WorldWideScience

Sample records for napus seed development

  1. Physiological and proteomic analyses on artificially aged Brassica napus seed

    Directory of Open Access Journals (Sweden)

    Pingfang eYang

    2015-02-01

    Full Text Available Plant seeds lose their viability when they are exposed to long term storage or controlled deterioration treatments, by a process known as seed ageing. Based on previous studies, artificially ageing treatments have been developed to accelerate the process of seed ageing in order to understand its underlying mechanisms. In this study, we used Brassica napus seeds to investigate the mechanisms of ageing initiation. B. napus seeds were exposed to artificially ageing treatment (40 oC and 90% relative humidity and their physio-biochemical characteristics were analyzed. Although the treatment delayed germination, it did not increase the concentration of cellular reactive oxygen species (ROS. Comparative proteomic analysis was conducted among the control and treated seeds at different stages of germination. The proteins responded to the treatment were mainly involved in metabolism, protein modification and destination, stress response, development and miscellaneous enzymes. Except for peroxiredoxin, no changes were observed in the accumulation of other antioxidant enzymes in the artificially aged seeds. Increased content of ABA was observed in the artificially treated seeds which might be involved in the inhibition of germination. Taken together, our results highlight the involvement of ABA in the initiation of seed ageing in addition to the ROS which was previously reported to mediate the seed ageing process.

  2. Proteomic dissection of seed germination and seedling establishment in Brassica napus

    Directory of Open Access Journals (Sweden)

    Jianwei Gu

    2016-10-01

    Full Text Available The success of seed germination and the establishment of a normal seedling are key determinants of plant species propagation. At present, only few studies have focused on the genetic control of the seed germination by proteomic approach in Brassica napus. In the present study, the protein expression pattern of seed germination was investigated using differential fluorescence two-dimensional gel electrophoresis (2-D DIGE in B. napus. One hundred thirteen differentially expressed proteins (DEPs, which were mainly involved in storage proteins (23.4%, energy metabolism (18.9%, protein metabolism (16.2%, defense/disease (12.6%, seed maturation (11.7%, carbohydrate metabolism (4.5%, lipid metabolism (4.5%, amino acids metabolism (3.6%, cell growth/division (3.6%, and some unclear proteins (2.7% were observed by proteomic analysis. Seventeen genes corresponding to 11 DEPs were identified within or near the associated linkage disequilibrium regions related to seed germination and vigor quantitative traits reported in B. napus in previous studies. The expression pattern of proteins showed the heterotrophic metabolism could be activated in the process of seed germination and the onset of defense system might start during seed germination. These findings will help us more in-depth understanding of the mobilization of seed storage reserves and regulation mechanisms of germination process in B. napus.

  3. Factors affecting the density of Brassica napus seeds

    NARCIS (Netherlands)

    Young, L.; Jalink, H.; Denkert, R.; Reaney, M.

    2006-01-01

    Brassica napus seed is composed of low density oil (0.92 g.cm(-3)) and higher density solids (1.3-1.45 g.cm(-3)). Seed buoyant density may potentially be used to determine seed oil content and to separate seeds with different oil contents, however, we have found that seeds with the lowest buoyant

  4. Brassica napus seed endosperm - metabolism and signaling in a dead end tissue.

    Science.gov (United States)

    Lorenz, Christin; Rolletschek, Hardy; Sunderhaus, Stephanie; Braun, Hans-Peter

    2014-08-28

    Oilseeds are an important element of human nutrition and of increasing significance for the production of industrial materials. The development of the seeds is based on a coordinated interplay of the embryo and its surrounding tissue, the endosperm. This study aims to give insights into the physiological role of endosperm for seed development in the oilseed crop Brassica napus. Using protein separation by two-dimensional (2D) isoelectric focusing (IEF)/SDS polyacrylamide gel electrophoresis (PAGE) and protein identification by mass spectrometry three proteome projects were carried out: (i) establishment of an endosperm proteome reference map, (ii) proteomic characterization of endosperm development and (iii) comparison of endosperm and embryo proteomes. The endosperm proteome reference map comprises 930 distinct proteins, including enzymes involved in genetic information processing, carbohydrate metabolism, environmental information processing, energy metabolism, cellular processes and amino acid metabolism. To investigate dynamic changes in protein abundance during seed development, total soluble proteins were extracted from embryo and endosperm fractions at defined time points. Proteins involved in sugar converting and recycling processes, ascorbate metabolism, amino acid biosynthesis and redox balancing were found to be of special importance for seed development in B. napus. Implications for the seed filling process and the function of the endosperm for seed development are discussed. The endosperm is of key importance for embryo development during seed formation in plants. We present a broad study for characterizing endosperm proteins in the oilseed plant B. napus. Furthermore, a project on the biochemical interplay between the embryo and the endosperm during seed development is presented. We provide evidence that the endosperm includes a complete set of enzymes necessary for plant primary metabolism. Combination of our results with metabolome data will further

  5. Genome-Wide Association Mapping of Seed Coat Color in Brassica napus.

    Science.gov (United States)

    Wang, Jia; Xian, Xiaohua; Xu, Xinfu; Qu, Cunmin; Lu, Kun; Li, Jiana; Liu, Liezhao

    2017-07-05

    Seed coat color is an extremely important breeding characteristic of Brassica napus. To elucidate the factors affecting the genetic architecture of seed coat color, a genome-wide association study (GWAS) of seed coat color was conducted with a diversity panel comprising 520 B. napus cultivars and inbred lines. In total, 22 single-nucleotide polymorphisms (SNPs) distributed on 7 chromosomes were found to be associated with seed coat color. The most significant SNPs were found in 2014 near Bn-scaff_15763_1-p233999, only 43.42 kb away from BnaC06g17050D, which is orthologous to Arabidopsis thaliana TRANSPARENT TESTA 12 (TT12), an important gene involved in the transportation of proanthocyanidin precursors into the vacuole. Two of eight repeatedly detected SNPs can be identified and digested by restriction enzymes. Candidate gene mining revealed that the relevant regions of significant SNP loci on the A09 and C08 chromosomes are highly homologous. Moreover, a comparison of the GWAS results to those of previous quantitative trait locus (QTL) studies showed that 11 SNPs were located in the confidence intervals of the QTLs identified in previous studies based on linkage analyses or association mapping. Our results provide insights into the genetic basis of seed coat color in B. napus, and the beneficial allele, SNP information, and candidate genes should be useful for selecting yellow seeds in B. napus breeding.

  6. Altered Fruit and Seed Development of Transgenic Rapeseed (Brassica napus Over-Expressing MicroRNA394.

    Directory of Open Access Journals (Sweden)

    Jian Bo Song

    Full Text Available Fruit and seed development in plants is a complex biological process mainly involved in input and biosynthesis of many storage compounds such as proteins and oils. Although the basic biochemical pathways for production of the storage metabolites in plants are well characterized, their regulatory mechanisms are not fully understood. In this study, we functionally identified rapeseed (Brassica napus miR394 with its target gene Brassica napus leaf curling responsiveness (BnLCR to dissect a role of miR394 during the fruit and seed development. Transgenic rapeseed plants over-expressing miR394 under the control of the cauliflower mosaic virus 35S promoter were generated. miR394 over-expression plants exhibited a delayed flowering time and enlarged size of plants, leaf blade, pods and seed body, but developed seeds with higher contents of protein and glucosinolates (GLS and lower levels of oil accumulation as compared to wild-type. Over-expression of miR394 altered the fatty acid (FA composition by increasing several FA species such as C16:0 and C18:0 and unsaturated species of C20:1 and C22:1 but lowering C18:3. This change was accompanied by induction of genes coding for transcription factors of FA synthesis including leafy cotyledon1 (BnLEC1, BnLEC2, and FUSCA3 (FUS3. Because the phytohormone auxin plays a crucial role in fruit development and seed patterning, the DR5-GUS reporter was used for monitoring the auxin response in Arabidopsis siliques and demonstrated that the DR5 gene was strongly expressed. These results suggest that BnmiR394 is involved in rapeseed fruit and seed development.

  7. Molecular regulation and genetic improvement of seed oil content in Brassica napus L.

    Directory of Open Access Journals (Sweden)

    Wei HUA,Jing LIU,Hanzhong WANG

    2016-09-01

    Full Text Available As an important oil crop and a potential bioenergy crop, Brassica napus L. is becoming a model plant for basic research on seed lipid biosynthesis as well as seed oil content, which has always been the key breeding objective. In this review, we present current progress in understanding of the regulation of oil content in B. napus, including genetics, biosynthesis pathway, transcriptional regulation, maternal effects and QTL analysis. Furthermore, the history of breeding for high oil content in B. napus is summarized and the progress in breeding ultra-high oil content lines is described. Finally, prospects for breeding high oil content B. napus cultivars are outlined.

  8. Genome-wide survey of flavonoid biosynthesis genes and gene expression analysis between black- and yellow-seeded Brassica napus

    Directory of Open Access Journals (Sweden)

    Cunmin Qu

    2016-12-01

    Full Text Available Flavonoids, the compounds that impart color to fruits, flowers, and seeds, are the most widespread secondary metabolites in plants. However, a systematic analysis of these loci has not been performed in Brassicaceae. In this study, we isolated 649 nucleotide sequences related to flavonoid biosynthesis, i.e., the Transparent Testa (TT genes, and their associated amino acid sequences in 17 Brassicaceae species, grouped into Arabidopsis or Brassicaceae subgroups. Moreover, 36 copies of 21 genes of the flavonoid biosynthesis pathway were identified in A. thaliana, 53 were identified in B. rapa, 50 in B. oleracea, and 95 in B. napus, followed the genomic distribution, collinearity analysis and genes triplication of them among Brassicaceae species. The results showed that the extensive gene loss, whole genome triplication, and diploidization that occurred after divergence from the common ancestor. Using qRT-PCR methods, we analyzed the expression of eighteen flavonoid biosynthesis genes in 6 yellow- and black-seeded B. napus inbred lines with different genetic background, found that 12 of which were preferentially expressed during seed development, whereas the remaining genes were expressed in all B. napus tissues examined. Moreover, fourteen of these genes showed significant differences in expression level during seed development, and all but four of these (i.e., BnTT5, BnTT7, BnTT10, and BnTTG1 had similar expression patterns among the yellow- and black-seeded B. napus. Results showed that the structural genes (BnTT3, BnTT18 and BnBAN, regulatory genes (BnTTG2 and BnTT16 and three encoding transfer proteins (BnTT12, BnTT19, and BnAHA10 might play an crucial roles in the formation of different seed coat colors in B. napus. These data will be helpful for illustrating the molecular mechanisms of flavonoid biosynthesis in Brassicaceae species.

  9. Adventitious presence of other varieties in oilseed rape (¤Brassica napus¤) from seed banks and certified seed

    DEFF Research Database (Denmark)

    Jørgensen, T.; Hauser, Thure Pavlo; Bagger Jørgensen, Rikke

    2007-01-01

    To obtain information on possible sources of contamination of the seed harvest of oilseed rape (Brassica napus L., spp. napus) by other varieties (adventitious presence), we investigated the purity of certified seed lots; the abundance and origin of volunteers; and longevity and origin of seeds...... in the soil seed-bank. This information was acquired through DNA analysis of volunteers collected in the field and seedlings derived from the soil seed-bank. DNA profiles of the volunteers and seedlings were obtained using Inter Simple Sequence Repeat (ISSR) markers, and the profiles were compared with ISSR...... profiles from an assortment of 14 of the most commonly cultivated oilseed rape varieties from 1985 to 2004. This comparison was performed using the assignment program, AFLPOP. The age of the seed bank germinating to become volunteers was assumed from information on previously cultivated oilseed rape...

  10. Synthetic Brassica napus L.: Development and Studies on Morphological Characters, Yield Attributes, and Yield

    Directory of Open Access Journals (Sweden)

    M. A. Malek

    2012-01-01

    Full Text Available Brassica napus was synthesized by hybridization between its diploid progenitor species B. rapa and B. oleracea followed by chromosome doubling. Cross with B. rapa as a female parent was only successful. Among three colchicine treatments (0.10, 0.15, and 0.20%, 0.15% gave the highest success (86% of chromosome doubling in the hybrids (AC; 2=19. Synthetic B. napus (AACC, 2=38 was identified with bigger petals, fertile pollens and seed setting. Synthetic B. napus had increased growth over parents and exhibited wider ranges with higher coefficients of variations than parents for morphological and yield contributing characters, and yield per plant. Siliqua length as well as beak length in synthetic B. napus was longer than those of the parents. Number of seeds per siliqua, 1000-seed weight and seed yield per plant in synthetic B. napus were higher than those of the parents. Although flowering time in synthetic B. napus was earlier than both parents, however the days to maturity was little higher over early maturing B. rapa parent. The synthesized B. napus has great potential to produce higher seed yield. Further screening and evaluation is needed for selection of desirable genotypes having improved yield contributing characters and higher seed yield.

  11. Embryonal Control of Yellow Seed Coat Locus ECY1 Is Related to Alanine and Phenylalanine Metabolism in the Seed Embryo of Brassica napus.

    Science.gov (United States)

    Wang, Fulin; He, Jiewang; Shi, Jianghua; Zheng, Tao; Xu, Fei; Wu, Guanting; Liu, Renhu; Liu, Shengyi

    2016-04-07

    Seed coat color is determined by the type of pigment deposited in the seed coat cells. It is related to important agronomic traits of seeds such as seed dormancy, longevity, oil content, protein content and fiber content. In Brassica napus, inheritance of seed coat color is related to maternal effects and pollen effects (xenia effects). In this research we isolated a mutation of yellow seeded B. napus controlled by a single Mendelian locus, which is named Embryonal Control of Yellow seed coat 1 (Ecy1). Microscopy of transverse sections of the mature seed show that pigment is deposited only in the outer layer of the seed coat. Using Illumina Hisequation 2000 sequencing technology, a total of 12 GB clean data, 116× coverage of coding sequences of B. napus, was achieved from seeds 26 d after pollination (DAP). It was assembled into 172,238 independent transcripts, and 55,637 unigenes. A total of 139 orthologous genes of Arabidopsis transparent testa (TT) genes were mapped in silico to 19 chromosomes of B. napus Only 49 of the TT orthologous genes are transcribed in seeds. However transcription of all orthologs was independent of embryonal control of seed coat color. Only 55 genes were found to be differentially expressed between brown seeds and the yellow mutant. Of these 55, 50 were upregulated and five were downregulated in yellow seeds as compared to their brown counterparts. By KEGG classification, 14 metabolic pathways were significantly enriched. Of these, five pathways: phenylpropanoid biosynthesis, cyanoamino acid metabolism, plant hormone signal transduction, metabolic pathways, and biosynthesis of secondary metabolites, were related with seed coat pigmentation. Free amino acid quantification showed that Ala and Phe were present at higher levels in the embryos of yellow seeds as compared to those of brown seeds. This increase was not observed in the seed coat. Moreover, the excess amount of free Ala was exactly twice that of Phe in the embryo. The pigment

  12. Embryonal Control of Yellow Seed Coat Locus ECY1 Is Related to Alanine and Phenylalanine Metabolism in the Seed Embryo of Brassica napus

    Directory of Open Access Journals (Sweden)

    Fulin Wang

    2016-04-01

    Full Text Available Seed coat color is determined by the type of pigment deposited in the seed coat cells. It is related to important agronomic traits of seeds such as seed dormancy, longevity, oil content, protein content and fiber content. In Brassica napus, inheritance of seed coat color is related to maternal effects and pollen effects (xenia effects. In this research we isolated a mutation of yellow seeded B. napus controlled by a single Mendelian locus, which is named Embryonal Control of Yellow seed coat 1 (Ecy1. Microscopy of transverse sections of the mature seed show that pigment is deposited only in the outer layer of the seed coat. Using Illumina Hisequation 2000 sequencing technology, a total of 12 GB clean data, 116× coverage of coding sequences of B. napus, was achieved from seeds 26 d after pollination (DAP. It was assembled into 172,238 independent transcripts, and 55,637 unigenes. A total of 139 orthologous genes of Arabidopsis transparent testa (TT genes were mapped in silico to 19 chromosomes of B. napus. Only 49 of the TT orthologous genes are transcribed in seeds. However transcription of all orthologs was independent of embryonal control of seed coat color. Only 55 genes were found to be differentially expressed between brown seeds and the yellow mutant. Of these 55, 50 were upregulated and five were downregulated in yellow seeds as compared to their brown counterparts. By KEGG classification, 14 metabolic pathways were significantly enriched. Of these, five pathways: phenylpropanoid biosynthesis, cyanoamino acid metabolism, plant hormone signal transduction, metabolic pathways, and biosynthesis of secondary metabolites, were related with seed coat pigmentation. Free amino acid quantification showed that Ala and Phe were present at higher levels in the embryos of yellow seeds as compared to those of brown seeds. This increase was not observed in the seed coat. Moreover, the excess amount of free Ala was exactly twice that of Phe in the

  13. Comparative transcriptomic analysis of two Brassica napus near-isogenic lines reveals a network of genes that influences seed oil accumulation

    Directory of Open Access Journals (Sweden)

    Jingxue Wang

    2016-09-01

    Full Text Available Rapeseed (Brassica napus is an important oil seed crop, providing more than 13% of the world’s supply of edible oils. An in-depth knowledge of the gene network involved in biosynthesis and accumulation of seed oil is critical for the improvement of B. napus. Using available genomic and transcriptomic resources, we identified 1,750 acyl lipid metabolism (ALM genes that are distributed over 19 chromosomes in the B. napus genome. B. rapa and B. oleracea, two diploid progenitors of B. napus, contributed almost equally to the ALM genes. Genome collinearity analysis demonstrated that the majority of the ALM genes have arisen due to genome duplication or segmental duplication events. In addition, we profiled the expression patterns of the ALM genes in four different developmental stages. Furthermore, we developed two B. napus near isogenic lines (NILs. The high oil NIL, YC13-559, accumulates more than 10% of seed oil compared to the other, YC13-554. Comparative gene expression analysis revealed upregulation of lipid biosynthesis-related regulatory genes in YC13-559, including SHOOTMERISTEMLESS, LEAFY COTYLEDON 1 (LEC1, LEC2, FUSCA3, ABSCISIC ACID INSENSITIVE 3 (ABI3, ABI4, ABI5, and WRINKLED1, as well as structural genes, such as ACETYL-CoA CARBOXYLASE, ACYL-CoA DIACYLGLYCEROL ACYLTRANSFERASE, and LONG-CHAIN ACYL-CoA SYNTHETASES. We observed that several genes related to the phytohormones, gibberellins, jasmonate, and indole acetic acid, were differentially expressed in the NILs. Our findings provide a broad account of the numbers, distribution, and expression profiles of acyl lipid metabolism genes, as well as gene networks that potentially control oil accumulation in B. napus seeds. The upregulation of key regulatory and structural genes related to lipid biosynthesis likely plays a major role for the increased seed oil in YC13-559.

  14. Agronomic and seed quality traits dissected by genome-wide association mapping in Brassica napus

    Directory of Open Access Journals (Sweden)

    Niklas eKörber

    2016-03-01

    Full Text Available In Brassica napus breeding, traits related to commercial success are of highest importance for plant breeders. However, such traits can only be assessed in an advanced developmental stage. % as well as require high experimental effort due to their quantitative inheritance and the importance of genotype*environment interaction. Molecular markers genetically linked to such traits have the potential to accelerate the breeding process of B. napus by marker-assisted selection. Therefore, the objectives of this study were to identify (i genome regions associated with the examined agronomic and seed quality traits, (ii the interrelationship of population structure and the detected associations, and (iii candidate genes for the revealed associations. The diversity set used in this study consisted of 405 Brassica napus inbred lines which were genotyped using a 6K single nucleotide polymorphism (SNP array and phenotyped for agronomic and seed quality traits in field trials. In a genome-wide association study, we detected a total of 112 associations between SNPs and the seed quality traits as well as 46 SNP-trait associations for the agronomic traits with a P-value 100 and a sequence identity of > 70 % to A. thaliana or B. rapa could be found for the agronomic SNP-trait associations and 187 hits of potential candidate genes for the seed quality SNP-trait associations.

  15. Gene expression profiling via LongSAGE in a non-model plant species: a case study in seeds of Brassica napus

    Directory of Open Access Journals (Sweden)

    Friedt Wolfgang

    2009-07-01

    Full Text Available Abstract Background Serial analysis of gene expression (LongSAGE was applied for gene expression profiling in seeds of oilseed rape (Brassica napus ssp. napus. The usefulness of this technique for detailed expression profiling in a non-model organism was demonstrated for the highly complex, neither fully sequenced nor annotated genome of B. napus by applying a tag-to-gene matching strategy based on Brassica ESTs and the annotated proteome of the closely related model crucifer A. thaliana. Results Transcripts from 3,094 genes were detected at two time-points of seed development, 23 days and 35 days after pollination (DAP. Differential expression showed a shift from gene expression involved in diverse developmental processes including cell proliferation and seed coat formation at 23 DAP to more focussed metabolic processes including storage protein accumulation and lipid deposition at 35 DAP. The most abundant transcripts at 23 DAP were coding for diverse protease inhibitor proteins and proteases, including cysteine proteases involved in seed coat formation and a number of lipid transfer proteins involved in embryo pattern formation. At 35 DAP, transcripts encoding napin, cruciferin and oleosin storage proteins were most abundant. Over both time-points, 18.6% of the detected genes were matched by Brassica ESTs identified by LongSAGE tags in antisense orientation. This suggests a strong involvement of antisense transcript expression in regulatory processes during B. napus seed development. Conclusion This study underlines the potential of transcript tagging approaches for gene expression profiling in Brassica crop species via EST matching to annotated A. thaliana genes. Limits of tag detection for low-abundance transcripts can today be overcome by ultra-high throughput sequencing approaches, so that tag-based gene expression profiling may soon become the method of choice for global expression profiling in non-model species.

  16. Irradiation effect on the seed vigor, SOD activity and MDA content in germinating seeds of yellow-seeded and black-seeded rape seed (Brassica napus L.)

    International Nuclear Information System (INIS)

    Han Jixiang; Hu Danhong; Liu Houli

    1993-01-01

    Seeds of a set of near-isogenic lines (Brassica napus L.) with different seed coat color from yellow to black were irradiated by 60 Co γ-rays of 150 krad. Seed vigor, superoxide dismutase (SOD) and malondialdehyde (MDA) in germinating seeds were analysed. In these characters, no significant difference between yellow-seeded lines (YLs) and black-seeded lines (BLs) showed before irradiation. But after irradiation, SOD activity in YLs was lower than that in BLs. While MDA content in YLs was obviously higher that that in DLs. As a result of irradiation, seed vigor of YLs was lower than that in BLs. these results indicated that the irradiation resistance of rape seed was related to the level of SOD as well as protective structure or substances in seed coat and that the radiosensitivity of YLs was higher than that of DLs

  17. Genome-Wide Analysis of Seed Acid Detergent Lignin (ADL) and Hull Content in Rapeseed (Brassica napus L.)

    Science.gov (United States)

    Wei, Lijuan; Qu, Cunmin; Xu, Xinfu; Lu, Kun; Qian, Wei; Li, Jiana; Li, Maoteng; Liu, Liezhao

    2015-01-01

    A stable yellow-seeded variety is the breeding goal for obtaining the ideal rapeseed (Brassica napus L.) plant, and the amount of acid detergent lignin (ADL) in the seeds and the hull content (HC) are often used as yellow-seeded rapeseed screening indices. In this study, a genome-wide association analysis of 520 accessions was performed using the Q + K model with a total of 31,839 single-nucleotide polymorphism (SNP) sites. As a result, three significant associations on the B. napus chromosomes A05, A09, and C05 were detected for seed ADL content. The peak SNPs were within 9.27, 14.22, and 20.86 kb of the key genes BnaA.PAL4, BnaA.CAD2/BnaA.CAD3, and BnaC.CCR1, respectively. Further analyses were performed on the major locus of A05, which was also detected in the seed HC examination. A comparison of our genome-wide association study (GWAS) results and previous linkage mappings revealed a common chromosomal region on A09, which indicates that GWAS can be used as a powerful complementary strategy for dissecting complex traits in B. napus. Genomic selection (GS) utilizing the significant SNP markers based on the GWAS results exhibited increased predictive ability, indicating that the predictive ability of a given model can be substantially improved by using GWAS and GS. PMID:26673885

  18. Fatty Acid and Transcript Profiling in Developing Seeds of Three Brassica napus Cultivars

    Directory of Open Access Journals (Sweden)

    Petkova Mariana

    2015-12-01

    Full Text Available Fatty acid levels and gene expression profiles for selected genes associated with the synthesis of fatty acids (FA, triacylglycerol, and oil body proteins were examined in three oilseed rape (Brassica napus cultivars that have utility for cultivar development in our spring canola breeding program. The seed oil content of Bronowski, Q2, and Westar was 39.0, 40.1, and 40.6%, respectively at 40 days after flowering (DAF. During the 20 to 40 day period of seed development, cultivars had varying levels of palmitic, stearic, oleic, linoleic, α-linolenic, eicosenoic, and erucic acid. In general, the percentage of each FA was similar among the cultivars during seed development. However, the level of oleic acid was lower and the levels of eicosenoic acid and erucic acid were higher in Bronowski than in Q2 and Westar seeds; linoleic acid also tended to be lower in Bronowski. Gene expression among the cultivars was similar from 10 to 40 DAF. The few exceptions were that expression of KAS1 and SAD were higher in Westar and Q2 than in Bronowski at 25 DAF, SAD was highest in Q2, intermediate in Westar, and lowest in Bronowski at 35 DAF, FAD2 was higher in Q2 than in Bronowski at 35 DAF, FAD3 was higher in Q2 than in Bronowski at 15 DAF and Q2 and Westar at 25 and 30 DAF, and FAE1 was higher in Westar and Q2 than in Bronowski at 30 DAF. Correlation analysis for gene expression against DAF for each genotype supported a common trend in gene expression among the three cultivars with gene expression tending to decrease over time; except for LPAAT, which tended to increase. The correlation between the level of FAs and expression of genes by genotype indicated no general trend; rather correlations seem to depend on the genotype.

  19. Conserved Function of ACYL–ACYL CARRIER PROTEIN DESATURASE 5 on Seed Oil and Oleic Acid Biosynthesis between Arabidopsis thaliana and Brassica napus

    Directory of Open Access Journals (Sweden)

    Changyu Jin

    2017-07-01

    Full Text Available Previous studies have shown that several ACYL–ACYL CARRIER PROTEIN DESATURASE (AtAAD members in Arabidopsis thaliana are responsible for oleic acid (C18:1 biosynthesis. Limited research has been conducted on another member, AtAAD5, and its paralog BnAAD5 in the closely related and commercially important plant, Brassica napus. Here, we found that AtAAD5 was predominantly and exclusively expressed in developing embryos at the whole seed developmental stages. The aad5 mutation caused a significant decrease in the amounts of oil and C18:1, and a considerable increase in the content of stearic acid (C18:0 in mature seeds, suggesting that AtAAD5 functioned as an important facilitator of seed oil biosynthesis. We also cloned the full-length coding sequence of BnAAD5-1 from the A3 subgenome of the B. napus inbred line L111. We showed that ectopic expression of BnAAD5-1 in the A. thaliana aad5-2 mutant fully complemented the phenotypes of the mutant, such as lower oil content and altered contents of C18:0 and C18:1. These results help us to better understand the functions of AAD members in A. thaliana and B. napus and provide a promising target for genetic manipulation of B. napus.

  20. Impacts of adding different components of wood vinegar on rape (Brassica napus L.) seed germiantion

    Science.gov (United States)

    Shan, Xue; Liu, Xia; Zhang, Qian

    2018-03-01

    In recent years, wood vinegar has been widely used in the agricultural production. It can be used as the soil amendment, antibacterial agent and organic fertilizer. This study investigated the effect of wood vinegar on rape (Brassica napus L.) seed germination. The results in this study showed that 1% (v/v) wood vinegar had the greatest inhibition effect on the seed germination of rape (Brassica napus L.). The wood vinegar (WV) and the distilled wood vinegar at 98 - 130 °C (D2) significantly inhibited seed germination by 100%, compared to the control treatment. However, the distilled wood vinegar (D1) had significantly increased the shoot length and root length by 58.4% and 31.7%, respectively. These positive effects could be attributed to the improved soil fertility, increased nutrient supply, and further stimulated plant growth. Overall, the D1 could be a promising soil amendment to promote plants growth and enhance crop yields. Effect of adding different components of distilled wood vinegar on the seed germination of rape

  1. Breeding response of transcript profiling in developing seeds of Brassica napus

    Directory of Open Access Journals (Sweden)

    Li Xiaodan

    2009-05-01

    Full Text Available Abstract Background The upgrading of rapeseed cultivars has resulted in a substantial improvement in yield and quality in China over the past 30 years. With the selective pressure against fatty acid composition and oil content, high erucic acid- and low oil-content cultivars have been replaced by low erucic acid- and high oil-content cultivars. The high erucic acid cultivar Zhongyou 821 and its descendent, low erucic acid cultivar Zhongshuang 9, are representatives of two generations of the most outstanding Chinese rapeseed cultivars (B. napus developed the past 2 decades. This paper compares the transcriptional profiles of Zhongshuang 9 and Zhongyou 821 for 32 genes that are principally involved in lipid biosynthesis during seed development in order to elucidate how the transcriptional profiles of these genes responded to quality improvement over the past 20 years. Results Comparison of the cultivar Zhongyou 821 with its descendent, Zhongshuang 9, shows that the transcriptional levels of seven of the 32 genes were upregulated by 30% to 109%, including FAD3, ACCase, FAE1, GKTP, Caleosin, GAPDH, and PEPC. Of the 32 genes, 10 (KAS3, β-CT, BcRK6, P450, FatA, Oleosin, FAD6, FatB, α-CT and SUC1 were downregulated by at least 20% and most by 50%. The Napin gene alone accounted for over 75% of total transcription from all 32 genes assessed in both cultivars. Most of the genes showed significant correlation with fatty acid accumulation, but the correlation in ZS9 was significantly different from that in ZY821. Higher KCR2 activity is associated with higher C16:0, C18:0, and C18:2 in both cultivars, lower C22:1 and total fatty acid content in ZY821, and lower 18:1 in ZS9. Conclusion This paper illustrates the response of the transcription levels of 32 genes to breeding in developing rapeseed seeds. Both cultivars showed similar transcription profiles, with the Napin gene predominantly transcribed. Selective pressure for zero erucic acid, low

  2. The effects of seed size on hybrids formed between oilseed rape (Brassica napus and wild brown mustard (B. juncea.

    Directory of Open Access Journals (Sweden)

    Yong-Bo Liu

    Full Text Available Seed size has significant implications in ecology, because of its effects on plant fitness. The hybrid seeds that result from crosses between crops and their wild relatives are often small, and the consequences of this have been poorly investigated. Here we report on plant performance of hybrid and its parental transgenic oilseed rape (Brassica napus and wild B. juncea, all grown from seeds sorted into three seed-size categories.Three seed-size categories were sorted by seed diameter for transgenic B. napus, wild B. juncea and their transgenic and non-transgenic hybrids. The seeds were sown in a field at various plant densities. Globally, small-seeded plants had delayed flowering, lower biomass, fewer flowers and seeds, and a lower thousand-seed weight. The seed-size effect varied among plant types but was not affected by plant density. There was no negative effect of seed size in hybrids, but it was correlated with reduced growth for both parents.Our results imply that the risk of further gene flow would probably not be mitigated by the small size of transgenic hybrid seeds. No fitness cost was detected to be associated with the Bt-transgene in this study.

  3. A high-density SNP map for accurate mapping of seed fibre QTL in Brassica napus L.

    Directory of Open Access Journals (Sweden)

    Liezhao Liu

    Full Text Available A high density genetic linkage map for the complex allotetraploid crop species Brassica napus (oilseed rape was constructed in a late-generation recombinant inbred line (RIL population, using genome-wide single nucleotide polymorphism (SNP markers assayed by the Brassica 60 K Infinium BeadChip Array. The linkage map contains 9164 SNP markers covering 1832.9 cM. 1232 bins account for 7648 of the markers. A subset of 2795 SNP markers, with an average distance of 0.66 cM between adjacent markers, was applied for QTL mapping of seed colour and the cell wall fiber components acid detergent lignin (ADL, cellulose and hemicellulose. After phenotypic analyses across four different environments a total of 11 QTL were detected for seed colour and fiber traits. The high-density map considerably improved QTL resolution compared to the previous low-density maps. A previously identified major QTL with very high effects on seed colour and ADL was pinpointed to a narrow genome interval on chromosome A09, while a minor QTL explaining 8.1% to 14.1% of variation for ADL was detected on chromosome C05. Five and three QTL accounting for 4.7% to 21.9% and 7.3% to 16.9% of the phenotypic variation for cellulose and hemicellulose, respectively, were also detected. To our knowledge this is the first description of QTL for seed cellulose and hemicellulose in B. napus, representing interesting new targets for improving oil content. The high density SNP genetic map enables navigation from interesting B. napus QTL to Brassica genome sequences, giving useful new information for understanding the genetics of key seed quality traits in rapeseed.

  4. Dynamic Metabolic Profiles and Tissue-Specific Source Effects on the Metabolome of Developing Seeds of Brassica napus.

    Directory of Open Access Journals (Sweden)

    Helin Tan

    Full Text Available Canola (Brassica napus is one of several important oil-producing crops, and the physiological processes, enzymes, and genes involved in oil synthesis in canola seeds have been well characterized. However, relatively little is known about the dynamic metabolic changes that occur during oil accumulation in seeds, as well as the mechanistic origins of metabolic changes. To explore the metabolic changes that occur during oil accumulation, we isolated metabolites from both seed and silique wall and identified and characterized them by using gas chromatography coupled with mass spectrometry (GC-MS. The results showed that a total of 443 metabolites were identified from four developmental stages. Dozens of these metabolites were differentially expressed during seed ripening, including 20 known to be involved in seed development. To investigate the contribution of tissue-specific carbon sources to the biosynthesis of these metabolites, we examined the metabolic changes of silique walls and seeds under three treatments: leaf-detachment (Ld, phloem-peeling (Pe, and selective silique darkening (Sd. Our study demonstrated that the oil content was independent of leaf photosynthesis and phloem transport during oil accumulation, but required the metabolic influx from the silique wall. Notably, Sd treatment resulted in seed senescence, which eventually led to a severe reduction of the oil content. Sd treatment also caused a significant accumulation of fatty acids (FA, organic acids and amino acids. Furthermore, an unexpected accumulation of sugar derivatives and organic acid was observed in the Pe- and Sd-treated seeds. Consistent with this, the expression of a subset of genes involved in FA metabolism, sugar and oil storage was significantly altered in Pe and Sd treated seeds. Taken together, our studies suggest the metabolite profiles of canola seeds dynamically varied during the course of oil accumulation, which may provide a new insight into the mechanisms

  5. Identification of microRNAs actively involved in fatty acid biosynthesis in developing Brassica napus seeds using high-throughput sequencing

    Directory of Open Access Journals (Sweden)

    Jia Wang

    2016-10-01

    Full Text Available Seed development has a critical role during the spermatophyte life cycle. In Brassica napus, a major oil crop, fatty acids are synthesized and stored in specific tissues during embryogenesis, and understanding the molecular mechanism underlying fatty acid biosynthesis during seed development is an important research goal. In this study, we constructed three small RNA libraries from early seeds at 14, 21 and 28 days after flowering (DAF and used high-throughput sequencing to examine microRNA (miRNA expression. A total of 85 known miRNAs from 30 families and 1,160 novel miRNAs were identified, of which 24, including 5 known and 19 novel miRNAs, were found to be involved in fatty acid biosynthesis. bna-miR156b, bna-miR156c, bna-miR156g, novel_mir_1706, novel_mir_1407, novel_mir_173, and novel_mir_104 were significantly down-regulated at 21 DAF and 28 DAF, whereas bna-miR159, novel_mir_1081, novel_mir_19 and novel_mir_555 were significantly up-regulated. In addition, we found that some miRNAs regulate functional genes that are directly involved in fatty acid biosynthesis and that other miRNAs regulate the process of fatty acid biosynthesis by acting on a large number of transcription factors. The miRNAs and their corresponding predicted targets were partially validated by quantitative RT-PCR. Our data suggest that diverse and complex miRNAs are involved in the seed development process and that miRNAs play important roles in fatty acid biosynthesis during seed development.

  6. Purification and protein composition of oil bodies from Brassica napus seeds

    Directory of Open Access Journals (Sweden)

    Jolivet Pascale

    2006-11-01

    Full Text Available Seed oil bodies are intracellular particles to store lipids as food reserves in oleaginous plants. Description of oil body-associated proteins of Arabidopsis thaliana has been recently reported whereas only few data are available in the case of rapeseed. Oil bodies have been prepared from two double-low varieties of Brassica napus seeds, a standard variety (Explus and an oleic variety (Cabriolet. Oil bodies have been purified using floatation technique in the successive presence of high salt concentration, detergent or urea in order to remove non-specifically trapped proteins. The integrity of the oil bodies has been verified and their size estimated. Their protein and fatty acid contents have been determined. The proteins composing these organelles were extracted, separated by denaturing gel electrophoresis, digested by trypsin and their peptides were subsequently analyzed by liquid chromatography-tandem mass spectrometry. Protein identification was performed using Arabidopsis thaliana protein sequence database and a collection of Expressed Sequence Tag (EST of Brassica napus generated from the framework of the French plant genomics programme “Genoplante”. This led to the identification of a limited number of proteins: eight oleosins showing a high similarity each other and representing up to 75% of oil body proteins, a 11 β hydroxysteroid dehydrogenase-like protein highly homologous to the same protein from A. thaliana, and only few contaminating proteins associated with myrosinase activity.

  7. Effects of different roasting conditions on the nutritional value and oxidative stability of high-oleic and yellow-seeded Brassica napus oils

    Directory of Open Access Journals (Sweden)

    Rękas, A.

    2015-09-01

    Full Text Available This study was conducted to evaluate the possibility of enhancing the nutritional value and oxidative stability of rapeseed oil obtained from seeds subjected to thermal treatment prior to pressing. The yellowseeded and high-oleic B. napus lines, harvested in Poland, were roasted prior to pressing for 1 h at 100 and 150 °C. This study highlighted how rapeseed breeding lines affect the quality profile of the oils obtained both before and after the roasting process. In principle, the high-oleic B. napus was accompanied by a nearly 2-fold increase in oxidative stability compared to the yellow-seeded B. napus, most likely due to a higher content of oxidation-resistant oleic fatty acids (~74.24% vs. ~60.76% and a decreased concentration of oxidizable PUFAs (~16.32% vs. ~31.09%. Similar to the case of roasting black-seeded rapeseed, the thermal pre-treatment of yellow-seeded and high-oleic B. napus prior to pressing did not alter the composition of their fatty acids. Based on the results obtained in this study, it can be concluded that roasting seeds prior to pressing does not reduce the amount of tocopherols in the oil; moreover, a slight increase in γ-tocopherol content was observed.Este estudio se realizó para evaluar la posibilidad de aumentar el valor nutritivo y la estabilidad oxidativa del aceite de colza obtenido a partir de semillas sometidas a tratamiento térmico antes del prensado. Las líneas de B. napus sembrados amarillos y alto oleico, cosechadas en Polonia, fueron tostadas antes de ser prensadas durante 1 hora a 100 y 150 °C. Este estudio pone de relieve cómo las líneas de colza mejoradas ven afectado el perfil de calidad de los aceites obtenidos antes y después del proceso de tostado. En principio, el alto oleico B. napus aumenta casi 2 veces la estabilidad a la oxidación en comparación con semilla amarilla B. napus, muy probablemente debido a un mayor contenido de ácido graso oleico resistente a la oxidación (~74,24% vs

  8. NAPUS 2000 Rapeseed (Brassica napus breeding for improved human nutrition

    Directory of Open Access Journals (Sweden)

    Friedt Wolfgang

    2001-01-01

    Full Text Available Following a competition announcement of the Federal Ministry of Research and Education (BMBF a project dealing with the improvement of the nutritional value of oilseed rape (Brassica napus for food applications and human nutrition was worked out and started in autumn 1999. A number of partners (Figure 2 are carrying out a complex project reaching from the discovery, characterisation, isolation and transfer of genes of interest up to breeding of well performing varieties combined with important agronomic traits. Economic studies and processing trials as well as nutritional investigations of the new qualities are undertaken. B. napus seed quality aspects with respect to seed coat colour, oil composition, lecithin and protein fractions and antioxidants like tocopherols and resveratrol will be improved.

  9. Dynamic Subcellular Localization of Iron during Embryo Development in Brassicaceae Seeds

    Directory of Open Access Journals (Sweden)

    Miguel A. Ibeas

    2017-12-01

    Full Text Available Iron is an essential micronutrient for plants. Little is know about how iron is loaded in embryo during seed development. In this article we used Perls/DAB staining in order to reveal iron localization at the cellular and subcellular levels in different Brassicaceae seed species. In dry seeds of Brassica napus, Nasturtium officinale, Lepidium sativum, Camelina sativa, and Brassica oleracea iron localizes in vacuoles of cells surrounding provasculature in cotyledons and hypocotyl. Using B. napus and N. officinale as model plants we determined where iron localizes during seed development. Our results indicate that iron is not detectable by Perls/DAB staining in heart stage embryo cells. Interestingly, at torpedo development stage iron localizes in nuclei of different cells type, including integument, free cell endosperm and almost all embryo cells. Later, iron is detected in cytoplasmic structures in different embryo cell types. Our results indicate that iron accumulates in nuclei in specific stages of embryo maturation before to be localized in vacuoles of cells surrounding provasculature in mature seeds.

  10. Agronomic performance of rape seed (brassica napus L.) mutant lines under drought conditions

    International Nuclear Information System (INIS)

    Shah, S.A.; Ali, I.; Shah, S.J.A.; Rehman, K.; Rashid, A.

    1995-01-01

    Oil seed forms of Brassica napus are not well adapted to drought and the warner environments of Pakistan. Induced mutations were, therefore, utilized for improving drought tolerance efficiency of two napus cultivars. Induction of genetic variability, selection of desirable mutants and stabilization of mutants in acceptable agronomic background were carried out during 1988-1991. Fourteen promising mutants each of cv. Pak-cheen and Tower were evaluated for different agronomic characters in separate yield trials, under extremely drought conditions. The results demonstrated that yield potential of some mutants was very high and 9 mutants of cv. Pak-cheen and 8 mutants of cv. Tower significantly (P<0.05) out yield the local commercial cultivar. Eleven mutants in both the trials matured significantly earlier than the check. Nevertheless, more extensive testing of the drought tolerant lines under diversified environs of the country will help confirm these findings. (author)

  11. Hormones and Pod Development in Oilseed Rape (Brassica napus) 1

    Science.gov (United States)

    de Bouille, Pierre; Sotta, Bruno; Miginiac, Emile; Merrien, André

    1989-01-01

    The endogenous levels of several plant growth substances (indole acetic acid, IAA; abscisic acid, ABA; zeatin, Z; zeatin riboside, [9R]Z; isopentenyladenine, iP; and isopentenyladenosine, [9R]iP were measured during pod development of field grown oilseed Rape (Brassica napus L. var oleifera cv Bienvenu) with high performance liquid chromatography and immunoenzymic (enzyme-linked immunosorbent assay, ELISA) techniques. Results show that pod development is characterized by high levels of Z and [9R]Z in 3 day old fruits and of IAA on the fourth day. During pod maturation, initially a significant increase of IAA and cytokinins was observed, followed by a progressive rise of ABA levels and a concomitant decline of IAA and cytokinin (except iP) levels. The relationship between hormone levels and development, especially pod number, seed number per pod, and seed weight determination, will be discussed. PMID:16666891

  12. Occurrence of metaxenia and false hybrids in Brassica juncea L. cv. Kikarashina × B. napus

    Science.gov (United States)

    Tsuda, Mai; Konagaya, Ken-ichi; Okuzaki, Ayako; Kaneko, Yukio; Tabei, Yutaka

    2011-01-01

    Imported genetically modified (GM) canola (Brassica napus) is approved by Japanese law. Some GM canola varieties have been found around importation sites, and there is public concern that these may have any harmful effects on related species such as reduction of wild relatives. Because B. juncea is distributed throughout Japan and is known to be high crossability with B. napus, it is assumed to be a recipient of B. napus. However, there are few reports for introgression of cross-combination in B. juncea × B. napus. To assess crossability, we artificially pollinated B. juncea with B. napus. After harvesting a large number of progeny seeds, we observed false hybrids and metaxenia of seed coats. Seed coat color was classified into four categories and false hybrids were confirmed by morphological characteristics and random amplified polymorphic DNA (RAPD) markers. Furthermore, the occurrence of false hybrids was affected by varietal differences in B. napus, whereas that of metaxenia was related to hybridity. Therefore, we suggest that metaxenia can be used as a marker for hybrid identification in B. juncea L. cv. Kikarashina × B. napus. Our results suggest that hybrid productivity in B. juncea × B. napus should not be evaluated by only seed productivity, crossability ought to be assessed the detection of true hybrids. PMID:23136472

  13. Overexpression of phyA and appA Genes Improves Soil Organic Phosphorus Utilisation and Seed Phytase Activity in Brassica napus

    Science.gov (United States)

    Wang, Yi; Ye, Xiangsheng; Ding, Guangda; Xu, Fangsen

    2013-01-01

    Phytate is the major storage form of organic phosphorus in soils and plant seeds, and phosphorus (P) in this form is unavailable to plants or monogastric animals. In the present study, the phytase genes phyA and appA were introduced into Brassica napus cv Westar with a signal peptide sequence and CaMV 35S promoter, respectively. Three independent transgenic lines, P3 and P11 from phyA and a18 from appA, were selected. The three transgenic lines exhibited significantly higher exuded phytase activity when compared to wild-type (WT) controls. A quartz sand culture experiment demonstrated that transgenic Brassica napus had significantly improved P uptake and plant biomass. A soil culture experiment revealed that seed yields of transgenic lines P11 and a18 increased by 20.9% and 59.9%, respectively, when compared to WT. When phytate was used as the sole P source, P accumulation in seeds increased by 20.6% and 46.9% with respect to WT in P11 and a18, respectively. The P3 line accumulated markedly more P in seeds than WT, while no significant difference was observed in seed yields when phytate was used as the sole P source. Phytase activities in transgenic canola seeds ranged from 1,138 to 1,605 U kg–1 seeds, while no phytase activity was detected in WT seeds. Moreover, phytic acid content in P11 and a18 seeds was significantly lower than in WT. These results introduce an opportunity for improvement of soil and seed phytate-P bioavailability through genetic manipulation of oilseed rape, thereby increasing plant production and P nutrition for monogastric animals. PMID:23573285

  14. Overexpression of phyA and appA genes improves soil organic phosphorus utilisation and seed phytase activity in Brassica napus.

    Directory of Open Access Journals (Sweden)

    Yi Wang

    Full Text Available Phytate is the major storage form of organic phosphorus in soils and plant seeds, and phosphorus (P in this form is unavailable to plants or monogastric animals. In the present study, the phytase genes phyA and appA were introduced into Brassica napus cv Westar with a signal peptide sequence and CaMV 35S promoter, respectively. Three independent transgenic lines, P3 and P11 from phyA and a18 from appA, were selected. The three transgenic lines exhibited significantly higher exuded phytase activity when compared to wild-type (WT controls. A quartz sand culture experiment demonstrated that transgenic Brassica napus had significantly improved P uptake and plant biomass. A soil culture experiment revealed that seed yields of transgenic lines P11 and a18 increased by 20.9% and 59.9%, respectively, when compared to WT. When phytate was used as the sole P source, P accumulation in seeds increased by 20.6% and 46.9% with respect to WT in P11 and a18, respectively. The P3 line accumulated markedly more P in seeds than WT, while no significant difference was observed in seed yields when phytate was used as the sole P source. Phytase activities in transgenic canola seeds ranged from 1,138 to 1,605 U kg(-1 seeds, while no phytase activity was detected in WT seeds. Moreover, phytic acid content in P11 and a18 seeds was significantly lower than in WT. These results introduce an opportunity for improvement of soil and seed phytate-P bioavailability through genetic manipulation of oilseed rape, thereby increasing plant production and P nutrition for monogastric animals.

  15. Persistence of seeds from crops of conventional and herbicide tolerant oilseed rape (Brassica napus).

    Science.gov (United States)

    Lutman, Peter J W; Berry, Kate; Payne, Roger W; Simpson, Euan; Sweet, Jeremy B; Champion, Gillian T; May, Mike J; Wightman, Pat; Walker, Kerr; Lainsbury, Martin

    2005-09-22

    A series of rotation experiments at five sites over four years has explored the environmental and agronomic implications of growing herbicide tolerant oilseed rape and sugar beet. This paper reports on the population dynamics of volunteer rape (Brassica napus). The experiments compared four winter oilseed rape (WOSR) cultivars: a conventional cultivar (Apex) and three developmental cultivars either genetically modified (GM) to be tolerant to glyphosate or glufosinate, or conventionally bred to be tolerant to herbicides of the imidazolinone group. Seed losses at harvest averaged 3575 seeds m(-2) but ranged from less than 2000 up to more than 10000 seeds m(-2). There was a rapid decline in seed numbers during the first few months after harvest, resulting in a mean loss of seeds of 60%. In subsequent seasons, the seedbank declined much more slowly at four of the five sites (ca 20% per year) and the models predicted 95% seed loss after approximately 9 years. Seed decline was much faster at the fifth site. There were no clear differences between the four cultivars in either the numbers of seeds shed at harvest or in their subsequent persistence. The importance of the persistence of GM rape seeds, in the context of the coexistence of GM and non-GM crops and the role of good management practices that minimize seed persistence, are discussed.

  16. Male fitness of oilseed rape (¤Brassica napus¤), weedy ¤B-rapa¤ and their F1 hybrids when pollinating ¤B-rapa¤ seeds

    DEFF Research Database (Denmark)

    Pertl, M.; Hauser, T.P.; Damgaard, C.

    2002-01-01

    The likelihood that two species hybridise and backcross may depend strongly on environmental conditions, and possibly on competitive interactions between parents and hybrids. We studied the paternity of seeds produced by weedy Brassica rapa growing in mixtures with oilseed rape (B. napus) and the...... is strongly influenced by their local frequencies, and that male fitness of F(1)hybrids, when pollinating B. rapa seeds, is low even when their female fitness (seed set) is high.......The likelihood that two species hybridise and backcross may depend strongly on environmental conditions, and possibly on competitive interactions between parents and hybrids. We studied the paternity of seeds produced by weedy Brassica rapa growing in mixtures with oilseed rape (B. napus......) and their F(1) hybrids at different frequencies and densities. Paternity was determined by the presence of a transgene, morphology, and AFLP markers. In addition, observations of flower and pollen production, and published data on pollen fertilisation success, zygote survival, and seed germination, allowed us...

  17. Unraveling the genetic basis of seed tocopherol content and composition in rapeseed (Brassica napus L.).

    Science.gov (United States)

    Wang, Xingxing; Zhang, Chunyu; Li, Lingjuan; Fritsche, Steffi; Endrigkeit, Jessica; Zhang, Wenying; Long, Yan; Jung, Christian; Meng, Jinling

    2012-01-01

    Tocopherols are important antioxidants in vegetable oils; when present as vitamin E, tocopherols are an essential nutrient for humans and livestock. Rapeseed (Brassica napus L, AACC, 2 n = 38) is one of the most important oil crops and a major source of tocopherols. Although the tocopherol biosynthetic pathway has been well elucidated in the model photosynthetic organisms Arabidopsis thaliana and Synechocystis sp. PCC6803, knowledge about the genetic basis of tocopherol biosynthesis in seeds of rapeseed is scant. This project was carried out to dissect the genetic basis of seed tocopherol content and composition in rapeseed through quantitative trait loci (QTL) detection, genome-wide association analysis, and homologous gene mapping. We used a segregating Tapidor × Ningyou7 doubled haploid (TNDH) population, its reconstructed F(2) (RC-F(2)) population, and a panel of 142 rapeseed accessions (association panel). Genetic effects mainly contributed to phenotypic variations in tocopherol content and composition; environmental effects were also identified. Thirty-three unique QTL were detected for tocopherol content and composition in TNDH and RC-F(2) populations. Of these, seven QTL co-localized with candidate sequences associated with tocopherol biosynthesis through in silico and linkage mapping. Several near-isogenic lines carrying introgressions from the parent with higher tocopherol content showed highly increased tocopherol content compared with the recurrent parent. Genome-wide association analysis was performed with 142 B. napus accessions. Sixty-one loci were significantly associated with tocopherol content and composition, 11 of which were localized within the confidence intervals of tocopherol QTL. This joint QTL, candidate gene, and association mapping study sheds light on the genetic basis of seed tocopherol biosynthesis in rapeseed. The sequences presented here may be used for marker-assisted selection of oilseed rape lines with superior tocopherol

  18. Unraveling the genetic basis of seed tocopherol content and composition in rapeseed (Brassica napus L..

    Directory of Open Access Journals (Sweden)

    Xingxing Wang

    Full Text Available BACKGROUND: Tocopherols are important antioxidants in vegetable oils; when present as vitamin E, tocopherols are an essential nutrient for humans and livestock. Rapeseed (Brassica napus L, AACC, 2 n = 38 is one of the most important oil crops and a major source of tocopherols. Although the tocopherol biosynthetic pathway has been well elucidated in the model photosynthetic organisms Arabidopsis thaliana and Synechocystis sp. PCC6803, knowledge about the genetic basis of tocopherol biosynthesis in seeds of rapeseed is scant. This project was carried out to dissect the genetic basis of seed tocopherol content and composition in rapeseed through quantitative trait loci (QTL detection, genome-wide association analysis, and homologous gene mapping. METHODOLOGY/PRINCIPAL FINDINGS: We used a segregating Tapidor × Ningyou7 doubled haploid (TNDH population, its reconstructed F(2 (RC-F(2 population, and a panel of 142 rapeseed accessions (association panel. Genetic effects mainly contributed to phenotypic variations in tocopherol content and composition; environmental effects were also identified. Thirty-three unique QTL were detected for tocopherol content and composition in TNDH and RC-F(2 populations. Of these, seven QTL co-localized with candidate sequences associated with tocopherol biosynthesis through in silico and linkage mapping. Several near-isogenic lines carrying introgressions from the parent with higher tocopherol content showed highly increased tocopherol content compared with the recurrent parent. Genome-wide association analysis was performed with 142 B. napus accessions. Sixty-one loci were significantly associated with tocopherol content and composition, 11 of which were localized within the confidence intervals of tocopherol QTL. CONCLUSIONS/SIGNIFICANCE: This joint QTL, candidate gene, and association mapping study sheds light on the genetic basis of seed tocopherol biosynthesis in rapeseed. The sequences presented here may be used

  19. Influence of a Vertical Cutting Device on Brassica Napus Seed Loss in Direct Combining

    Energy Technology Data Exchange (ETDEWEB)

    Pari, L.; Fedrizzi, M.; Assirelli, A. (Consiglio per la Ricerca e la Sperimentazione in Agricoltura, Unita di Ricerca per l' Ingegneria Agraria, Monterotondo, RM (Italy))

    2008-10-15

    EU requires that by 2010 5.65% of diesel fuel must be of vegetable origin. To reduce Italian dependence from imported palm oil, it is necessary to increase national production of vegetable oils: together with sunflower and soybean, canola (Brassica napus or Brassica napus oleifera) is an interesting possibility to satisfy vegetable oil demand, that is rapidly increasing for its use in biodiesel production. In Italy potential areas are available for the cultivation in relation to adequate rainfall and mild winters, that are very promising factors for canola production. However, the long period of seed maturity, non uniform growth, natural dehiscent process and variable weather conditions, such as wind and rain, are some of the factors which can lead to large seed losses: this is the main problem limiting this specie diffusion. Amongst available harvesting techniques, direct harvest of canola is an hazardous practice because there are several important questions related to it. The success of canola may depend on research initiatives to reduce some of the obstacles associated with its growing. The objective of this study is to determine if different cropping heads in direct combining can reduce seed losses. In Northern Italy (Piedmont) the trials were conducted in a 16 ha canola cultivation, in which was seeded the -Lion variety of canola. In order to realize direct harvest, the combine cylinder speed was regulated as slow as possible (500 rpm), the concave was opened at 3/4 of the way (about 25 mm clearance) and the fan speed was set at 2/3 of small grain settings (800 rpm). Only one combine was used for the trials, a New Holland CX 9080, in order to avoid any influence on seed losses. The combine was equipped with two different cutting heads: a common wheat type (type 1) and another, similar to the first, but equipped with vertical cutting devices on both ends of the head (type 2), because the plants are very dense and entangled. The losses of seeds were measured

  20. Microwave irradiation and citric acid assisted seed germination and phytoextraction of nickel (Ni) by Brassica napus L.: morpho-physiological and biochemical alterations under Ni stress.

    Science.gov (United States)

    Farid, Mujahid; Ali, Shafaqat; Rizwan, Muhammad; Saeed, Rashid; Tauqeer, Hafiz Muhammad; Sallah-Ud-Din, Rasham; Azam, Ahmed; Raza, Nighat

    2017-09-01

    The complex bio-geochemistry of soil allows pollutant to persist for a longer period of time which further decreased the fertility and natural composition of land. Nickel, an inorganic pollutant, coming from a wide range of industrial and manufacturing units possesses serious threat to soil degradation and crop productivity around the world. The present study was carried to evaluate the combined role of microwave irradiation (MR) and citric acid (CA) on the phytoextraction potential of Brassica napus L. under Ni stress. An initial seed germination test was conducted to select effective time scale of MR exposure. Highest seed germination was observed at exposure of 2.45 GHz frequency for 30 s. Healthy seeds of B. napus L. genotype Faisal Canola (RBN-03060) treated with MR at 2.45 GHz for 30 s were sown in plastic pots filled with 5 kg of soil. Nickel and CA applied exogenously in solution form with different combinations to both MR-treated and untreated B. napus plants. The MR-treated plants showed higher growth, biomass, photosynthetic pigments (Chl a, b, total, and carotenoids) and activities of antioxidant enzymes (SOD, POD, APX, CAT) as compared to untreated plants who showed higher reactive oxygen species (MDA, H 2 O 2 ) and electrolyte leakage. Increasing Ni concentration significantly decreased the physiological and biochemical attributes of B. napus both in MR-treated and untreated plants. The addition of CA alleviated Ni-induced toxic effects in both MR-treated and untreated plants by improving antioxidant defense system. The degree of Ni stress mitigation was higher in MR-treated plants. The Ni concentration was higher in root, stem, and leaves of MR-treated plants under CA application as compared to untreated plants. The present study concluded that seeds treated with MR before sowing showed higher accumulation and concentration of Ni from soil, and this phenomenon boosted with the application of CA.

  1. Inheritance of oilseed rape (Brassica napus) RAPD markers in a backcross progeny with Brassica campestris

    DEFF Research Database (Denmark)

    Mikkelsen, T.R.; Jensen, J.; Bagger Jørgensen, Rikke

    1996-01-01

    Different cultivars/transgenic lines of oilseed rape (Brassica napus) were crossed (as females) with different cultivars/populations of Brassica campestris. All cross combinations produced seed, with an average seed set per pollination of 9.8. Backcrossing of selected interspecific hybrids (as...... females) to B. campestris resulted in a much lower seed set, average 0.7 seed per pollination. In the single backcross progeny where a large enough population (92 plants) was obtained for analysis, 33 B. napus specific RAPD markers were investigated to determine the extent of transfer of oilseed rape...

  2. Phospholipase Dε enhances Braasca napus growth and seed production in response to nitrogen availability.

    Science.gov (United States)

    Lu, Shaoping; Yao, Shuaibing; Wang, Geliang; Guo, Liang; Zhou, Yongming; Hong, Yueyun; Wang, Xuemin

    2016-03-01

    Phospholipase D (PLD), which hydrolyses phospholipids to produce phosphatidic acid, has been implicated in plant response to macronutrient availability in Arabidopsis. This study investigated the effect of increased PLDε expression on nitrogen utilization in Brassica napus to explore the application of PLDε manipulation to crop improvement. In addition, changes in membrane lipid species in response to nitrogen availability were determined in the oil seed crop. Multiple PLDε over expression (PLDε-OE) lines displayed enhanced biomass accumulation under nitrogen-deficient and nitrogen-replete conditions. PLDε-OE plants in the field produced more seeds than wild-type plants but have no impact on seed oil content. Compared with wild-type plants, PLDε-OE plants were enhanced in nitrate transporter expression, uptake and reduction, whereas the activity of nitrite reductase was higher under nitrogen-depleted, but not at nitrogen-replete conditions. The level of nitrogen altered membrane glycerolipid metabolism, with greater impacts on young than mature leaves. The data indicate increased expression of PLDε has the potential to improve crop plant growth and production under nitrogen-depleted and nitrogen-replete conditions. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  3. Generation and characterization of tribenuron-methyl herbicide-resistant rapeseed (Brasscia napus) for hybrid seed production using chemically induced male sterility.

    Science.gov (United States)

    Li, Haitao; Li, Juanjuan; Zhao, Bo; Wang, Jing; Yi, Licong; Liu, Chao; Wu, Jiangsheng; King, Graham J; Liu, Kede

    2015-01-01

    Identification and molecular analysis of four tribenuron-methyl resistant mutants in Brassica napus , which would be very useful in hybrid production using a Chemically induced male sterility system. Chemically induced male sterility (CIMS) systems dependent on chemical hybridization agents (CHAs) like tribenuron-methyl (TBM) represent an important approach for practical utilization of heterosis in rapeseed. However, when spraying the female parents with TBM to induce male sterility the male parents must be protected with a shield to avoid injury to the stamens, which would otherwise complicate the seed production protocol and increase the cost of hybrid seed production. Here we report the first proposed application of a herbicide-resistant cultivar in hybrid production, using a CIMS system based on identifying four TBM-resistant mutants in Brassica napus. Genetic analysis indicated that the TBM resistance was controlled by a single dominant nuclear gene. An in vitro enzyme activity assay for acetohydroxyacid synthase (AHAS) suggested that the herbicide resistance is caused by a gain-of-function mutation in a copy of AHAS genes. Comparative sequencing of the mutants and wild type BnaA.AHAS.a coding sequences identified a C-to-T transition at either position 535 or 536 from the translation start site, which resulted in a substitution of proline with serine or leucine at position 197 according to the Arabidopsis thaliana protein sequence. An allele-specific dCAPS marker developed from the C536T variation co-segregated with the herbicide resistance. Transgenic A. thaliana plants expressing BnaA.ahas3.a conferred herbicide resistance, which confirmed that the P197 substitution in BnaA.AHAS.a was responsible for the herbicide resistance. Moreover, the TBM-resistant lines maintain normal male fertility under TBM treatment and can be of practical value in hybrid seed production using CIMS.

  4. Effects of gamma irradiation of an isolated flower in reproductive stages on seed production of Brassica napus L

    International Nuclear Information System (INIS)

    Minami, Harufumi; Sakurai, Noboru; Muroyama, Takeo; Hogetsu, Daisuke

    1999-01-01

    We examined seed production after gamma irradiation of an isolated whole flower (a flower with pedicel) of Brassica napus strain 1 through a flower organ culture and estimated the effects of gamma rays on embryogenesis in sexual reproductive stages. The whole flowers were irradiated with 17, 32, 57 and 87 Gy of gamma rays in unpollinated stage at day of anthesis, in stage shortly after fertilization and early embryo stage. The gamma irradiation of flowers in stage shortly after fertilization showed a drastic effect on the mature seed production. The number of seeds per pod began to decrease at 17 Gy and dropped to 15% of that of unirradiated flowers at 32 Gy. On the other hand, the flowers irradiated in the unpollinated and early embryo stages began to reduce the number of seeds at 57 Gy. The ovary elongation was suppressed with increasing irradiation dose when the flower was irradiated in unpollinated stage and stage shortly after fertilization. (author)

  5. Metabolome classification of Brassica napus L. organs via UPLC-QTOF-PDA-MS and their anti-oxidant potential.

    Science.gov (United States)

    Farag, Mohamed A; Sharaf Eldin, Mohamed G; Kassem, Hanaa; Abou el Fetouh, Mohamed

    2013-01-01

    Brassica napus L. is a crop widely grown for its oil production and other nutritional components in the seed. In addition to the seed, other organs contain a wide range of phenolic metabolites although they have not been investigated to the same extent as in seeds. To define and compare the phytochemical composition of B. napus L. organs, namely the root, stem, leaf, inflorescence and seeds. Non-targeted metabolomic analysis via UPLC-QTOF-MS was utilised in order to localise compounds belonging to various chemical classes (i.e. oxygenated fatty acids, flavonols, phenolic acids and sinapoyl choline derivatives). The vast majority of identified metabolites were flavonol glycosides that accumulated in most of the plant organs. Whereas other classes were detected predominantly in specific organs, i.e. sinapoyl cholines were present uniquely in seeds. Furthermore, variation in the accumulation pattern of metabolites from the same class was observed, particularly in the case of quercetin, kaempferol and isorhamnetin flavonols. Anti-oxidant activity, based on 2,2-diphenyl-1-picrylhdrazyl analysis was observed for all extracts, and correlated to some extent with total flavonoid content. This study provides the most complete map for polyphenol composition in B. napus L. organs. By describing the metabolites profile in B. napus L., this study provides the basis for future investigations of seeds for potential health and/or medicinal use. Copyright © 2012 John Wiley & Sons, Ltd.

  6. Mutagenesis and haploid culture for disease resistance in Brassica napus

    Energy Technology Data Exchange (ETDEWEB)

    MacDonald, M V; Ahmad, I; Ingram, D S [Botany School, University of Cambridge, Cambridge (United Kingdom)

    1990-01-01

    Full text: Most winter oilseed rape cultivars share parentage and therefore show little genetic diversity. There is no known resistance to Alternaria spp. in oilseed rape or in any related Brassica species. Experiments with tissue culture yielded only transient, non-genetic resistance. Therefore, mutagenesis may be used to generate heritable resistance to Alternaria spp. Gamma irradiation was applied to seeds of 'Bienvenue', secondary embryoids of cvs 'Primor' and 'Rapora', and buds of cvs 'Primor' and 'Ariana'. Isolated microspores from cv 'Ariana' and rapid cycling B. napus were also treated. The doses used ranged from 0-100 Gy for isolated microspores and buds, up to 600 Gy for seeds and 960 Gy for secondary embryoids. EMS was used to treat seeds of line WRG-42 (supplied by Nickersons RPB) and microspores of cv 'Bienvenue' and rapid cycling B. napus. Seeds were treated with up to 2.0% EMS for 0.2 h. before plating them on the culture medium. Seed irradiation up to 600 Gy did not reduce germination. M{sub 1} and M{sub 2} progenies were tested both in the laboratory and in field trials, and none of these were found to be resistant to Alternaria. However, considerable variation for other characters was observed. Haploid cultures from these plants were extremely difficult to regenerate, and for this reason no regenerant plants have been tested for resistance. For irradiated secondary embryoids the regeneration capacity decreased with increasing dose. Regenerated plants have been tested for resistance to Alternaria, but stable resistance was not observed. Haploid cultures were obtained from irradiated buds, using both anther and microspore culture. Low irradiation treatment was beneficial to developing embryoids. Some regenerants have been obtained from EMS treated microspores and seeds. Four plants have repeatedly given increased levels of resistance to A. brassicicola, and progenies are being tested to determine the genetic nature of the resistance. (author)

  7. Mutagenesis and haploid culture for disease resistance in Brassica napus

    International Nuclear Information System (INIS)

    MacDonald, M.V.; Ahmad, I.; Ingram, D.S.

    1990-01-01

    Full text: Most winter oilseed rape cultivars share parentage and therefore show little genetic diversity. There is no known resistance to Alternaria spp. in oilseed rape or in any related Brassica species. Experiments with tissue culture yielded only transient, non-genetic resistance. Therefore, mutagenesis may be used to generate heritable resistance to Alternaria spp. Gamma irradiation was applied to seeds of 'Bienvenue', secondary embryoids of cvs 'Primor' and 'Rapora', and buds of cvs 'Primor' and 'Ariana'. Isolated microspores from cv 'Ariana' and rapid cycling B. napus were also treated. The doses used ranged from 0-100 Gy for isolated microspores and buds, up to 600 Gy for seeds and 960 Gy for secondary embryoids. EMS was used to treat seeds of line WRG-42 (supplied by Nickersons RPB) and microspores of cv 'Bienvenue' and rapid cycling B. napus. Seeds were treated with up to 2.0% EMS for 0.2 h. before plating them on the culture medium. Seed irradiation up to 600 Gy did not reduce germination. M 1 and M 2 progenies were tested both in the laboratory and in field trials, and none of these were found to be resistant to Alternaria. However, considerable variation for other characters was observed. Haploid cultures from these plants were extremely difficult to regenerate, and for this reason no regenerant plants have been tested for resistance. For irradiated secondary embryoids the regeneration capacity decreased with increasing dose. Regenerated plants have been tested for resistance to Alternaria, but stable resistance was not observed. Haploid cultures were obtained from irradiated buds, using both anther and microspore culture. Low irradiation treatment was beneficial to developing embryoids. Some regenerants have been obtained from EMS treated microspores and seeds. Four plants have repeatedly given increased levels of resistance to A. brassicicola, and progenies are being tested to determine the genetic nature of the resistance. (author)

  8. Dissecting quantitative trait loci for boron efficiency across multiple environments in Brassica napus.

    Directory of Open Access Journals (Sweden)

    Zunkang Zhao

    Full Text Available High yield is the most important goal in crop breeding, and boron (B is an essential micronutrient for plants. However, B deficiency, leading to yield decreases, is an agricultural problem worldwide. Brassica napus is one of the most sensitive crops to B deficiency, and considerable genotypic variation exists among different cultivars in response to B deficiency. To dissect the genetic basis of tolerance to B deficiency in B. napus, we carried out QTL analysis for seed yield and yield-related traits under low and normal B conditions using the double haploid population (TNDH by two-year and the BQDH population by three-year field trials. In total, 80 putative QTLs and 42 epistatic interactions for seed yield, plant height, branch number, pod number, seed number, seed weight and B efficiency coefficient (BEC were identified under low and normal B conditions, singly explaining 4.15-23.16% and 0.53-14.38% of the phenotypic variation. An additive effect of putative QTLs was a more important controlling factor than the additive-additive effect of epistatic interactions. Four QTL-by-environment interactions and 7 interactions between epistatic interactions and the environment contributed to 1.27-4.95% and 1.17-3.68% of the phenotypic variation, respectively. The chromosome region on A2 of SYLB-A2 for seed yield under low B condition and BEC-A2 for BEC in the two populations was equivalent to the region of a reported major QTL, BE1. The B. napus homologous genes of Bra020592 and Bra020595 mapped to the A2 region and were speculated to be candidate genes for B efficiency. These findings reveal the complex genetic basis of B efficiency in B. napus. They provide a basis for the fine mapping and cloning of the B efficiency genes and for breeding B-efficient cultivars by marker-assisted selection (MAS.

  9. Variations in fatty acid composition, glucosinolate profile and some phyto chemical contents in selected oil seed rape (Brassica napus L.) cultivars

    Energy Technology Data Exchange (ETDEWEB)

    El-Din Saad El-Beltag, H.; Mohamed, A. A.

    2010-07-01

    Rapeseed (Brassica napus L.) is now the third most important source of edible oil in the world after soybean and palm oil. In this study seeds of five different rapeseed cultivars namely; pactol, silvo, topas, serw 4 and serw 6 were evaluated for their fatty acid composition, glucosinolate profile, amino acids, total tocopherols and phenolic content. Among all cultivars significant variability in fatty acids were observed. The oleic acid (C18:1) ranged from 56.31% to 58.67%, linoleic acid (C18:2) from 10.52% to 13.74%, {alpha}-linolenic acid (C18:3) from 8.83% to 10.32% and erucic acid (22:1) from 0.15% to 0.91%. The glucosinolate profile of rapeseed was also separated and identified using high-performance liquid chromatography. Small variations in the glucosinolate profile were observed among all tested cultivars; however, progoitrin and gluconapin were the major glucosinolate found. Additionally, silvo cultivar showed the highest total glucosinolate contents (5.97 {mu}mol/g dw). Generally, the contents of aspartic, glutamic, arginine and leucine were high, while the contents of tyrosine and isoleucine were low among all cultivars. For total tocopherols, the results indicated that both serw 6 and pactol cultivars had the highest total tocopherol contents (138.3 and 102.8 mg/100 g oil, respectively). Total phenolic contents varied from 28.0 to 35.4 mg/g dw. The highest total phenolic content was found in topas while the lowest value was detected in serw 6. These parameters; fatty acid contents, glucosinolate profile and amino acids together with total tocopherols and phenolic contents, could be taken into consideration by oilseed rape breeders as selection criteria for developing genotypes with modified seed quality traits in Brassica napus L. (Author)

  10. Studies on the use of gamma irradiation and tissue culture in improving brassica napus

    International Nuclear Information System (INIS)

    Khedr, E.K.A.

    2012-01-01

    The objectives of this study were to:1- Studying the effect of different doses of gamma rays on some growth and yield component traits of three Brassica napus cultivars (Serow6, Serow4 and Pactol) during four consecutive generations aiming to create new genotypes characterized with high yielding traits. 2- Studying the effect of different doses of gamma rays on in vitro biotechnology technique (tissue culture) used in improving Brassica napus. Seeds of three Brassica napus cultivars were irradiated with different gamma ray doses then sown for four consecutive seasons. Data were collected and recorded to clarify the effect gamma irradiation on some yield component traits which were days to flowering , plant height, number of main branches per plant, number of secondary branches per plant, number of pods per plant, number of seeds per pod, weight of 1000-seed, weight of grain yield/plant and oil content of seeds). Results showed that high doses of gamma radiation had enhanced all of the studied traits for each of the three tested cultivars (except the plant height trait for Serow6 and Pactol cultivars). Seven new mutant lines were selected for their superiority in one or more of the studied yield component traits. Regarding the effect of gamma rays on tissue culture techniques, the applied gamma radiation doses did not affect the percentage of seed germination of the three studied cultivars, whereas the percentage of callus induction decreased by increasing the dose of gamma rays for each of the three cultivars and in both types of explants (hypocotyl and cotyledons) used in this experiment.

  11. Variations in fatty acid composition, glucosinolate profile and some phytochemical contents in selected oil seed rape (Brassica napus L.) cultivars

    OpenAIRE

    Amin Mohamed, Amal; El-Din Saad El-Beltagi, Hossam

    2010-01-01

    Rapeseed (Brassica napus L.) is now the third most important source of edible oil in the world after soybean and palm oil. In this study seeds of five different rapeseed cultivars namely; pactol, silvo, topas, serw 4 and serw 6 were evaluated for their fatty acid composition, glucosinolate profile, amino acids, total tocopherols and phenolic content. Among all cultivars significant variability in fatty acids were observed. The oleic acid (C18:1) ranged from 56.31% to 58.67%, linoleic acid (C1...

  12. Responses of the cabbage seedpod weevil, Ceutorhynchus obstrictus (Marsham) (Coleoptera: Curculionidae), to seed treatments of canola (Brassica napus L.) with the neonicotinoid compounds clothianidin and imidacloprid.

    Science.gov (United States)

    Dosdall, Lloyd M

    2009-12-01

    The cabbage seedpod weevil, Ceutorhynchus obstrictus (Marsham), is a major pest in the production of canola (Brassica napus L.) in North America and Europe, and effective population control is often essential for economical crop production. In North America, neonicotinoid insecticides have been used for several years in canola as seed treatments for reducing herbivory by flea beetles. The neonicotinoids clothianidin and imidacloprid were investigated to determine their effects on preimaginal development and on emergence of new-generation adults of C. obstrictus in comparison with effects of lindane, a chlorinated hydrocarbon seed treatment. Mean numbers of second- and third-instar larvae were significantly higher in plants seed-treated with lindane than in plants treated with the neonicotinoid compounds, even though weevil oviposition was similar for all treatments. Emergence of new-generation adults was reduced by 52 and 39% for plants seed-treated with clothianidin and imidacloprid, respectively, compared with emergence from plants treated with lindane. Seed treatment with both clothianidin and imidacloprid produced systemic insecticidal effects on larvae of C. obstrictus, with clothianidin slightly more effective than imidacloprid. Use of clothianidin or imidacloprid as seed treatments can comprise an important component in the integrated management of cabbage seedpod weevil in canola. (c) 2009 Society of Chemical Industry.

  13. Cloning and expression study of BnaLCR78 in Brassica napus

    International Nuclear Information System (INIS)

    Zhuang, L.; Ze, L. Y.; Cheng, W. Y.

    2016-01-01

    BnaLCR78 genes of three types of rape were cloned in rape (Brassica napus), and encoded protein structure was analyzed, the Results showed that the protein had a conserved coding domain which was analogues among LCR family of Arabidopsis. The expression patterns of genes of three types of rape in varying tissues and in specific same tissues were analyzed using quantitative method. The Results showed that their expression patterns differ from that of former research in Brassica napus, which may result from the difference of sampling time. We speculated that the gene might be involved in transpiration and transportation and distribution of nutrient, oil content in seed. (author)

  14. Seed Detection and Discrimination by Ground Beetles (Coleoptera: Carabidae) Are Associated with Olfactory Cues.

    Science.gov (United States)

    Kulkarni, Sharavari S; Dosdall, Lloyd M; Spence, John R; Willenborg, Christian J

    2017-01-01

    Olfactory ability is an element of fitness in many animals, guiding choices among alternatives such as mating partners or food. Ground beetles (Coleoptera; Carabidae), exhibit preferences for prey, and some species are well-known weed seed predators. We used olfactometer-based bioassays to determine if olfactory stimuli are associated with detection of Brassica napus L., Sinapis arvensis L., and Thlaspi arvense L. seeds by ground beetles characteristic of agroecosystems, and whether behavioural responses to seed odors depended on seed physiological state (imbibed or unimbibed). Imbibed B.napus seeds were preferred over other weed species by two of the three carabid species tested. Only A. littoralis responded significantly to unimbibed seeds of B. napus. Sensitivity to olfactory cues appeared to be highly specific as all carabid species discriminated between the olfactory cues of imbibed brassicaceous weed seeds, but did not discriminate between weed seeds that were unimbibed. Overall, our data suggest that depending on seed physiological state, odours can play an important role in the ability of carabids to find and recognize seeds of particular weed species.

  15. Preferential exclusion of hybrids in mixed pollinations between oilseed rape (Brassica napus) and weedy B. campestris (Brassicaceae)

    DEFF Research Database (Denmark)

    Hauser, T.P.; Bagger Jørgensen, Rikke; Østergård, Hanne

    1997-01-01

    amplified polymorphic DNA analysis. Using data on the proportion of fully developed seeds and the proportion of these seeds that were hybrids, a statistical model was constructed to estimate the fitness of conspecific and heterospecific pollen and the survival of conspecific and heterospecific zygotes...... for competition between male gametophytes and/or seeds within pods. To test whether competition influences the success of hybridization, pollen from the two species was mixed in different proportions and applied to stigmas of both species. The resulting seeds were scored for paternity by isozyme and randomly...... to seeds. B. campestris pollen in B. napus styles had a significantly lower fitness than the conspecific pollen, whereas no difference between pollen types was found in B. campestris styles. Hybrid zygotes survived to significantly lower proportions than conspecific zygotes in both species, with the lowest...

  16. Effects of Salinity on Yield and Component Characters in Canola (Brassica napus L. Cultivars

    Directory of Open Access Journals (Sweden)

    Ahmad BYBORDI

    2010-03-01

    Full Text Available Cultivars �Okapi�, �SLM046�, �Elite�, �Fornax� and �Licord� Brassica napus were tested for yield and component characters under different levels of salinity. The variations due to salinity levels, cultivars and cultivarxsalinity (interaction were significant for different characters. The variable degrees of increase and decrease of regression coefficient estimate mates (curve estimation showed the performance as influenced by different salinity levels. The performance of Brassica napus variety in plant height and days to first flowering was the best for �SLM046�, �Okapi� �SLM046� and �Okapi� cultivars. �SLM046� showed the best performance in days to maturity, followed by �Licord� and �Elite�. �Okapi� performed better than others regarding the increased number of seeds per plant and seed yield per plant, followed by �Fornax�. Considering all characters, the most tolerance ability was found in �SLM046� and �Okapi�, against different levels of salinity.

  17. NMR metabolomics of ripened and developing oilseed rape (Brassica napus) and turnip rape (Brassica rapa).

    Science.gov (United States)

    Kortesniemi, Maaria; Vuorinen, Anssi L; Sinkkonen, Jari; Yang, Baoru; Rajala, Ari; Kallio, Heikki

    2015-04-01

    The oilseeds of the commercially important oilseed rape (Brassica napus) and turnip rape (Brassica rapa) were investigated with (1)H NMR metabolomics. The compositions of ripened (cultivated in field trials) and developing seeds (cultivated in controlled conditions) were compared in multivariate models using principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA), and orthogonal partial least squares discriminant analysis (OPLS-DA). Differences in the major lipids and the minor metabolites between the two species were found. A higher content of polyunsaturated fatty acids and sucrose were observed in turnip rape, while the overall oil content and sinapine levels were higher in oilseed rape. The genotype traits were negligible compared to the effect of the growing site and concomitant conditions on the oilseed metabolome. This study demonstrates the applicability of NMR-based analysis in determining the species, geographical origin, developmental stage, and quality of oilseed Brassicas. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Construction of an integrated genetic linkage map for the A genome of Brassica napus using SSR markers derived from sequenced BACs in B. rapa

    Directory of Open Access Journals (Sweden)

    King Graham J

    2010-10-01

    Full Text Available Abstract Background The Multinational Brassica rapa Genome Sequencing Project (BrGSP has developed valuable genomic resources, including BAC libraries, BAC-end sequences, genetic and physical maps, and seed BAC sequences for Brassica rapa. An integrated linkage map between the amphidiploid B. napus and diploid B. rapa will facilitate the rapid transfer of these valuable resources from B. rapa to B. napus (Oilseed rape, Canola. Results In this study, we identified over 23,000 simple sequence repeats (SSRs from 536 sequenced BACs. 890 SSR markers (designated as BrGMS were developed and used for the construction of an integrated linkage map for the A genome in B. rapa and B. napus. Two hundred and nineteen BrGMS markers were integrated to an existing B. napus linkage map (BnaNZDH. Among these mapped BrGMS markers, 168 were only distributed on the A genome linkage groups (LGs, 18 distrubuted both on the A and C genome LGs, and 33 only distributed on the C genome LGs. Most of the A genome LGs in B. napus were collinear with the homoeologous LGs in B. rapa, although minor inversions or rearrangements occurred on A2 and A9. The mapping of these BAC-specific SSR markers enabled assignment of 161 sequenced B. rapa BACs, as well as the associated BAC contigs to the A genome LGs of B. napus. Conclusion The genetic mapping of SSR markers derived from sequenced BACs in B. rapa enabled direct links to be established between the B. napus linkage map and a B. rapa physical map, and thus the assignment of B. rapa BACs and the associated BAC contigs to the B. napus linkage map. This integrated genetic linkage map will facilitate exploitation of the B. rapa annotated genomic resources for gene tagging and map-based cloning in B. napus, and for comparative analysis of the A genome within Brassica species.

  19. Co-ordinate regulation of sterol biosynthesis enzyme activity during accumulation of sterols in developing rape and tobacco seed.

    Science.gov (United States)

    Harker, Mark; Hellyer, Amanda; Clayton, John C; Duvoix, Annelyse; Lanot, Alexandra; Safford, Richard

    2003-02-01

    The activities of 3-hydroxy-3-methylglutaryl-coenzyme A reductase, sterol methyl transferase 1 and sterol acyltransferase, key enzymes involved in phytosterol biosynthesis were shown to be co-ordinately regulated during oilseed rape ( Brassica napus L.) and tobacco ( Nicotiana tabacum L.) seed development. In both plants, enzyme activities were low during the initial stages of seed development, increasing towards mid-maturation where they remained stable for a time, before declining rapidly as the oilseeds reached maturity. During seed development, the level of total sterols increased 12-fold in tobacco and 9-fold in rape, primarily due to an increase in steryl ester production. In both seed tissues, stages of maximum enzyme activity coincided with periods of high rates of sterol production, indicating developmental regulation of the enzymes to be responsible for the increases in the sterol content observed during seed development. Consistent with previous studies the data presented suggest that sterol biosynthesis is regulated by two key steps, although there may be others. The first is the regulation of carbon flux into the isoprenoid pathway to cycloartenol. The second is the flux from cycloartenol to Delta(5)-end-product sterols. The implications of the results in terms of enhancing seed sterol levels by genetic modification are also discussed.

  20. Genetic differentiation among sexually compatible relatives of Brassica napus L.

    Directory of Open Access Journals (Sweden)

    Pipan Barbara

    2013-01-01

    Full Text Available Analysis of gene flow between Brassica napus L. and its sexually compatible relatives that could be found in the wild in Slovenia was performed by microsatellite analysis using fifteen selected primer pairs. Genotypes included in the study were obtained from the field survey of sexually compatible relatives of B. napus in natural habitats around Slovenia and from reference collections. Two different wild species of all the presented sexually compatible relatives of B. napus were found in Slovenia, B. rapa and Sinapis arvensis. The reference genotypes included varieties and wild forms from internal collections as marketable seeds or from gene banks. Reference genotypes were represented by the following species and subspecies: B. napus ssp. napobrassica, B. napus ssp. napus, B. nigra, B. oleracea, B. rapa ssp. oleifera, Diplotaxis muralis; D. tenuifolia, Raphanus raphanistrum, R. sativus, R. sativus var. oleiformis, Rapistrum rugosum, S. alba and S. arvensis. Estimation of gene flow described by average number of migrants was 0.72 followed by 0.20 migrants. Due to the observed gene migrations, genetic drift and selection, Hardy-Weinberg equilibrium was not met. The mean number of alleles over all loci was 16.9, the average polymorphic information content was 0.43. We found four highly divergent and polymorphic loci (Na12-C08, Na10-A08, Ni3-G04b and BRMS-050 at statistically significant level (p<0.05 of gene flow detected. Over all gene diversity intra-individual among populations (0.55 was lower than inter-individual among population (0.77. The results of genetic linkages based standard genetic distance and unweighted pair group method with arithmetic mean clustering method, generally divided the genotypes in three divergent groups. Similar results were obtained by principal coordinate analysis where three main groups were constructed according to three factors. A real number of genetic clusters demonstrated a clear separation between populations

  1. Conjugated linoleic acid content in milk of Chilean Black Friesian cows under pasture conditions and supplemented with canola seed (Brassica napus concentrate

    Directory of Open Access Journals (Sweden)

    J. P. Avilez Ruiz

    2012-12-01

    Full Text Available At present, there is limited and contradictory information about the effects of the use of canola (Brassica napus seed as supplement on the contents of conjugated linoleic acid (CLA in milk of grazing cows. The objective of this study was to evaluate the effect of a dietary supplement with canola seed on the production and composition of milk, and CLA concentration in Chilean Black Friesian cows under pasture conditions. Three experiments were done. Experiment 1: control group was fed 5 kg d-1 of commercial concentrate without canola (0-TC1 and treatment group that was fed 3.75 kg of commercial concentrate plus 1.16 kg of whole canola seed (1.16-TC1. Experiment 2: Control group was fed 8 kg d-1 commercial concentrate without canola (0-TC2 and treatment group that was fed 6.2 kg of commercial concentrate plus 1.2 kg of ground canola seed (1.2-TC2. Experiment 3: control group was fed 6 kg d-1 commercial concentrate without canola (0-TC3 and treatment group was fed 6 kg of commercial concentrate with 20% of whole canola seed (1.2 kg d-1, 1.2-TC3. The duration of each experiment was 60 days. No differences in milk production and quality were observed among the experimental groups in every assay. The CLA isomers trans-10, cis-12 and cis-10, cis-12 were higher than those normally found in the scientific literature. There was no effect of the inclusion of canola seed on total CLA content or the content of cis-9, trans-11, trans-10, cis-12 and cis-10, cis-12 isomers.

  2. Application of Endophytic Pseudomonas fluorescens and a Bacterial Consortium to Brassica napus Can Increase Plant Height and Biomass under Greenhouse and Field Conditions

    Directory of Open Access Journals (Sweden)

    Richard D. Lally

    2017-12-01

    Full Text Available Plant associated bacteria with plant growth promotion (PGP properties have been proposed for use as environmentally friendly biofertilizers for sustainable agriculture; however, analysis of their efficacy in the field is often limited. In this study, greenhouse and field trials were carried out using individual endophytic Pseudomonas fluorescens strains, the well characterized rhizospheric P. fluorescens F113 and an endophytic microbial consortium of 10 different strains. These bacteria had been previously characterized with respect to their PGP properties in vitro and had been shown to harbor a range of traits associated with PGP including siderophore production, 1-aminocyclopropane-1-carboxylic acid (ACC deaminase activity, and inorganic phosphate solubilization. In greenhouse experiments individual strains tagged with gfp and Kmr were applied to Brassica napus as a seed coat and were shown to effectively colonize the rhizosphere and root of B. napus and in addition they demonstrated a significant increase in plant biomass compared with the non-inoculated control. In the field experiment, the bacteria (individual and consortium were spray inoculated to winter oilseed rape B. napus var. Compass which was grown under standard North Western European agronomic conditions. Analysis of the data provides evidence that the application of the live bacterial biofertilizers can enhance aspects of crop development in B. napus at field scale. The field data demonstrated statistically significant increases in crop height, stem/leaf, and pod biomass, particularly, in the case of the consortium inoculated treatment. However, although seed and oil yield were increased in the field in response to inoculation, these data were not statistically significant under the experimental conditions tested. Future field trials will investigate the effectiveness of the inoculants under different agronomic conditions.

  3. A candidate gene-based association study of tocopherol content and composition in rapeseed (Brassica napus

    Directory of Open Access Journals (Sweden)

    Steffi eFritsche

    2012-06-01

    Full Text Available Rapeseed (Brassica napus L. is the most important oil crop of temperate climates. Rapeseed oil contains tocopherols, also known as vitamin E, which is an indispensable nutrient for humans and animals due to its antioxidant and radical scavenging abilities. Moreover, tocopherols are also important for the oxidative stability of vegetable oils. Therefore, seed oil with increased tocopherol content or altered tocopherol composition is a target for breeding. We investigated the role of nucleotide variations within candidate genes from the tocopherol biosynthesis pathway. Field trials were carried out with 229 accessions from a worldwide B. napus collection which was divided into two panels of 96 and 133 accessions. Seed tocopherol content and composition were measured by HPLC. High heritabilities were found for both traits, ranging from 0.62 to 0.94. We identified polymorphisms by sequencing selected regions of the tocopherol genes from the 96 accession panel. Subsequently, we determined the population structure (Q and relative kinship (K as detected by genotyping with genome-wide distributed SSR markers. Association studies were performed using two models, the structure-based GLM+Q and the PK mixed model. Between 26 and 12 polymorphisms within two genes (BnaX.VTE3.a, BnaA.PDS1.c were significantly associated with tocopherol traits. The SNPs explained up to 16.93 % of the genetic variance for tocopherol composition and up to 10.48 % for total tocopherol content. Based on the sequence information we designed CAPS markers for genotyping the 133 accessions from the 2nd panel. Significant associations with various tocopherol traits confirmed the results from the first experiment. We demonstrate that the polymorphisms within the tocopherol genes clearly impact tocopherol content and composition in B. napus seeds. We suggest that these nucleotide variations may be used as selectable markers for breeding rapeseed with enhanced tocopherol quality.

  4. Wrinkled1 accelerates flowering and regulates lipid homeostasis between oil accumulation and membrane lipid anabolism in Brassica napus

    Directory of Open Access Journals (Sweden)

    Qing eLi

    2015-11-01

    Full Text Available Wrinkled1 (WRI1 belongs to the APETALA2 transcription factor family; it is unique to plants and is a central regulator of oil synthesis in Arabidopsis. The effects of WRI1 on comprehensive lipid metabolism and plant development were unknown, especially in crop plants. This study found that BnWRI1 in Brassica napus accelerated flowering and enhanced oil accumulation in both seeds and leaves without leading to a visible growth inhibition. BnWRI1 decreased storage carbohydrates and increased soluble sugars to facilitate the carbon flux to lipid anabolism. BnWRI1 is localized to the nucleus and directly binds to the AW-box at proximal upstream regions of genes involved in fatty acid synthesis and lipid assembly. The overexpression (OE of BnWRI1 resulted in the up-regulation of genes involved in glycolysis, fatty acid synthesis, lipid assembly, and flowering. Lipid profiling revealed increased galactolipid monogalactosyldiacylglycerol (MGDG, digalactosyldiacylglycerol (DGDG, and phosphatidylcholine (PC in the leaves of OE plants, whereas it exhibited a reduced level of the galactolipids DGDG and MGDG and increased levels of PC, phosphatidylethanolamide (PE, and oil (triacylglycerol, TAG in the siliques of OE plants during the early seed development stage. These results suggest that BnWRI1 is important for homeostasis among TAG, membrane lipids and sugars, and thus facilitates flowering and oil accumulation in B. napus.

  5. BnDGAT1s Function Similarly in Oil Deposition and Are Expressed with Uniform Patterns in Tissues of Brassica napus

    Directory of Open Access Journals (Sweden)

    Cuizhu Zhao

    2017-12-01

    Full Text Available As an allotetraploid oilcrop, Brassica napus contains four duplicated Acyl-CoA:diacylglycerol acyltransferase 1 (DGAT1 genes, which catalyze one of the rate-limiting steps in triacylglycerol (TAG biosynthesis in plants. While all four BnDGAT1s have been expressed functionally in yeast, their expression patterns in different germplasms and tissues and also consequent contribution to seed oil accumulation in planta remain to be elucidated. In this study, the coding regions of the four BnDGAT1s were expressed in an Arabidopsis dgat1 mutant. All four BnDGAT1s showed similar effects on oil content and fatty acid composition, a result which is different from that observed in previous studies of their expression in yeast. Expression patterns of BnDGAT1s were analyzed in developing seeds of 34 B. napus inbred lines and in different tissues of 14 lines. Different expression patterns were observed for the four BnDGAT1s, which suggests that they express independently or randomly in different germplasm sources. Higher expression of BnDGAT1s was correlated with higher seed oil content lines. Tissue-specific analyses showed that the BnDGAT1s were expressed in a uniform pattern in different tissues. Our results suggest that it is important to maintain expression of the four BnDGAT1s for maximum return on oil content.

  6. The use of protein patterns in genetic diversity analysis in some Brassica napus cultivars

    Directory of Open Access Journals (Sweden)

    Roya Razavizadeh

    2013-11-01

    Full Text Available In this study, protein variations of seeds and five-day old cotyledonal leaves of four selected Brassica napus cultivars including Elite, Ocapy, Tasilo and Zarfam were analyzed by SDS-PAGE to identify protein markers. The amount of total soluble protein of seed storage proteins did not show significant differences in all cultivars whereas it was different in cotyledonal leaves. Protein patterns of seeds and cotyledonal leaves showed significant differences using SDS-PAGE and consequence analysis of bands by ImageJ program. Relative expression of six protein bands in seeds and five-day old cotyledonal leaves were significantly different. Three protein markers were identified by protein patterns of seed and cotyledonal leaves. The results of relationship analysis based on presence and absence of the specific protein bands in protein pattern of seed storage proteins showed that Tasilo and Elite cultivars had the highest similarities.

  7. LMI1-like genes involved in leaf margin development of Brassica napus.

    Science.gov (United States)

    Ni, Xiyuan; Liu, Han; Huang, Jixiang; Zhao, Jianyi

    2017-06-01

    In rapeseed (Brassica napus L.), leaf margins are variable and can be entire, serrate, or lobed. In our previous study, the lobed-leaf gene (LOBED-LEAF 1, BnLL1) was mapped to a 32.1 kb section of B. napus A10. Two LMI1-like genes, BnaA10g26320D and BnaA10g26330D, were considered the potential genes that controlled the lobed-leaf trait in rapeseed. In the present study, these two genes and another homologous gene (BnaC04g00850D) were transformed into Arabidopsis thaliana (L.) Heynh. plants to identify their functions. All three LMI1-like genes of B. napus produced serrate leaf margins. The expression analysis indicated that the expression level of BnaA10g26320D determined the difference between lobed- and entire-leaved lines in rapeseed. Therefore, it is likely that BnaA10g26320D corresponds to BnLL1.

  8. Variations in fatty acid composition, glucosinolate profile and some phytochemical contents in selected oil seed rape (Brassica napus L. cultivars

    Directory of Open Access Journals (Sweden)

    Amin Mohamed, Amal

    2010-06-01

    Full Text Available Rapeseed (Brassica napus L. is now the third most important source of edible oil in the world after soybean and palm oil. In this study seeds of five different rapeseed cultivars namely; pactol, silvo, topas, serw 4 and serw 6 were evaluated for their fatty acid composition, glucosinolate profile, amino acids, total tocopherols and phenolic content. Among all cultivars significant variability in fatty acids were observed. The oleic acid (C18:1 ranged from 56.31% to 58.67%, linoleic acid (C18:2 from 10.52% to 13.74%, α-linolenic acid (C18:3 from 8.83% to 10.32% and erucic acid (22:1 from 0.15% to 0.91%. The glucosinolate profile of rapeseed was also separated and identified using high-performance liquid chromatography. Small variations in the glucosinolate profile were observed among all tested cultivars; however, progoitrin and gluconapin were the major glucosinolate found. Additionally, silvo cultivar showed the highest total glucosinolate c ontents (5.97 μmol/g dw. Generally, the contents of aspartic, glutamic, arginine and leucine were high, while the contents of tyrosine and isoleucine were low among all cultivars. For total tocopherols, the results indicated that both serw 6 and pactol cultivars had the highest total tocopherol contents (138.3 and 102.8 mg/100 g oil, respectively. Total phenolic contents varied from 28.0 to 35.4 mg/g dw. The highest total phenolic content was found in topas while the lowest value was detected in serw 6. These parameters; fatty acid contents, glucosinolate profile and amino acids together with total tocopherols and phenolic contents, could be taken into consideration by oilseed rape breeders as selection criteria for developing genotypes with modified seed quality traits in Brassica napus L.La colza (Brassica napus L. es hoy en día el tercer cultivo más importante de aceites comestibles en el mundo tras el aceite de soja y de palma. En este estudio semillas de cinco cultivos diferentes de colza

  9. A Novel Cytoplasmic Male Sterility in Brassica napus (inap CMS) with Carpelloid Stamens via Protoplast Fusion with Chinese Woad.

    Science.gov (United States)

    Kang, Lei; Li, Pengfei; Wang, Aifan; Ge, Xianhong; Li, Zaiyun

    2017-01-01

    A novel cytoplasmic male sterility (CMS) in Brassica napus (inap CMS) was selected from the somatic hybrid with Isatis indigotica (Chinese woad) by recurrent backcrossing. The male sterility was caused by the conversion of tetradynamous stamens into carpelloid structures with stigmatoid tissues at their tips and ovule-like tissues in the margins, and the two shorter stamens into filaments without anthers. The feminized development of the stamens resulted in the complete lack of pollen grains, which was stable in different years and environments. The pistils of inap CMS displayed normal morphology and good seed-set after pollinated by B. napus . Histological sections showed that the developmental alteration of the stamens initiated at the stage of stamen primordium differentiation. AFLP analysis of the nuclear genomic composition with 23 pairs of selective primers detected no woad DNA bands in inap CMS. Twenty out of 25 mitochondrial genes originated from I. indigotica , except for cox2-2 which was the recombinant between cox2 from woad and cox2-2 from rapeseed. The novel cox2-2 was transcribed in flower buds of inap CMS weakly and comparatively with the fertile B. napus addition line Me harboring one particular woad chromosome. The restorers of other autoplasmic and alloplasmic CMS systems in rapeseed failed to restore the fertility of inap CMS and the screening of B. napus wide resources found no fertility restoration variety, showing its distinct origin and the related mechanism of sterility. The reasons for the mitochondrial rearrangements and the breeding of the restorer for the novel CMS system were discussed.

  10. Population genomic analysis reveals differential evolutionary histories and patterns of diversity across subgenomes and subpopulations of Brassica napus L.

    Directory of Open Access Journals (Sweden)

    Elodie eGazave

    2016-04-01

    Full Text Available The allotetraploid species Brassica napus L. is a global crop of major economic importance, providing canola oil (seed and vegetables for human consumption and fodder and meal for livestock feed. Characterizing the genetic diversity present in the extant germplasm pool of B. napus is fundamental to better conserve, manage and utilize the genetic resources of this species. We used sequence-based genotyping to identify and genotype 30,881 SNPs in a diversity panel of 782 B. napus accessions, representing samples of winter and spring growth habits originating from 33 countries across Europe, Asia and America. We detected strong population structure broadly concordant with growth habit and geography, and identified three major genetic groups: spring (SP, winter Europe (WE, and winter Asia (WA. Subpopulation-specific polymorphism patterns suggest enriched genetic diversity within the WA group and a smaller effective breeding population for the SP group compared to WE. Interestingly, the two subgenomes of B. napus appear to have different geographic origins, with phylogenetic analysis placing WE and WA as basal clades for the other subpopulations in the C and A subgenomes, respectively. Finally, we identified 16 genomic regions where the patterns of diversity differed markedly from the genome-wide average, several of which are suggestive of genomic inversions. The results obtained in this study constitute a valuable resource for worldwide breeding efforts and the genetic dissection and prediction of complex B. napus traits.

  11. Chromosomal aberration induced by gamma rays in winter rape (Brassica napus L.)

    International Nuclear Information System (INIS)

    Luczkiewicz, T.; Rogalska, S.M.

    1994-01-01

    Winter rape seeds (Brassica napus L. cv. Jet Neuf) were irradiated twice with gamma rays. In γ 1-2 generation (dose 50.0 kR) plants with reduced fertility were selected. Offspring of these plants, in the following generations, were segregated into fertile plants, partly fertile and sterile plants. Analysis of meiosis in PCM revealed presence of a great number of cells (in prophase 1. and metaphase 1.) with crosses, rings and chains of multivalents. It is a proof of vast heterozygous translocation. (author)

  12. Studies on nitrogen uptake and utilization by rape (Brassica napus L.) under different sowing dates

    International Nuclear Information System (INIS)

    Liu Qixin; Nie Guangming

    1992-01-01

    The nitrogen uptake and utilization by low erucic acid variety, Zhong You Di Gai No.2, of rape (Brassica napus L.) under different sowing dates were studied. Total N uptake, the percentage N derived from the fertilizer, the rate of utilization of nitrogenous fertilizer, the production efficiency of N-fertilizer (seed yield g/gN derived by rape plant from the fertilizer), total P uptake and the production efficiency of phosphorus (seed yield g/gP derived by rape plant from fertilizer and soil) were all significantly higher at early sowing than that at later sowing within the range of normal sowing dates. Therefore, the biomass yield, the seed yield and oil content all increased significantly at early sowing treatment, but erucic acid content showed no significant difference

  13. Genetic diversity of notary-national uniform rape seed yield trial and brassica napus varieties using raped markers and biochemical analysis

    International Nuclear Information System (INIS)

    Bakhat, J.; Fareed, A.; Swati, Z.A.; Shafi, M.

    2011-01-01

    In Pakistan, Brassica is the second most important source of oil after cotton. Seventeen NURYT (National Uniform Rape Seed Yield Trial) lines and 5 Brassica napus varieties were assessed through RAPD primers and biochemical assays. Seven different Randomly Amplified Polymorphic DNA markers (RAPD) were employed during the present study. A total of 30 RAPD bands were scored by these primers. Size of the scorable fragments ranged from approximately 250 to 2000 bp. Diversity index was estimated to be 42%. Mean genetic distance estimates ranged between 0.10 and 1.00. For the assessment of various biochemical parameters, Near Infrared Reflectance Spectroscopy (NIRS) was used. Oil content ranged from 38.30 to 49% and protein content from 19.80 to 29.10% among the 22 genotypes. Maximum protein content was assayed in genotype RBN 3046 while minimum in Hyola 405. Glucosinolates ranged between 2 and 84% for genotype CRH 60/08 and CRH05/08 showing the maximum and minimum values respectively. Oleic acid (52 to 72.5%), linolenic acid (7.07 and 9.90%) and erucic acid content (9.57 to 38.3%) was also recorded during the present study. (author)

  14. GISH and AFLP analyses of novel Brassica napus lines derived from one hybrid between B. napus and Orychophragmus violaceus.

    Science.gov (United States)

    Ma, Ni; Li, Zai-Yun; Cartagena, J A; Fukui, K

    2006-10-01

    New Brassica napus inbred lines with different petal colors and with canola quality and increased levels of oleic (approximately 70%, 10% higher than that of B. napus parent) and linoleic (28%) acids have been developed in the progenies of one B. napus cv. Oro x Orychophragmus violaceus F5 hybrid plant (2n = 31). Their genetic constituents were analyzed by using the methods of genomic in situ hybridization (GISH) and amplified fragments length polymorphism (AFLP). No intact chromosomes of O. violaceus origin were detected by GISH in their somatic cells of ovaries and root tips (2n = 38) and pollen mother cells (PMCs) with normal chromosome pairing (19 bivalents) and segregation (19:19), though signals of variable sizes and intensities were located mainly at terminal and centromeric parts of some mitotic chromosomes and meiotic bivalents at diakinesis or chromosomes in anaphase I groups and one large patch of chromatin was intensively labeled and separated spatially in some telophase I nuclei and metaphase II PMCs. AFLP analysis revealed that substantial genomic changes have occurred in these lines and O. violaceus-specific bands, deleted bands in 'Oro' and novel bands for two parents were detected. The possible mechanisms for these results were discussed.

  15. Use of Se-enriched mustard and canola seed meals as potential bioherbicides and green fertilizers in strawberry production

    Science.gov (United States)

    New plant-based products can be produced from seed harvested from Brassica species used for phytomanaging selenium (Se) in the westside of central California. We tested Se-enriched seed meals produced from canola (Brassica napus) and mustard (Sinapis alba) plants as potential bio-herbicides and as g...

  16. Production of intertribal somatic hybrids between Brassica napus L. and Lesquerella fendleri (Gray) Wats

    International Nuclear Information System (INIS)

    Skarzhinskaya, M.; Landgren, M.; Glimelius, K.

    1996-01-01

    Intertribal Brassica napus (+) Lesquerella fendleri hybrids have been produced by polyethylene glycol-induced fusions of B. napus hypocotyl and L. fendleri mesophyll protoplasts. Two series of experiments were performed. In the first, symmetric fusion experiments, protoplasts from the two materials were fused without any pretreatments. In the second, asymmetric fusion experiments, X-ray irradiation at doses of 180 and 200 Gy were used to limit the transfer of the L. fendleri genome to the hybrids. X-ray irradiation of L. fendleri mesophyll protoplasts did not suppress the proliferation rate and callus formation of the fusion products but did significantly decrease growth and differentiation of non-fused L. fendleri protoplasts. In total, 128 regenerated plants were identified as intertribal somatic hybrids on the basis of morphological criteria. Nuclear DNA analysis performed on 80 plants, using species specific sequences, demonstrated that 33 plants from the symmetric fusions and 43 plants from the asymmetric fusions were hybrids. Chloroplast and mitochondrial DNA analysis revealed a biased segregation that favoured B. napus organelles in the hybrids from the symmetric fusion experiments. The bias was even stronger in the hybrids from the asymmetric fusion experiments where no hybrids with L. fendleri organelles were found. X-ray irradiation of L. fendleri protoplasts increased the possibility of obtaining mature somatic hybrid plants with improved fertility. Five plants from the symmetric and 24 plants from the asymmetric fusion experiments were established in the greenhouse. From the symmetric fusions 2 plants could be fertilised and set seeds after cross-pollination with B. napus. From the asymmetric fusions 9 plants could be selfed as well as fertilised when backcrossed with B. napus. Chromosome analysis was performed on all of the plants but 1 that were transferred to the greenhouse. Three plants from the symmetric fusions contained 50 chromosomes, which

  17. Different myrosinase and idioblast distribution in Arabidopsis and Brassica napus

    DEFF Research Database (Denmark)

    Andreasson, Erik; Jørgensen, Lise Bolt; Höglund, Anna-Stina

    2001-01-01

    Arabidopsis, Brassica napus, Myrosinase, Myrosinase Binding Protein, Glucosinolates, Myrosin Cell, Immunocytochemistry......Arabidopsis, Brassica napus, Myrosinase, Myrosinase Binding Protein, Glucosinolates, Myrosin Cell, Immunocytochemistry...

  18. High Density Linkage Map Construction and QTL Detection for Three Silique-Related Traits in Orychophragmus violaceus Derived Brassica napus Population

    Directory of Open Access Journals (Sweden)

    Yi Yang

    2017-09-01

    Full Text Available Seeds per silique (SS, seed weight (SW, and silique length (SL are important determinant traits of seed yield potential in rapeseed (Brassica napus L., and are controlled by naturally occurring quantitative trait loci (QTLs. Mapping QTLs to narrow chromosomal regions provides an effective means of characterizing the genetic basis of these complex traits. Orychophragmus violaceus is a crucifer with long siliques, many SS, and heavy seeds. A novel B. napus introgression line with many SS was previously selected from multiple crosses (B. rapa ssp. chinesis × O. violaceus × B. napus. In present study, a doubled haploid (DH population with 167 lines was established from a cross between the introgression line and a line with far fewer SS, in order to detect QTLs for silique-related traits. By screening with a Brassica 60K single nucleotide polymorphism (SNP array, a high-density linkage map consisting of 1,153 bins and spanning a cumulative length of 2,209.1 cM was constructed, using 12,602 high-quality polymorphic SNPs in the DH population. The average recombination bin densities of the A and C subgenomes were 1.7 and 2.4 cM, respectively. 45 QTLs were identified for the three traits in all, which explained 4.0–34.4% of the total phenotypic variation; 20 of them were integrated into three unique QTLs by meta-analysis. These unique QTLs revealed a significant positive correlation between SS and SL and a significant negative correlation between SW and SS, and were mapped onto the linkage groups A05, C08, and C09. A trait-by-trait meta-analysis revealed eight, four, and seven consensus QTLs for SS, SW, and SL, respectively, and five major QTLs (cqSS.A09b, cqSS.C09, cqSW.A05, cqSW.C09, and cqSL.C09 were identified. Five, three, and four QTLs for SS, SW, and SL, respectively, might be novel QTLs because of the existence of alien genetic loci for these traits in the alien introgression. Thirty-eight candidate genes underlying nine QTLs for silique

  19. Phenotyping of Brassica napus for high oil content

    Science.gov (United States)

    Multi-trait and multi-growth stage phenotyping may improve our ability to assess the dynamic changes in the B. napus phenome under spatiotemporal field conditions. A minimum set of phenotypic traits that can integrate ontogeny and architecture of Brassica napus L. is required for breeding and select...

  20. ANALYSIS OF SLG GENE – THE MOLECULAR MARKER IN HYBRID BREEDING OF OIL SEED RAPE

    Directory of Open Access Journals (Sweden)

    L DOLANSKÁ

    2004-07-01

    Full Text Available Oil seed rape (Brassica napus L. cultivars, donors of quality (SC and self-incompatible (SI lines have been analysed using identification of S-locus. In several Brassica napus cultivars one S-locus SLG gene was detected as dominant and the second S-locus as recessive. Amplification class II SLG gene screened recessive gene in all analysed samples (SC and SI. The DNA fragment of recessive gene corresponded to SLG gene W found in cv. Westar. S-haplotypes were analysed by PCR-RFLP. Different Brassica napus cultivars had an identical electrophoretic profile conforming with nonfunctional A10 allele in B. campestris. In B. napus A10 allele is localised in genome A. The functional recessive SLG gene is probably localised in genome C. Model of their segregation was suggested. SC and SI plants segregated in F2 generation at the ratio of approximately 3:1. This indicates a recessive monogenic disposition of SI in the experimental population.

  1. Citric acid assisted phytoremediation of copper by Brassica napus L.

    Science.gov (United States)

    Zaheer, Ihsan Elahi; Ali, Shafaqat; Rizwan, Muhammad; Farid, Mujahid; Shakoor, Muhammad Bilal; Gill, Rafaqa Ali; Najeeb, Ullah; Iqbal, Naeem; Ahmad, Rehan

    2015-10-01

    Use of organic acids for promoting heavy metals phytoextraction is gaining worldwide attention. The present study investigated the influence of citric acid (CA) in enhancing copper (Cu) uptake by Brassica napus L. seedlings. 6 Weeks old B. napus seedlings were exposed to different levels of copper (Cu, 0, 50 and 100µM) alone or with CA (2.5mM) in a nutrient medium for 40 days. Exposure to elevated Cu levels (50 and 100µM) significantly reduced the growth, biomass production, chlorophyll content, gas exchange attributes and soluble proteins of B. napus seedlings. In addition, Cu toxicity increased the production of hydrogen peroxide (H2O2), malondialdehyde (MDA) and electrolyte leakage (EL) in leaf and root tissues of B. napus. Activities of antioxidant enzymes such as guaiacol peroxidase (POD), superoxide dismutase (SOD), catalases (CAT), ascorbate peroxidase (APX) in root and shoot tissues of B. napus were increased in response to lower Cu concentration (50µM) but increased under higher Cu concentration (100µM). Addition of CA into nutrient medium significantly alleviated Cu toxicity effects on B. napus seedlings by improving photosynthetic capacity and ultimately plant growth. Increased activities of antioxidant enzymes in CA-treated plants seems to play a role in capturing of stress-induced reactive oxygen species as was evident from lower level of H2O2, MDA and EL in CA-treated plants. Increasing Cu concentration in the nutrient medium significantly increased Cu concentration in in B. napus tissues. Cu uptake was further increased by CA application. These results suggested that CA might be a useful strategy for increasing phytoextraction of Cu from contaminated soils. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Carbon dioxide concentrations are very high in developing oilseeds.

    Science.gov (United States)

    Goffman, Fernando D; Ruckle, Mike; Ohlrogge, John; Shachar-Hill, Yair

    2004-09-01

    A new method has been developed to rapidly determine the total inorganic carbon concentration (gaseous [CO2] + aqueous [CO(2)] + [HCO3-] + [CO3(2)-]) in developing seeds. Seeds are rapidly dissected and homogenized in 1 N HCl in gas-tight vials. The headspace gas is then analyzed by infrared gas analysis. Developing rapeseed (Brassica napus L.) and soybean [Glycine max (L.) Merr.] seeds were analyzed and found to have up to 40 and 12 mM total inorganic carbon, respectively. These concentrations are ca. 600-2000-fold higher than in ambient air or values reported for leaves. Carbon dioxide concentrations in rapeseed peaked during the stage of maximum oil synthesis and declined as seeds matured. The consequences for seed metabolism, physiology and carbon economy are discussed.

  3. Functional analysis and tissue-differential expression of four FAD2 genes in amphidiploid Brassica napus derived from Brassica rapa and Brassica oleracea.

    Science.gov (United States)

    Lee, Kyeong-Ryeol; In Sohn, Soo; Jung, Jin Hee; Kim, Sun Hee; Roh, Kyung Hee; Kim, Jong-Bum; Suh, Mi Chung; Kim, Hyun Uk

    2013-12-01

    Fatty acid desaturase 2 (FAD2), which resides in the endoplasmic reticulum (ER), plays a crucial role in producing linoleic acid (18:2) through catalyzing the desaturation of oleic acid (18:1) by double bond formation at the delta 12 position. FAD2 catalyzes the first step needed for the production of polyunsaturated fatty acids found in the glycerolipids of cell membranes and the triacylglycerols in seeds. In this study, four FAD2 genes from amphidiploid Brassica napus genome were isolated by PCR amplification, with their enzymatic functions predicted by sequence analysis of the cDNAs. Fatty acid analysis of budding yeast transformed with each of the FAD2 genes showed that whereas BnFAD2-1, BnFAD2-2, and BnFAD2-4 are functional enzymes, and BnFAD2-3 is nonfunctional. The four FAD2 genes of B. napus originated from synthetic hybridization of its diploid progenitors Brassica rapa and Brassica oleracea, each of which has two FAD2 genes identical to those of B. napus. The BnFAD2-3 gene of B. napus, a nonfunctional pseudogene mutated by multiple nucleotide deletions and insertions, was inherited from B. rapa. All BnFAD2 isozymes except BnFAD2-3 localized to the ER. Nonfunctional BnFAD2-3 localized to the nucleus and chloroplasts. Four BnFAD2 genes can be classified on the basis of their expression patterns. © 2013.

  4. Tissue-specific distribution of secondary metabolites in rapeseed (Brassica napus L..

    Directory of Open Access Journals (Sweden)

    Jingjing Fang

    Full Text Available Four different parts, hypocotyl and radicle (HR, inner cotyledon (IC, outer cotyledon (OC, seed coat and endosperm (SE, were sampled from mature rapeseed (Brassica napus L. by laser microdissection. Subsequently, major secondary metabolites, glucosinolates and sinapine, as well as three minor ones, a cyclic spermidine conjugate and two flavonoids, representing different compound categories, were qualified and quantified in dissected samples by high-performance liquid chromatography with diode array detection and mass spectrometry. No qualitative and quantitative difference of glucosinolates and sinapine was detected in embryo tissues (HR, IC and OC. On the other hand, the three minor compounds were observed to be distributed unevenly in different rapeseed tissues. The hypothetic biological functions of the distribution patterns of different secondary metabolites in rapeseed are discussed.

  5. Isolation of an ascorbate peroxidase in Brassica napus and analysis ...

    African Journals Online (AJOL)

    USER

    2010-04-05

    Apr 5, 2010 ... domain; APX, ascorbate peroxidase; Bn-APX, Brassica napus ascorbate ... Brassica napus, which is widely grown as the oilseed crop of rape or canola, .... grew on the SD-Leu-Trp-His-Ade medium and were verified by PCR.

  6. Effects of derived meals from juncea (Brassica juncea, yellow and black seeded canola (Brassica napus and multicarbohydrase enzymes supplementation on apparent metabolizable energy in broiler chickens

    Directory of Open Access Journals (Sweden)

    Balachandar Jayaraman

    2016-09-01

    Full Text Available Two experiments were conducted to determine the nitrogen-corrected apparent metabolizable energy (AMEn of differently processed meals from Juncea (Brassica juncea, yellow and black seeded canola (Brassica napus, with or without supplementation of multi-carbohydrase enzymes (Enz in diets for broiler chickens. The first experiment was a 3 × 2 × 2 factorial arrangement with the main factors being seed type (yellow [Yellow] or black [B1] canola seeds and Juncea seeds, processed at two temperatures (high temperature desolventized-toasted [HTDT] at 95°C or low temperature desolventized-toasted [LTDT] at 57°C, with or without Enz. In Exp. 1, a total of 384 one-day-old male broiler chicks were randomly assigned to 64 battery cages, with 6 birds/cage. The second experiment was a 2 × 2 × 2 factorial arrangement with the main factors being seed type (Yellow or black [B2], seed source (Scott, Saskatchewan or Truro, Nova Scotia and Enz (with or without supplementation. A total of 264 one-day-old male broiler chicks were randomly assigned to 44 battery cages, with 6 birds per cage. In Exp. 1 and 2, all birds were fed a common starter diet from 1 to 14 days of age. From d 15 to 21, the birds were fed one of the test treatments, a basal grower diet or the basal grower diet replaced with 30% test ingredient with celite (0.8% added as an inert marker. Excreta was collected on d 20 and 21. In Exp. 1, there were no interactions (P > 0.05 among seed type, processing temperature and Enz. Processing temperature and dietary Enz did not affect (P > 0.05 AMEn of different canola meals. The AMEn of prepress solvent extracted canola and juncea meals (PSEM from Yellow (11.2 MJ/kg was higher (P  0.05 among seed color, location and Enz. Supplementation of dietary Enz did not affect (P > 0.05 AMEn of different cold press canola meals. The AMEn of cold press canola meals (CPM from Yellow (14.7 MJ/kg was higher (P < 0.05 compared with B2 (12.2

  7. Production and genetic analysis of resynthesized Brassica napus from a B. rapa landrace from the Qinghai-Tibet Plateau and B. alboglabra.

    Science.gov (United States)

    Liu, H D; Zhao, Z G; Du, D Z; Deng, C R; Fu, G

    2016-01-08

    This study aimed to reveal the genetic and epigenetic variations involved in a resynthesized Brassica napus (AACC) generated from a hybridization between a B. rapa (AA) landrace and B. alboglabra (CC). Amplified fragment length polymorphism (AFLP), methylation-sensitive amplified polymorphism, and the cDNA-AFLP technique were performed to detect changes between different generations at the genome, methylation, and transcription levels. We obtained 30 lines of resynthesized B. napus with a mean 1000-seed weight of over 7.50 g. All of the lines were self-compatible, probably because both parents were self-compatible. At the genome level, the S0 generation had the lowest frequency of variations (0.18%) and the S3 generation had the highest (6.07%). The main variation pattern was the elimination of amplified restriction fragments on the CC genome from the S0 to the S4 generations. At the methylation level, we found three loci that exhibited altered methylation patterns on the parental A genome; the variance rate was 1.35%. At the transcription level, we detected 43.77% reverse mutations and 37.56% deletion mutations that mainly occurred on the A and C genomes, respectively, in the S3 generation. Our results highlight the genetic variations that occur during the diploidization of resynthesized B. napus.

  8. Development of a novel Sinapis arvensis disomic addition line in Brassica napus containing the restorer gene for Nsa CMS and improved resistance to Sclerotinia sclerotiorum and pod shattering.

    Science.gov (United States)

    Wei, Wenhui; Li, Yunchang; Wang, Lijun; Liu, Shengyi; Yan, Xiaohong; Mei, Desheng; Li, Yinde; Xu, Yusong; Peng, Pengfei; Hu, Qiong

    2010-04-01

    An allo-cytoplasmic male sterile line, which was developed through somatic hybridization between Brassica napus and Sinapis arvensis (thus designated as Nsa CMS line), possesses high potential for hybrid production of rapeseed. In order to select for restorer lines, fertile plants derived from the same somatic hybridization combination were self-pollinated and testcrossed with the parental Nsa CMS line for six generations. A novel disomic alien addition line, B. napus-S. arvensis, has been successfully developed. GISH analysis showed that it contains one pair of chromosomes from S. arvensis and 19 pairs from B. napus, and retains stable and regular mitotic and meiotic processes. The addition line displays very strong restoration ability to Nsa CMS line, high resistance to Sclerotinia sclerotiorum and a low incidence of pod shattering. Because the addition line shares these very important agricultural characters, it is a valuable restorer to Nsa CMS line, and is named NR1 here (Nsa restorer no. 1).

  9. Origins of the amphiploid species Brassica napus L. investigated by chloroplast and nuclear molecular markers

    Directory of Open Access Journals (Sweden)

    Allender Charlotte J

    2010-03-01

    Full Text Available Abstract Background The amphiploid species Brassica napus (oilseed rape, Canola is a globally important oil crop yielding food, biofuels and industrial compounds such as lubricants and surfactants. Identification of the likely ancestors of each of the two genomes (designated A and C found in B. napus would facilitate incorporation of novel alleles from the wider Brassica genepool in oilseed rape crop genetic improvement programmes. Knowledge of the closest extant relatives of the genotypes involved in the initial formation of B. napus would also allow further investigation of the genetic factors required for the formation of a stable amphiploid and permit the more efficient creation of fully fertile re-synthesised B. napus. We have used a combination of chloroplast and nuclear genetic markers to investigate the closest extant relatives of the original maternal progenitors of B. napus. This was based on a comprehensive sampling of the relevant genepools, including 83 accessions of A genome B. rapa L. (both wild and cultivated types, 94 accessions of B. napus and 181 accessions of C genome wild and cultivated B. oleracea L. and related species. Results Three chloroplast haplotypes occurred in B. napus. The most prevalent haplotype (found in 79% of accessions was not present within the C genome accessions but was found at low frequencies in B. rapa. Chloroplast haplotypes characteristic of B. napus were found in a small number of wild and weedy B. rapa populations, and also in two accessions of cultivated B. rapa 'brocoletto'. Whilst introgression of the B. napus chloroplast type in the wild and weedy B. rapa populations has been proposed by other studies, the presence of this haplotype within the two brocoletto accessions is unexplained. Conclusions The distribution of chloroplast haplotypes eliminate any of the C genome species as being the maternal ancestor of the majority of the B. napus accessions. The presence of multiple chloroplast

  10. Expression of human interferon gamma in Brassica napus seeds

    African Journals Online (AJOL)

    TUOYO

    2010-08-09

    Aug 9, 2010 ... resulted band was purified using the agarose gel DNA extraction kit. (Roche). ..... rape seed napin structure and potential roles of the storage protein. ... the sensitivity of progressive multiple sequence alignment through.

  11. Potential impact of genetically modified Lepidoptera-resistant Brassica napus in biodiversity hotspots: Sicily as a theoretical model.

    Science.gov (United States)

    Manachini, Barbara; Bazan, Giuseppe; Schicchi, Rosario

    2018-03-14

    The general increase of the cultivation and trade of Bt transgenic plants resistant to Lepidoptera pests raises concerns regarding the conservation of animal and plant biodiversity. Demand for biofuels has increased the cultivation and importation of oilseed rape (Brassica napus L.), including transgenic lines. In environmental risk assessments (ERAs) for its potential future cultivation as well as for food and feed uses, the impact on wild Brassicaeae relatives and on non-target Lepidoptera should be assessed. Here we consider the potential exposure of butterflies as results of possible cultivation or naturalization of spilled seed in Sicily (Italy). Diurnal Lepidoptera, which are pollinators, can be exposed directly to the insecticidal proteins as larvae (mainly of Pieridae) through the host and through the pollen that can deposit on other host plants. Adults can be exposed via pollen and nectar. The flight periods of butterflies were recorded, and they were found to overlap for about 90% of the flowering period of B. napus for the majority of the species. In addition, B. napus has a high potential to hybridise with endemic taxa belonging to the B. oleracea group. This could lead to an exposure of non-target Lepidoptera if introgression of the Bt gene into a wild population happens. A rank of the risk for butterflies and wild relatives of oilseed rape is given. We conclude that, in environmental risk assessments, attention should be paid to plant-insect interaction especially in a biodiversity hotspot such as Sicily. © 2018 Institute of Zoology, Chinese Academy of Sciences.

  12. Effects on Brassica napus L. Yield and Yield Components of Super Absorbent Polymer under Different Irrigation Regimes

    Directory of Open Access Journals (Sweden)

    Alireza PIRZAD

    2014-09-01

    Full Text Available For evaluation of the effects of super absorbent polymer under different irrigation regimes on the yield and yield components of Brassica napus L., a factorial experiment was carried out, based on randomized complete block design with four replicas. Treatments included super absorbent polymer (0, 1, 2, 3, 4 and 5 g/kg soil and induced drought stress (irrigation at 25, 50 and 75 mm evaporation from class A pan. The experiment was conducted in pots with 5 kg of soil. Data analysis of variance showed the significant interaction effect between polymer and irrigation on the stem length, width and weight, the number of seeds per sheath, number of seeds per plant, the number of sterile and fertile sheath per plant, fertile sheath percentage (fertile sheath/ total sheath ×100, 1000 seeds weight, seed weight per plant, sheath weight per plant and the number of total sheath. The present study revealed that indifferent from the applied amounts of the super absorbent polymer, in all cases the measured characters have been more affected by induced drought stress.

  13. Proteomic and comparative genomic analysis reveals adaptability of Brassica napus to phosphorus-deficient stress.

    Science.gov (United States)

    Chen, Shuisen; Ding, Guangda; Wang, Zhenhua; Cai, Hongmei; Xu, Fangsen

    2015-03-18

    Given low solubility and immobility in many soils of the world, phosphorus (P) may be the most widely studied macronutrient for plants. In an attempt to gain an insight into the adaptability of Brassica napus to P deficiency, proteome alterations of roots and leaves in two B. napus contrasting genotypes, P-efficient 'Eyou Changjia' and P-inefficient 'B104-2', under long-term low P stress and short-term P-free starvation conditions were investigated, and proteomic combined with comparative genomic analyses were conducted to interpret the interrelation of differential abundance protein species (DAPs) responding to P deficiency with quantitative trait loci (QTLs) for P deficiency tolerance. P-efficient 'Eyou Changjia' had higher dry weight and P content, and showed high tolerance to low P stress compared with P-inefficient 'B104-2'. A total of 146 DAPs were successfully identified by MALDI TOF/TOF MS, which were categorized into several groups including defense and stress response, carbohydrate and energy metabolism, signaling and regulation, amino acid and fatty acid metabolism, protein process, biogenesis and cellular component, and function unknown. 94 of 146 DAPs were mapped to a linkage map constructed by a B. napus population derived from a cross between the two genotypes, and 72 DAPs were located in the confidence intervals of QTLs for P efficiency related traits. We conclude that the identification of these DAPs and the co-location of DAPs with QTLs in the B. napus linkage genetic map provide us novel information in understanding the adaptability of B. napus to P deficiency, and helpful to isolate P-efficient genes in B. napus. Low P seriously limits the production and quality of B. napus. Proteomics and genetic linkage map were widely used to study the adaptive strategies of B. napus response to P deficiency, proteomic combined with comparative genetic analysis to investigate the correlations between DAPs and QTLs are scarce. Thus, we herein investigated

  14. Characterization and tissue-differential expression of fad2 genes in brassica napus

    International Nuclear Information System (INIS)

    Zhuang, Li.; Cong, Y. S.; Hao, L.; Ze, L. Y.; Cheng, W. Y.; Xing, G. S.; Lili, L.

    2017-01-01

    In this study, genome DNA and RNA of fad2 genes from three types of oleic acid content from B. napus were isolated by PCR amplification, respectively, the results showed that not only had nucleotides sequences little differences from three types of oleic acid content B. napus, but also that of genome DNA and cDNA had still little differences from B. napus as far as specific one type of rape. Different genotypes fad2-I and fad2-II could be easily distinguished by sequence analysis of the cDNAs in G type and CK type except in D type. By analysis on cDNAs, specific differences could be found in three types of rape when compared with the sequence from Genebank. Conserved domains prediction and phylogenetic analysis showed that both six transmembrane domains and three H boxes could be found in FAD2 protein from three types of oleic acid content B. napus, respectively. BnFAD2-I and BnFAD2-II belonged to different classes and class I could be divided into two kinds. By QPCR, expression pattern of fad2 gene in different tissues showed that simple division of fad2-I and fad2-II was not apply to all oleic acid content B. napus. By southern blot, there were differences in copy numbers of fad2 genes on different oleic acid content B. napus. (author)

  15. Scale up of 2,4-dichlorophenol removal from aqueous solutions using Brassica napus hairy roots

    Energy Technology Data Exchange (ETDEWEB)

    Angelini, Vanina A. [Departamento de Biologia Molecular, FCEFQN, Universidad Nacional de Rio Cuarto, 5800 Rio Cuarto, Cordoba (Argentina); Orejas, Joaquin [Facultad de Ingenieria, Universidad Nacional de Rio Cuarto, 5800 Rio Cuarto, Cordoba (Argentina); Medina, Maria I. [Departamento de Biologia Molecular, FCEFQN, Universidad Nacional de Rio Cuarto, 5800 Rio Cuarto, Cordoba (Argentina); Agostini, Elizabeth, E-mail: eagostini@exa.unrc.edu.ar [Departamento de Biologia Molecular, FCEFQN, Universidad Nacional de Rio Cuarto, 5800 Rio Cuarto, Cordoba (Argentina)

    2011-01-15

    Research highlights: {yields}B. napus hairy roots were effectively used for a large scale removal of 2,4-DCP. {yields} High removal efficiencies were obtained (98%) in a short time (30 min). {yields} Roots were re-used for six consecutive cycles with high efficiency. {yields} Post removal solutions showed no toxicity. {yields} This method could be used for continuous and safe treatment of phenolic effluents. - Abstract: Chlorophenols are harmful pollutants, frequently found in the effluents of several industries. For this reason, many environmental friendly technologies are being explored for their removal from industrial wastewaters. The aim of the present work was to study the scale up of 2,4-dichlorophenol (2,4-DCP) removal from synthetic wastewater, using Brassica napus hairy roots and H{sub 2}O{sub 2} in a discontinuous stirred tank reactor. We have analyzed some operational conditions, because the scale up of such process was poorly studied. High removal efficiencies were obtained (98%) in a short time (30 min). When roots were re-used for six consecutive cycles, 2,4-DCP removal efficiency decreased from 98 to 86%, in the last cycle. After the removal process, the solutions obtained from the reactor were assessed for their toxicity using an acute test with Lactuca sativa L. seeds. Results suggested that the treated solution was less toxic than the parent solution, because neither inhibition of lettuce germination nor effects in root and hypocotyl lengths were observed. Therefore, we provide evidence that Brassica napus hairy roots could be effectively used to detoxify solutions containing 2,4-DCP and they have considerable potential for a large scale removal of this pollutant. Thus, this study could help to design a method for continuous and safe treatment of effluents containing chlorophenols.

  16. Scale up of 2,4-dichlorophenol removal from aqueous solutions using Brassica napus hairy roots

    International Nuclear Information System (INIS)

    Angelini, Vanina A.; Orejas, Joaquin; Medina, Maria I.; Agostini, Elizabeth

    2011-01-01

    Research highlights: →B. napus hairy roots were effectively used for a large scale removal of 2,4-DCP. → High removal efficiencies were obtained (98%) in a short time (30 min). → Roots were re-used for six consecutive cycles with high efficiency. → Post removal solutions showed no toxicity. → This method could be used for continuous and safe treatment of phenolic effluents. - Abstract: Chlorophenols are harmful pollutants, frequently found in the effluents of several industries. For this reason, many environmental friendly technologies are being explored for their removal from industrial wastewaters. The aim of the present work was to study the scale up of 2,4-dichlorophenol (2,4-DCP) removal from synthetic wastewater, using Brassica napus hairy roots and H 2 O 2 in a discontinuous stirred tank reactor. We have analyzed some operational conditions, because the scale up of such process was poorly studied. High removal efficiencies were obtained (98%) in a short time (30 min). When roots were re-used for six consecutive cycles, 2,4-DCP removal efficiency decreased from 98 to 86%, in the last cycle. After the removal process, the solutions obtained from the reactor were assessed for their toxicity using an acute test with Lactuca sativa L. seeds. Results suggested that the treated solution was less toxic than the parent solution, because neither inhibition of lettuce germination nor effects in root and hypocotyl lengths were observed. Therefore, we provide evidence that Brassica napus hairy roots could be effectively used to detoxify solutions containing 2,4-DCP and they have considerable potential for a large scale removal of this pollutant. Thus, this study could help to design a method for continuous and safe treatment of effluents containing chlorophenols.

  17. Genetic and Epigenetic Changes in Oilseed Rape (Brassica napus L.) Extracted from Intergeneric Allopolyploid and Additions with Orychophragmus.

    Science.gov (United States)

    Gautam, Mayank; Dang, Yanwei; Ge, Xianhong; Shao, Yujiao; Li, Zaiyun

    2016-01-01

    Allopolyploidization with the merger of the genomes from different species has been shown to be associated with genetic and epigenetic changes. But the maintenance of such alterations related to one parental species after the genome is extracted from the allopolyploid remains to be detected. In this study, the genome of Brassica napus L. (2n = 38, genomes AACC) was extracted from its intergeneric allohexaploid (2n = 62, genomes AACCOO) with another crucifer Orychophragmus violaceus (2n = 24, genome OO), by backcrossing and development of alien addition lines. B. napus-type plants identified in the self-pollinated progenies of nine monosomic additions were analyzed by the methods of amplified fragment length polymorphism, sequence-specific amplified polymorphism, and methylation-sensitive amplified polymorphism. They showed modifications to certain extents in genomic components (loss and gain of DNA segments and transposons, introgression of alien DNA segments) and DNA methylation, compared with B. napus donor. The significant differences in the changes between the B. napus types extracted from these additions likely resulted from the different effects of individual alien chromosomes. Particularly, the additions which harbored the O. violaceus chromosome carrying dominant rRNA genes over those of B. napus tended to result in the development of plants which showed fewer changes, suggesting a role of the expression levels of alien rRNA genes in genomic stability. These results provided new cues for the genetic alterations in one parental genome that are maintained even after the genome becomes independent.

  18. Wastewater impact on physiology, biomass and yield of canola (brassica napus L.)

    International Nuclear Information System (INIS)

    Khan, I.U.; Khan, M.J.

    2012-01-01

    The impact of domestic/municipal wastewater (mww) of Dera Ismail Khan, Pakistan was assessed through its effects on biomass, physiology and yield of canola (Brassica napus L.). The pot experiments were conducted in a completely randomized design with three replications in net house during winter season 2006-07 and 2007-08 at Gomal University, Dera Ismail Khan, Pakistan. Treatments included were T0 (tube well/tap water), T/sub 1/ (20% mww), T/sub 2/ (40% mww), T/sub 3/ (80% mww) and T/sub 4/ (100% mww/raw-form municipal wastewater). The quality and chemical composition of wastewater was deviating from international (Anon., 1985) as well as NEQS (2005) standard. Analysis of wastewater showed that biochemical oxygen demand (BOD), chemical oxygen demand (COD), sodium adsorption ratio (SAR) and total suspended solids (TSS) were above the permissible limit of irrigation. In pods per plant, the reduction was 61.55% by recording 110 pods per plant with T/sub 4/ (100% mww) as compared to control T0 (286.1 pods per plant). Similarly pod length (reduced by 59.72%), seeds per pod (reduced by 42.53%), Seeds per plant (reduced by 82%), seed weight per plant (reduced by 88%), 100-seed weight (reduced by 19.54%) and straw yield (reduced by 54.23%) were significantly reduced by applying 100% wastewater. The most affected yield contributing traits were seeds per plant and seed weight per plant with 82% and 88% reduction, respectively due to T/sub 4/ (100% mww). On average, the decrease was 60% in the first stage and a further decrement of 4.83% was observed when the obtained seeds were re-sown in 2007-08. Results revealed that utilizing municipal wastewater of the area under investigation for irrigation purpose of food and feed crops might not be safe. The major reason seems to be the high salinity and sodium adsorption ratio that restricted crop growth and yield. (author)

  19. Genetic and epigenetic changes in oilseed rape (Brassica napus L. extracted from intergeneric allopolyploid and additions with Orychophragmus

    Directory of Open Access Journals (Sweden)

    Mayank eGautam

    2016-04-01

    Full Text Available ABSTRACT Allopolyploidization with the merger of the genomes from different species has been shown to be associated with genetic and epigenetic changes. But the maintenance of such alterations related to one parental species after the genome is extracted from the allopolyploid remains to be detected. In this study, the genome of Brassica napus L. (2n=38, genomes AACC was extracted from its intergeneric allohexaploid (2n=62, genomes AACCOO with another crucifer Orychophragmus violaceus (2n=24, genome OO, by backcrossing and development of alien addition lines. B. napus-type plants identified in the self-pollinated progenies of nine monosomic additions were analyzed by the methods of amplified fragment length polymorphism (AFLP, sequence-specific amplified polymorphism (SSAP, and methylation-sensitive amplified polymorphism (MSAP. They showed modifications to certain extents in genomic components (loss and gain of DNA segments and transposons, introgression of alien DNA segments and DNA methylation, compared with B. napus donor. The significant differences in the changes between the B. napus types extracted from these additions likely resulted from the different effects of individual alien chromosomes. Particularly, the additions which harbored the O. violaceus chromosome carrying dominant rRNA genes over those of B. napus tended to result in the development of plants which showed fewer changes, suggesting a role of the expression levels of alien rRNA genes in genomic stability. These results provided new cues for the genetic alterations in one parental genome that are maintained even after the genome becomes independent.

  20. Proteomic Analysis of Pollen and Blossom Honey from Rape Seed Brassica Napus L.

    Directory of Open Access Journals (Sweden)

    Borutinskaitė Veronika

    2017-06-01

    Full Text Available In the study, honey from oilseed rape Brassica napus L., and both hand-collected (winter rape Visby and Cult and bee-collected pollen of oilseed rape were analyzed for their proteome content, in order to see if any plant proteins were present to allow the proteo-typing of the oilseed rape honey. Proteins were fractionated by two-dimensional gel electrophoresis (2DE, stained by Coomassie blue and then analyzed by mass spectrometry. All identified proteins were divided into few groups due to their biological function. In 2DE gels with separated proteins from blossom honey, only bee (Apis mellifera main proteins (Major royal jelly protein 1-5 and Glucosidase were found. So we analyzed all proteins using gel-free based analysis with the SYNAPT G2 high definition mass spectrometry. We identified proteins that were present in both oilseed rape pollen and honey (Bna, Polygalacturonase, Non-specific lipid-transfer protein, GAPDH and others. We believe that these proteins are important for the nutritional value of plant pollen-enriched honey and further research is required on honey and honeybee pollen protein.

  1. Study of viability on the destruction of weed seeds in the soil by microwave radiation

    International Nuclear Information System (INIS)

    Velazquez-Marti, B.; Osca, J.M.; Jorda, C.; Marzal, A.

    2003-01-01

    This work has been carried out to study the thermic effects over weed seeds in typical orchard soil irradiated by its surface with microwave. A previous treatment was carried out in a domestic microwave oven, using 660-watt power. With this laboratory oven, we have investigated three kind of weed seeds: Lolium perenne, Sinopsis alba and Setaria sativa. These previous experiments showed a important decrease of germination with short irradiating times. After previous treatment, a microwave applicator, designed to achieve wide distribution of superficial irradiation energy, was evaluated. This applicator is powered by a 4-kilowatt magnetron through a slotted waveguide. With this oven, we have investigated two kind of weed seeds at several depths: Lolium perenne and Brassica napus var. oleifera. For a soil column, temperature increments reduce seeds germination to a maximum of 5 centimetres. Deeper, the increments of temperature are very low for short irradiating times, so it will be negligible for our purpose. This applicator lets approach better to real treatments focused into the development of a continuous microwave oven for disinfecting seedbed and greenhouse crop substratum. (author) [es

  2. Methyl jasmonate regulates antioxidant defense and suppresses arsenic uptake in Brassica napus L.

    Directory of Open Access Journals (Sweden)

    Muhammad A Farooq

    2016-04-01

    Full Text Available Methyl jasmonate (MJ is an important plant growth regulator, involved in plant defense against abiotic stresses, however its possible function in response to metal stress is poorly understood. In the present study, the effect of MJ on physiological and biochemical changes of the plants exposed to arsenic (As stress were investigated in two Brassica napus L. cultivars (ZS 758 – a black seed type, and Zheda 622 – a yellow seed type. The As treatment at 200 µM was more phytotoxic, however its combined application with MJ resulted in significant increase in leaf chlorophyll fluorescence, biomass production and reduced malondialdehyde content compared with As stressed plants. The application of MJ minimized the oxidative stress, as revealed via a lower level of reactive oxygen species (ROS synthesis (H2O2 and OH- in leaves and the maintenance of high redox states of glutathione and ascorbate. Enhanced enzymatic activities and gene expression of important antioxidants (SOD, APX, CAT, POD, secondary metabolites (PAL, PPO, CAD and induction of lypoxygenase gene suggest that MJ plays an effective role in the regulation of multiple transcriptional pathways which were involved in oxidative stress responses. The content of As was higher in yellow seeded plants (cv. Zheda 622 as compared to black seeded plants (ZS 758. The application of MJ significantly reduced the As content in leaves and roots of both cultivars. Findings of the present study reveal that MJ improves ROS scavenging through enhanced antioxidant defense system, secondary metabolite and reduced As contents in both the cultivars.

  3. Apis mellifera (Hymenoptera: Apidae as a potential Brassica napus pollinator (cv. Hyola 432 (Brassicaceae, in Southern Brazil Apis mellifera (Hymenoptera: Apidae como potencial polinizador de Brassica napus (cv. Hyola 432 (Brassicaceae, no Sul do Brasil

    Directory of Open Access Journals (Sweden)

    AS. Rosa

    2010-11-01

    Full Text Available Brassica napus Linnaeus is considered a self-compatible crop; however, studies show that bee foraging elevates their seed production. Considering bee food shortages during the winter season and that the canola is a winter crop, this study aimed to evaluate the foraging behaviour of Apis mellifera Linnaeus, 1758 regarding those flowers, and to verify if it presents adequate behaviour for successfully pollinating this crop in Rio Grande do Sul State. The study was carried out in a canola field, in Southern Brazil. The anthesis stages were morphologically characterised and then related to stigma receptivity and pollen grain viability. Similarly, the behaviour of A. mellifera individuals on flowers was followed, considering the number of flowers visited per plant, the amount of time spent on the flowers, touched structures, and collected resources. Floral fidelity was inferred by analysing the pollen load of bees collected on flowers. The bees visited from 1-7 flowers/plant (x = 2.02; sd = 1.16, the time spent on the flowers varied between 1-43 seconds (x = 3.29; sd = 2.36 and, when seeking nectar and pollen, they invariably touched anthers and stigmas. The pollen load presented 100% of B. napus pollen. The bees' attendance to a small number of flowers/plants, their short permanence on flowers, their contact with anthers and stigma and the integral floral constancy allows their consideration as potential B. napus pollinators.Brassica napus Linnaeus é considerada uma cultura autocompatível, entretanto, estudos indicam que o forrageio de abelhas eleva sua produtividade de sementes. Considerando-se a escassez de alimento para abelhas no inverno e a canola sendo uma cultura desse período, objetivou-se avaliar o comportamento de forrageio de Apis mellifera Linnaeus, 1758 nas suas flores e verificar se apresenta comportamento propício ao sucesso de polinização dessa cultura no Rio Grande do Sul. O estudo foi desenvolvido em lavoura de canola, no Sul

  4. phenoSeeder - A Robot System for Automated Handling and Phenotyping of Individual Seeds.

    Science.gov (United States)

    Jahnke, Siegfried; Roussel, Johanna; Hombach, Thomas; Kochs, Johannes; Fischbach, Andreas; Huber, Gregor; Scharr, Hanno

    2016-11-01

    The enormous diversity of seed traits is an intriguing feature and critical for the overwhelming success of higher plants. In particular, seed mass is generally regarded to be key for seedling development but is mostly approximated by using scanning methods delivering only two-dimensional data, often termed seed size. However, three-dimensional traits, such as the volume or mass of single seeds, are very rarely determined in routine measurements. Here, we introduce a device named phenoSeeder, which enables the handling and phenotyping of individual seeds of very different sizes. The system consists of a pick-and-place robot and a modular setup of sensors that can be versatilely extended. Basic biometric traits detected for individual seeds are two-dimensional data from projections, three-dimensional data from volumetric measures, and mass, from which seed density is also calculated. Each seed is tracked by an identifier and, after phenotyping, can be planted, sorted, or individually stored for further evaluation or processing (e.g. in routine seed-to-plant tracking pipelines). By investigating seeds of Arabidopsis (Arabidopsis thaliana), rapeseed (Brassica napus), and barley (Hordeum vulgare), we observed that, even for apparently round-shaped seeds of rapeseed, correlations between the projected area and the mass of seeds were much weaker than between volume and mass. This indicates that simple projections may not deliver good proxies for seed mass. Although throughput is limited, we expect that automated seed phenotyping on a single-seed basis can contribute valuable information for applications in a wide range of wild or crop species, including seed classification, seed sorting, and assessment of seed quality. © 2016 American Society of Plant Biologists. All Rights Reserved.

  5. Fertilization-independent seed development in Arabidopsis thaliana

    Science.gov (United States)

    Chaudhury, Abdul M.; Ming, Luo; Miller, Celia; Craig, Stuart; Dennis, Elizabeth S.; Peacock, W. James

    1997-01-01

    We report mutants in Arabidopsis thaliana (fertilization-independent seed: fis) in which certain processes of seed development are uncoupled from the double fertilization event that occurs after pollination. These mutants were isolated as ethyl methanesulfonate-induced pseudo-revertants of the pistillata phenotype. Although the pistillata (pi) mutant has short siliques devoid of seed, the fis mutants in the pi background have long siliques containing developing seeds, even though the flowers remain free of pollen. The three fis mutations map to loci on three different chromosomes. In fis1 and fis2 seeds, the autonomous endosperm nuclei are diploid and the endosperm develops to the point of cellularization; the partially developed seeds then atrophy. In these two mutants, proembryos are formed in a low proportion of seeds and do not develop beyond the globular stage. When FIS/fis plants are pollinated by pollen from FIS/FIS plants, ≈50% of the resulting seeds contain fully developed embryos; these seeds germinate and form viable seedlings (FIS/FIS). The other 50% of seeds shrivel and do not germinate; they contain embryos arrested at the torpedo stage (FIS/fis). In normal sexual reproduction, the products of the FIS genes are likely to play important regulatory roles in the development of seed after fertilization. PMID:9108133

  6. Fertilization-independent seed development in Arabidopsis thaliana.

    Science.gov (United States)

    Chaudhury, A M; Ming, L; Miller, C; Craig, S; Dennis, E S; Peacock, W J

    1997-04-15

    We report mutants in Arabidopsis thaliana (fertilization-independent seed:fis) in which certain processes of seed development are uncoupled from the double fertilization event that occurs after pollination. These mutants were isolated as ethyl methanesulfonate-induced pseudo-revertants of the pistillata phenotype. Although the pistillata (pi) mutant has short siliques devoid of seed, the fis mutants in the pi background have long siliques containing developing seeds, even though the flowers remain free of pollen. The three fis mutations map to loci on three different chromosomes. In fis1 and fis2 seeds, the autonomous endosperm nuclei are diploid and the endosperm develops to the point of cellularization; the partially developed seeds then atrophy. In these two mutants, proembryos are formed in a low proportion of seeds and do not develop beyond the globular stage. When FIS/fis plants are pollinated by pollen from FIS/FIS plants, approximately 50% of the resulting seeds contain fully developed embryos; these seeds germinate and form viable seedlings (FIS/FIS). The other 50% of seeds shrivel and do not germinate; they contain embryos arrested at the torpedo stage (FIS/fis). In normal sexual reproduction, the products of the FIS genes are likely to play important regulatory roles in the development of seed after fertilization.

  7. Brassica rapa L. seed development in hypergravity

    NARCIS (Netherlands)

    Musgrave, M.E.; Kuang, A.; Allen, J.; Blasiak, J.; van Loon, J.J.W.A.

    2009-01-01

    Previous experiments had shown that microgravity adversely affected seed development in Brassica rapa L. We tested the hypothesis that gravity controls seed development via modulation of gases around the developing seeds, by studying how hypergravity affects the silique microenvironment and seed

  8. Structural Properties of Cruciferin and Napin of Brassica napus (Canola Show Distinct Responses to Changes in pH and Temperature

    Directory of Open Access Journals (Sweden)

    Suneru P. Perera

    2016-09-01

    Full Text Available The two major storage proteins identified in Brassica napus (canola were isolated and studied for their molecular composition, structural characteristics and the responses of structural features to the changes in pH and temperature. Cruciferin, a complex of six monomers, has a predominantly β-sheet-containing secondary structure. This protein showed low pH unstable tertiary structure, and distinctly different solubility behaviour with pH when intact in the seed cellular matrix. Cruciferin structure unfolds at pH 3 even at ambient temperature. Temperature-induced structure unfolding was observed above the maximum denaturation temperature of cruciferin. Napin was soluble in a wider pH range than cruciferin and has α-helices dominating secondary structure. Structural features of napin showed less sensitivity to the changes in medium pH and temperature. The surface hydrophobicity (S0 and intrinsic fluorescence of tryptophan residue appear to be good indicators of cruciferin unfolding, however they were not the best to demonstrate structural changes of napin. These two storage proteins of B. napus have distinct molecular characteristics, therefore properties and functionalities they provide are contrasting rather than complementary.

  9. Effect of Pre-culture Irradiation and Explant Types on Efficiency of Brassica napus Genetic Transformation

    International Nuclear Information System (INIS)

    Amer, I.M.; Moustafa, H.A.M.; Azzam, C.R.

    2008-01-01

    The irradiated seeds of canola cv. Drakkar ( Brassica napus l. ) were germinated under aspect conditions, cotyledonary petioles and hypocotyl of 6 days old seedlings were used for Agrobacterium-mediated transformation. Agrobacterium tumefaciens has construct with the selectable marker gene (NPT II) and the desirable gene (HPPD). Direct and indirect shoot organogenesis were obtained from the both explants. Cotyledonary petioles was higher responded than hypocotyl with respective 26% and 14% of the explants producing NPT II-positive shoots after the selection on 50mg/l kanamycin. Calli might develop on and not in the agar medium were un transformation. This explains the higher number of escapes detected in hypocotyl explants than in experiments with cotyledons. The frequency of transformation plants as a function of indirect organogenesis was more than direct shoot regeneration from explants. The pre- irradiation with 75 Gy of gamma rays enhanced the genetic transformation frequencies by about 10 % as compared to that of the un-irradiated material. The obtained shoots were rooted and regenerated mature plants

  10. Quantitative proteomics of seed filling in castor: comparison with soybean and rapeseed reveals differences between photosynthetic and nonphotosynthetic seed metabolism.

    Science.gov (United States)

    Houston, Norma L; Hajduch, Martin; Thelen, Jay J

    2009-10-01

    Seed maturation or seed filling is a phase of development that plays a major role in the storage reserve composition of a seed. In many plant seeds photosynthesis plays a major role in this process, although oilseeds, such as castor (Ricinus communis), are capable of accumulating oil without the benefit of photophosphorylation to augment energy demands. To characterize seed filling in castor, a systematic quantitative proteomics study was performed. Two-dimensional gel electrophoresis was used to resolve and quantify Cy-dye-labeled proteins expressed at 2, 3, 4, 5, and 6 weeks after flowering in biological triplicate. Expression profiles for 660 protein spot groups were established, and of these, 522 proteins were confidently identified by liquid chromatography-tandem mass spectrometry by mining against the castor genome. Identified proteins were classified according to function, and the most abundant groups of proteins were involved in protein destination and storage (34%), energy (19%), and metabolism (15%). Carbon assimilatory pathways in castor were compared with previous studies of photosynthetic oilseeds, soybean (Glycine max) and rapeseed (Brassica napus). These comparisons revealed differences in abundance and number of protein isoforms at numerous steps in glycolysis. One such difference was the number of enolase isoforms and their sum abundance; castor had approximately six times as many isoforms as soy and rapeseed. Furthermore, Rubisco was 11-fold less prominent in castor compared to rapeseed. These and other differences suggest some aspects of carbon flow, carbon recapture, as well as ATP and NADPH production in castor differs from photosynthetic oilseeds.

  11. High-throughput phenotyping (HTP) identifies seedling root traits linked to variation in seed yield and nutrient capture in field-grown oilseed rape (Brassica napus L.).

    Science.gov (United States)

    Thomas, C L; Graham, N S; Hayden, R; Meacham, M C; Neugebauer, K; Nightingale, M; Dupuy, L X; Hammond, J P; White, P J; Broadley, M R

    2016-04-06

    Root traits can be selected for crop improvement. Techniques such as soil excavations can be used to screen root traits in the field, but are limited to genotypes that are well-adapted to field conditions. The aim of this study was to compare a low-cost, high-throughput root phenotyping (HTP) technique in a controlled environment with field performance, using oilseed rape (OSR;Brassica napus) varieties. Primary root length (PRL), lateral root length and lateral root density (LRD) were measured on 14-d-old seedlings of elite OSR varieties (n = 32) using a 'pouch and wick' HTP system (∼40 replicates). Six field experiments were conducted using the same varieties at two UK sites each year for 3 years. Plants were excavated at the 6- to 8-leaf stage for general vigour assessments of roots and shoots in all six experiments, and final seed yield was determined. Leaves were sampled for mineral composition from one of the field experiments. Seedling PRL in the HTP system correlated with seed yield in four out of six (r = 0·50, 0·50, 0·33, 0·49;P emergence in three out of five (r = 0·59, 0·22, 0·49;P emergence, general early vigour or yield in the field. Associations between PRL and field performance are generally related to early vigour. These root traits might therefore be of limited additional selection value, given that vigour can be measured easily on shoots/canopies. In contrast, LRD cannot be assessed easily in the field and, if LRD can improve nutrient uptake, then it may be possible to use HTP systems to screen this trait in both elite and more genetically diverse, non-field-adapted OSR. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company.

  12. Role of nitric oxide in cadmium-induced stress on growth, photosynthetic components and yield of Brassica napus L.

    Science.gov (United States)

    Jhanji, Shalini; Setia, R C; Kaur, Navjyot; Kaur, Parminder; Setia, Neelam

    2012-11-01

    Experiments were carried out to study the effect of cadmium (Cd) and exogenous nitric oxide (NO) on growth, photosynthetic attributes, yield components and structural features of Brassica napus L. (cv. GSL 1). Cadmium in the growth medium at different levels (1, 2 and 4 Mm) retarded plant growth viz. shoot (27%) and root (51%) length as compared to control. The accumulation of total dry matter and its partitioning to different plant parts was also reduced by 31% due to Cd toxicity. Photosynthetic parameters viz., leaf area plant(-1) (51%), total Chl (27%), Chl a / Chl b ratio (22%) and Hill reaction activity of chloroplasts (42%) were greatly reduced in Cd-treated plants. Cd treatments adversely affected various yield parameters viz., number of branches (23) and siliquae plant(-1) (246), seed number siliqua(-1) (10.3), 1000-seed weight (2.30g) and seed yield plant(-1) (7.09g). Different Cd treatments also suppressed the differentiation of various tissues like vessels in the root with a maximum inhibition caused by 4mM Cd. Exogenous application of nitric oxide (NO) improved the various morpho-physiological and photosynthetic parameters in control as well as Cd-treated plants.

  13. The structure of the Brassica napus seed microbiome is cultivar-dependent and affects the interactions of symbionts and pathogens.

    Science.gov (United States)

    Rybakova, Daria; Mancinelli, Riccardo; Wikström, Mariann; Birch-Jensen, Ann-Sofie; Postma, Joeke; Ehlers, Ralf-Udo; Goertz, Simon; Berg, Gabriele

    2017-09-01

    Although the plant microbiome is crucial for plant health, little is known about the significance of the seed microbiome. Here, we studied indigenous bacterial communities associated with the seeds in different cultivars of oilseed rape and their interactions with symbiotic and pathogenic microorganisms. We found a high bacterial diversity expressed by tight bacterial co-occurrence networks within the rape seed microbiome, as identified by llumina MiSeq amplicon sequencing. In total, 8362 operational taxonomic units (OTUs) of 40 bacterial phyla with a predominance of Proteobacteria (56%) were found. The three cultivars that were analyzed shared only one third of the OTUs. The shared core of OTUs consisted mainly of Alphaproteobacteria (33%). Each cultivar was characterized by having its own unique bacterial structure, diversity, and proportion of unique microorganisms (25%). The cultivar with the lowest bacterial abundance, diversity, and the highest predicted bacterial metabolic activity rate contained the highest abundance of potential pathogens within the seed. This data corresponded with the observation that seedlings belonging to this cultivar responded more strongly to the seed treatments with bacterial inoculants than other cultivars. Cultivars containing higher indigenous diversity were characterized as having a higher colonization resistance against beneficial and pathogenic microorganisms. Our results were confirmed by microscopic images of the seed microbiota. The structure of the seed microbiome is an important factor in the development of colonization resistance against pathogens. It also has a strong influence on the response of seedlings to biological seed treatments. These novel insights into seed microbiome structure will enable the development of next generation strategies combining both biocontrol and breeding approaches to address world agricultural challenges.

  14. Genome-Wide Identification and Expression Profiling of Cytokinin Oxidase/Dehydrogenase (CKX) Genes Reveal Likely Roles in Pod Development and Stress Responses in Oilseed Rape (Brassica napus L.).

    Science.gov (United States)

    Liu, Pu; Zhang, Chao; Ma, Jin-Qi; Zhang, Li-Yuan; Yang, Bo; Tang, Xin-Yu; Huang, Ling; Zhou, Xin-Tong; Lu, Kun; Li, Jia-Na

    2018-03-16

    Cytokinin oxidase/dehydrogenases (CKXs) play a critical role in the irreversible degradation of cytokinins, thereby regulating plant growth and development. Brassica napus is one of the most widely cultivated oilseed crops worldwide. With the completion of whole-genome sequencing of B. napus , genome-wide identification and expression analysis of the BnCKX gene family has become technically feasible. In this study, we identified 23 BnCKX genes and analyzed their phylogenetic relationships, gene structures, conserved motifs, protein subcellular localizations, and other properties. We also analyzed the expression of the 23 BnCKX genes in the B. napus cultivar Zhong Shuang 11 ('ZS11') by quantitative reverse-transcription polymerase chain reaction (qRT-PCR), revealing their diverse expression patterns. We selected four BnCKX genes based on the results of RNA-sequencing and qRT-PCR and compared their expression in cultivated varieties with extremely long versus short siliques. The expression levels of BnCKX5-1 , 5-2 , 6-1 , and 7-1 significantly differed between the two lines and changed during pod development, suggesting they might play roles in determining silique length and in pod development. Finally, we investigated the effects of treatment with the synthetic cytokinin 6-benzylaminopurine (6-BA) and the auxin indole-3-acetic acid (IAA) on the expression of the four selected BnCKX genes. Our results suggest that regulating BnCKX expression is a promising way to enhance the harvest index and stress resistance in plants.

  15. Current Status and Challenges in Identifying Disease Resistance Genes in Brassica napus

    Directory of Open Access Journals (Sweden)

    Ting Xiang Neik

    2017-11-01

    Full Text Available Brassica napus is an economically important crop across different continents including temperate and subtropical regions in Europe, Canada, South Asia, China and Australia. Its widespread cultivation also brings setbacks as it plays host to fungal, oomycete and chytrid pathogens that can lead to serious yield loss. For sustainable crop production, identification of resistance (R genes in B. napus has become of critical importance. In this review, we discuss four key pathogens affecting Brassica crops: Clubroot (Plasmodiophora brassicae, Blackleg (Leptosphaeria maculans and L. biglobosa, Sclerotinia Stem Rot (Sclerotinia sclerotiorum, and Downy Mildew (Hyaloperonospora parasitica. We first review current studies covering prevalence of these pathogens on Brassica crops and highlight the R genes and QTL that have been identified from Brassica species against these pathogens. Insights into the relationships between the pathogen and its Brassica host, the unique host resistance mechanisms and how these affect resistance outcomes is also presented. We discuss challenges in identification and deployment of R genes in B. napus in relation to highly specific genetic interactions between host subpopulations and pathogen pathotypes and emphasize the need for common or shared techniques and research materials or tighter collaboration between researchers to reconcile the inconsistencies in the research outcomes. Using current genomics tools, we provide examples of how characterization and cloning of R genes in B. napus can be carried out more effectively. Lastly, we put forward strategies to breed resistant cultivars through introgressions supported by genomic approaches and suggest prospects that can be implemented in the future for a better, pathogen-resistant B. napus.

  16. Current Status and Challenges in Identifying Disease Resistance Genes in Brassica napus

    Science.gov (United States)

    Neik, Ting Xiang; Barbetti, Martin J.; Batley, Jacqueline

    2017-01-01

    Brassica napus is an economically important crop across different continents including temperate and subtropical regions in Europe, Canada, South Asia, China and Australia. Its widespread cultivation also brings setbacks as it plays host to fungal, oomycete and chytrid pathogens that can lead to serious yield loss. For sustainable crop production, identification of resistance (R) genes in B. napus has become of critical importance. In this review, we discuss four key pathogens affecting Brassica crops: Clubroot (Plasmodiophora brassicae), Blackleg (Leptosphaeria maculans and L. biglobosa), Sclerotinia Stem Rot (Sclerotinia sclerotiorum), and Downy Mildew (Hyaloperonospora parasitica). We first review current studies covering prevalence of these pathogens on Brassica crops and highlight the R genes and QTL that have been identified from Brassica species against these pathogens. Insights into the relationships between the pathogen and its Brassica host, the unique host resistance mechanisms and how these affect resistance outcomes is also presented. We discuss challenges in identification and deployment of R genes in B. napus in relation to highly specific genetic interactions between host subpopulations and pathogen pathotypes and emphasize the need for common or shared techniques and research materials or tighter collaboration between researchers to reconcile the inconsistencies in the research outcomes. Using current genomics tools, we provide examples of how characterization and cloning of R genes in B. napus can be carried out more effectively. Lastly, we put forward strategies to breed resistant cultivars through introgressions supported by genomic approaches and suggest prospects that can be implemented in the future for a better, pathogen-resistant B. napus. PMID:29163558

  17. Induction and selection of superior genetic variables of oil seed rape (brassica napus L.)

    International Nuclear Information System (INIS)

    Shah, S.S.; Ali, I.; Rehman, K.

    1990-01-01

    Dry and uniform seeds of two rape seed varieties, Ganyou-5 and Tower, were subjected to different doses of gamma rays. Genetic variation in yield and yield components generated in M1 was studied in M2 and 30 useful variants were isolated from a large magnetized population. The selected mutants were progeny tested for stability of the characters in M3. Only five out of 30 progenies were identified to be uniform and stable. Further selection was made in the segregating m3 progenies. Results on some of the promising mutants are reported. The effect of irradiation treatment was highly pronounced on pod length, seeds per pod and 1000-seed weight. The genetic changes thus induced would help to evolve high yielding versions of different rape seed varieties under local environmental conditions. (author)

  18. Microspore culture of winter oilseed rape (Brassica napus L.) in conjunction with other in vitro technologies

    International Nuclear Information System (INIS)

    Cegielska-Taras, T.; Szala, L.; Bartkowiak-Broda, I.

    2001-01-01

    Microspore culture in conjunction with other technologies such as selection, mutagenesis and transformation has been used for the production of novel genotypes of Brassica napus L. for crop improvement. The example of in vitro selection of microspore - derived embryos includes: a) ploidy level, b) seed oil composition (for example: high level of erucic acid), c) genotypes with restorer gene for CMS-ogura system (by means of isozyme marker PGI-2 ), d) herbicide resistant forms. Efficiency of microspore mutagenesis has been tested by the treatment of freshly isolated microspores with UV and MNU. Direct delivery of foreign gene to the microspores (microprojectile bombardment) combined with the use of Agrobacterium tumefaciens to microspore derived embryos seems to be a promising way of oilseed rape transformation. (author)

  19. BraLTP1, a lipid transfer protein gene involved in epicuticular wax deposition, cell proliferation and flower development in Brassica napus.

    Directory of Open Access Journals (Sweden)

    Fang Liu

    Full Text Available Plant non-specific lipid transfer proteins (nsLTPs constitute large multigene families that possess complex physiological functions, many of which remain unclear. This study isolated and characterized the function of a lipid transfer protein gene, BraLTP1 from Brassica rapa, in the important oilseed crops Brassica napus. BraLTP1 encodes a predicted secretory protein, in the little known VI Class of nsLTP families. Overexpression of BnaLTP1 in B. napus caused abnormal green coloration and reduced wax deposition on leaves and detailed wax analysis revealed 17-80% reduction in various major wax components, which resulted in significant water-loss relative to wild type. BnaLTP1 overexpressing leaves exhibited morphological disfiguration and abaxially curled leaf edges, and leaf cross-sections revealed cell overproliferation that was correlated to increased cytokinin levels (tZ, tZR, iP, and iPR in leaves and high expression of the cytokinin biosynthsis gene IPT3. BnaLTP1-overexpressing plants also displayed morphological disfiguration of flowers, with early-onset and elongated carpel development and outwardly curled stamen. This was consistent with altered expression of a a number of ABC model genes related to flower development. Together, these results suggest that BraLTP1 is a new nsLTP gene involved in wax production or deposition, with additional direct or indirect effects on cell division and flower development.

  20. Introduction of beet cyst nematode resistance from Sinapis alba L. and Raphanus sativus L. into Brassica napus L. (oil-seed rape) through sexual and somatic hybridization

    NARCIS (Netherlands)

    Lelivelt, C.L.C.

    1993-01-01

    Experiments were performed to select for beet cyst nematode (Heterodera schachtii Schm., abbrev. BCN) resistant genotypes of Brassica napus L. (oilseed rape), and to introduce BCN-resistance from the related species Raphanus

  1. Genome-wide identification of QTL for seed yield and yield-related traits and construction of a high-density consensus map for QTL comparison in Brassica napus

    Directory of Open Access Journals (Sweden)

    Weiguo eZhao

    2016-01-01

    Full Text Available Seed yield (SY is the most important trait in rapeseed, which was determined by multiple seed yield-related traits (SYRTs and also easily subject to environmental influence. Lots of quantitative trait loci (QTL for SY and SYRTs were reported in Brassica napus. However, no studies have focused on SY and seven agronomic traits affecting SY simultaneous. Genome-wide QTL analysis for SY and seven SYRTs in eight environments was conducted in a doubled haploid population containing 348 lines. Totally, 18 and 208 QTLs for SY and SYRTs were observed, respectively, and then these QTLs were integrated into 144 consensus QTLs by a meta-analysis. Three major QTLs for SY were observed, including cqSY-C6-2 and cqSY-C6-3 that expressed stably in winter cultivation area for three years and cqSY-A2-2 only expressed in spring rapeseed area. Trait-by-trait meta-analysis revealed that the 144 consensus QTLs were integrated into 72 pleiotropic unique QTLs. Among them, all the unique QTLs affected SY, except for uq-A6-1, including uq.A2-3, uq.C1-2, uq.C1-3, uq.C6-1, uq.C6-5 and uq.C6-6 could also affect more than two SYRTs. According to high density consensus map construction and QTL comparison from literature, 36 QTLs from five populations were co-localized with QTLs identified in this study. In addition, 13 orthologs genes were observed, including five each genes for SY and SW, one each gene for BY, BH and PH, respectively. The genomic information of these QTLs would be valuable in hybrid cultivar breeding, and be helpful to analyze QTL expression in different environments.

  2. A spatial assessment of Brassica napus gene flow potential to wild and weedy relatives in the Fynbos Biome

    Directory of Open Access Journals (Sweden)

    J. M. Kalwij

    2010-01-01

    Full Text Available Gene flow between related plant species, and between transgenic and non-transgenic crop varieties, may be considered a form of biological invasion. Brassica napus (oilseed rape or canola and its relatives are well known for intra- and inter-specific gene flow, hybridisation and weediness. Gene flow associated with B. napus poses a potential ecological risk in the Fynbos Biome of South Africa, because of the existence of both naturalised (alien, weedy and native relatives in this region. This risk is particularly pertinent given the proposed use of B. napus for biofuel and the potential future introduction of herbicide-tolerant transgenic B. napus. Here we quantify the presence and co-occurrence of B. napus and its wild and weedy relatives in the Fynbos Biome, as a first step in the ecological risk assessment for this crop. Several alien and at least one native relative of B. napus were found to be prevalent in the region, and to be spatially congruent with B. napus fields. The first requirement for potential gene flow to occur has thus been met. In addition, a number of these species have elsewhere been found to be reproductively compatible with B. napus. Further assessment of the potential ecological risks associated with B. napus in South Africa is constrained by uncertainties in the phylogeny of the Brassicaceae, difficulties with morphology-based identification, and poor knowledge of the biology of several of the species involved, particularly under South African conditions.

  3. Cytological and morphological analysis of hybrids between Brassicoraphanus, and Brassica napus for introgression of clubroot resistant trait into Brassica napus L.

    Science.gov (United States)

    Zhan, Zongxiang; Nwafor, Chinedu Charles; Hou, Zhaoke; Gong, Jianfang; Zhu, Bin; Jiang, Yingfen; Zhou, Yongming; Wu, Jiangsheng; Piao, Zhongyun; Tong, Yue; Liu, Chao; Zhang, Chunyu

    2017-01-01

    Interspecific hybridization is a powerful tool for improvement of crop species, it has the potential to broaden the genetic base and create new plant forms for breeding programs. Synthetic allopolyploid is a widely-used model for the study of genetic recombination and fixed heterosis in Brassica. In Brassica napus breeding, identification and introgression of new sources of clubroot resistance trait from wild or related species into it by hybridization is a long-term crop management strategy for clubroot disease. Radish (Raphanus sativus L.) is a close relative of the Brassica and most radish accessions are immune to the clubroot disease. A synthesized allotetraploid Brassicoraphanus (RRCC, 2n = 36) between R. sativus cv. HQ-04 (2n = 18, RR) and Brassica oleracea var. alboglabra (L.H Bailey) (2n = 18, CC) proved resistant of multiple clubroot disease pathogen P. brassicae. To predict the possibility to transfer the clubroot resistance trait from the RR subgenome of allotetraploid Brassicoraphanus (RRCC, 2n = 36) into Brassica napus (AACC, 2n = 38), we analyzed the frequency of chromosome pairings in the F1 hybrids produced from a cross between B. napus cv. HS5 and the allotetraploid, characterize the genomic composition of some backcrossed progeny (BC1) using GISH, BAC-FISH and AFLP techniques. The level of intergenomic pairing between A and R genomes in the F1 hybrid was high, allosyndetic bivalents formed in 73.53% PMCs indicative of significant level of homeologous recombination between two genomes and high probability of incorporating chromosomal segments/genes from R-genome into A/C-genomes. The BC1 plants inherited variant extra R chromosomes or fragments from allotetraploid as revealed by GISH and AFLP analysis. 13.51% BC2 individuals were resistant to clubroot disease, and several resistance lines had high pollen fertility, Overall, the genetic material presented in this work represents a potential new genetic resource for practical use in breeding B. napus

  4. Cadmium uptake potential of Brassica napus cocropped with Brassica parachinensis and Zea mays

    Energy Technology Data Exchange (ETDEWEB)

    Selvam, Ammaiyappan [Sino-Forest Applied Research Centre for Pearl River Delta Environment, Department of Biology, Hong Kong Baptist University, Hong Kong, (Hong Kong); Wong, Jonathan Woon-Chung, E-mail: jwcwong@hkbu.edu.hk [Sino-Forest Applied Research Centre for Pearl River Delta Environment, Department of Biology, Hong Kong Baptist University, Hong Kong (Hong Kong)

    2009-08-15

    Cadmium uptake potential of Brassica napus cocropped with B. parachinensis or Zea mays plants in split pot (allow the solutes to pass but prevent the interaction of roots between compartments) experiments was evaluated. Plants were grown in split pots filled with soil spiked at 0, 3, 6, 12, 25 and 50 mg Cd/kg soil. Biomass and Cd uptake were detemined after 6 weeks, and rhizospheric soil solutions, extracted using soil probes, were analyzed for pH and water soluble Cd at weekly intervals. Cadmium treatments affected the biomass. Cadmium concentration in the shoots of B. napus was higher when cocropped with B. parachinensis and significantly higher with Z. mays; however, the biomass was negatively affected implying the higher nutrient apportionment to the crop plants than B. napus. Concentration of Cd in B. napus was higher in shoots than in roots as revealed by shoot/root Cd quotient and was always >1; the quotient for B. parachinensis was {approx}1 and that of Z. mays was <1, indicating the potential of Brassicaceae members to translocate the Cd to aboveground tissue. Results indicate the feasibility of cocropping method to clean the Cd contaminated soils.

  5. Cadmium uptake potential of Brassica napus cocropped with Brassica parachinensis and Zea mays

    International Nuclear Information System (INIS)

    Selvam, Ammaiyappan; Wong, Jonathan Woon-Chung

    2009-01-01

    Cadmium uptake potential of Brassica napus cocropped with B. parachinensis or Zea mays plants in split pot (allow the solutes to pass but prevent the interaction of roots between compartments) experiments was evaluated. Plants were grown in split pots filled with soil spiked at 0, 3, 6, 12, 25 and 50 mg Cd/kg soil. Biomass and Cd uptake were detemined after 6 weeks, and rhizospheric soil solutions, extracted using soil probes, were analyzed for pH and water soluble Cd at weekly intervals. Cadmium treatments affected the biomass. Cadmium concentration in the shoots of B. napus was higher when cocropped with B. parachinensis and significantly higher with Z. mays; however, the biomass was negatively affected implying the higher nutrient apportionment to the crop plants than B. napus. Concentration of Cd in B. napus was higher in shoots than in roots as revealed by shoot/root Cd quotient and was always >1; the quotient for B. parachinensis was ∼1 and that of Z. mays was <1, indicating the potential of Brassicaceae members to translocate the Cd to aboveground tissue. Results indicate the feasibility of cocropping method to clean the Cd contaminated soils.

  6. Effect of rhizobacteria inoculation and humic acid application on canola (Brassica napus L.) crop

    International Nuclear Information System (INIS)

    Ahmad, S.; Duar, I.; Solaimani, S.G.A.; Mahmood, S.

    2016-01-01

    This study investigated eco-friendly approach of utilizing plant growth promoting rhizobacteria (PGPR) and humic acid (HA) as bio-stimulants to improve the growth, yield and nutrition of canola (Brassica napus L.). In this study, we isolated 20 indigenous rhizobacterial strains that were subsequently screened and characterized for their plant growth promoting traits. After that one promising PGPR strain identified as Acinetobacter pittii by 16S rRNA gene sequencing was selected for field trial. The field experiment was conducted using RCB design with split-plot arrangement that was replicated four times. Three levels of humic acid (0, 10 and 20 kg ha-1) as main plot factor and two treatments of PGPR (with and without PGPR) as sub-plot factor were used. Data was recorded on plant height (cm), root dry matter plant-1, number of lateral root plant-1, number of pods plant-1, number of seeds pod-1, 1000 seed weight (g), seed yield(kg ha-1), oil content (%), nitrogen (N), phosphorus (P) and potassium (K) contents and uptake. For most of the above mentioned parameters, significant enhancement was observed with the increment of humic acid, and also PGPR treatments were better than their respective control treatments. Maximum values of these parameters were recorded for the interaction of 20 kg HA ha-1 with the PGPR strain. It can be concluded that integrated application of HA and PGPR is a better strategy to improve nutrition and yield of canola. (author)

  7. Phytoextraction with Brassica napus L.: A tool for sustainable management of heavy metal contaminated soils.

    NARCIS (Netherlands)

    Grispen, V.M.J.; Nelissen, H.J.M.; Verkleij, J.A.C.

    2006-01-01

    Phytoextraction is a promising tool to extract metals from contaminated soils and Brassica napus L. seems to be a possible candidate species for this purpose. To select accessions with the ability to accumulate cadmium, hydroponically grown 21 day old seedlings of 77 B. napus L. accessions were

  8. Local Seed Business in the Context of Integrated Seed Sector Development

    NARCIS (Netherlands)

    Thijssen, M.H.; Borman, G.D.; Verhoosel, K.S.; Mastenbroek, A.; Heemskerk, Willem

    2015-01-01

    Quality seed is a key input for agriculture, with a direct impact on agricultural production and productivity. Integrated seed sector development (ISSD) is an inclusive approach that recognizes and builds upon a diversity of seed systems in the sector. We use the ISSD approach to guide us in the

  9. Phytoextraction with Brassica napus L.: A tool for sustainable management of heavy metal contaminated soils

    International Nuclear Information System (INIS)

    Grispen, Veerle M.J.; Nelissen, Hans J.M.; Verkleij, Jos A.C.

    2006-01-01

    Phytoextraction is a promising tool to extract metals from contaminated soils and Brassica napus L. seems to be a possible candidate species for this purpose. To select accessions with the ability to accumulate cadmium, hydroponically grown 21 day old seedlings of 77 B. napus L. accessions were exposed to 0.2 μM CdSO 4 for an additional 10 days. The effects of Cd on several parameters were quantified i.e.; shoot Cd concentration ([Cd] shoot ), total amount of Cd in shoots (Total Cd) and the shoot to root Cd concentration ratio (S/R ratio). Though generally natural variation was low for [Cd] shoot , Total Cd and S/R ratio, a number of accessions could be selected. Our results indicated that Total Cd and S/R ratio are independent parameters for Cd accumulation and translocation. The selected varieties were then tested in field experiments on two locations nearby metal smelters. The two locations differed in extractable soil Cd, Zn, Ca concentration and pH levels. On both locations B. napus L. accessions showed significant differences in [Cd] shoot and Total Cd. Furthermore we found significant correlations between Cd and Zn accumulation in shoots. There were site-specific effects with respect to Cd accumulation in the B. napus L. accessions, however, two accessions seem to perform equally well on both sites. The results of the field experiment suggest that certain B. napus L. accessions are suitable for phytoextraction of moderately heavy metal contaminated soils. - A screening for natural variation in Cd accumulated by 77 Brassica napus L. yielded candidate phytoextraction accessions for agricultural practice

  10. Phytoextraction with Brassica napus L.: A tool for sustainable management of heavy metal contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Grispen, Veerle M.J. [Department of Ecology and Physiology of Plants, Vrije Universiteit, De Boelelaan 1085, NL-1081 HV Amsterdam (Netherlands); Nelissen, Hans J.M. [Department of Ecology and Physiology of Plants, Vrije Universiteit, De Boelelaan 1085, NL-1081 HV Amsterdam (Netherlands); Verkleij, Jos A.C. [Department of Ecology and Physiology of Plants, Vrije Universiteit, De Boelelaan 1085, NL-1081 HV Amsterdam (Netherlands)]. E-mail: jos.verkleij@falw.vu.nl

    2006-11-15

    Phytoextraction is a promising tool to extract metals from contaminated soils and Brassica napus L. seems to be a possible candidate species for this purpose. To select accessions with the ability to accumulate cadmium, hydroponically grown 21 day old seedlings of 77 B. napus L. accessions were exposed to 0.2 {mu}M CdSO{sub 4} for an additional 10 days. The effects of Cd on several parameters were quantified i.e.; shoot Cd concentration ([Cd]{sub shoot}), total amount of Cd in shoots (Total Cd) and the shoot to root Cd concentration ratio (S/R ratio). Though generally natural variation was low for [Cd]{sub shoot}, Total Cd and S/R ratio, a number of accessions could be selected. Our results indicated that Total Cd and S/R ratio are independent parameters for Cd accumulation and translocation. The selected varieties were then tested in field experiments on two locations nearby metal smelters. The two locations differed in extractable soil Cd, Zn, Ca concentration and pH levels. On both locations B. napus L. accessions showed significant differences in [Cd]{sub shoot} and Total Cd. Furthermore we found significant correlations between Cd and Zn accumulation in shoots. There were site-specific effects with respect to Cd accumulation in the B. napus L. accessions, however, two accessions seem to perform equally well on both sites. The results of the field experiment suggest that certain B. napus L. accessions are suitable for phytoextraction of moderately heavy metal contaminated soils. - A screening for natural variation in Cd accumulated by 77 Brassica napus L. yielded candidate phytoextraction accessions for agricultural practice.

  11. Consequences of gene flow between oilseed rape (Brassica napus) and its relatives.

    Science.gov (United States)

    Liu, Yongbo; Wei, Wei; Ma, Keping; Li, Junsheng; Liang, Yuyong; Darmency, Henri

    2013-10-01

    Numerous studies have focused on the probability of occurrence of gene flow between transgenic crops and their wild relatives and the likelihood of transgene escape, which should be assessed before the commercial release of transgenic crops. This review paper focuses on this issue for oilseed rape, Brassica napus L., a species that produces huge numbers of pollen grains and seeds. We analyze separately the distinct steps of gene flow: (1) pollen and seeds as vectors of gene flow; (2) spontaneous hybridization; (3) hybrid behavior, fitness cost due to hybridization and mechanisms of introgression; (4) and fitness benefit due to transgenes (e.g. herbicide resistance and Bt toxin). Some physical, biological and molecular means of transgene containment are also described. Although hybrids and first generation progeny are difficult to identify in fields and non-crop habitats, the literature shows that transgenes could readily introgress into Brassica rapa, Brassica juncea and Brassica oleracea, while introgression is expected to be rare with Brassica nigra, Hirschfeldia incana and Raphanus raphanistrum. The hybrids grow well but produce less seed than their wild parent. The difference declines with increasing generations. However, there is large uncertainty about the evolution of chromosome numbers and recombination, and many parameters of life history traits of hybrids and progeny are not determined with satisfactory confidence to build generic models capable to really cover the wide diversity of situations. We show that more studies are needed to strengthen and organize biological knowledge, which is a necessary prerequisite for model simulations to assess the practical and evolutionary outputs of introgression, and to provide guidelines for gene flow management. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  12. Screening of a Brassica napus bacterial artificial chromosome library using highly parallel single nucleotide polymorphism assays

    Science.gov (United States)

    2013-01-01

    Background Efficient screening of bacterial artificial chromosome (BAC) libraries with polymerase chain reaction (PCR)-based markers is feasible provided that a multidimensional pooling strategy is implemented. Single nucleotide polymorphisms (SNPs) can be screened in multiplexed format, therefore this marker type lends itself particularly well for medium- to high-throughput applications. Combining the power of multiplex-PCR assays with a multidimensional pooling system may prove to be especially challenging in a polyploid genome. In polyploid genomes two classes of SNPs need to be distinguished, polymorphisms between accessions (intragenomic SNPs) and those differentiating between homoeologous genomes (intergenomic SNPs). We have assessed whether the highly parallel Illumina GoldenGate® Genotyping Assay is suitable for the screening of a BAC library of the polyploid Brassica napus genome. Results A multidimensional screening platform was developed for a Brassica napus BAC library which is composed of almost 83,000 clones. Intragenomic and intergenomic SNPs were included in Illumina’s GoldenGate® Genotyping Assay and both SNP classes were used successfully for screening of the multidimensional BAC pools of the Brassica napus library. An optimized scoring method is proposed which is especially valuable for SNP calling of intergenomic SNPs. Validation of the genotyping results by independent methods revealed a success of approximately 80% for the multiplex PCR-based screening regardless of whether intra- or intergenomic SNPs were evaluated. Conclusions Illumina’s GoldenGate® Genotyping Assay can be efficiently used for screening of multidimensional Brassica napus BAC pools. SNP calling was specifically tailored for the evaluation of BAC pool screening data. The developed scoring method can be implemented independently of plant reference samples. It is demonstrated that intergenomic SNPs represent a powerful tool for BAC library screening of a polyploid genome

  13. Impact of heat stress during seed development on soybean seed metabolome

    Science.gov (United States)

    Seed development is a temperature-sensitive process that is much more vulnerable than vegetative tissues to abiotic stresses. Climate change is expected to increase the incidence and severity of summer heatwaves, and the impact of heat stress on seed development is expected to become more widespread...

  14. Fertilization-independent seed development in Arabidopsis thaliana

    OpenAIRE

    Chaudhury, Abdul M.; Ming, Luo; Miller, Celia; Craig, Stuart; Dennis, Elizabeth S.; Peacock, W. James

    1997-01-01

    We report mutants in Arabidopsis thaliana (fertilization-independent seed: fis) in which certain processes of seed development are uncoupled from the double fertilization event that occurs after pollination. These mutants were isolated as ethyl methanesulfonate-induced pseudo-revertants of the pistillata phenotype. Although the pistillata (pi) mutant has short siliques devoid of seed, the fis mutants in the pi background have long siliques containing developing seeds, even though the flowers ...

  15. Foliar K application delays leaf senescence of winter rape-seed (Brassica napus L.) under waterlogging

    Institute of Scientific and Technical Information of China (English)

    Lin Wan; Chao Hu; Chang Chen; Liyan Zhang; Ni Ma; Chunlei Zhang

    2017-01-01

    To better understand waterlogging effect on leaf senescence in winter rapseed (Brassica napus L.) during flowering stage, experiments were designed to explore foliar K application influences on adverse effects of waterlogging stress. Winter rapeseed was sprayed with K after waterlogging at initial flowering stage. Results indicated that waterlog-ging significantly decreased leaf net photosynthetic rate (Pn), stomatal conductance (Gs), intercellular CO2 concentration (Ci) and transpiration rate (Tr). It also declined maximum quantum yield of PS II (Fv/Fm), quantum yield of electron transport (ΦPS II) and pho-tochemical quenching (qP), but increased leaf non-photochemical quenching (NPQ) and minimal fluorescence (Fo). Interestingly, exogenous application of K significantly alleviated waterlogging-induced photosynthesis inhibition. Foliar K application increased RuBisCO activation, chlorophyll and soluble protein contents, while significantly decreased MDA con-tent under waterlogging stress. Moreover, K supplementation improved accumulation of K+, Ca2+, Mg2+, N, Zn2+, Mn2+, Fe2+ in leaves. In general, foliar K application is effective in alleviating deleterious effects of waterlogging stress and delays leaf senescence of winter rapeseed.

  16. Purification of a jojoba embryo fatty acyl-coenzyme A reductase and expression of its cDNA in high erucic acid rapeseed.

    Science.gov (United States)

    Metz, J G; Pollard, M R; Anderson, L; Hayes, T R; Lassner, M W

    2000-03-01

    The jojoba (Simmondsia chinensis) plant produces esters of long-chain alcohols and fatty acids (waxes) as a seed lipid energy reserve. This is in contrast to the triglycerides found in seeds of other plants. We purified an alcohol-forming fatty acyl-coenzyme A reductase (FAR) from developing embryos and cloned the cDNA encoding the enzyme. Expression of a cDNA in Escherichia coli confers FAR activity upon those cells and results in the accumulation of fatty alcohols. The FAR sequence shows significant homology to an Arabidopsis protein of unknown function that is essential for pollen development. When the jojoba FAR cDNA is expressed in embryos of Brassica napus, long-chain alcohols can be detected in transmethylated seed oils. Resynthesis of the gene to reduce its A plus T content resulted in increased levels of alcohol production. In addition to free alcohols, novel wax esters were detected in the transgenic seed oils. In vitro assays revealed that B. napus embryos have an endogenous fatty acyl-coenzyme A: fatty alcohol acyl-transferase activity that could account for this wax synthesis. Thus, introduction of a single cDNA into B. napus results in a redirection of a portion of seed oil synthesis from triglycerides to waxes.

  17. Comparative Analysis of the Brassica napus Root and Leaf Transcript Profiling in Response to Drought Stress

    Directory of Open Access Journals (Sweden)

    Chunqing Liu

    2015-08-01

    Full Text Available Drought stress is one of the major abiotic factors affecting Brassica napus (B. napus productivity. In order to identify genes of potential importance to drought stress and obtain a deeper understanding of the molecular mechanisms regarding the responses of B. napus to dehydration stress, we performed large-scale transcriptome sequencing of B. napus plants under dehydration stress using the Illumina sequencing technology. In this work, a relatively drought tolerant B. napus line, Q2, identified in our previous study, was used. Four cDNA libraries constructed from mRNAs of control and dehydration-treated root and leaf were sequenced by Illumina technology. A total of 6018 and 5377 differentially expressed genes (DEGs were identified in root and leaf. In addition, 1745 genes exhibited a coordinated expression profile between the two tissues under drought stress, 1289 (approximately 74% of which showed an inverse relationship, demonstrating different regulation patterns between the root and leaf. The gene ontology (GO enrichment test indicated that up-regulated genes in root were mostly involved in “stimulus” “stress” biological process, and activated genes in leaf mainly functioned in “cell” “cell part” components. Furthermore, a comparative network related to plant hormone signal transduction and AREB/ABF, AP2/EREBP, NAC, WRKY and MYC/MYB transcription factors (TFs provided a view of different stress tolerance mechanisms between root and leaf. Some of the DEGs identified may be candidates for future research aimed at detecting drought-responsive genes and will be useful for understanding the molecular mechanisms of drought tolerance in root and leaf of B. napus.

  18. Radio-sensitivity analysis and selection of useful mutants of rape (Brassica napus L.) by gamma irradiation

    International Nuclear Information System (INIS)

    Goh, Eun Jeong; Kim, Wook Jin; Kim, Jin Baek; Kim, Dong Sub; Kim, Sang Hoon; Kang, Si Yong

    2010-01-01

    Rape (Brassica napus L.) plants are one of the major oilseed crops. The main components of rapeseed are oil (35 to 47%) and protein (15 to 32%). For the biodiesel production, the development of a new variety of rape plant with high biomass and/or oleic acid contents is required. In order to determine the optimum dose of gamma-ray irradiation, the rape seeds of cvs. Hanra (Hr), Youngsan (Ys), Tammi (Tm), and Tamra (Tr) were irradiated with a 100 ∼ 4,000 Gy dose range of gamma-rays. Considering the growth factors, the optimum doses were determined to be within the range of 600 ∼ 1,000 Gy for the selection of useful mutant lines. Six-hundred and eighty eight (688) M 2 mutant lines were obtained from 600 ∼ 1,000 Gy gamma-ray-irradiated M 1 plants through selfing. The growth characteristics, leaf shape, early flowering, and flower color were all investigated. The selected mutant numbers of early flowering, leaf shape, and flower color were 34, 52, and 3 from the four cultivars, respectively. These mutant lines will be used for the development of a new variety of rape plant with high biomass and oleic acid contents

  19. Changes in seed water status as characterized by NMR in developing soybean seed grown under moisture stress conditions

    International Nuclear Information System (INIS)

    Krishnan, P.; Singh, Ravender; Verma, A.P.S.; Joshi, D.K.; Singh, Sheoraj

    2014-01-01

    Highlights: • In developing soybean seeds, moisture stress resulted in more proportion of water to bound state. • These changes are further corroborated by concomitant changes in seed metabolites. • Thus there exists a moisture stress and development stage dependence of seed tissue water status. - Abstract: Changes in water status of developing seeds of Soybean (Glycine max L. Merrill.) grown under different moisture stress conditions were characterized by proton nuclear magnetic resonance (NMR)- spin–spin relaxation time (T 2 ). A comparison of the seed development characteristics, composition and physical properties indicated that, characteristics like seed weight, seed number/ear, rate of seed filling increased with development stages but decreased with moisture stress conditions. The NMR- spin–spin relaxation (T 2 ) component like bound water increased with seed maturation (40–50%) but decreased with moisture stress conditions (30–40%). The changes in seed water status to increasing levels of moisture stress and seed maturity indicates that moisture stress resulted in more proportion of water to bound state and intermediate state and less proportion of water in free-state. These changes are further corroborated by significant changes in protein and starch contents in seeds under high moisture stress treatments. Thus seed water status during its development is not only affected by development processes but also by moisture stress conditions. This study strongly indicated a clear moisture stress and development stage dependence of seed tissue water status in developing soybean seeds

  20. Changes in seed water status as characterized by NMR in developing soybean seed grown under moisture stress conditions

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan, P., E-mail: pkrishnan@iari.res.in; Singh, Ravender; Verma, A.P.S.; Joshi, D.K.; Singh, Sheoraj

    2014-02-21

    Highlights: • In developing soybean seeds, moisture stress resulted in more proportion of water to bound state. • These changes are further corroborated by concomitant changes in seed metabolites. • Thus there exists a moisture stress and development stage dependence of seed tissue water status. - Abstract: Changes in water status of developing seeds of Soybean (Glycine max L. Merrill.) grown under different moisture stress conditions were characterized by proton nuclear magnetic resonance (NMR)- spin–spin relaxation time (T{sub 2}). A comparison of the seed development characteristics, composition and physical properties indicated that, characteristics like seed weight, seed number/ear, rate of seed filling increased with development stages but decreased with moisture stress conditions. The NMR- spin–spin relaxation (T{sub 2}) component like bound water increased with seed maturation (40–50%) but decreased with moisture stress conditions (30–40%). The changes in seed water status to increasing levels of moisture stress and seed maturity indicates that moisture stress resulted in more proportion of water to bound state and intermediate state and less proportion of water in free-state. These changes are further corroborated by significant changes in protein and starch contents in seeds under high moisture stress treatments. Thus seed water status during its development is not only affected by development processes but also by moisture stress conditions. This study strongly indicated a clear moisture stress and development stage dependence of seed tissue water status in developing soybean seeds.

  1. Genome-Wide Identification and Structural Analysis of bZIP Transcription Factor Genes in Brassica napus.

    Science.gov (United States)

    Zhou, Yan; Xu, Daixiang; Jia, Ledong; Huang, Xiaohu; Ma, Guoqiang; Wang, Shuxian; Zhu, Meichen; Zhang, Aoxiang; Guan, Mingwei; Lu, Kun; Xu, Xinfu; Wang, Rui; Li, Jiana; Qu, Cunmin

    2017-10-24

    The basic region/leucine zipper motif (bZIP) transcription factor family is one of the largest families of transcriptional regulators in plants. bZIP genes have been systematically characterized in some plants, but not in rapeseed ( Brassica napus ). In this study, we identified 247 BnbZIP genes in the rapeseed genome, which we classified into 10 subfamilies based on phylogenetic analysis of their deduced protein sequences. The BnbZIP genes were grouped into functional clades with Arabidopsis genes with similar putative functions, indicating functional conservation. Genome mapping analysis revealed that the BnbZIPs are distributed unevenly across all 19 chromosomes, and that some of these genes arose through whole-genome duplication and dispersed duplication events. All expression profiles of 247 bZIP genes were extracted from RNA-sequencing data obtained from 17 different B . napus ZS11 tissues with 42 various developmental stages. These genes exhibited different expression patterns in various tissues, revealing that these genes are differentially regulated. Our results provide a valuable foundation for functional dissection of the different BnbZIP homologs in B . napus and its parental lines and for molecular breeding studies of bZIP genes in B . napus .

  2. Multiple Evolutionary Events Involved in Maintaining Homologs of Resistance to Powdery Mildew 8 in Brassica napus.

    Science.gov (United States)

    Li, Qin; Li, Jing; Sun, Jin-Long; Ma, Xian-Feng; Wang, Ting-Ting; Berkey, Robert; Yang, Hui; Niu, Ying-Ze; Fan, Jing; Li, Yan; Xiao, Shunyuan; Wang, Wen-Ming

    2016-01-01

    The Resistance to Powdery Mildew 8 (RPW8) locus confers broad-spectrum resistance to powdery mildew in Arabidopsis thaliana. There are four Homologous to RPW8s (BrHRs) in Brassica rapa and three in Brassica oleracea (BoHRs). Brassica napus (Bn) is derived from diploidization of a hybrid between B. rapa and B. oleracea, thus should have seven homologs of RPW8 (BnHRs). It is unclear whether these genes are still maintained or lost in B. napus after diploidization and how they might have been evolved. Here, we reported the identification and sequence polymorphisms of BnHRs from a set of B. napus accessions. Our data indicated that while the BoHR copy from B. oleracea is highly conserved, the BrHR copy from B. rapa is relatively variable in the B. napus genome owing to multiple evolutionary events, such as gene loss, point mutation, insertion, deletion, and intragenic recombination. Given the overall high sequence homology of BnHR genes, it is not surprising that both intragenic recombination between two orthologs and two paralogs were detected in B. napus, which may explain the loss of BoHR genes in some B. napus accessions. When ectopically expressed in Arabidopsis, a C-terminally truncated version of BnHRa and BnHRb, as well as the full length BnHRd fused with YFP at their C-termini could trigger cell death in the absence of pathogens and enhanced resistance to powdery mildew disease. Moreover, subcellular localization analysis showed that both BnHRa-YFP and BnHRb-YFP were mainly localized to the extra-haustorial membrane encasing the haustorium of powdery mildew. Taken together, our data suggest that the duplicated BnHR genes might have been subjected to differential selection and at least some may play a role in defense and could serve as resistance resource in engineering disease-resistant plants.

  3. Immunopurification and characterization of a rape ( Brassica napus L.)

    African Journals Online (AJOL)

    Lipase or triacylglycerol acylhydrolase (E.C.3.1.1.3) was purified to homogeneity from rapeseed-germinated cotyledons (Brassica napus L.). The purification scheme involved homogenization, centrifugation, ultracentrifugation and affinity chromatography using polyclonal antibodies raised against porcine pancreatic lipase.

  4. PHO1 Exports Phosphate from the Chalazal Seed Coat to the Embryo in Developing Arabidopsis Seeds.

    Science.gov (United States)

    Vogiatzaki, Evangelia; Baroux, Célia; Jung, Ji-Yul; Poirier, Yves

    2017-10-09

    Seed production requires the transfer of nutrients from the maternal seed coat to the filial endosperm and embryo. Because seed coat and filial tissues are symplasmically isolated, nutrients arriving in the seed coat via the phloem must be exported to the apoplast before reaching the embryo. Proteins implicated in the transfer of inorganic phosphate (Pi) from the seed coat to the embryo are unknown despite seed P content being an important agronomic trait. Here we show that the Arabidopsis Pi exporters PHO1 and PHOH1 are expressed in the chalazal seed coat (CZSC) of developing seeds. PHO1 is additionally expressed in developing ovules. Phosphorus (P) content and Pi flux between the seed coat and embryo were analyzed in seeds from grafts between WT roots and scions from either pho1, phoh1, or the pho1 phoh1 double mutant. Whereas P content and distribution between the seed coat and embryo in fully mature dry seeds of these mutants are similar to the WT, at the mature green stage of seed development the seed coat of the pho1 and pho1 phoh1 mutants, but not of the phoh1 mutant, retains approximately 2-fold more P than its WT control. Expression of PHO1 under a CZSC-specific promoter complemented the seed P distribution phenotype of the pho1 phoh1 double mutant. CZSC-specific down-expression of PHO1 also recapitulated the seed P distribution phenotype of pho1. Together, these experiments show that PHO1 expression in the CZSC is important for the transfer of P from the seed coat to the embryo in developing seeds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Genome-wide identification, functional prediction, and evolutionary analysis of the R2R3-MYB superfamily in Brassica napus.

    Science.gov (United States)

    Hajiebrahimi, Ali; Owji, Hajar; Hemmati, Shiva

    2017-10-01

    R2R3-MYB transcription factors (TFs) have been shown to play important roles in plants, including in development and in various stress conditions. Phylogenetic analysis showed the presence of 249 R2R3-MYB TFs in Brassica napus, called BnaR2R3-MYB TFs, clustered into 38 clades. BnaR2R3-MYB TFs were distributed on 19 chromosomes of B. napus. Sixteen gene clusters were identified. BnaR2R3-MYB TFs were characterized by motif prediction, gene structure analysis, and gene ontology. Evolutionary analysis revealed that BnaR2R3-MYB TFs are mainly formed as a result of whole-genome duplication. Orthologs and paralogs of BnaR2R3-MYB TFs were identified in B. napus, B. rapa, B. oleracea, and Arabidopsis thaliana using synteny-based methods. Purifying selection was pervasive within R2R3-MYB TFs. K n /K s values lower than 0.3 indicated that BnaR2R3-MYB TFs are being functionally converged. The role of gene conversion in the formation of BnaR2R3-MYB TFs was significant. Cis-regulatory elements in the upstream regions of BnaR2R3-MYB genes, miRNA targeting BnaR2R3MYB TFs, and post translational modifications were identified. Digital expression data revealed that BnaR2R3-MYB genes were highly expressed in the roots and under high salinity treatment after 24 h. BnaMYB21, BnaMYB141, and BnaMYB148 have been suggested for improving salt-tolerant B. napus. BnaR2R3-MYB genes were mostly up regulated on the 14th day post inoculation with Leptosphaeria biglobosa and L. maculan. BnaMYB150 is a candidate for increased tolerance to Leptospheria in B. napus.

  6. Programme on Integrated Seed Sector Development in Ethiopia

    NARCIS (Netherlands)

    Walsh, Stephen; Thijssen, M.H.

    2016-01-01

    The programme on Integrated Seed Sector Development in Ethiopia aims to strengthen the development of a vibrant, market-oriented and pluralistic seed sector in the country, where quality seed of superior varieties is available and affordable for a larger number of farmers, thereby contributing to

  7. Mass spectrometric amino acid sequencing of a mixture of seed storage proteins (napin) from Brassica napus, products of a multigene family.

    OpenAIRE

    Gehrig, P M; Krzyzaniak, A; Barciszewski, J; Biemann, K

    1996-01-01

    The amino acid sequences of a number of closely related proteins ("napin") isolated from Brassica napus were determined by mass spectrometry without prior separation into individual components. Some of these proteins correspond to those previously deduced (napA, BngNAP1, and gNa), chiefly from DNA sequences. Others were found to differ to a varying extent (BngNAP1', BngNAP1A, BngNAP1B, BngNAP1C, gNa', and gNaA). The short chains of gNa and gNa' and of BngNAP1 and BngNAP1' differ by the replac...

  8. Low level impurities in imported wheat are a likely source of feral transgenic oilseed rape (Brassica napus L.) in Switzerland.

    Science.gov (United States)

    Schulze, Juerg; Brodmann, Peter; Oehen, Bernadette; Bagutti, Claudia

    2015-11-01

    In Switzerland, the cultivation of genetically modified (GM) oilseed rape (Brassica napus L.) and the use of its seeds for food and feed are not permitted. Nevertheless, the GM oilseed rape events GT73, MS8×RF3, MS8 and RF3 have recently been found in the Rhine port of Basel, Switzerland. The sources of GM oilseed rape seeds have been unknown. The main agricultural good being imported at the Rhine port of Basel is wheat and from 2010 to 2013, 19% of all Swiss wheat imports originated from Canada. As over 90% of all oilseed rape grown in Canada is GM, we hypothesised that imports of Canadian wheat may contain low level impurities of GM oilseed rape. Therefore, waste fraction samples gathered during the mechanical cleaning of Canadian wheat from two Swiss grain mills were analysed by separating oilseed rape seeds from waste fraction samples and testing DNA of pooled seeds for the presence of transgenes by real-time PCR. Furthermore, oilseed rape seeds from each grain mill were sown in a germination experiment, and seedling DNA was tested for the presence of transgenes by real-time PCR. GT73, MS8×RF3, MS8 and RF3 oilseed rape was detected among seed samples and seedlings of both grain mills. Based on this data, we projected a mean proportion of 0.005% of oilseed rape in wheat imported from Canada. Besides Canadian wheat, the Rhine port of Basel does not import any other significant amounts of agricultural products from GM oilseed rape producing countries. We therefore conclude that Canadian wheat is the major source of unintended introduction of GM oilseed rape seeds into Switzerland.

  9. Spillage of Viable Seeds of Oilseed Rape along Transportation Routes: Ecological Risk Assessment and Perspectives on Management Efforts

    Directory of Open Access Journals (Sweden)

    Kathrin Pascher

    2017-09-01

    Full Text Available Seed spillage during handling and transportation promotes establishment and invasion of feral crops into adjacent semi-natural habitats. This is also the case for oilseed rape (OSR, Brassica napus, where seed spillage may lead to establishment of herbicide resistant OSR populations in countries without cultivation of genetically modified OSR. Using data from Austria—where cultivation and import of genetically modified OSR are banned—as a prime example, we demonstrate that ports, oil mills, switchyards, and border railway stations to countries with different electric current systems—where trains have to stop—are the sites of primary concern with respect to seed spillage. Based on the results of the Austrian case study we discuss common measures to limit crop seed spillage which include intensified controls at border railway stations and the mode of seed packing during transportation. We further recommend sufficient cleaning both of goods wagons and of loading areas of trucks and ships as well as an appropriate weed management.

  10. Effects of Source and Rate of Nitrogen Fertilizer on Yield, Yield Components and Quality of Winter Rapeseed (Brassica napus L. Efecto de la Fuente y Dosis de Fertilizantes Nitrogenados en el Rendimiento, Componentes de Rendimiento y Calidad de Semilla de Canola (Brassica napus L.

    Directory of Open Access Journals (Sweden)

    Özden Öztürk

    2010-03-01

    Full Text Available Winter rapeseed (Brassica napus L. has potential to become an alternate oilseed crop both for edible oil production and energy agriculture (biofuel production for Turkey. This study was conducted to determine the effect of year, N sources and doses on the yield and quality traits of winter rapeseed in a cereal system in calcareous soils over two seasons, 2000-2001 and 2001-2002, in Central Anatolia. Three N sources, ammonium sulfate, ammonium nitrate and urea, were applied as hand broadcast on the soil surface at five doses (0, 50, 100, 150, and 200 kg N ha-1. The traits investigated were plant height, number of branches and pods per plant, number of seed per pod, thousand seed weight, seed yield, oil and protein content. There were significantly effects on seed yield, oil and protein content, and other yield components due to N sources and rates. In general, ammonium sulfate and urea gave higher seed yield than ammonium nitrate. Mean values of both seasons indicated that 100 and 150 kg N ha-1 rate increased significantly yield and quality traits with regard to other N treatments. The present results highlight the practical importance of adequate N fertilization and true N source in seed yield in winter rapeseed and suggest that ammonium sulfate at 150 kg N ha-1 will be about adequate to meet crop N requirements.El raps (Brassica napus L. tiene potencial para convertirse en un cultivo oleaginoso alternativo para producción de aceite comestible y agricultura energética (producción de biodiesel en Turquía. Este estudio fue conducido para determinar el efecto del año, fuente y dosis de N en las características de rendimiento y calidad de raps en un sistema cerealero en suelos calcáreos en dos temporadas, 2000-2001 y 2001-2002, en Anatolia Central. Se aplicaron al voleo tres fuentes de N (sulfato de amonio, nitrato de amonio y urea en cinco dosis (0, 50, 100, 150 y 200 kg N ha-1. Las características investigadas fueron altura de planta, n

  11. Effect of Sugarcane Filter Muds, Chemical and Biological Fertilizers on Absorption of Some Macro- and Micro-Elementsand Heavy Metals by Canola (Brassica napus L.

    Directory of Open Access Journals (Sweden)

    H. Monjezi

    2015-12-01

    Full Text Available In order to evaluate the effect of sugarcane (Sacharum officinarum L. filter muds and chemical and biological fertilizers application on macro- and micronutrient elements and some heavy metals (Pb and Cd absorption by canola (Brassica napus L. grains, a factorial experiment was conducted in 2012 in the Experimental Farm of Ramin (Mollasani Agriculture and Natural Resources University of Khouzestan, Iran. A complete blocks design was used for the experiment with three replications. Different integrated treatments of filter muds and chemical fertilizers (A1: 100% filter muds, A2: 75% filter muds + 25% chemical fertilizers, A3: 50% filter muds + 50% chemical fertilizers, A4: 25% filter muds + 75% chemical fertilizers and A5: 100% chemical fertilizers along with two levels of biological fertilizers application (with and without biological fertilizers were investigated. The biological fertilizers investigated in this study were Nitroxin and Barvar2. Application of filter muds led to decreases in nitrogen, phosphorus and Cd of canola seeds. On the other hand, increase of filter muds application led to increase of Zn, Cu, Fe and Pb content in canola seeds. Biological and chemical fertilizers application resulted in increases of nitrogen, phosphorus and cadmium contents in canola seeds. Biofertilizers also increased phosphorus and cadmium contents in canola seeds.

  12. Mutation induction, evaluation and utilization for development of high yielding varieties in Indian mustard and sunflower: an overview of BARC work

    International Nuclear Information System (INIS)

    Jambhulkar, S.J.; Shitre, A.S.

    2009-01-01

    Mutation breeding programme in Indian mustard and sunflower at BARC has resulted into the development of wide spectrum of mutations for seed coat colour, chlorophyll, plant height, maturity, flower morphology, seed weight and oil content. In Indian mustard, TM1 and TM50 are high yielding yellow seed coat mutants, which were exploited in hybridisation to develop bold, yellow seed coat and high yielding genotypes. Light green leaf and variegated leaf are novel mutation in mustard. Putative mutants for drought tolerance have been isolated. Variability for zero erucic acid and zero glucosinolates genotypes have been developed in B. napus and B. juncea. In sunflower, high yielding black seed coat mutant were isolated. Extreme dwarf measuring only 11 cm is novel. Three high yielding varieties namely TM2, TM4, and TPM1 in mustard and one i.e.TAS82 in sunflower have been released for cultivation in collaboration with state agricultural universities. (author)

  13. miR395 is involved in detoxification of cadmium in Brassica napus

    International Nuclear Information System (INIS)

    Zhang, Liu Wei; Song, Jian Bo; Shu, Xia Xia; Zhang, Yun; Yang, Zhi Min

    2013-01-01

    Highlights: ► Involvement of miR395 in sulfate uptake and assimilation in B. napus. ► miR395 regulation of Cd accumulation and distribution in B. napus. ► Depression of Cd-induced oxidative stress by miR395. -- Abstract: The toxic metal cadmium (Cd) constitutes one of the major inorganic contaminants in environments. microRNAs (miRNAs) are a class of endogenous non-coding small RNAs. miR395 is conserved and regulates sulfate assimilation and distribution in higher plants, but whether it is involved in detoxification of Cd in plants has not been described. In this study, transgenic rapeseed (Brassica napus) over-expressing miR395 was identified under Cd stress. miR395-over-expressing plants showed a lower degree of Cd-induced oxidative stress than wild type. By contrast, chlorophyll, glutathione and non-protein thiols contents were higher in the transformants than wild type. Determination of growth response showed that 35S::MIR395 plants accumulated higher levels of biomass and sulfur than wild type under Cd exposure. miR395 transgenic plants had higher levels of Cd in plants, particularly at the high supply of Cd in the medium, but they tended to repress Cd translocation from roots to shoots. Simultaneously, expression of metal-tolerance genes such as BnPCS1, BnHO1 and Sultr1;1 was up-regulated under Cd stress, and the expression of the genes was more pronounced in 35S::MIR395 plants than in wild type. These results suggest that miR395 would be involved in detoxification of Cd in B. napus

  14. miR395 is involved in detoxification of cadmium in Brassica napus

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Liu Wei; Song, Jian Bo; Shu, Xia Xia; Zhang, Yun [Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing 210095 (China); Yang, Zhi Min, E-mail: zmyang@njau.edu.cn [Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing 210095 (China)

    2013-04-15

    Highlights: ► Involvement of miR395 in sulfate uptake and assimilation in B. napus. ► miR395 regulation of Cd accumulation and distribution in B. napus. ► Depression of Cd-induced oxidative stress by miR395. -- Abstract: The toxic metal cadmium (Cd) constitutes one of the major inorganic contaminants in environments. microRNAs (miRNAs) are a class of endogenous non-coding small RNAs. miR395 is conserved and regulates sulfate assimilation and distribution in higher plants, but whether it is involved in detoxification of Cd in plants has not been described. In this study, transgenic rapeseed (Brassica napus) over-expressing miR395 was identified under Cd stress. miR395-over-expressing plants showed a lower degree of Cd-induced oxidative stress than wild type. By contrast, chlorophyll, glutathione and non-protein thiols contents were higher in the transformants than wild type. Determination of growth response showed that 35S::MIR395 plants accumulated higher levels of biomass and sulfur than wild type under Cd exposure. miR395 transgenic plants had higher levels of Cd in plants, particularly at the high supply of Cd in the medium, but they tended to repress Cd translocation from roots to shoots. Simultaneously, expression of metal-tolerance genes such as BnPCS1, BnHO1 and Sultr1;1 was up-regulated under Cd stress, and the expression of the genes was more pronounced in 35S::MIR395 plants than in wild type. These results suggest that miR395 would be involved in detoxification of Cd in B. napus.

  15. Abscisic acid and assimilate partitioning during seed development

    NARCIS (Netherlands)

    Bruijn, de S.M.

    1993-01-01

    This thesis describes the influence of abscisic acid (ABA) on the transport of assimilates to seeds and the deposition of reserves in seeds. It is well-known from literature that ABA accumulates in seeds during development, and that ABA concentrations in seeds correlate rather well with

  16. Functional characterization of a heterologously expressed Brassica napus WRKY41-1 transcription factor in regulating anthocyanin biosynthesis in Arabidopsis thaliana.

    Science.gov (United States)

    Duan, Shaowei; Wang, Jianjun; Gao, Chenhao; Jin, Changyu; Li, Dong; Peng, Danshuai; Du, Guomei; Li, Yiqian; Chen, Mingxun

    2018-03-01

    Previous studies have shown that a plant WRKY transcription factor, WRKY41, has multiple functions, and regulates seed dormancy, hormone signaling pathways, and both biotic and abiotic stress responses. However, it is not known about the roles of AtWRKY41 from the model plant, Arabidopsis thaliana, and its ortholog, BnWRKY41, from the closely related and important oil-producing crop, Brassica napus, in the regulation of anthocyanin biosynthesis. Here, we found that the wrky41 mutation in A. thaliana resulted in a significant increase in anthocyanin levels in rosette leaves, indicating that AtWRKY41 acts as repressor of anthocyanin biosynthesis. RNA sequencing and quantitative real-time PCR analysis revealed increased expression of three regulatory genes AtMYB75, AtMYB111, and AtMYBD, and two structural genes, AT1G68440 and AtGSTF12, all of which contribute to anthocyanin biosynthesis, in the sixth rosette leaves of wrky41-2 plants at 20 days after germination. We cloned the full length complementary DNA of BnWRKY41-1 from the C2 subgenome of the B. napus genotype Westar and observed that, when overexpressed in tobacco leaves as a fusion protein with green fluorescent protein, BnWRKY41-1 is localized to the nucleus. We further showed that overexpression of BnWRKY41-1 in the A. thaliana wrky41-2 mutant rescued the higher anthocyanin content phenotype in rosette leaves of the mutant. Moreover, the elevated expression levels in wrky41-2 rosette leaves of several important regulatory and structural genes regulating anthocyanin biosynthesis were not observed in the BnWRKY41-1 overexpressing lines. These results reveal that BnWRKY41-1 has a similar role with AtWRKY41 in regulating anthocyanin biosynthesis when overexpressed in A. thaliana. This gene represents a promising target for genetically manipulating B. napus to increase the amounts of anthocyanins in rosette leaves. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Genetic load and transgenic mitigating genes in transgenic Brassica rapa (field mustard × Brassica napus (oilseed rape hybrid populations

    Directory of Open Access Journals (Sweden)

    Warwick Suzanne I

    2009-10-01

    Full Text Available Abstract Background One theoretical explanation for the relatively poor performance of Brassica rapa (weed × Brassica napus (crop transgenic hybrids suggests that hybridization imparts a negative genetic load. Consequently, in hybrids genetic load could overshadow any benefits of fitness enhancing transgenes and become the limiting factor in transgenic hybrid persistence. Two types of genetic load were analyzed in this study: random/linkage-derived genetic load, and directly incorporated genetic load using a transgenic mitigation (TM strategy. In order to measure the effects of random genetic load, hybrid productivity (seed yield and biomass was correlated with crop- and weed-specific AFLP genomic markers. This portion of the study was designed to answer whether or not weed × transgenic crop hybrids possessing more crop genes were less competitive than hybrids containing fewer crop genes. The effects of directly incorporated genetic load (TM were analyzed through transgene persistence data. TM strategies are proposed to decrease transgene persistence if gene flow and subsequent transgene introgression to a wild host were to occur. Results In the absence of interspecific competition, transgenic weed × crop hybrids benefited from having more crop-specific alleles. There was a positive correlation between performance and number of B. napus crop-specific AFLP markers [seed yield vs. marker number (r = 0.54, P = 0.0003 and vegetative dry biomass vs. marker number (r = 0.44, P = 0.005]. However under interspecific competition with wheat or more weed-like conditions (i.e. representing a situation where hybrid plants emerge as volunteer weeds in subsequent cropping systems, there was a positive correlation between the number of B. rapa weed-specific AFLP markers and seed yield (r = 0.70, P = 0.0001, although no such correlation was detected for vegetative biomass. When genetic load was directly incorporated into the hybrid genome, by inserting a

  18. Multiple evolutionary events involved in maintaining homologs of Resistance to Powdery Mildew 8 in Brassica napus

    Directory of Open Access Journals (Sweden)

    Qin Li

    2016-07-01

    Full Text Available The Resistance to Powdery Mildew 8 (RPW8 locus confers broad-spectrum resistance to powdery mildew in Arabidopsis thaliana. There are four Homologous to RPW8s (BrHRs in Brassica rapa and three in B. oleracea (BoHRs. B. napus (Bn is derived from diploidization of a hybrid between B. rapa and B. oleracea, thus should have seven homologs of RPW8 (BnHRs. It is unclear whether these genes are still maintained or lost in B. napus after diploidization and how they might have been evolved. Here we reported the identification and sequence polymorphisms of BnHRs from a set of B. napus accessions. Our data indicated that while the BoHR copy from B. oleracea is highly conserved, the BrHR copy from B. rapa is relatively variable in the B. napus genome owing to multiple evolutionary events, such as gene loss, point mutation, insertion, deletion and intragenic recombination. Given the overall high sequence homology of BnHR genes, it is not surprising that both intragenic recombination between two orthologs and two paralogs were detected in B. napus, which may explain the loss of BoHR genes in some B. napus accessions. When ectopically expressed in Arabidopsis, a C-terminally truncated version of BnHRa and BnHRb, as well as the full length BnHRd fused with YFP at their C-termini could trigger cell death in the absence of pathogens and enhanced resistance to powdery mildew disease. Moreover, subcellular localization analysis showed that both BnHRa-YFP and BnHRb-YFP were mainly localized to the extra-haustorial membrane (EHM encasing the haustorium of powdery mildew. Taken together, our data suggest that the duplicated BnHR genes might have been subjected to differential selection and at least some may play a role in defense and could serve as resistance resource in engineering disease-resistant plants.

  19. Molecular phylogenetic implications in Brassica napus based on ...

    Indian Academy of Sciences (India)

    Brassica napus L. (canola, rapeseed) is one of the most important oil crops in many countries (Abdelmigid 2012;. Fayyaz et al. 2014), and thought to have originated from a cross where the maternal donor was closely related to two diploid species, B. oleracea (CC, 2n = 18) and B. rapa (AA, 2n = 20). Here, molecular ...

  20. Gene expression analysis of flax seed development

    Science.gov (United States)

    2011-01-01

    Background Flax, Linum usitatissimum L., is an important crop whose seed oil and stem fiber have multiple industrial applications. Flax seeds are also well-known for their nutritional attributes, viz., omega-3 fatty acids in the oil and lignans and mucilage from the seed coat. In spite of the importance of this crop, there are few molecular resources that can be utilized toward improving seed traits. Here, we describe flax embryo and seed development and generation of comprehensive genomic resources for the flax seed. Results We describe a large-scale generation and analysis of expressed sequences in various tissues. Collectively, the 13 libraries we have used provide a broad representation of genes active in developing embryos (globular, heart, torpedo, cotyledon and mature stages) seed coats (globular and torpedo stages) and endosperm (pooled globular to torpedo stages) and genes expressed in flowers, etiolated seedlings, leaves, and stem tissue. A total of 261,272 expressed sequence tags (EST) (GenBank accessions LIBEST_026995 to LIBEST_027011) were generated. These EST libraries included transcription factor genes that are typically expressed at low levels, indicating that the depth is adequate for in silico expression analysis. Assembly of the ESTs resulted in 30,640 unigenes and 82% of these could be identified on the basis of homology to known and hypothetical genes from other plants. When compared with fully sequenced plant genomes, the flax unigenes resembled poplar and castor bean more than grape, sorghum, rice or Arabidopsis. Nearly one-fifth of these (5,152) had no homologs in sequences reported for any organism, suggesting that this category represents genes that are likely unique to flax. Digital analyses revealed gene expression dynamics for the biosynthesis of a number of important seed constituents during seed development. Conclusions We have developed a foundational database of expressed sequences and collection of plasmid clones that comprise

  1. Gene expression analysis of flax seed development

    Directory of Open Access Journals (Sweden)

    Sharpe Andrew

    2011-04-01

    Full Text Available Abstract Background Flax, Linum usitatissimum L., is an important crop whose seed oil and stem fiber have multiple industrial applications. Flax seeds are also well-known for their nutritional attributes, viz., omega-3 fatty acids in the oil and lignans and mucilage from the seed coat. In spite of the importance of this crop, there are few molecular resources that can be utilized toward improving seed traits. Here, we describe flax embryo and seed development and generation of comprehensive genomic resources for the flax seed. Results We describe a large-scale generation and analysis of expressed sequences in various tissues. Collectively, the 13 libraries we have used provide a broad representation of genes active in developing embryos (globular, heart, torpedo, cotyledon and mature stages seed coats (globular and torpedo stages and endosperm (pooled globular to torpedo stages and genes expressed in flowers, etiolated seedlings, leaves, and stem tissue. A total of 261,272 expressed sequence tags (EST (GenBank accessions LIBEST_026995 to LIBEST_027011 were generated. These EST libraries included transcription factor genes that are typically expressed at low levels, indicating that the depth is adequate for in silico expression analysis. Assembly of the ESTs resulted in 30,640 unigenes and 82% of these could be identified on the basis of homology to known and hypothetical genes from other plants. When compared with fully sequenced plant genomes, the flax unigenes resembled poplar and castor bean more than grape, sorghum, rice or Arabidopsis. Nearly one-fifth of these (5,152 had no homologs in sequences reported for any organism, suggesting that this category represents genes that are likely unique to flax. Digital analyses revealed gene expression dynamics for the biosynthesis of a number of important seed constituents during seed development. Conclusions We have developed a foundational database of expressed sequences and collection of plasmid

  2. Effects of helium ions of an early embryo on postembryonic leaf development in Brassica napus L.

    Energy Technology Data Exchange (ETDEWEB)

    Sakurai, Noboru [Tokyo Metropolitan Industrial Technology Research Institute, Tokyo (Japan); Minami, Harufumi [Tokyo Metropolitan Agricultural Experiment Station, Tachikawa, Tokyo (Japan); Shikazono, Naoya; Tanaka, Atsushi; Watanabe, Hiroshi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2000-12-01

    We examined postembryonic effects after helium ion and gamma ray irradiation of an isolated whole flower (a flower with pedicel) of Brassica napus through a flower organ culture, and estimated the effects of irradiation on embryogenesis in sexual reproductive stages. The whole flowers were irradiated with 30 Gy of helium ions and gamma rays in the early globular embryo and/or torpedo embryo stages. The helium ion and gamma ray irradiation of early globular embryos caused some drastic malformations in the first true leaves. Those malformations were classified into four types: cup-shaped, funnel-shaped, shrunk and the other varied leaves. The types were observed in 40% of plants that developed first true leaves. Both cup-shaped and funnel-shaped types were observed in over 15%. On the other hand, the irradiation of gamma rays of torpedo embryos caused sectors lacking chlorophyll in first true leaves. (author)

  3. Phosphate-assisted phytoremediation of arsenic by Brassica napus and Brassica juncea: Morphological and physiological response.

    Science.gov (United States)

    Niazi, Nabeel Khan; Bibi, Irshad; Fatimah, Ayesha; Shahid, Muhammad; Javed, Muhammad Tariq; Wang, Hailong; Ok, Yong Sik; Bashir, Safdar; Murtaza, Behzad; Saqib, Zulfiqar Ahmad; Shakoor, Muhammad Bilal

    2017-07-03

    In this study, we examined the potential role of phosphate (P; 0, 50, 100 mg kg -1 ) on growth, gas exchange attributes, and photosynthetic pigments of Brassica napus and Brassica juncea under arsenic (As) stress (0, 25, 50, 75 mg kg -1 ) in a pot experiment. Results revealed that phosphate supplementation (P100) to As-stressed plants significantly increased shoot As concentration, dry biomass yield, and As uptake, in addition to the improved morphological and gas exchange attributes and photosynthetic pigments over P0. However, phosphate-assisted increase in As uptake was substantially (up to two times) greater for B. napus, notably due to higher shoot As concentration and dry biomass yield, compared to B. juncea at the P100 level. While phosphate addition in soil (P100) led to enhanced shoot As concentration in B. juncea, it reduced shoot dry biomass, primarily after 50 and 75 mg kg -1 As treatments. The translocation factor and bioconcentration factor values of B. napus were higher than B. juncea for all As levels in the presence of phosphate. This study demonstrates that phosphate supplementation has a potential to improve As phytoextraction efficiency, predominantly for B. napus, by minimizing As-induced damage to plant growth, as well as by improving the physiological and photosynthetic attributes.

  4. Genetic and Cytological Analyses of the Natural Variation of Seed Number per Pod in Rapeseed (Brassica napus L.

    Directory of Open Access Journals (Sweden)

    Yuhua Yang

    2017-11-01

    Full Text Available Seed number is one of the key traits related to plant evolution/domestication and crop improvement/breeding. In rapeseed germplasm, the seed number per pod (SNPP shows a very wide variation from several to nearly 30; however, the underlying causations/mechanisms for this variation are poorly known. In the current study, the genetic and cytological bases for the natural variation of SNPP in rapeseed was firstly and systematically investigated using the representative four high-SNPP and five low-SNPP lines. The results of self- or cross-pollination experiment between the high- and low-SNPP lines showed that the natural variation of SNPP was mainly controlled by maternal effect (mean = 0.79, followed by paternal effect (mean = 0.21. Analysis of the data using diploid seed embryo–cytoplasmic–maternal model further showed that the maternal genotype, embryo, and cytoplasm effects, respectively, explained 47.6, 35.2, and 7.5% of the genetic variance. In addition, the analysis of combining ability showed that for the SNPP of hybrid F1 was mainly determined by the general combining ability of parents (63.0%, followed by special combining ability of parental combination (37.0%. More importantly, the cytological observation showed that the SNPP difference between the high- and low-SNPP lines was attributable to the accumulative differences in its components. Of which, the number of ovules, the proportion of fertile ovules, the proportion of fertile ovules to be fertilized, and the proportion of fertilized ovules to develop into seeds accounted for 30.7, 18.2, 7.1, and 43.9%, respectively. The accordant results of both genetic and cytological analyses provide solid evidences and systematic insights to further understand the mechanisms underlying the natural variation of SNPP, which will facilitate the development of high-yield cultivars in rapeseed.

  5. Chelate-assisted phytoextraction: effect of EDTA and EDDS on copper uptake by Brassica napus L.

    Directory of Open Access Journals (Sweden)

    TIJANA M. ZEREMSKI-ŠKORIĆ

    2010-09-01

    Full Text Available Chelate-assisted phytoextraction is proposed as an effective approach for the removal of heavy metals from contaminated soil through the use of high biomass plants. The aim of the present study was to compare the efficiency of the two chelators: EDTA and biodegradable EDDS in enhancing Cu uptake and translocation by Brassica napus L. grown on moderately contaminated soil and treated with increasing concentrations of EDTA or EDDS. Increasing amounts of EDDS caused serious growth suppression of B. napus and an increase in shoot metal concentrations. Growth suppression limited the actual amount of phytoextracted Cu at high concentrations of EDDS. The maximum amount of extracted Cu was achieved by the application of 8.0 and 4.0+4.0 mmol kg-1 EDDS. The shoot Cu concentrations after EDTA application were much lower than with EDDS at the same doses. According to these experiments, EDTA does not appear to be an efficient amendment if Cu phytoextraction with B. napus is considered but EDDS is.

  6. Hydroponics versus field lysimeter studies of urea, ammonium and nitrate uptake by oilseed rape (Brassica napus L.).

    Science.gov (United States)

    Arkoun, Mustapha; Sarda, Xavier; Jannin, Laëtitia; Laîné, Philippe; Etienne, Philippe; Garcia-Mina, José-Maria; Yvin, Jean-Claude; Ourry, Alain

    2012-09-01

    N-fertilizer use efficiencies are affected by their chemical composition and suffer from potential N-losses by volatilization. In a field lysimeter experiment, (15)N-labelled fertilizers were used to follow N uptake by Brassica napus L. and assess N-losses by volatilization. Use of urea with NBPT (urease inhibitor) showed the best efficiency with the lowest N losses (8% of N applied compared with 25% with urea alone). Plants receiving ammonium sulphate, had similar yield achieved through a better N mobilization from vegetative tissues to the seeds, despite a lower N uptake resulting from a higher volatilization (43% of applied N). Amounts of (15)N in the plant were also higher when plants were fertilized with ammonium nitrate but N-losses reached 23% of applied N. In parallel, hydroponic experiments showed a deleterious effect of ammonium and urea on the growth of oilseed rape. This was alleviated by the nitrate supply, which was preferentially taken up. B. napus was also characterized by a very low potential for urea uptake. BnDUR3 and BnAMT1, encoding urea and ammonium transporters, were up-regulated by urea, suggesting that urea-grown plants suffered from nitrogen deficiency. The results also suggested a role for nitrate as a signal for the expression of BnDUR3, in addition to its role as a major nutrient. Overall, the results of the hydroponic study showed that urea itself does not contribute significantly to the N nutrition of oilseed rape. Moreover, it may contribute indirectly since a better use efficiency for urea fertilizer, which was further increased by the application of a urease inhibitor, was observed in the lysimeter study.

  7. Analysis of the a genome genetic diversity among brassica napus, b. rapa and b. juncea accessions using specific simple sequence repeat markers

    International Nuclear Information System (INIS)

    Tian, H.; Yan, J.; Zhang, R.; Guo, Y.; Hu, S.; Channa, S.A.

    2017-01-01

    This investigation was aimed at evaluating the genetic diversity of 127 accessions among Brassica napus, B. rapa, and B. juncea by using 15 pairs of the A genome specific simple sequence repeat primers. These 127 accessions could be clearly separated into three groups by cluster analysis, principal component analysis, and population structure analysis separately, and the results analyzed by the three methods were very similar. Group I comprised of mainly B. napus accessions and the most of B. juncea accessions formed Group II, Group III included nearly all of the B. rapa accessions. The result showed that 36.86% of the variance was due to significant differences among populations of species, indicated that abundance genetic diversity existed among the A genome of B. napus, B. rapa, and B. juncea accessions. B. napus, B. rapa, and B. juncea have the abundant genetic diversity in the A genome, and some elite genes can be used to broaden the genetic base of them, especially for B. napus, in future rapeseed breeding program. (author)

  8. Quantitative Trait Locus Mapping of Salt Tolerance and Identification of Salt-Tolerant Genes in Brassica napus L

    Directory of Open Access Journals (Sweden)

    Lina Lang

    2017-06-01

    Full Text Available Salinity stress is one of typical abiotic stresses that seriously limit crop production. In this study, a genetic linkage map based on 532 molecular markers covering 1341.1 cM was constructed to identify the loci associated with salt tolerance in Brassica napus. Up to 45 quantitative trait loci (QTLs for 10 indicators were identified in the F2:3 populations. These QTLs can account for 4.80–51.14% of the phenotypic variation. A major QTL, qSPAD5 on LG5 associated with chlorophyll can be detected in three replicates. Two intron polymorphic (IP markers in this QTL region were developed successfully to narrow down the QTL location to a region of 390 kb. A salt tolerance related gene Bra003640 was primary identified as the candidate gene in this region. The full length of the candidate gene was 1,063 bp containing three exons and two introns in B. napus L. The open reading frame (ORF is 867 bp and encodes 287 amino acids. Three amino acid differences (34, 54, and 83 in the conserved domain (B-box were identified. RT-qPCR analysis showed that the gene expression had significant difference between the two parents. The study laid great foundation for salt tolerance related gene mapping and cloning in B. napus L.

  9. Genome-Wide Identification and Expression Analysis of WRKY Transcription Factors under Multiple Stresses in Brassica napus.

    Science.gov (United States)

    He, Yajun; Mao, Shaoshuai; Gao, Yulong; Zhu, Liying; Wu, Daoming; Cui, Yixin; Li, Jiana; Qian, Wei

    2016-01-01

    WRKY transcription factors play important roles in responses to environmental stress stimuli. Using a genome-wide domain analysis, we identified 287 WRKY genes with 343 WRKY domains in the sequenced genome of Brassica napus, 139 in the A sub-genome and 148 in the C sub-genome. These genes were classified into eight groups based on phylogenetic analysis. In the 343 WRKY domains, a total of 26 members showed divergence in the WRKY domain, and 21 belonged to group I. This finding suggested that WRKY genes in group I are more active and variable compared with genes in other groups. Using genome-wide identification and analysis of the WRKY gene family in Brassica napus, we observed genome duplication, chromosomal/segmental duplications and tandem duplication. All of these duplications contributed to the expansion of the WRKY gene family. The duplicate segments that were detected indicated that genome duplication events occurred in the two diploid progenitors B. rapa and B. olearecea before they combined to form B. napus. Analysis of the public microarray database and EST database for B. napus indicated that 74 WRKY genes were induced or preferentially expressed under stress conditions. According to the public QTL data, we identified 77 WRKY genes in 31 QTL regions related to various stress tolerance. We further evaluated the expression of 26 BnaWRKY genes under multiple stresses by qRT-PCR. Most of the genes were induced by low temperature, salinity and drought stress, indicating that the WRKYs play important roles in B. napus stress responses. Further, three BnaWRKY genes were strongly responsive to the three multiple stresses simultaneously, which suggests that these 3 WRKY may have multi-functional roles in stress tolerance and can potentially be used in breeding new rapeseed cultivars. We also found six tandem repeat pairs exhibiting similar expression profiles under the various stress conditions, and three pairs were mapped in the stress related QTL regions

  10. Genome-Wide Identification and Expression Analysis of WRKY Transcription Factors under Multiple Stresses in Brassica napus.

    Directory of Open Access Journals (Sweden)

    Yajun He

    Full Text Available WRKY transcription factors play important roles in responses to environmental stress stimuli. Using a genome-wide domain analysis, we identified 287 WRKY genes with 343 WRKY domains in the sequenced genome of Brassica napus, 139 in the A sub-genome and 148 in the C sub-genome. These genes were classified into eight groups based on phylogenetic analysis. In the 343 WRKY domains, a total of 26 members showed divergence in the WRKY domain, and 21 belonged to group I. This finding suggested that WRKY genes in group I are more active and variable compared with genes in other groups. Using genome-wide identification and analysis of the WRKY gene family in Brassica napus, we observed genome duplication, chromosomal/segmental duplications and tandem duplication. All of these duplications contributed to the expansion of the WRKY gene family. The duplicate segments that were detected indicated that genome duplication events occurred in the two diploid progenitors B. rapa and B. olearecea before they combined to form B. napus. Analysis of the public microarray database and EST database for B. napus indicated that 74 WRKY genes were induced or preferentially expressed under stress conditions. According to the public QTL data, we identified 77 WRKY genes in 31 QTL regions related to various stress tolerance. We further evaluated the expression of 26 BnaWRKY genes under multiple stresses by qRT-PCR. Most of the genes were induced by low temperature, salinity and drought stress, indicating that the WRKYs play important roles in B. napus stress responses. Further, three BnaWRKY genes were strongly responsive to the three multiple stresses simultaneously, which suggests that these 3 WRKY may have multi-functional roles in stress tolerance and can potentially be used in breeding new rapeseed cultivars. We also found six tandem repeat pairs exhibiting similar expression profiles under the various stress conditions, and three pairs were mapped in the stress related

  11. Effect of GA3 treatment on seed development and seed-related gene expression in grape.

    Directory of Open Access Journals (Sweden)

    Chenxia Cheng

    Full Text Available The phytohormone gibberellic acid (GA3 is widely used in the table grape industry to induce seedlessness in seeded varieties. However, there is a paucity of information concerning the mechanisms by which GAs induce seedlessness in grapes.In an effort to systematically analyze the cause of this GA3-induced seed abortion, we conducted an in depth characterization of two seeded grape cultivars ('Kyoho' and 'Red Globe', along with a seedless cultivar ('Thompson Seedless', following treatment with GA3. In a similar fashion to the seedless control, which exhibited GA3-induced abortion of the seeds 9 days after full bloom (DAF, both 'Kyoho' and 'Red Globe' seeded varieties exhibited complete abortion of the seeds 15 DAF when treated with GA3. Morphological analyses indicated that while fertilization appeared to occur normally following GA3 treatment, as well as in the untreated seedless control cultivar, seed growth eventually ceased. In addition, we found that GA3 application had an effect on redox homeostasis, which could potentially cause cell damage and subsequent seed abortion. Furthermore, we carried out an analysis of antioxidant enzyme activities, as well as transcript levels from various genes believed to be involved in seed development, and found several differences between GA3-treated and untreated controls.Therefore, it seems that the mechanisms driving GA3-induced seedlessness are similar in both seeded and seedless cultivars, and that the observed abortion of seeds may result at least in part from a GA3-induced increase in cell damage caused by reactive oxygen species, a decrease in antioxidant enzymatic activities, and an alteration of the expression of genes related to seed development.

  12. Citric acid improves lead (pb) phytoextraction in brassica napus L. by mitigating pb-induced morphological and biochemical damages.

    Science.gov (United States)

    Shakoor, Muhammad Bilal; Ali, Shafaqat; Hameed, Amjad; Farid, Mujahid; Hussain, Sabir; Yasmeen, Tahira; Najeeb, Ullah; Bharwana, Saima Aslam; Abbasi, Ghulam Hasan

    2014-11-01

    Phytoextraction is an environmentally friendly and a cost-effective strategy for remediation of heavy metal contaminated soils. However, lower bioavailability of some of the metals in polluted environments e.g. lead (Pb) is a major constraint of phytoextraction process that could be overcome by applying organic chelators. We conducted a glasshouse experiment to evaluate the role of citric acid (CA) in enhancing Pb phytoextraction. Brassica napus L. seedlings were grown in hydroponic media and exposed to various treatments of Pb (50 and 100 μM) as alone or in combination with CA (2.5mM) for six weeks. Pb-induced damage in B. napus toxicity was evident from elevated levels of malondialdehyde (MDA) and H2O2 that significantly inhibited plant growth, biomass accumulation, leaf chlorophyll contents and gas exchange parameters. Alternatively, CA application to Pb-stressed B. napus plants arrested lipid membrane damage by limiting MDA and H2O2 production and by improving antioxidant enzyme activities. In addition, CA significantly increased the Pb accumulation in B. napus plants. The study concludes that CA has a potential to improve Pb phytoextraction without damaging plant growth. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Effects of plant densities on yield, yield components and some morphological characters of two cultivators of oilseed rape (Brassica napus L.)

    DEFF Research Database (Denmark)

    Al-Barzinjy, M.; Stölen, O.; Christiansen, Jørgen Lindskrog

    2003-01-01

    Effects of Plant Densities on Yield, Yield Components and some Morphological Characters of two Cultivators of Oilseed Rape (Brassica napus L.)......Effects of Plant Densities on Yield, Yield Components and some Morphological Characters of two Cultivators of Oilseed Rape (Brassica napus L.)...

  14. Induction of microspore embryogenesis in Brassica napus L. by gamma irradiation and ethanol stress

    Energy Technology Data Exchange (ETDEWEB)

    Pechan, P. M. [Max Planck Institute für Zuchtungsforschung, Köln (Germany); Keller, W. A.

    1989-11-15

    Summary Gamma irradiation and ethanol stress treatments redirected pollen development to an embryo formation pathway in Brassica napus. Less than 0.01% of microspores developed into embryos at 25°C compared to approximately 2% at 32°C. However, subsequent to gamma irradiation and ethanol treatments up to 1% and 0.7% of microspores formed embryos at 25°C, respectively. Gamma irradiation also enhanced embryogenesis at 32°C. The possible importance of these findings is discussed in relation to microspore embryogenesis.

  15. Induction of microspore embryogenesis in Brassica napus L. by gamma irradiation and ethanol stress

    International Nuclear Information System (INIS)

    Pechan, P.M.; Keller, W.A.

    1989-01-01

    Summary Gamma irradiation and ethanol stress treatments redirected pollen development to an embryo formation pathway in Brassica napus. Less than 0.01% of microspores developed into embryos at 25°C compared to approximately 2% at 32°C. However, subsequent to gamma irradiation and ethanol treatments up to 1% and 0.7% of microspores formed embryos at 25°C, respectively. Gamma irradiation also enhanced embryogenesis at 32°C. The possible importance of these findings is discussed in relation to microspore embryogenesis

  16. Proteome profiling of flax (Linum usitatissimum) seed: characterization of functional metabolic pathways operating during seed development.

    Science.gov (United States)

    Barvkar, Vitthal T; Pardeshi, Varsha C; Kale, Sandip M; Kadoo, Narendra Y; Giri, Ashok P; Gupta, Vidya S

    2012-12-07

    Flax (Linum usitatissimum L.) seeds are an important source of food and feed due to the presence of various health promoting compounds, making it a nutritionally and economically important plant. An in-depth analysis of the proteome of developing flax seed is expected to provide significant information with respect to the regulation and accumulation of such storage compounds. Therefore, a proteomic analysis of seven seed developmental stages (4, 8, 12, 16, 22, 30, and 48 days after anthesis) in a flax variety, NL-97 was carried out using a combination of 1D-SDS-PAGE and LC-MSE methods. A total 1716 proteins were identified and their functional annotation revealed that a majority of them were involved in primary metabolism, protein destination, storage and energy. Three carbon assimilatory pathways appeared to operate in flax seeds. Reverse transcription quantitative PCR of selected 19 genes was carried out to understand their roles during seed development. Besides storage proteins, methionine synthase, RuBisCO and S-adenosylmethionine synthetase were highly expressed transcripts, highlighting their importance in flax seed development. Further, the identified proteins were mapped onto developmental seed specific expressed sequence tag (EST) libraries of flax to obtain transcriptional evidence and 81% of them had detectable expression at the mRNA level. This study provides new insights into the complex seed developmental processes operating in flax.

  17. The Vascular Pathogen Verticillium longisporum Does Not Affect Water Relations and Plant Responses to Drought Stress of Its Host, Brassica napus.

    Science.gov (United States)

    Lopisso, Daniel Teshome; Knüfer, Jessica; Koopmann, Birger; von Tiedemann, Andreas

    2017-04-01

    Verticillium longisporum is a host-specific vascular pathogen of oilseed rape (Brassica napus L.) that causes economic crop losses by impairing plant growth and inducing premature senescence. This study investigates whether plant damage through Verticillium stem striping is due to impaired plant water relations, whether V. longisporum affects responses of a susceptible B. napus variety to drought stress, and whether drought stress, in turn, affects plant responses to V. longisporum. Two-factorial experiments on a susceptible cultivar of B. napus infected or noninfected with V. longisporum and exposed to three watering levels (30, 60, and 100% field capacity) revealed that drought stress and V. longisporum impaired plant growth by entirely different mechanisms. Although both stresses similarly affected plant growth parameters (plant height, hypocotyl diameter, and shoot and root dry matter), infection of B. napus with V. longisporum did not affect any drought-related physiological or molecular genetic plant parameters, including transpiration rate, stomatal conductance, photosynthesis rate, water use efficiency, relative leaf water content, leaf proline content, or the expression of drought-responsive genes. Thus, this study provides comprehensive physiological and molecular genetic evidence explaining the lack of wilt symptoms in B. napus infected with V. longisporum. Likewise, drought tolerance of B. napus was unaffected by V. longisporum, as was the level of disease by drought conditions, thus excluding a concerted action of both stresses in the field. Although it is evident that drought and vascular infection with V. longisporum impair plant growth by different mechanisms, it remains to be determined by which other factors V. longisporum causes crop loss.

  18. A- or C-chromosomes, does it matter for the transfer of transgenes from ¤Brassica napus¤

    DEFF Research Database (Denmark)

    Tomiuk, J.; Hauser, T.P.; Bagger Jørgensen, Rikke

    2000-01-01

    of herbicide-tolerant plants was explained by selection against the C-chromosomes of B. napus in favor of the homeologous ii-chromosomes. Obviously, such C-chromosomes could be potential candidates as safe integration sites for transgenes. We considered these safety aspects using a simple population genetic...... model. Theory and experiments, however, do not favor the chromosomes of B. napus as safe candidates with respect to the introgression of transgenes into wild populations of B. rapa....

  19. Homoeologous exchange is a major cause of gene presence/absence variation in the amphidiploid Brassica napus.

    Science.gov (United States)

    Hurgobin, Bhavna; Golicz, Agnieszka A; Bayer, Philipp E; Chan, Chon-Kit Kenneth; Tirnaz, Soodeh; Dolatabadian, Aria; Schiessl, Sarah V; Samans, Birgit; Montenegro, Juan D; Parkin, Isobel A P; Pires, J Chris; Chalhoub, Boulos; King, Graham J; Snowdon, Rod; Batley, Jacqueline; Edwards, David

    2018-07-01

    Homoeologous exchanges (HEs) have been shown to generate novel gene combinations and phenotypes in a range of polyploid species. Gene presence/absence variation (PAV) is also a major contributor to genetic diversity. In this study, we show that there is an association between these two events, particularly in recent Brassica napus synthetic accessions, and that these represent a novel source of genetic diversity, which can be captured for the improvement of this important crop species. By assembling the pangenome of B. napus, we show that 38% of the genes display PAV behaviour, with some of these variable genes predicted to be involved in important agronomic traits including flowering time, disease resistance, acyl lipid metabolism and glucosinolate metabolism. This study is a first and provides a detailed characterization of the association between HEs and PAVs in B. napus at the pangenome level. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  20. High-throughput multiplex cpDNA resequencing clarifies the genetic diversity and genetic relationships among Brassica napus, Brassica rapa and Brassica oleracea.

    Science.gov (United States)

    Qiao, Jiangwei; Cai, Mengxian; Yan, Guixin; Wang, Nian; Li, Feng; Chen, Binyun; Gao, Guizhen; Xu, Kun; Li, Jun; Wu, Xiaoming

    2016-01-01

    Brassica napus (rapeseed) is a recent allotetraploid plant and the second most important oilseed crop worldwide. The origin of B. napus and the genetic relationships with its diploid ancestor species remain largely unresolved. Here, chloroplast DNA (cpDNA) from 488 B. napus accessions of global origin, 139 B. rapa accessions and 49 B. oleracea accessions were populationally resequenced using Illumina Solexa sequencing technologies. The intraspecific cpDNA variants and their allelic frequencies were called genomewide and further validated via EcoTILLING analyses of the rpo region. The cpDNA of the current global B. napus population comprises more than 400 variants (SNPs and short InDels) and maintains one predominant haplotype (Bncp1). Whole-genome resequencing of the cpDNA of Bncp1 haplotype eliminated its direct inheritance from any accession of the B. rapa or B. oleracea species. The distribution of the polymorphism information content (PIC) values for each variant demonstrated that B. napus has much lower cpDNA diversity than B. rapa; however, a vast majority of the wild and cultivated B. oleracea specimens appeared to share one same distinct cpDNA haplotype, in contrast to its wild C-genome relatives. This finding suggests that the cpDNA of the three Brassica species is well differentiated. The predominant B. napus cpDNA haplotype may have originated from uninvestigated relatives or from interactions between cpDNA mutations and natural/artificial selection during speciation and evolution. These exhaustive data on variation in cpDNA would provide fundamental data for research on cpDNA and chloroplasts. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  1. DNA Methylation Alterations at 5'-CCGG Sites in the Interspecific and Intraspecific Hybridizations Derived from Brassica rapa and B. napus.

    Directory of Open Access Journals (Sweden)

    Wanshan Xiong

    Full Text Available DNA methylation is an important regulatory mechanism for gene expression that involved in the biological processes of development and differentiation in plants. To investigate the association of DNA methylation with heterosis in Brassica, a set of intraspecific hybrids in Brassica rapa and B. napus and interspecific hybrids between B. rapa and B. napus, together with parental lines, were used to monitor alterations in cytosine methylation at 5'-CCGG sites in seedlings and buds by methylation-sensitive amplification polymorphism analysis. The methylation status of approximately a quarter of the methylation sites changed between seedlings and buds. These alterations were related closely to the genomic structure and heterozygous status among accessions. The methylation status in the majority of DNA methylation sites detected in hybrids was the same as that in at least one of the parental lines in both seedlings and buds. However, the association between patterns of cytosine methylation and heterosis varied among different traits and between tissues in hybrids of Brassica, although a few methylation loci were associated with heterosis. Our data suggest that changes in DNA methylation at 5'-CCGG sites are not associated simply with heterosis in the interspecific and intraspecific hybridizations derived from B. rapa and B. napus.

  2. Changes in seed weight in response to different sources: sink ratio in oilseed rape

    Directory of Open Access Journals (Sweden)

    Francisco M Iglesias

    2014-06-01

    Full Text Available Little knowledge exists about the degree of source, sink and source: sink limitations on mean seed weight in oilseed rape (Brassica napus L.. The objective of this work was to analyze the nature and magnitude on seed weight response to assimilate availability during the effective seed-filling period in oilseed rape. Three Argentinean varieties, Eclipse, Impulse, and Master, were grown under field conditions, and at the beginning of the effective seed filling period, a broad range of source: sink manipulation combinations were produced. Source manipulations consisted of two incoming radiation (R level reductions: 0% (Rn and ~50% (Rs combined with three different sources: sink treatments were applied: C, control; PR, ~50% pod removal, and D, 100% defoliation. Rs significantly reduced yield (15% and MSW (12% with respect to Rn, without significant effects on the rest of the sub yield components. Source:sink manipulation treatments significantly affected all yield components. PR diminished yield by 29%, reducing ca. 40% seeds pl-1 by reductions pods pl-1 (41% with respect to Rn, whereas PR increased MSW by 19%, counterbalancing the reduction in seeds pl-1 and thereby in yield. When considering different seed positions along the main raceme, Rs reduced MSW by 12% independently of seed positions onto the raceme. On the contrary, PR increased MSW in average 17% with respect to C. Results reported here suggest that oilseed rape has source: sink co-limitation during the effective seed filling period, which is apparently higher than wheat and lower than maize.

  3. The receptor-like kinase SOBIR1 interacts with Brassica napus LepR3 and is required for Leptosphaeria maculans AvrLm1-triggered immunity

    Directory of Open Access Journals (Sweden)

    Lisong eMa

    2015-10-01

    Full Text Available AbstractThe fungus Leptosphaeria maculans (L. maculans is the causal agent of blackleg disease of canola/oilseed rape (Brassica napus worldwide. We previously reported cloning of the B. napus blackleg resistance gene, LepR3, which encodes a receptor-like protein. LepR3 triggers localised cell death upon recognition of its cognate Avr protein, AvrLm1. Here, we exploited the Nicotiana benthamiana model plant to investigate the recognition mechanism of AvrLm1 by LepR3. Co-expression of the LepR3/AvrLm1 gene pair in N. benthamiana resulted in development of a hypersensitive response (HR. However, a truncated AvrLm1 lacking its indigenous signal peptide was compromised in its ability to induce LepR3-mediated HR, indicating that AvrLm1 is perceived by LepR3 extracellularly. Structure-function analysis of the AvrLm1 protein revealed that the C-terminal region of AvrLm1 was required for LepR3-mediated HR in N. benthamiana and for resistance to L. maculans in B. napus. LepR3 was shown to be physically interacting with the B. napus receptor like kinase, SOBIR1 (BnSOBIR1. Silencing of NbSOBIR1 or NbSERK3 (BAK1 compromised LepR3-AvrLm1-dependent HR in N. benthamiana, suggesting that LepR3-mediated resistance to L. maculans in B. napus requires SOBIR1 and BAK1/SERK3. Using this model system, we determined that BnSOBIR1 and SERK3/BAK1 are essential partners in the LepR3 signalling complex and were able to define the AvrLm1 effector domain.

  4. Seed development and carbohydrates

    NARCIS (Netherlands)

    Wittich, P.E.

    1998-01-01

    Seeds assure the plant the onset of a next generation and a way of dispersal. They consist of endosperm and an embryo (originating from gametophytic tissue), enveloped by a seed coat (sporophytic tissue). Plants generate different types of seeds. For instance, the endosperm may either be

  5. Impact of biogenic terpene emissions from Brassica napus on tropospheric ozone over Saxony (Germany): numerical investigation.

    Science.gov (United States)

    Renner, Eberhard; Münzenberg, Annette

    2003-01-01

    The role of biogenic emissions in tropospheric ozone production is currently under discussion and major aspects are not well understood yet. This study aims towards the estimation of the influence of biogenic emissions on tropospheric ozone concentrations over Saxony in general and of biogenic emissions from brassica napus in special. MODELLING TOOLS: The studies are performed by utilizing a coupled numerical modelling system consisting of the meteorological model METRAS and the chemistry transport model MUSCAT. For the chemical part, the Euro-RADM algorithm is used. EMISSIONS: Anthropogenic and biogenic emissions are taken into account. The anthropogenic emissions are introduced by an emission inventory. Biogenic emissions, VOC and NO, are calculated within the chemical transport model MUSCAT at each time step and in each grid cell depending on land use type and on the temperature. The emissions of hydrocarbons from forest areas as well as biogenic NO especially from agricultural grounds are considered. Also terpene emissions from brassica napus fields are estimated. SIMULATION SETUP AND METEOROLOGICAL CONDITIONS: The simulations were performed over an area with an extension of 160 x 140 km2 which covers the main parts of Saxony and neighboring areas of Brandenburg, Sachsen-Anhalt and Thuringia. Summer smog with high ozone concentrations can be expected during high pressure conditions on hot summer days. Typical meteorological conditions for such cases were introduced in an conceptual way. It is estimated that biogenic emissions change tropospheric ozone concentrations in a noticeable way (up to 15% to 20%) and, therefore, should not be neglected in studies about tropospheric ozone. Emissions from brassica napus do have a moderate potential to enhance tropospheric ozone concentrations, but emissions are still under consideration and, therefore, results vary to a high degree. Summing up, the effect of brassica napus terpene emissions on ozone concentrations is

  6. Seed coat development in Velloziaceae: primary homology assessment and insights on seed coat evolution.

    Science.gov (United States)

    Sousa-Baena, Mariane S; de Menezes, Nanuza L

    2014-09-01

    Seed coat characteristics have historically been used to infer taxonomic relationships and are a potential source of characters for phylogenetic reconstruction. In particular, seed coat morphoanatomy has never been studied in detail in Velloziaceae. One character based on seed surface microsculpture has been used in phylogenies, but was excluded from recent studies owing to problems in primary homology. This work aimed to clarify the origin and general composition of seed coat cell layers in Velloziaceae and to propose hypotheses of primary homology among seed characters.• Seed coat development of 24 Velloziaceae species, comprising nine genera, and one species of Pandanaceae (outgroup) was studied using standard anatomical methods. Developmental data were interpreted in the light of a recently published phylogeny.• Eight types of seed coat were identified. Whereas the most common type has four distinct cell layers (two-layered tegmen and testa), we encountered much more variation in seed coat composition than previously reported, the analysis of which revealed some potential synapomorphies. For instance, an exotesta with spiral thickenings may be a synapomorphy of Barbacenia.• Our results showed that the character states previously used in phylogenies are not based on homologous layers and that the same state was misattributed to species exhibiting quite different seed coats. This study is a first step toward a better understanding of seed coat structure evolution in Velloziaceae. © 2014 Botanical Society of America, Inc.

  7. Exposure to clothianidin seed-treated canola has no long-term impact on honey bees.

    Science.gov (United States)

    Cutler, G Christopher; Scott-Dupree, Cynthia D

    2007-06-01

    We conducted a long-term investigation to ascertain effects on honey bee, Apis mellifera L., colonies during and after exposure to flowering canola, Brassica napus variety Hyola 420, grown from clothianidin-treated seed. Colonies were placed in the middle of 1-ha clothianidin seed-treated or control canola fields for 3 wk during bloom, and thereafter they were moved to a fall apiary. There were four treated and four control fields, and four colonies per field, giving 32 colonies total. Bee mortality, worker longevity, and brood development were regularly assessed in each colony for 130 d from initial exposure to canola. Samples of honey, beeswax, pollen, and nectar were regularly collected for 130 d, and the samples were analyzed for clothianidin residues by using high-performance liquid chromatography with tandem mass spectrometry detection. Overall, no differences in bee mortality, worker longevity, or brood development occurred between control and treatment groups throughout the study. Weight gains of and honey yields from colonies in treated fields were not significantly different from those in control fields. Although clothianidin residues were detected in honey, nectar, and pollen from colonies in clothianidin-treated fields, maximum concentrations detected were 8- to 22-fold below the reported no observable adverse effects concentration. Clothianidin residues were not detected in any beeswax sample. Assessment of overwintered colonies in spring found no differences in those originally exposed to treated or control canola. The results show that honey bee colonies will, in the long-term, be unaffected by exposure to clothianidin seed-treated canola.

  8. Micro-pressing of rapeseed (Brassica napus L. and Arabidopsis thaliana seeds for evaluation of the oil extractability

    Directory of Open Access Journals (Sweden)

    Savoire Raphaëlle

    2010-03-01

    Full Text Available Pressing is a crucial step in the crushing process of rapeseed seeds, regarding its major effect on the oil extraction yield, the energy consumption and the quality of the meal. In order to study and model in a rigorous way the behaviour of rapeseed seeds, and the oil extraction during pressing, the potential of a micro-pressing technique using a instrumented micro press adapted to quantities of seeds as low as 10 g for rapeseed and 3 g for Arabidopsis thaliana was examined and discussed. Using a phenomenological model, data from the pressing process and the material behaviour (compressibility modules were obtained with a good precision, highlighting small differences between samples. The well-known positive effect of the temperature on the oil extraction yield was confirmed with A. thaliana. Micro-pressing of ground and cooked rapeseed seeds did not lead to the results usually reported in the literature for continuous pressing. The results strongly suggest that the performance of the static micro-pressing is related to the macro-and micro-structure of seeds and is less sensitive to the moisture than continuous pressing. Further experiments are needed to confirm that the micro-pressing could be an effective tool for predicting the extractability of oil and therefore, contribute to plant breeding programmes in the future.

  9. Comparative transcriptome analysis reveals carbohydrate and lipid metabolism blocks in Brassica napus L. male sterility induced by the chemical hybridization agent monosulfuron ester sodium.

    Science.gov (United States)

    Li, Zhanjie; Cheng, Yufeng; Cui, Jianmin; Zhang, Peipei; Zhao, Huixian; Hu, Shengwu

    2015-03-17

    Chemical hybridization agents (CHAs) are often used to induce male sterility for the production of hybrid seeds. We previously discovered that monosulfuron ester sodium (MES), an acetolactate synthase (ALS) inhibitor of the herbicide sulfonylurea family, can induce rapeseed (Brassica napus L.) male sterility at approximately 1% concentration required for its herbicidal activity. To find some clues to the mechanism of MES inducing male sterility, the ultrastructural cytology observations, comparative transcriptome analysis, and physiological analysis on carbohydrate content were carried out in leaves and anthers at different developmental stages between the MES-treated and mock-treated rapeseed plants. Cytological analysis revealed that the plastid ultrastructure was abnormal in pollen mother cells and tapetal cells in male sterility anthers induced by MES treatment, with less material accumulation in it. However, starch granules were observed in chloroplastids of the epidermis cells in male sterility anthers. Comparative transcriptome analysis identified 1501 differentially expressed transcripts (DETs) in leaves and anthers at different developmental stages, most of these DETs being localized in plastid and mitochondrion. Transcripts involved in metabolism, especially in carbohydrate and lipid metabolism, and cellular transport were differentially expressed. Pathway visualization showed that the tightly regulated gene network for metabolism was reprogrammed to respond to MES treatment. The results of cytological observation and transcriptome analysis in the MES-treated rapeseed plants were mirrored by carbohydrate content analysis. MES treatment led to decrease in soluble sugars content in leaves and early stage buds, but increase in soluble sugars content and decrease in starch content in middle stage buds. Our integrative results suggested that carbohydrate and lipid metabolism were influenced by CHA-MES treatment during rapeseed anther development, which might

  10. Glyphostate-drift but not herbivory alters the rate of transgene flow from single and stacked trait transgenic canola (Brassica napus L.) to non-transgenic B. napus and B. rapa

    Science.gov (United States)

    While transgenic plants can offer agricultural benefits, the escape of transgenes out of crop fields is a major environmental concern. Escape of transgenic herbicide resistance has occurred between transgenic Brassica napus (canola) and weedy species in numerous locations. In t...

  11. Substoichiometrically different mitotypes coexist in mitochondrial genomes of Brassica napus L.

    Directory of Open Access Journals (Sweden)

    Jianmei Chen

    Full Text Available Cytoplasmic male sterility (CMS has been identified in numerous plant species. Brassica napus CMS plants, such as Polima (pol, MI, and Shaan 2A, have been identified independently by different researchers with different materials in conventional breeding processes. How this kind of CMS emerges is unclear. Here, we report the mitochondrial genome sequence of the prevalent mitotype in the most widely used pol-CMS line, which has a length of 223,412 bp and encodes 34 proteins, 3 ribosomal RNAs, and 18 tRNAs, including two near identical copies of trnH. Of these 55 genes, 48 were found to be identical to their equivalents in the "nap" cytoplasm. The nap mitotype carries only one copy of trnH, and the sequences of five of the six remaining genes are highly similar to their equivalents in the pol mitotype. Forty-four open reading frames (ORFs with unknown function were detected, including two unique to the pol mitotype (orf122 and orf132. At least five rearrangement events are required to account for the structural differences between the pol and nap sequences. The CMS-related orf224 neighboring region (∼5 kb rearranged twice. PCR profiling based on mitotype-specific primer pairs showed that both mitotypes are present in B. napus cultivars. Quantitative PCR showed that the pol cytoplasm consists mainly of the pol mitotype, and the nap mitotype is the main genome of nap cytoplasm. Large variation in the copy number ratio of mitotypes was found, even among cultivars sharing the same cytoplasm. The coexistence of mitochondrial mitotypes and substoichiometric shifting can explain the emergence of CMS in B. napus.

  12. Seed-vectored endophytic bacteria modulate development of rice seedlings.

    Science.gov (United States)

    Verma, S K; Kingsley, K; Irizarry, I; Bergen, M; Kharwar, R N; White, J F

    2017-06-01

    The aim of the present study was to evaluate the effects of the removal of indigenous bacteria from rice seeds on seedling growth and development. Here we report the presence of three indigenous endophytic bacteria in rice seeds that play important roles in modulating seedling development (shoot and root lengths, and formation of root hairs and secondary roots) and defence against pathogens. Seed-associated bacteria were removed using surface sterilization with NaOCl (bleach) followed by antibiotic treatment. When bacteria were absent, growth of seedlings in terms of root hair development and overall seedling size was less than that of seedlings that contained bacteria. Reactive oxygen staining of seedlings showed that endophytic bacteria became intracellular in root parenchyma cells and root hairs. Roots containing endophytic bacteria were seen to stain densely for reactive oxygen, while roots free of bacteria stained lightly for reactive oxygen. Bacteria were isolated and identified as Enterobacter asburiae (VWB1), Pantoea dispersa (VWB2) and Pseudomonas putida (VWB3) by 16S rDNA sequencing. Bacteria were found to produce indole acetic acid (auxins), inhibited the pathogen Fusarium oxysporum and solubilized phosphate. Reinoculation of bacteria onto seedlings derived from surface-disinfected rice and Bermuda grass seeds significantly restored seedling growth and development. Rice seeds harbour indigenous bacterial endophytes that greatly influence seedling growth and development, including root and shoot lengths, root hair formation and disease susceptibility of rice seedlings. This study shows that seeds of rice naturally harbour bacterial endophytes that play key roles in modulation of seedling development. © 2017 The Society for Applied Microbiology.

  13. Molecular mapping of QTL alleles of Brassica oleracea affecting days to flowering and photosensitivity in spring Brassica napus.

    Science.gov (United States)

    Rahman, Habibur; Bennett, Rick A; Kebede, Berisso

    2018-01-01

    Earliness of flowering and maturity are important traits in spring Brassica napus canola-whether grown under long- or short-day condition. By use of a spring B. napus mapping population carrying the genome content of B. oleracea and testing this population under 10 to 18 h photoperiod and 18 to 20 0C (day) temperature conditions, we identified a major QTL on the chromosome C1 affecting flowering time without being influenced by photoperiod and temperature, and a major QTL on C9 affecting flowering time under a short photoperiod (10 h); in both cases, the QTL alleles reducing the number of days to flowering in B. napus were introgressed from the late flowering species B. oleracea. Additive effect of the C1 QTL allele at 14 to18 h photoperiod was 1.1 to 2.9 days; however, the same QTL allele exerted an additive effect of 6.2 days at 10 h photoperiod. Additive effect of the C9 QTL at 10 h photoperiod was 2.8 days. These two QTL also showed significant interaction in the control of flowering only under a short-day (10 h photoperiod) condition with an effect of 2.3 days. A few additional QTL were also detected on the chromosomes C2 and C8; however, none of these QTL could be detected under all photoperiod and temperature conditions. BLASTn search identified several putative flowering time genes on the chromosomes C1 and C9 and located the physical position of the QTL markers in the Brassica genome; however, only a few of these genes were found within the QTL region. Thus, the molecular markers and the genomic regions identified in this research could potentially be used in breeding for the development of early flowering photoinsensitive B. napus canola cultivars, as well as for identification of candidate genes involved in flowering time variation and photosensitivity.

  14. Use of Plackett-Burman design for rapid screening of nitrogen and carbon sources for the production of lipase in solid state fermentation by Yarrowia lipolytica from mustard oil cake (Brassica napus

    Directory of Open Access Journals (Sweden)

    Sarat Babu Imandi

    2013-09-01

    Full Text Available Mustard oil cake (Brassica napus, the residue obtained after extraction of mustard oil from mustard oil seeds, was investigated for the production of lipase under solid state fermentation (SSF using the marine yeast Yarrowia lipolytica NCIM 3589. Process parameters such as incubation time, biomass concentration, initial moisture content, carbon source concentration and nitrogen source concentration of the medium were optimized. Screening of ten nitrogen and five carbon sources has been accomplished with the help of Plackett-Burman design. The highest lipase activity of 57.89 units per gram of dry fermented substrate (U/gds was observed with the substrate of mustard oil cake in four days of fermentation.

  15. Activation of Arabidopsis seed hair development by cotton fiber-related genes.

    Directory of Open Access Journals (Sweden)

    Xueying Guan

    Full Text Available Each cotton fiber is a single-celled seed trichome or hair, and over 20,000 fibers may develop semi-synchronously on each seed. The molecular basis for seed hair development is unknown but is likely to share many similarities with leaf trichome development in Arabidopsis. Leaf trichome initiation in Arabidopsis thaliana is activated by GLABROUS1 (GL1 that is negatively regulated by TRIPTYCHON (TRY. Using laser capture microdissection and microarray analysis, we found that many putative MYB transcription factor and structural protein genes were differentially expressed in fiber and non-fiber tissues. Gossypium hirsutum MYB2 (GhMYB2, a putative GL1 homolog, and its downstream gene, GhRDL1, were highly expressed during fiber cell initiation. GhRDL1, a fiber-related gene with unknown function, was predominately localized around cell walls in stems, sepals, seed coats, and pollen grains. GFP:GhRDL1 and GhMYB2:YFP were co-localized in the nuclei of ectopic trichomes in siliques. Overexpressing GhRDL1 or GhMYB2 in A. thaliana Columbia-0 (Col-0 activated fiber-like hair production in 4-6% of seeds and had on obvious effects on trichome development in leaves or siliques. Co-overexpressing GhRDL1 and GhMYB2 in A. thaliana Col-0 plants increased hair formation in ∼8% of seeds. Overexpressing both GhRDL1 and GhMYB2 in A. thaliana Col-0 try mutant plants produced seed hair in ∼10% of seeds as well as dense trichomes inside and outside siliques, suggesting synergistic effects of GhRDL1 and GhMYB2 with try on development of trichomes inside and outside of siliques and seed hair in A. thaliana. These data suggest that a different combination of factors is required for the full development of trichomes (hairs in leaves, siliques, and seeds. A. thaliana can be developed as a model a system for discovering additional genes that control seed hair development in general and cotton fiber in particular.

  16. Role of relative humidity in processing and storage of seeds and assessment of variability in storage behaviour in Brassica spp. and Eruca sativa.

    Science.gov (United States)

    Suma, A; Sreenivasan, Kalyani; Singh, A K; Radhamani, J

    2013-01-01

    The role of relative humidity (RH) while processing and storing seeds of Brassica spp. and Eruca sativa was investigated by creating different levels of relative humidity, namely, 75%, 50%, 32%, and 11% using different saturated salt solutions and 1% RH using concentrated sulphuric acid. The variability in seed storage behaviour of different species of Brassica was also evaluated. The samples were stored at 40 ± 2°C in sealed containers and various physiological parameters were assessed at different intervals up to three months. The seed viability and seedling vigour parameters were considerably reduced in all accessions at high relative humidity irrespective of the species. Storage at intermediate relative humidities caused minimal decline in viability. All the accessions performed better at relative humidity level of 32% maintaining seed moisture content of 3%. On analyzing the variability in storage behaviour, B. rapa and B. juncea were better performers than B. napus and Eruca sativa.

  17. The Circadian Clock-controlled Transcriptome of Developing Soybean Seeds

    Directory of Open Access Journals (Sweden)

    Karen A. Hudson

    2010-07-01

    Full Text Available A number of metabolic and physiological processes in plants are controlled by the circadian clock, which enables a plant to anticipate daily changes in the environment. Relatively little is known about circadian rhythms in developing seeds, which may be important for determining the extent and timing of nutrient storage in grain. Microarray expression profiling was used to identify genes expressed in developing soybean ( seeds that are controlled by the circadian clock. Genes with predicted functions in protein synthesis, fatty acid metabolism, and photosynthesis totaling 1.8% of the mRNAs detected in seed were found to be expressed in a circadian rhythm. Known circadian and light-controlled promoter elements were identified as over-represented in the promoters of clock-controlled seed genes, with the over-represented elements varying according to the phase of circadian expression. A subset of circadian-regulated genes were found to be expressed in different phases in developing seeds with respect to leaves from the same plants, many of which have roles in photosynthesis and carbon metabolism. These results help to characterize the genes and processes in seeds that may be regulated by the circadian clock, and provide some insight into organ-specific phasing of clock controlled gene expression.

  18. A proteomic analysis of seed development in Brassica campestri L.

    Directory of Open Access Journals (Sweden)

    Wenlan Li

    Full Text Available To gain insights into the protein dynamics during seed development, a proteomic study on the developing Brassica campestri L. seeds with embryos in different embryogenesis stages was carried out. The seed proteins at 10, 16, 20, 25 and 35 DAP (days after pollination, respectively, were separated using two-dimensional gel electrophoresis and identities of 209 spots with altered abundance were determined by matrix-assisted laser desorption ionization time-of-flight/time-of-flight mass spectrometry (MALDI-TOF/TOF MS. These proteins were classified into 16 groups according to their functions. The most abundant proteins were related to primary metabolism, indicating the heavy demand of materials for rapid embryo growth. Besides, the high amount of proteins involved in protein processing and destination indicated importance of protein renewal during seed development. The remaining were those participated in oxidation/detoxification, energy, defense, transcription, protein synthesis, transporter, cell structure, signal transduction, secondary metabolism, transposition, DNA repair, storage and so on. Protein abundance profiles of each functional class were generated and hierarchical cluster analysis established 8 groups of dynamic patterns. Our results revealed novel characters of protein dynamics in seed development in Brassica campestri L. and provided valuable information about the complex process of seed development in plants.

  19. Response of winter rape (Brassica napus L. ssp. oleifera Metzg., Sinsk to foliar fertilization and different seeding rates

    Directory of Open Access Journals (Sweden)

    Cezary A. Kwiatkowski

    2012-12-01

    Full Text Available A field experiment in growing winter rape was carried out during the period 2009-2011 in a family farm (owned by Mr. M. Bednarczyk located in Jaroszewice (Lublin region, on podzolic soil. Plant biometric features as well as yield and seed qualitative parameters (oil, protein and glucosinolate content were evaluated depending on the following rates of soil NPK fertilizers and on foliar fertilization (autumn spraying with the fertilizer solution: 100% and 75% of NPK as well as urea + nickel chelate + MgSO4H2O; 100% and 75% of NPK as well as urea + Plonvit R + MgSO4H2O. Plots without foliar fertilization (only 100% of NPK were the control treatment. The other experimental factor was the seeding rate (2.5 kg×ha-1 – 30 cm row spacing; 4 kg×ha-1 – 18 cm row spacing. Foliar spraying was done once in the autumn in the second decade of October. Tillage as well as mechanical and chemical control of agricultural pests in the plantation were typical for this plant species and consistent with the recommendations for winter rape protection. A hypothesis was made that the application of foliar fertilizers would have a beneficial effect on winter rape productivity, at the same time maintaining the high quality of raw material. It was also assumed that a reduction in the seeding rate of winter oilseed rape would result in reduced plant lodging and an increased number of siliques per plant; as a consequence, seed and oil productivity would be at a level not lower than that obtained at the higher seeding rate. The present study has proved that foliar fertilization of winter oilseed rape in the autumn period contributes to improved plant winter hardiness and increased productivity. The application of foliar fertilizers also enables the rates of basic mineral NPK fertilizers to be reduced by 25% without detriment to seed yield. Foliar fertilizers have been found to have a weaker effect on changing the chemical composition of rapeseed. The study has shown that

  20. Biochemical and histopathological profiling of Wistar rat treated with Brassica napus as a supplementary feed

    Directory of Open Access Journals (Sweden)

    Kazi Md. Mahmudul Hasan

    2018-03-01

    Full Text Available Metabolic changes together with cardiovascular and hepatic factors are related to the development of diseases like myocardial lipidosis, heart disease, and profound toxicity. The aim of this animal study is to determine the effects of high erucic acid containing rapeseed oil (Brassica napus L. varieties on liver, kidney and heart muscles in Wistar rats. Male Wistar rats were divided into three groups where each group containing four rats. Group A was considered as control diet group, while Group B rapeseed wild oil group and Group C rapeseed hybrid oil group were considered as experimental diet groups. The levels of aspartate aminotransferase (AST, alanine aminotransferase (ALT,alkaline phosphatase(ALP, creatine kinase-MB (CK-MB and creatinine of two experimental groups were significantly elevated while compared to the control groups (p  0.05. Noticeable tissue injury observed in this study is a sign of the relative toxicity of erucic acid containing rapeseed oil to mammalian species. The use of Brassica napus as a supplementary feed ingredient should be, therefore, thoroughly considered Keywords: Rapeseed oil, Rattus norvegicus, Serum enzymes, Erucic acid, Tissue profiling

  1. Cloning and characterization of a pathogen-induced chitinase in Brassica napus

    DEFF Research Database (Denmark)

    Rasmussen, U.; Bojsen, K.; Collinge, D.B.

    1992-01-01

    A chitinase cDNA clone from rapeseed (Brassica napus L. ssp. oleifera) was isolated. The cDNA clone, ChB4, represents a previously purified and characterized basic chitinase isozyme. The longest open reading frame in ChB4 encodes a polypeptide of 268 amino acids. This polypeptide consists of a 24...

  2. Development and efficacy assessments of tea seed oil makeup remover.

    Science.gov (United States)

    Parnsamut, N; Kanlayavattanakul, M; Lourith, N

    2017-05-01

    The efficacy of tea seed oil to clean foundation and eyeliner was evaluated. The safe and efficient tea seed oil makeup remover was developed. In vitro cleansing efficacy of makeup remover was UV-spectrophotometric validated. The stability evaluation by means of accelerated stability test was conducted. In vitro and in vivo cleansing efficacy of the removers was conducted in a comparison with benchmark majorly containing olive oil. Tea seed oil cleaned 90.64±4.56% of foundation and 87.62±8.35% of eyeliner. The stable with most appropriate textures base was incorporated with tea seed oil. Three tea seed oil removers (50, 55 and 60%) were stabled. The 60% tea seed oil remover significantly removed foundation better than others (94.48±3.37%; Pmakeup removers had been developed. The consumers' choices towards the makeup remover containing the bio-oils are widen. In vitro cleansing efficacy during the course of makeup remover development using UV-spectrophotometric method feasible for pharmaceutic industries is encouraged. Copyright © 2016 Académie Nationale de Pharmacie. Published by Elsevier Masson SAS. All rights reserved.

  3. Molecular characterization of a GA-inducible gene, Cvsus1, in developing watermelon seeds.

    Science.gov (United States)

    Kim, Joonyul; Jun, Sung-Hoon; Kang, Hong-Gyu; Lee, Jinwon; An, Gynheung

    2002-10-31

    To understand the molecular mechanisms that control seed development, we isolated a seed-preferential gene from ESTs of developing watermelon seeds. The gene Cvsus1 encodes a protein that is 86% identical to the Vicia faba sucrose synthase expressed in developing seeds. RNA blot analysis showed that Cvsus1 was preferentially expressed in watermelon seeds. We also investigated gene expression levels both in pollinated seeds and in parthenocarpic seeds, which lack zygotic tissues. Whereas the transcript level of Cvsus1 was rapidly increased during normal seed development, the expression was not significantly increased in the parthenocarpic seeds. However, treating the parthenocarpic fruits with GA3 strongly induced Cvsus1 expression, up to the level accumulated in pollinated seeds. These results suggest that Cvsus1 is induced in maternal tissues via signals from the zygotic tissues, and that GA may be one of those signals.

  4. Expression of the C3-C 4 intermediate character in somatic hybrids between Brassica napus and the C3-C 4 species Moricandia arvensis.

    Science.gov (United States)

    O'Neill, C M; Murata, T; Morgan, C L; Mathias, R J

    1996-12-01

    The wild crucifer Moricandia arvensis is a potential source of alien genes for the genetic improvement of related Brassica crops. In particular M. arvensis has a C3-C4 intermediate photosynthetic mechanism which results in enhanced recapture of photorespired CO2 and may increase plant water-use efficiency. In order to transfer this trait into Brassica napus, somatic hybridisations were made between leaf mesophyll protoplasts from cultured M. arvensis shoot tips and hypocotyl protoplasts from three Brassica napus cultivars, 'Ariana', 'Cobra' and 'Westar'. A total of 23 plants were recovered from fusion experiments and established in the greenhouse. A wide range of chromosome numbers were observed among the regenerated plants, including some apparent mixoploids. Thirteen of the regenerated plants were identified as nuclear hybrids between B. napus and M. arvensis on the basis of isozyme analysis. The phenotypes of these hybrids were typically rather B. napus-like, but much variability was observed, including variation in flower colour, leaf shape and colour, leaf waxiness, fertility and plant vigour. CO2 compensation point measurements on the regenerated plants demonstrated that 3 of the hybrids express the M. arvensis C3-C4 intermediate character at the physiological level. Semi-thin sections through leaf tissues of these 3 plants revealed the presence of a Kranz-like leaf anatomy characteristic of M. arvensis but not found in B. napus. This is the first report of the expression of this potentially important agronomic trait, transferred from Moricandia, in M. arvensis x B. napus hybrids.

  5. The Proteome of Seed Development in the Model Legume Lotus japonicus

    DEFF Research Database (Denmark)

    Dam, Svend; Laursen, Brian S.; Ornfelt, Jane H.

    2009-01-01

    three developmental phases of legume seeds and the presence of embryo, endosperm, and seed coat in desiccated seeds. Furthermore, protein, oil, starch, phytic acid, and ash contents were determined, and this indicates that the composition of mature Lotus seed is more similar to soybean than to pea......We have characterized the development of seeds in the model legume Lotus japonicus. Like soybean (Glycine max) and pea (Pisum sativum), Lotus develops straight seed pods and each pod contains approximately 20 seeds that reach maturity within 40 days. Histological sections show the characteristic...... proteins corresponding to gene accession numbers were identified for the two phases, respectively. All of the proteome data, including the experimental data and mass spectrometry spectra peaks, were collected in a database that is available to the scientific community via a Web interface (http...

  6. Effects of EDTA on phytoextraction of heavy metals (Zn, Mn and Pb) from sludge-amended soil with Brassica napus.

    Science.gov (United States)

    Zaier, Hanen; Ghnaya, Tahar; Ben Rejeb, Kilani; Lakhdar, Abdelbasset; Rejeb, Salwa; Jemal, Fatima

    2010-06-01

    Sludge application is a reliable practice to ameliorate soil fertility. However, repetitive sludge addition represents a potential soil contamination source with heavy metals, which must be extracted. The aim of this study was to evaluate the capacity of Brassica napus to remove metals from soils amended with sludge, and to study the effect of EDTA on this process. Seedlings were cultivated in presence of sludge combined or not with EDTA. Results showed that sludge ameliorate significantly biomass production. This effect was accompanied with an increase in Pb, Zn and Mn shoot concentrations. EDTA application does not affect significantly plant growth. However, this chelator enhances shoot metals accumulation. It's therefore concluded that sludge has a beneficial effect on soil fertility, B. napus can be used for the decontamination of affected soils and that the EDTA addition increases the ability of B. napus to accumulate heavy metals. Published by Elsevier Ltd.

  7. Genome-Wide Identification of MicroRNAs in Response to Cadmium Stress in Oilseed Rape (Brassica napus L. Using High-Throughput Sequencing

    Directory of Open Access Journals (Sweden)

    Hongju Jian

    2018-05-01

    Full Text Available MicroRNAs (miRNAs have important roles in regulating stress-response genes in plants. However, identification of miRNAs and the corresponding target genes that are induced in response to cadmium (Cd stress in Brassica napus remains limited. In the current study, we sequenced three small-RNA libraries from B. napus after 0 days, 1 days, and 3 days of Cd treatment. In total, 44 known miRNAs (belonging to 27 families and 103 novel miRNAs were identified. A comprehensive analysis of miRNA expression profiles found 39 differentially expressed miRNAs between control and Cd-treated plants; 13 differentially expressed miRNAs were confirmed by qRT-PCR. Characterization of the corresponding target genes indicated functions in processes including transcription factor regulation, biotic stress response, ion homeostasis, and secondary metabolism. Furthermore, we propose a hypothetical model of the Cd-response mechanism in B. napus. Combined with qRT-PCR confirmation, our data suggested that miRNAs were involved in the regulations of TFs, biotic stress defense, ion homeostasis and secondary metabolism synthesis to respond Cd stress in B. napus.

  8. A Tourist-like MITE insertion in the upstream region of the BnFLC.A10 gene is associated with vernalization requirement in rapeseed (Brassica napus L.).

    Science.gov (United States)

    Hou, Jinna; Long, Yan; Raman, Harsh; Zou, Xiaoxiao; Wang, Jing; Dai, Shutao; Xiao, Qinqin; Li, Cong; Fan, Longjiang; Liu, Bin; Meng, Jinling

    2012-12-15

    Rapeseed (Brassica napus L.) has spring and winter genotypes adapted to different growing seasons. Winter genotypes do not flower before the onset of winter, thus leading to a longer vegetative growth period that promotes the accumulation and allocation of more resources to seed production. The development of winter genotypes enabled the rapeseed to spread rapidly from southern to northern Europe and other temperate regions of the world. The molecular basis underlying the evolutionary transition from spring- to winter- type rapeseed is not known, however, and needs to be elucidated. We fine-mapped the spring environment specific quantitative trait locus (QTL) for flowering time, qFT10-4,in a doubled haploid (DH) mapping population of rapeseed derived from a cross between Tapidor (winter-type) and Ningyou7 (semi-winter) and delimited the qFT10-4 to an 80-kb region on chromosome A10 of B. napus. The BnFLC.A10 gene, an ortholog of FLOWERING LOCUS C (FLC) in Arabidopsis, was cloned from the QTL. We identified 12 polymorphic sites between BnFLC.A10 parental alleles of the TN-DH population in the upstream region and in intron 1. Expression of both BnFLC.A10 alleles decreased during vernalization, but decreased more slowly in the winter parent Tapidor. Haplotyping and association analysis showed that one of the polymorphic sites upstream of BnFLC.A10 is strongly associated with the vernalization requirement of rapeseed (r2 = 0.93, χ2 = 0.50). This polymorphic site is derived from a Tourist-like miniature inverted-repeat transposable element (MITE) insertion/deletion in the upstream region of BnFLC.A10. The MITE sequence was not present in the BnFLC.A10 gene in spring-type rapeseed, nor in ancestral 'A' genome species B. rapa genotypes. Our results suggest that the insertion may have occurred in winter rapeseed after B. napus speciation. Our findings strongly suggest that (i) BnFLC.A10 is the gene underlying qFT10-4, the QTL for phenotypic diversity of flowering time in

  9. Global transcriptome analysis of developing chickpea (Cicer arietinum L.) seeds.

    Science.gov (United States)

    Pradhan, Seema; Bandhiwal, Nitesh; Shah, Niraj; Kant, Chandra; Gaur, Rashmi; Bhatia, Sabhyata

    2014-01-01

    Understanding developmental processes, especially in non-model crop plants, is extremely important in order to unravel unique mechanisms regulating development. Chickpea (C. arietinum L.) seeds are especially valued for their high carbohydrate and protein content. Therefore, in order to elucidate the mechanisms underlying seed development in chickpea, deep sequencing of transcriptomes from four developmental stages was undertaken. In this study, next generation sequencing platform was utilized to sequence the transcriptome of four distinct stages of seed development in chickpea. About 1.3 million reads were generated which were assembled into 51,099 unigenes by merging the de novo and reference assemblies. Functional annotation of the unigenes was carried out using the Uniprot, COG and KEGG databases. RPKM based digital expression analysis revealed specific gene activities at different stages of development which was validated using Real time PCR analysis. More than 90% of the unigenes were found to be expressed in at least one of the four seed tissues. DEGseq was used to determine differentially expressing genes which revealed that only 6.75% of the unigenes were differentially expressed at various stages. Homology based comparison revealed 17.5% of the unigenes to be putatively seed specific. Transcription factors were predicted based on HMM profiles built using TF sequences from five legume plants and analyzed for their differential expression during progression of seed development. Expression analysis of genes involved in biosynthesis of important secondary metabolites suggested that chickpea seeds can serve as a good source of antioxidants. Since transcriptomes are a valuable source of molecular markers like simple sequence repeats (SSRs), about 12,000 SSRs were mined in chickpea seed transcriptome and few of them were validated. In conclusion, this study will serve as a valuable resource for improved chickpea breeding.

  10. Global transcriptome analysis of developing chickpea (Cicer arietinum L. seeds

    Directory of Open Access Journals (Sweden)

    Seema ePradhan

    2014-12-01

    Full Text Available Understanding developmental processes, especially in non-model crop plants, is extremely important in order to unravel unique mechanisms regulating development. Chickpea (C. arietinum L. seeds are especially valued for their high carbohydrate and protein content. Therefore, in order to elucidate the mechanisms underlying seed development in chickpea, deep sequencing of transcriptomes from four developmental stages was undertaken. In this study, next generation sequencing platform was utilised to sequence the transcriptome of four distinct stages of seed development in chickpea. About 1.3 million reads were generated which were assembled into 51,099 unigenes by merging the de novo and reference assemblies. Functional annotation of the unigenes was carried out using the Uniprot, COG and KEGG databases. RPKM based digital expression analysis revealed specific gene activities at different stages of development which was validated using Real time PCR analysis. More than 90% of the unigenes were found to be expressed in at least one of the four seed tissues. DEGseq was used to determine differentially expressing genes which revealed that only 6.75% of the unigenes were differentially expressed at various stages. Homology based comparison revealed 17.5% of the unigenes to be putatively seed specific. Transcription factors were predicted based on HMM profiles built using TF sequences from five legume plants and analysed for their differential expression during progression of seed development. Expression analysis of genes involved in biosynthesis of important secondary metabolites suggested that chickpea seeds can serve as a good source of antioxidants. Since transcriptomes are a valuable source of molecular markers like simple sequence repeats (SSRs, about 12,000 SSRs were mined in chickpea seed transcriptome and few of them were validated. In conclusion, this study will serve as a valuable resource for improved chickpea breeding.

  11. Lack of Globulin Synthesis during Seed Development Alters Accumulation of Seed Storage Proteins in Rice

    Directory of Open Access Journals (Sweden)

    Hye-Jung Lee

    2015-06-01

    Full Text Available The major seed storage proteins (SSPs in rice seeds have been classified into three types, glutelins, prolamins, and globulin, and the proportion of each SSP varies. It has been shown in rice mutants that when either glutelins or prolamins are defective, the expression of another type of SSP is promoted to counterbalance the deficit. However, we observed reduced abundances of glutelins and prolamins in dry seeds of a globulin-deficient rice mutant (Glb-RNAi, which was generated with RNA interference (RNAi-induced suppression of globulin expression. The expression of the prolamin and glutelin subfamily genes was reduced in the immature seeds of Glb-RNAi lines compared with those in wild type. A proteomic analysis of Glb-RNAi seeds showed that the reductions in glutelin and prolamin were conserved at the protein level. The decreased pattern in glutelin was also significant in the presence of a reductant, suggesting that the polymerization of the glutelin proteins via intramolecular disulfide bonds could be interrupted in Glb-RNAi seeds. We also observed aberrant and loosely packed structures in the storage organelles of Glb-RNAi seeds, which may be attributable to the reductions in SSPs. In this study, we evaluated the role of rice globulin in seed development, showing that a deficiency in globulin could comprehensively reduce the expression of other SSPs.

  12. Characteristics of Color Development in Seeds of Brown- and Yellow-Seeded Heading Chinese Cabbage and Molecular Analysis of Brsc, the Candidate Gene Controlling Seed Coat Color.

    Science.gov (United States)

    Ren, Yanjing; He, Qiong; Ma, Xiaomin; Zhang, Lugang

    2017-01-01

    The proanthocyanidin (PA) is the main flavonoids which affect the seed coat color in Brassica species. In this paper, characteristics of color development and accumulation of flavonoids were analyzed in the seeds of brown-seeded (B147) and yellow-seeded (B80) heading Chinese cabbage ( Brassica rapa L. ssp. Pekinensis ). It is found that the content of phenolic compounds in B147 were significantly more than that of B80 by using dimethylaminocinnamaldehyde (DMACA) staining and toluidine blue O (TBO) staining. In previous studies, the locus associated with seed coat color has been mapped. The results of whole genome re-sequencing showed that there are large fragment deletions variation in the mapping region between the brown-seeded parent '92S105' and the yellow-seeded parent '91-125.' Based on the B. rapa genome annotation information, the TRANSPARENT TESTA GLABRA 1 ( TTG1 ), is likely to be the candidate gene controlling seed coat color. A 94-base deletion was found in the 96th base downstream of the initiation codon in the TTG1 of yellow seed, thus, the termination codon TGA was occurred in the 297th base which makes the full length of TTG1 of yellow seed is 300 bp. Based on the differential sequences of TTG1 of brown and yellow seed, a functional marker, Brsc-yettg1, was developed to detect the variation of TTG1 . Quantitative real-time PCR analysis of BrTTG1 in different tissues showed that expression levels of BrTTG1 was not tissue-specific. During the whole seed development period, the expression of BrTTG1 in B147 was higher than that of B80. The expression levels of four structural genes, BrDFR, BrANS, BrANR1 , and BrANR2 in B147 were also higher than those in B80. The co-segregation molecular markers obtained in this report and TTG1 related information provide a basis for further understanding of the molecular mechanism of seed coat color in heading Chinese cabbage.

  13. Systemic Resistance to Powdery Mildew in Brassica napus (AACC) and Raphanus alboglabra (RRCC) by Trichoderma harzianum TH12.

    Science.gov (United States)

    Alkooranee, Jawadayn Talib; Yin, Yongtai; Aledan, Tamarah Raad; Jiang, Yingfen; Lu, Guangyuan; Wu, Jiangsheng; Li, Maoteng

    2015-01-01

    Trichoderma harzianum TH12 is a microbial pesticide for certain rapeseed diseases. The mechanism of systemic resistance induced by TH12 or its cell-free culture filtrate (CF) in Brassica napus (AACC) and Raphanus alboglabra (RRCC) to powdery mildew disease caused by ascomycete Erysiphe cruciferarum was investigated. In this study, we conducted the first large-scale global study on the cellular and molecular aspects of B. napus and R. alboglabra infected with E. cruciferarum. The histological study showed the resistance of R. alboglabra to powdery mildew disease. The growth of fungal colonies was not observed on R. alboglabra leaves at 1, 2, 4, 6, 8, and 10 days post-inoculation (dpi), whereas this was clearly observed on B. napus leaves after 6 dpi. In addition, the gene expression of six plant defense-related genes, namely, PR-1, PR-2 (a marker for SA signaling), PR-3, PDF 1.2 (a marker for JA/ET signaling), CHI620, and CHI570, for both genotypes were analyzed in the leaves of B. napus and R. alboglabra after treatment with TH12 or CF and compared with the non-treated ones. The qRT-PCR results showed that the PR-1 and PR-2 expression levels increased in E. cruciferarum-infected leaves, but decreased in the TH12-treated leaves compared with leaves treated with CF. The expression levels of PR-3 and PDF1.2 decreased in plants infected by E. cruciferarum. However, expression levels increased when the leaves were treated with TH12. For the first time, we disclosed the nature of gene expression in B. napus and R. alboglabra to explore the resistance pathways in the leaves of both genotypes infected and non-infected by powdery mildew and inoculated or non-inoculated with elicitor factors. Results suggested that R. alboglabra exhibited resistance to powdery mildew disease, and the application of T. harzianum and its CF are a useful tool to facilitate new protection methods for resist or susceptible plants.

  14. Maternal synthesis of abscisic acid controls seed development and yield in Nicotiana plumbaginifolia.

    Science.gov (United States)

    Frey, Anne; Godin, Béatrice; Bonnet, Magda; Sotta, Bruno; Marion-Poll, Annie

    2004-04-01

    The role of maternally derived abscisic acid (ABA) during seed development has been studied using ABA-deficient mutants of Nicotiana plumbaginifolia Viviani. ABA deficiency induced seed abortion, resulting in reduced seed yield, and delayed growth of the remaining embryos. Mutant grafting onto wild-type stocks and reciprocal crosses indicated that maternal ABA, synthesized in maternal vegetative tissues and translocated to the seed, promoted early seed development and growth. Moreover ABA deficiency delayed both seed coat pigmentation and capsule dehiscence. Mutant grafting did not restore these phenotypes, indicating that ABA synthesized in the seed coat and capsule envelope may have a positive effect on capsule and testa maturation. Together these results shed light on the positive role of maternal ABA during N. plumbaginifolia seed development.

  15. Analysis of morphology, DNA and isozyme of leaf mutation in Brassica napus L

    International Nuclear Information System (INIS)

    Luo Zhen; Hu Dongwei; Li Xiaobai

    2008-01-01

    This paper aims to study the rule of irradiating effects, provide the effective way of analyzing mutant, and discuss the production application of mutant. By irradiating the 040B of Brassica napus L with . 0Co γ- ray, an obvious leaf mutation (ML) with large leaf area was found. The ML which has been inherited stably after three generations was compared with wide-type (CK) on the morphologic, DNA and isozymic levels. Results showed that S 4 and S17 from RAPD were two molecular markers which can express good polymorphism and have close relationships with leaf mutation sites. And in the analysis of EST and POD between ML and CK, the polymorphisms also proved that many discrepancies exist between ML and CK on the protein level. In addition, the research results in question can be applied to the breeding and genetic research of Brassica napus L

  16. Regulation of fertilization and early seed development.

    Science.gov (United States)

    Dresselhaus, Thomas; Doughty, James

    2014-04-01

    Plant reproduction meetings often deal either with pre-fertilization processes such as flowering and pollen biology or post-fertilization processes such as embryogenesis and seed development. The Biochemical Society Focused Meeting entitled 'Regulation of Fertilization and Early Seed Development' was organized to close this gap and to discuss mechanistic similarities and future research directions in the reproductive processes shortly before, during and after fertilization. As an outcome of the workshop, invited speakers and a few selected oral communication presenters contributed focused reviews and technical articles for this issue of Biochemical Society Transactions. We provide here a short overview of the contents and highlights of the various articles.

  17. Seed regulations and local seed systems

    NARCIS (Netherlands)

    Louwaars, N.

    2000-01-01

    Seed regulations have been introduced in most countries based on the development of formal seed production. Concerns about seed quality and about the varietal identity of the seeds have commonly led to seed laws. However, formal regulations are often inappropriate for informal seed systems, which

  18. Auxin production in the endosperm drives seed coat development in Arabidopsis

    Science.gov (United States)

    Figueiredo, Duarte D; Batista, Rita A; Roszak, Pawel J; Hennig, Lars; Köhler, Claudia

    2016-01-01

    In flowering plants, seed development is initiated by the fusion of the maternal egg and central cells with two paternal sperm cells, leading to the formation of embryo and endosperm, respectively. The fertilization products are surrounded by the maternally derived seed coat, whose development prior to fertilization is blocked by epigenetic regulators belonging to the Polycomb Group (PcG) protein family. Here we show that fertilization of the central cell results in the production of auxin and most likely its export to the maternal tissues, which drives seed coat development by removing PcG function. We furthermore show that mutants for the MADS-box transcription factor AGL62 have an impaired transport of auxin from the endosperm to the integuments, which results in seed abortion. We propose that AGL62 regulates auxin transport from the endosperm to the integuments, leading to the removal of the PcG block on seed coat development. DOI: http://dx.doi.org/10.7554/eLife.20542.001 PMID:27848912

  19. Impact of accelerated plant growth on seed variety development

    Science.gov (United States)

    Christophersen, Eric

    1998-01-01

    The commercial lives of agricultural seed products have steadily declined in recent years. The introduction of genetically engineered crop seeds in 1966 has accentuated that trend. Widespread grower demand for genetically engineered seed requires competitive response by industry followers in order to avert market share losses to the industry leaders. Limitations on plant transformation technology, regulatory requirements and patent impediments require companies to rapidly convert transformed lines into elite commercial products. Massive multigenerational backcrossing efforts are required to distribute genetically engineered traits into a broad product mix. Significant incidents of expression failures, or ``gene silencing,'' have occurred unexpectedly, requiring product substitution strategies. First-to-market strategies, competitive response, broad germplasm conversion and rescue of product failures all share the element of urgency. Technologies which reliably accelerate product development rates can expect favorable reception by commercial seed developers. A growth chamber which dramatically accelerates the rate of plant growth is described.

  20. Gene expression in the lignin biosynthesis pathway during soybean seed development.

    Science.gov (United States)

    Baldoni, A; Von Pinho, E V R; Fernandes, J S; Abreu, V M; Carvalho, M L M

    2013-02-28

    The study of gene expression in plants is fundamental, and understanding the molecular mechanisms involved in important biological processes, such as biochemical pathways or signaling that are used or manipulated in improvement programs, are key for the production of high-quality soybean seeds. Reports related to gene expression of lignin in seeds are scarce in the literature. We studied the expression of the phenylalanine ammonia-lyase (PAL), cinnamate 4-hydroxylase, 4-hydroxycinnamate 3-hydroxylase, and cinnamyl alcohol dehydrogenase genes involved in lignin biosynthesis during the development of soybean (Glycine max L. Merrill) seeds. As the endogenous control, the eukaryotic elongation factor 1-beta gene was used in two biological replicates performed in triplicate. Relative quantitative expression of these genes during the R4, R5, R6, and R7 development stages was analyzed. Real-time polymerase chain reaction was used for the gene expression study. The analyses were carried out in an ABI PRISM 7500 thermocycler using the comparative Ct method and SYBR Green to detect amplification. The seed samples at the R4 stage were chosen as calibrators. Increased expression of the cinnamate-4-hydroxylase and PAL genes occurred in soybean seeds at the R5 and R6 development stages. The cinnamyl alcohol dehydrogenase gene was expressed during the final development phases of soybean seeds. In low-lignin soybean cultivars, the higher expression of the PAL gene occurs at development stages R6 and R7. Activation of the genes involved in the lignin biosynthesis pathway occurs at the beginning of soybean seed development.

  1. Development of nutritious snacks by incorporation of amaranth seeds, watermelon seeds and their flour

    Directory of Open Access Journals (Sweden)

    Paul Virginia

    2014-11-01

    Full Text Available The present study was carried out with the objectives to find out the sensory acceptability, the nutrient content and cost of prepared products. The products prepared were “Biscuits”, “Mathri” and “Laddoo” by incorporation of amaranth seeds, watermelon seeds and their flour in different proportions (10:10, 20:10, and 30:10 served as treatments T1, T2 and T3 respectively T0, without incorporation of amaranth seeds, watermelon seeds and their flour served as control. The products were organoleptically evaluated by using Nine point Hedonic scale. The data obtained during study were analyzed statistically using analysis of variance and C.D techniques. The prepared products were analyzed for nutrient content using the standard method of AOAC (2005.It was concluded that in case of “Biscuits” and “Mathri” with incorporation level 20 percent amaranth seeds flour and 10 percent watermelon seeds flour scored highest while in case of “Laddoo” with incorporation level 20 percent amaranth seeds and 10 percent watermelon seeds scored highest, with regard to colour and appearance, body and texture, taste and flavour and over all acceptability, However all the treatments were found to be acceptable. It is therefore concluded that amaranth seeds and watermelon seeds can be suitably incorporated in various developed products. “Laddoo” had maximum carbohydrate (64.49g/100g, protein (13.59g/100g calcium (100.1mg/100g and iron (3.33mg/100g content. The content of Protein (14.46g/100g, carbohydrate (59.90 Calcium (59.90mg/100g, were increased as compared to control in “Biscuits”. “Mathri” was rich in Protein, Fat, carbohydrate and calcium content (11.10g/100g, 38.56g/100g, 38.83g/100g, and 53.95mg/100g. Cost of products on the basis raw ingredients per 100g ranged between Rs 6.33-12.45 for “Biscuits”, Rs 16.06-30.07, Rs 12.27-18.19 for “Mathri” and Rs.6.42-12.26 for “Laddoo”. On the basis of findings it is concluded

  2. Isotope labeling-based quantitative proteomics of developing seeds of castor oil seed (Ricinus communis L.)

    DEFF Research Database (Denmark)

    Nogueira, Fábio C S; Palmisano, Giuseppe; Schwämmle, Veit

    2013-01-01

    In this study, we used a mass spectrometry-based quantification approach employing isotopic (ICPL) and isobaric (iTRAQ) labeling to investigate the pattern of protein deposition during castor oil seed (Ricinus communis L.) development, including that of proteins involved in fatty acid metabolism...... give important insights into certain aspects of the biology of castor oil seed development such as carbon flow, anabolism, and catabolism of fatty acid and the pattern of deposition of SSPs, toxins, and allergens such as ricin and 2S albumins. We also found, for the first time, some genes of SSP......, seed-storage proteins (SSPs), toxins, and allergens. Additionally, we have used off-line hydrophilic interaction chromatography (HILIC) as a step of peptide fractionation preceding the reverse-phase nanoLC coupled to a LTQ Orbitrap. We were able to identify a total of 1875 proteins, and from these 1748...

  3. Preliminary study of Tl and Cd uptake in the heavy metal accumulating Brassica napus using the Debrecen proton microprobe

    International Nuclear Information System (INIS)

    Kertesz, Zs.; Haag-Kerwer, A.; Povh, B.

    2003-01-01

    The high biomass producing crop plants, Brassica juncea L. and Brassica napus are very promising plant species for phytoremediation. The aim of further research is to help a better understanding of the transport mechanism within roots and roots to shoots of heavy metals, and to find out their distribution and translocation among different cell types in the root of these species. The distribution and concentration of major and trace elements was determined along the roots of Cd and Tl treated as well as control plants of Brassica napus on the ATOMKI proton microprobe. (R.P.)

  4. High oleic acid content materials of rapeseed (Brassica napus) produced by radiation breeding

    International Nuclear Information System (INIS)

    Guan Chunyun; Liu Chunlin; Chen Sheyuan

    2006-01-01

    High oleic acid content rapeseed breeding has great significance, because high oleic acid oil is a healthy and nutritious oil, which is of a long shelflife and also propitious to producing biodiesel fuel. The high oleic acid content breeding materials of rapeseed (B. napus) were obtained by 80-100 kR ~(60)Co gamma ray ionizing radiation treatment of dry seeds and continuous selection. The results showed that the oleic acid contents of M (2), M (3) and M (4) progenies increased by different grades. Moreover, the oleic acid content of M (5) progeny increased greatly. The oleic acid contents were higher than 70% in the most of the plants and the highest one reached 93.5 %. The base G was transited by base A in fad (2) gene at the 270 site of high oleic acid mutation (M(6) 04-855). The location is at the beta folding area and conservative area of this protein. Base mutation at sites 1 044 and 1 062 also led to produce a stop condon. These changes in structure led to loss the function of fad (2). According to molecular mechanism of gene mutation, no matter what transvertion or transition happens, several replications are needed. That is to say several generations are needed. That was also the reason why high oleic acid content mutation occurred in later generations

  5. Unexpected diversity of feral genetically modified oilseed rape (Brassica napus L. despite a cultivation and import ban in Switzerland.

    Directory of Open Access Journals (Sweden)

    Juerg Schulze

    Full Text Available Despite cultivation and seed import bans of genetically modified (GM oilseed rape (Brassica napus L., feral GM plants were found growing along railway lines and in port areas at four sites in Switzerland in 2011 and 2012. All GM plants were identified as glyphosate-resistant GM event GT73 (Roundup Ready, Monsanto. The most affected sites were the Rhine port of Basel and the St. Johann freight railway station in Basel. To assess the distribution and intra- and interspecific outcrossing of GM oilseed rape in more detail, we monitored these two sites in 2013. Leaves and seed pods of feral oilseed rape plants, their possible hybridization partners and putative hybrid plants were sampled in monthly intervals and analysed for the presence of transgenes by real-time PCR. Using flow cytometry, we measured DNA contents of cell nuclei to confirm putative hybrids. In total, 2787 plants were sampled. The presence of GT73 oilseed rape could be confirmed at all previously documented sampling locations and was additionally detected at one new sampling location within the Rhine port. Furthermore, we found the glufosinate-resistant GM events MS8xRF3, MS8 and RF3 (all traded as InVigor, Bayer at five sampling locations in the Rhine port. To our knowledge, this is the first time that feral MS8xRF3, MS8 or RF3 plants were detected in Europe. Real-time PCR analyses of seeds showed outcrossing of GT73 into two non-GM oilseed rape plants, but no outcrossing of transgenes into related wild species was observed. We found no hybrids between oilseed rape and related species. GM plants most frequently occurred at unloading sites for ships, indicating that ship cargo traffic is the main entry pathway for GM oilseed rape. In the future, it will be of major interest to determine the source of GM oilseed rape seeds.

  6. Unexpected diversity of feral genetically modified oilseed rape (Brassica napus L.) despite a cultivation and import ban in Switzerland.

    Science.gov (United States)

    Schulze, Juerg; Frauenknecht, Tina; Brodmann, Peter; Bagutti, Claudia

    2014-01-01

    Despite cultivation and seed import bans of genetically modified (GM) oilseed rape (Brassica napus L.), feral GM plants were found growing along railway lines and in port areas at four sites in Switzerland in 2011 and 2012. All GM plants were identified as glyphosate-resistant GM event GT73 (Roundup Ready, Monsanto). The most affected sites were the Rhine port of Basel and the St. Johann freight railway station in Basel. To assess the distribution and intra- and interspecific outcrossing of GM oilseed rape in more detail, we monitored these two sites in 2013. Leaves and seed pods of feral oilseed rape plants, their possible hybridization partners and putative hybrid plants were sampled in monthly intervals and analysed for the presence of transgenes by real-time PCR. Using flow cytometry, we measured DNA contents of cell nuclei to confirm putative hybrids. In total, 2787 plants were sampled. The presence of GT73 oilseed rape could be confirmed at all previously documented sampling locations and was additionally detected at one new sampling location within the Rhine port. Furthermore, we found the glufosinate-resistant GM events MS8xRF3, MS8 and RF3 (all traded as InVigor, Bayer) at five sampling locations in the Rhine port. To our knowledge, this is the first time that feral MS8xRF3, MS8 or RF3 plants were detected in Europe. Real-time PCR analyses of seeds showed outcrossing of GT73 into two non-GM oilseed rape plants, but no outcrossing of transgenes into related wild species was observed. We found no hybrids between oilseed rape and related species. GM plants most frequently occurred at unloading sites for ships, indicating that ship cargo traffic is the main entry pathway for GM oilseed rape. In the future, it will be of major interest to determine the source of GM oilseed rape seeds.

  7. Ideotype population exploration: growth, photosynthesis, and yield components at different planting densities in winter oilseed rape (Brassica napus L.).

    Science.gov (United States)

    Ma, Ni; Yuan, Jinzhan; Li, Ming; Li, Jun; Zhang, Liyan; Liu, Lixin; Naeem, Muhammad Shahbaz; Zhang, Chunlei

    2014-01-01

    Rapeseed is one of the most important edible oil crops in the world and the seed yield has lagged behind the increasing demand driven by population growth. Winter oilseed rape (Brassica napus L.) is widely cultivated with relatively low yield in China, so it is necessary to find the strategies to improve the expression of yield potential. Planting density has great effects on seed yield of crops. Hence, field experiments were conducted in Wuhan in the Yangtze River basin with one conventional variety (Zhongshuang 11, ZS11) and one hybrid variety (Huayouza 9, HYZ9) at five planting densities (27.0×10(4), 37.5×10(4), 48.0×10(4), 58.5×10(4), 69.0×10(4) plants ha(-1)) during 2010-2012 to investigate the yield components. The physiological traits for high-yield and normal-yield populations were measured during 2011-2013. Our results indicated that planting densities of 58.5×10(4) plants ha(-1) in ZS11 and 48.0×10(4) plants ha(-1) in HYZ9 have significantly higher yield compared with the density of 27.0×10(4) plants ha(-1) for both varieties. The ideal silique numbers for ZS11 and HYZ9 were ∼0.9×10(4) (n m(-2)) and ∼1×10(4) (n m(-2)), respectively, and ideal primary branches for ZS11 and HYZ9 were ∼250 (n m(-2)) and ∼300 (n m(-2)), respectively. The highest leaf area index (LAI) and silique wall area index (SAI) was ∼5.0 and 7.0, respectively. Moreover, higher leaf net photosynthetic rate (Pn) and water use efficiency (WUE) were observed in the high-yield populations. A significantly higher level of silique wall photosynthesis and rapid dry matter accumulation were supposed to result in the maximum seed yield. Our results suggest that increasing the planting density within certain range is a feasible approach for higher seed yield in winter rapeseed in China.

  8. of integrated application of farmyard manure, plant growth promoting rhizobacteria and chemical fertilizers on production of canola (Brassica napus L. in saline soil of Qum

    Directory of Open Access Journals (Sweden)

    H. Sabahi

    2016-04-01

    Full Text Available Canola (Brassica napus L. is one of the most important oil seed crops. In order to evaluate the effects of integrated fertilization (chemical, manure and biofertilizers on canola (B. napus variety Hyola 401 yield and uptake of mineral nutrients in saline soil and water, a field experiment was conducted in randomized complete blocks (RCBD arrangement with eight treatments in three replications in Qum Province, Iran. Treatments were: (1 Control, P%100 (Phosphorus %100, (2 P%75B1 (Phosphorus %75+ Barvar biofertilizer, (3 P%75B2 (Phosphorus %75+ Nitroxin biofertilizer, (4 P%75M (Phosphorus %75+ farmyard manure, (5 P%75B1M (Phosphorus %75+ Barvar + Farmyard manure, (6 P%75B2M (Phosphorus %75+ Nitroxin+ Farmyard manure, (7 P%100B1 (Phosphorus %100 + Barvar and (8 P%125B2 (Phosphorus %125+ Nitroxin. The results showed that the highest yield was obtained from P%75B1M. Difference between integrated fertilization of farmyard manure and other treatments was significant. Farmyard manure increased canola yield which was attributed to increase in availability of mineral nutrients, decreasing effects of salinity and toxic ions. Integrated application of 5 t. ha-1 of farmyard manure and %75 recommended chemical P increased yield and decreased fertilizer consumption. The results revealed that integrated applications of farmyard manure and chemical fertilizer and after that integrated use of bio- and chemical fertilizer are the best strategies to increase nutrient availability and improving canola yield in saline soil.

  9. Programmed cell death during development of cowpea (Vigna unguiculata (L.) Walp.) seed coat.

    Science.gov (United States)

    Lima, Nathália Bastos; Trindade, Fernanda Gomes; da Cunha, Maura; Oliveira, Antônia Elenir Amâncio; Topping, Jennifer; Lindsey, Keith; Fernandes, Kátia Valevski Sales

    2015-04-01

    The seed coat develops primarily from maternal tissues and comprises multiple cell layers at maturity, providing a metabolically dynamic interface between the developing embryo and the environment during embryogenesis, dormancy and germination of seeds. Seed coat development involves dramatic cellular changes, and the aim of this research was to investigate the role of programmed cell death (PCD) events during the development of seed coats of cowpea [Vigna unguiculata (L.) Walp.]. We demonstrate that cells of the developing cowpea seed coats undergo a programme of autolytic cell death, detected as cellular morphological changes in nuclei, mitochondria, chloroplasts and vacuoles, DNA fragmentation and oligonucleosome accumulation in the cytoplasm, and loss of membrane viability. We show for the first time that classes 6 and 8 caspase-like enzymes are active during seed coat development, and that these activities may be compartmentalized by translocation between vacuoles and cytoplasm during PCD events. © 2014 John Wiley & Sons Ltd.

  10. Genome-wide analysis and expression profiling of the GRF gene family in oilseed rape (Brassica napus L.).

    Science.gov (United States)

    Ma, Jin-Qi; Jian, Hong-Ju; Yang, Bo; Lu, Kun; Zhang, Ao-Xiang; Liu, Pu; Li, Jia-Na

    2017-07-15

    Growth regulating-factors (GRFs) are plant-specific transcription factors that help regulate plant growth and development. Genome-wide identification and evolutionary analyses of GRF gene families have been performed in Arabidopsis thaliana, Zea mays, Oryza sativa, and Brassica rapa, but a comprehensive analysis of the GRF gene family in oilseed rape (Brassica napus) has not yet been reported. In the current study, we identified 35 members of the BnGRF family in B. napus. We analyzed the chromosomal distribution, phylogenetic relationships (Bayesian Inference and Neighbor Joining method), gene structures, and motifs of the BnGRF family members, as well as the cis-acting regulatory elements in their promoters. We also analyzed the expression patterns of 15 randomly selected BnGRF genes in various tissues and in plant varieties with different harvest indices and gibberellic acid (GA) responses. The expression levels of BnGRFs under GA treatment suggested the presence of possible negative feedback regulation. The evolutionary patterns and expression profiles of BnGRFs uncovered in this study increase our understanding of the important roles played by these genes in oilseed rape. Copyright © 2017. Published by Elsevier B.V.

  11. Study of variation of tocochromanol and phytosterol contents in black and yellow seeds of Brassica napus L. doubled haploid populations.

    Science.gov (United States)

    Cegielska-Taras, Teresa; Nogala-Kałucka, Małgorzata; Szala, Laurencja; Siger, Aleksander

    2016-01-01

    In the study, an analysis of tocopherols, plastochomanol-8 and phytosterols was conducted using DH lines obtained from F1 hybrids of reciprocal crosses between yellow- and black-seeded lines. The biological material for the study consisted of two DH populations of winter oilseed rape obtained from F1 hybrids of reciprocal crosses between two DH lines: yellow- and black-seeded. Seed color was determined using a ColorFlex spectrophotometer. Fat content was determined via pulsed NMR. The levels of tocopherols, and plastochromanol-8 are analyzed using HPLC. Phytosterol contents and composition were determined by the GC method. The fat content of the black-seeded parental line was 49% and this was higher than that of the yellow-seeded parental line (44%). The fat content of DH line populations ranged from 44 to 51%. Total tocopherol content ranged from 460 to 602 mg/kg and the α-T/γ-T ratio was from 0.66 to 1.09. In parental lines H2-26 and Z-114 the total tocopherol content was 534 and 525 mg/kg, but the α-T/γ-T ratios were 0.81 and 1.21, respectively. The yellow-seeded parental line (Z-114) was characterized by a higher PC-8 content (81 mg/kg) than the H2-26 black-seeded parental line (58 mg/kg). The largest part of the total phytosterol content in seeds of both populations was β-sitosterol from 976 to 2148 mg/kg, followed by campasterol, from 636 to 1364 mg/kg, and brassicasterol from 375 to 678 mg/kg. The total tocopherol content ranged from 462 to 595 mg/kg (population HxZ) and from 460 to 602 mg/kg (population ZxH). Significantly positive correlations were observed between the seed color with α-T (r = 0.38, p phytosterol content were not noted. Considering the range of genetic variation among doubled haploids of two populations, selected DH lines may be good parents for further breeding programs focused on increasing the amount and improving the quality of oilseed rapeseed oil. However, further studies will also be made to determine the influence of the

  12. Seeding Event: Creating and Developing Spaces of Entrepreneurial Freedom

    Directory of Open Access Journals (Sweden)

    Gaëtan Mourmant

    2012-12-01

    Full Text Available This paper addresses the question of initiating, fostering and growing a vibrant economy by developing Spaces of Entrepreneurial Freedom (SoEF. Establishing and developing the SoEF is explained by a seeding event which is the core category of this grounded theory. In short, a seeding event leads to the patching of a potential, structural “hole”, which may prove valuable to an entrepreneurial network. Seeding events are started by an initiator who will recognize a network opportunity and exploit it. After event designing, the initiators implement the event through bold experimentation and using an adaptive structure. If the event is considered successful, the next stages are refining, growing, templating and finally replicating; these stages may occur one after the other or simultaneously. Through the development of SoEF, we suggest that entrepreneurs, governments, universities, large companies, and other players in the business world can improve the development of entrepreneurship at their respective levels.

  13. Development of seed separation techniques in magneto hydro dynamic power plant

    Energy Technology Data Exchange (ETDEWEB)

    Nagalakshmi, R; Balasubramanian, V [Bharat Heavy Electricals Ltd., Tiruchirapalli (India); Pandey, S K [Regional Engineering College, Tiruchirapalli (India)

    1994-06-01

    Approximately 90% of potassium is recovered in the various magnetohydrodynamics (MHD) downstream components as spent-seed. In this work, countercurrent extraction process to recover water-soluble potassium from spent-seed is developed. Synthetic spent-seed solids were prepared at simulated MHD conditions. Different dissolution experiments at various process conditions to recover water-soluble/insoluble potassium from spent-seed are reported in this paper. Lime digestion and acid digestion options are suggested to recover water-insoluble potassium from spent-seed. 90% of potassium interacted with water-insoluble portion of the spent-seed. It was observed that 80% water-insoluble potassium could be recovered from acid leaching. (author). 4 refs., 4 tabs.

  14. Quantitative phosphoproteomic analysis of early seed development in rice (Oryza sativa L.).

    Science.gov (United States)

    Qiu, Jiehua; Hou, Yuxuan; Tong, Xiaohong; Wang, Yifeng; Lin, Haiyan; Liu, Qing; Zhang, Wen; Li, Zhiyong; Nallamilli, Babi R; Zhang, Jian

    2016-02-01

    Rice (Oryza sativa L.) seed serves as a major food source for over half of the global population. Though it has been long recognized that phosphorylation plays an essential role in rice seed development, the phosphorylation events and dynamics in this process remain largely unknown so far. Here, we report the first large scale identification of rice seed phosphoproteins and phosphosites by using a quantitative phosphoproteomic approach. Thorough proteomic studies in pistils and seeds at 3, 7 days after pollination resulted in the successful identification of 3885, 4313 and 4135 phosphopeptides respectively. A total of 2487 proteins were differentially phosphorylated among the three stages, including Kip related protein 1, Rice basic leucine zipper factor 1, Rice prolamin box binding factor and numerous other master regulators of rice seed development. Moreover, differentially phosphorylated proteins may be extensively involved in the biosynthesis and signaling pathways of phytohormones such as auxin, gibberellin, abscisic acid and brassinosteroid. Our results strongly indicated that protein phosphorylation is a key mechanism regulating cell proliferation and enlargement, phytohormone biosynthesis and signaling, grain filling and grain quality during rice seed development. Overall, the current study enhanced our understanding of the rice phosphoproteome and shed novel insight into the regulatory mechanism of rice seed development.

  15. Comparative transcriptomic analyses of vegetable and grain pea (Pisum sativum L. seed development

    Directory of Open Access Journals (Sweden)

    Na eLiu

    2015-11-01

    Full Text Available Understanding the molecular mechanisms regulating pea seed developmental process is extremely important for pea breeding. In this study, we used high-throughput RNA-Seq and bioinformatics analyses to examine the changes in gene expression during seed development in vegetable pea and grain pea, and compare the gene expression profiles of these two pea types. RNA-Seq generated 18.7 G of raw data, which were then de novo assembled into 77,273 unigenes with a mean length of 930 bp. Our results illustrate that transcriptional control during pea seed development is a highly coordinated process. There were 459 and 801 genes differentially expressed at early and late seed maturation stages between vegetable pea and grain pea, respectively. Soluble sugar and starch metabolism related genes were significantly activated during the development of pea seeds coinciding with the onset of accumulation of sugar and starch in the seeds. A comparative analysis of genes involved in sugar and starch biosynthesis in vegetable pea (high seed soluble sugar and low starch and grain pea (high seed starch and low soluble sugar revealed that differential expression of related genes at late development stages results in a negative correlation between soluble sugar and starch biosynthetic flux in vegetable and grain pea seeds. RNA-Seq data was validated by using real-time quantitative RT-PCR analysis for 30 randomly selected genes. To our knowledge, this work represents the first report of seed development transcriptomics in pea. The obtained results provide a foundation to support future efforts to unravel the underlying mechanisms that control the developmental biology of pea seeds, and serve as a valuable resource for improving pea breeding.

  16. Asymbiotic seed germination and in vitro seedling development of ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-10-20

    Oct 20, 2008 ... (M) and Knudson 'C' (KC) were evaluated for seed germination and early ... running tap water and Teepol. ... blade. The powdery seeds were inoculated on the surface of agar ... an interval of one week to trace different stages of development of .... round in shape and radially symmetrical that turned to.

  17. Effects of Glucosinolates and Flavonoids on Colonization of the Roots of Brassica napus by Azorhizobium caulinodans ORS571

    Science.gov (United States)

    O'Callaghan, Kenneth J.; Stone, Philip J.; Hu, Xiaojia; Griffiths, D. Wynne; Davey, Michael R.; Cocking, Edward C.

    2000-01-01

    Plants of Brassica napus were assessed quantitatively for their susceptibility to lateral root crack colonization by Azorhizobium caulinodans ORS571(pXLGD4) (a rhizobial strain carrying the lacZ reporter gene) and for the concentration of glucosinolates in their roots by high-pressure liquid chromatography (HPLC). High- and low-glucosinolate-seed (HGS and LGS) varieties exhibited a relatively low and high percentage of colonized lateral roots, respectively. HPLC showed that roots of HGS plants contained a higher concentration of glucosinolates than roots of LGS plants. One LGS variety showing fewer colonized lateral roots than other LGS varieties contained a higher concentration of glucosinolates than other LGS plants. Inoculated HGS plants treated with the flavonoid naringenin showed significantly more colonization than untreated HGS plants. This increase was not mediated by a naringenin-induced lowering of the glucosinolate content of HGS plant roots, nor did naringenin induce bacterial resistance to glucosinolates or increase the growth of bacteria. The erucic acid content of seed did not appear to influence colonization by azorhizobia. Frequently, leaf assays are used to study glucosinolates and plant defense; this study provides data on glucosinolates and bacterial colonization in roots and describes a bacterial reporter gene assay tailored easily to the study of ecologically important phytochemicals that influence bacterial colonization. These data also form a basis for future assessments of the benefits to oilseed rape plants of interaction with plant growth-promoting bacteria, especially diazotrophic bacteria potentially able to extend the benefits of nitrogen fixation to nonlegumes. PMID:10788398

  18. A Tourist-like MITE insertion in the upstream region of the BnFLC.A10 gene is associated with vernalization requirement in rapeseed (Brassica napus L.

    Directory of Open Access Journals (Sweden)

    Hou Jinna

    2012-12-01

    Full Text Available Abstract Background Rapeseed (Brassica napus L. has spring and winter genotypes adapted to different growing seasons. Winter genotypes do not flower before the onset of winter, thus leading to a longer vegetative growth period that promotes the accumulation and allocation of more resources to seed production. The development of winter genotypes enabled the rapeseed to spread rapidly from southern to northern Europe and other temperate regions of the world. The molecular basis underlying the evolutionary transition from spring- to winter- type rapeseed is not known, however, and needs to be elucidated. Results We fine-mapped the spring environment specific quantitative trait locus (QTL for flowering time, qFT10-4,in a doubled haploid (DH mapping population of rapeseed derived from a cross between Tapidor (winter-type and Ningyou7 (semi-winter and delimited the qFT10-4 to an 80-kb region on chromosome A10 of B. napus. The BnFLC.A10 gene, an ortholog of FLOWERING LOCUS C (FLC in Arabidopsis, was cloned from the QTL. We identified 12 polymorphic sites between BnFLC.A10 parental alleles of the TN-DH population in the upstream region and in intron 1. Expression of both BnFLC.A10 alleles decreased during vernalization, but decreased more slowly in the winter parent Tapidor. Haplotyping and association analysis showed that one of the polymorphic sites upstream of BnFLC.A10 is strongly associated with the vernalization requirement of rapeseed (r2 = 0.93, χ2 = 0.50. This polymorphic site is derived from a Tourist-like miniature inverted-repeat transposable element (MITE insertion/deletion in the upstream region of BnFLC.A10. The MITE sequence was not present in the BnFLC.A10 gene in spring-type rapeseed, nor in ancestral ‘A’ genome species B. rapa genotypes. Our results suggest that the insertion may have occurred in winter rapeseed after B. napus speciation. Conclusions Our findings strongly suggest that (i BnFLC.A10 is the gene underlying qFT10

  19. Control of seed development in Arabidopsis thaliana by atmospheric oxygen

    Science.gov (United States)

    Kuang, A.; Crispi, M.; Musgrave, M. E.

    1998-01-01

    Seed development is known to be inhibited completely when plants are grown in oxygen concentrations below 5.1 kPa, but apart from reports of decreased seed weight little is known about embryogenesis at subambient oxygen concentrations above this critical level. Arabidopsis thaliana (L.) Heynh. plants were grown full term under continuous light in premixed atmospheres with oxygen partial pressures of 2.5, 5.1, 10.1, 16.2 and 21.3 kPa O2, 0.035 kPa CO2 and the balance nitrogen. Seeds were harvested for germination tests and microscopy when siliques had yellowed. Seed germination was depressed in O2 treatments below 16.2 kPa, and seeds from plants grown in 2.5 kPa O2 did not germinate at all. Fewer than 25% of the seeds from plants grown in 5.1 kPa oxygen germinated and most of the seedlings appeared abnormal. Light and scanning electron microscopic observation of non-germinated seeds showed that these embryos had stopped growing at different developmental stages depending upon the prevailing oxygen level. Embryos stopped growing at the heart-shaped to linear cotyledon stage in 5.1 kPa O2, at around the curled cotyledon stage in 10.1 kPa O2, and at the premature stage in 16.2 kPa O2. Globular and heart-shaped embryos were observed in sectioned seeds from plants grown in 2.5 kPa O2. Tissue degeneration caused by cell autolysis and changes in cell structure were observed in cotyledons and radicles. Transmission electron microscopy of mature seeds showed that storage substances, such as protein bodies, were reduced in subambient oxygen treatments. The results demonstrate control of embryo development by oxygen in Arabidopsis.

  20. Progressive introgression between ¤Brassica napus¤ (oilseed rape) and ¤B-rapa¤

    DEFF Research Database (Denmark)

    Hansen, L.B.; Siegismund, H.R.; Bagger Jørgensen, Rikke

    2003-01-01

    We have earlier shown extensive introgression between oilseed rape (Brassica napus) and B. rapa in a weedy population using AFLP markers specific for the nuclear genomes. In order to describe the progress of this introgression, we examined 117 offspring from 12 maternal plants from the introgress...

  1. Enhancing freezing tolerance of Brassica napus L. by overexpression of a stearoyl-acyl carrier protein desaturase gene (SAD) from Sapium sebiferum (L.) Roxb.

    Science.gov (United States)

    Peng, Dan; Zhou, Bo; Jiang, Yueqiao; Tan, XiaoFeng; Yuan, DeYi; Zhang, Lin

    2018-07-01

    Sapium sebiferum (L.) Roxb. is an important woody oil tree and traditional herbal medicine in China. Stearoyl-acyl carrier protein desaturase (SAD) is a dehydrogenase enzyme that plays a key role in the transformation of saturated fatty acids into unsaturated fatty acids in oil; these fatty acids greatly influence the freezing tolerance of plants. However, it remains unclear whether freezing tolerance can be regulated by the expression level of SsSAD in S. sebiferum L. Our research indicated that SsSAD expression in S. sebiferum L. increased under freezing stress. To further confirm this result, we constructed a pEGAD-SsSAD vector and transformed it into B. napus L. W10 by Agrobacterium tumefaciens-mediated transformation. Transgenic plants that overexpressed the SsSAD gene exhibited significantly higher linoleic (18:2) and linolenic acid (18:3) content and advanced freezing tolerance. These results suggest that SsSAD overexpression in B. napus L. can increase the content of polyunsaturated fatty acids (PUFAs) such as linoleic (18:2) and linolenic acid (18:3), which are likely pivotal in improving freezing tolerance in B. napus L. plants. Thus, SsSAD overexpression could be useful in the production of freeze-tolerant varieties of B. napus L. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. A Quantitative Acetylomic Analysis of Early Seed Development in Rice (Oryza sativa L.).

    Science.gov (United States)

    Wang, Yifeng; Hou, Yuxuan; Qiu, Jiehua; Li, Zhiyong; Zhao, Juan; Tong, Xiaohong; Zhang, Jian

    2017-06-27

    PKA (protein lysine acetylation) is a critical post-translational modification that regulates various developmental processes, including seed development. However, the acetylation events and dynamics on a proteomic scale in this process remain largely unknown, especially in rice early seed development. We report the first quantitative acetylproteomic study focused on rice early seed development by employing a mass spectral-based (MS-based), label-free approach. A total of 1817 acetylsites on 1688 acetylpeptides from 972 acetylproteins were identified in pistils and seeds at three and seven days after pollination, including 268 acetyproteins differentially acetylated among the three stages. Motif-X analysis revealed that six significantly enriched motifs, such as (DxkK), (kH) and (kY) around the acetylsites of the identified rice seed acetylproteins. Differentially acetylated proteins among the three stages, including adenosine diphosphate (ADP) -glucose pyrophosphorylases (AGPs), PDIL1-1 (protein disulfide isomerase like 1-1), hexokinases, pyruvate dehydrogenase complex (PDC) and numerous other regulators that are extensively involved in the starch and sucrose metabolism, glycolysis/gluconeogenesis, tricarboxylic acid (TCA) cycle and photosynthesis pathways during early seed development. This study greatly expanded the rice acetylome dataset, and shed novel insight into the regulatory roles of PKA in rice early seed development.

  3. The high-quality genome of Brassica napus cultivar 'ZS11' reveals the introgression history in semi-winter morphotype.

    Science.gov (United States)

    Sun, Fengming; Fan, Guangyi; Hu, Qiong; Zhou, Yongming; Guan, Mei; Tong, Chaobo; Li, Jiana; Du, Dezhi; Qi, Cunkou; Jiang, Liangcai; Liu, Weiqing; Huang, Shunmou; Chen, Wenbin; Yu, Jingyin; Mei, Desheng; Meng, Jinling; Zeng, Peng; Shi, Jiaqin; Liu, Kede; Wang, Xi; Wang, Xinfa; Long, Yan; Liang, Xinming; Hu, Zhiyong; Huang, Guodong; Dong, Caihua; Zhang, He; Li, Jun; Zhang, Yaolei; Li, Liangwei; Shi, Chengcheng; Wang, Jiahao; Lee, Simon Ming-Yuen; Guan, Chunyun; Xu, Xun; Liu, Shengyi; Liu, Xin; Chalhoub, Boulos; Hua, Wei; Wang, Hanzhong

    2017-11-01

    Allotetraploid oilseed rape (Brassica napus L.) is an agriculturally important crop. Cultivation and breeding of B. napus by humans has resulted in numerous genetically diverse morphotypes with optimized agronomic traits and ecophysiological adaptation. To further understand the genetic basis of diversification and adaptation, we report a draft genome of an Asian semi-winter oilseed rape cultivar 'ZS11' and its comprehensive genomic comparison with the genomes of the winter-type cultivar 'Darmor-bzh' as well as two progenitors. The integrated BAC-to-BAC and whole-genome shotgun sequencing strategies were effective in the assembly of repetitive regions (especially young long terminal repeats) and resulted in a high-quality genome assembly of B. napus 'ZS11'. Within a short evolutionary period (~6700 years ago), semi-winter-type 'ZS11' and the winter-type 'Darmor-bzh' maintained highly genomic collinearity. Even so, certain genetic differences were also detected in two morphotypes. Relative to 'Darmor-bzh', both two subgenomes of 'ZS11' are closely related to its progenitors, and the 'ZS11' genome harbored several specific segmental homoeologous exchanges (HEs). Furthermore, the semi-winter-type 'ZS11' underwent potential genomic introgressions with B. rapa (A r ). Some of these genetic differences were associated with key agronomic traits. A key gene of A03.FLC3 regulating vernalization-responsive flowering time in 'ZS11' was first experienced HE, and then underwent genomic introgression event with A r , which potentially has led to genetic differences in controlling vernalization in the semi-winter types. Our observations improved our understanding of the genetic diversity of different B. napus morphotypes and the cultivation history of semi-winter oilseed rape in Asia. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  4. Data for iTRAQ-based quantitative proteomics analysis of Brassica napus leaves in response to chlorophyll deficiency

    Directory of Open Access Journals (Sweden)

    Pu Chu

    2015-03-01

    Full Text Available The essential pigment chlorophyll (Chl plays important roles in light harvesting and energy transfer during photosynthesis. Here we present the data from a comparative proteomic analysis of chlorophyll-deficient Brassica napus mutant cde1 and its corresponding wild-type using the iTRAQ approach (Pu Chu et al., 2014 [1]. The distribution of length and number of peptides, mass and sequence coverage of proteins identified was calculated, and the repeatability of the replicates was analyzed. A total of 443 differentially expressed proteins were identified in B. napus leaves, including 228 down-accumulated proteins mainly involved in photosynthesis, porphyrin and chlorophyll metabolism, biosynthesis of secondary metabolites, carbon fixation and 215 up-accumulated proteins that enriched in the spliceosome, mRNA surveillance and RNA degradation.

  5. Glyphosate drift promotes changes in fitness and transgene flow in canola (Brassica napus) and hybrids

    Science.gov (United States)

    1. With the advent of transgenic crops, genetically modified, herbicide resistant B. napus has become a model system for examining the risks of escape of transgenes from cultivation and for evaluating potential ecological consequences of novel genes in wild species. 2. We exam...

  6. Effect of flaming on wild mustard (Sinapis arvensis L. soil seed bank, soil micro organisms and physicochemical characteristics

    Directory of Open Access Journals (Sweden)

    H. Salimi

    2016-05-01

    Full Text Available In order to study the effect of flaming on seed viability of Sinapis arvensis L., changes in microorganisms population and physicochemical characteristics of soil after canola (Brassica napus L. harvesting, an experiment was carried out based on randomized complete block design with four replications and eight treatments at Karaj Research Center, Iran, during 2005- 2006. After harvesting canola at the end of spring, wild mustard seeds were distributed evenly on the surface of the soil. In some plots, canola stubbles were left on the ground and in some plots canola stubbles were taken off. Under this condition, the following treatments were applied: Flaming under wet and dry soil condition, burning stubbles under wet and dry soil condition. In other plots canola stubbles were taken off the plots and then flaming was applied under wet and dry soil conditions. Check plots did not receive any treatment. Results indicated that all treatments reduced seed viability, and the highest loss in seedling density occurred in the flaming treatment on dry-soil. Flaming did not have any serious affect on soil microorganisms or on its other physiochemical aspects, however dry-soil treatments proved the safest.

  7. Mechanism of Salt-Induced Self-Compatibility Dissected by Comparative Proteomic Analysis in Brassica napus L.

    Science.gov (United States)

    Yang, Yong; Liu, Zhiquan; Zhang, Tong; Zhou, Guilong; Duan, Zhiqiang; Li, Bing; Dou, Shengwei; Liang, Xiaomei; Tu, Jinxing; Shen, Jinxiong; Yi, Bin; Fu, Tingdong; Dai, Cheng; Ma, Chaozhi

    2018-06-03

    Self-incompatibility (SI) in plants genetically prevents self-fertilization to promote outcrossing and genetic diversity. Its hybrids in Brassica have been widely cultivated due to the propagation of SI lines by spraying a salt solution. We demonstrated that suppression of Brassica napus SI from edible salt solution treatment was ascribed to sodium chloride and independent of S haplotypes, but it did not obviously change the expression of SI - related genes. Using the isobaric tags for relative and absolute quantitation (iTRAQ) technique, we identified 885 differentially accumulated proteins (DAPs) in Brassica napus stigmas of un-pollinated (UP), pollinated with compatible pollen (PC), pollinated with incompatible pollen (PI), and pollinated with incompatible pollen after edible salt solution treatment (NA). Of the 307 DAPs in NA/UP, 134 were unique and 94 were shared only with PC/UP. In PC and NA, some salt stress protein species, such as glyoxalase I , were induced, and these protein species were likely to participate in the self-compatibility (SC) pathway. Most of the identified protein species were related to metabolic pathways, biosynthesis of secondary metabolites, ribosome, and so on. A systematic analysis implied that salt treatment-overcoming SI in B. napus was likely conferred by at least five different physiological mechanisms: (i) the use of Ca 2+ as signal molecule; (ii) loosening of the cell wall to allow pollen tube penetration; (iii) synthesis of compatibility factor protein species for pollen tube growth; (iv) depolymerization of microtubule networks to facilitate pollen tube movement; and (v) inhibition of protein degradation pathways to restrain the SI response.

  8. An analysis of the development of cauliflower seed as a model to improve the molecular mechanism of abiotic stress tolerance in cauliflower artificial seeds.

    Science.gov (United States)

    Rihan, Hail Z; Al-Issawi, Mohammed; Fuller, Michael P

    2017-07-01

    The development stages of conventional cauliflower seeds were studied and the accumulation of dehydrin proteins through the maturation stages was investigated with the aim of identifying methods to improve the viability of artificial seeds of cauliflower. While carbohydrate, ash and lipids increased throughout the development of cauliflower traditional seeds, proteins increased with the development of seed and reached the maximum level after 75 days of pollination, however, the level of protein started to decrease after that. A significant increase in the accumulation of small size dehydrin proteins (12, 17, 26 KDa) was observed during the development of cauliflower seeds. Several experiments were conducted in order to increase the accumulation of important dehydrin proteins in cauliflower microshoots (artificial seeds). Mannitol and ABA (Absisic acid) increased the accumulation of dehydrins in cauliflower microshoots while cold acclimation did not have a significant impact on the accumulation of these proteins. Molybdenum treatments had a negative impact on dehydrin accumulation. Dehydrins have an important role in the drought tolerance of seeds and, therefore, the current research helps to improve the accumulation of these proteins in cauliflower artificial seeds. This in turns improves the quality of these artificial seeds. The current results suggest that dehydrins do not play an important role in cold tolerance of cauliflower artificial seeds. This study could have an important role in improving the understanding of the molecular mechanism of abiotic stress tolerance in plants. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  9. The calmodulin-like protein, CML39, is involved in regulating seed development, germination, and fruit development in Arabidopsis.

    Science.gov (United States)

    Midhat, Ubaid; Ting, Michael K Y; Teresinski, Howard J; Snedden, Wayne A

    2018-03-01

    We show that the calcium sensor, CML39, is important in various developmental processes from seeds to mature plants. This study bridges previous work on CML39 as a stress-induced gene and highlights the importance of calcium signalling in plant development. In addition to the evolutionarily-conserved Ca 2+ sensor, calmodulin (CaM), plants possess a large family of CaM-related proteins (CMLs). Using a cml39 loss-of-function mutant, we investigated the roles of CML39 in Arabidopsis and discovered a range of phenotypes across developmental stages and in different tissues. In mature plants, loss of CML39 results in shorter siliques, reduced seed number per silique, and reduced number of ovules per pistil. We also observed changes in seed development, germination, and seed coat properties in cml39 mutants in comparison to wild-type plants. Using radicle emergence as a measure of germination, cml39 mutants showed more rapid germination than wild-type plants. In marked contrast to wild-type seeds, the germination of developing, immature cml39 seeds was not sensitive to cold-stratification. In addition, germination of cml39 seeds was less sensitive than wild-type to inhibition by ABA or by treatments that impaired gibberellic acid biosynthesis. Tetrazolium red staining indicated that the seed-coat permeability of cml39 seeds is greater than that of wild-type seeds. RNA sequencing analysis of cml39 seedlings suggests that changes in chromatin modification may underlie some of the phenotypes associated with cml39 mutants, consistent with previous reports that orthologs of CML39 participate in gene silencing. Aberrant ectopic expression of transcripts for seed storage proteins in 7-day old cml39 seedlings was observed, suggesting mis-regulation of early developmental programs. Collectively, our data support a model where CML39 serves as an important Ca 2+ sensor during ovule and seed development, as well as during germination and seedling establishment.

  10. Development and Performance Evaluation of Fluted Pumpkin Seed Dehulling Machine

    Directory of Open Access Journals (Sweden)

    M. M. Odewole

    2017-08-01

    Full Text Available A machine for dehulling fluted pumpkin seed (Telfairia occidentalis was developed. The main objective of developing the machine was to provide a better substitute to traditional methods of dehulling the seed which contains edible oil of high medicinal and nutritional values. Traditional methods are full of drudgery, slow, injury prone and would lead to low and poor outputs in terms of quantity and quality of dehulled products. The machine is made of five major parts: the feed hopper (for holding the seeds to be dehulled before getting into the dehulling chamber, dehulling chamber (the part of the machine that impacts forces on seeds thereby causing fractures and opening of seeds coats for the delivery of the oily kernels, discharge unit (exit for oily kernels and seed coats after dehulling, the frame (for structural support and stability of all parts of the machine and electric motor (power source of the machine.The development process involved design of major components (shaft diameter (20 mm, machine velocity (7.59 m/s, power requirement (3hp single phase electric motor and structural support of mild steel angle iron, selection of construction materials and fabrication. ANSYS R14.5 machine design computer software was used to design the shaft and structural support; while other components were designed with conventional design method of using design equations. The machine works on the principle of centrifugal and impact forces. Performance evaluation was carried out after fabrication and 87.26%, 2.83g/s, 8.9% and 3.84%were obtained for dehulling efficiency, throughput capacity, percentage partially dehulled and percentage undehulled respectively.

  11. Regulation of carotenoid and ABA accumulation during the development and germination of Nicotiana plumbaginifolia seeds.

    Science.gov (United States)

    Frey, Anne; Boutin, Jean-Pierre; Sotta, Bruno; Mercier, Raphaël; Marion-Poll, Annie

    2006-08-01

    Abscisic acid (ABA) is derived from epoxycarotenoid cleavage and regulates seed development and maturation. A detailed carotenoid analysis was undertaken to study the contribution of epoxycarotenoid synthesis to the regulation of ABA accumulation in Nicotiana plumbaginifolia developing seeds. Maximal accumulation of xanthophylls occurred at mid-development in wild type seeds, when total ABA levels also peaked. In contrast, in ABA-deficient mutants xanthophyll synthesis was delayed, in agreement with the retardation in seed maturation. Seed dormancy was restored in mutants impaired in the conversion of zeaxanthin into violaxanthin by zeaxanthin epoxidase (ZEP), by the introduction of the Arabidopsis AtZEP gene under the control of promoters inducing expression during later stages of seed development compared to wild type NpZEP, and in dry and imbibed seeds. Alterations in the timing and level of ZEP expression did not highly affect the temporal regulation of ABA accumulation in transgenic seeds, despite notable perturbations in xanthophyll accumulation. Therefore, major regulatory control of ABA accumulation might occur downstream of epoxycarotenoid synthesis.

  12. Aspects of the barley seed proteome during development and germination

    DEFF Research Database (Denmark)

    Finnie, Christine; Maeda, K.; Østergaard, O.

    2004-01-01

    Analysis of the water-soluble barley seed proteome has led to the identification of proteins by MS in the major spots on two-dimensional gels covering the pi ranges 4-7 and 6-11. This provides the basis for in-depth studies of proteome changes during seed development and germination, tissue...

  13. Quantitative Genetics Identifies Cryptic Genetic Variation Involved in the Paternal Regulation of Seed Development.

    Directory of Open Access Journals (Sweden)

    Nuno D Pires

    2016-01-01

    Full Text Available Embryonic development requires a correct balancing of maternal and paternal genetic information. This balance is mediated by genomic imprinting, an epigenetic mechanism that leads to parent-of-origin-dependent gene expression. The parental conflict (or kinship theory proposes that imprinting can evolve due to a conflict between maternal and paternal alleles over resource allocation during seed development. One assumption of this theory is that paternal alleles can regulate seed growth; however, paternal effects on seed size are often very low or non-existent. We demonstrate that there is a pool of cryptic genetic variation in the paternal control of Arabidopsis thaliana seed development. Such cryptic variation can be exposed in seeds that maternally inherit a medea mutation, suggesting that MEA acts as a maternal buffer of paternal effects. Genetic mapping using recombinant inbred lines, and a novel method for the mapping of parent-of-origin effects using whole-genome sequencing of segregant bulks, indicate that there are at least six loci with small, paternal effects on seed development. Together, our analyses reveal the existence of a pool of hidden genetic variation on the paternal control of seed development that is likely shaped by parental conflict.

  14. Proteomic analysis of the seed development in Jatropha curcas: from carbon flux to the lipid accumulation.

    Science.gov (United States)

    Liu, Hui; Wang, Cuiping; Komatsu, Setsuko; He, Mingxia; Liu, Gongshe; Shen, Shihua

    2013-10-08

    To characterize the metabolic signatures of lipid accumulation in Jatropha curcas seeds, comparative proteomic technique was employed to profile protein changes during the seed development. Temporal changes in comparative proteome were examined using gels-based proteomic technique at six developmental stages for lipid accumulation. And 104 differentially expressed proteins were identified by MALDI-TOF/TOF tandem mass spectrometry. These protein species were classified into 10 functional categories, and the results demonstrated that protein species related to energy and metabolism were notably accumulated and involved in the carbon flux to lipid accumulation that occurs primarily from early to late stage in seed development. Glycolysis and oxidative pentose phosphate pathways were the major pathways of producing carbon flux, and the glucose-6-phosphate and triose-phosphate are the major carbon source for fatty acid synthesis. Lipid analysis revealed that fatty acid accumulation initiated 25days after flowering at the late stage of seed development of J. curcas. Furthermore, C16:0 was initially synthesized as the precursor for the elongation to C18:1 and C18:2 in the developing seeds of J. curcas. Together, the metabolic signatures on protein changes in seed development provide profound knowledge and perspective insights into understanding lipid network in J. curcas. Due to the abundant oil content in seeds, Jatropha curcas seeds are being considered as the ideal materials for biodiesel. Although several studies had carried out the transcriptomic project to study the genes expression profiles in seed development of J. curcas, these ESTs hadn't been confirmed by qRT-PCR. Yet, the seed development of J. curcas had been described for a pool of developing seeds instead of being characterized systematically. Moreover, cellular metabolic events are also controlled by protein-protein interactions, posttranslational protein modifications, and enzymatic activities which

  15. An RNA-seq transcriptome analysis of floral buds of an interspecific Brassica hybrid between B. carinata and B. napus.

    Science.gov (United States)

    Chu, Pu; Liu, Huijuan; Yang, Qing; Wang, Yankun; Yan, Guixia; Guan, Rongzhan

    2014-12-01

    Interspecific hybridizations promote gene transfer between species and play an important role in plant speciation and crop improvement. However, hybrid sterility that commonly found in the first generation of hybrids hinders the utilization of interspecific hybridization. The combination of divergent parental genomes can create extensive transcriptome variations, and to determine these gene expression alterations and their effects on hybrids, an interspecific Brassica hybrid of B. carinata × B. napus was generated. Scanning electron microscopy analysis indicated that some of the hybrid pollen grains were irregular in shape and exhibited abnormal exine patterns compared with those from the parents. Using the Illumina HiSeq 2000 platform, 39,598, 32,403 and 42,208 genes were identified in flower buds of B. carinata cv. W29, B. napus cv. Zhongshuang 11 and their hybrids, respectively. The differentially expressed genes were significantly enriched in pollen wall assembly, pollen exine formation, pollen development, pollen tube growth, pollination, gene transcription, macromolecule methylation and translation, which might be associated with impaired fertility in the F1 hybrid. These results will shed light on the mechanisms underlying the low fertility of the interspecific hybrids and expand our knowledge of interspecific hybridization.

  16. Comparative transcript profiling of the fertile and sterile flower buds of pol CMS in B. napus.

    Science.gov (United States)

    An, Hong; Yang, Zonghui; Yi, Bin; Wen, Jing; Shen, Jinxiong; Tu, Jinxing; Ma, Chaozhi; Fu, Tingdong

    2014-04-03

    The Polima (pol) system of cytoplasmic male sterility (CMS) and its fertility restoration gene Rfp have been used in hybrid breeding in Brassica napus, which has greatly improved the yield of rapeseed. However, the mechanism of the male sterility transition in pol CMS remains to be determined. To investigate the transcriptome during the male sterility transition in pol CMS, a near-isogenic line (NIL) of pol CMS was constructed. The phenotypic features and sterility stage were confirmed by anatomical analysis. Subsequently, we compared the genomic expression profiles of fertile and sterile young flower buds by RNA-Seq. A total of 105,481,136 sequences were successfully obtained. These reads were assembled into 112,770 unigenes, which composed the transcriptome of the bud. Among these unigenes, 72,408 (64.21%) were annotated using public protein databases and classified into functional clusters. In addition, we investigated the changes in expression of the fertile and sterile buds; the RNA-seq data showed 1,148 unigenes had significantly different expression and they were mainly distributed in metabolic and protein synthesis pathways. Additionally, some unigenes controlling anther development were dramatically down-regulated in sterile buds. These results suggested that an energy deficiency caused by orf224/atp6 may inhibit a series of genes that regulate pollen development through nuclear-mitochondrial interaction. This results in the sterility of pol CMS by leading to the failure of sporogenous cell differentiation. This study may provide assistance for detailed molecular analysis and a better understanding of pol CMS in B. napus.

  17. Alteration of gene expression during the induction of freezing tolerance in Brassica napus suspension cultures

    International Nuclear Information System (INIS)

    Johnson-Flanagan, A.M.; Singh, J.

    1987-01-01

    Brassica napus suspension-cultured cells can be hardened to a lethal temperature for 50% of the sample of -20 0 C in eight days at room temperature with abscisic acid. During the induction of freezing tolerance, changes were observed in the electrophoretic pattern of [ 35 S]methionine labeled polypeptides. In hardening cells, a 20 kilodalton polypeptide was induced on day 2 and its level increased during hardening. The induction of freezing tolerance with nonmaximal hardening regimens also resulted in increases in the 20 kilodalton polypeptide. The 20 kilodalton polypeptide was associated with a membrane fraction enriched in endoplasmic reticulum and was resolved as a single spot by two-dimensional electrophoresis. In vitro translation of mRNA indicate alteration of gene expression during abscisic acid induction of freezing tolerance. The new mRNA encodes a 20 kilodalton polypeptide associated with increased freezing tolerance induced by either abscisic acid or high sucrose. A 20 kilodalton polypeptide was also translated by mRNA isolated from cold-hardened B. napus plants

  18. Comparative analysis of Brassica napus plasma membrane proteins under phosphorus deficiency using label-free and MaxQuant-based proteomics approaches.

    Science.gov (United States)

    Chen, Shuisen; Luo, Ying; Ding, Guangda; Xu, Fangsen

    2016-02-05

    Phosphorus (P) deficiency is a primary constraint for plant growth in terrestrial ecosystems. To better understand the genotypic differences in the adaptation mechanism of Brassica napus to P deficiency, we purified the plasma membrane (PM) from the roots of two genotypes: P-efficient "Eyou Changjia" and P-inefficient "B104-2". Combining label-free quantitative proteomics with the MaxQuant approach, a total of 71 proteins that significantly changed in abundances were identified in the two genotypes in response to P-free starvation, including 31 in "Eyou Changjia" and 40 in "B104-2". Based on comparative genomics study, 28 proteins were mapped to the confidence intervals of quantitative trait loci (QTLs) for P efficiency related traits. Seven decreased proteins with transporter activity were found to be located in the PM by subcellular localization analyses. These proteins involved in intracellular protein transport and ATP hydrolysis coupled proton transport were mapped to the QTL for P content and dry weight. Compared with "B104-2", more decreased proteins referring to transporter activity were found in "Eyou Changjia", showing that substance exchange was decreased in response to short-term P-free starvation. Together with the finding, more decreased proteins functioning in signal transduction and protein synthesis/degradation suggested that "Eyou Changjia" could slow the progression of growth and save more P in response to short-term P-free starvation. P deficiency seriously limits the production and quality of B. napus. Roots absorb water and nutrients and anchor the plant in the soil. Therefore, to study root PM proteome under P stress would be helpful to understand the adaptation mechanism for P deficiency. However, PM proteome analysis in B. napus has been seldom reported due to the high hydrophobicity and low abundance of PM. Thus, we herein investigated the PM proteome alteration of roots in two B. napus genotypes, with different P deficient tolerances, in

  19. Peanut gene expression profiling in developing seeds at different reproduction stages during Aspergillus parasiticus infection

    Directory of Open Access Journals (Sweden)

    Liang Xuanqiang

    2008-02-01

    Full Text Available Abstract Background Peanut (Arachis hypogaea L. is an important crop economically and nutritionally, and is one of the most susceptible host crops to colonization of Aspergillus parasiticus and subsequent aflatoxin contamination. Knowledge from molecular genetic studies could help to devise strategies in alleviating this problem; however, few peanut DNA sequences are available in the public database. In order to understand the molecular basis of host resistance to aflatoxin contamination, a large-scale project was conducted to generate expressed sequence tags (ESTs from developing seeds to identify resistance-related genes involved in defense response against Aspergillus infection and subsequent aflatoxin contamination. Results We constructed six different cDNA libraries derived from developing peanut seeds at three reproduction stages (R5, R6 and R7 from a resistant and a susceptible cultivated peanut genotypes, 'Tifrunner' (susceptible to Aspergillus infection with higher aflatoxin contamination and resistant to TSWV and 'GT-C20' (resistant to Aspergillus with reduced aflatoxin contamination and susceptible to TSWV. The developing peanut seed tissues were challenged by A. parasiticus and drought stress in the field. A total of 24,192 randomly selected cDNA clones from six libraries were sequenced. After removing vector sequences and quality trimming, 21,777 high-quality EST sequences were generated. Sequence clustering and assembling resulted in 8,689 unique EST sequences with 1,741 tentative consensus EST sequences (TCs and 6,948 singleton ESTs. Functional classification was performed according to MIPS functional catalogue criteria. The unique EST sequences were divided into twenty-two categories. A similarity search against the non-redundant protein database available from NCBI indicated that 84.78% of total ESTs showed significant similarity to known proteins, of which 165 genes had been previously reported in peanuts. There were

  20. Effects of fall and spring seeding date and other agronomic factors on infestations of root maggots, Delia spp. (Diptera: Anthomyiidae), in canola.

    Science.gov (United States)

    Dosdall, L M; Clayton, G W; Harker, K N; O'Donovan, J T; Stevenson, F C

    2006-10-01

    Several agronomic benefits can result from fall seeding of canola (Brassica spp.), but extensive research data are lacking on the potential impact of this practice on infestations of root maggots (Delia spp.) (Diptera: Anthomyiidae), which are major pests of the crop in western Canada. Field experiments making up 13 location by year combinations were conducted in central Alberta, Canada, from 1998 to 2001 to determine the effect of fall versus spring seeding of canola on root maggot damage. Depending on the experiment, interactions with seeding rate, seed treatment, timing of weed removal, and canola species (cultivar) also were investigated. Root maggot damage declined with an increase in seeding rate for plots seeded in May but not in fall or April. Susceptibility to infestation was greater for plants of Brassica rapa L. than Brassica napus L., but seed treatment had no effect on damage by these pests. Combined analysis using data from all experiment by location by year combinations indicated that seeding date had no significant effect on root maggot damage. The extended emergence of Delia spp. adults, which spans the appearance of crop stages vulnerable to oviposition regardless of seeding date, prevented reduced root maggot attack. Covariance analysis demonstrated the importance of increasing seeding rate for reducing root maggot infestations, a practice that can be especially beneficial for May-seeded canola when growing conditions limit the ability of plants to compensate for root maggot damage. Results determined with the small plot studies described here should be validated in larger plots or on a commercial field scale, but both the combined and covariance analyses indicate that seeding canola in fall does not predispose plants to greater damage by larval root maggots than seeding in spring.

  1. Yield and seed oil content response of dwarf, rapid-cycling Brassica to nitrogen treatments, planting density, and carbon dioxide enrichment

    Science.gov (United States)

    Frick, J.; Nielsen, S. S.; Mitchell, C. A.

    1994-01-01

    Effects of N level (15 to 30 mM), time of N increase (14 to 28 days after planting), and planting density (1163 to 2093 plants/m2) were determined for crop yield responses of dwarf, rapid-cycling brassica (Brassica napus L., CrGC 5-2, Genome: ACaacc). Crops were grown in solid-matrix hydroponic systems and under controlled-environment conditions, including nonsupplemented (ambient) or elevated CO2 concentrations (998 +/- 12 micromoles mol-1). The highest seed yield rate obtained (4.4 g m-2 day-1) occurred with the lowest N level (15 mM) applied at the latest treatment time (day 28). In all trials, CO2 enrichment reduced seed yield rate and harvest index by delaying the onset of flowering and senescence and stimulating vegetative shoot growth. The highest shoot biomass accumulation rate (55.5 g m-2 day-1) occurred with the highest N level (30 mM) applied at the earliest time (day 14). Seed oil content was not significantly affected by CO2 enrichment. Maximum seed oil content (30% to 34%, dry weight basis) was obtained using the lowest N level (15 mM) initiated at the latest treatment time (day 28). In general, an increase in seed oil content was accompanied by a decrease in seed protein. Seed carbohydrate, moisture, and ash contents did not vary significantly in response to experimental treatments. Effects of N level and time of N increase were consistently significant for most crop responses. Planting density was significant only under elevated CO2 conditions.

  2. A mutant Brassica napus (canola population for the identification of new genetic diversity via TILLING and next generation sequencing.

    Directory of Open Access Journals (Sweden)

    Erin J Gilchrist

    Full Text Available We have generated a Brassica napus (canola population of 3,158 EMS-mutagenised lines and used TILLING to demonstrate that the population has a high enough mutation density that it will be useful for identification of mutations in genes of interest in this important crop species. TILLING is a reverse genetics technique that has been successfully used in many plant and animal species. Classical TILLING involves the generation of a mutagenised population, followed by screening of DNA samples using a mismatch-specific endonuclease that cleaves only those PCR products that carry a mutation. Polyacrylamide gel detection is then used to visualise the mutations in any gene of interest. We have used this TILLING technique to identify 432 unique mutations in 26 different genes in B. napus (canola cv. DH12075. This reflects a mutation density ranging from 1/56 kb to 1/308 kb (depending on the locus with an average of 1/109 kb. We have also successfully verified the utility of next generation sequencing technology as a powerful approach for the identification of rare mutations in a population of plants, even in polyploid species such as B. napus. Most of the mutants we have identified are publically available.

  3. Mineral accumulation in vegetative and reproductive tissues during seed development in Medicago truncatula

    Directory of Open Access Journals (Sweden)

    Christina B. Garcia

    2015-08-01

    Full Text Available Enhancing nutrient density in legume seeds is one of several strategies being explored to improve the nutritional quality of the food supply. In order to develop crop varieties with increased seed mineral concentration, a more detailed understanding of mineral translocation within the plant is required. By studying mineral accumulation in different organs within genetically diverse members of the same species, it may be possible to identify variable traits that modulate seed mineral concentration. We utilized two ecotypes (A17 and DZA315.16 of the model legume, Medicago truncatula, to study dry mass and mineral accumulation in the leaves, pod walls, and seeds during reproductive development. The pod wall dry mass was significantly different between the two ecotypes beginning at 12 days after pollination, whereas there was no significant difference in the average dry mass of individual seeds between the two ecotypes at any time point. There were also no significant differences in leaf dry mass between ecotypes; however, we observed expansion of A17 leaves during the first 21 days of pod development, while DZA315.16 leaves did not display a significant increase in leaf area. Mineral profiling of the leaves, pod walls, and seeds highlighted differences in accumulation patterns among minerals within each tissue as well as genotypic differences with respect to individual minerals. Because there were differences in the average seed number per pod, the total seed mineral content per pod was generally higher in A17 than DZA315.16. In addition, mineral partitioning to the seeds tended to be higher in A17 pods. These data revealed that mineral retention within leaves and/or pod walls might attenuate mineral accumulation within the seeds. As a result, strategies to increase seed mineral content should include approaches that will enhance export from these tissues.

  4. Disruptions in valine degradation affect seed development and germination in Arabidopsis.

    Science.gov (United States)

    Gipson, Andrew B; Morton, Kyla J; Rhee, Rachel J; Simo, Szabolcs; Clayton, Jack A; Perrett, Morgan E; Binkley, Christiana G; Jensen, Erika L; Oakes, Dana L; Rouhier, Matthew F; Rouhier, Kerry A

    2017-06-01

    We have functionally characterized the role of two putative mitochondrial enzymes in valine degradation using insertional mutants. Prior to this study, the relationship between branched-chain amino acid degradation (named for leucine, valine and isoleucine) and seed development was limited to leucine catabolism. Using a reverse genetics approach, we show that disruptions in the mitochondrial valine degradation pathway affect seed development and germination in Arabidopsis thaliana. A null mutant of 3-hydroxyisobutyryl-CoA hydrolase (CHY4, At4g31810) resulted in an embryo lethal phenotype, while a null mutant of methylmalonate semialdehyde dehydrogenase (MMSD, At2g14170) resulted in seeds with wrinkled coats, decreased storage reserves, elevated valine and leucine, and reduced germination rates. These data highlight the unique contributions CHY4 and MMSD make to the overall growth and viability of plants. It also increases our knowledge of the role branched-chain amino acid catabolism plays in seed development and amino acid homeostasis. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  5. Acid phosphatases in seeds and developing of squash (Cucurbita ficifolia

    Directory of Open Access Journals (Sweden)

    Irena Lorenc-Kubis

    2014-01-01

    Full Text Available Changes in protein content and acid phosphatase activity were followed during germination (imbition through seedlings development in extracts from cotyledons of squash (Cucurbita ficifolia. It has been shown that the activity of acid phosphatase was initially low and than increased to a maximum after 6 days of imbition. Acid phosphates were isolated from cotyledons of seeds and from 6-, 10- and 22-days old seedlings by extraction the proteins with 0.1 M acetate buffer pH 5.1, precipitation with ethanol and by affinity chromatography on con A-Sepharose. Two glycoprotein enzymes AcPase Ba and AcPase Bb which differ in their affinity to immobilized con A were obtained. Both acid phosphatates retained the enzyme activity after binding to free con A. Rocket affinity electrophoresis of AcPase Ba and AcPase Bb, isolated from cotyledons of seeds and seedlings, revealed differences in their ability to bind to con A during seeds germination and seedling develop-ment indicating changes in their sugar component. Con A was found to activate both enzymes. The enzymes cross-reacted with monospecific antibodies raised against grass seed acid phosphatate Ba indicating an antigenic relationship between squash and grass acid phosphatases.

  6. Amplification of the active site of BnLIP3 gene of Brassica napus L ...

    African Journals Online (AJOL)

    Lipases are useful enzymes that are responsible for the hydrolysis of triacylglycerides and play an important role in plant growth. In this study, we report a rapid molecular method to amplify a partial sequence of the lipase class 3 family designated BnLIP3 gene of Brassica napus L. in order to follow its expression and ...

  7. Global analysis of gene expression profiles in developing physic nut (Jatropha curcas L.) seeds.

    Science.gov (United States)

    Jiang, Huawu; Wu, Pingzhi; Zhang, Sheng; Song, Chi; Chen, Yaping; Li, Meiru; Jia, Yongxia; Fang, Xiaohua; Chen, Fan; Wu, Guojiang

    2012-01-01

    Physic nut (Jatropha curcas L.) is an oilseed plant species with high potential utility as a biofuel. Furthermore, following recent sequencing of its genome and the availability of expressed sequence tag (EST) libraries, it is a valuable model plant for studying carbon assimilation in endosperms of oilseed plants. There have been several transcriptomic analyses of developing physic nut seeds using ESTs, but they have provided limited information on the accumulation of stored resources in the seeds. We applied next-generation Illumina sequencing technology to analyze global gene expression profiles of developing physic nut seeds 14, 19, 25, 29, 35, 41, and 45 days after pollination (DAP). The acquired profiles reveal the key genes, and their expression timeframes, involved in major metabolic processes including: carbon flow, starch metabolism, and synthesis of storage lipids and proteins in the developing seeds. The main period of storage reserves synthesis in the seeds appears to be 29-41 DAP, and the fatty acid composition of the developing seeds is consistent with relative expression levels of different isoforms of acyl-ACP thioesterase and fatty acid desaturase genes. Several transcription factor genes whose expression coincides with storage reserve deposition correspond to those known to regulate the process in Arabidopsis. The results will facilitate searches for genes that influence de novo lipid synthesis, accumulation and their regulatory networks in developing physic nut seeds, and other oil seeds. Thus, they will be helpful in attempts to modify these plants for efficient biofuel production.

  8. Functional characterization of Brassica napus DNA topoisomerase Iα-1 and its effect on flowering time when expressed in Arabidopsis thaliana

    International Nuclear Information System (INIS)

    Gao, Chenhao; Qi, Shuanghui; Liu, Kaige; Li, Dong; Jin, Changyu; Duan, Shaowei; Zhang, Meng; Chen, Mingxun

    2017-01-01

    Previous studies have shown that DNA topoisomerase Iα (AtTOP1α) has specific developmental functions during growth and development in Arabidopsis thaliana. However, little is known about the roles of DNA topoisomerases in the closely related and commercially important plant, rapeseed (Brassica napus). Here, the full-length BnTOP1α-1 coding sequence was cloned from the A2 subgenome of the Brassica napus inbred line L111. We determine that all BnTOP1α paralogs showed differing patterns of expression in different organs of L111, and that when expressed in tobacco leaves as a fusion protein with green fluorescent protein, BnTOP1α-1 localized to the nucleus. We further showed that ectopic expression of BnTOP1α-1 in the A. thaliana top1α-7 mutant fully complemented the early flowering phenotype of the mutant. Moreover, altered expression levels in top1α-7 seedlings of several key genes controlling flowering time were restored to wild type levels by ectopic expression of BnTOP1α-1. These results provide valuable insights into the roles of rapeseed DNA topoisomerases in flowering time, and provide a promising target for genetic manipulation of this commercially significant process in rapeseed. - Highlights: • BnTOP1α-1 was cloned from the A2 subgenome of Brassica napus inbred line L111. • BnTOP1α-1 rescued the early flowering phenotype of the Attop1α-7 mutant. • BnTOP1α-1 rescued the altered expression of flowering time genes in the Attop1α-mutant. • The functions of BnTOP1α-1 and AtTOP1α are likely conserved.

  9. Germination and development of pecan cultivar seedlings by seed stratification

    Directory of Open Access Journals (Sweden)

    Igor Poletto

    2015-12-01

    Full Text Available Abstract: The objective of this work was to evaluate the effect of seed stratification on germination rate, germination speed, and initial development of seedlings of six pecan (Carya illinoinensis cultivars under subtropical climatic conditions in southern Brazil. For stratification, the seeds were placed in boxes with moist sand, in a cold chamber at 4°C, for 90 days. In the fourteenth week after sowing, the emergence speed index, total emergence, plant height, stem diameter, and number of leaves were evaluated. Seed stratification significantly improves the germination potential and morphological traits of the evaluated cultivars.

  10. Impact of Transgenic Brassica napus Harboring the Antifungal Synthetic Chitinase (NiC Gene on Rhizosphere Microbial Diversity and Enzyme Activities

    Directory of Open Access Journals (Sweden)

    Mohammad S. Khan

    2017-07-01

    Full Text Available Transgenic Brassica napus harboring the synthetic chitinase (NiC gene exhibits broad-spectrum antifungal resistance. As the rhizosphere microorganisms play an important role in element cycling and nutrient transformation, therefore, biosafety assessment of NiC containing transgenic plants on soil ecosystem is a regulatory requirement. The current study is designed to evaluate the impact of NiC gene on the rhizosphere enzyme activities and microbial community structure. The transgenic lines with the synthetic chitinase gene (NiC showed resistance to Alternaria brassicicola, a common disease causing fungal pathogen. The rhizosphere enzyme analysis showed no significant difference in the activities of fivesoil enzymes: alkalyine phosphomonoestarase, arylsulphatase, β-glucosidase, urease and sucrase between the transgenic and non-transgenic lines of B. napus varieties, Durr-e-NIFA (DN and Abasyne-95 (AB-95. However, varietal differences were observed based on the analysis of molecular variance. Some individual enzymes were significantly different in the transgenic lines from those of non-transgenic but the results were not reproducible in the second trail and thus were considered as environmental effect. Genotypic diversity of soil microbes through 16S–23S rRNA intergenic spacer region amplification was conducted to evaluate the potential impact of the transgene. No significant diversity (4% for bacteria and 12% for fungal between soil microbes of NiC B. napus and the non-transgenic lines was found. However, significant varietal differences were observed between DN and AB-95 with 79% for bacterial and 54% for fungal diversity. We conclude that the NiC B. napus lines may not affect the microbial enzyme activities and community structure of the rhizosphere soil. Varietal differences might be responsible for minor changes in the tested parameters.

  11. Development and sensory evaluation of yogurt with chia seeds

    Directory of Open Access Journals (Sweden)

    Melina Vilela dos Santos

    2017-11-01

    Full Text Available The objective of this study was to develop and evaluate the sensory acceptance of yogurt formulations with chia seeds. After preparation of the formulations (A - Control, B - yogurt added of 2% of chia seeds, C - yoghurt added of 3% of chia seeds, microbiological and physicochemical analyzes were performed. Hedonic scales were used to verify the acceptance and the intention to purchase the elaborated formulations, as well as the Acceptability Index. The data of the acceptance and purchase intention tests were evaluated through Analysis of Variance (ANOVA, and later, Tukey’s Test was applied at a 5% probability. Yogurt formulations were within the standards required by Brazilian Legislation for microbiological and physicochemical analyzes. There was no significant difference (p > 0,05 between the 3 yoghurt formulations for the attributes of flavor, texture and overall impression. However, regarding the appearance attribute, the formulation with 3% chia (C seeds was less appreciated (p 0,05 regarding the average of the purchase intention notes for the 3 yogurt formulations. It was concluded that the yogurt formulations with chia seeds were adequate for the microbiological and physicochemical parameters during the storage period, besides obtaining a good sensorial acceptance, presenting itself as a healthier milk alternative for the consumers.

  12. In vitro distribution and characterization of membrane-associated PLD and PI-PLC in Brassica napus

    Czech Academy of Sciences Publication Activity Database

    Novotná, Z.; Martinec, Jan; Profotová, Bronislava; Žďárová, Štěpánka; Kader, J. K.; Valentová, O.

    2003-01-01

    Roč. 54, č. 383 (2003), s. 691-698 ISSN 0022-0957 R&D Projects: GA ČR GA522/00/1332; GA MŠk LN00A081 Institutional research plan: CEZ:AV0Z5038910 Keywords : Brassica napus * phospholipases * plasma membrane Subject RIV: CE - Biochemistry Impact factor: 3.180, year: 2003

  13. Induction and purification of chitinase in Brassica napus L. ssp. oleifera infected with Phoma lingam

    DEFF Research Database (Denmark)

    Rasmussen, U.; Giese, H.; Dalgaard Mikkelsen, J.

    1992-01-01

    A pathogen-induced chitinase (EC 3.2.1.14) was isolated from cotyledons of oilseed rape (Brassica napus cv. Bienvenu) 8 d after inoculation with Phoma lingam. The purified chitinase has a molecular weight of 30 kDa, and an isoelectric point of approx. 9.1. A partial amino-acid sequence obtained a...

  14. Global analysis of gene expression profiles in developing physic nut (Jatropha curcas L. seeds.

    Directory of Open Access Journals (Sweden)

    Huawu Jiang

    Full Text Available BACKGROUND: Physic nut (Jatropha curcas L. is an oilseed plant species with high potential utility as a biofuel. Furthermore, following recent sequencing of its genome and the availability of expressed sequence tag (EST libraries, it is a valuable model plant for studying carbon assimilation in endosperms of oilseed plants. There have been several transcriptomic analyses of developing physic nut seeds using ESTs, but they have provided limited information on the accumulation of stored resources in the seeds. METHODOLOGY/PRINCIPAL FINDINGS: We applied next-generation Illumina sequencing technology to analyze global gene expression profiles of developing physic nut seeds 14, 19, 25, 29, 35, 41, and 45 days after pollination (DAP. The acquired profiles reveal the key genes, and their expression timeframes, involved in major metabolic processes including: carbon flow, starch metabolism, and synthesis of storage lipids and proteins in the developing seeds. The main period of storage reserves synthesis in the seeds appears to be 29-41 DAP, and the fatty acid composition of the developing seeds is consistent with relative expression levels of different isoforms of acyl-ACP thioesterase and fatty acid desaturase genes. Several transcription factor genes whose expression coincides with storage reserve deposition correspond to those known to regulate the process in Arabidopsis. CONCLUSIONS/SIGNIFICANCE: The results will facilitate searches for genes that influence de novo lipid synthesis, accumulation and their regulatory networks in developing physic nut seeds, and other oil seeds. Thus, they will be helpful in attempts to modify these plants for efficient biofuel production.

  15. Development of non-destructive sorting technique for viability of watermelon seed by using hyperspectral image processing

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Hyun Jin; Seo, Young Wook; Lohumi, Santosh; Park, Eun Soo; Cho, Byoung Kwan [Biosystems Machinery Engineering, Chungnam National University, Daejeon (Korea, Republic of); Kim, Dae Yong [Logistics institude, CJ Korea Express, Seoul (Korea, Republic of)

    2016-02-15

    Seed viability is one of the most important parameters that is directly related with seed germination performance and seedling emergence. In this study, a hyperspectral imaging (HSI) system having a range of 1000 –2500 nm was used to classify viable watermelon seeds from nonviable seeds. In order to obtain nonviable watermelon seeds, a total of 96 seeds were artificially aged by immersing the seeds in hot water (25°C) for 15 days. Further, hyperspectral images for 192 seeds (96 normal and 96 aged) were acquired using the developed HSI system. A germination test was performed for all the 192 seeds in order to confirm their viability. Spectral data from the hyperspectral images of the seeds were extracted by selecting pixels from the region of interest. Each seed spectrum was averaged and preprocessed to develop a classification model of partial least square discriminant analysis (PLS-DA). The developed PLS-DA model showed a classification accuracy of 94.7% for the calibration set, and 84.2% for the validation set. The results demonstrate that the proposed technique can classify viable and nonviable watermelon seeds with a reasonable accuracy, and can be further converted into an online sorting system for rapid and nondestructive classification of watermelon seeds with regard to viability.

  16. Development of non-destructive sorting technique for viability of watermelon seed by using hyperspectral image processing

    International Nuclear Information System (INIS)

    Bae, Hyun Jin; Seo, Young Wook; Lohumi, Santosh; Park, Eun Soo; Cho, Byoung Kwan; Kim, Dae Yong

    2016-01-01

    Seed viability is one of the most important parameters that is directly related with seed germination performance and seedling emergence. In this study, a hyperspectral imaging (HSI) system having a range of 1000 –2500 nm was used to classify viable watermelon seeds from nonviable seeds. In order to obtain nonviable watermelon seeds, a total of 96 seeds were artificially aged by immersing the seeds in hot water (25°C) for 15 days. Further, hyperspectral images for 192 seeds (96 normal and 96 aged) were acquired using the developed HSI system. A germination test was performed for all the 192 seeds in order to confirm their viability. Spectral data from the hyperspectral images of the seeds were extracted by selecting pixels from the region of interest. Each seed spectrum was averaged and preprocessed to develop a classification model of partial least square discriminant analysis (PLS-DA). The developed PLS-DA model showed a classification accuracy of 94.7% for the calibration set, and 84.2% for the validation set. The results demonstrate that the proposed technique can classify viable and nonviable watermelon seeds with a reasonable accuracy, and can be further converted into an online sorting system for rapid and nondestructive classification of watermelon seeds with regard to viability

  17. Evaluation of Yield Component Traits of Honeybee-Pollinated (Apis mellifera L.Rapeseed Canola (Brassica napus L. Evaluación de Parámetros de Rendimiento del Raps (Brassica napus L. Polinizado por Abejas (Apis mellifera L.

    Directory of Open Access Journals (Sweden)

    Ximena Araneda Durán

    2010-06-01

    Full Text Available Recent introduction of hybrid varieties raises the question if bees (Apis mellifera L. contribute as pollinator agents in developing the full yield potential of rapeseed (Brassica napus L.. In order to evaluate the yield achieved by B. napus cv. Artus pollinated by A. mellifera testing was carried out in the district of Freire, La Araucanía Region, Chile. This consisted in isolating or excluding rapeseed plants from pollinators with exclusion cages. Treatments applied were total exclusion (T1, partial exclusion (T2 and free pollination (T0 with a density of 6.5 hives ha-1, in order to determine the following yield components traits: grains per silique, siliques per plant, 1000 grain weight and yield. The experimental design used was randomized complete blocks with three treatments and three replicates. Results obtained show that the parameter least affected by bee intervention was the grains per silique variable. In contrast, siliques per plant and 1000 grain weight parameters presented significant differences, contributing to a yield greater than 5 t ha-1; which represented a figure 50.34% higher than in the treatment without bees. It may be concluded that the inclusion of bees in crops is fully justified as a production tool.La reciente introducción de variedades híbridas plantea la interrogante de la contribución que pueda tener la presencia de abejas (Apis mellifera L. como agentes polinizadores para desarrollar en pleno el potencial productivo del raps (Brassica napus L.. Con el objetivo de evaluar el rendimiento alcanzado por B. napus cv. Artus polinizado por A. mellifera, se realizó un ensayo en la localidad de Freire, Región de La Araucanía, Chile. Éste consistió en aislar o excluir las plantas de raps de los polinizadores mediante el uso de jaulas excluidoras. Los tratamientos consistieron en la exclusión total (T1, exclusión parcial (T2 y libre polinización (T0 con una densidad de 6,5 colmenas ha-1, con el fin de determinar

  18. Does the informal seed system threaten cowpea seed health?

    NARCIS (Netherlands)

    Biemond, P.C.; Oguntade, O.; Lava Kumar, P.; Stomph, T.J.; Termorshuizen, A.J.; Struik, P.C.

    2013-01-01

    Most smallholder farmers in developing countries depend on an informal Seed System (SS) for their seed. The informal SS is often criticized because farmer-produced seed samples are not tested for seed health, thus accepting the risk of planting infected seeds. Here we aimed at assessing the quality

  19. Proteome analysis of pod and seed development in the model legume Lotus japonicus

    DEFF Research Database (Denmark)

    Nautrup-Pedersen, G.; Dam, S.; Laursen, B. S.

    2010-01-01

    Legume pods serve important functions during seed development and are themselves sources of food and feed. Compared to seeds, the metabolism and development of pods are not well-defined. The present characterization of pods from the model legume Lotus japonicus, together with the detailed analyses...... of the pod and seed proteomes in five developmental stages, paves the way for comparative pathway analysis and provides new metabolic information. Proteins were analyzed by two-dimensional gel electrophoresis and tandem-mass spectrometry. These analyses lead to the identification of 604 pod proteins and 965...... and photosynthesis. Proteins detected only in pods included three enzymes participating in the urea cycle and four in nitrogen and amino group metabolism, highlighting the importance of nitrogen metabolism during pod development. Additionally, five legume seed proteins previously unassigned in the glutamate...

  20. Use of chemical mutagen for induction of useful genetic variation in different oil seed rape (brassica napus L.) cultivars

    International Nuclear Information System (INIS)

    Ali, I.; Shah, S.A.; Shah, S.J.A.; Rehman, K.

    1995-01-01

    Pre soaked seeds for 16 hrs of oil seed Rape cvs. Tower and Wester were treated with 1-3% concentrations of ethylene methane sulphonate (EMS) for 4 hrs with the objective to generate variation in characters of importance such as, early maturity, semi dwarf stature, lodging resistance and different yield components. After post washing (4 hrs) the seeds were filter dried and planted directly in the field as M1. Selection for desirable mutants was carried out in M2 and a number of mutants with desirable traits were selected during 1990-91. The mutants were tested for stability of the selected traits in plant to progenies in M3/M4 during 1992 and 1993. The stable 17 mutants were evaluated for yield and other agronomic characters in M5, in preliminary yield trials, during 1993-94. Eleven mutants exhibited early maturity and high yield potential than parent and local commercial variety. The promising mutants will be further tested in yield trials in future for confirmation of results. (author)

  1. Pollination with gamma-irradiated pollen and seed development in kiwifruit (Actinidia deliciosa var. deliciosa)

    International Nuclear Information System (INIS)

    Musial, K.

    1997-01-01

    Full text. The effects of pollen irradiation at 70 and 90 kr on seed set were studied in Actinidia deliciosa var. deliciosa. Pollination with irradiated pollen affected seed development and contents. Rising irradiation doses increased the percentages of empty seeds and decreased the percentages of seeds containing embryos with endosperm. Moreover, pollination with heavily irradiated pollen led to the formation of seeds containing the endosperm only. Embryo and endosperm size was also strongly influenced by irradiated pollen. The length of endosperms was reduced at all levels of pollen irradiation compared to the non-irradiated controls; the embryo development was conspicuously retarded. Cells in endosperm resulting from the treatments differed in the presence and number of starch grains. (author)

  2. Reprogramming the phenylpropanoid metabolism in seeds of oilseed rape by suppressing the orthologs of reduced epidermal fluorescence1.

    Science.gov (United States)

    Mittasch, Juliane; Böttcher, Christoph; Frolov, Andrej; Strack, Dieter; Milkowski, Carsten

    2013-04-01

    As a result of the phenylpropanoid pathway, many Brassicaceae produce considerable amounts of soluble hydroxycinnamate conjugates, mainly sinapate esters. From oilseed rape (Brassica napus), we cloned two orthologs of the Arabidopsis (Arabidopsis thaliana) gene reduced epidermal fluorescence1 (REF1) encoding a coniferaldehyde/sinapaldehyde dehydrogenase. The enzyme is involved in the formation of ferulate and sinapate from the corresponding aldehydes, thereby linking lignin and hydroxycinnamate biosynthesis as a potential branch-point enzyme. We used RNA interference to silence REF1 genes in seeds of oilseed rape. Nontargeted metabolite profiling showed that BnREF1-suppressing seeds produced a novel chemotype characterized by reduced levels of sinapate esters, the appearance of conjugated monolignols, dilignols, and trilignols, altered accumulation patterns of kaempferol glycosides, and changes in minor conjugates of caffeate, ferulate, and 5-hydroxyferulate. BnREF1 suppression affected the level of minor sinapate conjugates more severely than that of the major component sinapine. Mapping of the changed metabolites onto the phenylpropanoid metabolic network revealed partial redirection of metabolic sequences as a major impact of BnREF1 suppression.

  3. Seeds of confusion : the impact of policies on seed systems

    OpenAIRE

    Louwaars, N.P.

    2007-01-01

    Seed is basic to crop production. Next to its importance in production, food security and rural development, seed is a key element in many debates about technology development and transfer, biodiversity, globalisation and equity. The sustainable availability of good quality seed is thus an important development issue. This study deals with the impact different types of regulation have on how farmers access seed. I have analysed current regulatory frameworks in terms of their impact on differe...

  4. Carbon partitioning among leaves, fruits, and seeds during development of Phaseolus vulgaris L

    International Nuclear Information System (INIS)

    Geiger, D.R.; Shieh, Wenjang; Saluke, R.M.

    1989-01-01

    Development of vegetative and floral buds was found to be a key factor in establishing the way carbon is distributed among growing leaves and fruits in Phaseolus vulgaris L. plants. Leaves emerged principally during a period 14 to 32 days after planting while flowers were produced during a 10- to 12-day period near the end of leaf emergence. Timing of anthesis established the sigmoidal time course for dry weight accumulated by the composite of all fruits on the plant. During the first 12 days following anthesis, fruit growth mainly consisted of elongation and dry weight accumulation by the pod wall. Thereafter, seed dry weight increased for about 1 week, decreased markedly for several days, and then increased again over the next 2 weeks. Accumulation of imported carbon in individual seeds, measured by steady-state labeling, confirmed the time course for dry weight accumulation observed during seed development. Seed respiration rate initially increased rapidly along with dry weight and then remained nearly steady until seed maturation. A number of developmental events described in the literature coincided with the different phases of diauxic growth. The results demonstrated the feasibility of relating current rates of carbon import in individual seeds measured with tracer 14 C to the rates of conversion of imported sucrose and use of the products for specific developmental processes. The resulting data are useful for evaluating the roles of conversion and utilization of imported sucrose in regulating import by developing seeds

  5. DEVELOPMENT OF MELON F1 SEEDS BASED ON LINES WITH GENIC MALE STERILITY

    Directory of Open Access Journals (Sweden)

    A. S. Sokolov

    2014-01-01

    Full Text Available The perspective technology of development of melon of F1hybrids seeds by use maternal lines with an original form of genic mail sterility and marker trait (lobed leaves was studied. Elements of technology allow developing hybrid seeds of melon with hybridity of 90-95%.

  6. Fruit, seed and embryo development of different cassava (Manihot ...

    African Journals Online (AJOL)

    Fruit, seed and embryo developments of different cassava (Manihot esculenta Crantz) genotypes, as well as embryo rescue, were investigated. The fruits of three genotypes after uncontrolled open pollination presented the same progressive development with similar sizes at different stages. There are large differences in ...

  7. Genetic analysis of seed development in Arabidopsis thaliana = [Genetische analyse van de zaadontwikkeling in Arabidopsis thaliana

    NARCIS (Netherlands)

    Leon - Kloosterziel, K.

    1997-01-01


    This thesis deals with the genetic aspects of seed development in Arabidopsisthaliana. Mutants affected in several aspects of seed development and, more specifically, in seed maturation have been isolated by various selection

  8. Systems Engineering Education Development(SEED)Case Study

    Science.gov (United States)

    Bagg, Thomas C., III; Brumfield, Mark D.; Jamison, Donald E.; Granata, Raymond L.; Casey, Carolyn A.

    2003-01-01

    The Systems Engineering Development Program (SEED) was initiated to help Goddard resolve a Systems Engineering skill shortage. The chronology of events and the experiences of the pilot program are outlined to describe the development of the present program. The program goals are included in order to give a focus on what the developers saw as the program drivers. Lessons learned from a pilot program were incorporated into the present program. This program is constantly learning from its past efforts and looks for continuous improvement. We list several future ideas for improvement and change.

  9. Reprogramming the Phenylpropanoid Metabolism in Seeds of Oilseed Rape by Suppressing the Orthologs of REDUCED EPIDERMAL FLUORESCENCE11[W

    Science.gov (United States)

    Mittasch, Juliane; Böttcher, Christoph; Frolov, Andrej; Strack, Dieter; Milkowski, Carsten

    2013-01-01

    As a result of the phenylpropanoid pathway, many Brassicaceae produce considerable amounts of soluble hydroxycinnamate conjugates, mainly sinapate esters. From oilseed rape (Brassica napus), we cloned two orthologs of the Arabidopsis (Arabidopsis thaliana) gene REDUCED EPIDERMAL FLUORESCENCE1 (REF1) encoding a coniferaldehyde/sinapaldehyde dehydrogenase. The enzyme is involved in the formation of ferulate and sinapate from the corresponding aldehydes, thereby linking lignin and hydroxycinnamate biosynthesis as a potential branch-point enzyme. We used RNA interference to silence REF1 genes in seeds of oilseed rape. Nontargeted metabolite profiling showed that BnREF1-suppressing seeds produced a novel chemotype characterized by reduced levels of sinapate esters, the appearance of conjugated monolignols, dilignols, and trilignols, altered accumulation patterns of kaempferol glycosides, and changes in minor conjugates of caffeate, ferulate, and 5-hydroxyferulate. BnREF1 suppression affected the level of minor sinapate conjugates more severely than that of the major component sinapine. Mapping of the changed metabolites onto the phenylpropanoid metabolic network revealed partial redirection of metabolic sequences as a major impact of BnREF1 suppression. PMID:23424250

  10. Seeds of confusion : the impact of policies on seed systems

    NARCIS (Netherlands)

    Louwaars, N.P.

    2007-01-01

    Seed is basic to crop production. Next to its importance in production, food security and rural development, seed is a key element in many debates about technology development and transfer, biodiversity, globalisation and equity. The sustainable availability of good quality seed is thus an important

  11. Silicon affects seed development and leaf macrohair formation in Brachypodium distachyon

    DEFF Research Database (Denmark)

    Głazowska, Sylwia Emilia; Murozuka, Emiko; Persson, Daniel Olof

    2018-01-01

    Silicon (Si) has many beneficial effects in plants, especially for the survival from biotic and abiotic stresses. However, Si may negatively affect the quality of lignocellulosic biomass for bioenergy purposes. Despite many studies, the regulation of Si distribution and deposition in plants remains...... was similar to that in the wild-type. The Bdlsi1-1 plants supplied with Si had significantly lower seed weights, compared to the wild-type. In low-Si media, the seed weight of wild-type plants was similar to that of Bdlsi1-1 mutants supplied with Si, while the Bdlsi1-1 seed weight decreased further. We...... conclude that Si deficiency results in widespread alterations in leaf surface morphology and seed formation in Brachypodium, showing the importance of Si for successful development in grasses....

  12. Modification of "1"3"7Cs transfer to rape (Brassica napus L.) phytomass under the influence of soil microorganisms

    International Nuclear Information System (INIS)

    Pareniuk, O.; Shavanova, K.; Laceby, J.P.; Illienko, V.; Tytova, L.; Levchuk, S.; Gudkov, I.; Nanba, K.

    2015-01-01

    After nuclear accidents, such as those experienced in Chernobyl and Fukushima, microorganisms may help purify contaminated soils by changing the mobility of radionuclides and their availability for plants by altering the physical and chemical properties of the substrate. Here, using model experiments with quartz sand as a substrate we investigate the influence of microorganisms on "1"3"7Cs transfer from substrate to plants. The highest transition of "1"3"7Cs from substrate to plants (50% increase compared to the control) was observed after Brassica napus L. seeds were inoculated by Azotobacter chroococcum. The best results for reducing the accumulation of "1"3"7Cs radionuclides (30% less) were noted after the inoculation by Burkholderia sp.. Furthermore, Bacillus megaterium demonstrated an increased ability to accumulate "1"3"7Cs. This research improves our prediction of the behavior of radionuclides in soil and may contribute towards new, microbiological countermeasures for soil remediation following nuclear accidents. - Highlights: • Representatives of soil bacteria can alter "1"3"7Cs soil-to-plant transfer factor. • This ability does not depend on the localization of bacteria on the root surface. • Selection of bacteria to increase or decrease the "1"3"7Cs transfer factor is possible.

  13. Development of nutritious snacks by incorporation of amaranth seeds, watermelon seeds and their flour

    OpenAIRE

    Paul Virginia; Ruchi .; Paul Ajit

    2014-01-01

    The present study was carried out with the objectives to find out the sensory acceptability, the nutrient content and cost of prepared products. The products prepared were “Biscuits”, “Mathri” and “Laddoo” by incorporation of amaranth seeds, watermelon seeds and their flour in different proportions (10:10, 20:10, and 30:10) served as treatments T1, T2 and T3 respectively T0, without incorporation of amaranth seeds, watermelon seeds and their flour served as control. The products were organole...

  14. HIGHLY METHYL ESTERIFIED SEEDS is a pectin methyl esterase involved in embryo development.

    Science.gov (United States)

    Levesque-Tremblay, Gabriel; Müller, Kerstin; Mansfield, Shawn D; Haughn, George W

    2015-03-01

    Homogalacturonan pectin domains are synthesized in a highly methyl-esterified form that later can be differentially demethyl esterified by pectin methyl esterase (PME) to strengthen or loosen plant cell walls that contain pectin, including seed coat mucilage, a specialized secondary cell wall of seed coat epidermal cells. As a means to identify the active PMEs in seed coat mucilage, we identified seven PMEs expressed during seed coat development. One of these, HIGHLY METHYL ESTERIFIED SEEDS (HMS), is abundant during mucilage secretion, peaking at 7 d postanthesis in both the seed coat and the embryo. We have determined that this gene is required for normal levels of PME activity and homogalacturonan methyl esterification in the seed. The hms-1 mutant displays altered embryo morphology and mucilage extrusion, both of which are a consequence of defects in embryo development. A significant decrease in the size of cells in the embryo suggests that the changes in embryo morphology are a consequence of lack of cell expansion. Progeny from a cross between hms-1 and the previously characterized PME inhibitor5 overexpression line suggest that HMS acts independently from other cell wall-modifying enzymes in the embryo. We propose that HMS is required for cell wall loosening in the embryo to facilitate cell expansion during the accumulation of storage reserves and that its role in the seed coat is masked by redundancy. © 2015 American Society of Plant Biologists. All Rights Reserved.

  15. Impact of municipal waste water of Quetta city on biomass, physiology and yield of canola (brassica napus l.)

    International Nuclear Information System (INIS)

    Kakar, S.R.; Tareen, R.B.; Kayani, S.A.; Tariq, M.

    2010-01-01

    The present study was carried out in order to investigate the impact of municipal wastewater effluents of Quetta city on the biomass, physiology, and productivity of two canola (Brassica napus L.) cultivars viz., Oscar and Rainbow. Plants were grown in pots from seed to maturity during 2005-2006 growth season. Different concentrations of effluents (T1: 20% ,T2: 40%, T3: 60% T4: 80; T5: 100%) were supplied to plants as a soil drench compared to control plants (T0) receiving normal tap water. The wastewater effluents were highly alkaline in nature along with very high Electrical Conductivity, Biological Oxygen Demand; Chemical Oxygen Demand; Sodium Adsorption Ratio, Total Suspended Solids and minerals concentrations have found well above threshold limits set for the usage of municipal wastewater for irrigation purposes. Growth performance of both canola cultivars showed statistically significant effects on some physiological attributes. All treated plants showed reductions in growth and yield parameters, but T5 treated plants were most affected compared to control. There were significantly higher reductions in stomatal conductance (49% in Oscar; 53% in Rainbow), transpiration rate (62% Oscar; 67% in Rainbow), and photosynthetic rate (62% in Oscar; 69% in Rainbow) of T5 treatment plants compared with control. Both pigments of chlorophyll (a and b) responded efficiently to the applied stress of wastewater effluents showing reductions in chlorophyll a and b by 68-82% in cv. Oscar and 74-86% in cv. Rainbow. Similarly, fresh and dry biomass also showed reductions in different effluents treated plants (T1 to T5) ranging from 2-78% in both the cultivars of canola. Drastic reductions were recorded in the number of siliqua per plant (70-72%), seeds per plant (84-85%), seed weight per plant (87-90), and in the harvest index (72-74%) in cultivars Oscar and Rainbow, respectively than that of control. The overall result of the municipal wastewater impacts on canola cultivars are

  16. Differential proteomics reveals the hallmarks of seed development in common bean (Phaseolus vulgaris L.)

    NARCIS (Netherlands)

    Parreira, J R; Bouraada, J; Fitzpatrick, M A; Silvestre, S; Bernardes da Silva, A; Marques da Silva, J; Almeida, A M; Fevereiro, P; Altelaar, A F M; Araújo, S S

    2016-01-01

    Common bean (Phaseolus vulgaris L.) is one of the most consumed staple foods worldwide. Little is known about the molecular mechanisms controlling seed development. This study aims to comprehensively describe proteome dynamics during seed development of common bean. A high-throughput gel-free

  17. Brassica napusGLABRA3-1 promotes anthocyanin biosynthesis and trichome formation in true leaves when expressed in Arabidopsis thaliana.

    Science.gov (United States)

    Gao, C; Guo, Y; Wang, J; Li, D; Liu, K; Qi, S; Jin, C; Duan, S; Gong, J; Li, Z; Chen, M

    2018-01-01

    Previous studies have shown that GLABRA3 (AtGL3), a bHLH transcription factor, plays essential roles in anthocyanin biosynthesis and trichome formation in Arabidopsis thaliana. However, there have been no such studies of a homologue, BnGL3, from the closely related crop, Brassica napus. Here, we analysed the BnGL3-1 coding domain sequence from the B. napus cultivar QINYOU Seven, identified conserved protein domains and performed a phylogenetic analysis to elucidate its relationship with homologues form a range of plant species. When expressed in tobacco leaves as a fusion protein with green fluorescent protein, BnGL3-1 accumulated in the nucleus, consistent with its predicted function as a transcription factor. Ectopic expression of the BnGL3-1 gene in the A. thaliana gl3-3 mutant resulted in levels of anthocyanins and numbers of trichomes in true leaves that were higher than in wild-type plants. Moreover, overexpression of BnGL3-1 in gl3-3 compensated for the promotion and repression of genes involved in anthocyanin biosynthesis and trichome formation, respectively, that has been reported in gl3-3 young shoots and expanding true leaves. This study provides new insights into GL3 function in anthocyanin biosynthesis and trichome formation in crucifers, and represents a promising target for genetic manipulation of B. napus. © 2017 German Society for Plant Sciences and The Royal Botanical Society of the Netherlands.

  18. (Heckel) seeds

    African Journals Online (AJOL)

    UTILISATEUR

    Garcinia kola seeds to six different hormonal pre-germination treatments. This consisted of ... Thus, seed dormancy in this case is not a coat- imposed .... development of the cultivation of the species. The cause .... Hormonal regulation of seed ...

  19. In silico studies on structure-function of DNA GCC- box binding domain of brassica napus DREB1 protein

    International Nuclear Information System (INIS)

    Qamarunnisa, S.; Hussain, M.

    2012-01-01

    DREB1 is a transcriptional factor, which selectively binds with the promoters of the genes involved in stress response in the plants. Homology of DREB protein and its binding element have been detected in the genome of many plants. However, only a few reports exist that discusses the binding properties of this protein with the gene (s) promoter. In the present study, we have undertaken studies exploring the structure-function relationship of Brassica napus DREB1. Multiple sequence alignment, protein homology modeling and intermolecular docking of GCC-box binding domain (GBD) of the said protein was carried out using atomic coordinates of GBD from Arabdiopsis thaliana and GCC-box containing DNA respectively. Similarities and/or identities in multiple, sequence alignment, particularly at the functionally important amino acids, strongly suggested the binding specificity of B. napus DREB1 to GCC-box. Similarly, despite 56% sequence homology, tertiary structures of both template and modeled protein were found to be extremely similar as indicated by root mean square deviation of 0.34 A. More similarities were established between GBD of both A. thaliana and B. napus DREB1 by conducting protein docking with the DNA containing GCC-box. It appears that both proteins interact through their beta-sheet with the major DNA groove including both nitrogen bases and phosphate and sugar moieties. Additionally, in most cases the interacting residues were also found to be identical. Briefly, this study attempts to elucidate the molecular basis of DREB1 interaction with its target sequence in the promoter. (author)

  20. Seed drill depth control system for precision seeding

    DEFF Research Database (Denmark)

    Kirkegaard Nielsen, Søren; Munkholm, Lars Juhl; Lamandé, Mathieu

    2018-01-01

    acting on the drill coulters, which generates unwanted vibrations and, consequently, a non-uniform seed placement. Therefore, a proof-of-concept dynamic coulter depth control system for a low-cost seed drill was developed and studied in a field experiment. The performance of the active control system...... depth control system this variability was reduced to±2 mm. The system with the active control system operated more accurately at an operational speed of 12 km h−1 than at 4 km h−1 without the activated control system.......An adequate and uniform seeding depth is crucial for the homogeneous development of a crop, as it affects time of emergence and germination rate. The considerable depth variations observed during seeding operations - even for modern seed drills - are mainly caused by variability in soil resistance...

  1. Heritability studies for seed quality traits in introgressed segregating populations of brassica

    International Nuclear Information System (INIS)

    Farhatullah, S.; Nasim, A.; Fayyaz, L.

    2014-01-01

    Estimation of genetic parameters in the context of trait characterization is an essential component of future targeted crop improvement programs. Collection of knowledge about genetic behavior such as genetic variability and heritability etc., of the germplasm is the basic step for initiation of any breeding program. Genetic variability and Broad sense heritability for various seed quality traits in 10 brassica genotypes and their 12 F2 progenies comprising of introgressed hybrids were studied. The genotypes had highly significant variation for oil content, protein, glucosinolates contents, oleic, linolenic and erucic acid contents. Glucosinolates content and erucic acid showed high heritability in all F2 populations, while rest of the traits showed variable trends. The cross combination 547 x 118 (B. napus x B. campestris) proved to be a good interspecific hybrid that had high proportion of introgression and has high heritability for beneficial traits. The individual plants having combination of desirable traits were also identified from the F2 populations. (author)

  2. Systematic Analysis and Innovation for Development Policies of Beijing Seed Industry at Transformation Stage

    Institute of Scientific and Technical Information of China (English)

    Qing LIU; Fengjun LU; Guozhi ZHANG; Lijiao XIE

    2015-01-01

    At transformation stage,seed Industry is not only a fundamental and strategic industry during the construction of World City,but also part of urban and modern agriculture in Beijing. Based on the analysis of the theory of industrial economics and system theory,the article constructs the seed industry policy analysis model,systematically analyzes the support points of national level and the city of Beijing seed industry policy,and studies policy input,mechanism,output and effects by way of systematic analysis,as well as proposes polices and suggestions on promotion of development for Beijing seed industry and on construction of new seed industry from talent incentive,platform construction,seed trading and enterprise cultivation.

  3. Development of hardwood seed zones for Tennessee using a geographic information system

    Science.gov (United States)

    Post, L.S.; Schlarbaum, S.E.; Van Manen, F.; Cecich, R.A.; Saxton, A.M.; Schneider, J.F.

    2003-01-01

    For species that have no or limited information on genetic variation and adaptability to nonnative sites, there is a need for seed collection guidelines based on biological, climatological, and/or geographical criteria. Twenty-eight hardwood species are currently grown for reforestation purposes at the East Tennessee State Nursery. The majority of these species have had no genetic testing to define guidelines for seed collection location and can be distributed to sites that have a very different environment than that of seed origin(s). Poor survival and/or growth may result if seedlings are not adapted to environmental conditions at the planting location. To address this problem, 30 yr of Tennessee county precipitation and minimum temperature data were analyzed and grouped using a centroid hierarchical cluster analysis. The weather data and elevational data were entered into a Geographic Information System (GIS) and separately layered over Bailey's Ecoregions to develop a seed zone system for Tennessee. The seed zones can be used as a practical guideline for collecting seeds to ensure that the resulting seedlings will be adapted to planting environments.

  4. Recent developments, new trends in seed crushing and oil refining

    Directory of Open Access Journals (Sweden)

    Kővári Katalin

    2004-11-01

    Full Text Available Oil processing was considered as slowly changing “traditional” industry but the recent decades’ developments and trends resulted in a lot of changes initiated by market, industry, environment protection and consumer needs. Driving force of the developments were centralization of the industry, more and more concerns on environmental impact, increased importance of food-feed safety, and last but not least research and development activity together with improved analytical capabilities. The presentation gives an overview on the results achieved on the field of the following areas: the criteria of applicability of physical refining of seed oils, solutions for proper degumming, the effect of seed pretreatment and crushing conditions on the crude oil quality, the importance and role of bleaching and active carbon treatment, the proper practice of deacidification/deodorization.

  5. Biogenesis of protein bodies during legumin accumulation in developing olive (Olea europaea L.) seed.

    Science.gov (United States)

    Jimenez-Lopez, Jose C; Zienkiewicz, Agnieszka; Zienkiewicz, Krzysztof; Alché, Juan D; Rodríguez-García, Maria I

    2016-03-01

    Much of our current knowledge about seed development and differentiation regarding reserves synthesis and accumulation come from monocot (cereals) plants. Studies in dicotyledonous seeds differentiation are limited to a few species and in oleaginous species are even scarcer despite their agronomic and economic importance. We examined the changes accompanying the differentiation of olive endosperm and cotyledon with a focus on protein bodies (PBs) biogenesis during legumin protein synthesis and accumulation, with the aim of getting insights and a better understanding of the PBs' formation process. Cotyledon and endosperm undergo differentiation during seed development, where an asynchronous time-course of protein synthesis, accumulation, and differential PB formation patterns was found in both tissues. At the end of seed maturation, a broad population of PBs, particularly in cotyledon cells, was distinguishable in terms of number per cell and morphometric and cytochemical features. Olive seed development is a tissue-dependent process characterized by differential rates of legumin accumulation and PB formation in the main tissues integrating seed. One of the main features of the impressive differentiation process is the specific formation of a broad group of PBs, particularly in cotyledon cells, which might depend on selective accumulation and packaging of proteins and specific polypeptides into PBs. The nature and availability of the major components detected in the PBs of olive seed are key parameters in order to consider the potential use of this material as a suitable source of carbon and nitrogen for animal or even human use.

  6. A functional analysis of cell cycle events in developing and germinating tomato seeds

    NARCIS (Netherlands)

    Castro, de R.D.

    1998-01-01

    Seeds are complex biological structures and the primary dispersal units of higher plants. They consist of nutrient reserve storage tissue(s), an embryo and encapsulating structures designated for protection and that may also regulate germination. Seeds have developed mechanisms of

  7. Brassica napus has a key role in the recovery of the health of soils contaminated with metals and diesel by rhizoremediation.

    Science.gov (United States)

    Lacalle, Rafael G; Gómez-Sagasti, María T; Artetxe, Unai; Garbisu, Carlos; Becerril, José M

    2018-03-15

    Contaminated soils are frequently characterized by the simultaneous presence of organic and inorganic contaminants, as well as a poor biological and nutritional status. Rhizoremediation, the combined use of phytoremediation and bioremediation, has been proposed as a Gentle Remediation Option to rehabilitate multi-contaminated soils. Recently, newer techniques, such as the application of metallic nanoparticles, are being deployed in an attempt to improve traditional remediation options. In order to implement a phytomanagement strategy on calcareous alkaline peri-urban soils simultaneously contaminated with several metals and diesel, we evaluated the effectiveness of Brassica napus L., a profitable crop species, assisted with organic amendment and zero-valent iron nanoparticles (nZVI). A two-month phytotron experiment was carried out using two soils, i.e. amended and unamended with organic matter. Soils were artificially contaminated with Zn, Cu and Cd (1500, 500 and 50mgkg -1 , respectively) and diesel (6000mgkg -1 ). After one month of stabilization, soils were treated with nZVI and/or planted with B. napus. The experiment was conducted with 16 treatments resulting from the combination of the following factors: amended/unamended, contaminated/non-contaminated, planted/unplanted and nZVI/no-nZVI. Soil physicochemical characteristics and biological indicators (plant performance and soil microbial properties) were determined at several time points along the experiment. Carbonate content of soils was the crucial factor for metal immobilization and, concomitantly, reduction of metal toxicity. Organic amendment was essential to promote diesel degradation and to improve the health and biomass of B. napus. Soil microorganisms degraded preferably diesel hydrocarbons of biological origin (biodiesel). Plants had a remarkable positive impact on the activity and functional diversity of soil microbial communities. The nZVI were ineffective as soil remediation tools, but did not

  8. Involvement of phospholipases C and D in early response to SAR and ISR inducers in Brassica napus plants

    Czech Academy of Sciences Publication Activity Database

    Profotová, Bronislava; Burketová, Lenka; Novotná, Z.; Martinec, Jan; Valentová, O.

    2006-01-01

    Roč. 44, 2-3 (2006), s. 143-151 ISSN 0981-9428 R&D Projects: GA ČR GA522/03/0353 Institutional research plan: CEZ:AV0Z50380511 Keywords : Brassica napus * Induced resistance * Phospholipase C and D Subject RIV: CE - Biochemistry Impact factor: 1.847, year: 2006

  9. Genomes and transcriptomes of partners in plant-fungal-interactions between canola (Brassica napus and two Leptosphaeria species.

    Directory of Open Access Journals (Sweden)

    Rohan G T Lowe

    Full Text Available Leptosphaeria maculans 'brassicae' is a damaging fungal pathogen of canola (Brassica napus, causing lesions on cotyledons and leaves, and cankers on the lower stem. A related species, L. biglobosa 'canadensis', colonises cotyledons but causes few stem cankers. We describe the complement of genes encoding carbohydrate-active enzymes (CAZys and peptidases of these fungi, as well as of four related plant pathogens. We also report dual-organism RNA-seq transcriptomes of these two Leptosphaeria species and B. napus during disease. During the first seven days of infection L. biglobosa 'canadensis', a necrotroph, expressed more cell wall degrading genes than L. maculans 'brassicae', a hemi-biotroph. L. maculans 'brassicae' expressed many genes in the Carbohydrate Binding Module class of CAZy, particularly CBM50 genes, with potential roles in the evasion of basal innate immunity in the host plant. At this time, three avirulence genes were amongst the top 20 most highly upregulated L. maculans 'brassicae' genes in planta. The two fungi had a similar number of peptidase genes, and trypsin was transcribed at high levels by both fungi early in infection. L. biglobosa 'canadensis' infection activated the jasmonic acid and salicylic acid defence pathways in B. napus, consistent with defence against necrotrophs. L. maculans 'brassicae' triggered a high level of expression of isochorismate synthase 1, a reporter for salicylic acid signalling. L. biglobosa 'canadensis' infection triggered coordinated shutdown of photosynthesis genes, and a concomitant increase in transcription of cell wall remodelling genes of the host plant. Expression of particular classes of CAZy genes and the triggering of host defence and particular metabolic pathways are consistent with the necrotrophic lifestyle of L. biglobosa 'canadensis', and the hemibiotrophic life style of L. maculans 'brassicae'.

  10. Integration of linkage maps for the Amphidiploid Brassica napus and comparative mapping with Arabidopsis and Brassica rapa

    Directory of Open Access Journals (Sweden)

    Delourme Régine

    2011-02-01

    Full Text Available Abstract Background The large number of genetic linkage maps representing Brassica chromosomes constitute a potential platform for studying crop traits and genome evolution within Brassicaceae. However, the alignment of existing maps remains a major challenge. The integration of these genetic maps will enhance genetic resolution, and provide a means to navigate between sequence-tagged loci, and with contiguous genome sequences as these become available. Results We report the first genome-wide integration of Brassica maps based on an automated pipeline which involved collation of genome-wide genotype data for sequence-tagged markers scored on three extensively used amphidiploid Brassica napus (2n = 38 populations. Representative markers were selected from consolidated maps for each population, and skeleton bin maps were generated. The skeleton maps for the three populations were then combined to generate an integrated map for each LG, comparing two different approaches, one encapsulated in JoinMap and the other in MergeMap. The BnaWAIT_01_2010a integrated genetic map was generated using JoinMap, and includes 5,162 genetic markers mapped onto 2,196 loci, with a total genetic length of 1,792 cM. The map density of one locus every 0.82 cM, corresponding to 515 Kbp, increases by at least three-fold the locus and marker density within the original maps. Within the B. napus integrated map we identified 103 conserved collinearity blocks relative to Arabidopsis, including five previously unreported blocks. The BnaWAIT_01_2010a map was used to investigate the integrity and conservation of order proposed for genome sequence scaffolds generated from the constituent A genome of Brassica rapa. Conclusions Our results provide a comprehensive genetic integration of the B. napus genome from a range of sources, which we anticipate will provide valuable information for rapeseed and Canola research.

  11. Control of Seed Germination and Plant Development by Carbon and Nitrogen Availability

    Directory of Open Access Journals (Sweden)

    Daniel eOsuna

    2015-11-01

    Full Text Available Little is known about the molecular basis of the influence of external carbon/nitrogen (C/N ratio and other abiotic factors on phytohormones regulation during seed germination and plant developmental processes, and the identification of elements that participate in this response is essential to understand plant nutrient perception and signaling. Sugars (sucrose, glucose and nitrate not only act as nutrients but also as signaling molecules in plant development. A connection between changes in auxin transport and nitrate signal transduction has been reported in Arabidopsis thaliana through the NRT1.1, a nitrate sensor and transporter that also functions as a repressor of lateral root growth under low concentrations of nitrate by promoting auxin transport. Nitrate inhibits the elongation of lateral roots, but this effect is significantly reduced in abscisic acid (ABA-insensitive mutants, what suggests that ABA might mediate the inhibition of lateral root elongation by nitrate. Gibberellin (GA biosynthesis has been also related to nitrate level in seed germination and its requirement is determined by embryonic ABA. These mechanisms connect nutrients and hormones signaling during seed germination and plant development. Thus, the genetic identification of the molecular components involved in nutrients-dependent pathways would help to elucidate the potential crosstalk between nutrients, nitric oxide (NO and phytohormones (ABA, auxins and GAs in seed germination and plant development. In this review we focus on changes in C and N levels and how they control seed germination and plant developmental processes through the interaction with other plant growth regulators, such as phytohormones.

  12. Overexpression of Three Glucosinolate Biosynthesis Genes in Brassica napus Identifies Enhanced Resistance to Sclerotinia sclerotiorum and Botrytis cinerea.

    Directory of Open Access Journals (Sweden)

    Yuanyuan Zhang

    Full Text Available Sclerotinia sclerotiorum and Botrytis cinerea are notorious plant pathogenic fungi with an extensive host range including Brassica crops. Glucosinolates (GSLs are an important group of secondary metabolites characteristic of the Brassicales order, whose degradation products are proving to be increasingly important in plant protection. Enhancing the defense effect of GSL and their associated degradation products is an attractive strategy to strengthen the resistance of plants by transgenic approaches. We generated the lines of Brassica napus with three biosynthesis genes involved in GSL metabolic pathway (BnMAM1, BnCYP83A1 and BnUGT74B1, respectively. We then measured the foliar GSLs of each transgenic lines and inoculated them with S. sclerotiorum and B. cinerea. Compared with the wild type control, over-expressing BnUGT74B1 in B. napus increased the aliphatic and indolic GSL levels by 1.7 and 1.5 folds in leaves respectively; while over-expressing BnMAM1 or BnCYP83A1 resulted in an approximate 1.5-fold higher only in the aliphatic GSL level in leaves. The results of plant inoculation demonstrated that BnUGT74B1-overexpressing lines showed less severe disease symptoms and tissue damage compared with the wild type control, but BnMAM1 or BnCYP83A1-overexpressing lines showed no significant difference in comparison to the controls. These results suggest that the resistance to S. sclerotiorum and B. cinerea in B. napus could be enhanced through tailoring the GSL profiles by transgenic approaches or molecular breeding, which provides useful information to assist plant breeders to design improved breeding strategies.

  13. Selected aspects of tiny vetch [Vicia hirsuta (L. Gray S.F.] seed ecology: generative reproduction and effects of seed maturity and seed storage on seed germination

    Directory of Open Access Journals (Sweden)

    Magdalena Kucewicz

    2012-12-01

    Full Text Available Vicia hirsuta (L. Gray S.F. (tiny vetch is a common and persistent segetal weed. Tiny vetch seeds and pods reach different stages of maturity during the crop harvest season. Some seeds that mature before cereal harvest are shed in the field and deposited in the soil seed bank, while others become incorporated into seed material. The objective of this study was to describe selected aspects of tiny vetch seed ecology: to determine the rate of individual reproduction of vetch plants growing in winter and spring grain crops and to evaluate the germination of seeds at different stages of maturity, subject to storage conditions. The seeds and pods of V. hirsuta were sorted according to their development stages at harvest and divided into two groups. The first group was stored under laboratory conditions for two months. In the autumn of the same year, the seeds were subjected to germination tests. The remaining seeds were stored in a storeroom, and were planted in soil in the spring. The germination rate was evaluated after 8 months of storage. Potential productivity (developed pods and flowers, fruit buds was higher in plants fruiting in winter wheat than in spring barley. Vetch plants produced around 17-26% more pods (including cracked, mature, greenish-brown and green pods and around 25% less buds in winter wheat than in spring barley. Immature seeds were characterized by the highest germination capacity. Following storage under laboratory conditions and stratification in soil, mature seeds germinated at a rate of several percent. After storage in a storeroom, seeds at all three development stages broke dormancy at a rate of 72- 75%. The high germination power of tiny vetch seeds stored in a storeroom indicates that this plant can be classified as an obligatory speirochoric weed species.

  14. combining high seed number and weight to improve seed yield

    African Journals Online (AJOL)

    ACSS

    ABSTRACT. Increasing seed size and seed weight is an important trait for trade, yield component and adaptation of chickpea ... determining yield or quality, and the development of rapid and ..... C.G. 1981. Control of seed growth in soybeans.

  15. A comprehensive transcriptome analysis of silique development and dehiscence in Arabidopsis and Brassica integrating genotypic, interspecies and developmental comparisons

    Science.gov (United States)

    Jaradat, Masrur R; Ruegger, Max; Bowling, Andrew; Butler, Holly; Cutler, Adrian J

    2014-01-01

    Asynchronous flowering of Brassica napus (canola) leads to seeds and siliques at varying stages of maturity as harvest approaches. This range of maturation can result in premature silique dehiscence (pod shattering), resulting in yield losses, which may be worsened by environmental stresses. Therefore, a goal for canola crop improvement is to reduce shattering in order to maximize yield. We performed a comprehensive transcriptome analysis on the dehiscence zone (DZ) and valve of Arabidopsis and Brassica siliques in shatter resistant and sensitive genotypes at several developmental stages. Among known Arabidopsis dehiscence genes, we confirmed that homologs of SHP1/2, FUL, ADPG1, NST1/3 and IND were associated with shattering in B. juncea and B. napus. We noted a correlation between reduced pectin degradation genes and shatter-resistance. Tension between lignified and non-lignified cells in the silique DZ plays a major role in dehiscence. Light microscopy revealed a smaller non-lignified separation layer in relatively shatter-resistant B. juncea relative to B. napus and this corresponded to increased expression of peroxidases involved in monolignol polymerization. Sustained repression of auxin biosynthesis, transport and signaling in B. juncea relative to B. napus may cause differences in dehiscence zone structure and cell wall constituents. Tension on the dehiscence zone is a consequence of shrinkage and loss of flexibility in the valves, which is caused by senescence and desiccation. Reduced shattering was generally associated with upregulation of ABA signaling and down-regulation of ethylene and jasmonate signaling, corresponding to more pronounced stress responses and reduced senescence and photosynthesis. Overall, we identified 124 cell wall related genes and 103 transcription factors potentially involved in silique dehiscence. PMID:25523176

  16. A comprehensive transcriptome analysis of silique development and dehiscence in Arabidopsis and Brassica integrating genotypic, interspecies and developmental comparisons.

    Science.gov (United States)

    Jaradat, Masrur R; Ruegger, Max; Bowling, Andrew; Butler, Holly; Cutler, Adrian J

    2014-01-01

    Asynchronous flowering of Brassica napus (canola) leads to seeds and siliques at varying stages of maturity as harvest approaches. This range of maturation can result in premature silique dehiscence (pod shattering), resulting in yield losses, which may be worsened by environmental stresses. Therefore, a goal for canola crop improvement is to reduce shattering in order to maximize yield. We performed a comprehensive transcriptome analysis on the dehiscence zone (DZ) and valve of Arabidopsis and Brassica siliques in shatter resistant and sensitive genotypes at several developmental stages. Among known Arabidopsis dehiscence genes, we confirmed that homologs of SHP1/2, FUL, ADPG1, NST1/3 and IND were associated with shattering in B. juncea and B. napus. We noted a correlation between reduced pectin degradation genes and shatter-resistance. Tension between lignified and non-lignified cells in the silique DZ plays a major role in dehiscence. Light microscopy revealed a smaller non-lignified separation layer in relatively shatter-resistant B. juncea relative to B. napus and this corresponded to increased expression of peroxidases involved in monolignol polymerization. Sustained repression of auxin biosynthesis, transport and signaling in B. juncea relative to B. napus may cause differences in dehiscence zone structure and cell wall constituents. Tension on the dehiscence zone is a consequence of shrinkage and loss of flexibility in the valves, which is caused by senescence and desiccation. Reduced shattering was generally associated with upregulation of ABA signaling and down-regulation of ethylene and jasmonate signaling, corresponding to more pronounced stress responses and reduced senescence and photosynthesis. Overall, we identified 124 cell wall related genes and 103 transcription factors potentially involved in silique dehiscence.

  17. Genetic Diversity in Commercial Rapeseed (Brassica napus L.) Varieties from Turkey as Revealed by RAPD

    OpenAIRE

    Özlem ÖZBEK; Betül Uçar GIDIK

    2013-01-01

    In cultivated commercial crop species, genetic diversity tends to decrease because of the extensive breeding processes. Therefore, germplasm of commercial crop species, such as Brassica napus L. should be evaluated and the genotypes, which have higher genetic diversity index, should be addressed as potential parental cross materials in breeding programs. In this study, the genetic diversity was analysed by using randomly amplified polymorphic DNA analysis (RAPD) technique in nine Turkish com...

  18. Induction of 9-cis-epoxycarotenoid dioxygenase in Arabidopsis thaliana seeds enhances seed dormancy.

    Science.gov (United States)

    Martínez-Andújar, Cristina; Ordiz, M Isabel; Huang, Zhonglian; Nonogaki, Mariko; Beachy, Roger N; Nonogaki, Hiroyuki

    2011-10-11

    Full understanding of mechanisms that control seed dormancy and germination remains elusive. Whereas it has been proposed that translational control plays a predominant role in germination, other studies suggest the importance of specific gene expression patterns in imbibed seeds. Transgenic plants were developed to permit conditional expression of a gene encoding 9-cis-epoxycarotenoid dioxygenase 6 (NCED6), a rate-limiting enzyme in abscisic acid (ABA) biosynthesis, using the ecdysone receptor-based plant gene switch system and the ligand methoxyfenozide. Induction of NCED6 during imbibition increased ABA levels more than 20-fold and was sufficient to prevent seed germination. Germination suppression was prevented by fluridone, an inhibitor of ABA biosynthesis. In another study, induction of the NCED6 gene in transgenic seeds of nondormant mutants tt3 and tt4 reestablished seed dormancy. Furthermore, inducing expression of NCED6 during seed development suppressed vivipary, precocious germination of developing seeds. These results indicate that expression of a hormone metabolism gene in seeds can be a sole determinant of dormancy. This study opens the possibility of developing a robust technology to suppress or promote seed germination through engineering pathways of hormone metabolism.

  19. Seed producer cooperatives in the Ethiopian seed sector and their role in seed supply improvement: A review

    NARCIS (Netherlands)

    Sisay, D.T.; Verhees, F.J.H.M.; Trijp, van J.C.M.

    2017-01-01

    The role of seed producer cooperatives (SPCs) in the Ethiopian seed sector and their contribution to seed supply improvement have received attention from researchers, policymakers, and development partners. However, limited work has been done in reviewing and documenting their involvement in the

  20. Expression Studies of Gibberellin Oxidases in Developing Pumpkin Seeds1

    Science.gov (United States)

    Frisse, Andrea; Pimenta, Maria João; Lange, Theo

    2003-01-01

    Two cDNA clones, 3-ox and 2-ox, have been isolated from developing pumpkin (Cucurbita maxima) embryos that show significant amino acid homology to gibberellin (GA) 3-oxidases and 2-oxidases, respectively. Recombinant fusion protein of clone 3-ox converted GA12-aldehyde, GA12, GA15, GA24, GA25, and GA9 to GA14-aldehyde, GA14, GA37, GA36, GA13, and GA4, respectively. Recombinant 2-ox protein oxidized GA9, GA4, and GA1 to GA51, GA34, and GA8, respectively. Previously cloned GA 7-oxidase revealed additional 3β-hydroxylation activity of GA12. Transcripts of this gene were identified in endosperm and embryo of the developing seed by quantitative reverse transcriptase-polymerase chain reaction and localized in protoderm, root apical meristem, and quiescent center by in situ hybridization. mRNA of the previously cloned GA 20-oxidase from pumpkin seeds was localized in endosperm and in tissues of protoderm, ground meristem, and cotyledons of the embryo. However, transcripts of the recently cloned GA 20-oxidase from pumpkin seedlings were found all over the embryo, and in tissues of the inner seed coat at the micropylar end. Previously cloned GA 2β,3β-hydroxylase mRNA molecules were specifically identified in endosperm tissue. Finally, mRNA molecules of the 3-ox and 2-ox genes were found in the embryo only. 3-ox transcripts were localized in tissues of cotyledons, protoderm, and inner cell layers of the root apical meristem, and 2-ox transcripts were found in all tissues of the embryo except the root tips. These results indicate tissue-specific GA-biosynthetic pathways operating within the developing seed. PMID:12644672

  1. Size, physiological quality, and green seed occurrence influenced by seeding rate in soybeans

    Directory of Open Access Journals (Sweden)

    André Sampaio Ferreira

    2017-05-01

    Full Text Available The seeding rate influences the intraspecific competition, which might affect the development and quality of seeds in soybean. However, the impact of seeding rate on the physical and physiological qualities of soybean seeds needs to be better elucidated. This study aimed to evaluate the effects of soybean plant density on the seed size as well as the effects of the interaction between the plant density and seed size on the seed mass, green seed occurence, and physiological seed quality. The experiments were carried out in the growing seasons of the years 2013/14 and 2014/15 in a Latossolo Vermelho distroférrico, under a randomized complete block design, using the NK 7059 RR cultivar with six replications. Four plant densities (150, 300, 440, and 560 thousand viable seeds ha–1 were evaluated. After the classification of seeds into four sizes, using a set of sieves, a 4 ×4 factorial scheme was used for the statistical analysis of the four plant densities and four seed sizes. The seed samples were evaluated for the seed mass, green seed percentage, germination, and vigor. Under thermal and water stress during seed development, an increase in the seeding rate led to a reduction in the green seed occurrence and an increase in the seed size and mass. However, in the absence of thermal and water stress, the seed size and mass were not altered by the seeding rate and, there was no occurrence of green seeds.

  2. Transcriptome analysis of pecan seeds at different developing stages and identification of key genes involved in lipid metabolism.

    Science.gov (United States)

    Xu, Zheng; Ni, Jun; Shah, Faheem Afzal; Wang, Qiaojian; Wang, Zhaocheng; Wu, Lifang; Fu, Songling

    2018-01-01

    Pecan is an economically important nut crop tree due to its unique texture and flavor properties. The pecan seed is rich of unsaturated fatty acid and protein. However, little is known about the molecular mechanisms of the biosynthesis of fatty acids in the developing seeds. In this study, transcriptome sequencing of the developing seeds was performed using Illumina sequencing technology. Pecan seed embryos at different developmental stages were collected and sequenced. The transcriptomes of pecan seeds at two key developing stages (PA, the initial stage and PS, the fast oil accumulation stage) were also compared. A total of 82,155 unigenes, with an average length of 1,198 bp from seven independent libraries were generated. After functional annotations, we detected approximately 55,854 CDS, among which, 2,807 were Transcription Factor (TF) coding unigenes. Further, there were 13,325 unigenes that showed a 2-fold or greater expression difference between the two groups of libraries (two developmental stages). After transcriptome analysis, we identified abundant unigenes that could be involved in fatty acid biosynthesis, degradation and some other aspects of seed development in pecan. This study presents a comprehensive dataset of transcriptomic changes during the seed development of pecan. It provides insights in understanding the molecular mechanisms responsible for fatty acid biosynthesis in the seed development. The identification of functional genes will also be useful for the molecular breeding work of pecan.

  3. Qualidade e produtividade de sementes de canola (Brassica napus após aplicação de dessecantes em pré-colheita Quality and yield of canola (Brassica napus seeds after pre-harvest desiccant application

    Directory of Open Access Journals (Sweden)

    O. Marchiori Jr.

    2002-08-01

    canola (cv. Hyola 401 seeds. The desiccants evaluated were ammonium glufosinate (0.5 kg ha-1, carfentrazone-ethyl (0.03 g ha-1, paraquat (0.4 kg ha-1, diquat (0.3 kg ha-1, and a non-sprayed check. Seed quality was evaluated by germination test, accelerated aging, electrical conductivity, emergence in sand seedbank, speed of emergence-index and seed health. Desiccant application provided a seven-day antecipation of canola seed harvest. Seed yield was not affected by desiccation. Application of ammonium glufosinate and carfentrazone-ethyl decreased (P<0.05 the seed protein contents. Chemical desiccation did not have any negative effect on the physiological quality of the seeds.

  4. Expression of 9-cis-EPOXYCAROTENOID DIOXYGENASE4 Is Essential for Thermoinhibition of Lettuce Seed Germination but Not for Seed Development or Stress Tolerance[C][W

    Science.gov (United States)

    Huo, Heqiang; Dahal, Peetambar; Kunusoth, Keshavulu; McCallum, Claire M.; Bradford, Kent J.

    2013-01-01

    Thermoinhibition, or failure of seeds to germinate at warm temperatures, is common in lettuce (Lactuca sativa) cultivars. Using a recombinant inbred line population developed from a lettuce cultivar (Salinas) and thermotolerant Lactuca serriola accession UC96US23 (UC), we previously mapped a quantitative trait locus associated with thermoinhibition of germination to a genomic region containing a gene encoding a key regulated enzyme in abscisic acid (ABA) biosynthesis, 9-cis-EPOXYCAROTENOID DIOXYGENASE4 (NCED4). NCED4 from either Salinas or UC complements seeds of the Arabidopsis thaliana nced6-1 nced9-1 double mutant by restoring germination thermosensitivity, indicating that both NCED4 genes encode functional proteins. Transgenic expression of Salinas NCED4 in UC seeds resulted in thermoinhibition, whereas silencing of NCED4 in Salinas seeds led to loss of thermoinhibition. Mutations in NCED4 also alleviated thermoinhibition. NCED4 expression was elevated during late seed development but was not required for seed maturation. Heat but not water stress elevated NCED4 expression in leaves, while NCED2 and NCED3 exhibited the opposite responses. Silencing of NCED4 altered the expression of genes involved in ABA, gibberellin, and ethylene biosynthesis and signaling pathways. Together, these data demonstrate that NCED4 expression is required for thermoinhibition of lettuce seeds and that it may play additional roles in plant responses to elevated temperature. PMID:23503626

  5. Study and development of an Iridium-192 seed for use in ophthalmic cancer

    International Nuclear Information System (INIS)

    Mattos, Fabio Rodrigues de

    2013-01-01

    Even ocular tumors are not among the cases with a higher incidence, they affect the population, especially children. The Institute of Energy and Nuclear Research (IPEN-CNEN/SP) in partnership with Escola Paulista de Medicina (UNIFESP), created a project to develop and implement a alternative treatment for ophthalmic cancer that use brachytherapy iridium-192 seeds. The project arose by reason of the Escola Paulista treat many cancer cases within the Unified Health System (SUS) and the research experience of sealed radioactive sources group at IPEN. The methodology was developed from the available infrastructure and the experience of researchers. The prototype seed presents with a core (192-iridium alloy of iridium-platinum) of 3.0 mm long sealed by a capsule of titanium of 0.8 mm outside diameter, 0.05 mm wall thickness and 4,5mm long. This work aims to study and develop a seed of iridium-192 from a platinum-iridium alloy. No study on the fabrication of these seeds was found in available literature. It was created a methodology that involved: characterization of the material used in the core, creation of device for neutron activation irradiation and and seed sealing tests. As a result, proved the feasibility of the method. As a suggestion for future work, studies regarding metrology and dosimetry of these sources and improvement of the methodology should be carried out, for future implementation in national scope. (author)

  6. Landscape-scale distribution and persistence of genetically modified oilseed rape (Brassica napus) in Manitoba, Canada.

    Science.gov (United States)

    Knispel, Alexis L; McLachlan, Stéphane M

    2010-01-01

    Genetically modified herbicide-tolerant (GMHT) oilseed rape (OSR; Brassica napus L.) was approved for commercial cultivation in Canada in 1995 and currently represents over 95% of the OSR grown in western Canada. After a decade of widespread cultivation, GMHT volunteers represent an increasing management problem in cultivated fields and are ubiquitous in adjacent ruderal habitats, where they contribute to the spread of transgenes. However, few studies have considered escaped GMHT OSR populations in North America, and even fewer have been conducted at large spatial scales (i.e. landscape scales). In particular, the contribution of landscape structure and large-scale anthropogenic dispersal processes to the persistence and spread of escaped GMHT OSR remains poorly understood. We conducted a multi-year survey of the landscape-scale distribution of escaped OSR plants adjacent to roads and cultivated fields. Our objective was to examine the long-term dynamics of escaped OSR at large spatial scales and to assess the relative importance of landscape and localised factors to the persistence and spread of these plants outside of cultivation. From 2005 to 2007, we surveyed escaped OSR plants along roadsides and field edges at 12 locations in three agricultural landscapes in southern Manitoba where GMHT OSR is widely grown. Data were analysed to examine temporal changes at large spatial scales and to determine factors affecting the distribution of escaped OSR plants in roadside and field edge habitats within agricultural landscapes. Additionally, we assessed the potential for seed dispersal between escaped populations by comparing the relative spatial distribution of roadside and field edge OSR. Densities of escaped OSR fluctuated over space and time in both roadside and field edge habitats, though the proportion of GMHT plants was high (93-100%). Escaped OSR was positively affected by agricultural landscape (indicative of cropping intensity) and by the presence of an

  7. Effect of arabinogalactan proteins from the root caps of pea and Brassica napus on Aphanomyces euteiches zoospore chemotaxis and germination.

    Science.gov (United States)

    Cannesan, Marc Antoine; Durand, Caroline; Burel, Carole; Gangneux, Christophe; Lerouge, Patrice; Ishii, Tadashi; Laval, Karine; Follet-Gueye, Marie-Laure; Driouich, Azeddine; Vicré-Gibouin, Maïté

    2012-08-01

    Root tips of many plant species release a number of border, or border-like, cells that are thought to play a major role in the protection of root meristem. However, little is currently known on the structure and function of the cell wall components of such root cells. Here, we investigate the sugar composition of the cell wall of the root cap in two species: pea (Pisum sativum), which makes border cells, and Brassica napus, which makes border-like cells. We find that the cell walls are highly enriched in arabinose and galactose, two major residues of arabinogalactan proteins. We confirm the presence of arabinogalactan protein epitopes on root cap cell walls using immunofluorescence microscopy. We then focused on these proteoglycans by analyzing their carbohydrate moieties, linkages, and electrophoretic characteristics. The data reveal (1) significant structural differences between B. napus and pea root cap arabinogalactan proteins and (2) a cross-link between these proteoglycans and pectic polysaccharides. Finally, we assessed the impact of root cap arabinogalactan proteins on the behavior of zoospores of Aphanomyces euteiches, an oomycetous pathogen of pea roots. We find that although the arabinogalactan proteins of both species induce encystment and prevent germination, the effects of both species are similar. However, the arabinogalactan protein fraction from pea attracts zoospores far more effectively than that from B. napus. This suggests that root arabinogalactan proteins are involved in the control of early infection of roots and highlights a novel role for these proteoglycans in root-microbe interactions.

  8. Physiological quality and gene expression related to heat-resistant proteins at different stages of development of maize seeds.

    Science.gov (United States)

    Andrade, T; Von Pinho, E V R; Von Pinho, R G; Oliveira, G E; Andrade, V; Fernandes, J S

    2013-09-13

    We quantified and characterized the expression of heat-resistant proteins during seed development of maize lines with distinct levels of tolerance to high drying temperature. A corn field was planted for multiplication of seeds of different lines, two tolerant and two non-tolerant to high drying temperatures. Harvest of the seeds was carried out at various stages of development and they were then subjected to tests of moisture content, germination, first count of germination, accelerated aging, and cold test. The seeds were stored in a freezer for later analysis of expression of heat-resistant proteins by means of real-time PCR, electrophoresis, and spectrophotometry. We observed that heat-resistant proteins are expressed in a differential manner in seeds from different lines and at different stages of development. The expression of heat-resistant proteins was earlier in lines tolerant to high drying temperatures. Greater germination and vigor values was found for seeds collected at the last stage of development.

  9. Effects of chronic exposure of seeds and seeds and seedlings of Arabidopsis Thaliana by low doses of γ-radiation on plant growth and development

    International Nuclear Information System (INIS)

    Litvinov, S.V.

    2013-01-01

    Article presents the results of research on the effect of chronic γ-irradiation in small doses on A. Thaliana seedlings and seeds growth and development. Exposure rate for the seeds was 0,45 mGy/h (total absorbed dose 30 cSv) and 0,18 mGy/h for seedlings (total absorbed dose 3 cSv). Statistically significant differences in the germination capacity, in the time of primary leaf rosette formation, in the hypocotyl length were revealed between irradiated and control seedlings. Plants from irradiated seeds differed by the higher growth rate of stem, they flowered and fruited earlier, but they also characterized on average shorter vegetative cycle in comparison with control plants. In our experiments it is shown significant impact of chronic low doses of γ-irradiation of seeds and seedlings on the ontogeny in A. Thaliana and on the parameters that reflect the growth and development of the irradiated plants

  10. Sequential light programs shape kale (Brassica napus) sprout appearance and alter metabolic and nutrient content

    Science.gov (United States)

    Carvalho, Sofia D; Folta, Kevin M

    2014-01-01

    Different light wavelengths have specific effects on plant growth and development. Narrow-bandwidth light-emitting diode (LED) lighting may be used to directionally manipulate size, color and metabolites in high-value fruits and vegetables. In this report, Red Russian kale (Brassica napus) seedlings were grown under specific light conditions and analyzed for photomorphogenic responses, pigment accumulation and nutraceutical content. The results showed that this genotype responds predictably to darkness, blue and red light, with suppression of hypocotyl elongation, development of pigments and changes in specific metabolites. However, these seedlings were relatively hypersensitive to far-red light, leading to uncharacteristically short hypocotyls and high pigment accumulation, even after growth under very low fluence rates (<1 μmol m−2 s−1). General antioxidant levels and aliphatic glucosinolates are elevated by far-red light treatments. Sequential treatments of darkness, blue light, red light and far-red light were applied throughout sprout development to alter final product quality. These results indicate that sequential treatment with narrow-bandwidth light may be used to affect key economically important traits in high-value crops. PMID:26504531

  11. Development and characterisation of iridium-192 seeds for brachytherapy treatment of ocular tumors

    International Nuclear Information System (INIS)

    Peleias Jr, F.S.; Zeituni, C.A.; Souza, C.D.; Rostelato, M.E.CM.; Mattos, F.R.; Banega, M.A.G.; Rodrigues, B.T.; Tiezzi, R.; Oliveira, T.B.; Feher, A.; Moura, J.A.; Costa, O.L.

    2014-01-01

    Even ocular tumors are not amongst the cases with a high incidence, they affect the population, particularly children. The Institute of Energy and Nuclear Research (IPEN-CNEN/SP) in partnership with Escola Paulista de Medicina (UNIFESP), created a project to develop an alternative treatment for ophthalmic cancer that uses iridium-192 seeds in brachytherapy. This work aims to study and develop a seed of iridium-192 from a platinum-iridium alloy The prototype seed has a 3.0 mm long core sealed by a titanium capsule of 0.8 mm of outer diameter, 0.05 mm of wall thickness and 4.5 mm long. We developed a methodology that covered: characterisation of the material used in the core, creation of a device for neutron activation of the cores and leakage tests. The results show that this methodology is feasible. As a suggestion for future work, studies regarding metrology and dosimetry of these sources should be carried out. (authors)

  12. The Design and Development of Test Platform for Wheat Precision Seeding Based on Image Processing Techniques

    OpenAIRE

    Li , Qing; Lin , Haibo; Xiu , Yu-Feng; Wang , Ruixue; Yi , Chuijie

    2009-01-01

    International audience; The test platform of wheat precision seeding based on image processing techniques is designed to develop the wheat precision seed metering device with high efficiency and precision. Using image processing techniques, this platform gathers images of seeds (wheat) on the conveyer belt which are falling from seed metering device. Then these data are processed and analyzed to calculate the qualified rate, reseeding rate and leakage sowing rate, etc. This paper introduces t...

  13. Magnetic-seeding filtration

    International Nuclear Information System (INIS)

    Ying, T.Y.; Chin, C.J.; Lu, S.C.; Yiacoumi, S.

    1997-10-01

    Magnetic-seeding filtration consists of two steps: heterogeneous particle flocculation of magnetic and nonmagnetic particles in a stirred tank and high-gradient magnetic filtration (HGMF). The effects of various parameters affecting magnetic-seeding filtration (HGMF). The effects of various parameters affecting magnetic seeding filtration are theoretically and experimentally investigated. A trajectory model that includes hydrodynamic resistance, van der Waals, and electrostatic forces is developed to calculate the flocculation frequency in a turbulent-shear regime. Fractal dimension is introduced to simulate the open structure of aggregates. A magnetic-filtration model that consists of trajectory analysis, a particle build-up model, a breakthrough model, and a bivariate population-balance model is developed to predict the breakthrough curve of magnetic-seeding filtration. A good agreement between modeling results and experimental data is obtained. The results show that the model developed in this study can be used to predict the performance of magnetic-seeding filtration without using empirical coefficients or fitting parameters. 35 refs., 7 figs., 1 tab

  14. Development of an Iridium-192 seed for use in ophthalmic brachytherapy

    International Nuclear Information System (INIS)

    Mattos, Fabio R.; Rostelato, Maria Elisa C.M.; Zeituni, Carlos; Moura, Joao A.; Costa, Osvaldo L.; Feher, Anselmo; Moura, Eduardo S.; Souza, Carla D.; Peleias Junior, Fernando S.

    2011-01-01

    The Institute for Energy and Nuclear Research (IPEN), in partnership with the School or Medicine (UNIFESP), created a project that aims to develop and implement an ophthalmic therapeutic treatment for cancer with Iridium-192 seeds. The School of Medicine treats many cancer cases in the SUS (Brazilian Public Health System), and brachytherapy group of IPEN has extensive experience in prototype sources. The seed to be manufactured will perform as follows: a core of Iridium-192 is packaged inside small cylindrical seeds consist of a titanium capsule of 0.8 mm outer diameter, 0.05 mm wall thickness and 4 5 mm in length. The core is an alloy of platinum-iridium (20/80) of 3.0 mm in length and 0.3 mm in diameter. Material analysis, neutron activation and activity measurements were carried out. (author)

  15. Indigenous endophytic seed bacteria promote seedling development and defend against fungal disease in browntop millet (Urochloa ramosa L.).

    Science.gov (United States)

    Verma, S K; White, J F

    2018-03-01

    This study was conducted to investigate indigenous seed endophyte effects on browntop millet seedling development. We report that seed-inhabiting bacterial endophytes are responsible for promoting seedling development, including stimulation of root hair formation, increasing root and shoot length growth and increasing photosynthetic pigment content of seedlings. Bacterial endophytes also improved resistance of seedlings to disease. A total of four endophytic bacteria were isolated from surface-sterilized seeds and identified by 16S rDNA sequencing as Curtobacterium sp. (M1), Microbacterium sp. (M2), Methylobacterium sp. (M3) and Bacillus amyloliquefaciens (M4). Removal of bacteria with streptomycin treatment from the seeds compromised seedling growth and development. When endophytes were reinoculated onto seeds, seedlings recovered normal development. Strains M3 and M4 were found to be most potent in promoting growth of seedlings. Bacteria were found to produce auxin, solubilize phosphate and inhibit fungal pathogens. Significant protection of seedlings from Fusarium infection was found using strain M4 in microcosm assays. The antifungal lipopeptide genes for surfactin and iturin were detected in M4; culture extracts of M4 showed a positive drop collapse result for surfactins. This study demonstrates that browntop millet seeds vector indigenous endophytes that are responsible for modulation of seedling development and protection of seedlings from fungal disease. This study is significant and original in that it is the first report of seed-inhabiting endophytes of browntop millet that influence seedling development and function in defence against soilborne pathogens. This study suggests that conservation and management of seed-vectored endophytes may be important in development of more sustainable agricultural practices. © 2017 The Society for Applied Microbiology.

  16. Germination and Seedling Development of Seeds from Different Parkia biglobosa (Jacq G. Don Trees

    Directory of Open Access Journals (Sweden)

    Christiana O. ADEYEMI

    2013-02-01

    Full Text Available The effect of daylight, continuous illumination and acid scarification on the seed germination and seedling vegetative growth (epicotyl and hypocotyl lengths, and number of secondary roots of different Parkia biglobosawere investigated in the Plant Physiology Laboratory University of Ilorin, Ilorin Kwara State Nigeria. Seeds from two out of the twenty six Parkia tree samples (trees B and T germinated within 24 hours of planting in the daylight germination study while seeds from another tree (Q did not germinate until the third week after planting (3WAP. Some seeds have higher germination percentage both in the daylight (preliminary germination study and in the continuous light (illuminated study. The treatment with concentrated Sulphric acid (conc. H2SO4was effective in breaking the seed dormancy as seeds from eight (8 trees produced one hundred percent (100% germination. At p= 0.05 the length of epicotyl and hypocoty1 lengths were significantly different as seedling vegetative growth were long in the seedlings from the daylight experiment than the continuous light experiment. The vegetative growths of the seedlings from the scarified seed were longer at 15min of scarification in all except in trees F and Z. It was observed that the time of scarification affect the both seed germination and seedling development.

  17. Diversity and Genome Analysis of Australian and Global Oilseed Brassica napus L. Germplasm Using Transcriptomics and Whole Genome Re-sequencing

    Directory of Open Access Journals (Sweden)

    M. Michelle Malmberg

    2018-04-01

    Full Text Available Intensive breeding of Brassica napus has resulted in relatively low diversity, such that B. napus would benefit from germplasm improvement schemes that sustain diversity. As such, samples representative of global germplasm pools need to be assessed for existing population structure, diversity and linkage disequilibrium (LD. Complexity reduction genotyping-by-sequencing (GBS methods, including GBS-transcriptomics (GBS-t, enable cost-effective screening of a large number of samples, while whole genome re-sequencing (WGR delivers the ability to generate large numbers of unbiased genomic single nucleotide polymorphisms (SNPs, and identify structural variants (SVs. Furthermore, the development of genomic tools based on whole genomes representative of global oilseed diversity and orientated by the reference genome has substantial industry relevance and will be highly beneficial for canola breeding. As recent studies have focused on European and Chinese varieties, a global diversity panel as well as a substantial number of Australian spring types were included in this study. Focusing on industry relevance, 633 varieties were initially genotyped using GBS-t to examine population structure using 61,037 SNPs. Subsequently, 149 samples representative of global diversity were selected for WGR and both data sets used for a side-by-side evaluation of diversity and LD. The WGR data was further used to develop genomic resources consisting of a list of 4,029,750 high-confidence SNPs annotated using SnpEff, and SVs in the form of 10,976 deletions and 2,556 insertions. These resources form the basis of a reliable and repeatable system allowing greater integration between canola genomics studies, with a strong focus on breeding germplasm and industry applicability.

  18. Effect of different sulfur levels from various sources on brassica napus growth and soil sulfur fractions

    International Nuclear Information System (INIS)

    Khalid, R.; Khan, K.S.; Islam, M.; Yousaf, M.; Shabbir, G.

    2012-01-01

    A two year field study was conducted at two different locations in northern rain fed Punjab, Pakistan to assess the effect of different rates of sulfur application from various sources on soil sulfur fractions and growth of Brassica napus. The treatments included three sulfur sources i. e., single super phosphate, ammonium sulfate and gypsum each applied at five different rates (0, 10, 20, 30 and 40 kg S ha/sup -1/ ). Sulfur application had a significant positive effect on the growth and yield parameters of Brassica napus. Among the sulfur sources ammonium sulfate resulted in maximum increase in plant growth and yield parameters, followed by single super phosphate. Sulfur content and uptake by crop plants was significantly higher with ammonium sulfate application as compared to other two sulfur sources. Sulfur application also exerted a significant positive effect on different S fractions in the soils. On an average, 18.0% of the applied sulfur got incorporated into CaCl/sub 2/ extractable sulfur fraction, while 15.6% and 35.5% entered into adsorbed and organic sulfur fractions in the soils, respectively. The value cost ratio increased significantly by sulfur application up to 30 kg ha/sup -1/. Among sulfur sources, ammonium sulfate performed best giving the highest net return. (author)

  19. Evaluation of Effect of Gamma Rays Irradiation for Increasing of Variation in Germination and Agronomic Traits in Oilseed rape (Brassica napus L.

    Directory of Open Access Journals (Sweden)

    R. Momeni

    2012-04-01

    Full Text Available Increasing of genetic diversity is one of primary and basic goals of plant breeding programs. Induction of mutation is a method to increase genetic diversity that can be used in accommodate with selection, recombination and or combination of them in plant breeding. The aim of this study was to investigate the impact of different doses of gamma rays (500, 700, 900, 1100 and 1300 Gry on primary growth characters, such as: rate and percentage of germination, the length of rootlet and stemlet in M1 generation, and on agronomic characters such as: plant height, number of lateral branches, number of pods on main and lateral stem, length of pods and weigth of 1000-seed in M2 generation for two varieties of oilseed rape (Brassica napus, PF and Zarfam. Results of lab experiments showed that for both varieties, the germination percentage, the length of rootlet and the length of stemlet were significantly decreased by mutagen in compare with the control. While germination rate was only significantly affected by mutagen in PF. The estimation of "F" showed that there was significant difference between the variance of treatments for the germination rate and germination percentage in PF cultivar and for germination rate and stemlet length in Zarfam cultivar. In fact, increasing of gamma doses causes considerable enhancement in variance of treatment in compare with the control. The maximum relative coefficient of variation was related to 1300 Gry for germination rate of PF. In M2, all traits of study except number of pods on main stem was decreased by different doses of Gamma rays in PF cultivar. In opposition to other traits, Pods on main stem in PF cultivar was increased in different doses of gamma ray in compare with the control. But in Zarfam cultivar, only 1000-seed weight was significantly affected by Gamma rays.

  20. Phenolics in the seed coat of wild soybean (Glycine soja) and their significance for seed hardness and seed germination.

    Science.gov (United States)

    Zhou, San; Sekizaki, Haruo; Yang, Zhihong; Sawa, Satoko; Pan, Jun

    2010-10-27

    Hardseededness in annual wild soybean (Glycine soja Sieb. Et Zucc.) is a valuable trait that affects the germination, viability, and quality of stored seeds. Two G. soja ecotypes native to Shandong Province of China have been used to identify the phenolics in the seed coat that correlate with the seed hardness and seed germination. Three major phenolics from the seed coat were isolated and identified as epicatechin, cyanidin 3-O-glucoside, and delphinidin 3-O-glucoside. Of the three phenolics, only the change of epicatechin exhibited a significant positive correlation with the change of hard seed percentages both under different water conditions during seed development and under different gas conditions during seed storage. Epicatechin also reveals a hormesis-like effect on the seed germination of G. soja. Epicatechin is suggested to be functionally related to coat-imposed hardseededness in G. soja.

  1. [Procedure of seed quality testing and seed grading standard of Prunus humilis].

    Science.gov (United States)

    Wen, Hao; Ren, Guang-Xi; Gao, Ya; Luo, Jun; Liu, Chun-Sheng; Li, Wei-Dong

    2014-11-01

    So far there exists no corresponding quality test procedures and grading standards for the seed of Prunus humilis, which is one of the important source of base of semen pruni. Therefor we set up test procedures that are adapt to characteristics of the P. humilis seed through the study of the test of sampling, seed purity, thousand-grain weight, seed moisture, seed viability and germination percentage. 50 cases of seed specimens of P. humilis tested. The related data were analyzed by cluster analysis. Through this research, the seed quality test procedure was developed, and the seed quality grading standard was formulated. The seed quality of each grade should meet the following requirements: for first grade seeds, germination percentage ≥ 68%, thousand-grain weight 383 g, purity ≥ 93%, seed moisture ≤ 5%; for second grade seeds, germination percentage ≥ 26%, thousand-grain weight ≥ 266 g, purity ≥ 73%, seed moisture ≤9%; for third grade seeds, germination percentage ≥ 10%, purity ≥ 50%, thousand-grain weight ≥ 08 g, seed moisture ≤ 13%.

  2. Soybean roots retain the seed urease isozyme synthesized during embryo development

    International Nuclear Information System (INIS)

    Torisky, R.S.; Polacco, J.C.

    1990-01-01

    Roots of young soybean plants contain two urease isozymes which are separable by hydroxyapatite chromatography. These two urease species (HAP1 and HAP2) differ in: (1) native gel electrophoretic mobility, (2) pH optima, and (3) recognition by a monoclonal antibody specific for the embryo-specific urease. By these parameters HAP1 is similar to the abundant embryo-specific urease isozyme while HAP2 resembles the ubiquitous urease, found in all soybean tissues previously examined (embryo, seed coat, cultured cells). Roots of mutant soybean plants lacking the seed urease contain no HAP1 urease activity, whereas roots of mutants lacking the ubiquitous urease contain no HAP2 urease activity. However, adventitious roots generated from cuttings of any urease genotype lack HAP1 urease activity. Furthermore, [ 35 S] methionine labelling shows no de novo synthesis of the HAP1 urease in the root, and total root HAP1 urease activity decreases sharply following germination. We conclude: (1) HAP1 is a remnant of the seed urease accumulated in the embryonic root axis during seed development, and (2) HAP2 is ubiquitous urease synthesized de novo in the root

  3. Leaf Senescence, Root Morphology, and Seed Yield of Winter Oilseed Rape (Brassica napus L. at Varying Plant Densities

    Directory of Open Access Journals (Sweden)

    Ming Li

    2017-01-01

    Full Text Available In this study, the yield and yield components were studied using a conventional variety Zhongshuang 11 (ZS 11 and a hybrid variety Zhongyouza 12 (ZYZ 12 at varying plant densities. The increase in plant density led to an initial increase in seed yield and pod numbers per unit area, followed by a decrease. The optimal plant density was 58.5 × 104 plants ha−1 in both ZS 11 and ZYZ 12. The further researches on physiological traits showed a rapid decrease in the green leaf area index (GLAI and chlorophyll content and a remarkable increase in malondialdehyde content in high plant density (HPD population than did the low plant density (LPD population, which indicated the rapid leaf senescence. However, HPD had higher values in terms of pod area index (PAI, pod photosynthesis, and radiation use efficiency (RUE after peak anthesis. A significantly higher level of dry matter accumulation and nitrogen utilization efficiency were observed, which resulted in higher yield. HPD resulted in a rapid decrease in root morphological parameters (root length, root tips, root surface area, and root volume. These results suggested that increasing the plant density within a certain range was a promising option for high seed yield in winter rapeseed in China.

  4. Asymbiotic seed germination and in vitro seedling development of ...

    African Journals Online (AJOL)

    Within two weeks of culture, spherules emerged out due to cracking of the seed coat. The spherules developed into protocorms with a leaf primordium at apical portion after 3 to 4 weeks and gradually produced complete seedlings. Strong and stout root system was induced in in vitro seedlings on transferring in half strength ...

  5. Genetic Diversity in Commercial Rapeseed (Brassica napus L. Varieties from Turkey as Revealed by RAPD

    Directory of Open Access Journals (Sweden)

    Özlem ÖZBEK

    2013-02-01

    Full Text Available In cultivated commercial crop species, genetic diversity tends to decrease because of the extensive breeding processes. Therefore, germplasm of commercial crop species, such as Brassica napus L. should be evaluated and the genotypes, which have higher genetic diversity index, should be addressed as potential parental cross materials in breeding programs. In this study, the genetic diversity was analysed by using randomly amplified polymorphic DNA analysis (RAPD technique in nine Turkish commercial rapeseed varieties. The RAPD primers (10-mer oligonucleotides produced 51 scorable loci, 31 loci of which were polymorphic (60.78% and 20 loci (39.22% were monomorphic The RAPD bands were scored as binary matrix data and were analysed using POPGENE version 1.32. At locus level, the values of genetic diversity within population (Hs and total (HT were 0.15 and 0.19 respectively. The genetic differentiation (GST and the gene flow (Nm values between the populations were 0.20 and 2.05 respectively. The mean number of alleles (na, the mean number of effective alleles (nae, and the mean value of genetic diversity (He were 2.00, 1.26, and 0.19 respectively. According to Pearson’s correlation, multiple regression and principal component analyses, eco-geographical conditions in combination had significant effect on genetic indices of commercial B. napus L. varieties were discussed.

  6. Identification of differentially expressed genes between developing seeds of different soybean cultivars

    Directory of Open Access Journals (Sweden)

    Rongshuang Lin

    2015-12-01

    Full Text Available Soybean is a major source of protein and oil and a primary feedstock for biodiesel production. Research on soybean seed composition and yield has revealed that protein, oil and yield are controlled quantitatively and quantitative trait loci (QTL have been identified for each of these traits. However, very limited information is available regarding the genetic mechanisms controlling seed composition and yield. To help address this deficiency, we used Affymetrix Soybean GeneChips® to identify genes that are differentially expressed between developing seeds of the Minsoy and Archer soybean cultivars, which differ in seed weight, yield, protein content and oil content. A total of 700 probe sets were found to be expressed at significantly different (defined as having an adjusted p-value below or equal to 0.05 and an at least 2-fold difference levels between the two cultivars at one or more of the three developmental stages and in at least one of the two years assayed. Comparison of data from soybeans collected in two different years revealed that 97 probe sets were expressed at significantly different levels in both years. Functional annotations were assigned to 78% of these 97 probe sets based on the SoyBase Affymetrix™ GeneChip® Soybean Genome Array Annotation. Genes involved in receptor binding/activity and protein binding are overrepresented among the group of 97 probe sets that were differentially expressed in both years assayed. Probe sets involved in growth/development, signal transduction, transcription, defense/stress response and protein and lipid metabolism were also identified among the 97 probe sets and their possible implications in the regulation of agronomic traits are discussed. As the Minsoy and Archer soybean cultivars differ with respect to seed size, yield, protein content and lipid content, some of the differentially expressed probe sets identified in this study may thus play important roles in controlling these traits

  7. Forage seeding in rangelands increases production and prevents weed invasion

    Directory of Open Access Journals (Sweden)

    Josh Davy

    2017-07-01

    Full Text Available Increasing forage productivity in the Sierra foothill rangelands would help sustain the livestock industry as land availability shrinks and lease rates rise, but hardly any studies have been done on forage selections. From 2009 to 2014, in one of the first long-term and replicated studies of seeding Northern California's Mediterranean annual rangeland, we compared the cover of 22 diverse forages to determine their establishment and survivability over time. Among the annual herbs, forage brassica (Brassica napus L. and chicory (Cichorium intybus L. proved viable options. Among the annual grasses, soft brome (Bromus hordeaceus and annual ryegrass (Lolium multiflorum performed well. However, these species will likely require frequent reseeding to maintain dominance. Long-term goals of sustained dominant cover (> 3 years are best achieved with perennial grasses. Perennial grasses that persisted with greater than 50% cover were Berber orchardgrass (Dactylis glomerata, Flecha tall fescue (Lolium arundinaceum and several varieties of hardinggrass (Phalaris aquatica L., Perla koleagrass, Holdfast, Advanced AT. In 2014, these successful perennials produced over three times more dry matter (pounds per acre than the unseeded control and also suppressed annual grasses and yellow starthistle (Centaurea solstitialis L. cover.

  8. Cloning and molecular analyses of a gibberellin 20-oxidase gene expressed specifically in developing seeds of watermelon.

    Science.gov (United States)

    Kang, H G; Jun, S H; Kim, J; Kawaide, H; Kamiya, Y; An, G

    1999-10-01

    To understand the biosynthesis and functional role of gibberellins (GAs) in developing seeds, we isolated Cv20ox, a cDNA clone from watermelon (Citrullus lanatus) that shows significant amino acid homology with GA 20-oxidases. The complementary DNA clone was expressed in Escherichia coli as a fusion protein, which oxidized GA(12) at C-20 to the C(19) compound GA(9), a precursor of bioactive GAs. RNA-blot analysis showed that the Cv20ox gene was expressed specifically in developing seeds. The gene was strongly expressed in the integument tissues, and it was also expressed weakly in inner seed tissues. In parthenocarpic fruits induced by 1-(2-chloro-4-pyridyl)-3-phenylurea treatment, the expression pattern of Cv20ox did not change, indicating that the GA 20-oxidase gene is expressed primarily in the maternal cells of developing seeds. The promoter of Cv20ox was isolated and fused to the beta-glucuronidase (GUS) gene. In a transient expression system, beta-glucuronidase staining was detectable only in the integument tissues of developing watermelon seeds.

  9. Pathways for the developing Myanmar’s seed sector: A scoping study

    NARCIS (Netherlands)

    Broek, van den J.A.; Subedi, A.; Jongeleen, F.; Naing Lin Oo,

    2015-01-01

    The study presents an integrated assessment of Myanmar’s seed sector. The study includes information and analyses on regulatory environment for seed production and sales, a characterization of Myanmar’s seed sector with its various seed systems, a landscape of current seed sector interventions; an

  10. Changes in DNA methylation levels during seed development in ...

    Indian Academy of Sciences (India)

    User

    flowering and seeds were collected every week starting from 6thday after fertilization (DAP) till ... (Mitutoyo, Japan).Seeds for DNA isolation were lyophilized at -55 0C for 24 hours in a ... phase(stages 4, 5, 6 and7),seed length increased to 21.14 mm.During the .... Government of India, for providing fellowship for this work.

  11. Molecular physiology of seeds

    International Nuclear Information System (INIS)

    Hajduch, M.

    2014-05-01

    Plant development is well described. However, full understanding of the regulation of processes associated with plant development is still missing. Present Dr.Sc. thesis advances our understanding of the regulation of plant development by quantitative proteomics analyses of seed development of soybean, canola, castor, flax, and model plant arabidopsis in control and environmentally challenged environments. The analysis of greenhouse-grown soybean, canola, castor, and arabidospis provided complex characterization of metabolic processes during seed development, for instance, of carbon assimilation into fatty acids. Furthermore, the analyses of soybean and flax grown in Chernobyl area provided in-depth characterization of seed development in radio-contaminated environment. Soybean and flax were altered by radio-contaminated environment in different way. However, these alterations resulted into modifications in seed oil content. Further analyses showed that soybean and flax possess alterations of carbon metabolism in cytoplasm and plastids along with increased activity of photosynthetic apparatus. Our present experiments are focused on further characterization of molecular bases that might be responsible for alterations of seed oil content in Chernobyl grown plants. (author)

  12. An analysis of the development of cauliflower seed as a model to improve the molecular mechanism of abiotic stress tolerance in cauliflower artificial seeds

    OpenAIRE

    Rihan, HZ; Al-Issawi, M; Fuller, MP

    2017-01-01

    publisher: Elsevier articletitle: An analysis of the development of cauliflower seed as a model to improve the molecular mechanism of abiotic stress tolerance in cauliflower artificial seeds journaltitle: Plant Physiology and Biochemistry articlelink: http://dx.doi.org/10.1016/j.plaphy.2017.05.011 content_type: article copyright: © 2017 Elsevier Masson SAS. All rights reserved.

  13. 12-Oxo-Phytodienoic Acid Accumulation during Seed Development Represses Seed Germination in Arabidopsis[C][W][OA

    Science.gov (United States)

    Dave, Anuja; Hernández, M. Luisa; He, Zhesi; Andriotis, Vasilios M.E.; Vaistij, Fabián E.; Larson, Tony R.; Graham, Ian A.

    2011-01-01

    Arabidopsis thaliana COMATOSE (CTS) encodes an ABC transporter involved in peroxisomal import of substrates for β-oxidation. Various cts alleles and mutants disrupted in steps of peroxisomal β-oxidation have previously been reported to exhibit a severe block on seed germination. Oxylipin analysis on cts, acyl CoA oxidase1 acyl CoA oxidase2 (acx1 acx2), and keto acyl thiolase2 dry seeds revealed that they contain elevated levels of 12-oxo-phytodienoic acid (OPDA), jasmonic acid (JA), and JA-Ile. Oxylipin and transcriptomic analysis showed that accumulation of these oxylipins occurs during late seed maturation in cts. Analysis of double mutants generated by crossing cts with mutants in the JA biosynthesis pathway indicate that OPDA, rather than JA or JA-Ile, contributes to the block on germination in cts seeds. We found that OPDA was more effective at inhibiting wild-type germination than was JA and that this effect was independent of CORONATINE INSENSITIVE1 but was synergistic with abscisic acid (ABA). Consistent with this, OPDA treatment increased ABA INSENSITIVE5 protein abundance in a manner that parallels the inhibitory effect of OPDA and OPDA+ABA on seed germination. These results demonstrate that OPDA acts along with ABA to regulate seed germination in Arabidopsis. PMID:21335376

  14. Cloning of gibberellin 3 beta-hydroxylase cDNA and analysis of endogenous gibberellins in the developing seeds in watermelon.

    Science.gov (United States)

    Kang, Hong-Gyu; Jun, Sung-Hoon; Kim, Joonyul; Kawaide, Hiroshi; Kamiya, Yuji; An, Gynheung

    2002-02-01

    We have isolated Cv3h, a cDNA clone from the developing seeds of watermelon, and have demonstrated significant amino acid homology with gibberellin (GA) 3 beta-hydroxylases. This cDNA clone was expressed in Escherichia coli as a fusion protein that oxidized GA(9) and GA(12) to GA(4) and GA(14), respectively. The Cv3h protein had the highest similarity with pumpkin GA 2 beta,3 beta-hydroxylase, but did not possess 2 beta-hydroxylation function. RNA blot analysis showed that the gene was expressed primarily in the inner parts of developing seeds, up to 10 d after pollination (DAP). In the parthenocarpic fruits induced by treatment with 1-(2-chloro-4-pyridyl)-3-phenylurea (CPPU), the embryo and endosperm of the seeds were undeveloped, whereas the integumental tissues, of maternal origin, showed nearly normal development. Cv3h mRNA was undetectable in the seeds of CPPU-treated fruits, indicating that the GA 3 beta-hydroxylase gene was expressed in zygotic cells. In our analysis of endogenous GAs from developing seeds, GA(9) and GA(4) were detected at high levels but those of GA(20) and GA(1) were very low. This demonstrates that GA biosynthesis in seeds prefers a non-13-hydroxylation pathway over an early 13-hydroxylation pathway. We also analyzed endogenous GAs from seeds of the parthenocarpic fruits. The level of bioactive GA(4 )was much lower there than in normal seeds, indicating that bioactive GAs, unconnected with Cv3h, exist in integumental tissues during early seed development.

  15. Separation and identification of candidate protein elicitors from the cultivation medium of Leptosphaeria maculans inducing resistance in Brassica napus

    Czech Academy of Sciences Publication Activity Database

    Nováková, Miroslava; Kim, P.D.; Šašek, Vladimír; Burketová, Lenka; Jindřichová, Barbora; Šantrůček, J.; Valentová, O.

    2016-01-01

    Roč. 32, č. 4 (2016), s. 918-928 ISSN 8756-7938 R&D Projects: GA ČR GA522/08/1581; GA MZe QH81201; GA MŠk LD14093 Institutional support: RVO:61389030 Keywords : elicitor * Brassica napus * Leptosphaeria maculans Subject RIV: GF - Plant Pathology, Vermin, Weed, Plant Protection Impact factor: 1.986, year: 2016

  16. Analysis of seed quality in NS sunflower hybrid seed processed between 2010 and 2014

    Directory of Open Access Journals (Sweden)

    Jokić Goran

    2015-01-01

    Full Text Available This paper analyzed the processed seed of five sunflower hybrid seed developed at the Institute of Field and Vegetable Crops in Novi Sad. The cultivars were Rimi PR, Duško, NS Dukat, Sumo 1 PR and Sremac. The analysis was conducted on seed lots processed between 2010 and 2014 and involved the following parameters: seed purity percentage, 1000-seed weight, germination energy, germination, seed moisture, number of weed seeds per 1000 grams of seed. The results of the study produced the following average values: seed purity - 99.72%, 1000-seed weight - 67.59g, germination energy - 88.2%, germination - 91.8%, seed moisture - 8.3%. There were not found weeds seeds as well as pathogens on the seed samples, these values are all within the legally prescribed limits.

  17. Competition between meiotic and apomictic pathways during ovule and seed development results in clonality.

    Science.gov (United States)

    Hojsgaard, Diego H; Martínez, Eric J; Quarin, Camilo L

    2013-01-01

    Meiotic and apomictic reproductive pathways develop simultaneously in facultative aposporous species, and compete to form a seed as a final goal. This developmental competition was evaluated in tetraploid genotypes of Paspalum malacophyllum in order to understand the low level of sexuality in facultative apomictic populations. Cyto-embryology on ovules, flow cytometry on seeds and progeny tests by DNA fingerprinting were used to measure the relative incidence of each meiotic or apomictic pathway along four different stages of the plant's life cycle, namely the beginning and end of gametogenesis, seed formation and adult offspring. A high variation in the frequencies of sexual and apomictic pathways occurred at the first two stages. A trend of radical decline in realized sexuality was then observed. Sexual and apomictic seeds were produced, but the efficiency of the sexual pathway dropped drastically, and exclusively clonal offspring remained. Both reproductive pathways are unstable at the beginning of development, and only the apomictic one remains functional. Key factors reducing sexuality are the faster growth and parthenogenetic development in the aposporous pathway, and an (epi)genetically negative background related to the extensive gene de-regulation pattern responsible for apomixis. The effects of inbreeding depression during post-fertilization development may further decrease the frequency of effective sexuality. No claim to original US government works. New Phytologist © 2012 New Phytologist Trust.

  18. The bioaccumulation of heavy metals in Brassica napus L. in the area around Turów Power Station, Poland

    Directory of Open Access Journals (Sweden)

    Niedźwiecka Alicja

    2017-01-01

    Full Text Available Brassica napus L. is a known bioaccumulator of copper, zinc, cadmium, lead, chromium, nickel and arsenic from soils. The metal ions are accumulated in the roots, stems, leaves and seeds of the oilseed rape. The samples of soils and plants were collected in the area around the Turów power station (Bogatynia city, Lower Silesia. The soil samples were collected from the surface layer of 0-25 cm. Roots, stems and pods of the oilseed rape were used in the study. The environmental samples were digested in HNO3, 60%, using the Microwave Digestion System. Metal concentrations have been dermined through the FAAS method. Three heavy metals - zinc, copper and lead – have been analyzed. The content of zinc was higher than the content of copper in all samples (plants and soils. In the roots of the oilseed rape higher concentration of metals compared to other parts of the plant was observed. In the soil samples, there was no correlation between the concentration of pollution and the distance from the power plant. Permissible concentrations of heavy metals relative to the standard according to the Polish Ministry of Environment Regulation from September 1st, 2016, have not been exceeded. The permissible pollution indexes (Wn in soils were exceeded compared to the geochemical background in uncontaminated soils of Poland. The bioaccumulation coefficients of heavy metals indicate lower metal concentrations in plants than in soils

  19. Effects of different combinations and concentrations of growth ...

    African Journals Online (AJOL)

    PRECIOUS

    2009-11-16

    Nov 16, 2009 ... artificial seed (Büyükalaca and Mavituna, 1995; Vicient and Martinez .... light stimulated somatic embryo formation and maturation in Brassica napus. .... Effects of Abscisic Acid on Somatic Embryogenesis and Induction of.

  20. EFFECTS OF PLANT NUTRITION ON CANOLA (Brassica napus L. GROWTH

    Directory of Open Access Journals (Sweden)

    Sami Süzer

    2016-03-01

    Full Text Available Canola (Brassica napus L. is an important edible oilseed crop in the World and in Turkey. It has a healthy vegetable oil because of its balance with omega 3-6-9 essential fatty acids, making canola oil a healthy vegetable oil throughout the World for cooking and processed food industry. Canola production of high yield and good quality usually depends on well-balanced plant nutrition and growing conditions. A well-balanced soil condition also affects canola plants responses to stress factors such as disease and bad weather conditions. Nitrogen, phosphorus and potassium (NPK are some of the major nutrients required to significantly increase canola yield. Fertilizer application dosages in canola production vary because of the variable occurrence of NPK in the soil. A high yielding canola production needs a well-balanced fertilization program.

  1. Evaluation of germination, vegetative development and genotoxicity of lettuce from irradiated seeds

    Energy Technology Data Exchange (ETDEWEB)

    Franco, Caio H.; Arthur, Valter, E-mail: caiohaddadfranco@lnbio.cnpem.com.br, E-mail: arthur@cena.usp.br [Centro de Energia Nuclear na Agricultura (CENA/USP), Piracicaba, SP (Brazil). Lab. de Radiobiologia e Ambiente; Silva, Regildo M.G. da, E-mail: regildo@assis.unesp.br [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Assis, SP (Brazil). Fac. de Ciencias de Letras. Lab. de Fitoterapicos e Farmacologia; Franco, Jose G.; Franco, Suely S. H., E-mail: gilmita@uol.com.br, E-mail: zegilmar60@gmail.com [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    Agriculture has benefited from the use of radiation techniques, which provides plant varieties with distinguish characteristics, such as higher productivity, precocity and greater resistance to disease, pests and harsh weather conditions. Therefore, this study aimed on the analysis of greenhouse morphological development of Lactuca sativa originated from irradiated seeds; as well as test their genotoxic effect. The seeds were irradiated at doses of 25, 50, 75, 150 and 300 Gy. In order to determine the germination index, the number of seedlings emerged from each well was counted. Biometric and weight measurements were taken during the development and post-harvest stages. Genotoxicity tests were performed based on the biological assay Allium cepa. The results demonstrated that the best vegetative development was observed for individuals originated from seeds irradiated with doses of 25 and 50 Gy when compared with the control, while this dose did not differ significantly from 75 Gy The calculated germination index remained constant at all dosages. Inhibition of vegetative growth was observed on 150 and 300 Gy dosed individuals. It was also observed that the increasing rate of irradiation is inversely proportional to the mitotic index. A relationship can be established between increased levels of irradiation with increasing percentage of aberrant cells. (author)

  2. Evaluation of germination, vegetative development and genotoxicity of lettuce from irradiated seeds

    International Nuclear Information System (INIS)

    Franco, Caio H.; Arthur, Valter

    2013-01-01

    Agriculture has benefited from the use of radiation techniques, which provides plant varieties with distinguish characteristics, such as higher productivity, precocity and greater resistance to disease, pests and harsh weather conditions. Therefore, this study aimed on the analysis of greenhouse morphological development of Lactuca sativa originated from irradiated seeds; as well as test their genotoxic effect. The seeds were irradiated at doses of 25, 50, 75, 150 and 300 Gy. In order to determine the germination index, the number of seedlings emerged from each well was counted. Biometric and weight measurements were taken during the development and post-harvest stages. Genotoxicity tests were performed based on the biological assay Allium cepa. The results demonstrated that the best vegetative development was observed for individuals originated from seeds irradiated with doses of 25 and 50 Gy when compared with the control, while this dose did not differ significantly from 75 Gy The calculated germination index remained constant at all dosages. Inhibition of vegetative growth was observed on 150 and 300 Gy dosed individuals. It was also observed that the increasing rate of irradiation is inversely proportional to the mitotic index. A relationship can be established between increased levels of irradiation with increasing percentage of aberrant cells. (author)

  3. Evolution of the Systems Engineering Education Development (SEED) Program at NASA Goddard Space Flight Center

    Science.gov (United States)

    Bagg, Thomas C., III; Brumfield, Mark D.; Jamison, Donald E.; Granata, Raymond L.; Casey, Carolyn A.; Heller, Stuart

    2003-01-01

    The Systems Engineering Education Development (SEED) Program at NASA Goddard Space Flight Center develops systems engineers from existing discipline engineers. The program has evolved significantly since the report to INCOSE in 2003. This paper describes the SEED Program as it is now, outlines the changes over the last year, discusses current status and results, and shows the value of human systems and leadership skills for practicing systems engineers.

  4. Seedling development and evaluation of genetic stability of cryopreserved Dendrobium hybrid mature seeds.

    Science.gov (United States)

    Galdiano, Renato Fernandes; de Macedo Lemos, Eliana Gertrudes; de Faria, Ricardo Tadeu; Vendrame, Wagner Aparecido

    2014-03-01

    Vitrification, a simple, fast, and recommended cryopreservation method for orchid germplasm conservation, was evaluated for Dendrobium hybrid "Dong Yai" mature seeds. The genetic stability of regenerated seedlings was also evaluated using flow cytometry. Mature seeds from this hybrid were submitted to plant vitrification solution (PVS2) for 0, 0.5, 1, 2, 3, 4, 5, or 6 h at 0 °C. Subsequently, they were plunged into liquid nitrogen (LN) at -196 °C for 1 h and recovered in half-strength Murashige and Skoog culture medium (1/2 MS), and seed germination was evaluated after 30 days. Seeds directly submitted to LN did not germinate after cryopreservation. Seeds treated with PVS2 between 1 and 3 h presented the best germination (between 51 and 58%), although longer exposure to PVS2 returned moderated germination (39%). Germinated seeds were further subcultured in P-723 culture medium and developed whole seedlings in vitro after 180 days, with no abnormal characteristics, diseases, or nutritional deficiencies. Seedlings were successfully acclimatized under greenhouse conditions with over 80% survival. Flow cytometry analysis revealed no chromosomal changes on vitrified seedlings, as well as seedlings germinated from the control treatment (direct exposure to LN). These findings indicate that vitrification is a feasible and safe germplasm cryopreservation method for commercial Dendrobium orchid hybrid conservation.

  5. Genomic DNA Enrichment Using Sequence Capture Microarrays: a Novel Approach to Discover Sequence Nucleotide Polymorphisms (SNP) in Brassica napus L

    Science.gov (United States)

    Clarke, Wayne E.; Parkin, Isobel A.; Gajardo, Humberto A.; Gerhardt, Daniel J.; Higgins, Erin; Sidebottom, Christine; Sharpe, Andrew G.; Snowdon, Rod J.; Federico, Maria L.; Iniguez-Luy, Federico L.

    2013-01-01

    Targeted genomic selection methodologies, or sequence capture, allow for DNA enrichment and large-scale resequencing and characterization of natural genetic variation in species with complex genomes, such as rapeseed canola (Brassica napus L., AACC, 2n=38). The main goal of this project was to combine sequence capture with next generation sequencing (NGS) to discover single nucleotide polymorphisms (SNPs) in specific areas of the B. napus genome historically associated (via quantitative trait loci –QTL– analysis) to traits of agronomical and nutritional importance. A 2.1 million feature sequence capture platform was designed to interrogate DNA sequence variation across 47 specific genomic regions, representing 51.2 Mb of the Brassica A and C genomes, in ten diverse rapeseed genotypes. All ten genotypes were sequenced using the 454 Life Sciences chemistry and to assess the effect of increased sequence depth, two genotypes were also sequenced using Illumina HiSeq chemistry. As a result, 589,367 potentially useful SNPs were identified. Analysis of sequence coverage indicated a four-fold increased representation of target regions, with 57% of the filtered SNPs falling within these regions. Sixty percent of discovered SNPs corresponded to transitions while 40% were transversions. Interestingly, fifty eight percent of the SNPs were found in genic regions while 42% were found in intergenic regions. Further, a high percentage of genic SNPs was found in exons (65% and 64% for the A and C genomes, respectively). Two different genotyping assays were used to validate the discovered SNPs. Validation rates ranged from 61.5% to 84% of tested SNPs, underpinning the effectiveness of this SNP discovery approach. Most importantly, the discovered SNPs were associated with agronomically important regions of the B. napus genome generating a novel data resource for research and breeding this crop species. PMID:24312619

  6. African Journal of Biotechnology - Vol 8, No 20 (2009)

    African Journals Online (AJOL)

    Identification of differentially expressed genes in seeds of two Brassica napus ... DNA in burial place remains of Turkey using real time polymerase chain reaction ... Varietal response of four cowpea cultivars (Vigna unguiculata L. Walp) to ...

  7. Exogenous glutamine increases lipid accumulation in developing seeds of castor bean (Ricinus communis L. cultured in vitro

    Directory of Open Access Journals (Sweden)

    Zhang Yang

    2015-01-01

    Full Text Available This report describes biomass production and compositional changes of developing castor seeds in response to change in the nitrogen resource (glutamine of the medium. During the early developmental period (24-36 days after pollination, oil was found to initially accumulate in the developing seeds. Carbohydrates and oil were inversely related after glutamine provision (35 mM, in the culture medium. [U-14C] sucrose labeling was used to investigate the effect of metabolic fluxes among different storage materials. Addition of glutamine led to a 7% increase of labeling in lipids and an inverse decrease of labeling in carbohydrates. It was postulated that changes in the glutamine concentration in the medium are likely to influence the partitioning of resources between the various storage products, especially carbohydrates and oil. These observations will contribute to a better understanding of assimilate partitioning in developing castor seeds and the development of molecular strategies to improve castor bean seed quality and plant breeding studies.

  8. Early perception of stink bug damage in developing seeds of field-grown soybean induces chemical defences and reduces bug attack.

    Science.gov (United States)

    Giacometti, Romina; Barneto, Jesica; Barriga, Lucia G; Sardoy, Pedro M; Balestrasse, Karina; Andrade, Andrea M; Pagano, Eduardo A; Alemano, Sergio G; Zavala, Jorge A

    2016-08-01

    Southern green stink bugs (Nezara viridula L.) invade field-grown soybean crops, where they feed on developing seeds and inject phytotoxic saliva, which causes yield reduction. Although leaf responses to herbivory are well studied, no information is available about the regulation of defences in seeds. This study demonstrated that mitogen-activated protein kinases MPK3, MPK4 and MPK6 are expressed and activated in developing seeds of field-grown soybean and regulate a defensive response after stink bug damage. Although 10-20 min after stink bug feeding on seeds induced the expression of MPK3, MPK6 and MPK4, only MPK6 was phosphorylated after damage. Herbivory induced an early peak of jasmonic acid (JA) accumulation and ethylene (ET) emission after 3 h in developing seeds, whereas salicylic acid (SA) was also induced early, and at increasing levels up to 72 h after damage. Damaged seeds upregulated defensive genes typically modulated by JA/ET or SA, which in turn reduced the activity of digestive enzymes in the gut of stink bugs. Induced seeds were less preferred by stink bugs. This study shows that stink bug damage induces seed defences, which is perceived early by MPKs that may activate defence metabolic pathways in developing seeds of field-grown soybean. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  9. Seed degeneration in potato: the need for an integrated seed health strategy to mitigate the problem in developing countries

    NARCIS (Netherlands)

    Thomas-Sharma, S.; Abdurahman, A.A.; Ali, S.; Andrade-Piedra, J.L.; Bao, S.; Charkowski, A.O.; Crook, D.; Kadian, M.; Kromann, P.; Struik, P.C.; Torrance, L.; Garrett, K.A.; Forbes, G.A.

    2016-01-01

    Seed potato degeneration, the reduction in yield or quality caused by an accumulation of pathogens and pests in planting material due to successive cycles of vegetative propagation, has been a long-standing production challenge for potato growers around the world. In developed countries this problem

  10. Embryo development and corresponding factors affecting in vitro germination of Cymbidium faberi × C. sinense hybrid seeds

    Directory of Open Access Journals (Sweden)

    Li Fengtong

    2016-01-01

    Full Text Available A better understanding of embryo development would provide insights into seed quality and subsequent germination events in the interspecific hybridization of Cymbidium faberi ‘Jiepeimei’ × C. sinense ‘Qijianheimo’. At the mature stage, 26.1% of the ovules were abnormal. Most of the hybrid embryos could develop normally. Abortions mainly occurred at the zygote (9.5% and 2-4-celled embryo (15.1% stages. No germination was observed at 90 and 105 days after pollination (DAP, when the embryo was at the early globular stage, with abundant organelles but no storage materials. During 110-130 DAP, the globular embryo was formed and the starch grains began to accumulate in plastids. The hybrid seeds collected at 120 DAP showed initiation of germination. Germination significantly increased at 135 DAP and was maximal at 150 DAP, during which period the hybrid embryos developed into the late globular stage. The storage materials, i.e. lipid and protein bodies, began to accumulate and the filamentary structures derived from suspensor cells still persisted. After the seeds matured (160 DAP, the germination percentage declined sharply. Safranin staining revealed that the outer seed coat was totally cuticularized and the inner seed coat appeared as a cuticle layer enclosing the embryo proper tightly, which may be the main factor inhibiting the subsequent germination of hybrid seeds. In conclusion, 150 DAP should be the opportune time for the in vitro germination of C. faberi ‘Jiepeimei’ × C. sinense ‘Qijianheimo’ hybrid seeds.

  11. ABA signaling in stress-response and seed development.

    Science.gov (United States)

    Nakashima, Kazuo; Yamaguchi-Shinozaki, Kazuko

    2013-07-01

    KEY MESSAGE : We review the recent progress on ABA signaling, especially ABA signaling for ABA-dependent gene expression, including the AREB/ABF regulon, SnRK2 protein kinase, 2C-type protein phosphatases and ABA receptors. Drought negatively impacts plant growth and the productivity of crops. Drought causes osmotic stress to organisms, and the osmotic stress causes dehydration in plant cells. Abscisic acid (ABA) is produced under osmotic stress conditions, and it plays an important role in the stress response and tolerance of plants. ABA regulates many genes under osmotic stress conditions. It also regulates gene expression during seed development and germination. The ABA-responsive element (ABRE) is the major cis-element for ABA-responsive gene expression. ABRE-binding protein (AREB)/ABRE-binding factor (ABF) transcription factors (TFs) regulate ABRE-dependent gene expression. Other TFs are also involved in ABA-responsive gene expression. SNF1-related protein kinases 2 are the key regulators of ABA signaling including the AREB/ABF regulon. Recently, ABA receptors and group A 2C-type protein phosphatases were shown to govern the ABA signaling pathway. Moreover, recent studies have suggested that there are interactions between the major ABA signaling pathway and other signaling factors in stress-response and seed development. The control of the expression of ABA signaling factors may improve tolerance to environmental stresses.

  12. Cloning and Molecular Analyses of a Gibberellin 20-Oxidase Gene Expressed Specifically in Developing Seeds of Watermelon1

    Science.gov (United States)

    Kang, Hong-Gyu; Jun, Sung-Hoon; Kim, Junyul; Kawaide, Hiroshi; Kamiya, Yuji; An, Gynheung

    1999-01-01

    To understand the biosynthesis and functional role of gibberellins (GAs) in developing seeds, we isolated Cv20ox, a cDNA clone from watermelon (Citrullus lanatus) that shows significant amino acid homology with GA 20-oxidases. The complementary DNA clone was expressed in Escherichia coli as a fusion protein, which oxidized GA12 at C-20 to the C19 compound GA9, a precursor of bioactive GAs. RNA-blot analysis showed that the Cv20ox gene was expressed specifically in developing seeds. The gene was strongly expressed in the integument tissues, and it was also expressed weakly in inner seed tissues. In parthenocarpic fruits induced by 1-(2-chloro-4-pyridyl)-3-phenylurea treatment, the expression pattern of Cv20ox did not change, indicating that the GA 20-oxidase gene is expressed primarily in the maternal cells of developing seeds. The promoter of Cv20ox was isolated and fused to the β-glucuronidase (GUS) gene. In a transient expression system, β-glucuronidase staining was detectable only in the integument tissues of developing watermelon seeds. PMID:10517828

  13. Seeds and Synergies

    International Development Research Centre (IDRC) Digital Library (Canada)

    'Seeds and Synergies presents inspiring evidence of change in practice and policy ... Seeds of inspiration: breathing new life into the formal agricultural research .... and Urban Development and Poverty Alleviation and Agricultural Commodity ...

  14. Seed quality in informal seed systems

    NARCIS (Netherlands)

    Biemond, P.C.

    2013-01-01

    Keywords: informal seed systems, seed recycling, seed quality, germination, seed pathology, seed health, seed-borne diseases, mycotoxigenic fungi, Fusarium verticillioides, mycotoxins, Vigna unguiculata, Zea mays, Nigeria.

    Seed is a crucial input for agricultural production.

  15. Effect of Arabinogalactan Proteins from the Root Caps of Pea and Brassica napus on Aphanomyces euteiches Zoospore Chemotaxis and Germination12[C][W

    Science.gov (United States)

    Cannesan, Marc Antoine; Durand, Caroline; Burel, Carole; Gangneux, Christophe; Lerouge, Patrice; Ishii, Tadashi; Laval, Karine; Follet-Gueye, Marie-Laure; Driouich, Azeddine; Vicré-Gibouin, Maïté

    2012-01-01

    Root tips of many plant species release a number of border, or border-like, cells that are thought to play a major role in the protection of root meristem. However, little is currently known on the structure and function of the cell wall components of such root cells. Here, we investigate the sugar composition of the cell wall of the root cap in two species: pea (Pisum sativum), which makes border cells, and Brassica napus, which makes border-like cells. We find that the cell walls are highly enriched in arabinose and galactose, two major residues of arabinogalactan proteins. We confirm the presence of arabinogalactan protein epitopes on root cap cell walls using immunofluorescence microscopy. We then focused on these proteoglycans by analyzing their carbohydrate moieties, linkages, and electrophoretic characteristics. The data reveal (1) significant structural differences between B. napus and pea root cap arabinogalactan proteins and (2) a cross-link between these proteoglycans and pectic polysaccharides. Finally, we assessed the impact of root cap arabinogalactan proteins on the behavior of zoospores of Aphanomyces euteiches, an oomycetous pathogen of pea roots. We find that although the arabinogalactan proteins of both species induce encystment and prevent germination, the effects of both species are similar. However, the arabinogalactan protein fraction from pea attracts zoospores far more effectively than that from B. napus. This suggests that root arabinogalactan proteins are involved in the control of early infection of roots and highlights a novel role for these proteoglycans in root-microbe interactions. PMID:22645070

  16. Oil palm seed distribution

    Directory of Open Access Journals (Sweden)

    Durand-Gasselin Tristan

    2005-03-01

    Full Text Available For a tropical plant, the oil palm commodity chain has the peculiarity of possessing a major seed production sector for reasons that are primarily genetic. This seed sector has numerous original aspects. Breeders are also propagators and usually also distribute their seeds. Oil palm seeds are semi-recalcitrant: they display pseudo-dormancy. Achieving seed germination is difficult and requires lengthy treatments and special installations. This restriction greatly influences seed distribution and the role of the different stakeholders in the commodity chain. It was only once it had been discovered how the “sh” gene functioned, which controls shell thickness, and when it became necessary to produce “tenera” seeds derived from exclusively “dura x pisifera” crosses, that a true seed market developed. In addition it is difficult to organize seed distribution to smallholders. This is partly due to difficulties that the profession, or a State-run organization, has in controlling middlemen networks, and partly to the absence of any protective systems (UPOV, plant breeder certificate, etc. that generally oblige breeders to preserve and propagate parents in their own installations. In fact there are major inequalities in the access to seeds between agroindustry and smallholders. Another peculiarity of the oil palm seed market is the virtually total absence of guarantees for buyers: the quality of the research conducted by breeders, the seed production strategies necessary for transferring genetic progress, and the technical quality of production. The only guarantee today comes from the relations of confidence established year after year between breeders/distributors and growers. In this fields, research can lead to some proposals: molecular biology offers some interesting prospects for certifying seed quality and social science develop effective communication methods.

  17. Effect of abscisic acid on amino acid uptake and efflux in developing soybean seeds

    International Nuclear Information System (INIS)

    Guldan, S.J.; Brun, W.A.

    1987-01-01

    The role of abscisic acid (ABA) in regulating growth of developing soybean [Glycine max (L.) Merr.] seeds is not fully understood. The objectives of this study were to characterize the effect of ABA on the in vitro uptake of asparagine and glutamine by isolated immature cotyledons in three soybean plant introduction (PI) lines with genotypic differences in seed growth rate and final seed weight. Cotyledons were incubated in uptake buffer solutions plus 14 C-asparagine or 14 C-glutamine and treatment concentrations of ABA. The ABA levels in the uptake solutions were 0, 10 -7 , 10 -6 , and 10 -5 M. The uptake rate of glutamine was approximately three times that of asparagine. Among PI lines, the heavy seeded line had a greater rate of asparagine uptake while the light seeded line had a greater rate of glutamine uptake. For asparagine, 10 -6 M ABA depressed uptake compared to the control. For glutamine, ABA enhanced uptake compared to the control at both 10 -6 and 10 -5 M. In an additional experiment, the authors observed no effect of ABA and K on the release of labeled asparagine from excised soybean seed coats. These data indicate that amino acid uptake rates are genotypically dependent and may be influenced by ABA concentration

  18. Dynamic changes in the distribution of minerals in relation to phytic acid accumulation during rice seed development.

    Science.gov (United States)

    Iwai, Toru; Takahashi, Michiko; Oda, Koshiro; Terada, Yasuko; Yoshida, Kaoru T

    2012-12-01

    Phytic acid (inositol hexakisphosphate [InsP(6)]) is the storage compound of phosphorus in seeds. As phytic acid binds strongly to metallic cations, it also acts as a storage compound of metals. To understand the mechanisms underlying metal accumulation and localization in relation to phytic acid storage, we applied synchrotron-based x-ray microfluorescence imaging analysis to characterize the simultaneous subcellular distribution of some mineral elements (phosphorus, calcium, potassium, iron, zinc, and copper) in immature and mature rice (Oryza sativa) seeds. This fine-imaging method can reveal whether these elements colocalize. We also determined their accumulation patterns and the changes in phosphate and InsP(6) contents during seed development. While the InsP(6) content in the outer parts of seeds rapidly increased during seed development, the phosphate contents of both the outer and inner parts of seeds remained low. Phosphorus, calcium, potassium, and iron were most abundant in the aleurone layer, and they colocalized throughout seed development. Zinc was broadly distributed from the aleurone layer to the inner endosperm. Copper localized outside the aleurone layer and did not colocalize with phosphorus. From these results, we suggest that phosphorus translocated from source organs was immediately converted to InsP(6) and accumulated in aleurone layer cells and that calcium, potassium, and iron accumulated as phytic acid salt (phytate) in the aleurone layer, whereas zinc bound loosely to InsP(6) and accumulated not only in phytate but also in another storage form. Copper accumulated in the endosperm and may exhibit a storage form other than phytate.

  19. Local seed businesses in Uganda: a market-oriented approach towards community seed production

    NARCIS (Netherlands)

    Mastenbroek, A.

    2015-01-01

    The integrated seed sector development (ISSD) programme aims to improve food security and economic development, by providing smallholder farmers with sustainable access to quality seed of superior varieties. The specific objective of the programme is to create a vibrant, pluralistic and

  20. Analysis of cDNA libraries from developing seeds of guar (Cyamopsis tetragonoloba (L. Taub

    Directory of Open Access Journals (Sweden)

    Dixon Richard A

    2007-11-01

    Full Text Available Abstract Background Guar, Cyamopsis tetragonoloba (L. Taub, is a member of the Leguminosae (Fabaceae family and is economically the most important of the four species in the genus. The endosperm of guar seed is a rich source of mucilage or gum, which forms a viscous gel in cold water, and is used as an emulsifier, thickener and stabilizer in a wide range of foods and industrial applications. Guar gum is a galactomannan, consisting of a linear (1→4-β-linked D-mannan backbone with single-unit, (1→6-linked, α-D-galactopyranosyl side chains. To better understand regulation of guar seed development and galactomannan metabolism we created cDNA libraries and a resulting EST dataset from different developmental stages of guar seeds. Results A database of 16,476 guar seed ESTs was constructed, with 8,163 and 8,313 ESTs derived from cDNA libraries I and II, respectively. Library I was constructed from seeds at an early developmental stage (15–25 days after flowering, DAF, and library II from seeds at 30–40 DAF. Quite different sets of genes were represented in these two libraries. Approximately 27% of the clones were not similar to known sequences, suggesting that these ESTs represent novel genes or may represent non-coding RNA. The high flux of energy into carbohydrate and storage protein synthesis in guar seeds was reflected by a high representation of genes annotated as involved in signal transduction, carbohydrate metabolism, chaperone and proteolytic processes, and translation and ribosome structure. Guar unigenes involved in galactomannan metabolism were identified. Among the seed storage proteins, the most abundant contig represented a conglutin accounting for 3.7% of the total ESTs from both libraries. Conclusion The present EST collection and its annotation provide a resource for understanding guar seed biology and galactomannan metabolism.

  1. Effect of seed coat on the seed germination and seedling development of Calophyllum brasiliense Cambess. (Clusiaceae

    Directory of Open Access Journals (Sweden)

    Valquíria Aparecida Mendes de Jesus

    2014-10-01

    Full Text Available This work aimed to study the effect of the Calophyllum brasiliense seed coat on the seed germination process. To this end, three experiments were conducted in laboratory, greenhouse and screenhouse. From a total of six treatments, five are related to the seed coat (mechanical scarification; mechanical scarification followed by 2 hours in water, chemical scarification, hot water immersion and complete seed coat removal and one control. Laboratory and greenhouse experiments were conducted in a completely randomized design (CRD. Screenhouse experiment was conducted in a completely randomized block design (RBD. We evaluated the total percentage, the speed index and the average time of germination or emergence. Data were subjected to analysis of variance and means compared by LSD test, at 5%. Under the conditions of this work, it was possible to infer that, in laboratory, mechanical scarification followed by 2 hours in water increases the proportion and germination speed index (GSI, in the greenhouse, the complete seed coat removal increases the percentage and emergence speed index (ESI, and in the screenhouse, mechanical scarification followed by 2 hours in water and chemical scarification presented the best results. The average germination time was not significantly different in the three experiments evaluated.

  2. DNA demethylation activates genes in seed maternal integument development in rice (Oryza sativa L.).

    Science.gov (United States)

    Wang, Yifeng; Lin, Haiyan; Tong, Xiaohong; Hou, Yuxuan; Chang, Yuxiao; Zhang, Jian

    2017-11-01

    DNA methylation is an important epigenetic modification that regulates various plant developmental processes. Rice seed integument determines the seed size. However, the role of DNA methylation in its development remains largely unknown. Here, we report the first dynamic DNA methylomic profiling of rice maternal integument before and after pollination by using a whole-genome bisulfite deep sequencing approach. Analysis of DNA methylation patterns identified 4238 differentially methylated regions underpin 4112 differentially methylated genes, including GW2, DEP1, RGB1 and numerous other regulators participated in maternal integument development. Bisulfite sanger sequencing and qRT-PCR of six differentially methylated genes revealed extensive occurrence of DNA hypomethylation triggered by double fertilization at IAP compared with IBP, suggesting that DNA demethylation might be a key mechanism to activate numerous maternal controlling genes. These results presented here not only greatly expanded the rice methylome dataset, but also shed novel insight into the regulatory roles of DNA methylation in rice seed maternal integument development. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  3. Seed regulation: choices on the road to reform

    NARCIS (Netherlands)

    Tripp, R.; Louwaars, N.P.

    1997-01-01

    Major changes in national seed systems, including the rapid development of commercial seed enterprises, the growth of non-governmental organization (NGO) seed projects, and the concomitant decline of public sector seed provision, call for a re-examination of seed regulatory frameworks in developing

  4. Ectopic expression of MPF2-like protein WSA206 leads to arrest in silique and seed development in heterologous host

    International Nuclear Information System (INIS)

    Khan, M.R.

    2016-01-01

    MPF2-like genes belonging to STMADS11 clade of MADS-box transcription factors are mostly involved in calyx inflation, floral reversion and fertility. However their role in fertility remained enigmatic. In this study we transformed WSA206 gene paralog - originated through genome duplication in a Solanaceous plant Withaniasomnifera - ectopically in a heterologous host Arabidopsis thaliana. Interesting phenotypes in floral organs and fruits were observed. Overexpression of WSA206 leads to arrest in silique development. The siliques were compressed and size was drastically reduced from 34mm to 3mm. Along with siliques, the seed development was also suppressed as revealed by shriveling of seeds and reduction in seed number. In extreme cases the siliques were devoid of any seeds. In cases where seeds developed, these were impaired in viability. Besides, the transgenic Arabidopsis also exhibited exorbitant growth of calyx to an extent that it resembled inflated calyx in Solanaceae. The calyx remained persistent and encapsulated the under-developed siliques containing non-viable seeds inside. Thus, fertility and sepal development are tightly coupled traits that are controlled by WSA206 paralog in heterologous system. (author)

  5. Disruption of endosperm development is a major cause of hybrid seed inviability between Mimulus guttatus and Mimulus nudatus.

    Science.gov (United States)

    Oneal, Elen; Willis, John H; Franks, Robert G

    2016-05-01

    Divergence of developmental mechanisms within populations could lead to hybrid developmental failure, and might be a factor driving speciation in angiosperms. We investigate patterns of endosperm and embryo development in Mimulus guttatus and the closely related, serpentine endemic Mimulus nudatus, and compare them to those of reciprocal hybrid seed. We address whether disruption in hybrid seed development is the primary source of reproductive isolation between these sympatric taxa. M. guttatus and M. nudatus differ in the pattern and timing of endosperm and embryo development. Some hybrid seeds exhibit early disruption of endosperm development and are completely inviable, while others develop relatively normally at first, but later exhibit impaired endosperm proliferation and low germination success. These developmental patterns are reflected in mature hybrid seeds, which are either small and flat (indicating little to no endosperm) or shriveled (indicating reduced endosperm volume). Hybrid seed inviability forms a potent reproductive barrier between M. guttatus and M. nudatus. We shed light on the extent of developmental variation between closely related species within the M. guttatus species complex, an important ecological model system, and provide a partial mechanism for the hybrid barrier between M. guttatus and M. nudatus. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  6. The effect of plant growth-promoting rhizobacteria on the phytoextraction of Cd and Zn by Brassica napus L.

    Science.gov (United States)

    Dąbrowska, G; Hrynkiewicz, K; Trejgell, A; Baum, C

    2017-07-03

    The test strains Bacteroidetes bacterium (Ba), Pseudomonas fluorescens (Pf) and Variovorax sp. (Va) were selected in advance for their in vitro capability for growth promotion of rapeseed in the presence of increased concentrations of Cd, Cu, Pb and Zn in the medium. In the pot experiment, the strains were used for single Ba, Pf, Va or combined Ba + Pf, Ba + Va, Pf + Va, and Ba + Pf + Va inoculation of B. napus growing in contaminated soil from alluvial deposits. The positive effect of bacterial strains on plant growth was observed in vitro, but was not confirmed in situ in the contaminated soil, where the tested strains inhibited biomass production, rather than stimulating it. However, single inoculation with Ba significantly increased the chlorophyll content and K + concentration in the leaves. The inoculation of rapeseed with Ba and Va strains was indicated to be the most promising combination for phytoextraction of Cd and Zn from contaminated soil. Combined inoculation with Pf+Va and Pf + Ba+Va significantly decreased the concentration of heavy metals in the roots of rapeseed. We conclude that suitable combinations of PGPR can control the metal uptake of B. napus, selectively increasing either metal extraction or metal stabilization in the rhizosphere and offering promising applications in soil remediation.

  7. Sugar - hormone crosstalk in seed development: Two redundant pathways of IAA biosynthesis are regulated differentially in the invertase-deficient miniature1 (mn1) seed mutant in maize

    Science.gov (United States)

    The miniature1 (mn1) seed phenotype is a loss-of-function mutation at the Mn1 locus that encodes a cell wall invertase; its deficiency leads to pleiotropic changes including altered sugar levels and decreased levels of IAA throughout seed development. To understand the molecular details of such suga...

  8. The investment in scent: time-resolved metabolic processes in developing volatile-producing Nigella sativa L. seeds.

    Directory of Open Access Journals (Sweden)

    Wentao Xue

    Full Text Available The interplay of processes in central and specialized metabolisms during seed development of Nigella sativa L. was studied by using a high-throughput metabolomics technology and network-based analysis. Two major metabolic shifts were identified during seed development: the first was characterized by the accumulation of storage lipids (estimated as total fatty acids and N-compounds, and the second by the biosynthesis of volatile organic compounds (VOCs and a 30% average decrease in total fatty acids. Network-based analysis identified coordinated metabolic processes during development and demonstrated the presence of five network communities. Enrichment analysis indicated that different compound classes, such as sugars, amino acids, and fatty acids, are largely separated and over-represented in certain communities. One community displayed several terpenoids and the central metabolites, shikimate derived amino acids, raffinose, xylitol and glycerol-3-phosphate. The latter are related to precursors of the mevalonate-independent pathway for VOC production in the plastid; also plastidial fatty acid 18∶3n-3 abundant in "green" seeds grouped with several major terpenes. The findings highlight the interplay between the components of central metabolism and the VOCs. The developmental regulation of Nigella seed metabolism during seed maturation suggests a substantial re-allocation of carbon from the breakdown of fatty acids and from N-compounds, probably towards the biosynthesis of VOCs.

  9. Identification of the Relationship between Oil Body Morphology and Oil Content by Microstructure Comparison Combining with QTL Analysis in Brassica napus.

    Science.gov (United States)

    Gu, Jianwei; Chao, Hongbo; Wang, Hao; Li, Yonghong; Li, Dianrong; Xiang, Jun; Gan, Jianping; Lu, Guangyuan; Zhang, Xuekun; Long, Yan; Li, Maoteng

    2016-01-01

    Oil bodies (OBs) are relatively simple but very important organelles comprising a matrix of triacylglycerol (TAG) surrounded by a phospholipid monolayer embedded and covered with unique proteins. The OB structure in Brassica napus with different oil content and the relationship between the oil content and the OB structure needs to be better understood. In this paper, the characteristics of OBs in the embryo of a series of B. napus materials with different oil content ranging from 34% to over 60% were studied. The results indicated that the OB size was significantly positively correlated with the oil content but was significantly negatively correlated with the glucosinolates and the protein content. Many genes associated with TAG synthesis, OB-membrane proteins, and the cell progress regulatory pathway were identified in the confidence interval of co-located QTLs for oil content, fatty acid (FA) compositions, and protein content. Our results suggested that the morphology of OBs might be directly controlled by the genes associated with OB-membrane proteins and indirectly controlled by the genes associated with TAG synthesis and cell progress regulatory pathway.

  10. Development of on-line sorting system for detection of infected seed potatoes using visible near-infrared transmittance spectral technique

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dae Yong; Cho, Byoung Kwan [Dept. of Biosystems Engineering, Chungnam National University, Daejeon (Korea, Republic of); Mo, Chang Yeun [Rural Development Administration, National Institute of Agricultural Engineering, Jeonju (Korea, Republic of); Kang, Jun Soon [Dept. of Horticultural Bioscience, Pusan National University, Pusan (Korea, Republic of)

    2015-02-15

    In this study, an online seed potato sorting system using a visible and near infrared (40 1100 nm) transmittance spectral technique and statistical model was evaluated for the nondestructive determination of infected and sound seed potatoes. Seed potatoes that had been artificially infected with Pectobacterium atrosepticum, which is known to cause a soil borne disease infection, were prepared for the experiments. After acquiring transmittance spectra from sound and infected seed potatoes, a determination algorithm for detecting infected seed potatoes was developed using the partial least square discriminant analysis method. The coefficient of determination(R{sup 2}{sub p}) of the prediction model was 0.943, and the classification accuracy was above 99% (n = 80) for discriminating diseased seed potatoes from sound ones. This online sorting system has good potential for developing a technique to detect agricultural products that are infected and contaminated by pathogens.

  11. Increased [CO2] does not compensate for negative effects on yield caused by higher temperature and [O3] in Brassica napus L

    DEFF Research Database (Denmark)

    Frenck, Georg; van der Linden, Leon Gareth; Mikkelsen, Teis Nørgaard

    2011-01-01

    in existing genotypes is vital. In this study, the responses in yield and biomass production of four different cultivars of oilseed rape (Brassica napus L.) were tested under five different combinations of increased [CO2] (700 ppm), temperature (+5 °C) and [O3] (+40 ppb). Especially the multifactor treatments...

  12. Climate Change: Seed Production and Options for Adaptation

    Directory of Open Access Journals (Sweden)

    John G. Hampton

    2016-07-01

    Full Text Available Food security depends on seed security and the international seed industry must be able to continue to deliver the quantities of quality seed required for this purpose. Abiotic stress resulting from climate change, particularly elevated temperature and water stress, will reduce seed yield and quality. Options for the seed industry to adapt to climate change include moving sites for seed production, changing sowing date, and the development of cultivars with traits which allow them to adapt to climate change conditions. However, the ability of seed growers to make these changes is directly linked to the seed system. In the formal seed system operating in developed countries, implementation will be reasonably straight forward. In the informal system operating in developing countries, the current seed production challenges including supply failing to meet demand and poor seed quality will increase with changing climates.

  13. Identification of QTLs for resistance to sclerotinia stem rot and BnaC.IGMT5.a as a candidate gene of the major resistant QTL SRC6 in Brassica napus.

    Directory of Open Access Journals (Sweden)

    Jian Wu

    Full Text Available Stem rot caused by Sclerotinia sclerotiorum in many important dicotyledonous crops, including oilseed rape (Brassica napus, is one of the most devastating fungal diseases and imposes huge yield loss each year worldwide. Currently, breeding for Sclerotinia resistance in B. napus, as in other crops, can only rely on germplasms with quantitative resistance genes. Thus, the identification of quantitative trait locus (QTL for S. sclerotiorum resistance/tolerance in this crop holds immediate promise for the genetic improvement of the disease resistance. In this study, ten QTLs for stem resistance (SR at the mature plant stage and three QTLs for leaf resistance (LR at the seedling stage in multiple environments were mapped on nine linkage groups (LGs of a whole genome map for B. napus constructed with SSR markers. Two major QTLs, LRA9 on LG A9 and SRC6 on LG C6, were repeatedly detected across all environments and explained 8.54-15.86% and 29.01%-32.61% of the phenotypic variations, respectively. Genotypes containing resistant SRC6 or LRA9 allele showed a significant reduction in disease lesion after pathogen infection. Comparative mapping with Arabidopsis and data mining from previous gene profiling experiments identified that the Arabidopsis homologous gene of IGMT5 (At1g76790 was related to the SRC6 locus. Four copies of the IGMT5 gene in B. napus were isolated through homologous cloning, among which, only BnaC.IGMT5.a showed a polymorphism between parental lines and can be associated with the SRC6. Furthermore, two parental lines exhibited a differential expression pattern of the BnaC.IGMT5.a gene in responding to pathogen inoculation. Thus, our data suggested that BnaC.IGMT5.a was very likely a candidate gene of this major resistance QTL.

  14. Development of an automation system for iodine-125 brachytherapy seed production by ND:YAG laser welding

    International Nuclear Information System (INIS)

    Somessari, Samir L.; Feher, Anselmo; Sprenger, Francisco E.; Rostellato, Maria Elisa C.M.; Costa, Fabio E.; Calvo, Wilson A.P.

    2009-01-01

    The aim of this work is to develop an automation system for iodine-125 radioactive seed production by Nd:YAG laser welding, which has been used successfully in low dose rate brachytherapy treatment. This small seed consists of a welded titanium capsule, with 0.8 mm in diameter and 4.5 mm in length, containing iodine-125 adsorbed onto a silver rod. The iodine-125 seeds are implanted into the human prostate to irradiate the tumor for cancer treatment. Nowadays, the Radiation Technology Center, at IPEN-CNEN/SP imports and distributes 36,000 iodine-125 seeds per year, for the clinics and hospitals in the country. However, the Brazilian market potential is now over 8,000 iodine-125 seeds per month. The local production of these iodine-125 radioactive sources became a priority for the Institute, in order to reduce the price and the problems of prostate cancer management. It will permit to spread their use to a larger number of patients in Brazil. On the other hand, the industrial automation plays an important role for iodine-125 seeds in order to increase the productivity, with high quality and assurance, avoiding human factors, implementing and operating with good manufacturing practices. The technology consists of appliance electronic and electro-mechanical parts and components to control machines and processes. The automation system technology for iodine-125 seed production developed in this work was mainly assembled employing a Programmable Logic Controller, a stepper motor, an Nd:YAG laser welding machine and a supervisory. (author)

  15. Development of an automation system for iodine-125 brachytherapy seed production by (Nd:YAG) laser welding

    International Nuclear Information System (INIS)

    Somessari, Samir Luiz

    2010-01-01

    The aim of this work is to develop an automation system for iodine-125 radioactive seed production by (Nd:YAG) laser welding, which has been used successfully in Low Dose Rate (LDR) brachytherapy treatment. This small seed consists of a welded titanium capsule, with 0.8mm in diameter and 4.5mm in length, containing iodine-125 adsorbed onto a silver rod. The iodine-125 seeds are implanted into the human prostate to irradiate the tumor for cancer treatment. Nowadays, the Radiation Technology Center, at IPEN-CNEN/SP imports and distributes 36,000 iodine-125 seeds per year, for the clinics and hospitals in the country. However, the Brazilian market potential is now over 8,000 iodine-125 seeds per month. The local production of these iodine-125 radioactive sources becomes a priority for the Institute, in order to reduce the price and the problems of prostate cancer management. It will permit to spread their use to a largest number of patients in Brazil. On the other hand, the industrial automation plays an important role for iodine-125 seeds in order to increase the productivity, with high quality and assurance, avoiding human factors, implementing and operating with Good Manufacturing Practices (GMP). The technology consists of appliance electronic and electro-mechanical parts and components to control machines and processes. The automation system technology for iodine-125 seed production developed in this work was mainly assembled employing Programmable Logic Controller (PLC), stepper motors, drivers, (Nd:YAG) laser welding machine, photoelectric sensors and supervisory. (author)

  16. Quantitative Multilevel Analysis of Central Metabolism in Developing Oilseeds of Oilseed Rape During In Vitro Culture

    Energy Technology Data Exchange (ETDEWEB)

    Schwender, Jorg [Brookhaven National Lab. (BNL), Upton, NY (United States); Hebbelmann, Inga [Brookhaven National Lab. (BNL), Upton, NY (United States); Heinzel, Nicholas [Leibniz Inst. of Plant Genetics and Crop Plant Research, Gatersleben (Germany); Hildebrandt, Tatjana [Univ. of Hannover (Germany); Rogers, Alistair [Brookhaven National Lab. (BNL), Upton, NY (United States); Naik, Dhiraj [Brookhaven National Lab. (BNL), Upton, NY (United States); Indian Inst. of Advanced Research Koba, Gujarat (India); Klapperstuck, Matthias [Monash Univ., Melbourne, VIC (Australia); Braun, Hans -Peter [Univ. of Hannover (Germany); Schreiber, Falk [Monash Univ., Melbourne, VIC (Australia); Univ. Halle-Wittenberg, Melbourne (Australia); Denolf, Peter [Bayer CropScience (Belgium); Borisjuk, Ljudmilla [Leibniz Inst. of Plant Genetics and Crop Plant Research, Gatersleben (Germany); Rolletschek, Hardy [Leibniz Inst. of Plant Genetics and Crop Plant Research, Gatersleben (Germany)

    2015-07-01

    Seeds provide the basis for many food, feed, and fuel products. Continued increases in seed yield, composition, and quality require an improved understanding of how the developing seed converts carbon and nitrogen supplies into storage. Current knowledge of this process is often based on the premise that transcriptional regulation directly translates via enzyme concentration into flux. In an attempt to highlight metabolic control, we explore genotypic differences in carbon partitioning for in vitro cultured developing embryos of oilseed rape (Brassica napus). We determined biomass composition as well as 79 net fluxes, the levels of 77 metabolites, and 26 enzyme activities with specific focus on central metabolism in nine selected germplasm accessions. We observed a tradeoff between the biomass component fractions of lipid and starch. With increasing lipid content over the spectrum of genotypes, plastidic fatty acid synthesis and glycolytic flux increased concomitantly, while glycolytic intermediates decreased. The lipid/starch tradeoff was not reflected at the proteome level, pointing to the significance of (posttranslational) metabolic control. Enzyme activity/flux and metabolite/flux correlations suggest that plastidic pyruvate kinase exerts flux control and that the lipid/starch tradeoff is most likely mediated by allosteric feedback regulation of phosphofructokinase and ADP-glucose pyrophosphorylase. Also, quantitative data were used to calculate in vivo mass action ratios, reaction equilibria, and metabolite turnover times. Compounds like cyclic 3',5'-AMP and sucrose-6-phosphate were identified to potentially be involved in so far unknown mechanisms of metabolic control. This study provides a rich source of quantitative data for those studying central metabolism..

  17. Plant hormones in defense response of Brassica napus to Sclerotinia sclerotiorum - Reassessing the role of salicylic acid in the interaction with a necrotroph

    Czech Academy of Sciences Publication Activity Database

    Nováková, Miroslava; Šašek, Vladimír; Dobrev, Petre; Valentová, O.; Burketová, Lenka

    2014-01-01

    Roč. 80, JUL 2014 (2014), s. 308-317 ISSN 0981-9428 R&D Projects: GA ČR GA13-26798S Institutional support: RVO:61389030 Keywords : Brassica napus * Chorismate mutase * Defense signaling pathways Subject RIV: GF - Plant Pathology, Vermin, Weed, Plant Protection Impact factor: 2.756, year: 2014

  18. Seed dormancy and germination.

    Science.gov (United States)

    Penfield, Steven

    2017-09-11

    Reproduction is a critical time in plant life history. Therefore, genes affecting seed dormancy and germination are among those under strongest selection in natural plant populations. Germination terminates seed dispersal and thus influences the location and timing of plant growth. After seed shedding, germination can be prevented by a property known as seed dormancy. In practise, seeds are rarely either dormant or non-dormant, but seeds whose dormancy-inducing pathways are activated to higher levels will germinate in an ever-narrower range of environments. Thus, measurements of dormancy must always be accompanied by analysis of environmental contexts in which phenotypes or behaviours are described. At its simplest, dormancy can be imposed by the formation of a simple physical barrier around the seed through which gas exchange and the passage of water are prevented. Seeds featuring this so-called 'physical dormancy' often require either scarification or passage through an animal gut (replete with its associated digestive enzymes) to disrupt the barrier and permit germination. In other types of seeds with 'morphological dormancy' the embryo remains under-developed at maturity and a dormant phase exists as the embryo continues its growth post-shedding, eventually breaking through the surrounding tissues. By far, the majority of seeds exhibit 'physiological dormancy' - a quiescence program initiated by either the embryo or the surrounding endosperm tissues. Physiological dormancy uses germination-inhibiting hormones to prevent germination in the absence of the specific environmental triggers that promote germination. During and after germination, early seedling growth is supported by catabolism of stored reserves of protein, oil or starch accumulated during seed maturation. These reserves support cell expansion, chloroplast development and root growth until photoauxotrophic growth can be resumed. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  19. Sulphur Nutrition and its Effect on Yield and Oil Content of Oilseed Rape (Brassica Napus L.

    Directory of Open Access Journals (Sweden)

    Mária Varényiová

    2017-01-01

    Full Text Available The aim of the experiment was to study the importance of sulphur in oilseed rape (Brassica napus L. nutrition as well as the effect of rising doses of sulphur in combination with nitrogen on yield, oiliness, oil production, nutrients content in seed and nutrients uptake by rapeseed. The plot–scale experiment was established in years 2013/14 and 2014/15 within the agricultural cooperative in Mojmírovce. There were four fertilization treatments on 600 m2 experimental plots in three replications in this experiment. The first treatment was unfertilized control. Other three treatments were fertilized by the same nitrogen dose of 160 kg.ha−1 and by increasing doses of sulphur. The second treatment was fertilized by a dose of 15 kg.ha−1 S, the third by a dose of 40 kg.ha−1 and a dose of 65 kg.ha−1 S was applied at the fourth treatment. The highest average yield 3.96 t.ha-1 was found when a dose of 40 kg.ha−1 S was applied. The application of sulphur in a dose of 65 kg.ha−1 was accompanied by a yield decrease by 11.4 % as compared to the treatment where a sulphur dose of 40 kg.ha−1 was used. An average oil content of 45.1, 45.5, and 44.0 % was found in treatments in which the doses of sulphur of 15, 40 and 65 kg.ha−1 were applied. No significant difference among the treatments fertilized by sulphur was found. The average oil production reached 1809, 1802 and 1595 kg.ha−1 in cases of treatments fertilized by sulphur doses of 15, 40 and 65 kg.ha−1.

  20. BnEPFL6, an EPIDERMAL PATTERNING FACTOR-LIKE (EPFL) secreted peptide gene, is required for filament elongation in Brassica napus.

    Science.gov (United States)

    Huang, Yi; Tao, Zhangsheng; Liu, Qiong; Wang, Xinfa; Yu, Jingyin; Liu, Guihua; Wang, Hanzhong

    2014-07-01

    Inflorescence architecture, pedicel length and stomata patterning in Arabidopsis thaliana are specified by inter-tissue communication mediated by ERECTA and its signaling ligands in the EPIDERMAL PATTERNING FACTOR-LIKE (EPFL) family of secreted cysteine-rich peptides. Here, we identified and characterized BnEPFL6 from Brassica napus. Heterologous expression of this gene under the double enhanced CaMV promoter (D35S) in Arabidopsis resulted in shortened stamen filaments, filaments degradation, and reduced filament cell size that displayed down-regulated expression of AHK2, in which phenotypic variation of ahk2-1 mutant presented highly consistent with that of BnEPFL6 transgenic lines. Especially, the expression level of BnEPFL6 in the shortened filaments of four B. napus male sterile lines (98A, 86A, SA, and Z11A) was similar to that of BnEPFL6 in the transgenic Arabidopsis lines. The activity of pBnEPFL6.2::GUS was intensive in the filaments of transgenic lines. These observations reveal that BnEPFL6 plays an important role in filament elongation and may also affect organ morphology and floral organ specification via a BnEPFL6-mediated cascade.

  1. [Seed geography: its concept and basic scientific issues].

    Science.gov (United States)

    Yu, Shun-Li; Wang, Zong-Shuai; Zeren, Wangmu

    2010-01-01

    In this paper, a new concept 'seed geography' was provided, and its definition, research contents, and scientific issues were put forward. Seed geography is a newly developed interdisciplinary science from plant geography, seed ecology, and phytosociology, which studies the geographic variation patterns of seed biological traits as well as their relationships with environmental factors from macroscopic to microscopic, and the seed formation, development, and change trends. The main research contents would include geography of seed mass, geography of seed chemical components, geography of seed morphology, geography of seed cell biological characteristics, geography of seed physiological characteristics, geography of seed genetic characteristics, and geography of flower and fruit. To explore the scientific issues in seed geography would help us to better understand the long-term adaptation and evolution of seed characteristics to natural environments.

  2. Abscisic acid regulates pinoresinol-lariciresinol reductase gene expression and secoisolariciresinol accumulation in developing flax (Linum usitatissimum L.) seeds.

    Science.gov (United States)

    Renouard, Sullivan; Corbin, Cyrielle; Lopez, Tatiana; Montguillon, Josiane; Gutierrez, Laurent; Lamblin, Frédéric; Lainé, Eric; Hano, Christophe

    2012-01-01

    Secoisolariciresinol diglucoside (SDG), the main phytoestrogenic lignan of Linum usitatissimum, is accumulated in the seed coat of flax during its development and pinoresinol-lariciresinol reductase (PLR) is a key enzyme in flax for its synthesis. The promoter of LuPLR1, a flax gene encoding a pinoresinol lariciresinol reductase, contains putative regulatory boxes related to transcription activation by abscisic acid (ABA). Gel mobility shift experiments evidenced an interaction of nuclear proteins extracted from immature flax seed coat with a putative cis-acting element involved in ABA response. As ABA regulates a number of physiological events during seed development and maturation we have investigated its involvement in the regulation of this lignan synthesis by different means. ABA and SDG accumulation time courses in the seed as well as LuPLR1 expression were first determined in natural conditions. These results showed that ABA timing and localization of accumulation in the flax seed coat could be correlated with the LuPLR1 gene expression and SDG biosynthesis. Experimental modulations of ABA levels were performed by exogenous application of ABA or fluridone, an inhibitor of ABA synthesis. When submitted to exogenous ABA, immature seeds synthesized 3-times more SDG, whereas synthesis of SDG was reduced in immature seeds treated with fluridone. Similarly, the expression of LuPLR1 gene in the seed coat was up-regulated by exogenous ABA and down-regulated when fluridone was applied. These results demonstrate that SDG biosynthesis in the flax seed coat is positively controlled by ABA through the transcriptional regulation of LuPLR1 gene.

  3. Increased Agrobacterium-mediated transformation and rooting efficiencies in canola (Brassica napus L.) from hypocotyl segment explants

    Science.gov (United States)

    Cardoza, V.; Stewart, C. N.

    2003-01-01

    An efficient protocol for the production of transgenic Brassica napus cv. Westar plants was developed by optimizing two important parameters: preconditioning time and co-cultivation time. Agrobacterium tumefaciens-mediated transformation was performed using hypocotyls as explant tissue. Two variants of a green fluorescent protein (GFP)-encoding gene--mGFP5-ER and eGFP--both under the constitutive expression of the cauliflower mosaic virus 35S promoter, were used for the experiments. Optimizing the preconditioning time to 72 h and co-cultivation time with Agrobacterium to 48 h provided the increase in the transformation efficiency from a baseline of 4% to 25%. With mGFP5-ER, the transformation rate was 17% and with eGFP it was 25%. Transgenic shoots were selected on 200 mg/l kanamycin. Rooting efficiency was 100% on half-strength Murashige and Skoog medium with 10 g/l sucrose and 0.5 mg/l indole butyric acid in the presence of kanamycin.

  4. Development of an automation system for Iodine-125 brachytherapy seed encapsulated by Nd:YAG laser welding

    International Nuclear Information System (INIS)

    Somessari, S.L.; Feher, A.; Sprenger, F.E.; Rostelato, M.E.C.M.; Costa, F.E. da; Calvo, W.A.P.

    2011-01-01

    The aim of this work is to develop an automation system for iodine-125 radioactive seed production by Nd:YAG laser welding, which has been used successfully in low dose rate (LDR) brachytherapy treatment. This small seed consists of a welded titanium capsule, with 0.8 mm in diameter and 4.5 mm in length, containing iodine-125 adsorbed onto a silver rod. The iodine-125 seeds are implanted into the human prostate to irradiate the tumor for cancer treatment. Nowadays, the Radiation Technology Center, at Institute for Nuclear and Energy Research, Sao Paulo, Brazil (IPEN-CNEN/SP) imports and distributes 36,000 iodine-125 seeds per year, for the clinics and hospitals in the country. However, the Brazilian market potential is now over 8,000 iodine-125 seeds per month. The local production of these iodine-125 radioactive sources became a priority for the Institute, in order to reduce the price and the problems of prostate cancer management. It will permit to spread their use to a larger number of patients in Brazil. On the other hand, the industrial automation plays an important role for iodine-125 seeds in order to increase the productivity, with high quality and assurance, avoiding human factors, implementing and operating with good manufacturing practices (GMP). The technology consists of appliance electronic and electro-mechanical parts and components to control machines and processes. The automation system technology for iodine-125 seed production developed in this work was mainly assembled employing a programmable logic controller (PLC), a stepper motor, an Nd:YAG laser welding machine and a supervisory. The statistical repeatability of correctly encapsulated sealed sources with this automation system is greater than 95%. (authors)

  5. Development of irradiation support devices for production of brachytherapy seeds

    International Nuclear Information System (INIS)

    Mattos, Fabio R.; Rostelato, Maria Elisa C.M.; Zeituni, Carlos A.; Souza, Carla D.; Moura, Joao A.; Peleias Junior, Fernando S.; Karan Junior, Dib; Feher, Anselmo; Oliveira, Tiago B.; Benega, Marcos A.G.

    2013-01-01

    Ophthalmic tumors treatment with brachytherapy sources has been widely used as a primary or secondary therapy for non-malignant or malignant tumors, for example, choroid melanoma, and retinoblastoma. Ruthenium-106, Iodine-125, Palladium -103, Gold-198 and Iridium-192, are some radionuclides that can be applied for treatment of ocular tumors. These sources are in small sizes (a few millimeters) and different shapes (rods, wires, disks). To ensure high accuracy during treatment, they are positioned in eye applicators, specially designed to fit on the surface of tumor. The Nuclear and Energy Research Institute (IPEN/CNEN) in a partnership with Paulista Medicine School (UNIFESP) created a project that aims to develop a prototype of Iridium-192 seeds for treatment of eye cancer. This seed consists in a core of Ir -Pt alloy (20%-80%) with a length of 3 mm, to be activated in IPEN's IEA-R1 Reactor, and a titanium capsule sealing the core. It was imperative to develop a sustainer device for irradiation. This piece is used to avoid overlapping of one cores and, therefore, avoiding the 'shadow effect' that does not allow full activation of each core due to the high density. (author)

  6. Differences between winter oilseed rape (Brassica napus L.) cultivars in nitrogen starvation-induced leaf senescence are governed by leaf-inherent rather than root-derived signals

    Czech Academy of Sciences Publication Activity Database

    Koeslin-Findeklee, F.; Becker, M. A.; van der Graaff, E.; Roitsch, Thomas; Horst, W. J.

    2015-01-01

    Roč. 66, č. 13 (2015), s. 3669-3681 ISSN 0022-0957 Institutional support: RVO:67179843 Keywords : Brassica napus * cytokinins * genotypic differences * leaf senescence * nitrogen efficiency * nitrogen starvation * reciprocal grafting * stay-green Subject RIV: EH - Ecology, Behaviour Impact factor: 5.677, year: 2015

  7. Medicago truncatula contains a second gene encoding a plastid located glutamine synthetase exclusively expressed in developing seeds

    Directory of Open Access Journals (Sweden)

    Seabra Ana R

    2010-08-01

    Full Text Available Abstract Background Nitrogen is a crucial nutrient that is both essential and rate limiting for plant growth and seed production. Glutamine synthetase (GS, occupies a central position in nitrogen assimilation and recycling, justifying the extensive number of studies that have been dedicated to this enzyme from several plant sources. All plants species studied to date have been reported as containing a single, nuclear gene encoding a plastid located GS isoenzyme per haploid genome. This study reports the existence of a second nuclear gene encoding a plastid located GS in Medicago truncatula. Results This study characterizes a new, second gene encoding a plastid located glutamine synthetase (GS2 in M. truncatula. The gene encodes a functional GS isoenzyme with unique kinetic properties, which is exclusively expressed in developing seeds. Based on molecular data and the assumption of a molecular clock, it is estimated that the gene arose from a duplication event that occurred about 10 My ago, after legume speciation and that duplicated sequences are also present in closely related species of the Vicioide subclade. Expression analysis by RT-PCR and western blot indicate that the gene is exclusively expressed in developing seeds and its expression is related to seed filling, suggesting a specific function of the enzyme associated to legume seed metabolism. Interestingly, the gene was found to be subjected to alternative splicing over the first intron, leading to the formation of two transcripts with similar open reading frames but varying 5' UTR lengths, due to retention of the first intron. To our knowledge, this is the first report of alternative splicing on a plant GS gene. Conclusions This study shows that Medicago truncatula contains an additional GS gene encoding a plastid located isoenzyme, which is functional and exclusively expressed during seed development. Legumes produce protein-rich seeds requiring high amounts of nitrogen, we postulate

  8. Analysis of yield and plant traits of oilseed rape (Brassica napus L. cultivated in temperate region in light of the possibilities of sowing in arid areas

    Directory of Open Access Journals (Sweden)

    Tadeusz Zając

    2016-12-01

    Full Text Available This work is a review of selected literature on the species of Brassica with the greatest economic significance. Oilseed rape (Brassica napus ssp. oleifera currently ranks third worldwide among oilseed crops used for oil production and is the most important in the temperate zone. The manifold uses of rape include not only human consumption of oil, but also the use of post-extraction meal to feed livestock as well as industrial applications as a source of bioenergy or cellulose. The improvement in the economic position of rape among crop plants is also due to the doubling of its yield between 1970 and 2009; the average annual increase in seed yield worldwide was 27 kg ha−1 yr−1. The yield level in Europe exceeds the average yields achieved in the world, particularly in Asia. Recently, the cultivation of oilseed rape was started on a relatively large acreage in Iran where the yield amounted 2.1 t ha−1, exceeding the yields of China and India. In Poland, the acreage of oilseed rape cultivation between 1965 and 2013 increased 3–4 times, and during this period the annual increase in seed yield was 29 kg ha−1 yr−1. Under the field conditions of the temperate climate zone, winter oilseed rape yield is mainly determined by agro-climatic conditions during the growing period, the level of nitrogen fertilization, and the production potential of varieties, which is currently highest in hybrids. There is a noticeable tendency of hybrids towards formation of more siliques by individual oilseed plants. Different production categories of plants appear in a rape crop. Semi-dwarf varieties of winter rapeseed are distinguished by greater silique density, particularly on the main shoot. Moreover, these hybrids are characterized by faster growth of the root system, which enables them to take up nitrogen from the soil more efficiently.

  9. Seed counting system evaluation using arduino microcontroller

    Directory of Open Access Journals (Sweden)

    Paulo Fernando Escobar Paim

    2018-01-01

    Full Text Available The development of automated systems has been highlighted in the most diverse productive sectors, among them, the agricultural sector. These systems aim to optimize activities by increasing operational efficiency and quality of work. In this sense, the present work has the objective of evaluating a prototype developed for seed count in laboratory, using Arduino microcontroller. The prototype of the system for seed counting was built using a dosing mechanism commonly used in seeders, electric motor, Arduino Uno, light dependent resistor and light emitting diode. To test the prototype, a completely randomized design (CRD was used in a two-factorial scheme composed of three groups defined according to the number of seeds (500, 1000 and 1500 seeds tested, three speeds of the dosing disc that allowed the distribution in 17, 21 and 32 seeds per second, with 40 repetitions evaluating the seed counting prototype performance in different speeds. The prototype of the bench counter showed a moderate variability of seed number of counted within the nine tests and a high precision in the seed count on the distribution speeds of 17 and 21 seeds per second (s-1 up to 1500 seeds tested. Therefore, based on the observed results, the developed prototype presents itself as an excellent tool for counting seeds in laboratory.

  10. The role of the testa during development and in establishment of dormancy of the legume seed

    Science.gov (United States)

    Smýkal, Petr; Vernoud, Vanessa; Blair, Matthew W.; Soukup, Aleš; Thompson, Richard D.

    2014-01-01

    Timing of seed germination is one of the key steps in plant life cycles. It determines the beginning of plant growth in natural or agricultural ecosystems. In the wild, many seeds exhibit dormancy and will only germinate after exposure to certain environmental conditions. In contrast, crop seeds germinate as soon as they are imbibed usually at planting time. These domestication-triggered changes represent adaptations to cultivation and human harvesting. Germination is one of the common sets of traits recorded in different crops and termed the “domestication syndrome.” Moreover, legume seed imbibition has a crucial role in cooking properties. Different seed dormancy classes exist among plant species. Physical dormancy (often called hardseededness), as found in legumes, involves the development of a water-impermeable seed coat, caused by the presence of phenolics- and suberin-impregnated layers of palisade cells. The dormancy release mechanism primarily involves seed responses to temperature changes in the habitat, resulting in testa permeability to water. The underlying genetic controls in legumes have not been identified yet. However, positive correlation was shown between phenolics content (e.g., pigmentation), the requirement for oxidation and the activity of catechol oxidase in relation to pea seed dormancy, while epicatechin levels showed a significant positive correlation with soybean hardseededness. myeloblastosis family of transcription factors, WD40 proteins and enzymes of the anthocyanin biosynthesis pathway were involved in seed testa color in soybean, pea and Medicago, but were not tested directly in relation to seed dormancy. These phenolic compounds play important roles in defense against pathogens, as well as affecting the nutritional quality of products, and because of their health benefits, they are of industrial and medicinal interest. In this review, we discuss the role of the testa in mediating legume seed germination, with a focus on

  11. Hormonal Regulation of Dormancy in Developing Sorghum Seeds.

    Science.gov (United States)

    Steinbach, H. S.; Benech-Arnold, R. L.; Sanchez, R. A.

    1997-01-01

    The role of abscisic acid (ABA) and gibberellic acid (GA) in determining the dormancy level of developing sorghum (Sorghum bicolor [L.] Moench.) seeds from varieties presenting contrasting preharvest sprouting behavior (Redland B2, susceptible; IS 9530, resistant) was investigated. Panicles from both varieties were sprayed soon after pollination with fluridone or paclobutrazol to inhibit ABA and GA synthesis, respectively. Fluridone application to the panicles increased germinability of Redland B2 immature caryopses, whereas early treatment with paclobutrazol completely inhibited germination of this variety during most of the developmental period. Incubating caryopses in the presence of 100 [mu]M GA4+7 overcame the inhibitory effect of paclobutrazol, but also stimulated germination of seeds from other treatments. IS 9530 caryopses presented germination indices close to zero until physiological maturity (44 d after pollination) in control and paclobutrazol-treated particles. However, fluridone-treated caryopses were released from dormancy earlier than control and paclobutrazol-treated caryopses. Incubation in the presence of GA4+7 stimulated germination of caryopses from all treatments. Our results support the proposition that a low dormancy level (which is related to a high preharvest sprouting susceptibility) is determined not only by a low embryonic sensitivity to ABA, but also by a high GA content or sensitivity.

  12. Comparison of in Situ and in Vitro Regulation of Soybean Seed Growth and Development

    Science.gov (United States)

    Dyer, Daniel J.; Cotterman, C. Daniel; Cotterman, Josephine C.

    1987-01-01

    The growth characteristics of soybean (Glycine max [L.] Merr.) embryos in culture and seeds in situ were found to be similar, but developmental differences were observed. Embryos placed in culture when very small (grow indefinitely, reaching dry weights far in excess of seeds matured in situ. Apparently, maternal factors were important in early and late development during the determination of maximum growth rate and the cessation of growth. Embryo growth rate was not affected by substituting glucose plus fructose for sucrose in the medium, nor by hormone treatments, including abscisic acid. Glutamine was found to give substantially better growth than glutamate, however. Contrary to prior reports, the response of soybean embryo growth rate to irradiance was found to be primarily an artifact of the effect of irradiance on media temperature. Across seven genotypes the correlation coefficient between seed growth rate in situ and embryo growth rate in vitro was 0.94, indicating essentially all of the variability of in situ seed growth rate between cultivars could be attributed to inherent growth rate differences associated with the embryos. The response to temperature was very similar for both embryos in culture and seeds in situ at temperatures below 30°C. Beyond that temperature, embryo growth rate continued to increase, while seed growth rate did not. The implication is that in situ seed growth rate is determined by the inherent growth potential of the embryo at low to moderate temperatures; however, at higher temperatures, the maternal plant is unable to support the rapid growth rates that the embryo is capable of attaining under conditions of unlimited assimilate supply. PMID:16665434

  13. Development of procedure using plasma welding process to produce 125I seeds

    International Nuclear Information System (INIS)

    Feher, Anselmo

    2006-01-01

    The prostate cancer, which is the second cause of death by cancer in men, overcome only by lung cancer, is a problem of public health in Brazil. Brachytherapy is among the possible available treatments for prostate cancer, in which small seeds containing 125 I radioisotope are implanted in the prostate. The seed consists of a titanium sealed capsule with 0.8 mm external diameter and 4.5 mm length, containing a central silver wire with adsorbed 125 I. The plasma arc welding is one of the viable techniques for the sealing process. The equipment used in this technique is less costly than in other processes. The main objective of this work was the development and the validation of the welding procedure using plasma welding process and the elaboration of a sealing routine according to Good Manufacturing Practices. The development of this work has presented the following phases: cut and cleaning of the titanium material, determination of the welding parameters, development of a device for holding the titanium tube during the welding process, validation of sealed sources according to ISO 2919 Sealed Radioactive Sources - General Requirements and Classification, leakage test according to ISO 9978 Sealed Radioactive Sources - Leakage Test Methods and metallographic assays. The developed procedure, to seal 125 I seeds using plasma welding process, has shown to be efficient, satisfying all the established requirements of ISO 2919. The results obtained in this work have given the possibility to establish a routine production process according to the orientations presented in resolution RDC number 59 - Good Manufacturing Practices do Medical Products of the ANVISA - Brazilian Nacional Agency of Sanitary Surveillance. (author)

  14. Investigation of growth indices and yield of canola (Brassica napus L. in competition with wild mustard (Sinapis arvensis L. as influenced by different amount of nitrogen application

    Directory of Open Access Journals (Sweden)

    F. Soleymani

    2016-04-01

    Full Text Available To evaluate the effect of different levels of nitrogen fertilizer on growth indices and competitive ability of canola (Brassica napus L. against wild mustard (Sinapis arvensis L., a split plot trial based on a randomized complete block design with three replications, was carried out at Agricultural Faculty of Bu-Ali Sina University, during 2008-2009. Experimental factors were amounts of nitrogen fertilizer of urea at four levels (100, 150, 200 and 250 kgN.ha-1 and five wild mustard plant densities (0, 4, 8, 16 and 32 plants.m-2. The results showed that wild mustard interference led to reduction of leaf area index (LAI, dry matter accumulation, crop growth rate (CGR, leaf area index duration (LAID, dry matter duration (BMD and seed yield of canola, while these characteristics were increased with more nitrogen fertilizer application. The maximum indices were obtained at 250 kg N.ha-1 and weed-free condition, but generally, the least reduction in maximum LAI, CGR, LAID and BMD of canola affected by wild mustard competition occurred at 200 kg N.ha-1. In conclusion, the results showed that optimum level of fertilizer 200 kg N.ha-1, increased competitive ability of canola against wild mustard and improved yield and growth indices.

  15. Evolvement of transgenic male-sterility and fertility-restoration system in rice for production of hybrid varieties.

    Science.gov (United States)

    Rao, Gundra Sivakrishna; Deveshwar, Priyanka; Sharma, Malini; Kapoor, Sanjay; Rao, Khareedu Venkateswara

    2018-01-01

    We have developed a unique male-sterility and fertility-restoration system in rice by combining Brassica napus cysteine-protease gene (BnCysP1) with anther-specific P12 promoter of rice for facilitating production of hybrid varieties. In diverse crop plants, male-sterility has been exploited as a useful approach for production of hybrid varieties to harness the benefits of hybrid vigour. The promoter region of Os12bglu38 gene of rice has been isolated from the developing panicles and was designated as P12. The promoter was fused with gusA reporter gene and was expressed in Arabidopsis and rice systems. Transgenic plants exhibited GUS activity in tapetal cells and pollen of the developing anthers indicating anther/pollen-specific expression of the promoter. For engineering nuclear male sterility, the coding region of Brassica napus cysteine protease1 (BnCysP1) was isolated from developing seeds and fused to P12 promoter. Transgenic rice plants obtained with P12-BnCysP1 failed to produce functional pollen grains. The F 1 seeds obtained from BnCysP1 male-sterile plants and untransformed controls showed 1:1 (tolerant:sensitive) ratio when germinated on the MS medium supplemented with phosphinothricin (5 mg/l), confirming that the male sterility has been successfully engineered in rice. For male fertility restoration, transgenic rice plants carrying BnCysP1Si silencing system were developed. The pollination of BnCysP1 male-sterile (female-fertile) plants with BnCysP1Si pollen resulted in normal grain filling. The F 1 seeds of BnCysP1 × BnCysP1Si when germinated on the MS basal medium containing PPT (5 mg/l) and hygromycin (70 mg/l) exhibited 1:1 (tolerant:sensitive) ratio and the tolerant plants invariably showed normal grain filling. The overall results clearly suggest that the customized male-sterility & fertility-restoration system can be exploited for quality hybrid seed production in various crops.

  16. Study on Development of Non-Destructive Measurement Technique for Viability of Lettuce Seed (Lactuca sativa L) Using Hyperspectral Reflectance Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Chi Kook; Cho, Byoung Kwan [College of Agriculture and Life Science, Chungnam National University, Daejeon (Korea, Republic of); Mo, Chang Yeon [National Acadamy of Agricultural Science, Daejeon (Korea, Republic of); Kim, Moon S. [Environmental Microbial and Food Safety Laboratory, Animal and Natural Resources Institute, Agricultural Research Service, United States Department of Agriculture, Washington (United States)

    2012-10-15

    In this study, the feasibility of hyperspectral reflectance imaging technique was investigated for the discrimination of viable and non-viable lettuce seeds. The spectral data of hyperspectral reflectance images with the spectral range between 750 nm and 1000 nm were used to develop PLS-DA model for the classification of viable and non-viable lettuce seeds. The discrimination accuracy of the calibration set was 81.6% and that of the test set was 81.2%. The image analysis method was developed to construct the discriminant images of non-viable seeds with the developed PLS-DA model. The discrimination accuracy obtained from the resultant image were 91%, which showed the feasibility of hyperspectral reflectance imaging technique for the mass discrimination of non-viable lettuce seeds from viable ones.

  17. Study on Development of Non-Destructive Measurement Technique for Viability of Lettuce Seed (Lactuca sativa L) Using Hyperspectral Reflectance Imaging

    International Nuclear Information System (INIS)

    Ahn, Chi Kook; Cho, Byoung Kwan; Mo, Chang Yeon; Kim, Moon S.

    2012-01-01

    In this study, the feasibility of hyperspectral reflectance imaging technique was investigated for the discrimination of viable and non-viable lettuce seeds. The spectral data of hyperspectral reflectance images with the spectral range between 750 nm and 1000 nm were used to develop PLS-DA model for the classification of viable and non-viable lettuce seeds. The discrimination accuracy of the calibration set was 81.6% and that of the test set was 81.2%. The image analysis method was developed to construct the discriminant images of non-viable seeds with the developed PLS-DA model. The discrimination accuracy obtained from the resultant image were 91%, which showed the feasibility of hyperspectral reflectance imaging technique for the mass discrimination of non-viable lettuce seeds from viable ones.

  18. Seed systems support in Kenya

    NARCIS (Netherlands)

    Munyi, Peter; Jonge, De Bram

    2015-01-01

    The threats of climate change and rising food prices have stirred renewed attention for seed and food security in Africa, inviting new thinking on the role of seed sector development in coping with these concerns. One conceptual framework that has gained attention is the Integrated Seed Sector

  19. Do rice suspension-cultured cells treated with abscisic acid mimic developing seeds?

    Science.gov (United States)

    Matsuno, Koya; Fujimura, Tatsuhito

    2015-08-01

    Starch synthesis is activated in the endosperm during seed development and also in rice suspension cells cultured with abscisic acid. In the anticipation that the mechanisms of starch synthesis are similar between the endosperm and the suspension cells cultured with abscisic acid, expression of genes involved in starch synthesis was evaluated in the suspension cells after abscisic acid treatment. However, it was found that the regulatory mechanism of starch synthesis in the suspension cells cultured with abscisic acid was different from that in developing seeds. Expression analyses of genes involved in oil bodies, which accumulate in the embryo and aleurone layer, and seed storage proteins, which accumulate mainly in the endosperm, showed that the former were activated in the suspension cells cultured with abscisic acid, but the latter were not. Master regulators for embryogenesis, OsVP1 (homologue of AtABI3) and OsLFL1 (homologue of AtFUS3 or AtLFL2), were expressed in the suspension cells at levels comparable to those in the embryo. From these results, it is suggested that interactions between regulators and abscisic acid control the synthesis of phytic acid and oil bodies in the cultured cells and embryo. We suggest that the system of suspension cells cultured with abscisic acid helps to reveal the mechanisms of phytic acid and oil body synthesis in embryo.

  20. The seed coat of Phaseolus vulgaris interferes with the development of the cowpea weevil [Callosobruchus maculatus (F. (Coleoptera: Bruchidae

    Directory of Open Access Journals (Sweden)

    Silva Luciana B.

    2004-01-01

    Full Text Available We have confirmed here that the seeds of the common bean (Phaseolus vulgaris, L. do not support development of the bruchid Callosobruchus maculatus (F., a pest of cowpea [Vigna unguiculata (L. Walp] seeds. Analysis of the testa (seed coat of the bean suggested that neither thickness nor the levels of compounds such as tannic acid, tannins, or HCN are important for the resistance. On the other hand, we have found that phaseolin (vicilin-like 7S storage globulin, detected in the testa by Western blotting and N-terminal amino acid sequencing, is detrimental to the development of C. maculatus. As for the case of other previously studied legume seeds (Canavalia ensiformis and Phaseolus lunatus we suggest that the presence of vicilin-like proteins in the testa of P. vulgaris may have had a significant role in the evolutionary adaptation of bruchids to the seeds of leguminous plants.

  1. Physical, biochemical and physiological effects of ultraviolet radiation on Brassica napus and Phaseolus vulgaris

    International Nuclear Information System (INIS)

    Cen Yan-Ping.

    1993-01-01

    In order to follow some of the changes induced by ultraviolet-B (UV-B, 280-320 nm) radiation in Phaseolus vulgaris and Brassica napus, experiments were designed to localize sites of changes in leaves and to correlate some of the physiological and biochemical changes with penetration of UV-B radiation. B.napus was exposed to 8.9 kJ m -2 day -1 biologically effective UV-B radiation (UV-B BE ). The penetration of UV-B radiation into the leaf was followed using a quartz fibre optic microprobe. Monochromatic radiation at 310 nm was decreased by ca 50 and 34% in the adaxial and abaxial epidermis, respectively, in plants not exposed to UV-B, whereas the radiation was decreased by ca 70 and 42%, respectively, in the same region in UV-treated plants. Polychromatic radiation showed a wavelength dependent change mainly for the collimated radiation. The results correlated with the distribution of phenolic compounds analysed from 40 μm paradermal leaf sections. The first adaxial section (40μm) contained 35% of the whole leaf sample flavonoid glycosides in control plants, and 66% in UV-treated plants. Hydroxycinnamic acid derivatives increased by 26% in UV-treated plants relative to controls. The ratio of quercetin to kaempferol derivatives increased from 0.11 in controls to 0.91 in leaves of UV-treated plants. The leaf epidermis protected the inner leaf tissue where most of the photosynthetic apparatus is located. P. vulgaris was subjected to 6.17 kJ m -2 day -1 UV-B BE with different levels of visible light. The largest UV-induced changes in photosynthesis, chlorophyll, carotenoids, UV-screening pigments, and surface leaf reflectance occurred under growth conditions of low levels of visible light together with UV radiation

  2. Physical, biochemical and physiological effects of ultraviolet radiation on Brassica napus and Phaseolus vulgaris

    Energy Technology Data Exchange (ETDEWEB)

    Cen Yan-Ping

    1993-12-31

    In order to follow some of the changes induced by ultraviolet-B (UV-B, 280-320 nm) radiation in Phaseolus vulgaris and Brassica napus, experiments were designed to localize sites of changes in leaves and to correlate some of the physiological and biochemical changes with penetration of UV-B radiation. B.napus was exposed to 8.9 kJ m{sup -2} day{sup -1} biologically effective UV-B radiation (UV-B{sub BE}). The penetration of UV-B radiation into the leaf was followed using a quartz fibre optic microprobe. Monochromatic radiation at 310 nm was decreased by ca 50 and 34% in the adaxial and abaxial epidermis, respectively, in plants not exposed to UV-B, whereas the radiation was decreased by ca 70 and 42%, respectively, in the same region in UV-treated plants. Polychromatic radiation showed a wavelength dependent change mainly for the collimated radiation. The results correlated with the distribution of phenolic compounds analysed from 40 {mu}m paradermal leaf sections. The first adaxial section (40{mu}m) contained 35% of the whole leaf sample flavonoid glycosides in control plants, and 66% in UV-treated plants. Hydroxycinnamic acid derivatives increased by 26% in UV-treated plants relative to controls. The ratio of quercetin to kaempferol derivatives increased from 0.11 in controls to 0.91 in leaves of UV-treated plants. The leaf epidermis protected the inner leaf tissue where most of the photosynthetic apparatus is located. P. vulgaris was subjected to 6.17 kJ m{sup -2} day{sup -1} UV-B{sub BE} with different levels of visible light. The largest UV-induced changes in photosynthesis, chlorophyll, carotenoids, UV-screening pigments, and surface leaf reflectance occurred under growth conditions of low levels of visible light together with UV radiation.

  3. Biosynthesis of raffinose family oligosaccharides and galactosyl pinitols in developing and maturing seeds of winter vetch (Vicia vlllosa Roth.

    Directory of Open Access Journals (Sweden)

    Lesław B. Lahuta

    2011-01-01

    Full Text Available Changes in the accumulation of two types of α-D-galactosides: raffinose family oligosaccharides and galactosyl pinitols were compared with changes in the activities of galactosyltransferases during winter vetch (Vicia villosa Roth. seed development and maturation. Occurrence of galactinol and raffinose in young seeds and changes in activities of galactinol synthase and raffinose synthase during seed development indicated that formation of raffinose oligosaccharides (RFOs preceded synthesis of galactopinitols. Although transfer of galactose residues into raffinose oligosaccharides increased as seeds were maturing, at late stages of seed maturation the accumulation of galactopinitols was preferred to that of RFOs. In the present study, activities of enzymes transferring galactose moieties from galactinol to D-pinitol forming galactopinitol A, and further transfer of galactose moieties from galactinol to mono- and di-galactopinitol A were detected throughout seed development and maturation. This is a new observation, indicating biological potential of winter vetch seeds to synthesize mono-, di- and tri-galactosides of D-pinitol in a pathway similar to RFOs. The pattern of changes in activities of stachyose synthase and enzymes synthesizing galactopinitols (named galactopinitol A synthase and ciceritol synthase suggests that formation of stachyose, mono- and di-galactopinitol A (ciceritol is catalyzed by one enzyme. High correlation between activities of verbascose synthase and enzyme catalyzing synthesis of tri-galactopinitol A from galactinol and ciceritol (named tri-galactopinitol A synthase also suggests that biosynthesis of both types of tri-galactosides was catalyzed by one enzyme, but distinct from stachyose synthase. Changes in concentrations of galactosyl acceptors (sucrose and D-pinitol can be a factor which regulates splitting of galactose moieties between both types of galactosides in winter vetch seeds.

  4. Identification of new members of Fertilisation Independent Seed Polycomb Group pathway involved in the control of seed development in Arabidopsis thaliana.

    Science.gov (United States)

    Guitton, Anne-Elisabeth; Page, Damian R; Chambrier, Pierre; Lionnet, Claire; Faure, Jean-Emmanuel; Grossniklaus, Ueli; Berger, Frédéric

    2004-06-01

    In higher plants, double fertilisation initiates seed development. One sperm cell fuses with the egg cell and gives rise to the embryo, the second sperm cell fuses with the central cell and gives rise to the endosperm. The endosperm develops as a syncytium with the gradual organisation of domains along an anteroposterior axis defined by the position of the embryo at the anterior pole and by the attachment to the placenta at the posterior pole. We report that ontogenesis of the posterior pole in Arabidopsis thaliana involves oriented migration of nuclei in the syncytium. We show that this migration is impaired in mutants of the three founding members of the FERTILIZATION INDEPENDENT SEED (FIS) class, MEDEA (MEA), FIS2 and FERTILIZATION INDEPENDENT ENDOSPERM (FIE). A screen based on a green fluorescent protein (GFP) reporter line allowed us to identify two new loci in the FIS pathway, medicis and borgia. We have cloned the MEDICIS gene and show that it encodes the Arabidopsis homologue of the yeast WD40 domain protein MULTICOPY SUPRESSOR OF IRA (MSI1). The mutations at the new fis loci cause the same cellular defects in endosperm development as other fis mutations, including parthenogenetic development, absence of cellularisation, ectopic development of posterior structures and overexpression of the GFP marker.

  5. Development of irradiation support devices for production of brachytherapy seeds

    Energy Technology Data Exchange (ETDEWEB)

    Mattos, Fabio R.; Rostelato, Maria Elisa C.M.; Zeituni, Carlos A.; Souza, Carla D.; Moura, Joao A.; Peleias Junior, Fernando S.; Karan Junior, Dib; Feher, Anselmo; Oliveira, Tiago B.; Benega, Marcos A.G., E-mail: tiagooliveira298@gmail.com, E-mail: mattos.fr@gmail.com, E-mail: elisaros@ipen.br, E-mail: czeituni@ipen.br, E-mail: carladdsouza@yahoo.com.br, E-mail: jamoura@ipen.br, E-mail: ernandopeleias@gmail.com, E-mail: s, E-mail: dib.karan@usp.br, E-mail: afeher@ipen.br, E-mail: marcosagbenega@gmail.com [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    Ophthalmic tumors treatment with brachytherapy sources has been widely used as a primary or secondary therapy for non-malignant or malignant tumors, for example, choroid melanoma, and retinoblastoma. Ruthenium-106, Iodine-125, Palladium -103, Gold-198 and Iridium-192, are some radionuclides that can be applied for treatment of ocular tumors. These sources are in small sizes (a few millimeters) and different shapes (rods, wires, disks). To ensure high accuracy during treatment, they are positioned in eye applicators, specially designed to fit on the surface of tumor. The Nuclear and Energy Research Institute (IPEN/CNEN) in a partnership with Paulista Medicine School (UNIFESP) created a project that aims to develop a prototype of Iridium-192 seeds for treatment of eye cancer. This seed consists in a core of Ir -Pt alloy (20%-80%) with a length of 3 mm, to be activated in IPEN's IEA-R1 Reactor, and a titanium capsule sealing the core. It was imperative to develop a sustainer device for irradiation. This piece is used to avoid overlapping of one cores and, therefore, avoiding the 'shadow effect' that does not allow full activation of each core due to the high density. (author)

  6. Seed governance. From seed aid to seed system security in fragile areas

    NARCIS (Netherlands)

    Rietberg, P.I.; Gevers, H.; Hospes, O.

    2014-01-01

    Intergovernmental agencies and development organizations, including Cordaid, consider interventions directed at seed security of utmost importance to support smallholders recovering from conflict situations and disasters, and to contribute to revitalisation of local agricultural production and food

  7. Rape embryogenesis I. The proembryo development

    Directory of Open Access Journals (Sweden)

    Teresa Tykarska

    2015-01-01

    Full Text Available The development of the proembryo of rape Brassica napus L. from the zygote to the young embryo proper is described. A number of regularities were found in the direction, succession, and distribution of segmental and differentiating divisions of the proembryo. The direction of the divisions seems to foe determined by the direction of growth and the shape of the cells. The termyoung embryo proper is proposed to denote the globular embryo which already possesses separate plerome and periblem mother-cells and mother-cells of the iec layer and of clumella. The body of the embryo proper is derived from the apical cell ca which arose from the first division of the zygote and from the hypophysis - the only suspensor cell which closes the spheroid of the embryo. The development of the Brassica napus L. proembryo follows the sub-archetype Capsella bursa-pastoris in the IV megarchetype of Soueges.

  8. A system for generating virtual seeds

    Directory of Open Access Journals (Sweden)

    Sako Y.

    1998-01-01

    Full Text Available Seed analysts need to identify seeds, and seed catalogs are used as a reference to accomplish this task. Conventional seed catalogs supply two-dimensional photographs and hand-drawn diagrams. In this study, a new, three-dimensional representation of seeds is developed to supplement these traditional photographs and drawings. QuickTime VR is a promising method for viewing three-dimensional objects on a computer screen. It permits manipulation of an object by rotating and viewing it from any pre-specified angle at an interactive speed, allowing the viewer the sense of examining a hand-held object. In this study, QuickTime VR object movies of seeds were created as interactive "movies" of seeds that can be rotated and scaled to give the viewer the sensation of examining actual seeds. This approach allows the examination of virtual seeds from any angle, permitting more accurate identification of seeds by seed analysts.

  9. Survival of weed seeds and animal parasites as affected by anaerobic digestion at meso- and thermophilic conditions.

    Science.gov (United States)

    Johansen, Anders; Nielsen, Henrik B; Hansen, Christian M; Andreasen, Christian; Carlsgart, Josefine; Hauggard-Nielsen, Henrik; Roepstorff, Allan

    2013-04-01

    Anaerobic digestion of residual materials from animals and crops offers an opportunity to simultaneously produce bioenergy and plant fertilizers at single farms and in farm communities where input substrate materials and resulting digested residues are shared among member farms. A surplus benefit from this practice may be the suppressing of propagules from harmful biological pests like weeds and animal pathogens (e.g. parasites). In the present work, batch experiments were performed, where survival of seeds of seven species of weeds and non-embryonated eggs of the large roundworm of pigs, Ascaris suum, was assessed under conditions similar to biogas plants managed at meso- (37°C) and thermophilic (55°C) conditions. Cattle manure was used as digestion substrate and experimental units were sampled destructively over time. Regarding weed seeds, the effect of thermophilic conditions (55°C) was very clear as complete mortality, irrespective of weed species, was reached after less than 2 days. At mesophilic conditions, seeds of Avena fatua, Sinapsis arvensis, Solidago canadensis had completely lost germination ability, while Brassica napus, Fallopia convolvulus and Amzinckia micrantha still maintained low levels (~1%) of germination ability after 1 week. Chenopodium album was the only weed species which survived 1 week at substantial levels (7%) although after 11 d germination ability was totally lost. Similarly, at 55°C, no Ascaris eggs survived more than 3h of incubation. Incubation at 37°C did not affect egg survival during the first 48 h and it took up to 10 days before total elimination was reached. In general, anaerobic digestion in biogas plants seems an efficient way (thermophilic more efficient than mesophilic) to treat organic farm wastes in a way that suppresses animal parasites and weeds so that the digestates can be applied without risking spread of these pests. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. The distribution of fruit and seed toxicity during development for eleven neotropical trees and vines in Central Panama.

    Directory of Open Access Journals (Sweden)

    Noelle G Beckman

    Full Text Available Secondary compounds in fruit mediate interactions with natural enemies and seed dispersers, influencing plant survival and species distributions. The functions of secondary metabolites in plant defenses have been well-studied in green tissues, but not in reproductive structures of plants. In this study, the distribution of toxicity within plants was quantified and its influence on seed survival was determined in Central Panama. To investigate patterns of allocation to chemical defenses and shifts in allocation with fruit development, I quantified variation in toxicity between immature and mature fruit and between the seed and pericarp for eleven species. Toxicity of seed and pericarp was compared to leaf toxicity for five species. Toxicity was measured as reduced hyphal growth of two fungal pathogens, Phoma sp. and Fusarium sp., and reduced survivorship of brine shrimp, Artemia franciscana, across a range of concentrations of crude extract. I used these measures of potential toxicity against generalist natural enemies to examine the effect of fruit toxicity on reductions of fruit development and seed survival by vertebrates, invertebrates, and pathogens measured for seven species in a natural enemy removal experiment. The seed or pericarp of all vertebrate- and wind-dispersed species reduced Artemia survivorship and hyphal growth of Fusarium during the immature and mature stages. Only mature fruit of two vertebrate-dispersed species reduced hyphal growth of Phoma. Predispersal seed survival increased with toxicity of immature fruit to Artemia during germination and decreased with toxicity to fungi during fruit development. This study suggests that fruit toxicity against generalist natural enemies may be common in Central Panama. These results support the hypothesis that secondary metabolites in fruit have adaptive value and are important in the evolution of fruit-frugivore interactions.

  11. The distribution of fruit and seed toxicity during development for eleven neotropical trees and vines in Central Panama.

    Science.gov (United States)

    Beckman, Noelle G

    2013-01-01

    Secondary compounds in fruit mediate interactions with natural enemies and seed dispersers, influencing plant survival and species distributions. The functions of secondary metabolites in plant defenses have been well-studied in green tissues, but not in reproductive structures of plants. In this study, the distribution of toxicity within plants was quantified and its influence on seed survival was determined in Central Panama. To investigate patterns of allocation to chemical defenses and shifts in allocation with fruit development, I quantified variation in toxicity between immature and mature fruit and between the seed and pericarp for eleven species. Toxicity of seed and pericarp was compared to leaf toxicity for five species. Toxicity was measured as reduced hyphal growth of two fungal pathogens, Phoma sp. and Fusarium sp., and reduced survivorship of brine shrimp, Artemia franciscana, across a range of concentrations of crude extract. I used these measures of potential toxicity against generalist natural enemies to examine the effect of fruit toxicity on reductions of fruit development and seed survival by vertebrates, invertebrates, and pathogens measured for seven species in a natural enemy removal experiment. The seed or pericarp of all vertebrate- and wind-dispersed species reduced Artemia survivorship and hyphal growth of Fusarium during the immature and mature stages. Only mature fruit of two vertebrate-dispersed species reduced hyphal growth of Phoma. Predispersal seed survival increased with toxicity of immature fruit to Artemia during germination and decreased with toxicity to fungi during fruit development. This study suggests that fruit toxicity against generalist natural enemies may be common in Central Panama. These results support the hypothesis that secondary metabolites in fruit have adaptive value and are important in the evolution of fruit-frugivore interactions.

  12. The transcriptome of the developing grain: a resource for understanding seed development and the molecular control of the functional and nutritional properties of wheat.

    Science.gov (United States)

    Rangan, Parimalan; Furtado, Agnelo; Henry, Robert J

    2017-10-11

    Wheat is one of the three major cereals that have been domesticated to feed human populations. The composition of the wheat grain determines the functional properties of wheat including milling efficiency, bread making, and nutritional value. Transcriptome analysis of the developing wheat grain provides key insights into the molecular basis for grain development and quality. The transcriptome of 35 genotypes was analysed by RNA-Seq at two development stages (14 and 30 days-post-anthesis, dpa) corresponding to the mid stage of development (stage Z75) and the almost mature seed (stage Z85). At 14dpa, most of the transcripts were associated with the synthesis of the major seed components including storage proteins and starch. At 30dpa, a diverse range of genes were expressed at low levels with a predominance of genes associated with seed defence and stress tolerance. RNA-Seq analysis of changes in expression between 14dpa and 30dpa stages revealed 26,477 transcripts that were significantly differentially expressed at a FDR corrected p-value cut-off at ≤0.01. Functional annotation and gene ontology mapping was performed and KEGG pathway mapping allowed grouping based upon biochemical linkages. This analysis demonstrated that photosynthesis associated with the pericarp was very active at 14dpa but had ceased by 30dpa. Recently reported genes for flour yield in milling and bread quality were found to influence wheat quality largely due to expression patterns at the earlier seed development stage. This study serves as a resource providing an overview of gene expression during wheat grain development at the early (14dpa) and late (30dpa) grain filling stages for use in studies of grain quality and nutritional value and in understanding seed biology.

  13. The health condition of spring oilseed crops in relation to the fungi colonising their seeds

    Directory of Open Access Journals (Sweden)

    Barbara Majchrzak

    2013-12-01

    Full Text Available The research was conduced in the years 1999-2000. The aim of the research was to determine the health condition of overground parts and seeds of the following spring oilseed crops: crambe (Crambe abbysinica Hoechst. cv. B o r o w s k i, false flax (Camelina sativa L. cv. B o r o w s k a, spring rape (Brassica napus ssp. oleifera L. cv. M a r g o and oleiferous radish (Raphanus sativus var. oleiferus L. cv. P e g l e t t a. In all the years of the research alternaria blight was found on the leaves and siliques of spring rape and oleiferous radish and on the leaves and stems of crambe. False flax proved to be weakly infected by pathogens. On its leaves gray mould (Botrytis cinerea was found in all the years of the research. The disease was found on the siliques only in 1999. In 2000 powdery mildew was found on spring rape and false flax (respectively, Erysiphe crucifearum and E.cichoracearum. The weather conditions affected the intensity of the diseases on the studied spring oilseed crops. Alernaria genus, especially A.alternata was most commonly isolated from the seeds of examined plants. It constituted from 37% (in crambe to 63,3% (in spring rape of all the isolates. Of the remaining pathogenic species, numerous fungi of the Fusarium genus (F.avenaceum, F.culmorum, F.equiseti and F.oxysporum were isolated. They constituted from 1,0% (false flax to 17,3% (crambe of the isolates.

  14. Comparing carbohydrate status during norway spruce seed development and somatic embryo formation

    NARCIS (Netherlands)

    Gösslová, M.; Svobodová, H.; Lipavská, H.; Albrechtová, J.; Vreugdenhil, D.

    2001-01-01

    The carbohydrate status of developing seeds of Picea abies was examined in order to provide a frame of reference for the evaluation of changes in carbohydrate content in maturing somatic embryos of the same species. Samples were taken at weekly intervals from 12 May 1998 (estimated time of

  15. Glioblastoma with spinal seeding

    International Nuclear Information System (INIS)

    Fakhrai, N.; Fazeny-Doerner, B.; Marosi, C.; Czech, T.; Diekmann, K.; Birner, P.; Hainfellner, J.A.; Prayer, D.

    2004-01-01

    Background: extracranial seeding of glioblastoma multiforme (GBM) is very rare and its development depends on several factors. This case report describes two patients suffering from GBM with spinal seeding. In both cases, the anatomic localization of the primary tumor close to the cerebrospinal fluid (CSF) was the main factor for spinal seeding. Case reports: two patients with GBM and spinal seeding are presented. After diagnosis of spinal seeding, both patients were highly symptomatic from their spinal lesions. Case 1 experienced severe pain requiring opiates, and case 2 had paresis of lower limbs as well as urinary retention/incontinence. Both patients were treated with spinal radiation therapy. Nevertheless, they died 3 months after diagnosis of spinal seeding. Results: in both patients the diagnosis of spinal seeding was made at the time of cranial recurrence. Both tumors showed close contact to the CSF initially. Even though the patients underwent intensive treatment, it was not possible to keep them in a symptom-free state. Conclusion: because of short survival periods, patients deserve optimal pain management and dedicated palliative care. (orig.)

  16. Glioblastoma with spinal seeding

    Energy Technology Data Exchange (ETDEWEB)

    Fakhrai, N.; Fazeny-Doerner, B.; Marosi, C. [Clinical Div. of Oncology, Dept. of Medicine I, Univ. of Vienna (Austria); Czech, T. [Dept. of Neurosurgery, Univ. of Vienna (Austria); Diekmann, K. [Dept. of Radiooncology, Univ. of Vienna (Austria); Birner, P.; Hainfellner, J.A. [Clinical Inst. for Neurology, Univ. of Vienna (Austria); Prayer, D. [Dept. of Neuroradiology, Univ. of Vienna (Austria)

    2004-07-01

    Background: extracranial seeding of glioblastoma multiforme (GBM) is very rare and its development depends on several factors. This case report describes two patients suffering from GBM with spinal seeding. In both cases, the anatomic localization of the primary tumor close to the cerebrospinal fluid (CSF) was the main factor for spinal seeding. Case reports: two patients with GBM and spinal seeding are presented. After diagnosis of spinal seeding, both patients were highly symptomatic from their spinal lesions. Case 1 experienced severe pain requiring opiates, and case 2 had paresis of lower limbs as well as urinary retention/incontinence. Both patients were treated with spinal radiation therapy. Nevertheless, they died 3 months after diagnosis of spinal seeding. Results: in both patients the diagnosis of spinal seeding was made at the time of cranial recurrence. Both tumors showed close contact to the CSF initially. Even though the patients underwent intensive treatment, it was not possible to keep them in a symptom-free state. Conclusion: because of short survival periods, patients deserve optimal pain management and dedicated palliative care. (orig.)

  17. Physalis peruviana seed storage

    Directory of Open Access Journals (Sweden)

    Cíntia L. M. de Souza

    2016-03-01

    Full Text Available ABSTRACT Physalis peruviana belongs to Solanaceae family and has a high nutritional and nutraceutical potential. The production is intended for fruit consumption and the propagation is mainly by seeds. This study aimed to evaluate the influence of priming on the kinetics of germination of P. peruviana seeds stored at different temperatures. The seeds were stored at 5 and 25 °C in a chamber saturated with zinc chloride solution and in liquid nitrogen (-196 °C. Every 4 months, the seeds were removed from storage for evaluation of germination and moisture content in the laboratory and emergence and development of seedlings in greenhouse. During the last evaluation at 16 months, the seeds under the same conditions were subjected to salt stress. The moisture content varied during the storage period, but was always higher for seeds kept at -196 ºC. These seeds kept high germination percentage in water until 16 months, regardless of the tested temperature; however, in salt solution the germination percentage was significantly reduced.

  18. Applying Mendelian rules in rapeseed (Brassica napus breeding

    Directory of Open Access Journals (Sweden)

    Marjanović-Jeromela Ana

    2016-01-01

    Full Text Available Rapeseed is one of the most important sources of edible oil, raw material for industry, as well as feed. The yield and quality of rapeseed have significantly been improved in recent decades as a result of intensive breeding and optimized production technology. The application of Mendel's rules in introducing monogenic traits has also contributed to success in rapeseed breeding. Rule 1, which refers to the uniformity of F1 generation, is now the basis of widespread development of rapeseed hybrids. Rule 2, dealing with genetic segregation in the F2 generation, is the basis for understanding the process of breeding lines. Rule 3, regarding the independent segregation of genes and traits, while exempting linked traits, is the basis of combining different desirable properties by selection. In the last few decades, the systematic use of Mendel's rules has contributed to the improvement of many properties of rapeseed, including tolerance to biotic and abiotic stress, yield and seed quality. Particular progress has been made in breeding for resistance to diseases, including the identification of molecular markers for marker-assisted selection. The next objective of rapeseed breeding is to create varieties with improved tolerance to environmental stress (e.g. frost, heat, and drought. Based on Mendel's rules, classical breeding methods and the latest developments in the field of molecular genetics and breeding, future progress is expected in the field of rapeseed breeding with an emphasis on polygenic, quantitative traits such as biomass, seed, and oil yield.

  19. High-Performance Liquid Chromatography–Mass Spectrometry Analysis of Plant Metabolites in Brassicaceae

    NARCIS (Netherlands)

    Vos, de C.H.; Schipper, A.; Hall, R.D.

    2012-01-01

    The Brassicaceae family comprises a variety of plant species that are of high economic importance as -vegetables or industrial crops. This includes crops such as Brassica rapa (turnip, Bok Choi), B. oleracea (cabbages, broccoli, cauliflower, etc.), and B. napus (oil seed rape), and also includes the

  20. Interactive Role of Fungicides and Plant Growth Regulator (Trinexapac on Seed Yield and Oil Quality of Winter Rapeseed

    Directory of Open Access Journals (Sweden)

    Muhammad Ijaz

    2015-09-01

    Full Text Available This study was designed to evaluate the role of growth regulator trinexapac and fungicides on growth, yield, and quality of winter rapeseed (Brassica napus L.. The experiment was conducted simultaneously at different locations in Germany using two cultivars of rapeseed. Five different fungicides belonging to the triazole and strobilurin groups, as well as a growth regulator trinexapac, were tested in this study. A total of seven combinations of these fungicides and growth regulator trinexapac were applied at two growth stages of rapeseed. These two stages include green floral bud stage (BBCH 53 and the course of pod development stage (BBCH 65. The results showed that plant height and leaf area index were affected significantly by the application of fungicides. Treatments exhibited induced photosynthetic ability and delayed senescence, which improved the morphological characters and yield components of rape plants at both locations. Triazole, in combination with strobilurin, led to the highest seed yield over other treatments at both experimental locations. Significant effects of fungicides on unsaturated fatty acids of rapeseed oil were observed. Fungicides did not cause any apparent variation in the values of free fatty acids and peroxide of rapeseed oil. Results of our study demonstrate that judicious use of fungicides in rapeseed may help to achieve sustainable farming to obtain higher yield and better quality of rapeseed.

  1. Biology and harmfulness of Brassica pod midge (Dasineura brassicae Winn. in winter oilseed rape

    Directory of Open Access Journals (Sweden)

    Draga Graora

    2015-04-01

    Full Text Available The Brassica pod midge (Dasineura brassicae Winn. is an important pest in oilseed rape (Brasica napus L.. It develops two generations per year and overwinters in the larval stage in cocoons in soil. Immigration of the first generation adults lasted from the beginning of April until the end of May. Larvae developed in pods from mid-April to mid-June, causing pod deformation and cracking, which resulted in premature falling out of seeds and yield reduction. Pod damage amounted to 11.6%. The emergence of the second generation adults was detected at the end of May and in the first ten days of June. D. brassicae was found to lay eggs in healthy pods and no correlation was found with the cabbage seed weevil, Ceutorhynchus assimilis Paykull.

  2. Rubber seed oil: A potential renewable source of biodiesel for sustainable development in sub-Saharan Africa

    International Nuclear Information System (INIS)

    Onoji, Samuel E.; Iyuke, Sunny E.; Igbafe, Anselm I.; Nkazi, Diakanua B.

    2016-01-01

    Highlights: • Sub-Saharan Africa countries have about 251 million rubber trees with the capacity to produce over 16 kilo ton of biodiesel. • Rubber seed oil has wider industrial applications and its biodiesel properties compete favorably with other non-edible oils. • Rubber seed oil is a sustainable and affordable source of biodiesel for sub-Saharan Africa development. • Plantain peels that are in abundance in sub-Saharan Africa is a source of base catalyst for the transesterification of rubber seed oil. • This is no regulatory framework and bioenergy policy in sub-Saharan Africa on the use of waste rubber seeds. - Abstract: The global energy demand is currently met by the use of non-renewable fossil fuels. The challenges of non-availability of these fuels in the future, instability in prices of crude oil and its negative environmental impacts, stimulated researchers in the global community in search of renewable energies for replacement of fossil fuels in future. Biodiesel has been identified as a good complement and plausible replacement of fossil diesel because of the overwhelming characteristic properties similar to fossil diesel in addition to its good lubricity, biodegradability, non-toxicity and eco-friendliness when used in diesel engines. The production of biodiesel from edible vegetable oils competes with food consumption and consequently high cost of food and biodiesel. Studies have shown that rubber seed contains 35–45 wt.% oil which portrays a better competitor to other non-edible oil bearing plants in biodiesel production. Biodiesel produced from non-edible rubber seed oil (RSO) is an attractive option for the sustainable development of sub-Saharan Africa (SSA) countries that depend heavily on fossil diesel. The application of abundant plantain (Musa paradisiacal) peels considered as waste in SSA countries as heterogeneous base catalyst in RSO biodiesel production will further reduce the cost of biodiesel. Rubber trees (Hevea brasiliensis

  3. Seed dispersal in fens

    Science.gov (United States)

    Middleton, B.; Van Diggelen, R.; Jensen, K.

    2006-01-01

    Question: How does seed dispersal reduce fen isolation and contribute to biodiversity? Location: European and North American fens. Methods: This paper reviews the literature on seed dispersal to fens. Results: Landscape fragmentation may reduce dispersal opportunities thereby isolating fens and reducing genetic exchange. Species in fragmented wetlands may have lower reproductive success, which can lead to biodiversity loss. While fens may have always been relatively isolated from each other, they have become increasingly fragmented in modern times within agricultural and urban landscapes in both Europe and North America. Dispersal by water, animals and wind has been hampered by changes related to development in landscapes surrounding fens. Because the seeds of certain species are long-lived in the seed bank, frequent episodes of dispersal are not always necessary to maintain the biodiversity of fens. However, of particular concern to restoration is that some dominant species, such as the tussock sedge Carex stricta, may not disperse readily between fens. Conclusions: Knowledge of seed dispersal can be used to maintain and restore the biodiversity of fens in fragmented landscapes. Given that development has fragmented landscapes and that this situation is not likely to change, the dispersal of seeds might be enhanced by moving hay or cattle from fens to damaged sites, or by reestablishing lost hydrological connections. ?? IAVS; Opulus Press.

  4. Characterization of seed germination and protocorm development of Cyrtopodium glutiniferum (Orchidaceae promoted by mycorrhizal fungi Epulorhiza spp.

    Directory of Open Access Journals (Sweden)

    Marlon Corrêa Pereira

    2015-12-01

    Full Text Available Cyrtopodium glutiniferum is an endemic orchid of Brazil with potential medicinal and ornamental applications. As mycorrhizal fungi are essential for the initiation of the orchid life cycle, the aim of this study was to determine the strains of mycorrhizal fungi suitable for seed germination and protocorm development of C. glutiniferum and to characterize the symbiotic development of protocorms. Seeds of C. glutiniferum were inoculated with nine mycorrhizal fungi, Epulorhiza spp., Ceratorhiza spp., Rhizoctonia sp., originally isolated from Brazilian neotropical orchids. Only Epulorhiza isolates promoted seed germination and protocorm development. Three Epulorhiza isolates (M1, M6 = E. epiphytica, M20 = Epulorhiza sp. promoted protocorm development until leaf production at 63 days. The protocorms are comprised of parenchyma cells delimited by a unistratified epidermis; the parenchyma cells of the upper part of the protocorms are smaller than those located more towards the base. Intact and digested pelotons were observed inside of protocorms implying that the seedlings were capable of mycotrophy. Additionally, the development of a bud primordium only occurred after colonization by fungus. This study suggests that C. glutiniferum has a preference for strains of Epulorhiza and that fungus digestion is essential to protocorm development.

  5. Paper (essay on seed

    Directory of Open Access Journals (Sweden)

    Mirić Mladen

    2013-01-01

    Full Text Available Based on detailed studies of the past of the agrarian thought of the world (evolution of agro-innovation, and within it, the relationship of man and seed, the author has selected key data for Table 1. In addition, more or less known folk sayings, proverbs, curses and allegories in which the seed is the key word have been collected. Then, religious books, folk art and literature works (sayings of prominent individuals and experts and observations of the author himself have been studied. According to the collected opus, it can be concluded that the vast importance of seed meaningfully entwined into all spheres of folk life and cultural heritage. Seed is directly tied to the following eight key (revolutionary milestones in the food and economic life of mankind: 1. the first and for the longest time, the seed used to be the main food of the people and the first food reserve; 2. Neolithic Revolution was simply caused by the sowing of seeds; 3. for the sake of sowing man began to develop more complex processing techniques; 4. everywhere and forever, especially since the late 15th century, the seed has been a carrier of (rescuing plants between Europe and the New World, that is, between continents; 5. seed was the first product that has been chemically treated since the mid-18th century; 6. standard operation procedures and quality are promoted on seed by which it became the first product to have prescribed (compulsory methods, but it also became a good whose quality has to be tested before sale; 7. hybrid seed is a 'perpetrator' of the green revolution in the mid-20th century and at last there is disputable seed of genetically modified organisms that are spreading with certain reactions. The author proposes that the United Nations Standard International Trade Classification includes a special section (division which would classify the seed for sowing, while beyond this Classification terms such as seed, plant seed should be replaced with non-seed

  6. Transcriptomic Analysis of Long Non-Coding RNAs and Coding Genes Uncovers a Complex Regulatory Network That Is Involved in Maize Seed Development

    Directory of Open Access Journals (Sweden)

    Ming Zhu

    2017-10-01

    Full Text Available Long non-coding RNAs (lncRNAs have been reported to be involved in the development of maize plant. However, few focused on seed development of maize. Here, we identified 753 lncRNA candidates in maize genome from six seed samples. Similar to the mRNAs, lncRNAs showed tissue developmental stage specific and differential expression, indicating their putative role in seed development. Increasing evidence shows that crosstalk among RNAs mediated by shared microRNAs (miRNAs represents a novel layer of gene regulation, which plays important roles in plant development. Functional roles and regulatory mechanisms of lncRNAs as competing endogenous RNAs (ceRNA in plants, particularly in maize seed development, are unclear. We combined analyses of consistently altered 17 lncRNAs, 840 mRNAs and known miRNA to genome-wide investigate potential lncRNA-mediated ceRNA based on “ceRNA hypothesis”. The results uncovered seven novel lncRNAs as potential functional ceRNAs. Functional analyses based on their competitive coding-gene partners by Gene Ontology (GO and KEGG biological pathway demonstrated that combined effects of multiple ceRNAs can have major impacts on general developmental and metabolic processes in maize seed. These findings provided a useful platform for uncovering novel mechanisms of maize seed development and may provide opportunities for the functional characterization of individual lncRNA in future studies.

  7. Bruchid egg induced transcript dynamics in developing seeds of black gram (Vigna mungo.

    Directory of Open Access Journals (Sweden)

    Indrani K Baruah

    Full Text Available Black gram (Vigna mungo seeds are a rich source of digestible proteins, however, during storage these seeds are severely damaged by bruchids (Callosobruchus spp., reducing seed quality and yield losses. Most of the cultivated genotypes of black gram are susceptible to bruchids, however, few tolerant genotypes have also been identified but the mechanism of tolerance is poorly understood. We employed Suppression Subtractive Hybridization (SSH to identify specifically, but rarely expressed bruchid egg induced genes in black gram. In this study, Suppression Subtractive Hybridization (SSH library was constructed to study the genes involved in defense response in black gram against bruchid infestation. An EST library of 277 clones was obtained for further analyses. Based on CAP3 assembly, 134 unigenes were computationally annotated using Blast2GOPRO software. In all, 20 defense related genes were subject to quantitative PCR analysis (qPCR out of which 12 genes showed up-regulation in developing seeds of the pods oviposited by bruchids. Few major defense genes like defensin, pathogenesis related protein (PR, lipoxygenase (LOX showed high expression levels in the oviposited population when compared with the non-oviposited plants. This is the first report on defense related gene transcript dynamics during the bruchid-black gram interaction using SSH library. This library would be useful to clone defense related gene(s such as defensin as represented in our library for crop improvement.

  8. Study of total seed storage protein in indigenous Brassica species ...

    African Journals Online (AJOL)

    hope&shola

    2010-11-08

    Nov 8, 2010 ... Brassica napus. Acc. No Location. Acc. No Location. Acc. No Location. Acc. No Location. 500. Islamsbad. 522. Hassan Abdal. 544. Naseer abad. 566. Rawalpindi. 501. Islamsbad. 523. Bannu. 545. Jaglot. 567. Karak. 502. Rawalakot. 524. Karak. 546. Haripur North. 568. Akora Khattack. 503. Sibi. 525.

  9. Novel Insights into the Influence of Seed Sarcotesta Photosynthesis on Accumulation of Seed Dry Matter and Oil Content in Torreya grandis cv. “Merrillii”

    Directory of Open Access Journals (Sweden)

    Yuanyuan Hu

    2018-01-01

    Full Text Available Seed oil content is an important trait of nut seeds, and it is affected by the import of carbon from photosynthetic sources. Although green leaves are the main photosynthetic organs, seed sarcotesta photosynthesis also supplies assimilates to seed development. Understanding the relationship between seed photosynthesis and seed development has theoretical and practical significance in the cultivation of Torreya grandis cv. “Merrillii.” To assess the role of seed sarcotesta photosynthesis on the seed development, anatomical and physiological traits of sarcotesta were measured during two growing seasons in the field. Compared with the attached current-year leaves, the sarcotesta had higher gross photosynthetic rate at the first stage of seed development. At the late second stage of seed development, sarcotesta showed down-regulation of PSII activity, as indicated by significant decrease in the following chlorophyll fluorescence parameters: the maximum PSII efficiency (Fv/Fm, the PSII quantum yield (ΦPSII, and the photosynthetic quenching coefficient (qP. The ribulose 1, 5—bisphosphate carboxylase (Rubisco activity, the total chlorophyll content (Chl(a+b and nitrogen content in the sarcotesta were also significantly decreased during that period. Treatment with DCMU [3-(3,4-dichlorophenyl-1,1-dimethylurea] preventing seed photosynthesis decreased the seed dry weight and the oil content by 25.4 and 25.5%, respectively. We conclude that seed photosynthesis plays an important role in the dry matter accumulation at the first growth stage. Our results also suggest that down-regulation of seed photosynthesis is a plant response to re-balance the source-sink ratio at the second growth stage. These results suggest that seed photosynthesis is important for biomass accumulation and oil synthesis of the Torreya seeds. The results will facilitate achieving higher yields and oil contents in nut trees by selection for higher seed photosynthesis cultivars.

  10. Novel Insights into the Influence of Seed Sarcotesta Photosynthesis on Accumulation of Seed Dry Matter and Oil Content in Torreya grandis cv. “Merrillii”

    Science.gov (United States)

    Hu, Yuanyuan; Zhang, Yongling; Yu, Weiwu; Hänninen, Heikki; Song, Lili; Du, Xuhua; Zhang, Rui; Wu, Jiasheng

    2018-01-01

    Seed oil content is an important trait of nut seeds, and it is affected by the import of carbon from photosynthetic sources. Although green leaves are the main photosynthetic organs, seed sarcotesta photosynthesis also supplies assimilates to seed development. Understanding the relationship between seed photosynthesis and seed development has theoretical and practical significance in the cultivation of Torreya grandis cv. “Merrillii.” To assess the role of seed sarcotesta photosynthesis on the seed development, anatomical and physiological traits of sarcotesta were measured during two growing seasons in the field. Compared with the attached current-year leaves, the sarcotesta had higher gross photosynthetic rate at the first stage of seed development. At the late second stage of seed development, sarcotesta showed down-regulation of PSII activity, as indicated by significant decrease in the following chlorophyll fluorescence parameters: the maximum PSII efficiency (Fv/Fm), the PSII quantum yield (ΦPSII), and the photosynthetic quenching coefficient (qP). The ribulose 1, 5—bisphosphate carboxylase (Rubisco) activity, the total chlorophyll content (Chl(a+b)) and nitrogen content in the sarcotesta were also significantly decreased during that period. Treatment with DCMU [3-(3,4-dichlorophenyl)-1,1-dimethylurea] preventing seed photosynthesis decreased the seed dry weight and the oil content by 25.4 and 25.5%, respectively. We conclude that seed photosynthesis plays an important role in the dry matter accumulation at the first growth stage. Our results also suggest that down-regulation of seed photosynthesis is a plant response to re-balance the source-sink ratio at the second growth stage. These results suggest that seed photosynthesis is important for biomass accumulation and oil synthesis of the Torreya seeds. The results will facilitate achieving higher yields and oil contents in nut trees by selection for higher seed photosynthesis cultivars. PMID:29375592

  11. Genomic Prediction of Testcross Performance in Canola (Brassica napus)

    Science.gov (United States)

    Jan, Habib U.; Abbadi, Amine; Lücke, Sophie; Nichols, Richard A.; Snowdon, Rod J.

    2016-01-01

    Genomic selection (GS) is a modern breeding approach where genome-wide single-nucleotide polymorphism (SNP) marker profiles are simultaneously used to estimate performance of untested genotypes. In this study, the potential of genomic selection methods to predict testcross performance for hybrid canola breeding was applied for various agronomic traits based on genome-wide marker profiles. A total of 475 genetically diverse spring-type canola pollinator lines were genotyped at 24,403 single-copy, genome-wide SNP loci. In parallel, the 950 F1 testcross combinations between the pollinators and two representative testers were evaluated for a number of important agronomic traits including seedling emergence, days to flowering, lodging, oil yield and seed yield along with essential seed quality characters including seed oil content and seed glucosinolate content. A ridge-regression best linear unbiased prediction (RR-BLUP) model was applied in combination with 500 cross-validations for each trait to predict testcross performance, both across the whole population as well as within individual subpopulations or clusters, based solely on SNP profiles. Subpopulations were determined using multidimensional scaling and K-means clustering. Genomic prediction accuracy across the whole population was highest for seed oil content (0.81) followed by oil yield (0.75) and lowest for seedling emergence (0.29). For seed yieId, seed glucosinolate, lodging resistance and days to onset of flowering (DTF), prediction accuracies were 0.45, 0.61, 0.39 and 0.56, respectively. Prediction accuracies could be increased for some traits by treating subpopulations separately; a strategy which only led to moderate improvements for some traits with low heritability, like seedling emergence. No useful or consistent increase in accuracy was obtained by inclusion of a population substructure covariate in the model. Testcross performance prediction using genome-wide SNP markers shows considerable

  12. Studies of 12C6+ heavy ions irradiation on seed germination and young seedling growth of four crops

    International Nuclear Information System (INIS)

    Sun Landi; Zhang Yingcong; Wu Dali; Liang Kai; Zhang Yanping; Jia Ruiling; Qin Qianqian; Cheng Xi; Qian Pingping; Li Wenjian; Hou Suiwen

    2008-01-01

    Crops of Brassica napus L., Linum usitatissmum L., Allium f istulosum L. and Lens culinaris Medic. were irradiated by 80 MeV/u 12 C 6+ ion beams with doses of 30, 90 and 180 Gy. The germination rates and heights of seedlings of M 1 and M 2 generation of these four plants were studied. The results indicated that germination rates and average heights of the B. napus and L. usitatissmum were improved by appropriate dose treatment, while great suppression was found in the irradiated groups of the A. fistulosum. As far as the L. Culinaris was concerned, little differences was observed on M 1 germination rate, but the 90 Gy irradiation was favorable to growth of plant. The treatments with 30, 90 and 180 Gy were inferior to contrast one on M 2 germination rate of the four species. Seedlings of M 2 generation of the B. napus, L. sitatissmum and L. culinaris under 30 Gy grew better than the other groups, while the best performance of the A. fistulosum was shown by the control group. (authors)

  13. High-temperature LDV seed particle development

    Science.gov (United States)

    Frish, Michael B.; Pierce, Vicky G.

    1989-05-01

    The feasibility of developing a method for making monodisperse, unagglomerated spherical particles greater than 50 nm in diameter was demonstrated. Carbonaceous particles were made by pyrolyzing ethylene with a pulsed CO2 laser, thereby creating a non-equilibrium mixture of carbon, hydrogen, hydrocarbon vapors, and unpyrolyzed ethylene. Via a complex series of reactions, the carbon and hydrocarbon vapors quickly condensed into the spherical particles. By cooling and dispersing them in a supersonic expansion immediately after their creation, the hot newly-formed spheres were prevented from colliding and coalescing, thus preventing the problem of agglomeration which as plagued other investigators studying laser-simulated particle formation. The cold particles could be left suspended in the residual gases indefinitely without agglomerating. Their uniform sizes and unagglomerated nature were visualized by collecting the particles on filters that were subsequently examined using electron microscopy. It was found the mean particle size can be coarsely controlled by varying the initial ethylene pressure, and can be finely controlled by varying the fluence (energy/unit area) with which the laser irradiates the gas. The motivating application for this research was to manufacture particles that could be used as laser Doppler velocimetry (LDV) seeds in high-temperature high-speed flows. Though the particles made in this program will not evaporate until heated to about 3000 K, and thus could serve as LDV seeds in some applications, they are not ideal when the hot atmosphere is also oxidizing. In that situation, ceramic materials would be preferable. Research performed elsewhere has demonstrated that selected ceramic materials can be manufactured by laser pyrolysis of appropriate supply gases. It is anticipated that, when the same gases are used in conjunction with the rapid cooling technique, unagglomerated spherical ceramic particles can be made with little difficulty. Such

  14. Organic leek seed production - securing seed quality

    DEFF Research Database (Denmark)

    Deleuran, Lise Christina; Boelt, Birte

    2011-01-01

    To maintain integrity in organic farming, availability of organically produced GM-free seed of varieties adapted to organic production systems is of vital impor-tance. Despite recent achievements, organic seed supply for a number of vegetable species is insufficient. Still, in many countries...... seeds. Tunnel production is a means of securing seed of high genetic purity and quality, and organic leek (Allium porrum L.) seed production was tested in tunnels in Denmark. The present trial focused on steckling size and in all years large stecklings had a positive effect on both seed yield...

  15. Organic Leek Seed Production - Securing Seed Quality

    DEFF Research Database (Denmark)

    Deleuran, L C; Boelt, B

    2011-01-01

    To maintain integrity in organic farming, availability of organically produced GM-free seed of varieties adapted to organic production systems is of vital impor-tance. Despite recent achievements, organic seed supply for a number of vegetable species is insufficient. Still, in many countries...... seeds. Tunnel production is a means of securing seed of high genetic purity and quality, and organic leek (Allium porrum L.) seed production was tested in tunnels in Denmark. The present trial focused on steckling size and in all years large stecklings had a positive effect on both seed yield...

  16. Development of a cell-seeded modified small intestinal submucosa for urethroplasty

    Directory of Open Access Journals (Sweden)

    Long Zhang

    2016-03-01

    Conclusions: A modified 3D porous SIS scaffold seeded with UC and treated with PAA produces better urethroplasty results than cell-seeded untreated SIS scaffolds, or unseeded PAA treated SIS scaffolds.

  17. Leptosphaeria maculans effector AvrLm4-7 affects salicylic acid (SA) and ethylene (ET) signalling and hydrogen peroxide (H2O2) accumulation in Brassica napus

    Czech Academy of Sciences Publication Activity Database

    Nováková, Miroslava; Šašek, Vladimír; Trdá, Lucie; Krutinová, Hana; Mongin, T.; Valentová, O.; Balesdent, M.H.; Rouxel, T.; Burketová, Lenka

    2016-01-01

    Roč. 17, č. 6 (2016), s. 818-831 ISSN 1464-6722 R&D Projects: GA ČR GA13-26798S Institutional support: RVO:61389030 Keywords : AvrLm4-7 * Brassica napus * effector Subject RIV: GF - Plant Pathology, Vermin, Weed, Plant Protection Impact factor: 4.697, year: 2016

  18. Sunflower (Helianthus annuus) long-chain acyl-coenzyme A synthetases expressed at high levels in developing seeds.

    Science.gov (United States)

    Aznar-Moreno, Jose A; Venegas Calerón, Mónica; Martínez-Force, Enrique; Garcés, Rafael; Mullen, Robert; Gidda, Satinder K; Salas, Joaquín J

    2014-03-01

    Long chain fatty acid synthetases (LACSs) activate the fatty acid chains produced by plastidial de novo biosynthesis to generate acyl-CoA derivatives, important intermediates in lipid metabolism. Oilseeds, like sunflower, accumulate high levels of triacylglycerols (TAGs) in their seeds to nourish the embryo during germination. This requires that sunflower seed endosperm supports very active glycerolipid synthesis during development. Sunflower seed plastids produce large amounts of fatty acids, which must be activated through the action of LACSs, in order to be incorporated into TAGs. We cloned two different LACS genes from developing sunflower endosperm, HaLACS1 and HaLACS2, which displayed sequence homology with Arabidopsis LACS9 and LACS8 genes, respectively. These genes were expressed at high levels in developing seeds and exhibited distinct subcellular distributions. We generated constructs in which these proteins were fused to green fluorescent protein and performed transient expression experiments in tobacco cells. The HaLACS1 protein associated with the external envelope of tobacco chloroplasts, whereas HaLACS2 was strongly bound to the endoplasmic reticulum. Finally, both proteins were overexpressed in Escherichia coli and recovered as active enzymes in the bacterial membranes. Both enzymes displayed similar substrate specificities, with a very high preference for oleic acid and weaker activity toward stearic acid. On the basis of our findings, we discuss the role of these enzymes in sunflower oil synthesis. © 2013 Scandinavian Plant Physiology Society.

  19. Empty seeds are not always bad: simultaneous effect of seed emptiness and masting on animal seed predation.

    Directory of Open Access Journals (Sweden)

    Ramón Perea

    Full Text Available Seed masting and production of empty seeds have often been considered independently as different strategies to reduce seed predation by animals. Here, we integrate both phenomena within the whole assemblage of seed predators (both pre and post-dispersal and in two contrasting microsites (open vs. sheltered to improve our understanding of the factors controlling seed predation in a wind-dispersed tree (Ulmus laevis. In years with larger crop sizes more avian seed predators were attracted with an increase in the proportion of full seeds predated on the ground. However, for abundant crops, the presence of empty seeds decreased the proportion of full seeds predated. Empty seeds remained for a very long period in the tree, making location of full seeds more difficult for pre-dispersal predators and expanding the overall seed drop period at a very low cost (in dry biomass and allocation of C, N and P. Parthenocarpy (non-fertilized seeds was the main cause of seed emptiness whereas seed abortion was produced in low quantity. These aborted seeds fell prematurely and, thus, could not work as deceptive seeds. A proportion of 50% empty seeds significantly reduced ground seed predation by 26%. However, a high rate of parthenocarpy (beyond 50% empty seeds did not significantly reduce seed predation in comparison to 50% empty seeds. We also found a high variability and unpredictability in the production of empty seeds, both at tree and population level, making predator deception more effective. Open areas were especially important to facilitate seed survival since rodents (the main post-dispersal predators consumed seeds mostly under shrub cover. In elm trees parthenocarpy is a common event that might work as an adaptive strategy to reduce seed predation. Masting per se did not apparently reduce the overall proportion of seeds predated in this wind-dispersed tree, but kept great numbers of seeds unconsumed.

  20. Iodine-125 seeds for cancer treatment

    Energy Technology Data Exchange (ETDEWEB)

    Rostelato, Maria E.C.M.; Zeituni, Carlos A.; Feher, Anselmo; Moura, Joao A.; Moura, Eduardo S.; Nagatomi, Helio R.; Manzoli, Jose E.; Souza, Carla D., E-mail: elisaros@ipen.b, E-mail: czeituni@pobox.co, E-mail: afeher@ipen.b, E-mail: jmoura31@yahoo.com.b, E-mail: esmoura@ipen.b, E-mail: hrnagato@ipen.b, E-mail: jemanzoli@ipen.b, E-mail: cdsouza@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Karam, Dib, E-mail: dib.karan@usp.b [Universidade de Sao Paulo (USP), SP (Brazil). Escola de Artes, Ciencias e Humanidades

    2009-07-01

    In Brazil, cancer has become one of the major public health problems. An estimate by the Health Ministry showed that 466,430 people had the disease in the country in 2008. The prostate cancer is the second largest death cause among men. The National Institute of Cancer estimated the occurrence of 50,000 new cases for 2009. Some of these patients are treated with Brachytherapy, using Iodine-125 seeds. By this technique, small seeds with Iodine-125, a radioactive material, are implanted in the prostate. The advantages of radioactive seed implants are the preservation of healthy tissues and organs near the prostate, besides the low rate of impotence and urinary incontinence. The Energy and Nuclear Research Institute - IPEN, which belongs to the Nuclear Energy National Commission - CNEN, established a program for the development of the technique and production of Iodine-125 seeds in Brazil. The estimate for the 125-Iodine seeds demand is of 8,000 seeds/month and the laboratory to be implanted will need this production capacity. The purpose of this paper is to explain the project status and show some data about the seeds used in the country. The project will be divided in two phases: technological development of a prototype and a laboratory implementation for the seeds production. (author)

  1. Potential effects of arboreal and terrestrial avian dispersers on seed dormancy, seed germination and seedling establishment in Ormosia (Papilionoideae) species in Peru

    Science.gov (United States)

    Foster, Mercedes S.

    2008-01-01

    The relative effectiveness of arboreal or terrestrial birds at dispersing seeds of Ormosia macrocalyx and O. bopiensis (Fabaceae: Papilionoideae) were studied in south-eastern Peru. Seeds of both species were either scarified, to represent seed condition after dispersal by terrestrial birds, or left intact, to represent seed condition after dispersal by arboreal birds. Seeds were distributed along forest transects, and germination, seedling development and mortality were monitored to determine the successes of the two groups at producing seedlings. Scarified seeds germinated with the early rains of the dry-to-wet-season transition, when erratic rainfall was interspersed with long dry spells. Intact seeds germinated 30 d later when the rain was more plentiful and regular. Intact seeds of O. macrocalyx gave rise to significantly more seedlings (41.1% vs. 25.5%) than did scarified seeds, in part, because significantly more seedlings from scarified seeds (n = 20) than from intact seeds (n = 3) died from desiccation when their radicles failed to enter the dry ground present during the dry-to-wet-season transition. Also, seedlings from scarified seeds were neither larger nor more robust than those from intact seeds despite their longer growing period. Results are consistent with the hypothesis that dispersal effectiveness of arboreal birds, at least for O. macrocalyx, is greater than that of terrestrial birds. Screen-house experiments in which seedlings developed under different watering regimes supported this result. Numbers of seedlings developing from intact and scarified seeds of O. bopiensis did not differ significantly.

  2. Effects of environmental variation during seed production on seed dormancy and germination.

    Science.gov (United States)

    Penfield, Steven; MacGregor, Dana R

    2017-02-01

    The environment during seed production has major impacts on the behaviour of progeny seeds. It can be shown that for annual plants temperature perception over the whole life history of the mother can affect the germination rate of progeny, and instances have been documented where these affects cross whole generations. Here we discuss the current state of knowledge of signal transduction pathways controlling environmental responses during seed production, focusing both on events that take place in the mother plant and those that occur directly as a result of environmental responses in the developing zygote. We show that seed production environment effects are complex, involving overlapping gene networks active independently in fruit, seed coat, and zygotic tissues that can be deconstructed using careful physiology alongside molecular and genetic experiments. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  3. Effect of seed rate and row spacing in seed production of Festulolium

    DEFF Research Database (Denmark)

    Deleuran, L C; Gislum, R; Boelt, B

    2010-01-01

    -type festulolium, Paulita, and in a fescue-type festulolium, Hykor. The objectives were to examine the influence of row spacing (12, 24, and 36 cm) and seed rate (8, 12, or 16 kg ha-1) on plant establishment, development, and seed yield. Observations of autumn and spring in-row plant densities indicated......Festulolium ( Festulolium) is a cross between the two species fescue (Festuca L.) and ryegrass (Lolium L.) and is a promising forage and seed crop. To stimulate the production of Danish organic festulolium seeds a three-year field experiment was performed from 1999 to 2002 in a ryegrass...... satisfactory plant establishment in all combinations of seed rate and row spacing. The number of reproductive tillers was in the range from 800 to 2200 m-2 in Paulita and from 500 to 1300 m-2 in Hykor. Row spacing had an effect on the number of reproductive tillers and in both cultivars the highest number...

  4. Purification and sequencing of radish seed calmodulin antagonists phosphorylated by calcium-dependent protein kinase.

    Science.gov (United States)

    Polya, G M; Chandra, S; Condron, R

    1993-02-01

    A family of radish (Raphanus sativus) calmodulin antagonists (RCAs) was purified from seeds by extraction, centrifugation, batch-wise elution from carboxymethyl-cellulose, and high performance liquid chromatography (HPLC) on an SP5PW cation-exchange column. This RCA fraction was further resolved into three calmodulin antagonist polypeptides (RCA1, RCA2, and RCA3) by denaturation in the presence of guanidinium HCl and mercaptoethanol and subsequent reverse-phase HPLC on a C8 column eluted with an acetonitrile gradient in the presence of 0.1% trifluoroacetic acid. The RCA preparation, RCA1, RCA2, RCA3, and other radish seed proteins are phosphorylated by wheat embryo Ca(2+)-dependent protein kinase (CDPK). The RCA preparation contains other CDPK substrates in addition to RCA1, RCA2, and RCA3. The RCA preparation, RCA1, RCA2, and RCA3 inhibit chicken gizzard calmodulin-dependent myosin light chain kinase assayed with a myosin-light chain-based synthetic peptide substrate (fifty percent inhibitory concentrations of RCA2 and RCA3 are about 7 and 2 microM, respectively). N-terminal sequencing by sequential Edman degradation of RCA1, RCA2, and RCA3 revealed sequences having a high homology with the small subunit of the storage protein napin from Brassica napus and with related proteins. The deduced amino acid sequences of RCA1, RCA2, RCA3, and RCA3' (a subform of RCA3) have agreement with average molecular masses from electrospray mass spectrometry of 4537, 4543, 4532, and 4560 kD, respectively. The only sites for serine phosphorylation are near or at the C termini and hence adjacent to the sites of proteolytic precursor cleavage.

  5. Soybean roots retain the seed urease isozyme synthesized during embryo development

    International Nuclear Information System (INIS)

    Torisky, R.S.; Polacco, J.C.

    1990-01-01

    Roots of young soybean (Glycine max [L.] Merr.) plants (up to 25 days old) contain two distinct urease isozymes, which are separable by hydroxyapatite chromatography. These two urease species (URE1 and URE2) differ in: (a) electrophoretic mobility in native gels, (b) pH dependence, and (c) recognition by a monoclonal antibody specific for the seed (embryo-specific) urease. By these parameters root URE1 urease is similar to the abundant embryo-specific urease isozyme, while root URE2 resembles the ubiquitous urease which has previously been found in all soybean tissues examined (leaf, embryo, seed coat, and cultured cells). The embryo-specific and ubiquitous urease isozymes are products of the Eu1 and Eu4 structural genes, respectively. Roots of the eu1-sun/eu1-sun genotype, which lacks the embryo-specific urease (i.e. seed urease-null), contain no URE1 urease activity. Roots of eu4/eu4, which lacks ubiquitous urease, lack the URE2 (leaflike) urease activity. From these genetic and biochemical criteria, then, we conclude that URE1 and URE2 are the embryo-specific and ubiquitous ureases, respectively. Adventitious roots generated from cuttings of any urease genotype lack URE1 activity. In seedling roots the seedlike (URE1) activity declines during development. Roots of 3-week-old plants contain 5% of the total URE1 activity of the radicle of 4-day-old seedlings, which, in turn, has approximately the same urease activity level as the dormant embryonic axis. The embryo-specific urease incorporates label from [ 35 S]methionine during embryo development but not during germination, indicating that there is no de novo synthesis of the embryo-specific (URE1) urease in the germinating root

  6. CvADH1, a member of short-chain alcohol dehydrogenase family, is inducible by gibberellin and sucrose in developing watermelon seeds.

    Science.gov (United States)

    Kim, Joonyul; Kang, Hong-Gyu; Jun, Sung-Hoon; Lee, Jinwon; Yim, Jieun; An, Gynheung

    2003-01-01

    To understand the molecular mechanisms that control seed formation, we selected a seed-preferential gene (CvADH1) from the ESTs of developing watermelon seeds. RNA blot analysis and in situ localization showed that CvADH1 was preferentially expressed in the nucellar tissue. The CvADH1 protein shared about 50% homology with short-chain alcohol dehydrogenase including ABA2 in Arabidopsis thaliana, stem secoisolariciresinol dehydrogenase in Forsythia intermedia, and 3beta-hydroxysterol dehydrogenase in Digitalis lanata. We investigated gene-expression levels in seeds from both normally pollinated fruits and those made parthenocarpic via N-(2-chloro-4-pyridyl)-N'-phenylurea treatment, the latter of which lack zygotic tissues. Whereas the transcripts of CvADH1 rapidly started to accumulate from about the pre-heart stage in normal seeds, they were not detectable in the parthenocarpic seeds. Treating the parthenogenic fruit with GA(3) strongly induced gene expression, up to the level accumulated in pollinated seeds. These results suggest that the CvADH1 gene is induced in maternal tissues by signals made in the zygotic tissues, and that gibberellin might be one of those signals. We also observed that CvADH1 expression was induced by sucrose in the parthenocarpic seeds. Therefore, we propose that the CvADH1 gene is inducible by gibberellin, and that sucrose plays an important role in the maternal tissues of watermelon during early seed development.

  7. Effect of cultural conditions on the seed-to-seed growth of Arabidopsis and Cardamine - A study of growth rates and reproductive development as affected by test tube seals

    Science.gov (United States)

    Hoshizaki, T.

    1982-01-01

    The effects of test tube seals on the growth, flowering, and seed pod formation of Arabidopsis thaliana (L.) Heynh., mouse ear cress, and Cardamine oligosperma Nutt, bitter cress, are studied in order to assess the conditions used in weightlessness experiments. Among other results, it is found that the growth (height) and flowering (date of bud appearance) were suppressed in mouse ear cress in tubes sealed with Saran. Seed pod formation which occurred by day 45 in open-to-air controls, was still lacking in the sealed plants even up to day 124. The growth and flowering of bitter cress were also suppressed by the Saran seal, although up to day 55 the Saran-sealed plants were taller. It is suggested that atmospheric composition was the cause of the suppression of growth, flowering, and seed pod development in these plants, since the mouse ear cress renewed their growth and then set seed pods after the Saran seal was ruptured.

  8. Role of nano-range amphiphilic polymers in seed quality enhancement of soybean and imidacloprid retention capacity on seed coatings.

    Science.gov (United States)

    Adak, Totan; Kumar, Jitendra; Shakil, Najam A; Pandey, Sushil

    2016-10-01

    Nano-size and wide-range solubility of amphiphilic polymers (having both hydrophilic and hydrophobic blocks) can improve uniformity in seed coatings. An investigation was carried out to assess the positive effect of amphiphilic polymers over hydrophilic or hydrophobic polymers as seed coating agents and pesticide carriers. Amphiphilic polymers with 127.5-354 nm micelle size were synthesized in the laboratory using polyethylene glycols and aliphatic di-acids. After 6 months of storage, germination of uncoated soybean seeds decreased drastically from 97.80 to 81.55%, while polymer-coated seeds showed 89.44-95.92% germination. Similarly, vigour index-1 was reduced from 3841.10 to 2813.06 for control seeds but ranged from 3375.59 to 3844.60 for polymer-coated seeds after 6 months. The developed imidacloprid formulations retained more pesticide on soybean seed coatings than did a commercial formulation (Gaucho(®) 600 FS). The time taken for 50% release of imidacloprid from seed coatings in water was 7.12-9.11 h for the developed formulations and 0.41 h for the commercial formulation. Nano-range amphiphilic polymers can be used to protect soybean seeds from ageing. Formulations as seed treatments may produce improved and sustained efficacy with minimum environmental contamination. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  9. Interspecific variation in persistence of buried weed seeds follows trade-offs among physiological, chemical, and physical seed defenses.

    Science.gov (United States)

    Davis, Adam S; Fu, Xianhui; Schutte, Brian J; Berhow, Mark A; Dalling, James W

    2016-10-01

    Soil seedbanks drive infestations of annual weeds, yet weed management focuses largely on seedling mortality. As weed seedbanks increasingly become reservoirs of herbicide resistance, species-specific seedbank management approaches will be essential to weed control. However, the development of seedbank management strategies can only develop from an understanding of how seed traits affect persistence.We quantified interspecific trade-offs among physiological, chemical, and physical traits of weed seeds and their persistence in the soil seedbank in a common garden study. Seeds of 11 annual weed species were buried in Savoy, IL, from 2007 through 2012. Seedling recruitment was measured weekly and seed viability measured annually. Seed physiological (dormancy), chemical (phenolic compound diversity and concentration; invertebrate toxicity), and physical traits (seed coat mass, thickness, and rupture resistance) were measured.Seed half-life in the soil ( t 0.5 ) showed strong interspecific variation ( F 10,30  = 15, p  central role of seed dormancy in controlling seed persistence.A quantitative comparison between our results and other published work indicated that weed seed dormancy and seedbank persistence are linked across diverse environments and agroecosystems. Moreover, among seedbank-forming early successional plant species, relative investment in chemical and physical seed defense varies with seedbank persistence. Synthesis and applications . Strong covariance among weed seed traits and persistence in the soil seedbank indicates potential for seedbank management practices tailored to specific weed species. In particular, species with high t 0.5 values tend to invest less in chemical defenses. This makes them highly vulnerable to physical harvest weed seed control strategies, with small amounts of damage resulting in their full decay.

  10. Impact of planting dates and insecticide strategies for managing crucifer flea beetles (Coleoptera: Chrysomelidae) in spring-planted canola.

    Science.gov (United States)

    Knodel, Janet J; Olson, Denise L; Hanson, Bryan K; Henson, Robert A

    2008-06-01

    Integration of cultural practices, such as planting date with insecticide-based strategies, was investigated to determine best management strategy for flea beetles (Phyllotreta spp.) (Coleoptera: Chrysomelidae) in canola (Brassica napus L.). We studied the effect of two spring planting dates of B. napus and different insecticide-based management strategies on the feeding injury caused by fleabeetles in North Dakota during 2002-2003. Adult beetle peak emergence usually coincided with the emergence of the early planted canola, and this resulted in greater feeding injury in the early planted canola than later planted canola. Use of late-planted canola may have limited potential for cultural control of flea beetle, because late-planted canola is at risk for yield loss due to heat stress during flowering. Flea beetle injury ratings declined when 1) the high rate of insecticide seed treatment plus a foliar insecticide applied 21 d after planting was used, 2) the high rate of insecticide seed treatment only was used, or 3) two foliar insecticide sprays were applied. These insecticide strategies provided better protection than the low rates of insecticide seed treatments or a single foliar spray, especially in areas with moderate-to-high flea beetle populations. The foliar spray on top of the seed treatment controlled later-emerging flea beetles as the seed treatment residual was diminishing and the crop became vulnerable to feeding injury. The best insecticide strategy for management of flea beetle was the high rate of insecticide seed treatment plus a foliar insecticide applied at 21 d after planting, regardless of planting date.

  11. A correlation between tocopherol content and antioxidant activity in seeds and germinating seeds of soybean cultivars.

    Science.gov (United States)

    Lee, Yu Young; Park, Hyang Mi; Hwang, Tae Young; Kim, Sun Lim; Kim, Mi Jung; Lee, Seuk Ki; Seo, Min Jung; Kim, Kee Jong; Kwon, Young-Up; Lee, Sang Chul; Kim, Yul Ho

    2015-03-15

    Tocopherols are crucial lipid-soluble antioxidants and essential nutrients. There is increasing interest in the biofortification of crops with vitamin E for reducing micronutrient malnutrition. However, relatively little is known about the development of soybean cultivars with high levels of tocopherol through combined breeding. Tocopherol contents of seeds and germinating seeds of 28 Korean soybean cultivars were analyzed and evaluated for health-promoting activities. Total tocopherol concentrations ranged from 203.9 to 503.1 µg g⁻¹ in seeds and from 20.1 to 230.1 µg g⁻¹ in germinating seeds. The traditional landraces of HaNagari (HN, 503.1 µg g⁻¹), Orialtae (OL, 486.6 µg g⁻¹), SuMoktae (SM, 476.5 µg g⁻¹) and SoRitae (SR, 475.5 µg g⁻¹) showed high levels of tocopherol content. The contents of the four isomers of tocopherol in seeds and germinating seeds were correlated with lipid peroxidation. The γ- and δ-tocopherol contents in seeds were related to 1,1-diphenyl-2-picrylhydrazyl free radical scavenging activity (0.434; P tocopherol content was higher in soybean landraces as compared with modern cultivars developed by cross-breeding. These results suggest that soybean breeding is necessary to increase tocopherol levels. © 2014 Society of Chemical Industry.

  12. A statistical model for estimating maternal-zygotic interactions and parent-of-origin effects of QTLs for seed development.

    Directory of Open Access Journals (Sweden)

    Yanchun Li

    Full Text Available Proper development of a seed requires coordinated exchanges of signals among the three components that develop side by side in the seed. One of these is the maternal integument that encloses the other two zygotic components, i.e., the diploid embryo and its nurturing annex, the triploid endosperm. Although the formation of the embryo and endosperm contains the contributions of both maternal and paternal parents, maternally and paternally derived alleles may be expressed differently, leading to a so-called parent-of-origin or imprinting effect. Currently, the nature of how genes from the maternal and zygotic genomes interact to affect seed development remains largely unknown. Here, we present a novel statistical model for estimating the main and interaction effects of quantitative trait loci (QTLs that are derived from different genomes and further testing the imprinting effects of these QTLs on seed development. The experimental design used is based on reciprocal backcrosses toward both parents, so that the inheritance of parent-specific alleles could be traced. The computing model and algorithm were implemented with the maximum likelihood approach. The new strategy presented was applied to study the mode of inheritance for QTLs that control endoreduplication traits in maize endosperm. Monte Carlo simulation studies were performed to investigate the statistical properties of the new model with the data simulated under different imprinting degrees. The false positive rate of imprinting QTL discovery by the model was examined by analyzing the simulated data that contain no imprinting QTL. The reciprocal design and a series of analytical and testing strategies proposed provide a standard procedure for genomic mapping of QTLs involved in the genetic control of complex seed development traits in flowering plants.

  13. The novel approach to enhance seed security: dual anti-counterfeiting methods applied on tobacco pelleted seeds.

    Science.gov (United States)

    Guan, Yajing; Wang, Jianchen; Tian, Yixin; Hu, Weimin; Zhu, Liwei; Zhu, Shuijin; Hu, Jin

    2013-01-01

    Seed security is of prime importance for agriculture. To protect true seeds from being faked, more secure dual anti-counterfeiting technologies for tobacco (Nicotiana tabacum L.) pelleted seed were developed in this paper. Fluorescein (FR), rhodamine B (RB), and magnetic powder (MP) were used as anti-counterfeiting labels. According to their different properties and the special seed pelleting process, four dual-labeling treatments were conducted for two tobacco varieties, MS Yunyan85 (MSYY85) and Honghua Dajinyuan (HHDJY). Then the seed germination and seedling growth status were investigated, and the fluorescence in cracked pellets and developing seedlings was observed under different excitation lights. The results showed that FR, RB, and MP had no negative effects on the germination, seedling growth, and MDA content of the pelleted seeds, and even some treatments significantly enhanced seedling dry weight, vigor index, and shoot height in MS YY85, and increased SOD activity and chlorophyll content in HHDJY as compared to the control. In addition, the cotyledon tip of seedlings treated with FR and MP together represented bright green fluorescence under illumination of blue light (478 nm). And the seedling cotyledon vein treated with RB and MP together showed red fluorescence under green light (546 nm). All seeds pelleted with magnetic powder of proper concentration could be attracted by a magnet. Thus, it indicated that those new dual-labeling methods that fluorescent compound and magnetic powder simultaneously applied in the same seed pellets definitely improved anti-counterfeiting technology and enhanced the seed security. This technology will ensure that high quality seed will be used in the crop production.

  14. The novel approach to enhance seed security: dual anti-counterfeiting methods applied on tobacco pelleted seeds.

    Directory of Open Access Journals (Sweden)

    Yajing Guan

    Full Text Available Seed security is of prime importance for agriculture. To protect true seeds from being faked, more secure dual anti-counterfeiting technologies for tobacco (Nicotiana tabacum L. pelleted seed were developed in this paper. Fluorescein (FR, rhodamine B (RB, and magnetic powder (MP were used as anti-counterfeiting labels. According to their different properties and the special seed pelleting process, four dual-labeling treatments were conducted for two tobacco varieties, MS Yunyan85 (MSYY85 and Honghua Dajinyuan (HHDJY. Then the seed germination and seedling growth status were investigated, and the fluorescence in cracked pellets and developing seedlings was observed under different excitation lights. The results showed that FR, RB, and MP had no negative effects on the germination, seedling growth, and MDA content of the pelleted seeds, and even some treatments significantly enhanced seedling dry weight, vigor index, and shoot height in MS YY85, and increased SOD activity and chlorophyll content in HHDJY as compared to the control. In addition, the cotyledon tip of seedlings treated with FR and MP together represented bright green fluorescence under illumination of blue light (478 nm. And the seedling cotyledon vein treated with RB and MP together showed red fluorescence under green light (546 nm. All seeds pelleted with magnetic powder of proper concentration could be attracted by a magnet. Thus, it indicated that those new dual-labeling methods that fluorescent compound and magnetic powder simultaneously applied in the same seed pellets definitely improved anti-counterfeiting technology and enhanced the seed security. This technology will ensure that high quality seed will be used in the crop production.

  15. Light enables a very high efficiency of carbon storage in developing embryos of rapeseed.

    Science.gov (United States)

    Goffman, Fernando D; Alonso, Ana P; Schwender, Jörg; Shachar-Hill, Yair; Ohlrogge, John B

    2005-08-01

    The conversion of photosynthate to seed storage reserves is crucial to plant fitness and agricultural production, yet quantitative information about the efficiency of this process is lacking. To measure metabolic efficiency in developing seeds, rapeseed (Brassica napus) embryos were cultured in media in which all carbon sources were [U-14C]-labeled and their conversion into CO2, oil, protein, and other biomass was determined. The conversion efficiency of the supplied carbon into seed storage reserves was very high. When provided with 0, 50, or 150 micromol m(-2) s(-1) light, the proportion of carbon taken up by embryos that was recovered in biomass was 60% to 64%, 77% to 86%, and 85% to 95%, respectively. Light not only improved the efficiency of carbon storage, but also increased the growth rate, the proportion of 14C recovered in oil relative to protein, and the fixation of external 14CO2 into biomass. Embryos grown at 50 micromol m(-2) s(-1) in the presence of 5 microM 1,1-dimethyl-3-(3,4-dichlorophenyl) urea (an inhibitor of photosystem II) were reduced in total biomass and oil synthesis by 3.2-fold and 2.8-fold, respectively, to the levels observed in the dark. To explore if the reduced growth and carbon conversion efficiency in dark were related to oxygen supplied by photosystem II, embryos and siliques were cultured with increased oxygen. The carbon conversion efficiency of embryos remained unchanged when oxygen levels were increased 3-fold. Increasing the O2 levels surrounding siliques from 21% to 60% did not increase oil synthesis rates either at 1,000 micromol m(-2) s(-1) or in the dark. We conclude that light increases the growth, efficiency of carbon storage, and oil synthesis in developing rapeseed embryos primarily by providing reductant and/or ATP.

  16. Seed treatments enhance photosynthesis in maize seedlings by reducing infection with Fusarium spp. and consequent disease development in maize

    Science.gov (United States)

    The effects of a seed treatment on early season growth, seedling disease development, incidence Fusarium spp. infection, and photosynthetic performance of maize were evaluated at two locations in Iowa in 2007. Maize seed was either treated with Cruiser 2Extreme 250 ® (fludioxonil + azoxystrobin + me...

  17. Seed-borne pathogens and electrical conductivity of soybean seeds

    Directory of Open Access Journals (Sweden)

    Adriana Luiza Wain-Tassi

    2012-02-01

    Full Text Available Adequate procedures to evaluate seed vigor are important. Regarding the electrical conductivity test (EC, the interference in the test results caused by seed-borne pathogens has not been clarified. This research was carried out to study the influence of Phomopsis sojae (Leh. and Colletotrichum dematium (Pers. ex Fr. Grove var. truncata (Schw. Arx. fungi on EC results. Soybean seeds (Glycine max L. were inoculated with those fungi using potato, agar and dextrose (PDA medium with manitol (-1.0 MPa and incubated for 20 h at 25 °C. The colony diameter, index of mycelial growth, seed water content, occurrence of seed-borne pathogens, physiological potential of the seeds, measured by germination and vigor tests (seed germination index, cold test, accelerated aging and electrical conductivity, and seedling field emergence were determined. The contents of K+, Ca2+, and Mg2+ in the seed and in the soaking solution were also determined. A complete 2 × 4 factorial design with two seed sizes (5.5 and 6.5 mm and four treatments (control, seeds incubated without fungi, seeds incubated with Phomopsis and seeds incubated with Colletotrichum were used with eight (5.5 mm large seeds and six (6.5 mm large seeds replications. All seeds submitted to PDA medium had their germination reduced in comparison to the control seeds. This reduction was also observed when seed vigor and leached ions were considered. The presence of Phomopsis sojae fungus in soybean seed samples submitted to the EC test may be the cause of misleading results.

  18. Flavonoids from leaves of Derris urucu: assessment of potential effects on seed germination and development of weeds

    Directory of Open Access Journals (Sweden)

    EWERTON A.S. DA SILVA

    2013-09-01

    Full Text Available In some previous studies, we described the isolation of nine compounds from leaves of Derris urucu, a species found widely in the Amazon rainforest, identified as five stilbenes and four dihydroflavonols. In this work, three of these dihydroflavonols [urucuol A (1, urucuol B (2 and isotirumalin (3] were evaluated to identify their potential as allelochemicals, and we are also reporting the isolation and structural determination of a new flavonoid [5,3′-dihydroxy-4′-methoxy-(7,6:5″,6″-2″,2″-dimethylpyranoflavanone (4]. We investigated the effects of the dihydroflavonols 1-3 on seed germination and radicle and hypocotyl growth of the weed Mimosa pudica, using solutions at 150 mg.L–1. Urucuol B, alone, was the substance with the greatest potential to inhibit seed germination (26%, while isotirumalin showed greater ability to reduce the development of the hypocotyl (25%, but none of the three substances showed the potential to inhibit radicle. When combined in pairs, the substances showed synergism for the development of root and hypocotyl and effects on seed germination that could be attributed to antagonism. When tested separately, the trend has become more intense effects on seed germination, while for the substances tested in pairs, the intensity of the effect was greater on development of weed.

  19. Orthodox seeds and resurrection plants

    NARCIS (Netherlands)

    Costa, Maria Cecília Dias; Cooper, Keren; Hilhorst, Henk W.M.; Farrant, Jill M.

    2017-01-01

    Although staple crops do not survive extended periods of drought, their seeds possess desiccation tolerance (DT), as they survive almost complete dehydration (desiccation) during the late maturation phase of development. Resurrection plants are plant species whose seeds and vegetative tissues are

  20. Transcriptomic basis for drought-resistance in Brassica napus L.

    Science.gov (United States)

    Wang, Pei; Yang, Cuiling; Chen, Hao; Song, Chunpeng; Zhang, Xiao; Wang, Daojie

    2017-01-01

    Based on transcriptomic data from four experimental settings with drought-resistant and drought-sensitive cultivars under drought and well-watered conditions, statistical analysis revealed three categories encompassing 169 highly differentially expressed genes (DEGs) in response to drought in Brassica napus L., including 37 drought-resistant cultivar-related genes, 35 drought-sensitive cultivar-related genes and 97 cultivar non-specific ones. We provide evidence that the identified DEGs were fairly uniformly distributed on different chromosomes and their expression patterns are variety specific. Except commonly enriched in response to various stimuli or stresses, different categories of DEGs show specific enrichment in certain biological processes or pathways, which indicated the possibility of functional differences among the three categories. Network analysis revealed relationships among the 169 DEGs, annotated biological processes and pathways. The 169 DEGs can be classified into different functional categories via preferred pathways or biological processes. Some pathways might simultaneously involve a large number of shared DEGs, and these pathways are likely to cross-talk and have overlapping biological functions. Several members of the identified DEGs fit to drought stress signal transduction pathway in Arabidopsis thaliana. Finally, quantitative real-time PCR validations confirmed the reproducibility of the RNA-seq data. These investigations are profitable for the improvement of crop varieties through transgenic engineering.

  1. Studies on cannabis. III. Young plants from the seed irradiated with /sup 60/Co gamma rays for inhibiting their development after seeding

    Energy Technology Data Exchange (ETDEWEB)

    Shimomura, H; Kuriyama, E; Tomizawa, A [Tokyo Coll. of Pharmacy (Japan)

    1976-01-01

    The seedlings from Cannabis sativa L. seeds irradiated with different doses of ..gamma..-rays were examined, in order to determine the dose sufficient to kill the young plants naturally, before their hallucinnogenic component increases. The seeds of ''Minamioshihara No. 1'', which were harvested in 1972 in Tochigi Prefecture, were irradiated with eight different doses of /sup 60/Co ..gamma..-rays in January 17, 1973, and the seedlings were examined several times during the subsequent 9 months, from March to November 1973, and their morphological and histological effects were examined, and the results are summarized as follows: Samples irradiated with 1500 and 1000 krads developed radicles about 3 mm in length. Samples irradiated with 500, 200, and 50 krads grew into young plants with the first set of leaves, without lateral roots. Samples irradiated with 30 krads grew to about 10 cm high with a few lateral roots, and the epicotyls about 1 cm in length. These young plants from the irradiated seeds stayed in the same condition and then died. Samples irradiated with 15 and 5 krads grew in the same way as the controls until the stage of flowering. Samples irradiated with 500, 200, 50, and 30 krads showerd the cell membranes of endodermis and pericycle to be partially lignified and suberized. The degree of change was related to the dose of ..gamma..-rays. Samples irradiated with 30 krads showed withered cells near the end of the lateral nerves on the first and second set of leaves. The economical dose of /sup 60/Co ..gamma..-rays for inhibiting young plants from developing into adult ones was a minimum of 30 krads which made the young plants die. Irradiation with 50 krads of ..gamma..-rays will be required to kill the young plants completely before they develop the hallucinogenic component.

  2. Inheritance of egusi seed type in watermelon.

    Science.gov (United States)

    Gusmini, G; Wehner, T C; Jarret, R L

    2004-01-01

    An unusual seed mutant in watermelon (Citrullus lanatus var. lanatus) has seeds with a fleshy pericarp, commonly called egusi seeds. The origin of the phenotype is unknown, but it is widely cultivated in Nigeria for the high protein and carbohydrate content of the edible seeds. Egusi seeds have a thick, fleshy pericarp that appears during the second to third week of fruit development. We studied the inheritance of this phenotype in crosses of normal seeded Charleston Gray and Calhoun Gray with two plant introduction accessions, PI 490383w and PI 560006, having the egusi seed type. We found that the egusi seed type is controlled by a single recessive gene, and the symbol eg was assigned. Copyright 2004 The American Genetic Association

  3. Availability of phosphorus from ground phosphate rocks for rape (Brassica napus L.)

    International Nuclear Information System (INIS)

    Zhu Yongyi; Yang Juncheng; Chen Jingjian; Liu Delin; Zhu Zhaomin; Wu Ming

    1996-09-01

    The availability of phosphorus from the ground phosphate rock, which is provided by Kaiyang mining plant, Guizhou Province of China, is investigated in pot experiment with acid red soil for rape (Brassica napus L. No. 13 Xingyou, Chinese Olive Group) by 32 P indirect labelling method. The results show that the yield increased significantly by applying ground phosphate rock (GPR) and the efficiency of GPR is equal to 17.1% of that from calcium superphosphate. It is calculated as that the fertilizer efficiency of 1 kg of calcium superphosphate is the same as that of 8.53 kg ground phosphate rock in Guizhou Province of China. The effect on the grain yield is evaluated by pot and field microplot experiments, and it is found that the main effect is to increase the pod number. The fertilizer efficiency in field experiment is the same as that in pot experiment. (9 refs., 1 fig., 7 tabs.)

  4. Light Enables a Very High Efficiency of Carbon Storage in Developing Embryos of Rapeseed1

    Science.gov (United States)

    Goffman, Fernando D.; Alonso, Ana P.; Schwender, Jörg; Shachar-Hill, Yair; Ohlrogge, John B.

    2005-01-01

    The conversion of photosynthate to seed storage reserves is crucial to plant fitness and agricultural production, yet quantitative information about the efficiency of this process is lacking. To measure metabolic efficiency in developing seeds, rapeseed (Brassica napus) embryos were cultured in media in which all carbon sources were [U-14C]-labeled and their conversion into CO2, oil, protein, and other biomass was determined. The conversion efficiency of the supplied carbon into seed storage reserves was very high. When provided with 0, 50, or 150 μmol m−2 s−1 light, the proportion of carbon taken up by embryos that was recovered in biomass was 60% to 64%, 77% to 86%, and 85% to 95%, respectively. Light not only improved the efficiency of carbon storage, but also increased the growth rate, the proportion of 14C recovered in oil relative to protein, and the fixation of external 14CO2 into biomass. Embryos grown at 50 μmol m−2 s−1 in the presence of 5 μm 1,1-dimethyl-3-(3,4-dichlorophenyl) urea (an inhibitor of photosystem II) were reduced in total biomass and oil synthesis by 3.2-fold and 2.8-fold, respectively, to the levels observed in the dark. To explore if the reduced growth and carbon conversion efficiency in dark were related to oxygen supplied by photosystem II, embryos and siliques were cultured with increased oxygen. The carbon conversion efficiency of embryos remained unchanged when oxygen levels were increased 3-fold. Increasing the O2 levels surrounding siliques from 21% to 60% did not increase oil synthesis rates either at 1,000 μmol m−2 s−1 or in the dark. We conclude that light increases the growth, efficiency of carbon storage, and oil synthesis in developing rapeseed embryos primarily by providing reductant and/or ATP. PMID:16024686

  5. Accumulation of long-lived mRNAs associated with germination in embryos during seed development of rice

    Science.gov (United States)

    Sano, Naoto; Ono, Hanako; Murata, Kazumasa; Yamada, Tetsuya; Hirasawa, Tadashi; Kanekatsu, Motoki

    2015-01-01

    Mature dry seeds contain translatable mRNAs called long-lived mRNAs. Early studies have shown that protein synthesis during the initial phase of seed germination occurs from long-lived mRNAs, without de novo transcription. However, the gene expression systems that generate long-lived mRNAs in seeds are not well understood. To examine the accumulation of long-lived mRNAs in developing rice embryos, germination tests using the transcriptional inhibitor actinomycin D (Act D) were performed with the Japonica rice cultivar Nipponbare. Although over 70% of embryos at 10 days after flowering (DAF) germinated in the absence of the inhibitor, germination was remarkably impaired in embryos treated with Act D. In contrast, more than 70% of embryos at 20, 25, 30 and 40 DAF germinated in the presence of Act D. The same results were obtained when another cultivar, Koshihikari, was used, indicating that the long-lived mRNAs required for germination predominantly accumulate in embryos between 10 and 20 DAF during seed development. RNA-Seq identified 529 long-lived mRNA candidates, encoding proteins such as ABA, calcium ion and phospholipid signalling-related proteins, and HSP DNA J, increased from 10 to 20 DAF and were highly abundant in 40 DAF embryos of Nipponbare and Koshihikari. We also revealed that these long-lived mRNA candidates are clearly up-regulated in 10 DAF germinating embryos after imbibition, suggesting that the accumulation of these mRNAs in embryos is indispensable for the induction of germination. The findings presented here may facilitate in overcoming irregular seed germination or producing more vigorous seedlings. PMID:25941326

  6. Seed-borne viruses detected on farm-retained seeds from smallholder farmers in Zimbabwe, Burkina Faso, Bangladesh and Vietnam

    DEFF Research Database (Denmark)

    Manyangarirwa, W.; Sibiya, J.; Mortensen, C A Nieves Paulino

    2010-01-01

    The smallholder farming sector in much of the developing world relies on the use of farm-retained seed. The availability of good quality disease free seed is important in enhancing food security but seed-borne viruses can be a major problem on farm-retained seed. Seeds of tomato (Lycopersicon...... electron microscopy, Enzyme Linked Immunosorbent Assay (ELISA) and biological assays. Tomato mosaic virus (ToMV) was detected in 36% of tomato samples and in 8% of paprika samples using indicator Nicotiana tabacum cultivars Xanthinc and White Burley. Some 43% of cowpea samples were infected with Cowpea...

  7. Updated Methods for Seed Shape Analysis

    Directory of Open Access Journals (Sweden)

    Emilio Cervantes

    2016-01-01

    Full Text Available Morphological variation in seed characters includes differences in seed size and shape. Seed shape is an important trait in plant identification and classification. In addition it has agronomic importance because it reflects genetic, physiological, and ecological components and affects yield, quality, and market price. The use of digital technologies, together with development of quantification and modeling methods, allows a better description of seed shape. Image processing systems are used in the automatic determination of seed size and shape, becoming a basic tool in the study of diversity. Seed shape is determined by a variety of indexes (circularity, roundness, and J index. The comparison of the seed images to a geometrical figure (circle, cardioid, ellipse, ellipsoid, etc. provides a precise quantification of shape. The methods of shape quantification based on these models are useful for an accurate description allowing to compare between genotypes or along developmental phases as well as to establish the level of variation in different sets of seeds.

  8. Oxygen requirement of germinating flax seeds

    Science.gov (United States)

    Kuznetsov, Oleg A.; Hasenstein, K. H.

    2003-05-01

    Plant experiments in earth orbit are typically prepared on the ground and germinated in orbit to study gravity effects on the developing seedlings. Germination requires the breakdown of storage compounds, and this metabolism depends upon respiration, making oxygen one of the limiting factors in seed germination. In microgravity lack of run-off of excess water requires careful testing of water dispensation and oxygen availability. In preparation for a shuttle experiment (MICRO on STS-107) we studied germination and growth of flax ( Linum usitatissimum L.) seedlings in the developed hardware (Magnetic Field Chamber, MFC). We tested between four to 32 seeds per chamber (air volume = 14 mL) and after 36 h measured the root length. At 90 μl O 2 per seed (32 seeds/chamber), the germination decreased from 94 to 69%, and the root length was reduced by 20%, compared to 8 seeds per chamber. Based on the percent germination and root length obtained in controlled gas mixtures between 3.6 and 21.6% O 2 we determined the lower limit of reliable germination to be 10 vol. % O 2 at atmospheric pressure. Although the oxygen available in the MFC's can support the intended number of seeds, the data show that seed storage and microgravity-related limitations may reduce germination.

  9. Quality Assurance Procedure Development in Iodine-125 Seeds Production

    International Nuclear Information System (INIS)

    Moura, J.A.; Moura, E.S.; Sprenger, F.E.

    2009-01-01

    Brachytherapy using Iodine-125 seeds has been used in prostate cancer treatment. In the quality control routine during seed production, leak tests are made to detect any leakage of radioactive material from inside the titanium shield. Leak tests are made according to the International Standard Organization- Radiation protection - sealed radioactive sources - ISO 9978 standard, and require liquid transfer between recipients. If any leakage happens, there will be contamination of the liquid and tubing. This study aims to establish decontamination routines for tubing, allowing its repeated use, in the automated assay process

  10. Supplementing seed banks to rehabilitate disturbed Mojave Desert shrublands: where do all the seeds go?

    Science.gov (United States)

    DeFalco, Lesley A.; Esque, Todd C.; Nicklas, Melissa B.; Kane, Jeffrey M.

    2012-01-01

    Revegetation of degraded arid lands often involves supplementing impoverished seed banks and improving the seedbed, yet these approaches frequently fail. To understand these failures, we tracked the fates of seeds for six shrub species that were broadcast across two contrasting surface disturbances common to the Mojave Desert—sites compacted by concentrated vehicle use and trenched sites where topsoil and subsurface soils were mixed. We evaluated seedbed treatments that enhance soil-seed contact (tackifier) and create surface roughness while reducing soil bulk density (harrowing). We also explored whether seed harvesting by granivores and seedling suppression by non-native annuals influence the success of broadcast seeding in revegetating degraded shrublands. Ten weeks after treatments, seeds readily moved off of experimental plots in untreated compacted sites, but seed movements were reduced 32% by tackifier and 55% through harrowing. Harrowing promoted seedling emergence in compacted sites, particularly for the early-colonizing species Encelia farinosa, but tackifier was largely ineffective. The inherent surface roughness of trenched sites retained three times the number of seeds than compacted sites, but soil mixing during trench development likely altered the suitability of the seedbed thus resulting in poor seedling emergence. Non-native annuals had little influence on seed fates during our study. In contrast, the prevalence of harvester ants increased seed removal on compacted sites, whereas rodent activity influenced removal on trenched sites. Future success of broadcast seeding in arid lands depends on evaluating disturbance characteristics prior to seeding and selecting appropriate species and seasons for application.

  11. Effect of planting dates on seed yield and seed quality of Stylosanthes guianensis CIAT 184

    Directory of Open Access Journals (Sweden)

    Chureerat Satjipanon

    2005-11-01

    Full Text Available The objective of this experiment was to investigate the effect of planting dates on seed yield and quality of Stylosanthes guianensis CIAT 184 at Khon Kaen Animal Nutrition Research and Development Center, during May 2003 to February 2004. A randomized complete block design with four replications was used. Experimental treatments consisted of four planting dates spaced at about 30-day intervals from 23 May to 23 August 2003.The results revealed that planting date had a significant effect on seed yields and pure germinable seed yields (PGSY of S. guianensis CIAT 184. Plots planted on 23 July produced the highest seed yield and PGSY of 630 and 601 kg/ha, respectively followed by plots planted on 23 June and 23 May (514 and 501; 443 and 421 kg/ha, respectively. Plots planted on 23 August produced the lowest seed yield and PGSY of 269 and 262 kg/ha, respectively. There were no significant differences in seed purity percentage, germination percentage and 1000-seed weight among planting dates. Based on this research, it was concluded that late- July was the optimum planting date for S. guianensis CIAT 184 cultivation for seed production in Northeast Thailand.

  12. Differential flavonoid response to enhanced UV-B radiation in Brassica napus

    International Nuclear Information System (INIS)

    Olsson, L.C.; Veit, M.; Weissenböck, G.; Bornman, J.F.

    1998-01-01

    We have examined the qualitative and quantitative differences in methanol-soluble flavonoids of leaves of two cultivars of Brassica napus, which were grown with or without (control) supplemental UV-B radiation. The flavonoids were identified using HPLC-diode array spectroscopy (-DAS), -electrospray ionization-mass spectroscopy (-ESI-MS) and 1H and 13C NMR, and quantitatively analysed by HPLC-DAS. After exposure to supplementary UV-B radiation, the overall amount of soluble flavonoids, kaempferol and quercetin glycosides, increased by ca 150% in cv. Paroll, compared to control plants. Cultivar Stallion showed a 70% increase, and also a lower overall content of soluble flavonoids compared to Paroll. The supplementary UV-B radiation resulted in a marked, specific increase in the amount of quercetin glycosides relative to the kaempferol glycosides with a 36- and 23-fold increase in cvs Paroll and Stallion, respectively. Four of the flavonol glycosides appearing after supplemental UV-B exposure were identified as quercetin- and kaempferol 3-sophoroside-7-glucoside and 3-(2″′-E-sinapoylsophoroside)-7-glucoside. (author)

  13. Expression patterns of ABA and GA metabolism genes and hormone levels during rice seed development and imbibition: a comparison of dormant and non-dormant rice cultivars.

    Science.gov (United States)

    Liu, Yang; Fang, Jun; Xu, Fan; Chu, Jinfang; Yan, Cunyu; Schläppi, Michael R; Wang, Youping; Chu, Chengcai

    2014-06-20

    Seed dormancy is an important agronomic trait in cereals. Using deep dormant (N22), medium dormant (ZH11), and non-dormant (G46B) rice cultivars, we correlated seed dormancy phenotypes with abscisic acid (ABA) and gibberellin (GA) metabolism gene expression profiles and phytohormone levels during seed development and imbibition. A time course analysis of ABA and GA content during seed development showed that N22 had a high ABA level at early and middle seed developmental stages, while at late developmental stage it declined to the level of ZH11; however, its ABA/GA ratio maintained at a high level throughout seed development. By contrast, G46B had the lowest ABA content during seed development though at early developmental stage its ABA level was close to that of ZH11, and its ABA/GA ratio peaked at late developmental stage that was at the same level of ZH11. Compared with N22 and G46B, ZH11 had an even and medium ABA level during seed development and its ABA/GA ratio peaked at the middle developmental stage. Moreover, the seed development time-point having high ABA/GA ratio also had relatively high transcript levels for key genes in ABA and GA metabolism pathways across three cultivars. These indicated that the embryo-imposed dormancy has been induced before the late developmental stage and is determined by ABA/GA ratio. A similar analysis during seed imbibition showed that ABA was synthesized in different degrees for the three cultivars. In addition, water uptake assay for intact mature seeds suggested that water could permeate through husk barrier into seed embryo for all three cultivars; however, all three cultivars showed distinct colors by vanillin-staining indicative of the existence of flavans in their husks, which are dormancy inhibition compounds responsible for the husk-imposed dormancy. Copyright © 2014. Published by Elsevier Ltd.

  14. Seed dormancy and germination : light and nitrate

    NARCIS (Netherlands)

    Hilhorst, H.W.M.

    1990-01-01

    One of the most important aspects of the life cycle of seed plants is the formation and development of seeds on the motherplant and the subsequent dispersal. An equally important element of the survival strategy is the ability of seeds to prevent germination in unfavorable

  15. Biodiesel production methods of rubber seed oil: a review

    Science.gov (United States)

    Ulfah, M.; Mulyazmi; Burmawi; Praputri, E.; Sundari, E.; Firdaus

    2018-03-01

    The utilization of rubber seed as raw material of biodiesel production is seen highly potential in Indonesia. The availability of rubber seeds in Indonesia is estimated about 5 million tons per annum, which can yield rubber seed oil about 2 million tons per year. Due to the demand of edible oils as a food source is tremendous and the edible oil feedstock costs are far expensive to be used as fuel, production of biodiesel from non-edible oils such as rubber seed is an effective way to overcome all the associated problems with edible oils. Various methods for producing biodiesel from rubber seed oil have been reported. This paper introduces an optimum condition of biodiesel production methods from rubber seed oil. This article was written to be a reference in the selection of methods and the further development of biodiesel production from rubber seed oil. Biodiesel production methods for rubber seed oils has been developed by means of homogeneous catalysts, heterogeneous catalysts, supercritical method, ultrasound, in-situ and enzymatic processes. Production of biodiesel from rubber seed oil using clinker loaded sodium methoxide as catalyst is very interesting to be studied and developed further.

  16. Major Co-localized QTL for Plant Height, Branch Initiation Height, Stem Diameter, and Flowering Time in an Alien Introgression Derived Brassica napus DH Population

    Directory of Open Access Journals (Sweden)

    Yusen Shen

    2018-03-01

    Full Text Available Plant height (PH, branch initiation height (BIH, and stem diameter (SD are three stem-related traits that play crucial roles in plant architecture and lodging resistance. Herein, we show one doubled haploid (DH population obtained from a cross between Y689 (one Capsella bursa-pastoris derived Brassica napus intertribal introgression and Westar (B. napus cultivar that these traits were significantly positively correlated with one another and with flowering time (FT. Based on a high-density SNP map, a total of 102 additive quantitative trait loci (QTL were identified across six environments. Seventy-two consensus QTL and 49 unique QTL were identified using a two-round strategy of QTL meta-analysis. Notably, a total of 19 major QTL, including 11 novel ones, were detected for these traits, which comprised two QTL clusters on chromosomes A02 and A07. Conditional QTL mapping was performed to preliminarily evaluate the genetic basis (pleiotropy or tight linkage of the co-localized QTL. In addition, QTL by environment interactions (QEI mapping was performed to verify the additive QTL and estimate the QEI effect. In the genomic regions of all major QTL, orthologs of the genes involved in phytohormone biosynthesis, phytohormone signaling, flower development, and cell differentiation in Arabidopsis were proposed as candidate genes. Of these, BnaA02g02560, an ortholog of Arabidopsis GASA4, was suggested as a candidate gene for PH, SD, and FT; and BnaA02g08490, an ortholog of Arabidopsis GNL, was associated with PH, BIH and FT. These results provide useful information for further genetic studies on stem-related traits and plant growth adaptation.

  17. Development of C-lignin with G/S-lignin and lipids in orchid seed coats – an unexpected diversity exposed by ATR-FT-IR spectroscopy

    DEFF Research Database (Denmark)

    Barsberg, Søren Talbro; Lee, Y.-I.; Rasmussen, Hanne Nina

    2018-01-01

    Cite this article: Barsberg ST, Lee Y-I, Rasmussen HN. Development of C-lignin with G/S-lignin and lipids in orchid seed coats – an unexpected diversity exposed by ATR-FT-IR spectroscopy. Seed Science Research https:// doi.org/10.1017/S0960258517000344......Cite this article: Barsberg ST, Lee Y-I, Rasmussen HN. Development of C-lignin with G/S-lignin and lipids in orchid seed coats – an unexpected diversity exposed by ATR-FT-IR spectroscopy. Seed Science Research https:// doi.org/10.1017/S0960258517000344...

  18. POOR FERTILITY, SHORT LONGEVITY AND LOW ABUNDANCE IN THE SOIL SEED BANK LIMIT VOLUNTEER SUGARCANE FROM SEED

    Directory of Open Access Journals (Sweden)

    Johann S Pierre

    2015-06-01

    Full Text Available The recent development of genetically modified sugarcane, with the aim of commercial production, requires an understanding of the potential risks of increased weediness of sugarcane as a result of spread and persistence of volunteer sugarcane. As sugarcane is propagated vegetatively from pieces of stalk and the seed plays no part in the production cycle the fate of seed in the environment is yet to be studied. In this study sugarcane seed samples, collected in fields over a two year period, were used to determine the overall level of sugarcane fertility, seed dormancy and longevity of seed under field conditions. A survey of the soil seed bank in and around sugarcane fields was used to quantify the presence of sugarcane seeds and to identify and quantify the weeds that would compete with sugarcane seedlings. We demonstrated that under field conditions, sugarcane has low fertility and produces non-dormant seed. The viability of the seeds decayed rapidly (half life between 1.5 and 2.1 months. This means that, in Australia, sugarcane seeds die before they encounter climatic conditions that could allow them to germinate and establish. Finally, the soil seed bank analysis revealed there were very few sugarcane seeds relative to the large number of weed seeds that exert a large competitive effect. In conclusion, low fertility, short persistence and poor ability to compete limit the capacity of sugarcane seed spread and persistence in the environment.

  19. Poor Fertility, Short Longevity, and Low Abundance in the Soil Seed Bank Limit Volunteer Sugarcane from Seed.

    Science.gov (United States)

    Pierre, Johann S; Perroux, Jai; Whan, Alex; Rae, Anne L; Bonnett, Graham D

    2015-01-01

    The recent development of genetically modified sugarcane, with the aim of commercial production, requires an understanding of the potential risks of increased weediness of sugarcane as a result of spread and persistence of volunteer sugarcane. As sugarcane is propagated vegetatively from pieces of stalk and the seed plays no part in the production cycle, the fate of seed in the environment is yet to be studied. In this study, sugarcane seed samples, collected in fields over a 2-year period, were used to determine the overall level of sugarcane fertility, seed dormancy, and longevity of seed under field conditions. A survey of the soil seed bank in and around sugarcane fields was used to quantify the presence of sugarcane seeds and to identify and quantify the weeds that would compete with sugarcane seedlings. We demonstrated that under field conditions, sugarcane has low fertility and produces non-dormant seed. The viability of the seeds decayed rapidly (half-life between 1.5 and 2.1 months). This means that, in Australia, sugarcane seeds die before they encounter climatic conditions that could allow them to germinate and establish. Finally, the soil seed bank analysis revealed that there were very few sugarcane seeds relative to the large number of weed seeds that exert a large competitive effect. In conclusion, low fertility, short persistence, and poor ability to compete limit the capacity of sugarcane seed spread and persistence in the environment.

  20. Production of quality/certified seed of fodder-crops

    International Nuclear Information System (INIS)

    Bhutta, A.R.; Hussain, A.

    2006-01-01

    Although, Pakistan has well developed Seed-production and certification Programme for major crops, but seed programme for fodder-crops is still not well organized. Availability of local certified seed, remained 250-350 mt for Berseem, Sorghum, maize, barley and oat. About 5000 to 9000 mt of seed has being imported during 2003-04 to 2005-06. Fodder Research Institute and jullundhur Seed Corporation have demonstrated a model of public/private partnership for initiation of certified seed of a few fodder crops. To produce quality seeds of fodder crops, various steps, procedures and prescribed standards have been given, which will help in production of quality seed of fodder crops in Pakistan. (author)