WorldWideScience

Sample records for naphthenic acid corrosion

  1. Synergy effect of naphthenic acid corrosion and sulfur corrosion in crude oil distillation unit

    Science.gov (United States)

    Huang, B. S.; Yin, W. F.; Sang, D. H.; Jiang, Z. Y.

    2012-10-01

    The synergy effect of naphthenic acid corrosion and sulfur corrosion at high temperature in crude oil distillation unit was studied using Q235 carbon-manganese steel and 316 stainless steel. The corrosion of Q235 and 316 in corrosion media containing sulfur and/or naphthenic acid at 280 °C was investigated by weight loss, scanning electron microscope (SEM), EDS and X-ray diffractometer (XRD) analysis. The results showed that in corrosion media containing only sulfur, the corrosion rate of Q235 and 316 first increased and then decreased with the increase of sulfur content. In corrosion media containing naphthenic acid and sulfur, with the variations of acid value or sulfur content, the synergy effect of naphthenic acid corrosion and sulfur corrosion has a great influence on the corrosion rate of Q235 and 316. It was indicated that the sulfur accelerated naphthenic acid corrosion below a certain sulfur content but prevented naphthenic acid corrosion above that. The corrosion products on two steels after exposure to corrosion media were investigated. The stable Cr5S8 phases detected in the corrosion products film of 316 were considered as the reason why 316 has greater corrosion resistance to that of Q235.

  2. Synergy effect of naphthenic acid corrosion and sulfur corrosion in crude oil distillation unit

    Energy Technology Data Exchange (ETDEWEB)

    Huang, B.S., E-mail: yinwenfeng2010@163.com [College of Materials Science and Engineering, Southwest Petroleum University, Sichuan, Chengdu, 610500 (China); Yin, W.F. [College of Mechatronic Engineering, Southwest Petroleum University, Sichuan, Chengdu, 610500 (China); Sang, D.H. [Sheng Li Construction Group International Engineering Department, Shandong, Dongying, 257000 (China); Jiang, Z.Y. [College of Materials Science and Engineering, Southwest Petroleum University, Sichuan, Chengdu, 610500 (China)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer The corrosion of a carbon-manganese steel and a stainless steel in sulfur and/or naphthenic acid media was investigated. Black-Right-Pointing-Pointer The corrosion rate of the carbon-manganese steel increased with the increase of the acid value and sulfur content. Black-Right-Pointing-Pointer The critical values of the concentration of sulfur and acid for corrosion rate of the stainless steel were ascertained respectively. Black-Right-Pointing-Pointer The stainless steel is superior to the carbon-manganese steel in corrosion resistance because of the presence of stable Cr{sub 5}S{sub 8} phases. - Abstract: The synergy effect of naphthenic acid corrosion and sulfur corrosion at high temperature in crude oil distillation unit was studied using Q235 carbon-manganese steel and 316 stainless steel. The corrosion of Q235 and 316 in corrosion media containing sulfur and/or naphthenic acid at 280 Degree-Sign C was investigated by weight loss, scanning electron microscope (SEM), EDS and X-ray diffractometer (XRD) analysis. The results showed that in corrosion media containing only sulfur, the corrosion rate of Q235 and 316 first increased and then decreased with the increase of sulfur content. In corrosion media containing naphthenic acid and sulfur, with the variations of acid value or sulfur content, the synergy effect of naphthenic acid corrosion and sulfur corrosion has a great influence on the corrosion rate of Q235 and 316. It was indicated that the sulfur accelerated naphthenic acid corrosion below a certain sulfur content but prevented naphthenic acid corrosion above that. The corrosion products on two steels after exposure to corrosion media were investigated. The stable Cr{sub 5}S{sub 8} phases detected in the corrosion products film of 316 were considered as the reason why 316 has greater corrosion resistance to that of Q235.

  3. Mechanism of magnetite formation in high temperature corrosion by model naphthenic acids

    International Nuclear Information System (INIS)

    Jin, Peng; Robbins, Winston; Bota, Gheorghe

    2016-01-01

    Highlights: • Magnetite scales were found in naphthenic acid (NAP) corrosion. • Magnetite scales were formed due to thermal decomposition of iron naphthenates. • Formation and protectiveness of magnetite scales depended on structure of NAP. • Carboxylic acids confirm corrosion observations for commercial NAP. - Abstract: Naphthenic acid (NAP) corrosion is a major concern for refineries. The complexity of NAP in crude oil and the sulfidation process hinder a fundamental knowledge of their corrosive behavior. Studies with model acids were performed to explore the corrosion mechanism and magnetite scales were found on carbon steel. Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), and X-ray diffraction methods detected differences in the quantity and quality of magnetite formed by model acids. These scales exhibited different resistance to higher severity NAP corrosion in a flow through apparatus. Magnetite is proposed to be formed by thermal decomposition of iron naphthenates.

  4. Mechanism of Corrosion by Naphthenic Acids and Organosulfur Compounds at High Temperatures

    Science.gov (United States)

    Jin, Peng

    Due to the law of supply and demand, the last decade has witnessed a skyrocketing in the price of light sweet crude oil. Therefore, refineries are increasingly interested in "opportunity crudes", characterized by their discounted price and relative ease of procurement. However, the attractive economics of opportunity crudes come with the disadvantage of high acid/organosulfur compound content, which could lead to corrosion and even failure of facilities in refineries. However, it is generally accepted that organosulfur compounds may form protective iron sulfide layers on the metal surface and decrease the corrosion rate. Therefore, it is necessary to investigate the corrosive property of crudes at high temperatures, the mechanism of corrosion by acids (naphthenic acids) in the presence of organosulfur compounds, and methods to mitigate its corrosive effect. In 2004, an industrial project was initiated at the Institute for Corrosion and Multiphase Technology to investigate the corrosion by naphthenic acids and organosulfur compounds. In this project, for each experiment there were two experimentation phases: pretreatment and challenge. In the first pretreatment phase, a stirred autoclave was filled with a real crude oil fraction or model oil of different acidity and organosulfur compound concentration. Then, the stirred autoclave was heated to high temperatures to examine the corrosivity of the oil to different materials (specimens made from CS and 5% Cr containing steel were used). During the pretreatment, corrosion product layers were formed on the metal surface. In the second challenge phase, the steel specimens pretreated in the first phase were inserted into a rotating cylinder autoclave, called High Velocity Rig (HVR). The HVR was fed with a high-temperature oil solution of naphthenic acids to attack the iron sulfide layers. Based on the difference of specimen weight loss between the two steps, the net corrosion rate could be calculated and the protectiveness

  5. Evaluation of corrosion products formed by sulfidation as inhibitors of the naphthenic corrosion of AISI-316 steel

    Science.gov (United States)

    Sanabria-Cala, J. A.; Montañez, N. D.; Laverde Cataño, D.; Y Peña Ballesteros, D.; Mejía, C. A.

    2017-12-01

    Naphthenic acids present in oil from most regions worldwide currently stand as the main responsible for the naphthenic corrosion problems, affecting the oil-refining industry. The phenomenon of sulfidation, accompanying corrosion processes brought about by naphthenic acids in high-temperature refining plant applications, takes place when the combination of sulfidic acid (H2S) with Fe forms layers of iron sulphide (FeS) on the material surface, layers with the potential to protect the material from attack by other corrosive species like naphthenic acids. This work assessed corrosion products formed by sulfidation as inhibitors of naphthenic corrosion rate in AISI-316 steel exposed to processing conditions of simulated crude oil in a dynamic autoclave. Calculation of the sulfidation and naphthenic corrosion rates were determined by gravimetry. The surfaces of the AISI-316 gravimetric coupons exposed to acid systems; were characterized morphologically by X-Ray Diffraction (XRD) and X-ray Fluorescence by Energy Dispersive Spectroscopy (EDS) combined with Scanning Electron Microscopy (SEM). One of the results obtained was the determination of an inhibiting effect of corrosion products at 250 and 300°C, where lower corrosion rate levels were detected. For the temperature of 350°C, naphthenic corrosion rates increased due to deposition of naphthenic acids on the areas where corrosion products formed by sulfidation have lower homogeneity and stability on the surface, thus accelerating the destruction of AISI-316 steel. The above provides an initial contribution to oil industry in search of new alternatives to corrosion control by the attack of naphthenic acids, from the formation of FeS layers on exposed materials in the processing of heavy crude oils with high sulphur content.

  6. Improved Processes to Remove Naphthenic Acids

    Energy Technology Data Exchange (ETDEWEB)

    Aihua Zhang; Qisheng Ma; Kangshi Wang; Yongchun Tang; William A. Goddard

    2005-12-09

    In the past three years, we followed the work plan as we suggested in the proposal and made every efforts to fulfill the project objectives. Based on our large amount of creative and productive work, including both of experimental and theoretic aspects, we received important technical breakthrough on naphthenic acid removal process and obtained deep insight on catalytic decarboxylation chemistry. In detail, we established an integrated methodology to serve for all of the experimental and theoretical work. Our experimental investigation results in discovery of four type effective catalysts to the reaction of decarboxylation of model carboxylic acid compounds. The adsorption experiment revealed the effectiveness of several solid materials to naphthenic acid adsorption and acidity reduction of crude oil, which can be either natural minerals or synthesized materials. The test with crude oil also received promising results, which can be potentially developed into a practical process for oil industry. The theoretical work predicted several possible catalytic decarboxylation mechanisms that would govern the decarboxylation pathways depending on the type of catalysts being used. The calculation for reaction activation energy was in good agreement with our experimental measurements.

  7. Interfacial (o/w) properties of naphthetic acids and metal naphthenates, naphtenic acid characterization and metal naphthenate inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Brandal, Oeystein

    2005-07-01

    Deposition of metal naphthenates in process facilities is becoming a huge problem for petroleum companies producing highly acidic crudes. In this thesis, the main focus has been towards the oil-water (o/w) interfacial properties of naphthenic acids and their ability to react with different divalent cations across the interface to form metal naphthenates. The pendant drop technique was utilized to determine dynamic interfacial tensions (IFT) between model oil containing naphthenic acid, synthetic as well as indigenous acid mixtures, and pH adjusted water upon addition of different divalent cations. Changes in IFT caused by the divalent cations were correlated to reaction mechanisms by considering two reaction steps with subsequent binding of acid monomers to the divalent cation. The results were discussed in light of degree of cation hydration and naphthenic acid conformation, which affect the interfacial conditions and thus the rate of formation of 2:1 complexes of acid and cations. Moreover, addition of non-ionic oil-soluble surfactants used as basis compounds in naphthenate inhibitors was found to hinder a completion of the reaction through interfacial dilution of the acid monomers. Formation and stability of metal naphthenate films at o/w interfaces were studied by means of Langmuir technique with a trough designed for liquid-liquid systems. The effects of different naphthenic acids, divalent cations, and pH of the subphase were investigated. The results were correlated to acid structure, cation hydration, and degree of dissociation, which all affect the film stability against compression. Naphthenic acids acquired from a metal naphthenate deposit were characterized by different spectroscopic techniques. The sample was found to consist of a narrow family of 4-protic naphthenic acids with molecular weights around 1230 g/mol. These acids were found to be very o/w interfacially active compared to normal crude acids, and to form Langmuir monolayers with stability

  8. Naphthenic acid characterization and distribution in crude oils; Caracterizacao e distribuicao de acidos naftenicos em petroleos

    Energy Technology Data Exchange (ETDEWEB)

    Guimaraes, Regina C.L.; Gomes, Alexandre de O. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil)

    2008-07-01

    Naphthenic acid corrosion was observed for the first time during the distillation process of some kind of crude oils in 1920. Recent reports about naphthenic acid corrosion have been found in China, India, Venezuela, Eastern Europe, Russia and the USA. In Brazil, heavy and acid crude oil processing is rising. Some brazilian crude oils have TAN around 3,0 mg KOH/g. The presence of relatively high levels of naphthenic acids in crude oils is a bane of petroleum refiners; and more recently, of producers as well, who have reported problems during production with calcium and sodium naphthenate . Essentially, these acids which are found to greater or lesser extent in virtually all crude oils are corrosive and tend to cause equipment failures, lead to high maintenance costs and may pose environmental disposal problems. In order to give these information to PETROBRAS, The Research and Development Center of PETROBRAS (CENPES) has been working in house and with brazilian universities developing analytical technicians to know better molecular structures and distribution of these acids compounds in crude oils. This work presents the actual methods and some results from these developments. (author)

  9. Modelling the ecotoxicity of naphthenic acids

    International Nuclear Information System (INIS)

    Redman, A.; McGrath, J.; Parkerton, T.; Frank, R.; Di Toro, D.

    2010-01-01

    Oil sand-derived process water is comprised of mixtures of many different toxic compounds. Recent modelling studies have been developed to assess oil sand ecotoxicity caused by naphthenic acids (NA). The hydrocarbon block method was used to described the ecotoxicity of NA mixtures using a database of physico-chemical properties for individual hydrocarbons. Chemical speciation and biota partitioning models are used to characterize the toxicity of ionizable compounds. An analysis of model predictions has suggested that high MW and compounds from the higher Z families contribute significantly to the ecotoxicity of oil sand-derived process water. However, the current modelling method overpredicts the toxicity of the highest residual fractions, which suggests that the bioavailability of the highest MW compounds is limited. Further model refinement is needed to evaluate NA compounds across a wide range of MW and Z families.

  10. Coupling of subcritical methanol with acidic ionic liquids for the acidity reduction of naphthenic acids

    Directory of Open Access Journals (Sweden)

    Zafar Faisal

    2017-09-01

    Full Text Available The presence of naphthenic acids (NAs in crude oil is the major cause of corrosion in the refineries and its processing equipment. The goal of this study is to reduce the total acid number (TAN of NAs by treating them with subcritical methanol in the presence of acidic ionic liquid (AIL catalysts. Experiments were carried out in an autoclave batch reactor and the effect of different reaction parameters was investigated. It was observed that TAN reduction was positively dependent on the temperature and concentration of the AIL whereas excess of methanol has a negative effect. Approximately 90% TAN reduction was achieved under the optimized reaction conditions using [BMIM]HSO4 as catalyst. It was also perceived from the experimental results that the AILs with longer alkyl chain exhibited higher catalytic activity. The activity and stability of AIL showed that they can be promising catalyst to esterify NAs under subcritical methanol.

  11. Naphthenic acid removal from HVGO by alkaline earth metal catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Ding, L.; Rahimi, P.; Hawkins, R.; Bhatt, S.; Shi, Y. [National Centre for Upgrading Technology, Devon, AB (Canada); Natural Resources Canada, Devon, AB (Canada). CanmetENERGY

    2009-07-01

    This poster highlighted a study that investigated naphthenic acid removal from bitumen-derived heavy vacuum gas oil (HVGO) by thermal cracking and catalytic decarboxylation over alkaline earth-metal oxides and ZnO catalysts in a batch reactor and a continuous fixed-bed reactor. X-ray diffraction (XRD), thermogravimetric-differential thermal analysis (TG-DTA) temperature-programmed desorption (TPD) of carbon dioxide (CO{sub 2}-TPD), and scanning electron microscopy were used to characterize the fresh and spent catalysts. With MgO and ZnO, naphthenic acid removal proceeded via catalytic decarboxylation. No crystalline phase changes were observed after reaction. With CaO, multiple pathways such as catalytic decarboxylation, neutralization, and thermal cracking were responsible for naphthenic acid conversion. The spent catalysts contained Ca(OH){sub 2} and CaCO{sub 3}. With BaO, naphthenic acid conversion occurred through neutralization. All BaO was converted to Ba(OH){sub 2} during the reaction. tabs., figs.

  12. Characterization of commercial ceramic adsorbents and its application on naphthenic acids removal of petroleum distillates

    Directory of Open Access Journals (Sweden)

    Juliana Pereira Silva

    2007-06-01

    Full Text Available The mixture of carboxylic acids present in petroleum oil and directly responsible for its acidity and corrosiveness in liquid phase during the refine process is denominated "naphthenic acids". These acids are also present in distilled fraction of petroleum, causing several problems in final products quality. A possible way to remove the carboxilic acids from petroleum distilled fractions is the adsorption in porous materials. However, the results obtained until now indicate that ion exchange resins would be the best adsorbents for this process, which would probably increase its cost. In this work, two commercial adsorbents (clay and activated alumina were characterized by a set of physical-chemistry techniques and evaluated concerning their capacity of removing naphthenic acids from a light petroleum fraction. It was verified the influence of a thermal treatment previous to the adsorption in its physical-chemistry characteristics and its properties. A high reduction of the TAN values was verified in the residual oils from both adsorbent, although there was a competition among all the compounds present in the light oil fraction for the adsorption sites, which can be probably related to the thermal pre-treatment. These results were related to corrosion yield experiments, and it was observed that the adsorbent pretreatment also affected the reduction in corrosion yields for both alumina and clay.

  13. Evaluation of protective effect of deposits formed by naphthenic corrosion and sulfidation on carbon steel and steel 5Cr-0.5Mo exposed in atmospheric distillation fractions

    Directory of Open Access Journals (Sweden)

    Gloria Duarte

    2017-05-01

    Full Text Available Refining of so-called opportunity crude oils with a high level of naphthenic acids and sulfur compounds has been increasing interest due to limited availability of light crude oils, however, considerable corrosive effects in the processing to high temperature on pipes and distillation towers mainly by the attack of naphthenic acids and sulfur compounds; sulfur compounds could be corrosive or can reduce the attack of naphthenic acids due to the formation of sulfides layers on the metal surface. In this work was evaluated the performance of deposits formed on the surface of carbon steel AISI SAE 1020 and 5% Cr-0.5% Mo steel exposed in crude oil fractions obtained from atmospheric distillation tower. For this, gravimetric tests were performed in dynamic autoclave using metal samples pre-treated in a crude oil fraction obtained from the atmospheric distillation tower of the Crude Distillation Unit (CDU # 1 in order to form layers of sulfides on the surface of the two materials and subsequently to expose pre-treated and non-pretreated samples in two different crude oil fractions obtained from atmospheric distillation tower of Crude Distillation Unit (CDU # 2. The evaluation showed that the samples pretreated decreased tendency to corrosion by naphthenic acids and sulfidation compared to untreated samples.

  14. Mitigation of naphthenate related production upsets in high TAN (Total Acid Number) crude oil

    Energy Technology Data Exchange (ETDEWEB)

    Ostojic, Nik [Maersk Oil, Copenhagen (Denmark); Vijn, Pieter; Reiners, Robert [Champion Technologies Europe BV, Delden (Netherlands)

    2012-07-01

    This paper describes a strategy for prediction, evaluation and mitigation of calcium naphthenate related production problems. Developing fields with acidic crude in the North Sea, West Africa, Bohai Bay (China) and Brazil is becoming more common in recent years. The high acid crude contains a considerable amount of naphthenic acids, typically having a Total Acid Number (TAN) higher than 0.5 mg KOH/g. Formation of either hard type 'calcium naphthenate precipitates' or soft type 'sodium carboxylate/emulsions' during crude oil production can lead to severe flow assurance and separation problems. In severe cases this may lead to production shutdowns to clean-up the equipment. A number of different naphthenate mitigation approaches have been published but no one particular approach is considered to be the most efficient as it depends significantly on the particular field conditions. Initially, this problem was addressed by deploying large volumes of (usually organic) acid, but more recently high efficiency low dose naphthenate inhibitors have been introduced. For predicting naphthenate scaling potential, methods were developed to determine the concentration of 1230 Dalton naphthenic tetra acid (ARN acids) in either deposit or crude oil and this information can be used to locate and potentially isolate the problem to a certain reservoir. Also, methods were developed to design suitable low dose naphthenate inhibitors. As these inhibitors are field tested, monitoring is required to ensure the product is performing most efficiently. In cases of tight emulsions however, this is less difficult as the oil dehydration and water quality is affected instantly. Methods were developed to allow monitoring of the calcium naphthenate deposition in field trails, thus allow trending and evaluation of the chemicals performance. After detailed analyses and discussions of the developed methods, a North Sea case history is presented reviewing several years of treating

  15. Analysis of naphthenic acid mixtures as pentafluorobenzyl derivatives by gas chromatography-electron impact mass spectrometry.

    Science.gov (United States)

    Gutierrez-Villagomez, Juan Manuel; Vázquez-Martínez, Juan; Ramírez-Chávez, Enrique; Molina-Torres, Jorge; Trudeau, Vance L

    2017-01-01

    In this study, we report for the first time the efficiency of pentafluorobenzyl bromide (PFBBr) for naphthenic acid (NA) mixtures derivatization, and the comparison in the optimal conditions to the most common NAs derivatization reagents, BF 3 /MeOH and N-(t-butyldimethylsilyl)-N-methyltrifluoroacetamide (MTBSTFA). Naphthenic acids are carboxylic acid mixtures of petrochemical origin. These compounds are important for the oil industry because of their corrosive properties, which can damage oil distillation infrastructure. Moreover, NAs are commercially used in a wide range of products such as paint and ink driers, wood and fabric preservatives, fuel additives, emulsifiers, and surfactants. Naphthenic acids have also been found in sediments after major oils spills in the United States and South Korea. Furthermore, the toxicity of the oil sands process-affected water (OSPW), product of the oil sands extraction activities in Canada's oil sands, has largely been attributed to NAs. One of the main challenges for the chromatographic analysis of these mixtures is the resolution of the components. The derivatization optimization was achieved using surface response analysis with molar ratio and time as factors for derivatization signal yield. After gas chromatography-electron impact mass spectrometry (GC/EIMS) analysis of a mixture of NA standards, it was found that the signal produced by PFB-derivatives was 2.3 and 1.4 times higher than the signal produced by methylated and MTBS-derivatives, respectively. The pentafluorobenzyl derivatives have a characteristic fragment ion at 181m/z that is diagnostic for the differentiation of carboxylic and non-carboxylic acid components within mixtures. In the analysis of a Sigma and a Merichem derivatized oil extract NA mixtures, it was found that some peaks lack the characteristic fragment ion; therefore they are not carboxylic acids. Open column chromatography was used to obtain a hexane and a methanol fraction of the Sigma and

  16. Immunotoxic effects of oil sands-derived naphthenic acids to rainbow trout

    International Nuclear Information System (INIS)

    MacDonald, Gillian Z.; Hogan, Natacha S.; Köllner, Bernd; Thorpe, Karen L.; Phalen, Laura J.; Wagner, Brian D.; Heuvel, Michael R. van den

    2013-01-01

    Naphthenic acids are the major organic constituents in waters impacted by oil sands. To investigate their immunotoxicity, rainbow trout (Oncorhynchus mykiss) were injected with naphthenic acids extracted from aged oil sands tailings water. In two experiments, rainbow trout were injected intraperitoneally with 0, 10, or 100 mg/kg of naphthenic acids, and sampled after 5 or 21 d. Half of the fish from the 21 d exposure were co-exposed to inactivated Aeromonas salmonicida (A.s.) to induce an immune response. A positive control experiment was conducted using an intraperitoneal injection of 100 mg/kg of benzo[a]pyrene, a known immune suppressing compound. T-lymphocytes, B-lymphocytes, thrombocytes, and myeloid cells were counted in blood and lymphatic tissue using flow cytometry. In the 5 d exposure, there was a reduction in blood leucocytes and spleen thrombocytes at the 100 mg/kg dose. However, at 21 d, leucocyte populations showed no effects of exposure with the exception that spleen thrombocyte populations increase at the 100 mg/kg dose. In the 21 d exposure, B- and T-lymphocytes in blood showed a significant Dose × A.s. interaction, indicating stimulated blood cell proliferation due to naphthenic acids alone as well as due to A.s. Naphthenic acid injections did not result in elevated bile fluorescent metabolites or elevated hepatic EROD activity. In contrast to naphthenic acids exposures, as similar dose of benzo[a]pyrene caused a significant decrease in B- and T-lymphocyte absolute counts in blood and relative B-lymphocyte counts in spleen. Results suggest that the naphthenic acids may act via a generally toxic mechanism rather than by specific toxic effects on immune cells.

  17. Immunotoxic effects of oil sands-derived naphthenic acids to rainbow trout

    Energy Technology Data Exchange (ETDEWEB)

    MacDonald, Gillian Z.; Hogan, Natacha S. [Canadian Rivers Institute, Department of Biology, University of Prince Edward Island, 550 University Avenue, Charlottetown, PEI (Canada); Koellner, Bernd [Friedrich Loeffler Institute, Federal Research Institute of Animal Health, Institute of Immunology, Greifswald (Germany); Thorpe, Karen L.; Phalen, Laura J. [Canadian Rivers Institute, Department of Biology, University of Prince Edward Island, 550 University Avenue, Charlottetown, PEI (Canada); Wagner, Brian D. [Department of Chemistry, University of Prince Edward Island, Charlottetown (Canada); Heuvel, Michael R. van den, E-mail: mheuvel@upei.ca [Canadian Rivers Institute, Department of Biology, University of Prince Edward Island, 550 University Avenue, Charlottetown, PEI (Canada)

    2013-01-15

    Naphthenic acids are the major organic constituents in waters impacted by oil sands. To investigate their immunotoxicity, rainbow trout (Oncorhynchus mykiss) were injected with naphthenic acids extracted from aged oil sands tailings water. In two experiments, rainbow trout were injected intraperitoneally with 0, 10, or 100 mg/kg of naphthenic acids, and sampled after 5 or 21 d. Half of the fish from the 21 d exposure were co-exposed to inactivated Aeromonas salmonicida (A.s.) to induce an immune response. A positive control experiment was conducted using an intraperitoneal injection of 100 mg/kg of benzo[a]pyrene, a known immune suppressing compound. T-lymphocytes, B-lymphocytes, thrombocytes, and myeloid cells were counted in blood and lymphatic tissue using flow cytometry. In the 5 d exposure, there was a reduction in blood leucocytes and spleen thrombocytes at the 100 mg/kg dose. However, at 21 d, leucocyte populations showed no effects of exposure with the exception that spleen thrombocyte populations increase at the 100 mg/kg dose. In the 21 d exposure, B- and T-lymphocytes in blood showed a significant Dose Multiplication-Sign A.s. interaction, indicating stimulated blood cell proliferation due to naphthenic acids alone as well as due to A.s. Naphthenic acid injections did not result in elevated bile fluorescent metabolites or elevated hepatic EROD activity. In contrast to naphthenic acids exposures, as similar dose of benzo[a]pyrene caused a significant decrease in B- and T-lymphocyte absolute counts in blood and relative B-lymphocyte counts in spleen. Results suggest that the naphthenic acids may act via a generally toxic mechanism rather than by specific toxic effects on immune cells.

  18. Response of Chlamydomonas reinhardtii to naphthenic acid exposure

    Energy Technology Data Exchange (ETDEWEB)

    Goff, K.; Wilson, K. [Saskatchewan Univ., Saskatoon, SK (Canada); Headley, J. [Environment Canada, Ottawa, ON (Canada)

    2010-07-01

    This study examined the feasibility of using a model organism for the algal bioremediation of oil sands process water (OSPW), a highly toxic mixture of sediments, bitumen, ions, and organic and inorganic compounds. Naphthenic acids (NAs) are a contaminant class of particular concern. Bioremediation techniques may mitigate toxicity of OSPW in general, and NAs in particular. Although most studies on the biodegradation of NAs focus on the role of bacteria, fungi, and emergent macrophytes, studies have indicated that algae may also play a key role through direct degradation, biosequestration, or photosynthetic aeration of waters to promote other biological reactions. Chlamydomonas frigida is of particular interest, but no cultures are currently available. Therefore, this study used C. reinhardtii, a well-characterized model organism, to begin analysis of potential algal bioremediation of OSPW. Cultures of C. reinhardtii were grown heterotrophically in nutrient media spiked with a dilution series of NAs. Culture densities were measured to compile growth curves over time, changes in rate of growth, and survivability. Negative ion electrospray mass spectrometry was used to determine the concentration of NAs in solution in relation to growth rate and culture density. The study determined the tolerance of C. reinhardtii to NAs. A mechanism for this tolerance was then proposed.

  19. Mass spectrometry of oil sands naphthenic acids : degradation in OSPW and wetland plants

    Energy Technology Data Exchange (ETDEWEB)

    Headley, J. [Environment Canada, Saskatoon, SK (Canada). Water Science and Technology Directorate

    2009-07-01

    This presentation discussed mass spectrometry of oil sands naphthenic acids and the degradation in OSPW and wetland plants. It presented background information on the Athabasca oil sands and naphthenic acids which involve a mixture of alkanes and cycloalkane carboxylic acids with aliphatic side chains. The presentation also discussed mass spectrometry with electrospray operating in negative ion modes. Loop injection, external standard methods and solid phase extraction were reviewed along with improved analysis by removing background ions. Other topics that were presented included hydroponic test systems and wetland plant toxicity, growth and transpiration. It was concluded that dissipation included species containing oxygen, ozone, O{sub 4}, and O{sub 5}. tabs., figs.

  20. Biodegradation of a surrogate naphthenic acid under denitrifying conditions.

    Science.gov (United States)

    Gunawan, Yetty; Nemati, Mehdi; Dalai, Ajay

    2014-03-15

    Extraction of bitumen from the shallow oil sands generates extremely large volumes of waters contaminated by naphthenic acid which pose severe environmental and ecological risks. Aerobic biodegradation of NA in properly designed bioreactors has been investigated in our earlier works. In the present work, anoxic biodegradation of trans-4-methyl-1-cyclohexane carboxylic acid (trans-4MCHCA) coupled to denitrification was investigated as a potential ex situ approach for the treatment of oil sand process waters in bioreactors whereby excessive aeration cost could be eliminated, or as an in situ alternative for the treatment of these waters in anoxic stabilization ponds amended with nitrate. Using batch and continuous reactors (CSTR and biofilm), effects of NA concentration (100-750mgL(-1)), NA loading rate (up to 2607.9mgL(-1)h(-1)) and temperature (10-35°C) on biodegradation and denitrification processes were evaluated. In the batch system biodegradation of trans-4MCHCA coupled to denitrification occurred even at the highest concentration of 750mgL(-1). Consistent with the patterns reported for aerobic biodegradation, increase in initial concentration of NA led to higher biodegradation and denitrification rates and the optimum temperature was determined as 23-24°C. In the CSTR, NA removal and nitrate reduction rates passed through a maximum due to increases in NA loading rate. NA loading rate of 157.8mgL(-1)h(-1) at which maximum anoxic NA and nitrate removal rates (105.3mgL(-1)h(-1) and 144.5mgL(-1)h(-1), respectively) occurred was much higher than those reported for the aerobic alternative (NA loading and removal rates: 14.2 and 9.6mgL(-1)h(-1), respectively). In the anoxic biofilm reactor removal rates of NA and nitrate were dependent on NA loading rate in a linear fashion for the entire range of applied loading rates. The highest loading and removal rates for NA were 2607.9 and 2028.1mgL(-1)h(-1), respectively which were at least twofold higher than the values

  1. Genome Sequence Analysis of the Naphthenic Acid Degrading and Metal Resistant Bacterium Cupriavidus gilardii CR3.

    Directory of Open Access Journals (Sweden)

    Xiaoyu Wang

    Full Text Available Cupriavidus sp. are generally heavy metal tolerant bacteria with the ability to degrade a variety of aromatic hydrocarbon compounds, although the degradation pathways and substrate versatilities remain largely unknown. Here we studied the bacterium Cupriavidus gilardii strain CR3, which was isolated from a natural asphalt deposit, and which was shown to utilize naphthenic acids as a sole carbon source. Genome sequencing of C. gilardii CR3 was carried out to elucidate possible mechanisms for the naphthenic acid biodegradation. The genome of C. gilardii CR3 was composed of two circular chromosomes chr1 and chr2 of respectively 3,539,530 bp and 2,039,213 bp in size. The genome for strain CR3 encoded 4,502 putative protein-coding genes, 59 tRNA genes, and many other non-coding genes. Many genes were associated with xenobiotic biodegradation and metal resistance functions. Pathway prediction for degradation of cyclohexanecarboxylic acid, a representative naphthenic acid, suggested that naphthenic acid undergoes initial ring-cleavage, after which the ring fission products can be degraded via several plausible degradation pathways including a mechanism similar to that used for fatty acid oxidation. The final metabolic products of these pathways are unstable or volatile compounds that were not toxic to CR3. Strain CR3 was also shown to have tolerance to at least 10 heavy metals, which was mainly achieved by self-detoxification through ion efflux, metal-complexation and metal-reduction, and a powerful DNA self-repair mechanism. Our genomic analysis suggests that CR3 is well adapted to survive the harsh environment in natural asphalts containing naphthenic acids and high concentrations of heavy metals.

  2. Simple Method to Determine the Partition Coefficient of Naphthenic Acid in Oil/Water

    DEFF Research Database (Denmark)

    Bitsch-Larsen, Anders; Andersen, Simon Ivar

    2008-01-01

    The partition coefficient for technical grade naphthenic acid in water/n-decane at 295 K has been determined (K-wo = 2.1 center dot 10(-4)) using a simple experimental technique with large extraction volumes (0.09 m(3) of water). Furthermore, nonequilibrium values at different pH values...

  3. [Determination of naphthenic acids in distillates of crude oil by gas chromatography/chemical ionization-mass spectrometry].

    Science.gov (United States)

    Lü, Zhenbo; Tian, Songbai; Zhai, Yuchun; Sun, Yanwei; Zhuang, Lihong

    2004-05-01

    The petroleum carboxylic acids in 200-420 degrees C distillate of crude oil were separated by the extraction with column chromatography on an anion exchange resin. The effect of the composition and structure of naphthenic acids on separation were studied by the infra-red (IR) spectroscopic techniques. Naphthenic acids and iso-butane reagent gas were introduced into the ion source for chemical ionization, in which the ions represented by [M + C4H9]+ were used to calculate the relative molecular mass for each acid. Based on the mass spectra of pure fatty and naphthenic acids, in combination with the z-series formula CnH(2n + z)O2, the naphthenic acids can be classified into fatty, mono-, bi- ... hexa-cyclic types. The results indicated that the relative molecular mass range of naphthenic acids in this distillates was 170-510, and the carbon number range was C10-C35. The contents of bi-cyclic and tri-cyclic naphthenic acids were higher than others.

  4. Influence of containing of asphaltenes and naphthenic acids over organic deposition inhibitor performance

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Geiza E.; Mansur, Claudia R.E.; Pires, Renata V.; Passos, Leonardo B.; Lucas, Elizabete F. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Inst. de Macromoleculas; Alvares, Dellyo R.S.; Gonzalez, Gaspar [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES)

    2004-07-01

    Organic deposition is a serious problem confronted by the petroleum industry in Brazil and worldwide. Among the main petroleum components that may cause deposition problems are waxes and asphaltenes. This work aims at evaluating the influence of petroleum fractions (asphaltenes and naphthenic acids) on the organic deposition phenomenon as well as on organic deposition inhibitors performance. The influence of the organic fractions was evaluated by their ability to change wax crystals, to lower the pour point and to alter the initial wax appearance temperature. The efficiency of the additives was tested by pour point measurements. The results show that asphaltenes seem to act as organic deposition inhibitors, while naphthenic acids do not significantly change the system. Moreover, employing both of them produces no synergic effect. Among polymeric inhibitors, all of the chemically modified EVA copolymer presented better results than the non-modified commercial EVA copolymer. The best result was observed for EVA28C{sub 16}. (author)

  5. Could naphthenic acids be responsible for severe emulsion tightness for a low TAN value oil?

    Energy Technology Data Exchange (ETDEWEB)

    Pauchard, V.; Muller, H.; Al-Hajji, A. [Saudi Aramco, Dhahran (Saudi Arabia). Research and Development Center; Sjoblom, J. [Norwegian Univ. of Technology, Trondheim (Norway). Ugelstad Laboratory; Kokal, S. [Saudi Aramco, Dhahran (Saudi Arabia). EXPEC Advanced Research Center; Bouriat, P.; Dicharry, C. [Univ. de Pau, Pau Cedex (France). Laboratoire des Fluides Complexes, UMR CNRS; Rogers, R. [Florida State Univ., Tallahassee, FL (United States)

    2008-07-01

    This study re-analyzed the emulsion stabilizing properties of a low Total Acid Number (TAN) of a high asphaltene crude oil with respect to the role of naphthenic acids. The emulsion stability depended on the pressure/pH. The high interfacial activity of indigenous acids extracted from the crude oil was determined by means of Ion Exchange Resins and by the high organic acid content in the interfacial material extracted from a sludge emulsion. The physical origin of these phenomenological observations was identified using the Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR-MS) and pendant droplet experiments. The interfacial material was composed of a mixture of asphaltenes and organic acids having a wide range of structures (monoprotic, diprotic, fatty, naphthenic and perhaps aromatic) and molecular weights. The interfacial rheology was a 2D gel with an assumed glass transition temperature of approximately 40 degrees C. It was concluded that a synergistic effect of asphaltenes and organic acids promoted the build up of a very structured interface. This interface is more resistant to droplets coalescence than less structured interfaces. Therefore, the disruption of the interfacial layer requires the drainage of individual molecules as well as a collective yield of the gel.

  6. Determination of naphthenic acid profile in Ghana's Jubilee Oil using gas chromatography-mass spectrometry

    International Nuclear Information System (INIS)

    Osuteye, I.

    2015-01-01

    Crude oil is the life-blood of the global economy. Its importance stems from the fact that it is a base product for a wide variety of goods [Drugs, Plastics, Liquefied Petroleum Gas (LPG)]. The oil discovery (over 3 billion barrel reserves in hydrocarbon and gas), about 60 km offshore between the Deepwater Tano and Cape Three Points Block in South western Ghana is a valuable natural asset and it has the potential of boosting the Ghanaian economy. During petroleum processing, various waste products are generated. One of such products is Naphthenic acids (NA). Naphthenic acids are organic acids naturally occurring in crude oil and a constituent of waste associated with oil refinery. Naphthenic acids serve as biomarkers for identification of the source of crude oil. The presence of Naphthenic acid in the aquatic environment causes toxic effects due to their weak biodegradable nature; the toxicity of Naphthenic acids depends on the class of Naphthenic acids present in the crude oil. The study assessed the profile of Naphthenic acids in Ghana’s Jubilee crude oil using Low Resolution Electron Impact – Gas Chromatography Mass Spectrometry (LREI-GCMS) after isolation of Naphthenic acids in the Jubilee oil by a modified Kupchan’s Partitioning Process. The Mass Spectrometric (MS) Work Station Software was used for the identification of the Naphthenic acids present in the Jubilee crude oil. The quality of the Jubilee oil was also evaluated through the use of some key physico-chemical parameters [Total Acid Number (TAN), Sulphur Content, Viscosity, Pour Point, Flashpoint, Water Content and Densities] based on the American Standards for Testing and Materials (ASTM, 2007). The Total Acid Number was determined by Colorimetric Titration (ASTM D974); Sulphur Content by X-ray Fluorescent Spectrometry (ASTM D4294); Pour Point by the use of the SETA cloud and Pour Point Refrigerator Technique (ASTM D97); Viscosity by Gravity Timed Method (ASTM D445); Density by the Hydrometer

  7. Characterization of commercial ceramic adsorbents and their application on naphthenic acids removal of petroleum distillates; Caracterizacao de adsorventes ceramicos comerciais e sua aplicacao na remocao de acidos naftenicos de destilados de petroleo

    Energy Technology Data Exchange (ETDEWEB)

    Silva, J.P.; Senna, L.F. de; Lago, D.C.B. do; Silva Junior, P.F. da; Figueiredo, M.A.G. de; Dias, E.G. [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil)], e-mail: julia_psi@yahoo.com.br; Chiaro, S.S.X. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES)

    2006-07-01

    One denominates 'naphthenic acids' to the mixture of carboxylic acids that is present in petroleum oil, and is directly responsible for its acidity and corrosiveness in liquid phase during the refine process. These acids are also presents in distilled fraction of petroleum, causing several problems in final products quality. A possible way to remove them from petroleum distilled fractions is the adsorption in porous materials. However, the published results indicate that ion exchange resins would be the best adsorbents for this process, which would probably increase its cost. In this work, two commercial adsorbents (clay and activated alumina) were characterized by a set of physical-chemistry techniques and evaluated concerning their capacity of removing naphthenic acids from a light petroleum fraction. It was also verified the influence of a previous thermal treatment to the adsorption in their physical-chemistry characteristics and its properties. (author)

  8. Influence of commercial (Fluka) naphthenic acids on acid volatile sulfide (AVS) production and divalent metal precipitation.

    Science.gov (United States)

    McQueen, Andrew D; Kinley, Ciera M; Rodgers, John H; Friesen, Vanessa; Bergsveinson, Jordyn; Haakensen, Monique C

    2016-12-01

    Energy-derived waters containing naphthenic acids (NAs) are complex mixtures often comprising a suite of potentially problematic constituents (e.g. organics, metals, and metalloids) that need treatment prior to beneficial use, including release to receiving aquatic systems. It has previously been suggested that NAs can have biostatic or biocidal properties that could inhibit microbially driven processes (e.g. dissimilatory sulfate reduction) used to transfer or transform metals in passive treatment systems (i.e. constructed wetlands). The overall objective of this study was to measure the effects of a commercially available (Fluka) NA on sulfate-reducing bacteria (SRB), production of sulfides (as acid-volatile sulfides [AVS]), and precipitation of divalent metals (i.e. Cu, Ni, Zn). These endpoints were assessed following 21-d aqueous exposures of NAs using bench-scale reactors. After 21-days, AVS molar concentrations were not statistically different (pAVS production was sufficient in all NA treatments to achieve ∑SEM:AVS AVS) could be used to treat metals occurring in NAs affected waters. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. The influence of naphthenic acids and their fractions onto cell membrane permeability

    Directory of Open Access Journals (Sweden)

    Pavlović Ksenija

    2015-01-01

    Full Text Available The influence of naphthenic acids (NAs mixture and their narrow fractions (called NA pH 4, pH 8 and pH 10 onto permeability of beetroot cell membrane is examined. The results showed that the effect depends on treatment duration, concentration and NAs structure. Longer treatment of plant cell membranes with sodium naphthenate (Na-naph resulted in the increase of membrane permeability (e.g. 4-hour treatment with Na-naph (C=100 μmol L-1 increased membrane permeability about 3 times, while prolongation of treatment to 24 hour resulted in the 18 times increasing of the effect. NAs in the concentration range from 0.1 to 10 μmol L-1 does not change membrane permeability, while membrane permeability is increasing linearly with concentration increasing from 10-100 μmol L-1. The strongest effect expressed fraction pH 8, where bi- and tricyclic carboxylic acids are the most abundant. These structures are predominant in the total NAs mixture as well. Thereby could be explained their closest, but a little bit weaker effect, comparing to NAs present in fraction pH 8. The effect of NAs onto beetroot cell membrane is between the effects of anionic (SDS and LS and non-ionic surfactants (Triton X-100. [Projekat Ministarstva nauke Republike Srbije, br. 172006. i br. TR31036

  10. Effect of alkyl side chain location and cyclicity on the aerobic biotransformation of naphthenic acids.

    Science.gov (United States)

    Misiti, Teresa M; Tezel, Ulas; Pavlostathis, Spyros G

    2014-07-15

    Aerobic biodegradation of naphthenic acids is of importance to the oil industry for the long-term management and environmental impact of process water and wastewater. The effect of structure, particularly the location of the alkyl side chain as well as cyclicity, on the aerobic biotransformation of 10 model naphthenic acids (NAs) was investigated. Using an aerobic, mixed culture, enriched with a commercial NA mixture (NA sodium salt; TCI Chemicals), batch biotransformation assays were conducted with individual model NAs, including eight 8-carbon isomers. It was shown that NAs with a quaternary carbon at the α- or β-position or a tertiary carbon at the β- and/or β'-position are recalcitrant or have limited biodegradability. In addition, branched NAs exhibited lag periods and lower degradation rates than nonbranched or simple cyclic NAs. Two NA isomers used in a closed bottle, aerobic biodegradation assay were mineralized, while 21 and 35% of the parent compound carbon was incorporated into the biomass. The NA biodegradation probability estimated by two widely used models (BIOWIN 2 and 6) and a recently developed model (OCHEM) was compared to the biodegradability of the 10 model NAs tested in this study as well as other related NAs. The biodegradation probability estimated by the OCHEM model agreed best with the experimental data and was best correlated with the measured NA biodegradation rate.

  11. Acid corrosion inhibitor

    Energy Technology Data Exchange (ETDEWEB)

    Chen, N G

    1964-04-28

    An acid corrosion inhibitor is prepared by a 2-stage vacuum evaporation of effluents obtained from the ammonia columns of the coking oven plant. The effluent, leaving a scrubber in which the phenols are removed at a temperature of 98$C, passes through a quartz filter and flows into a heated chamber in which it is used for preheating a solution circulating through a vacuum unit, maintaining the temperature of the solution at 55$ to 60$C. The effluent enters a large tank in which it is boiled at 55$ to 60$C under 635 to 640 mm Hg pressure. Double evaporation of this solution yields a very effective acid corrosion inhibitor. Its corrosion-preventing effect is 97.9% compared with 90.1% for thiourea and 88.5% for urotropin under identical conditions.

  12. Environmental fate and quantitative analysis of oilsands naphthenic acids : a review

    Energy Technology Data Exchange (ETDEWEB)

    McMartin, D. [Regina Univ., SK (Canada). Faculty of Engineering; Peru, K.M.; Headley, J. [Environment Canada, Saskatoon, SK (Canada). National Water Research Inst.

    2006-07-01

    Naphthenic acids (NA) are toxic to aquatic species and mammals. Significant concentrations of NA are found in oil sands tailings ponds. This presentation reviewed some of the analytical tools used by industry and environmentalists to remediate NA. Environmental persistence results were presented, as well as detailed information regarding the origin of NA in tailings ponds. Chemistry and toxicological considerations were examined, and current analytical methods for aquatic sampling were reviewed. Issues concerning photodegradation and phytoremediation were discussed. Details of the environmental effects of NA exposure were presented. Studies investigating the microbial populations required to degrade NA in water were discussed, as well as recent research investigating the phytoremediation of wetlands exposed to NA. It was noted that research is currently being conducted to optimize algae culture for use in phytoremediation methods. However, many of the components of NA are resistant to the biodegradation, photodegradation and phytoremediation methods currently used. It was concluded that further research is needed to complete mass balance studies in riverine systems and to evaluate the cellular level toxicity of NA in plants. refs., tabs., figs.

  13. Effects of naphthenic acid exposure on development and liver metabolic processes in anuran tadpoles

    International Nuclear Information System (INIS)

    Melvin, Steven D.; Lanctôt, Chantal M.; Craig, Paul M.; Moon, Thomas W.; Peru, Kerry M.; Headley, John V.; Trudeau, Vance L.

    2013-01-01

    Naphthenic acids (NA) are used in a variety of commercial and industrial applications, and are primary toxic components of oil sands wastewater. We investigated developmental and metabolic responses of tadpoles exposed to sub-lethal concentrations of a commercial NA blend throughout development. We exposed Lithobates pipiens tadpoles to 1 and 2 mg/L NA for 75 days and monitored growth and development, condition factor, gonad and liver sizes, and levels of liver glucose, glycogen, lipids and cholesterol following exposure. NA decreased growth and development, significantly reduced glycogen stores and increased triglycerides, indicating disruption to processes associated with energy metabolism and hepatic glycolysis. Effects on liver function may explain reduced growth and delayed development observed in this and previous studies. Our data highlight the need for greater understanding of the mechanisms leading to hepatotoxicity in NA-exposed organisms, and indicate that strict guidelines may be needed for the release of NA into aquatic environments. -- Highlights: ► We exposed Lithobates pipiens tadpoles to 1–2 mg/L NA in the laboratory. ► We monitored survival, growth and development for 75 days. ► We measured liver glycogen, glucose, triglycerides, and cholesterol levels. ► NA significantly reduced growth and development compared to controls. ► NA significantly reduced glycogen levels and increased triglycerides. -- Leopard frog (Lithobates pipiens) tadpoles chronically exposed to sub-lethal NA concentrations (1–2 mg/L) suffered decreased growth and development and disruption to liver metabolic processes

  14. Oil sands naphthenic acids: a review of properties, measurement, and treatment.

    Science.gov (United States)

    Brown, Lisa D; Ulrich, Ania C

    2015-05-01

    The Alberta oil sands contain one of the world's largest reserves of oil - over 169 billion barrels of bitumen are economically recoverable with current extraction technologies. Surface mining and subsequent hot water extraction of bitumen from the ore generates about nine cubic meters of raw tailings per cubic meter of oil. Oil sands facilities are required to operate under a policy of zero water discharge, resulting in ponds containing more than one billion cubic meters of tailings, a mixture of sand, fines and process-affected water. Process-affected water contains numerous organic compounds, including naphthenic acids (NAs), which have been identified as the primary source of acute toxicity of process-affected water. Developments in analytical techniques, aerobic biodegradability, and treatment via chemical oxidation (ozone) of NAs are reviewed. The field continues to be challenged by the lack of a cost-effective, accurate analytical technique for NAs or an understanding of all the organic constituents in process-affected water that may be contributing to observed toxicity and thus requiring treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Trace analysis of total naphthenic acids in aqueous environmental matrices by liquid chromatography/mass spectrometry-quadrupole time of flight mass spectrometry direct injection.

    Science.gov (United States)

    Brunswick, Pamela; Shang, Dayue; van Aggelen, Graham; Hindle, Ralph; Hewitt, L Mark; Frank, Richard A; Haberl, Maxine; Kim, Marcus

    2015-07-31

    A rapid and sensitive liquid chromatography quadrupole time of flight method has been established for the determination of total naphthenic acid concentrations in aqueous samples. This is the first methodology that has been adopted for routine, high resolution, high throughput analysis of total naphthenic acids at trace levels in unprocessed samples. A calibration range from 0.02 to 1.0μgmL(-1) total Merichem naphthenic acids was validated and demonstrated excellent accuracy (97-111% recovery) and precision (1.9% RSD at 0.02μgmL(-1)). Quantitative validation was also demonstrated in a non-commercial oil sands process water (OSPW) acid extractable organics (AEOs) fraction containing a higher percentage of polycarboxylic acid isomers than the Merichem technical mix. The chromatographic method showed good calibration linearity of ≥0.999 RSQ to 0.005μgmL(-1) total naphthenic acids with a precision <3.1% RSD and a calculated detection limit of 0.0004μgmL(-1) employing Merichem technical mix reference material. The method is well suited to monitoring naturally occurring and industrially derived naphthenic acids (and other AEOs) present in surface and ground waters in the vicinity of mining developments. The advantage of the current method is its direct application to unprocessed environmental samples and to examine natural naphthenic acid isomer profiles. It is noted that where the isomer profile of samples differs from that of the reference material, results should be considered semi-quantitative due to the lack of matching isomer content. The fingerprint profile of naphthenic acids is known to be transitory during aging and the present method has the ability to adapt to monitoring of these changes in naphthenic acid content. The method's total ion scan approach allows for data previously collected to be examined retrospectively for specific analyte mass ions of interest. A list of potential naphthenic acid isomers that decrease in response with aging is proposed

  16. Use of a (Quantitative) Structure-Activity Relationship [(Q)SAR] model to predict the toxicity of naphthenic acids

    DEFF Research Database (Denmark)

    Frank, Richard; Sanderson, Hans; Kavanagh, Richard

    2010-01-01

    Naphthenic acids (NAs) are a complex mixture of carboxylic acids that are natural constituents of oil sand found in north-eastern Alberta, Canada.  NAs are released and concentrated in the alkaline water used in the extraction of bitumen from oil sand sediment.  NAs have been identified...... as the principal toxic components of oil sands process-affected water (OSPW), and microbial degradation of lower molecular weight (MW) NAs decreases the toxicity of NA mixtures in OSPW.  Analysis by proton nuclear magnetic resonance spectroscopy indicated that larger, more cyclic NAs contain greater carboxylic...

  17. Differences in phytotoxicity and dissipation between ionized and nonionized oil sands naphthenic acids in wetland plants.

    Science.gov (United States)

    Armstrong, Sarah A; Headley, John V; Peru, Kerry M; Germida, James J

    2009-10-01

    Naphthenic acids (NAs) are composed of alkyl-substituted acyclic and cycloaliphatic carboxylic acids and, because they are acutely toxic to fish, are of toxicological concern. During the caustic hot-water extraction of oil from the bitumen in oil sands deposits, NAs become concentrated in the resulting tailings pond water. The present study investigated if dissipation of NAs occurs in the presence of hydroponically grown emergent macrophytes (Typha latifolia, Phragmites australis, and Scirpus acutus) to determine the potential for phytoremediation of these compounds. Plants were grown with oil sands NAs (pKa approximately 5-6) in medium at pH 7.8 (predominantly ionized NAs) and pH 5.0 (predominantly nonionized NAs) to determine if, by altering their chemical form, NAs may be more accessible to plants and, thus, undergo increased dissipation. Whereas the oil sands NA mixture in its nonionized form was more toxic to wetland plants than its ionized form, neither form appeared to be sequestered by wetland plants. The present study demonstrated that plants may selectively enhance the dissipation of individual nonionized NA compounds, which contributes to toxicity reduction but does not translate into detectable total NA dissipation within experimental error and natural variation. Plants were able to reduce the toxicity of a NA system over 30 d, increasing the median lethal concentration (LC50; % of hydroponic solution) of the medium for Daphnia magna by 23.3% +/- 8.1% (mean +/- standard error; nonionized NAs) and 37.0% +/- 2.7% (ionized NAs) as determined by acute toxicity bioassays. This reduction in toxicity was 7.3% +/- 2.6% (nonionized NAs) and 45.0% +/- 6.8% (ionized NAs) greater than that in unplanted systems.

  18. Salinity and solvent effects on the characterization of naphthenic acids from Athabasca oil sands using electrospray ionization

    International Nuclear Information System (INIS)

    Headley, J.; Peru, K.; Barrow, M.; Derrick, P.

    2010-01-01

    This study investigated the salinity and solvent effects on the characterization of naphthenic acids (NA) in oil sands. The mass spectra of NA were obtained using an electrospray ionization method combined with a Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer. The study showed that while monocarboxylic compounds (C n H 2n+z O 2 ) in the z=-4, -6, and -12 of the 2,3 and 6-ring NA in the carbon number range of 13 to 19 were prevalent in the dichloromethane and acetonitrile co-solvent systems, the addition of salt resulted in a reduction of the observed species, the complete elimination of dicarboxylic acids, and an 80 per cent reduction in O 3 species with similar carbon number range and z values. The dicarboxylic acids were also less toxic than monocarboxylic acids. Results of the study will be used to refine methods of remediating oil sands and process water contaminated soils.

  19. Bio-physicochemical effects of gamma irradiation treatment for naphthenic acids in oil sands fluid fine tailings

    Energy Technology Data Exchange (ETDEWEB)

    Boudens, Ryan; Reid, Thomas; VanMensel, Danielle; Sabari Prakasanm, M.R. [Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON (Canada); Ciborowski, Jan J.H. [Biological Sciences, University of Windsor, Windsor, ON (Canada); Weisener, Christopher G., E-mail: weisener@uwindsor.ca [Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON (Canada)

    2016-01-01

    Naphthenic acids (NAs) are persistent compounds that are components of most petroleum, including those found in the Athabasca oil sands. Their presence in freshly processed tailings is of significant environmental concern due to their toxicity to aquatic organisms. Gamma irradiation (GI) was used to reduce the toxicity and concentration of NAs in oil sands process water (OSPW) and fluid fine tailings (FFT). This investigation systematically studied the impact of GI on the biogeochemical development and progressive reduction of toxicity using laboratory incubations of fresh and aged tailings under anoxic and oxic conditions. GI reduced NA concentrations in OSPW by up to 97% in OSPW and in FFT by 85%. The GI-treated FFT exhibited increased rates of biogeochemical change, dependent on the age of the tailings source. Dissolved oxygen (DO) flux was enhanced in GI-treated FFT from fresh and aged source materials, whereas hydrogen sulfide (HS{sup −}) flux was stimulated only in the fresh FFT. Acute toxicity to Vibrio fischeri was immediately reduced following GI treatment of fresh OSPW. GI treatment followed by 4-week incubation reduced toxicity of aged OSPW to V. fischeri. - Highlights: • Gamma irradiation substantially reduced concentrations of ecotoxic naphthenic acids • Acute toxicity was reduced in gamma irradiated process water • Gamma irradiated tailings exhibited increased rates of microbial respiration.

  20. Mortar fights acid corrosion

    Energy Technology Data Exchange (ETDEWEB)

    1982-05-14

    The burning of coal or oil to produce heat required to operate a power boiler also generates a severe corrosion problem within the interior of the duct and stacks used to emit the flue gas into the atmosphere. How can concrete and steel be protected from the effects of acid attack, when the acids are carried in a gas form, or come into direct contact with the steel or concrete from spillage or immersion conditions. Industry in North America has found that the solution to this problem is to build an outside concrete column, in this case of Portland cement, and inside that column, build a totally independent brick liner bonded with Sauereisen mortar.

  1. Impact of temperature, pH, and salinity changes on the physico-chemical properties of model naphthenic acids.

    Science.gov (United States)

    Celsie, Alena; Parnis, J Mark; Mackay, Donald

    2016-03-01

    The effects of temperature, pH, and salinity change on naphthenic acids (NAs) present in oil-sands process wastewater were modeled for 55 representative NAs. COSMO-RS was used to estimate octanol-water (KOW) and octanol-air (KOA) partition ratios and Henry's law constants (H). Validation with experimental carboxylic acid data yielded log KOW and log H RMS errors of 0.45 and 0.55 respectively. Calculations of log KOW, (or log D, for pH-dependence), log KOA and log H (or log HD, for pH-dependence) were made for model NAs between -20 °C and 40 °C, pH between 0 and 14, and salinity between 0 and 3 g NaCl L(-1). Temperature increase by 60 °C resulted in 3-5 log unit increase in H and a similar magnitude decrease in KOA. pH increase above the NA pKa resulted in a dramatic decrease in both log D and log HD. Salinity increase over the 0-3 g NaCl L(-1) range resulted in a 0.3 log unit increase on average for KOW and H values. Log KOW values of the sodium salt and anion of the conjugate base were also estimated to examine their potential for contribution to the overall partitioning of NAs. Sodium salts and anions of naphthenic acids are predicted to have on average 4 log units and 6 log units lower log KOW values, respectively, with respect to the corresponding neutral NA. Partitioning properties are profoundly influenced by the by the relative prevailing pH and the substance's pKa at the relevant temperature. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Minimal health impacts but detectable tissue residues after exposure of northern leopard frogs (Lithobates pipiens) to commercial naphthenic acids

    International Nuclear Information System (INIS)

    Hersikorn, B.; Young, R.; Fedorak, P.; Smits, J.

    2010-01-01

    This presentation reported on a study that examined whether naphthenic acids (NAs) are a toxic component in oil sands process-affected materials (OSPM). The study investigated the toxicity of commercial (Refined Merichem) NAs to native amphibians (northern leopard frogs) exposed to saline conditions comparable to those of reclaimed wetlands on oil sand leases. Gas chromatography-mass spectroscopy analysis showed that the exposure of frogs to NAs solutions for 28 days resulted in proportional NA concentrations in extracts of frog muscle tissue. Biological assays were performed to determine if the increasing exposure to NAs caused a proportional compromise in the health of test animals. The innate immune function, thyroid hormones, and hepatic detoxification enzyme induction did not differ in response to increased tissue concentrations of NAs. The commercial NAs were absorbed and deposited in muscle tissue. It was concluded that NAs play only a small, if any, role in the toxicity of OSPM to frogs.

  3. In vitro evaluation of the toxic effects and endocrine disrupting potential of oil sands processed water and naphthenic acids

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, X.; Wiseman, S.; Higley, E.; Jones, P.D.; Hecker, M.; Giesy, J.P. [Saskatchewan Univ., Saskatoon, SK (Canada); Gamel El Din, M.; Martin, J.W. [Alberta Univ., Edmonton, AB (Canada)

    2009-07-01

    Naphthenic acids (NAs) are the primary toxic constituents of oil sands process-affected waters (OSPW). This presentation reported on a series of in vitro studies that were initiated to evaluate potential endocrine modulating effects of OSPW and their constituent NAs. The H295R steroidogenesis bioassay was used to examine the impact of OSPW and NA on 52 steroidogenesis. In particular, dose-response and time course studies were conducted to evaluate the impact of OSPW and NAs on testosterone and estradiol production. Aromatase activity and transcript abundance of the key 11 steroidogenic enzymes were also quantified to complement analysis of hormone levels. The MVLN trans-activation assay was used to test the estrogenicity/anti-estrogenicity of OSPW and NAs. In vitro cell viability and apoptosis (live-dead) caused by OSPW and NAs was quantified by the MTS reduction and caspase-3/7 activity in H295R and MVLN cells.

  4. Investigating salt and naphthenic acids interactions in the toxicity of oil sands process water to freshwater invertebrates

    International Nuclear Information System (INIS)

    Turcotte, D.; Kautzman, M.; Wojnarowicz, P.; Cutter, J.; Bird, E.; Liber, K.

    2010-01-01

    The hot water extraction process used to produce bitumens from oil sands produces a large volume of oil sands process water (OSPW) that contain elevated concentrations of naphthenic acids (NA) and salts. Many oil sands reclamation projects are proposing the use of OSPW as part of reconstructed wetlands projects. This study investigated the toxicity of OSPW to freshwater invertebrates. The toxic interactions between NA and salinity on freshwater invertebrates were assessed. Bioassays with laboratory-cultured Ceriodaphnia dubia were conducted to determine the toxicity of OSPW from selected water bodies. The study showed that while the concentrations of NAs and salinity were elevated in OSPW waters that caused toxic responses, the concentrations of salinity ions varied greatly among the OSPW samples. Results of the study suggested that ion composition may be a factor in toxicity. Interactions between NAs and salinity were then assessed by performing bioassays with mixtures representing major ion combinations in OSPW.

  5. A review of the nature of naphthenic acid occurrence, toxicity, and fate in refinery and oil sands extraction wastewaters

    Energy Technology Data Exchange (ETDEWEB)

    Eickhoff [Maxxam, Calgary, AB (Canada)

    2010-07-01

    This PowerPoint presentation evaluated the occurrence, toxicity and fate of naphthenic acids (NA) in refinery and oil sands extraction waste waters. The chemistry of NA was reviewed. Factors affecting the aquatic toxicity of NA were discussed, and modes of toxicity were outlined. NA residues in fish were evaluated. Issues concerning the biodegradation, photolysis, and phytodegradation of NA were reviewed. Various phytoremediation techniques were presented. Results of the study indicated that acute toxicity to aquatic organisms was caused by narcosis. Sublethal impacts of NA included changes to growth, fertilization, reproduction, development, and hormone modifications. Varying rates of toxicity were observed in different NA, based on their size and molecular structure. While biodegradation can reduce the toxicity of NA, higher molecular weight NA can resist degradation and cause toxicity. tabs., figs.

  6. Remotion of naphthenic acidity through adsorption with transition metal-perovskita; Remocao de acidez naftenica por adsorcao utilizando perovsquita com metais de transicao

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Andressa Mendes [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil); Santos, Jean Heliton Lopes dos [Companhia Brasileira de Petroleo Ipiranga, Rio de Janeiro, RJ (Brazil); Souza, Aleksandros El Aurens Meira de; Barbosa, Celmy Maria Bezerra de Menezes [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Engenharia Quimica

    2008-07-01

    Some existent oxygenated compounds in the petroleum are main responsible for the acidity and corrodibility of petroleum derivates. Naphthenic acids are most present molecules, and there already are some quantity of phenols and fat acids. The aim of this work was to evaluate the kinetic behavior of naphthenic acid removal, using a new adsorbent material based on perovskite forms (LaZnO{sub 3}). Two model mixtures were used to carry out the research: the first one was 4-tertbuthylbenzoic acid soluble in n-dodecane and the other one was dodecanoic acid also in n dodecane. For the 4-tertbuthylbenzoic analysis, the adsorption reached the equilibrium at 180 min, with the adsorption capacity of q{sub ads} = 0,25 g{sub acid}/g{sub adsorbent}, and a q{sub ads,max} = 0,55 g{sub acid}/g{sub adsorbent} at equilibrium. For the analysis of the dodecanoic acid removal, the adsorption occurred at first minutes, reaching the equilibrium at 250 min, with the adsorption capacity of q{sub ads} = 0,87 g{sub acid}/g{sub adsorbent}, and a q{sub ads,max} = 0,62 g{sub acid}/g{sub adsorbent} at equilibrium. (author)

  7. Corrosion resistance of zirconium in nitric acid

    International Nuclear Information System (INIS)

    Kajimura, H.; Morikawa, H.; Nagano, H.

    1987-01-01

    Slow strain rate tests are effected on zirconium in boiling nitric acid to study the influence of nitric acid concentration, of oxidizing ions (Cr and Ce) and of electric potential. Corrosion resistance is excellent and stress corrosion cracking occurs only for severe conditions: 350 mV over electric potential for corrosion with nitric acid concentration of 40 % [fr

  8. Dynamics of two methanogenic microbiomes incubated in polycyclic aromatic hydrocarbons, naphthenic acids, and oil field produced water.

    Science.gov (United States)

    Oko, Bonahis J; Tao, Yu; Stuckey, David C

    2017-01-01

    Oil field produced water (OFPW) is widely produced in large volumes around the world. Transforming the organic matter in OFPW into bioenergy, such as biomethane, is one promising way to sustainability. However, OFPW is difficult to biologically degrade because it contains complex compounds such as naphthenic acids (NAs), or polycyclic aromatic hydrocarbons (PAHs). Although active microbial communities have been found in many oil reservoirs, little is known about how an exotic microbiome, e.g. the one which originates from municipal wastewater treatment plants, would evolve when incubated with OFPW. In this study, we harvested methanogenic biomass from two sources: a full-scale anaerobic digester (AD) treating oil and gas processing wastewater (named O&G sludge), and from a full-scale AD reactor treating multiple fractions of municipal solid wastes (named MS, short for mixed sludge). Both were incubated in replicate microcosms fed with PAHs, NAs, or OFPW. The results showed that the PAHs, NAs, and OFPW feeds could rapidly alter the methanogenic microbiomes, even after 14 days, while the O&G sludge adapted faster than the mixed sludge in all the incubations. Two rarely reported microorganisms, a hydrogenotrophic methanogen Candidatus methanoregula and a saccharolytic fermenter Kosmotoga , were found to be prevalent in the PAHs and OFPW microcosms, and are likely to play an important role in the syntrophic degradation of PAHs and OFPW, cooperating with methanogens such as Methanoregula, Methanosarcina, or Methanobacterium . The dominant phyla varied in certain patterns during the incubations, depending on the biomass source, feed type, and variation in nutrients. The sludge that originated from the oil and gas processing wastewater treatment (O&G) reactor adapted faster than the one from municipal solid waste reactors, almost certainly because the O&G biomass had been "pre-selected" by the environment. This study reveals the importance of biomass selection for other

  9. Fate and behavior of oil sands naphthenic acids in a pilot-scale treatment wetland as characterized by negative-ion electrospray ionization Orbitrap mass spectrometry.

    Science.gov (United States)

    Ajaero, Chukwuemeka; Peru, Kerry M; Simair, Monique; Friesen, Vanessa; O'Sullivan, Gwen; Hughes, Sarah A; McMartin, Dena W; Headley, John V

    2018-08-01

    Large volumes of oil sands process-affected water (OSPW) are generated during the extraction of bitumen from oil sands in the Athabasca region of northeastern Alberta, Canada. As part of the development of treatment technologies, molecular characterization of naphthenic acids (NAs) and naphthenic acid fraction compounds (NAFC) in wetlands is a topic of research to better understand their fate and behavior in aquatic environments. Reported here is the application of high-resolution negative-ion electrospray Orbitrap-mass spectrometry for molecular characterization of NAs and NAFCs in a non-aerated constructed treatment wetland. The effectiveness of the wetlands to remove OSPW-NAs and NAFCs was evaluated by monitoring the changes in distributions of NAFC compounds in the untreated sample and non-aerated treatment system. After correction for measured evapotranspiration, the removal rate of the classical NAs followed approximately first-order kinetics, with higher rates observed for structures with relatively higher number of carbon atoms. These findings indicate that constructed wetland treatment is a viable method for removal of classical NAs in OSPW. Work is underway to evaluate the effects of wetland design on water quality improvement, preferential removal of different NAFC species, and reduction in toxicity. Copyright © 2018. Published by Elsevier B.V.

  10. Corrosion behavior of corrosion resistant alloys in stimulation acids

    Energy Technology Data Exchange (ETDEWEB)

    Cheldi, Tiziana [ENI E and P Division, 20097 San Donato Milanese Milano (Italy); Piccolo, Eugenio Lo; Scoppio, Lucrezia [Centro Sviluppo Materiali, via Castel Romano 100, 00128 Rome (Italy)

    2004-07-01

    In the oil and gas industry, selection of CRAs for downhole tubulars is generally based on resistance to corrosive species in the production environment containing CO{sub 2}, H{sub 2}S, chloride and in some case elemental sulphur. However, there are non-production environments to which these materials must also be resistant for either short term or prolonged duration; these environments include stimulation acids, brine and completion fluids. This paper reports the main results of a laboratory study performed to evaluate the corrosion and stress corrosion behaviour to the acidizing treatments of the most used CRAs for production tubing and casing. Laboratory tests were performed to simulate both 'active' and 'spent' acids operative phases, selecting various environmental conditions. The selected steel pipes were a low alloyed steel, martensitic, super-martensitic, duplex 22 Cr, superduplex 25 Cr and super-austenitic stainless steels (25 Cr 35 Ni). Results obtained in the 'active' acid environments over the temperature range of 100-140 deg. C, showed that the blend acids with HCl at high concentration and HCl + HF represented too much severe conditions, where preventing high general corrosion and heavy localised corrosion by inhibition package becomes very difficult, especially for duplex steel pipe, where, in some case, the specimens were completely dissolved into the solution. On the contrary, all steels pipes were successfully protected by inhibitor when organic acid solution (HCOOH + CH{sub 3}COOH) were used. Furthermore, different effectiveness on corrosion protection was showed by the tested inhibitors packages: e.g. in the 90% HCl at 12% + 10 CH{sub 3}COOH acid blend. In 'spent' acid environments, all steel pipes showed to be less susceptible to the localised and general corrosion attack. Moreover, no Sulphide Stress Corrosion Cracking (SSC) was observed. Only one super-austenitic stainless steel U-bend specimen showed

  11. Copper naphthenate: an update and status report on an effective wood pole and crossarm preservative for Canada

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, M.

    2002-07-01

    The purpose of this PowerPoint presentation was three-fold: (1) tp provide information on copper naphthenate and treated wood, (2) to demonstrate that copper naphthenate is an excellent choice for wood poles, and (3) to provide an evaluation of copper naphthenate-treated poles in service. The author proceeded by describing the nature of naphthenic acid and copper naphthenate. Only those petroleum-based alicyclic carboxylic acids with acid numbers between 180-250 milligram KOH/gram. The author specified that two samples produced in Europe and Australia contain either naphthenic acid blends or 100 per cent synthetic acids, which could result in reduced preservatives performance. As for copper naphthenate, it is produced by the reaction of naphthenic acid and copper compounds. A drawing of the molecule was displayed. The toxicity for humans is low, minimal to avian, and moderate to high aquatic toxicity. Discovered in the late 1800s, copper naphthenate is used for pressure and non-pressure treatment, and the anticipated annual growth rate is 5 per cent. The regulatory status of copper naphthenate was described in both the United States and Canada. Results from field skate decay measurements were presented. The author concluded by stating that copper naphthenate is an excellent choice, recognized for its performance and efficacy. It is considered as an Environmental Protection Agency (EPA) unrestricted use pesticide, imposes minimal regulatory requirements on treaters and users, and there are no federal disposal restrictions. Copper naphthenate is a safe and effective wood preservative. refs., figs.

  12. Boric Acid Corrosion of Concrete Rebar

    Directory of Open Access Journals (Sweden)

    Yang L.

    2013-07-01

    Full Text Available Borated water leakage through spent fuel pools (SFPs at pressurized water reactors is a concern because it could cause corrosion of reinforcement steel in the concrete structure and compromise the integrity of the structure. Because corrosion rate of carbon steel in concrete in the presence of boric acid is lacking in published literature and available data are equivocal on the effect of boric acid on rebar corrosion, corrosion rate measurements were conducted in this study using several test methods. Rebar corrosion rates were measured in (i borated water flowing in a simulated concrete crack, (ii borated water flowing over a concrete surface, (iii borated water that has reacted with concrete, and (iv 2,400 ppm boric acid solutions with pH adjusted to a range of 6.0 to 7.7. The corrosion rates were measured using coupled multielectrode array sensor (CMAS and linear polarization resistance (LPR probes, both made using carbon steel. The results indicate that rebar corrosion rates are low (~1 μm/yr or lesswhen the solution pH is ~7.1 or higher. Below pH ~7.1, the corrosion rate increases with decreasing pH and can reach ~100 μm/yr in solutions with pH less than ~6.7. The threshold pH for carbon steel corrosion in borated solution is between 6.8 and 7.3.

  13. Preparation of activated petroleum coke for removal of naphthenic acids model compounds: Box-Behnken design optimization of KOH activation process.

    Science.gov (United States)

    Niasar, Hojatallah Seyedy; Li, Hanning; Das, Sreejon; Kasanneni, Tirumala Venkateswara Rao; Ray, Madhumita B; Xu, Chunbao Charles

    2018-04-01

    This study employed Box-Behnken design and response surface methodology to optimize activation parameters for the production of activated petroleum coke (APC) adsorbent from petroleum coke (PC) to achieve highest adsorption capacity for three model naphthenic acids. Activated petroleum coke (APC) adsorbent with a BET surface area of 1726 m 2 /g and total pore volume of 0.85 cc/g was produced at the optimum activation conditions (KOH/coke mass ratio) of 3.0, activation temperature 790 °C, and activation time 3.47 h). Effects of the activation parameters on the adsorption pefromances (adsortion capaciy and kinetics) were investigated. With the APC obtained at the optimum activation condition, the maximum adsorption capacity of 451, 362, and 320 (mg/g) was achieved for 2-naphthoic acid, diphenylacetic acid and cyclohexanepentanoic acid (CP), respectively. Although, generally APC adsorbents with a higher specific surface area and pore volume provide better adsorption capacity, the textural properties (surface areas and pore volume) are not the only parameters determining the APC adsorbents' adsorption capacity. Other parameters such as surface functionalities play effective roles on the adsorption capacity of the produced APC adsorbents for NAs. The KOH activation process, in particular the acid washing step, distinctly reduced the sulfur and metals contents in the raw PC, decreasing the leaching potential of metals from APC adsorbents during adsorption. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Corrosion problems and solutions in oil refining and petrochemical industry

    CERN Document Server

    Groysman, Alec

    2017-01-01

    This book addresses corrosion problems and their solutions at facilities in the oil refining and petrochemical industry, including cooling water and boiler feed water units. Further, it describes and analyzes corrosion control actions, corrosion monitoring, and corrosion management. Corrosion problems are a perennial issue in the oil refining and petrochemical industry, as they lead to a deterioration of the functional properties of metallic equipment and harm the environment – both of which need to be protected for the sake of current and future generations. Accordingly, this book examines and analyzes typical and atypical corrosion failure cases and their prevention at refineries and petrochemical facilities, including problems with: pipelines, tanks, furnaces, distillation columns, absorbers, heat exchangers, and pumps. In addition, it describes naphthenic acid corrosion, stress corrosion cracking, hydrogen damages, sulfidic corrosion, microbiologically induced corrosion, erosion-corrosion, and corrosion...

  15. Boric acid corrosion of low alloy steel

    Energy Technology Data Exchange (ETDEWEB)

    Jones, R.; White, G.; Collin, J.; Marks, C. [Dominion Engineering, Inc., Reston, Virginia (United States); Reid, R.; Crooker, P. [Electric Power Research Inst., Palo Alto, California (United States)

    2010-07-01

    In the last decade, the industry has been aware of a potential loss of coolant accident (LOCA) per the following scenario: primary water stress corrosion cracking (PWSCC) of a primary system component or weld leads to a coolant leak, the coolant corrodes a low alloy steel structural component (e.g., the reactor vessel (RV) or the reactor vessel head (RVH)), and corrosion degrades the pressure boundary leading to a loss of coolant accident. The industry has taken several steps to address this concern, including replacement of the most susceptible components (RVH replacement), enhanced inspection (both NDE of components and visual inspections for boric acid deposits), and safety analyses to determine appropriate inspection intervals. Although these measures are generally thought to have adequately addressed this issue, there have been some uncertainties in the safety analyses which the industry has sought to address in order to quantify the extent of conservatism in the safety analyses. Specifically, there has been some uncertainty regarding the rate of boric acid corrosion under various conditions which might arise due to a PWSCC leak and the extent to which boric acid deposits are retained near the leak under various geometries. This paper reviews the results of the Electric Power Research Institute (EPRI) Materials Reliability Program (MRP) boric acid corrosion (BAC) test programs conducted over the last 8 years, focusing on the most recent results of full-scale mockup testing of CRDM nozzle and bottom mounted nozzle (BMN) configurations. The main purpose of this presentation is to provide an overview of the latest understanding of the risk of boric acid corrosion as it is informed by the results of the testing conducted over the last eight years. The rate of boric acid corrosion has been found to be a function of many factors, including initial chemistry, the extent of concentration due to boiling, the temperature at which concentration takes place, the velocity

  16. In hydrofluoric acid corrosion-resistant materials

    International Nuclear Information System (INIS)

    Hauffe, K.

    1985-01-01

    Copper, red brass (Cu-15 Zn), special treated carbon steel and chromium-nickel-molybdenum steel represent materials of high resistivity against concentrated hydrofluoric acid ( 2 O 3 ) are employed for windows in the presence of hydrogen fluoride and/or hydrofluoric acid because of their superior optical properties and their excellent corrosion resistance. Polyethylen, polypropylene and polyvinyl chloride (PVC) belong to the cheapest corrosion resistant material for container and for coatings in the presence of hydrofluoric acid. Special polyester resins reinforced by glass or graphite fibers have been successfully employed as material for production units with hydrofluoric acid containing liquids up to 330 K. By carbon reinforced epoxy resin represents a corrosion resistant coating. Because of their excellent friction and corrosion resistance against concentrated hot hydrofluoric acid and HNO 3 -HF-solutions, PTFE and polyvinylidene fluoride are used as material for valves and axles in such environment. The expensive alloys, as for instance hastelloy and monel, are substituted more and more by fiber-reinfored polyolefins, PVC and fluorine containing polymers. (orig.) [de

  17. Beyond Naphthenic Acids: Environmental Screening of Water from Natural Sources and the Athabasca Oil Sands Industry Using Atmospheric Pressure Photoionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry.

    Science.gov (United States)

    Barrow, Mark P; Peru, Kerry M; Fahlman, Brian; Hewitt, L Mark; Frank, Richard A; Headley, John V

    2015-09-01

    There is a growing need for environmental screening of natural waters in the Athabasca region of Alberta, Canada, particularly in the differentiation between anthropogenic and naturally-derived organic compounds associated with weathered bitumen deposits. Previous research has focused primarily upon characterization of naphthenic acids in water samples by negative-ion electrospray ionization methods. Atmospheric pressure photoionization is a much less widely used ionization method, but one that affords the possibility of observing low polarity compounds that cannot be readily observed by electrospray ionization. This study describes the first usage of atmospheric pressure photoionization Fourier transform ion cyclotron resonance mass spectrometry (in both positive-ion and negative-ion modes) to characterize and compare extracts of oil sands process water, river water, and groundwater samples from areas associated with oil sands mining activities. When comparing mass spectra previously obtained by electrospray ionization and data acquired by atmospheric pressure photoionization, there can be a doubling of the number of components detected. In addition to polar compounds that have previously been observed, low-polarity, sulfur-containing compounds and hydrocarbons that do not incorporate a heteroatom were detected. These latter components, which are not amenable to electrospray ionization, have potential for screening efforts within monitoring programs of the oil sands.

  18. The effect of oil sands process-affected water and model naphthenic acids on photosynthesis and growth in Emiliania huxleyi and Chlorella vulgaris.

    Science.gov (United States)

    Beddow, Jessica; Johnson, Richard J; Lawson, Tracy; Breckels, Mark N; Webster, Richard J; Smith, Ben E; Rowland, Steven J; Whitby, Corinne

    2016-02-01

    Naphthenic acids (NAs) are among the most toxic organic pollutants present in oil sands process waters (OSPW) and enter marine and freshwater environments through natural and anthropogenic sources. We investigated the effects of the acid extractable organic (AEO) fraction of OSPW and individual surrogate NAs, on maximum photosynthetic efficiency of photosystem II (PSII) (FV/FM) and cell growth in Emiliania huxleyi and Chlorella vulgaris as representative marine and freshwater phytoplankton. Whilst FV/FM in E. huxleyi and C. vulgaris was not inhibited by AEO, exposure to two surrogate NAs: (4'-n-butylphenyl)-4-butanoic acid (n-BPBA) and (4'-tert-butylphenyl)-4-butanoic acid (tert-BPBA), caused complete inhibition of FV/FM in E. huxleyi (≥10 mg L(-1)n-BPBA; ≥50 mg L(-1)tert-BPBA) but not in C. vulgaris. Growth rates and cell abundances in E. huxleyi were also reduced when exposed to ≥10 mg L(-1)n- and tert-BPBA; however, higher concentrations of n- and tert-BPBA (100 mg L(-1)) were required to reduce cell growth in C. vulgaris. AEO at ≥10 mg L(-1) stimulated E. huxleyi growth rate (p ≤ 0.002), yet had no apparent effect on C. vulgaris. In conclusion, E. huxleyi was generally more sensitive to NAs than C. vulgaris. This report provides a better understanding of the physiological responses of phytoplankton to NAs which will enable improved monitoring of NA pollution in aquatic ecosystems in the future. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Corrosion control of vanadium in aqueous solutions by amino acids

    International Nuclear Information System (INIS)

    El-Rabiee, M.M.; Helal, N.H.; El-Hafez, Gh.M. Abd; Badawy, W.A.

    2008-01-01

    The electrochemical behavior of vanadium in amino acid free and amino acid containing aqueous solutions of different pH was studied using open-circuit potential measurements, polarization techniques and electrochemical impedance spectroscopy (EIS). The corrosion current density, i corr , the corrosion potential, E corr and the corrosion resistance, R corr , were calculated. A group of amino acids, namely, glycine, alanine, valine, histidine, glutamic and cysteine has been investigated as environmentally safe inhibitors. The effect of Cl - on the corrosion inhibition efficiency especially in acid solutions was investigated. In neutral and basic solutions, the presence of amino acids increases the corrosion resistance of the metal. The electrochemical behavior of V before and after the corrosion inhibition process has shown that some amino acids like glutamic acid and histidine have promising corrosion inhibition efficiency at low concentration (≅25 mM). The inhibition efficiency (η) was found to depend on the structure of the amino acid and the constituents of the corrosive medium. The corrosion inhibition process is based on the adsorption of the amino acid molecules on the metal surface and the adsorption process follows the Freundlich isotherm. The adsorption free energy for valine on V in acidic solutions was found to be -9.4 kJ/mol which reveals strong physical adsorption of the amino acid molecules on the vanadium surface

  20. INHIBITION OF CORROSION OF ZINC IN (HNO3 + HCl) ACID ...

    African Journals Online (AJOL)

    2015-05-01

    May 1, 2015 ... corrosion inhibitor for zinc in phosphoric acid. Vashi et al.[8-9] studied the corrosion inhibition of zinc in (HNO3 + H2SO4) and (HNO3 + H3PO4) binary acid mixture by aniline. In the present work, the role of aniline as inhibitor for corrosion of zinc in (HNO3 + HCl) binary acid mixture has been reported. 2.

  1. Corrosion of graphite composites in phosphoric acid fuel cells

    Science.gov (United States)

    Christner, L. G.; Dhar, H. P.; Farooque, M.; Kush, A. K.

    1986-01-01

    Polymers, polymer-graphite composites and different carbon materials are being considered for many of the fuel cell stack components. Exposure to concentrated phosphoric acid in the fuel cell environment and to high anodic potential results in corrosion. Relative corrosion rates of these materials, failure modes, plausible mechanisms of corrosion and methods for improvement of these materials are investigated.

  2. Nontoxic corrosion inhibitors for N80 steel in hydrochloric acid

    OpenAIRE

    M. Yadav; Debasis Behera; Usha Sharma

    2016-01-01

    The purpose of this paper is to evaluate the protective ability of 1-(2-aminoethyl)-2-oleylimidazoline (AEOI) and 1-(2-oleylamidoethyl)-2-oleylimidazoline (OAEOI) as corrosion inhibitors for N80 steel in 15% hydrochloric acid, which may find application as eco-friendly corrosion inhibitors in acidizing processes in petroleum industry. Different concentrations of synthesized inhibitors AEOI and OAEOI were added to the test solution (15% HCl) and the corrosion inhibition of N80 steel in hydroch...

  3. Naphthenic acids hydrates of gases: influence of the water/oil interface on the dispersing properties of an acidic crude oil; Acides naphteniques hydrates de gaz de l'interface eau/huile sur les proprietes dispersantes d'un brut acide

    Energy Technology Data Exchange (ETDEWEB)

    Arla, D.

    2006-01-15

    Nowadays, the development of offshore oil production under increasing water depths (high pressures and low temperatures) has led oil companies to focus on gas hydrates risks. Hydrates are crystals containing gas and water molecules which can plug offshore pipelines. It has been shown that some asphaltenic crude oils stabilize water-in-oil emulsions (W/O) during several months and exhibit very good anti-agglomerant properties avoiding hydrate plugs formation. In this work, we have studied the 'anti-hydrate' properties of a West African acidic crude oil called crude AH. This oil contains naphthenic acids, RCOOH hydrocarbons which are sensitive to both the pH and the salinity of the water phase.The emulsifying properties of the crude AH have firstly been explored. It has been shown that heavy resins and asphaltenes are the main compounds of the crude AH responsible for the long term stability of the W/O emulsions whereas the napthenates RCOO{sup -} lead to less stable W/O emulsions. Dealing with hydrates, the crude AH exhibits moderate anti-agglomerant properties due to the presence of heavy resins and asphaltenes. However, the naphthenates RCOO{sup -} drastically increase the formation of hydrate plugs. Moreover, it has been pointed out that hydrate particles agglomeration accelerates the kinetics of hydrate formation and enhances the water/oil separation. In order to explain these behaviours, a mechanism of agglomeration by 'sticking' between a hydrate particle and a water droplet has been proposed. Finally, we have developed a model which describes the physico-chemical equilibria of the naphthenic acids in the binary system water/crude AH, in order to transpose the results obtained in the laboratory to the real oil field conditions. (author)

  4. Study on Corrosion of Materials by Fluoric Acid and Silicofluoric Acid

    International Nuclear Information System (INIS)

    Park, Kun You; Kwon, Yeong Soo; Kuk, Myung Ho; Kim, Myun Sup

    1986-01-01

    The corrosion properties of 304 Stainless steel, Cupro-nickel, NiCrMo alloy in hydrofluoric acid and silicofluoric acid has been studied. The corrosion resistance of NiCrMo alloy and Cupro-nickel in hydrofluoric acid or mixed acid of hydrofluoric and sulfuric acid is excellent. Because of lower corrosion resistance of 304 Stainless steel, it would not be used for these corrosion resistant materials. The corrosion activation energy of 304 Stainless steel, Cupro-nickel and NiCrMo alloy in 40% HF solution are 42.7, 58.9 and 89.7 kJ/mol, respectively. By these values, it is assumed that the corrosion rate determining step is the chemical reaction on surface of metals. In the plastics, Teflon and polychloro tetrafluoroethylene are most excellent for corrosion resistance in hydrofluoric acid

  5. Corrosion of alloy C-22 in organic acid solutions

    International Nuclear Information System (INIS)

    Carranza, Ricardo M.; Rodriguez, Martin A.; Giordano, Celia M.

    2007-01-01

    Electrochemical studies such as cyclic potentiodynamic polarization (CPP) and electrochemical impedance spectroscopy (EIS) were performed to determine the corrosion behavior of Alloy 22 (N06022) in 1M NaCl solutions at various pH values from acidic to neutral at 90 C degrees. All the tested material was wrought Mill Annealed (MA). Tests were also performed in NaCl solutions containing weak organic acids such as oxalic, acetic, citric and picric acids. Results show that the corrosion rate of Alloy 22 was significantly higher in solutions containing oxalic acid than in solutions of pure NaCl at the same pH. Citric and Picric acids showed a slightly higher corrosion rate, and Acetic acid maintained the corrosion rate of pure chloride solutions at the same pH. Organic acids revealed to be weak inhibitors for crevice corrosion. Higher concentration ratios, compared to nitrate ions, were needed to completely inhibit crevice corrosion in chloride solutions. Results are discussed considering acid dissociation constants, buffer capacity and complex formation constants of the different weak acids. (author) [es

  6. The corrosion protection of several aluminum alloys by chromic acid and sulfuric acid anodizing

    Science.gov (United States)

    Danford, M. D.

    1994-01-01

    The corrosion protection afforded 7075-T6, 7075-T3, 6061-T6, and 2024-T3 aluminum alloys by chromic acid and sulfuric acid anodizing was examined using electrochemical techniques. From these studies, it is concluded that sulfuric acid anodizing provides superior corrosion protection compared to chromic acid anodizing.

  7. benzoic acid Schiff base and evaluation as corrosion

    African Journals Online (AJOL)

    user

    acid Schiff base and evaluation as corrosion inhibitor of steel in 2.0 M H2SO4. *. 1. ECHEM .... adopted for this experiment was in accordance with .... Table 4: Kinetic data for mild steel corrosion in 2M H2SO4 containing SBDAB from weight loss measurement. inhibitor .... and anti-bacterial activity of Schiff base derived.

  8. Application of UV-irradiated Fe(III)-nitrilotriacetic acid (UV-Fe(III)NTA) and UV-NTA-Fenton systems to degrade model and natural occurring naphthenic acids.

    Science.gov (United States)

    Zhang, Ying; Chelme-Ayala, Pamela; Klamerth, Nikolaus; Gamal El-Din, Mohamed

    2017-07-01

    Naphthenic acids (NAs) are a highly complex mixture of organic compounds naturally present in bitumen and identified as the primary toxic constituent of oil sands process-affected water (OSPW). This work investigated the degradation of cyclohexanoic acid (CHA), a model NA compound, and natural occurring NAs during the UV photolysis of Fe(III)-nitrilotriacetic acid (UV-Fe(III)NTA) and UV-NTA-Fenton processes. The results indicated that in the UV-Fe(III)NTA process at pH 8, the CHA removal increased with increasing NTA dose (0.18, 0.36 and 0.72 mM), while it was independent of the Fe(III) dose (0.09, 0.18 and 0.36 mM). Moreover, the three Fe concentrations had no influence on the photolysis of the Fe(III)NTA complex. The main responsible species for the CHA degradation was hydroxyl radical (OH), and the role of dissolved O 2 in the OH generation was found to be negligible. Real OSPW was treated with the UV-Fe(III)NTA and UV-NTA-Fenton advanced oxidation processes (AOPs). The removals of classical NAs (O 2 -NAs), oxidized NAs with one additional oxygen atom (O 3 -NAs) and with two additional oxygen atoms (O 4 -NAs) were 44.5%, 21.3%, and 25.2% in the UV-Fe(III)NTA process, respectively, and 98.4%, 86.0%, and 81.0% in the UV-NTA-Fenton process, respectively. There was no influence of O 2 on the NA removal in these two processes. The results also confirmed the high reactivity of the O 2 -NA species with more carbons and increasing number of rings or double bond equivalents. This work opens a new window for the possible treatment of OSPW at natural pH using these AOPs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Corrosion of cupronickel alloy in permanganate under acidic condition

    International Nuclear Information System (INIS)

    Subramanian, Veena; Chandramohan, P.; Srinivasan, M.P.; Velmurugan, S.; Narasimhan, S.V.

    2007-01-01

    Cupronickel alloys are used as heat exchanger tube materials in nuclear power plant auxiliary coolant systems. In this work, the corrosion behaviour of cupronickel (70:30) alloy in permanganic acid medium was studied. Corrosion rate was found to follow logarithmic kinetics. Cyclic polarization studies showed that cupronickel did not undergo pitting in permanganic acid medium but uniform corrosion was observed. Presence of 0.43 mol/m 3 chromate in 2.5 mol/m 3 permanganic acid was found to decrease the corrosion rate of cupronickel by 50%. EIS and XPS studies revealed that the film formed on cupronickel was protective in nature and contained oxides of copper, nickel and manganese (mainly MnOOH). The composition of the film on cupronickel that had undergone chromate treatment also showed similar film except that it contained some chromium (III)

  10. A unique laboratory test rig reduces the need for offshore tests to combat calcium naphthenate deposition in oilfield process equipment.

    Energy Technology Data Exchange (ETDEWEB)

    Mediaas, Heidi; Grande, Knut; Hustad, Britt-Marie; Hoevik, Kim Reidar; Kummernes, Hege; Nergaard, Bjoern; Vindstad, Jens Emil

    2006-03-15

    Producing and refining high-TAN crude oils introduces a number of challenges, among which calcium naphthenate deposition in process facilities is the most serious production issue. Until recently, the only option for studying chemicals and process parameters in order to prevent naphthenate deposition has been field tests. Statoil has now developed a small scale pilot plant where these experiments can be performed in the laboratory at Statoil's Research and Technology Center in Trondheim, Norway. The results from the pilot plant are in full agreement with the extensive naphthenate experience obtained from almost 9 years operation of the Heidrun oilfield. The design and operational procedures for this test facility are based on the recent discovery by Statoil and ConocoPhillips of the ARN acid. The ARN acid is a prerequisite for calcium naphthenate deposition. The new continuous flow pilot plant, the Naphthenate Rig, is used to develop new environmental friendly naphthenate inhibitors and to optimize process operating conditions. Since it operates on real crudes the need for field tests in qualifying new naphthenate inhibitors is reduced. To the best of our knowledge, the rig is the first of its kind in the world. (Author)

  11. General corrosion of metallic materials in boric acid environments

    International Nuclear Information System (INIS)

    Gras, J.M.

    1994-05-01

    Certain low-alloy steel components in PWR primary circuit were corroded by leaking water containing boric acid. A number of studies have been performed by manufacturers in the USA and by EDF in France to determine the rate of general corrosion for low-alloy steels in media containing varying concentrations of boric acid. The first part of this paper summarizes the studies performed and indicates how far work has advanced to date in establishing the resistance of stainless steels to general corrosion in concentrated boric acid solutions. The second part of the paper discusses the mechanism of corrosion and proposes a model. Carbon steels and low-alloy steels - carbon steels and low-alloy steels in deaerated diluted boric acid solutions (pH > 4) corrode very slowly ( -1 . (author). 31 refs., 12 figs., 13 tabs

  12. Nontoxic corrosion inhibitors for N80 steel in hydrochloric acid

    Directory of Open Access Journals (Sweden)

    M. Yadav

    2016-11-01

    Full Text Available The purpose of this paper is to evaluate the protective ability of 1-(2-aminoethyl-2-oleylimidazoline (AEOI and 1-(2-oleylamidoethyl-2-oleylimidazoline (OAEOI as corrosion inhibitors for N80 steel in 15% hydrochloric acid, which may find application as eco-friendly corrosion inhibitors in acidizing processes in petroleum industry. Different concentrations of synthesized inhibitors AEOI and OAEOI were added to the test solution (15% HCl and the corrosion inhibition of N80 steel in hydrochloric acid medium containing inhibitors was tested by weight loss, potentiodynamic polarization and AC impedance measurements. Influence of temperature (298–323 K on the inhibition behavior was studied. Surface studies were performed by using FTIR spectra and SEM. Both the inhibitors, AEOI and OAEOI at 150 ppm concentration show maximum efficiency 90.26% and 96.23%, respectively at 298 K in 15% HCl solution. Both the inhibitors act as mixed corrosion inhibitors. The adsorption of the corrosion inhibitors at the surface of N80 steel is the root cause of corrosion inhibition.

  13. Laser Surface Alloying of Aluminum for Improving Acid Corrosion Resistance

    Science.gov (United States)

    Jiru, Woldetinsay Gutu; Sankar, Mamilla Ravi; Dixit, Uday Shanker

    2018-04-01

    In the present study, laser surface alloying of aluminum with magnesium, manganese, titanium and zinc, respectively, was carried out to improve acid corrosion resistance. Laser surface alloying was conducted using 1600 and 1800 W power source using CO2 laser. Acid corrosion resistance was tested by dipping the samples in a solution of 2.5% H2SO4 for 200 h. The weight loss due to acid corrosion was reduced by 55% for AlTi, 41% for AlMg alloy, 36% for AlZn and 22% for AlMn alloy. Laser surface alloyed samples offered greater corrosion resistance than the aluminum substrate. It was observed that localized pitting corrosion was the major factor to damage the surface when exposed for a long time. The hardness after laser surface alloying was increased by a factor of 8.7, 3.4, 2.7 and 2 by alloying with Mn, Mg, Ti and Zn, respectively. After corrosion test, hardness was reduced by 51% for AlTi sample, 40% for AlMg sample, 41.4% for AlMn sample and 33% for AlZn sample.

  14. Characterization of napthenic acids in oil sands process-affected waters using fluorescence technology

    International Nuclear Information System (INIS)

    Brown, L.; Alostaz, M.; Ulrich, A.

    2009-01-01

    Process-affected water from oil sands production plants presents a major environmental challenge to oil sands operators due to its toxicity to different organisms as well as its corrosiveness in refinery units. This abstract investigated the use of fluorescence excitation-emission matrices to detect and characterize changes in naphthenic acid in oil sands process-affected waters. Samples from oil sands production plants and storage ponds were tested. The study showed that oil sands naphthenic acids show characteristic fluorescence signatures when excited by ultraviolet light in the range of 260 to 350 mm. The signal was a unique attribute of the naphthenic acid molecule. Changes in the fluorescence signature can be used to determine chemical changes such as degradation or aging. It was concluded that the technology can be used as a non-invasive continuous water quality monitoring tool to increase process control in oil sands processing plants

  15. Biochemical changes in cuttings of Robinia pseudoacacia after treatment with naphthenate

    Directory of Open Access Journals (Sweden)

    SLAVKO KEVRESAN

    2007-10-01

    Full Text Available Naphthenic acids were isolated from gas oil fractions (distillation interval 168–290 °C of Vojvodina crude oil “Velebit”, characterized and their biological ac­tivity evaluated by the biochemical changes in cuttings of Robinia pseudoacacia after treatment with naphthenate. The activities of IAA peroxidase, total peroxi­da­ses and amylase, as well as the contents of reducing sugars and total proteins, were determined in the basal parts of soft wood cuttings of black locust after treat­ment with sodium naphthenate or the sodium salt of 1-naphthaleneacetic acid (NAA, con­­centration 10-7 mol dm-3 for 3 or 6 h. High activities of IAA oxidase and amy­lase, together with a low activity of peroxidase (which is known as being stimula­tory for the initiation and activation of primordia were obtained after the three-hour treatment with sodium naphthenate. Six-hour treatment had an inhibitory effect on the examined biochemical markers. The effects of three- and six-hour treatments with NAA were between those of the corresponding treatment with naphthenic acids.

  16. Polyaspartic acid as a green corrosion inhibitor for carbon steel

    Energy Technology Data Exchange (ETDEWEB)

    Cui, R. [Department of Chemistry, Hebei Normal University, Shijiazhuang 050016 (China); Department of Chemistry and Materials Engineering, Changshu Institute of Technology, Changshu 215500 (China); Gu, N.; Li, C. [Department of Chemistry, Hebei Normal University, Shijiazhuang 050016 (China)

    2011-04-15

    The inhibitor effect of the environmentally friendly corrosion inhibitor polyaspartic acid (PASP) on the corrosion of carbon steel in 0.5 M H{sub 2}SO{sub 4} was investigated by weight loss, potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), and scanning electron microscopy (SEM). Polarization curve results clearly reveal the fact that PASP is a good anode-type inhibitor. EIS results confirm its corrosion inhibition ability. The inhibition efficiency increases with increasing PASP concentration, and the maximum inhibition efficiency was 80.33% at 10 C. SEM reveals that a protective film forms on the surface of the inhibited sample. The adsorption of this inhibitor is found to follow the Freundlich adsorption isotherm. A mechanism is proposed to explain the inhibitory action of the corrosion inhibitor. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Corrosion resistance of zirconium: general mechanisms, behaviour in nitric acid

    International Nuclear Information System (INIS)

    Pinard Legry, G.

    1990-01-01

    Corrosion resistance of zirconium results from the strong affinity of this metal for oxygen; as a result a thin protective oxide film is spontaneously formed in air or aqueous media, its thickness and properties depending on the physicochemical conditions at the interface. This film passivates the underlying metal but obviously if the passive film is partially or completely removed, localised or generalised corrosion phenomena will occur. In nitric acid, this depassivation may be chemical (fluorides) or mechanical (straining, creep, fretting). In these cases it is useful to determine the physicochemical conditions (concentration, temperature, potential, stress) which will have to be observed to use safely zirconium and its alloys in nitric acid solutions [fr

  18. Passive films and corrosion protection due to phosphonic acid inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Fang, J.L.; Liu, Q. (Nanjing Univ. (China)); Li, Y.; Wang, Z.W. (Nanjing Inst. of Chemical Tech. (China))

    1993-04-01

    For protecting mild steel from corrosion, aminotrimethylidenephosphonic acid (ATMP) was more effective than 1-hydroxyethylidene diphosphonic acid (HEDP), N.N-dimethylidenediphosphonic acid (EEDP), and ethylenediaminetetramethylidenephosphonic acid (EDTMP). A 20-min treatment in 1.0 mol/l of ATMP with a pH 0.23 at 45 C formed an anti-corrosive complex film that was composed of 48.4% O, 28.6% P, 7.0% Fe, 4.3% N, and 11.7% C, based on x-ray photoelectron spectroscopy and Auger electron spectroscopy. From differences in binding energies of Fe, N, and O, in the shift of C-N and P-O vibration, in the reflection FTIR spectra, and in the change of P-OH and Fe-N vibration before and after film formation, it was deduced that N and O in ATMP were coordinated with Fe[sub 2+] in the film.

  19. Corrosion behavior of stainless steel and zirconium in nitric acid containing highly oxidizing species

    International Nuclear Information System (INIS)

    Mayuzumi, Masami; Fujita, Tomonari

    1994-01-01

    Corrosion behavior of 304ELC, 310Nb stainless steels and Zirconium was investigated in the simulated dissolver solution of a reprocessing plant to obtain fundamental data for life prediction. Corrosion of heat transfer surface was also investigated in nitric acid solutions containing Ce ion. The results obtained are as follows: (1) Stainless steels showed intergranular corrosion in the simulated dissolver solution. The corrosion rate increased with time and reached to a constant value after several hundred hours of immersing time. The constant corrosion rate changed depending on potential suggesting that corrosion potential dominates the corrosion process. 310Nb showed superior corrosion resistance to 304ELC. (2) Corrosion rate of stainless steels increased in the heat transfer condition. The causes of corrosion enhancement are estimated to be higher corrosion potential and higher temperature of heat transfer surface. (3) Zirconium showed perfect passivity in all the test conditions employed. (author)

  20. Inhibiting Effect of Nicotinic Acid Hydrazide on Corrosion of Aluminum and Mild Steel in Acidic Medium

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, J. Ishwara [Mangalore Univ., Karnataka (India); Alva, Vijaya D. P. [Shree Devi Institute of Technology, Karnataka (India)

    2014-02-15

    The corrosion behavior of aluminum and mild steel in hydrochloric acid medium was studied using a nicotinic acid hydrazide as inhibitor by potentiodynamic polarization, electrochemical impedance spectroscopy technique and gravimetric methods. The effects of inhibitor concentration and temperature were investigated. The experimental results suggested, nicotinic acid hydrazide is a good corrosion inhibitor for both aluminum and mild steel in hydrochloric acid medium and the inhibition efficiency increased with increase in the inhibitor concentration. The polarization studies revealed that nicotinic acid hydrazide exhibits mixed type of inhibition. The inhibition was assumed to occur via adsorption of the inhibitor molecules on the aluminum and mild steel surface and inhibits corrosion by blocking the reaction sites on the surface of aluminum.

  1. Inhibiting Effect of Nicotinic Acid Hydrazide on Corrosion of Aluminum and Mild Steel in Acidic Medium

    International Nuclear Information System (INIS)

    Bhat, J. Ishwara; Alva, Vijaya D. P.

    2014-01-01

    The corrosion behavior of aluminum and mild steel in hydrochloric acid medium was studied using a nicotinic acid hydrazide as inhibitor by potentiodynamic polarization, electrochemical impedance spectroscopy technique and gravimetric methods. The effects of inhibitor concentration and temperature were investigated. The experimental results suggested, nicotinic acid hydrazide is a good corrosion inhibitor for both aluminum and mild steel in hydrochloric acid medium and the inhibition efficiency increased with increase in the inhibitor concentration. The polarization studies revealed that nicotinic acid hydrazide exhibits mixed type of inhibition. The inhibition was assumed to occur via adsorption of the inhibitor molecules on the aluminum and mild steel surface and inhibits corrosion by blocking the reaction sites on the surface of aluminum

  2. Characterization of the corrosion products formed on mild steel in acidic medium with N-octadecylpyridinium bromide as corrosion inhibitor

    Energy Technology Data Exchange (ETDEWEB)

    Nava, N., E-mail: tnava@imp.mx; Likhanova, N. V. [Direccion de Investigacion y Posgrado, Instituto Mexicano del Petroleo (Mexico); Olivares-Xometl, O. [Benemerita Universidad Autonoma de Puebla, Facultad de Ingenieria Quimica (Mexico); Flores, E. A. [Direccion de Investigacion y Posgrado, Instituto Mexicano del Petroleo (Mexico); Lijanova, I. V. [CIITEC, Instituto Politecnico Nacional (Mexico)

    2011-11-15

    The characterization of the corrosion products formed on mild steel SAE 1018 after 2 months exposure in aqueous sulfuric acid with and without corrosion inhibitor N-octadecylpyridinium bromide has been carried out by means of transmission {sup 57}Fe Moessbauer spectroscopy and X-ray powder diffraction (XRD). The major constituent of the rust formed in this environment without corrosion inhibitor is goethite ({alpha}-FeOOH). The samples with N-octadecylpyridinium bromide contain rozenite and large amounts of melanterite in the corrosion layers.

  3. Corrosion

    Science.gov (United States)

    Slabaugh, W. H.

    1974-01-01

    Presents some materials for use in demonstration and experimentation of corrosion processes, including corrosion stimulation and inhibition. Indicates that basic concepts of electrochemistry, crystal structure, and kinetics can be extended to practical chemistry through corrosion explanation. (CC)

  4. Choice of corrosion-resistant metal for fluotitanic acid

    International Nuclear Information System (INIS)

    Reingeverts, M.D.; Lapchenko, E.P.; Semenyuk, E.Y.

    1986-01-01

    The authors investigate the corrosion and anodic behavior of steels 12Kh18N10T, 08Kh21N6M2T, and 06KhN28MDT, nickel, and molybdenum in 10-40% naturally aerated solutions of H 2 TiF 6 at 20 and 50 degrees C. The authors found that in solutions of fluotitanic acid, as also in tetrafluoroboric and hydrofluoric acids, the most stable alloys are chromium-nickel-molybdenum alloy of type 06KhN28MDT and (for acid concentrations above 20%) copper-nickel-alloys of the monel metal type. Steels 12Kh18N10T and 08Kh21N6M2T can be used in acid concentrations of less than 10% and temperatures up to 20 degrees C with anodic protection

  5. Moessbauer study of corrosion induced by acid rain

    International Nuclear Information System (INIS)

    Arshed, M.; Hussain, N.; Siddiqui, M.; Anwar-ul-Islam, M.; Rehman, S.; Butt, N.M.

    1997-01-01

    Strictly speaking acid rain refers to wet precipitation of pollutants S0/sub 2/SO/sub 3/ and NO/sub x/HNO/sub 3/ which have dissolved in cloud and rain droplets to from sulphuric and nitric acids. Acid rain has seriously damaged pine and spruce forests in Canada, USA and Europe. In these areas it has caused damage to buildings, reduced fish population due to acidification of lakes and rivers, and affected health of human beings as a result of poor water quality. The corrosion products formed in a simulated acid rain environment have been identified with transmission Moessbauer spectroscopy using a /sup 57/Co source. They were found to be gamma-FeOOH, alpha-FeOOH, gamma-Fe/sub 2/O/sub 3/ and a phase with unfamiliar parameters which seems to be amorphous in nature and can be considered as an intermediate phase. (author)

  6. Synthesis, characterization and corrosion inhibition properties of benzamide-2-chloro-4-nitrobenzoic acid and anthranilic acid-2-chloro-4-nitrobenzoic acid for mild steel corrosion in acidic medium

    Science.gov (United States)

    Pandey, Archana; Verma, Chandrabhan; Singh, B.; Ebenso, Eno E.

    2018-03-01

    The present study deals with the synthesis of two new compounds namely, benzamide - 2-chloro-4-nitrobenzoic acid (BENCNBA) and anthranilic acid-2-chloro-4-nitrobenzoic acid (AACNBA) using solid phase reactions. The phase diagram studies revealed that formation of the investigated compounds occurs in 1:1 molar ratio. The synthesized compounds were characterized using several spectral techniques such as FT-IR, 1H and 13C NMR, UV-Vis, powder X-ray diffraction (PXRD). Single crystal XRD (SCXRD) study showed that both BENCNBA and AACNBA compounds crystallize in triclinic crystal system with P-1 space group. Further, the presence of intermolecular hydrogen bonding between the constituent components was also supported by single crystal X-ray diffraction (SCXRD) method. Heat of mixing, entropy of fusion, roughness parameter, interfacial energy and excess thermodynamic functions have also been computed using the enthalpy of fusion values derived from differential scanning calorimeter (DSC) study. The inhibition effect of BENCNBA and AACNBA on the mild steel corrosion in hydrochloric acid solution was tested using electrochemical methods. Electrochemical impedance spectroscopy (EIS) study revealed that both BENCNBA and AACNBA behaved as interface corrosion inhibitors and showed maximum inhibition efficiencies of 95.71% and 96.42%, respectively at 400 ppm (1.23 × 10-3 M) concentration. Potentiodynamic polarization (PDP) measurements suggested that BENCNBA and AACNBA acted as mixed type corrosion inhibitors. EIS and PDP results showed that BENCNBA and AACNBA act as efficient corrosion inhibitors for mild steel and their inhibition efficiencies enhances on increasing their concentrations.

  7. Stainless steel welding method with excellent nitric acid corrosion resistance

    International Nuclear Information System (INIS)

    Matsushita, Yukinobu; Inazumi, Toru; Hyakubo, Tamako; Masamura, Katsumi.

    1996-01-01

    The present invention concerns a welding method for a stainless steel used in a circumstance being in contact with a highly oxidizing nitric acid solution such as nuclear fuel reprocessing facilities, upon welding 316 type austenite steel containing Mo while giving excellent nitric acid resistance. A method of TIG welding using a filler metal having a composition of C, Si, Mn, P, S, Ni, Cr, Mo and Cu somewhat different from a stainless steel mother material in which C, Si, Mn, P, S, Ni, Cr and Mo are specified comprises a step of TIG-welding the surface of the mother material and a step of TIG-welding the rear face of the mother material, in which the welding conditions for the rear face of the mother material are such that the distance between the surface of the outermost welding metal layer on the side of the surface of the mother material and the bottom of the groove is not less than 5mm, and an amount of welding heat is made constant. As a result, even if the method is used in a circumstance being in contact with a highly corrosive solution such as nitric acid, corrosion resistance is not degraded. (N.H.)

  8. Adsorption and corrosion inhibiting effect of riboflavin on Q235 mild steel corrosion in acidic environments

    Energy Technology Data Exchange (ETDEWEB)

    Chidiebere, Maduabuchi A. [Institute of Metal Research, Chinese Academy of Sciences, 62 Wencui Rd, Shenyang 110016 (China); Electrochemistry and Materials Science Research Laboratory, Department of Chemistry, Federal University of Technology Owerri, PMB 1526 Owerri (Nigeria); Oguzie, Emeka E. [Electrochemistry and Materials Science Research Laboratory, Department of Chemistry, Federal University of Technology Owerri, PMB 1526 Owerri (Nigeria); Liu, Li [Institute of Metal Research, Chinese Academy of Sciences, 62 Wencui Rd, Shenyang 110016 (China); Li, Ying, E-mail: liying@imr.ac.cn [Institute of Metal Research, Chinese Academy of Sciences, 62 Wencui Rd, Shenyang 110016 (China); Wang, Fuhui [Institute of Metal Research, Chinese Academy of Sciences, 62 Wencui Rd, Shenyang 110016 (China)

    2015-04-15

    The inhibiting effect of Riboflavin (RF) on Q235 mild steel corrosion in 1 M HCl and 0.5 M H{sub 2}SO{sub 4} at 30 °C temperature was investigated using electrochemical techniques (electrochemical impedance spectroscopy and potentiodynamic polarization). The obtained results revealed that RF inhibited the corrosion reaction in both acidic solutions. Maximum inhibition efficiency values in 1 M HCl and 0.5 M H{sub 2}SO{sub 4} were 83.9% and 71.4%, respectively, obtained for 0.0012 M RF. Polarization data showed RF to be a mixed-type inhibitor, while EIS results revealed that the RF species adsorbed on the metal surface. The adsorption of RF followed Langmuir adsorption isotherm. Atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) studies confirmed the formation of a protective layer adsorbed on the steel surface. Quantum chemical calculations were used to correlate the inhibition ability of RF with its electronic structural parameters. - Highlights: • The inhibitory mechanism was influenced by the nature of acid anions. • RF has reasonable inhibition effect especially in 1 M HCl solution. • Polarization studies showed that RF functioned as a mixed type inhibitor. • Improved surface morphology was observed in the presence of RF.

  9. Intramolecular synergistic effect of glutamic acid, cysteine and glycine against copper corrosion in hydrochloric acid solution

    International Nuclear Information System (INIS)

    Zhang Daquan; Xie Bin; Gao Lixin; Cai Qirui; Joo, Hyung Goun; Lee, Kang Yong

    2011-01-01

    The corrosion protection of copper by glutamic acid, cysteine, glycine and their derivative (glutathione) in 0.5 M hydrochloric acid solution has been studied by the electrochemical impedance spectroscopy and cyclic voltammetry. The inhibition efficiency of the organic inhibitors on copper corrosion increases in the order: glutathione > cysteine > cysteine + glutamic acid + glycine > glutamic acid > glycine. Maximum inhibition efficiency for cysteine reaches about 92.9% at 15 mM concentration level. The glutathione can give 96.4% inhibition efficiency at a concentration of 10 mM. The molecular structure parameters were obtained by PM3 (Parametric Method 3) semi-empirical calculation. The intramolecular synergistic effect of glutamic acid, cysteine and glycine moieties in glutathione is attributed to the lower energy of the lowest unoccupied molecular orbital (E LUMO ) level and to the excess hetero-atom adsorption centers and the bigger coverage on the copper surface.

  10. Galvanic corrosion between carbon steel 1018 and Alloy 600 in crevice with boric acid solution

    International Nuclear Information System (INIS)

    Kim, Dong Jin; Kim, Hong Pyo; Kim, Joung Soo; Machonald, Digby D.

    2005-01-01

    This work dealt with the evaluation of galvanic corrosion rate in a corrosion cell having annular gap of 0.5 mm between carbon steel 1018 and alloy 600 as a function of temperature and boron concentration. Temperature and boron concentration were ranged from 110 to 300 .deg. C and 2000∼10000 ppm, respectively. After the operating temperature of the corrosion cell where the electrolyte was injected was attained at setting temperature, galvanic coupling was made and at the same time galvanic current was measured. The galvanic corrosion rate decreased with time, which was described by corrosion product such as protective film as well as boric acid deposit formed on the carbon steel with time. From the galvanic current obtained as a function of temperature and boron concentration, it was found that the galvanic corrosion rate decreased with temperature while the corrosion rate increased with boron concentration. The experimental results obtained from galvanic corrosion measurement were explained by adhesive property of corrosion product such as protective film, boric acid deposit formed on the carbon steel wall and dehydration of boric acid to be slightly soluble boric acid phase. Moreover the galvanic corrosion rate calculated using initial galvanic coupling current instead of steady state coupling current was remarked, which could give us relatively closer galvanic corrosion rate to real pressurized water reactor

  11. Effects of organic acid pickling on the corrosion resistance of magnesium alloy AZ31 sheet

    DEFF Research Database (Denmark)

    Nwaogu, Ugochukwu Chibuzoh; Blawert, C.; Scharnagl, N.

    2010-01-01

    mu m of the contaminated surface was required to reach corrosion rates less than 1 mm/year in salt spray condition. Among the three organic acids examined, acetic acid is the best choice. Oxalic acid can be an alternative while citric acid is not suitable for cleaning AZ31 sheet, because......Organic acids were used to clean AZ31 magnesium alloy sheet and the effect of the cleaning processes on the surface condition and corrosion performance of the alloy was investigated. Organic acid cleanings reduced the surface impurities and enhanced the corrosion resistance. Removal of at least 4...

  12. An Influence Study of Hydrogen Evolution Characteristics on the Negative Strap Corrosion of Lead Acid Battery

    Directory of Open Access Journals (Sweden)

    Zhong Guobin

    2015-01-01

    Full Text Available Negative strap corrosion is an important reason for the failure of valve regulated lead acid battery. This paper selected the Pb-Sb alloy material and Pb-Sn alloy material, made an investigation on the negative corrosion resistance and hydrogen evolution of these two alloy materials by scanning electron microscope analysis, metallographic analysis, chemical study and linear sweep voltammetry, and discussed the influence of lead alloy hydrogen evolution on the negative strap corrosion. The results showed that the hydrogen evolution reaction rates of the alloys had an impact on the corrosion areas with the maximum thickness of the alloys and the depth of corrosion layers. Greater hydrogen evolution reaction rate can lead to shorter distance between the corrosion area with the maximum thickness and the liquid level; whereas the greater corrosion layer thickness can bring aggravated risk of negative strap corrosion failure.

  13. Inhibition of Corrosion of Zinc in (HNO 3 + HCl) acid mixture by ...

    African Journals Online (AJOL)

    Corrosion of Zinc metal in (HNO3 + HCl) binary acid mixture and inhibition efficiency of aniline has been studied by weight loss method and polarization technique. Corrosion rate increases with the concentration of acid mixture and the temperature. Inhibition efficiency (I.E.) of aniline increases with the concentration of ...

  14. Corrosion of high purity Fe-Cr-Ni alloys in 13 N boiling nitric acid

    International Nuclear Information System (INIS)

    Ohta, Joji; Mayuzumi, Masami; Kusanagi, Hideo; Takaku, Hiroshi

    1998-01-01

    Corrosion in boiling nitric acid was investigated for high purity Fe-18%Cr-12%Ni alloys and type 304L stainless steels (SS). Owing to very low impurity concentration, the solution treated high purity alloys show almost no intergranular corrosion while the type 304L SS show severe intergranular corrosion. Both in the high purity alloys and type 304L SS, aging treatments ranging from 873 K to 1073 K for 1 h enhance intergranular corrosion. During the aging treatments, impurities should be segregated to the grain boundaries. The corrosion behaviors were discussed from a standpoint of impurity segregation to grain boundaries. This study is of importance for purex reprocessing of spent fuels

  15. Corrosion resistance of nickel alloys with chromium and silicon to the red fuming nitric acid

    International Nuclear Information System (INIS)

    Gurvich, L.Ya.; Zhirnov, A.D.

    1994-01-01

    Corrosion and electrochemical behaviour of binary Ni-Cr, Ni-Si nickel and ternary Ni-Cr-Si alloys in the red fuming nitric acid (RFNA) (8-% of HNO 3 +20% of N 2 O 4 ) is studied. It is shown that nickel alloying with chromium improves its corrosion resistance to the red fuming nitric acid. Nickel alloying with silicon in quantities of up to 5 % reduces, and up to 10%-increases abruptly the corrosion resistance with subsequent decrease of the latter after the further increase of concentration. Ni-15% of Cr alloy alloying with silicon increases monotonously the corrosion resistance. 10 refs., 7 figs., 3 tabs

  16. Control and monitoring of the localized corrosion of zirconium in acidic chloride solutions

    International Nuclear Information System (INIS)

    Fahey, J.; Holmes, D.; Yau, T.L.

    1995-01-01

    Zirconium in acidic chloride solutions which are contaminated with ferric or cupric cations is prone to localized corrosion. This tendency can be reduced by ensuring that the zirconium surface is clean and smooth. In this paper, the effect of surface condition on the localized corrosion of zirconium in acidic chloride solutions is predicted with potentiodynamic scans. These predictions are confirmed by weight loss tests on various combinations of surface finish and acid concentrations. A real time indication of localized corrosion is seen by monitoring the electrochemical noise produced between two similar electrodes immersed in an acidic chloride solutions. Electrochemical noise monitoring correlates well with the predictions from potentiodynamic and weight loss experiments. The electrochemical noise results show that while an elevated (more anodic) potential caused by ferric ion contamination may be a necessary condition for localized corrosion, it is not a sufficient condition: A smooth, clean zirconium surface reduces the localized corrosion of zirconium

  17. Inhibitors for the corrosion of reactive metals: titanium and zirconium and their alloys in acid media

    International Nuclear Information System (INIS)

    Petit, J.A.; Chatainier, G.; Dabosi, F.

    1981-01-01

    The search for effective corrosion inhibitors for titanium and zirconium in acid media is growing because of the considerable increase in the use of these materials in chemical process equipment. It still remains limited, as appears from this review, because of the exceptionally high corrosion resistance of the metals. Titanium has received the greater attention. Its corrosion rate can be lowered by introduction in the medium of multivalent ions, inorganic and organic oxidants. Care should be taken to hold the concentration at a level exceeding some critical value, otherwise the corrosion rate increases. Complexing organic agents do not show such hazardous behaviour. The very rapid corrosion of titanium and zirconium in fluoride media may be lessened by complexing the fluoride ions. Though rarely encountered, localized corrosion may be avoided by using inhibitors. In some cases good corrosion inhibitors for titanium are dissolution accelerators for zirconium. (author)

  18. An Effective Acid Combination for Enhanced Properties and Corrosion Control of Acidizing Sandstone Formation

    International Nuclear Information System (INIS)

    Shafiq, Mian Umer; Mahmud, Hisham Khaled Ben

    2016-01-01

    To fulfill the demand of the world energy, more technologies to enhance the recovery of oil production are being developed. Sandstone acidizing has been introduced and it acts as one of the important means to increase oil and gas production. Sandstone acidizing operation generally uses acids, which create or enlarge the flow channels of formation around the wellbore. In sandstone matrix acidizing, acids are injected into the formation at a pressure below the formation fracturing pressure, in which the injected acids react with mineral particles that may restrict the flow of hydrocarbons. Most common combination is Hydrofluoric Acid - Hydrochloric with concentration (3% HF - 12% HCl) known as mud acid. But there are some problems associated with the use of mud acid i.e., corrosion, precipitation. In this paper several new combinations of acids were experimentally screened to identify the most effective combination. The combinations used consist of fluoboric, phosphoric, formic and hydrofluoric acids. Cores were allowed to react with these combinations and results are compared with the mud acid. The parameters, which are analyzed, are Improved Permeability Ratio, strength and mineralogy. The analysis showed that the new acid combination has the potential to be used in sandstone acidizing. (paper)

  19. Study of corrosion-erosion behaviour of stainless alloys in industrial phosphoric acid medium

    International Nuclear Information System (INIS)

    Guenbour, Abdellah; Hajji, Mohamed-Adil; Jallouli, El Miloudi; Bachir, Ali Ben

    2006-01-01

    The corrosion and corrosion-abrasion resistance of some stainless steels in industrial phosphoric acid 30% P 2 O 5 has been studied using electrochemical techniques. The corrosion rate of materials increases with the increase of temperature. Alloys which contain chromium, molybdenum and nitrogen in sufficient quantities present the best behaviour. In the abrasion-corrosion conditions, the experimental device set up allowed to follow continually samples electrochemical behaviour. Under dynamic conditions and without solid particles, the increase of acid projection speed has no effect on the alloys corrosion behaviour. The adding of abrasive leads to a general increase of corrosion rate and to a decrease of material resistance. Under these conditions, materials attack is controlled by synergistic effect between the abrasion and the impurities. The cast 30% Cr shows good resistance according to his high chromium content

  20. Study of corrosion-erosion behaviour of stainless alloys in industrial phosphoric acid medium

    Energy Technology Data Exchange (ETDEWEB)

    Guenbour, Abdellah [Laboratory of Electrochemistry-Corrosion, Av. Ibn Batouta, BP1014-Faculty of Science, Rabat (Morocco)]. E-mail: guenbour@fsr.ac.ma; Hajji, Mohamed-Adil [Group Corrosion and Protection of Materials, ENIM, Rabat (Morocco); Jallouli, El Miloudi [Group Corrosion and Protection of Materials, ENIM, Rabat (Morocco); Bachir, Ali Ben [Laboratory of Electrochemistry-Corrosion, Av. Ibn Batouta, BP1014-Faculty of Science, Rabat (Morocco)

    2006-12-30

    The corrosion and corrosion-abrasion resistance of some stainless steels in industrial phosphoric acid 30% P{sub 2}O{sub 5} has been studied using electrochemical techniques. The corrosion rate of materials increases with the increase of temperature. Alloys which contain chromium, molybdenum and nitrogen in sufficient quantities present the best behaviour. In the abrasion-corrosion conditions, the experimental device set up allowed to follow continually samples electrochemical behaviour. Under dynamic conditions and without solid particles, the increase of acid projection speed has no effect on the alloys corrosion behaviour. The adding of abrasive leads to a general increase of corrosion rate and to a decrease of material resistance. Under these conditions, materials attack is controlled by synergistic effect between the abrasion and the impurities. The cast 30% Cr shows good resistance according to his high chromium content.

  1. Effect of Surface Precipitate on the Crevice Corrosion in HYBRID and Oxalic Acid Solution

    International Nuclear Information System (INIS)

    Park, S. Y.; Jung, J. Y.; Won, H. J.; Kim, S. B.; Choi, W. K.; Moon, J. K.; Park, S. J.

    2015-01-01

    In this study, we investigated the characteristics of the crevice corrosion for Inconel-600 and 304SS in OA solution according to the change in pH. The evaluation of the crevice corrosion with the chemical thermodynamic analysis identified the effect of the residual chemicals such as iron-oxalate and nickeloxalate to the crevice corrosion behavior. Test results were compared with those of HYBRID (HYdrizine Base Reductive metal Ion Decontamination). The crevice corrosion properties of 304 SS and Inconel-600 in HYBRID and oxalic acid solution were evaluated. In case of oxalic acid solution, the corrosion rate on 304SS was rapidly increased with a pH decrease of around 2, but there was no increase in the corrosion rate on Inconel-600

  2. Hydrofluoric Acid Corrosion Study of High-Alloy Materials

    International Nuclear Information System (INIS)

    Osborne, P.E.

    2002-01-01

    A corrosion study involving high-alloy materials and concentrated hydrofluoric acid (HF) was conducted in support of the Molten Salt Reactor Experiment Conversion Project (CP). The purpose of the test was to obtain a greater understanding of the corrosion rates of materials of construction currently used in the CP vs those of proposed replacement parts. Results of the study will help formulate a change-out schedule for CP parts. The CP will convert slightly less than 40 kg of 233 U from a gas (UF 6 ) sorbed on sodium fluoride pellets to a more stable oxide (U 3 O 8 ). One by-product of the conversion is the formation of concentrated HF. Six moles of highly corrosive HF are produced for each mole of UF 6 converted. This acid is particularly corrosive to most metals, elastomers, and silica-containing materials. A common impurity found in 233 U is 232 U. This impurity isotope has several daughters that make the handling of the 233 U difficult. Traps of 233 U may have radiation fields of up to 400 R at contact, a situation that makes the process of changing valves or working on the CP more challenging. It is also for this reason that a comprehensive part change-out schedule must be established. Laboratory experiments involving the repeated transfer of HF through 1/2-in. metal tubing and valves have proven difficult due to the corrosivity of the HF upon contact with all wetted parts. Each batch of HF is approximately 1.5 L of 33 wt% HF and is transferred most often as a vapor under vacuum and at temperatures of up to 250 C. Materials used in the HF side of the CP include Hastelloy C-276 and Monel 400 tubing, Haynes 230 and alloy C-276 vessels, and alloy 400 valve bodies with Inconel (alloy 600) bellows. The chemical compositions of the metals discussed in this report are displayed in Table 1. Of particular concern are the almost 30 vendor-supplied UG valves that have the potential for exposure to HF. These valves have been proven to have a finite life due to failure

  3. Hydrofluoric Acid Corrosion Study of High-Alloy Materials

    Energy Technology Data Exchange (ETDEWEB)

    Osborne, P.E.

    2002-09-11

    A corrosion study involving high-alloy materials and concentrated hydrofluoric acid (HF) was conducted in support of the Molten Salt Reactor Experiment Conversion Project (CP). The purpose of the test was to obtain a greater understanding of the corrosion rates of materials of construction currently used in the CP vs those of proposed replacement parts. Results of the study will help formulate a change-out schedule for CP parts. The CP will convert slightly less than 40 kg of {sup 233}U from a gas (UF{sub 6}) sorbed on sodium fluoride pellets to a more stable oxide (U{sub 3}O{sub 8}). One by-product of the conversion is the formation of concentrated HF. Six moles of highly corrosive HF are produced for each mole of UF{sub 6} converted. This acid is particularly corrosive to most metals, elastomers, and silica-containing materials. A common impurity found in {sup 233}U is {sup 232}U. This impurity isotope has several daughters that make the handling of the {sup 233}U difficult. Traps of {sup 233}U may have radiation fields of up to 400 R at contact, a situation that makes the process of changing valves or working on the CP more challenging. It is also for this reason that a comprehensive part change-out schedule must be established. Laboratory experiments involving the repeated transfer of HF through 1/2-in. metal tubing and valves have proven difficult due to the corrosivity of the HF upon contact with all wetted parts. Each batch of HF is approximately 1.5 L of 33 wt% HF and is transferred most often as a vapor under vacuum and at temperatures of up to 250 C. Materials used in the HF side of the CP include Hastelloy C-276 and Monel 400 tubing, Haynes 230 and alloy C-276 vessels, and alloy 400 valve bodies with Inconel (alloy 600) bellows. The chemical compositions of the metals discussed in this report are displayed in Table 1. Of particular concern are the almost 30 vendor-supplied UG valves that have the potential for exposure to HF. These valves have been

  4. Corrosion Inhibition of Aluminium in Acid Media By Citrullus Colocynthis Extract

    OpenAIRE

    Chauhan, Rajkiran; Garg, Urvija; Tak, R. K.

    2011-01-01

    Inhibition of corrosion of aluminium in acid solution by methanol extract of Citrullus colocynthis plant has been studied using mass loss and thermometric measurements. It has been found that the plant extract act as a good corrosion inhibitor for aluminium in all concentrations of sulphuric and hydrochloric acid solution. The inhibition action depends on the concentration of acid and inhibitor. Results for mass loss and thermometric measurement indicate that inhibition efficiency increase wi...

  5. Corrosion Inhibition and Adsorption Properties of Ethanolic Extract of Calotropis for Corrosion of Aluminium in Acidic Media

    OpenAIRE

    Sudesh Kumar; Suraj Prakash Mathur

    2013-01-01

    The corrosion inhibition of aluminium in sulfuric acid solution in the presence of different plant parts, namely, leaves, latex, and fruit was studied using weight loss method and thermometric method. The ethanolic extracts of Calotropis procera and Calotropis gigantea act as an inhibitor in the acid environment. The inhibition efficiency increases with increase in inhibitor concentration. The plant parts inhibit aluminium, and inhibition is attributed, due to the adsorption of the plant part...

  6. Study of Plant Cordia Dichotoma as Green Corrosion Inhibitor for Mild Steel in Different Acid Media

    Directory of Open Access Journals (Sweden)

    R. Khandelwal

    2011-01-01

    Full Text Available The corrosion inhibition of mild steel using extracts of Cordia dichotoma in different acid media was investigated by mass loss and thermometric methods. The experiments were carried out at 299±0.2 K in presence of different concentrations of dry fruit, leaves and stem extracts of Cordia dichotoma. The results reveal that the alcoholic extracts of Cordia dichotoma is a better corrosion inhibitor than that of toxic chemicals. The fruit extract is more potent than leaves and stem extracts to inhibit the corrosion rate. The study seeks to investigate the possibility of using extracts of Cordia dichotoma as a green corrosion inhibitor for mild steel.

  7. Development of corrosion testing equipment under heat transfer and irradiation conditions to evaluate corrosion resistance of materials used in acid recovery evaporator. Contract research

    International Nuclear Information System (INIS)

    Motooka, Takafumi; Numata, Masami; Kiuchi, Kiyoshi

    2002-01-01

    We have been evaluated the safety for corrosion of various metals applied to acid recovery evaporators by the mock-up tests using small scaled equipment and the reference tests in laboratories with small specimens. These tests have been conducted under-radioactive environment. The environment in practical reprocessing plants has many radioactive species. Therefore, the effect of irradiation on corrosion should be evaluated in detail. In this study, we have developed the corrosion testing equipment, which is employed to simulate environments in the acid recovery evaporators. This report describes the specification of corrosion testing equipment and the results of primary, reference and hot tests. Using the equipment, the corrosion test under heat transfer and irradiation conditions have been carried out for 930 hours in safety. It is expectable that useful corrosion test data in radioactive environment are accumulated with this equipment in future, and help the adequate choice of corrosion test condition in laboratories. (author)

  8. Corrosion behavior of niobium coated 304 stainless steel in acid solution

    Energy Technology Data Exchange (ETDEWEB)

    Pan, T.J., E-mail: tjpan@cczu.edu.cn [School of Material Science and Engineering, Jiangsu Collaborative Innovation Center for Photovolatic Science and Engineering, Changzhou University, Changzhou 213164 (China); Jiangsu Key Laboratory of Material Surface Technology, Changzhou 213164 (China); Chen, Y.; Zhang, B. [School of Material Science and Engineering, Jiangsu Collaborative Innovation Center for Photovolatic Science and Engineering, Changzhou University, Changzhou 213164 (China); Hu, J. [School of Material Science and Engineering, Jiangsu Collaborative Innovation Center for Photovolatic Science and Engineering, Changzhou University, Changzhou 213164 (China); Jiangsu Key Laboratory of Material Surface Technology, Changzhou 213164 (China); Li, C. [Light Industry College of Liaoning University, Shenyang 110036 (China)

    2016-04-30

    Highlights: • The Nb coating produced by HEMAA offers good protection for 304SS in acid solution. • The coating increases corrosion potential and induces decrease of corrosion rate. • The protection of coating is ascribed to the stability of Nb in acid solution. - Abstract: The niobium coating is fabricated on the surface of AISI Type 304 stainless steel (304SS) by using a high energy micro arc alloying technique in order to improvecorrosion resistance of the steel against acidic environments. The electrochemical corrosion resistance of the niobium coating in 0.7 M sulfuric acid solutions is evaluated by electrochemical impedance spectroscopy, potentiodynamic polarization and the open circuit potential versus time. Electrochemical measurements indicate that the niobium coating increases the free corrosion potential of the substrate by 110 mV and a reduction in the corrosion rate by two orders of magnitude compared to the substrate alone. The niobium coating maintains large impedance and effectively offers good protection for the substrate during the long-term exposure tests, which is mainly ascribed to the niobium coating acting inhibiting permeation of corrosive species. Finally, the corresponding electrochemical impedance models are proposed to elucidate the corrosion resistance behavior of the niobium coating in acid solutions.

  9. Corrosion behavior of niobium coated 304 stainless steel in acid solution

    International Nuclear Information System (INIS)

    Pan, T.J.; Chen, Y.; Zhang, B.; Hu, J.; Li, C.

    2016-01-01

    Highlights: • The Nb coating produced by HEMAA offers good protection for 304SS in acid solution. • The coating increases corrosion potential and induces decrease of corrosion rate. • The protection of coating is ascribed to the stability of Nb in acid solution. - Abstract: The niobium coating is fabricated on the surface of AISI Type 304 stainless steel (304SS) by using a high energy micro arc alloying technique in order to improvecorrosion resistance of the steel against acidic environments. The electrochemical corrosion resistance of the niobium coating in 0.7 M sulfuric acid solutions is evaluated by electrochemical impedance spectroscopy, potentiodynamic polarization and the open circuit potential versus time. Electrochemical measurements indicate that the niobium coating increases the free corrosion potential of the substrate by 110 mV and a reduction in the corrosion rate by two orders of magnitude compared to the substrate alone. The niobium coating maintains large impedance and effectively offers good protection for the substrate during the long-term exposure tests, which is mainly ascribed to the niobium coating acting inhibiting permeation of corrosive species. Finally, the corresponding electrochemical impedance models are proposed to elucidate the corrosion resistance behavior of the niobium coating in acid solutions.

  10. Application of thin layer activation technique for monitoring corrosion of carbon steel in hydrocarbon processing environment.

    Science.gov (United States)

    Saxena, R C; Biswal, Jayashree; Pant, H J; Samantray, J S; Sharma, S C; Gupta, A K; Ray, S S

    2018-05-01

    Acidic crude oil transportation and processing in petroleum refining and petrochemical operations cause corrosion in the pipelines and associated components. Corrosion monitoring is invariably required to test and prove operational reliability. Thin Layer Activation (TLA) technique is a nuclear technique used for measurement of corrosion and erosion of materials. The technique involves irradiation of material with high energy ion beam from an accelerator and measurement of loss of radioactivity after the material is subjected to corrosive environment. In the present study, TLA technique has been used to monitor corrosion of carbon steel (CS) in crude oil environment at high temperature. Different CS coupons were irradiated with a 13 MeV proton beam to produce Cobalt-56 radioisotope on the surface of the coupons. The corrosion studies were carried out by subjecting the irradiated coupons to a corrosive environment, i.e, uninhibited straight run gas oil (SRGO) containing known amount of naphthenic acid (NA) at high temperature. The effects of different parameters, such as, concentration of NA, temperature and fluid velocity (rpm) on corrosion behaviour of CS were studied. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Tunable polymeric sorbent materials for fractionation of model naphthenates.

    Science.gov (United States)

    Mohamed, Mohamed H; Wilson, Lee D; Headley, John V

    2013-04-04

    The sorption properties are reported for several examples of single-component carboxylic acids representing naphthenic acids (NAs) with β-cyclodextrin (β-CD) based polyurethane sorbents. Seven single-component examples of NAs were chosen with variable z values, carbon number, and chemical structure as follows: 2-hexyldecanoic acid (z = 0 and C = 16; S1), n-caprylic acid (z = 0 and C = 8; S2), trans-4-pentylcyclohexanecarboxylic acid (z = -2 and C = 12; S3), 4-methylcyclohexanecarboxylic acid (z = -2 and C = 8; S4), dicyclohexylacetic acid (z = -4; C = 14; S5), 4-pentylbicyclo[2.2.2]octane-1-carboxylic acid (z = -4; C = 14; S6), and lithocholic acid (z = -6; C = 24; S7). The copolymer sorbents were synthesized at three relative β-CD:diisocyanate mole ratios (i.e., 1:1, 1:2, and 1:3) using 4,4'-dicyclohexylmethane diisocyanate (CDI) and 4,4'-diphenylmethane diisocyanate (MDI). The sorption properties of the copolymer sorbents were characterized using equilibrium sorption isotherms in aqueous solution at pH 9.00 with electrospray ionization mass spectrometry. The equilibrium fraction of the unbound carboxylate anions was monitored in the aqueous phase. The sorption properties of the copolymer sorbents (i.e., Qm) were obtained from the Sips isotherm model. The Qm values generally decrease as the number of accessible β-CD inclusion sites in the copolymer framework decreases. The chemical structure of the adsorbates played an important role in their relative uptake, as evidenced by the adsorbate lipophilic surface area (LSA) and the involvement of hydrophobic effects. The copolymers exhibit molecular selective sorption of the single-component carboxylates in mixtures which suggests their application as sorbents for fractionation of mixtures of NAs. By comparison, granular activated carbon (GAC) and chitosan sorbents did not exhibit any significant molecular selective sorption relative to the copolymer materials; however, evidence of variable sorption capacity was

  12. Intergranular corrosion testing of austenitic stainless steels in nitric acid solutions

    Energy Technology Data Exchange (ETDEWEB)

    Whillock, G.O.H.; Dunnett, B. F. [British Nuclear Fuels plc, BNFL, B170, Sellafield, Seascale, Cumbria CA20 1PG (United Kingdom)

    2004-07-01

    In hot strong nitric acid solutions, stainless steels exhibit intergranular corrosion. Corrosion rates are often measured from immersion testing of specimens manufactured from the relevant material (e.g. plate or pipe). The corrosion rates, measured from weight loss, are found to increase with time prior to reaching steady state, which can take thousands of hours to achieve. The apparent increase in corrosion rate as a function of time was found to be an artefact due to the surface area of the specimen's being used in the corrosion rate calculations, rather than that of the true area undergoing active corrosion i.e. the grain boundaries. The steady state corrosion rate coincided with the onset of stable grain dropping, where the use of the surface area of the specimen to convert the weight loss measurements to corrosion rates was found to be appropriate. This was confirmed by sectioning of the specimens and measuring the penetration depths. The rate of penetration was found to be independent of time and no induction period was observed. A method was developed to shorten considerably the testing time to reach the steady state corrosion rate by use of a pre-treatment that induces grain dropping. The long-term corrosion rates from specimens which were pre-treated was similar to that achieved after prolonged testing of untreated (i.e. initially ground) specimens. The presence of cut surfaces is generally unavoidable in the simple immersion testing of specimens in test solutions. However, inaccuracy in the results may occur as the measured corrosion rate is often influenced by the orientation of the microstructure, the highest rates typically being observed on the cut surfaces. Two methods are presented which allow deconvolution of the corrosion rates from immersion testing of specimens containing cut surfaces, thus allowing reliable prediction of the long-term corrosion rate of plate surfaces. (authors)

  13. Cefuroxime axetil: A commercially available drug as corrosion inhibitor for aluminum in hydrochloric acid solution

    OpenAIRE

    Ameh, Paul O.; Sani, Umar M.

    2016-01-01

    Cefuroxime axetil (CA) a prodrug was tested as corrosion inhibitor for aluminum in hydrochloric acid solution using thermometric, gasometric weight loss and scanning electron microscope (SEM) techniques. Results obtained showed that this compound has a good inhibiting properties for aluminum corrosion in acidic medium, with inhibition efficiencies values reaching 89.87 % at 0.5 g / L . It was also found out that the results from weight loss method are highly consistent with those obtained by ...

  14. Inhibition of Aluminium Corrosion in Hydrochloric Acid Using Nizoral and the Effect of Iodide Ion Addition

    OpenAIRE

    I. B. Obot; N. O. Obi-Egbedi

    2010-01-01

    The effect of nizoral (NZR) on the corrosion inhibition of aluminium alloy AA 1060 in 2 M HCl solution was investigated using the mylius thermometric technique. Results of the study revealed that nizoral acts as corrosion inhibitor for aluminium in the acidic medium. In general, at constant acid concentration, the inhibition efficiency increases with increase in the inhibitor concentration. The addition of KI to the inhibitor enhanced the inhibition efficiency to a considerable extent. The ad...

  15. Effect of Acidic Water on Strength, Durability and Corrosion of ...

    African Journals Online (AJOL)

    In this study, specimens of 108 cubes (150 mm x 150 mm x 150 mm), 36 cylinders (300 mm x 150 mm), and 72 cylinders (102 mm x 51 mm) were cast and cured in percentages of NaCl added water to find the workability, strength, durability and corrosion resistance characteristics concrete. The effect of corrosion of steel in ...

  16. Sulfuric Acid Corrosion of Low Sb - Pb Battery Alloys | Ntukogu ...

    African Journals Online (AJOL)

    The corrosion properties of low Sb - Pb alloys developed for maintenance free motive power industrial batteries was studied by a bare grid constant current method and compared to those of the conventional Pb- 6% Sb alloy. Low Sb-Pb alloys with Se and As grain refiners were found to have higher corrosion rates than the ...

  17. Ginger extract as green corrosion inhibitor of mild steel in hydrochloric acid solution

    Science.gov (United States)

    Fidrusli, A.; Suryanto; Mahmood, M.

    2018-01-01

    Ginger extract as corrosion inhibitor from natural resources was studied to prevent corrosion of mild steel in acid media. Ginger rhizome was extracted to produce green corrosion inhibitor (G-1) while ginger powder bought at supermarket was also extract to form green corrosion inhibitor (G-2). Effectiveness of inhibitor in preventing corrosion process of mild steel was studied in 1.0 M of hydrochloric acid. The experiment of weight loss method and polarization technique were conducted to measure corrosion rate and inhibition efficiency of mild steel in solution containing 1.0 M of hydrochloric acid with various concentration of inhibitor at room temperature. The results showed that, the rate of corrosion dropped from 8.09 mmpy in solution containing no inhibitor to 0.72 mmpy in solution containing 150g/l inhibitor while inhibition efficiency up to 91% was obtained. The polarization curve in polarization experiments shows that the inhibition efficiency is 86% with high concentration of inhibitor. The adsorption of ginger extract on the surface of mild steel was observed by using optical microscope and the characterization analysis was done by using pH measurement method. When high concentration of green inhibitor in the acid solution is used, the pH at the surface of steel is increasing.

  18. Corrosion of Bronzes by Extended Wetting with Single versus Mixed Acidic Pollutants

    Directory of Open Access Journals (Sweden)

    Liliana Gianni

    2014-04-01

    Full Text Available The corrosion of bronzes was examined in the context of single-acid versus mixed-acid (as in urban acid rain solutions. Two bi-component bronzes (copper with either 3% Sn or 7% Sn that closely represent those of historic artifacts were immersed for five weeks in conditions designed to replicate those experienced by statues and ornaments in cities where rainfall and humidity constantly produce an electrolyte layer on the surfaces of bronzes. Ions, acids, and particles of pollutants can dissolve in this layer, resulting in a variety of harsh corrosion processes. The kinetics of corrosion and the properties of the resulting patinas were monitored weekly by electrochemical impedance spectroscopy and open-circuit potential measurements. The sizes and appearances of the corrosion products were monitored and used to estimate the progress of the corrosion, whose crystalline structures were visualized using scanning electron microscopy with energy dispersive spectroscopy, identified by X-ray diffraction, and characterized by spectrocolorimetry. The electrochemical measurements demonstrated that greater damage (in terms of color change and corrosion product formation did not correspond to deficiencies in protection. The mixed-acid solution did not corrode the bronzes, as would be expected from the additive effects of the single acids. The postulated mechanisms of metal dissolution appear to be specific to a particular bronze alloy, with the tin component playing an important role.

  19. Study on tea leaves extract as green corrosion inhibitor of mild steel in hydrochloric acid solution

    Science.gov (United States)

    Hamdan, A. B.; Suryanto; Haider, F. I.

    2018-01-01

    Corrosion inhibitor from extraction of plant has been considered as the most preferable and most chosen technique to prevent corrosion of metal in acidic medium because of the environmental friendly factor. In this study, black tea leaves extraction was tested as corrosion inhibitor for mild steel in 0.1M of hydrochloric acid (HCl) with the absence and presence of corrosion inhibitor. The efficiency and effectiveness of black tea as corrosion inhibitor was tested by using corrosion weight loss measurement experiment was carried out with varies parameters which with different concentration of black tea extract solution. The extraction of black tea solution was done by using aqueous solvent method. The FT-IR result shows that black tea extract containing compounds such as catechin, caffeine and tannins that act as anti-corrosive reagents and responsible to enhance the effectiveness of black tea extract as corrosion inhibitor by forming the hydrophobic thin film through absorption process. As a result of weight loss measurement, it shows that loss in weight of mild steel reduces as the concentration of inhibitor increases. The surface analysis was done on the mild steel samples by using SEM.

  20. Corrosion Behaviour of Sn-based Lead-Free Solders in Acidic Solution

    Science.gov (United States)

    Nordarina, J.; Mohd, H. Z.; Ahmad, A. M.; Muhammad, F. M. N.

    2018-03-01

    The corrosion properties of Sn-9(5Al-Zn), Sn-Cu and SAC305 were studied via potentiodynamic polarization method in an acidic solution of 1 M hydrochloric acid (HCl). Sn-9(5Al-Zn) produced different polarization profile compared with Sn-Cu and SAC305. The morphological analysis showed that small, deep grooves shaped of corrosion product formed on top of Sn-9(5Al-Zn) solder while two distinctive structures of closely packed and loosely packed corrosion product formed on top of Sn-Cu and SAC305 solder alloys. Phase analysis revealed the formations of various corrosion products such as SnO and SnO2 mainly dominant on surface of solder alloys after potentiodynamic polarization in 1 M hydrochloric acid (HCl).

  1. Towards corrosion testing of unglazed solar absorber surfaces in simulated acid rain

    International Nuclear Information System (INIS)

    Salo, T.; Pehkonen, A.; Konttinen, P.; Lund, P.

    2005-01-01

    Electrochemical impedance spectroscopy and potentiodynamic polarization tests were utilized for determining corrosion probabilities of unglazed C/Al 2 O 3 /Al solar absorber surfaces in simulated acid rain. Previously, the main degradation mechanism found was exponentially temperature-related hydration of aluminium oxide. In acid rain tests the main corrosion determinant was the pH value of the rain. Results indicate that these methods measure corrosion characteristics of Al substrate instead of the C/Al 2 O 3 /Al surface, probably mainly due to the rough and non-uniform microstructure of the latter. Further analyses of the test methods are required in order to estimate their applicability on Al-based uniform sputtered absorber surfaces. (author) (C/Al 2 O 3 /Al solar absorber; Acid rain; Corrosion; Electrochemical tests)

  2. Corrosion rate of construction materials in hot phosphoric acid with the contribution of anodic polarization

    Energy Technology Data Exchange (ETDEWEB)

    Kouril, M. [Institute of Chemical Technology, Technicka 5, 166 28 Prague (Czech Republic); Christensen, E. [Technical University of Denmark, Kemitorvet, 2800 Kgs. Lyngby (Denmark); Eriksen, S.; Gillesberg, B. [Tantaline A/S, Nordborgvej 81, 6430 Nordborg (Denmark)

    2012-04-15

    The paper is focused on selection of a proper material for construction elements of water electrolysers, which make use of a 85% phosphoric acid as an electrolyte at temperature of 150 C and which might be loaded with anodic polarization up to 2.5 V versus a saturated Ag/AgCl electrode (SSCE). Several grades of stainless steels were tested as well as tantalum, niobium, titanium, nickel alloys and silicon carbide. The corrosion rate was evaluated by means of mass loss at free corrosion potential as well as under various levels of polarization. The only corrosion resistant material in 85% phosphoric acid at 150 C and at polarization of 2.5 V/SSCE is tantalum. In that case, even a gentle cathodic polarization is harmful in such an acidic environment. Hydrogen reduction leads to tantalum hydride formation, to loss of mechanical properties and to complete disintegration of the metal. Contrary to tantalum, titanium is free of any corrosion resistance in hot phosphoric acid. Its corrosion rate ranges from tens of millimetres to metres per year depending on temperature of the acid. Alloy bonded tantalum coating was recognized as an effective corrosion protection for both titanium and stainless steel. Its serviceability might be limited by slow dissolution of tantalum that is in order of units of mm/year. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Studying titanium-molybdenum-zirconium alloys of increased corrosion resistance in acid solutions

    International Nuclear Information System (INIS)

    Tomashov, N.D.; Kazarin, V.I.; Mikheev, V.S.; Goncharenko, B.A.; Sigalovskaya, T.M.; Kalyanova, M.P.

    1977-01-01

    New promising Ti-Mo-Nb-Zr system alloys, possessing good workability and a high corrosion resistance in non-oxidizing solutions of acids, have been developed. The alloys may be recommended as structural materials for equipment operating in severely agressive acid media, such as hydrochloric, sulphuric and phosphoric acids. The corrosion resistance of alloys of the above system in solutions of H 2 SO 4 , HCl and H 3 PO 4 acids may be maximized by increasing the overall alloying to 42% (keeping the ratio of the alloying components Mo/Nb/Zr=4/1/1 unchanged), while retaining sufficiently good plasticity and workability

  4. Effect of acidity upon attrition-corrosion of human dental enamel.

    Science.gov (United States)

    Wu, Yun-Qi; Arsecularatne, Joseph A; Hoffman, Mark

    2015-04-01

    Attrition-corrosion is a synthesized human enamel wear process combined mechanical effects (attrition) with corrosion. With the rising consumption of acidic food and beverages, attrition-corrosion is becoming increasingly common. Yet, research is limited and the underlying mechanism remains unclear. In this study, in vitro wear loss of human enamel was investigated and the attrition-corrosion process and wear mechanism were elucidated by the analysis of the wear scar and its subsurface using focused ion beam (FIB) sectioning and scanning electron microscopy (SEM). Human enamel flat-surface samples were prepared with enamel cusps as the wear antagonists. Reciprocating wear testing was undertaken under load of 5N at the speed of 66 cycle/min for 2250 cycles with lubricants including citric acid (at pH 3.2 and 5.5), acetic acid (at pH 3.2 and 5.5) and distilled water. All lubricants were used at 37°C. Similar human enamel flat-surface samples were also exposed to the same solutions as a control group. The substance loss of enamel during wear can be linked to the corrosion potential of a lubricant used. Using a lubricant with very low corrosion potential (such as distilled water), the wear mechanism was dominated by delamination with high wear loss. Conversely, the wear mechanism changed to shaving of the softened layer with less material loss in an environment with medium corrosion potential such as citric acid at pH 3.2 and 5.5 and acetic acid at pH 5.5. However, a highly corrosive environment (e.g., acetic acid at pH 3.2) caused the greatest loss of substance during wear. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Copper naphthenate: a proven solution for new wood preservative problems

    Energy Technology Data Exchange (ETDEWEB)

    McNair, W.S. [Merichem Chemicals and Refinery Services LLC, Houston, TX (United States); Loecner, P. [Pacific Gas and Electric, Davis, CA (United States)

    2002-08-01

    Today's engineers have the responsibility of considering cost, availability and climbability, as well as the environmental alternatives available to the traditional wood preservatives used in the production of utility poles: creosote, pentachlorophenol (PCP) and chromated copper arsenate (CCA). The leading alternative now emerging for utilities in this field is copper naphthenate. The authors present a case study that clearly demonstrates copper naphthenate as one of the most environmentally sensitive and effective wood preservative. When first introduced, copper naphthenate seemed to frequently result in early failure of the poles treated with this preservative. It was discovered that it was a phenomenon that had been largely exaggerated, and the failure rate was less than one per cent. A recent review has concluded that premature failures have basically disappeared. Several reasons can explain premature failures, such as pretreatment decay, improper sterilization/conditioning/drying, inadequate copper penetration and retention, and others. The long term effectiveness and performance of copper naphthenate has been documented in a number of field trials. The ultimate disposal of the product must be considered by the specifying engineer, and it is possible to dispose of copper naphthenate poles in a sanitary landfill. Due in part to recent manufacturing economies, the cost of copper naphthenate is similar to other oil-borne treatments. The case study of Pacific Gas and Electric was discussed. 7 refs., 2 figs.

  6. Influence of inorganic acid pickling on the corrosion resistance of magnesium alloy AZ31 sheet

    DEFF Research Database (Denmark)

    Nwaogu, Ugochukwu Chibuzoh; Blawert, C.; Scharnagl, N.

    2009-01-01

    Surface contaminants as a result of thermo-mechanical processing of magnesium alloys, e.g. sheet rolling, can have a negative effect on the corrosion resistance of magnesium alloys. Especially contaminants such as Fe, Ni and Cu, left on the surface of magnesium alloys result in the formation...... of micro-galvanic couples and can therefore increase corrosion attack on these alloys. Due to this influence they should be removed to obtain good corrosion resistance. In this study, the effect of inorganic acid pickling on the corrosion behaviour of a commercial AZ31 magnesium alloy sheet...... cleaning the AZ31 sheet. However, to obtain reasonable corrosion resistance at least 5 mu m of the surface of AZ31 magnesium alloy sheet have to be removed....

  7. Characterizing Corrosion Effects of Weak Organic Acids Using a Modified Bono Test

    Science.gov (United States)

    Zhou, Yuqin; Turbini, Laura J.; Ramjattan, Deepchand; Christian, Bev; Pritzker, Mark

    2013-12-01

    To meet environmental requirements and achieve benefits of cost-effective manufacturing, no-clean fluxes (NCFs) or low-solids fluxes have become popular in present electronic manufacturing processes. Weak organic acids (WOAs) as the activation ingredients in NCFs play an important role, especially in the current lead-free and halogen-free soldering technology era. However, no standard or uniform method exists to characterize the corrosion effects of WOAs on actual metallic circuits of printed wiring boards (PWBs). Hence, the development of an effective quantitative test method for evaluating the corrosion effects of WOAs on the PWB's metallic circuits is imperative. In this paper, the modified Bono test, which was developed to quantitatively examine the corrosion properties of flux residues, is used to characterize the corrosion effects of five WOAs (i.e., abietic acid, succinic acid, glutaric acid, adipic acid, and malic acid) on PWB metallic circuits. Experiments were performed under three temperature/humidity conditions (85°C/85% RH, 60°C/93% RH, and 40°C/93% RH) using two WOA solution concentrations. The different corrosion effects among the various WOAs were best reflected in the testing results at 40°C and 60°C. Optical microscopy was used to observe the morphology of the corroded copper tracks, and scanning electron microscopy (SEM) energy-dispersive x-ray (EDX) characterization was performed to determine the dendrite composition.

  8. Corrosion control of carbon steel using inhibitor of banana peel extract in acid diluted solutions

    Science.gov (United States)

    Komalasari; Utami, S. P.; Fermi, M. I.; Aziz, Y.; Irianti, R. S.

    2018-04-01

    Issues of corrosion happened in pipes, it was used as fluid transportation in the chemical industry. Corrosion cannot be preventing, however it could be controlled or blocked. Inhibitor addition is one of the method to control the corrosion inside the pipe. Corrosion inhibitors consisted of inorganic and organic compound inhibitors. Organic inhibitor is composed from synthetic and natural material. This study focused to evaluate the inhibition’s efficiency from banana peel to carbon steel in different concentration of inhibitor and immersing time in acid solution variation. The research employed inhibitor concentration of 0 gram/liter, 2 gram/liter, 4 gram/liter and 6 gram/liter, immersed time of carbon steel for 2, 4, 6, 8 and 10 hours. It was immersed in chloride acid solution of 0.5 M and 1.5 M. Carbon Steel AISI 4041 was used as specimen steel. Results were analyzed using corrosion rate evaluation for each specimens and inhibitor efficiencies determination. It was found that the specimen without inhibitor yielded fast corrosion rate in long immersing time and high concentration of HCl. However, the specimens with inhibitor gave lowest corrosion rate which was 78.59% for 6 gram/litre and 10 hours in 0.5 M HCl.

  9. Investigations of corrosion films formed on API-X52 pipeline steel in acid sour media

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Espejel, A. [Instituto Politecnico Nacional, Departamento de Ingenieria Metalurgica, IPN-ESIQIE, UPALM Ed. 7, Zacatenco 07738, Mexico, D.F. (Mexico); Dominguez-Crespo, M.A. [Instituto Politecnico Nacional, CICATA-Unidad Altamira-Tamaulipas, km 14.5, Carretera Tampico-Puerto Industrial Altamira, 89600 Altamira, Tamps (Mexico); Cabrera-Sierra, R. [Instituto Politecnico Nacional, Departamento de Ingenieria Quimica Industrial, IPN-ESIQIE, UPALM Ed. 7, Zacatenco 07738, Mexico, D.F. (Mexico); Rodriguez-Meneses, C. [Instituto Politecnico Nacional, Departamento de Ingenieria Metalurgica, IPN-ESIQIE, UPALM Ed. 7, Zacatenco 07738, Mexico, D.F. (Mexico); Arce-Estrada, E.M., E-mail: earce@ipn.m [Instituto Politecnico Nacional, Departamento de Ingenieria Metalurgica, IPN-ESIQIE, UPALM Ed. 7, Zacatenco 07738, Mexico, D.F. (Mexico)

    2010-07-15

    Corrosion films formed by voltammetry using different switching potentials and by immersion on API-X52 pipeline steel in simulated acid sour media (NACE ID182) have been characterized using Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), Linear Polarization and Electrochemical Impedance Spectroscopy (EIS) techniques. XRD and EDS analysis showed that the films are mainly composed of sulphide compounds (mackinawite, troilite, marcasite and pyrite) as well as iron oxides, as steel damage increases. Across SEM micrographs the corrosion films formed by potentiodynamic and immersion tests are very similar, covering most of the steel. Polarization and EIS results corroborate poor behavior against corrosion.

  10. Investigations of corrosion films formed on API-X52 pipeline steel in acid sour media

    International Nuclear Information System (INIS)

    Hernandez-Espejel, A.; Dominguez-Crespo, M.A.; Cabrera-Sierra, R.; Rodriguez-Meneses, C.; Arce-Estrada, E.M.

    2010-01-01

    Corrosion films formed by voltammetry using different switching potentials and by immersion on API-X52 pipeline steel in simulated acid sour media (NACE ID182) have been characterized using Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), Linear Polarization and Electrochemical Impedance Spectroscopy (EIS) techniques. XRD and EDS analysis showed that the films are mainly composed of sulphide compounds (mackinawite, troilite, marcasite and pyrite) as well as iron oxides, as steel damage increases. Across SEM micrographs the corrosion films formed by potentiodynamic and immersion tests are very similar, covering most of the steel. Polarization and EIS results corroborate poor behavior against corrosion.

  11. Experimental Investigation of Sulfuric Acid Condensation and Corrosion Rate in Motored Bukh DV24 Diesel Engine

    DEFF Research Database (Denmark)

    Kjemtrup, Lars; Cordtz, Rasmus Faurskov; Meyer, Martin

    2017-01-01

    The work conducted in this paper presents a novel experimental setup to study sulfuric acid cold corrosion of cylinder liners in large two-stroke marine diesel engines. The process is simulated in a motored light duty BUKH DV24 diesel engine where the charge air contain known amounts of H2SO4 and H......2O vapor. Liner corrosion is measured as iron accumulation in the lubeoil. Similarly sulfuric acid condensation is assessed by measuring the accumulation of sulfur in the lube oil. To clarify the corrosive effect of sulfuric acid the lube oil utilized for experiments is a sulfur free neutral oil...... without alkaline additives (Chevron Neutral Oil 600R). Iron and sulfur accumulation in the lube oil is analyzed withan Energy Dispersive X-Ray Fluorescence (ED-XRF) apparatus. Three test cases with different H2SO4 concentrations are run. Results reveal good agreement between sulfuric acid injection flow...

  12. Polyaspartic acid as a corrosion inhibitor for WE43 magnesium alloy

    Directory of Open Access Journals (Sweden)

    Lihui Yang

    2015-03-01

    Full Text Available The inhibition behavior of polyaspartic acid (PASP as an environment-friendly corrosion inhibitor for WE43 magnesium alloy was investigated in 3.5 wt.% NaCl solution by means for EIS measurement, potentiodynamic polarization curve, and scanning electron microscopy. The results show that PASP can inhibit the corrosion of WE43 magnesium alloy. The maximum inhibition efficiency is achieved when PASP concentration is 400 ppm in this study.

  13. Polyaspartic acid as a corrosion inhibitor for WE43 magnesium alloy

    OpenAIRE

    Lihui Yang; Yantao Li; Bei Qian; Baorong Hou

    2015-01-01

    The inhibition behavior of polyaspartic acid (PASP) as an environment-friendly corrosion inhibitor for WE43 magnesium alloy was investigated in 3.5 wt.% NaCl solution by means for EIS measurement, potentiodynamic polarization curve, and scanning electron microscopy. The results show that PASP can inhibit the corrosion of WE43 magnesium alloy. The maximum inhibition efficiency is achieved when PASP concentration is 400 ppm in this study.

  14. Corrosion Inhibition of Mild Steel in Hydrochloric Acid by Sodium Lauryl Sulfate (SLS

    Directory of Open Access Journals (Sweden)

    Atul Kumar

    2008-01-01

    Full Text Available Effect of Sodium Lauryl Sulfate (SLS, a surfactant on corrosion of mild steel in 1 M hydrochloric acid was studied using three techniques namely: weight loss, electrochemical polarization and metallurgical research microscopy. Results obtained reveal that SLS is good inhibitor and shows very good corrosion inhibition efficiency (IE. The IE was found to vary with concentration of inhibitor and temperature. The electrochemical polarization result revealed that SLS is anodic in nature.

  15. Corrosion Inhibition of Mild Steel in Hydrochloric Acid by Sodium Lauryl Sulfate (SLS)

    OpenAIRE

    Atul Kumar

    2008-01-01

    Effect of Sodium Lauryl Sulfate (SLS), a surfactant on corrosion of mild steel in 1 M hydrochloric acid was studied using three techniques namely: weight loss, electrochemical polarization and metallurgical research microscopy. Results obtained reveal that SLS is good inhibitor and shows very good corrosion inhibition efficiency (IE). The IE was found to vary with concentration of inhibitor and temperature. The electrochemical polarization result revealed that SLS is anodic in nature.

  16. Study of Plant Cordia Dichotoma as Green Corrosion Inhibitor for Mild Steel in Different Acid Media

    OpenAIRE

    R. Khandelwal; S. K. Arora; S. P. Mathur

    2011-01-01

    The corrosion inhibition of mild steel using extracts of Cordia dichotoma in different acid media was investigated by mass loss and thermometric methods. The experiments were carried out at 299±0.2 K in presence of different concentrations of dry fruit, leaves and stem extracts of Cordia dichotoma. The results reveal that the alcoholic extracts of Cordia dichotoma is a better corrosion inhibitor than that of toxic chemicals. The fruit extract is more potent than leaves and stem extracts to in...

  17. Exopolysaccharides from lactic acid bacteria as corrosion inhibitors

    Directory of Open Access Journals (Sweden)

    Ignatova-Ivanova Tsveteslava

    2016-03-01

    Full Text Available Bacterial EPSs (exopolysaccharides are believed to play an important role in the environment by promoting survival strategies such as bacterial attachment to surfaces and nutrient trapping, which facilitate processes of biofilm formation and development. These microbial biofilms have been implicated in corrosion of metals, bacterial attachment to prosthetic devices, fouling of heat exchange surfaces, toxicant immobilization, and fouling of ship hulls. In this paper, data on EPS production and the effect of EPS on corrosion of steel produced by Lactobacillus sp. are presented and discussed. Lactobacillus delbrueckii K27, Lactobacillus delbrueckii B8, Lactobacillus delbrueckii KO43, Lactobacillus delbrueckii K3, Lactobacillus delbrueckii K15 and Lactobacillus delbrueckii K17 was obtained from Collection of Department of General and Applied Microbiology, Sofia University. It was tested for its ability to produce exopolysaccharides when cultivated in a media containing 10% sucrose, 10% lacose and 10% maltose. The study of the corrosive stability of steel samples was conducted on the gravimetrique method. The rate of corrosion, the degree of protection, and coefficient of protection have been calculated. The structure of layer over steel plates was analysed by SEM (scanning electron microscopy JSM 5510. It could be underlined that 10% sucrose, 10% lactose and 10% maltose in the media stimulated the process of protection of corrosion.

  18. Exopolysaccharides from lactic acid bacteria as corrosion inhibitors

    Science.gov (United States)

    Ignatova-Ivanova, Tsveteslava; Ivanov, Radoslav

    2016-03-01

    Bacterial EPSs (exopolysaccharides) are believed to play an important role in the environment by promoting survival strategies such as bacterial attachment to surfaces and nutrient trapping, which facilitate processes of biofilm formation and development. These microbial biofilms have been implicated in corrosion of metals, bacterial attachment to prosthetic devices, fouling of heat exchange surfaces, toxicant immobilization, and fouling of ship hulls. In this paper, data on EPS production and the effect of EPS on corrosion of steel produced by Lactobacillus sp. are presented and discussed. Lactobacillus delbrueckii K27, Lactobacillus delbrueckii B8, Lactobacillus delbrueckii KO43, Lactobacillus delbrueckii K3, Lactobacillus delbrueckii K15 and Lactobacillus delbrueckii K17 was obtained from Collection of Department of General and Applied Microbiology, Sofia University. It was tested for its ability to produce exopolysaccharides when cultivated in a media containing 10% sucrose, 10% lacose and 10% maltose. The study of the corrosive stability of steel samples was conducted on the gravimetrique method. The rate of corrosion, the degree of protection, and coefficient of protection have been calculated. The structure of layer over steel plates was analysed by SEM (scanning electron microscopy) JSM 5510. It could be underlined that 10% sucrose, 10% lactose and 10% maltose in the media stimulated the process of protection of corrosion.

  19. Corrosion inhibitors for aluminium in hydrochloric acid. Vanilline on aluminium 2S, 57S and 65S

    Energy Technology Data Exchange (ETDEWEB)

    Desai, M.N.

    1972-12-01

    So far, the only aldehyde reported in literature for the inhibition of the corrosion of aluminum in hydrochloric acid, is furfuraldehyde. This study reports vanilline as a corrosion inhibitor for aluminum alloys 2S, 57S, and 65S. These specifications for the alloys are listed. The influence of inhibitor concentration and time on inhibitor efficiency is given in tabular data and illustrated graphically. The corrosion of aluminum alloys 2S, 57S, and 65S increases with time and hydrochloric acid concentration. Polarization measurements indicate that the corrosion of aluminum alloys in hydrochloric acid is cathodically controlled. The behavior of vanilline as a corrosion inhibitor is very interesting. In 2.0N solution of hydrochloric acid, vanilline affords nearly complete protection (97 to 99%) to all the 3 aluminum alloys investigated up to 60 min. However, in 1.0N solutions of hydrochloric acid, the corrosion of aluminum 2S is severely accelerated by vanilline.

  20. Baphia nitida Leaves Extract as a Green Corrosion Inhibitor for the Corrosion of Mild Steel in Acidic Media

    Directory of Open Access Journals (Sweden)

    V. O. Njoku

    2014-01-01

    Full Text Available The inhibiting effect of Baphia nitida (BN leaves extract on the corrosion of mild steel in 1 M H2SO4 and 2 M HCl was studied at different temperatures using gasometric and weight loss techniques. The results showed that the leaves extract is a good inhibitor for mild steel corrosion in both acid media and better performances were obtained in 2 M HCl solutions. Inhibition efficiency was found to increase with increasing inhibitor concentration and decreasing temperature. The addition of halides to the extract enhanced the inhibition efficiency due to synergistic effect which improved adsorption of cationic species present in the extract and was in the order KCl < KBr < KI suggesting possible role of radii of the halide ions. Thermodynamic parameters determined showed that the adsorption of BN on the metal surface is an exothermic and spontaneous process and that the adsorption was via a physisorption mechanism.

  1. Corrosion resistance of aluminum-magnesium alloys in glacial acetic acid

    International Nuclear Information System (INIS)

    Zaitseva, L.V.; Romaniv, V.I.

    1984-01-01

    Vessels for the storage and conveyance of glacial acetic acid are produced from ADO and AD1 aluminum, which are distinguished by corrosion resistance, weldability and workability in the hot and cold conditions but have low tensile strength. Aluminum-magnesium alloys are stronger materials close in corrosion resistance to technical purity aluminum. An investigation was made of the basic alloying components on the corrosion resistance of these alloys in glacial acetic acid. Both the base metal and the weld joints were tested. With an increase in temperature the corrosion rate of all of the tested materials increases by tens of times. The metals with higher magnesium content show more pitting damage. The relationship of the corrosion resistance of the alloys to magnesium content is confirmed by the similar intensity of failure of the joint metal of all of the investigated alloys and by electrochemical investigations. The data shows that AMg3 alloy is close to technically pure ADO aluminum. However, the susceptibility of even this material to local corrosion eliminates the possibility of the use of aluminum-magnesium alloys as reliable constructional materials in glacial acetic acid

  2. Investigation on the corrosion resistance of zirconium in nitric acid

    International Nuclear Information System (INIS)

    Fauvet, P.; Mur, P.

    1990-01-01

    Zirconium in nitric solutions exhibits an excellent corrosion resistance in the passive state, and a mediocre corrosion resistance in the unpassive state with risk of stress corrosion cracking. Results of the influence of some parameters (medium, potential, temperature, stress, friction, metallurgical structure and surface state) on zirconium passivation are presented. Zirconium remains passive in a large range of HNO 3 concentration (at least up to 14.4N), in the presence of oxidizing ions (Cr 4 , Ce 4 ), in a spent fuel dissolution solution. Zirconium is depassived by friction at high speed and pressure, by platinum coupling in boiling 14.4N HNO 3 with or without stress, or by imposed deformation speed under high potential. (A.B.)

  3. The role of acid anion on the inhibition of the acidic corrosion of steel by lupine extract

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-Gaber, A.M. [Chemistry Department, Faculty of Science, Alexandria University, Ibrahimia, P.O. Box 426, Alexandria 21321 (Egypt)], E-mail: ashrafmoustafa@yahoo.com; Abd-El-Nabey, B.A.; Saadawy, M. [Chemistry Department, Faculty of Science, Alexandria University, Ibrahimia, P.O. Box 426, Alexandria 21321 (Egypt)

    2009-05-15

    The inhibitive effect of lupine (Lupinous albus L.) extract on the corrosion of steel in aqueous solution of 1 M sulphuric and 2 M hydrochloric acids was investigated by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. Potentiodynamic polarization curves indicated that the lupine extract acts as a mixed-type inhibitor. EIS measurements showed that the dissolution process is under activation control. The inhibition efficiency of the extract obtained from impedance and polarization measurements was in a good agreement and was found to increase with increasing concentration of the extract. The obtained results showed that, the lupine extract could serve as an effective inhibitor for the corrosion of steel in acid media and the extract was more effective in case of hydrochloric acid. Theoretical fitting of the corrosion data to the kinetic-thermodynamic model was tested to show the nature of adsorption.

  4. Corrosion inhibition behavior of Ketosulfone for Zinc in acidic medium

    African Journals Online (AJOL)

    The corrosion inhibition behavior of Ketosulfone for zinc is investigated by polarization and AC-impedance techniques at 303-333K. The Tafel plots indicates that the Ketosulfone is a mixed type inhibitor. The interaction between metal and inhibitor is explained by Langmuir adsorption isotherm. DG0ads andDH0ads value ...

  5. SULFURIC ACID CORROSION OF LOW Sb - Pb BATTERY ALLOYS

    African Journals Online (AJOL)

    user

    1983-09-01

    Sep 1, 1983 ... (Manuscript received February,1983). ABSTRACT. The corrosion properties of low Sb - Pb alloys developed for maintenance free motive power industrial batteries was studied by a bare grid constant current method and compared to those of the conventional. Pb- 6% Sb alloy. Low Sb-Pb alloys with Se and ...

  6. Effect of acid corrosion on crack propagation of concrete beams

    Indian Academy of Sciences (India)

    HU SHAOWEI

    2018-03-10

    Mar 10, 2018 ... sive strength, low price, convenient construction modelling and workability, as well as corrosion ... These test results showed that the elastic modulus and fracture parameters of concrete structures reduced ... due to nonlinear characteristics of concrete materials, the classical linear elastic fracture mechanics.

  7. Corrosion behaviour of 6063 aluminium alloy in acidic and in alkaline media

    Directory of Open Access Journals (Sweden)

    Prabhu Deepa

    2017-05-01

    Full Text Available The corrosion behaviour of 6063 aluminium alloy was investigated in different concentrations of phosphoric acid medium and sodium hydroxide medium at different temperatures. The study was done by electrochemical method, using Tafel polarization technique and electrochemical impedance spectroscopy (EIS technique. The surface morphology was investigated using scanning electron microscope (SEM with Energy-dispersive X-ray spectroscopy (EDX. The results showed that the 6063 aluminium alloy undergoes severe corrosion in sodium hydroxide medium than in phosphoric acid medium. The corrosion rate of 6063 aluminium alloy increased with an increase in the concentration of acid as well as with alkali. The corrosion rate was increased with an increase in temperature. The kinetic parameters and thermodynamic parameters were calculated using Arrhenius theory and transition state theory. Suitable mechanism was proposed for the corrosion of 6063 aluminium alloy in phosphoric acid medium and sodium hydroxide medium. The results obtained by Tafel polarization and electrochemical impedance spectroscopy (EIS techniques were in good agreement with each other.

  8. Corrosion behavior of ODS steels with several chromium contents in hot nitric acid solutions

    Science.gov (United States)

    Tanno, Takashi; Takeuchi, Masayuki; Ohtsuka, Satoshi; Kaito, Takeji

    2017-10-01

    Oxide dispersion strengthened (ODS) steel cladding tubes have been developed for fast reactors. Tempered martensitic ODS steels with 9 and 11 wt% of chromium (9Cr-, 11Cr-ODS steel) are the candidate material in research being carried out at JAEA. In this work, fundamental immersion tests and electrochemical tests of 9 to 12Cr-ODS steels were systematically conducted in various nitric acid solutions at 95 °C. The corrosion rate decreased exponentially with effective solute chromium concentration (Creff) and nitric acid concentration. Addition of vanadium (V) and ruthenium (Ru) also decreased the corrosion rate. The combination of low Creff and dilute nitric acid could not avoid the active mass dissolution during active domain at the beginning of immersion, and the corrosion rate was high. Higher Creff decreased the partial anodic current during the active domain and assisted the passivation of the surface of the steel. Concentrated nitric acid and addition of Ru and V increased partial cathodic current and shifted the corrosion potential to noble side. These effects should have prevented the active mass dissolution and decreased the corrosion rate.

  9. Ultrasonic Measurement of Corrosion Depth Development in Concrete Exposed to Acidic Environment

    Directory of Open Access Journals (Sweden)

    Fan Yingfang

    2012-01-01

    Full Text Available Corrosion depth of concrete can reflect the damage state of the load-carrying capacity and durability of the concrete structures servicing in severe environment. Ultrasonic technology was studied to evaluate the corrosion depth quantitatively. Three acidic environments with the pH level of 3.5, 2.5, and 1.5 were simulated by the mixture of sulfate and nitric acid solutions in the laboratory. 354 prism specimens with the dimension of 150 mm × 150 mm × 300 mm were prepared. The prepared specimens were first immersed in the acidic mixture for certain periods, followed by physical, mechanical, computerized tomography (CT and ultrasonic test. Damage depths of the concrete specimen under different corrosion states were obtained from both CT and ultrasonic test. Based on the ultrasonic test, a bilinear regression model is proposed to estimate the corrosion depth. It is shown that the results achieved by ultrasonic and CT test are in good agreement with each other. Relation between the corrosion depth of concrete specimen and the mechanical indices such as mass loss, compressive strength, and elastic modulus is discussed in detail. It can be drawn that the ultrasonic test is a reliable nondestructive way to measure the damage depth of concrete exposed to acidic environment.

  10. Corrosion Inhibition of Aluminium in Acid Media By Citrullus Colocynthis Extract

    Directory of Open Access Journals (Sweden)

    Rajkiran Chauhan

    2011-01-01

    Full Text Available Inhibition of corrosion of aluminium in acid solution by methanol extract of Citrullus colocynthis plant has been studied using mass loss and thermometric measurements. It has been found that the plant extract act as a good corrosion inhibitor for aluminium in all concentrations of sulphuric and hydrochloric acid solution. The inhibition action depends on the concentration of acid and inhibitor. Results for mass loss and thermometric measurement indicate that inhibition efficiency increase with increasing inhibitor concentration. The inhibition action of the plant extract is discussed in view of Langmuir adsorption isotherm. It has been observed that the adsorption of the extract on aluminium surface is a spontaneous process. The plant extract provides a good protection to aluminium against corrosion.

  11. Corrosion of stainless steels and nickel-base alloys in solutions of nitric acid and hydrofluoric acid

    International Nuclear Information System (INIS)

    Horn, E.M.; Renner, M.

    1992-01-01

    Reactions involving nitric acid may always result in the contamination of this acid with fluorides. In highly concentrted nitric acid, the presence of small amounts of HF will substantially reduce the corrosion of metallic materials. Mixtures consisting of hydrofluoric acid and hypo-azeotropic nitric acid on the other hand will strongly attack: the metal loss will markedly increase with increasing HNO 3 and HF concentrations as well as with rising temperatures. The investigation covered 12 stainless steel grades and nickel-base alloys. With constant HNO 3 content, corrosion rates will rise linearly when increasing the HF concentration. With constant HF concentration (0,25 M), corrosion rates will increase rapidly with increasing nitric acid concentration (from 0.3 M to 14.8 M). This can best be described by superimposing a linear function and a hyperbolic function that is reflecting the change in the HNO 3 content. Alloys containing as much chromium as possible (up to 46 wt.%) will exhibit the best corrosion resistance. Alloy NiCr30FeMo (Hastelloy alloy G-30) proved to be well suitable in this investigation. (orig.) [de

  12. A new steel with good low-temperature sulfuric acid dew point corrosion resistance

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, X.Q.; Li, X.G. [Corrosion and Protection Center, University of Science and Technology Beijing (China); Key Laboratory of Corrosion and Protection (Ministry of Education), Beijing (China); Sun, F.L. [Corrosion and Protection Center, University of Science and Technology Beijing (China); Lv, S.J. [Corrosion and Protection Center, University of Science and Technology Beijing (China); Equipment and Power Department, Shijiazhuang Refine and Chemical Company Limited, SINOPEC, Shijiazhuang (China)

    2012-07-15

    In this work, new steels (1, 2, and 3) were developed for low-temperature sulfuric acid dew point corrosion. The mass loss rate, macro- and micro-morphologies and compositions of corrosion products of new steels in 10, 30, and 50% H{sub 2}SO{sub 4} solutions at its corresponding dew points were investigated by immersion test, scanning electron microscopy (SEM) and energy-dispersive spectrometry (EDS). The results indicated that mass loss rate of all the tested steels first strongly increased and then decreased as H{sub 2}SO{sub 4} concentration increased, which reached maximum at 30%. Corrosion resistance of 2 steel is the best among all specimens due to its fine and homogeneous morphologies of corrosion products. The electrochemical corrosion properties of new steels in 10 and 30% H{sub 2}SO{sub 4} solutions at its corresponding dew points were studied by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. The results demonstrated that corrosion resistance of 2 steel is the best among all the experimental samples due to its lowest corrosion current density and highest charge transfer resistance, which is consistent with the results obtained from immersion tests. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Localized corrosion of high performance metal alloys in an acid/salt environment

    Science.gov (United States)

    Macdowell, L. G.; Ontiveros, C.

    1991-01-01

    Various vacuum jacketed cryogenic supply lines at the Space Shuttle launch site at Kennedy Space Center use convoluted flexible expansion joints. The atmosphere at the launch site has a very high salt content, and during a launch, fuel combustion products include hydrochloric acid. This extremely corrosive environment has caused pitting corrosion failure in the thin walled 304L stainless steel flex hoses. A search was done to find a more corrosion resistant replacement material. The study focussed on 19 metal alloys. Tests which were performed include electrochemical corrosion testing, accelerated corrosion testing in a salt fog chamber, and long term exposure at a beach corrosion testing site. Based on the results of these tests, several nickel based alloys were found to have very high resistance to this corrosive environment. Also, there was excellent agreement between the electrochemical tests and the actual beach exposure tests. This suggests that electrochemical testing may be useful for narrowing the field of potential candidate alloys before subjecting samples to long term beach exposure.

  14. Effect of noble metals on the corrosion of AISI 316L stainless steel in nitric acid

    International Nuclear Information System (INIS)

    Robin, R.; Andreoletti, G.; Fauvet, P.; Terlain, A.

    2004-01-01

    In the spent fuel treatment, the solutions of fission products contain dissolution fines, in particular platinoids. These solutions are stored into AISI 316L stainless steel tanks, and the contact of noble metallic particles such as platinoids with austenitic stainless steels may induce a shift of the steel corrosion potential towards the trans-passive domain by galvanic coupling. In that case, the steel may be polarized up to a potential value above the range of passive domain, that induces an increase of the corrosion current. The galvanic corrosion of AISI 316L stainless steel in contact with different platinoids has been investigated by electrochemical and gravimetric techniques. Two types of tests were conducted in 1 mol/L nitric acid media at 80 deg C: (1) polarization curves and (2) immersion tests with either platinoid powders (Ru, Rh, Pd) or true insoluble dissolution fines (radioactive laboratory test). The results of the study have shown that even if galvanic coupling enhances the corrosion rate by about a factor 10 in these conditions, the corrosion behavior of AISI 316L remains low (a corrosion rate below 6 μm/year, few small intergranular indentations). No specific effect of irradiation and of elements contained in radioactive fines (other than Ru, Rh and Pd) was observed on corrosion behavior. A platinoids-ranking has also been established according to their coupling potential: Ru > Pd > Rh. (authors)

  15. Study of a Triazole Derivative as Corrosion Inhibitor for Mild Steel in Phosphoric Acid Solution

    Directory of Open Access Journals (Sweden)

    Lin Wang

    2012-01-01

    Full Text Available The corrosion inhibition by a triazole derivative (PAMT on mild steel in phosphoric acid (H3PO4 solution has been investigated by weight loss and polarization methods. The experimental results reveal that the compound has a significant inhibiting effect on the corrosion of steel in H3PO4 solution. It also shows good corrosion inhibition at higher concentration of H3PO4. Potentiodynamic polarization studies have shown that the compound acts as a mixed-type inhibitor retarding the anodic and cathodic corrosion reactions with predominant effect on the cathodic reaction. The values of inhibition efficiency obtained from weight loss and polarization measurements are in good agreement. The adsorption of this compound is found to obey the Langmuir adsorption isotherm. Some kinetic and thermodynamic parameters such as apparent activation energy, frequency factor, and adsorption free energy have been calculated and discussed.

  16. Inhibition of Aluminium Corrosion in Hydrochloric Acid Using Nizoral and the Effect of Iodide Ion Addition

    Directory of Open Access Journals (Sweden)

    I. B. Obot

    2010-01-01

    Full Text Available The effect of nizoral (NZR on the corrosion inhibition of aluminium alloy AA 1060 in 2 M HCl solution was investigated using the mylius thermometric technique. Results of the study revealed that nizoral acts as corrosion inhibitor for aluminium in the acidic medium. In general, at constant acid concentration, the inhibition efficiency increases with increase in the inhibitor concentration. The addition of KI to the inhibitor enhanced the inhibition efficiency to a considerable extent. The adsorption of nizoral onto the aluminium surface was found to obey the Fruendlich adsorption isotherm. The value of the free energy for the adsorption process shows that the process is spontaneous.

  17. Argon Shrouded Plasma Spraying of Tantalum over Titanium for Corrosion Protection in Fluorinated Nitric Acid Media

    Science.gov (United States)

    Vetrivendan, E.; Jayaraj, J.; Ningshen, S.; Mallika, C.; Kamachi Mudali, U.

    2018-02-01

    Argon shrouded plasma spraying (ASPS) was used to deposit a Ta coating on commercially pure Ti (CP-Ti) under inert argon, for dissolver vessel application in the aqueous spent fuels reprocessing plant with high plutonium content. Oxidation during plasma spraying was minimized by shrouding argon system. Porosity and oxide content were controlled by optimizing the spraying parameters, to obtain a uniform and dense Ta coating. The Ta particle temperature and velocity were optimized by judiciously controlling the spray parameters, using a spray diagnostic charge-coupled device camera. The corrosion resistance of the Ta coatings developed by ASPS was investigated by electrochemical studies in 11.5 M HNO3 and 11.5 M HNO3 + 0.05 M NaF. Similarly, the durability of the ASPS Ta coating/substrate was evaluated as per ASTM A262 Practice-C test in boiling nitric acid and fluorinated nitric acid for 240 h. The ASPS Ta coating exhibited higher corrosion resistance than the CP-Ti substrate, as evident from electrochemical studies, and low corrosion rate with excellent coating stability in boiling nitric, and fluorinated nitric acid. The results of the present study revealed that tantalum coating by ASPS is a promising strategy for improving the corrosion resistance in the highly corrosive reprocessing environment.

  18. Anaerobic hydrocarbon and fatty acid metabolism by syntrophic bacteria and their impact on carbon steel corrosion

    Directory of Open Access Journals (Sweden)

    Christopher Neil Lyles

    2014-04-01

    Full Text Available The microbial metabolism of hydrocarbons is increasingly associated with the corrosion of carbon steel in sulfate-rich marine waters. However, how such transformations influence metal biocorrosion in the absence of an electron acceptor is not fully recognized. We grew a marine alkane-utilizing, sulfate-reducing bacterium, Desulfoglaeba alkanexedens, with either sulfate or Methanospirillum hungatei as electron acceptors, and tested the ability of the cultures to catalyze metal corrosion. Axenically, D. alkanexedens had a higher instantaneous corrosion rate and produced more pits in carbon steel coupons than when the same organism was grown in syntrophic co-culture with the methanogen. Since anaerobic hydrocarbon biodegradation pathways converge on fatty acid intermediates, the corrosive ability of a known fatty acid-oxidizing syntrophic bacterium, Syntrophus aciditrophicus was compared when grown in pure culture or in co-culture with a H2-utilizing sulfate-reducing bacterium (Desulfovibrio sp., strain G11 or a methanogen (M. hungatei. The instantaneous corrosion rates in the cultures were not substantially different, but the syntrophic, sulfate-reducing co-culture produced more pits in coupons than other combinations of microorganisms. Lactate-grown cultures of strain G11 had higher instantaneous corrosion rates and coupon pitting compared to the same organism cultured with hydrogen as an electron donor. Thus, if sulfate is available as an electron acceptor, the same microbial assemblages produce sulfide and low molecular weight organic acids that exacerbated biocorrosion. Despite these trends, a surprisingly high degree of variation was encountered with the corrosion assessments. Differences in biomass, initial substrate concentration, rates of microbial activity or the degree of end product formation did not account for the variations. We are forced to ascribe such differences to the metallurgical properties of the coupons.

  19. Anaerobic hydrocarbon and fatty acid metabolism by syntrophic bacteria and their impact on carbon steel corrosion.

    Science.gov (United States)

    Lyles, Christopher N; Le, Huynh M; Beasley, William Howard; McInerney, Michael J; Suflita, Joseph M

    2014-01-01

    The microbial metabolism of hydrocarbons is increasingly associated with the corrosion of carbon steel in sulfate-rich marine waters. However, how such transformations influence metal biocorrosion in the absence of an electron acceptor is not fully recognized. We grew a marine alkane-utilizing, sulfate-reducing bacterium, Desulfoglaeba alkanexedens, with either sulfate or Methanospirillum hungatei as electron acceptors, and tested the ability of the cultures to catalyze metal corrosion. Axenically, D. alkanexedens had a higher instantaneous corrosion rate and produced more pits in carbon steel coupons than when the same organism was grown in syntrophic co-culture with the methanogen. Since anaerobic hydrocarbon biodegradation pathways converge on fatty acid intermediates, the corrosive ability of a known fatty acid-oxidizing syntrophic bacterium, Syntrophus aciditrophicus was compared when grown in pure culture or in co-culture with a H2-utilizing sulfate-reducing bacterium (Desulfovibrio sp., strain G11) or a methanogen (M. hungatei). The instantaneous corrosion rates in the cultures were not substantially different, but the syntrophic, sulfate-reducing co-culture produced more pits in coupons than other combinations of microorganisms. Lactate-grown cultures of strain G11 had higher instantaneous corrosion rates and coupon pitting compared to the same organism cultured with hydrogen as an electron donor. Thus, if sulfate is available as an electron acceptor, the same microbial assemblages produce sulfide and low molecular weight organic acids that exacerbated biocorrosion. Despite these trends, a surprisingly high degree of variation was encountered with the corrosion assessments. Differences in biomass, initial substrate concentration, rates of microbial activity or the degree of end product formation did not account for the variations. We are forced to ascribe such differences to the metallurgical properties of the coupons.

  20. Adsorption and inhibitive properties of Tryptophan on low alloy steel corrosion in acidic media

    Directory of Open Access Journals (Sweden)

    Hesham T.M. Abdel-Fatah

    2017-02-01

    Corrosion inhibition was studied using electrochemical methods (electrochemical impedance spectroscopy; EIS and the new technique electrochemical frequency modulation; EFM and weight loss measurements. The influence of inhibitor concentration, solution temperature, and immersion time on the corrosion resistance of low alloy steel (LAS has been investigated. Trp proved to be a very good inhibitor for low alloy steel acid corrosion. EFM measurements showed that Trp is a mixed type inhibitor. Trp behaved better in 0.6 M HCl than in 0.6 M HSO3NH2. Moreover, it was found that the inhibition efficiency increased with increasing inhibitor concentration, while a decrease was detected with the rise of temperature and immersion time. The associated activation energy (Ea has been determined. The values of Ea indicate that the type of adsorption of Trp on the steel surface in both acids belongs to physical adsorption. The adsorption process was tested using Temkin adsorption isotherm.

  1. Electrochemical studies of novel corrosion inhibitor for mild steel in 1 M hydrochloric acid

    Directory of Open Access Journals (Sweden)

    Ahmed A. Al-Amiery

    2018-06-01

    Full Text Available The electrochemical performance of a novel organic corrosion inhibitor 6-(4-hydroxyphenyl-3-mercapto-7,8-dihydro-[1,2,4]triazolo[4,3-b][1,2,4,5]tetrazine [HT3], for mild steel in 1 M hydrochloric acid is evaluated by potentiodynamic curves. The experimental results show that the investigated inhibitor [HT3], which can effectively retard the corrosion process that occurs to mild steel with a hydrochloric acid solution by providing a protective coating for the mild steel that, can be weakened by increasing the temperature. Furthermore, the inhibition efficiency of [HT3] increased with increasing the concentrations of the inhibitors and decreased with increasing temperature. Keywords: Corrosion, Inhibitor, Mild steel, Potentiodynamic polarization, HT3, NMR, FT-IR

  2. Corrosion resistance of stainless steels and high Ni-Cr alloys to acid fluoride wastes

    International Nuclear Information System (INIS)

    Smith, H.D.; Mackey, D.B.; Pool, K.H.; Schwenk, E.B.

    1992-04-01

    TRUEX processing of Hanford Site waste will utilize potentially corrosive acid fluoride processing solutions. Appropriate construction materials for such a processing facility need to be identified. Toward this objective, candidate stainless steels and high Ni-Cr alloys have been corrosion tested in simulated acid fluoride process solutions at 333K. The high Ni-Cr alloys exhibited corrosion rates as low as 0.14 mm/y in a solution with an HF activity of about 1.2 M, much lower than the 19 to 94 mm/y observed for austenitic stainless steels. At a lower HF activity (about 0.008 M), stainless steels display delayed passivation while high Ni-Cr alloys display essentially no reaction

  3. Interaction of inhibitors with corrosion scale formed on N80 steel in CO{sub 2}-saturated NaCl solution

    Energy Technology Data Exchange (ETDEWEB)

    Liu, D. [School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Hubei Key Laboratory of Materials Chemistry and Service Failure, Wuhan (China); School of Chemical Engineering and Pharmacy, Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan (China); Qiu, Y.B.; Guo, X.P. [School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Hubei Key Laboratory of Materials Chemistry and Service Failure, Wuhan (China); Tomoe, Y.; Bando, K. [Japan Oil, Gas and Metals National Corporation, The Former Japan National Oil Corporation, Hamada, Mihama-ku, Chiba-City, Chiba (Japan)

    2011-12-15

    The performance of the selected inhibitors, including thioglycolic acid (TGA), diethylenetriamine (DETA), and naphthene acid imidazolines (IM), on the bare surface of N80 steel and its scaled surface pre-corroded in CO{sub 2}-saturated 1%NaCl solution was investigated by weight-loss method, electrochemical measurements using rotating cylinder electrode and surface analytical methods (SEM, XRD, and EPMA). The results indicate that there is a remarkable difference in inhibition efficiency of inhibitors on the N80 steel with and without pre-corrosion scale. The synergistic effect between inhibitors and corrosion scale not only depends on the size of inhibitor molecules, but also depends on the interaction of the inhibitor with the corrosion scale. It shows that IM and DETA have a good positive synergistic effect with the corrosion scale formed on N80 steel, although DETA has no inhibition efficiency for bare N80 steel, which can easily enter into the apertures of the corrosion scale, and block the active sites on the metal surface and the diffusion routeways of the reactant so as to depress the corrosion of the substrate metal. While TGA shows excellent inhibition efficiency on bare N80 steel, but it has an antagonistic effect with the corrosion scale although it has a small molecular weight as well as DETA, because TGA can dissolve corrosion scale and break its integrality and protectiveness performance. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Antibacterial drugs as corrosion inhibitors for bronze surfaces in acidic solutions

    Energy Technology Data Exchange (ETDEWEB)

    Rotaru, Ileana [Department of Chemical Engineering, “Babes-Bolyai” University, 11 Arany-Janos St., 400028 Cluj-Napoca (Romania); Varvara, Simona, E-mail: svarvara@uab.ro [Department of Exact Sciences and Engineering, “1 Decembrie 1918” University, 11-13 Nicolae Iorga St., 510009 Alba Iulia (Romania); Gaina, Luiza [Department of Chemical Engineering, “Babes-Bolyai” University, 11 Arany-Janos St., 400028 Cluj-Napoca (Romania); Muresan, Liana Maria, E-mail: limur@chem.ubbcluj.ro [Department of Chemical Engineering, “Babes-Bolyai” University, 11 Arany-Janos St., 400028 Cluj-Napoca (Romania)

    2014-12-01

    Graphical abstract: - Highlights: • All four investigated antibacterial drugs act as corrosion inhibitors for bronze surface. • In the presence of antibiotics, a 3RC electric circuit simulates the corrosion system. • The electrochemical results indicate as best inhibitors Doxy, followed by Strepto. • HOMO–LUMO energy gap increases in the order: Doxy > Strepto > Cipro > Amoxi. • The thin protective film on bronze is reinforced by the presence of the antibiotics. - Abstract: The present study is aiming to investigate the effect of four antibiotics (amoxicillin, ciprofloxacin, doxycycline and streptomycin,) belonging to different classes of antibacterial drugs on bronze corrosion in a solution simulating an acid rain (pH 4). Due to their ability to form protective films on the metal surface, the tested antibiotics act as corrosion inhibitors for bronze. The antibiotics were tested at various concentrations in order to determine the optimal concentration range for the best corrosion inhibiting effect. In evaluating the inhibition efficiency, polarization curves, electrochemical impedance spectroscopy, SEM and XPS measurements were used. Moreover, a correlation between the inhibition efficiency of some antibacterial drugs and certain molecular parameters was determined by quantum chemical computations. Parameters like energies E{sub HOMO} and E{sub LUMO} and HOMO–LUMO energy gap were used for correlation with the corrosion data.

  5. Antibacterial drugs as corrosion inhibitors for bronze surfaces in acidic solutions

    International Nuclear Information System (INIS)

    Rotaru, Ileana; Varvara, Simona; Gaina, Luiza; Muresan, Liana Maria

    2014-01-01

    Graphical abstract: - Highlights: • All four investigated antibacterial drugs act as corrosion inhibitors for bronze surface. • In the presence of antibiotics, a 3RC electric circuit simulates the corrosion system. • The electrochemical results indicate as best inhibitors Doxy, followed by Strepto. • HOMO–LUMO energy gap increases in the order: Doxy > Strepto > Cipro > Amoxi. • The thin protective film on bronze is reinforced by the presence of the antibiotics. - Abstract: The present study is aiming to investigate the effect of four antibiotics (amoxicillin, ciprofloxacin, doxycycline and streptomycin,) belonging to different classes of antibacterial drugs on bronze corrosion in a solution simulating an acid rain (pH 4). Due to their ability to form protective films on the metal surface, the tested antibiotics act as corrosion inhibitors for bronze. The antibiotics were tested at various concentrations in order to determine the optimal concentration range for the best corrosion inhibiting effect. In evaluating the inhibition efficiency, polarization curves, electrochemical impedance spectroscopy, SEM and XPS measurements were used. Moreover, a correlation between the inhibition efficiency of some antibacterial drugs and certain molecular parameters was determined by quantum chemical computations. Parameters like energies E HOMO and E LUMO and HOMO–LUMO energy gap were used for correlation with the corrosion data

  6. Enhanced Biodegradability, Lubricity and Corrosiveness of Lubricating Oil by Oleic Acid Diethanolamide Phosphate

    Directory of Open Access Journals (Sweden)

    Fang Jianhua

    2012-09-01

    Full Text Available Impacts of oleic acid diethanolamide phosphate (abbreviated as ODAP as an additive on biodegradability, anti-wear capacity, friction-reducing ability and corrosiveness of an unreadily biodegradable HVI 350 mineral lubricating oil was studied. The biodegradabilities of neat lubricating oil and its formulations with ODAP were evaluated on a biodegradation tester. Furthermore, the anti-wear and friction-reducing abilities and the corrosiveness of neat oil and the formulated oils were determined on a four-ball tribotester and a copper strip corrosion tester, respectively. The results indicated that ODAP markedly enhanced biodegradability as well as anti-wear and friction-reducing abilities of the lubricating oil. On the other hand, excellent color ratings of copper strips for both neat oil and the ODAP-doped oil were obtained in the corrosion tests, demonstrating that the corrosiveness of neat oil and the doped oil was negligible, although the latter seemed to provide slightly better anti-corrosion ability.

  7. Corrosion behaviour of alloy Ti-35 in boiling nitric acid solution

    International Nuclear Information System (INIS)

    Lan Cui; Qiu Shaoyu

    2005-01-01

    This report states the corrosion behaviors of alloy Ti-35 in boiling nitric acid solution. The results show that its general corrosion rate is by far superior to high-purity austenitic stainless steel with super-low carbon content, the stress corrosion and crevice corrosion have been not discovered in its samples, and oxide film can be quickly reproduced in scratch. The microstructural analysis on samples shows that there is a thin compact TiO 2 film on the sample surface of alloy Ti-35, and most of the film possess the crystal structure of rutile type, the other has the crystal structure of anatase type. This oxide layer plays a role in hindering corrosion development, so the corrosion resistance of alloy Ti-35 is raised. In contrast with it, the oxide film on the sample surface of austenitic stainless steel is not found. It is evident that alloy Ti-35 can become the prime candidate structural material for dissolver of reprocessing facility of spent fuel and be substituted for high-purity austenitic stainless steel with super-low carbon content which is used now. (authors)

  8. Corrosion and hydrogen absorption of commercially pure zirconium in acid fluoride solutions

    International Nuclear Information System (INIS)

    Yokoyama, Ken’ichi; Yamada, Daisuke; Sakai, Jun’ichi

    2013-01-01

    Highlights: •Zirconium corrodes and absorbs hydrogen in acid fluoride solutions. •Hydrogen thermal desorption is observed at 300–700 °C. •The resistance to hydrogen absorption of zirconium is higher than that of titanium. -- Abstract: The corrosion and hydrogen absorption of commercially pure zirconium have been investigated in acidulated phosphate fluoride (APF) solutions. Upon immersion in 2.0% APF solution of pH 5.0 at 25 °C, a granular corrosion product (Na 3 ZrF 7 ) deposits over the entire side surface of the specimen, thereby inhibiting further corrosion. In 0.2% APF solution, marked corrosion is observed from the early stage of immersion; no deposition of the corrosion product is observed by scanning electron microscopy. A substantial amount of hydrogen absorption is confirmed in both APF solutions by hydrogen thermal desorption analysis. The amount of absorbed hydrogen of the specimen immersed in the 2.0% APF solution is smaller than that in the 0.2% APF solution in the early stage of immersion. The hydrogen absorption behavior is not always consistent with the corrosion behavior. Hydrogen thermal desorption occurs in the temperature range of 300–700 °C for the specimen without the corrosion product. Under the same immersion conditions, the amount of absorbed hydrogen in commercially pure zirconium is smaller than that in commercially pure titanium as reported previously. The present results suggest that commercially pure zirconium, compared with commercially pure titanium, is highly resistant to hydrogen absorption, although corrosion occurs in fluoride solutions

  9. Electropolymerization of camphorsulfonic acid doped conductive polypyrrole anti-corrosive coating for 304SS bipolar plates

    Science.gov (United States)

    Jiang, Li; Syed, Junaid Ali; Gao, Yangzhi; Zhang, Qiuxiang; Zhao, Junfeng; Lu, Hongbin; Meng, Xiangkang

    2017-12-01

    Conductive polymer coating doped with large molecular organic acid is an alternative method used to protect stainless steel (SS) bipolar plates in proton exchange membrane fuel cells (PEMFCs). However, it is difficult to select the proper doping acid, which improves the corrosion resistance of the coating without affecting its conductivity. In this study, large spatial molecular group camphorsulfonic acid (CSA) doped polypyrrole (PPY) conductive coating was prepared by galvanostatic electropolymerization on 304SS. The electrochemical properties of the coating were evaluated in 0.1 M H2SO4 solution in order to simulate the PEMFC service environment. The results indicate that the coating increased the corrosion potential and shifted Ecorr towards more positive value, particularly the jcorr value of PPY-CSA coated 304SS was dropped from 97.3 to 0.00187 μA cm-2. The long-term immersion tests (660 h) show that the PPY-CSA coating exhibits better corrosion resistance in comparison with the small acid (SO42-) doped PPY-SO42- or PPY/PPY-SO42- coatings. Moreover, the PPY-CSA coating presents low contact resistance and maintains strong corrosion resistance during the prolonged exposure time due to barrier effect and anodic protection.

  10. Corrosion behaviour of WC-VC-Co hardmetals in acidic media

    CSIR Research Space (South Africa)

    Konadu, DS

    2010-09-01

    Full Text Available The effect of increasing vanadium carbide (VC) content on the corrosion behaviour of tungsten carbide – 10 wt% cobalt hard metals was investigated in 1 M hydrochloric (HCl), and sulphuric (H2SO4) acids solutions. Increasing VC content makes the open...

  11. Corrosion of Selected Materials in Boiling Sulfuric Acid for the Nuclear Power Industries

    International Nuclear Information System (INIS)

    Kim, Dong Jin; Lee, Han Hee; Kwon, Hyuk Chul; Kim, Hong Pyo; Hwang, Seong Sik

    2007-01-01

    Iodine sulfur (IS) process is one of the promising processes for a hydrogen production by using a high temperature heat generated by a very high temperature gas cooled reactor(VHTR) in the nuclear power industries. Even though the IS process is very efficient for a hydrogen production and it is not accompanied by a carbon dioxide evolution, the highly corrosive environment of the process limits its application in the industry. Corrosion tests of selected materials were performed in sulfuric acid to select appropriate materials compatible with the IS process. The materials used in this work were Fe-Cr alloys, Fe-Ni-Cr alloys, Fe-Si alloys, Ni base alloys, Ta, Ti, Zr, SiC, Fe-Si, etc. The test environments were 50 wt% sulfuric acid at 120 .deg. C and 98 wt% at 320 .deg. C. Corrosion rates were measured by using a weight change after an immersion. The surface morphologies and cross sectional areas of the corroded materials were examined by using SEM equipped with EDS. Corrosion behaviors of the materials were discussed in terms of the chemical composition of the materials, a weight loss, the corrosion morphology, the precipitates in the microstructure and the surface layer composition

  12. An AFM and XPS study of corrosion caused by micro-liquid of dilute sulfuric acid on stainless steel

    International Nuclear Information System (INIS)

    Wang Rongguang

    2004-01-01

    Micro-liquid of dilute sulfuric acid deposited on SUS304 steel surface were observed with the ac non-contact mode of an atomic force microscopy (AFM), and the detail of the corrosion process caused by them was investigated with the contact mode of the AFM, X-ray photoelectron spectroscopy (XPS) and wavelength dispersive X-ray spectroscopy (WDXS). As a result, even not applying bias voltages between the tip of the cantilever and the specimen, micro-liquid of sulfuric acid can be successfully imaged using the ac non-contact mode of AFM. Two shapes of micro-acid, i.e., micro-droplets and micro-films, were found to co-exist on the specimen surface. On areas covered by micro-films of acid, only small corrosion product particles appeared and no corrosion pits were found. Beneath micro-droplets, corrosion reaction continue to produce pits until they were all consumed to form a corrosion product (mainly iron oxides) with almost the same shape with the droplet. The total corrosion reaction time was speculated to be between 690 and 1500 ks. The corrosion product formed from micro-droplets was believed to be a process of accumulating small corrosion product particles from the liquid/substrate interface to the surface of the formerly produced corrosion product. The XPS and WDXS analysis also supports the above results

  13. Influence of Surface Pretreatment on the Corrosion Resistance of Cold-Sprayed Nickel Coatings in Acidic Chloride Solution

    Science.gov (United States)

    Scendo, Mieczyslaw; Zorawski, Wojciech; Staszewska-Samson, Katarzyna; Makrenek, Medard; Goral, Anna

    2018-03-01

    Corrosion resistance of the cold-sprayed nickel coatings deposited on the Ni surface (substrate) without and with abrasive grit-blasting treatment of the substrate was investigated. The corundum powder with different grain sizes was used. The corrosive environment contained an acidic chloride solution. The mechanism of the corrosion of nickel was suggested and discussed. Corrosion electrochemical parameters were determined by electrochemical methods. The corrosion effect of a nickel coating depends on the grain size used to prepare the substrate. The nickel coating after the medium grit-blasting treatment of the substrate was found to be the most corrosion resistant. However, the smallest resistance on the corrosion effect should be attributed to the nickel coating on the substrate after the coarse grit-blasting treatment.

  14. Corrosion by concentrated sulfuric acid in carbon steel pipes and tanks: state of the art

    Energy Technology Data Exchange (ETDEWEB)

    Panossian, Zehbour; Almeida, Neusvaldo Lira de; Sousa, Raquel Maria Ferreira de [Instituto de Pesquisas Tecnologicas (IPT), Sao Paulo, SP (Brazil); Pimenta, Gutemberg de Souza [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas e Desenvolvimento (CENPES); Marques, Leandro Bordalo Schmidt [PETROBRAS Engenharia, Rio de Janeiro, RJ (Brazil)

    2009-07-01

    PETROBRAS, allied to the policy of reduction of emission of pollutants, has been adjusting the processes of the new refineries to obtain products with lower sulfur content. Thus, the sulfur dioxide, extracted from the process gases of a new refinery to be built in the Northeast, will be used to produce sulfuric acid with concentration between (94-96) %. This acid will be stored in carbon steel tanks and transported through a buried 8-km carbon steel pipe from the refinery to a pier, where it will be loaded onto ships and sent to the consumer markets. Therefore, the corrosion resistance of carbon steel by concentrated acid will become a great concern for the mentioned storage and transportation. When the carbon steel comes into contact with concentrated sulfuric acid, there is an immediate acid attack with the formation of hydrogen gas and ferrous ions which, in turn, forms a protective layer of FeSO{sub 4} on the metallic surface. The durability of the tanks and pipes made of carbon steel will depend on the preservation of this protective layer. This work presents a review of the carbon steel corrosion in concentrated sulfuric acid and discusses the preventive methods against this corrosion, including anodic protection. (author)

  15. Corrosion Inhibition and Adsorption Behavior of Clove Oil on Iron in Acidic Medium

    Directory of Open Access Journals (Sweden)

    Archana Saxena

    2012-01-01

    Full Text Available Corrosion behavior of iron in hydrochloric acid solution was studied using weight loss as well Scanning electron microscopy study without and with clove oil. The percentage inhibition efficiency increases with increasing clove oil concentration. All the data revel that the oil acts as an excellent inhibitor for the corrosion of iron in HCl solution. Thermodynamic, kinetic parameters and equilibrium constant for adsorption process were calculated from the experimental data. The adsorption of clove oil on experimental metals was found to follow the Langmuir adsorption isotherm at all the concentration studies. Scanning electron microscope (SEM, investigations also indicate that clove oil greatly lowers the dissolution currents.

  16. Study on corrosion resistance of high - entropy alloy in medium acid liquid and chemical properties

    International Nuclear Information System (INIS)

    Florea, I; Buluc, G; Florea, R M; Carcea, I; Soare, V

    2015-01-01

    High-entropy alloy is a new alloy which is different from traditional alloys. The high entropy alloys were started in Tsing Hua University of Taiwan since 1995 by Yeh et al. Consisting of a variety of elements, each element occupying a similar compared with other alloy elements to form a high entropy. We could define high entropy alloys as having approximately equal concentrations, made up of a group of 5 to 11 major elements. In general, the content of each element is not more than 35% by weight of the alloy. During the investigation it turned out that this alloy has a high hardness and is also corrosion proof and also strength and good thermal stability. In the experimental area, scientists used different tools, including traditional casting, mechanical alloying, sputtering, splat-quenching to obtain the high entropy alloys with different alloying elements and then to investigate the corresponding microstructures and mechanical, chemical, thermal, and electronic performances. The present study is aimed to investigate the corrosion resistance in a different medium acid and try to put in evidence the mechanical properties. Forasmuch of the wide composition range and the enormous number of alloy systems in high entropy alloys, the mechanical properties of high entropy alloys can vary significantly. In terms of hardness, the most critical factors are: hardness/strength of each composing phase in the alloy, distribution of the composing phases. The corrosion resistance of an high entropy alloy was made in acid liquid such as 10%HNO 3 -3%HF, 10%H 2 SO 4 , 5%HCl and then was investigated, respectively with weight loss experiment. Weight loss test was carried out by put the samples into the acid solution for corrosion. The solution was maintained at a constant room temperature. The liquid formulations used for tests were 3% hydrofluoric acid with 10% nitric acid, 10% sulphuric acid, 5% hydrochloric acid. Weight loss of the samples was measured by electronic scale. (paper)

  17. High temperature corrosion control and monitoring for processing acidic crudes

    Energy Technology Data Exchange (ETDEWEB)

    Cross, C. [Betz/GE Water and Process Technologies, Woodlands, TX (United States)

    2009-07-01

    The challenge of processing heavy crudes and bitumen in a reliable and economical way was discussed. Many refiners use a conservative approach regarding the rate at which they use discounted crudes or depend upon capital-intensive upgrades to equipment. New strategies based on data-driven decisions are needed in order to obtain the greatest benefit from heavy feedstock. The feasibility of successfully processing more challenging feed can be estimated more accurately by better understanding the interactions between a particular feed and a particular crude unit. This presentation reviewed newly developed techniques that refiners can use to determine the feeds corrosion potential and the probability for this potential to manifest itself in a given crude unit. tabs., figs.

  18. Gallic acid as a corrosion inhibitor of carbon steel in chemical decontamination formulation

    International Nuclear Information System (INIS)

    Keny, S.J.; Kumbhar, A.G.; Thinaharan, C.; Venkateswaran, G.

    2008-01-01

    Gallic acid (GA) was found to provide corrosion inhibition to carbon steel (CS) at 4.25 mM concentration. Inherent stability to radiation degradation as compared to other reductant and coupled with its anionic nature with respect to removal using ion exchange column makes it suitable for using as both reductant as well as corrosion inhibitor in dilute decontamination formulations operating in the regenerative mode. A formulation containing CA (1.4 mM), EDTA/NTA (1.4 mM), AA (1.0-2.0 mM) and GA (4.25 mM) was found to be more efficient in dissolving hematite and providing 31% corrosion inhibition (passivation) to the CS

  19. Corrosion Performance of Nano-ZrO₂ Modified Coatings in Hot Mixed Acid Solutions.

    Science.gov (United States)

    Xu, Wenhua; Wang, Zhenyu; Han, En-Hou; Wang, Shuai; Liu, Qian

    2018-06-01

    A nano-ZrO₂ modified coating system was prepared by incorporation of nano-ZrO₂ concentrates into phenolic-epoxy resin. The corrosion performance of the coatings was evaluated in hot mixed acid solution, using electrochemical methods combined with surface characterization, and the effects of nano-ZrO₂ content were specially focused on. The results showed that 1% and 3% nano-ZrO₂ addition enhanced the corrosion resistance of the coatings, while 5% nano-ZrO₂ addition declined it. The coating with 3% nano-ZrO₂ presented the minimum amount of species diffusion, the lowest average roughness (5.94 nm), and the highest C/O ratio (4.55) and coating resistance, and it demonstrated the best corrosion performance among the coating specimens.

  20. Environmentally safe corrosion inhibition of Mg-Al-Zn alloy in chloride free neutral solutions by amino acids

    Energy Technology Data Exchange (ETDEWEB)

    Helal, N.H. [Chemistry Department, Faculty of Science, Fayoum University, Fayoum (Egypt); Badawy, W.A., E-mail: wbadawy@cu.edu.eg [Chemistry Department, Faculty of Science, Cairo University, 12 613 Giza (Egypt)

    2011-07-30

    Highlights: > Phenyl alanine at a concentration of 2 x 10{sup -3} mol dm{sup -3} gives 93% corrosion inhibition efficiency for the corrosion of the Mg-Al-Zn alloy. > The corrosion inhibition process is based on the adsorption of the amino acid molecules on the active sites of the alloy surface by physical adsorption mechanism. > The adsorption free energy was 15.72 kJ mol{sup -1}. - Abstract: The corrosion inhibition of Mg-Al-Zn alloy was investigated in stagnant naturally aerated chloride free neutral solutions using amino acids as environmentally safe corrosion inhibitors. The corrosion rate was calculated in the absence and presence of the corrosion inhibitor using the polarization technique and electrochemical impedance spectroscopy. The experimental impedance data were fitted to theoretical data according to a proposed electronic circuit model to explain the behavior of the alloy/electrolyte interface under different conditions. The corrosion inhibition process was found to depend on the adsorption of the amino acid molecules on the metal surface. Phenyl alanine has shown remarkably high corrosion inhibition efficiency up to 93% at a concentration of 2 x 10{sup -3} mol dm{sup -3}. The corrosion inhibition efficiency was found to depend on the concentration of the amino acid and its structure. The mechanism of the corrosion inhibition process was discussed and different adsorption isotherms were investigated. The free energy of the adsorption process was calculated for the adsorption of different amino acids on the Mg-Al-Zn alloy and the obtained values reveal a physical adsorption of the inhibitor molecules on the alloy surface.

  1. Corrosion Inhibition of Aluminium by Capparis deciduas in Acidic Media

    Directory of Open Access Journals (Sweden)

    P. Arora

    2007-01-01

    Full Text Available The inhibition efficiency of ethanolic extract of different parts of Capparis deciduas (Ker in acidic medium has been evaluated by mass loss and thermometric methods. Values of inhibition efficiency obtained from the two methods are in good agreement and are dependent upon the concentration of inhibitor and acid.

  2. Corrosion Inhibition of Aluminium by Capparis deciduas in Acidic Media

    OpenAIRE

    P. Arora; S. Kumar; M. K. Sharma; S. P. Mathur

    2007-01-01

    The inhibition efficiency of ethanolic extract of different parts of Capparis deciduas (Ker) in acidic medium has been evaluated by mass loss and thermometric methods. Values of inhibition efficiency obtained from the two methods are in good agreement and are dependent upon the concentration of inhibitor and acid.

  3. Effect of Tryptophan on the corrosion behavior of low alloy steel in sulfamic acid

    Directory of Open Access Journals (Sweden)

    Hesham T.M. Abdel-Fatah

    2016-11-01

    Full Text Available Sulfamic acid is widely used in various industrial acid cleaning applications. In the present work, the inhibition effect of Tryptophan (Tryp on the corrosion of low alloy steel in sulfamic acid solutions at four different temperatures was studied. The investigations involved electrochemical methods (electrochemical impedance spectroscopy; EIS and the new technique electrochemical frequency modulation; EFM as well as gravimetric measurements. The inhibition efficiency and the apparent activation energy have been calculated in the presence and in the absence of Tryp. It is most probable that the inhibition property of Tryp was due to the electrostatic adsorption of the protonated form of Tryp on the steel surface. Adsorption of the inhibitor molecule, onto the steel surface followed the Temkin adsorption isotherm. The thermodynamic parameters of adsorption were determined and discussed. All of the obtained data from the three techniques were in close agreement, which confirmed that EFM technique can be used efficiently for monitoring the corrosion inhibition under the studied conditions.

  4. Anionic Surfactant as a Corrosion Inhibitor for Synthesized Ferrous Alloy in Acidic Solution

    Directory of Open Access Journals (Sweden)

    Farida Kellou-Kerkouche

    2013-01-01

    Full Text Available The effect of temperature on the corrosion behaviour of a synthesized iron-based alloy in 1 N sulphuric acid solution has been examined by means of three electrochemical techniques. Thereafter, we studied the influence of an anionic surfactant (sodium dodecyl benzene sulfonate at various concentrations on the electrochemical behaviour of the ferrous alloy. The obtained results show that the temperature increase reduced the performance of the used alloy, in the acidic environment. Otherwise, the surfactant inhibits the alloy dissolution in the sulphuric acid, through its adsorption on the metal surface without modifying the mechanism of corrosion process. We also noticed that the highest inhibition effect is obtained at a concentration above its critical micelle concentration (CMC. Langmuir adsorption isotherm fits well with the experimental data.

  5. A New Green Ionic Liquid-Based Corrosion Inhibitor for Steel in Acidic Environments

    Directory of Open Access Journals (Sweden)

    Ayman M. Atta

    2015-06-01

    Full Text Available This work examines the use of new hydrophobic ionic liquid derivatives, namely octadecylammonium tosylate (ODA-TS and oleylammonium tosylate (OA-TS for corrosion protection of steel in 1 M hydrochloric acid solution. Their chemical structures were determined from NMR analyses. The surface activity characteristics of the prepared ODA-TS and OA-TS were evaluated from conductance, surface tension and contact angle measurements. The data indicate the presence of a double bond in the chemical structure of OA-TS modified its surface activity parameters. Potentiodynamic polarization, electrochemical impedance spectroscopy (EIS measurements, scanning electron microscope (SEM, Energy dispersive X-rays (EDX analysis and contact angle measurements were utilized to investigate the corrosion protection performance of ODA-TS and OA-TS on steel in acidic solution. The OA-TS and ODA-TS compounds showed good protection performance in acidic chloride solution due to formation of an inhibitive film on the steel surface.

  6. Protection of copper surface with phytic acid against corrosion in chloride solution.

    Science.gov (United States)

    Peca, Dunja; Pihlar, Boris; Ingrid, Milošev

    2014-01-01

    Phytic acid (inositol hexaphosphate) was tested as a corrosion inhibitor for copper in 3% sodium chloride. Phytic acid is a natural compound derived from plants, it is not toxic and can be considered as a green inhibitor. Electrochemical methods of linear polarization and potentiodynamic polarization were used to study the electrochemical behaviour and evaluate the inhibition effectiveness. To obtain the optimal corrosion protection the following experimental conditions were investigated: effect of surface pre-treatment (abrasion and three procedures of surface roughening), pre-formation of the layer of phytic acid, time of immersion and concentration of phytic acid. To evaluate the surface pre-treatment procedures the surface roughness and contact angle were measured. Optimal conditions for formation of phytic layer were selected resulting in the inhibition effectiveness of nearly 80%. Morphology and composition of the layer were further studied by scanning electron microscopy, energy dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy. The layer of phytic acid with thickness in the nanometer range homogeneously covers the copper surface. The obtained results show that this natural compound can be used as a mildly effective corrosion inhibitor for copper in chloride solution.

  7. Assessment of corrosion resistance of cast cobalt- and nickel-chromium dental alloys in acidic environments.

    Science.gov (United States)

    Mercieca, Sven; Caligari Conti, Malcolm; Buhagiar, Joseph; Camilleri, Josette

    2018-01-01

    The aim of this study was to compare the degradation resistance of nickel-chromium (Ni-Cr) and cobalt-chromium (Co-Cr) alloys used as a base material for partial dentures in contact with saliva. Wiron® 99 and Wironit Extra-Hard® were selected as representative casting alloys for Ni-Cr and Co-Cr alloys, respectively. The alloys were tested in contact with deionized water, artificial saliva and acidified artificial saliva. Material characterization was performed by X-ray diffractometry (XRD) and microhardness and nanohardness testing. The corrosion properties of the materials were then analyzed using open circuit potential analysis and potentiodynamic analysis. Alloy leaching in solution was assessed by inductively coupled plasma mass spectrometry techniques. Co-Cr alloy was more stable than the Ni-Cr alloy in all solutions tested. Leaching of nickel and corrosion attack was higher in Ni-Cr alloy in artificial saliva compared with the acidified saliva. The corrosion resistance of the Co-Cr alloy was seen to be superior to that of the Ni-Cr alloy, with the former exhibiting a lower corrosion current in all test solutions. Microstructural topographical changes were observed for Ni-Cr alloy in contact with artificial saliva. The Ni-Cr alloy exhibited microstructural changes and lower corrosion resistance in artificial saliva. The acidic changes did not enhance the alloy degradation. Ni-Cr alloys are unstable in solution and leach nickel. Co-Cr alloys should be preferred for clinical use.

  8. In situ ellipsometric investigation of stainless steel corrosion behavior in buffered solutions with amino acids

    International Nuclear Information System (INIS)

    Vinnichenko, M.V.; Pham, M.T.; Chevolleau, T.; Poperenko, L.V.; Maitz, M.F.

    2003-01-01

    The corrosion of metals is associated both with a release of ions and changes in optical surface properties. In this study, these two effects were correlated by a potentiodynamic corrosion test and in situ probing of the surface by ellipsometry. The studies were carried out with stainless steel (SS) AISI 304 and 316 in phosphate buffered saline (PBS) and in Dulbecco's modified minimal essential medium (DMEM) at pH 7.4. In both media, 304 steel is more susceptible to corrosion than 316 grade. The 316 steel shows a higher corrosion potential and higher corrosion current density in PBS than in DMEM, for 304 steel this behavior is vice versa. Ellipsometry demonstrated a higher sensitivity than potentiodynamics to surface modification in the cathodic area. In DMEM the removal of a surface layer at negative potential and a further repassivation with increasing potential was characteristic. In PBS a surface layer started to grow immediately. X-ray photoelectron spectra of this layer formed in PBS are consistent with iron phosphate. Its formation is inhibited in DMEM; the presence of amino acids is discussed as the reason

  9. Effect of Organic Acid Additions on the General and Localized Corrosion Susceptibility of Alloy 22 in Chloride Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Carranza, R M; Giordano, C M; Rodr?guez, M A; Ilevbare, G O; Rebak, R B

    2007-08-28

    Electrochemical studies such as cyclic potentiodynamic polarization (CPP) and electrochemical impedance spectroscopy (EIS) were performed to determine the corrosion behavior of Alloy 22 (N06022) in 1M NaCl solutions at various pH values from acidic to neutral at 90 C. All the tested material was wrought Mill Annealed (MA). Tests were also performed in NaCl solutions containing weak organic acids such as oxalic, acetic, citric and picric. Results show that the corrosion rate of Alloy 22 was significantly higher in solutions containing oxalic acid than in solutions of pure NaCl at the same pH. Citric and picric acids showed a slightly higher corrosion rate, and acetic acid maintained the corrosion rate of pure chloride solutions at the same pH. Organic acids revealed to be weak inhibitors for crevice corrosion. Higher concentration ratios, compared to nitrate ions, were needed to completely inhibit crevice corrosion in chloride solutions. Results are discussed considering acid dissociation constants, buffer capacity and complex formation constants of the different weak acids.

  10. Sodium phthalamates as corrosion inhibitors for carbon steel in aqueous hydrochloric acid solution

    International Nuclear Information System (INIS)

    Flores, Eugenio A.; Olivares, Octavio; Likhanova, Natalya V.; Dominguez-Aguilar, Marco A.; Nava, Noel; Guzman-Lucero, Diego; Corrales, Monica

    2011-01-01

    Highlights: → N-Alkyl-sodium phthalamates as corrosion inhibitors for industry in acidic medium. → Compounds behaved as mixed type inhibitors and followed Langmuir adsorption isotherm. → Efficiencies were proportional to aliphatic chain length and inhibitor concentration. → Iron complexes and chelates with phthalamates contributed to carbon steel protection. - Abstract: Three compounds of N-alkyl-sodium phthalamates were synthesized and tested as corrosion inhibitors for carbon steel in 0.5 M aqueous hydrochloric acid. Tests showed that inhibitor efficiencies were related to aliphatic chain length and dependent on concentration. N-1-n-tetradecyl-sodium phthalamate displayed moderate efficiency against uniform corrosion, 42-86% at 25 deg. C and 25-60% at 40 o C. Tests indicated that compounds behave as mixed type inhibitors where molecular adsorption on steel followed Langmuir isotherm, whereas thermodynamic suggested that a physisorption process occurred. XPS analysis confirmed film formation on surface, where Fe +2 complexes and Fe +2 chelates with phthalamates prevented steel from further corrosion.

  11. Corrosion Study of Stainless Steels in Peracetic Acid Bleach Media With and Without Chloride and Chelant

    Directory of Open Access Journals (Sweden)

    Rohtash

    2014-12-01

    Full Text Available The paper industries are adopting non-chlorine containing chemicals e.g. peroxide, ozone, peracids etc. as alternate of chlorine based bleach chemicals e.g. chlorine and chlorine dioxide etc. with the aim of eco-friend atmospheres. Changeover to the new chemicals in the bleaching process is likely to affect the metallurgy of the existing bleach plants due to change in the corrosivity of the media. Accordingly, corrosion investigations were performed in a peracid namely peracetic acid to test the suitability of austenitic stainless steels 654SMO, 265SMO, 2205, 317L and 316L. The performance of above stainless steels was evaluated through long term immersion tests and Electrochemical polarization measurements in peracetic acid (PAA bleach media at pH value 4 maintaining concentration 0.2 % as active oxygen along with three chloride levels 0, 500 and 1000 ppm in pulp-free laboratory. To study the effect of corrosion inhibitors with extending limit of chloride in liquors, measurements were also made with two types of chelants- EDTA & MgSO4. The results showed that corrosivity of PAA reduced by addition of chelant while increased with concentration of Cl¯. The results also exhibited that EDTA is better inhibitor than MgSO4.

  12. Plasma surface tantalum alloying on titanium and its corrosion behavior in sulfuric acid and hydrochloric acid

    Science.gov (United States)

    Wei, D. B.; Chen, X. H.; Zhang, P. Z.; Ding, F.; Li, F. K.; Yao, Z. J.

    2018-05-01

    An anti-corrosion Ti-Ta alloy coating was prepared on pure titanium surface by double glow plasma surface alloying technology. Electrochemical corrosion test was applied to test the anti-corrosion property of Ti-Ta alloy layer. The microstructure and the phase composition of Ti-Ta alloy coating were detected before and after corrosion process by means of scanning electron microscope (SEM), X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS). The results showed that the Ta-Ti alloy layer has a thickness of about 13-15 μm, which is very dense without obvious defects such as pores or cracks. The alloy layer is composed mainly of β-Ta and α-Ti. The Ta alloy layer improves the anti-corrosion property of pure titanium. A denser and more durable TiO2 formed on the surface Ta-Ti alloy layer after immersing in strong corrosive media may account for the excellent corrosion resistant.

  13. Superhydrophobic copper surfaces fabricated by fatty acid soaps in aqueous solution for excellent corrosion resistance

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Wenlong; Hu, Yuanyuan; Bao, Wenda; Xie, Xiaoyu; Liu, Yiran; Song, Aixin, E-mail: songaixin@sdu.edu.cn; Hao, Jingcheng

    2017-03-31

    Highlights: • The superhydrophobic property can be realized in a much quicker process (7.5 min) in aqueous solution than in ethanol. • The fabrication process of superhydrophobic metal surfaces greatly increases the safety in industrial manufacture in commercial scale. • The superhydrophobic copper surfaces show excellent corrosion resistance. - Abstract: A simple and safe one-step immersion method was developed to obtain the stable superhydrophobic copper surfaces with excellent corrosion resistance ability using fatty acids in water-medium instead of ethanol. An organic alkali, N,N-dimethylcyclohexylamine (DMCHA), was chosen to solve the poor solubility of fatty acids in water and the high Krafft point of carboxylate salts with inorganic counterions. The superhydrophobic property can be realized in a much quicker process (7.5 min) in aqueous solution than in ethanol (more than 2 d), which is universally feasible for the fabrication of superhydrophobic metal surfaces in industry scale, thereby greatly increasing the safety in industrial manufacture.

  14. Interaction of Benzimidazoles and Benzotriazole: Its Corrosion Protection Properties on Mild Steel in Hydrochloric Acid

    Science.gov (United States)

    Ramya, K.; Mohan, Revathi; Joseph, Abraham

    2014-11-01

    Synergistic hydrogen-bonded interaction of alkyl benzimidazoles and 1,2,3-benzotrizole and its corrosion protection properties on mild steel in hydrochloric acid at different temperatures have been studied using polarization, EIS, adsorption, surface studies, and computational methods. The extent of synergistic interaction increases with temperature. Quantum chemical approach is used to calculate some electronic properties of the molecules and to ascertain the synergistic interaction, inhibitive effect, and molecular structures. The corrosion inhibition efficiencies and the global chemical reactivity relate to some parameters, such as total energy, E HOMO, E LUMO, and gap energy (Δ E). 1,2,3-Benzotrizole interacts with benzimidazoles derivatives up to a bond length of approximately 1.99 Å. This interaction represents the formation of a hydrogen bond between the 1,2,3-benzotrizole and benzimidazoles. This synergistic interaction of 1,2,3-benzotrizole and benzimidazole derivatives offers extended inhibition efficiency toward mild steel in hydrochloric acid.

  15. Analysis of the corrosion of carbon steels in simulated salt repository brines and acid chloride solutions at high temperatures

    International Nuclear Information System (INIS)

    Diercks, D.R.; Kassner, T.F.

    1988-04-01

    An analysis of literature data on the corrosion of carbon steels in anoxic brines and acid chloride solutions was performed, and the results were used to assess the expected life of high-level nuclear waste package containers in a salt repository environment. The corrosion rate of carbon steels in moderately acidic aqueous chloride environments obeys an Arrhenius dependence on temperature and a (pH 2 ) -1/2 dependence on hydrogen partial pressure. The cathodic reduction of water to produce hydrogen is the rate-controlling step in the corrosion process. An expression for the corrosion rate incorporating these two dependencies was used to estimate the corrosion life of several proposed waste package configurations. 42 refs., 11 figs., 2 tabs

  16. Effects of Peracetic Acid on the Corrosion Resistance of Commercially Pure Titanium (grade 4).

    Science.gov (United States)

    Raimundo, Lariça B; Orsi, Iara A; Kuri, Sebastião E; Rovere, Carlos Alberto D; Busquim, Thaís P; Borie, Eduardo

    2015-01-01

    The aim of this study was to evaluate the corrosion resistance of pure titanium grade 4 (cp-Ti-4), subjected to disinfection with 0.2% and 2% peracetic acid during different immersion periods using anodic potentiodynamic polarization test in acid and neutral artificial saliva. Cylindrical samples of cp-Ti-4 (5 mm x 5 mm) were used to fabricate 24 working electrodes, which were mechanically polished and divided into eight groups (n=3) for disinfection in 2% and 0.2% peracetic acid for 30 and 120 min. After disinfection, anodic polarization was performed in artificial saliva with pH 4.8 and 6.8 to assess the electrochemical behavior of the electrodes. A conventional electrochemical cell, constituting a reference electrode, a platinum counter electrode, and the working electrode (cp-Ti specimens) were used with a scanning rate of 1 mV/s. Three curves were obtained for each working electrode, and corrosion was characterized by using scanning electron microscopy (SEM) and energy dispersive x-ray spectrometry (EDS). Data of corrosion potential (Ecorr) and passive current (Ipass) obtained by the polarization curves were analyzed statistically by Student's t-test (a=0.05). The statistical analysis showed no significant differences (p>0.05) between artificial saliva types at different concentrations and periods of disinfection, as well as between control and experimental groups. No surface changes were observed in all groups evaluated. In conclusion, disinfection with 0.2% and 2% peracetic acid concentrations did not cause corrosion in samples manufactured with cp-Ti-4.

  17. Inhibition of the corrosion of mild steel in hydrochloric acid by isatin ...

    African Journals Online (AJOL)

    The inhibition of corrosion of mild steel in hydrochloric acid by isatin glycine (ING) and isatin (IN) at 30-60 oC and concentrations of 0.0001 M to 0.0005 M was studied via weight loss method. At the highest inhibitor concentration studied ING exhibited inhibition efficiency of 87% while IN exhibited 84% at 60 oC. A chemical ...

  18. Studies on Corrosion of Annealed and Aged 18 Ni 250 Grade Maraging Steel in Sulphuric Acid Medium

    OpenAIRE

    Poornima, T.; Jagannatha, Nayak; Shetty, A. Nityananda

    2010-01-01

    The corrosion behavior of aged and annealed sample of 18 Ni 250 grade maraging steel was investigated in varied conditions of concentration and temperature of sulphuric acid medium, using electrochemical techniques like Tafel polarization and electrochemical impedance spectroscopy (EIS). The results obtained from both the techniques are in good agreement. These results have shown increase in corrosion rate of aged specimen with increase in concentration and temperature of sulphuric acid. With...

  19. Effect of boric acid on intergranular corrosion in tube support plate crevices

    International Nuclear Information System (INIS)

    Brunet, J.P.; Campan, J.L.

    1993-10-01

    Intergranular attack on steam generator tubing is one important phenomenon involved in availability of Pressurized Water Reactors. Boric acid appears to be a possible candidate for inhibiting the corrosion process. The program performed in Cadarache was supposed to give statistical informations on the boric acid effect. It was based on a large number of samples initially attacked during a program performed by BABCOCK ampersand WILCOX. These samples were sleeved onto Alloy 690 tubes, in order to prevent premature cracking. Unfortunately it was not possible to find chemical conditions able to produce significant additional corrosion; we postulated mainly due to a drastic reduction of the thermal flux resulting from the increase of the tube wall thickness under the tube support plates (TSP). The tests demonstrate that such sleeve could be a possible remedy of the corrosion when introduced under the TSP. The tests show indications of a possible beneficial effect of the boric acid, a large variability of the heats sensitivity to the IGA and a predominant effect of Na 2 CO 3 on IGA production

  20. Corrosion of Wires on Wooden Wire-Bound Packaging Crates

    Science.gov (United States)

    Samuel L. Zelinka; Stan Lebow

    2015-01-01

    Wire-bound packaging crates are used by the US Army to transport materials. Because these crates may be exposed to harsh environments, they are dip-treated with a wood preservative (biocide treatment). For many years, zinc-naphthenate was the most commonly used preservative for these packaging crates and few corrosion problems with the wires were observed. Recently,...

  1. A study of the inhibition of iron corrosion in HCl solutions by some amino acids

    International Nuclear Information System (INIS)

    Amin, Mohammed A.; Khaled, K.F.; Mohsen, Q.; Arida, H.A.

    2010-01-01

    The performance of three selected amino acids, namely alanine (Ala), cysteine (Cys) and S-methyl cysteine (S-MCys) as safe corrosion inhibitors for iron in aerated stagnant 1.0 M HCl solutions was evaluated by Tafel polarization and impedance measurements. Results indicate that Ala acts mainly as a cathodic inhibitor, while Cys and S-MCys function as mixed-type inhibitors. Cys, which contains a mercapto group in its molecular structure, was the most effective among the inhibitors tested, while Ala was less effective than S-MCys. The low inhibition efficiency recorded for S-MCys compared with that of Cys was attributed to steric effects caused by the substituent methyl on the mercapto group. Electrochemical frequency modulation (EFM) technique and inductively coupled plasma atomic emission spectrometry (ICP-AES), were also applied to make accurate determination of corrosion rates. Validation of the Tafel extrapolation method for measuring corrosion rates was tested. Rates of corrosion rates (in μm y -1 ) obtained from Tafel extrapolation method are in good agreement with those measured using EFM and ICP methods. Some theoretical studies, including molecular dynamics (MD) and density functional theory (DFT), were also employed to establish the correlation between the structure (molecular and electronic) of the three tested inhibitors and the inhibition efficiency. Adsorption via hydrogen bonding was discussed here based on some theoretical studies. Experimental and theoretical results were in good agreement.

  2. Corrosion behaviour of WC-Co based hardmetal in neutral chloride and acid sulphate media

    Energy Technology Data Exchange (ETDEWEB)

    Bozzini, B.; Serra, M.; Fanigliulo, A.; Bogani, F. [Lecce Univ. (Italy). Dipt. di Ingegneria dell' Innovazione; Gaudenzi, G.P. de [Harditalia s.r.l. (OMCD Group), Genova (Italy)

    2002-05-01

    A comparative study of the corrosion behaviour of WC-Co based hardmetals with Ni and Cr{sub 3}C{sub 2} additions is carried out. The aggressive environments are neutral and acidic aerated aqueous solutions of NaCl and H{sub 2}SO{sub 4}. This study is based on electrochemical (linear sweep voltammery), compositional (surface EDX analyses, AAS analyses of attack solutions), structural (XRD) and morphological (SEM) investigations. Electrochemical figures of merit were computed from linear sweep voltammograms in order to rank the corrosion behaviour close to free-immersion conditions in the studied environments and with presence of oxidising agents. EDX and XRD analyses allow to accurately characterise the penetration depth of the attack as well as the preferential dissolution of the constituents. Binders containing Ni show a significantly improved corrosion resistance in the studied systems. The amount of Ni in the binder is the single most important factor affecting corrosion performance. Cr{sub 3}C{sub 2} additions to hardmetals with lower-Ni binders cannot balance the effect of Ni, but give an improved resistance in neutral chloride-containing solutions. (orig.)

  3. CORROSION IN ACIDIC BEVERAGES AND RECOVERY OF MICROHARDNESS OF HUMAN TEETH ENAMEL

    Directory of Open Access Journals (Sweden)

    Petra Gaalova

    2016-05-01

    Full Text Available We studied the influence of corrosion in acidic beverages (white wine, pH~3.5 on micromechanical properties of human teeth. Simultaneously, the effect of fluorine-containing mouthwash (pH~4.4 and of artificial saliva (pH~5.3 in terms of their protective action against corrosion, and the recovery of mechanical properties through fluoridation and re-calcification was studied. The influence of the solutions on Vickers hardness of dental enamel was monitored on the basis of results from the corrosion tests carried out under quasi-dynamic conditions. The tests were performed at the temperature corresponding to the temperature of human body (37°C. The measurements confirmed a significant deterioration of microhardness with prolonged exposure to white wine. The Vickers hardness decreased from 347 HV0.2 in un-corroded specimens to 186 HV0.2 in samples corroded for 60 minutes in white wine. A recovery of Vickers hardness was observed after 60 minutes exposition time in the fluoridation solution, with the increase from 186 to 372 HV0.2. Similar effect was observed in the artificial saliva solution, with observed hardness increase from 186 to 320 HV0.2. Healing of corrosion-induced defects by the action of both solutions was observed by SEM, and associated with observed increase of hardness

  4. Synergistic Effect on Corrosion Inhibition Efficiency of Ginger Affinale Extract in Controlling Corrosion of Mild Steel in Acid Medium

    International Nuclear Information System (INIS)

    Subramanian, Ananth Kumar; Arumugam, Sankar; Mallaiya, Kumaravel; Subramaniam, Rameshkumar

    2013-01-01

    The corrosion inhibition nature of Ginger affinale extract for the corrosion of mild steel in 0.5N H 2 SO 4 was investigated using weight loss, electrochemical impedance and potentiodynamic polarization methods. The results revealed that Ginger affinale extract acts as a good corrosion inhibitor in 0.5N H 2 SO 4 medium. The inhibition efficiency increased with an increase in inhibitor concentration. The inhibition could be attributed to the adsorption of the inhibitor on the steel surface

  5. Enhanced corrosion resistance of stainless steel type 316 in sulphuric acid solution using eco-friendly waste product

    Science.gov (United States)

    Sanni, O.; Popoola, A. P. I.; Fayomi, O. S. I.

    2018-06-01

    Literature has shown that different organic compounds are effective corrosion inhibitors for metal in acidic environments. Such compounds usually contain oxygen, nitrogen or sulphur and function through adsorption on the metal surface, thereby creating a barrier for corrosion attack. Unfortunately, these organic compounds are toxic, scarce and expensive. Therefore, plants, natural product and natural oils have been posed as cheap, environmentally acceptable, abundant, readily available and effective molecules having low environmental impact. The corrosion resistance of austenitic stainless steel Type 316 in the presence of eco-friendly waste product was studied using weight loss and potentiodynamic polarization techniques in 0.5 M H2SO4. The corrosion rate and corrosion potential of the steel was significantly altered by the studied inhibitor. Results show that increase in concentration of the inhibitor hinders the formation of the passive film. Experimental observation shows that its pitting potential depends on the concentration of the inhibitor in the acid solution due to adsorption of anions at the metal film interface. The presence of egg shell powder had a strong influence on the corrosion resistance of stainless steel Type 316 with highest inhibition efficiency of 94.74% from weight loss analysis, this is as a result of electrochemical action and inhibition of the steel by the ionized molecules of the inhibiting compound which influenced the mechanism of the redox reactions responsible for corrosion and surface deterioration. Inhibitor adsorption fits the Langmuir isotherm model. The two methods employed for the corrosion assessment were in good agreement.

  6. Effects of cold work, sensitization treatment, and the combination on corrosion behavior of stainless steels in nitric acid

    International Nuclear Information System (INIS)

    Mayuzumi, M.; Ohta, J.; Arai, T.

    1998-01-01

    In a reprocessing process, spent nuclear fuels from light-water reactors are dissolved in nitric acid (HNO 3 ) to separate and recover the fissile materials such as uranium and plutonium from the radioactive fission products. Corrosion behavior of two stainless steels (SS) was investigated in nitric acid (HNO 3 ) for the effect of cold work (CW), sensitization heat treatment (Sens.), and a combination (CW + Sens.). The corrosion rate of the solution-treated type 304 SS (UNS S30400) with extra-low carbon (type 304ELC SS (UNS S30403)) increased with time and reached constant values after 1,000 h of immersion. However, constant corrosion rates were obtained for 25% Cr-20% Ni-Nb (type 310Nb SS [UNS S31040]) from the initial stage of immersion. CW mitigated corrosion of the solution-treated SS. The effect of CW was different on the two types of SS, with the sensitization heat-treated type 304 ELC SS showing higher corrosion rates and type 310Nb SS lower corrosion rates by CW. Corrosion resistance of type 310Nb SS was superior to type 304 ELC SS after all treatments. Chromium concentration of the sensitization-treated type 304 ELC SS was lower in the grain-boundary region than of the solution-treated one, although no chromium carbide precipitation was observed. This may have been the cause of intergranular corrosion enhancement by sensitization treatment

  7. Effect of Aging Temperature on Corrosion Behavior of Sintered 17-4 PH Stainless Steel in Dilute Sulfuric Acid Solution

    Science.gov (United States)

    Szewczyk-Nykiel, Aneta; Kazior, Jan

    2017-07-01

    The general corrosion behavior of sintered 17-4 PH stainless steel processed under different processing conditions in dilute sulfuric acid solution at 25 °C was studied by open-circuit potential measurement and potentiodynamic polarization technique. The corrosion resistance was evaluated based on electrochemical parameters, such as polarization resistance, corrosion potential, corrosion current density as well as corrosion rate. The results showed that the precipitation-hardening treatment could significantly improve the corrosion resistance of the sintered 17-4 PH stainless steel in studied environment. As far as the influence of aging temperature on corrosion behavior of the sintered 17-4 PH stainless steel is concerned, polarization resistance and corrosion rate are reduced with increasing aging temperature from 480 up to 500 °C regardless of the temperature of solution treatment. It can be concluded that the highest corrosion resistance in 0.5 M H2SO4 solution exhibits 17-4 PH after solution treatment at 1040 °C followed by aging at 480 °C.

  8. Corrosion mechanism of Z3 CN18.10 stainless steel in the presence of nitric acid condensates

    International Nuclear Information System (INIS)

    Balbaud, Fanny

    1998-01-01

    In installations handling concentrated boiling nitric acid, a severe intergranular corrosion can sometimes occur in condensation zones constituted of non-sensitized Z3 CN 18.10 stainless steel. Corrosion tests in reactors and in a specific loop, CIRCE, allowed to specify the conditions of occurrence of this type of corrosion and showed the similitude with the corrosion in non-renewed liquid nitric acid: the specific parameters linked to the condensate phase are the high ratio metallic surface area to volume of condensate and the low renewing rate which induce a concentration of oxidation products of the metal and of reduction products of nitric acid. The initiation of the intergranular corrosion is attributed to the increase in the reduction rate of nitric acid by an autocatalytic mechanism which was demonstrated by electrochemical measurements on platinum and on stainless steel. The reduction mechanism involves a charge transfer step where nitrous acid, the electro-active species, is reduced into nitrogen monoxide and a chemical regeneration reaction of nitrous acid. The thermodynamic study led to a representation of the chemical and electrochemical properties of nitric acid. This study allowed also to determine the Gibbs free energy of formation of nitrous acid in solution in concentrated nitric acid at 100 deg. C. The diagram, constructed in coordinates log(P O 2 ) / [-log(P HNO 3 )] or E eXperimental / [-log(P HNO 3 )], shows that the final reduction product of nitric acid depends on the concentration of nitric acid: at 100 deg. C, NO is obtained for concentrations lower than 8 mol.L -1 and NO 2 is obtained for higher concentrations. All these results allowed to propose a corrosion mechanism of Z3 CN 18.10 stainless steel in the presence of nitric acid condensates. [fr

  9. Synthesis and corrosion inhibition application of NATN on mild steel surface in acidic media complemented with DFT studies

    Directory of Open Access Journals (Sweden)

    Shaimaa B. Al-Baghdadi

    2018-03-01

    Full Text Available The corrosion inhibition effectiveness of thiosemicarbazide compound, namely 3-nitro-5-(2-amino-1,3,4-thiadiazolylnitrobenzene (NATN, on mild steel in 1 M hydrochloric acid media has been investigated by weight loss technique. The results exhibit that the corrosion ratio of mild steel was reduced regarding to adding NATN. The corrosion inhibition rate for the NATN was 92.3% at the highest investigated NATN concentration. From the weight loss results it could be concluded that NATN with sulfur, nitrogen and oxygen atoms has clarified best corrosion inhibition achievement comparing to 3,5-dinitrobenzoic acid. Regarding to theoretical studies, DFT was employee to figured geometrical structure and electronic characteristics on NATN. The investigation have been extensive to the HOMO and LUMO analysis to evaluate the energy gap, Ionization potential, Electron Affinity, Global Hardness, Chemical Potential, Electrophilicity, Electronegativity and Polarizability. Keywords: NATN, Mild steel, Weight loss, Dinitrobenzoic acid

  10. Corrosion inhibition of austenitic stainless steel by clay in polluted phosphoric acid with presence of SiC abrasif

    Directory of Open Access Journals (Sweden)

    Skal S.

    2018-01-01

    Full Text Available Stainless steels have many properties mechanical and chemical resistances resulting from the formation of the protective layer (passive film on their surface which prevents the metal to react with corrosive environments such as, phosphoric acid. This acid contains various impurities, including agressive agents and solid particles of gypsum, increase the risk of corrosion damage depending on the type of stainless steel used. In addition, it has been show that abrasion-corrosion causes an acceleration electrochemical process leading to a decrease in the resistance of materials. This work is to find a solution through an ecological inhibitor. That why we have been studied the effect of crude clay on corrosion behavior of Alloy 31 in polluted phosphoric acid with abrasive by electrochemical impedance spectroscopy (EIS . The clay was characterized by X-ray fluorescence spectroscopy (FX, X-ray diffraction (DRX and infrared spectroscopy (IR. EIS exhibited that resistance of Alloy 31 increased with increase the concentration of inhibitor.

  11. Corrosion resistance of materials of construction for high temperature sulfuric acid service in thermochemical IS process. Alloy 800, Alloy 600, SUSXM15J1 and SiC

    International Nuclear Information System (INIS)

    Tanaka, Nobuyuki; Onuki, Kaoru; Shimizu, Saburo; Yamaguchi, Akihisa

    2006-01-01

    Exposure tests of candidate materials were carried out up to 1000 hr in the sulfuric acid environments of thermochemical hydrogen production IS process, focusing on the corrosion of welded portion and of crevice area. In the gas phase sulfuric acid decomposition condition at 850degC, welded samples of Alloy 800 and of Alloy 600 showed the same good corrosion resistance as the base materials. In the boiling condition of 95 wt% sulfuric acid solution, test sample of SiC showed the same good corrosion resistance. Also negligible corrosion was observed in crevice corrosion. (author)

  12. Influence of Simulated Acid Rain Corrosion on the Uniaxial Tensile Mechanical Properties of Concrete

    Directory of Open Access Journals (Sweden)

    Ying-zi Zhang

    2012-01-01

    Full Text Available An experimental study on the uniaxial tensile property of concrete exposed to the acid rain environment was carried out. Acid rain with pH level of 1.0 was deposed by the mixture of sulfate and nitric acid solution in the laboratory. Dumbbell-shaped concrete specimens were immersed in the simulated acid rain completely. After being exposed to the deposed mixture for a certain period, uniaxial tensile test was performed on the concrete specimens. The results indicate that elastic modulus, tensile strength, and peak strain have a slight increase at the initial corrosion stage, and with the extension of corrosion process, elastic modulus and tensile strength decrease gradually, while the peak strain still increases. It is found that the compressive strength is more sensitive than the tensile strength in aggressive environment. Based on the experimental results, an equation was proposed to describe the ascending branch of the stress-strain curve of the concrete corroded by acid rain.

  13. Savannah River Site Tank Cleaning: Corrosion Rate For One Versus Eight Percent Oxalic Acid Solution

    International Nuclear Information System (INIS)

    Ketusky, E.; Subramanian, K.

    2011-01-01

    Until recently, the use of oxalic acid for chemically cleaning the Savannah River Site (SRS) radioactive waste tanks focused on using concentrated 4 and 8-wt% solutions. Recent testing and research on applicable dissolution mechanisms have concluded that under appropriate conditions, dilute solutions of oxalic acid (i.e., 1-wt%) may be more effective. Based on the need to maximize cleaning effectiveness, coupled with the need to minimize downstream impacts, SRS is now developing plans for using a 1-wt% oxalic acid solution. A technology gap associated with using a 1-wt% oxalic acid solution was a dearth of suitable corrosion data. Assuming oxalic acid's passivation of carbon steel was proportional to the free oxalate concentration, the general corrosion rate (CR) from a 1-wt% solution may not be bound by those from 8-wt%. Therefore, after developing the test strategy and plan, the corrosion testing was performed. Starting with the envisioned process specific baseline solvent, a 1-wt% oxalic acid solution, with sludge (limited to Purex type sludge-simulant for this initial effort) at 75 C and agitated, the corrosion rate (CR) was determined from the measured weight loss of the exposed coupon. Environmental variations tested were: (a) Inclusion of sludge in the test vessel or assuming a pure oxalic acid solution; (b) acid solution temperature maintained at 75 or 45 C; and (c) agitation of the acid solution or stagnant. Application of select electrochemical testing (EC) explored the impact of each variation on the passivation mechanisms and confirmed the CR. The 1-wt% results were then compared to those from the 8-wt%. The immersion coupons showed that the maximum time averaged CR for a 1-wt% solution with sludge was less than 25-mils/yr for all conditions. For an agitated 8-wt% solution with sludge, the maximum time averaged CR was about 30-mils/yr at 50 C, and 86-mils/yr at 75 C. Both the 1-wt% and the 8-wt% testing demonstrated that if the sludge was removed from

  14. Inhibitive action of some plant extracts on the corrosion of steel in acidic media

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-Gaber, A.M. [Department of Chemistry, Faculty of Science, Alexandria University, Ibrahimia, P.O. Box 426, Alexandria 21321 (Egypt)]. E-mail: ashrafmoustafa@yahoo.com; Abd-El-Nabey, B.A. [Department of Chemistry, Faculty of Science, Alexandria University, Ibrahimia, P.O. Box 426, Alexandria 21321 (Egypt); Sidahmed, I.M. [Department of Chemistry, Faculty of Science, Alexandria University, Ibrahimia, P.O. Box 426, Alexandria 21321 (Egypt); El-Zayady, A.M. [Department of Chemistry, Faculty of Science, Alexandria University, Ibrahimia, P.O. Box 426, Alexandria 21321 (Egypt); Saadawy, M. [Department of Chemistry, Faculty of Science, Alexandria University, Ibrahimia, P.O. Box 426, Alexandria 21321 (Egypt)

    2006-09-15

    The effect of extracts of Chamomile (Chamaemelum mixtum L.), Halfabar (Cymbopogon proximus), Black cumin (Nigella sativa L.), and Kidney bean (Phaseolus vulgaris L.) plants on the corrosion of steel in aqueous 1 M sulphuric acid were investigated by electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization techniques. EIS measurements showed that the dissolution process of steel occurs under activation control. Potentiodynamic polarization curves indicated that the plant extracts behave as mixed-type inhibitors. The corrosion rates of steel and the inhibition efficiencies of the extracts were calculated. The results obtained show that the extract solution of the plant could serve as an effective inhibitor for the corrosion of steel in sulphuric acid media. Inhibition was found to increase with increasing concentration of the plant extract up to a critical concentration. The inhibitive actions of plant extracts are discussed on the basis of adsorption of stable complex at the steel surface. Theoretical fitting of different isotherms, Langmuir, Flory-Huggins, and the kinetic-thermodynamic model, were tested to clarify the nature of adsorption.

  15. Furfuryl alcohol as corrosion inhibitor for N80 steel in hydrochloric acid

    International Nuclear Information System (INIS)

    Vishwanatham, S.; Haldar, N.

    2008-01-01

    The ability of furfuryl alcohol (FA) as corrosion inhibitor in controlling corrosion of N80 steel in 15% hydrochloric acid has been investigated. It is found that the percentage inhibition of FA increases almost linearly with its concentration (in the range 10 mM-80 mM) and attains about 91% at 80 mM. FA shows significant inhibition at higher temperatures also (∼82% at 60 deg. C;∼74% at 110 deg. C with 80 mM concentration). FA undergoes acid catalyzed polymerization under the experimental conditions to give polyfurfuryl alcohols (PFA) as evidenced by FTIR and NMR spectral data. Thermodynamic parameters for the corrosion of steel in presence and absence of the inhibitor have been calculated. The inhibitive action may be attributed to adsorption of inhibitor molecules on the active sites of the metal surface following Temkin adsorption isotherm. Potentiodynamic polarization curves indicate that FA acts as mixed type inhibitor. A plausible mechanism for the mode of inhibition has been proposed

  16. Effect of organic acids traces on the carbon steel corrosion behavior

    International Nuclear Information System (INIS)

    Stefanescu, D.; Radulescu; Mogosan, S.

    2009-01-01

    There are many different ways in which organic matter may get in water-steam cycles. One important pathway is constituted by organic matter admitted into the system by chemical make-up water under standard operation conditions (without inverse osmosis). The high molecular weight organic matter, in particularly polysaccharides are broken in organic acids, in particular acetic and formic acid. This paper presents an overview of the investigations undertaken referring to the behavior SA106 gr. B mild steel in secondary circuit aqueous environment contaminated with formic and acetic acid traces. The samples were filmed in static autoclaves in operation conditions of secondary circuit, in contaminated environment and after that they were investigated using metallographic microscopy and SEM. In addition, an electrochemical technique videlicet impedance spectroscopy (EIS) was used to investigate the corrosion behavior of SA106 gr. B carbon steel in secondary circuit medium contaminated with formic and acetic acid traces. (authors)

  17. Inhibiting effects of some oxadiazole derivatives on the corrosion of mild steel in perchloric acid solution

    International Nuclear Information System (INIS)

    Lebrini, Mounim; Bentiss, Fouad; Vezin, Herve; Lagrenee, Michel

    2005-01-01

    The efficiency of 3,5-bis(n-pyridyl)-1,3,4-oxadiazole (n-POX, n = 1, 2, 3), as corrosion inhibitors for mild steel in 1 M perchloric acid (HClO 4 ) have been determined by weight loss measurements and electrochemical studies. The results show that these inhibitors revealed a good corrosion inhibition even at very low concentrations. Comparison of results among those obtained by the studied oxadiazoles shows that 3-POX was the best inhibitor. Polarisation curves indicate that n-pyridyl substituted-1,3,4-oxadiazoles are mixed type inhibitors in 1 M HClO 4 . The adsorption of these inhibitors follows a Langmuir isotherm model. The electronic properties of n-POX, obtained using the AM1 semi-empirical quantum chemical approach, were correlated with their experimental efficiencies using the linear resistance model (LR)

  18. Mangrove tannins and their flavanoid monomers as alternative steel corrosion inhibitors in acidic medium

    International Nuclear Information System (INIS)

    Rahim, Afidah A.; Rocca, E.; Steinmetz, J.; Kassim, M.J.; Adnan, R.; Sani Ibrahim, M.

    2007-01-01

    The inhibitive behaviour on steel of flavanoid monomers that constitute mangrove tannins namely catechin, epicatechin, epigallocatechin and epicatechingallate was investigated in an aerated HCl solution via electrochemical methods. The monomers were found to be mainly cathodic inhibitors and the inhibition efficiency was dependent on concentration. To explain the adsorptive behaviour of the molecules on the steel surface, a semiempirical approach involving quantum chemical calculations using HyperChem 6.0 was undertaken. The HOMO electronic density of the molecule was used to explain the inhibiting mechanism. The most probable adsorption centers were found in the vicinity of the phenolic groups. In a second part, the use of mangrove tannin, extracted from the mangrove barks as steel corrosion inhibitors in acidic media was investigated and its inhibitive efficiency was compared with that of commercial mimosa, quebracho and chestnut tannins. The inhibitive performance of mangrove tannins was comparable to the other tannins investigated, indicating their potential in corrosion protection

  19. Studies on the Inhibition of Mild Steel Corrosion by Rauvolfia serpentina in Acid Media

    Science.gov (United States)

    Bothi Raja, P.; Sethuraman, M. G.

    2010-07-01

    Alkaloid extract of Rauvolfia serpentina was tested as corrosion inhibitor for mild steel in 1 M HCl and H2SO4 using weight loss method at three different temperatures, viz., 303, 313, and 323 K, potentiodynamic polarization, electrochemical impedance spectroscopy and scanning electron microscope (SEM) studies. It is evident from the results of this study that R. serpentina effectively inhibits the corrosion in both the acids through adsorption process following Tempkin adsorption isotherm. The protection efficiency increased with increase in inhibitor concentration and temperature. Free energy of adsorption calculated from the temperature studies also revealed the chemisorption. The mixed mode of action exhibited by the inhibitor was confirmed by the polarization studies while SEM analysis substantiated the formation of protective layer over the mild steel surface.

  20. Mangrove tannins and their flavanoid monomers as alternative steel corrosion inhibitors in acidic medium

    Energy Technology Data Exchange (ETDEWEB)

    Rahim, Afidah A. [School of Chemical Sciences, University Sains Malaysia, 11800 Penang (Malaysia)]. E-mail: afidah@usm.my; Rocca, E. [Laboratoire de Chimie du Solide Mineral, Universite Henri Poincare, Nancy I BP 239, 54506 Vandoeuvre Les Nancy (France); Steinmetz, J. [Laboratoire de Chimie du Solide Mineral, Universite Henri Poincare, Nancy I BP 239, 54506 Vandoeuvre Les Nancy (France); Kassim, M.J. [School of Chemical Sciences, University Sains Malaysia, 11800 Penang (Malaysia); Adnan, R. [School of Chemical Sciences, University Sains Malaysia, 11800 Penang (Malaysia); Sani Ibrahim, M. [School of Chemical Sciences, University Sains Malaysia, 11800 Penang (Malaysia)

    2007-02-15

    The inhibitive behaviour on steel of flavanoid monomers that constitute mangrove tannins namely catechin, epicatechin, epigallocatechin and epicatechingallate was investigated in an aerated HCl solution via electrochemical methods. The monomers were found to be mainly cathodic inhibitors and the inhibition efficiency was dependent on concentration. To explain the adsorptive behaviour of the molecules on the steel surface, a semiempirical approach involving quantum chemical calculations using HyperChem 6.0 was undertaken. The HOMO electronic density of the molecule was used to explain the inhibiting mechanism. The most probable adsorption centers were found in the vicinity of the phenolic groups. In a second part, the use of mangrove tannin, extracted from the mangrove barks as steel corrosion inhibitors in acidic media was investigated and its inhibitive efficiency was compared with that of commercial mimosa, quebracho and chestnut tannins. The inhibitive performance of mangrove tannins was comparable to the other tannins investigated, indicating their potential in corrosion protection.

  1. Benzaldehyde, 2-hydroxybenzoyl hydrazone derivatives as inhibitors of the corrosion of aluminium in hydrochloric acid.

    Science.gov (United States)

    Fouda, A S; Gouda, M M; El-Rahman, S I

    2000-05-01

    The effect of benzaldehyde, 2-hydroxybenzoyl hydrazone derivatives on the corrosion of aluminium in hydrochloric acid has been investigated using thermometric and polarization techniques. The inhibitive efficiency ranking of these compounds from both techniques was found to be: 2>3>1>4. The inhibitors acted as mixed-type inhibitors but the cathode is more polarized. The relative inhibitive efficiency of these compounds has been explained on the basis of structure of the inhibitors and their mode of interaction at the surface. Results show that these additives are adsorbed on an aluminium surface according to the Langmuir isotherm. Polarization measurements indicated that the rate of corrosion of aluminium rapidly increases with temperature over the range 30-55 degrees C both in the absence and in the presence of inhibitors. Some thermodynamic data of the adsorption process are calculated and discussed.

  2. Sucrose fatty esters from underutilized seed oil of Terminalia catappa as potential steel corrosion inhibitor in acidic medium

    Directory of Open Access Journals (Sweden)

    Adewale Adewuyi

    2016-12-01

    Full Text Available Corrosion of metals is a common problem which requires definite attention. In response to this, the oil was extracted from the seed of Terminalia catappa and used to synthesize sucrose fatty esters via simple reaction mechanism which was considered eco-friendly and sustainable. The corrosion inhibition capacity of sucrose fatty esters for mild steel in 1 M HCl was studied using the weight loss method. It was shown that sucrose fatty ester inhibited corrosion process of mild steel and obeyed Langmuir isotherm. Corrosion rate and inhibition efficiency of sucrose fatty esters were found to reduce with increase of immersion time. The study presented sucrose fatty ester as a promising inhibitor of mild steel corrosion in acidic medium.

  3. Boric/sulfuric acid anodizing of aluminum alloys 2024 and 7075: Film growth and corrosion resistance

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, G.E.; Zhang, L.; Smith, C.J.E.; Skeldon, P.

    1999-11-01

    The influence of boric acid (H{sub 3}BO{sub 3}) additions to sulfuric acid (H{sub 2}SO{sub 4}) were examined for the anodizing of Al 2024-T3 (UNS A92024) and Al 7075-T6 (UNS A97075) alloys at constant voltage. Alloys were pretreated by electropolishing, by sodium dichromate (Na{sub 2}Cr{sub 2}O{sub 7})/H{sub 2}SO{sub 4} (CSA) etching, or by alkaline etching. Current-time responses revealed insignificant dependence on the concentration of H{sub 3}BO{sub 3} to 50 g/L. Pretreatments affected the initial film development prior to the establishment of the steady-state morphology of the porous film, which was related to the different compositions and morphologies of pretreated surfaces. More detailed studies of the Al 7075-T6 alloy indicated negligible effects of H{sub 3}BO{sub 3} on the coating weight, morphology of the anodic film, and thickening rate of the film, or corrosion resistance provided by the film. In salt spray tests, unsealed films formed in H{sub 2}SO{sub 4} or mixed acid yielded similar poor corrosion resistances, which were inferior to that provided by anodizing in chromic acid (H{sub 2}CrO{sub 4}). Sealing of films in deionized water, or preferably in chromate solution, improved corrosion resistance, although not matching the far superior performance provided by H{sub 2}CrO{sub 4} anodizing and sealing.

  4. Synthesis and corrosion inhibition application of NATN on mild steel surface in acidic media complemented with DFT studies

    Science.gov (United States)

    Al-Baghdadi, Shaimaa B.; Hashim, Fanar G.; Salam, Ahmed Q.; Abed, Talib K.; Gaaz, Tayser Sumer; Al-Amiery, Ahmed A.; Kadhum, Abdul Amir H.; Reda, Khalid S.; Ahmed, Wahab K.

    2018-03-01

    The corrosion inhibition effectiveness of thiosemicarbazide compound, namely 3-nitro-5-(2-amino-1,3,4-thiadiazolyl)nitrobenzene (NATN), on mild steel in 1 M hydrochloric acid media has been investigated by weight loss technique. The results exhibit that the corrosion ratio of mild steel was reduced regarding to adding NATN. The corrosion inhibition rate for the NATN was 92.3% at the highest investigated NATN concentration. From the weight loss results it could be concluded that NATN with sulfur, nitrogen and oxygen atoms has clarified best corrosion inhibition achievement comparing to 3,5-dinitrobenzoic acid. Regarding to theoretical studies, DFT was employee to figured geometrical structure and electronic characteristics on NATN. The investigation have been extensive to the HOMO and LUMO analysis to evaluate the energy gap, Ionization potential, Electron Affinity, Global Hardness, Chemical Potential, Electrophilicity, Electronegativity and Polarizability.

  5. Synergistic Effect on Corrosion Inhibition Efficiency of Ginger Affinale Extract in Controlling Corrosion of Mild Steel in Acid Medium

    Energy Technology Data Exchange (ETDEWEB)

    Subramanian, Ananth Kumar; Arumugam, Sankar [Kandaswami Kandar' s College, Namakkal (India); Mallaiya, Kumaravel; Subramaniam, Rameshkumar [PSG College of Technology Peelamedu, Coimbatore (India)

    2013-12-15

    The corrosion inhibition nature of Ginger affinale extract for the corrosion of mild steel in 0.5N H{sub 2}SO{sub 4} was investigated using weight loss, electrochemical impedance and potentiodynamic polarization methods. The results revealed that Ginger affinale extract acts as a good corrosion inhibitor in 0.5N H{sub 2}SO{sub 4} medium. The inhibition efficiency increased with an increase in inhibitor concentration. The inhibition could be attributed to the adsorption of the inhibitor on the steel surface.

  6. Corrosion resistance of Ultra-Low-Carbon 19% Cr-11% Ni stainless steel for nuclear fuel reprocessing plants in nitric acid

    International Nuclear Information System (INIS)

    Ariga, Tamako; Takagi, Yoshio; Inazumi, Toru; Masamura, Katsumi; Sukekawa, M.

    1995-01-01

    An Ultra-Low-Carbon 19% Cr-11% Ni Stainless Steels used in nuclear fuel reprocessing plants where highly corrosion resistance in nitric acid is required has been developed. This steel has optimized the chemistry composition to decrease inclusions and deformation-induced martensitic transformation. The formation of deformation-induced martensite has the potential danger of accelerating corrosion in nitric acid. In this paper, effects of cold reduction and martensitic transformation on corrosion resistance of Ultra-Low-Carbon Stainless Steels in nitric acid are discussed. The developed steel showed excellent corrosion resistance during long-term exposure to nitric acid. (author)

  7. Development of sulfuric acid dew point corrosion resistant stainless steel for smokestacks and its ducts. Entotsu endoyo tairyusan roten fushoku stainless ko no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Sato, E.; Matsuhashi, R.; Koseki, T. (Nippon Steel Corp., Tokyo (Japan)); Ebara, R.; Nakamoto, H. (Mitsubishi Heavy Industries, Ltd., Tokyo (Japan))

    1993-05-20

    A new corrosion resistant steel was developed as a metal system lining material to prevent sulfuric acid dew point corrosion in smokestacks and ducts. SO3 in stack gas turns to sulfuric acid as a result of reacting with coexistent moisture in non-steady conditions during boiler actuation and shutdown when smokestack walls have low temperatures. When sulfuric acid thus generated contacts with metallic materials at temperatures lower than the sulfuric acid dew point temperature, sulfuric acid dew point corrosion occurs. During boiler steady operation, localized corrosion develops at clearance between salt deposits and the metallic materials. In order to improve the corrosion resistance, Mo, Cu and N were added in a reasonable range of amount. Entire surface corrosion resistance and local corrosion resistance were experimented in aqueous solutions simulating the smokestack environments to derive relational formulas with steel compositions. The new corrosion resistant steel met the the entire surface and local corrosion resistance requirements and was found economical. Low torsional velocity tensile and U-bend tests proved the steel satisfying the stress corrosion resistance requirement. Semi-automatic CO2 welding and shielded are welding provided good workability with no cracking, and impact strength and corrosion resistance in joints equivalent to those in the base material. 3 refs., 4 figs., 4 tabs.

  8. Chloride stress corrosion cracking of Alloy 600 in boric acid solutions

    International Nuclear Information System (INIS)

    Berge, Ph.; Noel, D.; Gras, J.M.; Prieux, B.

    1997-10-01

    The high nickel austenitic alloys are generally considered to have good resistance to chloride stress corrosion cracking. In the standard boiling magnesium chloride solution tests, alloys with more than 40% nickel are immune. Nevertheless, more recent data show that cracking can occur in both Alloys 600 and 690 if the solution is acidified. In other low pH media, such as boric acid solution at 100 deg C, transgranular and intergranular cracking are observed in Alloy 600 in the presence of minor concentrations of sodium chloride (2g/I). In concentrated boric acid at higher temperatures (250 and 290 deg C), intergranular cracking also occurs, either when the chloride concentration is high, or at low chloride contents and high oxygen levels. The role of pH and a possible specific action of boric acid are discussed, together with the influence of electrochemical potential. (author)

  9. Effect of Schiff's Bases as Corrosion Inhibitors on Mild Steel in Sulphuric Acid

    Directory of Open Access Journals (Sweden)

    R. K. Upadhyay

    2007-01-01

    Full Text Available Mass loss and thermometric methods have been used to study the corrosion inhibitory effect of synthesised Schiff's bases viz. N-(furfurilidine – 4- methoxy aniline (SB1, N-(furfurilidine – 4- methylaniline (SB2, N-(salicylidine – 4- methoxy aniline (SB3, N-(cinnamalidine – 4 –methoxy aniline (SB4 and N-(cinnamalidine - 2-methylaniline (SB5 on mild steel in sulphuric acid solutions. Results show that both methods have good agreement with each other and inhibition efficiency depends upon the concentration of inhibitor as well as that of acid. Maximum inhibition efficiency is shown at highest concentration of Schiff's bases at the highest strength of acid.

  10. Inhibitory effect of some carbazides on corrosion of aluminium in hydrochloric acid and sodium hydroxide solutions

    Energy Technology Data Exchange (ETDEWEB)

    Fouda, A.S. [El-Mansoura Univ. (Egypt). Dept. of Chemistry; Madkour, L.H. [Tanta Univ. (Egypt). Dept. of Chemistry; Elshafei, A.A. [El-Mansoura Univ. (Egypt). Dept. of Chemistry; Elasklany, A.H. [El-Mansoura Univ. (Egypt). Dept. of Chemistry

    1995-06-01

    The dissolution of aluminium in hydrochloric acid and sodium hydroxide solutions in the presence of semicarbazide, thiosemicarbazide and sym.diphenylcarbazide as corrosion inhibitors has been studied using thermometric, weight-loss and polarization methods. The three methods gave consistent results. The higher inhibition efficiency of these compounds in acidic than in alkaline madia may be due to the less negative potential of aluminium in hydrochloric acid solution, favouring adsorption of the additive. The adsorption of these compounds were found to obey Frumkin adsorption isotherm. Cathodic polarization measurements showed that these compounds are cathodic inhibitors and their adsorption in the double layer does not change the mechanism of the hydrogen evolution reaction. The results are analysed in terms of both molecular and cationic adsorption. (orig.)

  11. Corrosion Behavior of Ni3(Si,Ti + 2Mo in Hydrochloric Acid Solution

    Directory of Open Access Journals (Sweden)

    Gadang Priyotomo

    2013-10-01

    Full Text Available The corrosion behavior of Ni3(Si,Ti + 2Mo intermetallic compound (L12 and (L12 + Niss mixture region has been investigated using an immersion test, polarization method and surface analytical method (scanning electron microscope and energy-dispersive X-Ray spectrometry in 0.5 kmol/m3 hydrochloric acid (HCl solution at 303 K.  In addition, the results obtained were compared to those of the L12 single-phase Ni3(Si,Ti intermetallic compound and C 276 alloy.  It was found that Ni3(Si,Ti + 2Mo had the preferential dissolution of L12 with a lower Mo concentration compared to (L12 + Niss mixture region.  From the immersion test and polarization curves, Ni3(Si,Ti + 2Mo and C276 showed the lowest corrosion resistance and the highest corrosion resistance in the solution, respectively.  From this work, It implied that unlike C276, Ni3(Si,Ti +2Mo intermetallic compound was difficult to form a stable passive film in HCl solution as well as Ni3(Si,Ti in the same solution.

  12. Fundamental studies of aluminum corrosion in acidic and basic environments: Theoretical predictions and experimental observations

    International Nuclear Information System (INIS)

    Lashgari, Mohsen; Malek, Ali M.

    2010-01-01

    Using quantum electrochemical approaches based on density functional theory and cluster/polarized continuum model, we investigated the corrosion behavior of aluminum in HCl and NaOH media containing phenol inhibitor. In this regard, we determined the geometry and electronic structure of the species at metal/solution interface. The investigations revealed that the interaction energies of hydroxide corrosive agents with aluminum surface should be more negative than those of chloride ones. The inhibitor adsorption in acid is more likely to have a physical nature while it appears as though to be chemical in basic media. To verify these predictions, using Tafel plots, we studied the phenomena from experimental viewpoint. The studies confirmed that the rate of corrosion in alkaline solution is substantially greater than in HCl media. Moreover, phenol is a potential-molecule having mixed-type inhibition mechanism. The relationship between inhibitory action and molecular parameters was discussed and the activity in alkaline media was also theoretically anticipated. This prediction was in accord with experiment.

  13. Propolis as a green corrosion inhibitor for bronze in weakly acidic solution

    Science.gov (United States)

    Varvara, Simona; Bostan, Roxana; Bobis, Otilia; Găină, Luiza; Popa, Florin; Mena, Vicente; Souto, Ricardo M.

    2017-12-01

    In the present work, the inhibitive action of natural propolis on bronze corrosion in a weakly acidic solution containing Na2SO4 and NaHCO3 at pH 5 was evaluated using multiscale electrochemical techniques, namely potentiodynamic polarization, electrochemical impedance spectroscopy and scanning vibrating electrode technique measurements. The major constituents of propolis were identified by HPLC. Surface characterization was performed by SEM-EDX and AFM analysis. Experiments were performed as a function of the propolis concentration and immersion time in the corrosive electrolyte. The obtained results showed that propolis presents good anticorrosive properties on bronze, acting as a mixed-type inhibitor, but its protective effectiveness is time-dependent. The highest inhibiting efficiency of 98.9% was obtained in the presence of 100 ppm propolis, after about 12 h of exposure to inhibitor-containing electrolyte through the stabilization of Cu2O on the bronze surface. The inhibitive properties of propolis on bronze corrosion are likely due to the adsorption of its main constituents (flavonoids and phenolic compounds), through the oxygen atoms in their functional groups and aromatic rings, which have been evidenced by FT-IR spectra. The adsorption of propolis on bronze was found to follow Langmuir adsorption isotherm.

  14. Theoretical studies of three triazole derivatives as corrosion inhibitors for mild steel in acidic medium

    International Nuclear Information System (INIS)

    Guo, Lei; Zhu, Shanhong; Zhang, Shengtao; He, Qiao; Li, Weihua

    2014-01-01

    Highlights: • Three triazole derivatives as corrosion inhibitors were theoretically investigated. • Quantum chemical calculations and Monte Carlo simulations were performed. • Quantitative structure activity relationship (QSAR) approach has been used. • Theoretical conclusions are validated by the consistency with experimental findings. - Abstract: Corrosion inhibitive performance of 4-chloro-acetophenone-O-1′-(1′.3′.4′-triazolyl)-metheneoxime (CATM), 4-fluoro-acetophenone-O-1′-(1′.3′.4′-triazolyl)-metheneoxime (FATM), and 3,4-dichloro-acetophenone-O-1′-(1′.3′.4′-triazolyl)-metheneoxime (DATM) during the acidic corrosion of mild steel surface was investigated using density functional theory (DFT). Quantum chemical parameters such as the highest occupied molecular orbital energy (E HOMO ), the lowest unoccupied molecular orbital energy (E LUMO ), energy gap (ΔE), Mulliken charges, hardness (ξ), dipole moment (μ), and the fraction of electrons transferred (ΔN), were calculated. Quantitative structure activity relationship (QSAR) approach has been used, and a composite index of above-mentioned descriptors was performed to characterize the inhibition performance of the studied molecules. Furthermore, Monte Carlo simulation studies were applied to search for the best configurational space of iron/triazole derivative system

  15. Influence of poly(aminoquinone) on corrosion inhibition of iron in acid media

    Science.gov (United States)

    Jeyaprabha, C.; Sathiyanarayanan, S.; Phani, K. L. N.; Venkatachari, G.

    2005-11-01

    The inhibitor performance of chemically synthesized water soluble poly(aminoquinone) (PAQ) on iron corrosion in 0.5 M sulphuric acid was studied in relation to inhibitor concentration using potentiodynamic polarization and electrochemical impedance spectroscopy measurements. On comparing the inhibition performance of PAQ with that of the monomer o-phenylenediamine (OPD), the OPD gave an efficiency of 80% for 1000 ppm while it was 90% for 100 ppm of PAQ. PAQ was found to be a mixed inhibitor. Besides, PAQ was able to improve the passivation tendency of iron in 0.5 M H 2SO 4 markedly.

  16. Benzimidazole as corrosion inhibitor for heat treated 6061 Al- SiCp composite in acetic acid

    International Nuclear Information System (INIS)

    Chacko, Melby; Nayak, Jagannath

    2015-01-01

    6061 Al-SiCpcomposite was solutionizedat 350 °C for 30 minutes and water quenched. It was then underaged at 140 °C (T6 treatment). The aging behaviour of the composite was studied using Rockwell B hardness measurement. Corrosion behaviour of the underaged sample was studied in different concentrations of acetic acid and at different temperatures. Benzimidazole at different concentrations was used for the inhibition studies. Inhibition efficiency of benzimidazole was calculated for different experimental conditions. Thermodynamic parameters were found out which suggested benzimidazole is an efficient inhibitor and it adsorbed on to the surface of composite by mixed adsorption where chemisorption is predominant. (paper)

  17. Investigation of adsorption and inhibitive effect of acid red GRE (183 dye on the corrosion of carbon steel in hydrochloric acid media

    Directory of Open Access Journals (Sweden)

    M. Abd El-raouf

    2015-09-01

    Full Text Available The adsorption and corrosion inhibitive effect of acid red GRE (183 dye on carbon steel alloy in 1 M HCl solutions was studied using various techniques. Results of weight loss, Tafel polarization measurements and electrochemical impedance spectroscopy (EIS techniques show that this compound has fairly good inhibiting properties for steel corrosion in acidic bath; with efficiency around 96% at a concentration of 50 ppm. The inhibition is of a mixed anodic–cathodic nature. Factors affecting the corrosion process have been calculated and discussed. Acid red GRE (183 dye was shown to be an inhibitor in the acidic corrosion. Inhibition efficiency increased with acid red GRE (183 dye concentration but decreased with rise in temperature, corrosion inhibition is attributed to the adsorption of acid red GRE (183 dye on the carbon steel surface via a physical adsorption mechanism. Langmuir isotherm is found to provide an accurate description of the adsorption behavior of the investigated azo compound. The nature of the protective film was investigated using SEM and EDX techniques.

  18. Biogeochemical anomaly above oil-containing structures in an arid zone. [Growth stimulation of plants by sodium naphthenate used for prospecting

    Energy Technology Data Exchange (ETDEWEB)

    Grishchenko, O.M.

    1983-01-01

    Visual biological anomalies above the oil-containing structures are characterized by bright green coloring of the vegetation cover, gigantism of the plants, extended vegetation period of the plants, deformity of the plants, etc. Biological anomalies are associated with geological features and are observed only above the zone of fault disorders of the earth's crust, above deep faults. A conclusion is drawn about the presence above the oil-bearing structures in the arid zone of a biogeochemical anomaly whose origin is explained by the biological activity of oil and its derivatives. The petroleum growth matter is the sodium salt of naphthene acid, a growth stimulator of plants and animals. The oils of the USSR contain 0.8-4.8% naphthene acids, which effuse through the faults into the root area levels of the soil. As a result of stimulation of growth and development by the petroleum growth matter, the vegetation period of the plants is prolonged. Under the influence of natural petroleum growth substances, the height and productivity of the anomalous plants increases 2-3-fold. Formation and manifestation of signs of biogeochemical anomalies above the oil-bearing structures in the arid zone predetermine the following conditions: presence of fault disorders of the earth's crust; salinity of the root area of the soil layer necessary for neutralization of the naphthene acids with subsequent formation of the biologically active naphthenates; aridity of the desert landscape; plain relief excluding color diversity in vegetation cover because of nonuniform wetting, etc. The established biogeochemical anomaly can be used in prospecting and exploration of oil, gas and bitumen, and also in determining the fault disorders of the earth's crust.

  19. Study of Temperature Effect on the Corrosion Inhibition of C38 Carbon Steel Using Amino-tris(Methylenephosphonic Acid in Hydrochloric Acid Solution

    Directory of Open Access Journals (Sweden)

    Najoua Labjar

    2011-01-01

    Full Text Available Tafel polarization method was used to assess the corrosion inhibitive and adsorption behaviours of amino-tris(methylenephosphonic acid (ATMP for C38 carbon steel in 1 M HCl solution in the temperature range from 30 to 60∘C. It was shown that the corrosion inhibition efficiency was found to increase with increase in ATMP concentration but decreased with temperature, which is suggestive of physical adsorption mechanism. The adsorption of the ATMP onto the C38 steel surface was found to follow Langmuir adsorption isotherm model. The corrosion inhibition mechanism was further corroborated by the values of kinetic and thermodynamic parameters obtained from the experimental data.

  20. Understanding the corrosion inhibition of carbon steel and copper in sulphuric acid medium by amino acids using electrochemical techniques allied to molecular modelling methods

    International Nuclear Information System (INIS)

    Mendonça, Glaydson L.F.; Costa, Stefane N.; Freire, Valder N.; Casciano, Paulo N.S.; Correia, Adriana N.; Lima-Neto, Pedro de

    2017-01-01

    Highlights: • Corrosion inhibition of carbon steel and of copper by the amino acids was studied. • Inhibition efficiencies were experimentally achieved by electrochemical impedance. • DFT and Monte Carlo methods allowed correlating molecular properties with inhibition efficiency. • The corrosion inhibition followed the electron donation the electron-back donations process. - Abstract: Six amino acids were evaluated as corrosion inhibitors for carbon steel and copper in 0.5 mol L"−"1 H_2SO_4 solution by potentiodynamic polarization and electrochemical impedance techniques allied to Density Functional Theory (DFT) and Monte Carlo computations The corrosion inhibitor rankings were: Arg > Gln > Asn > Met > Cys > Ser, for copper, and Met > Cys > Ser > Arg > Gln > Asn, for carbon steel. The DFT approach failed to explain the corrosion inhibition rating based on the HOMO and LUMO energies of the isolated amino acid molecules, while the simpler classical Monte Carlo approach, performed considering the interaction energies between the corrosion inhibitor and the metallic substrate, was successful.

  1. Synthesis and Application of Phenyl Nitrone Derivatives as Acidic and Microbial Corrosion Inhibitors

    Directory of Open Access Journals (Sweden)

    Shijun Chen

    2015-01-01

    Full Text Available Nitrone has drawn great attention due to its wide applications as a 1,3-dipole in heterocyclic compounds synthesis and the bioactivities. With the special structure, nitrone can also be used as ligand in inorganic chemistry. Based on the current research, the nitrones are anticipated to be effective inhibitors against acidic and microbial corrosion. The aim of this work is to investigate the inhibitory action of nitrones. In this work, a series of phenyl nitrone derivatives (PN was synthesized and used as acidic and microbial corrosion inhibitors. The results indicate that several compounds show moderate to high inhibition efficiency (IE in 3% HCl. Accompanied with HMTA or BOZ, the IEs greatly increase, and the highest efficiency of 98.5% was obtained by using PN4 + BOZ. Investigation of the antibacterial activity against oilfield microorganism shows that the nitrone derivatives can inhibit SRB, IB, and TGB with moderate to high efficiency under 1,000 mg/L, which makes them potential to be used as bifunctional oilfield chemicals.

  2. Synergistic inhibition between o-phenanthroline and chloride ion for steel corrosion in sulphuric acid

    International Nuclear Information System (INIS)

    Li Xueming; Tang Libin; Li Lin; Mu Guannan; Liu Guangheng

    2006-01-01

    The corrosion inhibition of cold rolled steel in 0.5 M sulphuric acid in the presence of o-phenanthroline and sodium chloride (NaCl) has been investigated by using weight loss and electrochemical techniques. The experimental data suggest that the inhibition efficiency increases with increasing NaCl concentration in the presence of 0.0002 M o-phenanthroline, but decreases with increasing temperature. A synergistic effect is observed when o-phenanthroline and chloride ions are used together to prevent cold rolled steel corrosion in 0.5 M sulphuric acid. The polarization curves showed that the complex of o-phenanthroline and NaCl acts as a mixed type inhibitor. The experimental results suggested that the presence of chloride ions in the solution stabilized the adsorption of o-phenanthroline molecules on the metal surface and improved the inhibition efficiency of o-phenanthroline. The adsorption of the complex accords with the Langmuir adsorption isotherm. Some thermodynamic parameters such as adsorption heat, adsorption entropy and adsorption free energy have been calculated by employing thermodynamic equations. Kinetic parameters such as apparent activation energy and pre-exponential factor have been calculated and discussed

  3. Xanthium strumarium leaves extracts as a friendly corrosion inhibitor of low carbon steel in hydrochloric acid: Kinetics and mathematical studies

    Directory of Open Access Journals (Sweden)

    Anees A. Khadom

    2018-06-01

    Full Text Available Corrosion inhibition of low carbon steel in 1 M HCl was investigated in absence and presence of Xanthium strumarium leaves (XSL extracts as a friendly corrosion inhibitor. The effect of temperature and inhibitor concentration was studied using weight loss method. The result obtained shown that Xanthium strumarium leaves extracts act as an inhibitor for low carbon steel in HCl and reduces the corrosion rate. The inhibition efficiency was found to increases with increase in inhibitor concentration and temperature. Higher inhibition efficiency was 94.82% at higher level of inhibitor concentration and temperature. The adsorption of Xanthium strumarium leaves extracts was found to obey Langmuir adsorption isotherm model. The values of the free energy of adsorption was more than −20 kJ/mol, which is indicative of mixed mode of physical and chemical adsorption. Keywords: Corrosion, Green inhibitor, Natural extracts, Low carbon steel, Acid, Adsorption

  4. Kinetics of Corrosion Inhibition of Aluminum in Acidic Media by Water-Soluble Natural Polymeric Pectates as Anionic Polyelectrolyte Inhibitors.

    Science.gov (United States)

    Hassan, Refat M; Zaafarany, Ishaq A

    2013-06-17

    Corrosion inhibition of aluminum (Al) in hydrochloric acid by anionic polyeletrolyte pectates (PEC) as a water-soluble natural polymer polysaccharide has been studied using both gasometric and weight loss techniques. The results drawn from these two techniques are comparable and exhibit negligible differences. The inhibition efficiency was found to increase with increasing inhibitor concentration and decrease with increasing temperature. The inhibition action of PEC on Al metal surface was found to obey the Freundlich isotherm. Factors such as the concentration and geometrical structure of the inhibitor, concentration of the corrosive medium, and temperature affecting the corrosion rates were examined. The kinetic parameters were evaluated and a suitable corrosion mechanism consistent with the kinetic results is discussed in the paper.

  5. Kinetics of Corrosion Inhibition of Aluminum in Acidic Media by Water-Soluble Natural Polymeric Pectates as Anionic Polyelectrolyte Inhibitors

    Directory of Open Access Journals (Sweden)

    Refat M. Hassan

    2013-06-01

    Full Text Available Corrosion inhibition of aluminum (Al in hydrochloric acid by anionic polyeletrolyte pectates (PEC as a water-soluble natural polymer polysaccharide has been studied using both gasometric and weight loss techniques. The results drawn from these two techniques are comparable and exhibit negligible differences. The inhibition efficiency was found to increase with increasing inhibitor concentration and decrease with increasing temperature. The inhibition action of PEC on Al metal surface was found to obey the Freundlich isotherm. Factors such as the concentration and geometrical structure of the inhibitor, concentration of the corrosive medium, and temperature affecting the corrosion rates were examined. The kinetic parameters were evaluated and a suitable corrosion mechanism consistent with the kinetic results is discussed in the paper.

  6. Systematic corrosion investigation of various Cu-Sn alloys electrodeposited on mild steel in acidic solution: Dependence of alloy composition

    Energy Technology Data Exchange (ETDEWEB)

    Suerme, Yavuz, E-mail: ysurme@nigde.edu.t [Department of Chemistry, Faculty of Science and Art, Nigde University, 51200 Nigde (Turkey); Guerten, A. Ali [Department of Chemistry, Faculty of Science and Art, Osmaniye Korkut Ata University, 80000 Osmaniye (Turkey); Bayol, Emel; Ersoy, Ersay [Department of Chemistry, Faculty of Science and Art, Nigde University, 51200 Nigde (Turkey)

    2009-10-19

    Copper-tin alloy films were galvanostatically electrodeposited on the mild steel (MS) by combining the different amount of Cu and Sn electrolytes at a constant temperature (55 deg. C) and pH (3.5). Alloy films were characterized by using the energy dispersive X-ray analysis (EDX), scanning electron microscopy (SEM), X-ray diffraction (XRD) and micrographing techniques. Corrosion behaviours were evaluated with electrochemical impedance spectrometry (EIS) and electrochemical polarization measurements. Time gradient of electrolysis process was adjusted to obtain same thickness of investigated alloys on MS. The systematic corrosion investigation of various Cu{sub x}-Sn{sub 100-x} (x = 0-100) alloy depositions on MS substrate were carried out in 0.1 M sulphuric acid medium. Results indicate that the corrosion resistance of the alloy coatings depended on the alloy composition, and the corrosion resistance increased at Cu-Sn alloy deposits in proportion to Sn ratio.

  7. Corrosion behavior of 321 stainless steel in low-acidity uranium nitrate solution

    International Nuclear Information System (INIS)

    Liao Junsheng; Sun Ying; Zhang Wanglin; Ding Ping; Yang Jiangrong; Wu Lunqiang

    2003-01-01

    Weighing and electrochemical methods have been used to investigate the high-temperature uniform corrosion and electrochemical corrosion behavior of lCr18Ni9Ti (321) stainless steel in uranium nitrate solution at different concentrations and pH values. The uniform corrosion results showed that the corrosion rate of 321 stainless steel was less than 0.04 g/m 2 .h, and the visible change of surface smoothness was not observed through 960 h. It was perfect corrosion-resisting in obtained conditions. The electro-chemical corrosion behavior study has been performed to investigate 321 stainless steel in uranium nitrate solutions of the dissolved and saturated oxygen. The corrosion potential and corrosion current density were obtained. Auger photoelectron spectroscopy for measurement of uranium in specimen was used to indicate that uranium is in corrosion product. The corrosion film was measured by Ar ion gun sputter, and the thickness is 10-15 nm. (authors)

  8. Corrosion of N80 carbon steel in oil field formation water containing CO2 in the absence and presence of acetic acid

    International Nuclear Information System (INIS)

    Zhu, S.D.; Fu, A.Q.; Miao, J.; Yin, Z.F.; Zhou, G.S.; Wei, J.F.

    2011-01-01

    Highlights: → Effects of temperature and HAc concentration on N80 carbon steel were investigated. → Temperature increased corrosion rate of N80 and precipitation rate of FeCO 3 . → HAc increased corrosion rate of N80 and enhanced the local corrosion attack (pitting). → FeCO 3 was still the main composition of corrosion products in the presence of HAc. → There was a transition region between CO 2 corrosion control and HAc corrosion control. - Abstract: Corrosion behaviour of N80 carbon steel in formation water containing CO 2 was studied by polarization curve technique, electrochemical impedance spectroscopy, weight loss test, scanning electron microscope, and X-ray diffraction. Effects of temperature and acetic acid concentration on the corrosion behaviour of N80 carbon steel were discussed. The results showed that increasing temperature not only enhanced the dissolution of steel substrate, but also promoted the precipitation of FeCO 3 , the addition of acetic acid enhanced localized corrosion attack on N80 carbon steel. FeCO 3 was the main corrosion product. And there was a transition region between CO 2 corrosion control and HAc corrosion control.

  9. The Synthesis of 58co-Naphthenate Complex Compound for Evaluation of Oil well Production Capacity

    International Nuclear Information System (INIS)

    Duyeh Setiawan; Marlina

    2009-01-01

    The nuclear technique using radioisotope as a tracer in oil industry has assisted to solve the degradation of oil production. Usually, the degradation of oil production in well caused by the formation changing of hydrostatic pressure of the oil layer in the well. This problem could be evaluated by injection of water to oil well, for recovering this hydrostatic pressure. The watcher of the water injection success is done by the way of nuclear technique radioactive tracer systems, applied radioisotope having short half life and low gamma radiation energy. Radioisotope cobalt-58 in the complex form with naphthenate ( 58 Co-naphthenate ) often used as the tracer in the water injection technique. The tracer 58 Co-naphthenate relatively easy to synthesis and radioisotope 58 Co has half life 70.86 days and gamma energy was 0.811 Me v. The synthesis method of 58 Co-naphthenate route has been carried out by mixing of 58 CoCl 2 radioisotope solution with sodium naphthenate (C 5 H 9 CH 2 COONa) in the optimum condition. The results shows that the optimal mole ratio of cobalt-58 and naphthenate was 1:6 which produced 87,38 % of ren dement and 82,5 % of efficiency labelling. This synthesis technique was made permanent procedure for making of 58 Co-naphthenate complex as radioactive tracer in service of radioisotope production especially industrial area. (author)

  10. Protective effect of KhOSP-10 inhibitor during corrosion, hydrogenadsorption and corrosion cracking of a steel in sulfuric acid

    Energy Technology Data Exchange (ETDEWEB)

    Mindyuk, A K; Svist, E I; Savitskaya, O P; Goyan, E B; Gopanenko, A N [AN Ukrainskoj SSR, Lvov. Fiziko-Mekhanicheskij Inst.

    1975-01-01

    The protective propeties of inhibitor KhOSP-10 in the time of corrosion and corrosive cracking of steel 40Kh are higher then those of inhibitors KPI-1, KI-1, I-I-V etc. Its ability to reduce steel hydrogenation is the same as in the case of KPI-1 inhibitor i.e. below that of KI-1. HCl additives enhance the efficiency of inhibitors KPI-1, KI-1, I-1-V etc. up to the protective ability of KhOSP-10. Kinetics of the electrode processes was estimated from polarization curves.

  11. Analysis of corrosion data for carbon steels in simulated salt repository brines and acid chloride solutions at high temperatures

    International Nuclear Information System (INIS)

    Diercks, D.R.; Hull, A.B.; Kassner, T.F.

    1988-03-01

    Carbon steel is currently the leading candidate material for fabrication of a container for isolation of high level nuclear waste in a salt repository. Since brine entrapped in the bedded salt can migrate to the container by several transport processes, corrosion is an important consideration in the long-term performance of the waste package. A detailed literature search was performed to compile relevant corrosion data for carbon steels in anoxic acid chloride solutions, and simulated salt repository brines at temperatures between ∼ 20 and 400 0 C. The hydrolysis of Mg 2+ ions in simulated repository brines containing high magnesium concentrations causes acidification at temperatures above 25 0 C, which, in turn, influences the protective nature of the magnetite corrosion product layer on carbon steel. The corrosion data for the steels were analyzed, and an analytical model for general corrosion was developed to calculate the amount of penetration (i.e., wall thinning) as a function of time, temperature, and the pressure of corrosion product hydrogen than can build up during exposure in a closed system (e.g., a sealed capsule). Both the temperature and pressure dependence of the corrosion rate of steels in anoxic acid chloride solutions indicate that the rate-controlling partial reaction is the cathodic reduction of water to form hydrogen. Variations in the composition and microstructure of the steels or the concentration of the ionic species in the chloride solutions (provided that they do not change the pH significantly) do not appear to strongly influence the corrosion rate

  12. Corrosion of stainless steel in alcohol solutions of the simplest carboxylic acids

    International Nuclear Information System (INIS)

    Vigdorovich, V.I.; Korneeva, T.V.; Tsygankova, L.E.

    1975-01-01

    The behaviour of stainless Kh18N10T steel is considered in the methanol and ethanol solutions of formic and acetic acids, respectively. Consideration is given to the effect of the concentration (C) of the acid (0.01-1.00 N), water (0.1-20.0 mass.%) and temperature (room temperature, 40 and 60 deg C). Curves of anodic polarization were plotted. In the course of time in 1.0 and 0.5 N anhydrous methanol solutions of HCOOH at room temperature in the absence of the external anode current one can observe an increase in the electrode potential. Continued reduction of the formic acid concentration results in an improvement on the initial potential (psi) and a practical constancy of psi in time. It is shown that depending on the acid concentration the additions of water are capable of producing both a passivating and an activating effect. It is assumed that the growth in the length of the hydrocarbon radical of carboxylic acid promotes the adsorption displacement of water and alcohols from the metal surface and enhancement of the corrosion rate

  13. Inhibition treatment of the corrosion of lead artefacts in atmospheric conditions and by acetic acid vapour: use of sodium decanoate

    International Nuclear Information System (INIS)

    Rocca, E.; Rapin, C.; Mirambet, F.

    2004-01-01

    The efficiency of linear sodium decanoate, CH 3 (CH 2 ) 8 COONa (noted NaC 10 ), as corrosion inhibitor of lead was determined by electrochemical techniques in two corrosive mediums: ASTM D1384 standard water and acetic acid-enriched solutions. Best results were obtained with 0.05 mol l -1 of NaC 10 solution. In these conditions, the inhibition efficiency can be estimated of 99.9%. The corrosion inhibition effect was confirmed by cyclic atmospheric tests in a climatic chamber in two different conditions: water saturated vapour, and acid acetic enriched vapour simulating the atmosphere in the wooden displays in museums. Surface analyses by SEM and X-ray diffraction indicate that the metal protection is due to the formation of a protective layer mainly composed of lead decanoate Pb(C 10 ) 2 (metallic soap). This inhibition treatment was applied on objects of metallic cultural heritage: gallo-roman sarcophagus in lead. Electrochemical methods confirm the efficiency of treatment on archaeological materials. In conclusion, this inhibitor treatment seems to be very promising against the atmospheric corrosion and the corrosion by organic acid vapour in museums

  14. Evaluation of the inhibitive effect of some plant extracts on the acid corrosion of mild steel

    International Nuclear Information System (INIS)

    Oguzie, Emeka E.

    2008-01-01

    Corrosion inhibition of mild steel in 2 M HCl and 1 M H 2 SO 4 by extracts of selected plants was investigated using a gasometric technique at temperatures of 30 and 60 deg. C. The studied plants materials include leaf extracts Occimum viridis (OV), Telferia occidentalis (TO), Azadirachta indica (AI) and Hibiscus sabdariffa (HS) as well as extracts from the seeds of Garcinia kola (GK). The results indicate that all the extracts inhibited the corrosion process in both acid media by virtue of adsorption and inhibition efficiency improved with concentration. Synergistic effects increased the inhibition efficiency in the presence of halide additives. Inhibition mechanisms were deduced from the temperature dependence of the inhibition efficiency as well as from assessment of kinetic and activation parameters that govern the processes. Comparative analysis of the inhibitor adsorption behaviour in 2 M HCl and 1 M H 2 SO 4 as well as the effects of temperature and halide additives suggest that both protonated and molecular species could be responsible for the inhibiting action of the extracts

  15. Evaluation of the inhibitive effect of some plant extracts on the acid corrosion of mild steel

    Energy Technology Data Exchange (ETDEWEB)

    Oguzie, Emeka E. [Electrochemistry and Materials Science Research Laboratory, Department of Chemistry, Federal University of Technology, PMB 1526, Owerri (Nigeria)], E-mail: oguziemeka@yahoo.com

    2008-11-15

    Corrosion inhibition of mild steel in 2 M HCl and 1 M H{sub 2}SO{sub 4} by extracts of selected plants was investigated using a gasometric technique at temperatures of 30 and 60 deg. C. The studied plants materials include leaf extracts Occimum viridis (OV), Telferia occidentalis (TO), Azadirachta indica (AI) and Hibiscus sabdariffa (HS) as well as extracts from the seeds of Garcinia kola (GK). The results indicate that all the extracts inhibited the corrosion process in both acid media by virtue of adsorption and inhibition efficiency improved with concentration. Synergistic effects increased the inhibition efficiency in the presence of halide additives. Inhibition mechanisms were deduced from the temperature dependence of the inhibition efficiency as well as from assessment of kinetic and activation parameters that govern the processes. Comparative analysis of the inhibitor adsorption behaviour in 2 M HCl and 1 M H{sub 2}SO{sub 4} as well as the effects of temperature and halide additives suggest that both protonated and molecular species could be responsible for the inhibiting action of the extracts.

  16. Solid Obtained by Electrocoagulation of Vinasse, new Inhibitor for Acid Corrosion of Brass

    Directory of Open Access Journals (Sweden)

    Elaine Ojeda-Armaignac

    2016-07-01

    Full Text Available This work is part of research related to obtaining a corrosion inhibitor from vinasse, whose basic advantages is the possibility of using an industrial waste from distilleries ethyl alcohol as raw material in the production of a solid corrosion inhibitor of national production by electrocoagulation, which implies import substitution and cost reductions. The inhibitory action of the solids obtained by electrocoagulation of vinasse was investigated by potentiodynamic polarization techniques and electrochemical impedance spectroscopy. It was found that the efficiencies of inhibition against the brass into the electrolyte solution were very good, behaving as an efficient inhibitor in acid medium. Inhibition efficiency increases with increasing concentration. The maximum inhibition efficiency was of 93,43 % for the concentration of 2 mg / L of vinasse. Thermodynamic parameters were obtained at the study temperature. It was found that the adsorption of inhibitor molecules on the surface of brass obey the Langmuir isotherm, and the values of adsorción free energy of - 23.06 kJ mol-1 show the spontaneity of adsorption and indicate that the inhibitor is strongly adsorbed on the surface of brass, study of potentiodynamic polarization curves confirmed that it is a mixed type inhibitor, with an anode predominance and there is a predominant mechanism of physical adsorption combined with a chemisorption.

  17. Two pyrazine derivatives as inhibitors of the cold rolled steel corrosion in hydrochloric acid solution

    Energy Technology Data Exchange (ETDEWEB)

    Deng Shuduan, E-mail: dengshuduan@163.co [Faculty of Wood Science and Decoration Technology, Southwest Forestry University, Kunming 650224 (China); Li Xianghong; Fu Hui [Department of Fundamental Courses, Southwest Forestry University, Kunming 650224 (China)

    2011-02-15

    Research highlights: Two pyrazine derivatives of 2-aminopyrazine (AP) and 2-amino-5-bromopyrazine (ABP) are good inhibitors for the corrosion of steel in 1.0 M HCl solution. The inhibition efficiency follows the order: ABP > AP. The substitution Br of ABP is the additional centre of adsorption and increases the electron density of pyrazine ring, which can facilitate its adsorption on the metal surface. For either ABP or AP, the adsorption obeys Langmuir adsorption isotherm. Both ABP and AP act as mixed-type inhibitors. - Abstract: The inhibition effect of two pyrazine derivatives of 2-aminopyrazine (AP) and 2-amino-5-bromopyrazine (ABP) on the corrosion of cold rolled steel (CRS) in 1.0 M hydrochloric acid (HCl) was studied by weight loss, potentiodynamic polarization curves, and electrochemical impedance spectroscopy (EIS) methods. The results show that both AP and ABP are good inhibitors, and inhibition efficiency follows the order: ABP > AP. The adsorption of each inhibitor on CRS surface obeys Langmuir adsorption isotherm. Potentiodynamic polarization curves show that two pyrazine derivatives act as mixed-type inhibitors. EIS spectra exhibit one capacitive loop and confirm the inhibitive ability.

  18. Two pyrazine derivatives as inhibitors of the cold rolled steel corrosion in hydrochloric acid solution

    International Nuclear Information System (INIS)

    Deng Shuduan; Li Xianghong; Fu Hui

    2011-01-01

    Research highlights: → Two pyrazine derivatives of 2-aminopyrazine (AP) and 2-amino-5-bromopyrazine (ABP) are good inhibitors for the corrosion of steel in 1.0 M HCl solution. → The inhibition efficiency follows the order: ABP > AP. The substitution Br of ABP is the additional centre of adsorption and increases the electron density of pyrazine ring, which can facilitate its adsorption on the metal surface. → For either ABP or AP, the adsorption obeys Langmuir adsorption isotherm. → Both ABP and AP act as mixed-type inhibitors. - Abstract: The inhibition effect of two pyrazine derivatives of 2-aminopyrazine (AP) and 2-amino-5-bromopyrazine (ABP) on the corrosion of cold rolled steel (CRS) in 1.0 M hydrochloric acid (HCl) was studied by weight loss, potentiodynamic polarization curves, and electrochemical impedance spectroscopy (EIS) methods. The results show that both AP and ABP are good inhibitors, and inhibition efficiency follows the order: ABP > AP. The adsorption of each inhibitor on CRS surface obeys Langmuir adsorption isotherm. Potentiodynamic polarization curves show that two pyrazine derivatives act as mixed-type inhibitors. EIS spectra exhibit one capacitive loop and confirm the inhibitive ability.

  19. Electrochemical evaluation of inhibition efficiency of ciprofloxacin on the corrosion of copper in acid media

    Energy Technology Data Exchange (ETDEWEB)

    Thanapackiam, P. [Department of Chemistry, Coimbatore Institute of Technology, Coimbatore, Tamilnadu, 641 014 (India); Rameshkumar, Subramaniam [Department of Chemistry, Sri Vasavi College, Erode, Tamilnadu, 638 316 (India); Subramanian, S.S. [Department of Chemistry, PSG College of Technology, Coimbatore, Tamilnadu, 641 004 (India); Mallaiya, Kumaravel, E-mail: mkvteam.research@gmail.com [Department of Chemistry, PSG College of Technology, Coimbatore, Tamilnadu, 641 004 (India)

    2016-05-01

    The inhibition efficiency of ciprofloxacin on the corrosion of copper was studied in 1.0MHNO{sub 3} and 0.5MH{sub 2}SO{sub 4} solutions by electrochemical impedance spectroscopy and potentiodynamic polarization techniques. The corrosion inhibition action of ciprofloxacin was observed to be of mixed type in both the acid media, but with more of a cathodic nature. The experimental data were found to fit well with the Langmuir adsorption isotherm. The thermodynamic parameters such as adsorption equilibrium constant(K{sub ads}), free energy of adsorption(ΔG{sub ads}), activation energy(E{sub a}) and potential of zero charge(PZC) showed that the adsorption of ciprofloxacin onto copper surface involves both physisorption and chemisorption. - Highlights: • The inhibitor efficiency increases with increase in ciprofloxacin concentration. • Polarization measurements show that ciprofloxacin acts as a mixed type inhibitor. • The adsorption of the inhibitor on copper surface follows Langmuir adsorption isotherm. • The negative values of ΔG{sub ads} indicates that the adsorption is spontaneous and exothermic.

  20. Effect of Al and Ce oxide layers electrodeposited on OC4004 stainless steel on its corrosion characteristics in acid media

    International Nuclear Information System (INIS)

    Stoyanova, E.; Nikolova, D.; Stoychev, D.; Stefanov, P.; Marinova, T.

    2006-01-01

    The changes in the corrosion characteristics of stainless steel OC4004 in 0.1 M HNO 3 after electrodeposition of thin Al and Ce oxide films on it has been investigated. The Ce 2 O 3 -CeO 2 layers have been found to possess a pronounced stabilizing effect on the steel passive state and on its corrosion resistance, respectively, whereas the Al 2 O 3 layers do not improve considerably the corrosion behaviour of the SS/Al 2 O 3 system. A twice-lower corrosion current was observed with a ternary SS/Al 2 O 3 /Ce 2 O 3 -CeO 2 system in the passive region, while the zones of potentials, where the steel is in a stable passive state, are not changed. The obtained results permit the assumption that the cerium oxides layer acts as an effective cathode playing a determining role with respect to the improvement of the corrosion behavior of the steel. It has been concluded that when the SS/Al 2 O 3 /Ce 2 O 3 -CeO 2 system is used in media containing nitric acid, the corrosion will proceed at potentials where the passive state of steel would not be disturbed

  1. Predicting Effects of Corrosion Erosion of High Strength Steel Pipelines Elbow on CO2-Acetic Acid (HAc) Solution

    International Nuclear Information System (INIS)

    Asmara, Y. P.; Ismail, M. F.; Chui, L. Giok; Halimi, Jamiludin

    2016-01-01

    Simultaneously effect of erosion combined with corrosion becomes the most concern in oil and gas industries. It is due to the fast deterioration of metal as effects of solid particles mixed with corrosive environment. There are many corrosion software to investigate possible degradation mechanisms developed by researchers. They are using many combination factors of chemical reactions and physical process. However effects of CO 2 and acid on pipelines orientations are still remain uncovered in their simulation. This research will investigate combination effects of CO 2 and HAc on corrosion and erosion artificial environmental containing sands particles in 45°, 90° and 180° elbow pipelines. The research used theoretical calculations combined with experiments for verification. The main concerns are to investigate the maximum erosion corrosion rate and maximum shear stress at the surface. Methodology used to calculate corrosion rate are Linear Polarization Resistance (LPR) and weight loss. The results showed that at 45°, erosion rate is the more significant effects in contributing degradation of the metal. The effects of CO 2 and HAc gave significant effects when flow rate of the solution are high which reflect synergism effects of solid particles and those chemical compositions. (paper)

  2. Investigation of the Effects of Solution Temperature on the Corrosion Behavior of Austenitic Low-Nickel Stainless Steels in Citric Acid using Impedance and Polarization Measurements

    Directory of Open Access Journals (Sweden)

    Mulimbayan Francis M.

    2015-01-01

    Full Text Available Stainless steels may be classified according to alloy microstructure – ferritic, austenitic, martensitic, duplex, and precipitation hardening grades. Among these, austenitic grade has the largest contribution to market due to the alloy’s numerous industrial and domestic applications. In this study, the corrosion behavior of low-Nickel stainless steel in citric acid was investigated using potentiodynamic polarization techniques and Electrochemical Impedance Spectroscopy (EIS. The corrosion current density which is directly related to corrosion rate was extracted from the generated anodic polarization curve. Increasing the temperature of the citric acid resulted to increased corrosion current densities indicating higher corrosion rates at initial corrosion condition. EIS was performed to generate Nyquist plots whose shape and size depicts the corrosion mechanism and corrosion resistance of the alloy in citric acid, respectively. All the generated Nyquist plots have depressed semi-circle shapes implying that corrosion process takes place with charge-transfer as the rate-determining step. Based from the extracted values of polarization resistance (Rp, the temperature of the solution has negative correlation with the corrosion resistance of the studied alloy.

  3. Organic compounds as corrosion inhibitors for mild steel in acidic media: correlation between inhibition efficiency and chemical structure

    Energy Technology Data Exchange (ETDEWEB)

    Elias, Elizandra C.S.; Chrisman, Erika C.A.N. [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Escola de Quimica

    2009-12-19

    The use of inhibitors for mild steels corrosion control which are in contact with aggressive environment is an accepted practice in acid treatment of oil-wells. Organic compounds have been studied to evaluate their corrosion inhibition potential. Film-forming corrosion inhibitors, commonly used to protect oil-field equipment, can be absorbed on the steel surface to give structurally ordered layers. Therefore, the electrons should act as an important role for this adsorption. Studies reveal that organic compounds show significant inhibition efficiency. For this purpose, their molecules should contain N, O and S heteroatoms in various functional groups, long hydrocarbon linear or branched radical and anion and cation active components. However, most of these compounds are not only expensive but also toxic to living beings. According to the 'Green Chemistry' rules, corrosion inhibitors based on organic compounds should be cheap, with low toxicity and have high inhibition efficiency. In this study, the effects of some organic compounds with different groups such as amide, ether, phenyldiamine, anime and aminophenol on the corrosion behavior of mild steel in acidic media have been investigated. The experimental data were obtained by gravimetric measurements. The results show that these compounds reveal a promising corrosion inhibition where phenyldiamine is the most efficient. The effect of molecular structure on the corrosion inhibition efficiency was investigated by semi-empirical quantum chemical calculations. The electronic properties such as highest occupied molecular orbital (HOMO), lowest unoccupied molecular orbital (LUMO) energy levels, and LUMO-HOMO energy gap orbital density were calculated. The relations between the inhibition efficiency and some quantum parameters are discussed and correlations are proposed. The highest values for the HOMO densities were found in the vicinity nitrogen atom, indicating that it is the most probable adsorption center

  4. Quantum chemical studies on the corrosion inhibition of some sulphonamides on mild steel in acidic medium

    International Nuclear Information System (INIS)

    Arslan, Taner; Kandemirli, Fatma; Ebenso, Eno E.; Love, Ian; Alemu, Hailemichael

    2009-01-01

    Quantum chemical calculations using the density functional theory (DFT) and some semi-empirical methods were performed on four sulphonamides (sulfaguanidine, sulfamethazine, sulfamethoxazole and sulfadiazine) used as corrosion inhibitors for mild steel in acidic medium to determine the relationship between molecular structure and their inhibition efficiencies. The results of the quantum chemical calculations and experimental %IE were subjected to correlation analysis and indicate that their inhibition effect are closely related to E HOMO , E LUMO , hardness, polarizability, dipole moment and charges. The %IE increased with increase in the E HOMO and decrease in E HOMO - E LUMO . The negative sign of the E HOMO values and other kinetic and thermodynamic parameters indicates that the data obtained support physical adsorption mechanism

  5. Herbs as new type of green inhibitors for acidic corrosion of steel

    Energy Technology Data Exchange (ETDEWEB)

    Khamis, E. [Faculty of Science, Chemistry Department, Alexandria University, P.O. Box 426 Ibrahimia Alexandria 21321 (Egypt); AlAndis, N. [College of Science, Chemistry Department, King Saud University (Saudi Arabia)

    2002-09-01

    Corrosion inhibition of steel in sulphuric acid by six different herb plants has been studied using a.c and d.c electrochemical techniques. The environmentally friendly investigated compounds are namely: thyme, coriander, hibiscus, anis, black cumin and Garden cress. Electrochemical impedance spectroscopy has been successfully used to evaluate the performance of these compounds. The ac measurements showed that the dissolution process is activation controlled. Bode and theta diagrams show only one time constant ({tau}). Potentiodynamic polarization curves indicate that the studied compounds are mixed-type inhibitors. The order of increasing inhibition efficiency was correlated with the change of the constituent active materials of the compounds. Thyme, which contains the powerful antiseptic thymol as the active ingredient, offers excellent protection for steel surface. (Abstract Copyright [2002], Wiley Periodicals, Inc.)

  6. CORROSION INHIBITIVE PROPERTIES OF EXTRACT OF JATROPHA CURCAS LEAVES ON MILD STEEL IN HYDROCHLORIC ACID ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    J. Odusote

    2016-09-01

    Full Text Available Jatropha curcas leaves extract was tested as a green corrosion inhibitor for mild steel in aqueous hydrochloric acid solution using gravimetric and thermometric techniques. The results reveal that the inhibition efficiency vary with concentration of the leaf extract and the time of immersion. Maximum inhibition efficiency was found to be 95.92% in 2M HCl with 0.5 g/l concentration of the extract in gravimetric method, while 87.04% was obtained in thermometric method. The inhibiting effect was attributed to the presence of alkaloids, flavonoids, saponins, tannins and phenol in the extract. The adsorption processes of the Jatropha curcas leaves extract onto the mild steel is consistent with the assumptions of Langmuir isotherm model and also found to be spontaneous. From the results, a physical adsorption mechanism is proposed for the adsorption of Jatropha curcas leaves extract onto mild steel surface.

  7. The Inhibitive Action Of Sodium Soya Sulphonate Towards The Corrosion Of Aluminium In Hydrochloric Acid

    OpenAIRE

    Mourad, M. Y.; Mead, A. I.; Seliman, S. A.

    1993-01-01

    The dissolution of aluminium in 2M hydrochloric acid in the presence of sodium soya sulphonate (SSS) as corrosion inhibitor has been studied using hydrogen evolution and thermometric methods. The two methods gave consistent results. The results obtained indicate that the inhibitive effect of the sulphonated mixture relates to chemisorption mechanism on the metal surface via the n electrons in the double bonds. تمت دراسة ذوبان الألمونيوم في محلول 2 مولارى من حمض الهيدروكلوريك في وجود سلفونا...

  8. Thermodynamic studies on corrosion inhibition of aqueous solutions of amino/carboxylic acids toward copper by EMF measurement

    International Nuclear Information System (INIS)

    Spah, Manjula; Spah, Dal Chand; Deshwal, Balraj; Lee, Seungmoon; Chae, Yoon-Keun; Park, Jin Won

    2009-01-01

    Electromotive force (E) measurements were made on an electrochemical cell [Cu x Hg|CuCl 2 (m) in a solvent S|AgCl-Ag] (where S is a dilute aqueous solution (0.01 m) of amino acid (glycine, alanine, methionine and glutamic acid) or aliphatic carboxylic acid (formic acid, acetic acid, n-butyric acid and glutaric acid)) at 30 deg. C. These measured E values were used to compute the dissociation constants (K 1 and K 2 ) and the degree of dissociation (α 1 and α 2 ) by iterative procedures. The standard cell potential (E o ) and the mean activity coefficient (γ ± ) of CuCl 2 were also determined. The E o data were next used to evaluate the Gibbs energy of transfer (ΔG tr 0 ) of CuCl 2 from water to dilute aqueous solutions of the amino/carboxylic acids. The negative ΔG tr 0 values suggested that these acids act as potential corrosion inhibitors. The magnitudes of ΔG tr 0 values show that the amino acids act as better corrosion inhibitors towards copper than the aliphatic carboxylic acids.

  9. Inhibitive Effect of Butyltin Trichloride on Dissolution and Localized Corrosion of Aluminium in Sodium Hydroxide and Hydrochloric Acid

    OpenAIRE

    Mourad, M.Y.; Ibrahim, E.H.; Seliman, S.A.

    1990-01-01

    The dissolution of aluminium in sodium hydroxide and hydrochloric acid in the presence of butyltin trichloride as corrosion inhibitor has been studied by hydrogen evolution and thermometric methods. Experimental findings indicate that the inhibition effect of butyltin trichloride takes place through an adsorption mechanism following the Frumkin's isotherm. Butyltin trichloride acts as a weakly adsorbed inhibitor in NaOH and as a strongly adsorbed inhibitor in hydrochloric acid medium. Wile...

  10. Effect of acetic acid on corrosion behavior of AISI 201, 304 and 430 stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Vashishtha, Himanshu; Taiwade, Ravindra V.; Sharma, Sumitra [Visvesvaraya National Institute of Technology (VNIT), Nagpur (India). Dept. of Metallurgical and Materials Engineering

    2017-05-15

    Austenitic stainless steels are often used to handle organic acids such as acetic acid (CH{sub 3}COOH), which are extensively used in food contact applications and chemical industries for manufacturing medicines, nutrition and various chemical amalgams. In the present investigation an attempt has been made to compare the corrosion behavior of Cr-Ni (AISI type 304), Cr-Mn-Ni (type 201) and Cr (type 430) stainless steel for economical replacement of higher cost Cr-Ni grade. Immersion testing was performed at room temperature and boiling temperature in acetic acid. Atomic absorption spectroscopy was carried out to evaluate metal ion concentration in the immersion solution. The surface morphology of pit formation was characterized using scanning electron microscopy coupled with energy dispersive X-ray spectroscopy. The effect of elemental leaching on electrical conductivity of the immersion solution was evaluated and correlated with pH measurements. A new mechanism has been proposed for the pit formation due to manganese sulfide inclusions. The replacement compatibility was further confirmed with anodic polarization testing and a successful replacement was established for room temperature applications.

  11. Nicotinic acid as a nontoxic corrosion inhibitor for hot dipped Zn and Zn-Al alloy coatings on steels in diluted hydrochloric acid

    Energy Technology Data Exchange (ETDEWEB)

    Ju Hong [Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071 (China); Graduate School, Chinese Academy of Sciences, Beijing 100039 (China); Li Yan [Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071 (China)], E-mail: yanlee@ms.qdio.ac.cn

    2007-11-15

    The inhibition effect of nicotinic acid for corrosion of hot dipped Zn and Zn-Al alloy coatings in diluted hydrochloric acid was investigated using quantum chemistry analysis, weight loss test, electrochemical measurement, and scanning electronic microscope (SEM) analysis. Quantum chemistry calculation results showed that nicotinic acid possessed planar structure with a number of active centers, and the populations of the Mulliken charge, the highest occupied molecular orbital (HOMO), and the lowest unoccupied molecular orbital (LUMO) were found mainly focused around oxygen and nitrogen atoms, and the cyclic of the benzene as well. The results of weight loss test and electrochemical measurement indicated that inhibition efficiency (IE%) increased with inhibitor concentration, and the highest inhibition efficiency was up to 96.7%. The corrosion inhibition of these coatings was discussed in terms of blocking the electrode reaction by adsorption of the molecules at the active centers on the electrode surface. It was found that the adsorption of nicotinic acid on coating surface followed Langmuir adsorption isotherm with single molecular layer, and nicotinic acid adsorbed on the coating surface probably by chemisorption. Nicotinic acid, therefore, can act as a good nontoxic corrosion inhibitor for hot dipped Zn and Zn-Al alloy coatings in diluted hydrochloric acid solution.

  12. Synthesis and characterization of a novel organic corrosion inhibitor for mild steel in 1 M hydrochloric acid

    Directory of Open Access Journals (Sweden)

    Mohammed H. Othman Ahmed

    2018-03-01

    Full Text Available The synthesis and characterization of a novel organic corrosion inhibitor (4-(3-mercapto-5,6,7,8-tetrahydro-[1,2,4]triazolo[4,3-b][1,2,4,5]tetrazin-6-ylphenol, for mild steel in 1 M hydrochloric acid (HCl has been successfully reported for the first time. The inhibitor evaluated as corrosion inhibitor for mild steel in 1 M of Hydrochloric acid solution using electrochemical impedance spectroscopy (EIS, and electrochemical frequency modulation (EFM measurement techniques. Changes in the impedance parameters suggested an adsorption of the inhibitor onto the mild steel surface, leading to the formation of protective films. The results show that the inhibition efficiencies increased with increasing the concentrations of the inhibitors and decreased with increasing temperature. The maximum inhibition efficiency up to 67% at the maximum concentration 0.5 mM. This shows that those inhibitors are effective in helping to reduce and slowing down the corrosion process that occurs to mild steel with a hydrochloric acid solution by providing an organic inhibitor for the mild steel that can be weakened by increasing the temperature. The adsorption process of the synthesized organic inhibitor depends on its electronic characteristics in addition to steric effects and the nature of metal surface, temperature degree and the varying degrees of surface-site activity. The synthesized inhibitor molecules were absorbed by metal surface and follow Langmuir isotherms. Keywords: Corrosion, Inhibitor, Mild steel, EIS spectroscopy

  13. Corrosion prevention of iron with novel organic inhibitor of hydroxamic acid and UV irradiation

    International Nuclear Information System (INIS)

    Deng Huihua; Nanjo, Hiroshi; Qian, Pu; Xia Zhengbin; Ishikawa, Ikuo; Suzuki, Toshishige M.

    2008-01-01

    Corrosion prevention by self-assembled monolayers (SAM) of monomer and polymer inhibitor on iron covered with air-formed oxide films was investigated by cyclic voltammetry in borate buffer solution. Anti-corrosion efficiency of the SAM-coated Fe electrodes depends on UV irradiation duration on Fe electrodes prior to coating and inhibitor concentration to form SAM. The 1-h UV-irradiated Fe electrodes coated with SAM exhibits the most effective corrosion resistance despite the anti-corrosion efficiency of air-formed films on Fe was linearly increased with UV irradiation. The addition of monomer in polymer solution improves the stability and corrosion resistance of SAM

  14. 1 Molar concentration hydrofluoric acid effect at 400 C in the corrosion resistance of alloys containing nickel

    International Nuclear Information System (INIS)

    Contreras P, H.

    1992-01-01

    Corrosion rate for pure nickel, Inconel 600 and Monel alloys in a 1 Molar hydrofluoric acid solution at a 40 0 C temperature were determined. For contrasting purposes both SAE 304 SS and SAE 316 SS were included. As expected these Stainless Steels do not show good corrosion performance in the solution used. Several expressions correlating the weight and thickness loss v/s time were obtained. In the particular case of Monel, up to 2.021 hours, two expressions for the weight loss and three expressions for the thickness loss were obtained with a close to 1,0 correlation coefficient value. The Monel showed the best overall corrosion performance among the tested alloys. (author)

  15. Corrosion resistance of flaky aluminum pigment coated with cerium oxides/hydroxides in chloride and acidic electrolytes

    Science.gov (United States)

    Niroumandrad, S.; Rostami, M.; Ramezanzadeh, B.

    2015-12-01

    The objective of this study was to enhance the corrosion resistance of lamellar aluminum pigment through surface treatment by cerium oxides/hydroxides. The surface composition of the pigments was studied by energy-dispersive spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS). The corrosion resistance of the pigment was evaluated by conventional hydrogen evolution measurements in acidic solution and electrochemical impedance spectroscopy (EIS) in 3.5% NaCl solution. Results showed that the Ce-rich coating composed of Ce2O3 and CeO2 was precipitated on the pigment surface after immersion in the cerium solution. The corrosion resistance of pigment was significantly enhanced after modification with cerium layer.

  16. Importance of temperature, pH, and boric acid concentration on rates of hydrogen production from galvanized steel corrosion

    International Nuclear Information System (INIS)

    Loyola, V.M.

    1982-01-01

    One of the known sources of hydrogen gas within a nuclear plant containment building during a LOCA is the high temperature corrosion of galvanized steel yielding hydrogen gas. The importance of this source of hydrogen will vary depending on the severity of the accident. In an accident which resulted in core degradation, for example, the major source of hydrogen would probably be the metal-water reaction of the zircaloy cladding, and the corrosion of galvanized steel would then become a relatively minor source of hydrogen. However, in an accident in which core degradation is avoided or limited to minor damage, the corrosion of galvanized steel, and presumably of other materials as well, would then become a major contributor to the buildup of hydrogen within containment. The purpose of this paper is to present the overall effects of temperature, pH, and boric acid concentration on the rate of hydrogen generation over a broad range of each parameter

  17. Preparation and corrosion resistance of magnesium phytic acid/hydroxyapatite composite coatings on biodegradable AZ31 magnesium alloy.

    Science.gov (United States)

    Zhang, Min; Cai, Shu; Zhang, Feiyang; Xu, Guohua; Wang, Fengwu; Yu, Nian; Wu, Xiaodong

    2017-06-01

    In this work, a magnesium phytic acid/hydroxyapatite composite coating was successfully prepared on AZ31 magnesium alloy substrate by chemical conversion deposition technology with the aim of improving its corrosion resistance and bioactivity. The influence of hydroxyapatite (HA) content on the microstructure and corrosion resistance of the coatings was investigated. The results showed that with the increase of HA content in phytic acid solution, the cracks on the surface of the coatings gradually reduced, which subsequently improved the corrosion resistance of these coated magnesium alloy. Electrochemical measurements in simulated body fluid (SBF) revealed that the composite coating with 45 wt.% HA addition exhibited superior surface integrity and significantly improved corrosion resistance compared with the single phytic acid conversion coating. The results of the immersion test in SBF showed that the composite coating could provide more effective protection for magnesium alloy substrate than that of the single phytic acid coating and showed good bioactivity. Magnesium phytic acid/hydroxyapatite composite, with the desired bioactivity, can be synthesized through chemical conversion deposition technology as protective coatings for surface modification of the biodegradable magnesium alloy implants. The design idea of the new type of biomaterial is belong to the concept of "third generation biomaterial". Corrosion behavior and bioactivity of coated magnesium alloy are the key issues during implantation. In this study, preparation and corrosion behavior of magnesium phytic acid/hydroxyapatite composite coatings on magnesium alloy were studied. The basic findings and significance of this paper are as follows: 1. A novel environmentally friendly, homogenous and crack-free magnesium phytic acid/hydroxyapatite composite coating was fabricated on AZ31 magnesium alloy via chemical conversion deposition technology with the aim of enhancing its corrosion resistance and

  18. Straining electrode behavior and corrosion resistance of nickel base alloys in high temperature acidic solution

    International Nuclear Information System (INIS)

    Yamanaka, Kazuo

    1992-01-01

    Repassivation behavior and IGA resistance of nickel base alloys containing 0∼30 wt% chromium was investigated in high temperature acid sulfate solution. (1) The repassivation rate was increased with increasing chromium content. And so the amounts of charge caused by the metal dissolution were decreased with increasing chromium content. (2) Mill-annealed Alloy 600 suffered IGA at low pH environment below about 3.5 at the fixed potentials above the corrosion potential in 10%Na 2 SO 4 +H 2 SO 4 solution at 598K. On the other hand, thermally-treated Alloy 690 was hard to occur IGA at low pH environments which mill-annealed Alloy 600 occurred IGA. (3) It was considered that the reason, why nickel base alloys containing high chromium content such as Alloy 690 (60%Ni-30%Cr-10%Fe) had high IGA/SCC resistance in high temperature acidic solution containing sulfate ion, is due to both the promotion of the repassivation and the suppression of the film dissolution by the formation of the dense chromium oxide film

  19. Effect of boric acid on intergranular corrosion and on hideout return efficiency of sodium in the tube support plate crevices

    International Nuclear Information System (INIS)

    Paine, J.P.N.; Shoemaker, C.E.; Campan, J.L.; Brunet, J.P.; Schindler, P.; Stutzmann, A.

    1995-01-01

    Sodium hydroxide is one of the main causes of intergranular attack/stress corrosion cracking (IGA/SCC) of alloy 600 steam generator (S.G.) tubes. Boric acid appears to be one of the possible remedies for intergranular corrosion process inhibition. In order to obtain data on boric acid injection efficiency, an experimental program was performed on previously corroded tubes. To prevent premature tube wall cracking, samples were sleeved on alloy 690 tubes. The objective of the tests was to evaluate, on a statistically valid number of samples, the effectiveness of boric acid and tube sleeving as possible remedies for IGA/SCC extension. Another independent experimental program was initiated to determine the hideout return efficiency in the tube support plate (TSP) and tubesheet (TS) crevices after a significant duration (≤ 180 hours) of sodium hideout. The main objective of the first tests being a statistical evaluation of the efficiency of boric acid treatment, was not achieved. The tests did demonstrate that sleeving effectively reduces IGA/SCC growth. In an additional program, cracks were obtained on highly susceptible tubes when specimens were not sleeved. The companion tests performed in the same conditions but with an addition of boric acid did not show any IGA or cracks. These results seem to demonstrate the possible effect of boric acid in preventing the corrosion process. Results of the second tests did not demonstrate any difference in the amount of sodium piled up in the crevices before and after boric acid injection. They however showed an increase of the hideout return efficiency at the tube support plate level from 78 % without boric acid to 95 % when boric acid is present in the feed water

  20. Corrosion inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, A O

    1965-12-29

    An acid corrosion-inhibiting composition consists essentially of a sugar, and an alkali metal salt selected from the group consisting of iodides and bromides. The weight ratio of the sugar to the alkali metal salt is between 2:1 and about 20,000:1. Also, a corrosion- inhibited phosphoric acid composition comprising at least about 20 wt% of phosphoric acid and between about 0.1 wt% and about 10 wt% of molasses, and between about 0.0005 wt% and about 1 wt% of potassium iodide. The weight ratio of molasses to iodide is greater than about 2:1. (11 claims)

  1. Effect of nitrate on corrosion of austenitic stainless steel in boiling nitric acid solution containing chromium ions

    International Nuclear Information System (INIS)

    Hasegawa, Satoshi; Kim, Seong-Yun; Ebina, Tetsunari; Ito, Tatsuya; Nagano, Nobumichi; Hitomi, Keitaro; Ishii, Keizo; Tokuda, Haruaki

    2016-01-01

    The oxidation behavior of chromium and the corrosion behavior of austenitic stainless steel in boiling nitric acid solution containing highly concentrated nitrates were investigated using UV-visible spectroscopic measurements, Raman spectral measurements, immersion tests, and potentiodynamic polarization measurements. The oxidation rate measurement of chromium from Cr(III) to Cr(VI) was performed by 1 M boiling nitric acid solution containing each highly concentrated nitrates: Al(NO_3)_3, Nd(NO_3)_3, Ca(NO_3)_2, Mg(NO_3)_2, and NaNO_3 as a simulant of uranium nitrate in uranium concentrator in reprocessing plants. As a result, the rate of chromium oxidation was different depending on the added nitrates even at the same nitric acid concentration. In addition, the oxidation rate of chromium was increased with increasing the calculated partial pressure of nitric acid in consideration of the hydration of cation of nitrates. Furthermore, the corrosion rate of type 310 stainless steel was accelerated by the solution having a high chromium oxidation rate containing nitrates. These results indicated that the acceleration of the corrosion rate in the solutions depending on the oxidation rate of chromium, and the rate is affected by the salt-effect of nitrates. (author)

  2. Research and development on is process components for hydrogen production. (2) Corrosion resistance of glass lining in high temperature sulfuric acid

    International Nuclear Information System (INIS)

    Tanaka, Nobuyuki; Iwatsuki, Jin; Kubo, Shinji; Terada, Atsuhiko; Onuki, Kaoru

    2009-01-01

    Japan Atomic Energy Agency has been conducting a research and development on hydrogen production system using High Temperature Gas-Cooled Reactor. As a part of this effort, thermochemical water-splitting cycle featuring iodine- and sulfur-compounds (IS process) is under development considering its potential of large-scale economical hydrogen production. The IS process constitutes very severe environments on the materials of construction because of the corrosive nature of process chemicals, especially of the high temperature acidic solution of sulfuric acid and hydriodic acid dissolving iodine. Therefore, selection of the corrosion-resistant materials and development of the components has been studied as a crucial subject of the process development. This paper discusses corrosion resistance of commercially available glass-lining material in high temperature sulfuric acid. Corrosion resistance of a soda glass used for glass-lining was examined by immersion tests. The experiments were performed in 47-90wt% sulfuric acids at temperatures of up to 400degC and for the maximum immersion time of 100 hours using an autoclave designed for the concerned tests. In every condition tested, no indication of localized corrosion such as defect formation or pitting corrosion was observed. Also, the corrosion rates decreased with the progress of immersion, and were low enough (≅0.1 mm/year) after 60-90 hours of immersion probably due to formation of a silica rich surface. (author)

  3. Effect of cloric acid concentration on corrosion behavior of Ni/Cr coated on carbon steel

    Science.gov (United States)

    Desiati, Resetiana Dwi; Sugiarti, Eni; Thosin, K. A. Zaini

    2018-05-01

    Corrosion is one of the causes of metal degradation. Carbon steel (Fe) is easy to corrode in the extreme environment. Coating on carbon steel is required to improve corrosion resistance owing to protection or hindrance to extreme environmental conditions. In this present work, carbon steel was coated by electroplating techniques for nickel and pack cementation for chrome. The corrosion rate test was performed by Weight Loss method on FeNiCr, FeNi, FeCr and uncoated Fe as comparator which was dyed in 37% HCl and 25% HCl which had previously been measured dimension and mass. The immersion test result of FeNiCr and FeNi specimen were better than FeCr and uncoated Fe in terms of increasing corrosion resistance. The corrosion rate for 56 hours in 37% HCl for FeNiCr was 1.592 mm/y and FeNi was 3.208 mm/y, FeCr only lasted within 32 hours with corrosion rate was 6.494 mm/y. Surface of the sample after the corrosion test there was pitting, crevice corrosion and alloy cracking caused by chloride. The higher the concentration of HCl the faster the corrosion rate.

  4. Inhibiting properties and adsorption of an amine based fatty acid corrosion inhibitor on carbon steel in aqueous carbon dioxide solutions

    Energy Technology Data Exchange (ETDEWEB)

    Buchweishaija, Joseph

    1997-12-31

    Carbon dioxide corrosion is a major corrosion problem in oil and gas production systems and many organic inhibitors have been tested and used to protect the substrate from corrosion. This thesis studies the mechanism of interaction of the inhibitor molecule with the metallic substrate and how this affects the dissolution rate of the metal. The performance of a commercial amine based fatty acid corrosion inhibitor has been investigated using rotating cylinder electrodes and carbon steel electrodes in CO{sub 2} saturated formation water in the temperature range between 35 to 80{sup o}C. The corrosion process was monitored by electrochemical impedance measurements, and at the end of each experiment full polarization curves were recorded. When the inhibitor was applied on noncorroded electrodes, high inhibitor performance, over 99.7%, was observed independent of temperature. On precorroded electrodes inhibitor performance was found to depend on temperature and time of precorrosion. Above 60{sup o}C, the inhibitor performance decreased with increasing time of precorrosion, presumably because of the formation of a corrosion film of either iron carbonate or a combination of iron carbonate and iron carbide which prevent the inhibitor from reaching the surface. The inhibitor protection efficiency was assumed to be associated with the degree of inhibitor coverage at the material surface, and adsorption isotherms have been calculated in the concentration range between 0.1 ppm and 100 ppm. A Langmuir isotherm was found to give the best fit. The inhibitor performance on a 2 days precorroded rotating electrode was investigated at different solution pH ranging between 4.5 and 6.5 at 35{sup o}C. 130 refs., 80 figs., 22 tabs.

  5. Improvement effect on corrosion under heat flux in nitric acid solutions of anti-IGC stainless steel and high Cr-W-Si Ni base RW alloy

    International Nuclear Information System (INIS)

    Doi, Masamitsu; Kiuchi, Kiyoshi; Yano, Masaya; Sekiyama, Yoshio

    2001-03-01

    In the advanced purex reprocessing equipment, the higher corrosion resistance is required for materials because of the high corrosive environment caused from the thermodynamic decomposition of boiling nitric acid. The authors group has been developed the two types of new corrosion resistant materials for application to the reprocessing equipment. One is the type 304ULC stainless steel with controlled microstructure and decreased minor elements (EB-SAR). The other is the nickel base alloy with the ability of forming stable oxide film by addition of Cr, W and Si (RW alloy). In this study, the heat transfer tubes applied in diminished pressure was postulated. In addition to the dominant factors of heat conducting corrosion by the nitric acid solution, the effect of the heat flux and the concentration of the corrosive vanadium ions were investigated. (author)

  6. Inhibition of the corrosion of mild steel in hydrochloric acid by isatin and isatin glycine

    Directory of Open Access Journals (Sweden)

    B.I. Ita

    2006-12-01

    Full Text Available The inhibition of corrosion of mild steel in hydrochloric acid by isatin glycine (ING and isatin (IN at 30-60 oC and concentrations of 0.0001 M to 0.0005 M was studied via weight loss method. At the highest inhibitor concentration studied ING exhibited inhibition efficiency of 87% while IN exhibited 84% at 60 oC. A chemical adsorption mechanism was proposed on the basis of the temperature effect and obtained average activation energy values of 143.9 kJ/mol for ING and 118.5 kJ/mol for IN. The two inhibitors were confirmed to obey the Langmuir adsorption isotherm equation at the concentrations studied. Also a first-order type of mechanism was proposed from the kinetic treatment of the result. The difference in the inhibitory properties of the inhibitors was explained in terms of the difference in their molecular structures and solubility rather than difference in molecular weights alone.

  7. Electrochemical and conversion electron Moessbauer study of corrosion induced by acid rain

    International Nuclear Information System (INIS)

    Vertes, C.; Lakatos-Varsanyi, M.; Vertes, A.; Meisel, W.; Guetlich, P.

    1993-01-01

    The passivation of low carbon steel was studied in aqueous solution of 0.5M Na 2 SO 4 +0.001M NaHSO 3 (pH 3.5, 6.5 and 8.5) which can be considered as a model of acid rain. The used conversion electron Moessbauer spectroscopy (CEMS) with the complementary electrochemical investigations proved that the sulfite ions induce pitting corrosion at pH 3.5 and 6.5, while the measurements showed much weaker pitting at pH 8.5. The compositions and thicknesses of the passive films formed during the electrochemical treatments are determined from the CEM spectra. Only γ-FeOOH was found on the surface of the samples at pH 6.5 and 8.5. Nevertheless, at pH 3.5 the sextet belonging to Fe 3 C appears in the spectra, and also FeSO 4 .H 2 O could be detected in low concentration. (orig.)

  8. Green approach to corrosion inhibition of mild steel in hydrochloric acid and sulphuric acid solutions by the extract of Murraya koenigii leaves

    Energy Technology Data Exchange (ETDEWEB)

    Quraishi, M.A., E-mail: maquraishi@rediffmail.com [Department of Applied Chemistry, Institute of Technology, Banaras Hindu University, Varanasi 221005 (India); Singh, Ambrish; Singh, Vinod Kumar [Udai Pratap Autonomous College, Varanasi 221002 (India); Yadav, Dileep Kumar; Singh, Ashish Kumar [Department of Applied Chemistry, Institute of Technology, Banaras Hindu University, Varanasi 221005 (India)

    2010-07-01

    The inhibition of the corrosion of mild steel in hydrochloric acid and sulphuric acid solutions by the extract of Murraya koenigii leaves has been studied using weight loss, electrochemical impedance spectroscopy (EIS), linear polarization and potentiodynamic polarization techniques. Inhibition was found to increase with increasing concentration of the leaves extract. The effect of temperature, immersion time and acid concentration on the corrosion behavior of mild steel in 1 M HCl and 0.5 M H{sub 2}SO{sub 4} with addition of extract was also studied. The inhibition was assumed to occur via adsorption of the inhibitor molecules on the metal surface. The adsorption of the extract on the mild steel surface obeys the Langmuir adsorption isotherm. The activation energy as well as other thermodynamic parameters (Q, {Delta}H*, and {Delta}S*) for the inhibition process was calculated. These thermodynamic parameters show strong interaction between inhibitor and mild steel surface. The results obtained show that the extract of the leaves of M. koenigii could serve as an effective inhibitor of the corrosion of mild steel in hydrochloric and sulphuric acid media.

  9. Synthesis and characterization of a novel organic corrosion inhibitor for mild steel in 1 M hydrochloric acid

    Science.gov (United States)

    Ahmed, Mohammed H. Othman; Al-Amiery, Ahmed A.; Al-Majedy, Yasmin K.; Kadhum, Abdul Amir H.; Mohamad, Abu Bakar; Gaaz, Tayser Sumer

    2018-03-01

    The synthesis and characterization of a novel organic corrosion inhibitor (4-(3-mercapto-5,6,7,8-tetrahydro-[1,2,4]triazolo[4,3-b][1,2,4,5]tetrazin-6-yl)phenol), for mild steel in 1 M hydrochloric acid (HCl) has been successfully reported for the first time. The inhibitor evaluated as corrosion inhibitor for mild steel in 1 M of Hydrochloric acid solution using electrochemical impedance spectroscopy (EIS), and electrochemical frequency modulation (EFM) measurement techniques. Changes in the impedance parameters suggested an adsorption of the inhibitor onto the mild steel surface, leading to the formation of protective films. The results show that the inhibition efficiencies increased with increasing the concentrations of the inhibitors and decreased with increasing temperature. The maximum inhibition efficiency up to 67% at the maximum concentration 0.5 mM. This shows that those inhibitors are effective in helping to reduce and slowing down the corrosion process that occurs to mild steel with a hydrochloric acid solution by providing an organic inhibitor for the mild steel that can be weakened by increasing the temperature. The adsorption process of the synthesized organic inhibitor depends on its electronic characteristics in addition to steric effects and the nature of metal surface, temperature degree and the varying degrees of surface-site activity. The synthesized inhibitor molecules were absorbed by metal surface and follow Langmuir isotherms.

  10. Velocities and mechanisms of AISI 304 steel corrosion in heated acid solutions

    International Nuclear Information System (INIS)

    Silva, B.M.; Guedes, C.D.

    1984-01-01

    The corrosion resistance of stainless steel on H 2 SO 4 at temperature higher than 60 0 C is studied. The weight loss technique and the analysis of the different components in solution are used. A proposition is made about the reason for the loss of resistance to corrosion of the stainless steel at this high temperature. (C.L.B.) [pt

  11. Microstructure and electrochemical corrosion behavior of a Pb-1 wt%Sn alloy for lead-acid battery components

    Energy Technology Data Exchange (ETDEWEB)

    Peixoto, Leandro C.; Osorio, Wislei R.; Garcia, Amauri [Department of Materials Engineering, University of Campinas - UNICAMP, PO Box 612, 13083-970, Campinas - SP (Brazil)

    2009-07-15

    The aim of this study was to evaluate the effect of solidification cooling rates on the as-cast microstructural morphologies of a Pb-1 wt%Sn alloy, and to correlate the resulting microstructure with the corresponding electrochemical corrosion resistance in a 0.5 M H{sub 2}SO{sub 4} solution at 25 C. Cylindrical low-carbon steel and insulating molds were employed permitting the two extremes of a significant range of solidification cooling rates to be experimentally examined. Electrochemical impedance spectroscopy (EIS) diagrams, potentiodynamic polarization curves and an equivalent circuit analysis were used to evaluate the electrochemical corrosion response of Pb-1 wt%Sn alloy samples. It was found that lower cooling rates are associated with coarse cellular arrays which result in better corrosion resistance than fine cells which are related to high cooling rates. The experimental results have shown that that the pre-programming of microstructure cell size of Pb-Sn alloys can be used as an alternative way to produce as-cast components of lead-acid batteries with higher corrosion resistance. (author)

  12. Corrosion resistance of flaky aluminum pigment coated with cerium oxides/hydroxides in chloride and acidic electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Niroumandrad, S. [Institute for Color Science and Technology (ICST), PO 16765-654, Tehran (Iran, Islamic Republic of); Rostami, M. [Department of Nanomaterials and Nanocoatings, Institute for Color Science and Technology (ICST), PO 16765-654, Tehran (Iran, Islamic Republic of); Ramezanzadeh, B., E-mail: ramezanzadeh-bh@icrc.ac.ir [Department of Surface Coatings and Corrosion, Institute for Color Science and Technology (ICST), PO 16765-654, Tehran (Iran, Islamic Republic of)

    2015-12-01

    Graphical abstract: - Highlights: • Flaky aluminum pigments were modified with cerium nitrate salt. • pH value of 3.0 was chosen as the optimized pH for the cerium solution. • Corrosion resistance of the pigment significantly increased after modification. • Alkaline pre-treatment prior to modification affected the cerium layer performance. - Abstract: The objective of this study was to enhance the corrosion resistance of lamellar aluminum pigment through surface treatment by cerium oxides/hydroxides. The surface composition of the pigments was studied by energy-dispersive spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS). The corrosion resistance of the pigment was evaluated by conventional hydrogen evolution measurements in acidic solution and electrochemical impedance spectroscopy (EIS) in 3.5% NaCl solution. Results showed that the Ce-rich coating composed of Ce{sub 2}O{sub 3} and CeO{sub 2} was precipitated on the pigment surface after immersion in the cerium solution. The corrosion resistance of pigment was significantly enhanced after modification with cerium layer.

  13. Modelling and Optimization of Corrosion Inhibition of Mild Steel in Phosphoric Acid by Red Pomegranate Peels Aqueous Extract

    Directory of Open Access Journals (Sweden)

    Khalid Hamid Rashid

    2011-11-01

    Full Text Available Taguchi experimental design (TED is applied to find the optimum effectiveness of aqueous Red Pomegranate Peel (RPP extract as a green inhibitor for the corrosion of mild steel in 2M H3PO4 solution. The Taguchi methodology has been used to study the effects of changing, temperature, RPP concentration and contact period, at three levels. Weight-loss measurements were designed by construction a L9 orthogonal arrangement of experiments. Results of the efficiencies of inhibition were embraced for the signal to noise proportion & investigation of variance (ANOVA. The results were further processed with a MINITAB-17 software package to find the optimal conditions for inhibitor usage. Second order polynomial model was used for experimental data fitting. Optimum conditions for achieving the maximum corrosion inhibition efficiency are obtained from optimizing the above model and are found as follow: 39.66 °C temperature of acidic media, 38.29 ml/L inhibitor concentration and 2.95 h contact period. Results demonstrated that rate of corrosion was increased with temperature increasing & decreasing inhibitor concentration. It was concluded that the Taguchi design was adequately useful in the optimization of operating parameters and that RPP sufficiently inhibited the corrosion of steel at the range of variables studied.

  14. Corrosion resistance of flaky aluminum pigment coated with cerium oxides/hydroxides in chloride and acidic electrolytes

    International Nuclear Information System (INIS)

    Niroumandrad, S.; Rostami, M.; Ramezanzadeh, B.

    2015-01-01

    Graphical abstract: - Highlights: • Flaky aluminum pigments were modified with cerium nitrate salt. • pH value of 3.0 was chosen as the optimized pH for the cerium solution. • Corrosion resistance of the pigment significantly increased after modification. • Alkaline pre-treatment prior to modification affected the cerium layer performance. - Abstract: The objective of this study was to enhance the corrosion resistance of lamellar aluminum pigment through surface treatment by cerium oxides/hydroxides. The surface composition of the pigments was studied by energy-dispersive spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS). The corrosion resistance of the pigment was evaluated by conventional hydrogen evolution measurements in acidic solution and electrochemical impedance spectroscopy (EIS) in 3.5% NaCl solution. Results showed that the Ce-rich coating composed of Ce 2 O 3 and CeO 2 was precipitated on the pigment surface after immersion in the cerium solution. The corrosion resistance of pigment was significantly enhanced after modification with cerium layer.

  15. Stress corrosion cracking of Ni-Fe-Cr alloys in acid sulfate environments relevant to CANDU steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Persaud, S.Y.; Carcea, A.G., E-mail: suraj.persaud@mail.utoronto.ca [Univ. of Toronto, Toronto, ON (Canada); Huang, J.; Korinek, A.; Botton, G.A. [McMaster Univ., Hamilton, ON (Canada); Newman, R.C. [Univ. of Toronto, Toronto, ON (Canada)

    2014-07-01

    Ni-Fe-Cr alloys used in nuclear plants have been found susceptible to stress corrosion cracking (SCC) in acid sulfate environments. Electrochemical measurements and SCC tests were done using Ni, Alloy 600, and Alloy 800 in acid sulfate solutions at 315 {sup o}C. Electrochemical measurements suggested that sulfate is a particularly aggressive anion in mixed chloride systems. Cracks with lengths in excess of 300 μm were present on stressed Alloy 800 samples after 60 hours. High resolution analytical electron microscopy was used to extract a crack tip from an Alloy 800 sample and draw final conclusions with respect to the mechanism of SCC. (author)

  16. Effect of Tempering Temperature and Time on the Corrosion Behaviour of 304 and 316 Austenitic Stainless Steels in Oxalic Acid

    OpenAIRE

    Ayo S. Afolabi; Johannes H. Potgieter; Ambali S. Abdulkareem; Nonhlanhla Fungura

    2011-01-01

    The effect of different tempering temperatures and heat treatment times on the corrosion resistance of austenitic stainless steels in oxalic acid was studied in this work using conventional weight loss and electrochemical measurements. Typical 304 and 316 stainless steel samples were tempered at 150oC, 250oC and 350oC after being austenized at 1050oC for 10 minutes. These samples were then immersed in 1.0M oxalic acid and their weight losses were measured at every five days for 30 days. The r...

  17. Corrosion-Resistant Ti- xNb- xZr Alloys for Nitric Acid Applications in Spent Nuclear Fuel Reprocessing Plants

    Science.gov (United States)

    Manivasagam, Geetha; Anbarasan, V.; Kamachi Mudali, U.; Raj, Baldev

    2011-09-01

    This article reports the development, microstructure, and corrosion behavior of two new alloys such as Ti-4Nb-4Zr and Ti-2Nb-2Zr in boiling nitric acid environment. The corrosion test was carried out in the liquid, vapor, and condensate phases of 11.5 M nitric acid, and the potentiodynamic anodic polarization studies were performed at room temperature for both alloys. The samples subjected to three-phase corrosion testing were characterized using scanning electron microscopy (SEM) and energy-dispersive X-ray microanalysis (EDAX). As Ti-2Nb-2Zr alloy exhibited inferior corrosion behavior in comparison to Ti-4Nb-4Zr in all three phases, weldability and heat treatment studies were carried out only on Ti-4Nb-4Zr alloy. The weldability of the new alloy was evaluated using tungsten inert gas (TIG) welding processes, and the welded specimen was thereafter tested for its corrosion behavior in all three phases. The results of the present investigation revealed that the newly developed near alpha Ti-4Nb-4Zr alloy possessed superior corrosion resistance in all three phases and excellent weldability compared to conventional alloys used for nitric acid application in spent nuclear reprocessing plants. Further, the corrosion resistance of the beta heat-treated Ti-4Nb-4Zr alloy was superior when compared to the sample heat treated in the alpha + beta phase.

  18. Temperature Effects on Stainless Steel 316L Corrosion in the Environment of Sulphuric Acid (H2SO4)

    Science.gov (United States)

    Ayu Arwati, I. G.; Herianto Majlan, Edy; Daud, Wan Ramli Wan; Shyuan, Loh Kee; Arifin, Khuzaimah Binti; Husaini, Teuku; Alfa, Sagir; Ashidiq, Fakhruddien

    2018-03-01

    In its application, metal is always in contact with its environment whether air, vapor, water, and other chemicals. During contact, chemical interactions emerge between metals and their respective environments such that the metal surface corrodes. This study aims to determine the corrosion rate of 316L stainless steel sulphuric acid environment (H2SO4) with weight loss and electrochemical methods. The corrosion rate (CR) is value of 316L stainless steel by weight loss method with sulfuric acid (H2SO4) with concentration of 0.5 M. The result obtained in conjunction with the increase of temperature the rate of erosion obtained appears to be larger, with a consecutive 3 hour the temperature of 50°C is 0.27 mg/cm2h, temperature 70°C 0.38 mg/cm2h, and temperature 90 °C 0.52 mg/cm2h. With the electrochemical method, the current value increases by using a C350 potentiostal tool. The higher the current, the longer the time the corrosion rate increases, where the current is at 90 °C with a 10-minute treatment time of 0.0014736 A. The 316L stainless steel in surface metal morphology is shown by using a Scanning Electron Microscope (SEM).

  19. Inhibition of the corrosion of steel in hydrochloric acid solution by some organic molecules containing the methylthiophenyl moiety

    International Nuclear Information System (INIS)

    Nataraja, S.E.; Venkatesha, T.V.; Manjunatha, K.; Poojary, Boja; Pavithra, M.K.; Tandon, H.C.

    2011-01-01

    Highlights: → Acid corrosion inhibition. → Work in small concentration. → Effective at higher temperature. → Effect of different functional groups, cyclisation and aromaticity. - Abstract: The corrosion inhibition effect of 2-[4-(methylthio) phenyl] acetohydrazide (HYD), 2-{[4-(methylthio) phenyl] acetyl} hydrazinecarbothioamide (TAD) and 5-[4-(methylthio) benzyl]-4H-1,2,4-triazole-3-thiol (TRD) on steel in 1.0 M HCl was investigated by mass loss and electrochemical methods. The effect of concentration, temperature and immersion time was studied. The results indicated that the compounds are efficient, mixed type and pursue Flory-Huggins adsorption isotherm. The inhibition efficiency at lower concentration of inhibitor decreased with temperature while at higher concentration, it is retained and the calculated free energy attributes this to comprehensive adsorption. The efficiency stands in the order TRD > TAD > HYD and is confirmed by the Quantum studies.

  20. Hot corrosion resistance of a Pb-Sb alloy for lead acid battery grids

    Energy Technology Data Exchange (ETDEWEB)

    Osorio, Wislei R.; Garcia, Amauri [Department of Materials Engineering, University of Campinas - UNICAMP, PO Box 6122, 13083-970 Campinas, SP (Brazil); Aoki, Claudia S.C. [Research and Development Centre - CPqD Foundation, Rod. Campinas/Mogi, km 118.5, 13086-912 Campinas, SP (Brazil)

    2008-12-01

    The aim of this study was to evaluate the effects of the microstructural morphologies of a Pb-6.6 wt%Sb alloy on the resulting corrosion resistance in a 0.5 M H{sub 2}SO{sub 4} solution at different temperatures: environment temperature, 50 C and 70 C. A water-cooled unidirectional solidification system was employed permitting a wide range of microstructures to be analyzed. Electrochemical impedance spectroscopy (EIS) diagrams, potentiodynamic polarization curves and an equivalent circuit analysis were used to evaluate the corrosion behavior of the Pb-Sb alloy samples. It was found that with increasing temperatures the general corrosion resistance of Pb-Sb dendritic alloys decreases, and that independently of the working temperature finer dendritic spacings exhibit better corrosion resistance than coarser ones. (author)

  1. Corrosion Inhibition of Aluminium by Treculia Africana Leaves Extract in Acid Medium

    OpenAIRE

    Ejikeme, P.M.; Umana, S.G.; Onukwuli, O.D.

    2012-01-01

    The inhibitive effect of Treculia Africana leaves extract (TALE) in the corrosion of aluminium in HCl solution was studied using weight loss and thermometric methods at 30-60 °C. The results showed that TALE acted as a corrosion inhibitor of aluminium in HCl. Inhibition efficiency increased with increase in TALE concentration, but decreased with increase in temperature. TALE interaction with the metal surface was found to obey Freundlich and El-Awady adsorption isotherms. The obtained heats o...

  2. The electroplated Pd–Co alloy film on 316 L stainless steel and the corrosion resistance in boiling acetic acid and formic acid mixture with stirring

    Energy Technology Data Exchange (ETDEWEB)

    Li, Sirui; Zuo, Yu, E-mail: zuoy@mail.buct.edu.cn; Tang, Yuming; Zhao, Xuhui

    2014-12-01

    Highlights: • Pd–Co alloy films were deposited on 316 L stainless steel by electroplating. • The Pd–Co films show fine grain size, low porosity and obviously high hardness. • In strong acids with Br{sup −} and stirring, Pd–Co films show good corrosion resistance. • The high hardness of Pd–Co film retards the development of micro-pores in the film. - Abstract: Pd–Co alloy films were deposited on 316 L stainless steel by electroplating. Scanning electronic microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, weight loss test and polarization test were used to determine the properties of the Pd–Co alloy films. The Pd–Co films show fine grain size, low porosity and obviously high micro-hardness. The Co content in the film can be controlled in a large range from 21.9 at.% to 57.42 at.%. Pd is rich on the Pd–Co film surface, which is benefit to increase the corrosion resistance. In boiling 90% acetic acid plus 10% formic acid mixture with 0.005 M Br{sup −} under stirring, the Pd–Co plated stainless steel samples exhibit evidently better corrosion resistance in contrast to Pd plated samples. The good corrosion resistance of the Pd–Co alloy film is explained by the better compactness, the lower porosity, and the obviously higher micro-hardness of the alloy films, which increases the resistance to erosion and retards the development of micro-pores in the film.

  3. Thermodynamic and Kinetic Study of Zinc bis-(Dipalmithyl Dithiophosphate Activity as Anti-Corrosion Additive-Fatty Acid Based Through Potentiodynamic Polarization Technique

    Directory of Open Access Journals (Sweden)

    Komar Sutriah

    2016-08-01

    Full Text Available Zinc bis-(dipalmithyl dithiophosphate (ZDTP16 is one product variant of zinc dialkyl dithiophosphate (ZDTP-fatty acid based having function as corrosion inhibitor. By using 3% of effective dose for the application, its effectiveness of ZDTP16 corrosion inhibition will achieve 97% and it will be able to decrease Cu metal corrosion rate from 0.152 to 0.004 mm per year. Thermodynamic and kinetic parameter verification indicates the decreasing of spontaneity and corrosion rate by existence of ZDTP16 inhibitor. Gibbs free energy transition corrosion of Cu metal in electrolyte medium is measured in corrosion simulator increased from +85.22 to +91.77 kJ mol-1, while its activation energy increased from +16.66 to +33.68 kJ mol-1. Morphology observation of Cu metal substrate surface using SEM-EDX shows that the adsorption of ZDTP16 at substrate surface is able to protect surface from corrosion indicated by the existence of Zn, P, S, and C constituents representing composer atoms of ZDTP16, and the decreasing of Cl- corrosive constituent at substrate surface.

  4. Effect of slightly acid pH with or without chloride in radioactive water on the corrosion of maraging steel

    Science.gov (United States)

    Bellanger, G.; Rameau, J. J.

    1996-02-01

    This study was carried out to ascertain the behavior of maraging steel used in the tanks of French plants for reprocessing radioactive water which may contain chloride ions at pH 3. The rest or corrosion potentials can be either in the transpassive or active regions due to the presence of radiolytic species. The corrosion current and potential depend on the pH and intermediates formed on the surface in the active region; therefore, maraging steel behavior was studied by cyclic voltammetry without and with electrode rotation and different acid pH which provide an indication of mechanisms, modification of local pH and transient formation. In the passive -transpassive region, breakdown and porosity in the oxide appear with or without chloride, according to electrochemical impedance spectroscopy. In presence of chloride, the corrosion kinetics were obtained by cyclic voltammetry and electrochemical impedance spectroscopy. The anodic and cathodic areas of maraging steel corroded by pitting were shown using the Scanning Reference Electrode Technique.

  5. Effect of slightly acid pH with or without chloride in radioactive water on the corrosion of maraging steel

    Energy Technology Data Exchange (ETDEWEB)

    Bellanger, G. [CEA Centre d`Etudes de Valduc, 21 - Is-sur-Tille (France); Rameau, J.J. [Ecole Nationale Superieure d`Electrochimie et d`Electrometallurgie, 38 - Saint-Martin-d`Heres (France)

    1996-02-01

    This study was carried out to ascertain the behavior of maraging steel used in the tanks of French plants for reprocessing radioactive water which may contain chloride ions at pH 3. The rest or corrosion potentials can be either in the transpassive or active regions due to the presence of radiolytic species. The corrosion current and potential depend on the pH and intermediates formed on the surface in the active region; therefore, maraging steel behavior was studied by cyclic voltammetry without and with electrode rotation and different acid pH which provide an indication of mechanisms, modification of local pH and transient formation. In the passive-transpassive region, breakdown and porosity in the oxide appear with or without chloride, according to electrochemical impedance spectroscopy. In presence of chloride, the corrosion kinetics were obtained by cyclic voltammetry and electrochemical impedance spectroscopy. The anodic and cathodic areas of maraging steel corroded by pitting were shown using the Scanning Reference Electrode Technique. (orig.).

  6. Some aromatic hydrazone derivatives as inhibitors for the corrosion of C-steel in phosphoric acid solution.

    Science.gov (United States)

    Fouda, Abd El-Aziz S; Al-Sarawy, Ahmed A; Radwan, Mohamed S

    2006-01-01

    The effect of furfural benzoylhydrazone and its derivatives (I-VII) as corrosion inhibitors for C-steel in 1M phosphoric acid solution has been studied by weight-loss and galvanostatic polarization techniques. A significant decrease in the corrosion rate of C-steel was observed in the presence of the investigated inhibitors. This study revealed that, the inhibition efficiency increases with increasing the inhibitor concentration, and the addition of iodide ions enhances it to a considerable extent. The effect of temperature on the inhibition efficiency of these compounds was studied using weight-loss method. Activation energy (E(a)*) and other thermodynamic parameters for the corrosion process were calculated and discussed. The galvanostatic polarization data indicated that, the inhibitors were of mixed-type, but the cathode is more polarized than the anode. The adsorption of these compounds on C-steel surface has been found to obey Frumkin's adsorption isotherm. The mechanism of inhibition was discussed in the light of the chemical structure of the undertaken inhibitors.

  7. Effect of slightly acid pH with or without chloride in radioactive water on the corrosion of maraging steel

    International Nuclear Information System (INIS)

    Bellanger, G.; Rameau, J.J.

    1996-01-01

    This study was carried out to ascertain the behavior of maraging steel used in the tanks of French plants for reprocessing radioactive water which may contain chloride ions at pH 3. The rest or corrosion potentials can be either in the transpassive or active regions due to the presence of radiolytic species. The corrosion current and potential depend on the pH and intermediates formed on the surface in the active region; therefore, maraging steel behavior was studied by cyclic voltammetry without and with electrode rotation and different acid pH which provide an indication of mechanisms, modification of local pH and transient formation. In the passive-transpassive region, breakdown and porosity in the oxide appear with or without chloride, according to electrochemical impedance spectroscopy. In presence of chloride, the corrosion kinetics were obtained by cyclic voltammetry and electrochemical impedance spectroscopy. The anodic and cathodic areas of maraging steel corroded by pitting were shown using the Scanning Reference Electrode Technique. (orig.)

  8. Experimental and quantum chemical studies on two triazole derivatives as corrosion inhibitors for mild steel in acid media

    Energy Technology Data Exchange (ETDEWEB)

    Li, W.; Tian, H.; Hou, B. [Key Laboratory of Corrosion Science, Shandong, Institute of Oceanology, Chinese Academy of Sciences, Qingdao (China); Hu, L.; Tao, Z. [College of Chemistry and Chemical Engineering, Chongqing University, Chongqing (China)

    2011-11-15

    Two triazole derivatives [1-phenyl-2-(5-(1,2,4) triazol-1-ylmethyl-(1,3,4) oxadizaol-2-ylsulphanyl)-ethanone (PTOE) and 2-(4-tert-butyl-benzylsulphanyl)-5-(1,2,4) triazol-1-ylmethyl-(1,3,4) oxadiazole (TBTO)] were synthesized as new corrosion inhibitors for the corrosion of mild steel in 1 M hydrochloric acid solutions. The inhibiting efficiency of the different inhibitors was evaluated by means of weight loss and electrochemical techniques such as electrochemical impedance spectroscopy (EIS) and polarization curves. The electrochemical investigation results indicate that these compounds act as mixed-type inhibitors retarding the anodic and cathodic corrosion reactions and do not change the mechanism of either hydrogen evolution reaction or mild steel dissolution. The studied compounds followed the Langmuir adsorption isotherm, and the thermodynamic parameters were determined and discussed. The effect of molecular structure on the inhibition efficiency has been investigated with ab initio calculations. The electronic properties such as highest occupied molecular orbital (HOMO) energy level, lowest unoccupied molecular orbital (LUMO) energy level, dipole moment ({mu}) and molecular orbital densities were calculated. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Application of electrochemical frequency modulation for monitoring corrosion and corrosion inhibition of iron by some indole derivatives in molar hydrochloric acid

    International Nuclear Information System (INIS)

    Khaled, K.F.

    2008-01-01

    The corrosion inhibition effect of four indole derivatives, namely indole (IND), benzotriazole (BTA), benzothiazole (BSA) and benzoimidazole (BIA), have been used as possible corrosion inhibitors for pure iron in 1 M HCl. In this study, electrochemical frequency modulation, EFM was used as an effective method for corrosion rate determination in corrosion inhibition studies. By using EFM measurements, corrosion current density was determined without prior knowledge of Tafel slopes. Corrosion rates obtained using EFM, were compared to that obtained from other chemical and electrochemical techniques. The results obtained from EFM, EIS, Tafel and weight loss measurements were in good agreement. Tafel polarization measurements show that indole derivatives are cathodic-type inhibitors. Molecular simulation studies were applied to optimize the adsorption structures of indole derivatives. The inhibitor/iron/solvent interfaces were simulated and the adsorption energies of these inhibitors were calculated. Quantum chemical calculations have been performed and several quantum chemical indices were calculated and correlated with the corresponding inhibition efficiencies

  10. Di-n-butylamine as an inhibitor for the corrosion of aluminium alloys in hydrochloric acid solutions

    Energy Technology Data Exchange (ETDEWEB)

    Unni, V K.V.; Rama Char, T L

    1965-01-01

    Di-n-butylamine is a satisfactory inhibitor for the corrosion of aluminum-manganese alloy in hydrochloric acid solutions. Polarization studies indicate that the anode polarization is negligible, whereas the cathode polarization is appreciable and is increased by the inhibitor. The Tafel plot holds good in this case. The dissolution of the metal is electrochemical in character; the corrosion process appears to be under cathodic control. The efficiency increases with time, the effect being quite significant up to about 3 hr. It increases with increases in concentration of the inhibitor up to a certain value beyond which it is constant. The values increase with acid concentration up to 1.25 N., and remain practically unchanged thereafter. An acid concentration of 1.25 N. and an inhibitor concentration of 0.5 g per liter of nitrogen can be regarded as the optimum from the viewpoint of efficiency, the value being in the range 57-84%. The efficiency of the inhibitor for the aluminum-manganese alloy is about the same order as for pure aluminum. (10 refs.)

  11. The use of water-soluble hydrazones as inhibitors for the corrosion of C-steel in acidic medium

    International Nuclear Information System (INIS)

    Moussa, M.N.H.; El-Far, A.A.; El-Shafei, A.A.

    2007-01-01

    Inhibition efficiency of some water-soluble hydrazones for C-steel corrosion in hydrochloric acid has been tested by weight loss, polarisation measurements and open circuit technique. The inhibition effect was attributed to the adsorption of the additives on the C-steel surface as supported by adsorption measurements at Pt electrode using cyclic voltammetry. Electrochemical measurements indicated that all the additives behave as cathodic-type inhibitors. The data obtained fit well to both the Temkin adsorption isotherm and the kinetic-thermodynamic model. The inhibition behaviour and its order were explained with the help of the proposed skeletal representation

  12. The use of water-soluble hydrazones as inhibitors for the corrosion of C-steel in acidic medium

    Energy Technology Data Exchange (ETDEWEB)

    Moussa, M.N.H.; El-Far, A.A. [Department of Chemistry, Faculty of Science, Mansoura University, ET-35516 Mansoura (Egypt); El-Shafei, A.A. [Department of Chemistry, Faculty of Science, Mansoura University, ET-35516 Mansoura (Egypt)], E-mail: ashafei@mans.edu.eg

    2007-09-15

    Inhibition efficiency of some water-soluble hydrazones for C-steel corrosion in hydrochloric acid has been tested by weight loss, polarisation measurements and open circuit technique. The inhibition effect was attributed to the adsorption of the additives on the C-steel surface as supported by adsorption measurements at Pt electrode using cyclic voltammetry. Electrochemical measurements indicated that all the additives behave as cathodic-type inhibitors. The data obtained fit well to both the Temkin adsorption isotherm and the kinetic-thermodynamic model. The inhibition behaviour and its order were explained with the help of the proposed skeletal representation.

  13. Effect of some pyrimidinic Schiff bases on the corrosion of mild steel in hydrochloric acid solution

    International Nuclear Information System (INIS)

    Ashassi-Sorkhabi, H.; Shaabani, B.; Seifzadeh, D.

    2005-01-01

    The efficiency of benzylidene-pyrimidin-2-yl-amine (A) (4-methyl-benzylidene)-pyrimidine-2-yl-amine (B) and (4-chloro-benzylidene)-pyrimidine-2-yl-amine, as corrosion inhibitors for mild steel in 1 M HCl have been determined by weight loss measurements and electrochemical polarization method. The results showed that these inhibitors revealed a good corrosion inhibition even at very low concentrations. Polarization curves indicate that all compounds are mixed type inhibitors. The effect of various parameters such as temperature and inhibitor concentration on the efficiency of the inhibitors has been studied. Activation energies of corrosion reaction in the presence and absence of inhibitors have been calculated. The adsorption of used compounds on the steel surface obeys Langmuir's isotherm. It appears that an efficient inhibition is characterized by a relatively greater decrease in free energy of adsorption. Significant correlations are obtained between inhibition efficiency and quantum chemical parameters using quantitative structure-activity relationship (QSAR) method

  14. Intercostal artery pseudoaneurysm complicating corrosive acid poisoning: Diagnosis with CT and treatment with transarterial embolisation

    Directory of Open Access Journals (Sweden)

    M V Chalapathi Rao

    2014-01-01

    Full Text Available Pseudoaneurysms of intercostal artery are very rare. All the published cases have been caused by trauma, either iatrogenic or otherwise. They can cause hemothorax, retroperitoneal hemorrhage or can present as pulsatile chest mass. Doppler ultrasound, contrast-enhanced CT and conventional angiogram can accurately diagnose this condition. All the reported cases have been treated by embolisation, stenting or surgery. We report an unusual case of intercostal artery pseudoaneurysm arising as a complication of corrosive poisoning presenting with hematemesis and treated by glue embolisation. The authors believe this to be the first case of intercostal artery pseudoaneurysm that is non-traumatic, complicating corrosive poisoning and presenting with hematemesis.

  15. Thermometric Study of Inhibition of Aluminium Corrosion in Hydrochloric Acid Solution

    OpenAIRE

    Al Gaber, A.S. [امينة سلطان الجابر; Seliman, S. A.; Mourad, M.

    1997-01-01

    The use of 6- amino - 4- (4-phenyl)-l,4- dihydro -3- methylpyrano [2,3- c] pyrazole -5- carbonitrile and some related compounds as corrosion inhibitors for aluminium in 2 M HCl solution was studied by the thermometric method. The results indicate that the additives reduce the corrosion rate via weak adsorption through the cationic oxygen of the pyran ring. They act as mixed inhibitors and their adsorption was found to obey Frumkin's isotherm. The inhibition efficiency of the additives is rela...

  16. Eco-Friendly Inhibitors for Copper Corrosion in Nitric Acid: Experimental and Theoretical Evaluation

    Science.gov (United States)

    Savita; Mourya, Punita; Chaubey, Namrata; Singh, V. K.; Singh, M. M.

    2016-02-01

    The inhibitive performance of Vitex negundo, Adhatoda vasica, and Saraka asoka leaf extracts on corrosion of copper in 3M HNO3 solution was investigated using gravimetric, potentiodynamic polarization, and electrochemical impedance spectroscopic techniques. Potentiodynamic polarization studies indicated that these extracts act as efficient and predominantly cathodic mixed inhibitor. Thermodynamic parameters revealed that the adsorption of these inhibitors on copper surface was spontaneous, controlled by physiochemical processes and occurred according to the Langmuir adsorption isotherm. AFM examination of copper surface confirmed that the inhibitor prevented corrosion by forming protective layer on its surface. The correlation between inhibitive effect and molecular structure was ascertained by density functional theory data.

  17. Calculation of HNO2 concentration from redox potential in HNO3-H2O system as an aid to understanding the cathodic reaction of nitric acid corrosion

    International Nuclear Information System (INIS)

    Takeuchi, Masayuki; Whillock, G.O.H.

    2002-01-01

    Nitrous acid affects the corrosion of metals such as stainless steels in nitric acid. However nitrous acid is not particularly stable in nitric acid and the analytical methods available are quite involved. Accordingly, the calculation of nitrous acid concentration from redox potential was tested in the HNO 3 -H 2 O system as a convenient in situ analysis method. The calculation process is based on Nernst's equation and the required thermodynamic data were obtained from published values. The available thermodynamic data allow calculation of nitrous acid concentration from 273K to 373K for 0%-100% HNO 3 . The redox potential was 8 kmol·m -3 HNO 3 under NO bubbling and the nitrous acid concentration was determined by a Colourimetric method. The calculated data were compared with the measured data and a good agreement was found. It was found that the corrosion potential of stainless steel is influenced by nitrous acid concentration in nitric acid solution. The calculation process is useful for in-situ analysis of nitrous acid species in HNO 3 -H 2 O system and understanding the behavior of the cathodic reaction associated with nitric acid corrosion. (author)

  18. Corrosion inhibition properties of pyrazolylindolenine compounds on copper surface in acidic media

    Directory of Open Access Journals (Sweden)

    Ebadi Mehdi

    2012-12-01

    Full Text Available Abstract Background The corrosion inhibition performance of pyrazolylindolenine compounds, namely 4-(3,3-dimethyl-3H-indol-2-yl-pyrazole-1-carbothioamide (InPzTAm, 4-(3,3-dimethyl-3H-indol-2-yl-1H-pyrazole-1-carbothiohydrazide (InPzTH and 3,3-dimethyl-2-(1-phenyl-1H-pyrazol-4-yl-3H-indole (InPzPh, on copper in 1M HCl solution is investigated by electrochemical impedance spectroscopy (EIS, open circuit potential (OCP and linear scan voltammetry (LSV techniques. Results The results show that the corrosion rate of copper is diminished by the compounds with the inhibition strength in the order of: InPzTAm> InPzTH > InPzPh. The corrosion inhibition efficiencies for the three inhibitors are 94.0, 91.4 and 79.3, for InPzTAm, InPzTH and InPzPh respectively with the same inhibitor concentration (2 mM. Conclusion From the EIS, OCP and LSV results it was concluded that pyrazolylindolenine compounds with S-atom (with an amine group have illustrated better corrosion inhibition performance compared to hydrazine and phenyl group.

  19. Inhibition of Mild Steel Corrosion in Hydrochloric Acid Solution by New Coumarin

    Directory of Open Access Journals (Sweden)

    Abdul Amir H. Kadhum

    2014-06-01

    Full Text Available A new coumarin derivative, N,N′-((2E,2′E-2,2′-(1,4-phenylenebis (methanylylidenebis(hydrazinecarbonothioylbis(2-oxo-2H-chromene-3-carboxamide PMBH, was synthesized and its chemical structure was elucidated and confirmed using spectroscopic techniques (Infrared spectroscopy IR, Proton nuclear  magnetic resonance, 1H-NMR and carbon-13 nuclear magnetic resonance 13C-NMR. The corrosion inhibition effect of PMBH on mild steel in 1.0 M HCl was investigated using corrosion potential (ECORR, potentiodynamic polarization, electrochemical impedance spectroscopy (EIS, and electrochemical frequency modulation (EFM measurements. The obtained results indicated that PMBH has promising inhibitive effects on the corrosion of mild steel in 1.0 M HCl across all of the conditions examined. Scanning electron microscopy (SEM was used to investigate the morphology of the mild steel before and after immersion in 1.0 M HCl solution containing 0.5 mM of PMBH. Surface analysis revealed improvement of corrosion resistance in presence of PMBH.

  20. Inhibition of Mild Steel Corrosion in Hydrochloric Acid Solution by New Coumarin

    Science.gov (United States)

    Kadhum, Abdul Amir H.; Mohamad, Abu Bakar; Hammed, Leiqaa A.; Al-Amiery, Ahmed A.; San, Ng Hooi; Musa, Ahmed Y.

    2014-01-01

    A new coumarin derivative, N,N′-((2E,2′E)-2,2′-(1,4-phenylenebis(methanylylidene))bis(hydrazinecarbonothioyl))bis(2-oxo-2H-chromene-3-carboxamide) PMBH, was synthesized and its chemical structure was elucidated and confirmed using spectroscopic techniques (Infrared spectroscopy IR, Proton nuclear magnetic resonance, 1H-NMR and carbon-13 nuclear magnetic resonance 13C-NMR). The corrosion inhibition effect of PMBH on mild steel in 1.0 M HCl was investigated using corrosion potential (ECORR), potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), and electrochemical frequency modulation (EFM) measurements. The obtained results indicated that PMBH has promising inhibitive effects on the corrosion of mild steel in 1.0 M HCl across all of the conditions examined. Scanning electron microscopy (SEM) was used to investigate the morphology of the mild steel before and after immersion in 1.0 M HCl solution containing 0.5 mM of PMBH. Surface analysis revealed improvement of corrosion resistance in presence of PMBH. PMID:28788680

  1. Mechanism of Early Stage Corrosion for Boric-sulfuric Acid Anodized 2A97 Al-Cu-Li Alloy Under Tropical Marine Atmosphere

    Directory of Open Access Journals (Sweden)

    LUO Chen

    2016-09-01

    Full Text Available Optical microscopy(OM, scanning electron microscopy(SEM, EDX and EIS combined with ultramicrotomy were employed to investigate the micro morphology, chemical composition and electrochemical properties of anodized 2A97 Al-Cu-Li alloy before and after atmospheric corrosion. The results show that when electrolytes containing combinations of tartaric-sulfuric or boric-sulfuric acid are used to grow the films at different temperatures, boric acid addition and higher temperature allow for higher current density that speeds up the film growth. The pore geometry and structure is similar for different electrolytes. Dispersive dark rusty spots composed of O, Al, Cl, Cu are present on the boric-sulfuric acid anodized specimen after exposure in tropical marine atmosphere for 1 month. Deposition of white corrosion product is found on the specimen surface as well. Severe pitting occurs and develops deeply into the alloy substrate after elongated outdoor exposure. Corrosion propagation is associated with θ-phase particles.

  2. A synergistic combination of tetraethylorthosilicate and multiphosphonic acid offers excellent corrosion protection to AA1100 aluminum alloy

    Science.gov (United States)

    Dalmoro, Viviane; dos Santos, João H. Z.; Armelin, Elaine; Alemán, Carlos; Azambuja, Denise S.

    2013-05-01

    This work describes a new mechanism for the incorporation of organophosphonic acid into silane self-assembly monolayers, which has been used to protect AA1100 aluminum alloy. The protection improvement has been attributed to the fact that phosphonic structures promote the formation of strongly bonded and densely packed monolayer films, which show higher surface coverage and better adhesion than conventional silane systems. In order to evaluate the linking chemistry offered by phosphonic groups, two functionalized organophosphonic groups have been employed, 1,2-diaminoethanetetrakis methylenephosphonic acid (EDTPO) and aminotrimethylenephosphonic acid (ATMP), and combined with tetraethylorthosilicate (TEOS) films prepared by sol-gel synthesis. Results suggest that phosphonic acids may interact with the surface through a monodentate and bidentate coordination mode and, in addition, form one or more strong and stable linkages with silicon through non-hydrolysable bonds. Therefore, the incorporation of a very low concentration of phosphonic acids on TEOS solutions favors the complete coverage of the aluminum substrate during the silanization process, which is not possible using TEOS alone. The linking capacity of phosphonic acid has been investigated by FTIR-RA spectroscopy, SEM and EDX analysis, X-ray photoelectron spectroscopy (XPS), and quantum mechanical calculations. Finally, electrochemical impedance spectroscopy has been used to study the corrosion protection revealing that EDTPO-containing films afforded more protection to the AA1100 substrate than ATMP-containing films.

  3. A synergistic combination of tetraethylorthosilicate and multiphosphonic acid offers excellent corrosion protection to AA1100 aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Dalmoro, Viviane [Instituto de Química, Universidade Federal do Rio Grande do Sul (UFRGS) Av. Bento Gonçalves 9500 - CEP 91501-970, Porto Alegre, RS (Brazil); Departament d’Enginyeria Química, ETSEIB, Universitat Politècnica de Catalunya (UPC), Avda. Diagonal 647, Barcelona E-08028 (Spain); Center for Research in Nano-Engineering (CRnE), Universitat Politècnica de Catalunya (UPC), Campus Sud, Edifici C’, C/Pasqual i Vila s/n, Barcelona E-08028 (Spain); Santos, João H.Z. dos [Instituto de Química, Universidade Federal do Rio Grande do Sul (UFRGS) Av. Bento Gonçalves 9500 - CEP 91501-970, Porto Alegre, RS (Brazil); Armelin, Elaine, E-mail: elaine.armelin@upc.edu [Departament d’Enginyeria Química, ETSEIB, Universitat Politècnica de Catalunya (UPC), Avda. Diagonal 647, Barcelona E-08028 (Spain); Center for Research in Nano-Engineering (CRnE), Universitat Politècnica de Catalunya (UPC), Campus Sud, Edifici C’, C/Pasqual i Vila s/n, Barcelona E-08028 (Spain); Alemán, Carlos, E-mail: carlos.aleman@upc.edu [Departament d’Enginyeria Química, ETSEIB, Universitat Politècnica de Catalunya (UPC), Avda. Diagonal 647, Barcelona E-08028 (Spain); Center for Research in Nano-Engineering (CRnE), Universitat Politècnica de Catalunya (UPC), Campus Sud, Edifici C’, C/Pasqual i Vila s/n, Barcelona E-08028 (Spain); and others

    2013-05-15

    This work describes a new mechanism for the incorporation of organophosphonic acid into silane self-assembly monolayers, which has been used to protect AA1100 aluminum alloy. The protection improvement has been attributed to the fact that phosphonic structures promote the formation of strongly bonded and densely packed monolayer films, which show higher surface coverage and better adhesion than conventional silane systems. In order to evaluate the linking chemistry offered by phosphonic groups, two functionalized organophosphonic groups have been employed, 1,2-diaminoethanetetrakis methylenephosphonic acid (EDTPO) and aminotrimethylenephosphonic acid (ATMP), and combined with tetraethylorthosilicate (TEOS) films prepared by sol–gel synthesis. Results suggest that phosphonic acids may interact with the surface through a monodentate and bidentate coordination mode and, in addition, form one or more strong and stable linkages with silicon through non-hydrolysable bonds. Therefore, the incorporation of a very low concentration of phosphonic acids on TEOS solutions favors the complete coverage of the aluminum substrate during the silanization process, which is not possible using TEOS alone. The linking capacity of phosphonic acid has been investigated by FTIR-RA spectroscopy, SEM and EDX analysis, X-ray photoelectron spectroscopy (XPS), and quantum mechanical calculations. Finally, electrochemical impedance spectroscopy has been used to study the corrosion protection revealing that EDTPO-containing films afforded more protection to the AA1100 substrate than ATMP-containing films.

  4. A synergistic combination of tetraethylorthosilicate and multiphosphonic acid offers excellent corrosion protection to AA1100 aluminum alloy

    International Nuclear Information System (INIS)

    Dalmoro, Viviane; Santos, João H.Z. dos; Armelin, Elaine; Alemán, Carlos

    2013-01-01

    This work describes a new mechanism for the incorporation of organophosphonic acid into silane self-assembly monolayers, which has been used to protect AA1100 aluminum alloy. The protection improvement has been attributed to the fact that phosphonic structures promote the formation of strongly bonded and densely packed monolayer films, which show higher surface coverage and better adhesion than conventional silane systems. In order to evaluate the linking chemistry offered by phosphonic groups, two functionalized organophosphonic groups have been employed, 1,2-diaminoethanetetrakis methylenephosphonic acid (EDTPO) and aminotrimethylenephosphonic acid (ATMP), and combined with tetraethylorthosilicate (TEOS) films prepared by sol–gel synthesis. Results suggest that phosphonic acids may interact with the surface through a monodentate and bidentate coordination mode and, in addition, form one or more strong and stable linkages with silicon through non-hydrolysable bonds. Therefore, the incorporation of a very low concentration of phosphonic acids on TEOS solutions favors the complete coverage of the aluminum substrate during the silanization process, which is not possible using TEOS alone. The linking capacity of phosphonic acid has been investigated by FTIR-RA spectroscopy, SEM and EDX analysis, X-ray photoelectron spectroscopy (XPS), and quantum mechanical calculations. Finally, electrochemical impedance spectroscopy has been used to study the corrosion protection revealing that EDTPO-containing films afforded more protection to the AA1100 substrate than ATMP-containing films.

  5. The Inhibition of Aluminum Corrosion in Sulfuric Acid by Poly(1-vinyl-3-alkyl-imidazolium Hexafluorophosphate

    Directory of Open Access Journals (Sweden)

    Paulina Arellanes-Lozada

    2014-08-01

    Full Text Available Compounds of poly(ionic liquids (PILs, derived from imidazole with different alkylic chain lengths located in the third position of the imidazolium ring (poly(1-vinyl-3-dodecyl-imidazolium (PImC12, poly(1-vinyl-3-octylimidazolium (PImC8 and poly(1-vinyl-3-butylimidazolium (PImC4 hexafluorophosphate were synthesized. These compounds were tested as corrosion inhibitors on aluminum alloy AA6061 in diluted sulfuric acid (0.1–1 M H2SO4 by weight loss tests, polarization resistance measurements and inductively coupled plasma optical emission spectroscopy. Langmuir’s isotherms suggested film formation on bare alloy while standard free energy indicated inhibition by a physisorption process. However, compound efficiencies as inhibitors ranked low (PImC12 > PImC8 > PImC4 to reach 61% for PImC12 in highly diluted acidic solution. Apparently, the high mobility of sulfates favored their adsorption in comparison to PILs. The surface film displayed general corrosion, and pitting occurred as a consequence of PILs’ partial inhibition along with a continuous dissolution of defective patchy film on formation. A slight improvement in efficiency was displayed by compounds having high molecular weight and a long alkyl chain, as a consequence of steric hindrance and PIL interactions.

  6. The Inhibition of Aluminum Corrosion in Sulfuric Acid by Poly(1-vinyl-3-alkyl-imidazolium Hexafluorophosphate).

    Science.gov (United States)

    Arellanes-Lozada, Paulina; Olivares-Xometl, Octavio; Guzmán-Lucero, Diego; Likhanova, Natalya V; Domínguez-Aguilar, Marco A; Lijanova, Irina V; Arce-Estrada, Elsa

    2014-08-07

    Compounds of poly(ionic liquid)s (PILs), derived from imidazole with different alkylic chain lengths located in the third position of the imidazolium ring (poly(1-vinyl-3-dodecyl-imidazolium) (PImC 12 ), poly(1-vinyl-3-octylimidazolium) (PImC₈) and poly(1-vinyl-3-butylimidazolium) (PImC₄) hexafluorophosphate) were synthesized. These compounds were tested as corrosion inhibitors on aluminum alloy AA6061 in diluted sulfuric acid (0.1-1 M H₂SO₄) by weight loss tests, polarization resistance measurements and inductively coupled plasma optical emission spectroscopy. Langmuir's isotherms suggested film formation on bare alloy while standard free energy indicated inhibition by a physisorption process. However, compound efficiencies as inhibitors ranked low (PImC 12 > PImC₈ > PImC₄) to reach 61% for PImC 12 in highly diluted acidic solution. Apparently, the high mobility of sulfates favored their adsorption in comparison to PILs. The surface film displayed general corrosion, and pitting occurred as a consequence of PILs' partial inhibition along with a continuous dissolution of defective patchy film on formation. A slight improvement in efficiency was displayed by compounds having high molecular weight and a long alkyl chain, as a consequence of steric hindrance and PIL interactions.

  7. Effects of dextrose and lipopolysaccharide on the corrosion behavior of a Ti-6Al-4V alloy with a smooth surface or treated with double-acid-etching.

    Science.gov (United States)

    Faverani, Leonardo P; Assunção, Wirley G; de Carvalho, Paulo Sérgio P; Yuan, Judy Chia-Chun; Sukotjo, Cortino; Mathew, Mathew T; Barao, Valentim A

    2014-01-01

    Diabetes and infections are associated with a high risk of implant failure. However, the effects of such conditions on the electrochemical stability of titanium materials remain unclear. This study evaluated the corrosion behavior of a Ti-6Al-4V alloy, with a smooth surface or conditioned by double-acid-etching, in simulated body fluid with different concentrations of dextrose and lipopolysaccharide. For the electrochemical assay, the open-circuit-potential, electrochemical impedance spectroscopy, and potentiodynamic test were used. The disc surfaces were characterized by scanning electron microscopy and atomic force microscopy. Their surface roughness and Vickers microhardness were also tested. The quantitative data were analyzed by Pearson's correlation and independent t-tests (α = 0.05). In the corrosion parameters, there was a strong lipopolysaccharide correlation with the Ipass (passivation current density), Cdl (double-layer capacitance), and Rp (polarization resistance) values (pdextrose and lipopolysaccharide was correlated with the Icorr (corrosion current density) and Ipass (pdextrose and lipopolysaccharide. The combination of dextrose and lipopolysaccharide affected the corrosion behavior of the Ti-6Al-4V alloy surface treated with double-acid-etching. However, no dose-response corrosion behavior could be observed. These results suggest a greater susceptibility to corrosion of titanium implants in diabetic patients with associated infections.

  8. Effects of Induction Heat Bending and Heat Treatment on the Boric Acid Corrosion of Low Alloy Steel Pipe for Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ki-Tae; Kim, Young-Sik [Andong National University, Gyeongbuk (Korea, Republic of); Chang, Hyun-Young; Park, Heung-Bae [KEPCO EandC, Gyeongbuk (Korea, Republic of); Sung, Gi-Ho; Shin, Min-Chul [Sungil SIM Co. Ltd, Busan (Korea, Republic of)

    2016-11-15

    In many plants, including nuclear power plants, pipelines are composed of numerous fittings such as elbows. When plants use these fittings, welding points need to be increased, and the number of inspections also then increases. As an alternative to welding, the pipe bending process forms bent pipe by applying strain at low or high temperatures. This work investigates how heat treatment affects on the boric acid corrosion of ASME SA335 Gr. P22 caused by the induction heat bending process. Microstructure analysis and immersion corrosion tests were performed. It was shown that every area of the induction heat bent pipe exhibited a high corrosion rate in the boric acid corrosion test. This behavior was due to the enrichment of phosphorous in the ferrite phase, which occurred during the induction heat bending process. This caused the ferrite phase to act as a corrosion initiation site. However, when re-heat treatment was applied after the bending process, it enhanced corrosion resistance. It was proved that this resistance was closely related to the degree of the phosphorus segregation in the ferrite phase.

  9. Pitting corrosion of copper in aqueous solutions containing phosphonic acid as an inhibitor. Hosuhon san wo inhibita toshite fukumu suiyoekichu ni okeru do no koshiku ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Y. (Muroran Univ., Hokkaido (Japan). Graduate School); Seri, O.; Tagashira, K. (Muroran Univ., Hokkaido (Japan)); Nagata, K. (Sumitomo Light Metal Co. Ltd., Tokyo (Japan). Technical Research Lab.)

    1993-09-15

    Phosphonic acid-based inhibitors that are poured into cooling water for copper-tube circulation systems for open heat-accumulators were studied on their influence on pitting corrosion of copper. Amino trimethylene phosphonic acid (ATMP) dissolved into distilled water to 50 ppm was used for the immersion corrosion test. The corrosion-proof effect of additives such as ZnSO4, benzotriazole (BTA) was tested too. 0.5 mm thick phosphate-treated copper plates with a hole of 5 mm in diameter were used as test specimens. Pitting corrosion on the copper plate occurred when ATMP, BTA and ZnSO4 coexisted. It was proved that SO4 [sup 2-] is essential since Na2SO4 in stead of ZnSO4 induced also corrosion. The pitting took place when 0.6 ppm or more of SO4 [sup 2-] was present in a BTA-added ATMP solution. It was observed that the pitting is prone to occur with increase of SO4 [sup 2-] and the number of pitting increases. The following relationship is established when pitting corrosion occurs; E[sub b] [le] E[sub corr], where the former is a potential value at which current density shows a steep increase and the latter is an average value of spontaneous electrode potential showing a plateau. 8 refs., 11 figs., 1 tab.

  10. Electrochemical study on the effect of Schiff base and its cobalt complex on the acid corrosion of steel

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-Gaber, A.M. [Chemistry Department, Faculty of Science, Alexandria University, Ibrahimia, P.O. Box 426, Alexandria 21321 (Egypt)], E-mail: ashrafmoustafa@yahoo.com; Masoud, M.S.; Khalil, E.A.; Shehata, E.E. [Chemistry Department, Faculty of Science, Alexandria University, Ibrahimia, P.O. Box 426, Alexandria 21321 (Egypt)

    2009-12-15

    The effect of the Schiff base N,N'-bis (salicylaldehyde)-1,3-diaminopropane (Salpr) and its corresponding cobalt complex on the corrosion behaviour of steel in 1 M sulphuric acid solution were studied by electrochemical impedance spectroscopy (EIS), and potentiodynamic polarization techniques. Spectrophotometry measurements were employed to investigate the stability of the complex in acid media. The inhibitive effect of Salpr and its stable octahedral cobalt complex is argued to their adsorption over the steel surface. Theoretical fitting of different isotherms, Langmuir, Flory-Huggins and the kinetic-thermodynamic model were tested to clarify the nature of adsorption. The data revealed that there might be non-ideal behaviour in the adsorption processes of Co(Salpr) complex on the steel surface. The Co(Salpr) could displace more water molecules from the steel surface than the corresponding Salpr. The bulky Co(Salpr) molecule could cover more than one active site.

  11. Corrosion inhibition of carbon steel in acidic medium by orange peel extract and its main antioxidant compounds

    International Nuclear Information System (INIS)

    M’hiri, Nouha; Veys-Renaux, Delphine; Rocca, Emmanuel; Ioannou, Irina; Boudhrioua, Nourhéne Mihoubi; Ghoul, Mohamed

    2016-01-01

    Highlights: • Catechol and derived functions are responsible for flavonoids antioxidant activity. • Antioxidant activity of adsorbed molecules explains cathodic inhibition. • Orange peel extract inhibition is enhanced by the precipitation of a covering film. - Abstract: Chemical compounds of orange peel extracts were identified and their antioxidant activities were determined. The inhibiting effect on acidic steel corrosion brought by the extract and selected antioxidant compounds (neohesperidin, naringin, ascorbic acid) was evaluated separately by electrochemical methods. Whatever the extract concentration, a significant inhibition is observed, whereas selected antioxidant compounds show only a slight effect. Both electrochemical impedance spectroscopy results and scanning electron microscopy observations after immersion reveal that the inhibiting efficiency of orange peel extract is not only due to the antioxidant activity of its compounds but also to the precipitation of a surface film.

  12. Electrochemical corrosion of Pb-1 wt% Sn and Pb-2.5 wt% Sn alloys for lead-acid battery applications

    Energy Technology Data Exchange (ETDEWEB)

    Osorio, Wislei R.; Peixoto, Leandro C.; Garcia, Amauri [Department of Materials Engineering, State University of Campinas - UNICAMP, PO Box 612, 13083-970 Campinas, SP (Brazil)

    2009-12-01

    The aim of this study was to compare the electrochemical corrosion behavior of as-cast Pb-1 wt% Sn and Pb-2.5 wt% Sn alloy samples in a 0.5 M H{sub 2}SO{sub 4} solution at 25 C. A water-cooled unidirectional solidification system was used to obtain the as-cast samples. Electrochemical impedance spectroscopy (EIS) diagrams, potentiodynamic polarization curves and an equivalent circuit analysis were used to evaluate the electrochemical corrosion response. It was found that a coarse cellular array has a better electrochemical corrosion resistance than fine cells. The pre-programming of microstructure cell size of Pb-Sn alloys can be used as an alternative way to produce as-cast components of lead-acid batteries with higher corrosion resistance associated with environmental and economical aspects. (author)

  13. Kinetics of corrosion inhibition of aluminum in acidic media by water-soluble natural polymeric chondroitin-4-sulfate as anionic polyelectrolyte inhibitor.

    Science.gov (United States)

    Hassan, Refat M; Ibrahim, Samia M; Takagi, Hideo D; Sayed, Suzan A

    2018-07-15

    Corrosion inhibition of aluminum (Al) in hydrochloric acid by anionic polyelectrolyte chondroitin-4-sulfate (CS) polysaccharide has been studied using both gasometrical and weight-loss techniques. The results drawn from these two techniques are comparable and exhibit negligible differences. The inhibition efficiency was found to increase with increasing the inhibitor concentration and decreased with increasing temperature. The inhibition action of CS on Al metal surface was found to obey both of Langmuir and Freundlich isotherms. The factors affecting the corrosion rates such as the concentration and geometrical structure of the inhibitor, concentration of the corrosive medium, and the temperature were examined. The kinetic parameters were evaluated and a suitable corrosion mechanism consistent with the results obtained is discussed. Copyright © 2018. Published by Elsevier Ltd.

  14. Electrochemical Study on Newly Synthesized Chlorocurcumin as an Inhibitor for Mild Steel Corrosion in Hydrochloric Acid

    Directory of Open Access Journals (Sweden)

    Ahmed A. Al-Amiery

    2013-11-01

    Full Text Available A new curcumin derivative, i.e., (1E,4Z,6E-5-chloro-1,7-bis(4-hydroxy-3-methoxyphenylhepta-1,4,6-trien-3-one (chlorocurcumin, was prepared starting with the natural compound curcumin. The newly synthesized compound was characterized by elemental analysis and spectral studies (IR, 1H-NMR and 13C-NMR. The corrosion inhibition of mild steel in 1 M HCl by chlorocurcumin has been studied using potentiodynamic polarization (PDP measurements and electrochemical impedance spectroscopy (EIS. The inhibition efficiency increases with the concentration of the inhibitor but decreases with increases in temperature. The potentiodynamic polarization reveals that chlorocurcumin is a mixed-type inhibitor. The kinetic parameters for mild steel corrosion were determined and discussed.

  15. Electrochemical Study on Newly Synthesized Chlorocurcumin as an Inhibitor for Mild Steel Corrosion in Hydrochloric Acid

    Science.gov (United States)

    Al-Amiery, Ahmed A.; Kadhum, Abdul Amir H.; Mohamad, Abu Bakar; Musa, Ahmed Y.; Li, Cheong Jiun

    2013-01-01

    A new curcumin derivative, i.e., (1E,4Z,6E)-5-chloro-1,7-bis(4-hydroxy-3-methoxyphenyl)hepta-1,4,6-trien-3-one (chlorocurcumin), was prepared starting with the natural compound curcumin. The newly synthesized compound was characterized by elemental analysis and spectral studies (IR, 1H-NMR and 13C-NMR). The corrosion inhibition of mild steel in 1 M HCl by chlorocurcumin has been studied using potentiodynamic polarization (PDP) measurements and electrochemical impedance spectroscopy (EIS). The inhibition efficiency increases with the concentration of the inhibitor but decreases with increases in temperature. The potentiodynamic polarization reveals that chlorocurcumin is a mixed-type inhibitor. The kinetic parameters for mild steel corrosion were determined and discussed. PMID:28788402

  16. Corrosion Behavior of Ni3(Si,Ti in Hydrochloric Acid Solution

    Directory of Open Access Journals (Sweden)

    Gadang Priyotomo

    2013-06-01

    Full Text Available Normal 0 false false false IN X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} The corrosion behaviour of the intermetallic compounds Ni3(Si,Ti (L12: single phase, has been investigated using an immersion test, electrochemical method, scanning electron microscope in 0.5 kmol/m3 HCl at 303 K. In addition, the corrosion behaviour of austenitic stainless steel type 304 and C276 was studied under the same experimental conditions as references. It was found that the intergranular attack was observed for Ni3(Si,Ti in the immersion test. From the immersion test and polarization curves, Ni3(Si,Ti had the moderate corrosion resistance, while the corrosion resistances of C 276 and type 304 were the highest and the lowest. Ni3(Si,Ti and type 304 were difficult to form a stable passive film, but not for C276. A further experiment must be conducted to clarify the stability of film for Ni3(Si,Ti in detail.

  17. Improving Corrosion Resistance and Biocompatibility of Magnesium Alloy by Sodium Hydroxide and Hydrofluoric Acid Treatments

    Directory of Open Access Journals (Sweden)

    Chang-Jiang Pan

    2016-12-01

    Full Text Available Owing to excellent mechanical property and biodegradation, magnesium-based alloys have been widely investigated for temporary implants such as cardiovascular stent and bone graft; however, the fast biodegradation in physiological environment and the limited surface biocompatibility hinder their clinical applications. In the present study, magnesium alloy was treated by sodium hydroxide (NaOH and hydrogen fluoride (HF solutions, respectively, to produce the chemical conversion layers with the aim of improving the corrosion resistance and biocompatibility. The results of attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR and X-ray photoelectron spectroscopy (XPS indicated that the chemical conversion layers of magnesium hydroxide or magnesium fluoride were obtained successfully. Sodium hydroxide treatment can significantly enhance the surface hydrophilicity while hydrogen fluoride treatment improved the surface hydrophobicity. Both the chemical conversion layers can obviously improve the corrosion resistance of the pristine magnesium alloy. Due to the hydrophobicity of magnesium fluoride, HF-treated magnesium alloy showed the relative better corrosion resistance than that of NaOH-treated substrate. According to the results of hemolysis assay and platelet adhesion, the chemical surface modified samples exhibited improved blood compatibility as compared to the pristine magnesium alloy. Furthermore, the chemical surface modified samples improved cytocompatibility to endothelial cells, the cells had better cell adhesion and proliferative profiles on the modified surfaces. Due to the excellent hydrophilicity, the NaOH-treated substrate displayed better blood compatibility and cytocompatibility to endothelial cells than that of HF-treated sample. It was considered that the method of the present study can be used for the surface modification of the magnesium alloy to enhance the corrosion resistance and biocompatibility.

  18. Corrosion Prevention of Cold Rolled Steel Using Water Dispersible Lignosulfonic Acid Doped Polyaniline

    Science.gov (United States)

    Viswanathan, Tito (Inventor)

    2007-01-01

    The invention provides coatings useful for preventing corrosion of metals. The coatings comprise a film-forming resin and conductive polymers comprising linearly conjugated x-systems and residues of sulfonated lignin or a sulfonated polyflavonoid or derivatives of solfonated lignin or a sulfonated polyflavonoid. The invention also provides a latex formulation of the coatings, and articles of manufacture comprising a metal substrate and a coating in contact with the metal substrate.

  19. Inhibition of Mild Steel Corrosion in Sulfuric Acid Solution by New Schiff Base

    Directory of Open Access Journals (Sweden)

    Ahmed A. Al-Amiery

    2014-01-01

    Full Text Available The efficiency of Schiff base derived from 4-aminoantipyrine, namely 2-(1,5-dimethyl-4-(2-methylbenzylideneamino-2-phenyl-1H-pyrazol-3(2H-ylidene hydrazinecarbothioamide as a corrosion inhibitor on mild steel in 1.0 M H2SO4 was investigated using electrochemical impedance spectroscopy (EIS, potentiodynamic polarization (PD and electrochemical frequently modulation (EFM in addition to the adsorption isotherm, corrosion kinetic parameters and scanning electron microscopy (SEM. The results showed that this inhibitor behaved as a good corrosion inhibitor, even at low concentration, with a mean efficiency of 93% and, also, a reduction of the inhibition efficiency as the solution temperature increases. A polarization technique and EIS were tested for different concentrations and different temperatures to reveal that this compound is adsorbed on the mild steel, therefore blocking the active sites, and the adsorption follows the Langmuir adsorption isotherm model. The excellent inhibition effectiveness of 2-(1,5-dimethyl-4-(2-methylbenzylideneamino-2-phenyl-1H-pyrazol-3(2H-ylidenehydrazinecarbothioamide was also verified by scanning electron microscope (SEM.

  20. Evaluation of some phenothiazine derivatives as corrosion inhibitors for bronze in weakly acidic solution

    International Nuclear Information System (INIS)

    Bostan, Roxana; Varvara, Simona; Găină, Luiza; Mureşan, Liana Maria

    2012-01-01

    Highlights: ► Phenothiazine derivatives are efficient inhibitors for bronze corrosion. ► Potentiodynamic polarization and EIS were used to elucidate inhibition mechanism. ► Adsorption of phenothiazine derivatives on bronze surface obeys Langmuir isotherm. ► A correlation between energy gaps and inhibition efficiencies values was obtained. - Abstract: Four phenothiazine derivatives have been tested as inhibitors for bronze corrosion in a solution containing Na 2 SO 4 and NaHCO 3 (pH 5). Electrochemical investigations (potentiodynamic polarisation and impedance measurements) revealed that all phenothiazine derivatives exert a protective effect against bronze corrosion and, in some cases their inhibition efficiency exceeds 90% at concentration level as low as 75 μM. An adherent layer of organic molecules chemisorbed on bronze surface is responsible for the protective effect of the investigated compounds. Adsorption of phenothiazine derivatives on bronze obeys Langmuir isotherm. Correlation between quantum chemical calculations and inhibition efficiency of the investigated compounds was discussed using DFT method.

  1. Corrosion Inhibition of Q235A Steel in Acid Medium Using Isatin Derivatives: A Qsar Study

    International Nuclear Information System (INIS)

    Abdo M Al-Fakih; Madzlan Aziz; Abdo M Al-Fakih; Abdallah, H.H.; Hasmerya Maarof; Rosmahaida Jamaludin; Bishir Usman

    2016-01-01

    Quantitative Structure-Activity Relationship (QSAR) study was performed on 10 isatin derivatives which were reportedly used as corrosion inhibitors. Dragon software was used to calculate the molecular descriptors. Partial least square (PLS) method was used to run the regression analysis between the descriptors and the corrosion inhibition efficiencies (IE) of the inhibitors. A predictive QSAR model was developed with a correlation coefficient (r 2 cal ) of 0.9676. The model validity was assessed through internal and external validation. The results show that cross-validation regression coefficient (r 2 cv ) and prediction regression coefficient (r 2 pred ) are 0.8163 and 0.9189, respectively. The model was used to predict the IE for ten isatin derivatives. The results confirm a good stability and predictive ability of the model. Dragon-based descriptors provide a very good description of the corrosion inhibition properties of the inhibitors. The results of the QSAR study were found to be consistent with the experimental data. (author)

  2. The effect of cysteine on the corrosion of 304L stainless steel in sulphuric acid

    International Nuclear Information System (INIS)

    Silva, A.B.; Agostinho, S.M.L.; Barcia, O.E.; Cordeiro, G.G.O.; D'Elia, E.

    2006-01-01

    The effect of cysteine on the corrosion of 304L stainless steel in 1 mol l -1 H 2 SO 4 was studied using open-circuit potential measurements, anodic polarization curves, electrochemical impedance spectroscopy (EIS) and scanning electron microscopy (SEM). All the electrochemical measurements obtained in the presence of low cysteine concentration (10 -6 -10 -5 mol l -1 ) presented the same behaviour as those obtained in the absence of cysteine, a passivated steel surface. However, for higher cysteine concentrations (10 -4 -10 -2 mol l -1 ), a different behaviour was observed: the corrosion potential stabilized at a more negative value; an active region was observed in the anodic polarization curves and the electrochemical impedance diagrams showed an inductive loop at lower frequencies and a much lower polarization resistance. These results show that the presence of cysteine at high concentration turns the surface of 304L stainless steel electrochemically active, probably dissolving the passivation layer and promoting the stainless steel anodic dissolution. SEM experiments performed after immersion experiments at corrosion potential were in good agreement with the electrochemical results

  3. Inhibition of Mild Steel Corrosion in Sulfuric Acid Solution by New Schiff Base

    Science.gov (United States)

    Al-Amiery, Ahmed A.; Kadhum, Abdul Amir H.; Kadihum, Abdulhadi; Mohamad, Abu Bakar; How, Chong K.; Junaedi, Sutiana

    2014-01-01

    The efficiency of Schiff base derived from 4-aminoantipyrine, namely 2-(1,5-dimethyl-4-(2-methylbenzylidene)amino)-2-phenyl-1H-pyrazol-3(2H)-ylidene) hydrazinecarbothioamide as a corrosion inhibitor on mild steel in 1.0 M H2SO4 was investigated using electrochemical impedance spectroscopy (EIS), potentiodynamic polarization (PD) and electrochemical frequently modulation (EFM) in addition to the adsorption isotherm, corrosion kinetic parameters and scanning electron microscopy (SEM). The results showed that this inhibitor behaved as a good corrosion inhibitor, even at low concentration, with a mean efficiency of 93% and, also, a reduction of the inhibition efficiency as the solution temperature increases. A polarization technique and EIS were tested for different concentrations and different temperatures to reveal that this compound is adsorbed on the mild steel, therefore blocking the active sites, and the adsorption follows the Langmuir adsorption isotherm model. The excellent inhibition effectiveness of 2-(1,5-dimethyl-4-(2-methylbenzylidene)amino)-2-phenyl-1H-pyrazol-3(2H)-ylidene)hydrazinecarbothioamide was also verified by scanning electron microscope (SEM). PMID:28788488

  4. Corrosion and corrosion control

    International Nuclear Information System (INIS)

    Khanna, A.S.; Totlani, M.K.

    1995-01-01

    Corrosion has always been associated with structures, plants, installations and equipment exposed to aggressive environments. It effects economy, safety and product reliability. Monitoring of component corrosion has thus become an essential requirement for the plant health and safety. Protection methods such as appropriate coatings, cathodic protection and use of inhibitors have become essential design parameters. High temperature corrosion, especially hot corrosion, is still a difficult concept to accommodate in corrosion allowance; there is a lack of harmonized system of performance testing of materials at high temperatures. In order to discuss and deliberate on these aspects, National Association for Corrosion Engineers International organised a National Conference on Corrosion and its Control in Bombay during November 28-30, 1995. This volume contains papers presented at the symposium. Paper relevant to INIS is indexed separately. refs., figs., tabs

  5. Dictionary corrosion and corrosion control

    International Nuclear Information System (INIS)

    1985-01-01

    This dictionary has 13000 entries in both languages. Keywords and extensive accompanying information simplify the choice of word for the user. The following topics are covered: Theoretical principles of corrosion; Corrosion of the metals and alloys most frequently used in engineering. Types of corrosion - (chemical-, electro-chemical, biological corrosion); forms of corrosion (superficial, pitting, selective, intercrystalline and stress corrosion; vibrational corrosion cracking); erosion and cavitation. Methods of corrosion control (material selection, temporary corrosion protection media, paint and plastics coatings, electro-chemical coatings, corrosion prevention by treatment of the corrosive media); Corrosion testing methods. (orig./HP) [de

  6. Electrochemical corrosion behavior of acid treated strip cast AM50 and AZX310 magnesium alloys in 3.5 wt.% NaCl solution

    Directory of Open Access Journals (Sweden)

    Srinivasan Arthanari

    2017-09-01

    Full Text Available The influence of acid treatments on the surface morphology and electrochemical corrosion behavior of strip-cast AM50 and AZX310 alloys have been studied in the present investigation. The alloys were acid treated using H3PO4 (AT-1, HF (AT-2 and HNO3 (AT-3 for different treatment durations viz., 60, 300 and 600 s. The acid treatments produced a surface layer consisting of corresponding magnesium salts of the acids and were confirmed from the X-ray diffraction (XRD, scanning electron microscopy (SEM and energy dispersive X-ray analysis (EDAX. AT-1 treatment produced cracked and network porous morphology for AM50 and AZX310 alloys respectively and AT-3 treatment exhibited dense creaked surface layer formation while AT-2 does not produce any significant change in the morphology. Polarization studies revealed that, the acid treatment significantly altered the corrosion process by altering anodic and cathodic reaction rates of AM50 and AZX310 alloys. The HNO3 (AT-3 treatment was effective compared to other treatments to control the corrosion rate in the studied treatment conditions. The surface morphology and chemical composition of surface layer produced during the treatment was correlated to explain the corrosion results.

  7. Electrochemical noise study on 2024-T3 Aluminum alloy corrosion in simulated acid rain under cyclic wet-dry condition

    International Nuclear Information System (INIS)

    Shi Yanyan; Zhang Zhao; Su Jingxin; Cao Fahe; Zhang Jianqing

    2006-01-01

    Potential noise records have been collected for 2024-T3 aluminum alloy, which was exposed to simulated acid rain with different pH value for 15 wet-dry cycles. Meanwhile, Potentiodynamic polarization and SEM techniques were also used as assistant measurements. Three mathematic methods including average, standard deviation and wavelet transformation have been employed to analyze the records. The results showed that each single wet-dry cycle can be divided into three regions with respect to the change of the cathodic reaction rate, and with the increase of pH value the main cathodic reaction changes from the reduction of protons to that of oxygen molecules. The analysis of the EDP versus time evolution clearly indicates that the whole corrosion process can be divided into three segments for the case of pH 3.5 and only one for the cases of pH 4.5 and 6.0, which have been theoretically interpreted according to the corrosion theory and experimentally proved by SEM. The results also showed that the corrosion in the case of pH 3.5 was much more rigorous than that in the cases of pH 4.5 and 6.0. It may due to synergistic effects of that, the characteristic of hydrogen ions which is much more active than that of oxygen molecules, the high diffusion/migration rate of hydrogen ions in solution or through surface films and the lower stability of surface passive film at low pH value system

  8. Effect of 4-(N,N-diethylamino)benzaldehyde thiosemicarbazone on the corrosion of aged 18 Ni 250 grade maraging steel in phosphoric acid solution

    International Nuclear Information System (INIS)

    Poornima, T.; Nayak, Jagannath; Nityananda Shetty, A.

    2011-01-01

    Highlights: → DEABT as corrosion inhibitor for maraging steel in phosphoric acid. → Inhibition efficiency increases with increase in inhibitor concentration. → Inhibition efficiency decreases with increase in temperature. → Adsorption obeys Langmuir adsorption isotherm. - Abstract: 4-(N,N-diethylamino)benzaldehyde thiosemicarbazone (DEABT) was studied for its corrosion inhibition property on the corrosion of aged 18 Ni 250 grade maraging steel in 0.67 M phosphoric acid at 30-50 deg. C by potentiodynamic polarization, EIS and weight loss techniques. Inhibition efficiency of DEABT was found to increase with the increase in DEABT concentration and decrease with the increase in temperature. The activation energy E a and other thermodynamic parameters (ΔG ads 0 , ΔH ads 0 , ΔS ads 0 ) have been evaluated and discussed. The adsorption of DEABT on aged maraging steel surface obeys the Langmuir adsorption isotherm model and the inhibitor showed mixed type inhibition behavior.

  9. Corrosion resistance of Zn-Al layered double hydroxide/poly(lactic acid) composite coating on magnesium alloy AZ31

    Science.gov (United States)

    Zeng, Rong-Chang; Li, Xiao-Ting; Liu, Zhen-Guo; Zhang, Fen; Li, Shuo-Qi; Cui, Hong-Zhi

    2015-12-01

    A Zn-Al layered double hydroxide (ZnAl-LDH) coating consisted of uniform hexagonal nano-plates was firstly synthesized by co-precipitation and hydrothermal treatment on the AZ31 alloy, and then a poly(lactic acid) (PLA) coating was sealed on the top layer of the ZnAl-LDH coating using vacuum freeze-drying. The characteristics of the ZnAl-LDH/PLA composite coatings were investigated by means of XRD, SEM, FTIR and EDS. The corrosion resistance of the coatings was assessed by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The results showed that the ZnAl-LDH coating contained a compact inner layer and a porous outer layer, and the PLA coating with a strong adhesion to the porous outer layer can prolong the service life of the ZnAl-LDH coating. The excellent corrosion resistance of this composite coating can be attributable to its barrier function, ion-exchange and self-healing ability.

  10. Inhibition of mild steel corrosion in acidic medium using synthetic and naturally occurring polymers and synergistic halide additives

    Energy Technology Data Exchange (ETDEWEB)

    Umoren, S.A. [Department of Chemistry, Faculty of Science, University of Uyo, P.M.B 1017 Uyo (Nigeria)], E-mail: saviourumoren@yahoo.com; Ogbobe, O.; Igwe, I.O. [Department of Polymer and Textile Engineering, School of Engineering and Engineering Technology, Federal University of Technology, P.M.B. 1526 Owerri (Nigeria); Ebenso, E.E. [Department of Chemistry and Chemical Technology, National University of Lesotho, P. O. Roma180, Lesotho (South Africa)

    2008-07-15

    The corrosion inhibition of mild steel in H{sub 2}SO{sub 4} in the presence of gum arabic (GA) (naturally occurring polymer) and polyethylene glycol (PEG) (synthetic polymer) was studied using weight loss, hydrogen evolution and thermometric methods at 30-60 deg. C. PEG was found to be a better inhibitor for mild steel corrosion in acidic medium than GA. The effect of addition of halides (KCl, KBr and KI) was also studied. Results obtained showed that inhibition efficiency (I%) increased with increase in GA and PEG concentration, addition of halides and with increase in temperature. Increase in inhibition efficiency (I%) and degree of surface coverage ({theta}) was found to follow the trend Cl{sup -} < Br{sup -} < I{sup -} which indicates that the radii and electronegativity of the halide ions play a significant role in the adsorption process. GA and PEG alone and in combination with halides were found to obey Temkin adsorption isotherm. Phenomenon of chemical adsorption is proposed from the trend of inhibition efficiency with temperature and values {delta}G{sub ads}{sup 0} obtained. The synergism parameter, S{sub I} evaluated is found to be greater than unity indicating that the enhanced inhibition efficiency caused by the addition of halides is only due to synergism.

  11. A study of electrochemically-induced corrosion of low carbon steel in a medium modelling acid rain

    International Nuclear Information System (INIS)

    Vertes, C.; Lakatos-Varsanyi, M.; Vertes, A.; Meisel, W.; Guetlich, P.

    1994-01-01

    Complementary electrochemical, spectrophotometric and electron microsopic investigations were made in addition to the conversion electron Moessbauer spectroscopic (CEMS) measurements to learn more about the mechanism of corrosion of low carbon steel samples in aqueous sulfate and sulfite containing sulfate solutions (pH 3.5, 6.5 and 8.5). Passivation of iron in pure sulfate solution was studied in detail in earlier papers. In the present work, we used a solution containing both sulfate and sulfite anions to obtain more information about the effect of acid rain on low carbon steel samples. The compositions and thicknesses of the passive films formed due to the electrochemical treatments were determined from the CEM spectra. γ-FeOOH was found in each case on the surface of the samples; nevertheless, at pH 3.5 the sextet belonging to Fe 3 C appears in the CEM spectra, and also FeSO 4 . H 2 O was detected in low concentration after the shortest polarization time (90 min). The results of the applied methods proved that the sulfite ions induce pitting corrosion at pH 3.5 and 6.5, while the measurements referred to suppressed pitting at pH 8.5. (orig.)

  12. The roles of cellular and dendritic microstructural morphologies on the corrosion resistance of Pb-Sb alloys for lead acid battery grids

    Energy Technology Data Exchange (ETDEWEB)

    Osorio, Wislei R.; Rosa, Daniel M.; Garcia, Amauri [Department of Materials Engineering, State University of Campinas-UNICAMP, PO Box 6122, 13083-970 Campinas, SP (Brazil)

    2008-01-03

    During the past 20 years, lead acid batteries manufacturers have modified grid manufacturing processes and the chemical composition of the used alloys in order to decrease battery grid weight as well as to reduce the production costs, and to increase the battery life-time cycle and the corrosion resistance. The aim of this study was to evaluate the effects of cellular and dendritic microstructures of two different Pb-Sb alloys on the resultant corrosion behavior. A water-cooled unidirectional solidification system was used to obtain cellular and dendritic structures. Macrostructural and microstructural aspects along the casting have been characterized by optical microscopy and SEM techniques. Electrochemical impedance spectroscopy and potentiodynamic polarization curves were used to analyze the corrosion resistance of samples in a 0.5 M H{sub 2}SO{sub 4} solution at 25 C. For cellular microstructures the corrosion rate decreases with increasing cell spacing. In contrast, finer dendritic spacings exhibit better corrosion resistance than coarser ones. The microstructural pre-programming may be used as an alternative way to produce Pb alloy components in conventional casting, rolled-expanded, and continuous drum casting with better corrosion resistance. (author)

  13. Surface coverage and corrosion inhibition effect of Rosmarinus officinalis and zinc oxide on the electrochemical performance of low carbon steel in dilute acid solutions

    Directory of Open Access Journals (Sweden)

    Roland Tolulope Loto

    2018-03-01

    Full Text Available Electrochemical analysis of the corrosion inhibition and surface protection properties of the combined admixture of Rosmarinus officinalis and zinc oxide on low carbon steel in 1 M HCl and H2SO4 solution was studied by potentiodynamic polarization, open circuit potential measurement, optical microscopy and ATR-FTIR spectroscopy. Results obtained confirmed the compound to be more effective in HCl solution, with optimal inhibition efficiencies of 93.26% in HCl and 87.7% in H2SO4 acid solutions with mixed type inhibition behavior in both acids. The compound shifts the corrosion potential values of the steel cathodically in HCl and anodically in H2SO4 signifying specific corrosion inhibition behavior without applied potential. Identified functional groups of alcohols, phenols, 1°, 2° amines, amides, carbonyls (general, esters, saturated aliphatic, carboxylic acids, ethers, aliphatic amines, alkenes, aromatics, alkyl halides and alkynes within the compound completely adsorbed onto the steel forming a protective covering. Thermodynamic calculations showed physisorption molecular interaction with the steel’s surface according to Langmuir and Frumkin adsorption isotherms. Optical microscopy images of the inhibited and uninhibited steels contrast each other with steel specimens from HCl solution showing a better morphology. Keywords: Corrosion, Inhibitor, Adsorption, Steel, Acid

  14. Corrosion inhibitors

    International Nuclear Information System (INIS)

    El Ashry, El Sayed H.; El Nemr, Ahmed; Esawy, Sami A.; Ragab, Safaa

    2006-01-01

    The corrosion inhibition efficiencies of some triazole, oxadiazole and thiadiazole derivatives for steel in presence of acidic medium have been studied by using AM1, PM3, MINDO/3 and MNDO semi-empirical SCF molecular orbital methods. Geometric structures, total negative charge on the molecule (TNC), highest occupied molecular energy level (E HOMO ), lowest unoccupied molecular energy level (E LUMO ), core-core repulsion (CCR), dipole moment (μ) and linear solvation energy terms, molecular volume (V i ) and dipolar-polarization (π *), were correlated to corrosion inhibition efficiency. Four equations were proposed to calculate corrosion inhibition efficiency. The agreement with the experimental data was found to be satisfactory; the standard deviations between the calculated and experimental results ranged between ±0.03 and ±4.18. The inhibition efficiency was closely related to orbital energies (E HOMO and E LUMO ) and μ. The correlation between quantum parameters and experimental inhibition efficiency has been validated by single point calculations for the semi-empirical AM1 structures using B3LYP/6-31G** as a higher level of theory. The proposed equations were applied to predict the corrosion inhibition efficiency of some related structures to select molecules of possible activity from a presumable library of compounds

  15. Blue tetrazolium as a novel corrosion inhibitor for cold rolled steel in hydrochloric acid solution

    International Nuclear Information System (INIS)

    Li Xianghong; Deng Shuduan; Fu Hui

    2010-01-01

    The inhibition effect of blue tetrazolium (BT) on the corrosion of cold rolled steel (CRS) in 1.0 M HCl solution at 20 o C was investigated by weight loss, potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), and scanning electron microscopy (SEM) methods. The results show that BT is a very good inhibitor, and the adsorption of BT on CRS surface obeys Langmuir adsorption isotherm. Polarization curves reveal that BT acts as a mixed-type inhibitor. EIS spectra exhibit one capacitive loop and confirm the inhibitive ability. The inhibition action of BT is also evidenced by SEM images.

  16. The Corrosion Behavior of Nickel and Inconel 600 in Sodium Hydroxide and Hydrochloric Acid Solution at 280 .deg. C

    International Nuclear Information System (INIS)

    Lee, Ihh Chong; Suk, Tae Won

    1980-01-01

    The corrosion behavior of nickel and Inconel 600 has been investigated by the weight change measurement method at pH ranges 3∼13 of the solution. The specimens were exposed to aqueous solutions in a static autoclave at 280 .deg. C for 210 hours. The pH of the solutions was adjusted by hydrochloric acid and sodium hydroxide and the dissolved oxygen concentration was fixed as 10 ppb by using pure nitrogen gas. Weight loss of Inconel 600 was much less than that of nickel over the tested pH ranges. At pH 9.5, nickel and Inconel 600 showed the minimum weight loss phenomenon and the values of weight loss were 1.5mg/dm 2 and 0.9mg/dm 2 , respectively. Microscopic examination showed that nickel surface was attacked uniformly, whereas Inconel 600 surface was not greatly

  17. Enhancement of the Inhibitor Efficiency of Atropine Methochloride in Corrosion Control of Mild Steel in Sulphuric Acid

    Directory of Open Access Journals (Sweden)

    Abida Begum

    2008-01-01

    Full Text Available The inhibition efficiency and synergistic behaviour of 10-4 M Atropine methochloride was carried out using mass loss and polarisation methods in the presence of (i metal ions, Ni2+ and Cu2+ between 10-2 M to 10-6 M concentrations, (ii different concentrations of metal ions and 10-3 M I-, 10-3 M Cl- and 10-3 M Br- solutions and (iii different metal ions, 10-3M I- and at three different temperatures. The analysis reveals that the inhibition efficiency of Atropine methochloride was maximum at 10-2 M in 5 hours of immersion period. Halides decreased the corrosion rate of mild steel in Sulphuric acid. The decrease is maximum with 10-3 M I-. As the temperature increased from 298K to 308K, the inhibition efficiency gradually decreased. The inhibitor was found to be effective up to 303K

  18. Novel dispersed magnetite core-shell nanogel polymers as corrosion inhibitors for carbon steel in acidic medium

    International Nuclear Information System (INIS)

    Atta, Ayman M.; El-Azabawy, Olfat E.; Ismail, H.S.; Hegazy, M.A.

    2011-01-01

    Graphical abstract: Display Omitted Research highlights: → Through a one-step thermal reaction, magnetite nanoparticles were synthesized, and self-assembled mixed films of modified cross-linked ionic polymer magnetite nanoparticles were prepared on iron surface. → The size distribution and shape of magnetite nanoparticles were examined using transmission electron microscopy (TEM). → The corrosion inhibition efficiency of carbon steel in 1 M HCl by the synthesized Fe 3 O 4 nanogel polymers has been studied using potentiodynamic polarization and EIS. → Scanning electron microscopy (SEM) measurements were applied to study the morphology of the carbon steel surface. - Abstract: Novel core-shell preparing poly(2-acrylamido-2-methylpropane sulfonic acid) (PAMPS) and copolymers with acrylic acid (AA) or acrylamide (AM) magnetic nanogels with controllable particle size produced via free aqueous polymerization at room temperature have been developed for the first time. The crosslinking polymerization was carried out in the presence of N,N'-methylenebisacrylamide (MBA) as a crosslinker, N,N,N',N'-tetramethylethylenediamine (TEMED) and potassium peroxydisulfate (KPS) as redox initiator system. The structure and morphology of the magnetic nanogels were characterized by Fourier transform infrared spectroscopy (FTIR), transmission and scanning electron microscopy (TEM and SEM). The effectiveness of the synthesized compounds as corrosion inhibitors for carbon steel in 1 M HCl was investigated by various electrochemical techniques such as potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The results showed enhancement in inhibition efficiencies with increasing the inhibitor concentrations and temperatures. The results showed the nanogel particles act as mixed inhibitors. Adsorption of nanogel particles was found to fit the Langmuir isotherm and was chemisorption.

  19. Green approach to corrosion inhibition of mild steel in two acidic solutions by the extract of Punica granatum peel and main constituents

    Energy Technology Data Exchange (ETDEWEB)

    Behpour, M., E-mail: m.behpour@kashanu.ac.ir [Department of Analytical Chemistry, Faculty of Chemistry, University of Kashan, Kashan, I.R. 87317-51167 (Iran, Islamic Republic of); Ghoreishi, S.M.; Khayatkashani, M. [Department of Analytical Chemistry, Faculty of Chemistry, University of Kashan, Kashan, I.R. 87317-51167 (Iran, Islamic Republic of); Soltani, N. [Department of Chemistry, Payame Noor University (PNU), 19395-4697 Tehran (Iran, Islamic Republic of)

    2012-01-05

    Graphical abstract: Ellagic acid (EA) and tannic acid (TA) were studied as corrosion inhibitors. The electron density HOMO and LUMO of EA and TA were used to explain difference in behavior of them. Highlights: Black-Right-Pointing-Pointer The extract of Punica granatum (PG) and their main constituent (ellagic acid (EA)) are found to be good inhibitors for the corrosion of mild steel in 1 M H{sub 2}SO{sub 4} and 2 M HCl. Black-Right-Pointing-Pointer The electrochemical inhibitive mechanism is explained by potentiodynamic polarization curves and electrochemical impedance spectroscopy (EIS) results. Black-Right-Pointing-Pointer The adsorption of ALLOX on mild steel surface was found to accord with the Temkin adsorption isotherm. Black-Right-Pointing-Pointer The effect of temperature on the corrosion behavior of mild steel in 2 M HCl and 1 M H{sub 2}SO{sub 4} without and with the PG extract was studied. - Abstract: The effect of the extract of Punica granatum (PG) and their main constituents involve ellagic acid (EA) and tannic acid (TA), as mild steel corrosion inhibitor in 2 M HCl and 1 M H{sub 2}SO{sub 4} solutions was investigated by weight loss measurements. The results obtained from the weight loss measurements show that the inhibition efficiency of TA even in high concentration is very low. Thus, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) investigations were used for different concentrations of PG and EA and best concentration of TA. Potentiodynamic polarization curves indicated that PG and EA behave as mixed-type inhibitors. EIS measurements show an increase of the transfer resistance with increasing inhibitor concentration. The temperature effect on the corrosion behavior of steel without and with the PG extract was studied. The inhibition action of the extract was discussed in view of Langmuir adsorption isotherm.

  20. Green approach to corrosion inhibition of mild steel in two acidic solutions by the extract of Punica granatum peel and main constituents

    International Nuclear Information System (INIS)

    Behpour, M.; Ghoreishi, S.M.; Khayatkashani, M.; Soltani, N.

    2012-01-01

    Graphical abstract: Ellagic acid (EA) and tannic acid (TA) were studied as corrosion inhibitors. The electron density HOMO and LUMO of EA and TA were used to explain difference in behavior of them. Highlights: ► The extract of Punica granatum (PG) and their main constituent (ellagic acid (EA)) are found to be good inhibitors for the corrosion of mild steel in 1 M H 2 SO 4 and 2 M HCl. ► The electrochemical inhibitive mechanism is explained by potentiodynamic polarization curves and electrochemical impedance spectroscopy (EIS) results. ► The adsorption of ALLOX on mild steel surface was found to accord with the Temkin adsorption isotherm. ► The effect of temperature on the corrosion behavior of mild steel in 2 M HCl and 1 M H 2 SO 4 without and with the PG extract was studied. - Abstract: The effect of the extract of Punica granatum (PG) and their main constituents involve ellagic acid (EA) and tannic acid (TA), as mild steel corrosion inhibitor in 2 M HCl and 1 M H 2 SO 4 solutions was investigated by weight loss measurements. The results obtained from the weight loss measurements show that the inhibition efficiency of TA even in high concentration is very low. Thus, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) investigations were used for different concentrations of PG and EA and best concentration of TA. Potentiodynamic polarization curves indicated that PG and EA behave as mixed-type inhibitors. EIS measurements show an increase of the transfer resistance with increasing inhibitor concentration. The temperature effect on the corrosion behavior of steel without and with the PG extract was studied. The inhibition action of the extract was discussed in view of Langmuir adsorption isotherm.

  1. On the protective effect of KhOSP-10 inhibitor during corrosion, hydrogenadsorption and corrosion cracking of a steel in sulfuric acid

    International Nuclear Information System (INIS)

    Mindyuk, A.K.; Svist, E.I.; Savitskaya, O.P.; Goyan, E.B.; Gopanenko, A.N.

    1975-01-01

    The protective propeties of inhibitor KhOSP-10 in the time of corrosion and corrosive cracking of steel 40Kh are higher then those of inhibitors KPI-1, KI-1, I-I-V etc. Its ability to reduce steel hydrogenation is the same as in the case of KPI-1 inhibitor i.e. below that of KI-1. HCl additives enhance the efficiency of inhibitors KPI-1, KI-1, I-1-V etc. up to the protective ability of KhOSP-10. Kinetics of the electrode processes was estimated from polarization curves

  2. Inhibition of corrosion of carbon steel by heptane sulphonic acid – Zn2+ system

    Directory of Open Access Journals (Sweden)

    C. MARY ANBARAS

    2012-03-01

    Full Text Available Corrosion inhibition of carbon steel in dam water by sodium heptane sulphonate (SHS and zinc ion system was investigated using weight loss and potentiodynamic polarization methods. Results of weight loss method indicated that inhibition efficiency (IE increased as the inhibitor concentration increased. A synergistic effect existed between SHS and Zn2+. The influence of sodium potassium tartrate (SPT on the IE of the SHS-Zn2+ system was evaluated. As the immersion period increased, the IE decreased. Polarization study revealed that SHS-Zn2+ system functioned as a cathodic inhibitor. AC impedance spectra revealed that a protective film was formed on the metal surface. The nature of the metal surface was analyzed by FTIR spectra, SEM and AFM analyses.

  3. A novel imidazoline derivative as corrosion inhibitor for P110 carbon steel in hydrochloric acid environment

    Directory of Open Access Journals (Sweden)

    Lei Zhang

    2015-09-01

    Full Text Available A novel imidazoline derivative, 2-methyl-4-phenyl-1-tosyl-4, 5-dihydro-1H-imidazole (IMI, was prepared and investigated as corrosion inhibitor for P110 carbon steel in 1.0 M HCl solution by weight loss measurements, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS tests. The inhibition efficiency increased with the rising concentration of IMI inhibitor. The test results and fitting data indicated that the IMI behaved as a mixed-type inhibitor and obeys the Langmuir adsorption isotherm. Scanning electron microscopy (SEM was carried out to investigate the surface of carbon steel specimens, showing great protection from aggressive solution. Finally, inhibition mechanism of IMI on metal surface was further discussed.

  4. The Inhibition Effect of Potassium Iodide on the Corrosion of Pure Iron in Sulphuric Acid

    Directory of Open Access Journals (Sweden)

    Tarik Attar

    2014-01-01

    Full Text Available The use of inorganic inhibitors as an alternative to organic compounds is based on the possibility of degradation of organic compounds with time and temperature. The inhibition effect of potassium iodide on the corrosion of pure iron in 0.5 M H2SO4 has been studied by weight loss. It has been observed from the results that the inhibition efficiency (IE% of KI increases from 82.17% to 97.51% with the increase in inhibitor concentration from 1·10−4 to 2·10−3 M. The apparent activation energy (Ea and the equilibrium constant of adsorption (Kads were calculated. The adsorption of the inhibitor on the pure iron surface is in agreement with Langmuir adsorption isotherm.

  5. Inhibition of mild steel corrosion in acid solution by Pheniramine drug: Experimental and theoretical study

    Energy Technology Data Exchange (ETDEWEB)

    Ahamad, Ishtiaque [Department of Applied Chemistry, Institute of Technology, Banaras Hindu University, Varanasi 221 005 (India); Prasad, Rajendra [Department of Chemistry, SGB Amravati University, Amravati 444 602 (India); Quraishi, M.A., E-mail: maquraishi@rediffmail.co [Department of Applied Chemistry, Institute of Technology, Banaras Hindu University, Varanasi 221 005 (India)

    2010-09-15

    Inhibition of mild steel corrosion in 1 M HCl solution by Pheniramine drug was studied using weight loss, electrochemical impedance spectroscopy, linear polarization resistance, and potentiodynamic polarization measurements. The values of activation energy (E{sub a}) and different thermodynamic parameters such as adsorption equilibrium constant (K{sub ads}), free energy of adsorption ({Delta}G{sub ads}{sup o}), adsorption enthalpy ({Delta}H{sub ads}{sup o}) and adsorption entropy ({Delta}S{sub ads}{sup o}) were calculated and discussed. The adsorption process of studied drug on mild steel surface obeys the Langmuir adsorption isotherm. Potentiodynamic polarization measurements showed that Pheniramine is mixed-type inhibitor. Further, theoretical calculations were carried out and relations between computed parameters and experimental inhibition efficiency were discussed.

  6. Inhibition of mild steel corrosion in acid solution by Pheniramine drug: Experimental and theoretical study

    International Nuclear Information System (INIS)

    Ahamad, Ishtiaque; Prasad, Rajendra; Quraishi, M.A.

    2010-01-01

    Inhibition of mild steel corrosion in 1 M HCl solution by Pheniramine drug was studied using weight loss, electrochemical impedance spectroscopy, linear polarization resistance, and potentiodynamic polarization measurements. The values of activation energy (E a ) and different thermodynamic parameters such as adsorption equilibrium constant (K ads ), free energy of adsorption (ΔG ads o ), adsorption enthalpy (ΔH ads o ) and adsorption entropy (ΔS ads o ) were calculated and discussed. The adsorption process of studied drug on mild steel surface obeys the Langmuir adsorption isotherm. Potentiodynamic polarization measurements showed that Pheniramine is mixed-type inhibitor. Further, theoretical calculations were carried out and relations between computed parameters and experimental inhibition efficiency were discussed.

  7. Corrosion studies of carbon steel under impinging jets of simulated slurries of neutralized current acid waste (NCAW) and neutralized cladding removal waste (NCRW)

    International Nuclear Information System (INIS)

    Smith, H.D.; Elmore, M.R.

    1992-01-01

    Plans for the disposal of radioactive liquid and solid wastes presently stored in double-shell tanks at the Hanford Site call for retrieval and processing of the waste to create forms suitable for permanent disposal. Waste will be retrieved from a tank using a submerged slurry pump in conjunction with one or more rotating slurry jet mixer pumps. Pacific Northwest Laboratory (PNL) has conducted tests using simulated waste slurries to assess the effects of a impinging slurry jet on the corrosion rate of the tank wall and floor, an action that could potentially compromise the tank's structural integrity. Corrosion processes were investigated on a laboratory scale with a simulated neutralized cladding removal waste (NCRW) slurry and in a subsequent test with simulated neutralized current acid waste (NCAW) slurry. The test slurries simulated the actual NCRW and NCAW both chemically and physically. The tests simulated those conditions expected to exist in the respective double-shell tanks during waste retrieval operations. Results of both tests indicate that, because of the action of the mixer pump slurry jets, the waste retrieval operations proposed for NCAW and NCRW will moderately accelerate corrosion of the tank wall and floor. Based on the corrosion of initially unoxidized test specimens, and the removal of corrosion products from those specimens, the maximum time-averaged corrosion rates of carbon steel in both waste simulants for the length of the test was ∼4 mil/yr. The protective oxide layer that exists in each storage tank is expected to inhibit corrosion of the carbon steel

  8. The use of an electro-chemical process for corrosion testing of different quality materials no. 1.4306 in nitric acid

    International Nuclear Information System (INIS)

    Simon, R.; Schneider, M.; Leistikow, S.

    1987-01-01

    A typical appearance of corrosion in austenitic steels, which are used in reprocessing plants as container and construction materials, is intercrystalline corrosion at high anodic potentials, grain decomposition and the attack on widened grain boundaries stimulated by corrosion products. For safety reasons, the materials used in the nitric acid Purex process area are subjected to extensive corrosion tests. A particularly suitable process for testing materials for chemically and thermally highly stressed parts of the plant is the standard HUEY test standardised on by ASTM and Euronorm, which, however, is time, cost and labour intensive. The test routine introduced here, anodic polarisation at +1250 mV (nhe) makes it possible to give comparative information on the liability to intercrystalline corrosion of Austenitic steels of similar composition after a much shorter time. The principle consists of an electrochemical simulation of the actual potential causing intercrystalline corrosion of the group of materials. While the results are comparable with those of the HUEY test, the necessary test time is shortened from 5x48 hours to 1 hour. The evaluation of the surface and structure attack, which has occurred is done by observation of the measured electrical, metallographic and gravimetric data. The test routine described here offers an alternative (at least for the purpose of pre-selection) with a value equivalent to a standard HUEY test, but with greatly reduced amounts of time and work. However, it requires electro-chemical pre-examination of the groups of materials of interest in nitric acid to determine the critical anodic potentials, due to the constant effects of which it is possible to shorten the test period. (orig./RB) [de

  9. Inhibition Effects of a Synthesized Novel 4-Aminoantipyrine Derivative on the Corrosion of Mild Steel in Hydrochloric Acid Solution together with Quantum Chemical Studies

    Directory of Open Access Journals (Sweden)

    Abu Bakar Mohamad

    2013-06-01

    Full Text Available 1,5-Dimethyl-4-((2-methylbenzylideneamino-2-phenyl-1H-pyrazol-3(2H-one (DMPO was synthesized to be evaluated as a corrosion inhibitor. The corrosion inhibitory effects of DMPO on mild steel in 1.0 M HCl were investigated using electrochemical impedance spectroscopy (EIS, potentiodynamic polarization, open circuit potential (OCP and electrochemical frequency modulation (EFM. The results showed that DMPO inhibited mild steel corrosion in acid solution and indicated that the inhibition efficiency increased with increasing inhibitor concentration. Changes in the impedance parameters suggested an adsorption of DMPO onto the mild steel surface, leading to the formation of protective films. The novel synthesized corrosion inhibitor was characterized using UV-Vis, FT-IR and NMR spectral analyses. Electronic properties such as highest occupied molecular orbital energy, lowest unoccupied molecular orbital energy (EHOMO and ELUMO, respectively and dipole moment (μ were calculated and discussed. The results showed that the corrosion inhibition efficiency increased with an increase in the EHOMO values but with a decrease in the ELUMO value.

  10. Inhibition Effects of a Synthesized Novel 4-Aminoantipyrine Derivative on the Corrosion of Mild Steel in Hydrochloric Acid Solution together with Quantum Chemical Studies

    Science.gov (United States)

    Junaedi, Sutiana; Al-Amiery, Ahmed A.; Kadihum, Abdulhadi; Kadhum, Abdul Amir H.; Mohamad, Abu Bakar

    2013-01-01

    1,5-Dimethyl-4-((2-methylbenzylidene)amino)-2-phenyl-1H-pyrazol-3(2H)-one (DMPO) was synthesized to be evaluated as a corrosion inhibitor. The corrosion inhibitory effects of DMPO on mild steel in 1.0 M HCl were investigated using electrochemical impedance spectroscopy (EIS), potentiodynamic polarization, open circuit potential (OCP) and electrochemical frequency modulation (EFM). The results showed that DMPO inhibited mild steel corrosion in acid solution and indicated that the inhibition efficiency increased with increasing inhibitor concentration. Changes in the impedance parameters suggested an adsorption of DMPO onto the mild steel surface, leading to the formation of protective films. The novel synthesized corrosion inhibitor was characterized using UV-Vis, FT-IR and NMR spectral analyses. Electronic properties such as highest occupied molecular orbital energy, lowest unoccupied molecular orbital energy (EHOMO and ELUMO, respectively) and dipole moment (μ) were calculated and discussed. The results showed that the corrosion inhibition efficiency increased with an increase in the EHOMO values but with a decrease in the ELUMO value. PMID:23736696

  11. A dual-task design of corrosion-controlling and osteo-compatible hexamethylenediaminetetrakis- (methylene phosphonic acid) (HDTMPA) coating on magnesium for biodegradable bone implants application.

    Science.gov (United States)

    Zhao, Sheng; Chen, Yingqi; Liu, Bo; Chen, Meiyun; Mao, Jinlong; He, Hairuo; Zhao, Yuancong; Huang, Nan; Wan, Guojiang

    2015-05-01

    Magnesium as well as its alloys appears increasingly as a revolutionary bio-metal for biodegradable implants application but the biggest challenges exist in its too fast bio-corrosion/degradation. Both corrosion-controllable and bio-compatible Mg-based bio-metal is highly desirable in clinic. In present work, hexamethylenediaminetetrakis (methylenephosphonic acid) [HDTMPA, (H2 O3 P-CH2 )2 -N-(CH2 )6 -N-(CH2 -PO3 H2 )2 ], as a natural and bioactive organic substance, was covalently immobilized and chelating-deposited onto Mg surface by means of chemical conversion process and dip-coating method, to fullfill dual-task performance of corrosion-protective and osteo-compatible functionalities. The chemical grafting of HDTMPA molecules, by participation of functional groups on pretreated Mg surface, ensured a firmly anchored base layer, and then sub-sequential chelating reactions of HDTMPA molecules guaranteed a homogenous and dense HDTMPA coating deposition on Mg substrate. Electrochemical corrosion and immersion degradation results reveal that the HDTMPA coated Mg provides a significantly better controlled bio-corrosion/degradation behavior in phosphate buffer saline solution as compared with untreated Mg from perspective of clinic requirement. Moreover, the HDTMPA coated Mg exhibits osteo-compatible in that it induces not only bioactivity of bone-like apatite precipitation but also promotes osteoblast cells adhesion and proliferation. Our well-controlled biodegradable and biocompatible HDTMPA modified Mg might bode well for next generation bone implant application. © 2014 Wiley Periodicals, Inc.

  12. Binary Mixtures of Nonyl Phenol with Alkyl Substituted Anilines as Corrosion Inhibitors for Mild Steel in Acidic Medium

    Directory of Open Access Journals (Sweden)

    H. S. Shukla

    2012-01-01

    Full Text Available The present study deals with the evaluation of the corrosion inhibition effectiveness of the two binary mixtures of nonyl phenol (NPH with 2, 4 dimethyl aniline (DMA and 2 ethyl aniline (EA at different concentration ratios (from 1:7 to 7:1 for mild steel in H2SO4 (pH=1 solution by weight loss and potentiodynamic polarization method. Corrosion inhibition ability of the compounds has been tested at different exposure periods (6 h to 24 h and at different temperatures (303 K to 333 K. The binary mixture of NPH and EA (at 7:1 concentration ratio has afforded maximum inhibition (IE% 93.5% at 6 h exposure period and at room temperature. The adsorption of both the inhibitors is found to accord with Temkin adsorption isotherm. Potentiodynamic polarization study reveals that the tested inhibitors are mixed type inhibitor and preferentially act on cathodic areas. Electrochemical impedance study suggests formation of an inhibition layer by the adsorption of the inhibitors on the metal surface. An adsorption model of the inhibitor molecules on the metal surface has been proposed after immersion test in the inhibited acid showed characteristic shift of N-H and O-H bond frequencies towards lower side compared to that of the respective pure samples which indicated the donation of electron pair through N and O atom of the inhibitor molecule in the surface adsorption phenomena. SEM study has revealed formation of semi globular inhibitor products on the metal surface. The comparisons of the protection efficiencies of these compounds according to their relative electron density on the adsorption centre and projected molecular area of the inhibitor molecules have been made.

  13. Effect of dissolved oxygen on the corrosion behavior of 304 SS in 0.1 N nitric acid containing chloride

    Science.gov (United States)

    Khobragade, Nilay N.; Bansod, Ankur V.; Patil, Awanikumar P.

    2018-04-01

    A study was undertaken in several selected mixed nitric acid/chloride ({{{{NO}}}3}-/{{{Cl}}}- ratio) electrolytes with the nitric acid concentration of 0.1 N and chloride concentration of 0, 10, 100, 1000 and 10 000 ppm. Electrochemical tests like potentiodynamic polarization test, electrochemical impedance spectroscopy (EIS) and Mott-Schottky analysis (M-S) were carried out when the electrolytes were in deaerated condition and were in open to air (OTA) condition, and the effect of dissolved oxygen was evaluated on the corrosion behavior of 304 SS. It was found that at a critical {{{{NO}}}3}-/{{{Cl}}}- ratio, a passive state is attained at the earliest in OTA condition. Also, the passive film resistance showed higher values in OTA condition than in deaerated condition exhibiting the effect of dissolved oxygen. The results of EIS results confirmed the results obtained by potentiodynamic polarization wherein the low passive current densities were obtained in OTA condition. Mott-Schottky analysis revealed the lowest defect densities in 100 ppm Cl‑ solution in OTA condition and in 10 ppm Cl‑ solution in deaerated condition indicating less defective films formed in these solutions. XPS analysis showed that the film was bilayer in nature in confirmation with M-S analysis. The results were discussed with point defect model (PDM) and by competitive surface adsorption.

  14. Protection of Petroleum Pipeline Carbon Steel Alloys with New Modified Core-Shell Magnetite Nanogel against Corrosion in Acidic Medium

    Directory of Open Access Journals (Sweden)

    Gamal A. El Mahdy

    2013-01-01

    Full Text Available New method was used to prepare magnetite nanoparticle based on reduction of Fe(III ions with potassium iodide to produce Fe3O4 nanoparticle. The prepared magnetite was stabilized with cross-linked polymer based on 2-acrylamido-2-methylpropane sulfonic acid (AMPS to prepare novel core-shell nanogel. In this respect, Fe3O4/poly(2-acrylamido-2-methylpropane sulfonic acid (PAMPS magnetic nanogels with controllable particle size produced via free aqueous polymerization at 65°C have been developed for the first time. The polymer was crosslinked in the presence of N,N-methylenebisacrylamide (MBA as a crosslinker and potassium peroxydisulfate (KPS as redox initiator system. The structure and morphology of the magnetic nanogel were characterized by Fourier transform infrared spectroscopy (FTIR and transmission and scanning electron microscopy (TEM and SEM. The effectiveness of the synthesized compounds as corrosion inhibitors for carbon steel in 1 M HCl was investigated by various electrochemical techniques such as potentiodynamic polarization and electrochemical impedance spectroscopy (EIS. The results showed enhancement in inhibition efficiencies with increasing the inhibitor concentrations. The results showed that the nanogel particles act as mixed inhibitors. EIS data revealed that Rct increases with increasing inhibitor concentration.

  15. Effects of Dextrose and Lipopolysaccharide on the Corrosion Behavior of a Ti-6Al-4V Alloy with a Smooth Surface or Treated with Double-Acid-Etching

    Science.gov (United States)

    Faverani, Leonardo P.; Assunção, Wirley G.; de Carvalho, Paulo Sérgio P.; Yuan, Judy Chia-Chun; Sukotjo, Cortino; Mathew, Mathew T.; Barao, Valentim A.

    2014-01-01

    Diabetes and infections are associated with a high risk of implant failure. However, the effects of such conditions on the electrochemical stability of titanium materials remain unclear. This study evaluated the corrosion behavior of a Ti-6Al-4V alloy, with a smooth surface or conditioned by double-acid-etching, in simulated body fluid with different concentrations of dextrose and lipopolysaccharide. For the electrochemical assay, the open-circuit-potential, electrochemical impedance spectroscopy, and potentiodynamic test were used. The disc surfaces were characterized by scanning electron microscopy and atomic force microscopy. Their surface roughness and Vickers microhardness were also tested. The quantitative data were analyzed by Pearson's correlation and independent t-tests (α = 0.05). In the corrosion parameters, there was a strong lipopolysaccharide correlation with the Ipass (passivation current density), Cdl (double-layer capacitance), and Rp (polarization resistance) values (pcorrosion current density) and Ipass (pcorrosion behavior of the Ti-6Al-4V alloy surface treated with double-acid-etching. However, no dose-response corrosion behavior could be observed. These results suggest a greater susceptibility to corrosion of titanium implants in diabetic patients with associated infections. PMID:24671257

  16. Corrosion and anticorrosion. Industrial practice

    International Nuclear Information System (INIS)

    Beranger, G.; Mazille, H.

    2002-01-01

    This book comprises 14 chapters written with the collaboration of about 50 French experts of corrosion. It is complementary to another volume entitled 'corrosion of metals and alloys' and published by the same editor. This volume comprises two parts: part 1 presents the basic notions of corrosion phenomena, the properties of surfaces, the electrochemical properties of corrosion etc.. Part 2 describes the most frequent forms of corrosion encountered in industrial environments and corresponding to specific problems of protection: marine environment, atmospheric corrosion, galvanic corrosion, tribo-corrosion, stress corrosion etc.. The first 8 chapters (part 1) treat of the corrosion problems encountered in different industries and processes: oil and gas production, chemical industry, phosphoric acid industry, PWR-type power plants, corrosion of automobile vehicles, civil engineering and buildings, corrosion of biomaterials, non-destructive testing for the monitoring of corrosion. The other chapters (part 2) deal with anticorrosion and protective coatings and means: choice of materials, coatings and surface treatments, thick organic coatings and enamels, paints, corrosion inhibitors and cathodic protection. (J.S.)

  17. Corrosion rate of construction materials in hot phosphoric acid with the contribution of anodic polarization

    DEFF Research Database (Denmark)

    Kouril, M.; Christensen, Erik; Eriksen, S.

    2011-01-01

    The paper is focused on selection of a proper material for construction elements of water electrolysers, which make use of a 85% phosphoric acid as an electrolyte at temperature of 150 8C and which might be loaded with anodic polarization up to 2.5 V versus a saturated Ag/AgCl electrode (SSCE...

  18. Inhibition of corrosion of mild steel in acid media by N ...

    Indian Academy of Sciences (India)

    Wintec

    It acts as an anodic inhibitor. Thermodynamic and ... Thermo Electron Corporation Flash EA 1112 se- ries CHN analyser was used .... tiss et al 2001). In each acid media, maximum %IE was achieved at 11⋅494 × 10–4 M and a further increase in concentration did not cause any appreciable change in the performance of the ...

  19. Hydrofluoric Acid Corrosion Testing on Unplated and Electroless Gold-Plated Samples

    International Nuclear Information System (INIS)

    Osborne, P.E.; Icenhour, A.S.; Del Cul, G.D.

    2000-01-01

    The Molten Salt Reactor Experiment (MSRE) remediation requires that almost 40 kg of uranium hexafluoride (UF6) be converted to uranium oxide (UO). In the process of this conversion, six moles of hydrofluoric acid (HP) are produced for each mole of UF6 converted

  20. Corrosion inhibition of mild steel in 1 M HCl solution by henna extract: A comparative study of the inhibition by henna and its constituents (Lawsone, Gallic acid, α-D-Glucose and Tannic acid)

    International Nuclear Information System (INIS)

    Ostovari, A.; Hoseinieh, S.M.; Peikari, M.; Shadizadeh, S.R.; Hashemi, S.J.

    2009-01-01

    The inhibitive action of henna extract (Lawsonia inermis) and its main constituents (lawsone, gallic acid, α-D-Glucose and tannic acid) on corrosion of mild steel in 1 M HCl solution was investigated through electrochemical techniques and surface analysis (SEM/EDS). Polarization measurements indicate that all the examined compounds act as a mixed inhibitor and inhibition efficiency increases with inhibitor concentration. Maximum inhibition efficiency (92.06%) is obtained at 1.2 g/l henna extract. Inhibition efficiency increases in the order: lawsone > henna extract > gallic acid > α-D-Glucose > tannic acid. Also, inhibition mechanism and thermodynamic parameters are discussed.

  1. Corrosion inhibition of mild steel in 1 M HCl solution by henna extract: A comparative study of the inhibition by henna and its constituents (Lawsone, Gallic acid, {alpha}-D-Glucose and Tannic acid)

    Energy Technology Data Exchange (ETDEWEB)

    Ostovari, A. [Technical Inspection Engineering Department, Petroleum University of Technology, Abadan (Iran, Islamic Republic of)], E-mail: A.Ostovari@gmail.com; Hoseinieh, S.M.; Peikari, M. [Technical Inspection Engineering Department, Petroleum University of Technology, Abadan (Iran, Islamic Republic of); Shadizadeh, S.R. [Petroleum Engineering Department, Petroleum University of Technology, Abadan (Iran, Islamic Republic of); Hashemi, S.J. [Technical Inspection Engineering Department, Petroleum University of Technology, Abadan (Iran, Islamic Republic of)

    2009-09-15

    The inhibitive action of henna extract (Lawsonia inermis) and its main constituents (lawsone, gallic acid, {alpha}-D-Glucose and tannic acid) on corrosion of mild steel in 1 M HCl solution was investigated through electrochemical techniques and surface analysis (SEM/EDS). Polarization measurements indicate that all the examined compounds act as a mixed inhibitor and inhibition efficiency increases with inhibitor concentration. Maximum inhibition efficiency (92.06%) is obtained at 1.2 g/l henna extract. Inhibition efficiency increases in the order: lawsone > henna extract > gallic acid > {alpha}-D-Glucose > tannic acid. Also, inhibition mechanism and thermodynamic parameters are discussed.

  2. New Coumarin Derivative as an Eco-Friendly Inhibitor of Corrosion of Mild Steel in Acid Medium

    Directory of Open Access Journals (Sweden)

    Ahmed A. Al-Amiery

    2014-12-01

    Full Text Available The anticorrosion ability of a synthesized coumarin, namely 2-(coumarin-4-yloxyacetohydrazide (EFCI, for mild steel (MS in 1 M hydrochloric acid solution has been studied using a weight loss method. The effect of temperature on the corrosion rate was investigated, and some thermodynamic parameters were calculated. The results indicated that inhibition efficiencies were enhanced with an increase in concentration of inhibitor and decreased with a rise in temperature. The IE value reaches 94.7% at the highest used concentration of the new eco-friendly inhibitor. The adsorption of inhibitor on MS surface was found to obey a Langmuir adsorption isotherm. Scanning electron microscopy (SEM was performed on inhibited and uninhibited mild steel samples to characterize the surface. The Density Function theory (DFT was employed for quantum-chemical calculations such as EHOMO (highest occupied molecular orbital energy, ELUMO (lowest unoccupied molecular orbital energy and μ (dipole moment, and the obtained results were found to be consistent with the experimental findings. The synthesized inhibitor was characterized by Fourier transform infrared (FTIR and nuclear magnetic resonance (NMR spectroscopic studies.

  3. Surface coverage and corrosion inhibition effect of Rosmarinus officinalis and zinc oxide on the electrochemical performance of low carbon steel in dilute acid solutions

    Science.gov (United States)

    Loto, Roland Tolulope

    2018-03-01

    Electrochemical analysis of the corrosion inhibition and surface protection properties of the combined admixture of Rosmarinus officinalis and zinc oxide on low carbon steel in 1 M HCl and H2SO4 solution was studied by potentiodynamic polarization, open circuit potential measurement, optical microscopy and ATR-FTIR spectroscopy. Results obtained confirmed the compound to be more effective in HCl solution, with optimal inhibition efficiencies of 93.26% in HCl and 87.7% in H2SO4 acid solutions with mixed type inhibition behavior in both acids. The compound shifts the corrosion potential values of the steel cathodically in HCl and anodically in H2SO4 signifying specific corrosion inhibition behavior without applied potential. Identified functional groups of alcohols, phenols, 1°, 2° amines, amides, carbonyls (general), esters, saturated aliphatic, carboxylic acids, ethers, aliphatic amines, alkenes, aromatics, alkyl halides and alkynes within the compound completely adsorbed onto the steel forming a protective covering. Thermodynamic calculations showed physisorption molecular interaction with the steel's surface according to Langmuir and Frumkin adsorption isotherms. Optical microscopy images of the inhibited and uninhibited steels contrast each other with steel specimens from HCl solution showing a better morphology.

  4. An investigation of the chemical composition and acid corrosion of pedra sabão (soapstone

    Directory of Open Access Journals (Sweden)

    ROBSON FERNANDES DE FARIAS

    2005-02-01

    Full Text Available In this paper the results of a basic study of the chemical composition and structure of soapstone are reported. An investigation of the effects of aqueous sulfuric acid solutions on the physical integrity of the stone was also performed. The studied soapstone samples had a lamellar nanostructure as verified by DRX data. Furthermore, they contained isolated silanol (Si–OH groups, as indicated by FTIR data, and the majority of the silicon atoms were bonded to OH groups, as shown by 29Si CPMAS NMR analysis. Is was also shown that a low resistance to acid attack is associated with a large amount of magnesium and/or iron in the stone.

  5. Corrosion phenomena on alloy 625 in aqueous solutions containing hydrochloric acid and oxygen under subcritical and supercritical conditions

    International Nuclear Information System (INIS)

    Boukis, N.; Kritzer, P.

    1997-01-01

    Supercritical Water Oxidation (SCWO) is a very effective process to destroy hazardous aqueous wastes containing organic contaminants. The main target applications in the USA are the destruction of DOD and DOE wastes such as rocket fuels and explosives, warfare agents and organics present in low level radioactive liquid wastes. Alloy 625 is frequently used as reactor material for Supercritical Water Oxidation (SCWO) applications. This is due to the favorable combination of mechanical properties, corrosion resistance, price and availability. Nevertheless, the corrosion of alloy 625 like the corrosion of other Ni-base alloys during oxidation of hazardous organic waste containing chloride proceeds too fast and is a major problem in SCWO applications. In these experiments high pressure, high-temperature resistant tube reactors made of alloy 625 were used as specimens. They were exposed to SCWO conditions, without organics, at temperatures up to 500 C and pressures up to 37 MPa for up to 150 h. Simultaneously, coupons also made from alloy 625 are exposed inside the test tubes. The most important corrosion problem for alloy 625 is pitting and intercrystalline corrosion at temperatures near the critical temperature, i.e. in the preheater and cooling sections of the test tubes. Under certain conditions, stress corrosion cracking appears and leads to premature failure of the test reactors. The corrosion products were insoluble in supercritical water and formed thick layers in the supercritical part of the reactor. Under these layers only minor corrosion occurred. 33 refs

  6. A new insight into resource recovery of excess sewage sludge: Feasibility of extracting mixed amino acids as an environment-friendly corrosion inhibitor for industrial pickling

    Energy Technology Data Exchange (ETDEWEB)

    Su, Wen; Tang, Bing, E-mail: renytang@163.com; Fu, Fenglian; Huang, Shaosong; Zhao, Shiyuan; Bin, Liying; Ding, Jiewei; Chen, Cuiqun

    2014-08-30

    Graphical abstract: - Highlights: • A value-added product was extracted from the municipal excess sludge. • The effective components contained in the product were mixed amino acids. • The product could provide a reliable protection to the steel from the acid medium. • A new insight into the resource recovery of excess sewage sludge was provided. - Abstract: The work mainly presented a laboratory-scale investigation on an effective process to extract a value-added product from municipal excess sludge. The functional groups in the hydrolysate were characterized with Fourier transform infrared spectrum, and the contained amino acids were measured by means of an automatic amino acid analyzer. The corrosion-inhibition characteristics of the hydrolysate were determined with weight-loss measurement, electrochemical polarization and scanning electron microscopy. Results indicated that the hydrolysate contained 15 kinds of amino acid, and their adsorption on the surface could effectively inhibit the corrosion reaction of the steel from the acid medium. Polarization curves indicated that the obtained hydrolysate was a mixed-type inhibitor, but mainly restricted metal dissolution on the anode. The adsorption accorded well with the Langmuir adsorption isotherm, involved an increase in entropy, and was a spontaneous, exothermic process.

  7. A new insight into resource recovery of excess sewage sludge: Feasibility of extracting mixed amino acids as an environment-friendly corrosion inhibitor for industrial pickling

    International Nuclear Information System (INIS)

    Su, Wen; Tang, Bing; Fu, Fenglian; Huang, Shaosong; Zhao, Shiyuan; Bin, Liying; Ding, Jiewei; Chen, Cuiqun

    2014-01-01

    Graphical abstract: - Highlights: • A value-added product was extracted from the municipal excess sludge. • The effective components contained in the product were mixed amino acids. • The product could provide a reliable protection to the steel from the acid medium. • A new insight into the resource recovery of excess sewage sludge was provided. - Abstract: The work mainly presented a laboratory-scale investigation on an effective process to extract a value-added product from municipal excess sludge. The functional groups in the hydrolysate were characterized with Fourier transform infrared spectrum, and the contained amino acids were measured by means of an automatic amino acid analyzer. The corrosion-inhibition characteristics of the hydrolysate were determined with weight-loss measurement, electrochemical polarization and scanning electron microscopy. Results indicated that the hydrolysate contained 15 kinds of amino acid, and their adsorption on the surface could effectively inhibit the corrosion reaction of the steel from the acid medium. Polarization curves indicated that the obtained hydrolysate was a mixed-type inhibitor, but mainly restricted metal dissolution on the anode. The adsorption accorded well with the Langmuir adsorption isotherm, involved an increase in entropy, and was a spontaneous, exothermic process

  8. Mechanistic model of stress corrosion cracking (scc) of carbon steel in acidic solution with the presence of H2s

    International Nuclear Information System (INIS)

    Asmara, Y P; Juliawati, A; Sulaiman, A; Jamiluddin

    2013-01-01

    In oil and gas industrial environments, H 2 S gas is one of the corrosive species which should be a main concern in designing infrastructure made of carbon steel. Combination between the corrosive environment and stress condition will cause degradation of carbon steel increase unpredictably due to their simultaneous effects. This paper will design a model that involves electrochemical and mechanical theories to study crack growth rate under presence of H 2 S gas. Combination crack and corrosion propagation of carbon steel, with different hydrogen concentration has been investigated. The results indicated that high concentration of hydrogen ions showed a higher crack propagation rate. The comparison between corrosion prediction models and corrosion model developed by researchers used to verify the model accuracy showed a good agreement

  9. Melamine derivatives as effective corrosion inhibitors for mild steel in acidic solution: Chemical, electrochemical, surface and DFT studies

    Science.gov (United States)

    Verma, Chandrabhan; Haque, J.; Ebenso, Eno E.; Quraishi, M. A.

    2018-06-01

    In present study two condensation products of melamine (triazine) and glyoxal namely, 2,2-bis(4,6-diamino-1,3,5-triazin-2-ylamino)acetaldehyde (ME-1) and (N2,N2‧E,N2,N2‧E)-N2,N2‧-(ethane-1,2-diylidene)-bis-(1,3,5-triazine-2,4,6-triamine) (ME-2) are tested as mild steel corrosion inhibitors in acidic solution (1M HCl). The inhibition efficiency of ME-1 and ME-2 increases with increase in their concentrations and maximum values of 91.47% and 94.88% were derived, respectively at 100 mgL-1 (34.20 × 10-5 M) concentration. Adsorption of ME-1 and ME-2 on the surface of metal obeyed the Langmuir adsorption isotherm. Polarization investigation revealed that ME-1 and ME-2 act as mixed type inhibitors with minor cathodic prevalence. The chemical and electrochemical analyses also supported by surface characterization methods where significant smoothness in the surface morphologies was observed in the images of SEM and AFM spectra. Several DFT indices such as EHOMO and ELUMO, ΔE, η, σ, χ, μ and ΔN were derived for both ME-1 and ME-2 molecules and correlated with experimental results. The DFT studies have also been carried out for protonated or cationic form of the inhibitor molecules by considering that in acidic medium the heteroatoms of organic inhibitors easily undergo protonation. The experimental and density functional theory (DFT) studies (neutral and protonated) were in good agreement.

  10. Effect of chloride ions on the corrosion behavior of low-alloy steel containing copper and antimony in sulfuric acid solution

    Science.gov (United States)

    Park, Sun-Ah; Kim, Seon-Hong; Yoo, Yun-Ha; Kim, Jung-Gu

    2015-05-01

    The influence of the addition of HCl on the corrosion behavior of low-alloy steel containing copper and antimony was investigated using electrochemical (potentiodynamic and potentiostatic polarization tests, and electrochemical impedance spectroscopy) and weight loss tests in a 1.6M H2SO4 solution with different concentrations of hydrochloric acid (0.00, 0.08, 0.15 and 0.20 M HCl) at 60 °C. The result showed that the corrosion rate decreased with increasing HCl by the formation of protective layers. SEM, EDS and XPS examinations of the corroded surfaces after the immersion test indicated that the corrosion production layer formed in the solution containing HCl was highly comprised of metallic Cu, Cu chloride and metallic (Fe, Cu, Sb) compounds. The corrosion resistance was improved by the Cu-enriched layer, in which chloride ions are an accelerator for cupric ion reduction during copper deposition. Furthermore, cuprous and antimonious chloride species are complex salts for cuprous ions adsorbed on the surface during copper deposition.

  11. Alkanediyl-α, ω-bis (dimethyl cetylammonium bromide gemini surfactants as novel corrosion inhibitors for mild steel in formic acid

    Directory of Open Access Journals (Sweden)

    Mohammad Mobin

    2012-12-01

    Full Text Available Gemini surfactants, butanediyl 1,4-bis(dimethyl cetylammonium bromide, pentanediyl 1,5 - bis (dimethyl cetylammonium bromide and hexanediyl 1,6 - bis (dimethyl cetylammonium bromide from Alkanediyl-α, ω-bis (dimethyl cetylammonium bromide series were synthesized in laboratory and were characterized by using Nuclear Magnetic Resonance (NMR spectroscopy. The surfactants were tested as corrosion inhibitors for mild steel in 20% formic acid. The influence of surfactants on mild steel corrosion inhibition was investigated by measuring the corrosion rate of mild steel in their absence and presence by weight loss measurements, solvent analysis of iron ions into the test solution and potentiodynamic polarization measurements. The surface morphology of the corroded steel samples in presence and absence of surfactants was evaluated by using Scanning Electron Microscopy (SEM. The synthesized gemini surfactants performed as excellent corrosion inhibitor, the inhibition efficiency (IE being in the range of 76.66-97.41%. The IE of surfactants is slightly affected by the spacer length. The IE increased with increase in surfactant concentration and temperature. The adsorption of gemini surfactants on the steel surface was found to obey Langmuir adsorption isotherm. The results of the potentiodynamic polarization studies are consistent with the results of weight loss studies.

  12. Temperature influence on corrosion rate of armco iron in acid solutions

    International Nuclear Information System (INIS)

    Perboni, G.; Rocchini, G.

    1986-01-01

    An experimental study of the behaviour of Armco iron and several steels in acid solutions (HCl, H 2 SO 4 , H 3 PO 4 ) has been undertaken to determine the temperature effect on dissolution rate. The test temperatures were 30, 45, 60, 75 and 90 deg C. The activation heat was determined by application of the Arrhenius law from colorimetric and electrochemical data. Investigation results obtained by both methods were represented diagrammatically and showed a good agreement, though the discrepancy in the data increased with test temperature

  13. Evaluation of Plants and Weeds Extract on the Corrosion Inhibition of Mild Steel in Sulphuric Acid

    Directory of Open Access Journals (Sweden)

    Abida Begum

    2011-01-01

    Full Text Available Experiments were performed in order to determine the inhibitive effects of extracts of plants and weeds namely Parthenium hysterophorus, Dathura stromonium, Azadirachta indica, Helianthus annuus leaves extract for mild steel in sulphuric acid by using weight loss and thermometric technique. Results demonstrated that, all the experimental inhibitors show an adsorption on steel surface according to Langmuir’s isotherm. The inhibition efficiency increased with increase in the concentration of all tested inhibitors to attain a maximum value at 1.0%. Free energy values for adsorption process show that the process is spontaneous. The kinetic treatment of the results shows first order kinetics.

  14. Corrosion resistance of siloxane–poly(methyl methacrylate) hybrid films modified with acetic acid on tin plate substrates: Influence of tetraethoxysilane addition

    Energy Technology Data Exchange (ETDEWEB)

    Kunst, S.R.; Cardoso, H.R.P. [LAPEC, Federal University of Rio Grande do Sul – UFRGS, Avenida Bento Gonçalves, 9500 Porto Alegre, RS (Brazil); Oliveira, C.T. [ICET, University Feevale, RS-239, 2755 Novo Hamburgo, RS (Brazil); Santana, J.A.; Sarmento, V.H.V. [Department of Chemistry, Federal University of Sergipe – UFS, Av. Vereador Olímpio Grande s/n, Centro, Itabaiana, SE (Brazil); Muller, I.L. [LAPEC, Federal University of Rio Grande do Sul – UFRGS, Avenida Bento Gonçalves, 9500 Porto Alegre, RS (Brazil); Malfatti, C.F., E-mail: celia.malfatti@ufrgs.br [LAPEC, Federal University of Rio Grande do Sul – UFRGS, Avenida Bento Gonçalves, 9500 Porto Alegre, RS (Brazil)

    2014-04-01

    Highlights: • Siloxane–PMMA film was produced by dip-coating on tin plate substrate. • It was evaluated the influence of (TEOS) addition on siloxane–PMMA hybrid films. • Siloxane–PMMA films without TEOS presented a regular coverage and lowest roughness. • The TEOS addition decrease the corrosion resistance of siloxane–PMMA films. • Siloxane–PMMA without TEOS presented is higher durability in the film wear test. - Abstract: The aim of this paper is to study the corrosion resistance of hybrid films. Tin plate was coated with a siloxane–poly (methyl methacrylate) (PMMA) hybrid film prepared by sol–gel route with covalent bonds between the organic (PMMA) and inorganic (siloxane) phases obtained by hydrolysis and polycondensation of 3-(trimethoxysilylpropyl) methacrylate (TMSM) and polymerization of methyl methacrylate (MMA) using benzoyl peroxide (BPO) as a thermic initiator. Hydrolysis reactions were catalyzed by acetic acid solution avoiding the use of chlorine or stronger acids in the film preparation. The effect of the addition of tetraethoxysilane (TEOS) on the protective properties of the film was evaluated. The hydrophobicity of the film was determined by contact angle measurements, and the morphology was evaluated by scanning electron microscopy (SEM) and profilometry. The local nanostructure was investigated by Fourier transform infrared spectroscopy (FT-IR). The electrochemical behavior of the films was assessed by open circuit potential monitoring, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) measurements in a 0.05 M NaCl solution. The mechanical behavior was evaluated by tribology. The results highlighted that the siloxane–PMMA hybrid films modified with acetic acid are promising anti-corrosive coatings that acts as an efficient diffusion barrier, protecting tin plates against corrosion. However, the coating properties were affected by the TEOS addition, which contributed for the thickness increase

  15. Effects of self-assembly of 3-phosphonopropionic acid, 3-aminopropyltrimethoxysilane and dopamine on the corrosion behaviors and biocompatibility of a magnesium alloy

    International Nuclear Information System (INIS)

    Pan, Chang-Jiang; Hou, Yu; Wang, Ya-Nan; Gao, Fei; Liu, Tao; Hou, Yan-Hua; Zhu, Yu-Fu; Ye, Wei; Wang, Ling-Ren

    2016-01-01

    Magnesium based alloys are attracting tremendous interests as the novel biodegradable metallic biomaterials. However, the rapid in vivo degradation and the limited surface biocompatibility restrict their clinical applications. Surface modification represents one of the important approaches to control the corrosion rate of Mg based alloys and to enhance the biocompatibility. In the present study, in order to improve the corrosion resistance and surface biocompatibility, magnesium alloy (AZ31B) was modified by the alkali heating treatment followed by the self-assembly of 3-phosphonopropionic acid, 3-aminopropyltrimethoxysilane (APTMS) and dopamine, respectively. The results of attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectra (XPS) indicated that the molecules were successfully immobilized on the magnesium alloy surface by the self-assembly. An excellent hydrophilic surface was obtained after the alkali heating treatment and the water contact angle increased to some degree after the self-assembly of dopamine, APTMS and 3-phosphonopropionic acid, however, the hydrophilicity of the modified samples was better than that of the pristine magnesium substrate. Due to the formation of the passivation layer after the alkali heating treatment, the corrosion resistance of the magnesium alloy was obviously improved. The corrosion rate further decreased to varying degrees after the self-assembly surface modification. The blood compatibility of the pristine magnesium was significantly improved after the surface modification. The hemolysis rate was reduced from 56% of the blank magnesium alloy to 18% of the alkali heating treated sample and the values were further reduced to about 10% of dopamine-modified sample and 7% of APTMS-modified sample. The hemolysis rate was below 5% for the 3-phosphonopropionic acid modified sample. As compared to the pristine magnesium alloy, fewer platelets were attached and activated on the

  16. Effects of self-assembly of 3-phosphonopropionic acid, 3-aminopropyltrimethoxysilane and dopamine on the corrosion behaviors and biocompatibility of a magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Chang-Jiang, E-mail: swjtupcj@163.com [Jiangsu Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology, Huai' an 223003 (China); Hou, Yu; Wang, Ya-Nan [Jiangsu Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology, Huai' an 223003 (China); Gao, Fei [Zhejiang Zylox Medical Devices Co., Ltd., Hangzhou 310000 (China); Liu, Tao; Hou, Yan-Hua; Zhu, Yu-Fu; Ye, Wei; Wang, Ling-Ren [Jiangsu Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology, Huai' an 223003 (China)

    2016-10-01

    Magnesium based alloys are attracting tremendous interests as the novel biodegradable metallic biomaterials. However, the rapid in vivo degradation and the limited surface biocompatibility restrict their clinical applications. Surface modification represents one of the important approaches to control the corrosion rate of Mg based alloys and to enhance the biocompatibility. In the present study, in order to improve the corrosion resistance and surface biocompatibility, magnesium alloy (AZ31B) was modified by the alkali heating treatment followed by the self-assembly of 3-phosphonopropionic acid, 3-aminopropyltrimethoxysilane (APTMS) and dopamine, respectively. The results of attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectra (XPS) indicated that the molecules were successfully immobilized on the magnesium alloy surface by the self-assembly. An excellent hydrophilic surface was obtained after the alkali heating treatment and the water contact angle increased to some degree after the self-assembly of dopamine, APTMS and 3-phosphonopropionic acid, however, the hydrophilicity of the modified samples was better than that of the pristine magnesium substrate. Due to the formation of the passivation layer after the alkali heating treatment, the corrosion resistance of the magnesium alloy was obviously improved. The corrosion rate further decreased to varying degrees after the self-assembly surface modification. The blood compatibility of the pristine magnesium was significantly improved after the surface modification. The hemolysis rate was reduced from 56% of the blank magnesium alloy to 18% of the alkali heating treated sample and the values were further reduced to about 10% of dopamine-modified sample and 7% of APTMS-modified sample. The hemolysis rate was below 5% for the 3-phosphonopropionic acid modified sample. As compared to the pristine magnesium alloy, fewer platelets were attached and activated on the

  17. Corrosion cracking

    International Nuclear Information System (INIS)

    Goel, V.S.

    1985-01-01

    This book presents the papers given at a conference on alloy corrosion cracking. Topics considered at the conference included the effect of niobium addition on intergranular stress corrosion cracking, corrosion-fatigue cracking in fossil-fueled-boilers, fracture toughness, fracture modes, hydrogen-induced thresholds, electrochemical and hydrogen permeation studies, the effect of seawater on fatigue crack propagation of wells for offshore structures, the corrosion fatigue of carbon steels in seawater, and stress corrosion cracking and the mechanical strength of alloy 600

  18. The Modeling of Ultimate Bearing Capacity of Fiber Reinforced Polymer and Its acidic/alkaline Corrosion Mechanism Analysis

    Directory of Open Access Journals (Sweden)

    Qin Liping

    2014-01-01

    Full Text Available In this study, the overall property of fiber reinforced polymer (FRP was researched. It is currently widely used in all areas, mainly in civil engineering. The huge need of this material drives the research of its mechanical property and corrosion mechanism. It is proven that the FRP can significantly strengthen the whole structure due to the support of fiber. And by applying osmosis hypothesis into the explanation of corrosion of FRP, we concluded that its corrosion rate is much slower than common materials, like steel. Generally, based on these conclusions, FRP is suitable for most of the facilities in civil engineering.

  19. Mobile evaporator corrosion test results

    International Nuclear Information System (INIS)

    Rozeveld, A.; Chamberlain, D.B.

    1997-05-01

    Laboratory corrosion tests were conducted on eight candidates to select a durable and cost-effective alloy for use in mobile evaporators to process radioactive waste solutions. Based on an extensive literature survey of corrosion data, three stainless steel alloys (304L, 316L, AL-6XN), four nickel-based alloys (825, 625, 690, G-30), and titanium were selected for testing. The corrosion tests included vapor phase, liquid junction (interface), liquid immersion, and crevice corrosion tests on plain and welded samples of candidate materials. Tests were conducted at 80 degrees C for 45 days in two different test solutions: a nitric acid solution. to simulate evaporator conditions during the processing of the cesium ion-exchange eluant and a highly alkaline sodium hydroxide solution to simulate the composition of Tank 241-AW-101 during evaporation. All of the alloys exhibited excellent corrosion resistance in the alkaline test solution. Corrosion rates were very low and localized corrosion was not observed. Results from the nitric acid tests showed that only 316L stainless steel did not meet our performance criteria. The 316L welded interface and crevice specimens had rates of 22.2 mpy and 21.8 mpy, respectively, which exceeds the maximum corrosion rate of 20 mpy. The other welded samples had about the same corrosion resistance as the plain samples. None of the welded samples showed preferential weld or heat-affected zone (HAZ) attack. Vapor corrosion was negligible for all alloys. All of the alloys except 316L exhibited either open-quotes satisfactoryclose quotes (2-20 mpy) or open-quotes excellentclose quotes (<2 mpy) corrosion resistance as defined by National Association of Corrosion Engineers. However, many of the alloys experienced intergranular corrosion in the nitric acid test solution, which could indicate a susceptibility to stress corrosion cracking (SCC) in this environment

  20. Study of corrosion susceptibility of stainless steel-304 and stainless steel-316 under mechanical stress in diluted boiling nitric acid with chlorides

    International Nuclear Information System (INIS)

    Desjardins, D.; Puiggali, M.; El Kheloui, A.; Petit, M.C.; Clement, C.; Berge, J.P.

    1991-01-01

    A detailed study of corrosion of stressed 304 and 316 stainless steels in boiling solutions of diluted nitric acid in presence of chloride is presented. After a chemical study of the electrolyte, the different kinds of corrosion observed are represented on HNO 3 concentration - Cl - concentration diagrams. A more fundamental study based on several electrochemical techniques (forward scan and return potentiodynamic curves, potentiokinetic curves with different scan rates, sample depassivation by rapid straining under potentiostatic control) is carried out. The results allow to confirm the observations and to explain them in terms of competition between anodic dissolution, depassivation, repassivation processes with a precise analyze of the role of the solution and of the mechanical stress [fr

  1. The water soluble composite poly(vinylpyrrolidone–methylaniline: A new class of corrosion inhibitors of mild steel in hydrochloric acid media

    Directory of Open Access Journals (Sweden)

    R. Karthikaiselvi

    2017-02-01

    Full Text Available In recent years poly methyl aniline has been reported as one of the efficient corrosion inhibitors of mild steel in acidic media. In view of the major limitation of the insolubility of polymethyl aniline PMA, we propose to convert PMA into a water soluble composite using supporting polymer polyvinylpyrrolidone to get higher solubility and corrosion inhibition efficiency. The water soluble composite poly(vinylpyrrolidone-methyl aniline was synthesized by chemical oxidative polymerization and its inhibitive effect on mild steel in 1 M HCl has been investigated using weight loss and electrochemical techniques (potentiodynamic polarization studies and impedance spectroscopy. SEM and EDX analyses are carried out to establish a protective film formation on the metal surface.

  2. Correlating electronic structure with corrosion inhibition potentiality of some bis-benzimidazole derivatives for mild steel in hydrochloric acid: Combined experimental and theoretical studies

    International Nuclear Information System (INIS)

    Dutta, Alokdut; Saha, Sourav Kr.; Banerjee, Priyabrata; Sukul, Dipankar

    2015-01-01

    Highlights: • Bis-benzimidazole derivatives as good corrosion inhibitors for mild steel in acid. • Simultaneous both way electron-transfer is expected to occur during adsorption. • Role of molecular conformation on inhibition efficiency is demonstrated. • Good correlation between inhibition efficiency and molecular parameters established. • MD simulation results support experimental observations. - Abstract: Four different bis-benzimidazole (BBI) derivatives, tested as potential corrosion inhibitors for mild steel in 1 M HCl, have revealed good inhibition efficiency for long period of exposure. Inhibitors impart high resistance towards charge transfer across metal–electrolyte interface and behave broadly as mixed type. DFT calculations are used to correlate inhibition potentiality with intrinsic molecular parameters. From the optimized geometry of BBI derivatives, electron distribution in HOMO and LUMO and Fukui indices of each atom, possible modes of interaction of BBI derivatives with mild steel surface have been predicted. Energy corresponding to inhibitor-metal surface interaction is evaluated following molecular dynamics simulation

  3. Determination of the Optimum Conditions in Evaluation of Kiwi Juice as Green Corrosion Inhibitor of Steel in Hydrochloric Acid

    Directory of Open Access Journals (Sweden)

    Khalid Hamid Rasheed

    2018-08-01

    Full Text Available The corrosion protection of low carbon steel in 2.5 M HCl solution by kiwi juice was studied at different temperatures and immersion times by weight loss technique. To study the determination of the optimum conditions from statistical design in evaluation of a corrosion inhibitor, three variables, were considered as the most dominant variables. These variables are: temperature, inhibitor concentration (extracted kiwi juice and immersion time at static conditions. These three variables are manipulated through the experimental work using central composite rotatable Box – Wilson Experimental Design (BWED where second order polynomial model was proposed to correlate the studied variables with the corrosion rate of low carbon steel alloy to estimate the coefficients by nonlinear regression analysis method based on Rosenbrock and Quasi-Newton estimation method in as few experiments as possible to determinate of the optimum conditions of the proposed polynomial adopted via STATISTICA software. The parametric study on corrosion inhibition process using response surface methodology (RSM is presented in this paper. The study shows that the immersion time and temperature of corroding medium had shown negative dependence of great significance in increase the corrosion rate while the other studied variable (i.e. inhibitor concentration had shown large positive dependence in reduce the corrosion rate of low carbon steel alloy. Optimum conditions for achieving the minimum corrosion rate are obtained from optimizing the above correlation and are found as follow: 42.86 °C temperature of corroding medium, 29.29 cm3/L inhibitor concentration and 2.65 h immersion time. In these circumstances, the value of inhibition efficiency obtained was 96.09 %. It could be concluded that Box-Wilson experimental design was adequately applicable in the optimization of process variables and that kiwi juice sufficiently inhibited the corrosion for low carbon steel at the

  4. Corrosion engineering

    Energy Technology Data Exchange (ETDEWEB)

    Fontana, M.G.

    1986-01-01

    This book emphasizes the engineering approach to handling corrosion. It presents corrosion data by corrosives or environments rather than by materials. It discusses the corrosion engineering of noble metals, ''exotic'' metals, non-metallics, coatings, mechanical properties, and corrosion testing, as well as modern concepts. New sections have been added on fracture mechanics, laser alloying, nuclear waste isolation, solar energy, geothermal energy, and the Statue of Liberty. Special isocorrosion charts, developed by the author, are introduced as a quick way to look at candidates for a particular corrosive.

  5. In situ synthesis, electrochemical and quantum chemical analysis of an amino acid-derived ionic liquid inhibitor for corrosion protection of mild steel in 1M HCl solution

    International Nuclear Information System (INIS)

    Kowsari, E.; Arman, S.Y.; Shahini, M.H.; Zandi, H.; Ehsani, A.; Naderi, R.; PourghasemiHanza, A.; Mehdipour, M.

    2016-01-01

    Highlights: • Electrochemical analysis of effectiveness of an amino acid-derived ionic liquid inhibitor. • Quantum chemical analysis of effectiveness of an amino acid-derived ionic liquid inhibitor. • Finding correlation between electrochemical analysis and quantum chemical analysis. - Abstract: In this study, an amino acid-derived ionic liquid inhibitor, namely tetra-n-butyl ammonium methioninate, was synthesized and the role this inhibitor for corrosion protection of mild steel exposed to 1.0 M HCl was investigated using electrochemical, quantum and surface analysis. By taking advantage of potentiodynamic polarization, the inhibitory action of tetra-n-butyl ammonium methioninate was found to be mainly mixed-type with dominant anodic inhibition. The effectiveness of the inhibitor was also indicated using electrochemical impedance spectroscopy (EIS). Moreover, to provide further insight into the mechanism of inhibition, electrochemical noise (EN) and quantum chemical calculations of the inhibitor were performed.

  6. The use of Euphorbia falcata extract as eco-friendly corrosion inhibitor of carbon steel in hydrochloric acid solution

    International Nuclear Information System (INIS)

    El Bribri, A.; Tabyaoui, M.; Tabyaoui, B.; El Attari, H.; Bentiss, F.

    2013-01-01

    Euphorbia falcata L. extract (EFE) was investigated as eco-friendly corrosion inhibitor of carbon steel in 1 M HCl using gravimetric, ac impedance, polarization and scanning electron microscopy (SEM) techniques. The experimental results show that EFE is good corrosion inhibitor and the protection efficiency is increased with the EEF concentration. The results obtained from weight loss and ac impedance studies were in reasonable agreement. Impedance experimental data revealed a frequency distribution of the capacitance, simulated as constant phase element. Polarization curves indicated that EFE is a mixed inhibitor. The corrosion inhibition was assumed to occur via adsorption of EFE molecules on the metal surface. The adsorption of the E. falcata extract was well described by the Langmuir adsorption isotherm. The calculated ΔG ads o value showed that the corrosion inhibition of the carbon steel in 1 M HCl is mainly controlled by a physisorption process. - Graphical abstract: Display Omitted - Highlights: • EFE is a good eco-friendly inhibitor for the corrosion of carbon steel in 1 M HCl. • EFE acts as mixed-type inhibitor in 1 M HCl medium. • Weight loss, ac impedance and polarization methods are in reasonable agreement. • The adsorption of EFE is well described by the Langmuir adsorption isotherm

  7. Experimental investigation of aqueous corrosion of R7T7 nuclear glass at 90 degrees C in the presence of humic acids: A kinetic approach

    International Nuclear Information System (INIS)

    Gin, S.; Godon, N.; Mestre, J.P.; Vernaz, E.Y.; Beaufort, D.

    1994-01-01

    The dissolution kinetics of the French open-quotes R7T7close quotes nonradioactive LWR reference glass in solutions containing dissolved humic acids were investigated at 9O degrees C during static tests with imposed or free pH. Experiments conducted in highly dilute media, with a glass-surface-area-to-solution-volume (SA/V) ratio of 5 m -1 , showed that the glass dissolution surface reaction is catalyzed by humic acids. With higher degrees of reaction progress (SA/V = 100 m -1 and free pH) the humic acids impose pH modifications on the system compared with inorganic media; moreover, they directly or indirectly enhance the dissolution of certain alkali metals and transition elements, forming aqueous complexes with the latter. During experiments with an imposed pH of 8.5 (SA/V = 1300 and 5300 m -1 ), the humic acids appear to cause increased silica solubility that cannot be accounted for by the formation of silica complexes. A residual corrosion rate in the humic acid media exceeding the rate measured in inorganic media suggests that, in addition to silica, one or more element complexes formed by humic acids may be a kinetically limiting factor. This hypothesis must be confirmed, however, as the quantity of humic acids per unit glass surface area was too small in this experiment to allow unambiguous characterization of the phenomenon

  8. Corrosion test by low-temperature coal tar

    Energy Technology Data Exchange (ETDEWEB)

    Ando, S; Yamamoto, S

    1952-01-01

    Corrosive actions of various fractions of low-temperature coal tar against mild steel or Cr 13-steel were compared at their boiling states. Corrosions became severe when the boiling points exceeded 240/sup 0/. The acidic fractions were more corrosive. In all instances, corrosion was excessive at the beginning of immersion testing and then gradually became mild; boiling accelerated the corrosion. Cr 13-steel was corrosion-resistant to low-temperature coal-tar fractions.

  9. Adsorption properties and inhibition of mild steel corrosion in sulphuric acid solution by ketoconazole: Experimental and theoretical investigation

    Energy Technology Data Exchange (ETDEWEB)

    Obot, I.B. [Department of Chemistry, Faculty of Science, University of Uyo, P.M.B. 1017, Uyo, Akwa Ibom State (Nigeria)], E-mail: proffoime@yahoo.com; Obi-Egbedi, N.O. [Department of Chemistry, University of Ibadan, Ibadan (Nigeria)

    2010-01-15

    Ketoconazole (KCZ) has been evaluated as a corrosion inhibitor for mild steel in aerated 0.1 M H{sub 2}SO{sub 4} by gravimetric method. The effect of KCZ on the corrosion rate was determined at various temperatures and concentrations. The inhibition efficiency increases with increase in inhibitor concentration but decrease with rise in temperature. Adsorption followed the Langmuir isotherm with negative values of {delta}G{sub ads}{sup 0}, suggesting a stable and a spontaneous inhibition process. Quantum chemical approach was further used to calculate some electronic properties of the molecule in order to ascertain any correlation between the inhibitive effect and molecular structure of ketoconazole.

  10. Characterization and corrosion behavior of phytic acid coatings, obtained by chemical conversion on magnesium substrates in physiological solution; Caracterizacion y comportamiento frente a la corrosion de recubrimientos de acido fitico, obtenidos por conversion quimica, sobre substratos de magnesio en solucion fisiologica

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Alvarado, L. A.; Lomeli, M. A.; Hernandez, L. S.; Miranda, J. M.; Narvaez, L.; Diaz, I.; Garcia-Alonso, M. C.; Escudero, M. L.

    2014-10-01

    In order to improve the corrosion resistance of biodegradable magnesium and AZ31 magnesium alloy implants, a phytic acid coating has been applied on both substrates and their protective effect against corrosion has been assessed. The morphology and the chemical nature of the conversion coating were analyzed by SEM/EDX, XRD and FTIR. The spectra showed that the conversion coating was amorphous, and it was composed of Mg, O, and P on magnesium surface, along with Al, Zn and C on AZ31 alloy. The main coating components were chelate compounds formed by phytic acid and metallic ions. The corrosion resistance of bare and coated samples was evaluated by potentiodynamic polarization technique in Hank's solution at 37 degree centigrade. The results indicate that phytic acid conversion coatings provided a very effective protection to the magnesium substrates studied. (Author)

  11. Effect of coating mild steel with CNTs on its mechanical properties and corrosion behaviour in acidic medium

    Science.gov (United States)

    Abdulmalik Abdulrahaman, Mahmud; Kamaldeeen Abubakre, Oladiran; Ambali Abdulkareem, Saka; Oladejo Tijani, Jimoh; Aliyu, Ahmed; Afolabi, Ayo Samuel

    2017-03-01

    The study investigated the mechanical properties and corrosion behaviour of mild steel coated with carbon nanotubes at different coating conditions. Multi-walled carbon nanotubes (MWCNTs) were synthesized via the conventional chemical vapour deposition reaction using bimetallic Fe-Ni catalyst supported on kaolin, with acetylene gas as a carbon source. The HRSEM/HRTEM analysis of the purified carbon materials revealed significant reduction in the diameters of the purified MWCNT bundles from 50 nm to 2 nm and was attributed to the ultrasonication assisted dispersion with surfactant (gum arabic) employed in purification process. The network of the dispersed MWCNTs was coated onto the surfaces of mild steel samples, and as the coating temperature and holding time increased, the coating thickness reduced. The mechanical properties (tensile strength, yield strength, hardness value) of the coated steel samples increased with increase in coating temperature and holding time. Comparing the different coating conditions, coated mild steels at the temperature of 950 °C for 90 min holding time exhibited high hardness, yield strength and tensile strength values compared to others. The corrosion current and corrosion rate of the coated mild steel samples decreased with increase in holding time and coating temperature. The lowest corrosion rate was observed on sample coated at 950 °C for 90 min.

  12. Contribution to the electrochemical study of corrosion in low-conductivity environments. Application to the study of the behaviour of austenitic stainless steels in concentrated solutions of acetic acid

    International Nuclear Information System (INIS)

    Chechirlian, Serge

    1989-01-01

    As the use of conventional electrochemical methods to study metal and alloy corrosion in concentrated solutions of acetic acid is challenged by difficulties due the low conductivity of these environments, the first part of this research thesis proposes a critical, theoretical and experimental study of these difficulties. It notably evokes the use of electrochemical impedance techniques, the different compensation devices and means of correction of the ohmic voltage drop, and artefacts used during high frequency impedance measurements in lesser conductive solutions. The second part addresses the characterization of the corrosion behaviour of austenitic stainless steels in a concentrated acetic acid at 25 and 95 degrees C. Electrochemical techniques are coupled with analytical methods (solution analysis, sample surface analysis after corrosion tests). The roles of molybdenum as alloying element, of dissolved oxygen, of impurities (sulfites) or of formic acid additions are studied and discussed [fr

  13. Effect of niobium addition to the Fe-17% Cr alloy on the resistance to generalized corrosion in sulfuric acid

    International Nuclear Information System (INIS)

    Alonso, Neusa; Wolynec, Stephan

    1992-01-01

    The aim of present work was to investigate the influence of Nb upon the corrosion resistance to o.5 M H2 SO 4 cf 17% Cr ferritic stainless steels, to which it was added in amounts larger than those necessary for the stabilization of interstitial elements. The performance of Fe-17% Cr alloys containing 0.31%, 0.58%, 1.,62% Nb was compared to that of two other Fe-17% Cr alloys containing 0.31%, 0.58% and 1.62% Nb was compared to that of two other Fe-175 Cr alloys, one without additions and another containing 0.93% Nb. Through weight and electrochemical measurements and through morphologic examination of corroded surface it was found that in o.5 M H 2 SO 4 solution the corrosion of these alloys, with the exception of that containing molybdenum, products in two different stages. In the first stage (up to about 60 minutes the rate practically does not change with time, the lower rates being displayed by alloys containing larger mounts of Nb. In the second stage (for immersion times larger than 60 minutes) the corrosion rate increases with time. the corrosion rate of Mo containing alloy is constant with time so that for longer immersion times this alloy becomes the most resistant. The first stage was discussed in terms of electromechanical properties of Nb and its ability to combine with steel impurities, while the second stage was considered as affected by corrosion products formed on the surface of these alloys after certain time of immersion. (author)

  14. The Increased Content of Micronutrients in Celery, Carrot, Parsnip and Parsley Plants after Treatment with Sodium Naphthenate

    Directory of Open Access Journals (Sweden)

    Grbović Ljubica

    2016-08-01

    Full Text Available Young plants of celery, parsley, parsnip and carrot, grown in nutrient solution, were treated with sodium naphthenate (10−7 mol dm−3, applying foliar and root treatments. Both treatments affected the root content of all investigated elements present in the nutrient solution, but in a different way, depending on the plant species. An average change (increase/decrease in the contents of investigated essential elements was about 35%. Our experiments with naphthenate showed that this treatment may enhance the efficiency of essential elements uptake and increase its content in plants without changing concentration of these elements in the nutrient solution. Especially interesting results were obtained in the case of carrot, as increased contents were observed in the elements that are usually deficient in nutrition (Fe, Zn, Mn, whereas the other remained unchanged.

  15. Corrosion protective performance of amino trimethylene phosphonic acid-metal complex layers fabricated on the cold-rolled steel substrate via one-step assembly

    Science.gov (United States)

    Yan, Ru; He, Wei; Zhai, Tianhua; Ma, Houyi

    2018-06-01

    Seeing that amino trimethylene phosphonic acid (ATMP) possesses very strong complexation ability to metal ions and the phosphonic acid group has good affinity for the oxidized iron surface, herein a simple and rapid film-forming method (one-step assembly method) was developed to construct the ATMP-Zn complex conversion layers (ATMP-Zn layers for short) on the cold-rolled steel (CRS) substrate. Zinc ions were found to participate in the formation process of ATMP-based composite film, which made the Zn-containing ATMP film significantly different in appearance, thickness, microstructure and film-forming mechanisms from the Zn-free ATMP film. There was mainly iron (ш) phosphonate in the Zn-free ATMP film, whereas there were Zn2+-ATMP complex and a certain amount of ZnO in the ATMP-Zn composite film. In addition, electrochemical test results clearly indicate that corrosion resistance of ATMP-Zn composite film was greatly enhanced due to the presence of Zn component. Moreover, the corrosion resistance performance could be controlled by adjusting film-forming time, pH and ATMP concentration in the film-forming solutions. The present study provides a new method for the design and fabrication of high-quality environmentally-friendly conversion layers.

  16. PLASMA SPRAYED Al₂O₃-13 WT.%TiO₂ COATING SEALED WITH ORGANIC-INORGANIC HYBRID AGENT AND ITS CORROSION RESISTANCE IN ACID ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    Zehua Zhou

    2016-07-01

    Full Text Available A novel organic-inorganic hybrid material of γ-methacryloxypropyltrime-thoxysilane (KH570 -SiO₂ was fabricated by Sol-Gel method. The hybrid material was used as the sealing agent for the plasma sprayed Al₂O₃-13 wt.% TiO₂ coating. Infrared spectrum and grafted mechanism of the hybrid agent (HA were studied. Moreover, morphology and porosity, as well as characteristics of immersion plus electrochemical corrosion in acid environment of the coating with and without sealing treatment were evaluated, compared with those of the coating sealed with the conventional silicone resin agent (SRA. The results reveal that KH570 was successfully grafted onto the surface of SiO₂. The HA film sealed on the surface of the coating presents a little better quality than the SRA film. The porosities of the coatings after the sealing treatment decreased. Furthermore, the sealing treatment can improve efficiently the corrosion resistance of the coating in 5 vol.% HCl solution. The hybrid sealing agent can become a candidate for the plasma sprayed Al₂O₃-13 wt.% TiO₂ coating used in acid environment to overcome some disadvantages of organic agents such as severely environmental pollution.

  17. Update of the water chemistry effect on the flow-accelerated corrosion rate of carbon steel: influence of hydrazine, boric acid, ammonia, morpholine and ethanolamine

    International Nuclear Information System (INIS)

    Pavageau, E.-M.; De Bouvier, O.; Trevin, S.; Bretelle, J.-L.; Dejoux, L.

    2007-01-01

    The influence of the water chemistry on Flow-Accelerated Corrosion (FAC) affecting carbon steel components has been studied for many years and is relatively well known and taken into account by the models. Nonetheless, experimental studies were conducted in the last few years at EDF on the CIROCO loop in order to check the influence of the water chemistry parameters (hydrazine, boric acid, ammonia, morpholine and ethanolamine) on the FAC rate of carbon steel in one phase flow conditions. The hydrazine impact on the FAC rate was shown to be minor in EDF's chemistry recommendation range, compared to other parameters' effects such as the pH effect. The presence of boric acid in the nominal secondary circuit conditions was negligible. Finally, as expected, the nature of the chemical conditioning (ammonia, morpholine or ethanolamine) did not modify the FAC rate, the influencing chemical variable being the at-temperature pH in one-phase flow conditions. (author)

  18. Contribution to the study of the electrochemical behaviour of titanium and of its industrial shores in sulphuric environment. Characteristics of their resistance to pitting corrosion in neutral and acid halogenous environment

    International Nuclear Information System (INIS)

    Petit, Jacques-Alain

    1975-01-01

    After a presentation of the general metallurgical, physical, and corrosion resistance characteristics of titanium and of its alloys, this research thesis presents the experimental means, discusses the influence of experimental conditions on the assessment of the electrochemical behaviour of titanium and of its alloys. It reports an investigation of the cathodic behaviour of non-alloyed titanium and notably the hydrogen release kinetics in a concentrated acid environment. It discusses the influence of alloy composition on their cathodic behaviour, addresses the anodic behaviour of titanium and of its alloys in sulphuric environment, and the pitting corrosion of titanium and of its alloys in an acid and neutral halogenous environment [fr

  19. Direct patterning of highly-conductive graphene@copper composites using copper naphthenate as a resist for graphene device applications.

    Science.gov (United States)

    Bi, Kaixi; Xiang, Quan; Chen, Yiqin; Shi, Huimin; Li, Zhiqin; Lin, Jun; Zhang, Yongzhe; Wan, Qiang; Zhang, Guanhua; Qin, Shiqiao; Zhang, Xueao; Duan, Huigao

    2017-11-09

    We report an electron-beam lithography process to directly fabricate graphene@copper composite patterns without involving metal deposition, lift-off and etching processes using copper naphthenate as a high-resolution negative-tone resist. As a commonly used industrial painting product, copper naphthenate is extremely cheap with a long shelf time but demonstrates an unexpected patterning resolution better than 10 nm. With appropriate annealing under a hydrogen atmosphere, the produced graphene@copper composite patterns show high conductivity of ∼400 S cm -1 . X-ray diffraction, conformal Raman spectroscopy and X-ray photoelectron spectroscopy were used to analyze the chemical composition of the final patterns. With the properties of high resolution and high conductivity, the patterned graphene@copper composites could be used as conductive pads and interconnects for graphene electronic devices with ohmic contacts. Compared to common fabrication processes involving metal evaporation and lift-off steps, this pattern-transfer-free fabrication process using copper naphthenate resist is direct and simple but allows comparable device performance in practical device applications.

  20. Transcriptional responses of earthworm (Eisenia fetida) exposed to naphthenic acids in soil

    International Nuclear Information System (INIS)

    Wang, Jie; Cao, Xiaofeng; Sun, Jinhua; Chai, Liwei; Huang, Yi; Tang, Xiaoyan

    2015-01-01

    In this study, earthworms (Eisenia fetida) were exposed to commercial NAs contaminated soil, and changes in the levels of reactive oxygen species (ROS) and gene expressions of their defense system were monitored. The effects on the gene expression involved in reproduction and carcinogenesis were also evaluated. Significant increases in ROS levels was observed in NAs exposure groups, and the superoxide dismutase (SOD) and catalase (CAT) genes were both up-regulated at low and medium exposure doses, which implied NAs might exert toxicity by oxidative stress. The transcription of CRT and HSP70 coincided with oxidative stress, which implied both chaperones perform important functions in the protection against oxidative toxicity. The upregulation of TCTP gene indicated a potential adverse effect of NAs to terrestrial organisms through induction of carcinogenesis, and the downregulation of ANN gene indicated that NAs might potentially result in deleterious reproduction effects. - Highlights: • The first attempt to study gene ecotoxicity of NAs in terrestrial environment. • NAs exert toxicity by oxidative stress on earthworm. • NAs might cause carcinogenesis and reproductive disruption to earthworm. - NAs induced oxidative stress and altered transcriptions of genes involved in defense, reproduction, and carcinogenesis

  1. Alginate biopolymer as green corrosion inhibitor for copper in 1 M hydrochloric acid: Experimental and theoretical approaches

    Science.gov (United States)

    Jmiai, A.; El Ibrahimi, B.; Tara, A.; El Issami, S.; Jbara, O.; Bazzi, L.

    2018-04-01

    The anti-corrosion behavior of sodium alginate (SA) on copper in the 1 M hydrochloric medium was carried out using weight loss and electrochemical measurements. The obtained results show that the inhibition increases with SA concentration and then reaches a maximum of 83% at a concentration of 0.1 mg L-1. The effect of temperature on the reactions of copper corrosion inhibition and analyzing the thermodynamic parameters revealed that the mode of adsorption has a physical nature and obeys the Langmuir isotherm. The surface morphology was performed by scanning electron microscopy coupled with energy dispersive X-ray spectrometry and atomic force microscopy. To better understand the adsorption mechanism, describing the relationship between inhibitory ability and the molecular structure of SA, quantum calculations using density functional theory were performed. Monte Carlo simulation approache was performed to know well of the relationship between the inhibition ability and molecular structure of alginate.

  2. Evaluation of Corrosion Inhibition of Mild Steel in 1 M Hydrochloric Acid Solution by Mollugo cerviana

    Directory of Open Access Journals (Sweden)

    P. Arockiasamy

    2014-01-01

    Full Text Available The inhibiting effect of methanolic extract of Mollugo cerviana plant on the corrosion of mild steel in 1 M HCl solution has been investigated by different techniques like potentiodynamic polarization, electrochemical impedance spectroscopy, and weight loss methods for five different concentrations of plant extract ranging from 25 to 1000 mg/L. The results indicated that the corrosion inhibition efficiency increased on increasing plant extract concentration till 500 mg/L and decreased on further increasing concentration. The extract was a mixed type inhibitor with the optimum inhibition concentration of 500 mg/L in potentiodynamic polarization. The adsorption of the plant extract on the mild steel surface was found to obey Langmuir adsorption isotherm. Surface analysis was also carried out to find out the surface morphology of the mild steel in the presence and in the absence of the inhibitor to find out its efficiency. The obtained results showed that the Mollugo cerviana extract acts as a good inhibitor for the corrosion of mild steel in 1 M HCl solution.

  3. A comparative study of the corrosion inhibition of mild steel in sulphuric acid by 4,4-dimethyloxazolidine-2-thione

    International Nuclear Information System (INIS)

    Musa, Ahmed Y.; Kadhum, Abdul Amir H.; Mohamad, Abu Bakar; Daud, Abdul Razak; Takriff, Mohd Sobri; Kamarudin, Siti Kartom

    2009-01-01

    The corrosion protection of mild steel in a 2.5 M H 2 SO 4 solution by 4,4-dimethyloxazolidine-2-thione (DMT) was studied at different temperatures by measuring changes in open circuit potential (OCP), potentiodynamic polarisation and electrochemical impedance spectroscopy (EIS). Corrosion current densities calculated from EIS data were comparable to those obtained from polarisation measurements. Results showed that DMT inhibited mild steel corrosion in a 2.5 M H 2 SO 4 solution and indicated that the inhibition efficiencies increased with the concentration of inhibitor, but decreased proportionally with temperature. Polarisation curves showed that DMT is a mixed-type inhibitor. Changes in impedance parameters suggested the adsorption of DMT on the mild steel surface, leading to the formation of protective films. The DMT adsorption on the mild steel surface followed the Langmuir adsorption isotherm. The kinetic and thermodynamic parameters for dissolution and adsorption were investigated. Comprehensive adsorption (physisorption and chemisorption) of the inhibitor molecules on the mild steel surface was suggested based on the thermodynamic adsorption parameters.

  4. Corrosion Protection of Aluminum

    Science.gov (United States)

    Dalrymple, R. S.; Nelson, W. B.

    1963-07-01

    Treatment of aluminum-base metal surfaces in an autoclave with an aqueous chromic acid solution of 0.5 to 3% by weight and of pH below 2 for 20 to 50 hrs at 160 to 180 deg C produces an extremely corrosion-resistant aluminum oxidechromium film on the surface. A chromic acid concentration of 1 to 2% and a pH of about 1 are preferred.

  5. Standard practice for determining the susceptibility of stainless steels and related Nickel-Chromium-Iron Alloys to stress-corrosion cracking in polythionic acids

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This practice covers procedures for preparing and conducting the polythionic acid test at room temperature, 22 to 25°C (72 to 77°F), to determine the relative susceptibility of stainless steels or other related materials (nickel-chromiumiron alloys) to intergranular stress corrosion cracking. 1.2 This practice can be used to evaluate stainless steels or other materials in the “as received” condition or after being subjected to high-temperature service, 482 to 815°C (900 to 1500°F), for prolonged periods of time. 1.3 This practice can be applied to wrought products, castings, and weld metal of stainless steels or other related materials to be used in environments containing sulfur or sulfides. Other materials capable of being sensitized can also be tested in accordance with this test. 1.4 This practice may be used with a variety of stress corrosion test specimens, surface finishes, and methods of applying stress. 1.5 This standard does not purport to address all of the safety concerns, if any, ...

  6. Inhibitory effect of non-ionic surfactants of the TRITON-X series on the corrosion of carbon steel in sulphuric acid

    International Nuclear Information System (INIS)

    Fuchs-Godec, R.

    2007-01-01

    The corrosion inhibition characteristics of non-ionic surfactants of the TRITON-X series, known as TRITON-X-100 and TRITON-X-405, on stainless steel (SS) type X4Cr13 in sulphuric acid were investigated by potentiodynamic polarisation measurements. It was found that these surfactants act as good inhibitors of the corrosion of stainless steel in 2 mol L -1 H 2 SO 4 solution, but the inhibition efficiency strongly depends on the electrode potential. The polarisation data showed that the non-ionic surfactants used in this study acted as mixed-type inhibitors and adsorb on the stainless steel surface, in agreement with the Flory-Huggins adsorption isotherm. Calculated ΔG ads values are -57.79 kJ mol -1 for TRITON-X-100, and -87.5 kJ mol -1 for TRITON-X-405. From the molecular structure it can be supposed that these surfactants adsorb on the metal surface through two lone pairs of electrons on the oxygen atoms of the hydrophilic head group, suggesting a chemisorption mechanism

  7. DFT theoretical study of 7-R-3methylquinoxalin-2(1H)-thiones (R=H; CH3; Cl) as corrosion inhibitors in hydrochloric acid

    International Nuclear Information System (INIS)

    El Adnani, Z.; Mcharfi, M.

    2013-01-01

    Highlights: ► A theoretical study of three quinoxaline derivatives. ► We try to explain their experimental mild steel corrosion inhibition efficiencies. ► The solvent effect was also depicted using the PCM model. ► Most of the global reactivity descriptors agree well with the experimental results. ► The results show that the sulphur atom is probably the main adsorption site. - Abstract: Quantum chemical approach at B3LYP/6-31G(d,p) level of theory, was used to calculate some structural and electronic properties of three quinoxaline derivatives, recently reported as mild steel corrosion inhibitors in acidic media, to ascertain the correlation between their experimental inhibitive efficiencies and some of the computed parameters. The results of most of the global reactivity descriptors show that the experimental and theoretical studies agree well and confirm that Me-Q=S is a better inhibitor than Q=S and Cl-Q=S, respectively. In addition, the local reactivity, analyzed through Fukui functions, show that the sulphur atom will be the main adsorption site.

  8. Innovative micro-textured hydroxyapatite and poly(l-lactic)-acid polymer composite film as a flexible, corrosion resistant, biocompatible, and bioactive coating for Mg implants.

    Science.gov (United States)

    Kim, Sae-Mi; Kang, Min-Ho; Kim, Hyoun-Ee; Lim, Ho-Kyung; Byun, Soo-Hwan; Lee, Jong-Ho; Lee, Sung-Mi

    2017-12-01

    The utility of a novel ceramic/polymer-composite coating with a micro-textured microstructure that would significantly enhance the functions of biodegradable Mg implants is demonstrated here. To accomplish this, bioactive hydroxyapatite (HA) micro-dots can be created by immersing a Mg implant with a micro-patterned photoresist surface in an aqueous solution containing calcium and phosphate ions. The HA micro-dots can then be surrounded by a flexible poly(l-lactic)-acid (PLLA) polymer using spin coating to form a HA/PLLA micro-textured coating layer. The HA/PLLA micro-textured coating layer showed an excellent corrosion resistance when it was immersed in a simulated body fluid (SBF) solution and good biocompatibility, which was assessed by in vitro cell tests. In addition, the HA/PLLA micro-textured coating layer had high deformation ability, where no apparent changes in the coating layer were observed even after a 5% elongation, which would be unobtainable using HA and PLLA coating layers; furthermore, this allowed the mechanically-strained Mg implant with the HA/PLLA micro-textured coating layer to preserve its excellent corrosion resistance and biocompatibility in vitro. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Corrosion Engineering.

    Science.gov (United States)

    White, Charles V.

    A description is provided for a Corrosion and Corrosion Control course offered in the Continuing Engineering Education Program at the General Motors Institute (GMI). GMI is a small cooperative engineering school of approximately 2,000 students who alternate between six-week periods of academic study and six weeks of related work experience in…

  10. Penelitian pengaruh variasi china clay dan naphthenic oil terhadap perpanjangan tetap dan tegangan putus kompon karet untuk lis pintu almari es

    Directory of Open Access Journals (Sweden)

    A Buchori

    1997-12-01

    Full Text Available The aim of this research is to know the influence of filer china clay naphthenic oil to the physical properties of permanent set and tensile strength rubber compound for refrigerator gasket. It makes from natural rubber ( pale crepe and synthetic rubber (SBR 1502 as raw material with addition of ingredients such as : softener, activator, filler, antioxidant, accelerator, coloring and vulcanizing agent. It should be carried out using base formula by varying china clay : 30; 40 ; and 50 parts and naphthenic oil : 5,0 ; 7,5 and 10 parts for 9 compound then should be tested their physical properties permanent set and tensile strength. The result of the test statistically prove that china clay and naphthenic oil influence the physical properties for permanent set by china clay 30 parts and naphthenic oil 5 parts, the value 1,24%, for tensile strength by china clay 50 parts and naphthenic oil 5 parts, the value 102,6081 Kg/Cm2.

  11. Extreme Pressure Synergistic Mechanism of Bismuth Naphthenate and Sulfurized Isobutene Additives

    Science.gov (United States)

    Xu, Xin; Hu, Jianqiang; Yang, Shizhao; Xie, Feng; Guo, Li

    A four-ball tester was used to evaluate the tribological performances of bismuth naphthenate (BiNap), sulfurized isobutene (VSB), and their combinations. The results show that the antiwear properties of BiNap and VSB are not very visible, but they possess good extreme pressure (EP) properties, particularly sulfur containing bismuth additives. Synergistic EP properties of BiNap with various sulfur-containing additives were investigated. The results indicate that BiNap exhibits good EP synergism with sulfur-containing additives. The surface analytical tools, such as X-ray photoelectron spectrometer (XPS) scanning electron microscope (SEM) and energy dispersive X-ray (EDX), were used to investigate the topography, composition contents, and depth profile of some typical elements on the rubbing surface. Smooth topography of wear scar further confirms that the additive showed good EP capacities, and XPS and EDX analyzes indicate that tribochemical mixed protective films composed of bismuth, bismuth oxides, sulfides, and sulfates are formed on the rubbing surface, which improves the tribological properties of lubricants. In particular, a large number of bismuth atoms and bismuth sulfides play an important role in improving the EP properties of oils.

  12. Corrosion resistance of stainless steel, nickel-titanium, titanium molybdenum alloy, and ion-implanted titanium molybdenum alloy archwires in acidic fluoride-containing artificial saliva: An in vitro study

    Directory of Open Access Journals (Sweden)

    Venith Jojee Pulikkottil

    2016-01-01

    Full Text Available Objective: (1 To evaluate the corrosion resistance of four different orthodontic archwires and to determine the effect of 0.5% NaF (simulating high fluoride-containing toothpaste of about 2250 ppm on corrosion resistance of these archwires. (2 To assess whether surface roughness (Ra is the primary factor influencing the corrosion resistance of these archwires. Materials and Methods: Four different archwires (stainless steel [SS], nickel-titanium [NiTi], titanium molybdenum alloy [TMA], and ion-implanted TMA were considered for this study. Surface characteristics were analyzed using scanning electron microscopy, atomic force microscopy (AFM, and energy dispersive spectroscopy. Linear polarization test, a fast electrochemical technique, was used to evaluate the corrosion resistance, in terms of polarization resistance of four different archwires in artificial saliva with NaF concentrations of 0% and 0.5%. Statistical analysis was performed by one-way analysis of variance. Results: The potentiostatic study reveals that the corrosion resistance of low-friction TMA (L-TMA > TMA > NiTi > SS. AFM analysis showed the surface Ra of TMA > NiTi > L-TMA > SS. This indicates that the chemical composition of the wire is the primary influential factor to have high corrosion resistance and surface Ra is only secondary. The corrosion resistance of all wires had reduced significantly in 0.5% acidic fluoride-containing artificial saliva due to formation of fluoride complex compound. Conclusion: The presence of 0.5% NaF in artificial saliva was detrimental to the corrosion resistance of the orthodontic archwires. Therefore, complete removal of residual high-fluorinated toothpastes from the crevice between archwire and bracket during tooth brushing is mandatory.

  13. Parametric Study of Solder Flux Hygroscopicity: Impact of Weak Organic Acids on Water Layer Formation and Corrosion of Electronics

    DEFF Research Database (Denmark)

    Piotrowska, Kamila; Ud Din, Rameez; Grumsen, Flemming Bjerg

    2018-01-01

    °C, 40°C, and 60°C. Water absorption levels were determined using the gravimetric method, and the influence on reliability was assessed using electrochemical impedance and leak current measurements performed on the surface insulation resistance comb patterns. The corrosion studies were correlated...... the critical RH level for water vapour absorption towards lower RH range, accelerating the formation of a conductive electrolyte and the occurrence of ion transport-induced electrochemical migration. The overall ranking of flux activators with the increasing order of aggressivity is: palmitic

  14. Recent Natural Corrosion Inhibitors for Mild Steel: An Overview

    Directory of Open Access Journals (Sweden)

    Marko Chigondo

    2016-01-01

    Full Text Available Traditionally, reduction of corrosion has been managed by various methods including cathodic protection, process control, reduction of the metal impurity content, and application of surface treatment techniques, as well as incorporation of suitable alloys. However, the use of corrosion inhibitors has proven to be the easiest and cheapest method for corrosion protection and prevention in acidic media. These inhibitors slow down the corrosion rate and thus prevent monetary losses due to metallic corrosion on industrial vessels, equipment, or surfaces. Inorganic and organic inhibitors are toxic and costly and thus recent focus has been turned to develop environmentally benign methods for corrosion retardation. Many researchers have recently focused on corrosion prevention methods using green inhibitors for mild steel in acidic solutions to mimic industrial processes. This paper provides an overview of types of corrosion, corrosion process, and mainly recent work done on the application of natural plant extracts as corrosion inhibitors for mild steel.

  15. The electrochemical aspect of the corrosion of austenitic stainless steels, in nitric acid and in the presence of hexavalent chromium (1961)

    International Nuclear Information System (INIS)

    Coriou, H.; Hure, J.; Plante, G.

    1961-01-01

    The corrosion of austenitic stainless steels in boiling nitric acid markedly increases when the medium contains hexavalent chromium ions. Because of several redox phenomena, the potential of the steel generally changes in course of time. Measurements show a relation between the weight loss and the potential of specimens. Additions of Mn(VII) and Ce(IV) are compared with that of Cr(VI), and show that the relation is a general one. The attack cf the metal in oxidizing media is largely intergranular, leading to exfoliation of the grains, although the steel studied is not sensitive to the classical Huey and Strauss tests. Also even in the absence of any other oxidizing reaction, the current density observed when the steel is anodically polarized under potentiostatic conditions does not correspond to the actual weight loss of the metal. (authors) [fr

  16. Electrochemical measurements for the corrosion inhibition of mild steel in 1 M hydrochloric acid by using an aromatic hydrazide derivative

    Directory of Open Access Journals (Sweden)

    P. Preethi Kumari

    2017-07-01

    Full Text Available The influence of an aromatic hydrazide derivative, 2-(3,4,5-trimethoxybenzylidene hydrazinecarbothioamide (TMBHC as corrosion inhibitor on mild steel in 1 M hydrochloric acid was studied by Tafel polarization and electrochemical impedance spectroscopy (EIS technique. The results showed that the inhibition efficiency (% IE of TMBHC increased with increasing inhibitor concentrations and also with increase in temperatures. TMBHC acted as a mixed type of inhibitor and its adsorption on mild steel surface was found to follow Langmuir’s adsorption isotherm. The evaluation of thermodynamic and activation parameters indicated that the adsorption of TMBHC takes place through chemisorption. The formation of protective film was further confirmed by scanning electron microscopy (SEM.

  17. Synergistic Effect of Azadirachta Indica Extract and Iodide Ions on the Corrosion Inhibition of Aluminium in Acid Media

    Energy Technology Data Exchange (ETDEWEB)

    Arab, S. T.; Al- Turkustani, A. M.; Al- Dhahiri, R. H. [King Abd El- Aziz University, Jeddah (Saudi Arabia)

    2008-06-15

    The synergistic action caused by iodide ions on the corrosion inhibition of aluminium (Al) in 0.5 M HCl in the presence of Azadirachta Indica (AZI) plant extract has been investigated using potintiodynamic polarization and impedance techniques. It is found that AZI extract inhibits the corrosion of aluminium in 0.5 M HCl. The inhibition efficiency increases with the increase in AZI extract concentration, until 24% v/v of AZI extract, then Inh.% is decreased with father increase in AZI extract concentration. The adsorption of this extract in the studied concentration is found to obey Frewendlish adsorption isotherm. The addition of iodide ions enhances the inhibition efficiency to a considerable extent. The increase in Inh.% values in presence of fixed concentration of iodide ions indicates that AZI extract forms an insoluble complex at lower AZI extract concentrations by undergoing a joint adsorption. But at higher concentrations of AZI extract, competitive adsorption is found between iodide ions and the formed complex leading to less Inh.%. The Inh.% decreased in presence of iodide ions with AZI extract than in presence of AZI extract alone at all studied iodide concentrations. The synergism parameter S {sub θ} is defined and calculated from surface coverage values. This parameter in the case of AZI extract is found to be more than unity, indicating that the enhanced inhibition efficiency caused by the addition of iodide ions.

  18. Electrochemical and quantum chemical studies of some indole derivatives as corrosion inhibitors for C38 steel in molar hydrochloric acid

    International Nuclear Information System (INIS)

    Lebrini, M.; Robert, F.; Vezin, H.; Roos, C.

    2010-01-01

    A comparative study of 9H-pyrido[3,4-b]indole (norharmane) and 1-methyl-9H-pyrido[3,4-b]indole (harmane) as inhibitors for C38 steel corrosion in 1 M HCl solution at 25 o C was carried out. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques were applied to study the metal corrosion behavior in the absence and presence of different concentrations of these inhibitors. The OCP as a function of time were also established. Cathodic and anodic polarization curves show that norharmane and harmane are a mixed-type inhibitors. Adsorption of indole derivatives on the C38 steel surface, in 1 M HCl solution, follows the Langmuir adsorption isotherm model. The ΔG ads o values were calculated and discussed. The potential of zero charge (PZC) of the C38 steel in inhibited solution was studied by the EIS method, and a mechanism for the adsorption process was proposed. Raman spectroscopy confirmed that indole molecules strongly adsorbed onto the steel surface. The electronic properties of indole derivates, obtained using the AM1 semi-empirical quantum chemical approach, were correlated with their experimental efficiencies using the linear resistance model (LR).

  19. Corrosion in the presence of a complexing agent - application to the continuous determination of hydrofluoric acid in the atmosphere; Corrosion en presence de complexant. - Application a la determination en continu de l'acide fluorhydrique dans l'atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Chapron, J [Commissariat a l' Energie Atomique, Centre d' Etudes Nucleaires de Fontenay-aux-Roses, 92 (France)

    1966-10-01

    After a presentation of the thermodynamics and kinetics involved during corrosion in the presence of a complexing agent, the first part of this report deals with the electrochemical properties of an aluminium electrode in the presence of fluoride solutions. Various physical and chemical parameters have been studied together with their influence on the aforementioned properties. From this first part are deduced the medium and the various parameters which lead to the maximum efficiency for the detection of fluorides by amperometry. The second part is an application of the results of the above work, which has made it possible to develop a cell having an original design. Its performances are described. They show that the cell has a greater sensitivity and a shorter response time than existing equipment. (author) [French] Apres un rappel sur la thermodynamique et la cinetique de la corrosion en presence de complexant, la premiere partie du memoire est consacree a l'etude des proprietes electrochimiques de l'electrode d'aluminium, en presence de solutions de fluorure. Differents parametres physiques et chimiques ont ete etudies ainsi que leurs influences sur les dites proprietes. De cette premiere partie on en a deduit le milieu et les divers parametres a fixer de facon a obtenir un rendement optimum au vue de la detection des fluorures par amperometrie. La deuxieme partie, qui est l'application des renseignements tires du travail deja cite, a permis de mettre au point une cellule de conception nouvelle. Ses performances sont decrites. Elles indiquent une sensibilite plus grande, un temps de reponse plus court que les appareils existants. (auteur)

  20. Atmospheric corrosion of metals in industrial city environment

    OpenAIRE

    Kusmierek, Elzbieta; Chrzescijanska, Ewa

    2015-01-01

    Atmospheric corrosion is a significant problem given destruction of various materials, especially metals. The corrosion investigation in the industrial city environment was carried out during one year exposure. Corrosion potential was determined using the potentiometric method. The highest effect of corrosion processes was observed during the winter season due to increased air pollution. Corrosion of samples pre-treated in tannic acid before the exposure was more difficult compared with the s...

  1. In situ monitoring the effects of a magnetic field on the open-circuit corrosion states of iron in acidic and neutral solutions

    International Nuclear Information System (INIS)

    Lu Zhanpeng; Yang Wu

    2008-01-01

    The effects of a 0.4 T horizontal magnetic field (HMF) on the open-circuit corrosion states of iron in static aqueous solutions are studied by in situ monitoring the responses of two electrochemical parameters to the applied magnetic field, i.e. the open-circuit potential (OCP) and the current under potentiostatic polarization. The applied magnetic field makes the OCP shift in the noble direction. Withdrawing the magnetic field causes a negative shift of the OCP in acidic solutions, but it does not cause any significant change of OCP in neutral solutions. Imposing a magnetic field induces a cathodic current for iron that was previously potentiostatically polarized at the OCP without magnetic field. Withdrawing the magnetic field induces an anodic current for iron that was previously potentiostatically polarized at the OCP with the magnetic field. The magnetic field effect is more significant in the acid solutions than in the salt solutions. The magnetic field effects on the oxygen reduction and on the activation-controlled iron dissolution reaction are found to be insignificant. The magnetic field effect on the hydrogen reduction reaction on iron in acidic solutions is demonstrated. Results show the possibility that a magnetic field would affect the hydrogen evolution by enhancing the electron-transfer process that has been categorized in the classical electrochemistry kinetics to be the rate-determining process. The memory effect of the magnetic field on the electrochemical reaction is identified and discussed

  2. Determination of Water Vapor Pressure Over Corrosive Chemicals Versus Temperature Using Raman Spectroscopy as Exemplified with 85.5% Phosphoric Acid

    DEFF Research Database (Denmark)

    Rodier, Marion; Li, Qingfeng; Berg, Rolf W.

    2016-01-01

    A method to determine the water vapor pressure over a corrosive substance was developed and tested with 85.5 ± 0.4% phosphoric acid. The water vapor pressure was obtained at a range of temperatures from ∼25 ℃ to ∼200 ℃ using Raman spectrometry. The acid was placed in an ampoule and sealed...... with a reference gas (either hydrogen or methane) at a known pressure (typically ∼0.5 bar). By comparing the Raman signals from the water vapor and the references, the water pressure was determined as a function of temperature. A considerable amount of data on the vapor pressure of phosphoric acid are available...... in the literature, to which our results could successfully be compared. A record value of the vapor pressure, 3.40 bar, was determined at 210 ℃. The method required a determination of the precise Raman scattering ratios between the substance, water, and the used reference gas, hydrogen or methane. In our case...

  3. NASA's Corrosion Technology Laboratory at the Kennedy Space Center: Anticipating, Managing, and Preventing Corrosion

    Science.gov (United States)

    Calle, Luz Marina

    2015-01-01

    The marine environment at NASAs Kennedy Space Center (KSC) has been documented by ASM International (formerly American Society for Metals) as the most corrosive in North America. With the introduction of the Space Shuttle in 1981, the already highly corrosive conditions at the launch pads were rendered even more severe by the highly corrosive hydrochloric acid (HCl) generated by the solid rocket boosters (SRBs). Numerous failures at the launch pads are caused by corrosion. The structural integrity of ground infrastructure and flight hardware is critical to the success, safety, cost, and sustainability of space missions. NASA has over fifty years of experience dealing with unexpected failures caused by corrosion and has developed expertise in corrosion control in the launch and other environments. The Corrosion Technology Laboratory at KSC evolved, from what started as an atmospheric exposure test site near NASAs launch pads, into a capability that provides technical innovations and engineering services in all areas of corrosion for NASA, external partners, and customers.This paper provides a chronological overview of NASAs role in anticipating, managing, and preventing corrosion in highly corrosive environments. One important challenge in managing and preventing corrosion involves the detrimental impact on humans and the environment of what have been very effective corrosion control strategies. This challenge has motivated the development of new corrosion control technologies that are more effective and environmentally friendly. Strategies for improved corrosion protection and durability can have a huge impact on the economic sustainability of human spaceflight operations.

  4. Atmospheric corrosion of metals in industrial city environment

    Directory of Open Access Journals (Sweden)

    Elzbieta Kusmierek

    2015-06-01

    Full Text Available Atmospheric corrosion is a significant problem given destruction of various materials, especially metals. The corrosion investigation in the industrial city environment was carried out during one year exposure. Corrosion potential was determined using the potentiometric method. The highest effect of corrosion processes was observed during the winter season due to increased air pollution. Corrosion of samples pre-treated in tannic acid before the exposure was more difficult compared with the samples without pretreatment. The corrosion products determined with the SEM/EDS method prove that the most corrosive pollutants present in the industrial city air are SO2, CO2, chlorides and dust.

  5. Atmospheric corrosion of metals in industrial city environment.

    Science.gov (United States)

    Kusmierek, Elzbieta; Chrzescijanska, Ewa

    2015-06-01

    Atmospheric corrosion is a significant problem given destruction of various materials, especially metals. The corrosion investigation in the industrial city environment was carried out during one year exposure. Corrosion potential was determined using the potentiometric method. The highest effect of corrosion processes was observed during the winter season due to increased air pollution. Corrosion of samples pre-treated in tannic acid before the exposure was more difficult compared with the samples without pretreatment. The corrosion products determined with the SEM/EDS method prove that the most corrosive pollutants present in the industrial city air are SO2, CO2, chlorides and dust.

  6. Experimental and computational studies of naphthyridine derivatives as corrosion inhibitor for N80 steel in 15% hydrochloric acid

    Science.gov (United States)

    Ansari, K. R.; Quraishi, M. A.

    2015-05-01

    The inhibition effect of three naphthyridine derivatives namely 2-amino-4-(4-methoxyphenyl)-1,8-naphthyridine-3-carbonitrile (ANC-1), 2-amino-4-(4-methylphenyl)-1,8-naphthyridine-3-carbonitrile (ANC-2) and 2-amino-4-(3-nitrophenyl)-1,8-naphthyridine-3-carbonitrile (ANC-3) as corrosion inhibitors for N80 steel in 15% HCl by using gravimetric, electrochemical techniques (EIS and potentiodynamic polarization), SEM, EDX and quantum chemical calculation. The order of inhibition efficiency is ANC-1>ANC-2>ANC-3. Potentiodynamic polarization reveals that these inhibitors are mixed type with predominant cathodic control. Studied inhibitors obey the Langmuir adsorption isotherm. The quantum calculation is in good agreement with experimental results.

  7. Corrosion in the presence of a complexing agent - application to the continuous determination of hydrofluoric acid in the atmosphere

    International Nuclear Information System (INIS)

    Chapron, J.

    1966-10-01

    After a presentation of the thermodynamics and kinetics involved during corrosion in the presence of a complexing agent, the first part of this report deals with the electrochemical properties of an aluminium electrode in the presence of fluoride solutions. Various physical and chemical parameters have been studied together with their influence on the aforementioned properties. From this first part are deduced the medium and the various parameters which lead to the maximum efficiency for the detection of fluorides by amperometry. The second part is an application of the results of the above work, which has made it possible to develop a cell having an original design. Its performances are described. They show that the cell has a greater sensitivity and a shorter response time than existing equipment. (author) [fr

  8. Studies on adsorption and corrosion inhibitive properties of quinoline derivatives on N80 steel in 15% hydrochloric acid

    Directory of Open Access Journals (Sweden)

    K.R. Ansari

    2016-12-01

    Full Text Available This paper deals with the N80 steel corrosion protection study in 15% HCl which was carried by three quinoline derivatives namely 3-acetyl-1-(4-methylbenzylideneamino quinolin-2-one (AQ-1, 3-acetyl-1-(4 hydroxy benzylideneamino quinolin-2-one (AQ-2, 3-acetyl-1-(3-nitrobenzylideneamino quinolin-2(1H-one (AQ-3 using gravimetric, electrochemical, and quantum chemical studies. Tafel polarization showed that AQs are mixed type inhibitors but dominantly affect cathodic reaction more. The observed results reveal that AQ-1 is the best inhibitor. All the three inhibitors were found to obey the Langmuir adsorption isotherm. Scanning electron microscopy (SEM micrographs supports the protection of the N80 steel by AQs. Quantum chemical study reveals that the inhibitors have a tendency to get protonated and this protonated form has greater tendency to get adsorbed onto the N80 steel surface.

  9. Effects of MoO42- in the Acidic Electrolytes on the Corrosion Behavior of Sensitized 304 Stainless Steel in the Acidic Electrolytes

    International Nuclear Information System (INIS)

    Choe Han Cheol; Kim, Kwan Hyu

    1995-01-01

    The corrosion resistance of sensitized 304 stainless steel was investigated potentiodynamically in the molybdate-containing electrolytes. The composition of the passive film formed in the passive region was analyzed by using the x-ray photoelectron spectroscopy(XPS). It was observed that the addition of molybdate to various electrolytes such as H 2 SO 4 , KSCN and HCI solutions increased the corrosion potential, pitting potential and repassivation potential of the sensitized 304 stainless steel, and decreased the active current density, passive current density and reactivation current density. However, the passive current density in H 2 SO 4 solution increased with the molybdate addition. When the molybdate was added to the KSCN and the HCI solutions, the number and the size of pits decreased remarkably. The results of XPS analysis showed that the passive film formed after passivation in the molybdate-containing electrolytes consisted mainly of oxyhydrates and Mo oxides which would lower the dissolution rate of metal at the active sites such as Cr 23 C 6 precipitates

  10. Corrosion and electrochemical properties of lanthanum

    International Nuclear Information System (INIS)

    Tomashov, N.D.; Matveeva, T.V.

    The kinetics of the corrosion rate of lanthanum at 25 0 in air of different relative humidities, distilled water, sulfuric acid, hydrochloric acid, nitric acid, phosphoric acid, hydrofluoric acid, potassium hydroxide of different concentrations and at 100 0 C in distilled water and potassium hydroxide have been studied. In air at 22--100% relative humidity, the corrosion rate of lanthanum increases with time and with increasing humidity. In distilled water and in potassium hydroxide solutions, the corrosion rate of lanthanum increases with time and decreasees when the concentration of alkali exceeds 20%. With increasing concentration of the acids, the corrosion rate of lanthanum increases in hydrochloric acid and nitric acid and passes through a maximum in sulfuric acid (20%) and phosphoric acid (60%). The values of the corrosion rates of lanthanum in 40% nitric acid, 35% hydrochloric acid, 20% sulfuric acid, 60% phosphoric acid, and 40% hydrofluoric acid are 8 x 10 5 ; 4.4 x 10 4 ; 1.3 x 10 3 ; 9 g/m 2 h respectively

  11. Development plan of austenitic Fe and Ni based alloys with improved corrosion resistance to sulfuric acid and HI fluids of industrial processes

    International Nuclear Information System (INIS)

    Hirota, Noriaki; Iwatsuki, Jin; Imai, Yoshiyuki; Yan, Xing L.

    2017-12-01

    In this study, austenitic Fe based alloys and Ni based alloys was developed as candidate structural materials for equipment operated in sulfuric acid and hydrogen iodide (HI) environment, which exists in various industrial processes including iodine-sulfur (IS) hydrogen production process and geothermal power generation process. The objectives of the study are to achieve the corrosion resistance performance sufficient under the working condition of these processes and to overcome the practical scale-up difficulty of the ceramic (SiC) material that is presently used in the processes due to the manufacturing size limitation of the ceramic. The chemical composition development plan for the austenitic Fe based alloys is threefold: reinforcement of matrix by addition of Cu and Ta, strength compensation of the surface film by addition of Si and Ti, and prevention of peeling of surface oxide by addition of rare earth elements. Because addition of Cu and Si is known to reduce the ductility of the material and thus manufacturability of the component, it is important to determine the allowable amount of each element to be added. On the other hand, the chemical composition development plan for the Ni based alloys is reinforcement of matrix by addition of Mo, W and Ta, strength compensation of the surface film by addition of Ti, and prevention of peeling of surface oxide by addition of rare earth elements. In particular, the addition of Mo and W to the Ni based alloy is expected to be effective in preventing dimensional deviation of structures from increasing during heating and cooling of process equipment. Various material specimens will be fabricated based on the above chemical composition development plans and tests on these specimens will then be carried out to confirm the corrosion resistance performance under the fluid conditions simulating each industrial process. (author)

  12. Novel cationic surfactants from fatty acids and their corrosion inhibition efficiency for carbon steel pipelines in 1 M HCl

    Directory of Open Access Journals (Sweden)

    A.M. Al-Sabagh

    2011-06-01

    Full Text Available Four fatty acids were used as a source of alkyl halides. Untraditionally tertiary amines were prepared by ethoxylation of aromatic and aliphatic fatty amines. These alkyl halide and tertiary amines were used to prepare 20 cationic quaternary ammonium surfactants (QASS. Their chemical structures were characterized and they tested as corrosion inhibitors for carbon steel in 1 M HCl solution. The corrosion inhibition efficiency was measured using, weight loss and potentiodynamic polarization methods. The inhibition efficiencies obtained from the two employed methods are nearly closed. From the obtained data it was found that, the inhibition efficiency increases with increasing the inhibitor concentration until the optimum one. Also, it was found that the inhibition efficiency of QASs which based on ethoxylated aromatic tertiary amine is greater than the obtained efficiencies by the QASs which based on ethoxylated aliphatic tertiary amines. The QASs based on alkyl halide C16 exhibited the maximum inhibition efficiency 98.8%. Adsorption of the inhibitors on the carbon steel surface was found to obey Langmuir’s adsorption isotherm. The quantum chemical calculations were done for some selected quaternary ammonium compounds based on their chemical structures QL1,4,5–QP3,4,5. The following quantum chemical indices such as the bond length, bond angle, charge density distribution, highest occupied molecular orbital (HOMO, lowest unoccupied molecular orbital (LUMO, energy gap ΔE = HOMO − LUMO, and dipole moment (u were considered. The relation between these parameters and the inhibition efficiencies was explained on the light of the chemical structure of the used inhibitors.

  13. The effects of three different food acids on the attrition-corrosion wear of human dental enamel

    Science.gov (United States)

    Zhang, Yichi; Arsecularatne, Joseph A.; Hoffman, Mark

    2015-07-01

    With increased consumption of acidic drinks and foods, the wear of human teeth due to attrition in acidic environments is an increasingly important issue. Accordingly, the present paper investigates in vitro the wear of human enamel in three different acidic environments. Reciprocating wear tests in which an enamel cusp slides on an enamel flat surface were carried out using acetic, citric and lactic acid lubricants (at pH 3-3.5). Distilled water was also included as a lubricant for comparison. Focused ion beam milling and scanning electron microscopy imaging were then used to investigate the enamel subsurfaces following wear tests. Nanoindentation was used to ascertain the changes in enamel mechanical properties. The study reveals crack generation along the rod boundaries due to the exposure of enamel to the acidic environments. The wear mechanism changes from brittle fracture in distilled water to ploughing or shaving of the softened layer in acidic environments, generating a smooth surface with the progression of wear. Moreover, nanoindentation results of enamel samples which were exposed to the above acids up to a duration of the wear tests show decreasing hardness and Young’s modulus with exposure time.

  14. Anti-Corrosion Coating

    Science.gov (United States)

    1986-01-01

    SuperSpan RM 8000 is an anti-corrosion coating which effectively counteracts acid degradation, abrasive wear, and cracking in power industry facilities. It was developed by RM Industrial Products Company, Inc. with NERAC assistance. It had previously been necessary to shut down plants to repair or replace corroded duct-work in coal burning utilities. NASA-developed technology was especially useful in areas relating to thermoconductivity of carbon steel and the bonding characteristics of polymers. The product has sold well.

  15. Inhibitor efficiency in long-time protection of steel tanks for the chemical surface preparation against local corrosion by process solutions containing hydrochloric acid; Inhibitorwirksamkeit beim Langzeitschutz von Stahlbehaeltern fuer die chemische Oberflaechenvorbereitung gegen oertliche Korrosion durch salzsaeurehaltige Prozessloesungen

    Energy Technology Data Exchange (ETDEWEB)

    Stieglitz, U.; Schulz, W.D. [Institut fuer Korrosionsschutz Dresden GmbH, Gostritzer Str. 61-63, D-01217 Dresden (Germany)

    2004-02-01

    The efficiency of prevailing acid inhibitors is examined by age hardening heavy tank-steel plates in technically usual hot-galvanizing solutions for 1000 hours. With acid inhibitors local corrosion emerged as shallow pit formation first and foremost in hydrochlorid acid pickles (20 g/l HCl) at ambient temperature as well as in cleaners containing hydrochloric acid (10-30 g/l HCl) at 40 C when other conditions also applied. Above all, local corrosion was produced if the inhibitor concentration became too low (0.2 g/l) in connection with a minimum hydrochloric acid concentration (10-30 g/l). However, oxidizing agents like iron(III)-ions (5-10 g/l), atmospheric oxygen and free chlorine (100-1000 mg/l) lead to local corrosion, too. Local corrosion did not emerge in rinse baths (2-10 g/l HCl) and fluxing material solutions of zinc chloride and ammonium chloride (pH value: 2.0-5.5). Here uniform corrosion developed. Acid inhibitors turned out to be very effective against uniform corrosion in the examined long-time period (inhibiting values up to 99%). (Abstract Copyright [2004], Wiley Periodicals, Inc.) [German] Die Wirksamkeit handelsueblicher Saeureinhibitoren wird durch eine Auslagerung von Grobblechen aus Behaelterstahl ueber 1000 Stunden in technisch gebraeuchlichen Loesungen der Feuerverzinkung untersucht. Oertliche Korrosion ist als Muldenkorrosion in Gegenwart von Saeureinhibitoren vor allem in Salzsaeurebeizen (20 g/l HCl) bei Raumtemperatur und in salzsaeurehaltigen Reinigern (10-30 g/l HCl) bei 40 C aufgetreten, wenn Zusatzbedingungen erfuellt sind. Oertliche Korrosion wird vorwiegend durch eine Unterschreitung der Inhibitorkonzentration (0,2 g/l) in Verbindung mit einer minimalen Salzsaeurekonzentration (10-30 g/l) ausgeloest. Aber auch Oxidationsmittel wie Eisen(III)-Ionen (5-10 g/l), Luftsauerstoff und freies Chlor (100-1000 mg/l) fuehren zu oertlicher Korrosion. In Spuelbaedern (2-10 g/l HCl) und Flussmittelloesungen aus Zinkchlorid und Ammoniumchlorid (p

  16. Corrosion in airframes

    OpenAIRE

    PETROVIC ZORAN C.

    2016-01-01

    The introductory chapter provides a brief reference to the issue of corrosion and corrosion damage to aircraft structures. Depending on the nature and dimensions of this non uniformity, three different categories of corrosion are defined: uniform, selective and localized corrosion. The following chapters present the forms of corrosion that can occur in three defined categories of corrosion. Conditions that cause certain types of corrosion in various corrosive environments are discussed. Examp...

  17. Evaluation of corrosion attack of chimney liners

    Directory of Open Access Journals (Sweden)

    Blahetová M.

    2016-06-01

    Full Text Available The case study of chimney liner corrosion addresses three specific cases of damage of chimney systems from of stainless steels. These systems were used for flue of gas arising from the combustion of brown coal in small automatic boilers, which are used for heating. Detailed analyzes implied that the cause of devastating corrosion of the steel AISI 316 and 304 steel (CSN 17349, 17241 was particularly high content of halides (chlorides and fluorides, which caused a severe pitting corrosion, which led up to the perforation of the liner material. Simultaneous reduction of the thickness of the used sheets was due to by the general corrosion, which was caused by the sulfur in the solid fuel. The condensation then led to acid environment and therefore the corrosion below the dew point of the sulfuric acid has occurred. All is documented by metallographic analysis and microanalysis of the corrosion products.

  18. Anodizing of aluminum with improved corrosion properties

    International Nuclear Information System (INIS)

    John, P.; Khan, I.U.

    2010-01-01

    Anodizing of aluminum was studied in sulphuric/oxalic/boric acid electroiyte system. The corrosion resistance of the anodic oxide coating of aluminum was determined by potentiodynamic polarization test and scanning electron microscope (SEM) was used to investigate the surface morphology before and after corrosion test. It was found that the oxide coating obtained by this method showed better corrosion resistance with no significant difference in surface morphology. (author)

  19. Corrosion of aluminium in soft drinks.

    Science.gov (United States)

    Seruga, M; Hasenay, D

    1996-04-01

    The corrosion of aluminium (Al) in several brands of soft drinks (cola- and citrate-based drinks) has been studied, using an electrochemical method, namely potentiodynamic polarization. The results show that the corrosion of Al in soft drinks is a very slow, time-dependent and complex process, strongly influenced by the passivation, complexation and adsorption processes. The corrosion of Al in these drinks occurs principally due to the presence of acids: citric acid in citrate-based drinks and orthophosphoric acid in cola-based drinks. The corrosion rate of Al rose with an increase in the acidity of soft drinks, i.e. with increase of the content of total acids. The corrosion rates are much higher in the cola-based drinks than those in citrate-based drinks, due to the facts that: (1) orthophosphoric acid is more corrosive to Al than is citric acid, (2) a quite different passive oxide layer (with different properties) is formed on Al, depending on whether the drink is cola or citrate based. The method of potentiodynamic polarization was shown as being very suitable for the study of corrosion of Al in soft drinks, especially if it is combined with some non-electrochemical method, e.g. graphite furnace atomic absorption spectrometry (GFAAS).

  20. Improving pitting corrosion resistance of aluminum by anodizing process

    International Nuclear Information System (INIS)

    John, P.; Khan, I.U.

    2013-01-01

    Summary: Anodizing of aluminum was studied in sulphuric/citric/boric acid electrolyte system to improve pitting corrosion resistance. Maximum oxide film thickness was obtained using 5% sulphuric acid, 3% citric acid and 0.5% boric acid electrolyte composition. The corrosion resistance of aluminum sample was determined to find the effectiveness of oxide coating by potentiodynamic polarization test. The surface morphology of aluminum samples was investigated using scanning electron microscope (SEM) before and after corrosion test. It was found that the coated aluminum sample obtained by anodizing in sulphuric/citric/boric acid electrolyte system exhibited better pitting corrosion resistance with no significant difference in surface morphology. (author)

  1. Oil sands to the rescue: oil sand microbial communities can degrade recalcitrant alkyl phenyl alkanoic acids

    Energy Technology Data Exchange (ETDEWEB)

    Whitby, Corinne [University of Essex (Canada)], email: cwhitby@essex.ac.uk

    2011-07-01

    Almost half of all global oil reserves are found as biodegraded heavy oils found in vast tar sand deposits located in North and South America and these account for 47% of Canadian oil production. Oil sand extraction generates large amounts of toxic waste water, known as oil sand process waters (OSPW), that are stored in large tailing ponds that contain toxic compounds like naphthenic acids (NAs). The presence of NAs creates problems like toxicity, corrosion, and the formation of calcium napthenate deposits which block pipelines and other infrastructure and need to be removed. This paper presents oil sand microbial communities that can degrade these NAs. The approach is to apply new aliphatic and aromatic NAs as substrates to supplement and identify NA degrading microbes and also to identify the metabolites produced and explain NA degradation pathways and the functional genes involved. The chemistry and the processes involved are explained. From the results, it is suggested that pure cultures of P. putida KT2440 be used against NAs.

  2. Dissolution properties of cerium dibutylphosphate corrosion inhibitors

    NARCIS (Netherlands)

    Soestbergen, van M.; Erich, S.J.F.; Huinink, H.P.; Adan, O.C.G.

    2013-01-01

    The corrosion inhibitor cerium dibutylphosphate, Ce(dbp)3, prevents corrosion by cerium and dbp deposition at the alkaline cathode and acidic anode respectively. The pH dependent Ce(dbp)3 solubility seems to play an essential role in the inhibition degree. We found that Ce(dbp)3 scarcely dissolves

  3. Enhanced corrosion resistance of carbon steel in normal sulfuric acid medium by some macrocyclic polyether compounds containing a 1,3,4-thiadiazole moiety: AC impedance and computational studies

    International Nuclear Information System (INIS)

    Bentiss, F.; Lebrini, M.; Vezin, H.; Chai, F.; Traisnel, M.; Lagrene, M.

    2009-01-01

    We report here the use of macrocyclic polyether compounds containing a 1,3,4-thiadiazole moiety (n-MCTH) in the corrosion inhibition of C38 carbon steel in 0.5 M H 2 SO 4 acid medium. The aim of this work is devoted to study the inhibition characteristics of these compounds for acid corrosion of C38 steel using electrochemical impedance spectroscopy (EIS). Data obtained from EIS show a frequency distribution and therefore a modeling element with frequency dispersion behaviour, a constant phase element (CPE) has been used. The experimental results obtained revealed that these compounds inhibited the steel corrosion in acid solution and the protection efficiency increased with increasing inhibitors concentration. The difference in their inhibitive action can be explained on the basis of the number of oxygen atoms present in the polyether ring which contribute to the chemisorption strength through the donor acceptor bond between the non bonding electron pair and the vacant orbital of metal surface. Adsorption of n-MCTH was found to follow the Langmuir's adsorption isotherm. The thermodynamic functions of adsorption process were calculated and the interpretation of the results is given. These results are complemented with quantum chemical study in order to provide an explanation of the differences between the probed inhibitors. Correlation between the inhibition efficiency and the structure of these compounds are presented.

  4. Studies on inhibition characteristics of corn steep liquor and black sulphite liquor on corrosion of mild steel in acid media

    Energy Technology Data Exchange (ETDEWEB)

    Deb, P C; Mukherjea, R N

    1968-06-01

    The purpose of this study was to economically reduce the attack by acid on the parent metal, during the process of removing mill scale by acid pickling. Two inhibitors, by-products of the starch industry and pulp industry, were studied due to their cheapness and availability in India. The inhibition efficiency of the corn steep liquor and black sulfite liquor was found to be below that of thiourea. For example, in 6.2% (w/w) H/sub 2/SO/sub 4/ (at 50/sup 0/C), an inhibition efficiency of 90.5% and 84.5% is reached for inhibitor concentrations of 10 g per liter in the case of corn steep liquor and black sulfite liquor, respectively, while a concentration of 0.25 g per liter of thiourea was required to reach an inhibition efficiency of 98.6%.

  5. Corrosion and alteration of materials from the nuclear industry

    International Nuclear Information System (INIS)

    Beauvy, M.; Berthoud, G.; Defranceschi, M.; Ducros, G.; Feron, D.; Guerin, Y.; Latge, C.; Limoge, Y.; Madic, C.; Santarini, G.; Seiler, J.M.; Vernaz, E.; Richet, C.

    2010-01-01

    The control of the corrosion phenomenon is of prime importance for the nuclear industry. The efficiency and the safety of facilities can be affected by this phenomenon. The nuclear industry has to face corrosion for a large variety of materials submitted to various environments. Metallic corrosion operates in the hot and aqueous environment of water reactors which represent the most common reactor type in the world. Progresses made in the control of the corrosion of the different components of these reactors allow to improve their safety. Corrosion is present in the facilities of the back-end of the fuel cycle as well (corrosion in acid environment in fuel reprocessing plants, corrosion of waste containers in disposal and storage facilities, etc). The future nuclear systems will widen even more the range of materials to be studied and the situations in which they will be placed (corrosion by liquid metals or by helium impurities). Very often, corrosion looks like a patchwork of particular cases in its description. The encountered corrosion problems and their study are presented in this book according to chapters representing the main sectors of the nuclear industry and classified with respect to their phenomenology. This monograph illustrates the researches in progress and presents some results of particular importance obtained recently. Content: 1 - Introduction: context, stakes and goals; definition of corrosion; a complex science; corrosion in the nuclear industry; 2 - corrosion in water reactors - phenomenology, mechanisms, remedies: A - uniform corrosion: mechanisms, uniform corrosion of fuel cladding, in-situ measurement of generalized corrosion rate by electrochemical methods, uniform corrosion of nickel alloys, characterization of the passive layer and growth mechanisms, the PACTOLE code - an integrating tool, influence of water chemistry on corrosion and contamination, radiolysis impact on uniform corrosion; B - stress corrosion: stress corrosion cracking

  6. Underground pipeline corrosion

    CERN Document Server

    Orazem, Mark

    2014-01-01

    Underground pipelines transporting liquid petroleum products and natural gas are critical components of civil infrastructure, making corrosion prevention an essential part of asset-protection strategy. Underground Pipeline Corrosion provides a basic understanding of the problems associated with corrosion detection and mitigation, and of the state of the art in corrosion prevention. The topics covered in part one include: basic principles for corrosion in underground pipelines, AC-induced corrosion of underground pipelines, significance of corrosion in onshore oil and gas pipelines, n

  7. Effect of Adenine Concentration on the Corrosion Inhibition of Aisi ...

    African Journals Online (AJOL)

    This gave a surface coverage of 0.8956 and corrosion penetration rate of 0.022132mm/yr. Hence, the best adenine concentration for the corrosion inhibition of alloys 304L in 1.0M sulphuric acid solution to obtain optimum inhibition efficiency is 0.011M. Keywords: Corrosion, AISI 304L Steel, Inhibition efficiency, Degree of ...

  8. Corrosion/95 conference papers

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    The papers in this conference represent the latest technological advances in corrosion control and prevention. The following subject areas are covered: cathodic protection in natural waters; materials for fossil fuel combustion and conversion systems; modern problems in atmospheric corrosion; innovative ideas for controlling the decaying infrastructure; deposits and their effects on corrosion in industry; volatile high temperature and non aqueous corrosion inhibitors; corrosion of light-weight and precoated metals for automotive application; refining industry corrosion; corrosion in pulp and paper industry; arctic/cold weather corrosion; materials selection for waste incinerators and associated equipment; corrosion measurement technology; environmental cracking of materials; advancing technology in the coating industry; corrosion in gas treating; green inhibition; recent advances in corrosion control of rail equipment; velocity effects and erosion corrosion in oil and gas production; marine corrosion; corrosion of materials in nuclear systems; underground corrosion control; corrosion in potable and industrial water systems in buildings and its impact on environmental compliance; deposit related boiler tube failures; boiler systems monitoring and control; recent developments and experiences in reactive metals; microbiologically influenced corrosion; corrosion and corrosion control for steel reinforced concrete; international symposium on the use of 12 and 13 Cr stainless steels in oil and gas production environments; subsea corrosion /erosion monitoring in production facilities; fiberglass reinforced pipe and tubulars in oilfield service; corrosion control technology in power transmission and distribution; mechanisms and methods of scale and deposit control; closing the loop -- results oriented cooling system monitoring and control; and minimization of aqueous discharge

  9. Corrosion and alteration of materials from the nuclear industry; La Corrosion et l'alteration des materiaux du nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Beauvy, M.; Berthoud, G.; Defranceschi, M.; Ducros, G.; Feron, D.; Guerin, Y.; Latge, C.; Limoge, Y.; Madic, C.; Santarini, G.; Seiler, J.M.; Vernaz, E.; Richet, C.

    2010-07-01

    The control of the corrosion phenomenon is of prime importance for the nuclear industry. The efficiency and the safety of facilities can be affected by this phenomenon. The nuclear industry has to face corrosion for a large variety of materials submitted to various environments. Metallic corrosion operates in the hot and aqueous environment of water reactors which represent the most common reactor type in the world. Progresses made in the control of the corrosion of the different components of these reactors allow to improve their safety. Corrosion is present in the facilities of the back-end of the fuel cycle as well (corrosion in acid environment in fuel reprocessing plants, corrosion of waste containers in disposal and storage facilities, etc). The future nuclear systems will widen even more the range of materials to be studied and the situations in which they will be placed (corrosion by liquid metals or by helium impurities). Very often, corrosion looks like a patchwork of particular cases in its description. The encountered corrosion problems and their study are presented in this book according to chapters representing the main sectors of the nuclear industry and classified with respect to their phenomenology. This monograph illustrates the researches in progress and presents some results of particular importance obtained recently. Content: 1 - Introduction: context, stakes and goals; definition of corrosion; a complex science; corrosion in the nuclear industry; 2 - corrosion in water reactors - phenomenology, mechanisms, remedies: A - uniform corrosion: mechanisms, uniform corrosion of fuel cladding, in-situ measurement of generalized corrosion rate by electrochemical methods, uniform corrosion of nickel alloys, characterization of the passive layer and growth mechanisms, the PACTOLE code - an integrating tool, influence of water chemistry on corrosion and contamination, radiolysis impact on uniform corrosion; B - stress corrosion: stress corrosion cracking

  10. The Effects of Corrosive Chemicals on Corrosion Rate of Steel Reinforcement Bars: II. Swamp Sludges

    Directory of Open Access Journals (Sweden)

    Henki Ashadi

    2010-10-01

    Full Text Available A polluted environment will influence the building age. The objective of this research was to find out the influence of corrosive chemicals within the sludge swamp area with the corrosion rate of steel concrete. Corrosion in steel concrete usually occur in acid area which contain of SO42-, Cl- and NO3-. The research treatment used by emerging ST 37 andST 60 within 60 days in 'polluted' sludge swamp area. Three variation of 'polluted' swamp sludge were made by increasing the concentration a corrosive unsure up to 1X, 5X and 10X. The corrosion rate measured by using an Immersion Method. The result of Immersion test showed that sulphate had a greatest influence to corrosion rate of ST 37 and ST 60 and followed by chloride and nitrate. Corrosion rate value for ST 37 was 17.58 mpy and for ST 60 was 12.47 mpy.

  11. Aircraft Corrosion

    Science.gov (United States)

    1981-08-01

    attribud au choix de traitements et de rev~tements spproprids. Au contrairo, dens d’sutros structures des corrosions iirportsntea se sont msnifestdes...au traitement . micaniqus qui provoque une compression de surface - h1l’spplication i1’une double protection comportant oxydation snodique et...chlore mais dans une proportion semblable b cells d’une eau de vil)e ; - lea solides, d’aprbs lea analyses chimique et criatallographique, paraissaiont

  12. Passive Corrosion Behavior of Alloy 22

    International Nuclear Information System (INIS)

    R.B. Rebak; J.H. Payer

    2006-01-01

    Alloy 22 (NO6022) was designed to stand the most aggressive industrial applications, including both reducing and oxidizing acids. Even in the most aggressive environments, if the temperature is lower than 150 F (66 C) Alloy 22 would remain in the passive state having particularly low corrosion rates. In multi-ionic solutions that may simulate the behavior of concentrated ground water, even at near boiling temperatures, the corrosion rate of Alloy 22 is only a few nano-meters per year because the alloy is in the complete passive state. The corrosion rate of passive Alloy 22 decreases as the time increases. Immersion corrosion testing also show that the newer generation of Ni-Cr-Mo alloys may offer a better corrosion resistance than Alloy 22 only in some highly aggressive conditions such as in hot acids

  13. Corrosion Study of Mild Steel in Aqueous Sulfuric Acid Solution Using 4-Methyl-4H-1,2,4-Triazole-3-Thiol and 2-Mercaptonicotinic Acid—An Experimental and Theoretical Study

    Directory of Open Access Journals (Sweden)

    Valbonë V. Mehmeti

    2017-08-01

    Full Text Available The corrosion behavior of mild steel in 0.1 M aqueous sulfuric acid medium has been studied using weight loss, potentiodynamic polarization measurements, quantum chemical calculations, and molecular dynamic simulations in the presence and absence of 4-methyl-4H-1,2,4-triazole-3-thiol and 2-mercaptonicotinic acid. Potentiodynamic measurements indicate that these compounds mostly act as mixed inhibitors due to their adsorption on the mild steel surface. The goal of the study was to use theoretical calculations to better understand the inhibition. Monte Carlo simulation was used to calculate the adsorption behavior of the studied molecules onto Fe (1 1 1 and Fe2O3 (1 1 1 surface. The molecules were also studied with the density functional theory (DFT, using the B3LYP functional in order to determine the relationship between the molecular structure and the corrosion inhibition behavior. More accurate adsorption energies between the studied molecules and iron or iron oxide were calculated by using DFT with periodic boundary conditions. The calculated theoretical parameters gave important assistance into the understanding the corrosion inhibition mechanism expressed by the molecules and are in full agreement with the experimental results.

  14. ac impedance, X-ray photoelectron spectroscopy and density functional theory studies of 3,5-bis(n-pyridyl)-1,2,4-oxadiazoles as efficient corrosion inhibitors for carbon steel surface in hydrochloric acid solution

    Energy Technology Data Exchange (ETDEWEB)

    Outirite, Moha; Lagrenee, Michel; Lebrini, Mounim [Unite de Catalyse et de Chimie du Solide, UMR-CNRS 8181, ENSCL, B.P. 90108, F-59652 Villeneuve d' Ascq Cedex (France); Traisnel, Michel; Jama, Charafeddine [Laboratoire des Procedes d' Elaboration des Revetements Fonctionnels, PERF UMR-CNRS 8008, ENSCL, B.P. 90108, F-59652 Villeneuve d' Ascq Cedex (France); Vezin, Herve [Laboratoire de Chimie Organique et Macromoleculaire, UMR-CNRS 8009, USTL Bat C4, F-59655 Villeneuve d' Ascq Cedex (France); Bentiss, Fouad, E-mail: fbentiss@enscl.f [Laboratoire de Chimie de Coordination et d' Analytique, Faculte des Sciences, Universite Chouaib Doukkali, B.P. 20, M-24000 El Jadida (Morocco)

    2010-02-01

    The corrosion inhibition properties of a new class of oxadiazole derivatives, namely 3,5-bis(n-pyridyl)-1,2,4-oxadiazoles (n-DPOX) for C38 carbon steel corrosion in 1 M HCl medium were analysed by electrochemical impedance spectroscopy (EIS). An adequate structural model of the interface was used and the values of the corresponding parameters were calculated and discussed. The experimental results showed that these compounds are excellent inhibitors for the C38 steel corrosion in acid solution and that the protection efficiency increased with increasing the inhibitors concentration. Electrochemical impedance data demonstrate that the addition of the n-DPOX derivatives in the corrosive solution decreases the charge capacitance and simultaneously increases the function of the charge/discharge of the interface, facilitating the formation of an adsorbed layer over the steel surface. Adsorption of these inhibitors on the steel surface obeys to the Langmuir adsorption isotherm. X-ray photoelectron spectroscopy (XPS) and the thermodynamic data of adsorption showed that inhibition of steel corrosion in normal hydrochloric solution by n-DPOX is due to the formation of a chemisorbed film on the steel surface. Quantum chemical calculations using the Density Functional Theory (DFT) and the Quantitative Structure Activity Relationship (QSAR) approach were performed on n-DPOX derivatives to determine the relationship between molecular structure and their inhibition efficiencies. The results of the quantum chemical calculations and experimental inhibition efficiency were subjected to correlation analysis and indicate that their inhibition effect is closely related to E{sub HOMO}, E{sub LUMO}, and dipole moment (mu).

  15. NASA's Corrosion Technology Laboratory at the Kennedy Space Center: Anticipating, Managing, and Preventing Corrosion

    Science.gov (United States)

    Calle, Luz Marina

    2014-01-01

    Corrosion is the degradation of a material that results from its interaction with the environment. The marine environment at NASAs Kennedy Space Center (KSC) has been documented by ASM International (formerly American Society for Metals) as the most corrosive in the United States. With the introduction of the Space Shuttle in 1981, the already highly corrosive conditions at the launch pads were rendered even more severe by the 70 tons of highly corrosive hydrochloric acid that were generated by the solid rocket boosters. Numerous failures at the launch pads are caused by corrosion.The structural integrity of ground infrastructure and flight hardware is critical to the success, safety, cost, and sustainability of space missions. As a result of fifty years of experience with launch and ground operations in a natural marine environment that is highly corrosive, NASAs Corrosion Technology Laboratory at KSC is a major source of corrosion control expertise in the launch and other environments. Throughout its history, the Laboratory has evolved from what started as an atmospheric exposure facility near NASAs launch pads into a world-wide recognized capability that provides technical innovations and engineering services in all areas of corrosion for NASA and external customers.This presentation will provide a historical overview of the role of NASAs Corrosion Technology in anticipating, managing, and preventing corrosion. One important challenge in managing and preventing corrosion involves the detrimental impact on humans and the environment of what have been very effective corrosion control strategies. This challenge has motivated the development of new corrosion control technologies that are more effective and environmentally friendly. Strategies for improved corrosion protection and durability can have a huge impact on the economic sustainability of human spaceflight operations.

  16. Corrosion Testing Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Corrosion Testing Facility is part of the Army Corrosion Office (ACO). It is a fully functional atmospheric exposure site, called the Corrosion Instrumented Test...

  17. Influence of Bath Composition at Acidic pH on Electrodeposition of Nickel-Layered Silicate Nanocomposites for Corrosion Protection

    Directory of Open Access Journals (Sweden)

    Jeerapan Tientong

    2013-01-01

    Full Text Available Nickel-layered silicates were electrochemically deposited from acidic bath solutions. Citrate was used as a ligand to stabilize nickel (II ions in the plating solution. The silicate, montmorillonite, was exfoliated by stirring in aqueous solution over 24 hours. The plating solutions were analyzed for zeta-potential, particle size, viscosity, and conductivity to investigate the effects of the composition at various pHs. The solution particles at pH 2.5 (−22.2 mV and pH 3.0 (−21.9 mV were more stable than at pH 1.6 (−10.1 mV as shown by zeta-potential analysis of the nickel-citrate-montmorillonite plating solution. Ecorr for the films ranged from −0.32 to −0.39 V with varying pH from 1.6 to 3.0. The films were immersed in 3.5% NaCl and the open circuit potential monitored for one month. The coatings deposited at pH 3.0 were stable 13 days longer in the salt solution than the other coatings. X-ray diffraction showed a change in the (111/(200 ratio for the coatings at the various pHs. The scanning electron microscopy and hardness results also support that the electrodeposition of nickel-montmorillonite at pH 3.0 (234 GPa had improved hardness and morphology compared to pH 2.5 (174 GPa and pH 1.6 (147 GPa.

  18. Adsorption and Corrosion Inhibition Studies of Some Selected Dyes as Corrosion Inhibitors for Mild Steel in Acidic Medium: Gravimetric, Electrochemical, Quantum Chemical Studies and Synergistic Effect with Iodide Ions

    Directory of Open Access Journals (Sweden)

    Thabo Peme

    2015-09-01

    Full Text Available The corrosion inhibition properties of some organic dyes, namely Sunset Yellow (SS, Amaranth (AM, Allura Red (AR, Tartrazine (TZ and Fast Green (FG, for mild steel corrosion in 0.5 M HCl solution, were investigated using gravimetric, potentiodynamic polarization techniques and quantum chemical calculations. The results showed that the studied dyes are good corrosion inhibitors with enhanced inhibition efficiencies. The inhibition efficiency of all the studied dyes increases with increase in concentration, and decreases with increase in temperature. The results showed that the inhibition efficiency of the dyes increases in the presence of KI due to synergistic interactions of the dye molecules with iodide (I− ions. Potentiodynamic polarization results revealed that the studied dyes are mixed-type inhibitors both in the absence and presence of KI. The adsorption of the studied dyes on mild steel surface, with and without KI, obeys the Langmuir adsorption isotherm and involves physical adsorption mechanism. Quantum chemical calculations revealed that the most likely sites in the dye molecules for interactions with mild steel are the S, O, and N heteroatoms.

  19. Adsorption and Corrosion Inhibition Studies of Some Selected Dyes as Corrosion Inhibitors for Mild Steel in Acidic Medium: Gravimetric, Electrochemical, Quantum Chemical Studies and Synergistic Effect with Iodide Ions.

    Science.gov (United States)

    Peme, Thabo; Olasunkanmi, Lukman O; Bahadur, Indra; Adekunle, Abolanle S; Kabanda, Mwadham M; Ebenso, Eno E

    2015-09-02

    The corrosion inhibition properties of some organic dyes, namely Sunset Yellow (SS), Amaranth (AM), Allura Red (AR), Tartrazine (TZ) and Fast Green (FG), for mild steel corrosion in 0.5 M HCl solution, were investigated using gravimetric, potentiodynamic polarization techniques and quantum chemical calculations. The results showed that the studied dyes are good corrosion inhibitors with enhanced inhibition efficiencies. The inhibition efficiency of all the studied dyes increases with increase in concentration, and decreases with increase in temperature. The results showed that the inhibition efficiency of the dyes increases in the presence of KI due to synergistic interactions of the dye molecules with iodide (I(-)) ions. Potentiodynamic polarization results revealed that the studied dyes are mixed-type inhibitors both in the absence and presence of KI. The adsorption of the studied dyes on mild steel surface, with and without KI, obeys the Langmuir adsorption isotherm and involves physical adsorption mechanism. Quantum chemical calculations revealed that the most likely sites in the dye molecules for interactions with mild steel are the S, O, and N heteroatoms.

  20. Corrosion technology. V. 1

    International Nuclear Information System (INIS)

    Khan, I.H.

    1989-01-01

    This book has been produced for dissemination of information on corrosion technology, corrosion hazards and its control. Chapter one of this book presents an overall view of the subject and chapter 2-5 deals with electrochemical basics, types of corrosion, pourbaix diagrams and form of corrosion. The author explains polarization/kinetics of corrosion, passivity, aqueous corrosion and corrosion testing and monitoring in 6-11 chapters. The author hopes it will provide incentive to all those interested in the corrosion technology. (A.B.)

  1. Corrosion/94 conference papers

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    The approximately 500 papers from this conference are divided into the following sections: Rail transit systems--stray current corrosion problems and control; Total quality in the coatings industry; Deterioration mechanisms of alloys at high temperatures--prevention and remediation; Research needs and new developments in oxygen scavengers; Computers in corrosion control--knowledge based system; Corrosion and corrosivity sensors; Corrosion and corrosion control of steel reinforced concrete structures; Microbiologically influenced corrosion; Practical applications in mitigating CO 2 corrosion; Mineral scale deposit control in oilfield-related operations; Corrosion of materials in nuclear systems; Testing nonmetallics for life prediction; Refinery industry corrosion; Underground corrosion control; Mechanisms and applications of deposit and scale control additives; Corrosion in power transmission and distribution systems; Corrosion inhibitor testing and field application in oil and gas systems; Decontamination technology; Ozone in cooling water applications, testing, and mechanisms; Corrosion of water and sewage treatment, collection, and distribution systems; Environmental cracking of materials; Metallurgy of oil and gas field equipment; Corrosion measurement technology; Duplex stainless steels in the chemical process industries; Corrosion in the pulp and paper industry; Advances in cooling water treatment; Marine corrosion; Performance of materials in environments applicable to fossil energy systems; Environmental degradation of and methods of protection for military and aerospace materials; Rail equipment corrosion; Cathodic protection in natural waters; Characterization of air pollution control system environments; and Deposit-related problems in industrial boilers. Papers have been processed separately for inclusion on the data base

  2. Corrosion problems of PWR steam generators

    International Nuclear Information System (INIS)

    Urbancik, L.; Kostal, M.

    Literature data are assessed on corrosion failures of steam generator tubes made of INCONEL 600 or INCOLOY 800. It was found that both alloys with high nickel content showed good stability in a corrosion environment while being sensitive to carbide formation on grain boundaries. The gradual depletion of chromium results from the material and corrosion resistance deteriorates. INCOLOY 800 whose chromium carbide precipitation on grain boundaries in pure water and steam is negligible up to 75O degC and which is not subject to corrosion attacks in the above media and in an oxidizing environment at a temperature to about 700 degC shows the best corrosion resistance. Its favourable properties were tested in long-term operation in the Peach Bottom 1 nuclear power plant where no failures due to corrosion of this material have been recorded since 1967. In view of oxygenic-acid surface corrosion, it is necessary to work in a neutral or slightly basic environment should any one of the two alloys be used for steam generator construction. The results are summed up of an analysis conducted for the Beznau I NOK reactor. Water treatment with ash-free amines can be used as prevention against chemical corrosion mechanisms, although the treatment itself does not ensure corrosion resistance of steam generator key components. (J.B.)

  3. Innovative method of direct determination of the content of paraffins, naphthenes, aromatics and sulfur compounds by capillary high-resolution gas chromatography

    Directory of Open Access Journals (Sweden)

    R. Baizhumanova

    2012-03-01

    Full Text Available Based on determination of individual Hydrocarbon (paraffins, naphthenes, aromatics and Sulphur components of fuels and their mixture on the thin bonded of absorber (the stationary phase is a 100-metre silica capillary column, containing 0.5μm film thickness of bonded dimethylpolysiloxane phase by means of the selective solvents (mobile phase combined with technique of ionization of separated compounds by Flame Ionization Detector (FID and Sulphur Chemiluminescence Detector (SCD.

  4. Some observations on phosphate based corrosion inhibitors in preventing carbon steel corrosion

    International Nuclear Information System (INIS)

    Anupkumar, B.; Satpathy, K.K.

    2000-01-01

    Among the various types of phosphonic acid based inhibitors assayed, namely HEDP, ATMP and a commercial corrosion inhibitor (code named Betz), it was found that Betz has the maximum amount of organic phosphate followed by HEDP and ATMP. The corrosion rate studies show that Betz gives the highest inhibition efficiency followed by HEDP and ATMP. This shows that organic phosphate plays a significant role in corrosion protection. However, it was observed that due to synergestic effect, HEDP in the presence of Zn 2+ gave a better corrosion protection than Betz. The results are discussed in the light of available literature. (author)

  5. Corrosion resistance testing of high-boron-content stainless steels

    International Nuclear Information System (INIS)

    Petrman, I.; Safek, V.

    1994-01-01

    Boron steels, i.e. stainless steels with boron contents of 0.2 to 2.25 wt.%, are employed in nuclear engineering for the manufacture of baskets or wells in which radioactive fissile materials are stored, mostly spent nuclear fuel elements. The resistance of such steels to intergranular corrosion and uniform corrosion was examined in the Strauss solution and in boric acid; the dependence of the corrosion rate of the steels on their chemical composition was investigated, and their resistance was compared with that of AISI 304 type steel. Corrosion resistance tests in actual conditions of ''wet'' compact storage (demineralized water or a weak boric acid solution) gave evidence that boron steels undergo nearly no uniform corrosion and, as electrochemical measurements indicated, match standard corrosion-resistant steels. Corrosion resistance was confirmed to decrease slightly with increasing boron content and to increase somewhat with increasing molybdenum content. (Z.S.). 3 tabs., 4 figs., 7 refs

  6. The synergistic inhibitive effect and some quantum chemical parameters of 2,3-diaminonaphthalene and iodide ions on the hydrochloric acid corrosion of aluminium

    International Nuclear Information System (INIS)

    Obot, I.B.; Obi-Egbedi, N.O.; Umoren, S.A.

    2009-01-01

    The effect of iodide ions on the inhibitive performance of 2,3-diaminonaphthalene (2,3-DAN) in 1 M HCl for aluminium corrosion has been studied using hydrogen evolution (gasometry) measurements at 30 and 40 deg. C. Results obtained showed that the presence of 2,3-DAN molecules in the corrosive medium (1 M HCl solution) inhibits the corrosion process of aluminium and as the concentration of 2,3-DAN increases the inhibition efficiency also increased at the studied temperatures. A synergistic effect was observed between KI and 2,3-DAN. The experimental results suggest that the presence of iodide ions in the solutions stabilized the adsorption of 2,3-DAN molecules on the metal surfaces and, therefore improve the inhibition efficiency of 2,3-DAN. Phenomenon of physical adsorption is proposed for the inhibition and the process followed the Freundlich adsorption isotherm. The activation energy (E a ), heat of adsorption (Q ads ) and free energy of adsorption for the corrosion process (ΔG ads ) have been evaluated at the different temperatures and the values support the results obtained. Some quantum chemical parameters and the Mulliken charge densities for 2,3-diaminonaphthalene were calculated by the AM1 Semi-empirical method to provide further insight into the mechanism of inhibition of the corrosion process

  7. Inhibition Effect of Deanol on Mild Steel Corrosion in Dilute ...

    African Journals Online (AJOL)

    NICOLAAS

    2014-06-23

    Jun 23, 2014 ... The influence of deanol on the corrosion behaviour of mild steel in dilute sulphuric acid with sodium ... the formation of a complex precipitate of protective film, which ... silicon carbide abrasive papers of 80, 120, 220, 800 and 1000 grit ...... ions in sulphuric acid on the corrosion behaviour of stainless steel,.

  8. Chemical cleaning, decontamination and corrosion

    International Nuclear Information System (INIS)

    Gadiyar, H.S.; Das Chintamani; Gaonkar, K.B.

    1991-01-01

    Chemical cleaning of process equipments and pipings in chemical/petrochemical industries is necessitated for improving operation, for preventing premature failures and for avoiding contamination. In developing a chemical formulation for cleaning equipments, the important aspects to be considered include (i) effective removal of corrosion products and scales, (ii) minimum corrosion of the base metal, (iii) easy to handle chemicals and (iv) economic viability. As on date, a wide variety of chemical formulations are available, many of them are either proprietory or patented. For evolving an effective formulation, knowledge of the oxides of various metals and alloys on the one hand and acid concentration, complexing agents and inhibitors to be incorporated on the other, is quite essential. Organic acids like citric acid, acetic acid and formic acid are more popular ones, often used with EDTA for effective removal of corrosion products from ferrous components. The report enumerates some of the concepts in developing effective formulations for chemical cleaning of carbon steel components and further, makes an attempt to suggest simple formulations to be developed for chemical decontamination. (author). 6 refs., 3 fi gs., 4 tabs

  9. Microstructure characterization and corrosion resistance properties of Pb-Sb alloys for lead acid battery spine produced by different casting methods

    Science.gov (United States)

    Baig, Muneer; Alam, Mohammad Asif; Alharthi, Nabeel

    2018-01-01

    The aim of this study is to find out the microstructure, hardness, and corrosion resistance of Pb-5%Sb spine alloy. The alloy has been produced by high pressure die casting (HPDC), medium pressure die casting (AS) and low pressure die casting (GS) methods, respectively. The microstructure was characterized by using optical microscopy and scanning electron microscopy (SEM). The hardness was also reported. The corrosion resistance of the spines in 0.5M H2SO4 solution has been analyzed by measuring the weight loss, impedance spectroscopy and the potentiodynamic polarization techniques. It has been found that the spine produced by HPDC has defect-free fine grain structure resulting improvement in hardness and excellent corrosion resistance. PMID:29668709

  10. The interrelation between mechanical properties, corrosion resistance and microstructure of Pb-Sn casting alloys for lead-acid battery components

    Energy Technology Data Exchange (ETDEWEB)

    Peixoto, Leandro C.; Osorio, Wislei R.; Garcia, Amauri [Department of Materials Engineering, University of Campinas - UNICAMP, PO Box 6122, 13083-970, Campinas - SP (Brazil)

    2010-01-15

    It is well known that there is a strong influence of thermal processing variables on the solidification structure and as a direct consequence on the casting final properties. The morphological microstructural parameters such as grain size and cellular or dendritic spacings will depend on the heat transfer conditions imposed by the metal/mould system. There is a need to improve the understanding of the interrelation between the microstructure, mechanical properties and corrosion resistance of dilute Pb-Sn casting alloys which are widely used in the manufacture of battery components. The present study has established correlations between cellular microstructure, ultimate tensile strength and corrosion resistance of Pb-1 wt% Sn and Pb-2.5 wt% Sn alloys by providing a combined plot of these properties as a function of cell spacing. It was found that a compromise between good corrosion resistance and good mechanical properties can be attained by choosing an appropriate cell spacing range. (author)

  11. Influence of silver on the anodic corrosion and gas evolution of Pb-Sb-As-Se alloys as positive grids in lead acid batteries

    International Nuclear Information System (INIS)

    Tizpar, A.; Ghasemi, Z.

    2006-01-01

    The influence of silver addition in the range 0.01-0.09 wt.% on the anodic corrosion and gas evolution of Pb-Sb-As-Se alloy in 1.28 sp.gr. H 2 SO 4 solution at 25 deg. C was studied using linear sweep voltammetry, cyclic voltammetry, weight loss measurements and scanning electron microscopy. The results drawn from different techniques are comparable. The effect of different concentration of silver on the corrosion behavior of Pb-Sb-As-Se was investigated. The experimental results show that the silver added to Pb-Sb-As-Se alloy inhibits the growth of anodic corrosion layer. A decrease in the oxygen evolution overpotential and an increase in the hydrogen evolution overpotential with the addition of Ag were also observed during the experiments. Cyclic voltammetric measurements provided information on the effect of Ag on the oxidation of PbSO 4 to PbO 2

  12. Inhibition of aluminum corrosion using Opuntia extract

    International Nuclear Information System (INIS)

    El-Etre, A.Y.

    2003-01-01

    The inhibitive action of the mucilage extracted from the modified stems of prickly pears, toward acid corrosion of aluminum, is tested using weight loss, thermometry, hydrogen evolution and polarization techniques. It was found that the extract acts as a good corrosion inhibitor for aluminum corrosion in 2.0 M HCl solution. The inhibition action of the extract was discussed in view of Langmuir adsorption isotherm. It was found that the adsorption of the extract on aluminum surface is a spontaneous process. The inhibition efficiency (IE) increases as the extract concentration is increased. The effect of temperature on the IE was studied. It was found that the presence of extract increases the activation energy of the corrosion reaction. Moreover, the thermodynamic parameters of the adsorption process were calculated. It was found also that the Opuntia extract provides a good protection to aluminum against pitting corrosion in chloride ion containing solutions

  13. Accelerated Corrosion Testing

    Science.gov (United States)

    1982-12-01

    Treaty Organization, Brussels, 1971), p. 449. 14. D. 0. Sprowls, T. J. Summerson, G. M. Ugianski, S. G. Epstein, and H. L. Craig , Jr., in Stress...National Association of Corrosion Engineers Houston, TX, 1972). 22. H. L. Craig , Jr. (ed.), Stress Corrosion-New Approaches, ASTM-STP- 610 (American...62. M. Hishida and H. Nakada, Corrosion 33 (11) 403 (1977). b3. D. C. Deegan and B. E. Wilde, Corrosion 34 (6), 19 (1978). 64. S. Orman, Corrosion Sci

  14. Corrosion Chemistry in Inhibited HDA.

    Science.gov (United States)

    1980-11-30

    which are likely to resemble authentic Modified HDA corrosion products, and reactions of a range of metal fluorides with difluorphosphoric acid have i...Introduction 10 (b) Solutions of HF in nitric acid and in HDA 10 (c) Solutions of PF5 in HDA 10 (d) Solutions of HPO 2 F2 in HDA 15 (e) Solutions of...of metals with HPO F in HDA 2 2 solution. 166 Iron. 166 Nickel. 166 (c) Reactions of metal fluorides with difluorophosphoric acid . 169 B-FeF 3.3H 2 0

  15. Corrosion behavior of austempered ductile iron (ADI) in iron ore slurry

    African Journals Online (AJOL)

    ADI austempered at higher temperature showed better corrosion resistance than the ..... temperature and time on corrosion behaviour of ductile iron in chloride and acidic ... iron ore in ball mills, Transactions of the Indian Institute of Metals, Vol.

  16. Corrosion/96 conference papers

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    Topics covered by this conference include: cathodic protection in natural waters; cleaning and repassivation of building HVAC systems; worldwide opportunities in flue gas desulfurization; advancements in materials technology for use in oil and gas service; fossil fuel combustion and conversion; technology of corrosion inhibitors; computers in corrosion control--modeling and information processing; recent experiences and advances of austenitic alloys; managing corrosion with plastics; corrosion measurement technology; corrosion inhibitors for concrete; refining industry; advances in corrosion control for rail and tank trailer equipment; CO 2 corrosion--mechanisms and control; microbiologically influenced corrosion; corrosion in nuclear systems; role of corrosion in boiler failures; effects of water reuse on monitoring and control technology in cooling water applications; methods and mechanisms of scale and deposit control; corrosion detection in petroleum production lines; underground corrosion control; environmental cracking--relating laboratory results and field behavior; corrosion control in reinforced concrete structures; corrosion and its control in aerospace and military hardware; injection and process addition facilities; progress reports on the results of reinspection of deaerators inspected or repaired per RP0590 criteria; near 100% volume solids coating technology and application methods; materials performance in high temperature environments containing halides; impact of toxicity studies on use of corrosion/scale inhibitors; mineral scale deposit control in oilfield related operations; corrosion in gas treating; marine corrosion; cold climate corrosion; corrosion in the pulp and paper industry; gaseous chlorine alternatives in cooling water systems; practical applications of ozone in recirculating cooling water systems; and water reuse in industry. Over 400 papers from this conference have been processed separately for inclusion on the data base

  17. NASA's Beachside Corrosion Test Site and Current Environmentally Friendly Corrosion Control Initiatives

    Science.gov (United States)

    Russell, Richard W.; Calle, Luz Marina; Johnston, Frederick; Montgomery, Eliza L.; Curran, Jerome P.; Kolody, Mark R.

    2013-01-01

    NASA began corrosion studies at the Kennedy Space Center (KSC) in 1966 during the Gemini/Apollo Programs with the evaluation of long-term corrosion protective coatings for carbon steel. KSC's Beachside Corrosion Test Site (BCTS), which has been documented by the American Society of Materials (ASM) as one of the most corrosive, naturally occurring, environments in the world, was established at that time. With the introduction of the Space Shuttle in 1981, the already highly corrosive conditions at the launch pad were rendered even more severe by the acid ic exhaust from the solid rocket boosters. In the years that followed, numerous studies have identified materials, coatings, and maintenance procedures for launch hardware and equipment exposed to the highly corrosive environment at the launch pad. This paper presents a historical overview of over 45 years of corrosion and coating evaluation studies and a description of the BCTS's current capabilities. Additionally, current res