WorldWideScience

Sample records for narrow annular gaps

  1. Study on natural convection characteristics in a narrow annular gap, 2

    Naohara, Nobuyuki; Uotani, Masaki; Kinoshita, Izumi; Arazeki, Hideo

    1987-01-01

    To clarify the characteristics of natural convection in a narrow annular gap at the roof-slab penetration in pool-type LMFBR, experimental study was carried out. Experiment is to investigate the effect of annular gap width. The results are summarized as follows. (1) A chart showing the presence of natural convection was drawn, and it was showed that the natural convection in an annular gap was influenced by gap width. (2) Dimensionless circumferential temperature in annular wall could be rearranged by new parameter taking account of the annular gap width and a characteristics curve was obtained. (author)

  2. Study of natural convection characteristics in a narrow annular gap in (Part 1)

    Narahara, Nobuyuki; Uotani, Masaki; Kinoshita, Izumi

    1986-01-01

    To clarify the characteristics of natural convection in a narrow annular gap at the roof-slab penetrations in pool-type LMFBR, preliminary and visualization experiments were carried out. The results are summarized as follows. (1) In the preliminary experiment having the upper and bottom closed annular space nondimensional circumferential temperature difference increases with gap width decreasing, and decreses with Rayleigh number increasing at the range of rayleigh number 10 10 to 10 11 . (2) In the visualization experiment, which consists the upper and bottom closed annular space type apparatus and the upper-closed bottom-open type apparatus, flow pattern and its effect at temperature distribution are clarified. (author)

  3. Analysis of flow boiling heat transfer in narrow annular gaps applying the design of experiments method

    Gunar Boye

    2015-06-01

    Full Text Available The axial heat transfer coefficient during flow boiling of n-hexane was measured using infrared thermography to determine the axial wall temperature in three geometrically similar annular gaps with different widths (s = 1.5 mm, s = 1 mm, s = 0.5 mm. During the design and evaluation process, the methods of statistical experimental design were applied. The following factors/parameters were varied: the heat flux q · = 30 − 190 kW / m 2 , the mass flux m · = 30 − 700 kg / m 2 s , the vapor quality x · = 0 . 2 − 0 . 7 , and the subcooled inlet temperature T U = 20 − 60 K . The test sections with gap widths of s = 1.5 mm and s = 1 mm had very similar heat transfer characteristics. The heat transfer coefficient increases significantly in the range of subcooled boiling, and after reaching a maximum at the transition to the saturated flow boiling, it drops almost monotonically with increasing vapor quality. With a gap width of 0.5 mm, however, the heat transfer coefficient in the range of saturated flow boiling first has a downward trend and then increases at higher vapor qualities. For each test section, two correlations between the heat transfer coefficient and the operating parameters have been created. The comparison also shows a clear trend of an increasing heat transfer coefficient with increasing heat flux for test sections s = 1.5 mm and s = 1.0 mm, but with increasing vapor quality, this trend is reversed for test section 0.5 mm.

  4. An experimental study on counter current flow limitation in annular narrow gaps with large diameter

    Park, Rae Joon; Jeong, Ji Whan; Lee, Sung Jin; Cho, Young Ro; Ha, Kwang Sun; Kim, Sang Baik; Kim, Hee Dong [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2002-04-01

    The present study intends to carry out CCFL experiment with the same gap size as the CHFG facility and suggest an empirical correlation in order to provide basic information useful to development of an empirical critical-power correlation. The present facility consists of water accumulator tank, test section, DC pump, air regulator, valves and sensors. Air and water are used as working fluids. The experiments are carried out at the atmospheric pressure. Differential pressure between the gap ends, liquid and gas phase flow rates, temperature, lower plenum pressure are measured.Measured values are expressed in terms of Wallis' parameter using gap size as a characteristic length. There is a big difference between the present experimental results and the Koizumi et al.'s results, but the present experimental results are very similar to the Richter et al.'s results. The present results agree well with the Osakabe and Kawasaki's results. In comparison of present experiments with the Koizumi et al.'s experiments, gap thickness is similar, but the diameter of the present is bigger than that of Koizumi et al.'s experiments. In comparison of present experiments with the Richter et al.'s experiments, diameter is similar, but the gap thickness of the present is smaller than that of Richter et al.'s experiments. It is judged from these results that correlation development on CCFL to consider gap thickness is reasonable at similar condition of diameter.The developed correlation will be used to develop the CHFG model. 36 refs., 26 figs., 7 tabs. (Author)

  5. Experimental and Theoretical Study of Dryout and Post-Dryout Heat Transfer of Steam-Water Two-Phase Flow in the Annular Channel with Narrow Gap

    Aye Myint

    2004-10-01

    Two-phase annular flow with heat transfer is prevalent in many processes such as industrial and energy reformation processes. Recently, advances in high performance electronic chips and the miniaturisation of electronic circuits in which high heat flux will be created and other compact systems such as Integrated Nuclear Power Device (INPD), the refrigeration/air conditioning, automobile environment control systems have resulted in a great demand for developing efficient heat transfer techniques to accommodate these high heat fluxes. It has been studied by many researchers because of its successful application in many areas, but its influence factor and mechanism of heat transfer remain somewhat unknown yet. In order to understand the heat transfer and flow mechanism in the narrow annular channel, experimental and theoretical study of dryout and post-dryout heat transfer of steam-water two-phase flow in annular channel with narrow gap (1.0 mm and 1.5 mm) have been carried out. The working fluid is deionized water. The range of experimental pressure is 1.0 ∼ 6.OMPa. In correspondence with two different narrow gaps, two kinds of test sections were designed. The test sections were made of specially processed straight stainless steel tubes with linearity error less than 0.01% to form narrow concentric annuli. It also needs a good sealed performance at high pressure and high temperature. The experiments were carried out to investigate the characteristics and occurring conditions of the dryout point. The former Soviet researcher Kutateladse's correlation, based on round tube, was quoted and modified to apply barrow annuli under low flow conditions. At full conditions of the influencing factors, such as geometry of test section, pressure, mass flux, heat flux etc., an empirical correlation was developed to apply to bilaterally heated annuli and it had a good agreement with the experimental data A new analytical model for the dryout point of critical quality in

  6. Experimental study on dryout point of flow boiling in bilaterally heated narrow annular channel

    Wu Geping; Wu Aimin; Tian Wenxi; Li Hao; Jia Dounan; Su Guanghui; Qiu Suizheng

    2003-01-01

    This paper presents and experimental study of the dryout point of flow boiling in bilaterally heated narrow annular channel with 1.5 mm and 2 mm annular gap, respectively. The range of pressure is 2.0-4.0 MPa and that of mass flux is 40-80 kg/m 2 ·s. Kutajilagi equation which is adaptable to tubes is used to deal with the experimental data and an empirical equation is obtained. Again this empirical equation is amended, then an empirical equation of the dryout point suitable for narrow annular channel is obtained

  7. Experimental study on the boiling phenomena within a narrow gap

    Aoki, S.; Inoue, A.; Aritomi, M.; Sakamoto, Y.

    1982-01-01

    Experiments were carried out with annular narrow gaps having the gap widths 0.2,0.3,0.4,0.5,1.0 and 1.5 mm for the following two cases: (a) for the ''open bottom'' case, the heat transfer coefficient was improved as the gap width decreases, but it was not affected by gap lengths in the range 40 <= L <= 100 mm. (b) for the ''closed bottom'' case, the heat transfer coefficient was not affected by gap width or length. The transition heat flux could be correlated by the equivalent gap length defined in terms of the cross-sectional area of the open end. (author)

  8. Narrow gap electronegative capacitive discharges

    Kawamura, E.; Lieberman, M. A.; Lichtenberg, A. J. [Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720 (United States)

    2013-10-15

    Narrow gap electronegative (EN) capacitive discharges are widely used in industry and have unique features not found in conventional discharges. In this paper, plasma parameters are determined over a range of decreasing gap length L from values for which an electropositive (EP) edge exists (2-region case) to smaller L-values for which the EN region connects directly to the sheath (1-region case). Parametric studies are performed at applied voltage V{sub rf}=500 V for pressures of 10, 25, 50, and 100 mTorr, and additionally at 50 mTorr for 1000 and 2000 V. Numerical results are given for a parallel plate oxygen discharge using a planar 1D3v (1 spatial dimension, 3 velocity components) particle-in-cell (PIC) code. New interesting phenomena are found for the case in which an EP edge does not exist. This 1-region case has not previously been investigated in detail, either numerically or analytically. In particular, attachment in the sheaths is important, and the central electron density n{sub e0} is depressed below the density n{sub esh} at the sheath edge. The sheath oscillations also extend into the EN core, creating an edge region lying within the sheath and not characterized by the standard diffusion in an EN plasma. An analytical model is developed using minimal inputs from the PIC results, and compared to the PIC results for a base case at V{sub rf}=500 V and 50 mTorr, showing good agreement. Selected comparisons are made at the other voltages and pressures. A self-consistent model is also developed and compared to the PIC results, giving reasonable agreement.

  9. A CHF Model in Narrow Gaps under Saturated Boiling

    Park, Suki; Kim, Hyeonil; Park, Cheol

    2014-01-01

    Many researchers have paid a great attention to the CHF in narrow gaps due to enormous industrial applications. Especially, a great number of researches on the CHF have been carried out in relation to nuclear safety issues such as in-vessel retention for nuclear power plants during a severe accident. Analytical studies to predict the CHF in narrow gaps have been also reported. Yu et al. (2012) developed an analytical model to predict the CHF on downward facing and inclined heaters based on the model of Kandlikar et al. (2001) for an upward facing heater. A new theoretical model is developed to predict the CHF in narrow gaps under saturated pool boiling. This model is applicable when one side of coolant channels or both sides are heated including the effects of heater orientation. The present model is compared with the experimental CHF data obtained in narrow gaps. A new analytical CHF model is proposed to predict CHF for narrow gaps under saturated pool boiling. This model can be applied to one-side or two-sides heating surface and also consider the effects of heater orientation on CHF. The present model is compared with the experimental data obtained in narrow gaps with one heater. The comparisons indicate that the present model shows a good agreement with the experimental CHF data in the horizontal annular tubes. However, it generally under-predicts the experimental data in the narrow rectangular gaps except the data obtained in the gap thickness of 10 mm and the horizontal downward facing heater

  10. Device Physics of Narrow Gap Semiconductors

    Chu, Junhao

    2010-01-01

    Narrow gap semiconductors obey the general rules of semiconductor science, but often exhibit extreme features of these rules because of the same properties that produce their narrow gaps. Consequently these materials provide sensitive tests of theory, and the opportunity for the design of innovative devices. Narrow gap semiconductors are the most important materials for the preparation of advanced modern infrared systems. Device Physics of Narrow Gap Semiconductors offers descriptions of the materials science and device physics of these unique materials. Topics covered include impurities and defects, recombination mechanisms, surface and interface properties, and the properties of low dimensional systems for infrared applications. This book will help readers to understand not only the semiconductor physics and materials science, but also how they relate to advanced opto-electronic devices. The last chapter applies the understanding of device physics to photoconductive detectors, photovoltaic infrared detector...

  11. Experiment study of the onset of nucleate boiling in narrow annular channel

    Wang Jiaqiang; Jia Dounan; Guo Yun

    2004-01-01

    The onset of nucleate boiling (ONB) was investigated for water flowing in the annular duct which clearance is 1.2 mm at the pressure range from 1.0 to 4.5 MPa. The effect on ONB of some thermodynamics parameters was also analyzed. The available data dealing with sub-cooled boiling initial point of water in narrow annular clearance duct are analyzed by using regression method. The new developed correlation was obtained by considering the bilateral heating factor

  12. Quenching of hot wall of vertical-narrow-annular passages by water falling down counter-currently

    Koizumi, Yasuo; Ohtake, Hiroyasu; Arai, Manabu; Okabayashi, Yoshiaki; Nagae, Takashi; Okano, Yukimitsu

    2004-01-01

    quenching of a thin-gap annular flow passage by gravitational liquid penetration was examined by using water. The outer wall of the test flow channel was made of stainless steel. The inner wall was made of glass or stainless steel. The annular gap spacings tested were 10, 5.0, 2.0, 1.0 and 0.5 mm. No inner wall case; the gap width = ∞, was also tested. The stainless steel walls(s) was (were) heated electrically. When the glass wall was used for the inner wall, a fiber scope was inserted inside to observe a flow state. The quenching was observed for the gap spacing over 1.0 mm. When the spacing was less than 1.0 mm, the wall was gradually and monotonously cooled down without any quenching. As the gap spacing became narrow, the counter-current flow limiting; flooding, severely occurred. The peak heat flux during the quenching process became lower than that in pool boiling as the gap spacing became narrower. The quenching propagated from the bottom when the gap spacing was larger than 5 mm. When the gap clearance was less than 2.0 mm, the quenching proceeded from the top in the bottom closed case. It was visually observed that liquid accumulated in the lower portion of the flow passage in the 5 mm gap case and the rewetting front propagated upward from the bottom. In the 1.0 mm gap case, the moving-down of the rewetting front was observed. The quenching velocity became slow as the gap spacing became narrow. Quenching simulation was performed by solving a transient heat conduction equation. The simulation indicated that the quenching velocity becomes fast as the peak heat flux becomes low with the gap spacing, which was opposite to the experimental results. It was also suggested that precursory cooling is one of key factors to control the rewetting velocity; as the precursory cooling becomes weak, the rewetting velocity becomes slow. (author)

  13. Study on application of two-fluid model in narrow annular channel

    Chen Jun; Yang Yanhua; Zhao Hua

    2007-01-01

    The Chexal-Harrison two-phase wall and inter-phase friction models developed by EPRI newly and the simple two-phase wall and inter-phase heat transfer models put forward by the paper are used to set up the two-fluid model which is fitted for boiling heat transfer and flow in narrow annular channel. On the base of the two-fluid model, a thermal hydraulic code-THYME is accomplished. Then the thermal hydraulic characteristic of narrow annular channel is analyzed by RELAP5/MOD3.2 code and THYME code. Compared with experimental data, RELAP5/MOD3.2 underestimates the outlet steam, and the results of THYME is agreed with the experimental data. (authors)

  14. Thermoelectricity in correlated narrow-gap semiconductors

    Tomczak, Jan M.

    2018-05-01

    We review many-body effects, their microscopic origin, as well as their impact on thermoelectricity in correlated narrow-gap semiconductors. Members of this class—such as FeSi and FeSb2—display an unusual temperature dependence in various observables: insulating with large thermopowers at low temperatures, they turn bad metals at temperatures much smaller than the size of their gaps. This insulator-to-metal crossover is accompanied by spectral weight-transfers over large energies in the optical conductivity and by a gradual transition from activated to Curie–Weiss-like behaviour in the magnetic susceptibility. We show a retrospective of the understanding of these phenomena, discuss the relation to heavy-fermion Kondo insulators—such as Ce3Bi4Pt3 for which we present new results—and propose a general classification of paramagnetic insulators. From the latter, FeSi emerges as an orbital-selective Kondo insulator. Focussing on intermetallics such as silicides, antimonides, skutterudites, and Heusler compounds we showcase successes and challenges for the realistic simulation of transport properties in the presence of electronic correlations. Further, we explore new avenues in which electronic correlations may contribute to the improvement of thermoelectric performance.

  15. Near-limit propagation of gaseous detonations in narrow annular channels

    Gao, Y.; Ng, H. D.; Lee, J. H. S.

    2017-03-01

    New results on the near-limit behaviors of gaseous detonations in narrow annular channels are reported in this paper. Annular channels of widths 3.2 and 5.9 mm were made using circular inserts in a 50.8 mm-diameter external tube. The length of each annular channel was 1.8 m. Detonations were initiated in a steel driver tube where a small volume of a sensitive C2H2+ 2.5O2 mixture was injected to facilitate detonation initiation. A 2 m length of circular tube with a 50.8 mm diameter preceded the annular channel so that a steady Chapman-Jouguet (CJ) detonation was established prior to entering the annular channel. Four detonable mixtures of C2H2 {+} 2.5O2 {+} 85 % Ar, C2H2 {+} 2.5O2 {+} 70 % Ar, C3H8 {+} 5O2, and CH4 {+} 2O2 were used in the present study. Photodiodes spaced 10 cm throughout the length of both the annular channel and circular tube were used to measure the detonation velocity. In addition, smoked foils were inserted into the annular channel to monitor the cellular structure of the detonation wave. The results show that, well within the detonability limits, the detonation wave propagates along the channel with a small local velocity fluctuation and an average global velocity can be deduced. The average detonation velocity has a small deficit of 5-15 % far from the limits and the velocity rapidly decreases to 0.7V_{CJ}-0.8V_{CJ} when the detonation propagates near the limit. Subsequently, the fluctuation of local velocity also increases as the decreasing initial pressure approaches the limit. In the two annular channels used in this work, no galloping detonations were observed for both the stable and unstable mixtures tested. The present study also confirms that single-headed spinning detonation occurs at the limit, as in a circular tube, rather than the up and down "zig zag" mode in a two-dimensional, rectangular channel.

  16. An experimental study on critical heat flux in a hemispherical narrow gap

    Park, R.J.; Lee, S.J.; Kang, K.H.; Kim, J.H.; Kim, S.B.; Kim, H.D.; Jeong, J.H.

    2000-01-01

    An experimental study of CHFG (Critical Heat Flux in Gap) has been performed to investigate the inherent cooling mechanism using distilled water and Freon R-113 in hemispherical narrow gaps. As a separate effect test of the CHFG test, a CCFL (Counter Current Flow Limit) test has been also performed to confirm the mechanism of the CHF in narrow annular gaps with large diameter. The CHFG test results have shown that an increase in the gap thickness leads to an increase in critical power. The pressure effect on the critical power was found to be much milder than predictions by CHF correlations of other studies. In the CCFL experiment, the occurrence of CCFL was correlated with the Wallis parameter, which was assumed to correspond to the critical power in the CHFG experiment. The measured values of critical power in the CHFG tests are much lower than CCFL experimental data and the predictions made by empirical CHF correlations. (author)

  17. Visualizing the effect of dynamin inhibition on annular gap vesicle formation and fission.

    Nickel, Beth; Boller, Marie; Schneider, Kimberly; Shakespeare, Teresa; Gay, Vernon; Murray, Sandra A

    2013-06-15

    Although gap junction plaque assembly has been extensively studied, mechanisms involved in plaque disassembly are not well understood. Disassembly involves an internalization process in which annular gap junction vesicles are formed. These vesicles undergo fission, but the molecular machinery needed for these fissions has not been described. The mechanoenzyme dynamin has been previously demonstrated to play a role in gap junction plaque internalization. To investigate the role of dynamin in annular gap junction vesicle fission, immunocytochemical, time-lapse and transmission electron microscopy were used to analyze SW-13 adrenocortical cells in culture. Dynamin was demonstrated to colocalize with gap junction plaques and vesicles. Dynamin inhibition, by siRNA knockdown or treatment with the dynamin GTPase inhibitor dynasore, increased the number and size of gap junction 'buds' suspended from the gap junction plaques. Buds, in control populations, were frequently released to form annular gap junction vesicles. In dynamin-inhibited populations, the buds were larger and infrequently released and thus fewer annular gap junction vesicles were formed. In addition, the number of annular gap junction vesicle fissions per hour was reduced in the dynamin-inhibited populations. We believe this to be the first report addressing the details of annular gap junction vesicle fissions and demonstrating a role of dynamin in this process. This information is crucial for elucidating the relationship between gap junctions, membrane regulation and cell behavior.

  18. Plasma rotation in plasma centrifuge with an annular gap

    Lee, H.Y.; Hong, S.H.

    1982-01-01

    The steady-state rotation of plasma centrifuge is theoretically analyzed to understand the physics of rotating plasma and its feasibility for isotope separation. The centriguge system under consideration consists of an annular gap between coaxial cylindrical anode and cathod in the presence of an externally-applied axial magnetic field. A problem for coupled partial differential equations describing centrifuge fields is formulated on the basis of the magnetohydrodynamic equations. Two-dimensional solutions are found analytically in the form of Fourier-Bessel series. The current density and velocity distributions are discussed in terms of the Hartmann number and the geometrical parameter of the system. At typical conditions, rotational speeds of the plasma up to the order of 10 4 m/sec are achievable, and increase either with increasing Hartmann number, or with increasing ratio of the axial length to the inner radius of the cylinder. In view of much higher speeds of rotation which can be achieved in plasma centrifuge, it is expected that its efficiency is superior to mechanically driven gas centrifuges. (Author)

  19. A bi-annular-gap magnetorheological energy absorber for shock and vibration mitigation

    Bai, Xian-Xu; Wereley, Norman M.; Choi, Young-Tai; Wang, Dai-Hua

    2012-04-01

    For semi-active shock and vibration mitigation systems using magnetorheological energy absorbers (MREAs), the minimization of the field-off damper force of the MREA at high speed is of particular significance because the damper force due to the viscous damping at high speed becomes too excessive and thus the controllable dynamic force range that is defined by the ratio of the field-on damper force to the field-off damper force is significantly reduced. In this paper, a bi-annular-gap MREA with an inner-set permanent magnet is proposed to decrease the field-off damper force at high speed while keeping appropriate dynamic force range for improving shock and vibration mitigation performance. In the bi-annular-gap MREA, two concentric annular gaps are configured in parallel so as to decrease the baseline damper force and both magnetic activation methods using the electromagnetic coil winding and the permanent magnet are used to keep holding appropriate magnetic intensity in these two concentric annular gaps in the consideration of failure of the electric power supply. An initial field-on damper force is produced by the magnetic field bias generated from the inner-set permanent magnet. The initial damper force of the MREA can be increased (or decreased) through applying positive (or negative) current to the electromagnetic coil winding inside the bi-annular-gap MREA. After establishing the analytical damper force model of the bi-annular-gap MREA using a Bingham-plastic nonlinear fluid model, the principle and magnetic properties of the MREA are analytically validated and analyzed via electromagnetic finite element analysis (FEA). The performance of the bi-annular-gap MREA is also theoretically compared with that of a traditional single-annular- gap MREA with the constraints of an identical volume by the performance matrix, such as the damper force, dynamic force range, and Bingham number with respect to different excitation velocities.

  20. Experimental Study on Critical Power in a Hemispherical Narrow Gap

    Park, Rae-Joon; Ha, Kwang-Soon; Kim, Sang-Baik; Kim, Hee-Dong; Jeong, Ji-Hwan

    2002-01-01

    An experimental study of critical heat flux in gap (CHFG) has been performed to investigate the inherent cooling mechanism in a hemispherical narrow gap. The objectives of the CHFG test are to measure critical power from a critical heat removal rate through the hemispherical narrow gap using distilled water with experimental parameters of system pressure and gap width. The CHFG test results have shown that a countercurrent flow limitation (CCFL) brings about local dryout at the small edge region of the upper part and finally global dryout in a hemispherical narrow gap. Increases in the gap width and pressure lead to an increase in critical power. The measured values of critical power are lower than the predictions made by other empirical CHF correlations applicable to flat plate, annuli, and small spherical gaps. The measured data on critical power in the hemispherical narrow gaps have been correlated using nondimensional parameters with a range of approximately ±20%. The developed correlation has been expanded to apply the spherical geometry using the Siemens/KWU correlation

  1. Period effects, cohort effects, and the narrowing gender wage gap.

    Campbell, Colin; Pearlman, Jessica

    2013-11-01

    Despite the abundance of sociological research on the gender wage gap, questions remain. In particular, the role of cohorts is under investigated. Using data from the Current Population Survey, we use age-period-cohort analysis to uniquely estimate age, period, and cohort effects on the gender wage gap. The narrowing of the gender wage gap that occurred between 1975 and 2009 is largely due to cohort effects. Since the mid-1990s, the gender wage gap has continued to close absent of period effects. While gains in female wages contributed to declines in the gender wage gap for cohorts born before 1950, for later cohorts the narrowing of the gender wage gap is primarily a result of declines in male wages. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Period Effects, Cohort Effects, and the Narrowing Gender Wage Gap

    Campbell, Colin; Pearlman, Jessica

    2015-01-01

    Despite the abundance of sociological research on the gender wage gap, questions remain. In particular, the role of cohorts is under investigated. Using data from the Current Population Survey, we use Age-Period-Cohort analysis to uniquely estimate age, period, and cohort effects on the gender wage gap. The narrowing of the gender wage gap that occurred between 1975 and 2009 is largely due to cohort effects. Since the mid-1990s, the gender wage gap has continued to close absent of period effects. While gains in female wages contributed to declines in the gender wage gap for cohorts born before 1950, for later cohorts the narrowing of the gender wage gap is primarily a result of declines in male wages. PMID:24090861

  3. Experimental Study on CHF in a Hemispherical Narrow Gap

    Jeong, J.H.; Park, R.J.; Kang, K.H.; Kim, S.B.; Kim, H.D.

    1999-01-01

    As a part of the SONATA-IV program, KAERI is conducting an experimental investigation of critical heat flux(CHF) in hemispherical narrow gaps. A visualization experiment, VISU-II, was done as the first step to get a visual observation of the flow behaviour inside a hemispherical gap and to understand the CHF-triggering mechanism. It was observed that the counter-current flow limitation (CCFL) phenomenon prevented water from wetting the heater surface and induced CHF. The CHFG (Critical Heat Flux in Gap) test is now being performed to measure the CHF and to investigate the inherent cooling mechanism in hemispherical narrow gaps. Temperature measurements over the heater surface show that the two-phase flow behaviour inside the gaps could be quite different from the other usual CHF experiments. The measured CHF points are lower than the predictions by existing empirical correlations based on the data measured with small-scale horizontal plates and vertical annulus. (authors)

  4. Absolute photonic band gap in 2D honeycomb annular photonic crystals

    Liu, Dan; Gao, Yihua; Tong, Aihong; Hu, Sen

    2015-01-01

    Highlights: • A two-dimensional honeycomb annular photonic crystal (PC) is proposed. • The absolute photonic band gap (PBG) is studied. • Annular PCs show larger PBGs than usual air-hole PCs for high refractive index. • Annular PCs with anisotropic rods show large PBGs for low refractive index. • There exist optimal parameters to open largest band gaps. - Abstract: Using the plane wave expansion method, we investigate the effects of structural parameters on absolute photonic band gap (PBG) in two-dimensional honeycomb annular photonic crystals (PCs). The results reveal that the annular PCs possess absolute PBGs that are larger than those of the conventional air-hole PCs only when the refractive index of the material from which the PC is made is equal to 4.5 or larger. If the refractive index is smaller than 4.5, utilization of anisotropic inner rods in honeycomb annular PCs can lead to the formation of larger PBGs. The optimal structural parameters that yield the largest absolute PBGs are obtained

  5. Period Effects, Cohort Effects, and the Narrowing Gender Wage Gap

    Campbell, Colin; Pearlman, Jessica

    2013-01-01

    Despite the abundance of sociological research on the gender wage gap, questions remain. In particular, the role of cohorts is under investigated. Using data from the Current Population Survey, we use Age-Period-Cohort analysis to uniquely estimate age, period, and cohort effects on the gender wage gap. The narrowing of the gender wage gap that occurred between 1975 and 2009 is largely due to cohort effects. Since the mid-1990s, the gender wage gap has continued to close absent of period effe...

  6. A comparison of the wide gap and narrow gap resistive plate chamber

    Cerron Zeballos, E.; Crotty, I.; Hatzifotiadou, D.; Valverde, J.L.; Neupane, S.; Peskov, V.; Singh, S.; Williams, M.C.S.; Zichichi, A.

    1996-01-01

    In this paper we study the performance of a wide gap RPC and compare it with that of a narrow gap RPC, both operated in avalanche mode. We have studied the total charge produced in the avalanche. We have measured the dependence of the performance with rate. In addition we have considered the effect of the tolerance of gas gap and calculated the power dissipated in these two types of RPC. We find that the narrow gap RPC has better timing ability; however the wide gap has superior rate capability, lower power dissipation in the gas volume and can be constructed with less stringent mechanical tolerances. (orig.)

  7. A comparison of the wide gap and narrow gap resistive plate chamber

    Cerron-Zeballos, E; Hatzifotiadou, D; Lamas-Valverde, J; Neupane, S; Peskov, Vladimir; Singh, S; Williams, M C S; Zichichi, Antonino

    1996-01-01

    In this paper we study the performance of a wide gap RPC and compare it with that of a narrow gap RPC, both operated in avalanche mode. We have studied the total charge produced in the avalanche. We have measured the dependence of the performance with rate. In addition we have considered the effect of the tolerance of gas gap and calculated the power dissipated in these two types of RPC. We find that the narrow gap RPC has better timing ability; however the wide gap has superior rate capability, lower power dissipation in the gas volume and can be constructed with less stringent mechanical tolerances.

  8. Fluid-structure coupling between a vibrating cylinder and a narrow annular flow

    Perotin, L.

    1994-01-01

    This paper presents an analytical investigation of the fluidelastic coupling between an axial annular flow and a flexible vibrating axisymmetrical structure. The model presented is suited to single-phase, incompressible, viscous fluids and to annular flows of variable cross-section, axially symmetrical when the structure is motionless.An experimental validation of this model is presented at the end of the paper: the results obtained with the numerical model are compared with experimental data for an oscillating cylinder free to vibrate under the effect of a variable-cross-section annular flow. ((orig.))

  9. Magnetization states and switching in narrow-gapped ferromagnetic nanorings

    Jie Li

    2012-03-01

    Full Text Available We study permalloy nanorings that are lithographically fabricated with narrow gaps that break the rotational symmetry of the ring while retaining the vortex ground state, using both micromagnetic simulations and magnetic force microscopy (MFM. The vortex chirality in these structures can be readily set with an in-plane magnetic field and easily probed by MFM due to the field associated with the gap, suggesting such rings for possible applications in storage technologies. We find that the gapped ring edge characteristics (i.e., edge profile and gap shape are critical in determining the magnetization switching field, thus elucidating an essential parameter in the controls of devices that might incorporate such structures.

  10. Active control of annular flow-induced vibration of axisymmetric elastic beam by the local gap width control

    Takada, Shoji; Shintani, Atsuhiko; Ito, Tomohiro; Fujita, Katsuhisa

    2011-01-01

    Flow-induced vibration may occur in the structures such as elastic beams subjected to annular flow in the narrow passage. Once the flow-induced vibration occurs, vibration amplitude becomes larger, consequently it causes a lot of troubles such as fatigue or failure in mechanical structures. In this paper, for the purpose to avoid these troubles, the active control of vibration of an axisymmetric elastic beam subjected to annular flow is investigated. An air-pressured actuator is attached on the surface of the circular cylinder for the vibrational control. As the shape of the actuator changes by control, the gap width in narrow passage changes, which causes the change of the fluid pressure. Therefore, the vibration of the fluid-structure coupled system can be suppressed. The fluid-structure coupled equation based on the Euler-Bernoulli type of partial differential equation and the Navier-Stokes equations is analytically derived including control terms. By applying the optimal control law to the coupled system, the unstable behavior is stabilized. The stability of the coupled system is investigated by eigenvalue analyses of controlled coupled equations. Numerical simulations are performed to investigate the efficiency of the proposed control method. (author)

  11. The role of rare earths in narrow energy gap semiconductors

    Partin, D.L.; Heremans, J.; Morelli, D.T.; Thrush, C.M.

    1991-01-01

    Narrow energy band gap semiconductors are potentially useful for various devices, including infrared detectors and diode lasers. Rare earth elements have been introduced into lead chalcogenide semiconductors using the molecular beam epitaxy growth process. Europium and ytterbium increase the energy band gap, and nearly lattice-matched heterojunctions have been grown. In some cases, valence changes in the rare earth element cause doping of the alloy. In this paper some initial investigations of the addition of europium to indium antimonide are reported, including the variation of lattice parameter and optical transmission with composition and a negative magnetoresistance effect

  12. New technology for the control of narrow-gap semiconductors

    Antoniou, I.; Bozhevolnov, V.; Melnikov, Yu.; Yafyasov, A.

    2003-01-01

    We present the results of the year work in the frame of the EU ESPRIT Project 28890 NTCONGS 'New technology for the control of narrow-gap semiconductors'. This work has involved both theoretical and experimental study, as well as the development of new specific equipment, towards the creation of a new generation of nanoelectronic devices able to operate at 77 K and even at room temperature

  13. Sensitivity Analysis of Gap Conductance for Heat Split in an Annular Fuel Rod

    Chun, Kun Ho; Chun, Tae Hyun; In, Wang Kee; Song, Keun Woo

    2006-01-01

    To increase of the core power density in the current PWR cores, an annular fuel rod was proposed by MIT. This annular fuel rod has two coolant channels and two cladding-pellet gaps unlike the current solid fuel rod. It's important to predict the heat split reasonably because it affects coolant enthalpy rise in each channel and Departure from Nuclear Boiling Ratio (DNBR) in each channel. Conversely, coolant conditions affect fuel temperature and heat split. In particular if the heat rate leans to either inner or outer channel, it is out of a thermal equilibrium. To control a thermal imbalance, placing another gap in the pellet is introduced. The heat flow distribution between internal and external channels as well as fuel and cladding temperature profiles is calculated with and without the fuel gap between the inner and outer pellets

  14. Present status of heat transfer in narrow gap rectangular channel

    Sudo, Yukio; Kaminaga, Masanori

    1990-01-01

    In the safety evaluation for research nuclear reactors, at the time of abnormal transient change and accidents, after the tripping of a primary coolant pump, such event that the flow direction of coolant in a core reverses from steady downward flow to rising flow is supposed. In this case, the coexisting convection field, in which free convection and forced convection coexist, arises in place of forced convection, and especially in the research reactors using plate type fuel like JRR-3, it is important to grasp the heat transfer characteristics in the coexisting convection field in a narrow channel. Jackson et al. proposed the heat transfer correlation equation which can be applied to wide conditions including the coexisting convection zone, but its applicability to a narrow channel has not been confirmed. Based on the experimental results, in this study, the effect that the decrease of gap exerts to the convection heat transfer characteristics reported so far was investigated. The experiment and the results are reported. In this experiment on the coexisting convection zone in a narrow gap, the effect of main flow acceleration arose sufficiently large as compared with the effect of buoyancy, and heat transfer was promoted. (K.I.)

  15. Annular gap measurement between pressure tube and calandria tube by eddy current technique

    Bhole, V.M.; Rastogi, P.K.; Kulkarni, P.G.

    1992-01-01

    In pressurised heavy water reactor (PHWR) major distinguishing feature is that there are number of identical fuel channels in the reactor core. Each channel consists of pressure tube of Zr-2.5 Nb or zircaloy-2 through which high temperature, high pressure primary coolant is passing. The pressure tube contains fuel. Surrounding the pressure tube there is low pressure, cool heavy water (moderator). The moderator is thermally separated from coolant by the tube which is nominally concentric with pressure tube called calandria tube. There are four garter springs in the annular gap between pressure tube and calandria tube. During the life of the reactor there are number of factors by which the pressure tube sags, most important factors are irradiation creep, thermal creep, fuel load etc. Because of the sag of pressure tube it can touch the calandria tube resulting in formation of cold spot. This leads to hydrogen concentration at that spot by which the material at that place becomes brittle and can lead to catastrophic failure of pressure tube. There is no useful access for measurement of annular gap either through the gas annular space or from exterior of calandria tube. So the annular gap was measured from inside surface of pressure tube which is accessible. Eddy current technique was used for finding the gap. The paper describe the details of split coil design of bobbin probe, selection of operating point on normalised impedance diagram by choosing frequency. Experimental results on full scale mock up, and actual gap measurement in reactor channel, are also given. (author). 7 figs

  16. Slug-annular transition with particular reference to narrow rectangular ducts

    Jones, O.C. Jr.; Zuber, N.

    1978-01-01

    The transition from slug-flow to annular-flow in two-phase, gas-liquid mixtures is analyzed. A transition equation is derived which agrees well when compared with objective data determined from the disappearance of the low-void peak in the void fluctuation probability density in a rectangular duct. Application to other geometries is suggested and tabular recommendations given for determination of the drift flux coefficient, K, based on results in the literature

  17. Advantages and successful use of TIG narrow-gap welding

    Loehberg, R.; Pellkofer, D.; Schmidt, J.

    1986-01-01

    Narrow-gap welding, an advancement of the mechanized TIG impulse welding process with conventional seam geometry (V-shaped and/or U-shaped welds), not only assures great economic efficiency on account of the low weld volume but also offers considerable benefits in terms of quality. Thanks to the low number of beads, the following advantages are gained: less axial and radial shrinkage which reduces the strain in the root area, total heat input and, thus, the dwell time in the critical temperature range from 500 to 800 0 C leading to a chromium depletion at the grain boundaries during the welding process is minimized which markedly reduces the sensitivity of non-stabilized steels to intercrystalline stress corrosion cracking, and a relatively favourable residual welding stress profile in the heat affected zone. The process was used successfully in the past for welds of ferritic and austenitic steel pipes in the construction of nuclear power plants and in the remote-controlled welding during the replacement of piping in plants already in operation. (orig.) [de

  18. Prediction of Weld Residual Stress of Narrow Gap Welds

    Yang, Jun Seog; Huh, Nam Su

    2010-01-01

    The conventional welding technique such as shield metal arc welding has been mostly applied to the piping system of the nuclear power plants. It is well known that this welding technique causes the overheating and welding defects due to the large groove angle of weld. On the other hand, the narrow gap welding(NGW) technique has many merits, for instance, the reduction of welding time, the shrinkage of weld and the small deformation of the weld due to the small groove angle and welding bead width comparing with the conventional welds. These characteristics of NGW affect the deformation behavior and the distribution of welding residual stress of NGW, thus it is believed that the residual stress results obtained from conventional welding procedure may not be applied to structural integrity evaluation of NGW. In this paper, the welding residual stress of NGW was predicted using the nonlinear finite element analysis to simulate the thermal and mechanical effects of the NGW. The present results can be used as the important information to perform the flaw evaluation and to improve the weld procedure of NGW

  19. Cuttings-liquid frictional pressure loss model for horizontal narrow annular flow with rotating drillpipe

    Ofei, T N; Irawan, S; Pao, W

    2015-01-01

    During oil and gas drilling operations, frictional pressure loss is experienced as the drilling fluid transports the drilled cuttings from the bottom-hole, through the annulus, to the surface. Estimation of these pressure losses is critical when designing the drilling hydraulic program. Two-phase frictional pressure loss in the annulus is very difficult to predict, and even more complex when there is drillpipe rotation. Accurate prediction will ensure that the correct equivalent circulating density (ECD) is applied in the wellbore to prevent formation fracture, especially in formations with narrow window between the pore pressure and fracture gradient. Few researchers have attempted to propose cuttings-liquid frictional pressure loss models, nevertheless, these models fail when they are applied to narrow wellbores such as in casing- while-drilling and slimhole applications. This study proposes improved cuttings-liquid frictional pressure loss models for narrow horizontal annuli with drillpipe rotation using Dimensional Analysis. Both Newtonian and non-Newtonian fluids were considered. The proposed model constants were fitted by generated data from a full-scale simulation study using ANSYS-CFX. The models showed improvement over existing cuttings-liquid pressure loss correlations in literature. (paper)

  20. Design, Construction, Demonstration and Delivery of an Automated Narrow Gap Welding System.

    1982-06-29

    DESIGN, CONSTRUCTION, DEMONSTRATION AND DELIVERY OF WE DA4I &NARROW GAP CONTRACT NO. NOOGOO-81-C-E923 TO DAVID TAYLOR NAVAL RESEARCH AND DEVELOPMENT...the automated * Narrow Gap welding process, is the narrow (3/8 - inch), square-butt joint *design. This narrow joint greatly reduces the volume of weld...AD-i45 495 DESIGN CONSTRUCTION DEMONSTRATION AiND DELIVERY OF RN 1/j AUrOMATED NARROW GAP WELDING SYSTEMI() CRC AUTOMATIC WELDING CO HOUSTON TX 29

  1. Narrowing the Gap in Outcomes: Early Years (0-5 Years)

    Springate, Ian; Atkinson, Mary; Straw, Suzanne; Lamont, Emily; Grayson, Hilary

    2008-01-01

    This report was commissioned by the Local Government Association (LGA) to inform the Department for Children, Schools and Families (DCSF) and LGA work on "Narrowing the Gap." It focuses on early years' provision and presents findings from a review of the best evidence on narrowing the gap in outcomes across the five Every Child Matters…

  2. Heat transfer coefficient for flow boiling in an annular mini gap

    Hożejowska Sylwia

    2016-01-01

    Full Text Available The aim of this paper was to present the concept of mathematical models of heat transfer in flow boiling in an annular mini gap between the metal pipe with enhanced exterior surface and the external glass pipe. The one- and two-dimensional mathematical models were proposed to describe stationary heat transfer in the gap. A set of experimental data governed both the form of energy equations in cylindrical coordinates and the boundary conditions. The models were formulated to minimize the number of experimentally determined constants. Known temperature distributions in the enhanced surface and in the fluid helped to determine, from the Robin condition, the local heat transfer coefficients at the enhanced surface – fluid contact. The Trefftz method was used to find two-dimensional temperature distributions for the thermal conductive filler layer, enhanced surface and flowing fluid. The method of temperature calculation depended on whether the area of single-phase convection ended with boiling incipience in the gap or the two-phase flow region prevailed, with either fully developed bubbly flow or bubbly-slug flow. In the two–phase flow, the fluid temperature was calculated by Trefftz method. Trefftz functions for the Laplace equation and for the energy equation were used in the calculations.

  3. Assessment of Gap Conductance Impact on Heat Split in Dual Cooled Annular Fuel

    Chun, Kun Ho; Chun, Tae Hyun; In, Wang Kee; Yang, Yong Sik; Song, Kun Woo

    2007-07-15

    As a next generation fuel for PWR, a dual cooling annular fuel is being considered promisingly due to various advantage. It is able to increase the thermal margin significantly from not only large heat transfer area but also thin fuel pellet thickness. But the thermal margin at nominal condition could be degraded at certain burnup range because of the inappropriate heat split to inner and outer flow channels. A key factor to influence the heat split is the gap conductances in inner and outer clearances, which varies in terms of thermal expansion, swelling, creep, and so on in the cladding and pellet. As results of the investigation, particularly in the case of low gap conductance when the fuel rod burnup is relatively high, there is high probability that design targets might be violated. Therefore some effort is inevitable to address the concern. But, in parallel, it is necessary to more in detail investigate whether the assumed gap conductance for this analysis and the present design targets are reasonable through further reviews.

  4. Large-scale transport across narrow gaps in rod bundles

    Guellouz, M.S.; Tavoularis, S. [Univ. of Ottawa (Canada)

    1995-09-01

    Flow visualization and how-wire anemometry were used to investigate the velocity field in a rectangular channel containing a single cylindrical rod, which could be traversed on the centreplane to form gaps of different widths with the plane wall. The presence of large-scale, quasi-periodic structures in the vicinity of the gap has been demonstrated through flow visualization, spectral analysis and space-time correlation measurements. These structures are seen to exist even for relatively large gaps, at least up to W/D=1.350 (W is the sum of the rod diameter, D, and the gap width). The above measurements appear to compatible with the field of a street of three-dimensional, counter-rotating vortices, whose detailed structure, however, remains to be determined. The convection speed and the streamwise spacing of these vortices have been determined as functions of the gap size.

  5. Career Attainment among Healthcare Executives: Is the Gender Gap Narrowing?

    Branin, Joan Julia

    2009-01-01

    Health care occupations are expected to be among the fastest growing professions in the next ten years. With such incredible growth expected in employment and wages, and with women's participation in the industry remaining strong, are women in the health care industry, particularly those in health care administration, experiencing a narrowing of…

  6. State Policy Strategies for Narrowing the Gender Wage Gap

    Coghlan, Erin; Hinkley, Sara

    2018-01-01

    #MeToo and #TimesUp protests about the treatment of women in the workplace have brought renewed attention to gender pay equity. This brief looks at three legislative solutions that aim to close the gap by increasing pay transparency and pushing employers to set salaries to the position, not the history of the person doing the job.

  7. Student Interns' Socially Constructed Work Realities: Narrowing the Work Expectation-Reality Gap

    Barnett, Kathy

    2012-01-01

    New employees, including college students, often experience expectation-reality gaps about work, making the assimilation process more difficult for all. This qualitative study explores the role of the internship in narrowing the work expectation-reality gap. This article addresses two research questions: (a) What do students learn about work…

  8. A semi-analytical solution for viscothermal wave propagation in narrow gaps with arbitrary boundary conditions.

    Wijnant, Ysbrand H.; Spiering, R.M.E.J.; Blijderveen, M.; de Boer, Andries

    2006-01-01

    Previous research has shown that viscothermal wave propagation in narrow gaps can efficiently be described by means of the low reduced frequency model. For simple geometries and boundary conditions, analytical solutions are available. For example, Beltman [4] gives the acoustic pressure in the gap

  9. A study of the flow boiling heat transfer in an annular heat exchanger with a mini gap

    Musiał Tomasz

    2017-01-01

    Full Text Available In this paper the research on flow boiling heat transfer in an annular mini gap was discussed. A one- dimensional mathematical approach was proposed to describe stationary heat transfer in the gap. The mini gap 1 mm wide was created between a metal pipe with enhanced exterior surface and an external tempered glass pipe positioned along the same axis. The experimental test stand consists of several systems: the test loop in which distilled water circulates, the data and image acquisition system and the supply and control system. Known temperature distributions of the metal pipe with enhanced surface and of the working fluid helped to determine, from the Robin boundary condition, the local heat transfer coefficients at the fluid - heated surface contact. In the proposed mathematical model it is assumed that the cylindrical wall is a planar multilayer wall. The numerical results are presented on a chart as function of the heat transfer coefficient along the length of the mini gap.

  10. Space-charge limitation of avalanche growth in narrow-gap resistive plate chambers

    Williams, M C S

    2004-01-01

    A big advance in resistive plate chamber technology happened in 1996 with the advent of the multigap resistive plate chamber (MRPC). The MRPC allows us to easily construct detectors with many small gas gaps and thus we obtain good timing together with high detection efficiency. Using this technology, it is now common to build detectors with gas gaps of 200-300 mum in width. This paper examines space-charge limited avalanche growth; this becomes a dominant effect for narrow gap resistive plate chambers. This effect controls gas gain and explains the reason for the excellent behaviour of MRPCs built with this gas gap.

  11. Sub-arc narrow gap welding of Atucha 2 RPV closure head

    Hantsch, H.; Million, K.; Zimmermann, H.

    1982-01-01

    Narrow gap technology was used for reasons of design and fabrication when welding the closure-head dome to its flange. Preliminary tests had yielded the necessary improvements of the well-proven sub-arc practice. New facilities had to be developed for welding proper and for the accompanying machining work (finishing in the narrow gap). Special measures were adopted for monitoring the welding process and for recording the welding parameters. The new method was tried out on several large test coupons before welding of the final product was started. No difficulties were encountered during the welding job. Fabrication of the closure head is shown in a short film sequence. (orig.)

  12. Band gap narrowing and fluorescence properties of nickel doped SnO2 nanoparticles

    Ahmed, Arham S.; Shafeeq, M. Muhamed; Singla, M.L.; Tabassum, Sartaj; Naqvi, Alim H.; Azam, Ameer

    2011-01-01

    Nickel-doped tin oxide nanoparticles (sub-5 nm size) with intense fluorescence emission behavior have been synthesized by sol-gel route. The structural and compositional analysis has been carried out by using XRD, TEM, FESEM and EDAX. The optical absorbance spectra indicate a band gap narrowing effect and it was found to increase with the increase in nickel concentration. The band gap narrowing at low dopant concentration ( 2 -SnO 2-x alloying effect and for higher doping it may be due to the formation of defect sub-bands below the conduction band.

  13. Band gap narrowing and fluorescence properties of nickel doped SnO{sub 2} nanoparticles

    Ahmed, Arham S; Shafeeq, M Muhamed [Centre of Excellence in Materials Science (Nanomaterials), Department of Applied Physics, Z. H. College of Engineering and Technology, Aligarh Muslim University, Aligarh-202002 (India); Singla, M L [Central Scientific Instruments Organization (CSIO), Council of Scientific and Industrial Research (CSIR), Materials Research and Bio-Nanotechnology Division, Sector - 30/C, Chandigarh-160030 (India); Tabassum, Sartaj [Department of Chemistry, Aligarh Muslim University, Aligarh-202002 (India); Naqvi, Alim H [Centre of Excellence in Materials Science (Nanomaterials), Department of Applied Physics, Z. H. College of Engineering and Technology, Aligarh Muslim University, Aligarh-202002 (India); Azam, Ameer [Centre of Excellence in Materials Science (Nanomaterials), Department of Applied Physics, Z. H. College of Engineering and Technology, Aligarh Muslim University, Aligarh-202002 (India)

    2011-01-15

    Nickel-doped tin oxide nanoparticles (sub-5 nm size) with intense fluorescence emission behavior have been synthesized by sol-gel route. The structural and compositional analysis has been carried out by using XRD, TEM, FESEM and EDAX. The optical absorbance spectra indicate a band gap narrowing effect and it was found to increase with the increase in nickel concentration. The band gap narrowing at low dopant concentration (<5%) can be assigned to SnO{sub 2}-SnO{sub 2-x} alloying effect and for higher doping it may be due to the formation of defect sub-bands below the conduction band.

  14. Basic Boiling Experiments with An Inclined Narrow Gap Associated With In-Vessel Retention

    Terazu, Kuninobu; Watanabe, Fukashi; Iwaki, Chikako; Yokobori, Seiichi; Akinaga, Makoto; Hamazaki, Ryoichi; SATO, Ken-ichi

    2002-01-01

    In the case of a severe accident with relocation of the molten corium into the lower plenum of reactor pressure vessel (RPV), the successful in-vessel corium retention (IVR) can prevent the progress to ex-vessel events with uncertainties and avoid the containment failure. One of the key phenomena governing the possibility of IVR would be the gap formation and cooling between a corium crust and the RPV wall, and for the achievement of IVR, it would be necessary to supply cooling water to RPV as early as possible. The BWR features relative to IVR behavior are a deep and massive water pool in the lower plenum, and many of control rod drive guide tubes (CRDGT) installed in the lower head of RPV, in which water is injected continuously except in the case of station blackout scenario. The present paper describes the basic boiling experiment conducted in order to investigate the boiling characteristics in an inclined narrow gap simulating a part of the lower head curvature. The boiling experiments were composed of visualization tests and heat transfer tests. In the visualization tests, two types of inclined gap were constructed using the parallel plate and the V-shaped parallel plate with heating from the top plate, and the boiling flow pattern was observed with various gap width and heat flux. These observation results showed that water was easily supplied from the gap bottom of parallel plate even in a very narrow gap with smaller width than 1 mm, and water could flow continuously in the narrow gap by the geometric and thermal imbalance from the experiment results using the V-shaped parallel plate. In the heat transfer tests, the critical heat flux (CHF) data in an inclined narrow channel formed by the parallel plates were measured in terms of the parameters of gap width, heated length and inclined angle of a channel, and the effect of inclination was incorporated into the existing CHF correlation for a narrow gap. The CHF correlation modified for an inclined narrow gap

  15. Prediction of liquid film dryout in two-phase annular-mist flow in a uniformly heated narrow tube development of analytical method under BWR conditions

    Utsuno, Hideaki; Kaminaga, Fumito

    1998-01-01

    A method was developed based on the conservation lows to predict critical heat flux (CHF) causing liquid film dryout in two-phase annular-mist flow in a uniformly heated narrow tube under BWR conditions. The applicable range of the method is within the pressure of 3-9 MPa, mass flux of 500-2,000 kg/m 2 ·s, heat flux of 0.33-2.0 MW/m 2 and boiling length-to-tube diameter ratio of 200-800. The two-phase annular-mist flow was modeled with the three-fluid streams with liquid film, entrained droplets and gas flow. Governing equations of the method are mass continuity and energy conservation on the three-fluid streams. Constitutive equations on the mass transfer which consist of the entrainment fraction at equilibrium and the mass transfer coefficient were newly proposed in this study. Confirmation of the present method were performed in comparison with the available film flow measurements and various CHF data from experiments in uniformly heated narrow tubes under high pressure steam-water conditions. In the heat flux range (q'' 2 ) practical for a BWR, agreement of the present method with CHF data was obtained as, (Averaged ratio) ± (Standard deviation) = 0.984 ± 0.077, which was shown to be the same or better agreement than the widely-used CHF correlations. (author)

  16. Submerged arc narrow gap welding of the steel DIN 20MnMoNi55

    Moraes, M.M.

    1987-01-01

    The methodology for submerged arc narrow gap welding for high thickness rolled steel DIN 20MnMoNi55 was developed, using din S3NiMo1 04 mm and 05 mm wires, and DIN 8B435 flux. For this purpose, submerged arc narrow gap welded joints with 50 mm and 120 mm thickness were made aiming the welding parameters optimization and the study of the influence of welding voltage, wire diameter and wire to groove face distance on the operational performance and on the welded joint quality, specially on the ISO-V impact toughness. These welded joints were checked by non-destructive mechanical and metallographic tests. Results were compared with those obtained by one 120 mm thickness submerged arc conventional gap welded joint, using the same base metal and consumables (05 mm wire). The analysis of the results shows that the increasing of the wire to groove face distance and the welding voltage increases the hardness and the ISO-V impact toughness of the weld metal. It shows that the reduction of the gap angle is the main cause for the obtained of a heat affected zone free from coarse grains, the reduction of the welding voltage, the increasing of the wire to groove face distance, and the grounding optimization also contribute for that. It was also concluded that the quality and the execution complexity level of a narrow gap welded joint are identical to a conventional gap welded joint. (author) [pt

  17. Aiming at Narrowing Social Gaps in Israel through a Special Program of Everyman's University.

    Guri, Sarah

    The philosophy and implementation of the Community Leaders Project at Everyman's University (EU), the Open University of Israel, are discussed. The project is designed to narrow social gaps in Israel by upgrading the educational level of disadvantaged populations and by developing indigeneous leadership for decision-making in the most…

  18. Analysis of welding distortion due to narrow-gap welding of upper port plug

    Biswas, Pankaj; Mandal, N.R.; Vasu, Parameswaran; Padasalag, Shrishail B.

    2010-01-01

    Narrow-gap welding is a low distortion welding process. This process allows very thick plates to be joined using fewer weld passes as compared to conventional V-groove or double V-groove welding. In case of narrow-gap arc welding as the heat input and weld volume is low, it reduces thermal stress leading to reduction of both residual stress and distortion. In this present study the effect of narrow-gap welding was studied on fabrication of a scaled down port plug in the form of a trapezoidal box made of 10 mm thick mild steel (MS) plates using gas tungsten arc welding (GTAW). Inherent strain method was used for numerical prediction of resulting distortions. The numerical results compared well with that of the experimentally measured distortion. The validated numerical scheme was used for prediction of weld induced distortion due to narrow-gap welding of full scale upper port plug made of 60 mm thick SS316LN material as is proposed for use in ITER project. It was observed that it is feasible to fabricate the said port plug keeping the distortions minimum within about 7 mm using GTAW for root pass welding followed by SMAW for filler runs.

  19. The narrow-gap TIG welding concerns the electric power plants manufacturers

    Anon.

    2009-01-01

    Polysoude, France, played host to an expert forum on narrow gap welding from 5-7 November 2008. The successful event welcomed around one hundred experts.The power plant construction sector is currently booming worldwide. For plant construction this means using more pressure-resistant, thick-walled pipes made from high temperature steels. The key quality features of this new steel grade are the values for high creep rupture strength that also apply without restriction as the benchmark for every weld seam on these pipes. In particular, the forum on narrow gap welding addressed this area of automated welding technology. During the forum, Mr Hans-Peter Mariner (Polysoude's CEO), has offered an in-depth insight into the latest developments in narrow gap welding. This presentation highlighted that with wall thicknesses of over 60 mm, welding time is shortened by a factor of five to ten in comparison to conventional TIG processes with a traditional V seam. The welding characteristics of the parent material are the decisive factor in the application of the narrow gap process. Technical advances in equipment technology such as automatic centring, HF-free ignition, seam preparation and optimised gas protection further increase the application limits. The geometry and gap width of the weld groove are based on the mechanical properties of the materials being joined, with the shrinkage characteristics of the seam being particularly important. Another key part of the programme was a presentation on the three different narrow gap-welding techniques. The first involves a single pass weld per layer and torch or work-piece revolution. The second is dual pass welding next to one another, when the seam preparation or positioning exceed the required narrow tolerances of a few tenths of a millimetre for one stringer bead per layer. TIG narrow gap welding with a shuttle-motion electrode is ideal with very large wall thicknesses of 150-200 mm. This is particularly the case if the

  20. MAG narrow gap welding - an economic way to minimize welding expenses

    Kast, W.; Scholz, E.; Weyland, F.

    1982-01-01

    The thicker structural components are, the more important it is to take measures to reduce the volume of the weld. The welding process requiring the smallest possible weld section is the so-called narrow gap process. In submerged arc narrow gap welding as well as in MAG narrow gap welding different variants are imaginable, some of them already in practical use. With regard to efficiency and weld quality an optimum variant of the MAG narrow gap welding process is described. It constitutes a two wire system in which two wire electrodes of 1.2 mm diameter are arranged one behind the other. In order to avoid lack of fusion, the wire guides are slightly pointed towards each groove face. Thus, by inclining the two arcs burning one behind the other in the direction of weld progress, it is achieved that two separately solidifying weld pools and two beads per layer are simultaneously formed. Welding parameters are selected in such a way that a heat input of 16-20 kJ/cm and a deposition rate of 11-16 kgs/h are obtained. In spite of this comparatively high deposition rate, good impact values are found both in the weld and HAZ (largely reduced coarse-grain zone) which is due to an optimum weld build-up. With the available welding equipment the process can be applied to structural members having a thickness of 40-400 mm. The width of gap is 13 mm (root section) with a bevel angle of 1 0 . As filler metal, basic flux-cored wires are used which, depending on the base metal to be welded and the required tensile properties, can be of the Mn-, MnMo-, MnCrMo-, MnNi-, or MnNiMo-alloyed types. (orig.)

  1. Narrow gap mechanised arc welding in nuclear components manufactured by AREVA NP

    Peigney, A.

    2007-01-01

    Nuclear components require welds of irreproachable and reproducible quality. Moreover, for a given welding process, productivity requirements lead to reduce the volume of deposited metal and thus to use narrow gap design. In the shop, narrow gap Submerged Arc Welding process (SAW) is currently used on rotating parts in flat position for thicknesses up to 300 mm. Welding is performed with one or two wires in two passes per layer. In Gas Tungsten Arc Welding process (GTAW), multiple applications can be found because this process presents the advantage of allowing welding in all positions. Welding is performed in one or two passes per layer. The process is used in factory and on the nuclear sites for assembling new components but also for replacing components and for repairs. Presently, an increase of productivity of the process is sought through the use of hot wire and/or two wires. Concerning Gas Metal Arc Welding process (GMAW), its use is growing for nuclear components, including narrow gap applications. This process, limited in its applications in the past on account of the defects it generated, draws benefit from the progress of the welding generators. Then it is possible to use this efficient process for high security components such as those of nuclear systems. It is to be noted that the process is applicable in the various welding positions as it is the case for GTAW, while being more efficient than the latter. This paper presents the state of the art in the use of narrow gap mechanised arc welding processes by AREVA NP units. (author) [fr

  2. Optical properties of ZnTe epilayers with submonolayer planar narrow gap inclusions

    Agekian, V. F.; Filosofov, N. G., E-mail: n.filosofov@spbu.ru; Serov, A. Yu. [St. Petersburg State University, Universitetskaya nab. 7 – 9, 199034 Si. Petersburg (Russian Federation); Shtrom, I. V. [St. Petersburg State University, Universitetskaya nab. 7 – 9, 199034 Si. Petersburg (Russian Federation); Ioffe Physicotechnical Institute, Russian Academy of Sciences, Politekhnicheskaya 26, 194021 St. Petersburg (Russian Federation); St. Petersburg Academic University — Nanotechnology Research and Education Centre, Russian Academy of Sciences, Khlopina 8/3, 194021 St. Petersburg (Russian Federation); Karczewski, G. [Institute of Physics Polish Academy of Science, Ał. Lotnikov 32/46, 02-668 Warsaw (Poland)

    2016-06-17

    The exciton luminescence of ZnTe matrices with the embedded CdTe submonolayer inclusions is investigated. It is shown that the exciton localized by CdTe narrow gap component dominates in the emission spectrum. These localized excitons are coupled mainly with the phonons belonging to the cadmium enriched layers. The real distribution of cadmium in the direction of the heterostructure growth is determined from the energy position of the localized exciton emission bands.

  3. Impurity-induced photoconductivity of narrow-gap Cadmium–Mercury–Telluride structures

    Kozlov, D. V., E-mail: dvkoz@impras.ru; Rumyantsev, V. V.; Morozov, S. V.; Kadykov, A. M. [Russian Academy of Sciences, Institute for Physics of Microstructures (Russian Federation); Varavin, V. S.; Mikhailov, N. N.; Dvorestky, S. A. [Russian Academy of Sciences, Rzhanov Institute of Semiconductor Physics, Siberian Branch (Russian Federation); Gavrilenko, V. I. [Russian Academy of Sciences, Institute for Physics of Microstructures (Russian Federation); Teppe, F. [Universite Montpellier II, Laboratoire Charles Coulomb (L2C) (France)

    2015-12-15

    The photoconductivity (PC) spectra of CdHgTe (MCT) solid solutions with a Cd fraction of 17 and 19% are measured. A simple model for calculating the states of doubly charged acceptors in MCT solid solutions, which makes it possible to describe satisfactorily the observed photoconductivity spectra, is proposed. The found lines in the photoconductivity spectra of narrow-gap MCT structures are associated with transitions between the states of both charged and neutral acceptor centers.

  4. Evaluations of two-phase natural circulation flow induced in the reactor vessel annular gap under ERVC conditions

    Ha, Kwang Soon, E-mail: tomo@kaeri.re.kr [Korea Atomic Energy Research Institute, 1045 Daedeok-daero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Cheung, Fan-Bill [The Pennsylvania State University, University Park, PA 16802 (United States); Park, Rae Joon; Kim, Sang Baik [Korea Atomic Energy Research Institute, 1045 Daedeok-daero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Two-phase natural circulation flow induced in insulation gap was investigated. Black-Right-Pointing-Pointer Half-scaled non-heating experiments were performed to evaluate flow behavior. Black-Right-Pointing-Pointer The loop-integrated momentum equation was formulated and solved asymptotically. Black-Right-Pointing-Pointer First-order approximate solution was obtained and agreed with experimental data. - Abstract: The process of two-phase natural circulation flow induced in the annular gap between the reactor vessel and the insulation under external reactor vessel cooling conditions was investigated experimentally and analytically in this study. HERMES-HALF experiments were performed to observe and quantify the induced two-phase natural circulation flow in the annular gap. A half-scaled non-heating experimental facility was designed by utilizing the results of a scaling analysis to simulate the APR1400 reactor and its insulation system. The behavior of the boiling-induced two-phase natural circulation flow in the annular gap was observed, and the liquid mass flow rates driven by the natural circulation loop and the void fraction distribution were measured. Direct flow visualization revealed that choking would occur under certain flow conditions in the minimum gap region near the shear keys. Specifically, large recirculation flows were observed in the minimum gap region for large air injection rates and small outlet areas. Under such conditions, the injected air could not pass through the minimum gap region, resulting in the occurrence of choking near the minimum gap with a periodical air back flow being generated. Therefore, a design modification of the minimum gap region needs to be done to facilitate steam venting and to prevent choking from occurring. To complement the HERMES-HALF experimental effort, an analytical study of the dependence of the induced natural circulation mass flow rate on the inlet area and the

  5. D-T neutron streaming experiment simulating narrow gaps in ITER equatorial port

    Ochiai, K.; Sato, S.; Wada, M.; Iida, H.; Takakura, K.; Kutsukake, C.; Tanaka, S.; Abe, Y.; Konno, C.

    2008-01-01

    Under the ITER/ITA task, we have conducted the neutron streaming experiment simulating narrow and deep gaps at boundaries between ITER vacuum vessel and equatorial port plugs. Micro-fission chambers and some activation foils were used to measure fission rates and reaction rates to evaluate the relative fast and slow neutron fluences along the gap in the experimental assembly. The MCNP4C, TORT and Attila codes were used for the experimental analysis. From comparing our measurements and calculations, the following facts were found: (1) in case of a such narrow and deep gap structure, the calculation with MCNP, TORT and Attila codes and FENDL-2.1 is sufficient to predict fast neutron field inside the gap; (2) by scattering neutrons in the experimental room, experimental error considerably increased at the deeper region than 100 cm; (3) angular quadrature set of upward biased U315 and last collided source calculation on TORT and Attila were very important technique for accurate estimation of neutron transport

  6. Effect of band gap narrowing on GaAs tunnel diode I-V characteristics

    Lebib, A.; Hannanchi, R. [Laboratoire d' énergie et de matériaux, LabEM-LR11ES34-Université de sousse (Tunisia); Beji, L., E-mail: lotbej_fr@yahoo.fr [Laboratoire d' énergie et de matériaux, LabEM-LR11ES34-Université de sousse (Tunisia); EL Jani, B. [Unité de Recherche sur les Hétéro-Epitaxies et Applications, Faculté des Sciences, Université de Monastir, 5019 Monastir (Tunisia)

    2016-12-01

    We report on experimental and theoretical study of current-voltage characteristics of C/Si-doped GaAs tunnel diode. For the investigation of the experimental data, we take into account the band-gap narrowing (BGN) effect due to heavily-doped sides of the tunnel diode. The BGN of the n- and p-sides of tunnel diode was measured by photoluminescence spectroscopy. The comparison between theoretical results and experimental data reveals that BGN effect enhances tunneling currents and hence should be considered to identify more accurately the different transport mechanisms in the junction. For C/Si-doped GaAs tunnel diode, we found that direct tunneling is the dominant transport mechanism at low voltages. At higher voltages, this mechanism is replaced by the rate-controlling tunneling via gap states in the forbidden gap.

  7. Conditions and phase shift of fluid resonance in narrow gaps of bottom mounted caissons

    Zhu, Da-tong; Wang, Xing-gang; Liu, Qing-jun

    2017-12-01

    This paper studies the viscid and inviscid fluid resonance in gaps of bottom mounted caissons on the basis of the plane wave hypothesis and full wave model. The theoretical analysis and the numerical results demonstrate that the condition for the appearance of fluid resonance in narrow gaps is kh=(2 n+1)π ( n=0, 1, 2, 3, …), rather than kh= nπ ( n=0, 1, 2, 3, …); the transmission peaks in viscid fluid are related to the resonance peaks in the gaps. k and h stand for the wave number and the gap length. The combination of the plane wave hypothesis or the full wave model with the local viscosity model can accurately determine the heights and the locations of the resonance peaks. The upper bound for the appearance of fluid resonance in gaps is 2 b/ Lreason for the phase shift of the resonance peaks is the inductive factors. The number of resonance peaks in the spectrum curve is dependent on the ratio of the gap length to the grating constant. The heights and the positions of the resonance peaks predicted by the present models agree well with the experimental data.

  8. Preparation of the spacer for narrow electrode gap configuration in ionization-based gas sensor

    Saheed, Mohamed Shuaib Mohamed; Mohamed, Norani Muti; Burhanudin, Zainal Arif

    2012-01-01

    Carbon nanotubes (CNTs) have started to be developed as the sensing element for ionization-based gas sensors due to the demand for improved sensitivity, selectivity, stability and other sensing properties beyond what can be offered by the conventional ones. Although these limitations have been overcome, the problems still remain with the conventional ionization-based gas sensors in that they are bulky and operating with large breakdown voltage and high temperature. Recent studies have shown that the breakdown voltage can be reduced by using nanostructured electrodes and narrow electrode gap. Nanostructured electrode in the form of aligned CNTs array with evenly distributed nanotips can enhance the linear electric field significantly. The later is attributed to the shorter conductivity path through narrow electrode gap. The paper presents the study on the design consideration in order to realize ionization based gas sensor using aligned carbon nanotubes array in an optimum sensor configuration with narrow electrode gap. Several deposition techniques were studied to deposit the spacer, the key component that can control the electrode gap. Plasma spray deposition, electron beam deposition and dry oxidation method were employed to obtain minimum film thickness around 32 μm. For plasma spray method, sand blasting process is required in order to produce rough surface for strong bonding of the deposited film onto the surface. Film thickness, typically about 39 μm can be obtained. For the electron beam deposition and dry oxidation, the film thickness is in the range of nanometers and thus unsuitable to produce the spacer. The deposited multilayer film consisting of copper, alumina and ferum on which CNTs array will be grown was found to be removed during the etching process. This is attributed to the high etching rate on the thin film which can be prevented by reducing the rate and having a thicker conductive copper film.

  9. Preparation of the spacer for narrow electrode gap configuration in ionization-based gas sensor

    Saheed, Mohamed Shuaib Mohamed; Mohamed, Norani Muti; Burhanudin, Zainal Arif [Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, Seri Iskandar, Tronoh, Perak. (Malaysia); Fundamental and Applied Science, Universiti Teknologi PETRONAS, Seri Iskandar, Tronoh, Perak. (Malaysia); Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, Seri Iskandar, Tronoh, Perak. (Malaysia)

    2012-09-26

    Carbon nanotubes (CNTs) have started to be developed as the sensing element for ionization-based gas sensors due to the demand for improved sensitivity, selectivity, stability and other sensing properties beyond what can be offered by the conventional ones. Although these limitations have been overcome, the problems still remain with the conventional ionization-based gas sensors in that they are bulky and operating with large breakdown voltage and high temperature. Recent studies have shown that the breakdown voltage can be reduced by using nanostructured electrodes and narrow electrode gap. Nanostructured electrode in the form of aligned CNTs array with evenly distributed nanotips can enhance the linear electric field significantly. The later is attributed to the shorter conductivity path through narrow electrode gap. The paper presents the study on the design consideration in order to realize ionization based gas sensor using aligned carbon nanotubes array in an optimum sensor configuration with narrow electrode gap. Several deposition techniques were studied to deposit the spacer, the key component that can control the electrode gap. Plasma spray deposition, electron beam deposition and dry oxidation method were employed to obtain minimum film thickness around 32 {mu}m. For plasma spray method, sand blasting process is required in order to produce rough surface for strong bonding of the deposited film onto the surface. Film thickness, typically about 39 {mu}m can be obtained. For the electron beam deposition and dry oxidation, the film thickness is in the range of nanometers and thus unsuitable to produce the spacer. The deposited multilayer film consisting of copper, alumina and ferum on which CNTs array will be grown was found to be removed during the etching process. This is attributed to the high etching rate on the thin film which can be prevented by reducing the rate and having a thicker conductive copper film.

  10. Vision and spectroscopic sensing for joint tracing in narrow gap laser butt welding

    Nilsen, Morgan; Sikström, Fredrik; Christiansson, Anna-Karin; Ancona, Antonio

    2017-11-01

    The automated laser beam butt welding process is sensitive to positioning the laser beam with respect to the joint because a small offset may result in detrimental lack of sidewall fusion. This problem is even more pronounced in case of narrow gap butt welding, where most of the commercial automatic joint tracing systems fail to detect the exact position and size of the gap. In this work, a dual vision and spectroscopic sensing approach is proposed to trace narrow gap butt joints during laser welding. The system consists of a camera with suitable illumination and matched optical filters and a fast miniature spectrometer. An image processing algorithm of the camera recordings has been developed in order to estimate the laser spot position relative to the joint position. The spectral emissions from the laser induced plasma plume have been acquired by the spectrometer, and based on the measurements of the intensities of selected lines of the spectrum, the electron temperature signal has been calculated and correlated to variations of process conditions. The individual performances of these two systems have been experimentally investigated and evaluated offline by data from several welding experiments, where artificial abrupt as well as gradual deviations of the laser beam out of the joint were produced. Results indicate that a combination of the information provided by the vision and spectroscopic systems is beneficial for development of a hybrid sensing system for joint tracing.

  11. Measurement of critical heat flux in narrow gap with two-dimensional slices

    Kim, Yong Hoon; Kim, Sung Joong; Noh, Sang Woo; Suh, Kune Y.

    2002-01-01

    A cooling mechanism due to boiling in a gap between the debris crust and the reactor pressure vessel (RPV) wall was proposed for the TMI-2 reactor accident analysis. If there is enough heat transfer through the gap to cool the outer surface of the debris and the inner surface of the wall, the RPV wall may preserve its integrity during a severe core melt accident. If the heat removal through gap cooling relative to the counter-current flow limitation (CCFL) is pronounced, the safety margin of the reactor can be far greater than what had been previously known in the severe accident management arena. Should a severe accident take place, the RPV integrity will be maintained because of the inherent nature of degraded core coolability inside the lower head due to boiling in a narrow gap between the debris crust and the RPV wall. As a defense-in-depth measure, the heat removal capability by gap cooling coupled with external cooling can be examined for the Korean Standard Nuclear Power Plant (KSNPP) and the Advanced Power Reactor 1400MWe (APR1400) in light of the TMI-2 vessel survival. A number of studies were carried out to investigate the complex heat transfer mechanisms for the debris cooling in the lower plenum. However, these heat transfer mechanisms have not been clearly understood yet. The CHFG (Critical Heat Flux in Gap) experiments at KAERI were carried out to develop the critical heat flux (CHF) correlation in a hemispherical gap, which is the upper limit of the heat transfer. According to the CHFG experiments performed with a pool boiling condition, the CHF in a parallel gap was reduced by 1/30 compared with the value measured in the open pool boiling condition. The correlation developed from the CHFG experiment is based on the fact that the CHF in a hemispherical gap is governed by the CCFL and a Kutateladze type CCFL parameter correlates CCFL data well in hemispherical gap geometry. However, the results of the CHFG experiments appear to be limited in their

  12. Photo-Induced Electron Spin Polarization in a Narrow Band Gap Semiconductor Nanostructure

    Peter, A. John; Lee, Chang Woo

    2012-01-01

    Photo-induced spin dependent electron transmission through a narrow gap InSb/InGa x Sb 1−x semiconductor symmetric well is theoretically studied using transfer matrix formulism. The transparency of electron transmission is calculated as a function of electron energy for different concentrations of gallium. Enhanced spin-polarized photon assisted resonant tunnelling in the heterostructure due to Dresselhaus and Rashba spin-orbit coupling induced splitting of the resonant level and compressed spin-polarization are observed. Our results show that Dresselhaus spin-orbit coupling is dominant for the photon effect and the computed polarization efficiency increases with the photon effect and the gallium concentration

  13. Narrow in-gap states in doped Al2O3

    Casas-Cabanas, Montse

    2011-10-01

    Based on XRD data testifying that the M ions occupy substitutional sites, transmittance measurement are discussed in comparison to electronic structure calculations for M-doped Al2O3 with M = V, Mn, and Cr. The M 3d states are found approximatively 2 eV above the top of the host valence band. The fundamental band gap of Al2O3 is further reduced in the V and Mn cases due to a splitting of the narrow band at the Fermi energy. Nevertheless the measured transmittance in the visible range remains high in all three cases. © 2011 Elsevier B.V. All rights reserved.

  14. Narrow in-gap states in doped Al2O3

    Casas-Cabanas, Montse; Fré sard, Marion; Lü ders, Ulrike; Fré sard, Raymond; Schuster, Cosima B.; Schwingenschlö gl, Udo

    2011-01-01

    Based on XRD data testifying that the M ions occupy substitutional sites, transmittance measurement are discussed in comparison to electronic structure calculations for M-doped Al2O3 with M = V, Mn, and Cr. The M 3d states are found approximatively 2 eV above the top of the host valence band. The fundamental band gap of Al2O3 is further reduced in the V and Mn cases due to a splitting of the narrow band at the Fermi energy. Nevertheless the measured transmittance in the visible range remains high in all three cases. © 2011 Elsevier B.V. All rights reserved.

  15. An analysis of hot plate initial temperature effect on rectangular narrow gap quenching process

    M-Hadi Kusuma; Mulya Juarsa; Anhar Riza Antariksawan; Nandy Putra

    2012-01-01

    The understanding about thermal management in the event of a severe accident such as the melting nuclear reactor fuel and reactor core, became a priority to maintain the integrity of reactor pressure vessel. Thus the debris will not out from the reactor pressure vessel and resulting impact of more substantial to the environment. One way to maintain the integrity of the reactor pressure vessel was cooling of the excess heat generated due to the accident. To get understanding of this aspect, there search focused on the effect of the initial temperature of the hot plate in the rectangular narrow gap quenching process. The initial temperature effect on quenching process is related to cooling process (thermal management) when the occurrence of a nuclear accident due to loss of coolant accident or severe accident. In order to address the problem, it is crucial to conduct research to get a better understanding of thermal management regarding to nuclear cooling accident. The research focused on determining the rewetting temperature of hot plate cooling on 220°C, 400°C, and 600°C with 0.2 liters/sec cooling water flowrate. Experiments were carried out by injecting 85°C cooling water temperature into the narrow gap at flowrates of 0.2 liters/sec. Data of transient temperature measurements were recorded using a data acquisition system in order to know the rewetting temperature during the quenching process. This study aims to understand the effect of hot plate initial temperature on rewetting during rectangular narrow gap quenching process. The results obtained show that the rewetting point on cooling the hot plate 220°C, 400°C and 600°occurs at varying rewetting temperatures. At 220°C hot plate initial temperature, the rewetting temperature occurs on 220°C. At 400°C hot plate initial temperature, the rewetting temperature occurs on 379.51°C. At 600°C hot plate initial temperature, the rewetting temperature occurs on 426.63°C. Significant differences of hot plate

  16. The critical power that can be removed through a hemispherical narrow gap

    Jeong, J. H.; Park, R. J.; Kang, K. H.; Kim, S. B.; Kim, H. D.

    1998-01-01

    KAERI launched a research program named SONATA-IV (Simulation Of Naturally Arrested Thermal Attack In Vessel) to investigate the possibility of in-vessel debris cooling through a narrow gap that can be formed between reactor pressure vessel and relocated corium. The CHFG (Critical Heat Flux in Gap) experiments, one of the major experiments of the program, are being carried out. The purpose of the CHFG experiments is to assess the heat removal capacity through a hemispherical narrow gap. The experiments were performed using distilled water and the measurements were made in the range of 1 to 5 atm. The dryout of the heater surface is detected using 66 K-type thermocouples embedded in a heated copper shell. Even if local dryout occurs, there exists a quasi-steady state and the temperature of the dryout region is limited within a certain value. When the heater power is large enough, however, there is no quasi-steady state. The dryout region expands by itself without an increase in heater power and the temperature of the heater surface monotonically increase. Temperature measurements over the heater surface show that the two-phase flow behaviour inside the gaps could be quite different from the other usual CHF experiments. The temperature of the local dryout region is much lower than the minimum film boiling temperature that is measured under the pool boiling condition. The cause seems to be the excellent heat conduction of the copper shell. In order to verify this, numerical heat transfer analysis was performed on the copper shell. The results of the analysis supports the postulate. The measured global dryout points are lower than the predictions by existing empirical CHF correlations based on the data measured with small-scale horizontal plates and verical annulus

  17. The effect of exchange interaction on quasiparticle Landau levels in narrow-gap quantum well heterostructures.

    Krishtopenko, S S; Gavrilenko, V I; Goiran, M

    2012-04-04

    Using the 'screened' Hartree-Fock approximation based on the eight-band k·p Hamiltonian, we have extended our previous work (Krishtopenko et al 2011 J. Phys.: Condens. Matter 23 385601) on exchange enhancement of the g-factor in narrow-gap quantum well heterostructures by calculating the exchange renormalization of quasiparticle energies, the density of states at the Fermi level and the quasiparticle g-factor for different Landau levels overlapping. We demonstrate that exchange interaction yields more pronounced Zeeman splitting of the density of states at the Fermi level and leads to the appearance of peak-shaped features in the dependence of the Landau level energies on the magnetic field at integer filling factors. We also find that the quasiparticle g-factor does not reach the maximum value at odd filling factors in the presence of large overlapping of spin-split Landau levels. We advance an argument that the behavior of the quasiparticle g-factor in weak magnetic fields is defined by a random potential of impurities in narrow-gap heterostructures. © 2012 IOP Publishing Ltd

  18. Modeling and validation of multiple joint reflections for ultra- narrow gap laser welding

    Milewski, J.; Keel, G. [Los Alamos National Lab., NM (United States); Sklar, E. [Opticad Corp., Santa Fe, New Mexico (United States)

    1995-12-01

    The effects of multiple internal reflections within a laser weld joint as a function of joint geometry and processing conditions have been characterized. A computer model utilizing optical ray tracing is used to predict the reflective propagation of laser beam energy focused into the narrow gap of a metal joint for the purpose of predicting the location of melting and coalescence which form the weld. The model allows quantitative analysis of the effects of changes to joint geometry, laser design, materials and processing variables. This analysis method is proposed as a way to enhance process efficiency and design laser welds which display deep penetration and high depth to width aspect ratios, reduced occurrence of defects and enhanced melting. Of particular interest to laser welding is the enhancement of energy coupling to highly reflective materials. The weld joint is designed to act as an optical element which propagates and concentrates the laser energy deep within the joint to be welded. Experimentation has shown that it is possible to produce welds using multiple passes to achieve deep penetration and high depth to width aspect ratios without the use of filler material. The enhanced laser melting and welding of aluminum has been demonstrated. Optimization through modeling and experimental validation has resulted in the development of a laser welding process variant we refer to as Ultra-Narrow Gap Laser Welding.

  19. Effects of microstructure and residual stress on fatigue crack growth of stainless steel narrow gap welds

    Jang, Changheui; Cho, Pyung-Yeon; Kim, Minu; Oh, Seung-Jin; Yang, Jun-Seog

    2010-01-01

    The effects of weld microstructure and residual stress distribution on the fatigue crack growth rate of stainless steel narrow gap welds were investigated. Stainless steel pipes were joined by the automated narrow gap welding process typical to nuclear piping systems. The weld fusion zone showed cellular-dendritic structures with ferrite islands in an austenitic matrix. Residual stress analysis showed large tensile stress in the inner-weld region and compressive stress in the middle of the weld. Tensile properties and the fatigue crack growth rate were measured along and across the weld thickness direction. Tensile tests showed higher strength in the weld fusion zone and the heat affected zone compared to the base metal. Within the weld fusion zone, strength was greater in the inner weld than outer weld region. Fatigue crack growth rates were several times greater in the inner weld than the outer weld region. The spatial variation of the mechanical properties is discussed in view of weld microstructure, especially dendrite orientation, and in view of the residual stress variation within the weld fusion zone. It is thought that the higher crack growth rate in the inner-weld region could be related to the large tensile residual stress despite the tortuous fatigue crack growth path.

  20. The characteristic investigation on narrow-gap TIG weld joint of heavy wall austenitic stainless steel pipe

    Shim, Deog Nam; Jung, In Cheol

    2003-01-01

    Although Gas Tungsten Arc Welding (GTAW or TIG welding) is considered as high quality and precision welding process, it also has demerit of low melting rate. Narrow-gap TIG welding which has narrow joint width reduces the groove volume remarkably, so it could be shorten the welding time and decrease the overall shrinkage in heavy wall pipe welding. Generally narrow-gap TIG welding is used as orbital welding process, it is important to select the optimum conditions for the automatic control welding. This paper looks at the application and metallurgical properties on narrow-gap TIG welding joint of heavy wall large austenitic stainless steel pipe to determine the deposition efficiency, the resultant shrinkage and fracture toughness. The fracture toughness depends slightly on the welding heat input

  1. Cross-disciplinary research in cancer: an opportunity to narrow the knowledge-practice gap.

    Urquhart, R; Grunfeld, E; Jackson, L; Sargeant, J; Porter, G A

    2013-12-01

    Health services researchers have consistently identified a gap between what is identified as "best practice" and what actually happens in clinical care. Despite nearly two decades of a growing evidence-based practice movement, narrowing the knowledge-practice gap continues to be a slow, complex, and poorly understood process. Here, we contend that cross-disciplinary research is increasingly relevant and important to reducing that gap, particularly research that encompasses the notion of transdisciplinarity, wherein multiple academic disciplines and non-academic individuals and groups are integrated into the research process. The assimilation of diverse perspectives, research approaches, and types of knowledge is potentially effective in helping research teams tackle real-world patient care issues, create more practice-based evidence, and translate the results to clinical and community care settings. The goals of this paper are to present and discuss cross-disciplinary approaches to health research and to provide two examples of how engaging in such research may optimize the use of research in cancer care.

  2. CFD analysis of heat transfer in a vertical annular gas gap

    Borgohain, A.; Maheshwari, N.K.; Vijayan, P.K.

    2011-01-01

    Heat transfer analysis in a vertical annulus is carried out by using a CFD code TRIO-U. The results are used to understand heat transfer in the vertical annulus. An experimental study is taken from literature for the CFD analysis. The geometry of the test section of the experiment is simulated in TRIO-U. The operating conditions of the experiment are simulated by imposing appropriate boundary conditions. Three modes of the heat transfer, conduction, radiation and convection in the gas gap are considered in the analysis. From the analysis it is found that TRIO-U can successfully handle all modes heat transfer. The theoretical results for heat transfer have been compared with experimental data. This paper deals with the detailed CFD modelling and analysis. (author)

  3. H-tailored surface conductivity in narrow band gap In(AsN)

    Velichko, A. V., E-mail: amalia.patane@nottingham.ac.uk, E-mail: anton.velychko@nottingham.ac.uk; Patanè, A., E-mail: amalia.patane@nottingham.ac.uk, E-mail: anton.velychko@nottingham.ac.uk; Makarovsky, O. [School of Physics and Astronomy, The University of Nottingham, Nottingham NG7 2RD (United Kingdom); Capizzi, M.; Polimeni, A. [Dipartimento di Fisica, Sapienza Università di Roma, Piazzale A. Moro 2, 00185 Roma (Italy); Sandall, I. C.; Tan, C. H. [Department of Electronic and Electrical Engineering, The University of Sheffield, Sheffield S1 3JD (United Kingdom); Giubertoni, D. [Center for Materials and Microsystems—Fondazione Bruno Kessler, via Sommarive 18, 38123 Povo, Trento (Italy); Krier, A.; Zhuang, Q. [Physics Department, Lancaster University, Lancaster LA1 4YB (United Kingdom)

    2015-01-12

    We show that the n-type conductivity of the narrow band gap In(AsN) alloy can be increased within a thin (∼100 nm) channel below the surface by the controlled incorporation of H-atoms. This channel has a large electron sheet density of ∼10{sup 18 }m{sup −2} and a high electron mobility (μ > 0.1 m{sup 2}V{sup −1}s{sup −1} at low and room temperature). For a fixed dose of impinging H-atoms, its width decreases with the increase in concentration of N-atoms that act as H-traps thus forming N-H donor complexes near the surface.

  4. Green digital signage using nanoparticle embedded narrow-gap field sequential TN-LCDs

    Kobayashi, Shunsuke; Shiraishi, Yukihide; Sawai, Hiroya; Toshima, Naoki; Okita, Masaya; Takeuchi, Kiyofumi; Takatsu, Haruyoshi

    2012-03-01

    We have fabricated field sequential color (FSC)-LCDs using cells and modules of narrow-gap TN-LCDs with and without doping the nanoparticles of PCyD-ZrO2 and AF-SiO2. It is shown that the FSC-LCD exhibits a high optical efficiency of OE=4.5 that is defined as OE=[Luminance]/[W/m2]=(cd/W). This figure may provide us a good reference or to clear the Energy Star Program Version 5-3 that issues a guideline: LCD with 50 inch on the diagonal consumes the energy of 108W. Through this research it is claimed that our FSC=LCD may be a novel green digital signage.

  5. Magnetoraman in narrow-gap quantum wells: the resonant and non-resonant regimes

    Lopez-Richard, V.; Hai, G.-Q.; Trallero-Giner, C.; Marques, G. E.

    2002-01-01

    Raman scattering appears as one leading tool in the study of electronic excitations and spin-related phenomena. In particular magneto-Raman geometries allow for the selective activation of single-particle (SPE) or collective density excitations (CDE). A special attention will be done to the electronic properties within the conduction subband by spin-flip Raman scattering as a relevant and current research topic. Our theoretical framework is based on the Kane-Weiler 8x8 k.p Hamiltonian model and is applied to narrow-gap HgCdTe/CdTe heterostructures. The anomalous behavior of the conduction band g-factor and cyclotron masses, in terms of the field and the Landau level-filling factor, can be revealed in complementary Raman scattering geometries. (Authors)

  6. Band-gap narrowing of TiO2 films induced by N-doping

    Nakano, Y.; Morikawa, T.; Ohwaki, T.; Taga, Y.

    2006-01-01

    N-doped TiO 2 films were deposited on n + -GaN/Al 2 O 3 substrates by reactive magnetron sputtering and subsequently crystallized by annealing at 550 o C in flowing N 2 gas. The N-doping concentration was ∼8.8%, as determined from X-ray photoelectron spectroscopy measurements. Deep-level optical spectroscopy measurements revealed two characteristic deep levels located at 1.18 and 2.48 eV below the conduction band. The 1.18 eV level is probably attributable to the O vacancy state and can be active as an efficient generation-recombination center. Additionally, the 2.48 eV band is newly introduced by the N-doping and contributes to band-gap narrowing by mixing with the O 2p valence band

  7. High thermal stability solution-processable narrow-band gap molecular semiconductors.

    Liu, Xiaofeng; Hsu, Ben B Y; Sun, Yanming; Mai, Cheng-Kang; Heeger, Alan J; Bazan, Guillermo C

    2014-11-19

    A series of narrow-band gap conjugated molecules with specific fluorine substitution patterns has been synthesized in order to study the effect of fluorination on bulk thermal stability. As the number of fluorine substituents on the backbone increase, one finds more thermally robust bulk structures both under inert and ambient conditions as well as an increase in phase transition temperatures in the solid state. When integrated into field-effect transistor devices, the molecule with the highest degree of fluorination shows a hole mobility of 0.15 cm(2)/V·s and a device thermal stability of >300 °C. Generally, the enhancement in thermal robustness of bulk organization and device performance correlates with the level of C-H for C-F substitution. These findings are relevant for the design of molecular semiconductors that can be introduced into optoelectronic devices to be operated under a wide range of conditions.

  8. Coolability of oxidized particulate debris bed accumulated in horizontal narrow gaps

    Arai, Y.; Sugiyama, K.; Narabayashi, T.

    2007-01-01

    When LOCA occurs in a nuclear reactor system, the coolability of the core would be kept as reported at a series of presentations in ICONE14. Therefore the probability of the core meltdown is negligible small. However, from the view point of defense in depth, it is necessary to be sure that the coolability of the bottom of reactor pressure vessel (RPV) is maintained even if a part of the core should melt and a substantial amount of debris should be deposited on the lower plenum. We carried out an experimental study in order to observe the coolability of particulate core-metal debris bed with 12 mm thickness accompanied with rapid heat generation because of oxidization, which was reported at ICONE14. The coolability was assured by a small amount of coolant supply because of high capillary force of oxidized fine particulate debris produced. In the present study, we examined the coolability of particulate debris bed deposited in narrower gap of 1 mm or 5 mm that coolant supply is hard. The particulate debris beds were piled up on the stainless steel sheet with 0.1 mm thickness, which was used to measure the bottom temperatures of particulate debris bed by using a thermo-video camera. We set up a heat supply section with heat input of 2.1 kW, which simulates the hard debris bed deposited on the particulate debris bed as reported for the TMI-2 accident. We measured the temperatures of the bottom surface of the heat supply section and the heat fluxes released into debris bed as well as the temperatures at the bottom of debris bed on the stainless steel sheet. It is found that when only the upper surface of particulate debris bed is in the film boiling, capillary force causes coolant supply to the particulate debris bed. Therefore, in the condition of thicker gap with small particulate debris, coolability of debris bed is improved. We find out that smaller particulate debris is moved by vapor movement. As a result, the area that high capillary force is caused because of

  9. Band Edge Dynamics and Multiexciton Generation in Narrow Band Gap HgTe Nanocrystals.

    Livache, Clément; Goubet, Nicolas; Martinez, Bertille; Jagtap, Amardeep; Qu, Junling; Ithurria, Sandrine; Silly, Mathieu G; Dubertret, Benoit; Lhuillier, Emmanuel

    2018-04-11

    Mercury chalcogenide nanocrystals and especially HgTe appear as an interesting platform for the design of low cost mid-infrared (mid-IR) detectors. Nevertheless, their electronic structure and transport properties remain poorly understood, and some critical aspects such as the carrier relaxation dynamics at the band edge have been pushed under the rug. Some of the previous reports on dynamics are setup-limited, and all of them have been obtained using photon energy far above the band edge. These observations raise two main questions: (i) what are the carrier dynamics at the band edge and (ii) should we expect some additional effect (multiexciton generation (MEG)) as such narrow band gap materials are excited far above the band edge? To answer these questions, we developed a high-bandwidth setup that allows us to understand and compare the carrier dynamics resonantly pumped at the band edge in the mid-IR and far above the band edge. We demonstrate that fast (>50 MHz) photoresponse can be obtained even in the mid-IR and that MEG is occurring in HgTe nanocrystal arrays with a threshold around 3 times the band edge energy. Furthermore, the photoresponse can be effectively tuned in magnitude and sign using a phototransistor configuration.

  10. Acceptor-modulated optical enhancements and band-gap narrowing in ZnO thin films

    Hassan, Ali; Jin, Yuhua; Irfan, Muhammad; Jiang, Yijian

    2018-03-01

    Fermi-Dirac distribution for doped semiconductors and Burstein-Moss effect have been correlated first time to figure out the conductivity type of ZnO. Hall Effect in the Van der Pauw configuration has been applied to reconcile our theoretical estimations which evince our assumption. Band-gap narrowing has been found in all p-type samples, whereas blue Burstein-Moss shift has been recorded in the n-type films. Atomic Force Microscopic (AFM) analysis shows that both p-type and n-type films have almost same granular-like structure with minor change in average grain size (˜ 6 nm to 10 nm) and surface roughness rms value 3 nm for thickness ˜315 nm which points that grain size and surface roughness did not play any significant role in order to modulate the conductivity type of ZnO. X-ray diffraction (XRD), Energy Dispersive X-ray Spectroscopy (EDS) and X-ray Photoelectron Spectroscopy (XPS) have been employed to perform the structural, chemical and elemental analysis. Hexagonal wurtzite structure has been observed in all samples. The introduction of nitrogen reduces the crystallinity of host lattice. 97% transmittance in the visible range with 1.4 × 107 Ω-1cm-1 optical conductivity have been detected. High absorption value in the ultra-violet (UV) region reveals that NZOs thin films can be used to fabricate next-generation high-performance UV detectors.

  11. Acceptor-modulated optical enhancements and band-gap narrowing in ZnO thin films

    Ali Hassan

    2018-03-01

    Full Text Available Fermi-Dirac distribution for doped semiconductors and Burstein-Moss effect have been correlated first time to figure out the conductivity type of ZnO. Hall Effect in the Van der Pauw configuration has been applied to reconcile our theoretical estimations which evince our assumption. Band-gap narrowing has been found in all p-type samples, whereas blue Burstein-Moss shift has been recorded in the n-type films. Atomic Force Microscopic (AFM analysis shows that both p-type and n-type films have almost same granular-like structure with minor change in average grain size (∼ 6 nm to 10 nm and surface roughness rms value 3 nm for thickness ∼315 nm which points that grain size and surface roughness did not play any significant role in order to modulate the conductivity type of ZnO. X-ray diffraction (XRD, Energy Dispersive X-ray Spectroscopy (EDS and X-ray Photoelectron Spectroscopy (XPS have been employed to perform the structural, chemical and elemental analysis. Hexagonal wurtzite structure has been observed in all samples. The introduction of nitrogen reduces the crystallinity of host lattice. 97% transmittance in the visible range with 1.4 × 107 Ω-1cm-1 optical conductivity have been detected. High absorption value in the ultra-violet (UV region reveals that NZOs thin films can be used to fabricate next-generation high-performance UV detectors.

  12. Efficient steam generation by inexpensive narrow gap evaporation device for solar applications.

    Morciano, Matteo; Fasano, Matteo; Salomov, Uktam; Ventola, Luigi; Chiavazzo, Eliodoro; Asinari, Pietro

    2017-09-20

    Technologies for solar steam generation with high performance can help solving critical societal issues such as water desalination or sterilization, especially in developing countries. Very recently, we have witnessed a rapidly growing interest in the scientific community proposing sunlight absorbers for direct conversion of liquid water into steam. While those solutions can possibly be of interest from the perspective of the involved novel materials, in this study we intend to demonstrate that efficient steam generation by solar source is mainly due to a combination of efficient solar absorption, capillary water feeding and narrow gap evaporation process, which can also be achieved through common materials. To this end, we report both numerical and experimental evidence that advanced nano-structured materials are not strictly necessary for performing sunlight driven water-to-vapor conversion at high efficiency (i.e. ≥85%) and relatively low optical concentration (≈10 suns). Coherently with the principles of frugal innovation, those results unveil that solar steam generation for desalination or sterilization purposes may be efficiently obtained by a clever selection and assembly of widespread and inexpensive materials.

  13. Photography as a means of narrowing the gap between physics and students

    Bagno, Esther; Eylon, Bat-Sheva; Levy, Smadar

    2007-01-01

    Many teachers would agree that not all their A-level students appreciate the beauty of physics or enjoy solving complex problems. In this article, we describe a photo-contest activity aimed at narrowing the gap between physics and students. The photo contest, involving both students and teachers, is guided by the National Center of Physics Teachers in Israel. Students were requested to photograph a natural or contrived phenomenon, explain it using physical concepts and principles, present it to their classmates and finally submit the photographs to be judged by other students, teachers and a central committee consisting of experts, photographers and physicists. Seven teachers whose students were involved in the photo contest were interviewed. Teachers reported that, although only a few students presented their photos to the contest, many others were involved in various stages of the contest. The teachers were surprised to discover that the participating students were not necessarily the traditional high-achievers. All the teachers interviewed integrated the photographs into their regular physics lessons.

  14. Annular pancreas

    ... page: //medlineplus.gov/ency/article/001142.htm Annular pancreas To use the sharing features on this page, please enable JavaScript. An annular pancreas is a ring of pancreatic tissue that encircles ...

  15. Annular flow transition model in channels of various shapes

    Osakabe, Masahiro; Tasaka, Kanji; Kawasaki, Yuji.

    1988-01-01

    The annular transition in the rod bundle is interesting because the small gaps between rods exist in the flow area. This is a very important phenomenon in the boiloff accident of nuclear reactor core. As a first attempt, the effect of small gaps in the flow area was studied by using the vertical rectangular ducts with different narrow gaps (2 x 100, 5 x 100, 10 x 100 mm). Based on the experimental results, the transition void fraction was defined and the transition model was proposed. The model gives a good prediction of the wide range of previous experiments including the data taken in the channels with small gaps. (author)

  16. Annular flow transition model in channels of various shapes

    Osakabe, M.; Tasaka, K.; Kawasaki, Y.

    1989-01-01

    Annular transition in a rod bundle is interesting because small gaps exist between rods in the flow area. This is a very important phenomenon in a boiloff accident of a nuclear reactor core. This paper reports, as a first attempt, the effect of small gaps in the flow area was studied by using vertical rectangular ducts with different narrow gaps (2 x 100, 5 x 100, 10 x 100 mm). Based on the experimental results, the transition void fraction was defined and a transition model is proposed. The model gives a good prediction for a wide range of previous experiments including the data taken in channels with small gaps

  17. Advances in submerged arc, narrow-gap welding with strip electrodes and thin, dual-wire electrodes

    Nies, H.

    1990-01-01

    Container and tank construction for nuclear installations traditionally is one of the major applications of narrow-gap welding with the submerged arc technique. This type of welding presents one problem, namely to completely and reliably remove the welding slag from the deep and narrow gap. The research report in hand explains the variants of welding techniques that have been tested and describes the results obtained, which primarily are reduced occurrence of faults, i.e. enhanced reliability, and better welding economy. As an alternative to welding with thick wire electrodes, which is the standard method for the applications under review, a new technique has been conceived and extensively tested, which uses thin strip electrodes at longitudinal position in the gap. This submerged arc, dual-wire technique with thin electrodes is characterised by a significantly higher thermal efficiency compared to welding with thick wires, so that the same energy input yields better efficiency of metal deposition. (orig./MM) [de

  18. Axisymmetrical particle-in-cell/Monte Carlo simulation of narrow gap planar magnetron plasmas. I. Direct current-driven discharge

    Kondo, Shuji; Nanbu, Kenichi

    2001-01-01

    An axisymmetrical particle-in-cell/Monte Carlo simulation is performed for modeling direct current-driven planar magnetron discharge. The axisymmetrical structure of plasma parameters such as plasma density, electric field, and electron and ion energy is examined in detail. The effects of applied voltage and magnetic field strength on the discharge are also clarified. The model apparatus has a narrow target-anode gap of 20 mm to make the computational time manageable. This resulted in the current densities which are very low compared to actual experimental results for a wider target-anode gap. The current-voltage characteristics show a negative slope in contrast with many experimental results. However, this is understandable from Gu and Lieberman's similarity equation. The negative slope appears to be due to the narrow gap

  19. The cochlear implant and possibilities for narrowing the remaining gaps between prosthetic and normal hearing

    Blake S. Wilson

    2017-12-01

    Full Text Available Background: The cochlear implant has become the standard of care for severe or worse losses in hearing and indeed has produced the first substantial restoration of a lost or absent human sense using a medical intervention. However, the devices are not perfect and many efforts to narrow the remaining gaps between prosthetic and normal hearing are underway. Objective: To assess the present status of cochlear implants and to describe possibilities for improving them. Results: The present-day devices work well in quiet conditions for the great majority of users. However, not all users have high levels of speech reception in quiet and nearly all users struggle with speech reception in typically noisy acoustic environments. In addition, perception of sounds more complex than speech, such as most music, is generally poor unless residual hearing at low frequencies can be stimulated acoustically in conjunction with the electrical stimuli provided by the implant. Possibilities for improving the present devices include increasing the spatial specificity of neural excitation by reducing masking effects or with new stimulus modes; prudent pruning of interfering or otherwise detrimental electrodes from the stimulation map; a further relaxation in the criteria for implant candidacy, based on recent evidence from persons with high levels of residual hearing and to allow many more people to benefit from cochlear implants; and “top down” or “brain centric” approaches to implant designs and applications. Conclusions: Progress in the development of the cochlear implant and related treatments has been remarkable but room remains for improvements. The future looks bright as there are multiple promising possibilities for improvements and many talented teams are pursuing them. Keywords: Auditory prosthesis, Cochlear implant, Cochlear prosthesis, Deafness, Neural prosthesis

  20. Narrowing the Insurance Protection Gap: The important role of Natural Hazards Research

    Manghnani, V.

    2016-12-01

    risks is a key determinant to supporting a thriving insurance marketplace. This will ensure that the industry can confidently and creatively offer insurance to perils and hazards in both developed and developing economies and continue to narrow the protection gap.

  1. Charge separation dynamics in a narrow band gap polymer-PbS nanocrystal blend for efficient hybrid solar cells

    Piliego, Claudia; Manca, Marianna; Kroon, Renee; Yarema, Maksym; Szendrei, Krisztina; Andersson, Mats R.; Heiss, Wolfgang; Loi, Maria A.

    2012-01-01

    We have demonstrated efficient hybrid solar cells based on lead sulfide (PbS) nanocrystals and a narrow band gap polymer, poly[{2,5-bis(2-hexyldecyl)-2,3,5,6-tetrahydro-3,6-dioxopyrrolo[3,4-c]pyrrole-1,4-diyl}-alt-{[2,2'-(1,4-phenylene)bis-thiophene]-5,5'-diyl}], (PDPPTPT). An opportune mixing of

  2. Equality and Diversity Policy in the British Public Sector: Narrowing the Gender Pay Gap?

    Gupta, Nidhi

    2008-01-01

    This study aims to analyze the effect of equality and diversity policies on the gender pay gap in UK public sector. The study is evaluated using secondary data from Labour Force Surveys (LFS), Annual Survey of Hours and Earnings (ASHE) and Workplace Employees Relations Survey (WERS) which compares the presence of equality and diversity policies with the simultaneous gender pay gap in UK public sector in order to determine the extent to which these policies have affected the gender pay gap in ...

  3. First-principles study of direct and narrow band gap semiconducting β-CuGaO2

    Nguyen, Manh Cuong; Zhao, Xin; Wang, Cai-Zhuang; Ho, Kai-Ming

    2015-01-01

    Semiconducting oxides have attracted much attention due to their great stability in air or water and the abundance of oxygen. Recent success in synthesizing a metastable phase of CuGaO 2 with direct narrow band gap opens up new applications of semiconducting oxides as absorber layer for photovoltaics. Using first-principles density functional theory calculations, we investigate the thermodynamic and mechanical stabilities as well as the structural and electronic properties of the β-CuGaO 2 phase. Our calculations show that the β-CuGaO 2 structure is dynamically and mechanically stable. The energy band gap is confirmed to be direct at the Γ point of Brillouin zone. The optical absorption occurs right at the band gap edge and the density of states near the valance band maximum is large, inducing an intense absorption of light as observed in experiment. (paper)

  4. Narrowing Maize Yield Gaps Under Rain-fed conditions in Tanzania ...

    Abstract. The wide gap between potential and actual yields of maize in Tanzania, due low productivity is the major constraint to ... An International Journal of Basic and Applied Research ... for determining maize grain yield followed by water.

  5. Why the Effect of Tax Is Insufficient in Narrowing Income Gap in China? A Theoretical Analysis Framework and A Practical Observation

    PAN Wen-xuan

    2014-01-01

    In recent years,the problem of income gap in China is rather severe.However,the effect of tax policy on narrowing income gap is not satisfactory,which reveals inadequate ability of the tax system in narrowing income gap.In accordance with the present situation of current tax system and tax collection administration,this paper constructs a theoretical framework consisting of the three integrated elements,namely,design of tax categories,tax system structure and tax administration,to make a theoretical analysis and practical study on the reasons of inadequate ability of the current tax system in narrowing income gap.The results of the study show that there exist some defects in the design of tax categories,such as consumption tax,personal income tax,property tax,and so on,which result in the weakening of the micro ability of tax in narrowing income gap.The dual imbalance in the structures of tax system and tax categories results in the weakening of the structural ability of taxes in narrowing income gap.The incompleteness in tax administration,especially the frail of the direct tax collection system,results in the weakening of the tax collection ability of taxes in narrowing income gap.Therefore,in order that tax policy can give full play to its role in narrowing income gap,efforts ought to be made to improve the micro ability,structural ability and collection ability of taxes in narrowing income gap through the improvement of the design of tax categories,the adjustment of the tax system structure and the enhancement of the tax collection administration.

  6. International Conference on Narrow Gap Semiconductors Held in Southampton, England on 19-23 July 1992. Abstracts Booklet

    1992-07-01

    University, Liniz. Narrow gap semiconductors offer the possibility to investigate in detail the role of conduction electrons in spin relaxation processes. In...crucial role on device performance. Hg1 ,-Zn.Te (N2T) is considered an alternative material to Hg1 -. Cd.Te (NCT) for infrared detectors. To the best of our... iaSb -AlSb-InAs-AlSh-GaSb), focusing on the effects of a magnetic fiheld parallel to the tunneling current, that is, perpendicular to the materials

  7. Charge separation dynamics in a narrow band gap polymer-PbS nanocrystal blend for efficient hybrid solar cells

    Piliego, Claudia; Manca, Marianna; Kroon, Renee; Yarema, Maksym; Szendrei, Krisztina; Andersson, Mats R.; Heiss, Wolfgang; Loi, Maria A.

    2012-01-01

    We have demonstrated efficient hybrid solar cells based on lead sulfide (PbS) nanocrystals and a narrow band gap polymer, poly[{2,5-bis(2-hexyldecyl)-2,3,5,6-tetrahydro-3,6-dioxopyrrolo[3,4-c]pyrrole-1,4-diyl}-alt-{[2,2'-(1,4-phenylene)bis-thiophene]-5,5'-diyl}], (PDPPTPT). An opportune mixing of the two materials led to the formation of an energetically favorable bulk hetero-junction with a broad spectral response. Using a basic device structure, we reached a power conversion efficiency of s...

  8. Narrowing the Achievement Gap: A Review of Research, Policies, and Issues. Report.

    Hertert, Linda; Teague, Jackie

    Student achievement tests consistently show that certain groups of children score far below children in other groups. The data document a strong association between poverty and students' academic success. The achievement gap begins early in children's lives as the result of physical, social, and emotional deprivations. California is attempting to…

  9. CT diagnosis of annular pancreas

    Ueno, Eiko; Isobe, Yoshinori; Niimi, Akiko; Shimizu, Yasushi; Yamada, Akiyoshi; Hanyu, Fujio

    1987-01-01

    CT scan was performed in two cases of annular pancreas which could be found in one case preoperatively and in the other case retrospectively. CT scan demonstrated secondary changes of annular pancreas such as medial displacement and dilatation of the duodenal bulb in the former case and stenosis of the duodenal loop and thickened soft tissue density around the narrow segment of the duodenal loop in the latter case, although it failed to demonstrate the peninsular protrusion of the parenchyma of the pancreas head. These findings suggest high possibility of diagnosing annular pancreas by CT scan. (author)

  10. Use of narrow gap welding in nuclear power engineering and development of welding equipment at Vitkovice Iron Works (VZSKG), Ostrava

    Lehar, F.; Sevcik, P.

    1988-01-01

    Briefly discussed are problems related to automatic submerged arc welding into narrow gaps. The said method was tested for the first time at the Vitkovice Iron Works VZSKG for peripheral welds on pressurizers for WWER-440 reactors. The demands are summed up which are put on the welding workplace which must be met for the use of the said technology. The requirements mainly include the provision of the positioning of the welding nozzle towards the weld gap in order to maximally exclude the effect of the welder. An automatic device was designed and manufactured at the VZSKG plant for mounting the welding nozzle on the automatic welding machine manufactured by ESAB which operates on the principle of the flexible compression of the nozzle to the wall of the weld gap. In the bottom part the welding nozzle is provided with a pulley which rolls during welding thereby providing a constant distance to be maintained between the welding wire and the wall of the weld gap. The diameter of the pulley is ruled by the diameter of the welding wire. Provided the clamping part is appropriately adjusted the developed equipment may be used for any type of automatic welding machine with motor driven supports. (Z.M.). 8 figs., 5 tabs., 9 refs

  11. Narrowing of band gap at source/drain contact scheme of nanoscale InAs-nMOS

    Mohamed, A. H.; Oxland, R.; Aldegunde, M.; Hepplestone, S. P.; Sushko, P. V.; Kalna, K.

    2018-04-01

    A multi-scale simulation study of Ni/InAs nano-scale contact aimed for the sub-14 nm technology is carried out to understand material and transport properties at a metal-semiconductor interface. The deposited Ni metal contact on an 11 nm thick InAs channel forms an 8.5 nm thick InAs leaving a 2.5 nm thick InAs channel on a p-type doped (1 × 1016 cm-3) AlAs0.47Sb0.53 buffer. The density functional theory (DFT) calculations reveal a band gap narrowing in the InAs at the metal-semiconductor interface. The one-dimensional (1D) self-consistent Poisson-Schrödinger transport simulations using real-space material parameters extracted from the DFT calculations at the metal-semiconductor interface, exhibiting band gap narrowing, give a specific sheet resistance of Rsh = 90.9 Ω/sq which is in a good agreement with an experimental value of 97 Ω/sq.

  12. How the Human Capital Model Explains Why the Gender Wage Gap Narrowed

    Polachek, Solomon W.

    2004-01-01

    This paper explores secular changes in women?s pay relative to men?s pay. It shows how the human capital model predicts a smaller gender wage gap as male-female lifetime work expectations become more similar. The model explains why relative female wages rose almost unabated from 1890 to the early-1990s in the United States (with the exception of about 1940-1980), and why this relative wage growth tapered off since 1993. In addition to the US, the paper presents evidence from nine other countr...

  13. Stability of the split-band solution and energy gap in the narrow-band region of the Hubbard model

    Arai, T.; Cohen, M.H.

    1980-01-01

    By inserting quasielectron energies ω calculated from the fully renormalized Green's function of the Hubbard model obtained in the preceding paper into the exact expression of Galitskii and Migdal, the ground-state energy, the chemical potential, and the dynamic- and thermodynamic-stability conditions are calculated in the narrow-band region. The results show that as long as the interaction energy I is finite, electrons in the narrow-band region do not obey the Landau theory of Fermi liquids, and a gap appears between the lowest quasielectron energy ω and the chemical potential μ for any occupation n, regardless of whether the lower band is exactly filled or not. This unusual behavior is possible because, when an electron is added to the system of N electrons, the whole system relaxes due to the strong interaction, introducing a relaxation energy difference between the two quantities. We also show that all previous solutions which exhibit the split-band structure, including Hubbard's work, yield the same conclusion that electrons do not behave like Landau quasiparticles. However, the energy gap is calculated to be negative at least for some occupations n, demonstrating the dynamic instability of those solutions. They also exhibit thermodynamic instability for certain occupations, while the fully renormalized solution, having sufficient electron correlations built in, satisfies the dynamic and thermodynamic stability conditions for all occupations. When the lower band is nearly filled, the nature of the solution is shown to change, making the coherent motion of electrons with fixed k values more difficult. In the pathological limit where I=infinity, however, the gap vanishes, yielding a metallic state

  14. Teaching a lay theory before college narrows achievement gaps at scale.

    Yeager, David S; Walton, Gregory M; Brady, Shannon T; Akcinar, Ezgi N; Paunesku, David; Keane, Laura; Kamentz, Donald; Ritter, Gretchen; Duckworth, Angela Lee; Urstein, Robert; Gomez, Eric M; Markus, Hazel Rose; Cohen, Geoffrey L; Dweck, Carol S

    2016-06-14

    Previous experiments have shown that college students benefit when they understand that challenges in the transition to college are common and improvable and, thus, that early struggles need not portend a permanent lack of belonging or potential. Could such an approach-called a lay theory intervention-be effective before college matriculation? Could this strategy reduce a portion of racial, ethnic, and socioeconomic achievement gaps for entire institutions? Three double-blind experiments tested this possibility. Ninety percent of first-year college students from three institutions were randomly assigned to complete single-session, online lay theory or control materials before matriculation (n > 9,500). The lay theory interventions raised first-year full-time college enrollment among students from socially and economically disadvantaged backgrounds exiting a high-performing charter high school network or entering a public flagship university (experiments 1 and 2) and, at a selective private university, raised disadvantaged students' cumulative first-year grade point average (experiment 3). These gains correspond to 31-40% reductions of the raw (unadjusted) institutional achievement gaps between students from disadvantaged and nondisadvantaged backgrounds at those institutions. Further, follow-up surveys suggest that the interventions improved disadvantaged students' overall college experiences, promoting use of student support services and the development of friendship networks and mentor relationships. This research therefore provides a basis for further tests of the generalizability of preparatory lay theories interventions and of their potential to reduce social inequality and improve other major life transitions.

  15. "Narrowing the transmission gap: A synthesis of three decades of research on intergenerational transmission of attachment": Correction.

    2018-04-01

    Reports an error in "Narrowing the transmission gap: A synthesis of three decades of research on intergenerational transmission of attachment" by Marije L. Verhage, Carlo Schuengel, Sheri Madigan, R. M. Pasco Fearon, Mirjam Oosterman, Rosalinda Cassibba, Marian J. Bakermans-Kranenburg and Marinus H. van IJzendoorn ( Psychological Bulletin , 2016[Apr], Vol 142[4], 337-366). In the article, there are errors in Table 7. The percentages of the attachment classifications do not add up to 100%. The corrected version of Table 7 is provided in the erratum. (The following abstract of the original article appeared in record 2015-55801-001.) Twenty years ago, meta-analytic results (k = 19) confirmed the association between caregiver attachment representations and child-caregiver attachment (Van IJzendoorn, 1995). A test of caregiver sensitivity as the mechanism behind this intergenerational transmission showed an intriguing "transmission gap." Since then, the intergenerational transmission of attachment and the transmission gap have been studied extensively, and now extend to diverse populations from all over the globe. Two decades later, the current review revisited the effect sizes of intergenerational transmission, the heterogeneity of the transmission effects, and the size of the transmission gap. Analyses were carried out with a total of 95 samples (total N = 4,819). All analyses confirmed intergenerational transmission of attachment, with larger effect sizes for secure-autonomous transmission (r = .31) than for unresolved transmission (r = .21), albeit with significantly smaller effect sizes than 2 decades earlier (r = .47 and r = .31, respectively). Effect sizes were moderated by risk status of the sample, biological relatedness of child-caregiver dyads, and age of the children. Multivariate moderator analyses showed that unpublished and more recent studies had smaller effect sizes than published and older studies. Path analyses showed that the transmission could not

  16. Stereotype susceptibility narrows the gender gap in imagined self-rotation performance.

    Wraga, Maryjane; Duncan, Lauren; Jacobs, Emily C; Helt, Molly; Church, Jessica

    2006-10-01

    Three studies examined the impact of stereotype messages on men's and women's performance of a mental rotation task involving imagined self-rotations. Experiment 1 established baseline differences between men and women; women made 12% more errors than did men. Experiment 2 found that exposure to a positive stereotype message enhanced women's performance in comparison with that of another group of women who received neutral information. In Experiment 3, men who were exposed to the same stereotype message emphasizing a female advantage made more errors than did male controls, and the magnitude of error was similar to that for women from Experiment 1. The results suggest that the gender gap in mental rotation performance is partially caused by experiential factors, particularly those induced by sociocultural stereotypes.

  17. Interface band gap narrowing behind open circuit voltage losses in Cu2ZnSnS4 solar cells

    Crovetto, Andrea; Palsgaard, Mattias Lau Nøhr; Gunst, Tue

    2017-01-01

    We present evidence that bandgap narrowing at the heterointerface may be a major cause of the large open circuit voltage deficit of Cu2ZnSnS4/CdS solar cells. Bandgap narrowing is caused by surface states that extend the Cu2ZnSnS4valence band into the forbidden gap. Those surface states...... are consistently found in Cu2ZnSnS4, but not in Cu2ZnSnSe4, by first-principles calculations. They do not simply arise from defects at surfaces but are an intrinsic feature of Cu2ZnSnS4 surfaces. By including those states in a device model, the outcome of previously published temperature-dependent open circuit...... voltage measurements on Cu2ZnSnS4 solar cells can be reproduced quantitatively without necessarily assuming a cliff-like conduction band offset with the CdS buffer layer. Our first-principles calculations indicate that Zn-based alternative buffer layers are advantageous due to the ability of...

  18. The contribution of the polio eradication initiative to narrowing the gaps in the health workforce in the African Region.

    Kamso, Jean; Mvika, Eddy S; Ota, M O C; Okeibunor, Joseph; Mkanda, Pascal; Mihigo, Richard

    2016-10-10

    The Global Polio Eradication Initiative (GPEI) massively invested to overcome the crippling disease in countries of the WHO African Region. In the context of economic crisis, almost all countries in the Region lack an adequate health workforce. Large amounts were invested by GPEI in human resources. This paper shows how the human resources funded by polio contributed to narrowing the gaps in health workforce and helped strengthening and supporting other priority health programmes in Angola, Chad, DRC, Nigeria, Tanzania, and Togo. The health workforce strengthening methods used in the five different countries included the following: policy development and strategic planning, microplanning, capacity building of public health and community workers, implementation and services, monitoring and evaluation, advocacy and social mobilization, and programme review. Staff funded by polio helped with achieving good coverage in vitamin A and insecticide-treated mosquito nets (Angola, Chad); improvement of EPI and integrated disease surveillance indicators, improved quality of data (all five countries), administrative support, smooth introduction of new vaccines, increased case detection, and early isolation of patients suffering from the Guinea worm (Chad); reduction of cholera, extension of directly observed TB short course treatment (Democratic Republic of Congo); significant staff performance improvement (Nigeria). GPEI investment achieved far beyond its primary goal, and contributed to narrowing the gaps in the health workforce in countries of the African Region, as demonstrated by the best practice documentation exercise. We recommend that expertise and experience of polio funded staff should be leveraged to strengthen, expand and support other public health programmes. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  19. Experimental and Numerical Study of Windage Losses in the Narrow Gap Region of a High-Speed Electric Motor

    Kevin R. Anderson

    2018-03-01

    Full Text Available Windage (drag losses have been found to be a key design factor for high power density and high-speed electric motor development. Inducing axial flow between rotor and stator is a common method in cooling the rotor. Hence, it is necessary to understand the effect on windage while forced axial airflow is in present in the air gap. The current paper presents results from experimental testing and modeling of a high-speed motor designed to operate at 30,000 revolutions per minute (RPM and utilize axial air cooling of 200 Liters per minute (LPM to cool the motor. Details of the experimental apparatus and computational fluid dynamics (CFD modeling of the small gap narrow region of the stator/rotor are outlined in the paper. The experimental results are used to calibrate the CFD model. Results for windage losses, flow rate of cooling air, power and torque of the motor versus mass flow rate are given in the paper. Trade studies of CFD on the effect of inlet cooling flow rate, and parasitic heat transfer losses on the Taylor–Couette flow coherent flow structure breakdown are presented. Windage losses on the order of 20 W are found to be present in the configuration tested and simulated.

  20. The Role of School Performance in Narrowing Gender Gaps in the Formation of STEM Aspirations: A Cross-National Study

    Allison eMann

    2015-02-01

    Full Text Available Abstract This study uses cross-national evidence to estimate the effect of school peer performance on the size of the gender gap in the formation of STEM career aspirations. We argue that STEM aspirations are influenced not only by gender stereotyping in the national culture but also by the performance of peers in the local school environment. Our analyses are based on the Program for International Student Assessment (PISA. They investigate whether 15-year-old students from 55 different countries expect to have STEM jobs at the age of 30. We find considerable gender differences in the plans to pursue careers in STEM occupations in all countries. Using PISA test scores in math and science aggregated at the school level as a measure of school performance, we find that stronger performance environments have a negative impact on student career aspirations in STEM. Although girls are less likely than boys to aspire to STEM occupations, even when they have comparable abilities, boys respond more than girls to competitive school performance environments. As a consequence, the aspirations gender gap narrows for high-performing students in stronger performance environments. We show that those effects are larger in countries that do not sort students into different educational tracks.

  1. The role of school performance in narrowing gender gaps in the formation of STEM aspirations: a cross-national study.

    Mann, Allison; Legewie, Joscha; DiPrete, Thomas A

    2015-01-01

    This study uses cross-national evidence to estimate the effect of school peer performance on the size of the gender gap in the formation of STEM career aspirations. We argue that STEM aspirations are influenced not only by gender stereotyping in the national culture but also by the performance of peers in the local school environment. Our analyses are based on the Program for International Student Assessment (PISA). They investigate whether 15-year-old students from 55 different countries expect to have STEM jobs at the age of 30. We find considerable gender differences in the plans to pursue careers in STEM occupations in all countries. Using PISA test scores in math and science aggregated at the school level as a measure of school performance, we find that stronger performance environments have a negative impact on student career aspirations in STEM. Although girls are less likely than boys to aspire to STEM occupations, even when they have comparable abilities, boys respond more than girls to competitive school performance environments. As a consequence, the aspirations gender gap narrows for high-performing students in stronger performance environments. We show that those effects are larger in countries that do not sort students into different educational tracks.

  2. Fluorene-based narrow-band-gap copolymers for red light- emitting diodes and bulk heterojunction photovoltaic cells

    Mingliang SUN; Li WANG; Yangjun XIA; Bin DU; Ransheng LIU; Yong CAO

    2008-01-01

    A series of narrow band-gap conjugated copo-lymers (PFO-DDQ) derived from 9,9-dioctylfluorene (DOF) and 2,3-dimethyl-5,8-dithien-2-yl-quinoxalines (DDQ) is prepaid by the palladium-catalyzed Suzuki coupling reaction with the molar feed ratio of DDQ at around 1%,5%,15%,30% and 50%,respectively.The obtained polymers are readily soluble in common organic solvents.The solutions and the thin solid films of the copolymers absorb light from 300-590 nm with two absorbance.peaks at around 380 and 490 nm.The intens-ity of 490 nm peak increases with the increasing DDQ content in the polymers.Efficient energy transfer due to exciton trapping on narrow-band-gap DDQ sites has been observed.The PL emission consists exclusively of DDQ unit emission at around 591 643 nm depending on the DDQ content in solid film.The EL emission peaks are red-shifted from 580 nm for PFO-DDQ1 to 635 nm for PFO-DDQ50.The highest external quantum efficiency achieved with the device configuration ITO/PEDOT/ PVK/PFO-DDQt5/Ba/A1 is 1.33% with a luminous effi-ciency 1.54 cd/A.Bulk heterojunction photovoltaic cells fabricated from composite films of PFO-DDQ30 copoly-mer and [6,6]-phenyl C61 butyric acid methyl ester (PCBM) as electron donor and electron acceptor,respect-ively in device configuration:ITO/PEDOT:PSS/PFO-DDQ30:PCBM/PFPNBr/Al shows power conversion effi-ciencies of 1.18% with open-circuit voltage (Voc) of 0.90 V and short-circuit current density (Jsc) of 2.66 mA/cm2 under an AM1.5 solar simulator (100 mW/cm2).The photocurrent response wavelengths of the PVCs based on PFO-DDQ30/PCBM blends covers 300-700 nm.This indicates that these kinds of low band-gap polymers are promising candidates for polymeric solar cells and red light-emitting diodes.

  3. On-site SiH4 generator using hydrogen plasma generated in slit-type narrow gap

    Takei, Norihisa; Shinoda, Fumiya; Kakiuchi, Hiroaki; Yasutake, Kiyoshi; Ohmi, Hiromasa

    2018-06-01

    We have been developing an on-site silane (SiH4) generator based on use of the chemical etching reaction between solid silicon (Si) and the high-density H atoms that are generated in high-pressure H2 plasma. In this study, we have developed a slit-type plasma source for high-efficiency SiH4 generation. High-density H2 plasma was generated in a narrow slit-type discharge gap using a 2.45 GHz microwave power supply. The plasma’s optical emission intensity distribution along the slit was measured and the resulting distribution was reflected by both the electric power distribution and the hydrogen gas flow. Because the Si etching rate strongly affects the SiH4 generation rate, the Si etching behavior was investigated with respect to variations in the experimental parameters. The weight etch rate increased monotonically with increasing input microwave power. However, the weight etch rate decreased with increasing H2 pressure and an increasing plasma gap. This reduction in the etch rate appears to be related to shrinkage of the plasma generation area because increased input power is required to maintain a constant plasma area with increasing H2 pressure and the increasing plasma gap. Additionally, the weight etch rate also increases with increasing H2 flow rate. The SiH4 generation rate of the slit-type plasma source was also evaluated using gas-phase Fourier transform infrared absorption spectroscopy and the material utilization efficiencies of both Si and the H2 gas for SiH4 gas formation were discussed. The main etch product was determined to be SiH4 and the developed plasma source achieved a SiH4 generation rate of 10 sccm (standard cubic centimeters per minute) at an input power of 900 W. In addition, the Si utilization efficiency exceeded 60%.

  4. Experimental study of the phenomena of turbulent flow in the narrow gaps between subchannels of rod bundles

    Moeller, S.V.

    1989-01-01

    It was observed that the turbulent intensities in the narrow gaps between the subchannels of rod bundles are strongly anisotropic and higher than in pipes. In rod bundles, both the axial and azimuthal components of the fluctuating velocity have a quasi-periodic behaviour. The intensities increase with decreasing distance between the rods or between rod and channel wall, respectively. To determine the origin of this phenomenon, experiments were performed in rod bundles with different pitch-to-diameter (P/D) and wall-to-diameter (W/D) ratios. In these experiments, two components of the fluctuating velocity were measured with hot wires simultaneously at two different locations of a wall subchannel, together with the pressure fluctuations at the wall measured by microphones. The output signals were registered with an analog tape recorder. Afterwards they were digitized and evaluated to obtain spectra as well as auto and cross correlations. The results were analysed to determine the interdependence between pressure and velocity fluctuations. Attention was devoted to the analysis of turbulence spectra and the identification of their specific ranges. The dominant frequency of the turbulent motion, taken from the spectra, was found to be a function of the gap width and of the flow velocity. The corresponding Strouhal number is a geometrical parameter which can be expressed in terms of P/D and W/D. Based on the observation of transit time between the probes, measured with help of cross correlations, on the form and the presence of peaks on spectra, a phenomenological model was developed, to explain the studied phenomenon. The model describes the formation of large eddies near the gaps and their effect on the fluid motion through rod bundles. The relationship between the mixing process and the studied phenomenon was determined. (orig.) [de

  5. Relation between the occurrence of Burnout and differential pressure fluctuation characteristics caused by the disturbance waves passing by a flow obstacle in a vertical boiling two-phase upward flow in a narrow annular channel

    Mori, Shoji [Yokohama National University, Yokohama 240-8501 (Japan)]. E-mail: morisho@ynu.ac.jp; Fukano, Tohru [Kurume Institute of University, Fukuoka 830-0052 (Japan)]. E-mail: fukanot@cc.kurume-it.ac.jp

    2006-05-15

    If a flow obstacle such as a spacer is placed in a boiling two-phase flow within a channel, the temperature on the surface of the heating tube is severely affected by the existence of the spacer. Under certain conditions the spacer has a cooling effect, and under other conditions the spacer causes dryout of the cooling water film on the heating surface, resulting in burnout of the tube. The burnout mechanism near the spacer, however, remains unclear. In a previous paper (Fukano, T., Mori, S., Akamatsu, S., Baba, A., 2002. Relation between temperature fluctuation of a heating surface and generation of drypatch caused by a cylindrical spacer in a vertical boiling two-phase upward flow in a narrow annular channel. Nucl. Eng. Des. 217, 81-90), we reported that the disturbance wave has a significant effect on dryout occurrence. Therefore, in the present paper, the relation between dryout, burnout occurrence, and interval between two successive disturbance waves obtained from the differential pressure fluctuation caused by the disturbance waves passing by a spacer, is further discussed in detail.

  6. Relation between the occurrence of Burnout and differential pressure fluctuation characteristics caused by the disturbance waves passing by a flow obstacle in a vertical boiling two-phase upward flow in a narrow annular channel

    Mori, Shoji; Fukano, Tohru

    2006-01-01

    If a flow obstacle such as a spacer is placed in a boiling two-phase flow within a channel, the temperature on the surface of the heating tube is severely affected by the existence of the spacer. Under certain conditions the spacer has a cooling effect, and under other conditions the spacer causes dryout of the cooling water film on the heating surface, resulting in burnout of the tube. The burnout mechanism near the spacer, however, remains unclear. In a previous paper (Fukano, T., Mori, S., Akamatsu, S., Baba, A., 2002. Relation between temperature fluctuation of a heating surface and generation of drypatch caused by a cylindrical spacer in a vertical boiling two-phase upward flow in a narrow annular channel. Nucl. Eng. Des. 217, 81-90), we reported that the disturbance wave has a significant effect on dryout occurrence. Therefore, in the present paper, the relation between dryout, burnout occurrence, and interval between two successive disturbance waves obtained from the differential pressure fluctuation caused by the disturbance waves passing by a spacer, is further discussed in detail

  7. Is "Gender Gap" Narrowing?

    Science, 1991

    1991-01-01

    The question as to whether males and females have different kinds of intellectual abilities is addressed. The evidence that there are some differences in cognition and perception between men and women is reviewed. (KR)

  8. Schottky diode model for non-parabolic dispersion in narrow-gap semiconductor and few-layer graphene

    Ang, Yee Sin; Ang, L. K.; Zubair, M.

    Despite the fact that the energy dispersions are highly non-parabolic in many Schottky interfaces made up of 2D material, experimental results are often interpreted using the conventional Schottky diode equation which, contradictorily, assumes a parabolic energy dispersion. In this work, the Schottky diode equation is derived for narrow-gap semiconductor and few-layer graphene where the energy dispersions are highly non-parabolic. Based on Kane's non-parabolic band model, we obtained a more general Kane-Schottky scaling relation of J (T2 + γkBT3) which connects the contrasting J T2 in the conventional Schottky interface and the J T3 scaling in graphene-based Schottky interface via a non-parabolicity parameter, γ. For N-layer graphene of ABC -stacking and of ABA -stacking, the scaling relation follows J T 2 / N + 1 and J T3 respectively. Intriguingly, the Richardson constant extracted from the experimental data using an incorrect scaling can differ with the actual value by more than two orders of magnitude. Our results highlights the importance of using the correct scaling relation in order to accurately extract important physical properties, such as the Richardson constant and the Schottky barrier's height.

  9. Numerical investigation on residual stress distribution and evolution during multipass narrow gap welding of thick-walled stainless steel pipes

    Liu, C.; Zhang, J.X.; Xue, C.B.

    2011-01-01

    Research highlights: → We performed pass-by-pass simulation of stresses for welding of thick-walled pipes. → The distributions and evolution of the residual stresses are demonstrated. → After the groove is filled to a height, the through-wall stress is almost unchanged. - Abstracts: The detailed pass-by-pass finite element (FE) simulation is presented to investigate the residual stresses in narrow gap multipass welding of pipes with a wall thickness of 70 mm and 73 weld passes. The simulated residual stress on the outer surface is validated with the experimental one. The distribution and evolution of the through-wall residual stresses are demonstrated. The investigated results show that the residual stresses on the outer and inner surfaces are tensile in the weld zone and its vicinity. The through-wall axial residual stresses at the weld center line and the HAZ line demonstrate a distribution of bending type. The through-wall hoop residual stress within the weld is mostly tensile. After the groove is filled to a certain height, the peak tensile stresses and the stress distribution patterns for both axial and hoop stresses remain almost unchanged.

  10. Strategies for narrowing the maize yield gap of household farms through precision fertigation under irrigated conditions using CERES-Maize model.

    Liu, Jiangang; Wang, Guangyao; Chu, Qingquan; Chen, Fu

    2017-07-01

    Nitrogen (N) application significantly increases maize yield; however, the unreasonable use of N fertilizer is common in China. The analysis of crop yield gaps can reveal the limiting factors for yield improvement, but there is a lack of practical strategies for narrowing yield gaps of household farms. The objectives of this study were to assess the yield gap of summer maize using an integrative method and to develop strategies for narrowing the maize yield gap through precise N fertilization. The results indicated that there was a significant difference in maize yield among fields, with a low level of variation. Additionally, significant differences in N application rate were observed among fields, with high variability. Based on long-term simulation results, the optimal N application rate was 193 kg ha -1 , with a corresponding maximum attainable yield (AY max ) of 10 318 kg ha -1 . A considerable difference between farmers' yields and AY max was observed. Low agronomic efficiency of applied N fertilizer (AE N ) in farmers' fields was exhibited. The integrative method lays a foundation for exploring the specific factors constraining crop yield gaps at the field scale and for developing strategies for rapid site-specific N management. Optimization strategies to narrow the maize yield gap include increasing N application rates and adjusting the N application schedule. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  11. Enhanced dissociation of charge-transfer states in narrow band gap polymer:fullerene solar cells processed with 1,8-octanedithiol

    Moet, D.J.D.; Lenes, M.; Morana, M.; Azimi, H.; Brabec, C.J.; Blom, P.W.M.

    2010-01-01

    The improved photovoltaic performance of narrow band gap polymer:fullerene solar cells processed from solutions containing small amounts of 1,8-octanedithiol is analyzed by modeling of the experimental photocurrent. In contrast to devices that are spin coated from pristine chlorobenzene, these cells

  12. Enhanced dissociation of charge-transfer states in narrow band gap polymer : fullerene solar cells processed with 1,8-octanedithiol

    Moet, D. J. D.; Lenes, M.; Morana, M.; Azimi, H.; Brabec, C. J.; Blom, P. W. M.

    2010-01-01

    The improved photovoltaic performance of narrow band gap polymer:fullerene solar cells processed from solutions containing small amounts of 1,8-octanedithiol is analyzed by modeling of the experimental photocurrent. In contrast to devices that are spin coated from pristine chlorobenzene, these cells

  13. Narrowing the Gap in Outcomes: Further Overview of Data and Evidence on the ECM Outcomes for Vulnerable Groups. Progress Report and Update

    Morris, Marian; Easton, Claire

    2008-01-01

    Narrowing the Gap (NtG) is a two-year development and research programme, funded by the Department for Children, Schools and Families (DCSF) and the Local Government Association (LGA), working in partnership with other agencies, including local authorities. It seeks to make a significant difference, on a national scale, to the performance of…

  14. The narrow-gap TIG welding concerns the electric power plants manufacturers; Le soudage en joint etroit suscite l'interet des constructeurs de centrales electriques

    Anon

    2009-05-15

    Polysoude, France, played host to an expert forum on narrow gap welding from 5-7 November 2008. The successful event welcomed around one hundred experts.The power plant construction sector is currently booming worldwide. For plant construction this means using more pressure-resistant, thick-walled pipes made from high temperature steels. The key quality features of this new steel grade are the values for high creep rupture strength that also apply without restriction as the benchmark for every weld seam on these pipes. In particular, the forum on narrow gap welding addressed this area of automated welding technology. During the forum, Mr Hans-Peter Mariner (Polysoude's CEO), has offered an in-depth insight into the latest developments in narrow gap welding. This presentation highlighted that with wall thicknesses of over 60 mm, welding time is shortened by a factor of five to ten in comparison to conventional TIG processes with a traditional V seam. The welding characteristics of the parent material are the decisive factor in the application of the narrow gap process. Technical advances in equipment technology such as automatic centring, HF-free ignition, seam preparation and optimised gas protection further increase the application limits. The geometry and gap width of the weld groove are based on the mechanical properties of the materials being joined, with the shrinkage characteristics of the seam being particularly important. Another key part of the programme was a presentation on the three different narrow gap-welding techniques. The first involves a single pass weld per layer and torch or work-piece revolution. The second is dual pass welding next to one another, when the seam preparation or positioning exceed the required narrow tolerances of a few tenths of a millimetre for one stringer bead per layer. TIG narrow gap welding with a shuttle-motion electrode is ideal with very large wall thicknesses of 150-200 mm. This is particularly the case if the

  15. Experimental investigation on heat transfer of HEMJ type divertor with narrow gap between nozzle and impingement surface

    Yokomine, Takehiko; Oohara, Ken; Kunugi, Tomoaki

    2016-01-01

    Highlights: • We performed heat transfer experiment on HEMJ-type multiple jet impingement. • For narrow gap case, degradation of heat transfer performance was observed. • The re-laminarization was anticipated if the temperature level is high. • For actual design of divertor cooling, the re-laminarization must be considered. - Abstract: In order to explore the possibility of improvement of the He-cooled modular divertor with multiple jet cooling (HEMJ) concept including optimization of design parameter, an experimental study on heat transfer performance of the HEMJ divertor was performed by means of helium loop at Georgia Tech, in which the pressure, flow rate and temperature of helium pressure is up to 10 MPa, 8 g/s and 300 °C, respectively, under heat flux of 6 MW/m"2 loaded by means of induction heater. Although the non-dimensional distance between jet nozzle and impingement surface H normalized by typical nozzle diameter D, H/D is 0.9 in the reference design of HEMJ, heat transfer experiments were carried out under the condition of H/D = 0.5 and 0.25 to enhance the heat transfer performance. In the case of H/D = 0.25, the averaged Nusselt number was increased by about 20% from the value for H/D = 0.5 in the case that the jet temperature less than 100 °C. By contraries, the averaged Nusselt number was decreased with increase in jet temperature which is larger than 200 °C in the H/D = 0.25 case. It is expected that the degradation of heat transfer performance with increasing the jet temperature is caused by the re-laminarization occurred near heat transfer surface.

  16. Oligothiophene-Indandione-Linked Narrow-Band Gap Molecules: Impact of π-Conjugated Chain Length on Photovoltaic Performance.

    Komiyama, Hideaki; To, Takahiro; Furukawa, Seiichi; Hidaka, Yu; Shin, Woong; Ichikawa, Takahiro; Arai, Ryota; Yasuda, Takuma

    2018-04-04

    Solution-processed organic solar cells (OSCs) based on narrow-band gap small molecules hold great promise as next-generation energy-converting devices. In this paper, we focus on a family of A-π-D-π-A-type small molecules, namely, BDT- nT-ID ( n = 1-4) oligomers, consisting of benzo[1,2- b:4,5- b']dithiophene (BDT) as the central electron-donating (D) core, 1,3-indandione (ID) as the terminal electron-accepting (A) units, and two regioregular oligo(3-hexylthiophene)s ( nT) with different numbers of thiophene rings as the π-bridging units, and elucidate their structure-property-function relationships. The effects of the length of the π-bridging nT units on the optical absorption, thermal behavior, morphology, hole mobility, and OSC performance were systematically investigated. All oligomers exhibited broad and intense visible photoabsorption in the 400-700 nm range. The photovoltaic performances of bulk heterojunction OSCs based on BDT- nT-IDs as donors and a fullerene derivative as an acceptor were studied. Among these oligomers, BDT-2T-ID, incorporating bithiophene as the π-bridging units, showed better photovoltaic performance with a maximum power conversion efficiency as high as 6.9% under AM 1.5G illumination without using solvent additives or postdeposition treatments. These favorable properties originated from the well-developed interpenetrating network morphology of BDT-2T-ID, with larger domain sizes in the photoactive layer. Even though all oligomers have the same A-D-A main backbone, structural modulation of the π-bridging nT length was found to impact their self-organization and nanostructure formation in the solid state, as well as the corresponding OSC device performance.

  17. Pertussis Maternal Immunization: Narrowing the Knowledge Gaps on the Duration of Transferred Protective Immunity and on Vaccination Frequency

    Gaillard, María Emilia; Bottero, Daniela; Zurita, María Eugenia; Carriquiriborde, Francisco; Martin Aispuro, Pablo; Bartel, Erika; Sabater-Martínez, David; Bravo, María Sol; Castuma, Celina; Hozbor, Daniela Flavia

    2017-01-01

    Maternal safety through pertussis vaccination and subsequent maternal–fetal-antibody transfer are well documented, but information on infant protection from pertussis by such antibodies and by subsequent vaccinations is scarce. Since mice are used extensively for maternal-vaccination studies, we adopted that model to narrow those gaps in our understanding of maternal pertussis immunization. Accordingly, we vaccinated female mice with commercial acellular pertussis (aP) vaccine and measured offspring protection against Bordetella pertussis challenge and specific-antibody levels with or without revaccination. Maternal immunization protected the offspring against pertussis, with that immune protection transferred to the offspring lasting for several weeks, as evidenced by a reduction (4–5 logs, p protection to offspring up to the fourth pregnancy. Under the conditions of our experimental protocol, protection to offspring from the aP-induced immunity is transferred both transplacentally and through breastfeeding. Adoptive-transfer experiments demonstrated that transferred antibodies were more responsible for the protection detected in offspring than transferred whole spleen cells. In contrast to reported findings, the protection transferred was not lost after the vaccination of infant mice with the same or other vaccine preparations, and conversely, the immunity transferred from mothers did not interfere with the protection conferred by infant vaccination with the same or different vaccines. These results indicated that aP-vaccine immunization of pregnant female mice conferred protective immunity that is transferred both transplacentally and via offspring breastfeeding without compromising the protection boostered by subsequent infant vaccination. These results—though admittedly not necessarily immediately extrapolatable to humans—nevertheless enabled us to test hypotheses under controlled conditions through detailed sampling and data collection. These

  18. Pertussis Maternal Immunization: Narrowing the Knowledge Gaps on the Duration of Transferred Protective Immunity and on Vaccination Frequency

    María Emilia Gaillard

    2017-09-01

    Full Text Available Maternal safety through pertussis vaccination and subsequent maternal–fetal-antibody transfer are well documented, but information on infant protection from pertussis by such antibodies and by subsequent vaccinations is scarce. Since mice are used extensively for maternal-vaccination studies, we adopted that model to narrow those gaps in our understanding of maternal pertussis immunization. Accordingly, we vaccinated female mice with commercial acellular pertussis (aP vaccine and measured offspring protection against Bordetella pertussis challenge and specific-antibody levels with or without revaccination. Maternal immunization protected the offspring against pertussis, with that immune protection transferred to the offspring lasting for several weeks, as evidenced by a reduction (4–5 logs, p < 0.001 in the colony-forming-units recovered from the lungs of 16-week-old offspring. Moreover, maternal-vaccination-acquired immunity from the first pregnancy still conferred protection to offspring up to the fourth pregnancy. Under the conditions of our experimental protocol, protection to offspring from the aP-induced immunity is transferred both transplacentally and through breastfeeding. Adoptive-transfer experiments demonstrated that transferred antibodies were more responsible for the protection detected in offspring than transferred whole spleen cells. In contrast to reported findings, the protection transferred was not lost after the vaccination of infant mice with the same or other vaccine preparations, and conversely, the immunity transferred from mothers did not interfere with the protection conferred by infant vaccination with the same or different vaccines. These results indicated that aP-vaccine immunization of pregnant female mice conferred protective immunity that is transferred both transplacentally and via offspring breastfeeding without compromising the protection boostered by subsequent infant vaccination. These results

  19. Experimental study on the effect of gap size to CCFL and CHF in a vertical of narrow rectangular channel during quenching process

    Juarsa, Mulya; Putra, Nandy; Septiadi, Wayan Nata; Antariksawan, Anhar Riza

    2014-01-01

    Highlights: • Quenching in narrow rectangular channel with gap sizes variation was investigated. • The mechanism of counter-current flow depends on gap sizes variation. • The results confirmed the existence of CCFL in narrow rectangular channels. • CHF and mass flux gradient in the quenching was about 0.22 times than steady state. • Modification of CHF and mass flow rate dimensionless correlation was established. - Abstract: The quenching process has become an important thermal management study to intensify the safety margin for the integrity of the reactor vessel under the core meltdown condition. The boiling heat transfer mechanism in the channel is one aspect that needs further examination. The present study aimed to investigate the effect of the differences in channel gap size to counter-current flow limitation (CCFL) and critical heat flux (CHF) during transient cooling in atmospheric pressure and quenching using two vertical plates with 1 mm, 2 mm, and 3 mm gap sizes and heated length of 1100 mm. The initial temperature of the plate was set at 600 °C. Cooling water mass flow rate and sib-cooled temperature were set at about 0.089 kg/s and 90 °C, respectively. Calculations were performed to obtain the CHF value through the boiling curve using transient temperature data. Non-dimensional correlations from other research study was used in this research. The influence of gap sizes on CCFL and CHF resulted in an increased value of CHF relative to gap size; additionally, the CHF for gap sizes of 2 mm and 3 mm increased about 34.4% and 140.5%, respectively, compared to the CHF for the 1 mm gap size. In this research, a curve map of the relationship between non-dimensional CHF and non-dimensional mass flux of water flowing downward shows that the correlation of this experimental study has a gradient number of about 0.22 similar to Mishima and Nishihara correlation. The results confirmed the existence of CCFL in the vertical narrow rectangular channels due

  20. Critical heat flux analysis on change of plate temperature and cooling water flow rate for rectangular narrow gap with bilateral-heated cases

    M Hadi Kusuma; Mulya Juarsa; Anhar Riza Antariksawan

    2013-01-01

    Boiling heat transfer phenomena on rectangular narrow gap was related to the safety of nuclear reactors. Research done in order to study the safety of nuclear reactors in particular relating to boiling heat transfer and useful on the improvement of next-generation reactor designs. The research focused on calculation of the heat flux during the cooling process in rectangular narrow gap size 1.0 mm. with initial temperatures 200°C. 400°C, and 600°C, also the flow rates of cooling water 0,1 liters/second. 0,2 liters/second. and 0,3 liters/second. Experiments carried out by injecting water at a certain flow rate with the water temperature 85°C. Transient temperature measurement data recorded by the data acquisition system. Transient temperature measurement data is used to calculate the flux of heat gain is then used to obtain the heat transfer coefficient. This research aimed to obtain the correlation between critical heat flux and heat transfer coefficient to changes in temperatures and water flow rates for bilaterally-heated cases on rectangular narrow gap. The results obtained for a constant cooling water flow rate, critical heat flux will increase when hot plate temperature also increased. While on a constant hot plate temperature, coefficient heat transfer will increase when cooling water flow rate also increased. Thus it can be said that the cooling water flow rate and temperature of the hot plate has a significant effect on the critical heat flux and heat transfer coefficient resulted in quenching process of vertical rectangular narrow gap with double-heated cases. (author)

  1. The Heat Flux Analysis in an Annulus Narrows Gap With Initial Temperature Variations Using HeaTiNG-01 Test Section

    Mulya Juarsa; Efrizon Umar; Andhang Widi Harto

    2009-01-01

    An experiment to understand the complexity of boiling phenomena on a narrow gap, which has occurs in severe accident at TMI-2 NPP is necessary to be done in aimed to increase the understanding of accident management. The goal of research is to obtain a heat flux and critical heat flux (CHF) value during boiling heat transfer process in a narrow gap annulus. The method of research is experimental using HeaTiNG-01 test section. The experiment has been done with heating-up heated rod until a certain initial temperature, for this experiment, three initial temperature variations was decided at 650°C, 750°C dan 850°C. Then, a cooling process in heated rod by saturated water was recorded based on temperature data changes. Temperature data was used to calculate a value of heat flux and wall superheat temperature, until the results could be defined in boiling curve. The result of this research shows that, although the initial temperature of heated rod was different, the value of CHF is almost similar with CHF average 253.7 kW/m 2 with the changes of only 4.7%. The event of boiling in a narrow gap is not included pool boiling category based on the comparison of film boiling area of the experiment to Bromley correlations. (author)

  2. Theory of tamm surface states on the boundary between Hgsub(1-x)Cdsub(x)Te type semimetal and narrow-gap semiconductor

    Mekhtiyev, M.A.; Kalina, V.A.

    1980-01-01

    The conditions of appearance of tamm surface states and their energy spectrum on the boundary of semimetals and narrow-gap semiconductors are considered. By the Green function method the equation for surface state energy is obtained. The solution of the latter is analyzed in particular cases when energy of heavy hole zones of the semimetal and semiconductor is the same and when the heavy hole gap of the semiconductor is shifted down relatively to the semimetal of the same name gap as well as accurate computer calculation. It is shown that neither in parabolic limits, nor in cases of a strongly unparabolic semiconductor (semimetal) and a parabolic semimetal (semiconductor) the equation obtained has no solutions at small quasipulse values i.e. there are no surface states. In the case when the heavy hole zone of a semiconductor is shifted down for the value of the order of narrow-gap semiconductor the effective mass of surface states turns to be twice heavier than that of the semimetal volumetrical electrons [ru

  3. An analytical model for predicting dryout point in bilaterally heated vertical narrow annuli

    Aye Myint; Tian Wenxi; Jia Dounan; Li Zhihui, Li Hao

    2005-02-01

    Based on the the droplet-diffusion model by Kirillov and Smogalev (1969, 1972), a new analytical model of dryout point prediction in the steam-water flow for bilaterally and uniformly heated narrow annular gap was developed. Comparison of the present model predictions with experimental results indicated that a good agreement in accuracy for the experimental parametric range (pressure from 0.8 to 3.5 MPa, mass flux of 60.39 to 135.6 kg· -2 ·s -1 and the heat flus of 50 kW·m -2 . Prediction of dryout point was experimentally investigated with deionized water upflowing through narrow annular channel with 1.0 mm and 1.5 mm gap heated by AC power supply. (author)

  4. Novel annular flow electromagnetic measurement system for drilling engineering.

    Ge, L.; Wei, G. H.; Wang, Q.; Hu, Z.; Li, J. L.

    2017-01-01

    Downhole micro-flux control drilling technology can effectively solve drilling accidents, such as kick and loss in narrow density window drilling scenarios. Using a downhole annular flow measurement system to obtain real-time information of downhole annular flow is the core and foundation of downhole micro-flux control drilling technology. The research work of electromagnetic flowmeters in recent years creates a challenge for downhole annular flow measurement. This paper proposes a new method...

  5. Application of an improved band-gap narrowing model to the numerical simulation of recombination properties of phosphorus-doped silicon emitters

    Schumacher, J.O. [Fraunhofer Institute for Solar Energy Systems ISE, Oltmannsstr, 5, D-79100 Freiburg (Germany); Altermatt, P.P.; Heiser, G.; Aberle, A.G. [Photovoltaics Special Research Centre, University of NSW, 2052 Sydney (Australia)

    2001-01-01

    The commonly used band-gap narrowing (BGN) models for crystalline silicon do not describe heavily doped emitters with desirable precision. One of the reasons for this is that the applied BGN models were empirically derived from measurements assuming Boltzmann statistics. We apply a new BGN model derived by Schenk from quantum mechanical principles and demonstrate that carrier degeneracy and the new BGN model both substantially affect the electron-hole product within the emitter region. Simulated saturation current densities of heavily phosphorus-doped emitters, calculated with the new BGN model, are lower than results obtained with the widely used empirical BGN model of del Alamo.

  6. Spin polarization of a Ferromagnetic Narrow Gap p-(In,Mn)As Obtained from Andreev Reflection Spectroscopy

    Akazaki, T.; Munekata, H.; Yokoyama, T.; Tanaka, Y.; Takayanagi, H.

    2011-01-01

    Spin-polarized carrier transport across Nb/p-(In,Mn)As junctions has been studied. Suppressions of conductance in the superconductor sub-gap region and conductance peaks at the bias voltage around the edge of the sub-gap are observed. These features are well reproduced by a newly modified BTK model including both spin polarization and the inverse proximity effect. The value of spin polarization in p-(In,Mn)As extracted by the calculation is P = 0.725 at 0.5 K with Z = 0.25

  7. Experimental analysis of heat transfer between a heated wire and a rarefied gas in an annular gap with high diameter ratio

    Chalabi, H; Lorenzini, M; Morini, G L; Buchina, O; Valougeorgis, D; Saraceno, L

    2012-01-01

    In this paper a first experimental attempt is performed to measure heat conduction through rarefied air at rest contained between two concentric cylinders. The heat transfer between a heated platinum wire having a diameter (d) of 0.15 mm, disposed along the axis of a cylindrical shell in stainless steel having an inner diameter (D) of 100 mm, and a surrounded rarefied gas has been studied experimentally and numerically. The ratio between the outer and inner diameter of the annular region filled by the gas is large (D/d=667). In the annular region filled with air the pressure was varied by using a vacuum pump from atmospheric value down to 10 −3 mbar. Temperature differences between the wire and the external stainless steel wall in the range 50-125 K were imposed and the heat power transferred from the wire to the surround was measured as a function of the gas pressure starting from air at atmospheric conditions down to 10 −3 mbar. The experimental results obtained in these tests were compared with the numerical results obtained by using the linear and nonlinear Shakhov kinetic models.

  8. Success and failure in narrowing the disability employment gap: comparing levels and trends across Europe 2002-2014.

    Geiger, Ben Baumberg; van der Wel, Kjetil A; Tøge, Anne Grete

    2017-12-02

    International comparisons of the disability employment gap are an important driver of policy change. However, previous comparisons have used the European Union Statistics on Income and Living Conditions (EU-SILC), despite known comparability issues. We present new results from the higher-quality European Social Survey (ESS), compare these to EU-SILC and the EU Labour Force Survey (EU-LFS), and also examine trends in the disability employment gap in Europe over the financial crisis for the first time. For cross-sectional comparisons of 25 countries, we use micro-data for ESS and EU-SILC for 2012 and compare these to published EU-LFS 2011 estimates. For trend analyses, we use seven biannual waves of ESS (2002-2014) with a total sample size of 182,195, and annual waves of EU-SILC (2004-2014) with a total sample size of 2,412,791. (i) Cross-sectional: countries that have smaller disability employment gaps in one survey tend to have smaller gaps in the other surveys. Nevertheless, there are some countries that perform badly on the lower-quality surveys but better in the higher-quality ESS. (ii) Trends: the disability employment gap appears to have declined in ESS by 4.9%, while no trend is observed in EU-SILC - but this has come alongside a rise in disability in ESS. There is a need for investment in disability measures that are more comparable over time/space. Nevertheless, it is clear to policymakers there are some countries that do consistently well across surveys and measures (Switzerland), and others that do badly (Hungary).

  9. Tuning the band gap of PbCrO{sub 4} through high-pressure: Evidence of wide-to-narrow semiconductor transitions

    Errandonea, D., E-mail: daniel.errandonea@uv.es [Departamento de Física Aplicada-ICMUV, Universitat de València, MALTA ConsoliderTeam, C/Dr. Moliner 50, 46100 Burjassot (Spain); Bandiello, E.; Segura, A. [Departamento de Física Aplicada-ICMUV, Universitat de València, MALTA ConsoliderTeam, C/Dr. Moliner 50, 46100 Burjassot (Spain); Hamlin, J.J.; Maple, M.B. [Department of Physics, University of California, San Diego, La Jolla, CA 92093 (United States); Rodriguez-Hernandez, P.; Muñoz, A. [Departamento de Física Fundamental II, Instituto de Materiales y Nanotecnología, Universidad de La Laguna, MALTA ConsoliderTeam, La Laguna, 38205 Tenerife (Spain)

    2014-02-25

    Highlights: • Electronic and optical properties of PbCrO{sub 4} are studied under compression. • Band-gap collapses are observed and correlated with structural phase transitions. • PbCrO{sub 4} band-gap is reduced from 2.3 to 0.8 eV in a 20 GPa range. • PbCrO{sub 4} is an n-type semiconductor with donor levels associated to Frenkel defects. • A deep-to-shallow donor transformation at HP induces a large resistivity decrease. -- Abstract: The electronic transport properties and optical properties of lead(II) chromate (PbCrO{sub 4}) have been studied at high pressure by means of resistivity, Hall-effect, and optical-absorption measurements. Band-structure first-principle calculations have been also performed. We found that the low-pressure phase is a direct band-gap semiconductor (Eg = 2.3 eV) that shows a high resistivity. At 3.5 GPa, associated to a structural phase transition, a band-gap collapse takes place, becoming Eg = 1.8 eV. At the same pressure the resistivity suddenly decreases due to an increase of the carrier concentration. In the HP phase, PbCrO{sub 4} behaves as an n-type semiconductor, with a donor level probably associated to the formation of oxygen vacancies. At 15 GPa a second phase transition occurs to a phase with Eg = 1.2 eV. In this phase, the resistivity increases as pressure does probably due to the self-compensation of donor levels and the augmentation of the scattering of electrons with ionized impurities. In the three phases the band gap red shifts under compression. At 20 GPa, Eg reaches a value of 0.8 eV, behaving PbCrO{sub 4} as a narrow-gap semiconductor.

  10. Competitive behavior of photons contributing to junction voltage jump in narrow band-gap semiconductor multi-quantum-well laser diodes at lasing threshold

    Feng, Liefeng, E-mail: fengliefeng@tju.edu.cn, E-mail: lihongru@nankai.edu.cn; Yang, Xiufang; Wang, Cunda; Yao, Dongsheng [Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Faculty of Science, Tianjin University, Tianjin 300072 (China); Li, Yang [Business and Vocational College of Hainan, Haikou 570203 (China); Li, Ding; Hu, Xiaodong [Research Center for Wide Band Gap Semiconductors, State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871 (China); Li, Hongru, E-mail: fengliefeng@tju.edu.cn, E-mail: lihongru@nankai.edu.cn [State Key Laboratory for Medicinal Chemistry and Biology, College of Pharmacy, Nankai University, Tianjin 300071 (China)

    2015-04-15

    The junction behavior of different narrow band-gap multi-quantum-well (MQW) laser diodes (LDs) confirmed that the jump in the junction voltage in the threshold region is a general characteristic of narrow band-gap LDs. The relative change in the 1310 nm LD is the most obvious. To analyze this sudden voltage change, the threshold region is divided into three stages by I{sub th}{sup l} and I{sub th}{sup u}, as shown in Fig. 2; I{sub th}{sup l} is the conventional threshold, and as long as the current is higher than this threshold, lasing exists and the IdV/dI-I plot drops suddenly; I{sub th}{sup u} is the steady lasing point, at which the separation of the quasi-Fermi levels of electron and holes across the active region (V{sub j}) is suddenly pinned. Based on the evolutionary model of dissipative structure theory, the rate equations of the photons in a single-mode LD were deduced in detail at I{sub th}{sup l} and I{sub th}{sup u}. The results proved that the observed behavior of stimulated emission suddenly substituting for spontaneous emission, in a manner similar to biological evolution, must lead to a sudden increase in the injection carriers in the threshold region, which then causes the sudden increase in the junction voltage in this region.

  11. Competitive behavior of photons contributing to junction voltage jump in narrow band-gap semiconductor multi-quantum-well laser diodes at lasing threshold

    Feng, Liefeng; Yang, Xiufang; Wang, Cunda; Yao, Dongsheng; Li, Yang; Li, Ding; Hu, Xiaodong; Li, Hongru

    2015-01-01

    The junction behavior of different narrow band-gap multi-quantum-well (MQW) laser diodes (LDs) confirmed that the jump in the junction voltage in the threshold region is a general characteristic of narrow band-gap LDs. The relative change in the 1310 nm LD is the most obvious. To analyze this sudden voltage change, the threshold region is divided into three stages by I th l and I th u , as shown in Fig. 2; I th l is the conventional threshold, and as long as the current is higher than this threshold, lasing exists and the IdV/dI-I plot drops suddenly; I th u is the steady lasing point, at which the separation of the quasi-Fermi levels of electron and holes across the active region (V j ) is suddenly pinned. Based on the evolutionary model of dissipative structure theory, the rate equations of the photons in a single-mode LD were deduced in detail at I th l and I th u . The results proved that the observed behavior of stimulated emission suddenly substituting for spontaneous emission, in a manner similar to biological evolution, must lead to a sudden increase in the injection carriers in the threshold region, which then causes the sudden increase in the junction voltage in this region

  12. Generating evidence to narrow the treatment gap for mental disorders in sub-Saharan Africa: rationale, overview and methods of AFFIRM.

    Lund, C; Alem, A; Schneider, M; Hanlon, C; Ahrens, J; Bandawe, C; Bass, J; Bhana, A; Burns, J; Chibanda, D; Cowan, F; Davies, T; Dewey, M; Fekadu, A; Freeman, M; Honikman, S; Joska, J; Kagee, A; Mayston, R; Medhin, G; Musisi, S; Myer, L; Ntulo, T; Nyatsanza, M; Ofori-Atta, A; Petersen, I; Phakathi, S; Prince, M; Shibre, T; Stein, D J; Swartz, L; Thornicroft, G; Tomlinson, M; Wissow, L; Susser, E

    2015-06-01

    There is limited evidence on the acceptability, feasibility and cost-effectiveness of task-sharing interventions to narrow the treatment gap for mental disorders in sub-Saharan Africa. The purpose of this article is to describe the rationale, aims and methods of the Africa Focus on Intervention Research for Mental health (AFFIRM) collaborative research hub. AFFIRM is investigating strategies for narrowing the treatment gap for mental disorders in sub-Saharan Africa in four areas. First, it is assessing the feasibility, acceptability and cost-effectiveness of task-sharing interventions by conducting randomised controlled trials in Ethiopia and South Africa. The AFFIRM Task-sharing for the Care of Severe mental disorders (TaSCS) trial in Ethiopia aims to determine the acceptability, affordability, effectiveness and sustainability of mental health care for people with severe mental disorder delivered by trained and supervised non-specialist, primary health care workers compared with an existing psychiatric nurse-led service. The AFFIRM trial in South Africa aims to determine the cost-effectiveness of a task-sharing counselling intervention for maternal depression, delivered by non-specialist community health workers, and to examine factors influencing the implementation of the intervention and future scale up. Second, AFFIRM is building individual and institutional capacity for intervention research in sub-Saharan Africa by providing fellowship and mentorship programmes for candidates in Ethiopia, Ghana, Malawi, Uganda and Zimbabwe. Each year five Fellowships are awarded (one to each country) to attend the MPhil in Public Mental Health, a joint postgraduate programme at the University of Cape Town and Stellenbosch University. AFFIRM also offers short courses in intervention research, and supports PhD students attached to the trials in Ethiopia and South Africa. Third, AFFIRM is collaborating with other regional National Institute of Mental Health funded hubs in Latin

  13. Familial Granuloma Annulare

    Zennure Takci

    2015-09-01

    Full Text Available Granuloma annulare is a benign, asymptomatic, relatively common, often self-limited chronic granulomatos disorder of the skin that can affect both children and adults. The primary skin lesion usually is grouped papules in an enlarging annular shape, with color ranging from flesh-colored to erythematous. The two most common types of granuloma annulare are localized, which typically is found on the lateral or dorsal surfaces of the hands and feet; and disseminated, which is widespread. Rarely, familial cases of granuloma annulare has been reported. Herein, we report two sisters with annular papules and plaques diagnosed as granuloma annulare with the clinical and pathological findings. [J Contemp Med 2015; 5(3.000: 189-191

  14. Narrowing the Early Mathematics Gap: A Play-Based Intervention to Promote Low-Income Preschoolers’ Number Skills

    Nicole R. Scalise

    2018-01-01

    Full Text Available Preschoolers from low-income households lag behind preschoolers from middle-income households on numerical skills that underlie later mathematics achievement. However, it is unknown whether these gaps exist on parallel measures of symbolic and non-symbolic numerical skills. Experiment 1 indicated preschoolers from low-income backgrounds were less accurate than peers from middle-income backgrounds on a measure of symbolic magnitude comparison, but they performed equivalently on a measure of non-symbolic magnitude comparison. This suggests activities linking non-symbolic and symbolic number representations may be used to support children’s numerical knowledge. Experiment 2 randomly assigned low-income preschoolers (Mean Age = 4.7 years to play either a numerical magnitude comparison or a numerical matching card game across four 15 min sessions over a 3-week period. The magnitude comparison card game led to significant improvements in participants’ symbolic magnitude comparison skills in an immediate posttest assessment. Following the intervention, low-income participants performed equivalently to an age- and gender-matched sample of middle-income preschoolers in symbolic magnitude comparison. These results suggest a brief intervention that combines non-symbolic and symbolic magnitude representations can support low-income preschoolers’ early numerical knowledge.

  15. Role of Leadership in Narrowing the Gap between Science and Practice: Improving Treatment Outcomes at the Systems Level.

    Saeed, Sy Atezaz; Bloch, Richard M; Silver, Stuart

    2015-09-01

    It's been well documented that health care does not reliably transfer what we know from science into clinical practice. As a result, Americans do not always receive the care suggested by the scientific evidence. Despite the best intentions of a dedicated and skilled healthcare workforce, this can often lead to poor clinical outcomes. As research and technology rapidly advance, this gap between science and practice appears to be widening. There is an increasing public concern about a lack of access to appropriate treatment, pervasiveness of unsafe practices, and wasteful uses of precious health care resources leading to suboptimum treatment outcomes. Leadership has a critical role in creating and sustaining the environment that supports health services for individuals and populations that increase the likelihood of desired health outcomes and are consistent with current professional knowledge. Leadership has some responsibility to improve outcomes by insuring effective use of evidence-based treatment guidelines; measurement-based care; knowledge and skills management; care coordination; and information technologies. This paper addresses leadership issues in these components of a system's ability to improve treatment outcomes.

  16. A Stable, Narrow-Gap Oxyfluoride Photocatalyst for Visible-Light Hydrogen Evolution and Carbon Dioxide Reduction.

    Kuriki, Ryo; Ichibha, Tom; Hongo, Kenta; Lu, Daling; Maezono, Ryo; Kageyama, Hiroshi; Ishitani, Osamu; Oka, Kengo; Maeda, Kazuhiko

    2018-05-16

    Mixed anion compounds such as oxynitrides and oxychalcogenides are recognized as potential candidates of visible-light-driven photocatalysts since, as compared with oxygen 2p orbitals, p orbitals of less electronegative anion (e.g., N 3- , S 2- ) can form a valence band that has more negative potential. In this regard, oxyfluorides appear unsuitable because of the higher electronegativity of fluorine. Here we show an exceptional case, an anion-ordered pyrochlore oxyfluoride Pb 2 Ti 2 O 5.4 F 1.2 that has a small band gap (ca. 2.4 eV). With suitable modification of Pb 2 Ti 2 O 5.4 F 1.2 by promoters such as platinum nanoparticles and a binuclear ruthenium(II) complex, Pb 2 Ti 2 O 5.4 F 1.2 worked as a stable photocatalyst for visible-light-driven H 2 evolution and CO 2 reduction. Density functional theory calculations have revealed that the unprecedented visible-light-response of Pb 2 Ti 2 O 5.4 F 1.2 arises from strong interaction between Pb-6s and O-2p orbitals, which is enabled by a short Pb-O bond in the pyrochlore lattice due to the fluorine substitution.

  17. Plant phenomics and the need for physiological phenotyping across scales to narrow the genotype-to-phenotype knowledge gap

    Grosskinsky, Dominik Kilian; Svensgaard, Jesper; Christensen, Svend

    2015-01-01

    Plants are affected by complex genome×environment×management interactions which determine phenotypic plasticity as a result of the variability of genetic components. Whereas great advances have been made in the cost-efficient and high-throughput analyses of genetic information and non-invasive ph......Plants are affected by complex genome×environment×management interactions which determine phenotypic plasticity as a result of the variability of genetic components. Whereas great advances have been made in the cost-efficient and high-throughput analyses of genetic information and non......-invasive phenotyping, the large-scale analyses of the underlying physiological mechanisms lag behind. The external phenotype is determined by the sum of the complex interactions of metabolic pathways and intracellular regulatory networks that is reflected in an internal, physiological, and biochemical phenotype......, ultimately enabling the in silico assessment of responses under defined environments with advanced crop models. This will allow generation of robust physiological predictors also for complex traits to bridge the knowledge gap between genotype and phenotype for applications in breeding, precision farming...

  18. Restored symmetries, quark puzzle, and the Pomeron as a Josephson current. [Clustering effects, quantum supercurrents, cross sections, phase transitions, narrowing gap mechanism

    Mendes, R V [Instituto de Fisica e Matematica, Lisbon (Portugal)

    1976-07-01

    A special type of symmetry is studied, wherein manifest invariance is restored by direct integration over a set of spontaneously broken ground states. In addition to invariant states and multiplets these symmetry realizations are shown to lead, in general, to clustering effects and quantum supercurrents. A systematic exploration of these symmetry realizations is proposed, mostly in physical situations where it has so far been believed that the only consequences of the symmetry are invariant states and multiplets. An application of these ideas to the quark system yields a possible explanation for the unobservability of free quarks and an interpretation of the Pomeron as a generalized Josephson current. Furthermore, the 'narrowing gap mechanism' suggests an explanation for the behavior of the e/sup +/ e/sup -/ ..-->.. hadrons cross section and a speculation on an approaching phase transition in hadronic production and the observation of free quarks.

  19. Investigation on microstructure and properties of narrow-gap laser welding on reduced activation ferritic/martensitic steel CLF-1 with a thickness of 35 mm

    Wu, Shikai; Zhang, Jianchao; Yang, Jiaoxi; Lu, Junxia; Liao, Hongbin; Wang, Xiaoyu

    2018-05-01

    Reduced activation ferritic martensitic (RAFM) steel is chosen as a structural material for test blanket modules (TBMs) to be constructed in International Thermonuclear Experimental Reactor (ITER) and China Fusion Engineering Test Reactor (CFETR). Chinese specific RAFM steel named with CLF-1 has been developed for CFETR. In this paper, a narrow-gap groove laser multi-pass welding of CLF-1 steel with thickness of 35 mm is conduced by YLS-15000 fiber laser. Further, the microstructures of different regions in the weld joint were characterized, and tensile impact and micro-hardness tests were carried out for evaluating the mecharical properties. The results show that the butt weld joint of CLF-1 steel with a thickness of 35 mm was well-formed using the optimal narrow-gap laser filler wire welding and no obvious defects was found such as incomplete fusion cracks and pores. The microstructures of backing layer is dominated by lath martensites and the Heat-Affected Zone (HAZ) was mainly filled with two-phase hybrid structures of secondary-tempering sorbites and martensites. The filler layer is similar to the backing layer in microstructures. In tensile tests, the tensile samples from different parts of the joint all fractured at base metal (BM). The micro-hardness of weld metal (WM) was found to be higher than that of BM and the Heat-Affected Zone (HAZ) exhibited no obvious softening. After post weld heat treatment (PWHT), it can be observed that the fusion zone of the autogenous welding bead and the upper filling beads mainly consist of lath martensites which caused the lower impact absorbing energy. The HAZ mainly included two-phase hybrid structures of secondary-tempering sorbites and martensites and exhibited favorable impact toughness.

  20. Study of radiation defects by in-situ measurements of the Hall effect in narrow-gap semiconductors

    Favre, J.

    1990-01-01

    Semiconducting compounds of II-VI, III-V and IV-VI groups were irradiated in liquid hydrogen by high energy (0.7 to 2.7 MeV) electrons. The Hall coefficient and resistivity variations were measured in situ during irradiation. The doping by irradiation induced defects is of p-type in III-V group compounds, while n-type doping occurs in II-VI and IV-VI group materials. A semiconductor to insulator or reverse transition was observed under irradiation when the chemical potential crossed the band edges. In IV-VI group compounds the two successive transitions take place in initially p-type samples. A metastable behaviour, characteristic to strong compensation, appears in the vicinity of those semiconductor - insulator transitions in IV-VI compounds. The slope of free carrier concentration vs. fluence variation was analyzed. It was compared to defect creation rates, calculated in the framework of a cascade model. The charge state of created defects was deduced in this way. - In IV-VI group compounds, the presence of localized levels degenerated with the conduction band and, in PbTe, of additional defect associated levels in the forbidden gap, was demonstrated. Those results are consistent with the saturation of electron concentration increase at high fluence as well as with the analysis of annealing experiments. - In Hg 1-x Cd x Te compounds, the analysis of electron concentration versus fluence increase indicates that only mercury Frenkel pairs are electrically active. The variation with cadmium content of the defect associated level energy was deduced from the saturation values of the electron concentration [fr

  1. Propagating annular modes

    Sheshadri, A.; Plumb, R. A.

    2017-12-01

    The leading "annular mode", defined as the dominant EOF of surface pressure or of zonal mean zonal wind variability, appears as a dipolar structure straddling the mean midlatitude jet and thus seems to describe north-south wobbling of the jet latitude. However, extratropical zonal wind anomalies frequently tend to migrate poleward. This behavior can be described by the first two EOFs, the first (AM1) being the dipolar structure, and the second (AM2) having a tripolar structure centered on the mean jet. Taken in isolation, AM1 thus describes a north-south wobbling of the jet position, while AM2 describes a strengthening and narrowing of the jet. However, despite the fact that they are spatially orthogonal, and their corresponding time series temporally orthogonal, AM1 and AM2 are not independent, but show significant lag-correlations which reveal the propagation. The EOFs are not modes of the underlying dynamical system governing the zonal flow evolution. The true modes can be estimated using principal oscillation pattern (POP) analysis. In the troposphere, the leading POPs manifest themselves as a pair of complex conjugate structures with conjugate eigenvalues thus, in reality, constituting a single, complex, mode that describes propagating anomalies. Even though the principal components associated with the two leading EOFs decay at different rates, each decays faster than the true mode. These facts have implications for eddy feedback and the susceptibility of the mode to external perturbations. If one interprets the annular modes as the modes of the system, then simple theory predicts that the response to steady forcing will usually be dominated by AM1 (with the longest time scale). However, such arguments should really be applied to the true modes. Experiments with a simplified GCM show that climate response to perturbations do not necessarily have AM1 structures. Implications of these results for stratosphere-troposphere interactions are explored. The POP

  2. Relation between the occurrence of burnout and differential-pressure fluctuation characteristics caused by the disturbance waves passing by a flow obstacle in a vertical boiling two-phase upward flow in a narrow annular channel

    Mori, Shoji; Fukano, Tohru

    2003-01-01

    If a flow obstacle such as a spacer is set in a boiling two-phase flow within an annular channel, where the inner tube is used as a heater, the temperature on the surface of the heater tube is severely affected by the existence of the spacer. In some case the spacer has a cooling effect, and in the other case it causes the dryout of the cooling liquid film on the heating surface resulting in the burnout of the tube. The burnout mechanism near the spacer, however, is not still clear. In the present paper we focus our attention on the occurrence of the burnout near a spacer, and discuss the occurrence location of dryout and burnout and the relation between the occurrence of burnout and differential-pressure fluctuation characteristics caused by the disturbance waves passing by a spacer. (author)

  3. The influence of narrow optical gap silver oxide on zinc oxide nanoparticles produced by microwave-assisted colloidal synthesis: photocatalytic studies

    Prakoso, S. P.; Paramarta, V.; Tju, H.; Taufik, A.; Saleh, R.

    2016-11-01

    This paper reports a photocatalytic study on wide band gap zinc oxide (ZnO) incorporated by narrow band gap silver oxide (Ag2O), namely Ag2O/ZnO nanocomposites, which were prepared by colloidal synthesis with microwave supports. The Ag2O/ZnO nanocomposites were prepared with three different molar ratios (MR) of Ag2O to ZnO (MR: 0.25, 0.5 and 0.75). In order to confirm qualitatively the concentration ratio of Ag2O in ZnO, crystal phase intensity ratio was executed by peak indexing from x-ray diffraction. The Ag2O/ZnO nanocomposites properties were further investigated using diffuse reflectance spectroscopy. The nanocomposites were tested for the degradation of organic dyes solutions under visible and UV light irradiations. The photocatalytic activity of Ag2O/ZnO nanocomposites under visible light increased with increasing molar ratio of Ag2O to ZnO, while the opposite trends observed under UV light irradiation. The improvement of photoabsorption together with photocatalytic activities might be suspected due to the p-n heterojunction structure in Ag2O/ZnO nanocomposites. The corresponding mechanism will be discussed in detail.

  4. The influence of narrow optical gap silver oxide on zinc oxide nanoparticles produced by microwave-assisted colloidal synthesis: photocatalytic studies

    Prakoso, S. P.; Paramarta, V.; Tju, H.; Taufik, A.; Saleh, R.

    2016-01-01

    This paper reports a photocatalytic study on wide band gap zinc oxide (ZnO) incorporated by narrow band gap silver oxide (Ag 2 O), namely Ag 2 O/ZnO nanocomposites, which were prepared by colloidal synthesis with microwave supports. The Ag 2 O/ZnO nanocomposites were prepared with three different molar ratios (MR) of Ag 2 O to ZnO (MR: 0.25, 0.5 and 0.75). In order to confirm qualitatively the concentration ratio of Ag 2 O in ZnO, crystal phase intensity ratio was executed by peak indexing from x-ray diffraction. The Ag 2 O/ZnO nanocomposites properties were further investigated using diffuse reflectance spectroscopy. The nanocomposites were tested for the degradation of organic dyes solutions under visible and UV light irradiations. The photocatalytic activity of Ag 2 O/ZnO nanocomposites under visible light increased with increasing molar ratio of Ag 2 O to ZnO, while the opposite trends observed under UV light irradiation. The improvement of photoabsorption together with photocatalytic activities might be suspected due to the p-n heterojunction structure in Ag 2 O/ZnO nanocomposites. The corresponding mechanism will be discussed in detail. (paper)

  5. Subcutaneous granuloma annulare

    Dhar Sandipan

    1994-01-01

    Full Text Available Two cases of subcutaneos granuloma annulare are reported. Clinical presentation was in the form of hard subcutaneous nodules; histopathology confirmed the clinical diagnosis. The cases were unique because of onset in adult hood, occurrence over unusual sites and absence of classical lesions of granuloma annulare elsewhere.

  6. Subcutaneous granuloma annulare

    Dhar Sandipan

    1993-01-01

    Full Text Available Two cases of subcutaneous granuloma annulare are reported. Clinical presentation was in the form of hard subcutaneous nodules, histopathology confirmed the clinical diagnosis. The cases were unique because of onset in adult age, occurrence over unusual sites and absence of classical lesions of granuloma annulare elsewhere.

  7. Experimental research on flow instability in vertical narrow annuli

    WU Geping; QIU Suizheng; SU Guanghui; JIA Dounan

    2007-01-01

    A narrow annular test section of 1.5mm gap and 1800mm length was designed and manufactured, with good tightness and insulation. Experiments were carried out to investigate characteristics of flow instability of forced-convection in vertical narrow annuli. Using distilled water as work fluid, the experiments were conducted at pressures of 1.0~3.0 MPa, mass flow rates of 3.0~25 kg/h, heating power of 3.0~ 6.5kW and inlet fluid temperature of 20 ℃, 40 ℃ or 60℃. It was found that flow instability occured with fixed inlet condition and heating power when mass flow rate was below a special value. Effects of inlet subcooling, system pressure and mass flow rate on the system behavior were studied and the instability region was given.

  8. A single mask process for the realization of fully-isolated, dual-height MEMS metallic structures separated by narrow gaps

    Li, Yuan; Kim, Minsoo; Allen, Mark G.

    2018-02-01

    Multi-height metallic structures are of importance for various MEMS applications, including master molds for creating 3D structures by nanoimprint lithography, or realizing vertically displaced electrodes for out-of-plane electrostatic actuators. Normally these types of multi-height structures require a multi-mask process with increased fabrication complexity. In this work, a fabrication technology is presented in which fully-isolated, dual-height MEMS metallic structures separated by narrow gaps can be realized using a self-aligned, single-mask process. The main scheme of this proposed process is through-mold electrodeposition, where two photoresist mold fabrication steps and two electrodeposition steps are sequentially implemented to define the thinner and thicker structures in the dual-height configuration. The process relies on two self-aligned steps enabled by the electrodeposited thinner structures: a wet-etching of the seed layer utilizing the thinner structure as an etch-mask to electrically isolate the thinner and the thicker structures, and a backside UV lithography utilizing the thinner structure as a lithographic mask to create a high-aspect-ratio mold for the thicker structure through-mold electrodeposition. The latter step requires the metallic structures to be fabricated on a transparent substrate. Test structures with differences in aspect ratio are demonstrated to showcase the capability of the process.

  9. Annular pancreas (image)

    Annular pancreas is an abnormal ring or collar of pancreatic tissue that encircles the duodenum (the part of the ... intestine that connects to stomach). This portion of pancreas can constrict the duodenum and block or impair ...

  10. Narrowing the Gender Gap:Empowering Women through Literacy Programmes: Case Studies from the UNESCO Effective Literacy and Numeracy Practices Database (LitBase) http://www.unesco.org/uil/litbase/. 2nd Edition

    Hanemann, Ulrike, Ed.

    2015-01-01

    UIL has published a second edition of a collection of case studies of promising literacy programmes that seek to empower women. "Narrowing the Gender Gap: Empowering Women through Literacy Programmes" (originally published in 2013 as "Literacy Programmes with a Focus on Women to Reduce Gender Disparities") responds to the…

  11. Sediment particle entrainment in an obstructed annular

    Loureiro, Bruno Venturini; Siqueira, Renato do Nascimento [Faculdade do Centro Leste (UCL), Serra, ES (Brazil). Lab. de Fenomenos de Transporte], e-mail: brunovl@ucl.br, e-mail: renatons@ucl.br

    2006-07-01

    Flow in an annular region with internal cylinder rotation is a classic problem in fluid mechanics and has been widely studied. Besides its importance as a fundamental problem, flow in annular regions has several practical applications. This project was motivated by an application of this kind of flow to the drilling of oil and gas wells. In this work, an erosion apparatus was constructed in order to study the effect of the internal cylinder rotation on particle entrainment in an obstructed annular space and bed package as well. The study also analyzed the influence of height of the particles bed on the process performance. The experiment was designed so that the internal cylinder rotation could be measured by an encoder. The fluid temperature was measured by a thermocouple and the experiments were carried out at the temperature of 25 deg C. The study revealed that the particle entrainment for the height of the bed that is close to the center of the cylinders is negligible and the internal cylinder rotation provokes the movement and packing of the bed. For lower height of the bed, with same dimension of the annular gap, the particle entrainment process was satisfactory and the bed compaction was smaller than in the previous case, leading to a more efficient cleaning process in the annular space. (author)

  12. Pool Boiling CHF in Inclined Narrow Annuli

    Kang, Myeong Gie

    2010-01-01

    Pool boiling heat transfer has been studied extensively since it is frequently encountered in various heat transfer equipment. Recently, it has been widely investigated in nuclear power plants for application to the advanced light water reactors designs. Through the review on the published results it can be concluded that knowledge on the combined effects of the surface orientation and a confined space on pool boiling heat transfer is of great practical importance and also of great academic interest. Fujita et al. investigated pool boiling heat transfer, from boiling inception to the critical heat flux (CHF, q' CHF ), in a confined narrow space between heated and unheated parallel rectangular plates. They identified that both the confined space and the surface orientation changed heat transfer much. Kim and Suh changed the surface orientation angles of a downward heating rectangular channel having a narrow gap from the downward-facing position (180 .deg.) to the vertical position (90 .deg.). They observed that the CHF generally decreased as the inclination angle (θ ) increased. Yao and Chang studied pool boiling heat transfer in a confined heat transfer for vertical narrow annuli with closed bottoms. They observed that when the gap size ( s ) of the annulus was decreased the effect of space confinement to boiling heat transfer increased. The CHF was occurred at much lower value for the confined space comparing to the unconfined pool boiling. Pool boiling heat transfer in narrow horizontal annular crevices was studied by Hung and Yao. They concluded that the CHF decreased with decreasing gap size of the annuli and described the importance of the thin film evaporation to explain the lower CHF of narrow crevices. The effect of the inclination angle on the CHF on countercurrent boiling in an inclined uniformly heated tube with closed bottoms was also studied by Liu et al. They concluded that the CHF reduced with the inclination angle decrease. A study was carried out

  13. Investigations on post-dryout heat transfer in bilaterally heated annular channels

    Tian, W.X.; Qiu, S.Z.; Jia, D.N.

    2006-01-01

    Post-dryout heat transfer in bilaterally heated vertical narrow annular channels with 1.0, 1.5 and 2.0 mm gap size has been experimentally investigated with deionized water under the condition of pressure ranging from 1.38 to 5.9 MPa and low mass flow rate from 42.9 to 150.2 kg/m 2 s. The experimental data was compared with well known empirical correlations including Groeneveld, Mattson, etc., and none of them gave an ideal prediction. Theoretical investigations were also carried out on post-dryout heat transfer in annular channels. Based on analysis of heat exchange processes arising among the droplets, the vapor and two tube walls of annular channel, a non-equilibrium mechanistic heat transfer model was developed. Comparison indicated that the present model prediction showed a good agreement with our experimental data. Theoretical calculation result showed that the forced convective heat transfer between the heated wall and vapor dominate the overall heat transfer. The heat transfer caused by the droplets direct contact to the wall and the interfacial convection/evaporation of droplets in superheated vapors also had an indispensable contribution. The radiation heat transfer would be neglected because of its small contribution (less than 0.11%) to the total heat transfer

  14. Influences of lumped passes on welding residual stress of a thick-walled nuclear rotor steel pipe by multipass narrow gap welding

    Tan, Long, E-mail: mse.longtan@gmail.com [State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi’an Jiaotong University, Xi’an 710049 (China); Zhang, Jianxun; Zhuang, Dong [State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi’an Jiaotong University, Xi’an 710049 (China); Liu, Chuan [Provincial Key Lab of Advanced Welding Technology, Jiangsu University of Science and Technology, Zhenjiang 212003 (China)

    2014-07-01

    Highlights: • The internal residual stress of the thick-walled pipe is measured by using the local removal blind hole method. • Two lumped-pass models are developed to reduce computational cost. • The effect of lumped passes on the welding residual stress is discussed. • Reasonable lumped-pass model can guarantee the accuracy and improve the computational efficiency. - Abstract: The purpose of this study is to investigate the effect of the lumped passes simulation on the distribution of residual stresses before and after heat treatment in a thick-walled nuclear power rotor pipe with a 89-pass narrow gap welding process. The local removal blind hole method was used to measure internal residual stress of the thick-walled pipe after post weld heat treatment (PWHT). Based on the ANSYS software, a two-dimensional axisymmetric finite element model is employed. Two lumped-pass models of M-5th model (five weld beads as one lumped pass) and M-10th model (ten weld beads as one lumped pass) were developed to reduce computational cost. Based on the results in this study, the distributions of residual stresses of a thick-walled welded pipe before and after PWHT are developed. Meanwhile, the distribution of the through-wall axial residual stress along the weld center line is demonstrated to be a self-equilibrating type. In addition, the investigation results show that reasonable and reliable lumped-pass model can not only guarantee the accuracy of the simulated results, but also improve the computational efficiency in the thermo-elastic–plastic FE analysis procedure. Therefore, from the viewpoint of engineering application the developed lumped-pass computational procedure is a promising and useful method to predict residual stress of large and complex welded structures.

  15. Influences of lumped passes on welding residual stress of a thick-walled nuclear rotor steel pipe by multipass narrow gap welding

    Tan, Long; Zhang, Jianxun; Zhuang, Dong; Liu, Chuan

    2014-01-01

    Highlights: • The internal residual stress of the thick-walled pipe is measured by using the local removal blind hole method. • Two lumped-pass models are developed to reduce computational cost. • The effect of lumped passes on the welding residual stress is discussed. • Reasonable lumped-pass model can guarantee the accuracy and improve the computational efficiency. - Abstract: The purpose of this study is to investigate the effect of the lumped passes simulation on the distribution of residual stresses before and after heat treatment in a thick-walled nuclear power rotor pipe with a 89-pass narrow gap welding process. The local removal blind hole method was used to measure internal residual stress of the thick-walled pipe after post weld heat treatment (PWHT). Based on the ANSYS software, a two-dimensional axisymmetric finite element model is employed. Two lumped-pass models of M-5th model (five weld beads as one lumped pass) and M-10th model (ten weld beads as one lumped pass) were developed to reduce computational cost. Based on the results in this study, the distributions of residual stresses of a thick-walled welded pipe before and after PWHT are developed. Meanwhile, the distribution of the through-wall axial residual stress along the weld center line is demonstrated to be a self-equilibrating type. In addition, the investigation results show that reasonable and reliable lumped-pass model can not only guarantee the accuracy of the simulated results, but also improve the computational efficiency in the thermo-elastic–plastic FE analysis procedure. Therefore, from the viewpoint of engineering application the developed lumped-pass computational procedure is a promising and useful method to predict residual stress of large and complex welded structures

  16. Microstructure of a safe-end dissimilar metal weld joint (SA508-52-316L) prepared by narrow-gap GTAW

    Ming, Hongliang [Key Laboratory of Nuclear Materials and Safety Assessment, Liaoning Key Laboratory for Safety and Assessment Technique of Nuclear Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049 (China); Zhang, Zhiming [Key Laboratory of Nuclear Materials and Safety Assessment, Liaoning Key Laboratory for Safety and Assessment Technique of Nuclear Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Wang, Jianqiu, E-mail: wangjianqiu@imr.ac.cn [Key Laboratory of Nuclear Materials and Safety Assessment, Liaoning Key Laboratory for Safety and Assessment Technique of Nuclear Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Han, En-Hou [Key Laboratory of Nuclear Materials and Safety Assessment, Liaoning Key Laboratory for Safety and Assessment Technique of Nuclear Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Wang, Peipei; Sun, Zhiyuan [Shanghai Research Center for Weld and Detection Engineering Technique of Nuclear Equipment, Shanghai 201306 (China)

    2017-01-15

    The microstructure, residual strain and interfacial chemical composition distribution of a safe-end dissimilar metal weld joint (DMWJ, SA508-52-316L) prepared by narrow-gap gas-tungsten arc welding (NG-GTAW) were studied by optical microscope (OM) and scanning electron microscope equipped with an energy dispersive X-ray microanalysis (SEM/EDX) and an electron back scattering diffraction (EBSD) system. Complex microstructure and chemical composition distribution are found, especially at the SA508-52 interface and the 52-316L interface. In brief, a complicated microstructure transition exists within the SA508 heat affected zone (HAZ); the residual strain, the fraction of high angle random grain boundaries and low angle boundaries decrease with increasing the distance from the fusion boundary in 316L HAZ; neither typical type II boundary nor obvious carbon-depleted zone is found near the SA508-52 interface; dramatic and complicated changes of the contents of the main elements, Fe, Cr and Ni, are observed at the distinct interfaces, especially at the SA508-52 interface. No carbon concentration is found at the SA508-52 interface. - Highlights: •Residual strain and GBCD change as a function of the distance from FB in 316L HAZ. •Neither type II boundary nor obvious carbon-depleted zone is found in SA508 HAZ. •No carbon concentration is found at the SA508-52 interface. •The middle part of the DMWJ has the highest residual strain.

  17. Huge operation by energy gap of novel narrow band gap Tl1-x In1-x B x Se2 (B = Si, Ge): DFT, x-ray emission and photoconductivity studies

    Piasecki, M.; Myronchuk, G. L.; Zamurueva, O. V.; Khyzhun, O. Y.; Parasyuk, O. V.; Fedorchuk, A. O.; Albassam, A.; El-Naggar, A. M.; Kityk, I. V.

    2016-02-01

    It is shown that narrow band gap semiconductors Tl1-x In1-x GexSe2 are able effectively to vary the values of the energy gap. DFT simulations of the principal bands during the cationic substitutions is done. Changes of carrier transport features is explored. Relation with the changes of the near the surface states is explored . Comparison on a common energy scale of the x-ray emission Se Kβ 2 bands, representing energy distribution of the Se 4p states, indicates that these states contribute preliminary to the top of the valence band. The temperature dependence of electrical conductivity and spectral dependence photoconductivity for the Tl1-x In1-x Ge x Se2 and Tl1-x In1-x Si x Se2 single crystals were explored and compared with previously reported Tl1-x In1-x Sn x Se2. Based on our investigations, a model of centre re-charging is proposed. Contrary to other investigated crystals in Tl1-x In1-x Ge x Se2 single crystals for x = 0.1 we observe extraordinarily enormous photoresponse, which exceed more than nine times the dark current. X-ray photoelectron core-level and valence-band spectra for pristine and Ar+-ion irradiated surfaces of Tl1-x In1-x GexSe2 (x = 0.1 and 0.2) single crystals have been studied. These results indicate that the relatively low hygroscopicity of the studied single crystals is typical for the Tl1-x In1-x Ge x Se2 crystals, a property that is very important for handling these quaternary selenides as infrared materials operating at ambient conditions.

  18. Thermal Deformation Analysis of the Annular Fuel

    Kim, Ju Seong; Kim, Yong Soo; Yang, Yong Sik; Bang, Je Geon

    2009-01-01

    Recently Korea Atomic Energy Research Institute suggested 12 by 12 annular fuel assembly, claiming that this new design can be applied to PWR reactor of OPR-1000 that are using 16 by 16 assembly, Compared to current fuel system, heat transfer area is enlarged, and thus heat flux is diminished. This design demonstrates that CHF(critical heat flux) restricting the operation power condition. This advanced fuel is believed to many advantages such as lowered fuel temperature, reduced fission gas release, and so forth. Nevertheless, annular geometry has some difficulties in predicting fuel performance behavior. This new design, heat transfer takes place in two directions through inner and outer gap. This heat split ultimately determines the inner and outer gap conductances that are key variables governing the fuel performance

  19. Annular pancreas causing extrahepatic biliary obstruction

    Ogulin, M.; Jamar, B.

    2004-01-01

    Background. Annular pancreas is an uncommon congenital abnormality, consisting of a flat band of pancreatic tissue, which encircles duodenum or extrahepatic biliary duct. We present a case of obstructive jaundice, caused by annular pancreas. Case report. A 46 years old female was admitted because of a sudden onset of abdominal pain, vomiting and jaundice. For the last six years she occasionally noticed her skin was light yellow, in the last year she felt distension in the upper abdomen, especially after fatty meals. Conclusions. Two US examinations, the first one six months before the admission, showed dilated hepatic ducts. The reason of dilatation was unclear, even after the endoscopic US examination. At operation an almost complete obstruction of the common hepatic duct was found, caused by a narrow band of pancreatic tissue. (author)

  20. Materiality of misstatements from the perspective of the users of the financial statements - Narrowing the expectation gap between users and auditors

    Rooij, Doris

    2009-01-01

    textabstractMisstatements or omissions in the financial statements are considered material if they could influence the economic decisions of users based on the financial statements. This research presents an empirical research, which provides evidence that a relevant expectation gap regarding materiality of misstatements exists between users of the financial statements and auditors. This gap can mainly be explained by lack of communication. According to the respondents, the expectation gap ca...

  1. Artificial neural network applied to ONB in vertical narrow annulus experiment

    Yun Guo; Guanghui Su; Dounan Jia; Jiaqiang Wang

    2005-01-01

    Full text of publication follows: It is very important to study the onset of nucleate boiling (ONB) in narrow channel. Engineering applications of the narrow channel are used more and more widely. The narrow channel is used in microelectronics. Narrow annular channel is also adopted to design the new type of heat exchanger. The ONB is usually regarded as the point of demarcation between the single-phase flow and two phase flow. So it is significant to study the onset of nucleate boiling in the judgment of the flow pattern and engineering design. Although the researches showed that the ONB in narrow space channel were different from that in common pipe, most of them did not study the bilateral heated effect on the ONB. The ONB was investigated for water flowing in the annular channel which gap is 1.2 mm at the pressure range from 0.10 to 5.0 MPa. The effect of some parameters on the ONB, such as the mass flux, pressure, inlet subcooled temperature, bilateral heating was analyzed. But the experiment has not been carried in great wide range of the pressure and flow flux. So the artificial neural networks were used to predict the ONB at wide range parameter. Recently artificial neural networks (ANNs) have been used widely in the field of reactor thermal-hydraulics because they can solve very complex multivariable and high non-linearity problems. The researchers can pay attention to the output results and be unaware of the inside characters of the networks. Most of them are used to predict the critical heat flux and some other accident problems. In fact some small-scale artificial neural networks can be used in thermal-hydraulic experiments easily. Based on the ONB experimental data, an artificial neural network (BP) is built to specify the ONB. According to a lot of experiments data another middle scale ANN is built to predict the ONB of narrow gap annular channels. The results are compared with other correlations. It was concluded that the power density of ONB in the

  2. Visualized investigation on flow regimes for vertical upward steam–water flow in a heated narrow rectangular channel

    Wang Junfeng; Huang Yanping; Wang Yanlin; Song Mingliang

    2012-01-01

    Highlights: ► Flow regimes were visually investigated in a heated narrow rectangular channel. ► Bubbly, churn, and annular flow were observed. Slug flow was never observed. ► Flow regime transition boundary could be predicted by existing criteria. ► Churn zone in present flow regime maps were poorly predicted by existing criteria. - Abstract: Flow regimes are very important in understanding two-phase flow resistance and heat transfer characteristics. In present work, two-phase flow regimes for steam–water flows in a single-side heated narrow rectangular channel, having a width of 40 mm and a gap of 3 mm, were visually studied at relatively low pressure and low mass flux condition. The flow regimes observed in this experiment could be classified into bubbly, churn and annular flow. Slug flow was never observed at any of the conditions in our experiment. Flow regime maps at the pressure of 0.7 MPa and 1.0 MPa were developed, and then the pressure effect on flow regime transition was analyzed. Based on the experimental results, the comparisons with some existing flow regime maps and transition criteria were conducted. The comparison results show that the bubbly transition boundary and annular formation boundary of heated steam–water flow were consistent with that of adiabatic air–water flow. However, the intermediate flow pattern between bubbly and annular flow was different. Hibiki and Mishima criteria could predict the bubbly transition boundary and annular formation boundary satisfactorily, but it poorly predicted churn zone in present experimental data.

  3. Flow Mode Magnetorheological Dampers with an Eccentric Gap

    Young-Tai Choi; Norman M. Wereley

    2014-01-01

    This paper analyzes flow mode magnetorheological (MR) dampers with an eccentric annular gap (i.e., a nonuniform annular gap). To this end, an MR damper analysis for an eccentric annular gap is constructed based on approximating the eccentric annular gap using a rectangular duct with a variable gap, as well as a Bingham-plastic constitutive model of the MR fluid. Performance of flow mode MR dampers with an eccentric gap was assessed analytically using both field-dependent damping force and dam...

  4. Flooding correlations in narrow channel

    Kim, S. H.; Baek, W. P.; Chang, S. H.

    1999-01-01

    Heat transfer in narrow gap is considered as important phenomena in severe accidents in nuclear power plants. Also in heat removal of electric chip. Critical heat flux(CHF) in narrow gap limits the maximum heat transfer rate in narrow channel. In case of closed bottom channel, flooding limited CHF occurrence is observed. Flooding correlations will be helpful to predict the CHF in closed bottom channel. In present study, flooding data for narrow channel geometry were collected and the work to recognize the effect of the span, w and gap size, s were performed. And new flooding correlations were suggested for high-aspect-ratio geometry. Also, flooding correlation was applied to flooding limited CHF data

  5. Materiality of misstatements from the perspective of the users of the financial statements - Narrowing the expectation gap between users and auditors

    D. de Rooij (Doris)

    2009-01-01

    textabstractMisstatements or omissions in the financial statements are considered material if they could influence the economic decisions of users based on the financial statements. This research presents an empirical research, which provides evidence that a relevant expectation gap regarding

  6. Photocatalytic hydrogen generation enhanced by band gap narrowing and improved charge carrier mobility in AgTaO3 by compensated co-doping.

    Li, Min; Zhang, Junying; Dang, Wenqiang; Cushing, Scott K; Guo, Dong; Wu, Nianqiang; Yin, Penggang

    2013-10-14

    The correlation of the electronic band structure with the photocatalytic activity of AgTaO3 has been studied by simulation and experiments. Doping wide band gap oxide semiconductors usually introduces discrete mid-gap states, which extends the light absorption but has limited benefit for photocatalytic activity. Density functional theory (DFT) calculations show that compensated co-doping in AgTaO3 can overcome this problem by increasing the light absorption and simultaneously improving the charge carrier mobility. N/H and N/F co-doping can delocalize the discrete mid-gap states created by sole N doping in AgTaO3, which increases the band curvature and the electron-to-hole effective mass ratio. In particular, N/F co-doping creates a continuum of states that extend the valence band of AgTaO3. N/F co-doping thus improves the light absorption without creating the mid-gap states, maintaining the necessary redox potentials for water splitting and preventing from charge carrier trapping. The experimental results have confirmed that the N/F-codoped AgTaO3 exhibits a red-shift of the absorption edge in comparison with the undoped AgTaO3, leading to remarkable enhancement of photocatalytic activity toward hydrogen generation from water.

  7. Portal Annular Pancreas

    Harnoss, Jonathan M.; Harnoss, Julian C.; Diener, Markus K.; Contin, Pietro; Ulrich, Alexis B.; Büchler, Markus W.; Schmitz-Winnenthal, Friedrich H.

    2014-01-01

    Abstract Portal annular pancreas (PAP) is an asymptomatic congenital pancreas anomaly, in which portal and/or mesenteric veins are encased by pancreas tissue. The aim of the study was to determine the role of PAP in pancreatic surgery as well as its management and potential complication, specifically, postoperative pancreatic fistula (POPF). On the basis of a case report, the MEDLINE and ISI Web of Science databases were systematically reviewed up to September 2012. All articles describing a case of PAP were considered. In summary, 21 studies with 59 cases were included. The overall prevalence of PAP was 2.4% and the patients' mean (SD) age was 55.9 (16.2) years. The POPF rate in patients with PAP (12 pancreaticoduodenectomies and 3 distal pancreatectomies) was 46.7% (in accordance with the definition of the International Study Group of Pancreatic Surgery). Portal annular pancreas is a quite unattended pancreatic variant with high prevalence and therefore still remains a clinical challenge to avoid postoperative complications. To decrease the risk for POPF, attentive preoperative diagnostics should also focus on PAP. In pancreaticoduodenectomy, a shift of the resection plane to the pancreas tail should be considered; in extensive pancreatectomy, coverage of the pancreatic remnant by the falciform ligament could be a treatment option. PMID:25207658

  8. Time evolution of propagating nonpremixed flames in a counterflow, annular slot burner under AC electric fields

    Tran, Vu Manh; Cha, Min

    2016-01-01

    alternating current electric fields to a gap between the upper and lower parts of a counterflow, annular slot burner and present the characteristics of the propagating nonpremixed edge-flames produced. Contrary to many other previous studies, flame

  9. Axisymmetric annular curtain stability

    Ahmed, Zahir U; Khayat, Roger E; Maissa, Philippe; Mathis, Christian

    2012-01-01

    A temporal stability analysis was carried out to investigate the stability of an axially moving viscous annular liquid jet subject to axisymmetric disturbances in surrounding co-flowing viscous gas media. We investigated in this study the effects of inertia, surface tension, the gas-to-liquid density ratio, the inner-to-outer radius ratio and the gas-to-liquid viscosity ratio on the stability of the jet. With an increase in inertia, the growth rate of the unstable disturbances is found to increase. The dominant (or most unstable) wavenumber decreases with increasing Reynolds number for larger values of the gas-to-liquid viscosity ratio. However, an opposite tendency for the most unstable wavenumber is predicted for small viscosity ratio in the same inertia range. The surrounding gas density, in the presence of viscosity, always reduces the growth rate, hence stabilizing the flow. There exists a critical value of the density ratio above which the flow becomes stable for very small viscosity ratio, whereas for large viscosity ratio, no stable flow appears in the same range of the density ratio. The curvature has a significant destabilizing effect on the thin annular jet, whereas for a relatively thick jet, the maximum growth rate decreases as the inner radius increases, irrespective of the surrounding gas viscosity. The degree of instability increases with Weber number for a relatively large viscosity ratio. In contrast, for small viscosity ratio, the growth rate exhibits a dramatic dependence on the surface tension. There is a small Weber number range, which depends on the viscosity ratio, where the flow is stable. The viscosity ratio always stabilizes the flow. However, the dominant wavenumber increases with increasing viscosity ratio. The range of unstable wavenumbers is affected only by the curvature effect. (paper)

  10. Flow Mode Magnetorheological Dampers with an Eccentric Gap

    Young-Tai Choi

    2014-07-01

    Full Text Available This paper analyzes flow mode magnetorheological (MR dampers with an eccentric annular gap (i.e., a nonuniform annular gap. To this end, an MR damper analysis for an eccentric annular gap is constructed based on approximating the eccentric annular gap using a rectangular duct with a variable gap, as well as a Bingham-plastic constitutive model of the MR fluid. Performance of flow mode MR dampers with an eccentric gap was assessed analytically using both field-dependent damping force and damping coefficient, which is the ratio of equivalent viscous field-on damping to field-off damping. In addition, damper capabilities of flow mode MR dampers with an eccentric gap were compared to a concentric gap (i.e., uniform annular gap.

  11. Counter-current gas-liquid two-phase flow in a narrow rectangular channel

    Sohn, Byung Hu; Kim, Byong Joo

    2000-01-01

    A study of counter-current two-phase flow in a narrow rectangular channel has been performed. Two-phase flow patterns and void fractions were experimentally studied in a 760 mm long and 100 mm wide test section with 3.0 mm gap. The resulting data have been compared to previous transition criteria and empirical correlations. The comparison of experimental data to the transition criteria developed by Taitel and Barnea showed good agreement for the bubbly-to-slug transition. For the criteria of Mishima and Ishii to be applicable to the slug to churn transition, a new model seems to be needed for the accurate prediction of the distribution parameter for the counter-current flow in narrow rectangular channels. For the churn-to-annular transition the model of Taitel and Barnea was found to be close to the experimental data. However the model should be improved in conjunction with the channel geometry to accurately predict the counter-current flow limitation and flow transition. It was verified the distribution parameter was well-correlated by the drift-flux model. The distribution parameter for the present study was found to be about 1.2 for all flow regimes except 1.0 for an annular flow. (author)

  12. Visualized study on specific points on demand curves and flow patterns in a single-side heated narrow rectangular channel

    Wang Junfeng; Huang Yanping; Wang Yanlin

    2011-01-01

    Highlights: → Specific points on the demand curve and flow patterns are visually studied. → Bubbly, churn, and annular flows were observed. → Onset of flow instability and bubbly-churn transition occurs at the same time. → The evolution of specific points and flow pattern transitions were examined. - Abstract: A simultaneous visualization and measurement study on some specific points on demand curves, such as onset of nucleate boiling (ONB), onset of significant void (OSV), onset of flow instability (OFI), and two-phase flow patterns in a single-side heated narrow rectangular channel, having a width of 40 mm and a gap of 3 mm, was carried out. New experimental approaches were adopted to identify OSV and OFI in a narrow rectangular channel. Under experimental conditions, the ONB could be predicted well by the Sato and Matsumura model. The OSV model of Bowring can reasonably predict the OSV if the single-side heated condition is considered. The OFI was close to the saturated boiling point and could be described accurately by Kennedy's correlation. The two-phase flow patterns observed in this experiment could be classified into bubbly, churn, and annular flow. Slug flow was never observed. The OFI always occurred when the bubbles at the channel exit began to coalesce, which corresponded to the beginning of the bubbly-churn transition in flow patterns. Finally, the evolution of specific points and flow pattern transitions were examined in a single-side heated narrow rectangular channel.

  13. Narrow band gap and visible light-driven photocatalysis of V-doped Bi{sub 6}Mo{sub 2}O{sub 15} nanoparticles

    Xu, Jian; Qin, Chuanxiang; Huang, Yanlin [State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123 (China); Wang, Yaorong, E-mail: yrwang@suda.edu.cn [State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123 (China); Qin, Lin [Department of Physics and Interdisciplinary Program of Biomedical, Mechanical & Electrical Engineering, Pukyong National University, Busan 608-737 (Korea, Republic of); Seo, Hyo Jin, E-mail: hjseo@pknu.ac.kr [Department of Physics and Interdisciplinary Program of Biomedical, Mechanical & Electrical Engineering, Pukyong National University, Busan 608-737 (Korea, Republic of)

    2017-02-28

    Highlights: • V{sup 5+}-doped Bi{sub 6}Mo{sub 2}O{sub 15} was synthesized by the electrospinning preparation. • The band gap energy of Bi{sub 6}Mo{sub 2}O{sub 15} was greatly reduced by V-doping in the lattices. • V-doped Bi{sub 6}Mo{sub 2}O{sub 15} shows high activity in RhB degradation under visible light. • Crystal structure of Bi{sub 6}Mo{sub 2}O{sub 15} is favorable for high photocatalytic capacity. - Abstract: Pure and V{sup 5+}-doped Bi{sub 6}Mo{sub 2}O{sub 15} (3Bi{sub 2}O{sub 3}·2MoO{sub 3}) photocatalysts were synthesized through electrospinning, followed by low-temperature heat treatment. The samples developed into nanoparticles with an average size of approximately 50 nm. The crystalline phases were verified via X-ray powder diffraction measurements (XRD). The surface properties of the photocatalysts were studied by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) analyses. The UV–vis spectra showed that V doping in Bi{sub 6}Mo{sub 2}O{sub 15} shifted the optical absorption from the UV region to the visible-light wavelength region. The energy of the band gap of Bi{sub 6}Mo{sub 2}O{sub 15} was reduced by V doping in the lattices. The photocatalytic activities of the pure and V-doped Bi{sub 6}Mo{sub 2}O{sub 15} were tested through photodegradation of rhodamine B (RhB) dye solutions under visible light irradiation. Results showed that 20 mol% V-doped Bi{sub 6}Mo{sub 2}O{sub 15} achieved efficient photocatalytic ability. RhB could be degraded by V-doped Bi{sub 6}Mo{sub 2}O{sub 15} in 2 h. The photocatalytic activities and mechanisms were discussed according to the characteristics of the crystal structure and the results of EIS and XPS measurements.

  14. Manufacture of annular cermet articles

    Forsberg, Charles W.; Sikka, Vinod K.

    2004-11-02

    A method to produce annular-shaped, metal-clad cermet components directly produces the form and avoids multiple fabrication steps such as rolling and welding. The method includes the steps of: providing an annular hollow form with inner and outer side walls; filling the form with a particulate mixture of ceramic and metal; closing, evacuating, and hermetically sealing the form; heating the form to an appropriate temperature; and applying force to consolidate the particulate mixture into solid cermet.

  15. Dynamics of Newtonian annular jets

    Paul, D.D.

    1978-12-01

    The main objectives of this investigation are to identify the significant parameters affecting the dynamics of Newtonian annular jets, and to develop theoretical models for jet break-up and collapse. This study has been motivated by recent developments in laser-fusion reactor designs; one proposed cavity design involves the use of an annular lithium jet to protect the cavity wall from the pellet debris emanating from the microexplosion

  16. Narrow-gap physical vapour deposition synthesis of ultrathin SnS1-xSex (0 ≤ x ≤ 1) two-dimensional alloys with unique polarized Raman spectra and high (opto)electronic properties.

    Gao, Wei; Li, Yongtao; Guo, Jianhua; Ni, Muxun; Liao, Ming; Mo, Haojie; Li, Jingbo

    2018-05-10

    Here we report ultrathin SnS1-xSex alloyed nanosheets synthesized via a narrow-gap physical vapour deposition approach. The SnS1-xSex alloy presents a uniform quadrangle shape with a lateral size of 5-80 μm and a thickness of several nanometers. Clear orthorhombic symmetries and unique in-plane anisotropic properties of the 2D alloyed nanosheets were found with the help of X-ray diffraction, high resolution transmission electron microscopy and polarized Raman spectroscopy. Moreover, 2D alloyed field-effect transistors were fabricated, exhibiting a unipolar p-type semiconductor behavior. This study also provided a lesson that the thickness of the alloyed channels played the major role in the current on/off ratio, and the high ratio of 2.10 × 102 measured from a large ultrathin SnS1-xSex device was two orders of magnitude larger than that of previously reported SnS, SnSe nanosheet based transistors because of the capacitance shielding effect. Obviously enhanced Raman peaks were also found in the thinner nanosheets. Furthermore, the ultrathin SnS0.5Se0.5 based photodetector showed a highest responsivity of 1.69 A W-1 and a short response time of 40 ms under illumination of a 532 nm laser from 405 to 808 nm. Simultaneously, the corresponding highest external quantum efficiency of 392% and detectivity of 3.96 × 104 Jones were also achieved. Hopefully, the narrow-gap synthesis technique provides us with an improved strategy to obtain large ultrathin 2D nanosheets which may tend to grow into thicker ones for stronger interlayer van der Waals forces, and the enhanced physical and (opto)electrical performances in the obtained ultrathin SnS1-xSex alloyed nanosheets prove their great potential in the future applications for versatile devices.

  17. Measurement of bubble velocity in an air/water flow through a narrow gap by using high-speed cinematography; Ermittlung der Blasengeschwindigkeit einer Luft/Wasser-Spaltstroemung mit Hilfe der Hochgeschwindigkeitskinematographie

    Koerner, S.; Friedel, L. [Technische Univ. Hamburg-Harburg, Hamburg (Germany)

    1997-12-01

    To predict the mass flow of a two phase mixture at a given pressure difference through narrow gaps, apart from the change in state of the gas phase during pressure reduction, the knowledge of the fluid dynamics on balance which occurs in the form of a relative velocity between the phases is important. These two influences were examined with the aid of high speed cinematography for a water/air bubble flow. Apart from the quick reduction in pressure due to the sudden reduction in crossection at the entry to the gap, there are no significant differences between the experimentally determined volume change in bubbles of different sizes and that calculated assuming an isothermal change in state. The mean velocity of the bubbles does not differ appreciably from that calculated assuming an homogeneous flow. [Deutsch] Zur Vorhersage des sich bei gegebener Druckdifferenz einstellenden Massenstroms eines Zweiphasengemischs durch enge Spalte ist neben der Zustandsaenderung der Gasphase waehrend der Druckabsenkung u.a. auch die Kenntnis des sich dabei einstellenden fluiddynamischen Ungleichgewichts in Form einer Relativgeschwindigkeit zwischen den Phasen von Bedeutung. Diese beiden Einfluesse wurden mit Hilfe der Hochgeschwindigkeitskinematographie fuer eine Wasser/Luft-Blasenstroemung untersucht. Abgesehen von der raschen Druckabsenkung aufgrund der ploetzlichen Querschnittsverengung im Spalteintritt treten keine nennenswerten Unterschiede zwischen den experimentell ermittelten und den unter der Annahme einer isothermen Zustandsaenderungen berechneten Volumenaenderung verschiedengrosser Blasen auf. Die mittlere Geschwindigkeit der Blasen unterscheidet sich dabei nicht wesentlich von der unter der Annahme einer homogenen Stroemung berechneten. (orig.)

  18. Measurement of bubble velocity in an air/water flow through a narrow gap by using high-speed cinematography; Ermittlung der Blasengeschwindigkeit einer Luft/Wasser-Spaltstroemung mit Hilfe der Hochgeschwindigkeitskinematographie

    Koerner, S.; Friedel, L. [Technische Univ. Hamburg-Harburg, Hamburg (Germany). Arbeitsbereich Stroemungsmechanik

    1998-05-01

    For the prediction of the establishing two-phase massflow for a given pressure difference across a narrow rectangular gap, beside others, the knowledge of the change of state of the gas phase and the fluiddynamic non-equilibrium in form of the slip velocity between the phases is needed. For an air/water bubbly flow it turned out by using high-speed cinematography that apart from the quick pressure decrease during the rapid acceleration at the gap inlet no significant difference between the measured and the predicted bubble size changes assuming an isothermal change of state of the air bubbles could be detected. The measured mean bubble velocities do not considerably deviate from the values calculated on the basis of a homogeneous flow. (orig.) [Deutsch] Zur Vorhersage des sich bei gegebener Druckdifferenz einstellenden Massenstroms eines Zweiphasengemischs durch enge Spalte ist neben der Zustandsaenderung der Gasphase waehrend der Druckabsenkung u.a. auch die Kenntnis des sich dabei einstellenden fluiddynamischen Ungleichgewichts in Form einer Relativgeschwindigkeit zwischen den Phasen von Bedeutung. Diese beiden Einfluesse wurden mit Hilfe der Hochgeschwindigkeitskinematographie fuer eine Wasser/Luft-Blasenstroemung untersucht. Abgesehen von der raschen Druckabsenkung aufgrund der ploetzlichen Querschnittsverengung im Spalteintritt treten keine nennenswerten Unterschiede zwischen den experimentell ermittelten und den unter der Annahme einer isothermen Zustandsaenderungen berechneten Volumenaenderung verschiedengrosser Blasen auf. Die mittlere Geschwindigkeit der Blasen unterscheidet sich dabei nicht wesentlich von der unter der Annahme einer homogenen Stroemung berechneten. (orig.)

  19. The gender challenge : narrowing the gap

    Anon.

    1998-01-01

    Hibernia's success in recruiting women for various permanent technical work roles across the organization was discussed. Every effort has been made to recruit women wherever possible, but out of the 12,000 resumes sent to human resources at Hibernia, only a very small number were from women, and none were for the very traditional oil industry roles. Currently, women account for only 5 per cent of Hibernia's offshore workforce. Although the company is trying to improve this record, the prospects are not good because of a shortage of women graduates in science and technology. The challenge of increasing women's involvement in technical and engineering roles and what Hibernia as a corporation can do to encourage young women to explore career opportunities in science and technology are discussed. As an example of the Company's good faith, of the more than 200 scholarships awarded by Hibernia to date, more than half of them went to female students. Also of the 300 plus co-op students at Hibernia facilities 40 per cent have been female.1 tab

  20. Users` demands narrow PLC-DCS gap

    La Fauci, J.

    1997-02-01

    Supervisory control and data acquisition (SCADA) operator interface (OI) software has propelled programmable logic controllers (PLCs) into areas where they can successfully compete with distributed control systems (DCSs) for many control applications. As a result, automation engineers are struggling to develop guidelines to help determine which is best for batch operations and other applications. There is no clear answer to this issue. There are, however, decision tools such as Kepner-Tregoe (K-T) that can be applied by engineers as a structured approach to decision analysis and system selection. Other factors such as business environment, pressure to reduce project cost, validation, and predicting new technology direction all play a critical role for engineers in choosing between a PLC- or DCS-based control system. Higher-level business issues, however, are seldom considered by engineers during control system selection. Engineers should try to better understand their company`s business objectives and mission statement and how company business direction may affect control system selection. For instance, the pharmaceutical industry can be broken up into the following five basic application groups: bulk chemicals, finishing, biotech, pilot plant, and utilities. Each has a unique set of functional and process-control requirements. Understanding needs and differences of these five basic application groups and applying the optimum control system solution will place the company in a more competitive position. A financial analysis should be one of the first steps in the control system evaluation process. This may include early agreement of contractual terms and conditions as well as a nondisclosure agreement. Other financial considerations may include requesting a financial report on the control system manufacturer or systems integrator that will be performing the work to determine its financial stability. 3 figs.

  1. Narrowing the "adaptive capacity gap" | IDRC - International ...

    2016-04-21

    Apr 21, 2016 ... Presenting results of an IDRC-supported fast-start climate finance project, Michael Okoti of the Kenya Agricultural and Livestock Research Organization told the meeting that ... He also highlighted the importance of strengthening links to markets and collaborating with policymakers and the private sector.

  2. Unisex Math: Narrowing the Gender Gap.

    Tapia, Martha; Marsh, George E., II

    This study examined gender differences in attitudes toward mathematics of undergraduate students. The Attitudes Toward Mathematics Instrument (ATMI) was administered to students enrolled in introductory mathematics classes (Pre-Calculus, Calculus, and Business Calculus) at two Southeast universities, one a large state university and the other one…

  3. The gender challenge : narrowing the gap

    Anon.

    1998-11-01

    Hibernia`s success in recruiting women for various permanent technical work roles across the organization was discussed. Every effort has been made to recruit women wherever possible, but out of the 12,000 resumes sent to human resources at Hibernia, only a very small number were from women, and none were for the very traditional oil industry roles. Currently, women account for only 5 per cent of Hibernia`s offshore workforce. Although the company is trying to improve this record, the prospects are not good because of a shortage of women graduates in science and technology. The challenge of increasing women`s involvement in technical and engineering roles and what Hibernia as a corporation can do to encourage young women to explore career opportunities in science and technology are discussed. As an example of the Company`s good faith, of the more than 200 scholarships awarded by Hibernia to date, more than half of them went to female students. Also of the 300 plus co-op students at Hibernia facilities 40 per cent have been female.1 tab.

  4. Sheet Fluorescence and Annular Analysis of Ultracold Neutral Plasmas

    Castro, J.; Gao, H.; Killian, T. C.

    2009-01-01

    Annular analysis of fluorescence imaging measurements on Ultracold Neutral Plasmas (UNPs) is demonstrated. Spatially-resolved fluorescence imaging of the strontium ions produces a spectrum that is Doppler-broadened due to the thermal ion velocity and shifted due to the ion expansion velocity. The fluorescence excitation beam is spatially narrowed into a sheet, allowing for localized analysis of ion temperatures within a volume of the plasma with small density variation. Annular analysis of fluorescence images permits an enhanced signal-to-noise ratio compared to previous fluorescence measurements done in strontium UNPs. Using this technique and analysis, plasma ion temperatures are measured and shown to display characteristics of plasmas with strong coupling such as disorder induced heating and kinetic energy oscillations.

  5. Study of the diffraction in the microscope: Annular condenser

    Ciocci, L; Echarri, R M; Simon, J M

    2011-01-01

    In this work we study the diffraction in the microscope when an annular condenser is used to illuminate the object. We calculate the point spread function (PSF) for a pinhole in an opaque screen illuminated with an annular condenser, consisting in an 1D array of incoherent point sources. We compare it with the PSF for a self-luminous point object, finding that the central disk of the diffraction pattern is narrower and the first intensity minimum is deeper for illuminated objects. We also analyze the resolution of the system by means of the intensity profile produced by two points objects, finding that two self luminous point objects are better resolved than two illuminated objects at the same distance. This suggests that the correlation introduced in the object diminishes the resolution in the former case.

  6. Subcutaneous granuloma annulare: radiologic appearance

    Kransdorf, M.J.; Murphey, M.D.; Temple, H.T.

    1998-01-01

    Objective. Granuloma annulare is an uncommon benign inflammatory dermatosis characterized by the formation of dermal papules with a tendency to form rings. There are several clinically distinct forms. The subcutaneous form is the most frequently encountered by radiologists, with the lesion presenting as a superficial mass. There are only a few scattered reports of the imaging appearance of this entity in the literature. We report the radiologic appearance of five cases of subcutaneous granuloma annulare. Design and patients. The radiologic images of five patients (three male, two female) with subcutaneous granuloma annulare were retrospectively studied. Mean patient age was 6.4 years (range, 2-13 years). The lesions occurred in the lower leg (two), foot, forearm, and hand. MR images were available for all lesions, gadolinium-enhanced imaging in three cases, radiographs in four, and bone scintigraphy in one. Results. Radiographs showed unmineralized nodular masses localized to the subcutaneous adipose tissue. The size range, in greatest dimension on imaging studies, was 1-4 cm. MR images show a mass with relatively decreased signal intensity on all pulse sequences, with variable but generally relatively well defined margins. There was extensive diffuse enhancement following gadolinium administration. Conclusion. The radiologic appearance of subcutaneous granuloma annulare is characteristic, typically demonstrating a nodular soft-tissue mass involving the subcutaneous adipose tissue. MR images show a mass with relatively decreased signal intensity on all pulse sequences and variable but generally well defined margins. There is extensive diffuse enhancement following gadolinium administration. Radiographs show a soft-tissue mass or soft-tissue swelling without evidence of bone involvement or mineralization. This radiologic appearance in a young individual is highly suggestive of subcutaneous granuloma annulare. (orig.)

  7. Experimental Observation of Densification Behavior of UO2 Annular Pellet

    Kim, Dong-Joo; Rhee, Young-Woo; Kim, Jong-Hun; Yang, Jae-Ho; Kang, Ki-Won; Kim, Keon-Sik

    2007-01-01

    Recently, in the nuclear industry, one of the major issues is the improvement of a fuel economy. And many efforts have been made to develop a nuclear fuel for a high burnup and extended cycle. In the development of a high performance fuel, in-reactor fuel behavior (fission gas release, pellet-clad interaction, stress corrosion cracking, cladding corrosion, etc.) must be seriously reconsidered. Also, fuel fabrication (high enriched UO 2 powder handling, fuel rod and assembly manufacturing, fabricated fuel rod and assembly storage and transport, etc.) and an enrichment process (5 w/o criticality limit, etc.) must be discussed. A modification and an improvement of the nuclear fuel system will be also required. The typical fuel geometry of a PWR (Pressurized Water Reactor) is composed of a cylindrical pellet with a tubular cladding. And the outer surface of the cladding is cooled with water. However, to allow a substantial increase in the power density, an additional cooling is needed. One of the best ways is the application of the new fuel geometry that is of annular shape and has both internal and external cooling. From this point of view, the double cooled fuel is being developed by KAERI (Korea Atomic Energy Research Institute), and as a part of the project, the development of a fabrication process of a UO 2 annular pellet is now in progress. The dimensional behavior of UO 2 fuel is an important parameter in an irradiation performance. Various investigations (resintering test, model calculation, in-pile dimensional change measuring, etc.) had been performed. In designing a double cooled fuel, the importance of the dimensional behavior of a fuel pellet is higher, because the gap distance between a pellet and cladding can considerably affect on the in reactor fuel performance (gap conductance). And the dimensional behavior of an inner/outer gap is different with a cylindrical pellet, when the pellet shrinks (densification), the inner gap distance decreases and the

  8. Development of heat transfer models for gap cooling

    Kohriyama, Tamio; Murase, Michio; Tamaki, Tomohiko [Institute of Nuclear Safety System Inc., Mihama, Fukui (Japan)

    2001-09-01

    In a severe accident of a light water reactor (LWR), heat transfer models in a narrow annular gap between superheated core debris and a reactor pressure vessel (RPV) are important to evaluate the integrity of RPV and emergency procedures. This paper discusses the effects of superheat on the heat flux based on existing data. In low superheat conditions, the heat flux in the narrow gap is higher than the heat flux in pool nucleate boiling due to restricted flow area. It approaches the nucleate boiling heat flux as superheat increasing and reaches a critical value subject to the counter-current flow limiting (CCFL) at the top end of the gap. A heat transfer correlation was derived as a function of dimensionless superheat and a Kutateladze-type CCFL correlation was deduced for critical heat flux (CHF) restricted by CCFL, which gave good prediction for a wide range of the CHF data. Effect of an angle of inclination of the gap could also be incorporated in the CCFL correlation. In high superheat conditions, the heat flux in the narrow gap maintains a similar shape to the pool boiling curve but shifts the position to a higher superheated side than the pool boiling except film boiling, which could be expressed by the typical pool film boiling correlation. Incorporating quench test data, the heat flux correlation was derived as a function of dimensionless superheat using the same formula for the low superheat and the Kutateladze-type CCFL correlation was deduced for CHF. The CHF at the high superheat was 3-4 times as large as CHF at the low superheat and this difference was well predicted by different flow patterns in the gap and the balance of pressure gradients between gas and liquid phases. (author)

  9. Annular pulse column development studies

    Benedict, G.E.

    1980-01-01

    The capacity of critically safe cylindrical pulse columns limits the size of nuclear fuel solvent extraction plants because of the limited cross-sectional area of plutonium, U-235, or U-233 processing columns. Thus, there is a need to increase the cross-sectional area of these columns. This can be accomplished through the use of a column having an annular cross section. The preliminary testing of a pilot-plant-scale annular column has been completed and is reported herein. The column is made from 152.4-mm (6-in.) glass pipe sections with an 89-mm (3.5-in.) o.d. internal tube, giving an annular width of 32-mm (1.25-in.). Louver plates are used to swirl the column contents to prevent channeling of the phases. The data from this testing indicate that this approach can successfully provide larger-cross-section critically safe pulse columns. While the capacity is only 70% of that of a cylindrical column of similar cross section, the efficiency is almost identical to that of a cylindrical column. No evidence was seen of any non-uniform pulsing action from one side of the column to the other

  10. Inverted annular flow experimental study

    De Jarlais, G.; Ishii, M.

    1985-04-01

    Steady-state inverted annular flow of Freon 113 in up flow was established in a transparent test section. Using a special inlet configuration consisting of long aspect-ratio liquid nozzles coaxially centered within a heated quartz tube, idealized inverted annular flow initial geometry (cylindrical liquid core surrounded by coaxial annulus of gas) could be established. Inlet liquid and gas flowrates, liquid subcooling, and gas density (using various gas species) were measured and varied systematically. The hydrodynamic behavior of the liquid core, and the subsequent downstream break-up of this core into slugs, ligaments and/or droplets of various sizes, was observed. In general, for low inlet liquid velocities it was observed that after the initial formation of roll waves on the liquid core surface, an agitated region of high surface area, with attendant high momentum and energy transfers, occurs. This agitated region appears to propagate downsteam in a quasi-periodic pattern. Increased inlet liquid flow rates, and high gas annulus flow rates tend to diminish the significance of this agitated region. Observed inverted annular flow (and subsequent downstream flow pattern) hydrodynamic behavior is reported, and comparisons are drawn to data generated by previous experimenters studying post-CHF flow

  11. Boosting the Visible-Light Photoactivity of BiOCl/BiVO4/N-GQD Ternary Heterojunctions Based on Internal Z-Scheme Charge Transfer of N-GQDs: Simultaneous Band Gap Narrowing and Carrier Lifetime Prolonging.

    Zhu, Mingyue; Liu, Qian; Chen, Wei; Yin, Yuanyuan; Ge, Lan; Li, Henan; Wang, Kun

    2017-11-08

    The efficient separation of photogenerated electron-hole pairs in photoactive materials is highly desired, allowing their transfer to specific sites for undergoing redox reaction in various applications. The construction of ternary heterojunctions is a practical strategy to enhance the migration of photogenerated electron that realizes the synergistic effect of multicomponents rather than the simple overlay of single component. Here, we demonstrate an available way to fabricate new BiOCl/BiVO 4 /nitrogen-doped graphene quantum dot (N-GQD) ternary heterojunctions that exhibit higher efficiency in charge separation than any binary heterojunction or pure material under visible-light irradiation. UV-vis diffuse reflectance spectroscopy demonstrated that the proposed BiOCl/BiVO 4 /N-GQD ternary heterojunctions possess the narrower band gap energy. More importantly, the ternary heterojunctions reveal the prolonged lifetime of photogenerated charges and enhanced the separation efficiency of photogenerated electron-hole pairs, which may be ascribed to sensitization based on an internal Z-scheme charge transfer at the interface of N-GQDs with oxygen functional groups. Furthermore, we examine the photoactive performance of proposed ternary heterojunctions in aqueous solution by using the photodegradation of bisphenol A as a model system and BiOCl/BiVO 4 /N-GQD ternary heterojunctions also display a dramatically enhanced photodegradation rate. The proposed charge separation and transfer process of BiOCl/BiVO 4 /N-GQD ternary heterojunctions for the enhanced photoactivity were deduced by electrochemical measurements, photoluminescence, and electron spin resonance. The results demonstrate that a Z-scheme charge process was formed between BiOCl/BiVO 4 binary heterojunctions and N-GQDs, leading to an efficient charge carrier separation and strong photocatalytic ability. Notably, this work may assist in a better understanding of the role of N-GQDs in kinds of heterojunctions

  12. Two-phase flow regimes for counter-current air-water flows in narrow rectangular channels

    Kim, Byong Joo; Sohn, Byung Hu; Jeong, Si Young

    2001-01-01

    A study of counter-current two-phase flow in narrow rectangular channels has been performed. Two-phase flow regimes were experimentally investigated in a 760 mm long and 100 mm wide test section with 2.0 and 5.0 mm gap widths. The resulting flow regime maps were compared with the existing transition criteria. The experimental data and the transition criteria of the models showed relatively good agreement. However, the discrepancies between the experimental data and the model predictions of the flow regime transition became pronounced as the gap width increased. As the gap width increased the transition gas superficial velocities increased. The critical void fraction for the bubbly-to-slug transition was observed to be about 0.25. The two-phase distribution parameter for the slug flow was larger for the narrower channel. The uncertainties in the distribution parameter could lead to a disagreement in slug-to-churn transition between the experimental findings and the transition criteria. For the transition from churn to annular flow the effect of liquid superficial velocity was found to be insignificant

  13. Design of Annular Linear Induction Pump for High Temperature Liquid Lead Transportation

    Kwak, Jae Sik; Kim, Hee Reyoung [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2014-05-15

    EM(Electro Magnetic) Pump is divided into two parts, which consisted of the primary one with electromagnetic core and exciting coils, and secondary one with liquid lead flow. The main geometrical variables of the pump included core length, inner diameter and flow gap while the electromagnetic ones covered pole pitch, turns of coil, number of pole pairs, input current and input frequency. The characteristics of design variables are analyzed by electrical equivalent circuit method taking into account hydraulic head loss in the narrow annular channel of the ALIP. The design program, which was composed by using MATLAB language, was developed to draw pump design variables according to input requirements of the flow rate, developing pressure and operation temperature from the analyses. The analysis on the design of ALIP for high temperature liquid lead transportation was carried for the produce of ALIP designing program based on MATLAB. By the using of ALIP designing program, we don't have to bother about geometrical relationship between each component during detail designing process because code calculate automatically. And prediction of outputs about designing pump can be done easily before manufacturing. By running the code, we also observe and analysis change of outputs caused by changing of pump factors. It will be helpful for the research about optimization of pump outputs.

  14. Turbulent structure at the midsection of an annular flow

    Ghaemi, S.; Rafati, S.; Bizhani, M.; Kuru, E.

    2015-10-01

    The turbulent flow in the midsection of an annular gap between two concentric tubes at Reynolds number of 59 200-90 800 based on hydraulic diameter (dh = 57 mm) and average velocity is experimentally investigated. Measurements are carried out using particle tracking velocimetry (PTV) and planar particle image velocimetry (PIV) with spatial resolution of 0.0068dh (size of the binning window) and 0.0129dh (size of the interrogation window), respectively. Both PTV and PIV results show that the location of maximum mean streamwise velocity (yU) does not coincide with the locations of zero shear stress (yuv), minimum streamwise velocity fluctuation (yu2), and minimum radial velocity fluctuation (yv2). The separation between yU and yuv is 0.013dh based on PTV while PIV underestimates the separation distance as 0.0063dh. Conditional averages of turbulent fluctuations based on the four quadrants across the annulus demonstrate that the inner and outer wall flows overlap in the midsection. In the midsection, the flow is subject to opposing sweep/ejection events originating from both the inner and outer walls. The opposite quadrant events of the two boundary layers cancel out at yuv while the local minimum of spatial correlation of u (maximum mixing of the two wall flows) occurs at yU. Investigation of the budget of Reynolds shear stress showed that production and advection terms act towards the coincidence of the yU and yuv while the dissipation term works against the coincidence of the two points. The location of max also overlaps with zero dissipation of . The production of turbulent kinetic energy is slightly negative in the narrow region between yU and yuv. This negative production acts towards smoothing the mean velocity profile at the joint of the two wall flows by equalizing its curvature (∂2/∂y2) on the two sides of yU. The small separation distance of the yU and yuv is associated with slight deviation from the fully developed condition.

  15. Heat split imbalance study for annular fuel rod

    He Xiaojun; Ji Songtao; Zhang Yingchao

    2014-01-01

    Annular fuel rod has two gaps at inner and outer side. Under irradiation condition, the dimensional change of pellets is always larger than claddings' due to thermal expansion, swelling and densification, and this tends to enlarge the inner gap and reduce the outer gap. The gap size asymmetry must induce heat split imbalance problem that the heat flux will be larger at outer side of the rod. In this work, computer code AFPAC l.0 is used to simulate this heat split imbalance phenomena. The effect of initial gap size, rod inner pressure, roughness of pellets and cladding is studied, the results reveal that: l) Adjusting initial size of both gaps, reducing inner gap and enlarging outer gap could effectively alleviate heat split imbalance problem; 2) Adjusting the initial roughness of pellets and cladding is another effective approach to reducing heat split imbalance; 3) It seems that changing the rod inner pressure has a little effect on solving the heat flux asymmetry problem. (authors)

  16. Numerical simulation and experimental research for the natural convection in an annular space in LMFBR

    Wang Zhou; Luo Rui; Yang Xianyong; Liang Taofeng

    1999-01-01

    In a pool fast reactor, the roof structure is penetrated by a number of pumps and heat exchanger units to form some annular spaces with various sizes. The natural convection of argon gas happens in the pool sky and the small annular gaps between those components and the roof containment due to thermosiphonic effects. The natural convection is studied experimentally and numerically to predict the temperature distributions inside the annular space and its surrounding structure. Numerical simulation is performed by using LVEL turbulence model and extending computational domain to the entire pool sky. The predicted results are in fair agreement with the experimental data. In comparison with commonly used k-ε model, LVEL model has better accuracy for the turbulent flow in a gap space

  17. Experimental investigation of heat transfer for supercritical pressure water flowing in vertical annular channels

    Gang Wu; Bi Qincheng; Yang Zhendong; Wang Han; Zhu Xiaojing; Hao Hou; Leung, L.K.H.

    2011-01-01

    Highlights: → Two annular test sections were constructed with annular gaps of 4 and 6 mm. → Two heat transfer regions have been observed: normal and deteriorated heat transfer. → The spacer enhances the heat transfer at downstream locations. → The Jackson correlation agrees quite closely with the experimental data. - Abstract: An experiment has recently been completed at Xi'an Jiaotong University (XJTU) to obtain wall-temperature measurements at supercritical pressures with upward flow of water inside vertical annuli. Two annular test sections were constructed with annular gaps of 4 and 6 mm, respectively, and an internal heater of 8 mm outer diameter. Experimental-parameter ranges covered pressures of 23-28 MPa, mass fluxes of 350-1000 kg/m 2 /s, heat fluxes of 200-1000 kW/m 2 , and bulk inlet temperatures up to 400 deg. C. Depending on the flow conditions and heat fluxes, two distinctive heat transfer regimes, referring to as the normal heat transfer and deteriorated heat transfer, have been observed. At similar flow conditions, the heat transfer coefficients for the 6 mm gap annular channel are larger than those for the 4 mm gap annular channel. A strong effect of spiral spacer on heat transfer has been observed with a drastic reduction in wall temperature at locations downstream of the device in the annuli. Two tube-data-based correlations have been assessed against the experimental heat transfer results. The Jackson correlation agrees with the experimental trends and overpredicts slightly the heat transfer coefficients. The Dittus-Boelter correlation is applicable only for the normal heat transfer region but not for the deteriorated heat transfer region.

  18. Multi-slice CT features of annular pancreas in neonates

    He Mingqing; Zhu Youzhi; Hu Kefei; Yin Chuangao; Hu Jun; Wang Song; Li Xu; Lu Zhongbin; Wang Yue; Liu Xiang

    2013-01-01

    Objective: To investigate the MSCT manifestations and their values in the diagnosis of annular pancreas in neonates. Methods: Retrospective analysis of clinical and CT findings in 27 cases with surgery-proved annular pancreas in neonates was made. The unenhanced and contrast-enhanced CT images were obtained in 20 patients. Two experienced radiologists determined the site and degree of obstruction, the relationship between the head of the pancreas and the obstruction point, and the surrounding tissue structure. Results: The direct signs included the fluid-filled or gas-filled bowel in the head of pancreas in 4 cases, the enhancement of surrounding soft tissue as enhanced pancreas in 17 cases, disappearance of the fat gap between the intestinal wall and the annular pancreas in 17 cases. The indirect signs included intestinal obstruction in 20 cases, 'single-bubble sign' in 2 cases, 'double-bubble sign' in 18 cases, the distal bowel without gas in 5 cases, small amount of gas in the distal bowel in 15 cases. In 12 of 18 cases showing 'double-bubble sign', the ratio of duodenal bubble diameter (Dd) to stomach bubble diameter (Ds)was over 1.0. The site of obstruction was located in the descending duodenum in 20 cases. The form of obstructed point presented with 'nipple sign' in 15 cases, with 'the mouse tail' in 5 cases. The expansion bowel was located in the head of pancreas in 1 case. Gas was found in the pancreatic duct in 1 case, and 'swirl sign' was shown in 2 cases. Conclusions: MSCT combined with three-dimensional reconstruction techniques can clearly demonstrate the annular pancreas' s shape, the site and degree of obstruction and other malformations. It can provide important information for clinical treatment. (authors)

  19. IBEX - annular beam propagation experiment

    Mazarakis, M.G.; Miller, R.B.; Shope, S.L.; Poukey, J.W.; Ramirez, J.J.; Ekdahl, C.A.; Adler, R.J.

    1983-01-01

    IBEX is a 4-MV, 100-kA, 20-ns cylindrical isolated Blumlein accelerator. In the experiments reported here, the accelerator is fitted with a specially designed foilless diode which is completely immersed in a uniform magnetic field. Several diode geometries have been studied as a function of magnetic field strength. The beam propagates a distance of 50 cm (approx. 10 cyclotron wavelengths) in vacuum before either striking a beam stop or being extracted through a thin foil. The extracted beam was successfully transported 60 cm downstream into a drift pipe filled either with 80 or 640 torr air. The main objectives of this experiment were to establish the proper parameters for the most quiescent 4 MV, 20 to 40 kA annular beam, and to compare the results with available theory and numerical code simulations

  20. Heat transfer characteristics of horizontally oriented multi-layered annular insulation, (1)

    Hino, Ryutaro; Simomura, Hiroaki

    1985-04-01

    A computer code has been developed to analyze the natural convection heat transfer in a horizontal annular insulation layer of a hot gas duct when local gaps and inhomogeneity of filling density of insulation materials exist. This computer code simulates local gaps and inhomogeneity of filling density by a multi-layer model. This report describes an analytical model, a numerical method, an outline of program and some calculation results. (author)

  1. A novel compact heat exchanger using gap flow mechanism.

    Liang, J S; Zhang, Y; Wang, D Z; Luo, T P; Ren, T Q

    2015-02-01

    A novel, compact gap-flow heat exchanger (GFHE) using heat-transfer fluid (HTF) was developed in this paper. The detail design of the GFHE coaxial structure which forms the annular gap passage for HTF is presented. Computational fluid dynamics simulations were introduced into the design to determine the impacts of the gap width and the HTF flow rate on the GFHE performance. A comparative study on the GFHE heating rate, with the gap widths ranged from 0.1 to 1.0 mm and the HTF flow rates ranged from 100 to 500 ml/min, was carried out. Results show that a narrower gap passage and a higher HTF flow rate can yield a higher average heating rate in GFHE. However, considering the compromise between the GFHE heating rate and the HTF pressure drop along the gap, a 0.4 mm gap width is preferred. A testing loop was also set up to experimentally evaluate the GFHE capability. The testing results show that, by using 0.4 mm gap width and 500 ml/min HTF flow rate, the maximum heating rate in the working chamber of the as-made GFHE can reach 18 °C/min, and the average temperature change rates in the heating and cooling processes of the thermal cycle test were recorded as 6.5 and 5.4 °C/min, respectively. These temperature change rates can well satisfy the standard of IEC 60068-2-14:2009 and show that the GFHE developed in this work has sufficient heat exchange capacity and can be used as an ideal compact heat exchanger in small volume desktop thermal fatigue test apparatus.

  2. Some optical properties of one dimensional annular photonic crystal with plasma frequency

    Pandeya, G. N.; Thapa, Khem B.

    2018-05-01

    This paper presents the reflection bands, photonic band gaps, of the one-dimensional annul photonic crystal (APC) containing double negative (DNG) metamaterials and air. The proposed annular structure consists of the alternate layers of dispersive DNG material and air immersed in free space. The reflectance properties of the APC by employing the transfer matrix method (TMM) in the cylindrical waves for TE polarization is studied theoretically. In addition of this, we have also studied the effect of plasma frequency on the reflection behavior of the considered annular structure.

  3. Determination of the acoustic damping characteristics of an annular tail pipe

    Boonen, Rene; Sas, Paul; Van den Bulck, Eric

    2010-01-01

    A damping device, consisting of an annular tail-pipe, has been developed. It is applicable in situations wherein acoustic damping is required in combination with low flow resistance. Examples are ventilation systems, turbo- engines, intake and exhaust systems for internal combustion engines. The device consists of a central tube surrounded by a narrow slit. The central tube has an acoustic mass which impedance increases with frequency. When the frequency has been increased sufficiently, a con...

  4. Divergent Field Annular Ion Engine, Phase I

    National Aeronautics and Space Administration — The proposed work investigates an approach that would allow an annular ion engine geometry to achieve ion beam currents approaching the Child-Langmuir limit. In this...

  5. Understanding the Gender Gap.

    Goldin, Claudia

    1985-01-01

    Despite the great influx of women into the labor market, the gap between men's and women's wages has remained stable at 40 percent since 1950. Analysis of labor data suggests that this has occurred because women's educational attainment compared to men has declined. Recently, however, the wage gap has begun to narrow, and this will probably become…

  6. Radial dynamics of an annular REB plasma

    Wilson, A.; Steen, P.G.; Waisman, E.M.

    1983-01-01

    The authors have examined the dynamics of annular plasma formed by a ring REB. A current is carried by an annular plasma shell and the current returns on two conducting concentric sleeves. The magnetic forces acting on the plasma tend to prevent it from pinching as the unperturbed magnetic field has a different sign on the two free surfaces (sides) of the plasma. Current flows through the plasma from cathode to anode and returns through the concentric inner and outer conductors

  7. Annular pancreas in adult: a case report

    Moreira Neto, M.

    1992-01-01

    A case of a patient complaining of recurrent symptomatology of the upper abdomen and sub occlusion of the gastrointestinal tract with stenosis of the second portion of duodenum and mass evolving the head of pancreas at echographic study, confirmed by CT is presented. Contrasted oral studies confirmed that the mass evolved the stenotic segment, suggesting annular pancreas. Surgery confirmed the presence of annular pancreas surrounding the second portion of duodenum. (author)

  8. Development of annular coupled structure

    Kageyama, T.; Morozumi, Y.; Yoshino, K.; Yamazaki, Y.

    1992-01-01

    A π/2-mode standing-wave linac of an Annular Coupled Structure (ACS) has been developed for the 1-GeV proton linac of the Japanese Hadron Project (JHP). This ACS has four coupling slots between accelerating and coupling cells in order to overcome difficulties in putting the ACS to practical use. Two prototypes of a four-slot ACS (f = 1296 MHz, β = v/c = 0.8) have been constructed and tested: one with a staggered slot-orientation from cell to cell; and the other with a uniform one. The staggered configuration gives a larger coupling constant and a larger shunt impedance than the uniform one with the same size of coupling slot. Both models have been conditioned up to the design input RF power. The four-slot ACS gives a distortion-free accelerating field around the beam axis, while a Side-Coupled Structure cavity gives an accelerating field mixed with a TE111-like mode. (Author) 7 figs., 2 tabs., 9 refs

  9. Narrow dibaryon resonances

    Kajdalov, A.B.

    1986-01-01

    Experimental data on np interactions indicating to existence of narrow resonances in pp-system are discussed. Possible theoretical interpretations of these resonances are given. Experimental characteristics of the dibaryon resonances with isospin I=2 are considered

  10. Annular air space effects on nuclear waste canister temperatures in a deep geologic waste repository

    Lowry, W.E.; Cheung, H.; Davis, B.W.

    1980-01-01

    Air spaces in a deep geologic repository for nuclear high level waste will have an important effect on the long-term performance of the waste package. The important temperature effects of an annular air gap surrounding a high level waste canister are determined through 3-D numerical modeling. Air gap properties and parameters specifically analyzed and presented are the air gap size, surfaces emissivity, presence of a sleeve, and initial thermal power generation rate; particular emphasis was placed on determining the effect of these variables have on the canister surface temperature. Finally a discussion based on modeling results is presented which specifically relates the results to NRC regulatory considerations

  11. Validation of heat transfer models for gap cooling

    Okano, Yukimitsu; Nagae, Takashi; Murase, Michio

    2004-01-01

    For severe accident assessment of a light water reactor, models of heat transfer in a narrow annular gap between overheated core debris and a reactor pressure vessel are important for evaluating vessel integrity and accident management. The authors developed and improved the models of heat transfer. However, validation was not sufficient for applicability of the gap heat flux correlation to the debris cooling in the vessel lower head and applicability of the local boiling heat flux correlations to the high-pressure conditions. Therefore, in this paper, we evaluated the validity of the heat transfer models and correlations by analyses for ALPHA and LAVA experiments where molten aluminum oxide (Al 2 O 3 ) at about 2700 K was poured into the high pressure water pool in a small-scale simulated vessel lower head. In the heating process of the vessel wall, the calculated heating rate and peak temperature agreed well with the measured values, and the validity of the heat transfer models and gap heat flux correlation was confirmed. In the cooling process of the vessel wall, the calculated cooling rate was compared with the measured value, and the validity of the nucleate boiling heat flux correlation was confirmed. The peak temperatures of the vessel wall in ALPHA and LAVA experiments were lower than the temperature at the minimum heat flux point between film boiling and transition boiling, so the minimum heat flux correlation could not be validated. (author)

  12. Electroosmotic flow and Joule heating in preparative continuous annular electrochromatography.

    Laskowski, René; Bart, Hans-Jörg

    2015-09-01

    An openFOAM "computational fluid dynamic" simulation model was developed for the description of local interaction of hydrodynamics and Joule heating in annular electrochromatography. A local decline of electrical conductivity of the background eluent is caused by an electrokinetic migration of ions resulting in higher Joule heat generation. The model equations consider the Navier-Stokes equation for incompressible fluids, the energy equation for stationary temperature fields, and the mass transfer equation for the electrokinetic flow. The simulations were embedded in commercial ANSYS Fluent software and in open-source environment openFOAM. The annular gap (1 mm width) contained an inorganic C8 reverse-phase monolith as stationary phase prepared by an in situ sol-gel process. The process temperature generated by Joule heating was determined by thermal camera system. The local hydrodynamics in the prototype was detected by a gravimetric contact-free measurement method and experimental and simulated values matched quite well. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Jihadism, Narrow and Wide

    Sedgwick, Mark

    2015-01-01

    The term “jihadism” is popular, but difficult. It has narrow senses, which are generally valuable, and wide senses, which may be misleading. This article looks at the derivation and use of “jihadism” and of related terms, at definitions provided by a number of leading scholars, and at media usage....... It distinguishes two main groups of scholarly definitions, some careful and narrow, and some appearing to match loose media usage. However, it shows that even these scholarly definitions actually make important distinctions between jihadism and associated political and theological ideology. The article closes...

  14. Aceclofenac-induced erythema annulare centrifugum

    Dilip Meena

    2018-01-01

    Full Text Available Erythema annulare centrifugum (EAC is characterised by slowly enlarging annular erythematous lesions and is thought to represent a clinical reaction pattern to infections, medications, and rarely, underlying malignancy. Causative drugs include chloroquine, cimetidine, gold sodium thiomalate, amitriptyline, finasteride, etizolam etc. We present a case of 40-year-old woman who presented to us with a 10 days history of nonpruritic, peripherally growing annular erythematous eruption. She had a history of recent onset of joint pain, for which she was taking aceclofenac 90 mg once a day for 5 days prior to the onset of the rash. This was confirmed on biopsy as EAC. The rash promptly subsided after stopping the drug. We report this case as there was no previous report of aceclofenac induced EAC.

  15. Critical heat fluxes and liquid distribution in annular channels in the dispersion-annular flow

    Boltenko, Eh.A.; Pomet'ko, R.S.

    1984-01-01

    On the basis of using the dependence of intensity of total mass transfer between the flux nucleus and wall film obtained for tubes with uniform heat release and taking into account the peculiarities of mass transfer between the flux nucleus and wall film in annular channels the technique for calculating the liquid distribution and critical capacity of annular channels with internal, external and bilateral heating at uniform and non-uniform heat release over the length is proposed. The calculation of annular channels critical capacity according to the suggested technique is performed. A satisfactory agreement of calculation results with the experimental data is attained

  16. Correlates of Narrow Bracketing

    Koch, Alexander; Nafziger, Julia

    We examine whether different phenomena of narrow bracketing can be traced back to some common characteristic and whether and how different phenomena are related. We find that making dominated lottery choices or ignoring the endowment when making risky choices are related phenomena and are both as...

  17. Density functional theory design D-D-A type small molecule with 1.03 eV narrow band gap: effect of electron donor unit for organic photovoltaic solar cell

    Sıdır, İsa

    2017-10-01

    Six new low-band-gap copolymers of donor-donor-acceptor (D-D-A) architecture have been designed using density functional theory and time-dependent density functional theory methods in order to use them in organic photovoltaic cell (OPVC). Phenanthro[3,4-d:9,10-d‧]bis([1,2,3]thiadiazole)-10,12-dicarbonitrile moiety has been used as an acceptor for all compounds. We insert benzo[1,2-b:4,5-b‧]dithiophene and N,N-diphenylbenzo[1,2-b:4,5-b‧]dithiophen-2-amine units as donor to complete designing of copolymers. In order to tuning the optical and electronic properties, we have modified the donor unit by substituted with amine, methoxyamine, N-methylenethiophen-2-amine, methoxy, alkoxy moieties. The band gap (Eg), HOMO and LUMO values and plots, open circuit voltage (VOC) as well as optical properties have been analysed for designed copolymers. The optimised copolymers exhibit low-band-gap lying in the range of 1.03-2.24 eV. DPTD-6 copolymer presents the optimal properties to be used as an active layer due to its low Eg (1.03 eV) and a moderate VOC (0.56 eV). Thus, OPVC based on this copolymer in bulk-heterojunction composites with [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) as an acceptor has been modelled. Eg and VOC values of composite material DPTD-6:PCBM are found as 1.32 and 0.65 eV, respectively. A model band diagram has been established for OPVC, simulating the energy transfer between active layers.

  18. Production of annular electron beams by foilless diodes

    Miller, R.B.; Prestwich, K.R.; Poukey, J.W.; Shope, S.L.

    1980-01-01

    A number of important aspects of the production of annular electron beams by foilless diodes are examined, both theoretically and experimentally. The theories of Ott, Antonsen, and Lovelace (OAL) and Chen and Lovelace (CL) are compared, and the CL theory is extended to include the effect of an axial gap in an approximate fashion. For the case of finite magnetic field strengths, Larmor orbits are examined and radial oscillations of the beam profile are predicted from a beam envelope analysis. Experimental results obtained with both low- and high-impedance sources have been compared with the theory, and based on such studies, the design and construction of an intense hollow beam generator are described. Experimental results obtained with the new diode compare favorably with both the analytic theory and the results of numerical simulations. The device currently produces 2-MeV electrons at beam currents of 65--70 kA

  19. Optimal Thrust Vectoring for an Annular Aerospike Nozzle, Phase I

    National Aeronautics and Space Administration — Recent success of an annular aerospike flight test by NASA Dryden has prompted keen interest in providing thrust vector capability to the annular aerospike nozzle...

  20. Experimental study of neutron streaming through steel-walled annular ducts in reactor shields

    Toshimas, M.; Nobuo, S.

    1983-01-01

    For the purpose of providing experimental data to assess neutron streaming calculations, neutron flux measurements were performed along the axes of the steel-walled annular ducts set up in a water shield of the pool-type reactor JRR-4. An annular duct simulated the air gap around the main coolant pipe. Another duct simulated the streaming path around the primary circulating pump of the integrated-type marine reactor. A 90-deg bend annular duct was also studied. In a set of measurements, the distance Z between the core center and the duct axis and the annular gap width delta were taken as parameters, that is, Z = 0, 80, and 160 cm and delta = 2.2, 4.7, and 10.1 cm. The reaction rates and the fluxes measured by the activation method are given in terms of absolute magnitude within an accuracy of + or - 30%. An empirical formula is derived based on those measured data, which describes the axial distribution of the neutron flux in the steel-walled annular duct in reactor shields. It is expressed by a simple function of the axial distance in units of the square root of the line-of-sight area, S /SUB l/ . The accuracy of the formula is examined by taking into account the duct location with respect to the reactor core, the neutron energy, the steel wall thickness, and the media outside of the steel wall. The accuracy of the formula is, in general, <30% in the axial distance between 3√S /SUB l/ and 30√S /SUB l/

  1. Effect of annular secondary conductor in a linear electromagnetic ...

    This paper presents the variation of average axial force density in the annular secondary conductor of a linear electromagnetic stirrer. Different geometries of secondaries are considered for numerical and experimental validation namely, 1. hollow annular ring, 2. annular ring with a solid cylinder and 3. solid cylinder.

  2. Common pass decentered annular ring resonator

    Holmes, D. A.; Waite, T. R.

    1985-04-30

    An optical resonator having an annular cylindrical gain region for use in a chemical laser or the like in which two ring-shaped mirrors having substantially conical reflecting surfaces are spaced apart along a common axis of revolution of the respective conical surfaces. A central conical mirror reflects incident light directed along said axis radially outwardly to the reflecting surface of a first one of the ring-shaped mirrors. The radial light rays are reflected by the first ring mirror to the second ring mirror within an annular cylindrical volume concentric with said common axis and forming a gain region. Light rays impinging on the second ring mirror are reflected to diametrically opposite points on the same conical mirror surfaces and back to the first ring mirror through the same annular cylindrical volume. The return rays are then reflected by the conical mirror surface of the first ring mirror back to the central conical mirror. The mirror surfaces are angled such that the return rays are reflected back along the common axis by the central mirror in a concentric annular cylindrical volume. A scraper mirror having a central opening centered on said axis and an offset opening reflects all but the rays passing through the two openings in an output beam. The rays passing through the second opening are reflected back through the first opening to provide feedback.

  3. [A rare form of granuloma annulare].

    Bogdanowski, T; Wygledowska-Kania, M

    1995-01-01

    We present a four-year-old girl with a doubly rare form of granuloma annulare with non-typical localisation of superficial nodules on the palms and predisposition to ulceration which is very rare in this type of superficial nodules. The diagnosis was proved by histological examination. After the local cryotherapy (ethyl chloride) the lesions almost completely disappeared.

  4. Periduodenal Tuberculosis masquerading as Annular Pancreas ...

    We report a patient who succumbed to an isolated mid duodenal tuberculosis, diagnosed at laparatomy, whose clinical presentation, endoscopy and computerised tomography scans resembled annular pancreas. The limitations of clinical evaluation, endoscopy and radiology are highlighted as the importance of diagnostic ...

  5. Geometric size optimization and behavior analysis of a dual-cooled annular fuel

    Deng Yangbin; Wu Yingwei; Zhang Dalin; Tian Wenxi; Qiu Suizheng; Su Guanghui; Zhang Weixu; Wu Junmei

    2014-01-01

    The dual-cooled annular fuel is one of the innovative fuel concepts, which allows substantial power density increase while maintaining safety margins comparing with that used in currently operating PWRs. In this study, a thermal-hydraulic calculation code, on the basis of inner and outer cooling balance theory, was independently developed to optimize the geometric size of dual-cooled annular fuel elements. The optimization results show that the fuel element with the optimal geometric sizes presents fantastic symmetry in temperature distribution. The optimized geometric sizes agree well with the sizes obtained by MIT (Massachusetts Institute of Technology), which on the other side validates the code reliability and accuracy as well. In addition, a thermo-mechanical-burnup coupling code was developed to study the thermodynamic and mechanical characteristics of fuel elements with considering the irradiation and burnup effects. This coupling program was applied to perform the behavior analysis of annular fuels. The calculation results show that, when the power density increases on the order of up to 50%, the dual-cooled annular fuel elements have much lower fuel temperature and much less fission gas release comparing with conventional fuel rods. Furthermore, the results indicate that the thicknesses of inner and outer gas gap cannot remain the same with the burnup increasing due to the mechanical deformations of fuel pellets and claddings, which results in significantly asymmetric temperature distribution especially at the last phase of burnup. (author)

  6. Narrowing of the Diagnostic Gap of Acute Gastroenteritis in Children 0-6 Years of Age Using a Combination of Classical and Molecular Techniques, Delivers Challenges in Syndromic Approach Diagnostics.

    Steyer, Andrej; Jevšnik, Monika; Petrovec, Miroslav; Pokorn, Marko; Grosek, Štefan; Fratnik Steyer, Adela; Šoba, Barbara; Uršič, Tina; Cerar Kišek, Tjaša; Kolenc, Marko; Trkov, Marija; Šparl, Petra; Duraisamy, Raja; Lipkin, W Ian; Terzić, Sara; Kolnik, Mojca; Mrvič, Tatjana; Kapoor, Amit; Strle, Franc

    2016-09-01

    Twenty-five percent to 50% of acute gastroenteritis (AGE) cases remain etiologically undiagnosed. Our main aim was to determine the most appropriate list of enteric pathogens to be included in the daily diagnostics scheme of AGE, ensuring the lowest possible diagnostic gap. Two hundred ninety seven children ≤6 years of age, admitted to hospital in Slovenia, October 2011 to October 2012, with AGE, and 88 ≤6 years old healthy children were included in the study. A broad spectrum of enteric pathogens was targeted with molecular methods, including 8 viruses, 6 bacteria and 2 parasites. At least one enteric pathogen was detected in 91.2% of cases with AGE and 27.3% of controls. Viruses were the most prevalent (82.5% and 15.9%), followed by bacteria (27.3% and 10.2%) and parasites (3.0% and 1.1%) in cases and controls, respectively. A high proportion (41.8%) of mixed infections was observed in the cases. For cases with undetermined etiology (8.8%), stool samples were analyzed with next generation sequencing, and a potential viral pathogen was detected in 17 additional samples (5.8%). Our study suggests that tests for rotaviruses, noroviruses genogroup II, adenoviruses 40/41, astroviruses, Campylobacter spp. and Salmonella sp. should be included in the initial diagnostic algorithm, which revealed the etiology in 83.5% of children tested. The use of molecular methods in diagnostics of gastroenteritis is preferable because of their high sensitivity, specificity, fast performance and the possibility of establishing the concentration of the target. The latter may be valuable for assessing the clinical significance of the detected enteric, particularly viral pathogens.

  7. Radiation pattern of open ended waveguide in air core surrounded by annular plasma column

    Sharma, D.R.; Verma, J.S.

    1977-01-01

    Radiation pattern of open ended waveguide excited in circular symmetric mode (TM 01 ) in an air core having central conductor and surrounded by an annular plasma column is studied. The field distribution at the open end of the waveguide is considered to be equivalent to the vector sum of magnetic current rings of various radii, ranging from the outer radius of the inner conductor to the inner radius of the outer conductor of the waveguide at the open end. The radiation field is obtained as a vector sum of field components due to individual rings of current. Such a configuration gives rise to multiple narrow radiation beams away from the critical angle. (author)

  8. Boundary vapor contentsin an annular channel

    Remizov, O.V.; Shurkin, N.G.; Podgornyj, K.K.; Gal'chenko, Eh.F.; Bukhteev, I.S.

    1978-01-01

    The work is aimed at the experimental investigation of the worsening of the heat transfer in an annular channel. The experiments have been carried out on the annular channel 32x28x3000 mm with the even distribution of the heat flux along the length at pressures of 6.9-19.6 MPa, flow rate of 350-1000 kg/m 2 s, and specific heat fluxes from 0.18 up to 0.6 MW/m 2 . Heating is external, oneside. Water monodistillate of the following composition has been used as a coolant: pH 9; dry residue - 0.8-1.2 mg/kg, oxygen -10-15 mg/kg. It is found out that the change character of the temperature field of the heating surface of the annular channel at the regime with the worsen of heat emission depends on the ratio of regime parameters. At pressures of 6.9-13.7 MPa and flow rate of 350-500 kg/m 2 s the channel wall temperature rises monotoneously, never reaching its maximum. With pressure rise > 13.7 MPa and mass velocity > 500 kg/m 2 s the temperature of the heat emitting surface reaches its maximum, and then slowly falls. At pressures of 6.9-11.8 MPa the boundary vapor content value within the whole range of mass velocities does not depend on the specific heat flux q. At pressures higher than 13.7 MPa and mass velocities of 350-1000 kg/m 2 s the boundary vapor content depends on q. The heating of the external or internal surface of the annular channel affects the value of the boundary vapor content within the whole range of regime parameters' change under investigation

  9. The Transmission of Thermal and Fast Neutrons in Air Filled Annular Ducts through Slabs of Iron and Heavy Water

    Nilsson, J; Sandlin, R

    1964-12-15

    An investigation has been carried out concerning the transmission of thermal and fast neutrons in air filled annular ducts through laminated Fe-D{sub 2}O shields. Measurements have been made with annular air gaps of 0.5, 1.0, 1.5 and 2.0 cm, at a duct length of half a meter. The neutron fluxes were determined with a foil activation technique. The thermal flux was theoretically and experimentally divided into three components, a streaming, a leakage and an albedo component. The fast flux was similarly divided into a streaming component and a 'leakage' component. A calculational model to predict the components was then developed and fitted, to the data obtained by experiments. The model reported here for prediction of neutron attenuation in ducted configurations may be applied to straight annular ducts of arbitrary dimensions and material configurations but is especially designed for the problems met with in short ducts.

  10. Annular centrifugal contactors for TRPO process test

    Duan, W.H.; Wang, J.C.; Chen, J.; Zhou, X.Z.; Zhou, J.Z.; Song, C.L.

    2005-01-01

    The TRPO process has been developed in China for removing TRU elements from high-level liquid waste (HLLW) since 1980s. Centrifugal contactors have several advantages such as low hold-up volume, short residence time, low solvent degradation, small space requirements and short start-up time. Therefore, they are favored for both the reprocessing of spent fuel and the treatment of HLLW. In order to meet study on the TRPO test, a series of annular centrifugal contactors have been developed in Institute of Nuclear and -New Energy Technology, Tsinghua University, China (INET). In particular, the 10-mm annular centrifugal contactor for the laboratory-scale test has been applied successfully in the cold and hot tests of the TRPO process. The 70-mm annular centrifugal contactor for the industry-scale test has two new design characteristics, namely a modular design and an overflow structure. The modular design makes the contactor to be disassembled and assembled fast by simply moving the modules up and down. With the overflow structure, even though one stage or non-adjacent stages of the multi-stage cascade in operation are ceased to work, the cascade can continue to operate. Both the hydraulic performance and the mass-transfer efficiency of these contactors are excellent, and the extraction stage efficiency is greater than 95% at suitable operating conditions.

  11. A subchannel based annular flow dryout model

    Hammouda, Najmeddine; Cheng, Zhong; Rao, Yanfei F.

    2016-01-01

    Highlights: • A modified annular flow dryout model for subchannel thermalhydraulic analysis. • Implementation of the model in Canadian subchannel code ASSERT-PV. • Assessment of the model against tube CHF experiments. • Assessment of the model against CANDU-bundle CHF experiments. - Abstract: This paper assesses a popular tube-based mechanistic critical heat flux model (Hewitt and Govan’s annular flow model (based on the model of Whalley et al.), and modifies and implements the model for bundle geometries. It describes the results of the ASSERT subchannel code predictions using the modified model, as applied to a single tube and the 28-element, 37-element and 43-element (CANFLEX) CANDU bundles. A quantitative comparison between the model predictions and experimental data indicates good agreement for a wide range of flow conditions. The comparison has resulted in an overall average error of −0.15% and an overall root-mean-square error of 5.46% with tube data representing annular film dryout type critical heat flux, and in an overall average error of −0.9% and an overall RMS error of 9.9% with Stern Laboratories’ CANDU-bundle data.

  12. The Ontario printed educational message (OPEM trial to narrow the evidence-practice gap with respect to prescribing practices of general and family physicians: a cluster randomized controlled trial, targeting the care of individuals with diabetes and hypertension in Ontario, Canada

    Grimshaw Jeremy

    2007-11-01

    Full Text Available Abstract Background There are gaps between what family practitioners do in clinical practice and the evidence-based ideal. The most commonly used strategy to narrow these gaps is the printed educational message (PEM; however, the attributes of successful printed educational messages and their overall effectiveness in changing physician practice are not clear. The current endeavor aims to determine whether such messages change prescribing quality in primary care practice, and whether these effects differ with the format of the message. Methods/design The design is a large, simple, factorial, unblinded cluster-randomized controlled trial. PEMs will be distributed with informed, a quarterly evidence-based synopsis of current clinical information produced by the Institute for Clinical Evaluative Sciences, Toronto, Canada, and will be sent to all eligible general and family practitioners in Ontario. There will be three replicates of the trial, with three different educational messages, each aimed at narrowing a specific evidence-practice gap as follows: 1 angiotensin-converting enzyme inhibitors, hypertension treatment, and cholesterol lowering agents for diabetes; 2 retinal screening for diabetes; and 3 diuretics for hypertension. For each of the three replicates there will be three intervention groups. The first group will receive informed with an attached postcard-sized, short, directive "outsert." The second intervention group will receive informed with a two-page explanatory "insert" on the same topic. The third intervention group will receive informed, with both the above-mentioned outsert and insert. The control group will receive informed only, without either an outsert or insert. Routinely collected physician billing, prescription, and hospital data found in Ontario's administrative databases will be used to monitor pre-defined prescribing changes relevant and specific to each replicate, following delivery of the educational messages. Multi

  13. Narrow beam neutron dosimetry.

    Ferenci, M Sutton

    2004-01-01

    Organ and effective doses have been estimated for male and female anthropomorphic mathematical models exposed to monoenergetic narrow beams of neutrons with energies from 10(-11) to 1000 MeV. Calculations were performed for anterior-posterior, posterior-anterior, left-lateral and right-lateral irradiation geometries. The beam diameter used in the calculations was 7.62 cm and the phantoms were irradiated at a height of 1 m above the ground. This geometry was chosen to simulate an accidental scenario (a worker walking through the beam) at Flight Path 30 Left (FP30L) of the Weapons Neutron Research (WNR) Facility at Los Alamos National Laboratory. The calculations were carried out using the Monte Carlo transport code MCNPX 2.5c.

  14. An Unusual Presentation of Annular Pancreas: A Case Report

    Saleheh Ala

    2015-01-01

    Full Text Available Abstract Annular pancreas (AP is a rare congenital malformation resulting from failure of pancreas ventral anlage rotation with the duodenum. This leads to a ring of pancreatic tissue that envelops the duodenum. Clinical manifestations of AP most commonly develop in infancy or early childhood but can present at any age. The diagnosis of AP, usually suggested by an upper GI series or abdominal CT scan, but surgery is considered the gold standard diagnostic method. Surgical bypass of the annulus in all patients with symptomatic AP is recommended. We report a one year old girl who presented with intermittent, non projectile, non bilious vomiting that occurred 1h to 2h after feeding since neonatal period. Upper GI contrast study demonstrates, a dilated duodenal bulb associated with narrowing of post bulbar area. The patient underwent surgical correction of the obstruction. A bypass of the ectopic pancreas tissue was performed by duodenoduodenostomy. Considering the rarity of this congenital abnormality, presenting with chronic partial duodenal obstruction, and its successful correction by surgical means have prompted us to report the case.

  15. GAP Analysis Program (GAP)

    Kansas Data Access and Support Center — The Kansas GAP Analysis Land Cover database depicts 43 land cover classes for the state of Kansas. The database was generated using a two-stage hybrid classification...

  16. Radiologic findings of annular pancreas divisum : a case report

    Choi, Dong Sik; Lee, Dong Ho; Ko, Young Tae; Han, Tae Il; Yoon, Youp; Dong, Suk Ho

    1996-01-01

    Annular pancreas divisum is a very rare congenital anomaly involving the coexistence of an annular pancreas and pancreatic divisum in one pancreas, and showing characteristic radiologic findings of ring-like pancreatic tissue surrounding the second portion of the duodenum and no evidence of connection between ventral and dorsal ductal systems. We described the radiologic findings of annular pancreas divisum, diagnosed by hypotonic duodenography, CT and ERCP

  17. Granuloma annulare localized to the shaft of the penis

    Trap, R; Wiebe, B

    1993-01-01

    A case of granuloma annulare localized to the shaft of the penis is reported. The differential diagnoses are discussed. Penile granuloma annulare is a rare disorder and it is concluded that biopsies of penile lesions are recommended to verify the correct diagnosis.......A case of granuloma annulare localized to the shaft of the penis is reported. The differential diagnoses are discussed. Penile granuloma annulare is a rare disorder and it is concluded that biopsies of penile lesions are recommended to verify the correct diagnosis....

  18. Study on two phase flow characteristics in annular pulsed extraction column with different ratio of annular width to column diameter

    Qin Wei; Dai Youyuan; Wang Jiading

    1994-01-01

    Annular pulsed extraction column can successfully provide large throughput and can be made critically safe for fuel reprocessing. This investigation is to study the two phase flow characteristics in annular pulsed extraction column with four different annular width. 30% TBP (in kerosene)-water is used (water as continuous phase). Results show that modified Pratt correlation is valid under the experimental operation conditions for the annular pulsed extraction column. The characteristic velocity U K decreased with the increase of energy input and increased with the increase of the ratio of annular width to column diameter. Flooding velocity correlation is suggested. The deviation of the calculated values from the experimental data is within +20% for four annular width in a pulsed extraction column

  19. A New Annular Shear Piezoelectric Accelerometer

    Liu, Bin; Kriegbaum, B.

    2000-01-01

    This paper describes the construction and performance of a recently introduced Annular Shear piezoelectric accelerometer, Type 4511. The design has insulated and double-shielded case. The accelerometer housing is made of stainless steel, AISI 316L. Piezoceramic PZ23 is used. The seismic mass...... prototype. Reasonable agreement between the experimental results of the physical prototype and the simulation results is achieved. The design becomes more efficient. In addition, Type 4511 has a built in DeltaTronâ charge amplifier with ID and complies with IEEE-P1451.4 standard, which is a smart transducer...

  20. EXPLOSION OF ANNULAR CHARGE ON DUSTY SURFASE

    A. Levin Vladimir

    2017-01-01

    Full Text Available This problem is related to the safety problem in the area of forest fires. It is well known that is possible to extinguish a fire, for example, by means of a powerful air stream. Such flow arises from the explosive shock wave. To enhance the im- pact of the blast wave can be used an explosive charge of annular shape. The shock wave, produced by the explosion, in- creased during moves to the center and can serve as a means of transportation dust in the seat of the fire. In addition, emerging after the collapse of a converging shock wave strong updraft can raise dust on a greater height and facilitate fire extinguishing, precipitating dust over a large area. This updraft can be dangerous for aircraft that are in the sky above the fire. To determine the width and height of the danger zone performed the numerical simulation of the ring of the explosion and the subsequent movement of dust and gas mixtures. The gas is considered ideal and perfect. The explosion is modeled as an instantaneous increase in the specific internal energy in an annular zone on the value of the specific heat of explosives. The flow is consid- ered as two-dimensional, and axisymmetric. The axis of symmetry perpendicular to the Earth surface. This surface is considered to be absolutely rigid and is considered as the boundary of the computational domain. On this surface is exhibited the condition of no motion. For the numerical method S. K. Godunov is used a movable grid. One system of lines of this grid is moved in accordance with movement of the shock wave. Others lines of this grid are stationary. The calculations were per- formed for different values of the radii of the annular field and for different sizes of rectangular cross-sectional of the annular field. Numerical results show that a very strong flow is occurring near the axis of symmetry and the particles rise high above the surface. These calculations allow us to estimate the sizes of the zone of danger in specific

  1. An annular laser for penetrating radiations

    Marie, G.R.P.

    1974-01-01

    Description is given of an annular laser generating an emission of X rays or gamma rays, from a pumping beam provided by a light wave or infra-red laser and applied to an active substance. Said laser essentially comprises a semi toroidal metal groove wherein is placed said active substance. That substance is illuminated by the pumping beam after reflection of the latter on a mirror provided with an opening through which pass X rays or gamma rays after several reflections on the groove bottom. The pumping-beam uses a revolution symmetry mode, the electric field lines of which are circles coaxial with said beam [fr

  2. The impacts of the atmospheric annular mode on the AMOC and its feedback in an idealized experiment

    Santis, Wlademir; Aimola, Luis; Campos, Edmo J. D.; Castellanos, Paola

    2018-03-01

    The interdecadal variability of the atmospheric and oceanic meridional overturning circulation is studied, using a coupled model with two narrow meridional barriers representing the land and a flat bottomed Aquaplanet. Empirical orthogonal function (EOF) analysis are used in the atmospheric and oceanic meridional overturning cells, revealing the atmospheric interdecadal variability is dominated by an annular mode, in both hemispheres, which introduces in the ocean a set of patterns of variability. The most energetic EOFs in the ocean are the barotropic responses from the annular mode. The interaction between the heat anomalies, due to the barotropic response, and the thermohaline circulation of each basin leads to a resonance mechanism that feeds back to the atmospheric forcing, modulating the annular mode spectrum. Besides the barotropic response, the annular mode introduces anomalies of salinity and temperature in the subtropical Atlantic that affects its upper buoyancy. These anomalies are incorporated within the ocean circulation and advected until the areas of deep sinking in the northern Atlantic, impacting on its overturning circulation as well.

  3. Do Some Schools Narrow the Gap? Differential School Effectiveness Revisited

    Strand, Steve

    2016-01-01

    Relatively little research has explored whether schools differ in their effectiveness for different group of pupils (e.g. by ethnicity, poverty or gender), for different curriculum subjects (e.g. English, mathematics or science) or over time (different cohorts). This paper uses multilevel modelling to analyse the national test results at age 7 and…

  4. Narrowing the gap between network models and real complex systems

    Viamontes Esquivel, Alcides

    2014-01-01

    Simple network models that focus only on graph topology or, at best, basic interactions are often insufficient to capture all the aspects of a dynamic complex system. In this thesis, I explore those limitations, and some concrete methods of resolving them. I argue that, in order to succeed at interpreting and influencing complex systems, we need to take into account  slightly more complex parts, interactions and information flows in our models.This thesis supports that affirmation with five a...

  5. Pharma-nutrition interface: The gap is narrowing

    Georgiou, N.A.; Garssen, J.; Witkamp, R.F.

    2011-01-01

    The interaction between pharmacology and nutrition science is on the rise. Nutritional status is considered one of the important determinants of health and disease and several diseases of our time have a clear link with lifestyle factors including the diet. There is also increasing realization that

  6. narrowing tiie gap between livestock research findings and application

    of our workers soem to drow little interest beyond writing scientific reports on their .... management accounting service soon pinpoints to the farmer where he is ... of a document, a balance sheet, which is useful for income tax and some other ...

  7. Narrowing the "adaptive capacity gap" | CRDI - Centre de ...

    21 avr. 2016 ... Climate projections reveal sharply declining yields for many food crops in Kenya, particularly the key staple, maize. Adopting short-season crops and crop varieties could significantly improve livelihoods, Okoti said, with green grams, cowpeas, and sweet potatoes among the top performers in difficult climate ...

  8. Narrowing the gap between automatic and human word recognition

    Scharenborg, O.E.

    2005-01-01

    In everyday life, speech is all around us, on the radio, television, and in human-human interaction. We are continually confronted with novel utterances, and usually we have no problem recognising and understanding them. Several research fields investigate the speech recognition process. This thesis

  9. Electronic transport in narrow-gap semiconductor nanowires

    Bloemers, Christian

    2012-10-19

    Throughout this work the electronic transport properties of InAs, InN, and GaAs/InAs core/shell nanowires have been analyzed. This includes the analysis of specific resistivity at room temperature and low temperatures as well as the breakdown of resistivity by a contribution of mobility and carrier concentration using gate measurements. While the InN nanowires showed homogeneous transport properties, there was a large statistical spread in the properties of InAs nanowires. Differing crystal structures and the surface conditions are identified to be the main reasons for the statistical spread. Both quantities of influence have been pointed out by comparing the transport parameters before and after a surface treatment (electron irradiation and long time ambient air exposure), and by comparing the transport parameters of wires grown by different growth methods which exhibit different kinds of crystal structure. In particular, the temperature dependence of the conductivity revealed different activation energies in nanowires with differing crystal structures. An explanation has been suggested in terms of stacking fault induced potential barriers. A field-effect measurement setup has been utilized to determine the nanowire mobility and carrier concentration. Even though this method is widely used for nanowires, it is subject to a serious disadvantage concerning the influence of surface and interface states on the measurements. As an alternative method which does not suffer from this drawback, Hall measurements have been successfully performed on InAs nanowires for the first time. These measurements became possible because of the utilization of a new electron beam lithographic procedure with an alignment accuracy in the 5 nm range. Carrier concentration values could be determined and compared to the ones obtained from conventional field-effect measurements. The results of the Hall measurements revealed a methodical overestimation of the carrier concentrations obtained from the field-effect measurements due to the influence of surface states. The homogeneity in transport characteristics of the InN nanowires allowed for an accurate analysis of the diameter dependence of the nanowire resistivity. The effect of donor deactivation has been found to increase the resistivity of InN nanowires with small diameters. Furthermore, a quantum confinement effect has been observed in GaAs/InAs core/shell nanowires. For very low shell thicknesses below 10 nm a drastic resistivity increase has been found. Simulations with a self consistent Schroedinger-Poisson solver confirmed the interpretation in terms of quantum confinement. A further major topic of this work has been the analysis of phase coherent transport at low temperatures. In particular, universal conductance fluctuations have been analyzed and a consistent method to determine the phase coherence length quantitatively has been developed. In addition, transport measurements on GaAs/InAs core/shell nanowires with a magnetic field applied parallel to the wire axis demonstrated Aharonov-Bohm-type conductance oscillations. An explanation in terms of coherent angular momentum quantum states in the conductive InAs shell has been developed to interpret these oscillations. To conclude, both room temperature and low temperature measurements allowed gaining insights into basic classical as well as quantum transport properties of nanowires. In the face of a future application of nanowires in quantum information processing or their use in so-called phase-based switching devices, valuable information is provided within this work. Furthermore, the room temperature results show that for application of nanowires in electronic devices, both the crystal structure and the surface conditions have to be controlled. Here, it will be inevitable for future progress to achieve a controlled passivation of the wire surfaces for defined and stable surface conditions. Furthermore, a more detailed investigation of the correlation between the crystal structure and the transport properties is needed.

  10. Uncertainty as Information: Narrowing the Science-policy Gap

    G. A. Bradshaw

    2000-07-01

    Full Text Available Conflict and indecision are hallmarks of environmental policy formulation. Some argue that the requisite information and certainty fall short of scientific standards for decision making; others argue that science is not the issue and that indecisiveness reflects a lack of political willpower. One of the most difficult aspects of translating science into policy is scientific uncertainty. Whereas scientists are familiar with uncertainty and complexity, the public and policy makers often seek certainty and deterministic solutions. We assert that environmental policy is most effective if scientific uncertainty is incorporated into a rigorous decision-theoretic framework as knowledge, not ignorance. The policies that best utilize scientific findings are defined here as those that accommodate the full scope of scientifically based predictions.

  11. ASEAN Economic Community 2015: SME Development - Narrowing Development Gap Measure

    Aldaba, Rafaelita M.

    2013-01-01

    This paper evaluates the implementation of the 2010-2015 ASEAN Strategic Action Plan for SME Development and the 2004-2009 ASEAN Policy Blueprint for SME Development. The initial interviews and survey results yielded low average effectiveness scores for the ASEAN Strategic Action Plan for SME Development. The scores ranged from without- to no- or little concrete impacts on the implementation of various programs on access to financing, facilitation, technology development, promotion, human res...

  12. Electronic transport in narrow-gap semiconductor nanowires

    Bloemers, Christian

    2012-01-01

    Throughout this work the electronic transport properties of InAs, InN, and GaAs/InAs core/shell nanowires have been analyzed. This includes the analysis of specific resistivity at room temperature and low temperatures as well as the breakdown of resistivity by a contribution of mobility and carrier concentration using gate measurements. While the InN nanowires showed homogeneous transport properties, there was a large statistical spread in the properties of InAs nanowires. Differing crystal structures and the surface conditions are identified to be the main reasons for the statistical spread. Both quantities of influence have been pointed out by comparing the transport parameters before and after a surface treatment (electron irradiation and long time ambient air exposure), and by comparing the transport parameters of wires grown by different growth methods which exhibit different kinds of crystal structure. In particular, the temperature dependence of the conductivity revealed different activation energies in nanowires with differing crystal structures. An explanation has been suggested in terms of stacking fault induced potential barriers. A field-effect measurement setup has been utilized to determine the nanowire mobility and carrier concentration. Even though this method is widely used for nanowires, it is subject to a serious disadvantage concerning the influence of surface and interface states on the measurements. As an alternative method which does not suffer from this drawback, Hall measurements have been successfully performed on InAs nanowires for the first time. These measurements became possible because of the utilization of a new electron beam lithographic procedure with an alignment accuracy in the 5 nm range. Carrier concentration values could be determined and compared to the ones obtained from conventional field-effect measurements. The results of the Hall measurements revealed a methodical overestimation of the carrier concentrations obtained from the field-effect measurements due to the influence of surface states. The homogeneity in transport characteristics of the InN nanowires allowed for an accurate analysis of the diameter dependence of the nanowire resistivity. The effect of donor deactivation has been found to increase the resistivity of InN nanowires with small diameters. Furthermore, a quantum confinement effect has been observed in GaAs/InAs core/shell nanowires. For very low shell thicknesses below 10 nm a drastic resistivity increase has been found. Simulations with a self consistent Schroedinger-Poisson solver confirmed the interpretation in terms of quantum confinement. A further major topic of this work has been the analysis of phase coherent transport at low temperatures. In particular, universal conductance fluctuations have been analyzed and a consistent method to determine the phase coherence length quantitatively has been developed. In addition, transport measurements on GaAs/InAs core/shell nanowires with a magnetic field applied parallel to the wire axis demonstrated Aharonov-Bohm-type conductance oscillations. An explanation in terms of coherent angular momentum quantum states in the conductive InAs shell has been developed to interpret these oscillations. To conclude, both room temperature and low temperature measurements allowed gaining insights into basic classical as well as quantum transport properties of nanowires. In the face of a future application of nanowires in quantum information processing or their use in so-called phase-based switching devices, valuable information is provided within this work. Furthermore, the room temperature results show that for application of nanowires in electronic devices, both the crystal structure and the surface conditions have to be controlled. Here, it will be inevitable for future progress to achieve a controlled passivation of the wire surfaces for defined and stable surface conditions. Furthermore, a more detailed investigation of the correlation between the crystal structure and the transport properties is needed.

  13. Thermodynamics and electrodynamics of unusual narrow-gap semiconductors

    Migliori, A.; Darling, T.W.; Trugman, S.A.; Freibert, F.; Moshopoulou, E.; Sarrao, J.L.

    1998-01-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL) that has led to a fully funded DOE program to continue this work. The project was directed toward exploring the Ettingshausen effect, which is the direct extension of the familiar Peltier-effect refrigerator (the process used in popular coolers that run off automotive electrical power) in which a magnetic field is used to enhance refrigeration effects at temperatures well below room temperature. Such refrigeration processes are all-solid-state and are of potentially great commercial importance, but essentially no work has been done since the early 1970s. Using modern experimental and theoretical techniques, the authors have advanced the state-of-the-art significantly, laying the groundwork for commercial cryogenic solid-state refrigeration

  14. Narrow Gap, High Mobility, and Stable Pi Conjugated Polymers

    2012-09-20

    wide-angle X-ray scattering (2D-WAXS) of P5.1 (extruded at 210oC). This trend is reflected in conventional bulk- heterojunction OPV devices as shown...Additives in Molecular Bulk Heterojunction Solar Cells Using a bithiophene capped, isoindigo core, DAD molecule as the donor phase, and PCBM as the...PCE values of 3.7% as illustrated in Figure 11. Figure 11. Combining interface control using MoOx as an electron transport material and PDMS

  15. Narrow, duplicated internal auditory canal

    Ferreira, T. [Servico de Neurorradiologia, Hospital Garcia de Orta, Avenida Torrado da Silva, 2801-951, Almada (Portugal); Shayestehfar, B. [Department of Radiology, UCLA Oliveview School of Medicine, Los Angeles, California (United States); Lufkin, R. [Department of Radiology, UCLA School of Medicine, Los Angeles, California (United States)

    2003-05-01

    A narrow internal auditory canal (IAC) constitutes a relative contraindication to cochlear implantation because it is associated with aplasia or hypoplasia of the vestibulocochlear nerve or its cochlear branch. We report an unusual case of a narrow, duplicated IAC, divided by a bony septum into a superior relatively large portion and an inferior stenotic portion, in which we could identify only the facial nerve. This case adds support to the association between a narrow IAC and aplasia or hypoplasia of the vestibulocochlear nerve. The normal facial nerve argues against the hypothesis that the narrow IAC is the result of a primary bony defect which inhibits the growth of the vestibulocochlear nerve. (orig.)

  16. NWIS Measurements for uranium metal annular castings

    Mattingly, J.K.; Valentine, T.E.; Mihalczo, J.T.

    1998-01-01

    This report describes measurements performed with annular uranium metal castings of different enrichments to investigate the use of 252 Cf-source-driven noise analysis measurements as a means to quantify the amount of special nuclear material (SNM) in the casting. This work in FY 97 was sponsored by the Oak Ridge Y-12 Plant and the DOE Office of Technology Development Programs. Previous measurements and calculational studies have shown that many of the signatures obtained from the source-driven measurement are very sensitive to fissile mass. Measurements were performed to assess the applicability of this method to standard annular uranium metal castings at the Oak Ridge Y-12 plant under verification by the International Atomic Energy Agency (IAEA) using the Nuclear Weapons Identification System (NWIS) processor. Before the measurements with different enrichments, a limited study of source-detector-casting moderator configurations was performed to enhance the correlated information. These configurations consisted of a casting with no reflector and with various thicknesses of polyethylene reflectors up to 10.16 cm in 2.54 cm steps. The polyethylene moderator thickness of 7.62 cm was used for measurements with castings of different enrichments reported here. The sensitivity of the measured parameters to fissile mass was investigated using four castings each with a different enrichment. The high sensitivity of this measurement method to fissile mass and to other material and configurations provides some advantages over existing safeguards methods

  17. Annular beam shaping and optical trepanning

    Zeng, Danyong

    Percussion drilling and trepanning are two laser drilling methods. Percussion drilling is accomplished by focusing the laser beam to approximately the required diameter of the hole, exposing the material to one or a series of laser pulses at the same spot to melt and vaporize the material. Drilling by trepanning involves cutting a hole by rotating a laser beam with an optical element or an x-y galvo-scanner. Optical trepanning is a new laser drilling method using an annular beam. The annular beams allow numerous irradiance profiles to supply laser energy to the workpiece and thus provide more flexibility in affecting the hole quality than a traditional circular laser beam. Heating depth is important for drilling application. Since there are no good ways to measure the temperature inside substrate during the drilling process, an analytical model for optical trepanning has been developed by considering an axisymmetric, transient heat conduction equation, and the evolutions of the melting temperature isotherm, which is referred to as the melt boundary in this study, are calculated to investigate the influences of the laser pulse shapes and intensity profiles on the hole geometry. This mathematical model provides a means of understanding the thermal effect of laser irradiation with different annular beam shapes. To take account of conduction in the solid, vaporization and convection due to the melt flow caused by an assist gas, an analytical two-dimensional model is developed for optical trepanning. The influences of pulse duration, laser pulse length, pulse repetition rate, intensity profiles and beam radius are investigated to examine their effects on the recast layer thickness, hole depth and taper. The ray tracing technique of geometrical optics is employed to design the necessary optics to transform a Gaussian laser beam into an annular beam of different intensity profiles. Such profiles include half Gaussian with maximum intensities at the inner and outer

  18. Flow visualization study of inverted annular flow of post dryout heat transfer region

    Ishii, M.; De Jarlais, G.

    1985-01-01

    The inverted annular flow is important in the area of LWR accident analysis in terms of the maximum cladding temperature and effectiveness of the emergency core cooling. However, the inverted annular flow thermal-hydraulics is not well understood due to its special heat transfer condition of film boiling. The review of existing data indicates further research is needed in the areas of basic hydrodynamics related to liquid core disintegration mechanisms, slug and droplet formation, entrainment, and droplet size distributions. In view of this, the inverted flow is studied in detail experimentally. A new experimental apparatus has been constructed in which film boiling heat transfer can be established in a transparent test section. The test section consists of two coaxial quartz tubes. The annular gap between these two tubes is filled with a hot, clear fluid (syltherm 800) so as to maintain film boiling temperatures and heat transfer rates at the inner quartz tube wall. Data on liquid core stability, core break-up mechanism, and dispersed-core liquid slug and droplet sizes are obtained using F 113 as a test fluid. Both high speed movies and flash photographs (3 μsec) are used

  19. Annular tidal regenerator engine for nuclear circulatory support systems

    Hagen, K.G.; Ruggles, A.E.; Fam, S.S.; Torti, V.A.

    1975-01-01

    In order to simplify the configuration of the tidal regenerator engine nuclear-powered circulatory support system, thereby drastically reducing its size and improving the intrinsic reliability, the engine has been redesigned. This redesign focuses on allowing power to be extracted at the low temperature end of the engine utilizing a piston-cylinder arrangement wherein all of the necessary heat transfer processes occur in the annular gap between the piston and cylinder. In all other respects the engine retains its basic characteristics as a hybrid between a Stirling engine and a Rankine engine. A significant advantage of the new arrangement is the ability to raise the superheat temperature limit from 650 0 F to over 900 0 F. This has yielded an increase in engine efficiency from 10 percent to 14 percent, and further increases are anticipated by utilizing an expansion and/or a binary version of the engine. The implantable system volume has been reduced by a factor of three and orientation insensitivity with respect to gravity has been demonstrated. Many system components have already demonstrated endurances of several thousand hours

  20. Limited Diffraction Maps for Pulsed Wave Annular Arrays

    Fox, Paul D.

    2002-01-01

    A procedure is provided for decomposing the linear field of flat pulsed wave annular arrays into an equivalent set of known limited diffraction Bessel beams. Each Bessel beam propagates with known characteristics, enabling good insight into the propagation of annular fields to be obtained...

  1. Obtention of an empirical equation for annular channels

    Diaz H, C.; Salinas R, G.A.

    1996-01-01

    Using a trial circuit, the experimental heat transfer coefficient is determined, in forced convection at one phase only within an annular channel in which water flows ascendantly and for this reason an empirical equation is determined. This work tries to contribute to the understanding of the forced convection phenomena in non tubular geometries like the annular channels. (Author)

  2. Superconducting gap anomaly in heavy fermion systems

    of a pseudo-gap due to superconductivity and the signature of a hybridization gap at the. Fermi level. For the choice of the model parameters, the DOS shows that the HFS is a metal and undergoes a transition to the gap-less superconducting state. Keywords. Heavy fermion superconductor; Narrow band system; Valence ...

  3. Hydrodynamics of annular-dispersed flow

    Ishii, M.; Kataoka, I.

    1982-01-01

    The interfacial drag, droplet entrainment, and droplet size distributions are important for detailed mechanistic modeling of annular dispersed two-phase flow. In view of this, recently developed correlations for these parameters are presented and discussed in this paper. The drag correlations for multiple fluid particle systems have been developed from a similarity hypothesis based on the mixture viscosity model. The results show that the drag coefficient depends on the particle Reynolds number and droplet concentration. The onset on droplet entrainment significantly alters the mechanisms of mass, momentum, and energy transfer between the film and gas core flow as well as the transfer between the two-phase mixture and the wall. By assuming the roll wave entrainment mechanism, the correlations for the amount of entrained droplet as well as for the droplet size distribution have been obtained from a simple model in collaboration with a large number of data

  4. Analytical modeling of inverted annular film boiling

    Analytis, G.T.; Yadigaroglu, G.

    1987-01-01

    By employing a two-fluid formulation similar to the one used in the most recent LWR accident analysis codes, a model for the Inverted Annular Film Boiling region is developed. The conservation equations, together with appropriate closure relations are solved numerically. Successful comparisons are made between model predictions and heat transfer coefficient distributions measured in a series of single-tube reflooding experiments. Generally, the model predicts correctly the dependence of the heat transfer coefficient on liquid subcooling and flow rate; for some cases, however, heat transfer is still under-predicted, and an enhancement of the heat exchange from the liquid-vapour interface to the bulk of the liquid is required. The importance of the initial conditions at the quench front is also discussed. (orig.)

  5. Analytical modeling of inverted annular film boiling

    Analytis, G.T.; Yadigaroglu, G.

    1985-01-01

    By employing a two-fluid formulation similar to the one used in the most recent LWR accident analysis codes, a model for the Inverted Annular Film Boiling region is developed. The conservation equations, together with appropriate constitutive relations are solved numerically and successful comparisons are made between model predictions and heat transfer coefficient distributions measured in a series of single-tube reflooding experiments. The model predicts generally correctly the dependence of the heat transfer coefficient on liquid subcooling and flow rate, through, for some cases, heat transfer is still under-predicted, and an enhancement of the heat exchange from the liquid-vapour interface to the bulk of the liquid is required

  6. The Liquid Annular Reactor System (LARS) propulsion

    Powell, J.; Ludewig, H.; Horn, F.; Lenard, R.

    1990-01-01

    A concept for very high specific impulse (greater than 2000 seconds) direct nuclear propulsion is described. The concept, termed the liquid annular reactor system (LARS), uses liquid nuclear fuel elements to heat hydrogen propellant to very high temperatures (approximately 6000 K). Operating pressure is moderate (approximately 10 atm), with the result that the outlet hydrogen is virtually 100 percent dissociated to monatomic H. The molten fuel is contained in a solid container of its own material, which is rotated to stabilize the liquid layer by centripetal force. LARS reactor designs are described, together with neutronic and thermal-hydraulic analyses. Power levels are on the order of 200 megawatts. Typically, LARS designs use seven rotating fuel elements, are beryllium moderated, and have critical radii of approximately 100 cm (core L/D approximately equal to 1.5)

  7. Annular MHD Physics for Turbojet Energy Bypass

    Schneider, Steven J.

    2011-01-01

    The use of annular Hall type MHD generator/accelerator ducts for turbojet energy bypass is evaluated assuming weakly ionized flows obtained from pulsed nanosecond discharges. The equations for a 1-D, axisymmetric MHD generator/accelerator are derived and numerically integrated to determine the generator/accelerator performance characteristics. The concept offers a shockless means of interacting with high speed inlet flows and potentially offers variable inlet geometry performance without the complexity of moving parts simply by varying the generator loading parameter. The cycle analysis conducted iteratively with a spike inlet and turbojet flying at M = 7 at 30 km altitude is estimated to have a positive thrust per unit mass flow of 185 N-s/kg. The turbojet allowable combustor temperature is set at an aggressive 2200 deg K. The annular MHD Hall generator/accelerator is L = 3 m in length with a B(sub r) = 5 Tesla magnetic field and a conductivity of sigma = 5 mho/m for the generator and sigma= 1.0 mho/m for the accelerator. The calculated isentropic efficiency for the generator is eta(sub sg) = 84 percent at an enthalpy extraction ratio, eta(sub Ng) = 0.63. The calculated isentropic efficiency for the accelerator is eta(sub sa) = 81 percent at an enthalpy addition ratio, eta(sub Na) = 0.62. An assessment of the ionization fraction necessary to achieve a conductivity of sigma = 1.0 mho/m is n(sub e)/n = 1.90 X 10(exp -6), and for sigma = 5.0 mho/m is n(sub e)/n = 9.52 X 10(exp -6).

  8. Heat transfer in CO{sub 2} at supercritical pressures in an eccentric annular channel

    Bae, Yoon-Yeong, E-mail: yybae@kaeri.re.kr

    2013-12-15

    Highlights: • Heat transfer under supercritical pressure in an eccentric annular channel pressure was studied. • The studied geometry was an eccentric annular channel with an eccentricity of 0.33. • The effect of spacer as a turbulence generator was investigated. • The effects of the mass flux, heat flux, and pressure were investigated. • The obtained data were evaluated against the correlation. - Abstract: An experimental investigation of a supercritical heat transfer in an eccentric annular channel was performed using a supercritical heat transfer test facility, SPHINX, at the Korea Atomic Energy Research Institute (KAERI). The eccentric channel was built by placing a 9.5 mm outer diameter heater rod in a 12.5 mm inner diameter tube with an eccentricity of 0.33. The narrowest gap was 1 mm, and the widest gap was 2 mm. The rod was heated indirectly by an imbedded Nickel Chrome heating wire made of NCHW1. Three simple spacers were installed to see their effect, if any, on the heat transfer. The mass fluxes were 400 and 1200 kg/m{sup 2} s, and the heat flux was varied between 30 and 150 kW/m{sup 2} such that the pseudo-critical point was located within the test section as long as possible. When this was not the case, several tests with stepwise increased inlet temperatures were performed so that at least one of them included the pseudo-critical point. The tests were performed at two different pressures of 7.75 and 8.12 MPa to check the pressure effect. The influence of the gap size was clearly seen with the eccentric channel, if not significant. The wall temperatures along the narrowest gap were higher than those along the widest gap as expected, while it was reversed at the end part of the test section. The test results for the eccentric channel were not much different from those for the concentric channel of a similar gap size. As we have seen from the plain tube test, the diameter effect on the heat transfer was also not significant in this test. On the

  9. Narrow n anti n resonances

    Bogdanova, L.N.; Dalkarov, O.D.; Kerbikov, B.O.; Shapiro, I.S.

    1975-01-01

    The present status of the problem of quasinuclear states in systems of nucleons and antinucleons is reviewed. The theoretical predictions are compared with experimental data on narrow meson resonances near N anti N threshold which appeared in 1971-74

  10. Coexistence of morphea and granuloma annulare: a rare case report

    Şenay Ağırgöl

    2017-11-01

    Full Text Available ABSTRACT CONTEXT: Localized scleroderma (morphea is characterized by fibrosis of skin and subcutaneous tissue. Granuloma annulare is a relatively common disease that is characterized by dermal papules and arciform plaques. CASE REPORT: Here, we present the case of a 42-year-old woman who developed granuloma annulare on the dorsum of her feet and abdominal region, and morphea on the anterior side of her lower limbs. We also discuss the etiological and pathogenetic processes that may cause the rare coexistence of these two diseases. CONCLUSION: Only a few cases in the literature have described coexistence of morphea and granuloma annulare.

  11. A simulation of the temperature overshoot observed at high burnup in annular fuel pellets

    Baron, D [Electricite de France, Moret-sur-Loing (France); Couty, J C [Electricite de France (EDF), 69 - Villeurbanne (France)

    1997-08-01

    Instrumented experiments have been carried out in recent years to calibrate and improve temperature calculations at high burnup in PWR nuclear fuel rods. The introduction of a thermocouple in the fuel stack allows the experiment to record the centre-line temperature all along the irradiation or re-irradiation. The results obtained on fresh fuel have not revealed any abnormal behavior as have observations done on high burnup rods. In this case, a sudden overshoot has been recorded on the thermocouple temperature above an average power threshold. Several hypotheses have been suggested. Only two seem to be acceptable: one in relation to an effect of grain decohesion, another based on a modification of fuel chemistry. The apparent reversibility of the phenomena when power decreases led us to prefer the first explanation. Indeed, the introduction of a thermocouple means that annular fuel pellets must be used. These are either initially manufactured with a central hole or drilled after base irradiation, using the ``RISOE`` technique. One must bear in mind that the use of such annular pellets drastically changes the crack pattern as irradiation proceeds. This is due to a different stress field which, combined with a weakening of the grain binding energy, leads to a partial grain decohesion on the inner face of the annular pellet. Modification of the grain binding energy is related to the presence of an increasing local population of gas bubbles and metallic precipitates at grain boundaries, as swelling creates intergranular local stresses which also could probably enhance the grain decohesion process. This grain decohesion concerns a 250 to 350 {mu}m depth and shows a narrow cracks network through which released fission gas can flow, temporarily pushing the resident helium gas out. The low conductivity of these gaseous fission products and the numerous gas layers created this way could partly explain the unexpected temperatures measured in high burnup fuels. (Abstract

  12. Influence of spatial and temporal coherences on atomic resolution high angle annular dark field imaging

    Beyer, Andreas, E-mail: andreas.beyer@physik.uni-marburg.de; Belz, Jürgen; Knaub, Nikolai; Jandieri, Kakhaber; Volz, Kerstin

    2016-10-15

    Aberration-corrected (scanning) transmission electron microscopy ((S)TEM) has become a widely used technique when information on the chemical composition is sought on an atomic scale. To extract the desired information, complementary simulations of the scattering process are inevitable. Often the partial spatial and temporal coherences are neglected in the simulations, although they can have a huge influence on the high resolution images. With the example of binary gallium phosphide (GaP) we elucidate the influence of the source size and shape as well as the chromatic aberration on the high angle annular dark field (HAADF) intensity. We achieve a very good quantitative agreement between the frozen phonon simulation and experiment for different sample thicknesses when a Lorentzian source distribution is assumed and the effect of the chromatic aberration is considered. Additionally the influence of amorphous layers introduced by the preparation of the TEM samples is discussed. Taking into account these parameters, the intensity in the whole unit cell of GaP, i.e. at the positions of the different atomic columns and in the region between them, is described correctly. With the knowledge of the decisive parameters, the determination of the chemical composition of more complex, multinary materials becomes feasible. - Highlights: • Atomic resolution high angle annular dark field images of gallium phosphide are compared quantitatively with simulated ones. • The influence of partial spatial and temporal coherence on the HAADF-intensity is investigated. • The influence of amorphous layers introduced by the sample preparation is simulated.

  13. Streaming through the gaps around divertor pipings in ITER

    Sato, Satoshi; Seki, Yasushi; Takatsu, Hideyuki; Mori, Seiji; Zimin, S.; Maki, Koichi; Kuroda, Toshimasa.

    1993-03-01

    Neutron and gamma ray streaming through the annular gap around divertor piping in International Thermonuclear Experimental Reactor (ITER) was investigated. A stepwise gap is proposed near the midpoint of the annular gap in order to reduce the dose rate at the upper port. The optimal step position and width to satisfy the design limit of dose rates were examined. From these studies, the following results were obtained. (1) In case of the straight annular 1 cm wide gap around cooling pipes through the 3 m thick shield, dose rate at the upper port in a day after shutdown is about 4 orders larger than the reference value of 25 μSv/h (2.5 mrem/h) for the biological shielding design. But by providing a step structure with the offset ratio of 2.2 times of the gap width at the midpoint of the shield, the dose rate can be evaluated as low as 1/20 of the biological shielding value 2.5 μSv/h (0.25 mrem/h) including a safety factor of 10 for the reference value. It satisfies the requirement of the shielding design. (2) The optimal step position to minimize the dose rate at the upper port is the midpoint of the shield. (3) The dose rates are not further more reduced even if the offset width is set more than twice of the gap width, and the offset width of twice the gap width is recommended. (author)

  14. Analysis of a Segmented Annular Coplanar Capacitive Tilt Sensor with Increased Sensitivity

    Jiahao Guo

    2016-01-01

    Full Text Available An investigation of a segmented annular coplanar capacitor is presented. We focus on its theoretical model, and a mathematical expression of the capacitance value is derived by solving a Laplace equation with Hankel transform. The finite element method is employed to verify the analytical result. Different control parameters are discussed, and each contribution to the capacitance value of the capacitor is obtained. On this basis, we analyze and optimize the structure parameters of a segmented coplanar capacitive tilt sensor, and three models with different positions of the electrode gap are fabricated and tested. The experimental result shows that the model (whose electrode-gap position is 10 mm from the electrode center realizes a high sensitivity: 0.129 pF/° with a non-linearity of <0.4% FS (full scale of ±40°. This finding offers plenty of opportunities for various measurement requirements in addition to achieving an optimized structure in practical design.

  15. Analysis of a Segmented Annular Coplanar Capacitive Tilt Sensor with Increased Sensitivity.

    Guo, Jiahao; Hu, Pengcheng; Tan, Jiubin

    2016-01-21

    An investigation of a segmented annular coplanar capacitor is presented. We focus on its theoretical model, and a mathematical expression of the capacitance value is derived by solving a Laplace equation with Hankel transform. The finite element method is employed to verify the analytical result. Different control parameters are discussed, and each contribution to the capacitance value of the capacitor is obtained. On this basis, we analyze and optimize the structure parameters of a segmented coplanar capacitive tilt sensor, and three models with different positions of the electrode gap are fabricated and tested. The experimental result shows that the model (whose electrode-gap position is 10 mm from the electrode center) realizes a high sensitivity: 0.129 pF/° with a non-linearity of design.

  16. Annular linear induction pump with an externally supported duct

    1980-01-01

    An annular linear induction pump of increased efficiency is described, capable of being readily disassembled for repair or replacement of parts, and having one pass flow of the liquid metal through the pump. (U.K.)

  17. Deep Granuloma Annulare Mimicking Inflamed Cysts in a Teenager.

    Guo, Emily L; Degesys, Catherine A; Jahan-Tigh, Richard; Chan, Audrey

    2017-07-01

    We describe deep granuloma annulare (DGA) of the forehead mimicking inflamed cysts. Reactive inflammation and sterile purulent drainage may be an underrecognized feature of DGA. © 2017 Wiley Periodicals, Inc.

  18. Comprehensive School Reform: Meta-Analytic Evidence of Black-White Achievement Gap Narrowing Reforma escolar integral: Evidencias meta-analíticas de la disminución de la diferencia de la brecha de rendimiento entre alumnos blancos y negros

    Kevin M. Gorey

    2009-12-01

    Full Text Available This meta-analysis extends a previous review of the achievement effects of comprehensive school reform (CSR programs (Borman, Hewes, Overman, & Brown, 2003. That meta-analysis observed significant effects of well endowed and well-researched programs, but it did not account for race/ethnicity. This article synthesizes 34 cohort or quasi-experimental outcomes of studies that incorporated the policy-critical characteristic of race/ethnicity. Findings: compared with matched traditional schools, the black-white achievement gap narrowed significantly more among students in CSR schools. In addition, the aggregate effects were large, substantially to completely eliminating the achievement gap between African American and non-Hispanic white students in elementary and middle schools. Title I policies before or after the No Child Left Behind Act of 2001 seem to have had essentially no impact on the black-white achievement gap. Curricular and testing mandates along with the threat of sanctions without concomitant resource supports seem to have failed. This study suggests that educational achievement inequities need not be America’s destiny. It seems that they could be eliminated through concerted political will and ample resource commitments to evidence-based educational programs. Este meta-análisis extiende una revisión previa de los efectos de realización de programas de reforma escolar integral (RSI, (Borman, Hewes, Overman, & Brown, 2003. Esa meta-análisis observo efectos significativos de programas con buen financiamiento y debidamente investigados, pero no tomó en cuenta los factores raciales o étnicos. En este artículo se sintetizan 34 resultados de estudios de cohorte o cuasi-experimental que incorporaron la característica política esencial de raza/origen étnico. Resultados: en comparación con escuelas tradicionales, la brecha de rendimiento entre estudiantes blancos y negros se redujo significativamente mas en escuelas RSI. Adem

  19. Interfacial friction in low flowrate vertical annular flow

    Kelly, J.M.; Freitas, R.L.

    1993-01-01

    During boil-off and reflood transients in nuclear reactors, the core liquid inventory and inlet flowrate are largely determined by the interfacial friction in the reactor core. For these transients, annular flow occurs at relatively modest liquid flowrates and at the low heat fluxes typical of decay heat conditions. The resulting low vapor Reynolds numbers, are out of the data range used to develop the generally accepted interfacial friction relations for annular flow. In addition, most existing annular flow data comes from air/liquid adiabatic experiments with fully developed flows. By contrast, in a reactor core, the flow is continuously developing along the heated length as the vapor flowrate increases and the flow regimes evolve from bubbly to annular flow. Indeed, the entire annular flow regime may exist only over tens of L/D's. Despite these limitations, many of the advanced reactor safety analysis codes employ the Wallis model for interfacial friction in annular flow. Our analyses of the conditions existing at the end-of-reflood in the PERICLES tests have indicated that the Wallis model seriously underestimates the interfacial shear for low vapor velocity cocurrent upflow. To extend the annular flow data base to diabatic low flowrate conditions, the DADINE tests were re-analyzed. In these tests, both pressure drop and local cross-section averaged void fractions were measured. Thus, both the wall and interfacial shear can be deduced. Based on the results of this analysis, a new correlation is proposed for interfacial friction in annular flow. (authors). 5 figs., 12 refs

  20. Flow visualization study of post critical heat flux region for inverted bubbly, slug and annular flow regimes

    Denten, J.G.; Ishii, M.

    1988-11-01

    A visual study of film boiling using still photographic and high- speed motion picture methods was carried out in order to analyze the post-CHF hydrodynamics for steady-state inlet pre-CHF two-phase flow regimes. Pre-CHF two-phase flow regimes were established by introducing Freon 113 liquid and nitrogen gas into a jet core injection nozzle. An idealized, post-CHF two-phase core initial flow geometry (cylindrical multiphase jet core surrounded by a coaxial annulus of gas) was established at the nozzle exit by introducing nitrogen gas into the annular gap between the jet nozzle two-phase effluent and the heated test section inlet. For the present study three basic post-CHF flow regimes have been observed: the rough wavy regime (inverted annular flow preliminary break down), the agitated regime (transition between inverted annular and dispersed droplet flow), and the dispersed ligament/droplet regime. For pre-CHF bubbly flow in the jet nozzle, the post-CHF flow (beginning from jet nozzle exit/heated test section inlet) consists of the rough wavy regime, followed by the agitated and then the dispersed ligament/droplet regime. In the same way, for pre-CHF slug flow in the jet core, the post-CHF flow is comprised of the agitated regime at the nozzle exit, followed by the dispersed regime. Pre-CHF annular jet core flow results in a small, depleted post-CHF agitated flow regime at the nozzle exit, immediately followed by the dispersed ligament/droplet regime. Observed post dryout hydrodynamic behavior is reported, with particular attention given to the transition flow pattern between inverted annular and dispersed droplet flow. 43 refs., 20 figs., 5 tabs

  1. Magnetohydrodynamic instability in annular linear induction pump

    Araseki, Hideo; Kirillov, Igor R.; Preslitsky, Gennady V.; Ogorodnikov, Anatoly P.

    2006-01-01

    In the previous work, the authors showed some detailed aspects of the magnetohydrodynamic instability arising in an annular linear induction pump: the instability is accompanied with a low frequency pressure pulsation in the range of 0-10 Hz when the magnetic Reynolds number is larger than unity; the low frequency pressure pulsation is produced by the sodium vortices that come from some azimuthal non-uniformity of the applied magnetic field or of the sodium inlet velocity. In the present work, an experiment and a numerical analysis are carried out to verify the pump winding phase shift that is expected as an effective way to suppress the instability. The experimental data shows that the phase shift suppresses the instability unless the slip value is so high, but brings about a decrease of the developed pressure. The numerical results indicate that the phase shift causes a local decrease of the electromagnetic force, which results in the suppression of the instability and the decrease of the developed pressure. In addition, it is exhibited that the intensity of the double-supply-frequency pressure pulsation is in nearly the same level in the case with and without the phase shift

  2. Sonographic evaluation of digital annular pulley tears

    Martinoli, C.; Derchi, L.E.; Bianchi, S.; Garcia, J.F.; Nebiolo, M.

    2000-01-01

    Objective. To evaluate the sonographic (US) appearance of digital annular pulley (DAP) tears in high-level rock climbers. Design and patients. We performed a retrospective analysis of the US examinations of 16 high-level rock climbers with clinical signs of DAP lesions. MRI and surgical evaluation were performed in five and three patients respectively. The normal US and MRI appearances of DAP were evaluated in 40 and three normal fingers respectively. Results. Nine of 16 patients presented a DAP tear. In eight subjects (seven with complete tears involving the fourth finger and one the fifth finger), US diagnosis was based on the indirect sign of volar bowstringing of the flexor tendons. Injured pulleys were not appreciated by US. Tears concerned the A2 and A3 in six patients and the A3 and A4 in two patients. A2 pulley thickening and hypoechogenicity compatible with a partial tear was demonstrated in one patient. MRI and surgical data correlated well with the US findings. Four patients had tenosynovitis of the flexor tendons but no evidence of pulley disruption. US examinations of three patients were normal. In the healthy subjects US demonstrated DAP in 16 of 40 digits. Conclusion. US can diagnose DAP tears and correlates with the MRI and surgical data. Because of its low cost and non-invasiveness we suggest US as the first imaging modality in the evaluation of injuries of the digital pulley. (orig.)

  3. Sonographic evaluation of digital annular pulley tears

    Martinoli, C.; Derchi, L.E. [Istituto di Radiologia, Universita di Genova, Genoa (Italy); Bianchi, S.; Garcia, J.F. [Dept. de Radiologie, Hopital Cantonal Universitaire de Geneve (Switzerland); Nebiolo, M. [Reparto Pronto Soccorso Medico, Pietra Ligure (Italy)

    2000-07-01

    Objective. To evaluate the sonographic (US) appearance of digital annular pulley (DAP) tears in high-level rock climbers. Design and patients. We performed a retrospective analysis of the US examinations of 16 high-level rock climbers with clinical signs of DAP lesions. MRI and surgical evaluation were performed in five and three patients respectively. The normal US and MRI appearances of DAP were evaluated in 40 and three normal fingers respectively. Results. Nine of 16 patients presented a DAP tear. In eight subjects (seven with complete tears involving the fourth finger and one the fifth finger), US diagnosis was based on the indirect sign of volar bowstringing of the flexor tendons. Injured pulleys were not appreciated by US. Tears concerned the A2 and A3 in six patients and the A3 and A4 in two patients. A2 pulley thickening and hypoechogenicity compatible with a partial tear was demonstrated in one patient. MRI and surgical data correlated well with the US findings. Four patients had tenosynovitis of the flexor tendons but no evidence of pulley disruption. US examinations of three patients were normal. In the healthy subjects US demonstrated DAP in 16 of 40 digits. Conclusion. US can diagnose DAP tears and correlates with the MRI and surgical data. Because of its low cost and non-invasiveness we suggest US as the first imaging modality in the evaluation of injuries of the digital pulley. (orig.)

  4. Impulsively started, steady and pulsated annular inflows

    Abdel-Raouf, Emad [General Field Engineer, Halliburton Energy Services 719 Hangar Dr, New Iberia, LA 70560, United States of America (United States); Sharif, Muhammad A R; Baker, John, E-mail: abdelraouf.em@gmail.com, E-mail: msharif@eng.ua.edu, E-mail: john.baker@eng.ua.edu [Aerospace Engineering and Mechanics Department, The University of Alabama, Tuscaloosa, Alabama 35487, United States of America (United States)

    2017-04-15

    A computational investigation was carried out on low Reynolds number laminar inflow starting annular jets using multiple blocking ratios and atmospheric ambient conditions. The jet exit velocity conditions are imposed as steady, unit pulsed, and sinusoidal pulsed while the jet surroundings and the far-field jet inlet upstream conditions are left atmospheric. The reason is to examine the flow behavior in and around the jet inlet under these conditions. The pulsation mode behavior is analyzed based on the resultant of the momentum and pressure forces at the entry of the annulus, the circulation and vortex formation, and the propulsion efficiency of the inflow jets. The results show that under certain conditions, the net force of inflow jets (sinusoidal pulsed jets in particular) could point opposite to the flow direction due to the adverse pressure drops in the flow. The propulsion efficiency is also found to increase with pulsation frequency and the sinusoidal pulsed inflow jets are more efficient than the unit pulsed inflow jets. In addition, steady inflow jets did not trigger the formation of vortices, while unit and sinusoidal pulsed inflow jets triggered the formation of vortices under a certain range of frequencies. (paper)

  5. Parametric Investigation of Miniaturized Cylindrical and Annular Hall Thrusters

    Smirnov, A.; Raitses, Y.; Fisch, N.J.

    2002-01-01

    Conventional annular Hall thrusters become inefficient when scaled to low power. An alternative approach, a 2.6-cm miniaturized cylindrical Hall thruster with a cusp-type magnetic field distribution, was developed and studied. Its performance was compared to that of a conventional annular thruster of the same dimensions. The cylindrical thruster exhibits discharge characteristics similar to those of the annular thruster, but it has a much higher propellant ionization efficiency. Significantly, a large fraction of multi-charged xenon ions might be present in the outgoing ion flux generated by the cylindrical thruster. The operation of the cylindrical thruster is quieter than that of the annular thruster. The characteristic peak in the discharge current fluctuation spectrum at 50-60 kHz appears to be due to ionization instabilities. In the power range 50-300 W, the cylindrical and annular thrusters have comparable efficiencies (15-32%) and thrusts (2.5-12 mN). For the annular configuration, a voltage less than 200 V was not sufficient to sustain the discharge at low propellant flow rates. The cylindrical thruster can operate at voltages lower than 200 V, which suggests that a cylindrical thruster can be designed to operate at even smaller power

  6. Theoretical investigation of flow regime for boiling water two-phase flow in horizontal rectangular narrow channels

    Zhang Chunwei; Qiu Suizheng; Yan Mingyu; Wang Bulei; Nie Changhua

    2005-01-01

    The flow regime transition criteria for the boiling water two-phase flow in horizontal rectangular narrow channels (1 x 20 mm, 2 x 20 mm) were theoretically explored. The discernible flow patterns were bubble, intermittent slug, churn, annular and steam-water separation flow. By using two-fluid model, equations of conservation of momentum were established for the two-phase flow. New flow-regime criteria were obtained and agreed well with the experiment data. (authors)

  7. Globalization and the Gender Gap

    Oostendorp, R.H.

    2004-01-01

    There are several theoretical reasons why globalization will have a narrowing as well as a widening effect on the gender wage gap, but little is known about the actual impact, except for some country studies. This study contributes to the literature in three respects. First, it is a large

  8. Narrowing the gap: from semiconductor to semimetal in the homologous series of rare-earth zinc arsenides RE(2-y)Zn4As4·n(REAs) and Mn-substituted derivatives RE(2-y)Mn(x)Zn(4-x)As4·n(REAs) (RE = La-Nd, Sm, Gd).

    Lin, Xinsong; Tabassum, Danisa; Mar, Arthur

    2015-12-14

    A homologous series of ternary rare-earth zinc arsenides, prepared by reactions of the elements at 750 °C, has been identified with the formula RE(2-y)Zn4As4·n(REAs) (n = 2, 3, 4) for various RE members. They adopt trigonal structures: RE(4-y)Zn4As6 (RE = La-Nd), space group R3̄m1, Z = 3; RE(5-y)Zn4As7 (RE = Pr, Nd, Sm, Gd), space group P3̄m1, Z = 1; RE(6-y)Zn4As8 (RE = La-Nd, Sm, Gd), space group R3̄m1, Z = 3. The Zn atoms can be partially substituted by Mn atoms, resulting in quaternary derivatives RE(2-y)Mn(x)Zn(4-x)As4·n(REAs). Single-crystal structures were determined for nine ternary and quaternary arsenides RE(2-y)M4As4·n(REAs) (M = Mn, Zn) as representative examples of these series. The structures are built by stacking close-packed nets of As atoms, sometimes in very long sequences, with RE atoms occupying octahedral sites and M atoms occupying tetrahedral sites, resulting in an intergrowth of [REAs] and [M2As2] slabs. The recurring feature of all members of the homologous series is a sandwich of [M2As2]-[REAs]-[M2As2] slabs, while rocksalt-type blocks of [REAs] increase in thickness between these sandwiches with higher n. Similar to the previously known related homologous series REM(2-x)As2·n(REAs) which is deficient in M, this new series RE(2-y)M4As4·n(REAs) exhibits deficiencies in RE to reduce the electron excess that would be present in the fully stoichiometric formulas. Enthalpic and entropic factors are considered to account for the differences in site deficiencies in these two homologous series. Band structure calculations indicate that the semiconducting behaviour of the parent n = 0 member (with CaAl2Si2-type structure) gradually evolves, through a narrowing of the gap between valence and conduction bands, to semimetallic behaviour as the number of [REAs] blocks increases, to the limit of n = ∞ for rocksalt-type REAs.

  9. Analytical and experimental study of two concentric cylinders coupled by a fluid gap

    Mulcahy, T.M.; Turula, P.; Chung, H.; Jendrzejczyk, J.A.

    1975-04-01

    A breeder reactor vessel is a substantial steel cylinder which is partially protected from the nuclear reaction temperature by a relatively thin concentric shell separated from the vessel by a narrow fluid-filled gap. An experimental and analytical study of the vibration of a model of such a shell used in the Fast Test Reactor is described. The analytical work consists first using a free vibration solution of the shell in vacuum as a basis for extrapolating vibration behavior for the same shell with a fluid gap. Then a direct finite element solution is found for the actual problem--the shell and the fluid coupling it to the rigid outer container. All the finite element computations were carried out using the NASTRAN program. The experimental setup consisted of a steel sheet rolled and welded into a cylinder, free at the top edge and at the bottom soldered to a disc which in turn was bolted to a heavy base plate. The fluid gap was provided by using a thick concrete shell as the outer cylinder. A series of these cylinders was used to provide several sizes of annular gap. The case of the steel shell alone, without fluid, was also considered. The steel cylinder was vibrated by an electromagnetic exciter using both harmonic loading and random loading functions. In general, correspondence of experimental and analytical results is within acceptable limits; however, several vibration modes corresponding to solutions with low circumferential wave numbers were not detected experimentally. Response analysis performed to compare the response amplitude at various modes indicates that the intensity at the modes in question is very low. (U.S.)

  10. Public Perceptions of the Pay Gap

    Hill, Catherine; Silva, Elena

    2005-01-01

    Women have made gains toward closing the gender pay gap during the past two decades. Much of the progress occurred during the 1980s, with smaller gains in the 1990s (Institute for Women's Policy Research 2004). Women's achievements in higher education are partly responsible for narrowing the pay gap in the 1980s and 1990s. As more women earned…

  11. Dilute suspensions in annular shear flow under gravity: simulation and experiment

    Schröer Kevin

    2017-01-01

    Full Text Available A dilute suspension in annular shear flow under gravity was simulated using multi-particle collision dynamics (MPC and compared to experimental data. The focus of the analysis is the local particle velocity and density distribution under the influence of the rotational and gravitational forces. The results are further supported by a deterministic approximation of a single-particle trajectory and OpenFOAM CFD estimations of the overcritical frequency range. Good qualitative agreement is observed for single-particle trajectories between the statistical mean of MPC simulations and the deterministic approximation. Wall contact and detachment however occur earlier in the MPC simulation, which can be explained by the inherent thermal noise of the method. The multi-particle system is investigated at the point of highest particle accumulation that is found at 2/3 of the particle revolution, starting from the top of the annular gap. The combination of shear flow and a slowly rotating volumetric force leads to strong local accumulation in this section that increases the particle volume fraction from overall 0.7% to 4.7% at the outer boundary. MPC simulations and experimental observations agree well in terms of particle distribution and a close to linear velocity profile in radial direction.

  12. Feasibility Study on Dual-Cooled Annular Fuel for OPR-1000 Power Uprate

    Chun, Tae Hyun; In, Wang Kee; Oh, Dong Suck

    2010-04-01

    A dual-cooled annular fuel (DCAF) is a highly promising concept as a high power density fuel for PWR power-uprate. The purpose of this study is to assess a feasibility of 120% core power for OPR-1000 with the DCAF. So the feasibility study were done through the code establishments for annular fuel analysis, evaluations of core physics, thermal-hydraulics and safety analyses at a 120% power with OPR-1000 and the preliminary economic benefits of 20% power-uprate. As results of the analyses, DCAF at 120% power showed sufficient margins available on DNB, PCT and fuel pellet temperature relative to the solid fuel at 100% power. However, judging from an anticipated wide range of the gap conductance variation in inner and outer clearances as fuel burn-up in the reactor core, irradiation behavior of DCAF has to be observed through research reactor test. On the other hand, the nuclear physics parameters like moderator temperature coefficient, power coefficient and so on comply with the technical specifications. An impact of 20% power-uprate on NSSS and BOP was also investigated, and accordingly some components and parts need to be changed were identified. Moreover, the economical benefits from the power-uprate was roughly estimated. It turned out that the power-uprating with DCAF could give an enormous profit even considering the expenses of components and parts to be replaced, additional fuel cycle cost and extended overhaul period

  13. QSOs with narrow emission lines

    Baldwin, J.A.; Mcmahon, R.; Hazard, C.; Williams, R.E.

    1988-01-01

    Observations of two new high-redshift, narrow-lined QSOs (NLQSOs) are presented and discussed together with observations of similar objects reported in the literature. Gravitational lensing is ruled out as a possible means of amplifying the luminosity for one of these objects. It is found that the NLQSOs have broad bases on their emission lines as well as the prominent narrow cores which define this class. Thus, these are not pole-on QSOs. The FWHM of the emission lines fits onto the smoothly falling tail of the lower end of the line-width distribution for complete QSO samples. The equivalent widths of the combined broad and narrow components of the lines are normal for QSOs of the luminosity range under study. However, the NLQSOs do show ionization differences from broader-lined QSOs; most significant, the semiforbidden C III/C IV intensity ratio is unusually low. The N/C abundance ratio in these objects is found to be normal; the Al/C abundance ratio may be quite high. 38 references

  14. Vibration Analysis of Annular Sector Plates under Different Boundary Conditions

    Dongyan Shi

    2014-01-01

    Full Text Available An analytical framework is developed for the vibration analysis of annular sector plates with general elastic restraints along each edge of plates. Regardless of boundary conditions, the displacement solution is invariably expressed as a new form of trigonometric expansion with accelerated convergence. The expansion coefficients are treated as the generalized coordinates and determined using the Rayleigh-Ritz technique. This work allows a capability of modeling annular sector plates under a variety of boundary conditions and changing the boundary conditions as easily as modifying the material properties or dimensions of the plates. Of equal importance, the proposed approach is universally applicable to annular sector plates of any inclusion angles up to 2π. The reliability and accuracy of the current method are adequately validated through numerical examples.

  15. Gap Resolution

    2017-04-25

    Gap Resolution is a software package that was developed to improve Newbler genome assemblies by automating the closure of sequence gaps caused by repetitive regions in the DNA. This is done by performing the follow steps:1) Identify and distribute the data for each gap in sub-projects. 2) Assemble the data associated with each sub-project using a secondary assembler, such as Newbler or PGA. 3) Determine if any gaps are closed after reassembly, and either design fakes (consensus of closed gap) for those that closed or lab experiments for those that require additional data. The software requires as input a genome assembly produce by the Newbler assembler provided by Roche and 454 data containing paired-end reads.

  16. Patch Type Granuloma Annulare Imitating Cutaneous T-Cell Lymphoma

    Şeval Doğruk Kaçar

    2015-03-01

    Full Text Available Granuloma annulare (GA is a benign inflammatory skin disease with distinct clinical and histopathological findings. Patch type GA is described with erythematous patches beyond the classical clinical appearance and an interstitial pattern is observed without histopathologically granulomas with disseminated histiocytes among collagen bundles and vessels. Here we report 46 year old woman diagnosed as patch type GA after a punch biopsy performed from the annular bordered patches in belly area, which is a classical area for mycosis fungoides (MF evolution, and lesions increasingly spreading out within a 2 year period.

  17. Study on gas-liquid loop reactors with annular bubbling

    Fei, L.M.; Wang, S.X.; Wu, X.Q.; Lu, D.W.

    1987-01-01

    Bubbling column with draft tube is one of nearly developed reactor. On the background of hydrocarbon oxidations and biochemical engineerings, it has been widely used in chemical industry due to the well characteristics of mass and heat transfer. In this paper, the characteristics of fluid flow, such as gas hold-up, backmixing and mass transfer referred to the liquid volume were measured in a gas-liquid loop reactor with annular bubbling. Different materials - water, alcohol and oi l- were used in the study in measuring the gas hold-up in the annular of the reactor

  18. A void fraction model for annular two-phase flow

    Tandon, T.N.; Gupta, C.P.; Varma, H.K.

    1985-01-01

    An analytical model has been developed for predicting void fraction in two-phase annular flow. In the analysis, the Lockhart-Martinelli method has been used to calculate two-phase frictional pressure drop and von Karman's universal velocity profile is used to represent the velocity distribution in the annular liquid film. Void fractions predicted by the proposed model are generally in good agreement with a available experimental data. This model appears to be as good as Smith's correlation and better than the Wallis and Zivi correlations for computing void fraction.

  19. Mitral-aortic annular enlargement: modification of Manouguian's technique

    Costa Mario Gesteira

    2002-01-01

    Full Text Available We hereby present a technical modification for mitral-aortic annular enlargement. The mitral valve is replaced through the retro-septal approach, avoiding patches for left atrial roof closure. We report a mitral-aortic valve replacement in a patient whose original annuli would preclude adequate prostheses. The simultaneous annular enlargement may be necessary for avoiding patient-prosthesis mismatch and for reconstructing destroyed mitral and aortic annuli. The technique may minimize the risk of bleeding and of paravalvular leakage, using an approach well known to cardiac surgeons.

  20. Preliminary assessment of the thermal effects of an annular air space surrounding an emplaced nuclear waste canister

    Davis, B.W.

    1979-01-01

    Modeling results have previously shown that the presence of a large air space (e.g., a repository room) within a nuclear waste repository is expected to cause a waste canister's temperature to remain cooler than it would otherwise be. Results presented herein show that an annular air space surrounding the waste canisters can have similar cooling effects under certain prescribable conditions; for a 16 ft x 1 ft diameter canister containing 650 PWR rods which initially generate a total of 4.61 kw, analysis will show that annular air spaces greater than 11 in will permit the canister surface to attain peak temperatures lower than that which would result from a zero-gap/perfect thermal contact. It was determined that the peak radial temperature gradient in the salt varies in proportion to the inverse of the drill hole radius. Thermal radiation is shown to be the dominant mode of heat transfer across an annular air space during the first two years after emplacement. Finally, a methodology is presented which will allow investigators to easily model radiation and convection heat transfer through air spaces by treating the space as a conduction element that possesses non-linear temperature dependent conductivity

  1. Critical heat flux and flow pattern for water flow in annular geometry

    Park, Jae Wook; Baek, Won Pil; Chang, Soon Heung

    1996-01-01

    An experimental study on critical heat flux (CHF) and two-phase flow visualization has been performed for water flow in internally-heated, vertical, concentric annuli under near atmospheric pressure. Tests have been done under stable forced-circulation, upward and downward flow conditions with three test sections of relatively large gap widths (heated length = 0.6 m, inner diameter = 19 mm, outer diameter = 29, 35 and 51 mm). The outer wall of the test section was made up of the transparent Pyrex tube to allow the observation of flow patterns near the CHF occurrence. The CHF mechanism was changed in the order of flooding, churn-to-annular flow transition, and local dryout under a large bubble in churn flow as the flow rate was increased from zero to higher values. Observed parametric trends are consistent with the previous understanding except that the CHF for downward flow is considerably lower than that for upward flow

  2. Heat-and-mass transfer during a laminar dissociating gas flow in eccentric annular channels

    Besedina, T.V.; Udot, A.V.; Yakushev, A.P.

    1987-01-01

    An algorithm to calculate heat-and-mass transfer processes during dissociating gas laminar flow in an eccentric annular channels is considered. Analytical solutions of the heat transfer equations for a rod clodding and gap with boundary conditions of conjugation of temperatures and heat fluxes have been used to determine temperature field. This has made it possible to proceed from slution of the conjugate problem to solution of the equation of energy only for the coolant. The results of calculation of temperature distribution along the cladding for different values of its eccentricity and thermal conductivity coefficient both for the case of frozen flow and in the presence of chemical reactions in the flow are given. When calculating temperatures with conjugation boundary conditions temperature gradients in azimuthal direction are far less and heat transfer in concentration diffusion is carried out mainly in radial direction

  3. Gap Junctions

    Nielsen, Morten Schak; Axelsen, Lene Nygaard; Sorgen, Paul L.; Verma, Vandana; Delmar, Mario; Holstein-Rathlou, Niels-Henrik

    2013-01-01

    Gap junctions are essential to the function of multicellular animals, which require a high degree of coordination between cells. In vertebrates, gap junctions comprise connexins and currently 21 connexins are known in humans. The functions of gap junctions are highly diverse and include exchange of metabolites and electrical signals between cells, as well as functions, which are apparently unrelated to intercellular communication. Given the diversity of gap junction physiology, regulation of gap junction activity is complex. The structure of the various connexins is known to some extent; and structural rearrangements and intramolecular interactions are important for regulation of channel function. Intercellular coupling is further regulated by the number and activity of channels present in gap junctional plaques. The number of connexins in cell-cell channels is regulated by controlling transcription, translation, trafficking, and degradation; and all of these processes are under strict control. Once in the membrane, channel activity is determined by the conductive properties of the connexin involved, which can be regulated by voltage and chemical gating, as well as a large number of posttranslational modifications. The aim of the present article is to review our current knowledge on the structure, regulation, function, and pharmacology of gap junctions. This will be supported by examples of how different connexins and their regulation act in concert to achieve appropriate physiological control, and how disturbances of connexin function can lead to disease. © 2012 American Physiological Society. Compr Physiol 2:1981-2035, 2012. PMID:23723031

  4. Upgrade of the Annular Core Pulse Reactor

    Reuscher, J A [Sandia Laboratories, Albuquerque, NM (United States)

    1976-07-01

    The Annular Core Pulse Reactor (ACPR) is a TRIGA type reactor which has been in operation at Sandia Laboratories since 1967. The reactor is utilized in a wide variety of experimental programs which include radiation effects, neutron radiography, activation analysis, and fast reactor safety. During the past two years, the ACPR has become an important experimental facility for the United States Fast Reactor Safety Research Program and questions of interest to the safety of the LMFBR are being addressed. In order to enhance the capabilities of the ACPR for reactor safety experiments, a project to improve the performance of the reactor was initiated. It is anticipated that the pulse fluence can be increased by a factor of 2.0 to 2.5 by utilizing a two-region core concept with high heat capacity fuel elements around the central irradiation cavity. In addition, the steady-state power of the reactor will be increased by about a factor of two. Preliminary studies have identified several potential approaches to the ACPR performance improvement. The most promising approach appears to be the two-region core concept. The inner region, surrounding the irradiation cavity, would consist of a high-heat capacity fuel capable of absorbing the fission energy associated with a large nuclear pulse. The number of fissions occurring near the cavity would be greatly increased which, in turn, would significantly increase the fluence in the cavity. The outer region would consist of a U-ZrH fuel to provide an overall negative temperature coefficient for the two region core. Two candidate high heat capacity fuels [(BeO-UO{sub 2} and UC-ZrC) - graphite] are under consideration. Since this reactor upgrade represents a modification to an existing facility, it can be achieved in a relatively short time. It is anticipated that most of the existing reactor structure can be used for the upgrade. The present core occupies about one-half of the location in the grid plate. The high-heat capacity fuel

  5. The influence of thickness and viscosity of liquid annular layer on dynamic behavior of cylindrical shell

    Kuzelka, V.; Neuman, F.; Pecinka, L.

    1983-01-01

    This paper presents the results of experiments concerning the influence of thickness and viscosity of inner and outer annular layers of a liquid on the dynamic behaviour of a cylindrical shell, and a mathematical model of the problem based on acoustic approach is formulated to compare experimental and theoretical results. The measurements of natural frequencies and of damping ratios of a cylindrical shell were carried out with water and with two kinds of mineral oils of different viscosities. The results point towards the fact that with a decreasing thickness of the liquid layer the influence of the added liquid mass increases and the frequency drop is higher. On the other hand there is a certain relative magnitude of the surrounding medium at which the system behaves as an unlimited one. This magnitude depends on the mode order. The statement that the lesser is the thickness of the annular liquid layer the more important is its influence and the larger is the added liquid mass holds up to a certain thickness of the gap, comparable with the thickness of the thin liquid layer on the surface of the shell in which there has not yet been formed a transverse wave. The flowing in this layer is not potential. The governing equation for the description of this problem then is not Euler equation but Stokes's and Helmholtz's theorems for whirling motion. The thickness of the surface layer depends on the viscosity of the liquid. The frequencies measured for the least gap for water were well identified, while for both the mineral oils were chaotical, without any conspicuous resonances. (orig./GL)

  6. Mythic gaps

    William Hansen

    2014-11-01

    Full Text Available Different kinds of omissions sometimes occur, or are perceived to occur, in traditional narratives and in tradition-inspired literature. A familiar instance is when a narrator realizes that he or she does not fully remember the story that he or she has begun to tell, and so leaves out part of it, which for listeners may possibly result in an unintelligible narrative. But many instances of narrative gap are not so obvious. From straightforward, objective gaps one can distinguish less-obvious subjective gaps: in many cases narrators do not leave out anything crucial or truly relevant from their exposition, and yet readers perceive gaps and take steps to fill them. The present paper considers four examples of subjective gaps drawn from ancient Greek literature (the Pandora myth, ancient Roman literature (the Pygmalion legend, ancient Hebrew literature (the Joseph legend, and early Christian literature (the Jesus legend. I consider the quite varied ways in which interpreters expand the inherited texts of these stories, such as by devising names, manufacturing motives, creating backstories, and in general filling in biographical ellipses. Finally, I suggest an explanation for the phenomenon of subjective gaps, arguing that, despite their variety, they have a single cause.

  7. Flow of viscoplastic fluids in eccentric annular geometries

    Szabo, Peter; Hassager, Ole

    1992-01-01

    A classification of flowfields for the flow of a Bingham fluid in general eccentric annular geometries is presented. Simple arguments show that a singularity can exist in the stress gradient on boundaries between zones with yielded and un-yielded fluid respectively. A Finite Element code is used...

  8. Localized granuloma annulare and autoimmune thyroiditis in a ...

    The association of granuloma annulare (GA) and autoimmune thyroiditis has been documented in the literature in 13 previous cases. However, the pathogenesis of GA remains obscure. Possible pathogenetic factors suggested include: humoral and delayed type hypersensitivity, vascular damage, metabolic disorder, or, ...

  9. Design and simulation of double annular illumination mode for microlithography

    Song, Qiang; Zhu, Jing; Yang, Baoxi; Liu, Lei; Wang, Jun; Huang, Huijie

    2013-08-01

    Methods of generating various illumination patterns remain as an attractive and important micro-optics research area for the development of resolution enhancement in advanced lithography system. In the current illumination system of lithography machine, off-axis illumination is widely used as an effective approach to enhance the resolution and increase the depth of focus (DOF). This paper proposes a novel illumination mode generation unit, which transform conventional mode to double annular shaped radial polarized (DARP) mode for improving the resolution of micro-lithography. Through LightToolsTM software simulation, double annular shaped mode is obtained from the proposed generation unit. The mathematical expressions of the radius variation of inner and outer rings are deduced. The impacts of conventional and dual concentric annular illumination pattern on critical dimension uniformity were simulated on an isolated line, square hole and corner. Lithography performance was compared between DARP illumination mode and corresponding single annular modes under critical dimension of 45nm. As a result, DARP illumination mode can improve the uniformity of aerial image at 45nm node through pitch varied in 300-500 nm to a certain extent.

  10. Imaging characteristics of Zernike and annular polynomial aberrations.

    Mahajan, Virendra N; Díaz, José Antonio

    2013-04-01

    The general equations for the point-spread function (PSF) and optical transfer function (OTF) are given for any pupil shape, and they are applied to optical imaging systems with circular and annular pupils. The symmetry properties of the PSF, the real and imaginary parts of the OTF, and the modulation transfer function (MTF) of a system with a circular pupil aberrated by a Zernike circle polynomial aberration are derived. The interferograms and PSFs are illustrated for some typical polynomial aberrations with a sigma value of one wave, and 3D PSFs and MTFs are shown for 0.1 wave. The Strehl ratio is also calculated for polynomial aberrations with a sigma value of 0.1 wave, and shown to be well estimated from the sigma value. The numerical results are compared with the corresponding results in the literature. Because of the same angular dependence of the corresponding annular and circle polynomial aberrations, the symmetry properties of systems with annular pupils aberrated by an annular polynomial aberration are the same as those for a circular pupil aberrated by a corresponding circle polynomial aberration. They are also illustrated with numerical examples.

  11. Adjoint Optimisation of the Turbulent Flow in an Annular Diffuser

    Gotfredsen, Erik; Agular Knudsen, Christian; Kunoy, Jens Dahl

    2017-01-01

    In the present study, a numerical optimisation of guide vanes in an annular diffuser, is performed. The optimisation is preformed for the purpose of improving the following two parameters simultaneously; the first parameter is the uniformity perpen-dicular to the flow direction, a 1/3 diameter do...

  12. Thermal Hydraulic Analysis Of Thorium-Based Annular Fuel Assemblies

    Han, Kyu Hyun [Korea Institute of Nuclear Safety, 19, Guseong-dong, Yuseong-gu, Daejeon, 305-338 (Korea, Republic of)

    2008-07-01

    Thermal hydraulic characteristics of thorium-based fuel assemblies loaded with annular seed pins have been analyzed using AMAP combined with MATRA, and compared with those of the existing thorium-based assemblies. MATRA and AMAP showed good agreements for the pressure drops at the internal sub-channels. The pressure drop generally increased in the cases of the assemblies loaded with annular seed pins due to the larger wetted perimeter, but an exception existed. In the inner sub-channels of the seed pins, mass fluxes were high due to the grid form losses in the outer sub-channels. About 43% of the heat generated from the seed pin flowed into the inner sub-channel and the rest into the outer sub-channel, which implies the inner to outer wall heat flux ratio was approximately 1.2. The maximum temperatures of the annular seed pins were slightly above 500 deg. C. The MDNBRs of the assemblies loaded with annular seed pins were higher than those of the existing assemblies. Due to the fact that inter-channel mixing cannot occur in the inner sub-channels, temperatures and enthalpies were higher in the inner sub-channels. (author)

  13. A simulation of the temperature overshoot observed at high burnup in annular fuel pellets

    Baron, D.; Couty, J.C.

    1997-01-01

    Instrumented experiments have been carried out in recent years to calibrate and improve temperature calculations at high burnup in PWR nuclear fuel rods. The introduction of a thermocouple in the fuel stack allows the experiment to record the centre-line temperature all along the irradiation or re-irradiation. The results obtained on fresh fuel have not revealed any abnormal behavior as have observations done on high burnup rods. In this case, a sudden overshoot has been recorded on the thermocouple temperature above an average power threshold. Several hypotheses have been suggested. Only two seem to be acceptable: one in relation to an effect of grain decohesion, another based on a modification of fuel chemistry. The apparent reversibility of the phenomena when power decreases led us to prefer the first explanation. Indeed, the introduction of a thermocouple means that annular fuel pellets must be used. These are either initially manufactured with a central hole or drilled after base irradiation, using the ''RISOE'' technique. One must bear in mind that the use of such annular pellets drastically changes the crack pattern as irradiation proceeds. This is due to a different stress field which, combined with a weakening of the grain binding energy, leads to a partial grain decohesion on the inner face of the annular pellet. Modification of the grain binding energy is related to the presence of an increasing local population of gas bubbles and metallic precipitates at grain boundaries, as swelling creates intergranular local stresses which also could probably enhance the grain decohesion process. This grain decohesion concerns a 250 to 350 μm depth and shows a narrow cracks network through which released fission gas can flow, temporarily pushing the resident helium gas out. The low conductivity of these gaseous fission products and the numerous gas layers created this way could partly explain the unexpected temperatures measured in high burnup fuels. The purpose of

  14. Impedance of an annular-cathode indented-anode electron diode terminating a coaxial magnetically insulated transmission line

    Sanford, T.W.L.; Poukey, J.W.; Wright, T.P.; Bailey, J.; Heath, C.E.; Mock, R.; Spence, P.W.; Fockler, J.; Kishi, H.

    1988-01-01

    The impedance of a diode having an annular cathode and indented anode that terminates a coaxial MITL (magnetically insulated transmission line) is measured and compared with a semiempirical model developed from calculations made using the magIc code. The measurements were made on the 16-Ω electron accelerator HELIA (high-energy linear induction accelerator) operating at 3 MV. The model agrees with the measurements within the 10% measuring error and shows that the diode operates in either a load- or line-dominated regime depending on AK (anode-cathode) gap spacing. In the load-dominated regime, which corresponds to small AK gaps, the diode impedance is controlled by an effective anode-cathode gap, and the flow is approximately axial. In the line-dominated regime, which corresponds to large AK gaps, the impedance is independent of the AK gap and corresponds to the impedance associated with the minimum current solution of the MITL, with the flow becoming more radial as the AK gap is increased

  15. Experiment on transient heat transfer in closed narrow channel

    Ochiai, Masaaki

    1985-01-01

    Heat transfer coefficients and transient pressures in closed narrow channels were obtained experimentally, in order to assess the gap heat transfer models in the computer code WTRLGD which were devised to analyze the internal pressure behavior of waterlogged fuel rods. Gap widths of channels are 0.1--0.5mm to simulate the gap region of waterlogged fuel rods, and test fluids are water (7--89.2 0 C) and Freon-113 (9.2 0 C). The results show that the heater temperature and the pressure measured in the experiments without the DNB occurrence are simulated fairly well by the calculational model of WTRLGD where the heat transfer in a closed narrow channel is evaluated with one-dimensional transient thermal conduction equation and Jens and Lottes' correlation for nucleate boiling. Consequently, it is also suggested that the above equations are available for evaluation of heat flux from fuel to internal water of waterlogged fuel rods. The film boiling heat transfer coefficient was in the same order of that evaluated by Bromley's correlation and the DNB heat flux was smaller than that obtained in quasi-steady experiments with ordinary systems, although the experimental data for them were not enough. (author)

  16. Fully developed natural convection heat and mass transfer in a vertical annular porous medium with asymmetric wall temperatures and concentrations

    Cheng, C.-Y.

    2006-01-01

    This work examines the effects of the modified Darcy number, the buoyancy ratio and the inner radius-gap ratio on the fully developed natural convection heat and mass transfer in a vertical annular non-Darcy porous medium with asymmetric wall temperatures and concentrations. The exact solutions for the important characteristics of fluid flow, heat transfer, and mass transfer are derived by using a non-Darcy flow model. The modified Darcy number is related to the flow resistance of the porous matrix. For the free convection heat and mass transfer in an annular duct filled with porous media, increasing the modified Darcy number tends to increase the volume flow rate, total heat rate added to the fluid, and the total species rate added to the fluid. Moreover, an increase in the buoyancy ratio or in the inner radius-gap ratio leads to an increase in the volume flow rate, the total heat rate added to the fluid, and the total species rate added to the fluid

  17. Dust Evolution Can Produce Scattered Light Gaps in Protoplanetary Disks

    Birnstiel, Tilman; Andrews, Sean M.; Pinilla, Paola; Kama, Mihkel

    2015-01-01

    Recent imaging of protoplanetary disks with high resolution and contrast have revealed a striking variety of substructure. Of particular interest are cases where near-infrared scattered light images show evidence for low-intensity annular "gaps." The origins of such structures are still uncertain, but the interaction of the gas disk with planets is a common interpretation. We study the impact that the evolution of the solid material can have on the observable properties of disks in a simple s...

  18. Annular electron beam production on gamble II using a magnetically insulated splitter

    Oliphant, W.F.; Barker, R.J.; Boller, J.R.; Cooperstein, G.; Goldstein, S.A.; Stephanakis, S.J.

    1983-01-01

    Annular electron beams have been tested using a post-hole convolute or magnetically insulated splitter (MIS) to feed current to both sides of a ring cathode. Beams were produced on the BLACKJACK 3 generator using a coaxial feed and from BLACKJACK 5 with a triplate feed. On BLACKJACK 3, annular cathodes with 5 cm and 10 cm mean diameters were tested. The cathodes were fed in four places by a MIS. The cathodes were 1.2 cm wide made from stainless steel or brass. Typical anode/cathode gap spacings were 0.6 cm. Experiments were performed at power levels of about 0.6 TW and energies of 30-40 kJ. Typical voltages were 0:6-1 MV with currents of about 0.8 MA. Diagnostics were diode voltage, diode current, and an X-ray pinhole camera. For the 10 cm cathode, current was measured before and after the MIS. The current on each side of the ring was measured separately. The beam voltage was determined from the diode voltage by an inductive correction. The annular beams had a linear current density of about 30 kA/cm and about 60 kA/cm for the 10 cm and 5 cm, respectively. The beam diameter at the cathode could be varied by changing the inductance on each side of the ring cathode and thereby the current balance. The impedance behavior could be modeled using the critical current formulation with a closure velocity of 3.5-4.5 cm/us. The BLACKJACK 5 geometry was a triplate feed. The ring cathode was fed by generators of 0.5 and 0.75 Ω, respectively. The MIS was used to combine the power before the cathode. The cathode had a mean diameter of 25 cm and width of 1.5-3 cm. Experiments were performed at power levels up to about6 TW and energies greater than or equal to200 kJ. Typical operating parameters were about 2 MV and 3 MA

  19. High Thrust-to-Power Annular Engine Technology

    Patterson, Michael J.; Thomas, Robert E.; Crofton, Mark W.; Young, Jason A.; Foster, John E.

    2015-01-01

    Gridded ion engines have the highest efficiency and total impulse of any mature electric propulsion technology, and have been successfully implemented for primary propulsion in both geocentric and heliocentric environments with excellent ground/in-space correlation of performance. However, they have not been optimized to maximize thrust-to-power, an important parameter for Earth orbit transfer applications. This publication discusses technology development work intended to maximize this parameter. These activities include investigating the capabilities of a non-conventional design approach, the annular engine, which has the potential of exceeding the thrust-to-power of other EP technologies. This publication discusses the status of this work, including the fabrication and initial tests of a large-area annular engine. This work is being conducted in collaboration among NASA Glenn Research Center, The Aerospace Corporation, and the University of Michigan.

  20. Sodium flow rate measurement method of annular linear induction pump

    Araseki, Hideo

    2011-01-01

    This report describes a method for measuring sodium flow rate of annular linear induction pumps arranged in parallel and its verification result obtained through an experiment and a numerical analysis. In the method, the leaked magnetic field is measured with measuring coils at the stator end on the outlet side and is correlated with the sodium flow rate. The experimental data and the numerical result indicate that the leaked magnetic field at the stator edge keeps almost constant when the sodium flow rate changes and that the leaked magnetic field change arising from the flow rate change is small compared with the overall leaked magnetic field. It is shown that the correlation between the leaked magnetic field and the sodium flow rate is almost linear due to this feature of the leaked magnetic field, which indicates the applicability of the method to small-scale annular linear induction pumps. (author)

  1. Optical description and design method with annularly stitched aspheric surface.

    Cheng, De-Wen; Chen, Xue-Jiao; Xu, Chen; Hu, Yuan; Wang, Yong-Tian

    2015-12-01

    The relentless pressure for designs with new optical functions, small volume, and light weight has greatly increased the importance of aspheric surfaces. In this paper, we propose an annularly stitched aspheric surface (ASAS) description method to increase the freedom and flexibility of imaging system design. The rotationally symmetric ASAS consists of a circular central zone and one or more annular zones. Two neighboring zones are constrained to have the same derivatives on their joint curve, and this means the ASAS is C1 continuous. This finding is proved and verified by the mathematical deduction of the surface formulas. Two optimization strategies and two design methods with the C1 continuous constraints are also discussed. This surface can greatly facilitate the design and even achieve some previously impossible designs without increasing the fabrication difficulty. Two different systems with the proposed ASAS are optimized and the results are presented. The design results verified the practicability of the ASAS.

  2. Development of annular targets for 99Mo production

    Conner, C.; Lewandowski, E.F.; Snelgrove, J.L.; Liberatore, M.W.; Walker, D.E.; Wiencek, T.C.; McGann, D.J.; Hofman, G.L.; Vandegrift, G.F.

    1999-01-01

    During 1999, significant progress was made in the development of a low-enriched uranium (LEU) target for production of 99 Mo. Successful conversion requires an inexpensive, reliable target. To keep the target geometry the same when changing from high-enriched uranium (HEU) to LEU targets, a denser form of uranium is required in order to increase the amount of uranium per target by a factor of approximately five. Targets containing LEU in the form of a metal foil are being developed for producing 99 Mo from the fissioning of 235 U. A new annular target was developed this year, and seven targets were irradiated in the Indonesian RSG-GAS reactor. Results of development of this annular target and its performance during irradiation are described. (author)

  3. Hydrodynamics of adiabatic inverted annular flow: an experimental study

    De Jarlais, G.; Ishii, M.

    1983-01-01

    For low-quality film boiling in tubes or rod bundles, the flow pattern may consist of a liquid jet-like core surrounded by a vapor annulus, i.e., inverted annular flow. The stability, shape, and break-up mechanisms of this liquid core must be understood in order to model correctly this regime and to develop appropriate interfacial transfer correlations. This paper reports on a study in which inverted annular flow was simulated in an adiabatic system. Turbulent water jets, issuing downward from long-aspect nozzles were enclosed within cocurrent gas annuli. Jet-core diameter and velocity, and gas-annulus diameter, velocity, and species were varied, yielding liquid Reynolds numbers up to 33,000, void fractions from 0.29 to 0.95, and relative velocities from near zero to over 80 m/s. Jet-core break-up lengths and secondarily, core break-up mechanisms, were observed visually, using strobe lighting

  4. Hydrodynamic stability of inverted annular flow in an adiabatic simulation

    De Jarlais, G.; Ishii, M.; Linehan, J.

    1986-01-01

    Inverted annular flow was simulated adiabatically with turbulent water jets, issuing downward from large aspect ratio nozzles, enclosed in gas annuli. Velocities, diameters, and gas species were varied, and core jet length, shape, breakup mode, and dispersed core droplet sizes were recorded at approximately 750 data points. Inverted annular flow destabilization led to inverted slug flow at low relative velocities, and to dispersed droplet flow, core breakup length correlations were developed by extending work on free liquid jets to include this coaxial, jet disintegration phenomenon. The results show length dependence upon D/sub J/, Re/sub J/, We/sub J/, α, and We/sub G/,rel. Correlations for core shape, breakup mechanisms, and dispersed core droplet size were also developed, by extending the results of free jet stability, roll wave entrainment, and churn turbulent droplet stability studies

  5. Supercritical heat transfer in an annular channel with external heating

    Remizov, O.V.; Gal'chenko, Eh.F.; Shurkin, N.G.; Sergeev, V.V.

    1980-01-01

    Results are presented of experimental studies of the burnout heat transfer in a 32x28x3000 mm annular channel with a uniform distribution of a heat flow at pressures of 6.9-19.6 MPa and mass rates of 350-1000 kg/m 2 xs. The heating is electrical, external, one-sided. It is shown that dependencies of the heat-transfer coefficient on rated parameters in the annular channel and tube are similar. An empirical equation has been obtained for the calculation of the burnout heat transfer in the annual channels with external heating in the following range: pressure, 6.9 -13.7 MPa; mass rate 350-700 kg/m 2 xs, and steam content ranging from Xsub(crit) to 1

  6. Temperature Calculation of Annular Fuel Pellet by Finite Difference Method

    Yang, Yong Sik; Bang, Je Geon; Kim, Dae Ho; Kim, Sun Ki; Lim, Ik Sung; Song, Kun Woo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2009-10-15

    KAERI has started an innovative fuel development project for applying dual-cooled annular fuel to existing PWR reactor. In fuel design, fuel temperature is the most important factor which can affect nuclear fuel integrity and safety. Many models and methodologies, which can calculate temperature distribution in a fuel pellet have been proposed. However, due to the geometrical characteristics and cooling condition differences between existing solid type fuel and dual-cooled annular fuel, current fuel temperature calculation models can not be applied directly. Therefore, the new heat conduction model of fuel pellet was established. In general, fuel pellet temperature is calculated by FDM(Finite Difference Method) or FEM(Finite Element Method), because, temperature dependency of fuel thermal conductivity and spatial dependency heat generation in the pellet due to the self-shielding should be considered. In our study, FDM is adopted due to high exactness and short calculation time.

  7. Omnidirectional narrow optical filters for circularly polarized light in a nanocomposite structurally chiral medium.

    Avendaño, Carlos G; Palomares, Laura O

    2018-04-20

    We consider the propagation of electromagnetic waves throughout a nanocomposite structurally chiral medium consisting of metallic nanoballs randomly dispersed in a structurally chiral material whose dielectric properties can be represented by a resonant effective uniaxial tensor. It is found that an omnidirectional narrow pass band and two omnidirectional narrow band gaps are created in the blue optical spectrum for right and left circularly polarized light, as well as narrow reflection bands for right circularly polarized light that can be controlled by varying the light incidence angle and the filling fraction of metallic inclusions.

  8. Bridging the Civil Military Gap Capitalizing on Crisis

    2002-01-01

    solutions. Researchers identifying the sources of the gap discussed above, have also suggested some methods for reducing the gap . While some are policy...Strategy Research Project DATE: 09 April 2002 PAGES: 42 CLASSIFICATION: Unclassified Researchers have identified a "civil-military gap ," an observable...would indicate a desire by the civilian populous to draw closer to the military, creating an opportunity to close or at least narrow this gap . The media

  9. Thermohydraulic analysis of smooth and finned annular ducts

    Braga, C.V.M.

    1987-01-01

    The present work is concerned with the turbulent heat transfer and pressure drop in smooth and finned annular ducts overage heat transfer coefficients have been obtained by means of the heat exchanger theory. In addition, friction factors have also been determined. The experiments were performed by utilizing four double-pipe heat exchangers. The flowing fluids, in the heat exchangers, were air and water. The average heat transfer coefficients, for air flowing in the annular section, were determined by measuring the overall heat transfer coefficients of the heat exchangers. In order to attain fully developed conditions, the heat exchangers had a starting length of 30 hydraulic diameters. The thermal boundary conditions consisted of uniform temperature on the inner surface, the outer surface being insulated. The heat transfer coefficients and friction factors are presented in dimensionaless forms, as functions of the Reynolds number of the flow. The results for the smooth and finned annular ducts were compared. The purpose of such comparison was to study the influence of the fins on the pressure drop and heat transfer rate. In the case of the finned nular ducts, it is shown that the fin efficiency has some fluence on the heat transfer rates. The, a two-dimensional at transfer analysis was performed in order to obtain the n efficiency and the annular region efficiency. It is also shown that the overall thermal performance of finned surfaces epends mainly on the Nusselt number and on the region eficiency. These parameters are presented as functions of the Reynolds number of the flow and the geometry of the problem. (author) [pt

  10. Modelling of Zirconium and Hafnium separation using continuous annular chromatography

    Moch-Setyadji; Endang Susiantini

    2014-01-01

    Nuclear degrees of zirconium in the form of a metal alloy is the main material for fuel cladding of NPP. Zirconium is also used as sheathing UO 2 kernel in the form of ZrC as a substitute of SiC in the fuel elements of High Temperature Reactor (HTR). Difficulty separating hafnium from zirconium because it has a lot of similarities in the chemical properties of Zr and Hf. Annular chromatography is a device that can be used for separating of zirconium and hafnium to obtain zirconium nuclear grade. Therefore, it is necessary to construct the mathematical modelling that can describe the separation of zirconium and hafnium in the annular chromatography containing anion resin dowex-1X8. The aim of research is to perform separation simulation by using the equilibrium model and mass transfer coefficient resulted from research. Zr and Hf feed used in this research were 26 and 1 g/l, respectively. Height of resin (L), angular velocity (ω) and the superficial flow rate (uz) was varied to determine the effect of each parameter on the separation of Zr and Hf. By using Kd and Dv values resulted previous research. Simulation results showed that zirconium and hafnium can be separated using a continuous annular chromatography with high resin (long bed) 50 cm, superficial flow rate of 0.001 cm/s, the rotation speed of 0.006 rad/min and 20 cm diameter annular. In these conditions the results obtained zirconium concentration of 10,303.226 g/m 3 and hafnium concentration of 12.324 g/m 3 (ppm). (author)

  11. Numerical Study of Transition of an Annular Lift Fan Aircraft

    Yun Jiang; Bo Zhang

    2016-01-01

    The present study aimed at studying the transition of annular lift fan aircraft through computational fluid dynamics (CFD) simulations. The oscillations of lift and drag, the optimization for the figure of merit, and the characteristics of drag, yawing, rolling and pitching moments in transition are studied. The results show that a two-stage upper and lower fan lift system can generate oscillations of lift and drag in transition, while a single-stage inner and outer fan lift system can elimin...

  12. Excitational metamorphosis of surface flowfield under an impinging annular jet

    Tesař, Václav; Trávníček, Zdeněk

    2008-01-01

    Roč. 144, č. 2 (2008), s. 312-316 ISSN 1385-8947 R&D Projects: GA ČR GA101/07/1499; GA AV ČR IAA200760705 Institutional research plan: CEZ:AV0Z20760514 Keywords : jets * impinging jets * flow topology * annular jets * stagnation points Subject RIV: BK - Fluid Dynamics Impact factor: 2.813, year: 2008 http://www.sciencedirect.com/

  13. Thermo hydraulic analysis of narrow channel effect in supercritical-pressure light water reactor

    Zhou Tao; Chen Juan; Cheng Wanxu

    2012-01-01

    Highlights: ► Detailed thermal analysis with different narrow gaps between fuel rods is given. ► Special characteristics of narrow channels effect on heat transfer in supercritical pressure are shown. ► Reasonable size selection of gaps between fuel rods is proposed for SCWR. - Abstract: The size of the gap between fuel rods has important effects on flow and heat transfer in a supercritical-pressure light water reactor. Based on thermal analysis at different coolant flow rates, the reasonable value range of gap size between fuel rods is obtained, for which the maximum cladding temperature safety limits and installation technology are comprehensively considered. Firstly, for a given design flow rate of coolant, thermal hydraulic analysis of supercritical pressure light water reactor with different gap sizes is provided by changing the fuel rod pitch only. The results show that, by means of reducing the gap size between fuel rods, the heat transfer coefficients between coolant and fuel rod, as well as the heat transfer coefficient between coolant and water rod, would both increase noticeably. Furthermore, the maximum cladding temperature will significantly decrease when the moderator temperature is decreased but coolant temperature remains essentially constant. Meanwhile, the reduction in the maximum cladding temperature in the inner assemblies is much larger than that in the outer assemblies. In addition, the maximum cladding temperature could be further reduced by means of increasing coolant flow rate for each gap size. Finally, the characteristics of narrow channels effect are proposed, and the maximum allowable gap between fuel rods is obtained by making full use of the enhancing narrow channels effect on heat transfer, and concurrently considering installation. This could provide a theoretical reference for supercritical-pressure light water reactor design optimization, in which the effects of gap size and flow rate on heat transfer are both considered.

  14. An equivalent network representation of a clamped bimorph piezoelectric micromachined ultrasonic transducer with circular and annular electrodes using matrix manipulation techniques.

    Sammoura, Firas; Smyth, Katherine; Kim, Sang-Gook

    2013-09-01

    An electric circuit model for a clamped circular bimorph piezoelectric micromachined ultrasonic transducer (pMUT) was developed for the first time. The pMUT consisted of two piezoelectric layers sandwiched between three thin electrodes. The top and bottom electrodes were separated into central and annular electrodes by a small gap. While the middle electrode was grounded, the central and annular electrodes were biased with two independent voltage sources. The strain mismatch between the piezoelectric layers caused the plate to vibrate and transmit a pressure wave, whereas the received echo generated electric charges resulting from plate deformation. The clamped pMUT plate was separated into a circular and an annular plate, and the respective electromechanical transformation matrices were derived. The force and velocity vectors were properly selected using Hamilton's principle and the necessary boundary conditions were invoked. The electromechanical transformation matrix for the clamped circular pMUT was deduced using simple matrix manipulation techniques. The pMUT performance under three biasing schemes was elaborated: 1) central electrode only, 2) central and annular electrodes with voltages of the same magnitude and polarity, and 3) central and annular electrodes with voltages of the same magnitude and opposite polarity. The circuit parameters of the pMUT were extracted for each biasing scheme, including the transformer ratio, the clamped electric impedance, and the open-circuit mechanical impedance. Each pMUT scheme was characterized under different acoustic loadings using the theoretically developed model, which was verified with finite element modeling (FEM) simulation. The electrode size was optimized to maximize the electromechanical transformer ratio. As such, the developed model could provide more insight into the design, optimization, and characterization of pMUTs and allow for performance comparison with their cMUT counterparts.

  15. Standing wave acoustic levitation on an annular plate

    Kandemir, Mehmet Hakan; Çalışkan, Mehmet

    2016-11-01

    In standing wave acoustic levitation technique, a standing wave is formed between a source and a reflector. Particles can be attracted towards pressure nodes in standing waves owing to a spring action through which particles can be suspended in air. This operation can be performed on continuous structures as well as in several numbers of axes. In this study an annular acoustic levitation arrangement is introduced. Design features of the arrangement are discussed in detail. Bending modes of the annular plate, known as the most efficient sound generation mechanism in such structures, are focused on. Several types of bending modes of the plate are simulated and evaluated by computer simulations. Waveguides are designed to amplify waves coming from sources of excitation, that are, transducers. With the right positioning of the reflector plate, standing waves are formed in the space between the annular vibrating plate and the reflector plate. Radiation forces are also predicted. It is demonstrated that small particles can be suspended in air at pressure nodes of the standing wave corresponding to a particular bending mode.

  16. Magneto-elastic dynamics and bifurcation of rotating annular plate*

    Hu Yu-Da; Piao Jiang-Min; Li Wen-Qiang

    2017-01-01

    In this paper, magneto-elastic dynamic behavior, bifurcation, and chaos of a rotating annular thin plate with various boundary conditions are investigated. Based on the thin plate theory and the Maxwell equations, the magneto-elastic dynamic equations of rotating annular plate are derived by means of Hamilton’s principle. Bessel function as a mode shape function and the Galerkin method are used to achieve the transverse vibration differential equation of the rotating annular plate with different boundary conditions. By numerical analysis, the bifurcation diagrams with magnetic induction, amplitude and frequency of transverse excitation force as the control parameters are respectively plotted under different boundary conditions such as clamped supported sides, simply supported sides, and clamped-one-side combined with simply-anotherside. Poincaré maps, time history charts, power spectrum charts, and phase diagrams are obtained under certain conditions, and the influence of the bifurcation parameters on the bifurcation and chaos of the system is discussed. The results show that the motion of the system is a complicated and repeated process from multi-periodic motion to quasi-period motion to chaotic motion, which is accompanied by intermittent chaos, when the bifurcation parameters change. If the amplitude of transverse excitation force is bigger or magnetic induction intensity is smaller or boundary constraints level is lower, the system can be more prone to chaos. (paper)

  17. Entrainment in vertical annular two-phase flow

    Sawant, Pravin; Ishii, Mamoru; Mori, Michitsugu

    2009-01-01

    Prediction of amount of entrained droplets or entrainment fraction in annular two-phase flow is essential for the estimation of dryout condition and analysis of post dryout heat transfer in light water nuclear reactors and steam boilers. In this study, air-water and organic fluid (Freon-113) annular flow entrainment experiments have been carried out in 9.4 and 10.2 mm diameter test sections, respectively. Both the experiments covered three distinct pressure conditions and wide range of liquid and gas flow conditions. The organic fluid experiments simulated high pressure steam-water annular flow conditions. In each of the experiments, measurements of entrainment fraction, droplet entrainment rate and droplet deposition rate have been performed by using a liquid film extraction method. A simple, explicit and non-dimensional correlation developed by Sawant et al. (2008a) for the prediction of entrainment fraction is further improved in this study in order to account for the existence of critical gas and liquid flow rates below which no entrainment is possible. Additionally, a new correlation is proposed for the estimation of minimum liquid film flow rate at the maximum entrainment fraction condition. The improved correlation successfully predicted the newly collected air-water and Freon-113 entrainment fraction data. Furthermore, the correlations satisfactorily compared with the air-water, helium-water and air-genklene experimental data measured by Willetts (1987). (author)

  18. Annular tautomerism: experimental observations and quantum mechanics calculations

    Cruz-Cabeza, Aurora J.; Schreyer, Adrian; Pitt, William R.

    2010-06-01

    The use of MP2 level quantum mechanical (QM) calculations on isolated heteroaromatic ring systems for the prediction of the tautomeric propensities of whole molecules in a crystalline environment was examined. A Polarisable Continuum Model was used in the calculations to account for environment effects on the tautomeric relative stabilities. The calculated relative energies of tautomers were compared to relative abundances within the Cambridge Structural Database (CSD) and the Protein Data Bank (PDB). The work was focussed on 84 annular tautomeric forms of 34 common ring systems. Good agreement was found between the calculations and the experimental data even if the quantity of these data was limited in many cases. The QM results were compared to those produced by much faster semiempirical calculations. In a search for other sources of the useful experimental data, the relative numbers of known compounds in which prototropic positions were often substituted by heavy atoms were also analysed. A scheme which groups all annular tautomeric transformations into 10 classes was developed. The scheme was designed to encompass a comprehensive set of known and theoretically possible tautomeric ring systems generated as part of a previous study. General trends across analogous ring systems were detected as a result. The calculations and statistics collected on crystallographic data as well as the general trends observed should be useful for the better modelling of annular tautomerism in the applications such as computer-aided drug design, small molecule crystal structure prediction, the naming of compounds and the interpretation of protein—small molecule crystal structures.

  19. Droplet sizes, dynamics and deposition in vertical annular flow

    Lopes, J.C.B.; Dukler, A.E.

    1985-10-01

    The role of droplets in vertical upwards annular flow is investigated, focusing on the droplet size distributions, dynamics, and deposition phenomena. An experimental program was performed based on a new laser optical technique developed in these laboratories and implemented here for annular flow. This permitted the simultaneous measurement of droplet size, axial and radial velocity. The dependence of droplet size distributions on flow conditions is analyzed. The Upper-Log Normal function proves to be a good model for the size distribution. The mechanism controlling the maximum stable drop size was found to result from the interaction of the pressure fluctuations of the turbulent flow of the gas core with the droplet. The average axial droplet velocity showed a weak dependence on gas rates. This can be explained once the droplet size distribution and droplet size-velocity relationship are analyzed simultaneously. The surprising result from the droplet conditional analysis is that larger droplet travel faster than smaller ones. This dependence cannot be explained if the drag curves used do not take into account the high levels of turbulence present in the gas core in annular flow. If these are considered, then interesting new situations of multiplicity and stability of droplet terminal velocities are encountered. Also, the observed size-velocity relationship can be explained. A droplet deposition is formulated based on the particle inertia control. This permitted the calculation of rates of drop deposition directly from the droplet size and velocities data

  20. Knowledge Gaps

    Lyles, Marjorie; Pedersen, Torben; Petersen, Bent

    2003-01-01

    The study explores what factors influence the reduction of managers' perceivedknowledge gaps in the context of the environments of foreign markets. Potentialdeterminants are derived from traditional internationalization theory as well asorganizational learning theory, including the concept...... of absorptive capacity. Building onthese literature streams a conceptual model is developed and tested on a set of primarydata of Danish firms and their foreign market operations. The empirical study suggeststhat the factors that pertain to the absorptive capacity concept - capabilities ofrecognizing......, assimilating, and utilizing knowledge - are crucial determinants ofknowledge gap elimination. In contrast, the two factors deemed essential in traditionalinternationalization process theory - elapsed time of operations and experientiallearning - are found to have no or limited effect.Key words...

  1. Narrowing sex differences in life expectancy: regional variations, 1971-1991

    Frank Trovato

    2001-12-01

    Full Text Available A number of industrialized nations have recently experienced some degrees of constriction in their long-standing sex differentials in life expectancy at birth. In this study we examine this phenomenon in the context of Canada’s regions between 1971 and 1991: Atlantic (Newfoundland, Nova Scotia, New Brunswick, Prince Edward Island; Quebec, Ontario, and the West (Manitoba, Saskatchewan, Alberta, British Columbia, Yukon and Northwest Territories. Decomposition analysis based on multiple decrement life tables is applied to address three questions: (1 Are there regional differentials in the degree of narrowing in the sex gap in life expectancy? (2 What is the relative contribution of major causes of death to observed sex differences in average length of life within and across regions? (3 How do the contributions of cause-of-death components vary across regions to either widen or narrow the sex gap in survival? It is shown that the magnitude of the sex gap is not uniform across the regions, though the differences are not large. The most important contributors to a narrowing of the sex gap in life expectancy are heart disease and external types of mortality (i.e., accidents, violence, and suicide, followed by lung cancer and other types of chronic conditions. In substantive terms these results indicate that over time men have been making sufficient gains in these causes of death as to narrow some of the gender gap in overall survival. Regions show similarity in these effects.

  2. The Wage Gap: Briefing Paper #1.

    National Committee on Pay Equity, Washington, DC.

    Women have made slow, steady progress in the labor market since 1979, but the wage gap has not narrowed significantly. This briefing paper updates a September 1987 paper based on "Male-Female Differences in Work Experience, Occupations, and Earnings: 1984" (Current Population Reports, Household Economic Studies, Series P-70, No. 10, issued in…

  3. Globalization and the gender wage gap

    Oostendorp, R.H.

    2009-01-01

    There are several theoretical reasons why globalization will have a narrowing as well as a widening effect on the gender wage gap, but little is known about the actual impact, except for some country studies. This study contributes to the literature in three respects. First, it is a large

  4. Electron beam diagnostic system using computed tomography and an annular sensor

    Elmer, John W.; Teruya, Alan T.

    2014-07-29

    A system for analyzing an electron beam including a circular electron beam diagnostic sensor adapted to receive the electron beam, the circular electron beam diagnostic sensor having a central axis; an annular sensor structure operatively connected to the circular electron beam diagnostic sensor, wherein the sensor structure receives the electron beam; a system for sweeping the electron beam radially outward from the central axis of the circular electron beam diagnostic sensor to the annular sensor structure wherein the electron beam is intercepted by the annular sensor structure; and a device for measuring the electron beam that is intercepted by the annular sensor structure.

  5. Gender wage gap in Vietnam 1993 - 98

    Amy Y.C. Liu

    2003-01-01

    This paper uses the Vietnam Living Standards Surveys 1992–93 and 1997–98 to examine changes in the gender wage gap. The intertemporal decomposition of Juhn et al. (1991) indicates that changes in observed variables, skill prices and wage inequality have tended to narrow the gap, but the gap effect has tended to widen it, with the net effect being one of little change. This finding is in contrast with that for the EEC but in line with the experience of China. Improving education about equity p...

  6. Clinical and electrophysiological characteristics of patients with paroxysmal intra-His block with narrow QRS complexes.

    Ragupathi, Loheetha; Johnson, Drew; Greenspon, Arnold; Frisch, Daniel; Ho, Reginald T; Pavri, Behzad B

    2018-04-18

    Atrioventricular (AV) block is usually due to infranodal disease and associated with a wide QRS complex; such patients often progress to complete AV block and pacemaker dependency. Uncommonly, infranodal AV block can occur within the His bundle with a narrow QRS complex. The aims of this study were to define clinical/echocardiographic characteristics of patients with AV block within the His bundle and report progression to pacemaker dependency. We retrospectively identified patients with narrow QRS complexes and documented intra-His delay or block at electrophysiology study (group A) or with electrocardiogram-documented Mobitz II AV block/paroxysmal AV block (group B). Clinical, electrophysiological, and echocardiographic variables at presentation and pacemaker parameters at the last follow-up visit were evaluated. Twenty-seven patients (19 women) were identified (mean age 64 ± 13 years; range, 38-85 years). Four patients who had block with narrow QRS complexes rarely progress to pacemaker dependency and require infrequent pacing. This entity is more common in women, with a higher prevalence of aortic and/or mitral annular calcification. If confirmed by additional studies, single-chamber pacemaker may be sufficient. Copyright © 2018 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  7. Geometry optimization of linear and annular plasma synthetic jet actuators

    Neretti, G; Seri, P; Taglioli, M; Borghi, C A; Shaw, A; Iza, F

    2017-01-01

    The electrohydrodynamic (EHD) interaction induced in atmospheric air pressure by a surface dielectric barrier discharge (DBD) actuator has been experimentally investigated. Plasma synthetic jet actuators (PSJAs) are DBD actuators able to induce an air stream perpendicular to the actuator surface. These devices can be used in the field of aerodynamics to prevent or induce flow separation, modify the laminar to turbulent transition inside the boundary layer, and stabilize or mix air flows. They can also be used to enhance indirect plasma treatment effects, increasing the reactive species delivery rate onto surfaces and liquids. This can play a major role in plasma processing and chemical kinetics modelling, where often only diffusive mechanisms are considered. This paper reports on the importance that different electrode geometries can have on the performance of different PSJAs. A series of DBD aerodynamic actuators designed to produce perpendicular jets has been fabricated on two-layer printed circuit boards (PCBs). Both linear and annular geometries were considered, testing different upper electrode distances in the linear case and different diameters in the annular one. An AC voltage supplied at a peak of 11.5 kV and a frequency of 5 kHz was used. Lower electrodes were connected to the ground and buried in epoxy resin to avoid undesired plasma generation on the lower actuator surface. Voltage and current measurements were carried out to evaluate the active power delivered to the discharges. Schlieren imaging allowed the induced jets to be visualized and gave an estimate of their evolution and geometry. Pitot tube measurements were performed to obtain the velocity profiles of the PSJAs and to estimate the mechanical power delivered to the fluid. The optimal values of the inter-electrode distance and diameter were found in order to maximize jet velocity, mechanical power or efficiency. Annular geometries were found to achieve the best performance. (paper)

  8. Effect of Mitral Annular Calcium on Left Ventricular Diastolic Parameters.

    Codolosa, Jose N; Koshkelashvili, Nikoloz; Alnabelsi, Talal; Goykhman, Igor; Romero-Corral, Abel; Pressman, Gregg S

    2016-03-01

    Assessment of left ventricular (LV) diastolic function by Doppler flow imaging and tissue Doppler is an integral part of the echocardiographic examination. Mitral annular calcium (MAC) is frequently encountered on echocardiography. The aim of this study was to assess the impact of MAC, quantitatively measured by computed tomography scan, on echocardiographic LV diastolic parameters. We included 155 patients aged ≥65 years. Computed tomography reconstructions of the mitral annulus were created, and calcium identified and quantified by Agatston technique. Calcium locations were assigned using an overlaid template depicting the annular segments in relation to surrounding anatomic structures. Echocardiographic assessment of diastolic function was performed in standard fashion. Mean age was 77 years; 49% were men; and 43% were black. Patients with MAC had lower septal e' (p = 0.003), lateral e' (p = 0.04), and average e' (p = 0.01) compared with those without MAC. They also had a higher E-wave velocity (p = 0.01) and E/e' ratio (p <0.001). When evaluated by severity of MAC, and after adjustment for multiple clinical factors, there was a graded (inverse) relation between MAC severity and septal e' (p = 0.01), lateral e' (p = 0.01), and average e' (p = 0.01). In conclusion, LV diastolic parameters, as measured by Doppler echocardiography, are altered in the presence of MAC. This could be due to direct effects of MAC on annular function or might reflect truly reduced diastolic function. Interpretation of diastolic parameters in patients with MAC should be performed with caution. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Flooding and flow reversal of two-phase annular flow

    Asahi, Y.

    1978-01-01

    The flooding and flow reversal conditions of two-phase annular flow are mathematically defined in terms of a characteristic function representing a force balance. Sufficiently below the flooding point in counter-current flow, the interface is smooth and the characteristic equation reduces to the Nusselt relationship. Just below flooding point and above the flow reversal point in cocurrent flow, the interface is 'wavy', so that the interfacial shear effect plays an important role. The theoretical analysis is compared with experimental results by others. It is suggested that the various length effects which have been experimentally observed may be accounted for by the spatial variation of the droplet entrainment. (Auth.)

  10. Double-well potential in annular Josephson junction

    Shaju, P.D.; Kuriakose, V.C.

    2004-01-01

    A double-well potential suitable for quantum-coherent vortex tunnelling can be created in an annular Josephson junction by inserting a microshort in the junction and by applying an in-plane dc magnetic field. Analysis shows that the intensity of the magnetic field determines the depth of the potential well and the strength of the microshort controls the potential barrier height while a dc bias across the junction tilts the potential well. At milli-Kelvin temperatures, the system is expected to behave as a quantum two-level system and may be useful in designing vortex qubits

  11. A 350 MW HTR with an annular pebble bed core

    Wang Dazhong; Jiang Zhiqiang; Gao Zuying; Xu Yuanhui

    1992-12-01

    A conceptual design of HTR-module with an annular pebble bed core was proposed. This design can increase the unit power capacity of HTR-Module from 200 MWt to 350 MWt while it can keep the inherent safety characteristics of modular reactor. The preliminary safety analysis results for 350 MW HTR are given. In order to solve the problem of uneven helium outlet temperature distribution a gas flow mixing structure at bottom of core was designed. The experiment results of a gas mixing simulation test rig show that the mixing function can satisfy the design requirements

  12. Annular burnout data from rod-bundle experiments

    Yoder, G.L.; Morris, D.G.; Mullins, C.B.

    1983-01-01

    Burnout data for annular flow in a rod bundle are presented for both transient and steady-state conditions. Tests were performed at the Oak Ridge National Laboratory in the Thermal Hydraulic Test Facility (THTF), a pressurized-water loop containing an electrically heated 64-rod bundle. The bundle configuration is typical of later generation pressurized-water reactors with 17 x 17 fuel arrays. Both axial and radial power profiles are flat. All experiments were carried out in upflow with subcooled inlet conditions, insuring accurate flow measurement. Conditions within the bundle were typical of those which could be encountered during a nuclear reactor loss-of-coolant accident

  13. Final Technical Report for the MIT Annular Fuel Research Project

    Mujid S. Kazimi; Pavel Hejzlar

    2008-01-01

    MIT-NFC-PR-082 (January 2006) Abstract This summary provides an overview of the results of the U.S. DOE funded NERI (Nuclear Research Energy Initiative) program on development of the internally and externally cooled annular fuel for high power density PWRs. This new fuel was proposed by MIT to allow a substantial increase in power density (on the order of 30% or higher) while maintaining or improving safety margins. A comprehensive study was performed by a team consisting of MIT (lead organization), Westinghouse Electric Corporation, Gamma Engineering Corporation, Framatome ANP(formerly Duke Engineering) and Atomic Energy of Canada Limited

  14. Fluxon dynamics in long annular Josephson tunnel junctions

    Martucciello, N.; Mygind, Jesper; Koshelets, V.P.

    1998-01-01

    Single-fluxon dynamics has been experimentally investigated in high-quality Nb/Al-AlOx/Nb annular Josephson tunnel junctions having a radius much larger than the Josephson penetration depth. Strong evidence of self-field effects is observed. An external magnetic field in the barrier plane acts...... on the fluxon as a periodic potential and lowers its average speed. Further, the results of perturbative calculations do not fit the experimental current-voltage profile and, provided the temperature is low enough, this profile systematically shows pronounced deviations from the smooth predicted form...

  15. WELWING, Material Buckling for HWR with Annular Fuel Elements

    Grosskopf, O.G.P.

    1973-01-01

    1 - Nature of the physical problem solved: WELWING was developed to calculate the material buckling of reactor systems consisting of annular fuel elements in heavy water as moderator for various moderator to fuel ratios. The moderator to fuel ratio for the maximum material buckling for the particular system is selected automatically and the corresponding material buckling is calculated. 2 - Method of solution: The method used is an analytical solution of the one-group diffusion equations with various corrections and approximations. 3 - Restrictions on the complexity of the problem: Up to 32 different materials in the fuel element may be used

  16. Mg2BIV: Narrow Bandgap Thermoelectric Semiconductors

    Kim, Il-Ho

    2018-05-01

    Thermoelectric materials can convert thermal energy directly into electric energy and vice versa. The electricity generation from waste heat via thermoelectric devices can be considered as a new energy source. For instance, automotive exhaust gas and all industrial processes generate an enormous amount of waste heat that can be converted to electricity by using thermoelectric devices. Magnesium compound Mg2BIV (BIV = Si, Ge or Sn) has a favorable combination of physical and chemical properties and can be a good base for the development of new efficient thermoelectrics. Because they possess similar properties to those of group BIV elemental semiconductors, they have been recognized as good candidates for thermoelectric applications. Mg2Si, Mg2Ge and Mg2Sn with an antifluorite structure are narrow bandgap semiconductors with indirect band gaps of 0.77 eV, 0.74 eV, and 0.35 eV, respectively. Mg2BIV has been recognized as a promising material for thermoelectric energy conversion at temperatures ranging from 500 K to 800 K. Compared to other thermoelectric materials operating in the similar temperature range, such as PbTe and filled skutterudites, the important aspects of Mg2BIV are non-toxic and earth-abundant elements. Based on classical thermoelectric theory, the material factor β ( m* / m e)3/2μκ L -1 can be utilized as the criterion for thermoelectric material selection, where m* is the density-of-states effective mass, me is the mass of an electron, μ is the carrier mobility, and κL is the lattice thermal conductivity. The β for magnesium silicides is 14, which is very high compared to 0.8 for iron silicides, 1.4 for manganese silicides, and 2.6 for silicon-germanium alloys. In this paper, basic phenomena of thermoelectricity and transport parameters for thermoelectric materials were briefly introduced, and thermoelectric properties of Mg2BIV synthesized by using a solid-state reaction were reviewed. In addition, various Mg2BIV compounds were discussed

  17. The Vector Calculus Gap: Mathematics (Does Not Equal) Physics.

    Dray, Tevian; Manogue, Corinne A.

    1999-01-01

    Discusses some of the differences between the ways mathematicians and physicists view vector calculus and the gap between the way this material is traditionally taught by mathematicians and the way physicists use it. Suggests some ways to narrow the gap. (Author/ASK)

  18. Community College Enrollment, College Major, and the Gender Wage Gap.

    Gill, Andrew M.; Leigh, Duane E.

    2000-01-01

    Independent cross-sections developed using National Longitudinal Survey data reveal a decrease in the gender wage gap from 1989-1994 due to fewer differences in tenure and full-time employment. Disaggregating education by two- and four-year providers and college major accounts for 8.5-11% of the narrower wage gap for the period. (SK)

  19. Effects of annulus defects and implantation of poly(lactic-co-glycolic acid) (PLGA)/fibrin gel scaffolds on nerves ingrowth in a rabbit model of annular injury disc degeneration.

    Xin, Long; Xu, Weixing; Yu, Leijun; Fan, Shunwu; Wang, Wei; Yu, Fang; Wang, Zhenbin

    2017-05-12

    Growth of nerve fibers has been shown to occur in a rabbit model of intravertebral disc degeneration (IVD) induced by needle puncture. As nerve growth may underlie the process of chronic pain in humans affected by disc degeneration, we sought to investigate the factors underlying nerve ingrowth in a minimally invasive annulotomy rabbit model of IVD by comparing the effects of empty disc defects with those of defects filled with poly(lactic-co-glycolic acid)/fibrin gel (PLGA) plugs. New Zealand white rabbits (n = 24) received annular injuries at three lumbar levels (L3/4, L4/5, and L5/6). The discs were randomly assigned to four groups: (a) annular defect (1.8-mm diameter; 4-mm depth) by mini-trephine, (b) annular defect implanted with a PLGA scaffold containing a fibrin gel, (c) annular puncture by a 16G needle (5-mm depth), and (d) uninjured L2/3 disc (control). Disc degeneration was evaluated by radiography, MRI, histology, real-time PCR, and analysis of proteoglycan (PG) content. Nerve ingrowth into the discs was assessed by immunostaining with the nerve marker protein gene product 9.5. Injured discs showed a progressive disc space narrowing with significant disc degeneration and proteoglycan loss, as confirmed by imaging results, molecular and compositional analysis, and histological examinations. In 16G punctured discs, nerve ingrowth was observed on the surface of scar tissue. In annular defects, nerve fibers were found to be distributed along small fissures within the fibrocartilaginous-like tissue that filled the AF. In discs filled with PLGA/ fibrin gel, more nerve fibers were observed growing deeper into the inner AF along the open annular track.  In addition, innervations scores showed significantly higher than those of punctured discs and empty defects. A limited vascular proliferation was found in the injured sites and regenerated tissues. Nerve ingrowth was significantly higher in PLGA/fibrin-filled discs than in empty defects. Possible

  20. Mixed convection heat transfer to carbon dioxide flowing upward and downward in a vertical tube and an annular channel

    Bae, Yoon Y.

    2011-01-01

    Highlights: → Experimental results of heat transfer at a supercritical pressure for a tube with an inner diameter of 4.57 mm and a corresponding annular channel (8 mm x 10 mm, 1 mm gap) were compared each other. → Effect of various parameters such as pressure, flow direction, diameter, channel shape, was investigated. → Existing correlation for supercritical heat transfer were evaluated against the experimental data. → Some unusual characteristics of supercritical heat transfer, such as overshoot and non-monotonic behavior against buoyancy parameter, were discussed. → New correlations were proposed based on the experimental data. - Abstract: This paper addresses three main subjects in supercritical heat transfer: (1) difference in thermal characteristics between upward and downward flows; (2) effect of simulating flow channel shape; (3) evaluation of the existing supercritical heat transfer correlations. To achieve the objectives, a series of experiments was carried out with CO 2 flowing upward and downward in a circular tube with an inner diameter of 4.57 mm and an annular channel created between a tube with an inner diameter of 10 mm and a heater rod with an outer diameter of 8 mm. The working fluid, CO 2 , has been regarded as an appropriate modeling fluid for water, primarily because of their similarity in property variations against reduced temperatures. The mass flux ranged from 400 to 1200 kg/m 2 s. The heat flux was varied between 30 and 140 kW/m 2 so that the pseudo-critical point was located in the middle of the heated section at a given mass flux. The measurements were made at a pressure of 8.12 MPa, which corresponds to 110% of the critical pressure of CO 2 . The difference between the upward and downward flows was observed clearly. The heat transfer deterioration was observed in the downward flow through an annular subchannel over the region beyond the critical point. Several well-known correlations were evaluated against the experimental

  1. Prediction of the critical heat flux for saturated upward flow boiling water in vertical narrow rectangular channels

    Choi, Gil Sik; Chang, Soon Heung; Jeong, Yong Hoon

    2016-01-01

    A study, on the theoretical method to predict the critical heat flux (CHF) of saturated upward flow boiling water in vertical narrow rectangular channels, has been conducted. For the assessment of this CHF prediction method, 608 experimental data were selected from the previous researches, in which the heated sections were uniformly heated from both wide surfaces under the high pressure condition over 41 bar. For this purpose, representative previous liquid film dryout (LFD) models for circular channels were reviewed by using 6058 points from the KAIST CHF data bank. This shows that it is reasonable to define the initial condition of quality and entrainment fraction at onset of annular flow (OAF) as the transition to annular flow regime and the equilibrium value, respectively, and the prediction error of the LFD model is dependent on the accuracy of the constitutive equations of droplet deposition and entrainment. In the modified Levy model, the CHF data are predicted with standard deviation (SD) of 14.0% and root mean square error (RMSE) of 14.1%. Meanwhile, in the present LFD model, which is based on the constitutive equations developed by Okawa et al., the entire data are calculated with SD of 17.1% and RMSE of 17.3%. Because of its qualitative prediction trend and universal calculation convergence, the present model was finally selected as the best LFD model to predict the CHF for narrow rectangular channels. For the assessment of the present LFD model for narrow rectangular channels, effective 284 data were selected. By using the present LFD model, these data are predicted with RMSE of 22.9% with the dryout criterion of zero-liquid film flow, but RMSE of 18.7% with rivulet formation model. This shows that the prediction error of the present LFD model for narrow rectangular channels is similar with that for circular channels.

  2. Stokes flow heat transfer in an annular, rotating heat exchanger

    Saatdjian, E.; Rodrigo, A.J.S.; Mota, J.P.B.

    2011-01-01

    The heat transfer rate into highly viscous, low thermal-conductivity fluids can be enhanced significantly by chaotic advection in three-dimensional flows dominated by viscous forces. The physical effect of chaotic advection is to render the cross-sectional temperature field uniform, thus increasing both the wall temperature gradient and the heat flux into the fluid. A method of analysis for one such flow-the flow in the eccentric, annular, rotating heat exchanger-and a procedure to determine the best heat transfer conditions, namely the optimal values of the eccentricity ratio and time-periodic rotating protocol, are discussed. It is shown that in continuous flows, such as the one under consideration, there exists an optimum frequency of the rotation protocol for which the heat transfer rate is a maximum. - Highlights: → The eccentric, annular, rotating heat exchanger is studied for periodic Stokes flow. → Counter-rotating the inner tube with a periodic velocity enhances the heat transfer. → The heat-transfer enhancement under such conditions is due to chaotic advection. → For a given axial flow rate there is a frequency that maximizes the heat transfer. → There is also an optimum value of the eccentricity ratio.

  3. Sodium flow rate measurement method of annular linear induction pumps

    Araseki, Hideo; Kirillov, Igor R.; Preslitsky, Gennady V.

    2012-01-01

    Highlights: ► We found a new method of flow rate monitoring of electromagnetic pump. ► The method is very simple and does not require a large space. ► The method was verified with an experiment and a numerical analysis. ► The experimental data and the numerical results are in good agreement. - Abstract: The present paper proposes a method for measuring sodium flow rate of annular linear induction pumps. The feature of the method lies in measuring the leaked magnetic field with measuring coils near the stator end on the outlet side and in correlating it with the sodium flow rate. This method is verified through an experiment and a numerical analysis. The data obtained in the experiment reveals that the correlation between the leaked magnetic field and the sodium flow rate is almost linear. The result of the numerical analysis agrees with the experimental data. The present method will be particularly effective to sodium flow rate monitoring of each one of plural annular linear induction pumps arranged in parallel in a vessel which forms a large-scale pump unit.

  4. Electrostatic Analysis of Annular Holes Penetrated by Shorted-Cable

    Choo, Jae Yul; Kim, Hyung Tae; Park, Hyun Shin; Cho, Young Sik [KINS, Daejeon (Korea, Republic of)

    2016-05-15

    The cabinet has an important role to protect the contained cables and digital modules for the safety function from the external electromagnetic (EM) source. Thus the immunity of an open cabinet against electromagnetic interference (EMI) numerically has been investigated using mode-matching method in. Another path for the external EM source to impinge on inner cables and digital modules is the bottom hole of the cabinet that is penetrated by various cables. Especially the EMI can detrimentally influence on the digital modules through annular space caused by sealing the bottom hole of the cabinet incompletely. Thus it is recently required that the electromagnetic interpretation in the annular hole is performed to remedy electromagnetic problems. Based on the mode-matching method, we solved the electrostatic boundary-value problem for holes penetrating shorted-cable at the bottom of a digital I and C cabinet. The Weber transform and the Hankel transform were applied to formulate the electrostatic potential. The capacitance and potential distribution generated near the penetrating shorted-cable were computed and compared with the result from the previous study.

  5. Improved lumped parameter for annular fuel element thermohydraulic analysis

    Duarte, Juliana Pacheco; Su, Jian; Alvim, Antonio Carlos Marques

    2011-01-01

    Annular fuel elements have been intensively studied for the purpose of increasing power density in light water reactors (LWR). This paper presents an improved lumped parameter model for the dynamics of a LWR core with annular fuel elements, composed of three sub-models: the fuel dynamics model, the neutronics model, and the coolant energy balance model. The transient heat conduction in radial direction is analyzed through an improved lumped parameter formulation. The Hermite approximation for integration is used to obtain the average temperature of the fuel and cladding and also to obtain the average heat flux. The volumetric heat generation in fuel rods was obtained with the point kinetics equations with six delayed neutron groups. The equations for average temperature of fuel and cladding are solved along with the point kinetic equations, assuming linear reactivity and coolant temperature in cases of reactivity insertion. The analytical development of the model and the numeric solution of the ordinary differential equation system were obtained by using Mathematica 7.0. The dynamic behaviors for average temperatures of fuel, cladding and coolant in transient events as well as the reactor power were analyzed. (author)

  6. Deep local and regional hyperthermia with annular phased array

    Uehara, S.; Omagari, J.; Hata, K.

    1989-01-01

    33 refractory tumors mainly located in the pelvic cavity after definitive treatment were treated by loco-regional hyperthermia alone (n = 11) or by heat in combination with radiotherapy (n = 22) by annular phased array (APA) manufactured by BSD Corp. Tumors were heated up to more than 42 0 C in 78% of 347 total heat sessions with induction time 22 ± 1 (S.D.) minutes during which those of intra-pelvic organs were elevated up to between 41 and 42 0 C. Tumor response was CR 18%, PR 50% by heat (11.2 ± 1.5 S.D. fractions) combined with radiotherapy (43.8 ± 12.5 S.D. Gy) and by heat alone (8.6 ± 1.3 S.D. fractions) CR 18%, PR 9%. In all heat sessions superficial pain 36%, skin burn (grade 1-2) 12% inside annular array and slight to moderate systemic heat stress 100% were the main adverse reactions we experienced. (orig.)

  7. A Compact Annular Ring Microstrip Antenna for WSN Applications

    Daihua Wang

    2012-06-01

    Full Text Available A compact annular ring microstrip antenna was proposed for a wireless sensor network (WSN application in the 2.4 GHz band. In this paper the major considerations of the conformal antenna design were the compact size and the impact on antenna’s performance of a steel installation base. By using a chip resistor of large resistance (120 Ω the antenna size was reduced to 38% of that a conventional annular ring patch antenna. With the addition of the steel installation base the resonant frequency of the antenna increases about 4.2% and the bandwidth reduces from 17.5% to 11.7% by adjusting the load resistance simultaneously. Several key parameters were discussed and optimized, and the antenna was fabricated and its performance measured. The antenna is well matched at 2.4 GHz with 34.2 dB return loss and –2.5 dBi peak gain. Meanwhile, it exhibits excellent radiation patterns with very low cross-polarization levels.

  8. Characterization of interfacial waves in horizontal core-annular flow

    Tripathi, Sumit; Bhattacharya, Amitabh; Singh, Ramesh; Tabor, Rico F.

    2016-11-01

    In this work, we characterize interfacial waves in horizontal core annular flow (CAF) of fuel-oil and water. Experimental studies on CAF were performed in an acrylic pipe of 15.5mm internal diameter, and the time evolution of the oil-water interface shape was recorded with a high speed camera for a range of different flow-rates of oil (Qo) and water (Qw). The power spectrum of the interface shape shows a range of notable features. First, there is negligible energy in wavenumbers larger than 2 π / a , where a is the thickness of the annulus. Second, for high Qo /Qw , there is no single dominant wavelength, as the flow in the confined annulus does not allow formation of a preferred mode. Third, for lower Qo /Qw , a dominant mode arises at a wavenumber of 2 π / a . We also observe that the power spectrum of the interface shape depends weakly on Qw, and strongly on Qo, perhaps because the net shear rate in the annulus appears to depend weakly on Qw as well. We also attempt to build a general empirical model for CAF by relating the interfacial stress (calculated via the mean pressure gradient) to the flow rate in the annulus, the annular thickness and the core velocity. Authors are thankful to Orica Mining Services (Australia) for the financial support.

  9. Annular array technology for nondestructive turbine inspection. Final report

    Light, G.M.

    1986-05-01

    The Electric Power Research Institute (EPRI) funded Southwest Research Institute (SwRI) to fabricate and functionally test phased array transducers and an electronic control system with the intent of evaluating the phased array technology for use in the inspection of turbine disks. During this program a 13-element annular array and associated phased array electronics were fabricated and tested and the results of the tests compared to those predicted by theory. The prototype system performed well within the expected limits, and EPRI funded further work to fabricate and test a production unit. The production system consisted of a 25-element annular array and a 25-channel electronics system that had both pulser and receiver delay circuitry. In addition, during the program it was determined that miniaturized hybrid pulser/preamps would be needed to allow the phased array to work over distances exceeding 9.1 meters (30 feet) from the electronics. A circuit developed by SwRI was utilized and found to produce good pulsing capability that did not suffer from impedance mismatch. EPRI also funded (under a separate contract) the fabrication of a small scale static turbine test bed and a full scale dynamic test bed that contained full scale turbine geometries. These test beds were fabricated to enable the production phased array system to be evaluated on turbine disk surfaces. 26 figs

  10. Linear and nonlinear stability of periodic orbits in annular billiards

    Dettmann, Carl P.; Fain, Vitaly

    2017-04-01

    An annular billiard is a dynamical system in which a particle moves freely in a disk except for elastic collisions with the boundary and also a circular scatterer in the interior of the disk. We investigate the stability properties of some periodic orbits in annular billiards in which the scatterer is touching or close to the boundary. We analytically show that there exist linearly stable periodic orbits of an arbitrary period for scatterers with decreasing radii that are located near the boundary of the disk. As the position of the scatterer moves away from a symmetry line of a periodic orbit, the stability of periodic orbits changes from elliptic to hyperbolic, corresponding to a saddle-center bifurcation. When the scatterer is tangent to the boundary, the periodic orbit is parabolic. We prove that slightly changing the reflection angle of the orbit in the tangential situation leads to the existence of Kolmogorov-Arnold-Moser islands. Thus, we show that there exists a decreasing to zero sequence of open intervals of scatterer radii, along which the billiard table is not ergodic.

  11. Portal annular pancreas: a systematic review of a clinical challenge.

    Harnoss, Jonathan M; Harnoss, Julian C; Diener, Markus K; Contin, Pietro; Ulrich, Alexis B; Büchler, Markus W; Schmitz-Winnenthal, Friedrich H

    2014-10-01

    Portal annular pancreas (PAP) is an asymptomatic congenital pancreas anomaly, in which portal and/or mesenteric veins are encased by pancreas tissue. The aim of the study was to determine the role of PAP in pancreatic surgery as well as its management and potential complication, specifically, postoperative pancreatic fistula (POPF).On the basis of a case report, the MEDLINE and ISI Web of Science databases were systematically reviewed up to September 2012. All articles describing a case of PAP were considered.In summary, 21 studies with 59 cases were included. The overall prevalence of PAP was 2.4% and the patients' mean (SD) age was 55.9 (16.2) years. The POPF rate in patients with PAP (12 pancreaticoduodenectomies and 3 distal pancreatectomies) was 46.7% (in accordance with the definition of the International Study Group of Pancreatic Surgery).Portal annular pancreas is a quite unattended pancreatic variant with high prevalence and therefore still remains a clinical challenge to avoid postoperative complications. To decrease the risk for POPF, attentive preoperative diagnostics should also focus on PAP. In pancreaticoduodenectomy, a shift of the resection plane to the pancreas tail should be considered; in extensive pancreatectomy, coverage of the pancreatic remnant by the falciform ligament could be a treatment option.

  12. Critical heat flux and flow pattern for water flow in annular geometry

    Park, J.-W.; Baek, W.-P.; Chang, S.H.

    1997-01-01

    An experimental study on critical heat flux (CHF) and two-phase flow visualization has been performed for water flow in internally-heated, vertical, concentric annuli under near atmospheric pressure. Tests have been done under stable forced-circulation, upward and downward flow conditions with three test sections of relatively large gap widths (heated length = 0.6 m, inner diameter 19 mm, outer diameter = 29, 35 and 51 mm). The outer wall of the test section was made up of the transparent Pyrex tube to allow the observation of flow patterns near the CHF occurrence. The CHF mechanism was changed in the order of flooding, churn-to-annular flow transition and local dryout under a large bubble in churn flow as the flow rate was increased from zero to higher values. Observed parametric trends are consistent with the previous understanding except that the CHF for downward flow is considerably lower than that for the upward flow. In addition to the experiment, selected CHF correlations for annuli are assessed based on 1156 experimental data from various sources. The Doerffer et al. (1994); Barnett (1966); Jannsen and Kervinen (1963); Levitan and Lantsman (1977) correlations show reasonable predictions for wide parameter ranges, among which the Doerffer et al. (1994) correlation shows the widest parameter ranges and a possibility of further improvement. However, there is no correlation predicting the low-pressure, low-flow CHF satisfactorily. (orig.)

  13. Time evolution of propagating nonpremixed flames in a counterflow, annular slot burner under AC electric fields

    Tran, Vu Manh

    2016-06-19

    The mechanism behind improved flame propagation speeds under electric fields is not yet fully understood. Although evidence supports that ion movements cause ionic wind, how this wind affects flame propagation has not been addressed. Here, we apply alternating current electric fields to a gap between the upper and lower parts of a counterflow, annular slot burner and present the characteristics of the propagating nonpremixed edge-flames produced. Contrary to many other previous studies, flame displacement speed decreased with applied AC voltage, and, depending on the applied AC frequency, the trailing flame body took on an oscillatory wavy motion. When flame displacement speeds were corrected using measured unburned flow velocities, we found no significant difference in flame propagation speeds, indicating no thermal or chemical effects by electric fields on the burning velocity. Thus, we conclude that the generation of bidirectional ionic wind is responsible for the impact of electric fields on flames and that an interaction between this bidirectional ionic wind and the flame parameters creates visible and/or measurable phenomenological effects. We also explain that the presence of trailing flame bodies is a dynamic response to an electric body force on a reaction zone, an area that can be considered to have a net positively charged volume. In addition, we characterize the wavy motion of the transient flame as a relaxation time independent of mixture strength, strain rate, and Lewis number.

  14. Core-annular flow through a horizontal pipe : Hydrodynamic counterbalancing of buoyancy force on core

    Ooms, G.; Vuik, C.; Poesio, P.

    2007-01-01

    A theoretical investigation has been made of core-annular flow: the flow of a high-viscosity liquid core surrounded by a low-viscosity liquid annular layer through a horizontal pipe. Special attention is paid to the question of how the buoyancy force on the core, caused by a density difference

  15. Thermo-acoustic cross-talk between cans in a can-annular combustor

    Farisco, Federica; Panek, Lukasz; Kok, Jim B.W.

    2017-01-01

    Thermo-acoustic instabilities in gas turbine engines are studied to avoid engine failure. Compared to the engines with annular combustors, the can-annular combustor design should be less vulnerable to acoustic burner-to-burner interaction, since the burners are acoustically coupled only by the

  16. Azimuthal critical heat flux in narrow rectangular channels

    Kim, Yong Hoon; Noh, Sang Woo; Kim, Sung Joong; Suh, Kune Y. [Seoul National University, Seoul (Korea, Republic of)

    2003-07-01

    Tests were conducted to examine the critical heat flux (CHF) on the one-dimensional downward heating rectangular channel having a narrow gap by changing the orientation of the copper test heater assembly in a pool of saturated water under the atmospheric pressure. The test parameters include both the gap sizes of 1, 2, 5 and 10mm, and the surface orientation angles from the downward-facing position (180{sup o}) to the vertical position (90{sup o}), respectively. Also, the CHF experiments were performed for pool boiling with varying heater surface orientations in the unconfined space at the atmospheric pressure using the rectangular test section. It was observed that the CHF generally decreases as the surface inclination angle increases and as the gap size decreases. In consistency with several studies reported in the literature, it was found that there exists a transition angle above which the CHF changes with a rapid slope. An engineering correlation is developed for the CHF during natural convective boiling in the inclined, confined rectangular channels with the aid of dimensional analysis.

  17. An Empirical Study of Audit Expectation Gap in Hungary

    Judit Füredi-Fülöp

    2015-01-01

    The audit expectation gap has preoccupied the finance and accounting profession for a long time. Considerable research has been conducted into this issue and attempts have been made to provide an accurate definition of the audit expectation gap, model this concept and assess the possibilities of its narrowing. Also, a number of studies investigate whether there is an audit expectation gap in several researched regions. The objectives of empirical studies on the structure and nature of the aud...

  18. Visualization of large waves in churn and annular two-phase flow

    Dasgupta, Arnab; Chandraker, D.K.; Nayak, A.K.; Vijayan, P.K.; Kshirasagar, S.; Reddy, B.R.; Walker, S.P.

    2015-01-01

    The study of churn and annular two-phase flow regimes is important for boiling systems like nuclear reactors, U-tube steam generators etc. In this paper, visualization studies on air-water churn and annular two-phase flow regimes are reported. Though there are differences between air-water and boiling steam water systems, the major flow-pattern characteristics are similar (if not same).The specific object of study is the large waves which exist in both churn and annular regimes. These waves are responsible for majority of the momentum and mass dispersion across the phases. The differentiating characteristics of these waves in the chum and annular flow regimes are reported. The visualization also leads to a more quantitative representation of the transition from churn to annular flow. A new interpretation of the criterion for onset of entrainment is also evolved from the studies. (author)

  19. Percutaneous endoscopic intra-annular subligamentous herniotomy for large central disc herniation: a technical case report.

    Lee, Sang-Ho; Choi, Kyung-Chul; Baek, Oon Ki; Kim, Ho Jin; Yoo, Seung-Hwa

    2014-04-01

    Technical case report. To describe the novel technique of percutaneous endoscopic herniotomy using a unilateral intra-annular subligamentous approach for the treatment of large centrally herniated discs. Open discectomy for large central disc herniations may have poor long-term prognosis due to heavy loss of intervertebral disc tissue, segmental instability, and recurrence of pain. Six consecutive patients who presented with back and leg pain, and/or weakness due to a large central disc herniation were treated using percutaneous endoscopic herniotomy with a unilateral intra-annular subligamentous approach. The patients experienced relief of symptoms and intervertebral disc spaces were well maintained. The annular defects were noted to be in the process of healing and recovery. Percutaneous endoscopic unilateral intra-annular subligamentous herniotomy was an effective and affordable minimally invasive procedure for patients with large central disc herniations, allowing preservation of nonpathological intradiscal tissue through a concentric outer-layer annular approach.

  20. Annular core liquid-salt cooled reactor with multiple fuel and blanket zones

    Peterson, Per F.

    2013-05-14

    A liquid fluoride salt cooled, high temperature reactor having a reactor vessel with a pebble-bed reactor core. The reactor core comprises a pebble injection inlet located at a bottom end of the reactor core and a pebble defueling outlet located at a top end of the reactor core, an inner reflector, outer reflector, and an annular pebble-bed region disposed in between the inner reflector and outer reflector. The annular pebble-bed region comprises an annular channel configured for receiving pebble fuel at the pebble injection inlet, the pebble fuel comprising a combination of seed and blanket pebbles having a density lower than the coolant such that the pebbles have positive buoyancy and migrate upward in said annular pebble-bed region toward the defueling outlet. The annular pebble-bed region comprises alternating radial layers of seed pebbles and blanket pebbles.

  1. A study on critical heat flux in gap

    Park, Rae Joon; Jeong, Ji Whan; Cho, Young Ro; Chang, Young Cho; Kang, Kyung Ho; Kim, Jong Whan; Kim, Sang Baik; Kim, Hee Dong

    1999-04-01

    The scope and content of this study is to perform the test on critical heat flux in hemispherical narrow gaps using distilled water and Freon R-113 as experimental parameters, such as system pressure from 1 to 10 atm and gap thickness of 0.5, 1.0, 2.0, and 5.0 mm. The CHFG test results have shown that the measured values of critical power are much lower than the predictions made by empirical CHF correlations applicable to flat plate gaps and annuli. The pressure effect on the critical power was found to be much milder than predictions by those CHF correlations. The values and the pressure trend of the critical powers measured in the present experiments are close to the values converted from the CCFL data. This confirms the claim that a CCFL brings about local dryout and finally, global dryout in hemispherical narrow gaps. Increases in the gap thickness lead to increase in critical power. The measured critical power using R-113 in hemispherical narrow gaps are 60 % lower than that using water due to the lower boiling point, which is different from the pool boiling condition. The CCFL (counter counter flow limit) test facility was constructed and the test is being performed to estimate the CCFL phenomena and to evaluate the CHFG test results on critical power in hemispherical narrow gaps. (Author). 35 refs., 2 tabs., 19 figs

  2. A study on critical heat flux in gap

    Park, Rae Joon; Jeong, Ji Whan; Cho, Young Ro; Chang, Young Cho; Kang, Kyung Ho; Kim, Jong Whan; Kim, Sang Baik; Kim, Hee Dong

    1999-04-01

    The scope and content of this study is to perform the test on critical heat flux in hemispherical narrow gaps using distilled water and Freon R-113 as experimental parameters, such as system pressure from 1 to 10 atm and gap thickness of 0.5, 1.0, 2.0, and 5.0 mm. The CHFG test results have shown that the measured values of critical power are much lower than the predictions made by empirical CHF correlations applicable to flat plate gaps and annuli. The pressure effect on the critical power was found to be much milder than predictions by those CHF correlations. The values and the pressure trend of the critical powers measured in the present experiments are close to the values converted from the CCFL data. This confirms the claim that a CCFL brings about local dryout and finally, global dryout in hemispherical narrow gaps. Increases in the gap thickness lead to increase in critical power. The measured critical power using R-113 in hemispherical narrow gaps are 60 % lower than that using water due to the lower boiling point, which is different from the pool boiling condition. The CCFL (counter counter flow limit) test facility was constructed and the test is being performed to estimate the CCFL phenomena and to evaluate the CHFG test results on critical power in hemispherical narrow gaps. (Author). 35 refs., 2 tabs., 19 figs.

  3. Study of startup conditions of a pulsed annular reactor

    Silva, Mario Augusto Bezerra da

    2003-10-01

    A new concept of reactor, which combines features of pulsed and stationary reactors, was proposed so as to produce intense neutronic fluxes. Such a reactor, known as VICHFPR (Very Intense Continuous High Flux Pulsed Reactor), consists of a subcritical core with an annular geometry and pulsed by a rotating reflector which acts as a reactivity modulator as it produces a short pulse (approximately equal to 1 ms) of high intensity, guiding the region near the pulser to super-prompt critical state. This dissertation intends to analyze the startup conditions of a Pulsed Annular Reactor. The evolution of the neutron pulse intensity is analyzed when the reactivity modulator is brought upwards according to a helicoidal path from its initial position (far away from the core), when the multiplication factor has a subcritical value, up to the final position (near the core), in which a super-prompt critical state is reached. Part of the analysis is based on the variation of neutron reflection, which is a uniform function of the exit and reflection angles between the core and the modulator. It must be emphasized that this work is an approximation of the real situation. As the initial and final reactor parameters are known, a programming code in Fortran is worked out to provide the multiplication factor and the flux intensity evolution. According to the results obtained with this code, the conditions under which the modulator must be lifted up during the startup are established. Basically, these conditions are related to the analysis of the rising and the rotation velocities, the reflector saving and the initial distance between the reactor and the modulator. The Pulsed Annular Reactor startup was divided into three stages. Because of its negative reactivity in the first two stages, the neutron multiplication is not large, while the last one, having a positive reactivity, shows an intense multiplication as is usually expected when handling pulsed systems. This last stage is quite

  4. Damping of cylindrical structures subject to annular flow

    Hobson, D.E.; Dolding, M.

    1989-01-01

    In previous reports theoretical methods have been described for estimating the aerodynamic forces acting on cylinders vibrating laterally when surrounded by an annulus carrying high velocity gas. For a certain restricted set of geometries it is possible to predict whether a particular structure is stable or unstable and to determine the level of aerodynamic damping positive or negative due to the presence of the gas. This report describes experimental work which validates the computer program in which the theoretical methods are embodied; in particular the damping, inertial and decentralising forces acting on a cylinder in an annulus are measured and compared with theory over a range of frequencies from 0 to 25 Hz, and of Reynolds numbers from zero to 10 4 . In addition a summary of simple relationships is provided which can be used to provide credible initial estimates of both the positive and negative damping of cylinders in a range of annular geometries. (author)

  5. Mechanistic model of the inverted annular film boiling

    Seok, Ho; Chang, Soon Heung

    1989-01-01

    An analytical model is developed to predict the heat transfer coefficient and the friction factor in the inverted annular film boiling. The developed model is based on two-fluid mass, momentum and energy balance equations and a theoretical velocity profile. The predictions of the proposed model are compared with the experimental data and the well-established correlations. For the heat transfer coefficient, they agree with the experimental data and are more promising than those of Bromely and Berenson correlations. The present model also accounts the effects of the mass flux and subcooling on the heat transfer. The friction factor predictions agree qualitatively with the experimental measurements, while some cases show a similar behavior with those of the post-CHF dispersed flow obtained from Beattie's correlation

  6. Numerical simulation of random stresses on an annular turbulent flow

    Marti-Moreno, Marta

    2000-01-01

    The flow along a circular cylinder may induce structural vibrations. For the predictive analysis of such vibrations, the turbulent forcing spectrum needs to be characterized. The aim of this work is to study the turbulent fluid forces acting on a single tube in axial flow. More precisely we have performed numerical simulations of an annular flow. These simulations were carried out on a cylindrical staggered mesh by a finite difference method. We consider turbulent flow with Reynolds number up to 10 6 . The Large Eddy Simulation Method has been used. A survey of existent experiments showed that hydraulic diameter acts as an important parameter. We first showed the accuracy of the numerical code by reproducing the experiments of Mulcahy. The agreement between pressure spectra from computations and from experiments is good. Then, we applied this code to simulate new numerical experiments varying the hydraulic diameter and the flow velocity. (author) [fr

  7. Core/corona modeling of diode-imploded annular loads

    Terry, R. E.; Guillory, J. U.

    1980-11-01

    The effects of a tenuous exterior plasma corona with anomalous resistivity on the compression and heating of a hollow, collisional aluminum z-pinch plasma are predicted by a one-dimensional code. As the interior ("core") plasma is imploded by its axial current, the energy exchange between core and corona determines the current partition. Under the conditions of rapid core heating and compression, the increase in coronal current provides a trade-off between radial acceleration and compression, which reduces the implosion forces and softens the pitch. Combined with a heuristic account of energy and momentum transport in the strongly coupled core plasma and an approximate radiative loss calculation including Al line, recombination and Bremsstrahlung emission, the current model can provide a reasonably accurate description of imploding annular plasma loads that remain azimuthally symmetric. The implications for optimization of generator load coupling are examined.

  8. Development of annular targets for 99MO production-1999

    Conner, C.; Lewandowski, E. F.; Snelgrove, J. L.; Liberatore, M. W.; Walker, D. E.; Wiencek, T. C.; McGann, D. J.; Hofman, G. L.; Vandegrift, G. F.

    1999-01-01

    The new annular target performed well during irradiation. The target is inexpensive and provides good heat transfer during irradiation. Based on these and previous tests, we conclude that targets with zirconium tubes and either nickel-plated or zinc-plated foils work well. We proved that we could use aluminum target tubes, which are much cheaper and easier to work with than the zirconium tubes. In aluminum target tubes nickel-plated fission-recoil barriers work well and prevent bonding of the foil to the new target tubes during irradiation. Also, zinc-plated and aluminum-foil barriers appear promising in anodized aluminum tubes. Additional tests are anticipated to address such issues as fission-recoil barrier thickness and uranium foil composition. Overall, however, the target was successful and will provide an inexpensive, efficient way to irradiate LEU metal foil for the production of 99 Mo

  9. Fluxons in long and annular intrinsic Josephson junction stacks

    Clauss, T; Moessle, M; Müller, A; Weber, A; Kölle, D; Kleiner, R

    2002-01-01

    A promising approach towards a THz oscillator based on intrinsic Josephson junctions in high-temperature superconductors is based on the collective motion of Josephson fluxons, which are predicted to form various configurations ranging from a triangular to a quadratic lattice. Not only for this reason, but certainly also for the sake of basic physics, several experimental and theoretical investigations have been done on the subject of collective fluxon dynamics in stacked intrinsic Josephson junctions. In this paper we will present some experimental results on the fluxon dynamics of long intrinsic Josephson junction stacks made of Bi sub 2 Sr sub 2 CaCu sub 2 O sub 8. The stacks were formed either in an open or in an annular geometry, and clear resonant fluxon modes were observed. Experiments discussed include measurements of current-voltage characteristics in external magnetic fields and in external microwave fields.

  10. Design of an Annular Disc Subject to Thermomechanical Loading

    Sergei Alexandrov

    2012-01-01

    Full Text Available Two solutions to design a thin annular disc of variable thickness subject to thermomechanical loading are proposed. It is assumed that the thickness of the disc is everywhere sufficiently small for the stresses to be averaged through the thickness. The state of stress is plane. The initiation of plastic yielding is controlled by Mises yield criterion. The design criterion for one of the solutions proposed requires that the distribution of stresses is uniform over the entire disc. In this case there is a relation between optimal values of the loading parameters at the final stage. The specific shape of the disc corresponds to each pair of such parameters. The other solution is obtained under the additional requirement that the distribution of strains is uniform. This solution exists for the disc of constant thickness at specific values of the loading parameters.

  11. Annular subvalvular left ventricular aneurysm in Bahia, Brazil.

    Guimarães, A C; Filho, A S; Esteves, J P; Abreu, W N; Vinhaes, L A; de Almeida Souza, J A; Machado, A

    1976-10-01

    Two cases of left ventricular aneurysm, a 16-year-old black boy and a 23-year-old white girl, from Bahia, Brazil, are presented. In both patients there was enlargement of the cardiac silhouette and a prominent bulge of the left inferior border. On the right oblique view a ring of calcium at the ventricular opening of the aneurysms was visualized. A left ventriculogram showed a huge aneurysm in the first case and a bulge on the lateral wall of the left ventricle in the other. Cardiac catheterization showed a rise in left and right ventricular end-diastolic pressures and in the mean pulmonary artery pressure. In the first case the contour of the right ventricular pressure curve showed a restrictive pattern. The similarities of these aneurysms with the annular submitral type described in young black Africans are stressed.

  12. Interfacial shear modeling in two-phase annular flow

    Kumar, R.; Edwards, D.P.

    1996-11-01

    A new interfacial shear stress model called the law of the interface model, based on the law of the wall approach in turbulent flows, has been developed and locally applied in a fully developed, adiabatic, two-phase annular flow in a duct. Numerical results have been obtained using this model in conjunction with other models available in the literature that are required for the closure of the continuity and momentum equations. These results have been compared with droplet velocity data (using laser Doppler velocimetry and hot film anemometry), void fraction data (using gamma densitometry) and pressure drop data obtained in a R-134A refrigerant test facility. Droplet velocity results match the experimental data well, however, the prediction of the void fraction is less accurate. The poor prediction of void fraction, especially for the low void fraction cases, appears to be due to the lack of a good mechanistic model for entrainment

  13. Interfacial shear modeling in two-phase annular flow

    Kumar, R.; Edwards, D.P.

    1996-07-01

    A new interfacial shear stress model called the law of the interface model, based on the law of the wall approach in turbulent flows, has been developed and locally applied in a fully developed, adiabatic, two-phase annular flow in a duct. Numerical results have been obtained using this model in conjunction with other models available in the literature that are required for the closure of the continuity and momentum equations. These results have been compared with droplet velocity data (using laser Doppler velocimetry and hot film anemometry), void fraction data (using gamma densitometry) and pressure drop data obtained in a R-134A refrigerant test facility. Droplet velocity results match the experimental data well, however, the prediction of the void fraction is less accurate. The poor prediction of void fraction, especially for the low void fraction cases, appears to be due to the lack of a good mechanistic model for entrainment

  14. Annular elastolytic giant cell granuloma of conjunctiva: A case report

    Karabi Konar

    2014-01-01

    Full Text Available Annular elastolytic giant cell granuloma is a condition characterized histologically by damaged elastic fibers associated with preponderance of giant cells along with absence of necrobiosis, lipid, mucin, and pallisading granuloma. It usually occurs on sun-damaged skin and hence the previous name actinic granuloma. A similar process occurs on the conjunctiva. Over the past three decades only four cases of conjunctival actinic granuloma have been documented. All the previous patients were females with lesions in nasal or temporal bulbar conjunctiva varying 2-3 mm in size. We report a male patient aged 70 years presenting with a 14 mm × 7 mm fleshy mass on right lower bulbar conjunctiva. Clinical differential diagnoses were lymphoma, squamous cell carcinoma in situ and amyloidosis. Surgical excision followed by histopathology confirmed it to be a case of actinic granuloma. This is the first case of isolated conjunctival actinic granuloma of such a large size reported from India.

  15. Two-phase flow instabilities in a vertical annular channel

    Babelli, I.; Nair, S.; Ishii, M. [Purdue Univ., West Lafayette, IN (United States)

    1995-09-01

    An experimental test facility was built to study two-phase flow instabilities in vertical annular channel with emphasis on downward flow under low pressure and low flow conditions. The specific geometry of the test section is similar to the fuel-target sub-channel of the Savannah River Site (SRS) Mark 22 fuel assembly. Critical Heat Flux (CHF) was observed following flow excursion and flow reversal in the test section. Density wave instability was not recorded in this series of experimental runs. The results of this experimental study show that flow excursion is the dominant instability mode under low flow, low pressure, and down flow conditions. The onset of instability data are plotted on the subcooling-Zuber (phase change) numbers stability plane.

  16. Dynamic Response of Three-Layered Annular Plate with Imperfections

    Pawlus Dorota

    2015-02-01

    Full Text Available This paper presents the imperfection sensitivity of annular plate with three-layered structure. The plate composed of thin elastic facings and a thicker elastic core is loaded in facing plane. The classical issue of a three-layered plate was solved for dynamic deflection problem using the approximation methods: orthogonalization and finite difference. The solution includes the axisymmetric and asymmetric plate modes of the dynamic stability loss. The evaluation of the rate of plate sensitivity to imperfection of plate preliminary geometry has been enriched by the analysis of plate models built of finite elements. The ABAQUS program has been used. The numerous calculation results in the form of deflection characteristics, buckling modes, values of critical parameters create the view of response of dynamic plate structure with different rate of imperfection and linear in time loading growth, too.

  17. Effect of viscous dissipation and radiation in an annular cone

    Ahmed, N. J. Salman; Kamangar, Sarfaraz; Khan, T. M. Yunus; Azeem

    2016-01-01

    The viscous dissipation is an effect due to which heat is generated inside the medium. The presence of radiation further complicates the heat transfer behavior inside porous medium. The present paper discusses the combined effect of viscous dissipation and radiation inside a porous medium confined in an annular cone with inner radius r_i. The viscous dissipation and radiation terms are included in the energy equation thereby solving the coupled momentum and energy equations with the help of finite element method. The results are presented in terms of isothermal and streamline indicating the thermal and fluid flow behavior of porous medium. It is found that the combination of viscous dissipation and radiation parameter and the cone angle has significant effect on the heat transfer and fluid flow behavior inside the porous medium. The fluid velocity is found to increase with the increase in Raleigh number

  18. Effect of viscous dissipation and radiation in an annular cone

    Ahmed, N. J. Salman; Kamangar, Sarfaraz [Centre for Energy Sciences, Dept. of Mechanical Engineering, University of Malaya, Kuala Lumpur, 50603 Malaysia (Malaysia); Khan, T. M. Yunus, E-mail: yunus.tatagar@gmail.com [Centre for Energy Sciences, Dept. of Mechanical Engineering, University of Malaya, Kuala Lumpur, 50603 Malaysia (Malaysia); Dept. of Mechanical Engineering, BVB College of Engineering & Technology, Hubli (India); Azeem [Dept. of Computer System & Technology, University of Malaya, Kuala Lumpur (Malaysia)

    2016-06-21

    The viscous dissipation is an effect due to which heat is generated inside the medium. The presence of radiation further complicates the heat transfer behavior inside porous medium. The present paper discusses the combined effect of viscous dissipation and radiation inside a porous medium confined in an annular cone with inner radius r{sub i}. The viscous dissipation and radiation terms are included in the energy equation thereby solving the coupled momentum and energy equations with the help of finite element method. The results are presented in terms of isothermal and streamline indicating the thermal and fluid flow behavior of porous medium. It is found that the combination of viscous dissipation and radiation parameter and the cone angle has significant effect on the heat transfer and fluid flow behavior inside the porous medium. The fluid velocity is found to increase with the increase in Raleigh number.

  19. An annular BF3 counter of large sensitive volume

    Janardhanan, S.; Swaminathan, N.

    1975-01-01

    An annular neutron counter having a large sensitive volume with inner and outer diameter 31 cms with multiple electrode system fabricated especially to measure the neutron output from fissile region of standard fast reactor fuel of length nearly equivalent to 500 cms is described. The counter efficiency is nearly 0.3% for neutron and sensitivity 0.0018 counts/neutron for (alpha, neutron) and spontaneous fission source. Its other potential applications which are indicated are : (1) quality control of fast reactor fuel pins (2) fuel inventory (3) assessing radioactivity of solid waste packets containing PuO 2 (4) uniformity of fuel loading of a reactor and (5) neutron monitoring in a fuel plant. (M.G.B.)

  20. Dispersion properties of plasma cladded annular optical fiber

    KianiMajd, M.; Hasanbeigi, A.; Mehdian, H.; Hajisharifi, K.

    2018-05-01

    One of the considerable problems in a conventional image transferring fiber optic system is the two-fold coupling of propagating hybrid modes. In this paper, using a simple and practical analytical approach based on exact modal vectorial analysis together with Maxwell's equations, we show that applying plasma as a cladding medium of an annular optical fiber can remove this defect of conventional fiber optic automatically without any external instrument as the polarization beam splitter. Moreover, the analysis indicates that the presence of plasma in the proposed optical fiber could extend the possibilities for controlling the propagation property. The proposed structure presents itself as a promising route to advanced optical processing and opens new avenues in applied optics and photonics.

  1. Highly Tunable Narrow Bandpass MEMS Filter

    Hafiz, Md Abdullah Al

    2017-07-07

    We demonstrate a proof-of-concept highly tunable narrow bandpass filter based on electrothermally and electrostatically actuated microelectromechanical-system (MEMS) resonators. The device consists of two mechanically uncoupled clamped-clamped arch resonators, designed such that their resonance frequencies are independently tuned to obtain the desired narrow passband. Through the electrothermal and electrostatic actuation, the stiffness of the structures is highly tunable. We experimentally demonstrate significant percentage tuning (~125%) of the filter center frequency by varying the applied electrothermal voltages to the resonating structures, while maintaining a narrow passband of 550 ± 50 Hz, a stopband rejection of >17 dB, and a passband ripple ≤ 2.5 dB. An analytical model based on the Euler-Bernoulli beam theory is used to confirm the behavior of the filter, and the origin of the high tunability using electrothermal actuation is discussed.

  2. Experimental investigation on subcooled boiling heat transfer in a vertical double-face heated narrow annulus

    Yan Mingyu; Qiu Suizheng; Jia Dounan

    2005-01-01

    Experimental investigation on the subcooled boiling heat transfer was carried out in a vertical up-flow double narrow annulus with 1.5 mm gap. The working fluid is deionized water. The ranges of parameters as follows: pressure 0.84-6.09 MPa, mass flux 41.9-300.2 kg/(m 2 ·s), heat flux 2.61-114.41kW/m 2 . An empiric correlation used to predict the heat transfer of subcooled boiling in narrow annulus is induced from the experimental data. (author)

  3. Natural Convective Heat Transfer from Narrow Plates

    Oosthuizen, Patrick H

    2013-01-01

    Natural Convective Heat Transfer from Narrow Plates deals with a heat transfer situation that is of significant practical importance but which is not adequately dealt with in any existing textbooks or in any widely available review papers. The aim of the book is to introduce the reader to recent studies of natural convection from narrow plates including the effects of plate edge conditions, plate inclination, thermal conditions at the plate surface and interaction of the flows over adjacent plates. Both numerical and experimental studies are discussed and correlation equations based on the results of these studies are reviewed.

  4. A naturally narrow positive-parity Θ+

    Carlson, Carl E.; Carone, Christopher D.; Kwee, Herry J.; Nazaryan, Vahagn

    2004-01-01

    We present a consistent color-flavor-spin-orbital wave function for a positive-parity Θ + that naturally explains the observed narrowness of the state. The wave function is totally symmetric in its flavor-spin part and totally antisymmetric in its color-orbital part. If flavor-spin interactions dominate, this wave function renders the positive-parity Θ + lighter than its negative-parity counterpart. We consider decays of the Θ + and compute the overlap of this state with the kinematically allowed final states. Our results are numerically small. We note that dynamical correlations between quarks are not necessary to obtain narrow pentaquark widths

  5. Narrow Escape of Interacting Diffusing Particles

    Agranov, Tal; Meerson, Baruch

    2018-03-01

    The narrow escape problem deals with the calculation of the mean escape time (MET) of a Brownian particle from a bounded domain through a small hole on the domain's boundary. Here we develop a formalism which allows us to evaluate the nonescape probability of a gas of diffusing particles that may interact with each other. In some cases the nonescape probability allows us to evaluate the MET of the first particle. The formalism is based on the fluctuating hydrodynamics and the recently developed macroscopic fluctuation theory. We also uncover an unexpected connection between the narrow escape of interacting particles and thermal runaway in chemical reactors.

  6. Measurement of Quasi-periodic Oscillating Flow Motion in Simulated Dual-cooled Annular Fuel Bundle

    Lee, Chi Young; Shin, Chang Hwan; Park, Ju Yong; Oh, Dong Seok; Chun, Tae Hyun; In, Wang Kee

    2012-01-01

    In order to increase a significant amount of reactor power in OPR1000, KAERI (Korea Atomic Energy Research Institute) has been developing a dual-cooled annular fuel. The dual-cooled annular fuel is simultaneously cooled by the water flow through the inner and the outer channels. KAERI proposed the 12x12 dual-cooled annular fuel array which was designed to be structurally compatible with the 16x16 cylindrical solid fuel array by maintaining the same array size and the guide tubes in the same locations, as shown in Fig. 1. In such a case, due to larger outer diameter of dual-cooled annular fuel than conventional solid fuel, a P/D (Pitch-to-Diameter ratio) of dual cooled annular fuel assembly becomes smaller than that of cylindrical solid fuel. A change in P/D of fuel bundle can cause a difference in the flow mixing phenomena between the dual-cooled annular and conventional cylindrical solid fuel assemblies. In this study, the rod bundle flow motion appearing in a small P/D case is investigated preliminarily using PIV (Particle Image Velocimetry) for dual-cooled annular fuel application

  7. Design and Optimization of Annular Flow Electromagnetic Measurement System for Drilling Engineering

    Liang Ge

    2018-01-01

    Full Text Available Using the downhole annular flow measurement system to get real-time information of downhole annular flow is the core and foundation of downhole microflux control drilling technology. The research work of electromagnetic flowmeter in recent years creates a challenge to the design of downhole annular flow measurement. This paper proposes a design and optimization of annular flow electromagnetic measurement system for drilling engineering based on the finite element method. Firstly, the annular flow measuring and optimization principle are described. Secondly, a simulation model of an annular flow electromagnetic measurement system with two pairs of coil is built based on the fundamental equation of electromagnetic flowmeter by COMSOL. Thirdly, simulations of the structure of excitation system of the measurement system are carried out, and simulations of the size of the electrode’s radius are also carried out based on the optimized structure, and then all the simulation results are analyzed to evaluate the optimization effect based on the evaluation indexes. The simulation results show that optimized shapes of the excitation system and electrode size can yield a better performance in the annular flow measurement.

  8. Burnout in the boiling of water and freon-113 on tubes with annular fins

    Rubin, I.R.; Pul'kin, I.N.; Roizen, L.I.

    1986-01-01

    This paper presents the results of numerical calculations of burnout heat flux associated with the boiling of Freon-113 and water on an annular fin of constant thickness which have been approximated by simple analytical relations. These are used to calculate the critical burnout parameters of tubes with an annular fin assembly. The calculated data may be used for the analysis of tubes with an annular fin assembly over a wide range of variation of the thermophysical properties of the material and geometrical parameters of the fin assembly

  9. A woman with juxta-articular nodules—An uncommon form of subcutaneous granuloma annulare

    Lili Wang

    2014-06-01

    Full Text Available Granuloma annulare is a benign inflammatory dermatosis that is most common in children and young adults. The subcutaneous form of granuloma annulare, which occurs mainly on the extremities in children, is rare. Lesions usually occur as painless subcutaneous nodules without inflammation of the cutaneous surface; the most frequent sites are the legs, buttocks, and scalp. Nevertheless, we present a case of subcutaneous granuloma annulare confined to the dorsa of the hand joints and right knee in a 51-year-old woman.

  10. Modeling approach for annular-fuel elements using the ASSERT-PV subchannel code

    Dominguez, A.N.; Rao, Y.

    2012-01-01

    The internally and externally cooled annular fuel (hereafter called annular fuel) is under consideration for a new high burn-up fuel bundle design in Atomic Energy of Canada Limited (AECL) for its current, and its Generation IV reactor. An assessment of different options to model a bundle fuelled with annular fuel elements is presented. Two options are discussed: 1) Modify the subchannel code ASSERT-PV to handle multiple types of elements in the same bundle, and 2) coupling ASSERT-PV with an external application. Based on this assessment, the selected option is to couple ASSERT-PV with the thermalhydraulic system code CATHENA. (author)

  11. An analytical model for annular flow boiling heat transfer in microchannel heat sinks

    Megahed, A.; Hassan, I.

    2009-01-01

    An analytical model has been developed to predict flow boiling heat transfer coefficient in microchannel heat sinks. The new analytical model is proposed to predict the two-phase heat transfer coefficient during annular flow regime based on the separated model. Opposing to the majority of annular flow heat transfer models, the model is based on fundamental conservation principles. The model considers the characteristics of microchannel heat sink during annular flow and eliminates using any empirical closure relations. Comparison with limited experimental data was found to validate the usefulness of this analytical model. The model predicts the experimental data with a mean absolute error 8%. (author)

  12. Narrow linewidth pulsed optical parametric oscillator

    Tunable narrow linewidth radiation by optical parametric oscillation has many applications, particularly in spectroscopic investigation. In this paper, different techniques such as injection seeding, use of spectral selecting element like grating, grating and etalon in combination, grazing angle of incidence, entangled cavity ...

  13. An experimental study of rotational pressure loss in rotor-stator gap

    Yew Chuan Chong

    2017-06-01

    Full Text Available The annular gap between rotor and stator is an inevitable flow path of a throughflow ventilated electrical machine, but the flow entering the rotor-stator gap is subjected to the effects of rotation. The pressure loss and volumetric flow rate across the rotor-stator gap were measured and compared between rotating and stationary conditions. The experimental measurements found that the flow entering the rotor-stator gap is affected by an additional pressure loss. In the present study, the rotational pressure loss at the entrance of rotor-stator gap is characterised. Based upon dimensional analysis, the coefficient of entrance loss can be correlated with a dimensionless parameter, i.e. rotation ratio. The investigation leads to an original correlation for the entrance loss coefficient of rotor-stator gap arisen from the Coriolis and centrifugal effects in rotating reference frame.

  14. Dynamic film thickness between bubbles and wall in a narrow channel

    Ito, Daisuke; Damsohn, Manuel; Prasser, Horst-Michael; Aritomi, Masanori

    2011-09-01

    The present paper describes a novel technique to characterize the behavior of the liquid film between gas bubbles and the wall in a narrow channel. The method is based on the electrical conductance. Two liquid film sensors are installed on both opposite walls in a narrow rectangular channel. The liquid film thickness underneath the gas bubbles is recorded by the first sensor, while the void fraction information is obtained by measuring the conductance between the pair of opposite sensors. Both measurements are taken on a large two-dimensional domain and with a high speed. This makes it possible to obtain the two-dimensional distribution of the dynamic liquid film between the bubbles and the wall. In this study, this method was applied to an air-water flow ranging from bubbly to churn regimes in the narrow channel with a gap width of 1.5 mm.

  15. Design of narrow band photonic filter with compact MEMS for tunable resonant wavelength ranging 100 nm

    Guanquan Liang

    2011-12-01

    Full Text Available A prototype of planar silicon photonic structure is designed and simulated to provide narrow resonant line-width (∼2 nm in a wide photonic band gap (∼210 nm with broad tunable resonant wavelength range (∼100 nm around the optical communication wavelength 1550 nm. This prototype is based on the combination of two modified basic photonic structures, i.e. a split tapered photonic crystal micro-cavity embedded in a photonic wire waveguide, and a slot waveguide with narrowed slabs. This prototype is then further integrated with a MEMS (microelectromechanical systems based electrostatic comb actuator to achieve “coarse tune” and “fine tune” at the same time for wide range and narrow-band filtering and modulating. It also provides a wide range tunability to achieve the designed resonance even fabrication imperfection occurs.

  16. Biofilm Community Dynamics in Bench-Scale Annular Reactors Simulating Arrestment of Chloraminated Drinking Water Nitrification

    Annular reactors (ARs) were used to study biofilm community succession and provide an ecological insight during nitrification arrestment through simultaneously increasing monochloramine (NH2Cl) and chlorine to nitrogen mass ratios, resulting in four operational periods (I to IV)....

  17. The analysis of the annular fuel performance in steady state condition by using AFPAC code

    He Xiaojun; Ji Songtao; Zhang Yingchao

    2012-01-01

    The fuel performance code AFPAC v1.0 is used to analyze annular fuel's behavior under steady state conditions, including neutronics, thermal hydraulic, rod deformation, fission gas release and rod internal pressure. The calculation results show that: 1) Annular fuel has a good steady irradiation performance at 150% power level as current LWRs' with burnup up to 50 GWd/t, and all parameters, such as temperature, rod internal pressure and rod deformation, are meet the rod design criteria for current fuel of PWRs: 2) Compared to the solid fuel under the same irradiation condition. annular fuel has lower temperature, smaller deformation, lower fission gas release and lower pressure at EOL. From the point of view of steady irradiation performance, the safety of reactors can significantly improved by u sing the annular fuel. (authors)

  18. Maximizing prosthetic valve size with the Top Hat supra-annular aortic valve

    Aagaard, Jan; Geha, Alexander S.

    2007-01-01

    BACKGROUND AND AIM OF THE STUDY: The CarboMedics Top Hat supra-annular aortic valve allows a one-size (and often two-size) increase over the standard intra-annular valve. This advantage should minimize the risk of patient-prosthesis mismatch, where the effective prosthetic valve orifice area....... This study evaluates the authors' clinical experience with Top Hat supra-annular aortic valve size selection, and the technical aspects of implantation. METHODS: Between January 1999 and October 2005, a total of 251 consecutive patients underwent 252 aortic valve replacements with Top Hat supra...... required unplanned coronary bypass, and 30-day mortality was 2.0% (5/251), indicating a good safety profile for the valves implanted in this series. CONCLUSION: The general distribution of implant sizes in the US indicates that cardiac surgeons may be under-sizing the Top Hat supra-annular aortic valve...

  19. Flow Characteristics and Sizing of Annular Seat Valves for Digital Displacement Machines

    Nørgård, Christian; Bech, Michael Møller; Andersen, Torben O.

    2018-01-01

    operating range. To achieve high machine efficiency, the valve flow losses and the required electrical power needed for valve switching should be low. The annular valve plunger geometry, of a valve prototype developed for digital displacement machines, is parametrized by three parameters: stroke length......This paper investigates the steady-state flow characteristics and power losses of annular seat valves for digital displacement machines. Annular seat valves are promising candidates for active check-valves used in digital displacement fluid power machinery which excels in efficiency in a broad...... a valve prototype. Using the simulated maps to estimate the flow power losses and a simple generic model to estimate the electric power losses, both during digital displacement operation, optimal designs of annular seat valves, with respect to valve power losses, are derived under several different...

  20. An iterative method for the solution of nonlinear systems using the Faber polynomials for annular sectors

    Myers, N.J. [Univ. of Durham (United Kingdom)

    1994-12-31

    The author gives a hybrid method for the iterative solution of linear systems of equations Ax = b, where the matrix (A) is nonsingular, sparse and nonsymmetric. As in a method developed by Starke and Varga the method begins with a number of steps of the Arnoldi method to produce some information on the location of the spectrum of A. This method then switches to an iterative method based on the Faber polynomials for an annular sector placed around these eigenvalue estimates. The Faber polynomials for an annular sector are used because, firstly an annular sector can easily be placed around any eigenvalue estimates bounded away from zero, and secondly the Faber polynomials are known analytically for an annular sector. Finally the author gives three numerical examples, two of which allow comparison with Starke and Varga`s results. The third is an example of a matrix for which many iterative methods would fall, but this method converges.

  1. Criticality safety calculations of 'poison tube tank' compared with annular tanks for storing fissile solutions

    Gopalakrishnan, C.R.; Joseph, G.

    1995-01-01

    A comparative study of the shielded area space required for storing fissile solution by the conventional annular tank and by poison tube tank is made. Poison tube tank is similar to commercial heat exchanger. The neutron poisons studied are gadolinium oxide and borax. Variation of multiplication factor for an array of annular tanks containing uranium nitrate or plutonium nitrate solutions are presented for annular widths of 10, 7.5 and 5 cm. It is concluded that for the given concentration, 5 cm annular width tanks are safe at a pitch distance of 120 and 90 cm for uranium and plutonium solutions respectively. Using these, as reference values, it is found that the shielded area saving for the poison tube tank is a factor of 12 and 8 for the given concentration of uranium and plutonium solutions respectively. (author)

  2. Unsteady fluid flow in a slightly curved annular pipe: The impact of the annulus on the flow physics

    Messaris, Gerasimos A. T.; Karahalios, George T.

    2017-02-01

    The motivation of the present study is threefold. Mainly, the etiological explanation of the Womersley number based on physical reasoning. Next, the extension of a previous work [Messaris, Hadjinicolaou, and Karahalios, "Unsteady fluid flow in a slightly curved pipe: A comparative study of a matched asymptotic expansions solution with a single analytical solution," Phys. Fluids 28, 081901 (2016)] to the annular pipe flow. Finally, the discussion of the effect of the additional stresses generated by a catheter in an artery and exerted on the arterial wall during an in vivo catheterization. As it is known, the square of the Womersley number may be interpreted as an oscillatory Reynolds number which equals to the ratio of the inertial to the viscous forces. The adoption of a modified Womersley number in terms of the annular gap width seems therefore more appropriate to the description of the annular flow than an ordinary Womersley number defined in terms of the pipe radius. On this ground, the non-dimensional equations of motion are approximately solved by two analytical methods: a matched asymptotic expansions method and a single. In the first method, which is valid for very large values of the Womersley number, the flow region consists of the main core and the two boundary layers formed at the inner and outer boundaries. In the second, the fluid is considered as one region and the Womersley number can vary from finite values, such that they fit to the blood flow in the aorta and the main arteries, to infinity. The single solution predicts increasing circumferential and decreasing axial stresses with increasing catheter radius at a prescribed value of the Womersley parameter in agreement with analogous results from other theoretical and numerical solutions. It also predicts the formation of pinches on the secondary flow streamlines and a third boundary layer, additional to those formed at the boundary walls. Finally, we show that the insertion of a catheter in an

  3. Evolution of deformation velocity in narrowing for Zircaloy 2

    Cetlin, P R [Minas Gerais Univ., Belo Horizonte (Brazil). Dept. de Engenharia Metalurgica; Okuda, M Y [Goias Univ., Goiania (Brazil). Inst. de Matematica e Fisica

    1980-09-01

    Some studies on the deformation instability in strain shows that the differences in this instability may lead to localized narrowing or elongated narrowing, for Zircaloy-2. The variation of velocity deformation with the narrowing evolution is expected to be different for these two cases. The mentioned variation is discussed, a great difference in behavior having been observed for the case of localized narrowing.

  4. Microdynamics of dusty plasma liquids in narrow channel: from disorder to order

    Woon Wei Yen; Deng L Iwen; Lin, I

    2003-01-01

    We report direct observations on the microscopic dynamics of dusty plasma liquid confined in a narrow gap. We measure the horizontal and transverse displacement histograms as well as the transverse particle density distributions from particle trajectories. Under confinement, the liquid forms a layer structure. The dust particle motion at boundaries show anisotropy and three outermost layers is found due to the pinching effect of the boundaries. When the gap width is reduced to below 7d (d = inter-layer width), the dust particle motion in the central region shows a transition from isotropic motion to anisotropic discrete hopping motion, leading to a slower dynamics and layer structure through the whole liquid.

  5. Understanding narrow SOL power flux component in COMPASS limiter plasmas by use of Langmuir probes

    Dejarnac, Renaud; Stangeby, P.C.; Goldston, R.J.; Gauthier, E.; Horáček, Jan; Hron, Martin; Kocan, M.; Komm, Michael; Pánek, Radomír; Pitts, R.A.; Vondráček, Petr

    2015-01-01

    Roč. 463, August (2015), s. 381-384 ISSN 0022-3115. [PLASMA-SURFACE INTERACTIONS 21: International Conference on Plasma-Surface Interactions in Controlled Fusion Devices. Kanazawa, 26.05.2014-30.05.2014] R&D Projects: GA ČR GAP205/11/2341; GA ČR(CZ) GAP205/12/2327; GA MŠk(CZ) LM2011021 Institutional support: RVO:61389021 Keywords : COMPASS * tokamak * Heat loads * limiter * narrow channel * probes Subject RIV: JF - Nuclear Energetics OBOR OECD: Nuclear related engineering Impact factor: 2.199, year: 2015 http://www.sciencedirect.com/science/article/pii/S0022311514010538#

  6. An X-band high-impedance relativistic klystron amplifier with an annular explosive cathode

    Zhu, Danni; Zhang, Jun, E-mail: zhangjun@nudt.edu.cn; Zhong, Huihuang; Qi, Zumin [College of Optoelectric Science and Engineering, National University of Defense Technology, Changsha 410073 (China)

    2015-11-15

    The feasibility of employing an annular beam instead of a solid one in the X-band high-impedance relativistic klystron amplifier (RKA) is investigated in theory and simulation. Small-signal theory analysis indicates that the optimum bunching distance, fundamental current modulation depth, beam-coupling coefficient, and beam-loaded quality factor of annular beams are all larger than the corresponding parameters of solid beams at the same beam voltage and current. An annular beam RKA and a solid beam RKA with almost the same geometric parameters are compared in particle-in-cell simulation. Output microwave power of 100 MW, gain of 50 dB, and power conversion efficiency of 42% are obtained in an annular beam RKA. The annular beam needs a 15% lower uniform guiding magnetic field than the solid beam. Our investigations demonstrate that we are able to use a simple annular explosive cathode immersed in a lower uniform magnetic field instead of a solid thermionic cathode in a complicated partially shielding magnetic field for designing high-impedance RKA, which avoids high temperature requirement, complicated electron-optical system, large area convergence, high current density, and emission uniformity for the solid beam. An equivalent method for the annular beam and the solid beam on bunching features is proposed and agrees with the simulation. The annular beam has the primary advantages over the solid beam that it can employ the immersing uniform magnetic field avoiding the complicated shielding magnetic field system and needs a lower optimum guiding field due to the smaller space charge effect.

  7. Supra-annular valve strategy for an early degenerated transcatheter balloon-expandable heart valve.

    Kamioka, Norihiko; Caughron, Hope; Corrigan, Frank; Block, Peter; Babaliaros, Vasilis

    2018-01-23

    Currently, there are no recommendations regarding the selection of valve type for a transcatheter heart valve (THV)-in-THV procedure. A supra-annular valve design may be superior in that it results in a larger effective orifice area and may have a lower chance of valve thrombosis after THV-in-THV. In this report, we describe the use of a supra-annular valve strategy for an early degenerated THV. © 2018 Wiley Periodicals, Inc.

  8. Impact of Annular Size on Outcomes After Surgical or Transcatheter Aortic Valve Replacement.

    Deeb, G Michael; Chetcuti, Stanley J; Yakubov, Steven J; Patel, Himanshu J; Grossman, P Michael; Kleiman, Neal S; Heiser, John; Merhi, William; Zorn, George L; Tadros, Peter N; Petrossian, George; Robinson, Newell; Mumtaz, Mubashir; Gleason, Thomas G; Huang, Jian; Conte, John V; Popma, Jeffrey J; Reardon, Michael J

    2018-04-01

    This analysis evaluates the relationship of annular size to hemodynamics and the incidence of prosthesis-patient mismatch (PPM) in surgical aortic valve replacement (SAVR) and transcatheter aortic valve replacement (TAVR) patients. The CoreValve US Pivotal High Risk Trial, described previously, compared TAVR using a self-expanding valve with SAVR. Multislice computed tomography was used to categorize TAVR and SAVR subjects according to annular perimeter-derived diameter: large (≥26 mm), medium (23 to <26 mm), and small (<23 mm). Hemodynamics, PPM, and clinical outcomes were assessed. At all postprocedure visits, mean gradients were significantly lower for TAVR compared with SAVR in small and medium size annuli (p < 0.001). Annular size was significantly associated with mean gradient after SAVR, with small annuli having the highest gradients (p < 0.05 at all timepoints); gradients were similar across all annular sizes after TAVR. In subjects receiving SAVR, the frequency of PPM was significantly associated with annular size, with small annuli having the greatest incidence. No difference in PPM incidence by annular sizing was observed with TAVR. In addition, TAVR subjects had significantly less PPM than SAVR subjects in small and medium annuli (p < 0.001), with no difference in the incidence of PPM between TAVR and SAVR in large annuli (p = 0.10). Annular size has a significant effect on hemodynamics and the incidence of PPM in SAVR subjects, not observed in TAVR subjects. With respect to annular size, TAVR results in better hemodynamics and less PPM for annuli less than 26 mm and should be strongly considered when choosing a tissue valve for small and medium size annuli. Copyright © 2018 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  9. Thermal hydraulics model for Sandia's annular core research reactor

    Rao, Dasari V.; El-Genk, Mohamed S.; Rubio, Reuben A.; Bryson, James W.; Foushee, Fabian C.

    1988-01-01

    A thermal hydraulics model was developed for the Annular Core Research Reactor (ACRR) at Sandia National Laboratories. The coupled mass, momentum and energy equations for the core were solved simultaneously using an explicit forward marching numerical technique. The model predictions of the temperature rise across the central channel of the ACRR core were within ± 10 percent agreement with the in-core temperature measurements. The model was then used to estimate the coolant mass flow rate and the axial distribution of the cladding surface temperature in the central and average channels as functions of the operating power and the water inlet subcooling. Results indicated that subcooled boiling occurs at the cladding surface in the central channels of the ACRR at power levels in excess of 0.5 MW. However, the high heat transfer coefficient due to subcooled boiling causes the cladding temperature along most of the active fuel rod region to be quite uniform and to increase very little with the reactor power. (author)

  10. Numerical Study of Transition of an Annular Lift Fan Aircraft

    Yun Jiang

    2016-09-01

    Full Text Available The present study aimed at studying the transition of annular lift fan aircraft through computational fluid dynamics (CFD simulations. The oscillations of lift and drag, the optimization for the figure of merit, and the characteristics of drag, yawing, rolling and pitching moments in transition are studied. The results show that a two-stage upper and lower fan lift system can generate oscillations of lift and drag in transition, while a single-stage inner and outer fan lift system can eliminate the oscillations. The characteristics of momentum drag of the single-stage fans in transition are similar to that of the two-stage fans, but with the peak of drag lowered from 0.63 to 0.4 of the aircraft weight. The strategy to start transition from a negative angle of attack −21° further reduces the peak of drag to 0.29 of the weight. The strategy also reduces the peak of pitching torque, which needs upward extra thrusts of 0.39 of the weight to eliminate. The peak of rolling moment in transition needs differential upward thrusts of 0.04 of the weight to eliminate. The requirements for extra thrusts in transition lead to a total thrust–weight ratio of 0.7, which makes the aircraft more efficient for high speed cruise flight (higher than 0.7 Ma.

  11. Casimir effect for a semitransparent wedge and an annular piston

    Milton, Kimball A.; Wagner, Jef; Kirsten, Klaus

    2009-01-01

    We consider the Casimir energy due to a massless scalar field in a geometry of an infinite wedge closed by a Dirichlet circular cylinder, where the wedge is formed by δ-function potentials, so-called semitransparent boundaries. A finite expression for the Casimir energy corresponding to the arc and the presence of both semitransparent potentials is obtained, from which the torque on the sidewalls can be derived. The most interesting part of the calculation is the nontrivial nature of the angular mode functions. Numerical results are obtained which are closely analogous to those recently found for a magnetodielectric wedge, with the same speed of light on both sides of the wedge boundaries. Alternative methods are developed for annular regions with radial semitransparent potentials, based on reduced Green's functions for the angular dependence, which allows calculations using the multiple-scattering formalism. Numerical results corresponding to the torque on the radial plates are likewise computed, which generalize those for the wedge geometry. Generally useful formulas for calculating Casimir energies in separable geometries are derived.

  12. Pollution technology program, can-annular combustor engines

    Roberts, R.; Fiorentino, A. J.; Greene, W.

    1976-01-01

    A Pollution Reduction Technology Program to develop and demonstrate the combustor technology necessary to reduce exhaust emissions for aircraft engines using can-annular combustors is described. The program consisted of design, fabrication, experimental rig testing and assessment of results and was conducted in three program elements. The combustor configurations of each program element represented increasing potential for meeting the 1979 Environmental Protection Agency (EPA) emission standards, while also representing increasing complexity and difficulty of development and adaptation to an operational engine. Experimental test rig results indicate that significant reductions were made to the emission levels of the baseline JT8D-17 combustor by concepts in all three program elements. One of the Element I single-stage combustors reduced carbon monoxide to a level near, and total unburned hydrocarbons (THC) and smoke to levels below the 1979 EPA standards with little or no improvement in oxides of nitrogen. The Element II two-stage advanced Vorbix (vortex burning and mixing) concept met the standard for THC and achieved significant reductions in CO and NOx relative to the baseline. Although the Element III prevaporized-premixed concept reduced high power NOx below the Element II results, there was no improvement to the integrated EPA parameter relative to the Vorbix combustor.

  13. Experimental Investigation and Analysis of an Annular Pogo Accumulator

    Peugeot, John; Schwarz, Jordan; Yang, H. Q.; Zoladz, Tom

    2011-01-01

    An experimental investigation was conducted on a scaled annular pogo accumulator for the Ares I Upper Stage. The test article was representative of the LO2 feedline and preliminary accumulator design, and included multiple designs of a perforated ring connecting the accumulator to the core feedline flow. The system was pulse tested in water over a range of pulse frequency and flow rates. Time dependent measurements of pressure at various locations in the test article were used to extract system compliance, inertance, and resistance. Preliminary results indicated a significant deviation from standard orifice flow theory and suggest a strong dependence on feedline average velocity. In addition, several CFD analyses were conducted to investigate the details of the time variant flow field. Both two-dimensional and three-dimensional simulations were performed with time varying boundary conditions used to represent system pulsing. The CFD results compared well with the sub-scale results and demonstrated the influence of feedline average velocity on the flow into and out of the accumulator. This paper presents updated results of the investigation including a parametric design space for determining resistance characteristics. Using the updated experimental results a new scaling relationship has been defined for shear flow over a cavity. A comparison of sub-scale and full scale CFD simulations provided early verification of the scaling of the fluid flowfield and resistance characteristics.

  14. HAMLET forms annular oligomers when deposited with phospholipid monolayers.

    Baumann, Anne; Gjerde, Anja Underhaug; Ying, Ming; Svanborg, Catharina; Holmsen, Holm; Glomm, Wilhelm R; Martinez, Aurora; Halskau, Oyvind

    2012-04-20

    Recently, the anticancer activity of human α-lactalbumin made lethal to tumor cells (HAMLET) has been linked to its increased membrane affinity in vitro, at neutral pH, and ability to cause leakage relative to the inactive native bovine α-lactalbumin (BLA) protein. In this study, atomic force microscopy resolved membrane distortions and annular oligomers (AOs) produced by HAMLET when deposited at neutral pH on mica together with a negatively charged lipid monolayer. BLA, BAMLET (HAMLET's bovine counterpart) and membrane-binding Peptide C, corresponding to BLA residues 75-100, also form AO-like structures under these conditions but at higher subphase concentrations than HAMLET. The N-terminal Peptide A, which binds to membranes at acidic but not at neutral pH, did not form AOs. This suggests a correlation between the capacity of the proteins/peptides to integrate into the membrane at neutral pH-as observed by liposome content leakage and circular dichroism experiments-and the formation of AOs, albeit at higher concentrations. Formation of AOs, which might be important to HAMLET's tumor toxic action, appears related to the increased tendency of the protein to populate intermediately folded states compared to the native protein, the formation of which is promoted by, but not uniquely dependent on, the oleic acid molecules associated with HAMLET. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Annular Air Leaks in a liquid hydrogen storage tank

    Krenn, AG; Youngquist, RC; Starr, SO

    2017-12-01

    Large liquid hydrogen (LH2) storage tanks are vital infrastructure for NASA, the DOD, and industrial users. Over time, air may leak into the evacuated, perlite filled annular region of these tanks. Once inside, the extremely low temperatures will cause most of the air to freeze. If a significant mass of air is allowed to accumulate, severe damage can result from nominal draining operations. Collection of liquid air on the outer shell may chill it below its ductility range, resulting in fracture. Testing and analysis to quantify the thermal conductivity of perlite that has nitrogen frozen into its interstitial spaces and to determine the void fraction of frozen nitrogen within a perlite/frozen nitrogen mixture is presented. General equations to evaluate methods for removing frozen air, while avoiding fracture, are developed. A hypothetical leak is imposed on an existing tank geometry and a full analysis of that leak is detailed. This analysis includes a thermal model of the tank and a time-to-failure calculation. Approaches to safely remove the frozen air are analyzed, leading to the conclusion that the most feasible approach is to allow the frozen air to melt and to use a water stream to prevent the outer shell from chilling.

  16. Annular beam shaping system for advanced 3D laser brazing

    Pütsch, Oliver; Stollenwerk, Jochen; Kogel-Hollacher, Markus; Traub, Martin

    2012-10-01

    As laser brazing benefits from advantages such as smooth joints and small heat-affected zones, it has become established as a joining technology that is widely used in the automotive industry. With the processing of complex-shaped geometries, recent developed brazing heads suffer, however, from the need for continuous reorientation of the optical system and/or limited accessibility due to lateral wire feeding. This motivates the development of a laser brazing head with coaxial wire feeding and enhanced functionality. An optical system is designed that allows to generate an annular intensity distribution in the working zone. The utilization of complex optical components avoids obscuration of the optical path by the wire feeding. The new design overcomes the disadvantages of the state-of-the-art brazing heads with lateral wire feeding and benefits from the independence of direction while processing complex geometries. To increase the robustness of the brazing process, the beam path also includes a seam tracking system, leading to a more challenging design of the whole optical train. This paper mainly discusses the concept and the optical design of the coaxial brazing head, and also presents the results obtained with a prototype and selected application results.

  17. Analytical approximations for wide and narrow resonances

    Suster, Luis Carlos; Martinez, Aquilino Senra; Silva, Fernando Carvalho da

    2005-01-01

    This paper aims at developing analytical expressions for the adjoint neutron spectrum in the resonance energy region, taking into account both narrow and wide resonance approximations, in order to reduce the numerical computations involved. These analytical expressions, besides reducing computing time, are very simple from a mathematical point of view. The results obtained with this analytical formulation were compared to a reference solution obtained with a numerical method previously developed to solve the neutron balance adjoint equations. Narrow and wide resonances of U 238 were treated and the analytical procedure gave satisfactory results as compared with the reference solution, for the resonance energy range. The adjoint neutron spectrum is useful to determine the neutron resonance absorption, so that multigroup adjoint cross sections used by the adjoint diffusion equation can be obtained. (author)

  18. Analytical approximations for wide and narrow resonances

    Suster, Luis Carlos; Martinez, Aquilino Senra; Silva, Fernando Carvalho da [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia. Programa de Engenharia Nuclear]. E-mail: aquilino@lmp.ufrj.br

    2005-07-01

    This paper aims at developing analytical expressions for the adjoint neutron spectrum in the resonance energy region, taking into account both narrow and wide resonance approximations, in order to reduce the numerical computations involved. These analytical expressions, besides reducing computing time, are very simple from a mathematical point of view. The results obtained with this analytical formulation were compared to a reference solution obtained with a numerical method previously developed to solve the neutron balance adjoint equations. Narrow and wide resonances of U{sup 238} were treated and the analytical procedure gave satisfactory results as compared with the reference solution, for the resonance energy range. The adjoint neutron spectrum is useful to determine the neutron resonance absorption, so that multigroup adjoint cross sections used by the adjoint diffusion equation can be obtained. (author)

  19. Dismantling the activated annular water tank of the Rheinsberg nuclear power plant

    Klietz, Maik; Konitzer, Arnold; Luedeke, Michael

    2010-01-01

    Acting on behalf of Energiewerke Nord GmbH Lubmin, Anlagen- und Kraftwerksrohrleitungsbau Greifswald GmbH (AKB) planned and built a station for disassembly of the activated annular water tank (RWB) of the decommissioned Rheinsberg nuclear power plant. As part of this demolition step, the annular water tank must be conditioned and disposed of as a component of the reactor facility. This required planning, manufacturing, testing and construction on site of suitable disassembly and handling techniques and the necessary plant and equipment. The client opted for disassembly by means of a diamond cable saw for conditioning the annular water tank into segments fit for shipping, and defined the basic components for the disassembly station in a specification of deliveries and services. The disassembly station serves to divide the annular water tank by means of diamond cable saws into 2 sections in such a way that segment pieces for transport are produced. The existing activation of the annular water tank also entailed the need to plan for the shortest possible time to be spent on handling near the annular water tank, providing radiological protection to the personnel, and performing the sawing steps from a separate operating console assisted by camera surveillance. After works acceptance tests at the manufacturer's, AKB, in October 2009 and February 2010, the disassembly station was delivered to the customer at Rheinsberg KKR free from defects in June 2010. (orig.)

  20. Fluid-structure interaction analysis of annular seals and rotor systems in multi-stage pumps

    Jiang, Qinglei; Zhai, Lulu; Wang, Leqin; Wu, Dazhuan

    2013-01-01

    Annular seals play an important role in determining the vibrational behavior of rotors in multi-stage pumps. To determine the critical speeds and unbalanced responses of rotor systems which consider annular seals, a fluid-structure interaction (FSI) method was developed, and the numerical method was verified by experiments conducted on a model rotor. In a typical FSI process, rotor systems are modeled based on a node-element method, and the motion equations are expressed in a type of matrix. To consider the influence of annular seals, dynamic coefficients of annular seals were introduced into the motion equations through matrix transformation. The test results of the model rotor showed good agreement with the calculated results. Based on the FSI method proposed here, the governing equations of annular seals were solved in two different ways. The results showed that the Childs method is more accurate in predicting a rotor's critical speed. The critical speeds of the model rotor were calculated at different clearance sizes and length/diameter ratios. Tilting coefficients of long seals were added to the dynamic coefficients to consider the influence of tilting. The critical speeds reached their maximum value when the L/D ratio was around 1.25, and tilting enhanced the rotor's stability when long annular seals were located in either end of the shaft.

  1. Monthly rifampicin, ofloxacin, and minocycline therapy for generalized and localized granuloma annulare

    Shilpa Garg

    2015-01-01

    Full Text Available Background: The localized form of granuloma annulare is usually self-limiting, resolving within 2 years. Generalized granuloma annulare, on the other hand, runs a protracted course, with spontaneous resolution being rare. It is also characterized by a later age of onset, an increased incidence of diabetes mellitus, poor response to therapy, and an increased prevalence of HLA Bw35. Objective: To assess the efficacy of monthly pulsed rifampicin, ofloxacin, and minocycline (ROM therapy in the management of granuloma annulare. Methods : Six biopsy proven patients of granuloma annulare were included in the study, five of the generalized variety, and one localized. Three of these patients were resistant to standard modalities of treatment. All six patients were treated with pulses of once monthly ROM till complete resolution of all lesions. Results were analyzed in terms of complete resolution of lesions and side effects. Presence of comorbid conditions was noted. Result: All six patients were successfully treated with 4-8 pulses of monthly ROM. None of the patients reported any adverse effects. Limitations: Small sample size and the lack of a control group are limitations. Conclusion: Treatment with pulses of once monthly ROM caused complete resolution of lesions in both localized and generalized granuloma annulare, even in cases recalcitrant to conventional therapy. There were no side effects in any of the patients. Larger trials are needed to substantiate the efficacy of monthly ROM in granuloma annulare.

  2. Evaluation of tricuspid annular plane systolic excursion measured with cardiac MRI in children with tetralogy of Fallot.

    Soslow, Jonathan H; Usoro, Emem; Wang, Li; Parra, David A

    2016-04-01

    Aneurysmal dilation of the right ventricular outflow tract complicates assessment of right ventricular function in patients with repaired tetralogy of Fallot. Tricuspid annular plane systolic excursion is commonly used to estimate ejection fraction. We hypothesised that tricuspid annular plane systolic excursion measured by cardiac MRI approximates global and segmental right ventricular function, specifically right ventricular sinus ejection fraction, in children with repaired tetralogy of Fallot. Tricuspid annular plane systolic excursion was measured retrospectively on cardiac MRIs in 54 patients with repaired tetralogy of Fallot. Values were compared with right ventricular global, sinus, and infundibular ejection fractions. Tricuspid annular plane systolic excursion was indexed to body surface area, converted into a fractional value, and converted into published paediatric Z-scores. Tricuspid annular plane systolic excursion measurements had good agreement between observers. Right ventricular ejection fraction did not correlate with the absolute or indexed tricuspid annular plane systolic excursion and correlated weakly with fractional tricuspid annular plane systolic excursion (r=0.41 and p=0.002). Segmental right ventricular function did not appreciably improve correlation with any of the tricuspid annular plane systolic excursion measures. Paediatric Z-scores were unable to differentiate patients with normal and abnormal right ventricular function. Tricuspid annular plane systolic excursion measured by cardiac MRI correlates poorly with global and segmental right ventricular ejection fraction in children with repaired tetralogy of Fallot. Tricuspid annular plane systolic excursion is an unreliable approximation of right ventricular function in this patient population.

  3. Dose evaluation of narrow-beam

    Goto, Shinichi

    1999-01-01

    Reliability of the dose from the narrow photon beam becomes more important since the single high-dose rate radiosurgery becoming popular. The dose evaluation for the optimal dose is difficult due to absence of lateral electronic equilibrium. Data necessary for treatment regimen are TMR (tissue maximum ratio), OCR (off center ratio) and S c,p (total scatter factor). The narrow-beam was 10 MV X-ray from Varian Clinac 2100C equipped with cylindrical Fischer collimator CBI system. Detection was performed by Kodak XV-2 film, a PTW natural diamond detector M60003, Scanditronics silicon detector EDD-5 or Fujitec micro-chamber FDC-9.4C. Phantoms were the water equivalent one (PTW, RW3), water one (PTW, MP3 system) and Wellhofer WP600 system. Factors above were actually measured to reveal that in the dose evaluation of narrow photon beam, TMR should be measured by micro-chamber, OCR, by film, and S c,p , by the two. The use of diamond detector was recommended for more precise measurement and evaluation of the dose. The importance of water phantom in the radiosurgery system was also shown. (K.H.)

  4. Electron correlations in narrow band systems

    Kishore, R.

    1983-01-01

    The effect of the electron correlations in narrow bands, such as d(f) bands in the transition (rare earth) metals and their compounds and the impurity bands in doped semiconductors is studied. The narrow band systems is described, by the Hubbard Hamiltonian. By proposing a local self-energy for the interacting electron, it is found that the results are exact in both atomic and band limits and reduce to the Hartree Fock results for U/Δ → 0, where U is the intra-atomic Coulomb interaction and Δ is the bandwidth of the noninteracting electrons. For the Lorentzian form of the density of states of the noninteracting electrons, this approximation turns out to be equivalent to the third Hubbard approximation. A simple argument, based on the mean free path obtained from the imaginary part of the self energy, shows how the electron correlations can give rise to a discontinous metal-nonmetal transition as proposed by Mott. The band narrowing and the existence of the satellite below the Fermi energy in Ni, found in photoemission experiments, can also be understood. (Author) [pt

  5. Domain-adaptive finite difference methods for collapsing annular liquid jets

    Ramos, J. I.

    1993-01-01

    A domain-adaptive technique which maps a time-dependent, curvilinear geometry into a unit square is used to determine the steady state mass absorption rate and the collapse of annular liquid jets. A method of lines is used to solve the one-dimensional fluid dynamics equations written in weak conservation-law form, and upwind differences are employed to evaluate the axial convective fluxes. The unknown, time-dependent, axial location of the downstream boundary is determined from the solution of an ordinary differential equation which is nonlinearly coupled to the fluid dynamics and gas concentration equations. The equation for the gas concentration in the annular liquid jet is written in strong conservation-law form and solved by means of a method of lines at high Peclet numbers and a line Gauss-Seidel method at low Peclet numbers. The effects of the number of grid points along and across the annular jet, time step, and discretization of the radial convective fluxes on both the steady state mass absorption rate and the jet's collapse rate have been analyzed on staggered and non-staggered grids. The steady state mass absorption rate and the collapse of annular liquid jets are determined as a function of the Froude, Peclet and Weber numbers, annular jet's thickness-to-radius ratio at the nozzle exit, initial pressure difference across the annular jet, nozzle exit angle, temperature of the gas enclosed by the annular jet, pressure of the gas surrounding the jet, solubilities at the inner and outer interfaces of the annular jet, and gas concentration at the nozzle exit. It is shown that the steady state mass absorption rate is proportional to the inverse square root of the Peclet number except for low values of this parameter, and that the possible mathematical incompatibilities in the concentration field at the nozzle exit exert a great influence on the steady state mass absorption rate and on the jet collapse. It is also shown that the steady state mass absorption

  6. Improvement of vacuum pressure in the annular-ring coupled structures for the J-PARC linac

    Ao, Hiroyuki; Nemoto, Yasuo; Oozone, Akira; Tamura, Jun

    2015-01-01

    The accelerating cavities of the J-PARC linac, additionally comprising an annular-ring-coupled structure (ACS), went into operation in 2014. To further improve the vacuum pressure of the ACS, an additional nonevaporable getter (NEG) pump was designed so that it could be installed independent of the vacuum chamber of the ACS cavity. We confirmed that the NEG pump can be appropriately activated by using a small pumping station and that purging with noble gases reduces the saturation of the NEG surface. In the evacuation test of the prototype ACS cavity with the NEG pump, the partial pressure of H_2 and the total pressure were reduced from 4.8 × 10"-"7 and 6.8 × 10"-"7 Pa to 2.5 × 10"-"7 and 4.5 × 10"-"7 Pa, respectively. The additional NEG pump will be installed in the ACS cavity in the fall of 2014, after which any decrease in pressure and NEG-pump lifetime will be confirmed by long-term-operation experiments. (author)

  7. Heat Transfer Characteristics during Boiling of Immiscible Liquids Flowing in Narrow Rectangular Heated Channels

    Yasuhisa Shinmoto

    2017-11-01

    Full Text Available The use of immiscible liquids for cooling of surfaces with high heat generation density is proposed based on the experimental verification of its superior cooling characteristics in fundamental systems of pool boiling and flow boiling in a tube. For the purpose of practical applications, however, heat transfer characteristics due to flow boiling in narrow rectangular channels with different small gap sizes need to be investigated. The immiscible liquids employed here are FC72 and water, and the gap size is varied as 2, 1, and 0.5 mm between parallel rectangular plates of 30 mm × 175 mm, where one plate is heated. To evaluate the effect of gap size, the heat transfer characteristics are compared at the same inlet velocity. The generation of large flattened bubbles in a narrow gap results in two opposite trends of the heat transfer enhancement due to thin liquid film evaporation and of the deterioration due to the extension of dry patch in the liquid film. The situation is the same as that observed for pure liquids. The latter negative effect is emphasized for extremely small gap sizes if the flow rate ratio of more-volatile liquid to the total is not reduced. The addition of small flow rate of less-volatile liquid can increase the critical heat flux (CHF of pure more-volatile liquid, while the surface temperature increases at the same time and assume the values between those for more-volatile and less-volatile liquids. By the selection of small flow rate ratio of more-volatile liquid, the surface temperature of pure less-volatile liquid can be decreased without reducing high CHF inherent in the less-volatile liquid employed. The trend of heat transfer characteristics for flow boiling of immiscible mixtures in narrow channels is more sensitive to the composition compared to the flow boiling in a round tube.

  8. II-VI Narrow-Bandgap Semiconductors for Optoelectronics

    Baker, Ian

    The field of narrow-gap II-VI materials is dominated by the compound semiconductor mercury cadmium telluride, (Hg1-x Cd x Te or MCT), which supports a large industry in infrared detectors, cameras and infrared systems. It is probably true to say that HgCdTe is the third most studied semiconductor after silicon and gallium arsenide. Hg1-x Cd x Te is the material most widely used in high-performance infrared detectors at present. By changing the composition x the spectral response of the detector can be made to cover the range from 1 μm to beyond 17 μm. The advantages of this system arise from a number of features, notably: close lattice matching, high optical absorption coefficient, low carrier generation rate, high electron mobility and readily available doping techniques. These advantages mean that very sensitive infrared detectors can be produced at relatively high operating temperatures. Hg1-x Cd x Te multilayers can be readily grown in vapor-phase epitaxial processes. This provides the device engineer with complex doping and composition profiles that can be used to further enhance the electro-optic performance, leading to low-cost, large-area detectors in the future. The main purpose of this chapter is to describe the applications, device physics and technology of II-VI narrow-bandgap devices, focusing on HgCdTe but also including Hg1-x Mn x Te and Hg1-x Zn x Te. It concludes with a review of the research and development programs into third-generation infrared detector technology (so-called GEN III detectors) being performed in centers around the world.

  9. The prototype GAPS (pGAPS) experiment

    Mognet, S.A.I., E-mail: mognet@astro.ucla.edu [University of California, Los Angeles, CA 90095 (United States); Aramaki, T. [Columbia University, New York, NY 10027 (United States); Bando, N. [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (ISAS/JAXA), Sagamihara, Kanagawa 252-5210 (Japan); Boggs, S.E.; Doetinchem, P. von [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Fuke, H. [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (ISAS/JAXA), Sagamihara, Kanagawa 252-5210 (Japan); Gahbauer, F.H.; Hailey, C.J.; Koglin, J.E.; Madden, N. [Columbia University, New York, NY 10027 (United States); Mori, K.; Okazaki, S. [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (ISAS/JAXA), Sagamihara, Kanagawa 252-5210 (Japan); Ong, R.A. [University of California, Los Angeles, CA 90095 (United States); Perez, K.M.; Tajiri, G. [Columbia University, New York, NY 10027 (United States); Yoshida, T. [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (ISAS/JAXA), Sagamihara, Kanagawa 252-5210 (Japan); Zweerink, J. [University of California, Los Angeles, CA 90095 (United States)

    2014-01-21

    The General Antiparticle Spectrometer (GAPS) experiment is a novel approach for the detection of cosmic ray antiparticles. A prototype GAPS (pGAPS) experiment was successfully flown on a high-altitude balloon in June of 2012. The goals of the pGAPS experiment were: to test the operation of lithium drifted silicon (Si(Li)) detectors at balloon altitudes, to validate the thermal model and cooling concept needed for engineering of a full-size GAPS instrument, and to characterize cosmic ray and X-ray backgrounds. The instrument was launched from the Japan Aerospace Exploration Agency's (JAXA) Taiki Aerospace Research Field in Hokkaido, Japan. The flight lasted a total of 6 h, with over 3 h at float altitude (∼33km). Over one million cosmic ray triggers were recorded and all flight goals were met or exceeded.

  10. The prototype GAPS (pGAPS) experiment

    Mognet, S.A.I.; Aramaki, T.; Bando, N.; Boggs, S.E.; Doetinchem, P. von; Fuke, H.; Gahbauer, F.H.; Hailey, C.J.; Koglin, J.E.; Madden, N.; Mori, K.; Okazaki, S.; Ong, R.A.; Perez, K.M.; Tajiri, G.; Yoshida, T.; Zweerink, J.

    2014-01-01

    The General Antiparticle Spectrometer (GAPS) experiment is a novel approach for the detection of cosmic ray antiparticles. A prototype GAPS (pGAPS) experiment was successfully flown on a high-altitude balloon in June of 2012. The goals of the pGAPS experiment were: to test the operation of lithium drifted silicon (Si(Li)) detectors at balloon altitudes, to validate the thermal model and cooling concept needed for engineering of a full-size GAPS instrument, and to characterize cosmic ray and X-ray backgrounds. The instrument was launched from the Japan Aerospace Exploration Agency's (JAXA) Taiki Aerospace Research Field in Hokkaido, Japan. The flight lasted a total of 6 h, with over 3 h at float altitude (∼33km). Over one million cosmic ray triggers were recorded and all flight goals were met or exceeded

  11. Understanding the "Family Gap" in Pay for Women with Children

    Jane Waldfogel

    1998-01-01

    As the gender gap in pay between women and men has been narrowing, the 'family gap' in pay between mothers and nonmothers has been widening. One reason may be the institutional structure in the United States, which has emphasized equal pay and opportunity policies but not family policies, in contrast to other countries that have implemented both. The authors now have evidence on the links between one such family policy and women's pay. Recent research suggests that maternity leave coverage, b...

  12. Living systematic reviews: an emerging opportunity to narrow the evidence-practice gap.

    Julian H Elliott; Tari Turner; Ornella Clavisi; James Thomas; Julian P T Higgins; Chris Mavergames; Russell L Gruen

    2014-01-01

    The current difficulties in keeping systematic reviews up to date leads to considerable inaccuracy, hampering the translation of knowledge into action. Incremental advances in conventional review updating are unlikely to lead to substantial improvements in review currency. A new approach is needed. We propose living systematic review as a contribution to evidence synthesis that combines currency with rigour to enhance the accuracy and utility of health evidence. Living systematic reviews are ...

  13. Living systematic reviews: an emerging opportunity to narrow the evidence-practice gap.

    Elliott, Julian H; Turner, Tari; Clavisi, Ornella; Thomas, James; Higgins, Julian P T; Mavergames, Chris; Gruen, Russell L

    2014-02-01

    The current difficulties in keeping systematic reviews up to date leads to considerable inaccuracy, hampering the translation of knowledge into action. Incremental advances in conventional review updating are unlikely to lead to substantial improvements in review currency. A new approach is needed. We propose living systematic review as a contribution to evidence synthesis that combines currency with rigour to enhance the accuracy and utility of health evidence. Living systematic reviews are high quality, up-to-date online summaries of health research, updated as new research becomes available, and enabled by improved production efficiency and adherence to the norms of scholarly communication. Together with innovations in primary research reporting and the creation and use of evidence in health systems, living systematic review contributes to an emerging evidence ecosystem.

  14. Developing MOOCs to Narrow the College Readiness Gap: Challenges and Recommendations for a Writing Course

    Bandi-Rao, Shoba; Devers, Christopher J.

    2015-01-01

    Massive Open Online Courses (MOOCs) have demonstrated the potential to deliver quality and cost effective course materials to large numbers of students. Approximately 60% of first-year students at community colleges are underprepared for college-level coursework. One reason for low graduation rates is the lack of the overall college readiness.…

  15. Narrowing the Transfer Gap: The Advantages of "as if" Situations in Training.

    Vermeulen, Rita C. M.

    2002-01-01

    A schema a frame creates context and shapes interpretation. Using an "as if" framework can connect the contexts of training and job performance to improve transfer. Techniques that create "as if" situations include role playing, visualization, psychodrama, voice dialogue, improvisation, playback theatre, and six-steps reframing. (Contains 23…

  16. Tunable Narrow Band Gap Absorbers For Ultra High Efficiency Solar Cells

    Bedair, Salah M. [North Carolina State Univ., Raleigh, NC (United States); Hauser, John R. [North Carolina State Univ., Raleigh, NC (United States); Elmasry, Nadia [North Carolina State Univ., Raleigh, NC (United States); Colter, Peter C. [North Carolina State Univ., Raleigh, NC (United States); Bradshaw, G. [North Carolina State Univ., Raleigh, NC (United States); Carlin, C. Z. [North Carolina State Univ., Raleigh, NC (United States); Samberg, J. [North Carolina State Univ., Raleigh, NC (United States); Edmonson, Kenneth [Spectrolab, Inc., Sylmar, CA (United States)

    2012-07-31

    We report on a joint research program between NCSU and Spectrolab to develop an upright multijunction solar cell structure with a potential efficiency exceeding the current record of 41.6% reported by Spectrolab. The record efficiency Ge/GaAs/InGaP triple junction cell structure is handicapped by the fact that the current generated by the Ge cell is much higher than that of both the middle and top cells. We carried out a modification of the record cell structure that will keep the lattice matched condition and allow better matching of the current generated by each cell. We used the concept of strain balanced strained layer superlattices (SLS), inserted in the i-layer, to reduce the bandgap of the middle cell without violating the desirable lattice matched condition. For the middle GaAs cell, we have demonstrated an n-GaAs/i-(InGaAs/GaAsP)/p-GaAs structure, where the InxGa1-xAs/GaAs1-yPy SLS is grown lattice matched to GaAs and with reduced bandgap from 1.43 eV to 1.2 eV, depending upon the values of x and y.

  17. Where Principals Dare to Dream: Critical Friends Group Narrows the Gap between Vision and Reality

    Fahey, Kevin

    2012-01-01

    Being a principal was the most demanding job the author ever had. He worked hard, mostly in isolation. Like most principals, he struggled to manage the position's political and bureaucratic necessities in order to concentrate on what he thought was the fundamental work of schools: teaching and learning. He struggled to continue to learn and grow…

  18. Picture That: Supporting Sexuality Educators in Narrowing the Knowledge/Practice Gap

    Beyers, Christa

    2012-01-01

    Teaching about sex and relationships is one of the greatest challenges in not only the combating of HIV and AIDS, but also in preparing the youth for responsible sexual behaviour. Although it seems as if teachers to some extent do feel comfortable with the teaching of sexuality education at school, the question however remains as to whether youth…

  19. Narrowing the gap between theory and practice? Interactive knowledge development in a coastal defense project

    Seijger, Chris; van Tatenhove, J.; Dewulf, Geert P.M.R.; Otter, Henriëtte; Javernick-Will, A.; Chinowsky, P.

    2012-01-01

    Coastal defence projects intend to develop solutions in a highly dynamic environment. The coastal zone is characterized by expanding cities, rising flood risks, economic activity, and a threatened natural environment. Developing relevant knowledge for solutions in coastal defence projects is

  20. Narrowing the Gap between Open Standards Policy and Practice: The Dutch e-Government Experience

    Lammers, Rutger; Folmer, Erwin Johan Albert; Ehrenhard, Michel Léon; Janssen, Marijn; Lamersdorf, Winfried; Pries-Heje, Jan; Rosemann, Michael

    2010-01-01

    Interoperability in the public sector can be improved by the use of open standards. Nonetheless, the openness of standards in government policies is debatable. This paper introduces the Dutch government policy on open standards, and will introduce a multi-dimensional view (and model) on openness

  1. Narrowing the agronomic yield gap with improved nitrogen use efficiency: a modeling approach.

    Ahrens, T D; Lobell, D B; Ortiz-Monasterio, J I; Li, Y; Matson, P A

    2010-01-01

    Improving nitrogen use efficiency (NUE) in the major cereals is critical for more sustainable nitrogen use in high-input agriculture, but our understanding of the potential for NUE improvement is limited by a paucity of reliable on-farm measurements. Limited on-farm data suggest that agronomic NUE (AE(N)) is lower and more variable than data from trials conducted at research stations, on which much of our understanding of AE(N) has been built. The purpose of this study was to determine the magnitude and causes of variability in AE(N) across an agricultural region, which we refer to as the achievement distribution of AE(N). The distribution of simulated AE(N) in 80 farmers' fields in an irrigated wheat system in the Yaqui Valley, Mexico, was compared with trials at a local research center (International Wheat and Maize Improvement Center; CIMMYT). An agroecosystem simulation model WNMM was used to understand factors controlling yield, AE(N), gaseous N emissions, and nitrate leaching in the region. Simulated AE(N) in the Yaqui Valley was highly variable, and mean on-farm AE(N) was 44% lower than trials with similar fertilization rates at CIMMYT. Variability in residual N supply was the most important factor determining simulated AE(N). Better split applications of N fertilizer led to almost a doubling of AE(N), increased profit, and reduced N pollution, and even larger improvements were possible with technologies that allow for direct measurement of soil N supply and plant N demand, such as site-specific nitrogen management.

  2. Narrowing the Skills Gap for Innovation: An Empirical Study in the Hospital Sector.

    Dias, Casimiro; Escoval, Ana

    2014-09-23

    The current financial crisis and the increasing burden of chronic diseases are challenging hospitals to enhance their innovation capacity to deliver new and more effective health services. However, the shortage of skills has been widely recognized as a key obstacle for innovation. Ensuring the presence of a skilled workforce has become a priority for the health system in Portugal and across Europe. The aim of this study was to examine the demand of new skills and their influence in both investments in innovation and development of skills. We used a mixed-methods approach combining statistical analysis of data survey and content analysis of semistructured interviews with the Administration Boards of hospitals, using a nominal group technique. The results illustrate an increasing demand of a broad range of skills for innovation development, including responsibility and quality consciousness (with a significant increase of 55%, 52/95), adaptation skills (with an increase of 44%, 42/95) and cooperation and communication skills (with an increase of 55%, 52/95). Investments in the development of skills for innovation are mainly focused on aligning professional training with an organizational strategy (69%, 66/95) as well as collaboration in taskforces (61%, 58/95) and cross-department teams (60%, 57/95). However, the dynamics between the supply and demand of skills for innovation are better explained through a broader perspective of organizational changes towards enhancing learning opportunities and engagement of health professionals to boost innovation. The results of this study illustrate that hospitals are unlikely to enhance their innovation capacity if they pursue strategies failing to match the skills needed. Within this context, hospitals with high investments in innovation tend to invest more in skills development. The demand of skills and investments in training are influenced by many other factors, including the hospital's strategies, as well as changes in the work organization. Relevant implications for managers and policy makers can be drawn from the empirical findings of this paper, building on the current efforts from leading innovating hospitals that are already defining the future of health care.

  3. Band gap narrowing of SnS2 superstructures with improved hydro-gen production

    Li, Guowei; Su, Ren; Rao, Jiancun; Rudolf, Petra; Blake, Graeme; de Groot, Robert; Besenbacher, Flemming; Palstra, Thomas

    2016-01-01

    Transition metal sulfides exhibit chemical and physical properties that are of much scientific and technological interest and can largely be attributed to their covalent bonding of 3d electrons. Hierarchical structures of these materials are suited for a broad range of applications in energy

  4. Does acculturation narrow the health literacy gap between immigrants and non-immigrants-An explorative study.

    Mantwill, Sarah; Schulz, Peter J

    2017-04-01

    To compare functional health literacy (HL) levels in three immigrant groups to those of the German- and Italian-speaking non-immigrant population in Switzerland. Moreover, to investigate whether language-independent, respectively language-dependent, functional HL and variables of acculturation were associated with self-reported health status among immigrants. Language-independent HL was assessed with the Short Test of Functional Health Literacy (S-TOFHLA) in the respective native languages. Language-dependent HL was measured using Brief Health Literacy Screeners (BHLS) asking about participants' confidence in understanding medical information in the language of the host country. Measures of acculturation included length of stay and age when taking residency in Switzerland. In particular Albanian- and Portuguese-speaking immigrants had lower levels of functional HL. In unadjusted analysis "age when taking residency in Switzerland" was associated with the BHLS. Adjusted analysis showed that the BHLS were significantly associated with self-reported health among all immigrant groups (p≤0.01). Functional HL that is dependent on understanding of medical information in the language of the new host country is a better predictor for self-reported health status among immigrants than language-independent HL. In the clinical setting limited functional HL might be a significant obstacle to successful disease treatment and prevention in immigrants. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. Band gap narrowing and photocatalytic studies of Nd 3+ ion-doped ...

    The XRD patterns of all the samples are identified as tetrag- onal rutile-type SnO2 .... radiation in 2θ ranging from 20◦ to 80◦ at a scanning rate of 0.02◦/s. The morphology ..... Mazutti M A 2012 Water Air Soil Pollut. 223 5773. [16] Adnan R ...

  6. Band gap narrowing and photocatalytic studies of Nd 3+ ion-doped

    Pure and Nd3+-doped tin oxide (SnO2) nanoparticles have been prepared by the sol–gel method and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution TEM, energydispersive spectroscopy and UV–visible spectroscopy. The XRD patterns of all the samples are identified as ...

  7. Narrowing the Gap Between the Rhetoric and the Reality of Medical Ethics.

    Silverman, David R.

    1996-01-01

    This paper argues that in the debate over medical ethics and its role in medical education, the divergence of law and reality reflects the law's flawed medical model, which poorly matches the dynamic of the physician-patient relationship and attempts ineffectually to reshape it, and also medicine's autonomous professional culture, which…

  8. Narrowing the Gap between Theory and Practice: Proposals for a Fifth Generation of Community Colleges.

    Deegan, William L.; Tillery, Dale

    1986-01-01

    The "fifth generation" of community colleges must assess and resolve fundamental questions of quality and productivity. A research agenda is outlined that addresses mission, delivery systems, student needs, and attendance patterns. (LB)

  9. Narrowing the Gap: Explaining the Increasing Competitiveness of the Venezuelan Opposition

    Krouwel, A.P.M.; Kutiyski, Y.

    2014-01-01

    This article seeks to explain why electoral support for the Venezuelan opposition has increased substantially, using Venezuelan public opinion survey data from LAPOP and an opt-in sample collected through the online vote advice application Brújula Presidencial Venezuela. It analyzes why Venezuelans

  10. Living systematic reviews: an emerging opportunity to narrow the evidence-practice gap.

    Julian H Elliott

    2014-02-01

    Full Text Available The current difficulties in keeping systematic reviews up to date leads to considerable inaccuracy, hampering the translation of knowledge into action. Incremental advances in conventional review updating are unlikely to lead to substantial improvements in review currency. A new approach is needed. We propose living systematic review as a contribution to evidence synthesis that combines currency with rigour to enhance the accuracy and utility of health evidence. Living systematic reviews are high quality, up-to-date online summaries of health research, updated as new research becomes available, and enabled by improved production efficiency and adherence to the norms of scholarly communication. Together with innovations in primary research reporting and the creation and use of evidence in health systems, living systematic review contributes to an emerging evidence ecosystem.

  11. Narrowing the Gap in Quantification of Aerosol-Cloud Radiative Effects

    Feingold, G.; McComiskey, A. C.; Yamaguchi, T.; Kazil, J.; Johnson, J. S.; Carslaw, K. S.

    2016-12-01

    Despite large advances in our understanding of aerosol and cloud processes over the past years, uncertainty in the aerosol-cloud radiative effect/forcing is still of major concern. In this talk we will advocate a methodology for quantifying the aerosol-cloud radiative effect that considers the primacy of fundamental cloud properties such as cloud amount and albedo alongside the need for process level understanding of aerosol-cloud interactions. We will present a framework for quantifying the aerosol-cloud radiative effect, regime-by-regime, through process-based modelling and observations at the large eddy scale. We will argue that understanding the co-variability between meteorological and aerosol drivers of the radiative properties of the cloud system may be as important an endeavour as attempting to untangle these drivers.

  12. Effect of Granule Size on Diametric Tolerance of Annular Fuel Pellet

    Rhee, Young Woo; Kim, Dong Joo; Kim, Jong Hun; Yang, Jae Ho; Kim, Keon Sik; Kang, Ki Won; Song, Kun Woo

    2008-01-01

    A dual cooled annular fuel has been seriously considered as a favorable option for an extended power uprate of a Pressurized Water Reactor fuel assembly. An annular fuel shows a lot of advantages from the point of a fuel safety and its economy due to its unique configurational merit such as an increased heat transfer area and a thin pellet thickness. From the viewpoint of the fuel pellet fabrication, however, the unique shape of annular fuel pellet causes challenging difficulties to satisfy a diametric tolerance. A sintered cylindrical PWR fuel pellet fabricated by a conventional double-acting press has an hour-glass shape due to an inhomogeneous green density distribution in a powder compact. Thus, a sintered pellet usually undergoes a centerless grinding process in order to secure diametric tolerance specifications. In the case of an annular pellet fabrication using a conventional double-acting press, the same hour-glass shape would probably occur. An inhomogeneous green density distribution in a powder compact is attributed to granule-granule frictions and granule to pressing mold wall frictions. Frictions result in an irregular pressing load distribution in a powder compact. In order to mitigate the frictions, a lot of process variables should be considered such as pre-compaction pressure, lubricant content, granule size and compaction pressure. The purpose of this study is to investigate the effect of a granule size on the amount of deformation after sintering, in other words, the amount of an hour-glassing. The granules with classified size ranges were made to green annular pellets with the same height and diameters. The hour-glassing amounts of the sintered annular pellets were measured and compared with that of the annular pellet made by unclassified granule

  13. Cervical spinal canal narrowing in idiopathic syringomyelia

    Struck, Aaron F.; Carr, Carrie M.; Shah, Vinil; Hesselink, John R.; Haughton, Victor M.

    2016-01-01

    The cervical spine in Chiari I patient with syringomyelia has significantly different anteroposterior diameters than it does in Chiari I patients without syringomyelia. We tested the hypothesis that patients with idiopathic syringomyelia (IS) also have abnormal cervical spinal canal diameters. The finding in both groups may relate to the pathogenesis of syringomyelia. Local institutional review boards approved this retrospective study. Patients with IS were compared to age-matched controls with normal sagittal spine MR. All subjects had T1-weighted spin-echo (500/20) and T2-weighted fast spin-echo (2000/90) sagittal cervical spine images at 1.5 T. Readers blinded to demographic data and study hypothesis measured anteroposterior diameters at each cervical level. The spinal canal diameters were compared with a Mann-Whitney U test. The overall difference was assessed with a Friedman test. Seventeen subjects were read by two reviewers to assess inter-rater reliability. Fifty IS patients with 50 age-matched controls were studied. IS subjects had one or more syrinxes varying from 1 to 19 spinal segments. Spinal canal diameters narrowed from C1 to C3 and then enlarged from C5 to C7 in both groups. Diameters from C2 to C4 were narrower in the IS group (p < 0.005) than in controls. The ratio of the C3 to the C7 diameters was also smaller (p = 0.004) in IS than controls. Collectively, the spinal canal diameters in the IS were significantly different from controls (Friedman test p < 0.0001). Patients with IS have abnormally narrow upper and mid cervical spinal canal diameters and greater positive tapering between C3 and C7. (orig.)

  14. Cervical spinal canal narrowing in idiopathic syringomyelia

    Struck, Aaron F. [Massachusetts General Hospital, Department of Neurology, Boston, MA (United States); Carr, Carrie M. [Mayo Clinic, Department of Radiology, Rochester, MN (United States); Shah, Vinil [University of California San Francisco, Department of Radiology, San Francisco, CA (United States); Hesselink, John R. [University of California San Diego, Department of Radiology, San Diego, CA (United States); Haughton, Victor M. [University of Wisconsin, Department of Radiology, Madison, WI (United States)

    2016-08-15

    The cervical spine in Chiari I patient with syringomyelia has significantly different anteroposterior diameters than it does in Chiari I patients without syringomyelia. We tested the hypothesis that patients with idiopathic syringomyelia (IS) also have abnormal cervical spinal canal diameters. The finding in both groups may relate to the pathogenesis of syringomyelia. Local institutional review boards approved this retrospective study. Patients with IS were compared to age-matched controls with normal sagittal spine MR. All subjects had T1-weighted spin-echo (500/20) and T2-weighted fast spin-echo (2000/90) sagittal cervical spine images at 1.5 T. Readers blinded to demographic data and study hypothesis measured anteroposterior diameters at each cervical level. The spinal canal diameters were compared with a Mann-Whitney U test. The overall difference was assessed with a Friedman test. Seventeen subjects were read by two reviewers to assess inter-rater reliability. Fifty IS patients with 50 age-matched controls were studied. IS subjects had one or more syrinxes varying from 1 to 19 spinal segments. Spinal canal diameters narrowed from C1 to C3 and then enlarged from C5 to C7 in both groups. Diameters from C2 to C4 were narrower in the IS group (p < 0.005) than in controls. The ratio of the C3 to the C7 diameters was also smaller (p = 0.004) in IS than controls. Collectively, the spinal canal diameters in the IS were significantly different from controls (Friedman test p < 0.0001). Patients with IS have abnormally narrow upper and mid cervical spinal canal diameters and greater positive tapering between C3 and C7. (orig.)

  15. Band gap effects of hexagonal boron nitride using oxygen plasma

    Sevak Singh, Ram; Leong Chow, Wai [School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Yingjie Tay, Roland [School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Temasek Laboratories-NTU, 50 Nanyang Avenue, Singapore 639798 (Singapore); Hon Tsang, Siu [Temasek Laboratories-NTU, 50 Nanyang Avenue, Singapore 639798 (Singapore); Mallick, Govind [Temasek Laboratories-NTU, 50 Nanyang Avenue, Singapore 639798 (Singapore); Weapons and Materials Research Directorate, U.S. Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005 (United States); Tong Teo, Edwin Hang, E-mail: htteo@ntu.edu.sg [School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore)

    2014-04-21

    Tuning of band gap of hexagonal boron nitride (h-BN) has been a challenging problem due to its inherent chemical stability and inertness. In this work, we report the changes in band gaps in a few layers of chemical vapor deposition processed as-grown h-BN using a simple oxygen plasma treatment. Optical absorption spectra show a trend of band gap narrowing monotonically from 6 eV of pristine h-BN to 4.31 eV when exposed to oxygen plasma for 12 s. The narrowing of band gap causes the reduction in electrical resistance by ∼100 fold. The x-ray photoelectron spectroscopy results of plasma treated hexagonal boron nitride surface show the predominant doping of oxygen for the nitrogen vacancy. Energy sub-band formations inside the band gap of h-BN, due to the incorporation of oxygen dopants, cause a red shift in absorption edge corresponding to the band gap narrowing.

  16. Band gap effects of hexagonal boron nitride using oxygen plasma

    Sevak Singh, Ram; Leong Chow, Wai; Yingjie Tay, Roland; Hon Tsang, Siu; Mallick, Govind; Tong Teo, Edwin Hang

    2014-01-01

    Tuning of band gap of hexagonal boron nitride (h-BN) has been a challenging problem due to its inherent chemical stability and inertness. In this work, we report the changes in band gaps in a few layers of chemical vapor deposition processed as-grown h-BN using a simple oxygen plasma treatment. Optical absorption spectra show a trend of band gap narrowing monotonically from 6 eV of pristine h-BN to 4.31 eV when exposed to oxygen plasma for 12 s. The narrowing of band gap causes the reduction in electrical resistance by ∼100 fold. The x-ray photoelectron spectroscopy results of plasma treated hexagonal boron nitride surface show the predominant doping of oxygen for the nitrogen vacancy. Energy sub-band formations inside the band gap of h-BN, due to the incorporation of oxygen dopants, cause a red shift in absorption edge corresponding to the band gap narrowing

  17. Will Public Pre-K Really Close Achievement Gaps? Gaps in Prekindergarten Quality between Students and across States

    Valentino, Rachel

    2018-01-01

    Publicly funded pre-K is often touted as a means to narrow achievement gaps, but this goal is less likely to be achieved if poor and/or minority children do not, at a minimum, attend equal quality pre-K as their non-poor, non-minority peers. In this paper, I find large "quality gaps" in public pre-K between poor, minority students and…

  18. Volume dips; spot price ranges narrow

    Anon.

    1994-01-01

    This article is the September 1994 uranium market summary. Volume in the spot concentrates market fell below 1 million lbs U3O8. In total, twelve deals took place compared to 28 deals in August. Of the twelve deals, three took place in the spot concentrates market, two took place in the medium and long-term market, three in the conversion market, and four in the enrichment market. Restricted prices weakened, but unrestricted prices firmed slightly. The enrichment price range narrowed a bit

  19. f-band narrowing in uranium intermetallics

    Dunlap, B.D.; Litterst, F.J.; Malik, S.K.; Kierstead, H.A.; Crabtree, G.W.; Kwok, W.; Lam, D.J.; Mitchell, A.W.

    1987-01-01

    Although the discovery of heavy fermion behavior in uranium compounds has attracted a great deal of attention, relatively little work has been done which is sufficiently systematic to allow an assessment of the relationship of such behavior to more common phenomena, such as mixed valence, narrow-band effects, etc. In this paper we report bulk property measurements for a number of alloys which form a part of such a systematic study. The approach has been to take relatively simple and well-understood materials and alter their behavior by alloying to produce heavy fermion or Kondo behavior in a controlled way

  20. Itinerant ferromagnetism in the narrow band limit

    Liu, S H

    2000-01-01

    It is shown that in the narrow band, strong interaction limit the paramagnetic state of an itinerant ferromagnet is described by the disordered local moment state. As a result, the Curie temperature is orders of magnitude lower than what is expected from the large exchange splitting of the spin bands. An approximate analysis has also been carried out for the partially ordered state, and the result explains the temperature evolvement of the magnetic contributions to the resistivity and low-energy optical conductivity of CrO sub 2.