Parallel microscope-based fluorescence, absorbance and time-of-flight mass spectrometry detection for high performance liquid chromatography and determination of glucosamine in urine.

    Science.gov (United States)

    Xiong, Bo; Wang, Ling-Ling; Li, Qiong; Nie, Yu-Ting; Cheng, Shuang-Shuang; Zhang, Hui; Sun, Ren-Qiang; Wang, Yu-Jiao; Zhou, Hong-Bin

    2015-11-01

    A parallel microscope-based laser-induced fluorescence (LIF), ultraviolet-visible absorbance (UV) and time-of-flight mass spectrometry (TOF-MS) detection for high performance liquid chromatography (HPLC) was achieved and used to determine glucosamine in urines. First, a reliable and convenient LIF detection was developed based on an inverted microscope and corresponding modulations. Parallel HPLC-LIF/UV/TOF-MS detection was developed by the combination of preceding Microscope-based LIF detection and HPLC coupled with UV and TOF-MS. The proposed setup, due to its parallel scheme, was free of the influence from photo bleaching in LIF detection. Rhodamine B, glutamic acid and glucosamine have been determined to evaluate its performance. Moreover, the proposed strategy was used to determine the glucosamine in urines, and subsequent results suggested that glucosamine, which was widely used in the prevention of the bone arthritis, was metabolized to urines within 4h. Furthermore, its concentration in urines decreased to 5.4mM at 12h. Efficient glucosamine detection was achieved based on a sensitive quantification (LIF), a universal detection (UV) and structural characterizations (TOF-MS). This application indicated that the proposed strategy was sensitive, universal and versatile, and it was capable of improved analysis, especially for analytes with low concentrations in complex samples, compared with conventional HPLC-UV/TOF-MS. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Phonon-assisted field emission in silicon nanomembranes for time-of-flight mass spectrometry of proteins.

    Science.gov (United States)

    Park, Jonghoo; Aksamija, Zlatan; Shin, Hyun-Cheol; Kim, Hyunseok; Blick, Robert H

    2013-06-12

    Time-of-flight (TOF) mass spectrometry has been considered as the method of choice for mass analysis of large intact biomolecules, which are ionized in low charge states by matrix-assisted-laser-desorption/ionization (MALDI). However, it remains predominantly restricted to the mass analysis of biomolecules with a mass below about 50,000 Da. This limitation mainly stems from the fact that the sensitivity of the standard detectors decreases with increasing ion mass. We describe here a new principle for ion detection in TOF mass spectrometry, which is based upon suspended silicon nanomembranes. Impinging ion packets on one side of the suspended silicon nanomembrane generate nonequilibrium phonons, which propagate quasi-diffusively and deliver thermal energy to electrons within the silicon nanomembrane. This enhances electron emission from the nanomembrane surface with an electric field applied to it. The nonequilibrium phonon-assisted field emission in the suspended nanomembrane connected to an effective cooling of the nanomembrane via field emission allows mass analysis of megadalton ions with high mass resolution at room temperature. The high resolution of the detector will give better insight into high mass proteins and their functions.

  10. Transmission-less attenuation correction in time-of-flight PET: analysis of a discrete iterative algorithm

    International Nuclear Information System (INIS)

    Defrise, Michel; Rezaei, Ahmadreza; Nuyts, Johan

    2014-01-01

    The maximum likelihood attenuation correction factors (MLACF) algorithm has been developed to calculate the maximum-likelihood estimate of the activity image and the attenuation sinogram in time-of-flight (TOF) positron emission tomography, using only emission data without prior information on the attenuation. We consider the case of a Poisson model of the data, in the absence of scatter or random background. In this case the maximization with respect to the attenuation factors can be achieved in a closed form and the MLACF algorithm works by updating the activity. Despite promising numerical results, the convergence of this algorithm has not been analysed. In this paper we derive the algorithm and demonstrate that the MLACF algorithm monotonically increases the likelihood, is asymptotically regular, and that the limit points of the iteration are stationary points of the likelihood. Because the problem is not convex, however, the limit points might be saddle points or local maxima. To obtain some empirical insight into the latter question, we present data obtained by applying MLACF to 2D simulated TOF data, using a large number of iterations and different initializations. (paper)

  11. Multi-dimensional TOF-SIMS analysis for effective profiling of disease-related ions from the tissue surface.

    Science.gov (United States)

    Park, Ji-Won; Jeong, Hyobin; Kang, Byeongsoo; Kim, Su Jin; Park, Sang Yoon; Kang, Sokbom; Kim, Hark Kyun; Choi, Joon Sig; Hwang, Daehee; Lee, Tae Geol

    2015-06-05

    Time-of-flight secondary ion mass spectrometry (TOF-SIMS) emerges as a promising tool to identify the ions (small molecules) indicative of disease states from the surface of patient tissues. In TOF-SIMS analysis, an enhanced ionization of surface molecules is critical to increase the number of detected ions. Several methods have been developed to enhance ionization capability. However, how these methods improve identification of disease-related ions has not been systematically explored. Here, we present a multi-dimensional SIMS (MD-SIMS) that combines conventional TOF-SIMS and metal-assisted SIMS (MetA-SIMS). Using this approach, we analyzed cancer and adjacent normal tissues first by TOF-SIMS and subsequently by MetA-SIMS. In total, TOF- and MetA-SIMS detected 632 and 959 ions, respectively. Among them, 426 were commonly detected by both methods, while 206 and 533 were detected uniquely by TOF- and MetA-SIMS, respectively. Of the 426 commonly detected ions, 250 increased in their intensities by MetA-SIMS, whereas 176 decreased. The integrated analysis of the ions detected by the two methods resulted in an increased number of discriminatory ions leading to an enhanced separation between cancer and normal tissues. Therefore, the results show that MD-SIMS can be a useful approach to provide a comprehensive list of discriminatory ions indicative of disease states.

  12. Unusual analyte-matrix adduct ions and mechanism of their formation in MALDI TOF MS of benzene-1,3,5-tricarboxamide and urea compounds

    NARCIS (Netherlands)

    Lou, X.; Fransen, M.; Stals, P.J.M.; Mes, T.; Bovee, R.; Dongen, van J.L.J.; Meijer, E.W.

    2013-01-01

    Analyte-matrix adducts are normally absent under typical matrix assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI TOF MS) conditions. Interestingly, though, in the analysis of several types of organic compounds synthesized in our laboratory, analyte-matrix adduct ion peaks

  13. Limitations in SELDI-TOF MS whole serum proteomic profiling with IMAC surface to specifically detect colorectal cancer

    International Nuclear Information System (INIS)

    Wang, Qi; Gu, Jin; Shen, Jing; Li, Zhen-fu; Jie, Jian-zheng; Wang, Wen-yue; Wang, Jin; Zhang, Zhong-tao; Li, Zhi-xia; Yan, Li

    2009-01-01

    Surface enhanced laser desorption and ionization time-of-flight mass spectrometry (SELDI-TOF-MS) analysis on serum samples was reported to be able to detect colorectal cancer (CRC) from normal or control patients. We carried out a validation study of a SELDI-TOF MS approach with IMAC surface sample processing to identify CRC. A retrospective cohort of 338 serum samples including 154 CRCs, 67 control cancers and 117 non-cancerous conditions was profiled using SELDI-TOF-MS. No CRC 'specific' classifier was found. However, a classifier consisting of two protein peaks separates cancer from non-cancerous conditions with high accuracy. In this study, the SELDI-TOF-MS-based protein expression profiling approach did not perform to identify CRC. However, this technique is promising in distinguishing patients with cancer from a non-cancerous population; it may be useful for monitoring recurrence of CRC after treatment

  14. Physical characterisation and preliminary results of a pet-system using time-of-flight for quantitative studies

    International Nuclear Information System (INIS)

    Soussaline, F.; Verrey, B.; Comar, D.

    1984-01-01

    A first generation of Positron Emission Tomography (PET) systems using the Time of Flight (TOF) information, named TDV1, was designed and built by the LETI group (Grenoble, France) for the Orsay group, where it was recently installed. The system comprises essentially three rings of 96 CsF probes and a fourth ring of 96 BaF 2 probes. Its design is aimed at whole-body quantitative, dynamic, 3 D studies. The physical characterization of TDV1 was performed as it would be for a 'conventional' non-TOF PET system, in terms of spatial transverse and longitudinal resolution along the vertical axis, sensitivity, time resolution, and inter and intra-plane uniformity. Moreover, the specific advantages of time of flight information when used in PET were studied in preliminary measurements. They consist in very fast count rate studies, elimination of random events, and improvement of the S/N ratio resulting in a so-called 'effective sensitivity gain'. Special attention was directed to the comparison of the CsF and BsF 2 probes in terms of sensitivity gain, due to their resolving time of 480 psec and 380 psec on an average, for the 96 probes of each individual detection ring. Indeed, the BaF 2 crystal could be an answer to most of the shortcomings of CsF; namely, its lower intrinsic efficiency than that of BGO, the limited-resolution due to the crystal size necessary and the relatively low packing fraction of the detector ring due to the hygroscopic properties of the crystal. If the most important parameters were combined into a Factor of Merit, the corresponding factor of a BaF 2 scintillator 40 mm long and 20 mm in width would be more than 2 fold that of CsF. Moreover, the intrinsic spatial resolution could be substantially improved using very small parallelepipedic crystals and adapted photo multipliers tubes with fast timing capabilities. (Author)

  15. Evaluation of the applicability of territorial arterial spin labeling in meningiomas for presurgical assessments compared with 3-dimensional time-of-flight magnetic resonance angiography

    International Nuclear Information System (INIS)

    Lu, Yiping; Wen, Jianbo; Geng, Daoying; Yin, Bo; Luan, Shihai; Liu, Li; Xiong, Ji; Qu, Jianxun

    2017-01-01

    To prospectively evaluate the application of territorial arterial spin labelling (t-ASL) in comparison with unenhanced three-dimensional time-of-flight magnetic resonance angiography (3D-TOF-MRA) in the identification of the feeding vasculature of meningiomas. Thirty consecutive patients with suspected meningiomas underwent conventional MR imaging, unenhanced 3D-TOF-MRA and t-ASL scanning. Four experienced neuro-radiologists assessed the feeding vessels with different techniques separately. For the identification of the origin of the feeding arteries on t-ASL, the inter-observer agreement was excellent (κ = 0.913), while the inter-observer agreement of 3D-TOF-MRA was good (κ = 0.653). The inter-modality agreement between t-ASL and 3D-TOF-MRA for the feeding arteries was moderate (κ = 0.514). All 8 patients with motor or sensory disorders proved to have meningiomas supplied completely or partially by the internal carotid arteries, while all 14 patients with meningiomas supplied by the external carotid arteries or basilar arteries didn't show any symptoms concerning motor or sensory disorders (p = 0.003). T-ASL could complement unenhanced 3D-TOF-MRA and increase accuracy in the identification of the supplying arteries of meningiomas in a safe, intuitive, non-radioactive manner. The information about feeding arteries was potentially related to patients' symptoms and pathology, making it more crucial for neurosurgeons in planning surgery as well as evaluating prognosis. (orig.)

  16. Classification of wheat varieties: Use of two-dimensional gel electrophoresis for varieties that can not be classified by matrix assisted laser desorption/ionization-time of flight-mass spectrometry and an artificial neural network

    DEFF Research Database (Denmark)

    Jacobsen, Susanne; Nesic, Ljiljana; Petersen, Marianne Kjerstine

    2001-01-01

    Analyzing a gliadin extract by matrix assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI- TOF-MS) combined with an artificial neural network (ANN) is a suitable method for identification of wheat varieties. However, the ANN can not distinguish between all different wheat...

  17. Epidemiology of candidemia in Qatar, the Middle East : Performance of MALDI-TOF MS for the identification of Candida species, species distribution, outcome, and susceptibility pattern

    NARCIS (Netherlands)

    Taj-Aldeen, S. J.; Kolecka, A.; Boesten, R.; Alolaqi, A.; Almaslamani, M.; Chandra, P.; Meis, J. F.; Boekhout, T.

    Introduction Bloodstream infections (BSIs) due to Candida spp. constitute the predominant group of hospital-based fungal infections worldwide. A retrospective study evaluated the performance of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) for the

  18. T.O.F. LASER SCANNER FOR THE SURVEYING OF STATUES: A TEST ON A REAL CASE

    Directory of Open Access Journals (Sweden)

    G. Artese

    2013-07-01

    Full Text Available The contribution regards the surveying of two statues of famous contemporary sculptors that have been placed in the central zone of Cosenza, which has been transformed in an open air museum. To realize a 3-D representation of the museum, different methodologies have been used, based on classical surveying (total stations and GNSS, image data and range data. The increasing performances of the new models of Time Of Flight (T.O.F. laser scanners allow to build accurate models also for medium-size objects; on the other hand, the recent techniques of 3D modeling enable the processing of large amount of data and the effective removal of noises. Thus, if an extreme accuracy is not required, one can think to use the T.O.F. laser scanner, also for the surveying of statues. For the acquisition of the surfaces of the statues, two different types of laser scanning have been used: the Leica Scan StationC10, based on Time Of Flight, and the Minolta VIVID 300 triangulation scanner. In the paper, the comparison between the results obtained by using the different techniques is described.

  19. Rapid Identification of Intact Staphylococcal Bacteriophages Using Matrix-Assisted Laser Desorption Ionization-Time-of-Flight Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Dana Štveráková

    2018-04-01

    Full Text Available Staphylococcus aureus is a major causative agent of infections associated with hospital environments, where antibiotic-resistant strains have emerged as a significant threat. Phage therapy could offer a safe and effective alternative to antibiotics. Phage preparations should comply with quality and safety requirements; therefore, it is important to develop efficient production control technologies. This study was conducted to develop and evaluate a rapid and reliable method for identifying staphylococcal bacteriophages, based on detecting their specific proteins using matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS profiling that is among the suggested methods for meeting the regulations of pharmaceutical authorities. Five different phage purification techniques were tested in combination with two MALDI-TOF MS matrices. Phages, either purified by CsCl density gradient centrifugation or as resuspended phage pellets, yielded mass spectra with the highest information value if ferulic acid was used as the MALDI matrix. Phage tail and capsid proteins yielded the strongest signals whereas the culture conditions had no effect on mass spectral quality. Thirty-seven phages from Myoviridae, Siphoviridae or Podoviridae families were analysed, including 23 siphophages belonging to the International Typing Set for human strains of S. aureus, as well as phages in preparations produced by Microgen, Bohemia Pharmaceuticals and MB Pharma. The data obtained demonstrate that MALDI-TOF MS can be used to effectively distinguish between Staphylococcus-specific bacteriophages.

  20. Advantages of TOF-SIMS analysis of hydroxyapatite and fluorapatite in comparison with XRD, HR-TEM and FT-IR.

    Science.gov (United States)

    Okazaki, Masayuki; Hirata, Isao; Matsumoto, Takuya; Takahashi, Junzo

    2005-12-01

    The chemical analysis of hydroxyapatite and fluorapatite was carried out using time-of-flight secondary ion mass spectrometry (TOF-SIMS). Hydroxyapatite and fluorapatite were synthesized at 80 +/- 1 degrees C and pH 7.4 +/- 0.2. Fluorapatite was better crystallized, with its (300) reflection shifted to a slightly higher angle. High-resolution transmission electron microscopy clearly revealed a typical, regular hexagonal cross section perpendicular to the c-axis for fluorapatite and a flattened hexagonal cross section for hydroxyapatite. FT-IR spectra of fluorapatite confirmed the absence of OH absorption peak--which was seen in hydroxyapatite at about 3570 cm(-1). TOF-SIMS mass spectra showed a peak at 40 amu due to calcium. In addition, a peak at 19 amu due to fluorine could be clearly seen, although the intensities of PO, PO2, and PO3 were very low. It was confirmed that TOF-SIMS clearly showed the differences between positive and negative mass spectra of hydroxyapatite and fluorapatite, especially for F-. We concluded that TOF-SIMS exhibited distinct advantages compared with other methods of analysis.

  1. Combining endoscopic ultrasound with Time-Of-Flight PET: The EndoTOFPET-US Project

    CERN Document Server

    Frisch, Benjamin

    2013-01-01

    The EndoTOFPET-US collaboration develops a multimodal imaging technique for endoscopic exams of the pancreas or the prostate. It combines the benefits of high resolution metabolic imaging with Time-Of-Flight Positron Emission Tomography (TOF PET) and anatomical imaging with ultrasound (US). EndoTOFPET-US consists of a PET head extension for a commercial US endoscope and a PET plate outside the body in coincidence with the head. The high level of miniaturization and integration creates challenges in fields such as scintillating crystals, ultra-fast photo-detection, highly integrated electronics, system integration and image reconstruction. Amongst the developments, fast scintillators as well as fast and compact digital SiPMs with single SPAD readout are used to obtain the best coincidence time resolution (CTR). Highly integrated ASICs and DAQ electronics contribute to the timing performances of EndoTOFPET. In view of the targeted resolution of around 1 mm in the reconstructed image, we present a prototype dete...

  2. Experimental design for optimizing MALDI-TOF-MS analysis of palladium complexes

    Directory of Open Access Journals (Sweden)

    Rakić-Kostić Tijana M.

    2017-01-01

    Full Text Available This paper presents optimization of matrix-assisted laser desorption/ionization (MALDI time-of-flight (TOF mass spectrometer (MS instrumental parameters for the analysis of chloro(2,2'',2"-terpyridinepalladium(II chloride dihydrate complex applying design of experiments methodology (DoE. This complex is of interest for potential use in the cancer therapy. DoE methodology was proved to succeed in optimization of many complex analytical problems. However, it has been poorly used for MALDI-TOF-MS optimization up to now. The theoretical mathematical relationships which explain the influence of important experimental factors (laser energy, grid voltage and number of laser shots on the selected responses (signal to noise – S/N ratio and the resolution – R of the leading peak is established. The optimal instrumental settings providing maximal S/N and R are identified and experimentally verified. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. 172052 and Grant no. 172011

  3. Preliminary measurements on the new TOF system installed at the AMS beamline of INFN-LABEC

    Energy Technology Data Exchange (ETDEWEB)

    Palla, L., E-mail: palla@fi.infn.it [Dipartimento di Fisica, Università di Pisa, e INFN Sezione di Pisa (Italy); Castelli, L. [INFN Sezione di Firenze (Italy); Czelusniak, C. [INFN Sezione di Firenze (Italy); Dipartimento di Fisica e Astronomia, Università di Firenze (Italy); Fedi, M.E. [INFN Sezione di Firenze (Italy); Giuntini, L. [INFN Sezione di Firenze (Italy); Dipartimento di Fisica e Astronomia, Università di Firenze (Italy); Liccioli, L. [INFN Sezione di Firenze (Italy); Dipartimento di Chimica Ugo Schiff, Università di Firenze (Italy); Mandò, P.A. [INFN Sezione di Firenze (Italy); Dipartimento di Fisica e Astronomia, Università di Firenze (Italy); Martini, M. [Dipartimento di Scienza dei Materiali, Università di Milano Bicocca, e INFN Sezione di Milano Bicocca, Milano (Italy); Mazzinghi, A. [INFN Sezione di Firenze (Italy); Dipartimento di Fisica e Astronomia, Università di Firenze (Italy); Ruberto, C. [INFN Sezione di Firenze (Italy); Dipartimento di Chimica Ugo Schiff, Università di Firenze (Italy); Schiavulli, L. [Dipartimento di Fisica, Università di Bari, e INFN Sezione di Bari (Italy); Sibilia, E. [Dipartimento di Scienza dei Materiali, Università di Milano Bicocca, e INFN Sezione di Milano Bicocca, Milano (Italy); Taccetti, F. [INFN Sezione di Firenze (Italy)

    2015-10-15

    A high resolution time of flight (TOF) system has been developed at LABEC, the 3 MV Tandem accelerator laboratory in Florence, in order to improve the sensitivity of AMS measurements on carbon samples with ultra-low concentration and also to measure other isotopes, such as {sup 129}I. The system can be employed to detect and identify residual interfering particles originated from the break-up of molecular isobars. The set-up has been specifically designed for low energy heavy ions: it consists of two identical time pick-off stations, each made up of a thin conductive foil and a Micro-Channel Plate (MCP) multiplier. The beamline is also equipped with a silicon detector, installed downstream the stop TOF station. In this paper the design of the new system and the implemented readout electronics are presented. The tests performed on the single time pick-off station are reported: they show that the maximum contribution to the timing resolution given by both the intrinsic MCP resolution and the electronics is ⩽500 ps (FWHM). For these tests, single particle pulsed beams of 2–5 MeV protons and 10 MeV {sup 12}C{sup 3+} ions, to simulate typical AMS conditions, were used. The preliminary TOF and TOF-E (TOF-energy) measurements performed with carbon beams after the installation of the new system on the AMS beam line are also discussed. These measurements were performed using the foil–MCP as the start stage and a silicon detector as the stop stage. The spectra acquired with carbon ions suggest the presence of a small residual background from neighboring masses reaching the end of the beamline with the same energy as the rare isotope.

  4. Preliminary measurements on the new TOF system installed at the AMS beamline of INFN-LABEC

    International Nuclear Information System (INIS)

    Palla, L.; Castelli, L.; Czelusniak, C.; Fedi, M.E.; Giuntini, L.; Liccioli, L.; Mandò, P.A.; Martini, M.; Mazzinghi, A.; Ruberto, C.; Schiavulli, L.; Sibilia, E.; Taccetti, F.

    2015-01-01

    A high resolution time of flight (TOF) system has been developed at LABEC, the 3 MV Tandem accelerator laboratory in Florence, in order to improve the sensitivity of AMS measurements on carbon samples with ultra-low concentration and also to measure other isotopes, such as "1"2"9I. The system can be employed to detect and identify residual interfering particles originated from the break-up of molecular isobars. The set-up has been specifically designed for low energy heavy ions: it consists of two identical time pick-off stations, each made up of a thin conductive foil and a Micro-Channel Plate (MCP) multiplier. The beamline is also equipped with a silicon detector, installed downstream the stop TOF station. In this paper the design of the new system and the implemented readout electronics are presented. The tests performed on the single time pick-off station are reported: they show that the maximum contribution to the timing resolution given by both the intrinsic MCP resolution and the electronics is ⩽500 ps (FWHM). For these tests, single particle pulsed beams of 2–5 MeV protons and 10 MeV "1"2C"3"+ ions, to simulate typical AMS conditions, were used. The preliminary TOF and TOF-E (TOF-energy) measurements performed with carbon beams after the installation of the new system on the AMS beam line are also discussed. These measurements were performed using the foil–MCP as the start stage and a silicon detector as the stop stage. The spectra acquired with carbon ions suggest the presence of a small residual background from neighboring masses reaching the end of the beamline with the same energy as the rare isotope.

  5. The optimization and validation of the Biotyper MALDI-TOF MS database for the identification of Gram-positive anaerobic cocci

    DEFF Research Database (Denmark)

    Veloo, A C M; de Vries, E D; Jean-Pierre, H

    2016-01-01

    Gram-positive anaerobic cocci (GPAC) account for 24%-31% of the anaerobic bacteria isolated from human clinical specimens. At present, GPAC are under-represented in the Biotyper MALDI-TOF MS database. Profiles of new species have yet to be added. We present the optimization of the matrix-assisted......Gram-positive anaerobic cocci (GPAC) account for 24%-31% of the anaerobic bacteria isolated from human clinical specimens. At present, GPAC are under-represented in the Biotyper MALDI-TOF MS database. Profiles of new species have yet to be added. We present the optimization of the matrix......-assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI-TOF MS) database for the identification of GPAC. Main spectral profiles (MSPs) were created for 108 clinical GPAC isolates. Identity was confirmed using 16S rRNA gene sequencing. Species identification was considered to be reliable...... if the sequence similarity with its closest relative was ≥98.7%. The optimized database was validated using 140 clinical isolates. The 16S rRNA sequencing identity was compared with the MALDI-TOF MS result. MSPs were added from 17 species that were not yet represented in the MALDI-TOF MS database or were under...

  6. Analog electro-optical readout of SiPMs for compact, low power ToF PET/MRI

    International Nuclear Information System (INIS)

    Bieniosek, Matthew F; Levin, Craig S

    2014-01-01

    The aim of this work is to demonstrate time of flight (ToF) performance from analog electro-optical transmission of SiPM-based PET detector signals. In electro-optical readout schemes, scintillation signals are converted to near-infrared light by a laser diode and transmitted out of the MRI bore with fiber-optics [], greatly reducing the PET system's footprint, power consumption, and mutual interference with the MRI.

  7. Evaluation of penalized likelihood estimation reconstruction on a digital time-of-flight PET/CT scanner for 18F-FDG whole-body examinations.

    Science.gov (United States)

    Lindström, Elin; Sundin, Anders; Trampal, Carlos; Lindsjö, Lars; Ilan, Ezgi; Danfors, Torsten; Antoni, Gunnar; Sörensen, Jens; Lubberink, Mark

    2018-02-15

    Resolution and quantitative accuracy of positron emission tomography (PET) are highly influenced by the reconstruction method. Penalized likelihood estimation algorithms allow for fully convergent iterative reconstruction, generating a higher image contrast while limiting noise compared to ordered subsets expectation maximization (OSEM). In this study, block-sequential regularized expectation maximization (BSREM) was compared to time-of-flight OSEM (TOF-OSEM). Various strengths of noise penalization factor β were tested along with scan durations and transaxial field of views (FOVs) with the aim to evaluate the performance and clinical use of BSREM for 18 F-FDG-PET-computed tomography (CT), both in quantitative terms and in a qualitative visual evaluation. Methods: Eleven clinical whole-body 18 F-FDG-PET/CT examinations acquired on a digital TOF PET/CT scanner were included. The data were reconstructed using BSREM with point spread function (PSF) recovery and β 133, 267, 400 and 533, and TOF-OSEM with PSF, for various acquisition times/bed position (bp) and FOVs. Noise, signal-to-noise ratio (SNR), signal-to-background ratio (SBR), and standardized uptake values (SUVs) were analysed. A blinded visual image quality evaluation, rating several aspects, performed by two nuclear medicine physicians complemented the analysis. Results: The lowest levels of noise were reached with the highest β resulting in the highest SNR, which in turn resulted in the lowest SBR. Noise equivalence to TOF-OSEM was found with β 400 but produced a significant increase of SUV max (11%), SNR (22%) and SBR (12%) compared to TOF-OSEM. BSREM with β 533 at decreased acquisition (2 min/bp) was comparable to TOF-OSEM at full acquisition duration (3 min/bp). Reconstructed FOV had an impact on BSREM outcome measures, SNR increased while SBR decreased when shifting FOV from 70 to 50 cm. The visual image quality evaluation resulted in similar scores for reconstructions although β 400 obtained the

  8. Association of Lumbar Arterial Stenosis with Low Back Symptoms: A Cross-Sectional Study Using Two-Dimensional Time-of-Flight Magnetic Resonance Angiography

    International Nuclear Information System (INIS)

    Korkiakoski, A.; Niinimaeki, J.; Karppinen, J.; Korpelainen, R.; Haapea, M.; Natri, A.; Tervonen, O.

    2009-01-01

    Background: Recent studies indicate that diminished blood flow may cause low back symptoms and intervertebral disc degeneration. Purpose: To explore the association between lumbar arterial stenosis as detected by two-dimensional time-of-flight magnetic resonance angiography (2D TOF-MRA) and lumbar pain symptoms in an occupational cohort of middle-aged Finnish males. Material and Methods: 228 male subjects aged 36 to 55 years (mean 47 years) were imaged with 2D TOF-MRA. Additionally, 20 randomly selected subjects were scanned with contrast-enhanced MRA (ceMRA). In each subject, the first (L1) to fourth (L4) segmental lumbar arteries were evaluated for lumbar artery stenosis using a dichotomic scale. One subject was excluded because of poor image quality, reducing the study population to 227 subjects. Logistic regression analysis was used to evaluate the association between arterial stenosis in 2D TOF-MRA and low back pain and sciatica symptoms (intensity, duration, frequency). Results: Comparing 2D TOF-MRA and ceMRA images, the kappa value (95% confidence interval) was 0.52 (0.31-0.73). The intraobserver reliability kappa value for 2D TOF-MRA was 0.85 (0.77-0.92), and interobserver kappa was 0.57 (0.49-0.65). The sensitivity of 2D TOF-MRA in detecting stenosis was 0.58, the accuracy 0.89, and the specificity 0.94. In 97 (43%) subjects all arteries were normal, whereas 130 (57%) had at least one stenosed artery. The left L4 artery was most often affected. The degree of arterial stenosis was associated with intensity of low back and sciatic pain, and sciatica pain duration during the past 3 months. Conclusion: 2D TOF-MRA is an acceptable imaging method for arterial stenosis compared to ceMRA. Arterial stenosis was associated with subjective pain symptoms, indicating a role of decreased nutrition in spinal disorders

  9. Association of Lumbar Arterial Stenosis with Low Back Symptoms: A Cross-Sectional Study Using Two-Dimensional Time-of-Flight Magnetic Resonance Angiography

    Energy Technology Data Exchange (ETDEWEB)

    Korkiakoski, A.; Niinimaeki, J.; Karppinen, J.; Korpelainen, R.; Haapea, M.; Natri, A.; Tervonen, O. (Inst. of Clinical Sciences, Dept. of Physical and Rehabilitation Medicine, Univ. of Oulu, Oulu (Finland))

    2009-01-15

    Background: Recent studies indicate that diminished blood flow may cause low back symptoms and intervertebral disc degeneration. Purpose: To explore the association between lumbar arterial stenosis as detected by two-dimensional time-of-flight magnetic resonance angiography (2D TOF-MRA) and lumbar pain symptoms in an occupational cohort of middle-aged Finnish males. Material and Methods: 228 male subjects aged 36 to 55 years (mean 47 years) were imaged with 2D TOF-MRA. Additionally, 20 randomly selected subjects were scanned with contrast-enhanced MRA (ceMRA). In each subject, the first (L1) to fourth (L4) segmental lumbar arteries were evaluated for lumbar artery stenosis using a dichotomic scale. One subject was excluded because of poor image quality, reducing the study population to 227 subjects. Logistic regression analysis was used to evaluate the association between arterial stenosis in 2D TOF-MRA and low back pain and sciatica symptoms (intensity, duration, frequency). Results: Comparing 2D TOF-MRA and ceMRA images, the kappa value (95% confidence interval) was 0.52 (0.31-0.73). The intraobserver reliability kappa value for 2D TOF-MRA was 0.85 (0.77-0.92), and interobserver kappa was 0.57 (0.49-0.65). The sensitivity of 2D TOF-MRA in detecting stenosis was 0.58, the accuracy 0.89, and the specificity 0.94. In 97 (43%) subjects all arteries were normal, whereas 130 (57%) had at least one stenosed artery. The left L4 artery was most often affected. The degree of arterial stenosis was associated with intensity of low back and sciatic pain, and sciatica pain duration during the past 3 months. Conclusion: 2D TOF-MRA is an acceptable imaging method for arterial stenosis compared to ceMRA. Arterial stenosis was associated with subjective pain symptoms, indicating a role of decreased nutrition in spinal disorders

  10. Rare earth elements determined in Antarctic ice by inductively coupled plasma-Time of flight, quadrupole and sector field-mass spectrometry: An inter-comparison study

    International Nuclear Information System (INIS)

    Dick, D.; Wegner, A.; Gabrielli, P.; Ruth, U.; Barbante, C.; Kriews, M.

    2008-01-01

    Inductively coupled plasma mass spectrometry (ICP-MS) is a suitable tool for multi-element analysis at low concentration levels. Rare earth element (REE) determinations in standard reference materials and small volumes of molten ice core samples from Antarctica have been performed with an ICP-time of flight-MS (ICP-TOF-MS) system. Recovery rates for REE in e.g. SPS-SW1 amounted to ∼103%, and the relative standard deviations were 3.4% for replicate analysis at REE concentrations in the lower ng L -1 range. Analyses of REE concentrations in Antarctic ice core samples showed that the ICP-TOF-MS technique meets the demands of restricted sample mass. The data obtained are in good agreement with ICP-Quadrupole-MS (ICP-Q-MS) and ICP-Sector Field-MS (ICP-SF-MS) results. The ICP-TOF-MS system determines accurately and precisely REE concentrations exceeding 5 ng L -1 while between 0.5 and 5 ng L -1 accuracy and precision are element dependent

  11. A TDC module used in nTOF of ICF

    International Nuclear Information System (INIS)

    Zhang Yuehua; Li Feng; Jin Ge; Yu Xiaoqi; Jiang Xiao

    2007-01-01

    Neutron time-of-flight (TOF) can provide important information about the fuel-ion burn temperature in various inertial-confinement-fusion (ICF) target designs. The sensitive neutron detector array is used to increase sensitivity while maintaining good time resolution for low-yield targets. It has been a standard technique to diagnose the average density-radius product(pR), which is a very important parameter in ICF experiments. The time resolution of the sensitive neutron detector array which will be used in 'Shen Guang III' system is expected to be 1 ns, and the one of the electronic system connected with the detectors is 100 ps. Based on the next generation of TDCs from ACAM, TDC-GP2, a VME-plug-in multi-chanel TDC module, with a time-resolution of less than 61 ps, has been designed. (authors)

  12. The Exploration of Peptide Biomarkers in Malignant Pleural Effusion of Lung Cancer Using Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Jing Xu

    2017-01-01

    Full Text Available Background. Diagnoses of malignant pleural effusion (MPE are a crucial problem in clinics. In our study, we compared the peptide profiles of MPE and tuberculosis pleural effusion (TPE to investigate the value of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS in diagnosis of MPE. Material and Methods. The 46 MPE and 32 TPE were randomly assigned to training set and validation set. Peptides were isolated by weak cation exchange magnetic beads and peaks in the m/z range of 800–10000 Da were analyzed. Comparing the peptide profile between 30 MPE and 22 TPE samples in training set by ClinProTools software, we screened the specific biomarkers and established a MALDI-TOF-MS classification of MPE. Finally, the other 16 MPE and 10 TPE were included to verify the model. We additionally determined carcinoembryonic antigen (CEA in MPE and TPE samples using electrochemiluminescent immunoassay method. Results. Five peptide peaks (917.37 Da, 4469.39 Da, 1466.5 Da, 4585.21 Da, and 3216.87 Da were selected to separate MPE and TPE by MALDI-TOF-MS. The sensitivity, specificity, and accuracy of the classification were 93.75%, 100%, and 96.15%, respectively, after blinded test. The sensitivity of CEA was significantly lower than MALDI-TOF-MS classification (P=0.035. Conclusions. The results indicate MALDI-TOF-MS is a potential method for diagnosing MPE.

  13. Time-of-Flight Cameras in Computer Graphics

    DEFF Research Database (Denmark)

    Kolb, Andreas; Barth, Erhardt; Koch, Reinhard

    2010-01-01

    Computer Graphics, Computer Vision and Human Machine Interaction (HMI). These technologies are starting to have an impact on research and commercial applications. The upcoming generation of ToF sensors, however, will be even more powerful and will have the potential to become “ubiquitous real-time geometry...

  14. Contribution of the time of flight information to the positron tomographic imaging

    International Nuclear Information System (INIS)

    Laval, M.; Allemand, R.; Campagnolo, R.; Garderet, P.; Gariod, R.; Guinet, P.; Moszinski, M.; Tournier, E.; Vacher, J.

    1982-09-01

    The TOF measurement enables positrons to be localized along the line joining two detectors. The accuracy of this measurement is mainly controled by the scintillator performances: light yield, and decay time constant are the key parameters. The main advantage of using the TOF information can be expressed in terms of sensitivity gain: for example the ratio of the required total counts to obtain the same random noise in a positron image without and with the TOF information. This gain ranges from 1 to more than 10, depending on the TOF performance but also on the activity distribution. Other advantages are inherent on the TOF method: - the very high count rate capabilities of the detectors enables fast dymanic studies with for example O 15 ; - the random coincidences to be found in an imaged object are the lowest that can be achieved; - a small amount of radiation scattered by the object is rejected outside of the field of reconstruction

  15. Neutron cross section measurements at n-TOF for ADS related studies

    Science.gov (United States)

    Mastinu, P. F.; Abbondanno, U.; Aerts, G.; Álvarez, H.; Alvarez-Velarde, F.; Andriamonje, S.; Andrzejewski, J.; Assimakopoulos, P.; Audouin, L.; Badurek, G.; Bustreo, N.; aumann, P.; vá, F. Be; Berthoumieux, E.; Calviño, F.; Cano-Ott, D.; Capote, R.; Carrillo de Albornoz, A.; Cennini, P.; Chepel, V.; Chiaveri, E.; Colonna, N.; Cortes, G.; Couture, A.; Cox, J.; Dahlfors, M.; David, S.; Dillmann, I.; Dolfini, R.; Domingo-Pardo, C.; Dridi, W.; Duran, I.; Eleftheriadis, C.; Embid-Segura, M.; Ferrant, L.; Ferrari, A.; Ferreira-Marques, R.; itzpatrick, L.; Frais-Kölbl, H.; Fujii, K.; Furman, W.; Guerrero, C.; Goncalves, I.; Gallino, R.; Gonzalez-Romero, E.; Goverdovski, A.; Gramegna, F.; Griesmayer, E.; Gunsing, F.; Haas, B.; Haight, R.; Heil, M.; Herrera-Martinez, A.; Igashira, M.; Isaev, S.; Jericha, E.; Kadi, Y.; Käppeler, F.; Karamanis, D.; Karadimos, D.; Kerveno, M.; Ketlerov, V.; Koehler, P.; Konovalov, V.; Kossionides, E.; Krti ka, M.; Lamboudis, C.; Leeb, H.; Lindote, A.; Lopes, I.; Lozano, M.; Lukic, S.; Marganiec, J.; Marques, L.; Marrone, S.; Massimi, C.; Mengoni, A.; Milazzo, P. M.; Moreau, C.; Mosconi, M.; Neves, F.; Oberhummer, H.; O'Brien, S.; Oshima, M.; Pancin, J.; Papachristodoulou, C.; Papadopoulos, C.; Paradela, C.; Patronis, N.; Pavlik, A.; Pavlopoulos, P.; Perrot, L.; Plag, R.; Plompen, A.; Plukis, A.; Poch, A.; Pretel, C.; Quesada, J.; Rauscher, T.; Reifarth, R.; Rosetti, M.; Rubbia, C.; Rudolf, G.; Rullhusen, P.; Salgado, J.; Sarchiapone, L.; Savvidis, I.; Stephan, C.; Tagliente, G.; Tain, J. L.; Tassan-Got, L.; Tavora, L.; Terlizzi, R.; Vannini, G.; Vaz, P.; Ventura, A.; Villamarin, D.; Vincente, M. C.; Vlachoudis, V.; Vlastou, R.; Voss, F.; Walter, S.; Wendler, H.; Wiescherand, M.; Wisshak, K.

    2006-05-01

    A neutron Time-of-Flight facility (n_TOF) is available at CERN since 2001. The innovative features of the neutron beam, in particular the high instantaneous flux, the wide energy range, the high resolution and the low background, make this facility unique for measurements of neutron induced reactions relevant to the field of Emerging Nuclear Technologies, as well as to Nuclear Astrophysics and Fundamental Nuclear Physics. The scientific motivations that have led to the construction of this new facility are here presented. The main characteristics of the n_TOF neutron beam are described, together with the features of the experimental apparata used for cross-section measurements. The main results of the first measurement campaigns are presented. Preliminary results of capture cross-section measurements of minor actinides, important to ADS project for nuclear waste transmutation, are finally discussed.

  16. Neutron cross section measurements at n-TOF for ADS related studies

    CERN Document Server

    Mastinu, P F; Aerts, G; Alvarez, H; Alvarez-Velarde, F; Andriamonje, Samuel A; Andrzejewski, J; Assimakopoulos, P A; Audouin, L; Badurek, G; Bustreo, N; Aumann, P; Beva, F; Berthoumieux, E; Calviño, F; Cano-Ott, D; Capote, R; Carillo de Albornoz, A; Cennini, P; Chepel, V; Chiaveri, Enrico; Colonna, N; Cortés, G; Couture, A; Cox, J; Dahlfors, M; David, S; Dillmann, I; Dolfini, R; Domingo-Pardo, C; Dridi, W; Durán, I; Eleftheriadis, C; Segura, M E; Ferrant, L; Ferrari, A; Ferreira-Marques, R; itzpatrick, L; Frais-Kölbl, H; Fujii, K; Furman, W; Guerrero, C; Gonçalves, I; Gallino, R; González-Romero, E M; Goverdovski, A; Gramegna, F; Griesmayer, E; Gunsing, F; Haas, B; Haight, R; Heil, M; Herrera-Martínez, A; Igashira, M; Isaev, S; Jericha, E; Kadi, Y; Käppeler, F K; Karamanis, D; Karadimos, D; Kerveno, M; Ketlerov, V; Köhler, P; Konovalov, V; Kossionides, E; Krticka, M; Lamboudis, C; Leeb, H; Lindote, A; Lopes, I; Lozano, M; Lukic, S; Marganiec, J; Marques, L; Marrone, S; Massimi, C; Mengoni, A; Milazzo, P M; Moreau, C; Mosconi, M; Neves, F; Oberhummer, Heinz; O'Brien, S; Oshima, M; Pancin, J; Papachristodoulou, C; Papadopoulos, C; Paradela, C; Patronis, N; Pavlik, A; Pavlopoulos, P; Perrot, L; Plag, R; Plompen, A; Plukis, A; Poch, A; Pretel, C; Quesada, J; Rauscher, T; Reifarth, R; Rosetti, M; Rubbia, Carlo; Rudolf, G; Rullhusen, P; Salgado, J; Sarchiapone, L; Savvidis, I; Stéphan, C; Tagliente, G; Taín, J L; Tassan-Got, L; Tavora, L; Terlizzi, R; Vannini, G; Vaz, P; Ventura, A; Villamarín, D; Vincente, M C; Vlachoudis, V; Vlastou, R; Voss, F; Walter, S; Wendler, H; Wiescherand, M; Wisshak, K

    2006-01-01

    A neutron Time-of-Flight facility (n_TOF) is available at CERN since 2001. The innovative features of the neutron beam, in particular the high instantaneous flux, the wide energy range, the high resolution and the low background, make this facility unique for measurements of neutron induced reactions relevant to the field of Emerging Nuclear Technologies, as well as to Nuclear Astrophysics and Fundamental Nuclear Physics. The scientific motivations that have led to the construction of this new facility are here presented. The main characteristics of the n_TOF neutron beam are described, together with the features of the experimental apparata used for cross-section measurements. The main results of the first measurement campaigns are presented. Preliminary results of capture cross-section measurements of minor actinides, important to ADS project for nuclear waste transmutation, are finally discussed.

  17. Time-of-flight expansion of binary Bose–Einstein condensates at finite temperature

    Science.gov (United States)

    Lee, K. L.; Jørgensen, N. B.; Wacker, L. J.; Skou, M. G.; Skalmstang, K. T.; Arlt, J. J.; Proukakis, N. P.

    2018-05-01

    Ultracold quantum gases provide a unique setting for studying and understanding the properties of interacting quantum systems. Here, we investigate a multi-component system of 87Rb–39K Bose–Einstein condensates (BECs) with tunable interactions both theoretically and experimentally. Such multi-component systems can be characterized by their miscibility, where miscible components lead to a mixed ground state and immiscible components form a phase-separated state. Here we perform the first full simulation of the dynamical expansion of this system including both BECs and thermal clouds, which allows for a detailed comparison with experimental results. In particular we show that striking features emerge in time-of-flight (TOF) for BECs with strong interspecies repulsion, even for systems which were separated in situ by a large gravitational sag. An analysis of the centre of mass positions of the BECs after expansion yields qualitative agreement with the homogeneous criterion for phase-separation, but reveals no clear transition point between the mixed and the separated phases. Instead one can identify a transition region, for which the presence of a gravitational sag is found to be advantageous. Moreover, we analyse the situation where only one component is condensed and show that the density distribution of the thermal component also shows some distinct features. Our work sheds new light on the analysis of multi-component systems after TOF and will guide future experiments on the detection of miscibility in these systems.

  18. Rapid Identification of Microorganisms from Positive Blood Culture by MALDI-TOF MS After Short-Term Incubation on Solid Medium.

    Science.gov (United States)

    Curtoni, Antonio; Cipriani, Raffaella; Marra, Elisa Simona; Barbui, Anna Maria; Cavallo, Rossana; Costa, Cristina

    2017-01-01

    Matrix-assisted laser-desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) is a useful tool for rapid identification of microorganisms. Unfortunately, its direct application to positive blood culture is still lacking standardized procedures. In this study, we evaluated an easy- and rapid-to-perform protocol for MALDI-TOF MS direct identification of microorganisms from positive blood culture after a short-term incubation on solid medium. This protocol was used to evaluate direct identification of microorganisms from 162 positive monomicrobial blood cultures; at different incubation times (3, 5, 24 h), MALDI-TOF MS assay was performed from the growing microorganism patina. Overall, MALDI-TOF MS concordance with conventional methods at species level was 60.5, 80.2, and 93.8% at 3, 5, and 24 h, respectively. Considering only bacteria, the identification performances at species level were 64.1, 85.0, and 94.1% at 3, 5, and 24 h, respectively. This protocol applied to a commercially available MS typing system may represent, a fast and powerful diagnostic tool for pathogen direct identification and for a promptly and pathogen-driven antimicrobial therapy in selected cases.

  19. Comparison of biomarker based Matrix Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS) and conventional methods in the identification of clinically relevant bacteria and yeast.

    Science.gov (United States)

    Kassim, Ali; Pflüger, Valentin; Premji, Zul; Daubenberger, Claudia; Revathi, Gunturu

    2017-05-25

    MALDI-TOF MS is an analytical method that has recently become integral in the identification of microorganisms in clinical laboratories. It relies on databases that majorly employ pattern recognition or fingerprinting. Biomarker based databases have also been developed and there is optimism that these may be superior to pattern recognition based databases. This study compared the performance of ribosomal biomarker based MALDI-TOF MS and conventional methods in the identification of selected bacteria and yeast. The study was a cross sectional study identifying clinically relevant bacteria and yeast isolated from varied clinical specimens submitted to a clinical laboratory. The identification of bacteria using conventional Vitek 2™ automated system, serotyping and MALDI-TOF MS was performed as per standard operating procedures. Comparison of sensitivities were then carried out using Pearson Chi-Square test and p-value of bacteria and Gram positive bacteria to the species level. For the Gram positive bacteria, significant difference was observed in the identification of Coagulase negative Staphylococci (p = 0.000) and Enterococcus (p = 0.008). Significant difference was also observed between serotyping and MALDI-TOF MS (p = 0.005) and this was attributed to the lack of identification of Shigella species by MALDI-TOF MS. There was no significant difference observed in the identification of yeast however some species of Candida were unidentified by MALDI-TOF MS. Biomarker based MALDI-TOF MS had good performance in a clinical laboratory setting with high sensitivities in the identification of clinically relevant microorganisms.

  20. MALDI-TOF typing highlights geographical and fluconazole resistance clusters in Candida glabrata.

    Science.gov (United States)

    Dhieb, C; Normand, A C; Al-Yasiri, M; Chaker, E; El Euch, D; Vranckx, K; Hendrickx, M; Sadfi, N; Piarroux, R; Ranque, S

    2015-06-01

    Utilizing matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectra for Candida glabrata typing would be a cost-effective and easy-to-use alternative to classical DNA-based typing methods. This study aimed to use MALDI-TOF for the typing of C. glabrata clinical isolates from various geographical origins and test its capacity to differentiate between fluconazole-sensitive and -resistant strains.Both microsatellite length polymorphism (MLP) and MALDI-TOF mass spectra of 58 C. glabrata isolates originating from Marseilles (France) and Tunis (Tunisia) as well as collection strains from diverse geographic origins were analyzed. The same analysis was conducted on a subset of C. glabrata isolates that were either susceptible (MIC ≤ 8 mg/l) or resistant (MIC ≥ 64 mg/l) to fluconazole.According to the seminal results, both MALDI-TOF and MLP classifications could highlight C. glabrata population structures associated with either geographical dispersal barriers (p typing to investigate C. glabrata infection outbreaks and predict the antifungal susceptibility profile of clinical laboratory isolates. © The Author 2015. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.