Sample records for naphthalene dioxygenase mrna

  1. Dynamic changes in bacterial community structure and in naphthalene dioxygenase expression in vermicompost-amended PAH-contaminated soils. (United States)

    Di Gennaro, Patrizia; Moreno, Beatriz; Annoni, Emanuele; García-Rodríguez, Sonia; Bestetti, Giuseppina; Benitez, Emilio


    The aim of the present study was to explore the potential for using vermicompost from olive-mill waste as an organic amendment for enhanced bioremediation of polycyclic aromatic hydrocarbons (PAHs)-contaminated soils. The focus was to analyse the genetic potential and the naphthalene dioxygenase (NDO) expression of the bacterial communities involved in the degradation of naphthalene, as chemical model for the degradation of PAH. The structure of the metabolically active bacterial population was evidenced in the RNA-based denaturing gradient gel electrophoresis (DGGE) profiles. The relative expression of NDO was determined with real-time PCR in both the soil and the vermicompost cDNA. Naphthalene changed the structure of the metabolically active bacterial community in the vermicompost when this was artificially contaminated. When used as amendment, naphthalene-free vermicompost modified the bacterial population in the PAH-contaminated soil, evidenced in the DGGE gels after 1 month of incubation. In the amended soil, the vermicompost enhanced the NDO enzyme expression with a concomitant biodegradation of naphthalene. The effect of the vermicompost was to induce the expression of biodegradation indicator genes in the autochthonous bacterial community and/or incorporate new bacterial species capable of degrading PAH. The results indicated that vermicompost from olive-mill wastes could be considered a suitable technology to be used in PAH bioremediation.

  2. Abundance of Dioxygenase Genes Similar to Ralstonia sp. Strain U2 nagAc Is Correlated with Naphthalene Concentrations in Coal Tar-Contaminated Freshwater Sediments (United States)

    Dionisi, Hebe M.; Chewning, Christopher S.; Morgan, Katherine H.; Menn, Fu-Min; Easter, James P.; Sayler, Gary S.


    We designed a real-time PCR assay able to recognize dioxygenase large-subunit gene sequences with more than 90% similarity to the Ralstonia sp. strain U2 nagAc gene (nagAc-like gene sequences) in order to study the importance of organisms carrying these genes in the biodegradation of naphthalene. Sequencing of PCR products indicated that this real-time PCR assay was specific and able to detect a variety of nagAc-like gene sequences. One to 100 ng of contaminated-sediment total DNA in 25-μl reaction mixtures produced an amplification efficiency of 0.97 without evident PCR inhibition. The assay was applied to surficial freshwater sediment samples obtained in or in close proximity to a coal tar-contaminated Superfund site. Naphthalene concentrations in the analyzed samples varied between 0.18 and 106 mg/kg of dry weight sediment. The assay for nagAc-like sequences indicated the presence of (4.1 ± 0.7) × 103 to (2.9 ± 0.3) × 105 copies of nagAc-like dioxygenase genes per μg of DNA extracted from sediment samples. These values corresponded to (1.2 ± 0.6) × 105 to (5.4 ± 0.4) × 107 copies of this target per g of dry weight sediment when losses of DNA during extraction were taken into account. There was a positive correlation between naphthalene concentrations and nagAc-like gene copies per microgram of DNA (r = 0.89) and per gram of dry weight sediment (r = 0.77). These results provide evidence of the ecological significance of organisms carrying nagAc-like genes in the biodegradation of naphthalene. PMID:15240274

  3. Correlation between indoleamine 2,3 dioxygenase mRNA and CDKN2A/p16 mRNA: a combined strategy to cervical cancer diagnosis. (United States)

    Saffi Junior, Mario Cezar; Duarte, Ivone da Silva; Brito, Rodrigo Barbosa de Oliveira; Prado, Giovana Garcia; Makabe, Sergio; Dellê, Humberto; Camacho, Cleber P


    Cervical cancer (CC) is one of the most common cancers among women worldwide. The relation of the human papillomavirus (HPV) with CC and its precursor lesions was first suspected for over 40 years. The indoleamine 2,3 dioxygenase (IDO) is an immune modulator enzyme responsible for the immune system tissue protection mechanism, which may be the key to the tumoural persistence. HPV oncoprotein E7 promotes the increase in cyclin-dependent kinase inhibitor p16 (CDKN2A/p16). The isolated and combined analysis of CDKN2A/p16 mRNA to CC diagnosis was done with promising results. The aim of this study is to evaluate the correlation between IDO mRNA and CDKN2A/p16 mRNA. We will explore the potential of both as diagnostic tools. RNA was extracted from tissue samples. cDNA was generated with High Capacity RNA-to-cDNA kit. The real-time PCR results were analysed using nonlinear curve estimation, ROC curve, Chi-squared test, the proportion of variance explained and Galen and Gambino formulas. From 270 patients attended, colposcopy examination was performed in 110 and the biopsy in 75 patients. We found a positive correlation in patients older than 28 years old with low-risk lesions, but the correlation is lost in high-risk lesions. Although cytology, IDO mRNA and CDKN2A/p16 mRNA could not differentiate the risk groups, IDO combined with CDKN2A/p16 mRNA results could (p = 0.028). The best diagnostic result was achieved by IDO coupled with CDKN2A/p16 mRNA, which may considerably increase the sensitivity of screening for CC.

  4. Probiotics Differently Affect Gut-Associated Lymphoid Tissue Indolamine-2,3-Dioxygenase mRNA and Cerebrospinal Fluid Neopterin Levels in Antiretroviral-Treated HIV-1 Infected Patients: A Pilot Study (United States)

    Scagnolari, Carolina; Corano Scheri, Giuseppe; Selvaggi, Carla; Schietroma, Ivan; Najafi Fard, Saeid; Mastrangelo, Andrea; Giustini, Noemi; Serafino, Sara; Pinacchio, Claudia; Pavone, Paolo; Fanello, Gianfranco; Ceccarelli, Giancarlo; Vullo, Vincenzo; d’Ettorre, Gabriella


    Recently the tryptophan pathway has been considered an important determinant of HIV-1 infected patients’ quality of life, due to the toxic effects of its metabolites on the central nervous system (CNS). Since the dysbiosis described in HIV-1 patients might be responsible for the microbial translocation, the chronic immune activation, and the altered utilization of tryptophan observed in these individuals, we speculated a correlation between high levels of immune activation markers in the cerebrospinal fluid (CSF) of HIV-1 infected patients and the over-expression of indolamine-2,3-dioxygenase (IDO) at the gut mucosal surface. In order to evaluate this issue, we measured the levels of neopterin in CSF, and the expression of IDO mRNA in gut-associated lymphoid tissue (GALT), in HIV-1-infected patients on effective combined antiretroviral therapy (cART), at baseline and after six months of probiotic dietary management. We found a significant reduction of neopterin and IDO mRNA levels after the supplementation with probiotic. Since the results for the use of adjunctive therapies to reduce the levels of immune activation markers in CSF have been disappointing so far, our pilot study showing the efficacy of this specific probiotic product should be followed by a larger confirmatory trial. PMID:27689995

  5. Identification of naphthalene metabolism by white rot fungus Pleurotus eryngii. (United States)

    Hadibarata, Tony; Teh, Zee Chuang; Rubiyatno; Zubir, Meor Mohd Fikri Ahmad; Khudhair, Ameer Badr; Yusoff, Abdull Rahim Mohd; Salim, Mohd Razman; Hidayat, Topik


    The use of biomaterials or microorganisms in PAHs degradation had presented an eye-catching performance. Pleurotus eryngii is a white rot fungus, which is easily isolated from the decayed woods in the tropical rain forest, used to determine the capability to utilize naphthalene, a two-ring polycyclic aromatic hydrocarbon as source of carbon and energy. In the meantime, biotransformation of naphthalene to intermediates and other by-products during degradation was investigated in this study. Pleurotus eryngii had been incubated in liquid medium formulated with naphthalene for 14 days. The presence of metabolites of naphthalene suggests that Pleurotus eryngii begin the ring cleavage by dioxygenation on C1 and C4 position to give 1,4-naphthaquinone. 1,4-Naphthaquinone was further degraded to benzoic acid, where the proposed terepthalic acid is absent in the cultured extract. Further degradation of benzoic acid by Pleurotus eryngii shows the existence of catechol as a result of the combination of decarboxylation and hydroxylation process. Unfortunately, phthalic acid was not detected in this study. Several enzymes, including manganese peroxidase, lignin peroxidase, laccase, 1,2-dioxygenase and 2,3-dioxygenase are enzymes responsible for naphthalene degradation. Reduction of naphthalene and the presence of metabolites in liquid medium showed the ability of Pleurotus eryngii to utilize naphthalene as carbon source instead of a limited glucose amount.

  6. Metabolic engineering of Arabidopsis for remediation of different polycyclic aromatic hydrocarbons using a hybrid bacterial dioxygenase complex. (United States)

    Peng, Rihe; Fu, Xiaoyan; Tian, Yongsheng; Zhao, Wei; Zhu, Bo; Xu, Jing; Wang, Bo; Wang, Lijuan; Yao, Quanhong


    The widespread presence of polycyclic aromatic hydrocarbons (PAHs) and their potential harm to various organisms has generated interest in efficiently eliminating these compounds from the environment. Phytoremediation is an efficient technology for cleaning up pollutants. However, unlike microorganisms, plants lack the catabolic pathway for complete degradation of these dangerous groups of compounds. One way to enhance the potential of plants for remediation of these compounds is by transferring genes involved in xenobiotic degradation from microbes to plants. In this paper, four genes, namely nidA and nidB (encoding the large and small subunits of naphthalene dioxygenase of Mycobacterium vanbaalenii PYR-1) as well as NahAa and NahAb (encoding flavoprotein reductase and ferredoxin of the electron-transport chain of the Pseudomonas putida G7 naphthalene dioxygenase system), were transferred and ectopically expressed in Arabidopsis thaliana. Transgenic Arabidopsis plants overexpressing the heterozygous naphthalene dioxygenase system exhibited enhanced tolerance toward 2-4 rings PAHs. Transgenic plants assimilated PAHs from the culture media faster and accumulated less in vivo than wild-type plants. Furthermore, examination of metabolic intermediates by gas chromatography-mass spectrometry revealed that the naphthalene metabolic pathway in transgenic plants mainly involves the dioxygenase pathway. Taken together, our findings suggest that grafting the naphthalene dioxygenase complex into plants is a possible strategy to breed PAH-tolerant plants to efficiently degrade PAHs in the environment. Copyright © 2014 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  7. Development of catechol 2,3-dioxygenase-specific primers for monitoring bioremediation by competitive quantitative PCR

    Energy Technology Data Exchange (ETDEWEB)

    Mesarch, M.B.; Nakatsu, C.H.; Nies, L.


    Benzene, toluene, xylenes, phenol, naphthalene, and biphenyl are among a group of compounds that have at least one reported pathway for biodegradation involving catechol 2,3-dioxygenase enzymes. Thus, detection of the corresponding catechol 2,3-dioxygenase genes can serve as a basis for identifying and quantifying bacteria that have these catabolic abilities. Primes that can successfully amplify a 238-bp catechol 2,3-dioxygenase gene fragment from eight different bacteria are described. The identities of the amplicons were confirmed by hybridization with a 238-bp catechol 2,3-dioxygenase probe. The detection limit was 10{sup 2} to 10{sup 3} gene copies, which was lowered to 10{sup 0} to 10{sup 1} gene copies of hybridization. Using the dioxygenase-specific primers, an increase in catechol 2,3-dioxygenase genes was detected in petroleum-amended soils. The dioxygenase genes were enumerated by competitive quantitative PCR and a 163-bp competitor that was amplified using the same primers. Target and competitor sequences had identical amplification kinetics. Potential PCR inhibitors that could coextract with DNA, nonamplifying DNA, soil factors (humics), and soil pollutants (toluene) did not impact enumeration. Therefore, this technique can be used to accurately and reproducibly quantify catechol 2,3-dioxygenase genes in complex environments such as petroleum-contaminated soil. Direct, non-cultivation-based molecular techniques for detecting and enumerating microbial pollutant-biodegrading genes in environmental samples are powerful tools for monitoring bioremediation and developing field evidence in support of natural attenuation.

  8. Cometabolic Degradation of Dibenzofuran and Dibenzothiophene by a Naphthalene-Degrading Comamonas sp. JB. (United States)

    Ji, Xiangyu; Xu, Jing; Ning, Shuxiang; Li, Nan; Tan, Liang; Shi, Shengnan


    Comamonas sp. JB was used to investigate the cometabolic degradation of dibenzofuran (DBF) and dibenzothiophene (DBT) with naphthalene as the primary substrate. Dehydrogenase and ATPase activity of the growing system with the presence of DBF and DBT were decreased when compared to only naphthalene in the growing system, indicating that the presence of DBF and DBT inhibited the metabolic activity of strain JB. The pathways and enzymes involved in the cometabolic degradation were tested. Examination of metabolites elucidated that strain JB cometabolically degraded DBF to 1,2-dihydroxydibenzofuran, subsequently to 2-hydroxy-4-(3'-oxo-3'H-benzofuran-2'-yliden)but-2-enoic acid, and finally to catechol. Meanwhile, strain JB cometabolically degraded DBT to 1,2-dihydroxydibenzothiophene and subsequently to the ring cleavage product. A series of naphthalene-degrading enzymes including naphthalene dioxygenase, 1,2-dihydroxynaphthalene dioxygenase, salicylaldehyde dehydrogenase, salicylate hydroxylase, and catechol 2,3-oxygenase have been detected, confirming that naphthalene was the real inducer of expression the degradation enzymes and metabolic pathways were controlled by naphthalene-degrading enzymes.

  9. Identification of naphthalene metabolism by white rot fungus Armillaria sp.F022

    Institute of Scientific and Technical Information of China (English)

    Tony Hadibarata; Abdull Rahim Mohd Yusoff; Azmi Aris; Risky Ayu Kristanti


    Armillaria sp.F022,a white rot fungus isolated from tropical rain forest (Samarinda,Indonesia) was used to biodegrade naphthalene in cultured medium.Transformation of naphthalene by Armillaria sp.F022 which is able to use naphthalene,a two ring-polycyclic aromatic hydrocarbon (PAH) as a source of carbon and energy was investigated.The metabolic pathway was elucidated by identifying metabolites,biotransformation studies and monitoring enzyme activities in cell-free extracts.The identification of metabolites suggests that Armillaria sp.F022 initiates its attack on naphthalene by dioxygenation at its C-1 and C-4 positions to give 1,4-naphthoquinone.The intermediate 2-hydroxybenzaldehyde and salicylic acid,and the characteristic of the meta-cleavage of the resulting diol were identified in the long-term incubation.A part from typical metabolites of naphthalene degradation known from mesophiles,benzoic acid was identified as the next intermediate for the naphthalene pathway of this Armillaria sp.F022.Neither phthalic acid,catechol and cis,cis-muconic acid metabolites were detected in culture extracts.Several enzymes (manganese peroxidase,lignin peroxidase,laccase,1,2-dioxygenase and 2,3-dioxygenase) produced by Armillaria sp.F022 were detected during the incubation.

  10. Diversity of 16S rRNA and dioxygenase genes detected in coal-tar-contaminated site undergoing active bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, M.; Khanna, S. [NIIT Univ, Neemrana (India). Dept. of Biotechnology & Bioinformation


    In order to develop effective bioremediation strategies for polyaromatic hydrocarbons (PAHs) degradation, the composition and metabolic potential of microbial communities need to be better understood, especially in highly PAH contaminated sites in which little information on the cultivation-independent communities is available. Coal-tar-contaminated soil was collected, which consisted of 122-122.5 mg g{sup -1} total extractable PAH compounds. Biodegradation studies with this soil indicated the presence of microbial community that is capable of degrading the model PAH compounds viz naphthalene, phenanthrene and pyrene at 50 ppm each. PCR clone libraries were established from the DNA of the coal-tar-contaminated soil, targeting the 16S rRNA to characterize (I) the microbial communities, (ii) partial gene fragment encoding the Rieske iron sulfur center {alpha}-subunit) common to all PAH dioxygenase enzymes and (iii) {beta}-subunit of dioxygenase. Phylotypes related to Proteobacteria ({Alpha}-, {Epsilon}- and Gammaproteobacteria), Acidobacteria, Actinobacteria, Firmicutes, Gemmatimonadetes and Deinococci were detected in 16S rRNA derived clone libraries. Many of the gene fragment sequences of alpha-subunit and beta-subunit of dioxygenase obtained from the respective clone libraries fell into clades that are distinct from the reference dioxygenase gene sequences. Presence of consensus sequence of the Rieske type (2Fe2S) cluster binding site suggested that these gene fragments encode for {alpha}-subunit of dioxygenase gene. Sequencing of the cloned libraries representing {alpha}-subunit gene fragments (Rf1) and beta-subunit of dioxygenase showed the presence of hitherto unidentified dioxygenase in coal-tar-contaminated soil.

  11. Crystal structure of the terminal oxygenase component of cumene dioxygenase from Pseudomonas fluorescens IP01. (United States)

    Dong, Xuesong; Fushinobu, Shinya; Fukuda, Eriko; Terada, Tohru; Nakamura, Shugo; Shimizu, Kentaro; Nojiri, Hideaki; Omori, Toshio; Shoun, Hirofumi; Wakagi, Takayoshi


    The crystal structure of the terminal component of the cumene dioxygenase multicomponent enzyme system of Pseudomonas fluorescens IP01 (CumDO) was determined at a resolution of 2.2 A by means of molecular replacement by using the crystal structure of the terminal oxygenase component of naphthalene dioxygenase from Pseudomonas sp. strain NCIB 9816-4 (NphDO). The ligation of the two catalytic centers of CumDO (i.e., the nonheme iron and Rieske [2Fe-2S] centers) and the bridging between them in neighboring catalytic subunits by hydrogen bonds through a single amino acid residue, Asp231, are similar to those of NphDO. An unidentified external ligand, possibly dioxygen, was bound at the active site nonheme iron. The entrance to the active site of CumDO is different from the entrance to the active site of NphDO, as the two loops forming the lid exhibit great deviation. On the basis of the complex structure of NphDO, a biphenyl substrate was modeled in the substrate-binding pocket of CumDO. The residues surrounding the modeled biphenyl molecule include residues that have already been shown to be important for its substrate specificity by a number of engineering studies of biphenyl dioxygenases.

  12. [Isolation, charcaterization of an anthracene degrading bacterium Martelella sp. AD-3 and cloning of dioxygenase gene]. (United States)

    Cui, Chang-Zheng; Feng, Tian-Cai; Yu, Ya-Qi; Dong, Fei; Yang, Xin-Mei; Feng, Yao-Yu; Liu, Yong-Di; Lin, Han-Ping


    Anthracene, among the 16 US EPA polycyclic aromatic hydrocarbons (PAHs), is a typical low molecular weight environmental contaminant, which gains concern on its biodegradation under hypersaline condition. In this study, an anthracene-degrading bacterial strain was isolated from highly saline petroleum-contaminated soil. Based on its physiological, biochemical characteristics and 16S rDNA sequence analysis, the bacteria was preliminary identified and named as Martelella sp. AD-3. The strain was able to utilize anthracene as sole carbon source for growth and the degradation occurred under broad salinities (0.1% to 10%) and varying pHs (6.0 to 10.0). The optimized degradation conditions were initial concentration 25 mg x L(-1), culture temperature 30 degrees C, pH 9.0 and salinity 3%. And 94.6% of anthracene was degraded by strain AD-3 under the optimal conditions within 6 days. Degenerate primers design was performed with a reported dioxygenase alpha subunit homologous gene. A length of 307 bp fragment of the partial dioxygenase gene sequences (GenBank accession: JF823991.1) was amplified by nested PCR. The clones amino acid sequence from strain AD-3 showed 95% identity to that of the partial naphthalene dioxygenase large-subunit from Marinobacter sp. NCE312 (AF295033). The results lay a foundation for the further study of molecular mechanism involved in the PAHs biodegradation by strain AD-3.

  13. Effects of naphthalene on gene transcription in Calanus finmarchicus (Crustacea: Copepoda). (United States)

    Hansen, Bjørn Henrik; Altin, Dag; Vang, Siv-Hege; Nordtug, Trond; Olsen, Anders J


    The planktonic copepod Calanus finmarchicus is a key species in the Northern Atlantic food web; an oceanic area with extensive oil production. Naphthalene is one of the major constituents of produced water and water soluble fractions of petrogenic oils. This study investigates the effects on gene transcription of a short term exposure to naphthalene at levels well below LC(50) concentrations. This was done in order to establish a molecular basis of naphthalene toxicity in a species which has previously been subject only to very limited studies at the molecular level. Naphthalene exposure to C. finmarchicus was found to cause glutathione S-transferase (GST) induction, indicating lipid peroxidation as the major mode of naphthalene toxicity. There is no clear evidence that the putative cytochrome P450 enzymes CYP1A2 and CYP330A1 mRNAs are parts of a detoxification enzyme system. Instead, an observed decrease in CYP330A1 mRNA levels at the highest naphthalene exposure concentration may indicate an effect on ecdysteroidogenesis. Only the lowest naphthalene concentration lead to increased mRNA levels of antioxidants SOD and CAT, indicating no clear evidence for general cellular oxidative stress following exposure. Small and insignificant changes in the HSP-70, HSP-90 and ubiquitin mRNA levels indicate a small degree of protein damage owing to naphthalene exposure. The established culture of C. finmarchicus at the SINTEF/NTNU Sealab, and the use of gene transcription analyses provide excellent tools for improving the understanding of biochemical mechanisms involved in the defense against environmental impacts and the molecular modes of toxicity in this species.

  14. Naphthalene toxicity and antioxidant nutrients. (United States)

    Stohs, Sidney J; Ohia, Sunny; Bagchi, Debasis


    Naphthalene is a bicyclic aromatic compound that has wide industrial and commercial applications. It is used as the starting material for the synthesis of other compounds, as a moth repellent, soil fumigant and lavatory deodorant. Most exposure occurs through low dose chronic inhalation, dermal contact or ingestion through the food chain. The lungs and eyes appear to be most susceptible to toxicity, although biochemical markers of toxicity can be demonstrated in other tissues, such as the kidney, brain and liver. In addition to lens opacification (cataracts) and histological changes associated with pneumotoxicity, other biomarkers of toxic effects include glutathione depletion, lipid peroxidation, DNA fragmentation and the production of the active oxygen species as superoxide anion and hydroxyl radical. In addition, the urinary excretion of lipid metabolites occurs. A role for the tumor suppressor gene p53 has been demonstrated. Toxic manifestations of naphthalene are associated with its oxidative metabolism to various products including quinones. The ability to protect against the toxic effects of naphthalene by using various antioxidants and free radical scavengers has been demonstrated. Studies have been conducted with vitamin E, vitamin E succinate, melatonin, curcumin, various L-cysteine prodrugs, several aldose reductase inhibitors and spin-trapping agents. The ability to prevent the toxic manifestations of naphthalene is dependent on the pharmacokinetic properties of the agents, which have been studied. The appropriate selection of chemoprotectants can be useful in preventing naphthalene toxicity.

  15. Optimization of Differential Display of Prokaryotic mRNA: Application to Pure Culture and Soil Microcosms (United States)

    Fleming, James T.; Yao, Wen-Hsiang; Sayler, Gary S.


    The differential display (DD) technique, which is widely used almost exclusively for eukaryotic gene discovery, was optimized to detect differential mRNA transcription from both pure-culture and soil-derived bacterial RNA. A model system which included toluene induction of todC1 in Pseudomonas putida F1 was used to optimize the procedure. At 24-h tod induction was determined to be approximately 8 × 107 transcripts/μg or 0.08% of the total mRNA. The primer concentration, primer length, annealing temperature, and template, deoxynucleoside triphosphate, and MgCl2 concentrations were varied to optimize amplification of a todC1 fragment. The limit of detection of todC1 by DD was found to be 0.015 ng of total RNA template or approximately 103 transcripts. Once optimized, a todC1C2 gene fragment from P. putida F1 RNA was detected by using an arbitrary primer for the reverse transcriptase step in conjunction with the same arbitrary primer and a Shine-Dalgarno primer in the PCR. To verify the results, an arbitrary primer was used to detect recovery of a new salicylate-inducible naphthalene dioxygenase in Burkholderia cepacia JS150. The method was then used to detect mRNA induction in both inoculated and uninoculated toluene-induced soil microcosms. Several putative differentially expressed partial gene sequences obtained from the uninoculated microcosms were examined, and one novel fragment was found to be differentially expressed. PMID:9758787

  16. Detection of meta- and ortho-cleavage dioxygenases in bacterial ...

    African Journals Online (AJOL)


    The specific activities of the phenol-degrading enzymes phenol hydroxylase, catechol-1,2-dioxygenase ... reaction catalyzed by 2,3-dioxygenase the meta ... was defined as the initial rate of indigo formation or ... The enzyme reaction was.

  17. Mechanism for Clastogenic Activity of Naphthalene

    Energy Technology Data Exchange (ETDEWEB)

    Buchholz, Bruce A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)


    Naphthalene incubations form DNA adducts in vitro in a dose dependent manner in both mouse and rat tissues. Rodent tissue incubations with naphthalene indicate that naphthalene forms as many DNA adducts as Benzo(a)pyrene, a known DNA binding carcinogen. The mouse airway has the greatest number of DNA adducts, corresponding to the higher metabolic activation of naphthalene in this location. Both rat tissues, the rat olfactory (tumor target) and the airways (non-tumor target), have similar levels of NA-DNA adducts, indicating that short term measures of initial adduct formation do not directly correlate with sites of tumor formation in the NTP bioassays.

  18. Mechanism for Clastogenic Activity of Naphthalene

    Energy Technology Data Exchange (ETDEWEB)

    Buchholz, Bruce A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)


    Naphthalene incubations form DNA adducts in vitro in a dose dependent manner in both mouse and rat tissues. Rodent tissue incubations with naphthalene indicate that naphthalene forms as many DNA adducts as Benzo(a)pyrene, a known DNA binding carcinogen. The mouse airway has the greatest number of DNA adducts, corresponding to the higher metabolic activation of naphthalene in this location. Both rat tissues, the rat olfactory (tumor target) and the airways (non-tumor target), have similar levels of NA-DNA adducts, indicating that short term measures of initial adduct formation do not directly correlate with sites of tumor formation in the NTP bioassays.

  19. Determination of Naphthalene by Single Sweep Polarography

    Institute of Scientific and Technical Information of China (English)


    A second derivative polarographic wave of naphthalene is observed in 50% N, N-dimethylformamide and ammonia-ammonium chloride medium . The peak potential is about -1.05 V (vs. SCE). The concentration of naphthalene is linear with peak current in the range of 5. 00×10-6 mol/L to 5. 00×10-4mol/L , The detection limit is 2. 00×10-6mol/L . This method can be used to determine naphthalene content of the sample such as coal ,mothball and asphaltic bitumen. The relative standard deviation (RSD) are in the range of 0. 38%~1.30% . The determined recoveries by adding known amounts of naphthalene to sample solution are in the range of 92% ~ 101% . This paper also study on the polarographic behavior of naphthalene.

  20. Toxicity of Naphthalene on Caenorhabditis elegans

    Institute of Scientific and Technical Information of China (English)

    ZHANG Shu-hua; XU Jing-bo; LIU Cheng-bai; LI Qiao; GUAN Shu-wen; WANG Li-ping


    Naphthalene is a common environmental contaminant substance. The toxic effects of naphthalene on Caenorhabditis elegans were investigated at the molecular, biochemical and physiological levels. To assess the molecular-level effect, stress-related gene expression was investigated such as those of hsp-16.1, sod-3, ctl-2, cep-1,cyp35a2, ugt-44, gst-1 and dhs-28. Cell apoptosis was assessed at the biochemical level. Life span, locomotion behaviors and brood size were investigated at the physiological level. The results indicate that naphthalene exposure could not only induce the expression of stress-related genes such as hspl6.1, sod-3, ctl-2 and cep-1 but also reduce the life span of Caenorhabditis elegans. At the same time, naphthalene exposure could result in cell apoptosis and interfere in the locomotion behaviors of Caenorhabditis elegans. These data suggest that naphthalene has multiple toxicity on Caenorhabditis elegans.

  1. Identification and characterization of genes encoding polycyclic aromatic hydrocarbon dioxygenase and polycyclic aromatic hydrocarbon dihydrodiol dehydrogenase in Pseudomonas putida OUS82.


    Takizawa, N; Kaida, N; Torigoe, S; Moritani,T.; Sawada, T.; Satoh, S.; Kiyohara, H


    Naphthalene and phenanthrene are transformed by enzymes encoded by the pah gene cluster of Pseudomonas putida OUS82. The pahA and pahB genes, which encode the first and second enzymes, dioxygenase and cis-dihydrodiol dehydrogenase, respectively, were identified and sequenced. The DNA sequences showed that pahA and pahB were clustered and that pahA consisted of four cistrons, pahAa, pahAb, pahAc, and pahAd, which encode ferredoxin reductase, ferredoxin, and two subunits of the iron-sulfur prot...

  2. Indoleamine 2,3-dioxygenase vaccination

    DEFF Research Database (Denmark)

    Andersen, Mads Hald; Svane, Inge Marie


    Indoleamine 2,3-dioxygenase (IDO) is an immunoregulatory enzyme. Remarkably, we discovered IDO-specific T cells that can influence adaptive immune reactions in patients with cancer. Further, a recent phase I clinical trial demonstrated long-lasting disease stabilization without toxicity in patien...... with non-small-cell lung cancer (NSCLC) who were vaccinated with an IDO-derived HLA-A2-restricted epitope....

  3. Patchwork assembly of nag-like nitroarene dioxygenase genes and the 3-chlorocatechol degradation cluster for evolution of the 2-chloronitrobenzene catabolism pathway in Pseudomonas stutzeri ZWLR2-1. (United States)

    Liu, Hong; Wang, Shu-Jun; Zhang, Jun-Jie; Dai, Hui; Tang, Huiru; Zhou, Ning-Yi


    Pseudomonas stutzeri ZWLR2-1 utilizes 2-chloronitrobenzene (2CNB) as a sole source of carbon, nitrogen, and energy. To identify genes involved in this pathway, a 16.2-kb DNA fragment containing putative 2CNB dioxygenase genes was cloned and sequenced. Of the products from the 19 open reading frames that resulted from this fragment, CnbAc and CnbAd exhibited striking identities to the respective α and β subunits of the Nag-like ring-hydroxylating dioxygenases involved in the metabolism of nitrotoluene, nitrobenzene, and naphthalene. The encoding genes were also flanked by two copies of insertion sequence IS6100. CnbAa and CnbAb are similar to the ferredoxin reductase and ferredoxin for anthranilate 1,2-dioxygenase from Burkholderia cepacia DBO1. Escherichia coli cells expressing cnbAaAbAcAd converted 2CNB to 3-chlorocatechol with concomitant nitrite release. Cell extracts of E. coli/pCNBC exhibited chlorocatechol 1,2-dioxygenase activity. The cnbCDEF gene cluster, homologous to a 3-chlorocatechol degradation cluster in Sphingomonas sp. strain TFD44, probably contains all of the genes necessary for the conversion of 3-chlorocatechol to 3-oxoadipate. The patchwork-like structure of this catabolic cluster suggests that the cnb cluster for 2CNB degradation evolved by recruiting two catabolic clusters encoding a nitroarene dioxygenase and a chlorocatechol degradation pathway. This provides another example to help elucidate the bacterial evolution of catabolic pathways in response to xenobiotic chemicals.

  4. A nonsense mutation in the 4-hydroxyphenylpyruvic acid dioxygenase gene (Hpd) causes skipping of the constitutive exon and hypertyrosinemia in mouse strain III

    Energy Technology Data Exchange (ETDEWEB)

    Endo, Fumio; Awata, Hisataka; Matsuda, Ichiro [Kumamoto Univ. (Japan)


    4-Hydroxyphenylpyruvic acid dioxygenase (HPD; EC is an important enzyme in tyrosine catabolism in most organisms. Decreased activity of 4-hydroxyphenylpyruvic acid dioxygenase in the liver of mouse strain III is associated with tyrosinemia. We report a nucleotide substitution that generates a termination codon in exon 7 of the 4-hydroxyphenylpyruvic acid dioxygenase gene in III mice. This mutation is associated with partial exon skipping, and most of the mRNA lacks sequences corresponding to exon 7. The partial exon skipping apparently is the result of a nonsense mutation in the exon. Mouse strain III is a model for human tyrosinemia type 3 (McKusick 276710), and this train together with recently established models for tyrosinemia type 1 will facilitate studies of hereditary tyrosinemias.

  5. A nonsense mutation in the 4-hydroxyphenylpyruvic acid dioxygenase gene (Hpd) causes skipping of the constitutive exon and hypertyrosinemia in mouse strain III. (United States)

    Endo, F; Awata, H; Katoh, H; Matsuda, I


    4-Hydroxyphenylpyruvic acid dioxygenase (HPD; EC is an important enzyme in tyrosine catabolism in most organisms. Decreased activity of 4-hydroxyphenylpyruvic acid dioxygenase in the liver of mouse strain III is associated with tyrosinemia. We report a nucleotide substitution that generates a termination codon in exon 7 of the 4-hydroxyphenylpyruvic acid dioxygenase gene in III mice. This mutation is associated with partial exon skipping, and most of the mRNA lacks sequences corresponding to exon 7. The partial exon skipping apparently is the result of a nonsense mutation in the exon. Mouse strain III is a model for human tyrosinemia type 3 (McKusick 276710), and this strain together with recently established models for tyrosinemia type 1 will facilitate studies of hereditary tyrosinemias.

  6. Autoxidation-product-initiated dioxygenases: vanadium-based, record catalytic lifetime catechol dioxygenase catalysis. (United States)

    Yin, Cindy-Xing; Sasaki, Yoh; Finke, Richard G


    In recent work, it was shown that V-containing polyoxometalates such as (n-Bu4N)7SiW9V3O40 or (n-Bu4N)9P2W15V3O62, as well as eight other V-containing precatalysts tested, evolve to a high activity, long catalytic lifetime (> or = 30,000-100,000 total turnovers) 3,5-di-tert-butylcatechol dioxygenase, in which Pierpont's complex [VO(DBSQ)(DTBC)]2 (where DBSQ is 3,5-di-tert-butylsemiquinone and DTBC is the 3,5-di-tert-butylcatecholate dianion) was identified as a common catalyst or catalyst resting state (Yin, C.-X.; Finke, R. G. Vanadium-Based, Extended Catalytic Lifetime Catechol Dioxygenases: Evidence For a Common Catalyst. J. Am. Chem. Soc. 2005, 127 (25), 9003-9013). Herein, those findings are followed up by studies aimed at answering the following questions about this record catalytic lifetime 3,5-di-tert-butylcatechol dioxygenase catalyst: (i) What is the key to how V leaches from, for example, seemingly robust V-containing polyoxometalate precatalysts? (ii) What is the key to the sigmoidal, apparently autocatalytic kinetics observed? (iii) What can be learned about the underlying reactions that form [VO(DBSQ)(DTBC)]2? (iv) Finally, do the answers to (i-iii) lead to any broader insights or concepts? Key findings from the present work include the fact that the reaction involves a novel, autoxidation-product-induced dioxygenase, that is, one in which the undesired autoxidation of the 3,5-di-tert-butylcatechol substrate to the corresponding benzoquinone and H2O2 turns on the desired dioxygenase catalysis via a V-leaching process which eventually yields Pierpont's complex, [VO(DBSQ)(DTBC)]2. Plausible reactions en route to [VO(DBSQ)(DTBC)]2 consistent with the kinetic data, the role of H2O2, and the relevant literature are provided. The results provide a prototype example of the little observed but likely more general concept of an autoxidation-product-initiated reaction. The results also provide considerable simplification of, and insight into, the previously

  7. Metabolism of 2-hydroxy-1-naphthoic acid and naphthalene via gentisic acid by distinctly different sets of enzymes in Burkholderia sp. strain BC1. (United States)

    Chowdhury, Piyali Pal; Sarkar, Jayita; Basu, Soumik; Dutta, Tapan K


    Burkholderia sp. strain BC1, a soil bacterium, isolated from a naphthalene balls manufacturing waste disposal site, is capable of utilizing 2-hydroxy-1-naphthoic acid (2H1NA) and naphthalene individually as the sole source of carbon and energy. To deduce the pathway for degradation of 2H1NA, metabolites isolated from resting cell culture were identified by a combination of chromatographic and spectrometric analyses. Characterization of metabolic intermediates, oxygen uptake studies and enzyme activities revealed that strain BC1 degrades 2H1NA via 2-naphthol, 1,2,6-trihydroxy-1,2-dihydronaphthalene and gentisic acid. In addition, naphthalene was found to be degraded via 1,2-dihydroxy-1,2-dihydronaphthalene, salicylic acid and gentisic acid, with the putative involvement of the classical nag pathway. Unlike most other Gram-negative bacteria, metabolism of salicylic acid in strain BC1 involves a dual pathway, via gentisic acid and catechol, with the latter being metabolized by catechol 1,2-dioxygenase. Involvement of a non-oxidative decarboxylase in the enzymic transformation of 2H1NA to 2-naphthol indicates an alternative catabolic pathway for the bacterial degradation of hydroxynaphthoic acid. Furthermore, the biochemical observations on the metabolism of structurally similar compounds, naphthalene and 2-naphthol, by similar but different sets of enzymes in strain BC1 were validated by real-time PCR analyses.

  8. Heme-containing dioxygenases involved in tryptophan oxidation. (United States)

    Millett, Elizabeth S; Efimov, Igor; Basran, Jaswir; Handa, Sandeep; Mowat, Christopher G; Raven, Emma Lloyd


    Heme iron is often used in biology for activation of oxygen. The mechanisms of oxygen activation by heme-containing monooxygenases (the cytochrome P450s) are well known, and involve formation of a Compound I species, but information on the heme-containing dioxygenase enzymes involved in tryptophan oxidation lags far behind. In this review, we gather together information emerging recently from structural, mechanistic, spectroscopic, and computational approaches on the heme dioxygenase enzymes involved in tryptophan oxidation. We explore the subtleties that differentiate various heme enzymes from each other, and use this to piece together a developing picture for oxygen activation in this particular class of heme-containing dioxygenases.

  9. Molecular characterization of the gallate dioxygenase from Pseudomonas putida KT2440. The prototype of a new subgroup of extradiol dioxygenases. (United States)

    Nogales, Juan; Canales, Angeles; Jiménez-Barbero, Jesús; García, José Luis; Díaz, Eduardo


    In this work we have characterized the galA gene product from Pseudomonas putida KT2440, a ring-cleavage dioxygenase that acts specifically on gallate to produce 4-oxalomesaconate. The protein is a trimer composed by three identical subunits of 47.6 kDa (419 amino acids) that uses Fe2+ as the main cofactor. The gallate dioxygenase showed maximum activity at pH 7.0, and the Km and Vmax values for gallate were 144 microM and 53.2 micromol/min/mg of protein, respectively. A phylogenetic study suggests that the gallate dioxygenase from P. putida KT2440 is the prototype of a new subgroup of type II extradiol dioxygenases that share a common ancestor with protocatechuate 4,5-dioxygenases and whose two-domain architecture might have evolved from the fusion of the large and small subunits of the latter. A three-dimensional model for the N-terminal domain (residues 1-281) and C-terminal domain (residues 294-420) of the gallate dioxygenase from P. putida KT2440 was generated by comparison with the crystal structures of the large (LigB) and small (LigA) subunits of the protocatechuate 4,5-dioxygenase from Sphingomonas paucimobilis SYK-6. The expression of the galA gene was specifically induced when P. putida KT2440 cells grew in the presence of gallate. A P. putida KT2440 galA mutant strain was unable to use gallate as the sole carbon source and it did not show gallate dioxygenase activity, suggesting that the GalA protein is the only dioxygenase involved in gallate cleavage in this bacterium. This work points to the existence of a new pathway that is devoted to the catabolism of gallic acid and that remained unknown in the paradigmatic P. putida KT2440 strain.

  10. Exposition of dermatophyte Trichophyton mentagrophytes to L-cystine induces expression and activation of cysteine dioxygenase. (United States)

    Kasperova, Alena; Cahlikova, Romana; Kunert, Jiri; Sebela, Marek; Novak, Zdenek; Raska, Milan


    Cysteine dioxygenase (CDO) is involved in regulation of intracellular cysteine levels by catabolising the cysteine to sulphite and sulphate. In keratinolytic fungi, sulphite is actively excreted to reduce disulphide bridges in keratin before its enzymatic degradation. The pathogenicity role of CDO was confirmed in cysteine-hypersensitive and growth-defective ΔCdo mutant of Arthroderma benhamiae on hair and nails. We analysed the CDO expression regulation in T. mentagrophytes (anamorph of A. benhamiae) mycelia by determining the Cdo mRNA and CDO protein levels and by analysing the proportion of two molecular forms of CDO in response to l-cystine exposure. Cdo mRNA levels in mycelia lysates were detected by reverse-transcription real-time polymerase chain reaction and CDO protein by western blot using mouse CDO-specific hyperimmune serum. The Cdo mRNA level increased gradually 2.5-4.5 h after exposure of the mycelium to l-cystine. The CDO protein, detected as two bands of different mobility, appeared earlier in comparison to mRNA (1 h) and culminated after 24 h. More mobile form prevailed after 4.5 h. The comparison of the dynamics in the Cdo mRNA and CDO protein levels indicates that T. mentagrophytes responds to l-cystine by increased transcription and apparently decreased degradation of the CDO and by changing towards higher mobility molecular form, similar to previous reports describing mammalian analogue.

  11. Characterization of arene di-oxygenases involved in polycyclic aromatic hydrocarbons biodegradation in Mycobacterium sp. 6PY1; Caracterisation d'arene dioxygenases impliquees dans la biodegradation des hydrocarbures aromatiques polycycliques chez Mycobacterium sp. 6PY1

    Energy Technology Data Exchange (ETDEWEB)

    Kuony, S.


    This thesis deals with the bacterial biodegradation of pollutants called polycyclic aromatic hydrocarbons (PAHs). The bacterium Mycobacterium sp. 6PY1 was isolated from a polluted soil for its ability to use pyrene, a 4-ring PAH, as sole source of carbon and energy. To learn about the pyrene metabolic pathway, the identification of the enzymes involved in this process has been undertaken using a proteomic approach. This approach revealed the occurrence of two ring-hydroxylating di-oxygenases in strain 6PY1, which could catalyze the initial attack of pyrene. The goal of this study was to clone the genes encoding the di-oxygenases identified in Mycobacterium sp. 6PY1, over-express these genes in an heterologous system in order to facilitate the purification of the corresponding enzymes, and determine the biochemical and catalytic properties of these enzymes. The pdoA1B1 genes encoding the terminal component of a di-oxygenase were cloned and over-expressed in Escherichia coli. The catalytic properties of this enzyme, called Pdo1, were determined in vivo by measuring the oxidation products of 2- to 4-ring PAHs by gas chromatography coupled to mass spectrometry (GC-MS). Analysis of the selectivity of the enzyme, as determined using GC-MS, showed that Pdo1 preferentially oxidized 3- or 4-ring PAHs, including phenanthrene and pyrene, but was inactive on di-aromatic compounds such as naphthalene and biphenyl. Pdo1 was unstable and was therefore purified in inactive form. The genes encoding a second di-oxygenase component were found in a locus containing two other catabolic genes. The pdoA2B2 genes encoded an enzyme called Pdo2 showing a narrow specificity towards 2- to 3-ring PAHs, and a high preference for phenanthrene. Pdo2 is an a3{beta}3 hexamer, containing [2Fe-2S] Rieske clusters which confer it a characteristic absorbance spectrum. A third set of genes possibly encoding another di-oxygenase was discovered in the genome of Mycobacterium sp. 6PY1. This set is closely

  12. 2-[3-(Naphthalen-2-ylphenyl]naphthaleneCAS 103068–17–3.

    Directory of Open Access Journals (Sweden)

    Mark L. Wolfenden


    Full Text Available The title compound, C26H18, consists of a benzene ring with meta-substituted 2-naphthalene substituents, which are essentially planar [r.m.s. deviations = 0.022 (1 and 0.003 (1 Å]. The conformation is syn, with equivalent torsion angles about the benzene–naphthalene bonds of −36.04 (13 and +34.14 (13°. The molecule has quasi-Cs molecular symmetry.

  13. The gene coding for the DOPA dioxygenase involved in betalain biosynthesis in Amanita muscaria and its regulation. (United States)

    Hinz, U G; Fivaz, J; Girod, P A; Zyrd, J P


    Genomic and cDNA clones derived from the gene (dodA) coding for DOPA dioxygenase, a key enzyme in the betalain pathway, were obtained from the basidiomycete Amanita muscaria. A cDNA library was established in the phage lambda ZapII and dodA clones were isolated using polyclonal antibodies raised against the purified enzyme. Their identity was confirmed by comparison of the deduced amino acid sequence with the sequence of several tryptic peptide fragments of DOPA dioxygenase. The gene coded for a 228-amino acid protein that showed no homology to published sequences. The coding region was interrupted by five short introns. Regulation was shown to occur at the transcriptional level; the mRNA accumulated to high levels only in the coloured cap tissue. dodA was found to be a single-copy gene in A. muscaria. To our knowledge, this is the first gene from the betalain pathway to be cloned. It encodes a type of aromatic ring-cleaving dioxygenase that has not been previously described.

  14. Radiolytic studies of naphthalene in the presence of water. (United States)

    Keheyan, Y; ten Kate, I L


    Naphthalene is an interesting candidate to study in the framework of organic delivery to planetary surfaces as well as in the origin of life. Additionally, naphthalene is of environmental interest, because of its chronic and acute effects on living systems, such as humans and animals (e.g. moths). Naphthalene has been well studied in both fields. In this paper we give an overview of radiolytic studies of naphthalene in the presence of both liquid water and water ice. From our review it appears that OH radicals are formed both in liquid water and in interstellar ices and that these radicals play a considerable role in the degradation of naphthalene. However, it also appears that upon irradiation of naphthalene in liquid water, hydrogen peroxide, a species that accelerates naphthalene degradation, is formed. Based on this review we suggest that the role of hydrogen peroxide in interstellar ices should be further investigated.

  15. Hemoglobin: A Nitric-Oxide Dioxygenase

    Directory of Open Access Journals (Sweden)

    Paul R. Gardner


    Full Text Available Members of the hemoglobin superfamily efficiently catalyze nitric-oxide dioxygenation, and when paired with native electron donors, function as NO dioxygenases (NODs. Indeed, the NOD function has emerged as a more common and ancient function than the well-known role in O2 transport-storage. Novel hemoglobins possessing a NOD function continue to be discovered in diverse life forms. Unique hemoglobin structures evolved, in part, for catalysis with different electron donors. The mechanism of NOD catalysis by representative single domain hemoglobins and multidomain flavohemoglobin occurs through a multistep mechanism involving O2 migration to the heme pocket, O2 binding-reduction, NO migration, radical-radical coupling, O-atom rearrangement, nitrate release, and heme iron re-reduction. Unraveling the physiological functions of multiple NODs with varying expression in organisms and the complexity of NO as both a poison and signaling molecule remain grand challenges for the NO field. NOD knockout organisms and cells expressing recombinant NODs are helping to advance our understanding of NO actions in microbial infection, plant senescence, cancer, mitochondrial function, iron metabolism, and tissue O2 homeostasis. NOD inhibitors are being pursued for therapeutic applications as antibiotics and antitumor agents. Transgenic NOD-expressing plants, fish, algae, and microbes are being developed for agriculture, aquaculture, and industry.

  16. Structure and mechanism of mouse cysteine dioxygenase (United States)

    McCoy, Jason G.; Bailey, Lucas J.; Bitto, Eduard; Bingman, Craig A.; Aceti, David J.; Fox, Brian G.; Phillips, George N.


    Cysteine dioxygenase (CDO) catalyzes the oxidation of l-cysteine to cysteine sulfinic acid. Deficiencies in this enzyme have been linked to autoimmune diseases and neurological disorders. The x-ray crystal structure of CDO from Mus musculus was solved to a nominal resolution of 1.75 Å. The sequence is 91% identical to that of a human homolog. The structure reveals that CDO adopts the typical β-barrel fold of the cupin superfamily. The NE2 atoms of His-86, -88, and -140 provide the metal binding site. The structure further revealed a covalent linkage between the side chains of Cys-93 and Tyr-157, the cysteine of which is conserved only in eukaryotic proteins. Metal analysis showed that the recombinant enzyme contained a mixture of iron, nickel, and zinc, with increased iron content associated with increased catalytic activity. Details of the predicted active site are used to present and discuss a plausible mechanism of action for the enzyme. PMID:16492780

  17. Naphthalene and its precursors in Iomex

    Energy Technology Data Exchange (ETDEWEB)

    Bhagat, S.D.; Sharma, B.K. [Indian Institute of Petroleum, Dehradun (India)


    Iomex, an aromatic rich concentrate from kerosene feedstock is a potential source for production of naphthalene which has a variety of industrial applications. Four analytical procedures were standardized for compositional study of iomex according to chemical class. Hydrocarbon group type separation (saturates, mono- and diaromatics) and quantitation was reported using column chromatography, gas chromatography, high performance liquid chromatography and mass spectrometry. Data generated by these techniques are in good agreement with each other. A diaromatic fraction containing naphthalene and its precursors was studied in detail by gas chromatography mass spectrometry (GC-MS). Capillary GC could resolve each and every component of the diaromatic fraction, whereas quantitation and characterization of 27 components were obtained by mass spectrometry. 10 refs., 3 figs., 2 tabs.

  18. Tris(naphthalen-1-ylphosphane chloroform hemisolvate

    Directory of Open Access Journals (Sweden)

    Wade L. Davis


    Full Text Available The title compound, P(C10H73·0.5CHCl3, was isolated after the unsuccessful reaction of KSeCN and tris(naphthalen-1-ylphosphane. The solvent molecule is disordered about an inversion center. The effective cone angle of the phosphine is 203°. In the crystal, weak C—H...Cl and C—H...π interactions are observed.

  19. In vitro toxicity of naphthalene, 1-naphthol, 2-naphthol and 1,4-naphthoquinone on human CFU-GM from female and male cord blood donors. (United States)

    Croera, C; Ferrario, D; Gribaldo, L


    In animal models, naphthalene toxicity has been studied in different target organs and has been shown to be gender-dependent and metabolism related. In humans, it is readily absorbed and is metabolised by several cytochrome P450's. Naphthalene and its metabolites can cross the placental barrier and consequently may affect foetal tissues. The aim of this study was to compare the in vitro toxicity of naphthalene and its metabolites, 1-naphthol, 2-naphthol and 1,4-naphthoquinone, on human haematopoietic foetal progenitors (CFU-GM) derived from newborn male and female donors. The mRNA expression of Cyp1A2 and Cyp3A4 was also evaluated. Naphthalene did not affect CFU-GM proliferation, while 1-naphthol, 2-naphthol and particularly 1,4-naphthoquinone strongly inhibited the clonogenicity of progenitors, from both male and female donors. mRNA of Cyp1A2 and Cyp3A4 was not expressed neither at the basal level, nor after naphthalene treatment, while treatment with 1,4-naphthoquinone induced expression of both enzymes in both genders, with Cyp1A2 being expressed four times more than Cyp3A4. Female CFU-GM was significantly more sensitive to 1,4-naphthoquinone than male and after treatment both enzymes were expressed twice as much as in the male precursors. These results suggest that a gender-specific 1,4-naphthoquinone metabolic pathway may exist, which gives rise to unknown toxic metabolites.

  20. Biosynthesis of indigo dye by newly isolated naphthalene-degrading strain Pseudomonas sp. HOB1 and its application in dyeing cotton fabric. (United States)

    Pathak, Hilor; Madamwar, Datta


    Indigo is one of the oldest dyes manufactured chemically and is mostly used in textile, food, and pharmaceutical industries. However, owing to the environmental hazards posed by the chemical production, the present scenario in the field stipulates a biosynthesis alternative for indigo production. The present study describes an indigenously isolated naphthalene-degrading strain Pseudomonas sp. HOB1 producing a blue pigment when indole was added in the growth medium. This blue pigment was analyzed by high-pressure thin-layer chromatography and other spectroscopic techniques which revealed it to be the indigo dye. Pseudomonas sp. HOB1 showed ability to produce 246 mg indigo liter(-1) of the medium. The K (m) for the enzyme naphthalene dioxygenase which is involved in indigo formation is 0.3 mM, and V (max) was as high as 50 nmol min(-1) mg dry biomass(-1). The bacterial indigo dye was further successfully applied for dyeing cotton fabrics. The high indigo productivity of Pseudomonas sp. HOB1 using naphthalene as growth substrate and its applicability on cotton fabrics, therefore, stems the probability of using this culture for commercial indigo production.

  1. Exploring the mechanism of tryptophan 2,3-dioxygenase (United States)

    Thackray, Sarah J.; Mowat, Christopher G.; Chapman, Stephen K.


    The haem proteins TDO (tryptophan 2,3-dioxygenase) and IDO (indoleamine 2,3-dioxygenase) are specific and powerful oxidation catalysts that insert one molecule of dioxygen into L-tryptophan in the first and rate-limiting step in the kynurenine pathway. Recent crystallographic and biochemical analyses of TDO and IDO have greatly aided our understanding of the mechanisms employed by these enzymes in the binding and activation of dioxygen and tryptophan. In the present paper, we briefly discuss the function, structure and possible catalytic mechanism of these enzymes. PMID:19021508

  2. Utilizing dendritic scaffold for feasible formation of naphthalene excimer

    Indian Academy of Sciences (India)

    P K Lekha; Tufan Ghosh; Edamana Prasad


    Peripheral functionalization of PAMAM dendrimers with naphthalene units leads to significant ground state aggregation in the system above the critical aggregation concentrations (CAC). Upon photoexcitation of the ground state aggregates, static type excimer formation of naphthalene moiety is observed. Significant red-shifted emission from naphthalene excimers is achieved through generating the static type excimers in polar solvents such as methanol and acetonitrile-water mixtures. Control experiments suggest that the presence of dendritic scaffold in the system play a pivotal role in generating intense static excimer emission in naphthalene modified PAMAM dendrimers, in solution phase at room temperature.

  3. Detection of naphthalene by the blue crab, Callinectes sapidus

    Energy Technology Data Exchange (ETDEWEB)

    Pearson, W.H.; Olla, B.L.


    Increases in the antennular flicking rate indicated that blue crabs, Callinectes sapidus, detected the petroleum hydrocarbon naphthalene. A low incidence of aggressive displays but no food searching or gathering followed naphthalene detection. The results suggest that the chemosensory abilities of decapod crustaceans cover a broader range of substances than previously supposed.

  4. Comparative Biochemistry and Metabolism: Part 2. Naphthalene Lung Toxicity (United States)


    Formation of Naphthalene Glutathione-Adducts in Rat Lung Microsomal Incubations Nmoles/Mg Proteina Incubation Time Conjugate 1 Conjugate 2 Conjugate 3 1...protein. Table 4 Linearity of Formation of Polar Naphthalene Metabolites with Rat Lung Microsomal Proteina Nmoles/Min Mg Micro Prot Dihydrodiol Conj

  5. Study on the Reaction Mechanism of Naphthalene with Oxalyl Chloride

    Institute of Scientific and Technical Information of China (English)


    The reaction of naphthalene with oxalyl chloride in the presence of anhydrous AlCl3 was investigated. The homolog of dinaphthyl methanone can be obtained mainly from this reaction. Naphthalene conversion does not have evident correlation with the amount of AlCl3. The results show that the reaction proceeds via carbon cation electrophilic substitution reaction-free radical substitution reaction pathway.

  6. Biodegradation of naphthalene from coal tar. Research progress report

    Energy Technology Data Exchange (ETDEWEB)

    Ghoshal, S.; Ramaswami, A.; Luthy, R.G.


    Biodegradation experiments were conducted to evaluate the mineralization of naphthalene released from coal tar entrapped in microporous silica media. Tests were performed with two coal tars recovered from former manufactured gas plant sites. Results from these tests showed that the degradation end point for naphthalene was significantly lower than the total amount of naphthalene present in coal tar. The role of physico-chemical and biological processes on the rate of biotransformation of naphthalene was evaluated. Mass transfer rates for dissolution of naphthalene from entrapped coal tar were measured in batch, flow-through systems. The rate of naphthalene mass transfer from the coal tar was found to be significantly greater than the rate of naphthalene biomineralization in batch slurry reactors. This implied that the rate acting factor for the biodegradation process was related to biokinetic phenomena rather than mass transfer processes. Further tests indicated that conditions inhibitory to bacteria limited the biodegradation of naphthalene, and in some cases the inhibition was reversible upon dilution of the reactor contents.

  7. Naphthalene decomposition in a DC corona radical shower discharge

    Institute of Scientific and Technical Information of China (English)

    Ming-jiang NI; Xu SHEN; Xiang GAO; Zu-liang WU; Hao LU; Zhong-shan LI; Zhong-yang LUO; Ke-fa CEN


    The naphthalene decomposition in a corona radical shower discharge (CRS) was investigated, with attention paid to the influences of voltage and initial naphthalene density. The OH emission spectra were investigated so as to know the naphthalene decomposing process. The by-products were analyzed and a decomposing theory in discharge was proposed. The results showed that higher voltage and relative humidity were effective on decomposition. The initial concentration affected the decomposing efficiency of naphthalene. When the mitial naphthalene density was 17 mg/m3, the decomposition rate was found to be 70% under 14 kV. The main by-products were carbon dioxide and water. However, a small amount of carbonic oxide, 1, 2-ethanediol and acetaldehyde were found due to the incomplete oxidization.

  8. Naphthalene degradation and biosurfactant activity by Bacillus cereus 28BN

    Energy Technology Data Exchange (ETDEWEB)

    Tuleva, B.; Christova, N. [Inst. of Microbiology, Bulgarian Academy of Sciences, Sofia (Bulgaria); Jordanov, B.; Nikolova-Damyanova, B. [Inst. of Organic Chemistry, Sofia (Bulgaria); Petrov, P. [National Center of Infectious and Parasitic Diseases, Sofia (Bulgaria)


    Biosurfactant activity and naphthalene degradation by a new strain identified as Bacillus cereus 28BN were studied. The strain grew well and produced effective biosurfactants in the presence of n-alkanes, naphthalene, crude oil and vegetable oils. The biosurfactants were detected by the surface tension lowering of the medium, thin layer chromatography and infrared spectra analysis. With (2%) naphthalene as the sole carbon source, high levels of rhamnolipids at a concentration of 2.3 g l{sup -1} were determined in the stationary growth. After 20 d of incubation 72 {+-} 4% of the initial naphthalene was degraded. This is the first report for a Bacillus cereus rhamnolipid producing strain that utilized naphthalene under aerobic conditions. The strain looks promising for application in environmental technologies. (orig.)

  9. Gamma radiolytic degradation of naphthalene in aqueous solution (United States)

    Chu, Libing; Yu, Shaoqing; Wang, Jianlong


    The decomposition of naphthalene in aqueous solution was studied using gamma irradiation combined with both H2O2 and TiO2 nanoparticles. Gamma irradiation led to a complete degradation of naphthalene and a partial mineralization. With initial concentration of 5-32 mg/L, more than 98% of naphthalene was removed and TOC reduction reached 28-31% at an absorbed dose of 3.0 kGy. The degradation of naphthalene was faster at neutral pH and the initial degradation rate increased with increasing the initial concentration of naphthalene. Addition of H2O2 and TiO2 nanoparticles all enhanced the degradation and mineralization of naphthalene. TOC removal efficiency increased from 28% (irradiation alone) to 35% with addition of H2O2 (40 mg/L), and to 48% with addition of TiO2 (0.8 g/L). The degradation of naphthalene in aqueous solution by gamma irradiation was mainly through the oxidation by ·OH radicals. The intermediate naphthol and carboxylic acids such as formic acid and oxalic acid were identified by LC-MS and IC.

  10. Degradation of polychlorinated naphthalene by mechanochemical treatment. (United States)

    Nomura, Yugo; Aono, Sho; Arino, Takashi; Yamamoto, Takashi; Terada, Akihiko; Noma, Yukio; Hosomi, Masaaki


    Polychlorinated naphthalene (PCN) is a hazardous compound that is listed as a new persistent organic pollutants candidate by the United Nations Environment Program. The production, import and use of PCNs are prohibited by the Chemical Substances Control Law in Japan. PCN was milled with calcium oxide as an additive to investigate the feasibility of its degradation by mechanochemical treatment. The milling process cleaved the C-C and C-Cl bonds by the mechanically induced solid-state reaction. Gas chromatography/mass spectrometry analysis confirmed that the PCN was decomposed after 1h milling. The yield of chloride ions reached 100% after 3h milling. This indicates that all PCN was broken down into inorganic compounds after milling, thereby maintaining the chlorine mass balance through the reaction. This experiment, for the first time, exhibited the effectiveness of mechanochemical treatment as a PCN degradation method.

  11. Measured and Estimated Volatilisation of Naphthalene from a Sandy Soil

    DEFF Research Database (Denmark)

    Lindhardt, Bo; Christensen, Thomas Højlund


    The non-steady-state fluxes of naphthalene from an artificially contaminated sandy soil at different water contents were measured in the laboratory, at 10°C. The soil contained 1.1% of organic carbon and the water content varied between 2.8 and 14% w/w. The diffusive flux of naphthalene from the ...... the fluxes by a factor of 1.5 to 6.4. The largest deviation between predicted and observed dynamic fluxes was found at high water contents. For the cover soil, half-life times of 1 to 2 days were estimated by the model for naphthalene degradation....

  12. Enzymatic activity of catechol 1,2-dioxygenase and catechol 2,3-dioxygenase produced by Gordonia polyisoprenivorans

    Directory of Open Access Journals (Sweden)

    Andréa Scaramal Silva


    Full Text Available This study aimed to evaluate the environmental conditions for enzyme activity of catechol 1,2-dioxygenase (C1,2O and catechol 2,3-dioxygenase (C2,3O produced by Gordonia polyisoprenivorans in cell-free and immobilized extracts. The optimum conditions of pH, temperature, time course and effect of ions for enzyme activity were determined. Peak activity of C1,2O occurred at pH 8.0. The isolate exhibited the highest activity of C2,3O at pH 7.0 and 8.0 for the cell-free extract and immobilized extract, respectively. This isolate exhibited important characteristics such as broad range of pH, temperature and time course for enzyme activity.

  13. Naphthalene contamination of sterilized milk drinks contained in low-density polyethylene bottles. Part 2. Effect of naphthalene vapour in air. (United States)

    Lau, O W; Wong, S K; Leung, K S


    A survey on naphthalene vapour in air was conducted, revealing that the ambient atmosphere contained concentrations of naphthalene in the range of 0.005-0.100 mg m-3. The level of naphthalene vapour in air increased to 0.35 and 4.00 mg m-3 in places exposed to lacquer paint and naphthalene-based moth-repellent, respectively. The effect of naphthalene vapour in air on milk drinks contained in low-density polyethylene (LDPE) bottles was assessed. A mathematical model was suggested to describe the migration of naphthalene from the atmosphere into milk. The model was proved to be valid for milk drinks exposed to naphthalene-based moth-repellent during storage. Moreover, the extent of migration was found to increase with the fat content of foods, which might be ascribed to an increase in diffusion, in addition to the kinetic factor, that affects naphthalene migration.

  14. Thermo-chemical sequestration of naphthalene using Borassus ...

    African Journals Online (AJOL)


    industrial processes (de Boer and Wagelmans, 2016). PAHs are the ... industrial activities (Ania et al., 2007). Naphthalene ..... between the solute particles and solvent (Nasernejad et al., 2005). .... Riegel's handbook of industrial chemistry, Van.

  15. Naphthalene glycosides in Cassia senna and Cassia angustifolia. (United States)

    Lemli, J; Toppet, S; Cuveele, J; Janssen, G


    From leaves and pods of Cassia senna L. and C. angustifolia Vahl. were isolated the naphthalene glycosides 6-hydroxymusizin glycoside and the new tinnevellin glycoside. The structures were established mainly by spectroscopic methods ( (1)H NMR, (13)C NMR, MS).

  16. Inhibition of indoleamine 2,3-dioxygenase activity accelerates skin wound healing. (United States)

    Ito, Hiroyasu; Ando, Tatsuya; Ogiso, Hideyuki; Arioka, Yuko; Saito, Kuniaki; Seishima, Mitsuru


    Skin wound healing is a complex process involving several stages that include inflammation, proliferation, and remodeling. In the inflammatory phase, pro-inflammatory cytokines and chemokines are induced at the wound site and, they contribute to the development of wound healing. These cytokines also induce indoleamine 2,3-dioxygenase (IDO1) activity; this is the rate-limiting and first enzyme in the l-tryptophan (TRP)-l-kynurenine (KYN) pathway. This study examined the effect of IDO1 on the process of skin wound healing. The expression of the Ido1 mRNA was enhanced after creating a wound in wild-type (WT) mice. TRP concentration was simultaneously reduced at the wound site. The rate of wound healing in IDO1 knockout (IDO-KO) mice was significantly higher than that in WT mice. 1-Methyl-dl-tryptophan (1-MT), a potent inhibitor of IDO1, increased the rate of wound healing in WT mice. The administration of TRP accelerated wound healing in vivo and in an in vitro experimental model, whereas the rate of wound healing was not affected by the administration of KYN. The present study identifies the role of IDO1 in skin wound healing, and indicates that the local administration of 1-MT or TRP may provide an effective strategy for accelerating wound healing.

  17. Structure and function of dioxygenases in histone demethylation and DNA/RNA demethylation

    Directory of Open Access Journals (Sweden)

    Cheng Dong


    Full Text Available Iron(II and 2-oxoglutarate (2OG-dependent dioxygenases involved in histone and DNA/RNA demethylation convert the cosubstrate 2OG and oxygen to succinate and carbon dioxide, resulting in hydroxylation of the methyl group of the substrates and subsequent demethylation. Recent evidence has shown that these 2OG dioxygenases play vital roles in a variety of biological processes, including transcriptional regulation and gene expression. In this review, the structure and function of these dioxygenases in histone and nucleic acid demethylation will be discussed. Given the important roles of these 2OG dioxygenases, detailed analysis and comparison of the 2OG dioxygenases will guide the design of target-specific small-molecule chemical probes and inhibitors.


    Directory of Open Access Journals (Sweden)

    Coma-del-Corral MJ


    Full Text Available SUMMARY: Indoleamine 2,3-dioxygenase (IDO is an intracellular and extrahepatic enzyme predominantly found in many cells, especially macrophages. Tryptophan degradation generates kynurenine, and this pathway of tryptophan metabolism is an effective mechanism for modulating the immune response. The IDO facilitates immune tolerance and is one of the main actors involved in the inhibition of cell proliferation, including activated T cells. IDO induces production of reactive oxygen species (ROS and nitric oxide (NO radicals. Several pathways involved in the regulation of immune response are regulated by redox mechanisms. Reactive oxygen and nitrogen species (ROS-RNS and other redox active molecules play key roles in immunity.

  19. Quantitative analysis of experiments on bacterial chemotaxis to naphthalene. (United States)

    Pedit, Joseph A; Marx, Randall B; Miller, Cass T; Aitken, Michael D


    A mathematical model was developed to quantify chemotaxis to naphthalene by Pseudomonas putida G7 (PpG7) and its influence on naphthalene degradation. The model was first used to estimate the three transport parameters (coefficients for naphthalene diffusion, random motility, and chemotactic sensitivity) by fitting it to experimental data on naphthalene removal from a discrete source in an aqueous system. The best-fit value of naphthalene diffusivity was close to the value estimated from molecular properties with the Wilke-Chang equation. Simulations applied to a non-chemotactic mutant strain only fit the experimental data well if random motility was negligible, suggesting that motility may be lost rapidly in the absence of substrate or that gravity may influence net random motion in a vertically oriented experimental system. For the chemotactic wild-type strain, random motility and gravity were predicted to have a negligible impact on naphthalene removal relative to the impact of chemotaxis. Based on simulations using the best-fit value of the chemotactic sensitivity coefficient, initial cell concentrations for a non-chemotactic strain would have to be several orders of magnitude higher than for a chemotactic strain to achieve similar rates of naphthalene removal under the experimental conditions we evaluated. The model was also applied to an experimental system representing an adaptation of the conventional capillary assay to evaluate chemotaxis in porous media. Our analysis suggests that it may be possible to quantify chemotaxis in porous media systems by simply adjusting the model's transport parameters to account for tortuosity, as has been suggested by others.

  20. Relationship of Abortion and the Expression of Indoleamine 2,3- dioxygenase (IDO) in Villus and Syncytiotrophoblasts

    Institute of Scientific and Technical Information of China (English)


    Objective To study the relationship of abortion and the expression of indoleamine 2,3- dioxygenase (IDO) in villus and syncytiotrophoblast in vitro.Methods RT-PCR was applied to analyze the mRNA transcription of IDO in villus of normal pregnancy and inevitable abortion and JAR cells as well. Immunohistochemistry was applied to analyze the expression of IDO protein in villus. Western blot was applied to determinate the expression of IDO protein on cultured syncytiotrophoblast. Highperformance liquid chromatography was applied to determinate whether there was kynurenine in cell culture medium of syncytiotrophoblast.Results The expression of IDO mRNA and protein in villus of inevitable abortion was lower than that of normal pregnancy; IDO mRNA did not express in JAR cells. IDO protein expressed on cultured syncytiotrophoblast, and there was kynurenine in cell culture medium of syncytiotrophoblast.Conclusion Appropriate expression of IDO in villus is necessary for maintenance of normal pregnancy and an active IDO protein expresses in syncytiotrophoblast.

  1. Comparative quantitative prevalence of mycobacteria and functionally abundant nidA, nahAc, and nagAc Dioxygenase genes in coal tar contaminated sediments

    Energy Technology Data Exchange (ETDEWEB)

    Jennifer M. DeBruyn; Christopher S. Chewning; Gary S. Sayler [University of Tennessee, Knoxville, TN (United States). Department of Ecology and Evolutionary Biology


    The Chattanooga Creek Superfund site is heavily contaminated with metals, pesticides, and coal tar with sediments exhibiting high concentrations of polycyclic aromatic hydrocarbons (PAHs). High molecular weight PAHs are of concern because of their toxicity and recalcitrance in the environment; as such, there is great interest in microbes, such as fast-growing Mycobacterium spp., capable of degradation of these compounds. Real-time quantitative PCR assays were developed targeting multiple dioxygenase genes to assess the ecology and functional diversity of PAH-degrading communities. These assays target the Mycobacterium nidA, {beta}-proteobacteria nagAc, and {gamma}-proteobacteria nahAc with the specific goal of testing the hypothesis that Mycobacteria catabolic genes are enriched and may be functionally associated with high molecular weight PAH biodegradation in Chattanooga Creek. Dioxygenase gene abundances were quantitatively compared to naphthalene and pyrene mineralization, and temporal and spatial PAH concentrations. nidA abundances ranged from 5.69 x 10{sup 4} to 4.92 x 10{sup 6} copies per gram sediment; nagAc from 2.42 x 10{sup 3} to 1.21 x 10{sup 7}, and nahAc from below detection to 4.01 x 10{sup 6} copies per gram sediment. There was a significantly greater abundance of nidA and nagAc at sites with the greatest concentrations of PAHs. In addition, nidA and nagAc were significantly positively correlated, indicating a coexistence of organisms carrying these genes. A positive relationship was also observed between nidA and nagAc and pyrene mineralization indicating that these genes serve as biomarkers for pyrene degradation. A 16S rDNA clone library of fast-growing Mycobacteria indicated that the population is very diverse and likely plays an important role in attenuation of high molecular weight PAHs from Chattanooga Creek. 35 refs., 5 figs., 1 tab.

  2. Polychlorinated naphthalenes in pine needles from Poland

    Energy Technology Data Exchange (ETDEWEB)

    Orlikowska, A.; Falandysz, J.; Bochentin, I. [Dept. of Environmental Chemistry and Ecotoxicology, Univ. of Gdansk (Poland); Hanari, N.; Wyrzykowska, B.; Yamashita, N. [National Inst. of Advanced Industrial Science and Technology (AIST), EMTECH, Tsukuba (Japan)


    Polychlorinated naphthalenes (PCNs) are a group of 75 compounds, which have been commercially produced and used in a wide range of industrial applications for the sake of their specific chemical properties. They are recognized as good electrical insulators and also as water and flame resistant materials. Technical PCNs formulations were mainly used as capacitor dielectrics, engine oil additives, electroplating stop-off compounds, in wire insulations and as paper, wood and fabric preservatives. Moreover, they have been formed during production of PCBs formulations. Although recently most countries have stopped synthesis of PCNs, they still are widely distributed in the environment. Nowadays the principal sources of these compounds are municipal solid wastes incineration, metallurgical and chloro-alkali processes. In last years PCNs concentrations in the environment have posed the cynosure of big group of scientists in the whole world. The relatively high concentrations are regarded as an environmental problem. Because they are persistent, toxic and lipophilic they might be bioaccumulated in living organisms and generate the danger for animals and humans. It is essentially to monitor their levels in air, regional transport, as well as estimate specific sources. It is possible by using as a biomonitors pine tree needles. These trees are considered as the very suitable passive indicators for monitoring of PCNs concentrations in the troposphere. This is because the surface wax layer of the needles poses an ability to absorb these lipophilic compounds from the surrounding air. In the current study pine needles were employed as biomonitors of PCNs concentrations in the ambient air of Poland. This country with its past history of production and use of different applications including these compounds, as well as with its location in the centre of Europe, presents the interesting region to these researches.

  3. Extended Hansen solubility approach: naphthalene in individual solvents. (United States)

    Martin, A; Wu, P L; Adjei, A; Beerbower, A; Prausnitz, J M


    A multiple regression method using Hansen partial solubility parameters, delta D, delta p, and delta H, was used to reproduce the solubilities of naphthalene in pure polar and nonpolar solvents and to predict its solubility in untested solvents. The method, called the extended Hansen approach, was compared with the extended Hildebrand solubility approach and the universal-functional-group-activity-coefficient (UNIFAC) method. The Hildebrand regular solution theory was also used to calculate naphthalene solubility. Naphthalene, an aromatic molecule having no side chains or functional groups, is "well-behaved', i.e., its solubility in active solvents known to interact with drug molecules is fairly regular. Because of its simplicity, naphthalene is a suitable solute with which to initiate the difficult study of solubility phenomena. The three methods tested (Hildebrand regular solution theory was introduced only for comparison of solubilities in regular solution) yielded similar results, reproducing naphthalene solubilities within approximately 30% of literature values. In some cases, however, the error was considerably greater. The UNIFAC calculation is superior in that it requires only the solute's heat of fusion, the melting point, and a knowledge of chemical structures of solute and solvent. The extended Hansen and extended Hildebrand methods need experimental solubility data on which to carry out regression analysis. The extended Hansen approach was the method of second choice because of its adaptability to solutes and solvents from various classes. Sample calculations are included to illustrate methods of predicting solubilities in untested solvents at various temperatures. The UNIFAC method was successful in this regard.

  4. A novel non-heme iron-containing dioxygenase. Chloridazon-catechol dioxygenase from Phenylobacterium immobilis DSM 1986. (United States)

    Müller, R; Schmitt, S; Lingens, F


    Previously we purified an enzyme from Phenylobacterium immobilis DSM 1986, which cleaves the catechol derivative of the herbicide Chloridazon [5-amino-4-chloro-2-phenyl-3 (2H)-pyridazinone] in the meta position. The enzyme, which could be crystallized, proved in Ouchterlony double-diffusion tests to consist of a single protein species. No cross-reaction was observed with other meta-cleaving enzymes. Its light absorption spectrum showed a maximum at 279 nm (epsilon = 310 mM -1 cm -1), shoulders at 289 nm and 275 nm and a very weak band at around 430 nm (epsilon = 1.14 mM -1 cm -1). The amino acid analysis showed a slight excess of acidic amino acids, in agreement with the pl of 4.5. Surprisingly the enzyme per se is completely inactive, although it contains one non-dialysable iron atom per submit. It has to be activated by preincubation with ferrous ions or ascorbate. The enzyme activated this way is autoxidizable and returns to its non-activated state in the presence of oxygen. During the reaction with the substrate, this inactivation seems to be enhanced about 100 times. Since this kind of activation and inactivation is not observed in other meta-cleaving enzymes, this enzyme seems to represent a new type of a non-heme iron dioxygenase. We tentatively propose the name Chloridazon-catechol dioxygenase for this enzyme.

  5. Naphthalene biodegradation in temperate and arctic marine microcosms. (United States)

    Bagi, Andrea; Pampanin, Daniela M; Lanzén, Anders; Bilstad, Torleiv; Kommedal, Roald


    Naphthalene, the smallest polycyclic aromatic hydrocarbon (PAH), is found in abundance in crude oil, its major source in marine environments. PAH removal occurs via biodegradation, a key process determining their fate in the sea. Adequate estimation of PAH biodegradation rates is essential for environmental risk assessment and response planning using numerical models such as the oil spill contingency and response (OSCAR) model. Using naphthalene as a model compound, biodegradation rate, temperature response and bacterial community composition of seawaters from two climatically different areas (North Sea and Arctic Ocean) were studied and compared. Naphthalene degradation was followed by measuring oxygen consumption in closed bottles using the OxiTop(®) system. Microbial communities of untreated and naphthalene exposed samples were analysed by polymerase chain reaction denaturing gradient gel electrophoresis (PCR-DGGE) and pyrosequencing. Three times higher naphthalene degradation rate coefficients were observed in arctic seawater samples compared to temperate, at all incubation temperatures. Rate coefficients at in situ temperatures were however, similar (0.048 day(-1) for temperate and 0.068 day(-1) for arctic). Naphthalene biodegradation rates decreased with similar Q10 ratios (3.3 and 3.5) in both seawaters. Using the temperature compensation method implemented in the OSCAR model, Q10 = 2, biodegradation in arctic seawater was underestimated when calculated from the measured temperate k1 value, showing that temperature difference alone could not predict biodegradation rates adequately. Temperate and arctic untreated seawater communities were different as revealed by pyrosequencing. Geographic origin of seawater affected the community composition of exposed samples.

  6. Uptake and accumulation of naphthalene by the Oyster ostrea edulis, in a flow-through system

    Energy Technology Data Exchange (ETDEWEB)

    Riley, R.T.; Mix, M.C.; Schaffer, R.L.; Bunting, D.L.


    A flow-through system was used to follow naphthalene and naphthalene metabolite accumulation in the seawater and in the tissue of the oyster Ostrea edulis. After 72 h, 82.5% of the naphthalene carbon was recovered from the system. Glucose was added to seawater to stimulate the pathways of glucose metabolism in the oysters Streptomycin (100 ppm) reduced microbial oxidation of naphthalene and glucose, and reduced bacterial growth. However, even in the presence of streptomycin, microbial oxidation of naphthalene was considerable. The main oxidation product recovered from seawater was /sup 14/CO/sub 2/. Radioactivity was also associated with compounds which separated by TLC with 2- and 1- naphthol. The pattern of naphthalene uptake and accumulation in oyster tissues was relatively constant after only a few hours of exposure to naphthalene. The potential of tissues to accumulate naphthalene was shown to be a function of multiple variables such as nutritional state, lipid concentration, length of exposure to naphthalene, and the external naphthalene concentration. Carbon-14-labeled metabolites derived from /sup 14/C-naphthalene were consistently recovered from digests of the oyster tissues. Non-CO/sub 2/ alkaline-soluble substances were the primary metabolites. Hexane-extractable substances, which separated by TLC with known standards of 2- and 1- naphthol, were consistently recovered from seawater and tissue digests. It was not possible to conclude that these metabolites were a result of naphthalene metabolism by oyster enzyme systems.

  7. 4-Hydroxyphenylpyruvate Dioxygenase Inhibitors: From Chemical Biology to Agrochemicals. (United States)

    Ndikuryayo, Ferdinand; Moosavi, Behrooz; Yang, Wen-Chao; Yang, Guang-Fu


    The development of new herbicides is receiving considerable attention to control weed biotypes resistant to current herbicides. Consequently, new enzymes are always desired as targets for herbicide discovery. 4-Hydroxyphenylpyruvate dioxygenase (HPPD, EC is an enzyme engaged in photosynthetic activity and catalyzes the transformation of 4-hydroxyphenylpyruvic acid (HPPA) into homogentisic acid (HGA). HPPD inhibitors constitute a promising area of discovery and development of innovative herbicides with some advantages, including excellent crop selectivity, low application rates, and broad-spectrum weed control. HPPD inhibitors have been investigated for agrochemical interests, and some of them have already been commercialized as herbicides. In this review, we mainly focus on the chemical biology of HPPD, discovery of new potential inhibitors, and strategies for engineering transgenic crops resistant to current HPPD-inhibiting herbicides. The conclusion raises some relevant gaps for future research directions.

  8. Molecular cloning of hyoscyamine 6 beta-hydroxylase, a 2-oxoglutarate-dependent dioxygenase, from cultured roots of Hyoscyamus niger. (United States)

    Matsuda, J; Okabe, S; Hashimoto, T; Yamada, Y


    Roots of several solanaceous plants produce anticholinergic alkaloids, hyoscyamine and scopolamine. Hyoscyamine 6 beta-hydroxylase, a 2-oxoglutarate-dependent dioxygenase (EC, catalyzes hydroxylation of hyoscyamine in the biosynthetic pathway leading to scopolamine. We report here on the isolation of cDNA clones encoding the hydroxylase from a cDNA library made from mRNA of the cultured roots of Hyoscyamus niger. The library was screened with three synthetic oligonucleotides that encode amino acid sequences of internal peptide fragments of the purified hydroxylase. Nucleotide sequence analysis of the cloned cDNA revealed an open reading frame that encodes 344 amino acids (Mr = 38,999). All 12 internal peptide fragments determined in the purified enzyme were found in the amino acid sequence deduced from the cDNA. With computer-aided comparison to other proteins we found that the hydroxylase is homologous to two synthases involved in the biosynthesis of beta-lactam antibiotics in some microorganisms and the gene products of tomato pTOM13 cDNA and maize A2 locus which had been proposed to catalyze oxidative reactions in the biosynthesis of ethylene and anthocyan, respectively. RNA blotting hybridization showed that mRNA of the hydroxylase is abundant in cultured roots and present in plant roots, but absent in leaves, stems, and cultured cells of H. niger.

  9. Structure and function of dioxygenases in histone demethylation and DNA/RNA demethylation

    National Research Council Canada - National Science Library

    Dong, Cheng; Zhang, Heng; Xu, Chao; Arrowsmith, Cheryl H; Min, Jinrong


    Iron(II) and 2-oxoglutarate (2OG)-dependent dioxygenases involved in histone and DNA/RNA demethylation convert the cosubstrate 2OG and oxygen to succinate and carbon dioxide, resulting in hydroxylation of the methyl group...

  10. Chemical components from Aloe and their inhibition of indoleamine 2, 3-dioxygenase

    Directory of Open Access Journals (Sweden)

    Ya Nan Sun


    Abbreviation used: IDO: inhibit indoleamine 2, 3-dioxygenase, TMS: tetramethylsilane, HMQC: heteronuclear multiple quantum correlation, HMBC: heteronuclear multiple bond correlation, COSY: 1H-1H correlation spectroscopy, ESI-MS: Electrospray ionization mass spectrometry, DMSO: dimethyl sulfoxide

  11. Synthesis of a naphthalene-hydroxynaphthalene polymer model compound

    Energy Technology Data Exchange (ETDEWEB)


    The objective of this project was the synthesis of one pound of a new naphthalene-hydroxynaphthalene polymer model compound for use in coal combustion studies. Since this compound was an unreported compound, this effort also required the development of a synthetic route to this compound (including routes to the unique and unreported intermediates leading to its synthesis).

  12. Strong eld ionization of naphthalene: angular shifts and molecular potential

    DEFF Research Database (Denmark)

    Dimitrovski, Darko; Maurer, Jochen; Christensen, Lauge

    We analyze the photoelectron momentum distributions from strong eld ionization of xed-in-space naphthalene molecules by circularly polarized laser pulses. By direct comparison between experiment and theory, we show that the angular shifts in the photoelectron momentum distributions are very...

  13. Trichloroethylene degradation by Escherichia coli containing the cloned Pseudomonas putida F1 toluene dioxygenase genes.


    Zylstra, G J; Wackett, L P; Gibson, D T


    Toluene dioxygenase from Pseudomonas putida F1 has been implicated as an enzyme capable of degrading trichloroethylene. This has now been confirmed with Escherichia coli JM109(pDTG601) that contains the structural genes (todC1C2BA) of toluene dioxygenase under the control of the tac promoter. The extent of trichloroethylene degradation by the recombinant organism depended on the cell concentration and the concentration of trichloroethylene. A linear rate of trichloroethylene degradation was o...

  14. Enrichment and characterization of sulfate reducing, naphthalene degrading microorganisms (United States)

    Steffen, Kümmel; Florian-Alexander, Herbst; Márcia, Duarte; Dietmar, Pieper; Jana, Seifert; Bergen Martin, von; Hans-Hermann, Richnow; Carsten, Vogt


    Polycyclic aromatic hydrocarbons (PAH) are pollutants of great concern due to their potential toxicity, mutagenicity and carcinogenicity. PAH are widely distributed in the environment by accidental discharges during the transport, use and disposal of petroleum products, and during forest and grass fires. Caused by their hydrophobic nature, PAH basically accumulate in sediments from where they are slowly released into the groundwater. Although generally limited by the low water solubility of PAH, microbial degradation is one of the major mechanisms leading to the complete clean-up of PAH-contaminated sites. Whereas organisms and biochemical pathways responsible for the aerobic breakdown of PAH are well known, anaerobic PAH biodegradation is less understood; only a few anaerobic PAH degrading cultures have been described. We studied the anaerobic PAH degradation in a microcosm approach to enrich anaerobic PAH degraders. Anoxic groundwater and sediment samples were used as inoculum. Groundwater samples were purchased from the erstwhile gas works facility and a former wood impregnation site. In contrast, sources of sediment samples were a former coal refining area and an old fuel depot. Samples were incubated in anoxic mineral salt medium with naphthalene as sole carbon source and sulfate as terminal electron acceptor. Grown cultures were characterized by feeding with 13C-labeled naphthalene, 16S rRNA gene sequencing using an Illumina® approach, and functional proteome analyses. Finally, six enrichment cultures able to degrade naphthalene under anoxic conditions were established. First results point to a dominance of identified sequences affiliated to the freshwater sulfate-reducing strain N47, which is a known anaerobic naphthalene degrader, in four out of the six enrichments. In those enrichments, peptides related to the pathway of anoxic naphthalene degradation in N47 were abundant. Overall the data underlines the importance of Desulfobacteria for natural

  15. Structure of 4-hydrophenylpyruvic acid dioxygenase (HPD) gene and its mutation in tyrosinemic mouse strain III

    Energy Technology Data Exchange (ETDEWEB)

    Awata, H.; Endo, F.; Matsuda, I. [Kumamoto Univ. Medical School (Japan)] [and others


    4-Hydroxphenylpyruvic acid dioxygenase (HPD) is an important enzyme in tyrosine catabolism in most organisms. The activity of this enzyme is expressed mainly in the liver and is developmentally regulated in mammals. A genetic deficiency of the enzyme in man and mouse leads to hereditary tyrosinemia type 3. Using human HPD cDNA as a probe, a chromosomal gene related to HPD was isolated from human and mouse gene libraries. The human HPD gene is over 30 kilo-bases long and is split into 14 exons. Analysis of the 5{prime} flanking sequence of the gene suggests that expression of the gene is regulated by hepatocyte-specific and liver-enriched transcription factors, as well as by hormones. These features of the 5{prime} flanking region of the gene are similar to those of other genes which are specifically expressed in hepatocytes and which are developmentally regulated. The gene for mouse HPD has a similar structure and we obtained evidence for a nucleotide substitution which generates a termination codon in exon 7 of the HPD gene in III mice. This mutation associates a partial exon skipping and most of the mRNA lacks sequences corresponding to exon 7. The partial exon skipping apparently is the result of a nonsense mutation in the exon. Thus, mouse strain III can serve as a genetic model for human tyrosinemia type 3. Ongoing studies are expected to elucidate the disease process involved in hereditary tyrosinemia type 1 and to shed light on mechanisms that mediate developmental regulation of HPD gene expression. In addition, mouse strain III together with recently established models for tyrosinemia type 1 will facilitate studies on hereditary tyrosinemias.

  16. Cysteine dioxygenase and cysteine sulfinate decarboxylase genes of the deep-sea mussel Bathymodiolus septemdierum: possible involvement in hypotaurine synthesis and adaptation to hydrogen sulfide. (United States)

    Nagasaki, Toshihiro; Hongo, Yuki; Koito, Tomoko; Nakamura-Kusakabe, Ikumi; Shimamura, Shigeru; Takaki, Yoshihiro; Yoshida, Takao; Maruyama, Tadashi; Inoue, Koji


    It has been suggested that invertebrates inhabiting deep-sea hydrothermal vent areas use the sulfinic acid hypotaurine, a precursor of taurine, to protect against the toxicity of hydrogen sulfide contained in the seawater from the vent. In this protective system, hypotaurine is accumulated in the gill, the primary site of sulfide exposure. However, the pathway for hypotaurine synthesis in mollusks has not been identified. In this study, we screened for the mRNAs of enzymes involved in hypotaurine synthesis in the deep-sea mussel Bathymodiolus septemdierum and cloned cDNAs encoding cysteine dioxygenase and cysteine sulfinate decarboxylase. As mRNAs encoding cysteamine dioxygenase and cysteine lyase were not detected, the cysteine sulfinate pathway is suggested to be the major pathway of hypotaurine and taurine synthesis. The two genes were found to be expressed in all the tissues examined, but the gill exhibited the highest expression. The mRNA level in the gill was not significantly changed by exposure to sulfides or thiosulfate. These results suggests that the gill of B. septemdierum maintains high levels of expression of the two genes regardless of ambient sulfide level and accumulates hypotaurine continuously to protect against sudden exposure to high level of sulfide.

  17. Biochemical and genotoxic response of naphthalene to fingerlings of milkfish Chanos chanos. (United States)

    Palanikumar, L; Kumaraguru, A K; Ramakritinan, C M


    The present study investigated the acute toxicity, sub-lethal toxicity and biochemical response of naphthalene in fingerlings of milkfish Chanos chanos. The 96 h acute toxicity LC50 values for C. chanos exposed to naphthalene was 5.18 μg l(-1). The estimated no observed effect concentration and lowest observed effect concentration values for naphthalene in C. chanos were 0.42 and 0.69 μg l(-1) respectively for 30 days. The estimated maximum allowable toxicant concentration for naphthalene was 0.53 μg l(-1). Biochemical enzyme markers such as lipid peroxidation, catalase, glutathione S transferase and reduced glutathione were measured in gills and liver tissues of C. chanos exposed to sub-lethal concentrations of naphthalene. Fluctuation in lipid peroxidation and catalase level suggests that naphthalene concentrations play a vital role in induction of oxidative stress in fish. Induction of reduced glutathione level and inhibition of glutathione S-transferase level was observed in naphthalene exposed C. chanos suggesting that there may be enhanced oxidative damage due to free radicals. Increasing concentration increases in number of nuclear abnormalities. The formation of micronuclei and binucleated micronuclei induction by naphthalene confirm its genotoxic potential. The highest levels of DNA damage (% tail length) were observed at 1.24 μg l(-1) of naphthalene. The study suggests that biochemical enzymes, nuclear abnormalities and DNA damage index can serve as a biological marker for naphthalene contamination.

  18. Conversion of 3-chlorocatechol by various catechol 2,3-dioxygenases and sequence analysis of the chlorocatechol dioxygenase region of Pseudomonas putida GJ31

    NARCIS (Netherlands)

    Mars, Astrid E.; Kingma, Jaap; Kaschabek, Stefan R.; Reineke, Walter; Janssen, Dick B.


    Pseudomonas putida GJ31 contains an unusual catechol 2,3-dioxygenase that converts 3-chlorocatechol and 3-methylcatechol, which enables the organism to use both chloroaromatics and methylaromatics for growth, A 3.1-kb region of genomic DNA of strain GJ31 containing the gene for this chlorocatechol 2

  19. Ionic quenching of naphthalene fluorescence in sodium dodecyl sulfate micelles. (United States)

    Silva, Alessandra F; Fiedler, Haidi D; Nome, Faruk


    Micellar effects on luminescense of organic compounds or probes are well established, and here we show that quenching is highly favored in aqueous sodium dodecyl sulfate (SDS) micelles, which concentrate a naphthalene probe and cations of lanthanides, transition metals, and noble metals. Interactions have been studied by steady state and time-resolved fluorescence in examining the fluorescence suppression of naphthalene by metal ions in anionic SDS micelles. The quenching is collisional and correlated with the unit charge and the reduction potential of the metal ion. The rate constants, calculated in terms of local metal ion concentrations, are close to the diffusion control limit in the interior of SDS micelles, where the microscopic viscosity decreases the transfer rate, following the Stokes-Einstein relation.

  20. Comparative study of electron conduction in azulene and naphthalene

    Indian Academy of Sciences (India)

    Sudipta Dutta; S Lakshmi; Swapan K Pati


    We have studied the feasibility of electron conduction in azulene molecule and compared with that in its isomer naphthalene. We have used non-equilibrium Green’s function formalism to measure the current in our systems as a response of the external electric field. Parallely we have performed the Gaussian calculations with electric field in the same bias window to observe the impact of external bias on the wave functions of the systems. We have found that the conduction of azulene is higher than that of naphthalene inspite of its intrinsic donor–acceptor property, which leads a system to more insulating state. Due to stabilization through charge transfer the azulene system can be fabricated as a very effective molecular wire. Our calculations show the possibility of huge device application of azulene in nano-scale instruments.

  1. 2-[(E-(Naphthalen-2-yliminomethyl]-4-(trifluoromethoxyphenol

    Directory of Open Access Journals (Sweden)

    Merve Pekdemir


    Full Text Available In the title compound, C18H12F3NO2, the planes of the benzene ring and the naphthalene system form a dihedral angle of 47.21 (3°. The hydroxy group is involved in an intramolecular O—H...N hydrogen bond. In the crystal, weak C—H...O and C—H...F interactions link the molecules related by translations along the c and a axes, respectively, into sheets.

  2. Study on the Novel Dicyanate Ester Resin Containing Naphthalene Unit

    Institute of Scientific and Technical Information of China (English)

    Hong Qiang YAN; Hong Yun PENG; Li JI; Guo Rong QI


    The novel dicyanate ester resin containing naphthalene unit (DNCY) was synthesized, and characterized by FT-IR, 1H-NMR, 13C-NMR and elemental analysis (EA).The thermal properties of DNCY resin was studied by thermal degradation analysis at a heating rate of 10 (C /min-1 in N2 and air. The DNCY resin exhibited better thermal and thermal-oxidative stability than bisphenol A dicyanate (BACY) resin.

  3. Structure of the human 4-hydroxyphenylpyruvic acid dioxygenase gene (HPD)

    Energy Technology Data Exchange (ETDEWEB)

    Awata, H.; Endo, F.; Matsuda, I. [Kumamoto Univ. (Japan)


    4-Hydroxyphenylpyruvic acid dioxygenase (HPD) is an important enzyme in tyrosine catabolism in most organisms. The activity of this enzyme is expressed mainly in the liver and developmentally regulated in mammals, and a genetic deficiency in this enzyme in humans and mice leads to hereditary tyrosinemia type 3. Using human HPD cDNA as a probe, a chromosomal gene related to HPD was isolated from human gene libraries. The human HPD gene is over 30 kb long and is split into 14 exons. The extract sizes and boundaries of exon blocks were determined, and all of the splice donor and acceptor sites conformed to the GT/AG rule. Analysis of the 5{prime} flanking sequence of the gene suggests that expression of the gene is regulated by hepatocyte-specific and liver-enriched transcription factors, as well as by hormones. These features of the 5{prime} flanking region of the gene are similar to those of other genes that are specifically expressed in hepatocytes and that are developmentally regulated. 41 refs., 2 figs., 1 tab.

  4. Engineering Non-Heme Mono- and Dioxygenases for Biocatalysis

    Directory of Open Access Journals (Sweden)

    Adi Dror


    Full Text Available Oxygenases are ubiquitous enzymes that catalyze the introduction of one or two oxygen atoms to unreactive chemical compounds. They require reduction equivalents from NADH or NADPH and comprise metal ions, metal ion complexes, or coenzymes in their active site. Thus, for industrial purposes, oxygenases are most commonly employed using whole cell catalysis, to alleviate the need for co-factor regeneration. Biotechnological applications include bioremediation, chiral synthesis, biosensors, fine chemicals, biofuels, pharmaceuticals, food ingredients and polymers. Controlling activity and selectivity of oxygenases is therefore of great importance and of growing interest to the scientific community. This review focuses on protein engineering of non-heme monooxygenases and dioxygenases for generating improved or novel functionalities. Rational mutagenesis based on x-ray structures and sequence alignment, as well as random methods such as directed evolution, have been utilized. It is concluded that knowledge-based protein engineering accompanied with targeted libraries, is most efficient for the design and tuning of biocatalysts towards novel substrates and enhanced catalytic activity while minimizing the screening efforts.

  5. Expression, purification and kinetic characterization of recombinant benzoate dioxygenase from Rhodococcus ruber UKMP-5M

    Directory of Open Access Journals (Sweden)

    Arezoo Tavakoli


    Full Text Available In this study, benzoate dioxygenase from Rhodococcus ruber UKMP-5M was catalyzed by oxidating the benzene ring to catechol and other derivatives. The benzoate dioxygenase (benA gene from Rhodococcus ruber UKMP-5M was then expressed, purified, characterized, The benA gene was amplified (642 bp, and the product was cloned into a pGEM-T vector.The recombinant plasmid pGEMT-benA was digested by double restriction enzymes BamHI and HindIII to construct plasmid pET28b-benA and was then ligated into Escherichia coli BL21 (DE3. The recombinant E. coli was induced with 0.5 mM isopropyl β-D-thiogalactoside (IPTG at 22˚C to produce benzoate dioxygenase. The enzyme was then purified by ion exchange chromatography after 8 purification folds. The resulting product was 25 kDa, determined by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE and western blotting. Benzoate dioxygenase activity was found to be 6.54 U/mL and the optimal pH and temperature were 8.5 and 25°C, respectively. Maximum velocity (Vmax and Michaelis constant (Km were 7.36 U/mL and 5.58 µM, respectively. The end metabolite from the benzoate dioxygenase reaction was cyclohexane dione, which was determined by gas chromatography mass spectrometry (GC-MS.

  6. Chloridazon-catechol dioxygenases, a distinct group of meta-cleaving enzymes. (United States)

    Schmitt, S; Müller, R; Wegst, W; Lingens, F


    We previously described a new meta-cleaving enzyme, termed chloridazon-catechol dioxygenase. The present paper describes the comparison of this enzyme with the meta-cleaving enzymes of eighteen strains of soil bacteria isolated with various aromatic compounds. Four of these strains were isolated with the herbicide chloridazon, six with the analgeticum aminopyrine and one with the analgeticum antipyrine as sole carbon source. These strains all belonged to a new type of bacteria, called Phenylobacteria. The seven other strains were isolated with aromatic compounds such as toluene, 3-phenylpropionate, benzoate, papaverine and 4-chlorobenzoate, and belonged to various species including Pseudomonas, Acinetobacter and Nocardia. In double diffusion experiments with antibodies, prepared against chloridazon-catechol dioxygenase, extracts from the eleven strains of Phenylobacteria gave a cross reaction, whereas the extracts of the seven other strains showed no reaction. The enzymes of the eleven positive strains showed the same characteristic kinetic behaviour as the previously described enzyme. In contrast to catechol 2, 3-dioxygenase they needed the addition of exogenous Fe2+ ions for activity. On ion-exchange chromatography they emerged at the same buffer concentration as chloridazon-catechol dioxygenase. In polyacrylamide electrophoresis they migrated identically. The linkage map derived from the activities of the various enzymes with 10 different substrates revealed an identity of more than 80% for these eleven enzymes. So the meta-cleaving enzymes of the Phenylobacteria seem to form a distinct group among the non-heme iron-containing dioxygenases.

  7. Substrate Oxidation by Indoleamine 2,3-Dioxygenase: EVIDENCE FOR A COMMON REACTION MECHANISM. (United States)

    Booth, Elizabeth S; Basran, Jaswir; Lee, Michael; Handa, Sandeep; Raven, Emma L


    The kynurenine pathway is the major route of L-tryptophan (L-Trp) catabolism in biology, leading ultimately to the formation of NAD(+). The initial and rate-limiting step of the kynurenine pathway involves oxidation of L-Trp to N-formylkynurenine. This is an O2-dependent process and catalyzed by indoleamine 2,3-dioxygenase and tryptophan 2,3-dioxygenase. More than 60 years after these dioxygenase enzymes were first isolated (Kotake, Y., and Masayama, I. (1936) Z. Physiol. Chem. 243, 237-244), the mechanism of the reaction is not established. We examined the mechanism of substrate oxidation for a series of substituted tryptophan analogues by indoleamine 2,3-dioxygenase. We observed formation of a transient intermediate, assigned as a Compound II (ferryl) species, during oxidation of L-Trp, 1-methyl-L-Trp, and a number of other substrate analogues. The data are consistent with a common reaction mechanism for indoleamine 2,3-dioxygenase-catalyzed oxidation of tryptophan and other tryptophan analogues.

  8. Crystal Structure of Mammalian Cysteine dioxygenase: A Novel Mononuclear Iron Center for Cysteine Thiol Oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Simmons,C.; Liu, Q.; Huang, Q.; Hao, Q.; Begley, T.; Karplus, P.; Stipanuk, M.


    Cysteine dioxygenase is a mononuclear iron-dependent enzyme responsible for the oxidation of cysteine with molecular oxygen to form cysteinesulfinate. This reaction commits cysteine to either catabolism to sulfate and pyruvate or to the taurine biosynthetic pathway. Cysteine dioxygenase is a member of the cupin superfamily of proteins. The crystal structure of recombinant rat cysteine dioxygenase has been determined to 1.5 Angstroms resolution, and these results confirm the canonical cupin {beta}-sandwich fold and the rare cysteinyl-tyrosine intramolecular crosslink (between Cys93 and Tyr157) seen in the recently reported murine cysteine dioxygenase structure. In contrast to the catalytically inactive mononuclear Ni(II) metallocenter present in the murine structure, crystallization of a catalytically competent preparation of rat cysteine dioxygenase revealed a novel tetrahedrally coordinated mononuclear iron center involving three histidines (His86, His88, and His140) and a water molecule. Attempts to acquire a structure with bound ligand using either co-crystallization or soaks with cysteine revealed the formation of a mixed disulfide involving Cys164 near the active site, which may explain previously observed substrate inhibition. This work provides a framework for understanding the molecular mechanisms involved in thiol dioxygenation and sets the stage for exploring the chemistry of both the novel mononuclear iron center and the catalytic role of the cysteinyl-tyrosine linkage.

  9. Severe haemolytic anaemia due to ingestion of naphthalene (mothball) containing coconut oil. (United States)

    Rahman, Md Mujibur; Mogni Mowla, Syed Ghulam; Rahim, Abdur; Chowdhury, Fazle Rabbi; Jahan, Sharmin; Hasan, Mohammad Nazmul


    Naphthalene, a widely used industrial and household chemical, has rarely been an agent of poisoning worldwide. Severe haemolysis from naphthalene poisoning is rare and can be a challenge to clinicians. We report a 22-year-old female, who accidentally ingested naphthalene mixed coconut oil and got admitted with recurrent vomiting, headache and passage of dark urine. Severe intravascular haemolysis with hypotension and neutrophilic leukocytosis was detected. She was treated with red blood cell transfusions, intravenous saline infusion and ascorbic acid.

  10. Protective effect of erdosteine against naphthalene-induced oxidative stress in rats


    Şehirli, Ahmet Özer; Şener, Göksel


    ABSTRACT: In this study the role of free radicals in naphthalene-induced toxicity and theprotection by erdosteine are investigated. Female Sprague-Dawley rats were treated with asingle oral dose of 1100 mg naphthalene/kg in corn oil. Erdosteine was given 50 mg/kg/dayorally for 3 days before naphthalene treatment and rats were decapitated 24 hours afternaphthalene administration. Liver and kidney tissue samples were taken for determinationof malondialdehyde (MDA), glutathione (GSH), Na+, K+-AT...

  11. The interaction between humic acid and naphthalene after exposure to visible and UV light (United States)

    Nechaev, L. V.; Tchaikovskaya, O. N.


    Dissolved organic matter plays an important role in pollution migration from human waste to aquatic environments. In this study, the effect of humic acid (HA) on the photo-chemical transformation of naphthalene by irradiation model solar and UV light was reported using fluorescence quenching titrations. It was calculated the interactions between naphthalene and humic acids. It is found that the molecular complex of humic acid and naphthalene is more stable to UV irradiation, compared with the model solar radiation. The application of molecular fluorescence spectrometry is a useful sensitive tool evaluate intermolecular HA and naphthalene interactions.

  12. Crystal structure of thermostable catechol 2,3-dioxygenase determined by multiwavelength anomalous dispersion method

    Institute of Scientific and Technical Information of China (English)


    The selenomethionyl derivative of the thermostable catechol 2,3-dioxygenase (SeMet-TC23O) is expressed,purified and crystallized. By using multiwave length anomalous dispersion (MAD) phasing techniques, the crystal structure of TC23O at 0.3 nm resolutions is determined.TC23O is a homotetramer. Each monomer is composed of N-terminal and C-terminal domains (residues 1~153 and 153~319, respectively). The two domains are proximately symmetric by a non-crystallographic axis. Each domain contains two characteristic motifs which are found in almost all of extradial dioxygenases.Kevwords: multiwavelength anomalous dispersion (MAD), X-ray diffraction, thermostable catechol 2,3-dioxygenase, crystal structure,synchrotron light source.

  13. Studies on linoleic acid 8R-dioxygenase and hydroperoxide isomerase of the fungus Gaeumannomyces graminis. (United States)

    Su, C; Brodowsky, I D; Oliw, E H


    Linoleic acid is sequentially converted to 7S,8S-dihydroxy-9Z,12Z-octadecadienoic acid by the 8R-dioxygenase and hydroperoxide isomerase of the fungus Gaeumannomyces graminis, which is a common pathogen of wheat. The objective of this study was to separate and characterize the two enzyme activities. The isomerase activity was found mainly in the microsomal fraction of the mycelia and the 8R-dioxygenase in the cytosol. The 8R-dioxygenase could be partially purified by ammonium sulfate precipitation, gel filtration, ion exchange chromatography or isoelectric focusing. The 8R-dioxygenase was unstable during purification, but it could be stabilized by glutathione, glutathione peroxidase and ethylenediaminetetraacetic acid. Several protease inhibitors reduced the enzyme activity. Gel filtration with Sephacryl S-300 showed that most 8R-dioxygenase activity was eluted with the front with little retention. Isoelectric focusing in the presence of ethylene glycol (20%) indicated an isoelectric point of pl 6.1-6.3. The enzyme was retained on strong anion exchange columns at pH 7.4 and could be eluted with 0.3-0.5 M NaCl. Incubation of the enzyme with 0.1 mM linoleic acid led to partial inactivation, which may indicate product inhibition. Paracetamol and the lipoxygenase inhibitor ICI 230,487 at 30 microM inhibited the 8R-dioxygenase by 44 and 58%, respectively. 8R-hydroperoxy-9Z,12Z-octadecadienoic acid was isolated from incubations of linoleic acid with the partially purified enzyme or with the cytosol in the presence of p-hydroxymercuribenzoate. The hydroperoxide was rapidly converted by the hydroperoxide isomerase in the microsomal fractions to 7S,8S-dihydroxy-9Z,12Z-octadecadienoic acid.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. Spectroscopic and equilibrium studies of ligand and organic substrate binding to indolamine 2,3-dioxygenase. (United States)

    Sono, M


    The binding of a number of ligands to the heme protein indolamine 2,3-dioxygenase has been examined with UV-visible absorption and with natural and magnetic circular dichroism spectroscopy. Relatively large ligands (e.g., norharman) which do not readily form complexes with myoglobin and horseradish peroxidase (HRP) can bind to the dioxygenase. Except for only a few cases (e.g., 4-phenylimidazole) for the ferric dioxygenase, a direct competition for the enzyme rarely occurs between the substrate L-tryptophan (Trp) and the ligands examined. L-Trp and small heme ligands (CN-,N3-,F-) markedly enhance the affinity of each other for the ferric enzyme in a reciprocal manner, exhibiting positive cooperativity. For the ferrous enzyme, L-Trp exerts negative cooperativity with some ligands such as imidazoles, alkyl isocyanides, and CO binding to the enzyme. This likely reflects the proximity of the Trp binding site to the heme iron. Other indolamine substrates also exert similar but smaller cooperative effects on the binding of azide or ethyl isocyanide. The pH dependence of the ligand affinity of the dioxygenase is similar to that of myoglobin rather than that of HRP. These results suggest that indolamine 2,3-dioxygenase has the active-site heme pocket whose environmental structure is similar to, but whose size is considerably larger than, that of myoglobin, a typical O2-binding heme protein. Although the L-Trp affinity of the ferric cyanide and ferrous CO enzyme varies only slightly between pH 5.5 and 9.5, the unligated ferric and ferrous enzymes have considerably higher affinity for L-Trp at alkaline pH than at acidic pH. L-Trp binding to the ferrous dioxygenase is affected by an ionizable residue with a pKa value of 7.3.

  15. Expression of indoleamine 2,3-dioxygenase in pregnant mice correlates with CD4+CD25+Foxp3+ T regulatory cells. (United States)

    Yu, L-L; Zhang, Y-H; Zhao, F-X


    Indoleamine 2,3-dioxygenase (IDO) initiated tryptophan degradation in the placenta has a role in the prevention of allogeneic fetus rejection by T-cells. The present study aimed to investigate the relationship between IDO and CD4+CD25+Foxp3+ T cells in pregnant mice. The percentage of CD4+CD25+Foxp3+ T cells in peripheral blood mononuclear cells (PBMC) and IDO mRNA levels were detected in pregnant mice. The non-pregnant mice were used as control in this study. To confirm the effect of IDO, 1-methyl-trytophan (IDO inhibitor) was used in this study. The percentage of CD4+CD25+Foxp3+T cells in PBMC in pregnant mice was significantly higher than this in non-pregnant mice controls from day-6 to the end of the study (p<0.05). IDO mRNA levels in PBMC also markedly increased after pregnancy. The upregulation of IDO expression reached a maximum at day 18 after pregnancy (p<0.05). Compared to the pregnant group, the inhibitor could significantly decrease the IDO expression and Treg percentage (p<0.05). There was a positive association between IDO mRNA and CD4+CD25+Foxp3+ T cells percentage. The results suggested IDO might play a role in the generation of CD4+CD25+Foxp3+ T cells in pregnant mice.

  16. Crystal Structures of Fe2+ Dioxygenase Superoxo, Alkylperoxo, and Bound Product Intermediates


    Kovaleva, Elena G.; Lipscomb, John D.


    We report the structures of three intermediates in the O2 activation and insertion reactions of an extradiol ring-cleaving dioxygenase. A crystal of Fe2+-containing homoprotocatechuate 2,3-dioxygenase was soaked in the slow substrate 4-nitrocatechol in a low O2 atmosphere. The X-ray crystal structure shows that three different intermediates reside in different subunits of a single homotetrameric enzyme molecule. One of these is the key substrate-alkylperoxo-Fe2+ intermediate, which has been p...

  17. Enzymology of the carotenoid cleavage dioxygenases: reaction mechanisms, inhibition and biochemical roles. (United States)

    Harrison, Peter J; Bugg, Timothy D H


    Carotenoid cleavage dioxygenases (CCDs) are a large family of non-heme iron (II) dependent enzymes. CCDs catalyse the selective oxidative cleavage of carotenoids to produce apocarotenoids. Apocarotenoid derived molecules form important signalling molecules in plants in the form of abscisic acid and strigolactone and in mammals in the form of retinal. Very little is known biochemically about the CCDs and only a handful of CCDs have been biochemically characterised. Mechanistically, debate surrounds whether CCDs utilise a mono or dioxygenase mechanism. Here, we review the biochemical roles of CCDs, discuss the mechanisms by which CCD cleavage is proposed to occur, and discuss recent reports of selective CCD enzyme inhibitors.

  18. Cloning and Characterization of a Sulfonate/α-Ketoglutarate Dioxygenase from Saccharomyces cerevisiae


    Hogan, Deborah A; Auchtung, Thomas A.; Hausinger, Robert P.


    The Saccharomyces cerevisiae open reading frame YLL057c is predicted to encode a gene product with 31.5% amino acid sequence identity to Escherichia coli taurine/α-ketoglutarate dioxygenase and 27% identity to Ralstonia eutropha TfdA, a herbicide-degrading enzyme. Purified recombinant yeast protein is shown to be an Fe(II)-dependent sulfonate/α-ketoglutarate dioxygenase. Although taurine is a poor substrate, a variety of other sulfonates are utilized, with the best natural substrates being is...

  19. Molecular cloning and characterization of cDNAs encoding carotenoid cleavage dioxygenase in bitter melon (Momordica charantia). (United States)

    Tuan, Pham Anh; Park, Sang Un


    Carotenoid cleavage dioxygenases (CCDs) are a family of enzymes that catalyze the oxidative cleavage of carotenoids at various chain positions to form a broad spectrum of apocarotenoids, including aromatic substances, pigments and phytohormones. Using the rapid amplification of cDNA ends (RACE) PCR method, we isolated three cDNA-encoding CCDs (McCCD1, McCCD4, and McNCED) from Momordica charantia. Amino acid sequence alignments showed that they share high sequence identity with other orthologous genes. Quantitative real-time RT PCR (reverse transcriptase PCR) analysis revealed that the expression of McCCD1 and McCCD4 was highest in flowers, and lowest in roots and old leaves (O-leaves). During fruit maturation, the two genes displayed differential expression, with McCCD1 peaking at mid-stage maturation while McCCD4 showed the lowest expression at that stage. The mRNA expression level of McNCED, a key enzyme involved in abscisic acid (ABA) biosynthesis, was high during fruit maturation and further increased at the beginning of seed germination. When first-leaf stage plants of M. charantia were exposed to dehydration stress, McNCED mRNA expression was induced primarily in the leaves and, to a lesser extend, in roots and stems. McNCED expression was also induced by high temperature and salinity, while treatment with exogenous ABA led to a decrease. These results should be helpful in determining the substrates and cleavage sites catalyzed by CCD genes in M. charantia, and also in defining the roles of CCDs in growth and development, and in the plant's response to environmental stress. Copyright © 2012 Elsevier GmbH. All rights reserved.

  20. MEDV-13 for QSRR of 62 Polychlorinated Naphthalenes

    Institute of Scientific and Technical Information of China (English)


    A molecular electronegativity distance vector based on 13 atomic types (MEDV-13) is used to describe the structures of 62 polychlorinated naphthalene (PCN) congeners and related to the gas chromatographic relative retention indices (RIs) of PCNs. Using multiple linear regression, a 4-variable quantitative structure(retention relationship (QSRR) with the correlation coefficient of estimations (r) being 0.9912 and the root mean square error of estimations (RMSEE) being 31.4 and the correlation coefficient of predictions (q) and the root mean square error of predictions (RMSEP) in the leave-one-out procedure are 0.9898 and 33.76, respectively.

  1. An ab initio Valence Bond Study on Cyclopenta-Fused Naphthalenes and Fluoranthenes

    NARCIS (Netherlands)

    Havenith, R.W.A.; van Lenthe, J.H.; Jenneskens, L.W.


    To probe the effect of external cyclopenta-fusion on a naphthalene core, ab initio valence bond (VB) calculations have been performed, using strictly atomic benzene p-orbitals and p-orbitals that are allowed to delocalize, on naphthalene (1), acenaphthylene (2), pyracylene (3), cyclopenta[b,c]-acena

  2. 40 CFR 721.10045 - Diazotized substituted heteromonocycle coupled with naphthalene sulfonic acid derivative, nickel... (United States)


    ... coupled with naphthalene sulfonic acid derivative, nickel complex, alkaline salt (generic). 721.10045... derivative, nickel complex, alkaline salt (generic). (a) Chemical substance and significant new uses subject... heteromonocycle coupled with naphthalene sulfonic acid derivative, nickel complex, alkaline salt (PMN P-02-737)...

  3. Natural CD4+ T-cell responses against indoleamine 2,3-dioxygenase

    DEFF Research Database (Denmark)

    Munir, Shamaila; Larsen, Stine Kiaer; Iversen, Trine Zeeberg


    The enzyme indoleamine 2,3-dioxygenase (IDO) contributes to immune tolerance in a variety of settings. In cancer IDO is expressed within the tumor itself as well as in antigen-presenting cells in tumor-draining lymph nodes, where it endorses the establishment of peripheral immune tolerance to tum...

  4. An iron-oxygen intermediate formed during the catalytic cycle of cysteine dioxygenase. (United States)

    Tchesnokov, E P; Faponle, A S; Davies, C G; Quesne, M G; Turner, R; Fellner, M; Souness, R J; Wilbanks, S M; de Visser, S P; Jameson, G N L


    Cysteine dioxygenase is a key enzyme in the breakdown of cysteine, but its mechanism remains controversial. A combination of spectroscopic and computational studies provides the first evidence of a short-lived intermediate in the catalytic cycle. The intermediate decays within 20 ms and has absorption maxima at 500 and 640 nm.

  5. Spontaneous cytotoxic T-Cell reactivity against indoleamine 2,3-dioxygenase-2

    DEFF Research Database (Denmark)

    Sørensen, Rikke Bæk; Køllgaard, Tania; Andersen, Rikke Sick;


    Several lines of data have suggested a possible link between the indoleamine 2,3-dioxygenase (IDO)-like protein IDO2 and cancer. First, IDO2 expression has been described in human tumors, including renal, gastric, colon, and pancreatic tumors. Second, the apparent selective inhibition of IDO2...

  6. The S. pombe histone H2A dioxygenase Ofd2 regulates gene expression during hypoxia.

    Directory of Open Access Journals (Sweden)

    David Lando

    Full Text Available Post-translational modification of histone proteins are known to play an important role in regulating chromatin structure. In an effort to find additional histone modifications we set out to screen enzymes of the 2-oxoglutarate and Fe(II-dependent (2-OG-Fe(II dioxygenase family for activity towards histones. Here we show that the Schizosaccharomyces pombe 2-OG-Fe(II dioxygenase domain containing protein-2 (Ofd2 is a histone H2A dioxygenase enzyme. Using a combination of peptide screening and alanine scanning substitution analysis, we identify an HxxLR motif in H2A as a substrate for Ofd2 activity. Transcriptional profiling indicates that Ofd2 regulates the repression of oxidative phosphorylation genes during hypoxic stress. We show that Ofd2 is recruited to the 5' end of oxidative phosphorylation genes specifically during hypoxia and that it uses its dioxygenase activity to regulate their transcription. Together, these data uncover a novel histone H2A modifying activity involved in the regulation of gene expression during hypoxia.

  7. Structures of aminophenol dioxygenase in complex with intermediate, product and inhibitor. (United States)

    Li, De Feng; Zhang, Jia Yue; Hou, Yan Jie; Liu, Lei; Hu, Yonglin; Liu, Shuang Jiang; Wang, Da Cheng; Liu, Wei


    Dioxygen activation by nonhaem Fe(II) enzymes containing the 2-His-1-carboxylate facial triad has been extensively studied in recent years. Here, crystal structures of 2-aminophenol 1,6-dioxygenase, an enzyme that represents a minor group of extradiol dioxygenases and that catalyses the ring opening of 2-aminophenol, in complex with the lactone intermediate (4Z,6Z)-3-iminooxepin-2(3H)-one and the product 2-aminomuconic 6-semialdehyde and in complex with the suicide inhibitor 4-nitrocatechol are reported. The Fe-ligand binding schemes observed in these structures revealed some common geometrical characteristics that are shared by the published structures of extradiol dioxygenases, suggesting that enzymes that catalyse the oxidation of noncatecholic compounds are very likely to utilize a similar strategy for dioxygen activation and the fission of aromatic rings as the canonical mechanism. The Fe-ligation arrangement, however, is strikingly enantiomeric to that of all other 2-His-1-carboxylate enzymes apart from protocatechuate 4,5-dioxygenase. This structural variance leads to the generation of an uncommon O(-)-Fe(2+)-O(-) species prior to O(2) binding, which probably forms the structural basis on which APD distinguishes its specific substrate and inhibitor, which share an analogous molecular structure.

  8. A biological pathway linking inflammation and depression: activation of indoleamine 2,3-dioxygenase

    Directory of Open Access Journals (Sweden)

    Christmas DM


    Full Text Available David M Christmas, JP Potokar, Simon JC DaviesAcademic Unit of Psychiatry, School of Social and Community Medicine, University of Bristol, Bristol, UK A presentation relating to this manuscript was made by Dr David Christmas at the 9th International Meeting on Clinical Pharmacology in Psychiatry (9th IMCPP in Copenhagen, Denmark in September 2010Abstract: This article highlights the evidence linking depression to increased inflammatory drive and explores putative mechanisms for the association by reviewing both preclinical and clinical literature. The enzyme indoleamine 2,3-dioxygenase is induced by proinflammatory cytokines and may form a link between immune functioning and altered neurotransmission, which results in depression. Increased indoleamine 2,3-dioxygenase activity may cause both tryptophan depletion and increased neurotoxic metabolites of the kynurenine pathway, two alterations which have been hypothesized to cause depression. The tryptophan-kynurenine pathway is comprehensively described with a focus on the evidence linking metabolite alterations to depression. The use of immune-activated groups at high risk of depression have been used to explore these hypotheses; we focus on the studies involving chronic hepatitis C patients receiving interferon-alpha, an immune activating cytokine. Findings from this work have led to novel strategies for the future development of antidepressants including inhibition of indoleamine 2,3-dioxygenase, moderating the cytokines which activate it, or addressing other targets in the kynurenine pathway.Keywords: depression, inflammation, indoleamine 2,3-dioxygenase, kynurenine, serotonin, tryptophan


    Naphthalene is an important industrial chemical, which has recently been shown to cause tumors of the respiratory tract in rodents. It is thought that one or more reactive metabolites of naphthalene, namely, naphthalene-1,2-oxide (NPO), 1,2-naphthoquinone (1,2-NPQ), and 1,4-na...

  10. Avoidance of low doses of naphthalene by Collembola

    Energy Technology Data Exchange (ETDEWEB)

    Boitaud, Laetitia [Museum National d' Histoire Naturelle, CNRS UMR 5176, 4 avenue du Petit-Chateau, 91800 Brunoy (France); Salmon, Sandrine [Museum National d' Histoire Naturelle, CNRS UMR 5176, 4 avenue du Petit-Chateau, 91800 Brunoy (France); Bourlette, Celine [Museum National d' Histoire Naturelle, CNRS UMR 5176, 4 avenue du Petit-Chateau, 91800 Brunoy (France); Ponge, Jean-Francois [Museum National d' Histoire Naturelle, CNRS UMR 5176, 4 avenue du Petit-Chateau, 91800 Brunoy (France)]. E-mail:


    The introduction of behavioural aspects of soil animals in ecological risk assessment would allow us to better assess soil quality, all the more if a range of animal populations are considered. We compared the avoidance behaviour of several strains of springtails (Arthropoda: Collembola) obtained from different soils. Naphthalene, a polycyclic aromatic hydrocarbon (PAH), widely represented in soils polluted with hydrocarbons, was tested in aqueous solutions on nine springtail species issuing from four sites. Fine quartz sand saturated with an aqueous solution of naphthalene was avoided by most of the tested species, avoidance being, however, detected down to a concentration of 0.030 mg L{sup -1}. Folsomia candida (Isotomidae) was shown to be relatively tolerant to pollutants compared to other Collembola such as Mesaphorura macrochaeta, Mesaphorura yosii (Onychiuridae), Parisotoma notabilis (Isotomidae) and Arrhopalites caecus (Arrhopalitidae). Differences between strains could not be explained by properties of the original soils. - PAH avoidance by soil springtails is species-specific and differs among populations of the same species.

  11. 4-Nitrocatechol as a colorimetric probe for non-heme iron dioxygenases. (United States)

    Tyson, C A


    4-Nitrocatechol is examined as an active site probe for non-heme iron dioxygenases and found to be of value, particularly with those containing iron in the Fe(II) oxidation state. 4-Nitrocatechol is astrong competitive inhibitor of substrate oxygenation by protocatechuate 3,4-dioxygenase, forming a reversible complex with this enzyme, and by pyrocatechase. The number of binding sites per enzyme molecule titrated spectrophotometrically with 4-nitrocatechol agrees with results from previous studies with either the principal substrate or other analogues, as expected of an effective probe. Despite these facts and the observation that both enzymes cleave the same substrates at the same carbon-carbon bond, the optical and electron paramagnetic resonance (EPR) spectra of their 4-nitrocatechol complexes are remarkably different. The 4-nitocatechol-protocatechuate 3,4-dioxygenase optical spectra resemble that of the 4-nitrocatecholate ion shifted 20 to 30 nm to longer wavelength. Concomitant with this change the EPR signal centered at g equal 4.28 shows increased rhombicity (g values at 4.74, 4.28, and 3.74). In contrast, the spectrum of the 4-nitrocatechol-pyrocatechase complex has a maximum at the same wavelength as that of a 1:1 solution of free Fe(II) and 4-nitrocatechol in the absence of enzyme after titration of the catecholic protons with base and the g equal 4.28 EPR signal is not resolved at liquid N-2 temperature. These changes are interpreted as resulting in part from a pronounced change in the ligand fields about the irons at the active sites which in the case of protocatechuate 3,4-dioxygenase leads to enzyme inactivation. The results also are the first indication that substrate analogues change their ionization form upon complexation with Fe (III) dioxygenases. The interaction of the probe with metapyrocatechase, an Fe(III) containing dioxygenase, and with several additional oxygenases and hydroperoxidases is also briefly examined. The probe is not specific

  12. Expression of tryptophan 2,3-dioxygenase and production of kynurenine pathway metabolites in triple transgenic mice and human Alzheimer's disease brain.

    Directory of Open Access Journals (Sweden)

    Wei Wu

    Full Text Available To assess the role of the kynurenine pathway in the pathology of Alzheimer's disease (AD, the expression and localization of key components of the kynurenine pathway including the key regulatory enzyme tryptophan 2,3 dioxygenase (TDO, and the metabolites tryptophan, kynurenine, kynurenic acid, quinolinic acid and picolinic acid were assessed in different brain regions of triple transgenic AD mice. The expression and cell distribution of TDO and quinolinic acid, and their co-localization with neurofibrillary tangles and senile β amyloid deposition were also determined in hippocampal sections from human AD brains. The expression of TDO mRNA was significantly increased in the cerebellum of AD mouse brain. Immunohistochemistry demonstrated that the density of TDO immuno-positive cells was significantly higher in the AD mice. The production of the excitotoxin quinolinic acid strongly increased in the hippocampus in a progressive and age-dependent manner in AD mice. Significantly higher TDO and indoleamine 2,3 dioxygenase 1 immunoreactivity was observed in the hippocampus of AD patients. Furthermore, TDO co-localizes with quinolinic acid, neurofibrillary tangles-tau and amyloid deposits in the hippocampus of AD. These results show that the kynurenine pathway is over-activated in AD mice. This is the first report demonstrating that TDO is highly expressed in the brains of AD mice and in AD patients, suggesting that TDO-mediated activation of the kynurenine pathway could be involved in neurofibrillary tangles formation and associated with senile plaque. Our study adds to the evidence that the kynurenine pathway may play important roles in the neurodegenerative processes of AD.

  13. Protective effect of erdosteine against naphthalene-induced oxidative stress in rats

    Directory of Open Access Journals (Sweden)

    Özer Şehirli


    Full Text Available In this study the role of free radicals in naphthalene-induced toxicity and the protection by erdosteine are investigated. Female Sprague-Dawley rats were treated with a single oral dose of 1100 mg naphthalene/kg in corn oil. Erdosteine was given 50 mg/kg/day orally for 3 days before naphthalene treatment and rats were decapitated 24 hours after naphthalene administration. Liver and kidney tissue samples were taken for determination of malondialdehyde (MDA, glutathione (GSH, Na+, K+-ATPase and myeloperoxidase (MPO activities. Aspartate aminotransferase (AST, alanine aminotransferase (ALT, blood urea nitrogen (BUN and creatinine levels and lactate dehydrogenase (LDH activity were measured in the serum samples, while TNF-α, IL-1β, IL-6, 8-hydroxy-2'-deoxyguanosine (8- OHdG and total antioxidant capacity (AOC were assayed in plasma samples. Naphthalene administration caused a significant decrease in tissue GSH levels, Na+, K+-ATPase activity and plasma AOC levels, which was accompanied with significant increases in tissue MDA levels and MPO activity. Moreover the pro-inflammatory mediators (TNF-α, IL-β, IL-6, 8- OHdG, LDH activity, AST, ALT, creatinine and BUN levels were significantly increased in the naphthalene group. On the other hand erdosteine treatment prevented all these biochemical changes induced by naphthalene. In conclusion, it seems likely that erdostein protects tissues by inhibiting neutrophil infiltration, balancing the oxidant–antioxidant status and regulating the generation of inflammatory mediators.

  14. Treatment of naphthalene derivatives with iron-carbon micro-electrolysis

    Institute of Scientific and Technical Information of China (English)

    WANG Yu-ping; WANG Lian-jun; PENG Pan-ying; LU Tian-hong


    The degradation of five naphthalene derivatives in the simulated wastewater was investigated using the iron-carbon micro-electrolysis method. The optimal initial pH of solution and adsorption of iron-carbon and removal efficiency of the total organic carbon(TOC) were investigated. The results show that the removal efficiency of the naphthalene derivatives can reach 48.9%-92.6% and the removal efficiency of TOC is 42.8%-78.0% for the simulated wastewater with 200 mg/L naphthalene derivatives at optimal pH of 2.0-2.5 after 120 min treatment. The degradation of five naphthalene derivatives with the micro-electrolysis shows the apparent first-order kinetics and the order of removal efficiency of the naphthalene derivatives is sodium 2-naphthalenesulfonate, 2-naphthol, 2, 7-dihydroxynaphthalene, 1-naphthamine, 1-naphthol-8-sulfonic acid in turn. It is illustrated that the substituents of the naphthalene ring can affect the removal efficiency of naphthalene due to their electron-withdrawing or electron-donating ability.

  15. The use of solvents for purifying industrial naphthalene from coal tar distilled oils

    Energy Technology Data Exchange (ETDEWEB)

    Azpiroz, Gonzalez; Blanco, C. Gutierrez; Banciella, Casal [Instituto Nacional del Carbon, CSIC c/Francisco Pintado Fe, 26, 33011 Oviedo (Spain)


    The organic chemistry industry is based on organic compounds derived from coal, petroleum and gas. Coal tars derived from the carbonisation process are complex mixtures, of which the polycyclic aromatic hydrocarbons (PAH's) are the main component. One of the most important PAH's is naphthalene, which represents between 10 to 12% of the sample. In recent years, new applications for industrial naphthalene have been developed. However, the naphthalene required for high level industry must be extremely pure. New routes in the purification process are being studied to reduce the economic cost and environmental impact resulting from the increase in demand for pure naphthalene. Any alternative method to that of sublimation for purification in the distillation process and/or catalytic hydrogenation must improve the quality of industrial naphthalene, to make it suitable for the new applications. In the present work, an alternative method for purifying industrial naphthalene has been investigated. A new process based on extraction with solvents such as phosphoric acid and acetic acid is reported and discussed. Industrial naphthalene was purified by means of a new technique and the stability and good properties of the product were verified. (author)

  16. Advances in the environmental analysis of polychlorinated naphthalenes and toxaphene. (United States)

    Kucklick, John R; Helm, Paul A


    Recent advances in the analysis of the chlorinated environmental pollutants polychlorinated naphthalenes (PCNs) and toxaphene are highlighted in this review. Method improvements have been realized for PCNs over the past decade in isomer-specific quantification, peak resolution, and the availability of mass-labeled standards. Toxaphene method advancements include the application of new capillary gas chromatographic (GC) stationary phases, mass spectrometry (MS), especially ion trap MS, and the availability of Standard Reference Materials that are value-assigned for total toxaphene and selected congener concentrations. An area of promise for the separation of complex mixtures such as PCNs and toxaphene is the development of multidimensional GC techniques. The need for continued advancements and efficiencies in the analysis of contaminants such as PCNs and toxaphene remains as monitoring requirements for these compound classes are established under international agreements.

  17. Permselectivity and conductivity of membranes based on sulfonated naphthalenic copolyimides. (United States)

    Guo, Xiaoxia; Zhai, Fengxia; Fang, Jianhua; Laguna, Maria Fe; López-Gonzalez, Mar; Riande, Evaristo


    A series of sulfonated diamines were synthesized which were further used to obtain relevant sulfonated naphthalenic copolyimides. Tough and ductile membranes were cast from solutions of the copolyimides in dimethylsulfoxide, which exhibit high ion-exchange capacity and high water uptake. The protonic conductivity of the membranes equilibrated with water lies in the range 1.0-8.6 S/m, at 25 degrees C, being of the same order of magnitude as that reported for perfluorinated acidic membranes. The values of the transport number of protons and sodium ions are close to the unit for very dilute electrolyte solutions, but they lie in the range 0.80-0.90 for moderate concentrations. The membranes exhibit rather high electroosmotic permeability. The similarity of the diffusion coefficients of protons and water in the membranes suggests that the Grottus mechanism governs the protonic conductive process in the acidic membranes equilibrated with water.

  18. Deregulation of the humoral immune response of the oyster (Crassostrea corteziensis exposed to naphthalene

    Directory of Open Access Journals (Sweden)

    KJG Díaz-Resendiz


    Full Text Available Naphthalene is one of the most abundant polycyclic aromatic hydrocarbons (PAH in aquatic ecosystems, and it can cause alterations in the immune system of organisms that live there. The oyster Crassostrea corteziensis is a species native to the Eastern Tropical Pacific, with economic and ecological importance. In this study, we evaluated the effect of subacute exposure to sublethal concentrations of naphthalene on the parameters of the humoral immune response (lysozyme and phenoloxidase activity, and nitric oxide production on the oyster C. corteziensis. The results indicated that naphthalene, under the conditions tested, significantly deregulated the parameters evaluated. This could increase susceptibility to infections and therefore affect oyster production.

  19. Prognostic Significance of Promoter DNA Hypermethylation of cysteine dioxygenase 1 (CDO1 Gene in Primary Breast Cancer.

    Directory of Open Access Journals (Sweden)

    Naoko Minatani

    Full Text Available Using pharmacological unmasking microarray, we identified promoter DNA methylation of cysteine dioxygenase 1 (CDO1 gene in human cancer. In this study, we assessed the clinicopathological significance of CDO1 methylation in primary breast cancer (BC with no prior chemotherapy. The CDO1 DNA methylation was quantified by TaqMan methylation specific PCR (Q-MSP in 7 BC cell lines and 172 primary BC patients with no prior chemotherapy. Promoter DNA of the CDO1 gene was hypermethylated in 6 BC cell lines except SK-BR3, and CDO1 gene expression was all silenced at mRNA level in the 7 BC cell lines. Quantification of CDO1 methylation was developed using Q-MSP, and assessed in primary BC. Among the clinicopathologic factors, CDO1 methylation level was not statistically significantly associated with any prognostic factors. The log-rank plot analysis elucidated that the higher methylation the tumors harbored, the poorer prognosis the patients exhibited. Using the median value of 58.0 as a cut-off one, disease specific survival in BC patients with CDO1 hypermethylation showed significantly poorer prognosis than those with hypomethylation (p = 0.004. Multivariate Cox proportional hazards model identified that CDO1 hypermethylation was prognostic factor as well as Ki-67 and hormone receptor status. The most intriguingly, CDO1 hypermethylation was of robust prognostic relevance in triple negative BC (p = 0.007. Promoter DNA methylation of CDO1 gene was robust prognostic indicator in primary BC patients with no prior chemotherapy. Prognostic relevance of the CDO1 promoter DNA methylation is worthy of being paid attention in triple negative BC cancer.

  20. The cystine/glutamate antiporter regulates indoleamine 2,3-dioxygenase protein levels and enzymatic activity in human dendritic cells. (United States)

    Mattox, Mildred L; D'Angelo, June A; Grimes, Zachary M; Fiebiger, Edda; Dickinson, Bonny L


    Indoleamine 2,3-dioxygenase (IDO) is the rate-limiting enzyme in the tryptophan-catabolizing pathway and a key regulator of peripheral immune tolerance. As the suppressive effects of IDO are predominantly mediated by dendritic cells (DCs) and IDO-competent DCs promote long-term immunologic tolerance, a detailed understanding of how IDO expression and activity is regulated in these cells is central to the rational design of therapies to induce robust immune tolerance. We previously reported that the cystine/glutamate antiporter modulates the functional expression of IDO in human monocyte-derived DCs. Specifically, we showed that blocking antiporter uptake of cystine significantly increased both IDO mRNA and IDO enzymatic activity and that this correlated with impaired DC presentation of exogenous antigen to T cells via MHC class II and the cross-presentation pathway. The antiporter regulates intracellular and extracellular redox by transporting cystine into the cell in exchange for glutamate. Intracellular cystine is reduced to cysteine to support biosynthesis of the major cellular antioxidant glutathione and cysteine is exported from the cell where it functions as an extracellular antioxidant. Here we show that antiporter control of IDO expression in DCs is reversible, independent of interferon-γ, regulated by redox, and requires active protein synthesis. These findings highlight a role for antiporter regulation of cellular redox as a critical control point for modulating IDO expression and activity in DCs. Thus, systemic disease and aging, processes that perturb redox homeostasis, may adversely affect immunity by promoting the generation of IDO-competent DCs.

  1. Characterization of catechol 2,3-dioxygenase from Planococcus sp. strain S5 induced by high phenol concentration. (United States)

    Hupert-Kocurek, Katarzyna; Guzik, Urszula; Wojcieszyńska, Danuta


    This study aimed at characterization of a new catechol 2,3-dioxygenase isolated from a Gram-positive bacterium able to utilize phenol as the sole carbon and energy source. Planococcus sp. strain S5 grown on 1 or 2 mM phenol showed activity of both a catechol 1,2- and catechol 2,3-dioxygenase while at a higher concentrations of phenol only catechol 2,3-dioxygenase activity was observed. The enzyme was optimally active at 60°C and pH 8.0. Kinetic studies showed that the K(m) and V(max) of the enzyme were 42.70 µM and 329.96 mU, respectively. The catechol 2,3-dioxygenase showed the following relative meta-cleavage activities for various catechols tested: catechol (100%), 3-methylcatechol (13.67%), 4-methylcatechol (106.33%) and 4-chlorocatechol (203.80%). The high reactivity of this enzyme towards 4-chlorocatechol is different from that observed for other catechol 2,3-dioxygenases. Nucleotide sequencing and homology search revealed that the gene encoding the S5 catechol 2,3-dioxygenase shared the greatest homology with the known genes encoding isoenzymes from Gram-negative Pseudomonas strains.

  2. Thiol dioxygenase turnover yields benzothiazole products from 2-mercaptoaniline and O2-dependent oxidation of primary alcohols. (United States)

    Morrow, William P; Sardar, Sinjinee; Thapa, Pawan; Hossain, Mohammad S; Foss, Frank W; Pierce, Brad S


    Thiol dioxygenases are non-heme mononuclear iron enzymes that catalyze the O2-dependent oxidation of free thiols (-SH) to produce the corresponding sulfinic acid (-SO2(-)). Previous chemical rescue studies identified a putative Fe(III)-O2(-) intermediate that precedes substrate oxidation in Mus musculus cysteine dioxygenase (Mm CDO). Given that a similar reactive intermediate has been identified in the extradiol dioxygenase 2, 3-HCPD, it is conceivable that these enzymes share other mechanistic features with regard to substrate oxidation. To explore this possibility, enzymatic reactions with Mm CDO (as well as the bacterial 3-mercaptopropionic acid dioxygenase, Av MDO) were performed using a substrate analogue (2-mercaptoaniline, 2ma). This aromatic thiol closely approximates the catecholic substrate of homoprotocatechuate of 2, 3-HPCD while maintaining the 2-carbon thiol-amine separation preferred by Mm CDO. Remarkably, both enzymes exhibit 2ma-gated O2-consumption; however, none of the expected products for thiol dioxygenase or intra/extradiol dioxygenase reactions were observed. Instead, benzothiazoles are produced by the condensation of 2ma with aldehydes formed by an off-pathway oxidation of primary alcohols added to aqueous reactions to solubilize the substrate. The observed oxidation of 1º-alcohols in 2ma-reactions is consistent with the formation of a high-valent intermediate similar to what has been reported for cytochrome P450 and mononuclear iron model complexes. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Cloning, expression, and characterization of catechol 1,2-dioxygenase from a phenol-degrading Candida tropicalis JH8 strain. (United States)

    Long, Yan; Yang, Sheng; Xie, Zhixiong; Cheng, Li


    The sequence cato encoding catechol 1,2-dioxygenase from Candida tropicalis JH8 was cloned, sequenced, and expressed in Escherichia coli. The sequence cato contained an ORF of 858 bp encoding a polypeptide of 285 amino acid residues. The recombinant catechol 1,2-dioxygenase exists as a homodimer structure with a subunit molecular mass of 32 KD. Recombinant catechol 1,2-dioxygenase was unstable below pH 5.0 and stable from pH 7.0 to 9.0; its optimum pH was at 7.5. The optimum temperature for the enzyme was 30°C, and it possessed a thermophilic activity within a broad temperature range. Under the optimal conditions with catechol as substrate, the Km and Vmax of recombinant catechol 1,2-dioxygenase were 9.2 µM and 0.987 µM/min, respectively. This is the first article presenting cloning and expressing in E. coli of catechol 1,2-dioxygenase from C. tropicalis and characterization of the recombinant catechol 1,2-dioxygenase.

  4. Discovery of Key Dioxygenases that Diverged the Paraherquonin and Acetoxydehydroaustin Pathways in Penicillium brasilianum. (United States)

    Matsuda, Yudai; Iwabuchi, Taiki; Fujimoto, Takayuki; Awakawa, Takayoshi; Nakashima, Yu; Mori, Takahiro; Zhang, Huiping; Hayashi, Fumiaki; Abe, Ikuro


    Paraherquonin (1), a fungal meroterpenoid produced by Penicillium brasilianum NBRC 6234, possesses a unique, highly congested hexacyclic molecular architecture. Here we identified the biosynthetic gene cluster of 1 (the prh cluster) and elucidated the pathway up to berkeleydione (2), which serves as the key intermediate for the biosynthesis of 1 as well as many other meroterpenoids. Interestingly, the nonheme iron and α-ketoglutarate-dependent dioxygenase PrhA constructs the cycloheptadiene moiety to afford 2 from preaustinoid A1 (6), probably via the homoallyl-homoallyl radical rearrangement. Additionally, another fungal strain, P. brasilianum MG11, which produces acetoxydehydroaustin instead of 1, was found to have a gene cluster nearly identical to the prh cluster. The dioxygenase encoded by the cluster shares 92% sequence identity with PrhA, and also accepts 6 but produces preaustinoid A3 (17) with a spiro-lactone system, generating a diverging point for the two different meroterpenoid pathways in the same species.

  5. A two-electron shell game: Intermediates of the extradiol-cleaving catechol dioxygenases (United States)

    Fielding, Andrew J.


    Extradiol catechol ring-cleaving dioxygenases function by binding both the organic substrate and O2 at a divalent metal center in the active site. They have proven to be a particularly versatile group of enzymes with which to study the O2 activation process. Here, recent studies of homoprotocatechuate 2,3-dioxygenase (HPCD) are summarized with the objective of showing how Nature can utilize the enzyme structure and the properties of the metal and the substrate to select among many possible chemical paths to achieve both specificity and efficiency. Possible intermediates in the mechanism have been trapped by swapping active site metals, introducing active site amino acid substituted variants, and using substrates with different electron donating capacities. While each of these intermediates could form part of a viable reaction pathway, kinetic measurements significantly limit the likely candidates. Structural, kinetic, spectroscopic and computational analysis of the various intermediates shed light on how catalytic efficiency can be achieved. PMID:24615282

  6. Green and highly efficient synthesis of perylene and naphthalene bisimides in nothing but water. (United States)

    Baumgartner, Bettina; Svirkova, Anastasiya; Bintinger, Johannes; Hametner, Christian; Marchetti-Deschmann, Martina; Unterlass, Miriam M


    High-purity, symmetrically substituted perylene and naphthalene bisimides were obtained by hydrothermal condensation of monoamines with the corresponding bisanhydride. The hydrothermal imidization proceeds quantitatively, without the need for organic solvents, catalysts or excess of the amines.

  7. Infrared Spectroscopy of Naphthalene Aggregation and Cluster Formation in Argon Matrices (United States)

    Roser, J. E.; Allamondola, L. J.


    Fourier-transform mid-infrared absorption spectra of mixed argon/naphthalene matrices at 5 K are shown with ratios of argon-to-naphthalene that vary from 1000 to 0. These spectra show the changes as naphthalene clustering and aggregation occurs, with moderate spectral shifts affecting the C-H vibrational modes and relatively small or no shifts to the C-C and C-C-C vibrational modes. The possible contribution of homogeneous naphthalene clusters to the interstellar unidentified infrared bands is discussed. The contribution of polycyclic aromatic hydrocarbon (PAH) clusters to the 7.7 micron emission plateau and the blue shading of the 12.7 micron emission band are identified as promising candidates for future research. In addition, since PAH clusters are model components of Jupiter and Titan's atmospheres, the information presented here may also be applicable to the spectroscopy of these objects.

  8. Purification and characterization of linoleate 8-dioxygenase from the fungus Gaeumannomyces graminis as a novel hemoprotein. (United States)

    Su, C; Oliw, E H


    The fungus Gaeumannomyces graminis, which causes the major root disease of wheat known as "take-all," can metabolize linoleic acid to (8R)-hydroperoxylinoleic acid. The enzyme linoleate 8-dioxygenase abstracts hydrogen and introduces molecular oxygen in an antarafacial way at C-8. We have now purified the enzyme 1000-fold to a specific activity of 1.8 micronol/min/mg of protein. Acetone powder of mycelia of G. graminis was subjected to extraction and ammonium sulfate precipitation with solubilization. The 8-dioxygenase was purified by hydrophobic interaction chromatography, size-exclusion chromatography, anion-exchange chromatography, and immobilized metal ion affinity chromatography. The active enzyme appeared to consist of four subunits since the active enzyme had an apparent molecular mass of 520 kDa determined by gel filtration, while SDS-polyacrylamide gel electrophoresis showed a protein band of 130 kDa. Spectroscopy indicated the presence of heme. The characteristic pyridine ferrohemochrome alpha-band was found at 557 nm and the beta-band at 525 nm. The purified protein showed an absorption maximum at 408 nm (gamma, Soret). The absorption maximum shifted to 429 nm after reduction with dithionite and to 421 nm after treatment of the reduced enzyme with carbon monoxide. BW A4C, a hydroxamic acid derivative, inhibited the enzyme by >90% at 10 microM. The pH optimum was 7.2-7.4, the isoelectric point was 5.2 by chromatofocusing, and the Km values were 8 microM for linoleic acid and 30 microM for oxygen. We conclude that linoleate 8-dioxygenase appears to be a tetrameric hemoprotein distinct from other fatty-acid dioxygenases.

  9. Novel carotenoid cleavage dioxygenase catalyzes the first dedicated step in saffron crocin biosynthesis

    KAUST Repository

    Frusciante, Sarah


    Crocus sativus stigmas are the source of the saffron spice and accumulate the apocarotenoids crocetin, crocins, picrocrocin, and safranal, responsible for its color, taste, and aroma. Through deep transcriptome sequencing, we identified a novel dioxygenase, carotenoid cleavage dioxygenase 2 (CCD2), expressed early during stigma development and closely related to, but distinct from, the CCD1 dioxygenase family. CCD2 is the only identified member of a novel CCD clade, presents the structural features of a bona fide CCD, and is able to cleave zeaxanthin, the presumed precursor of saffron apocarotenoids, both in Escherichia coli and in maize endosperm. The cleavage products, identified through high-resolution mass spectrometry and comigration with authentic standards, are crocetin dialdehyde and crocetin, respectively. In vitro assays show that CCD2 cleaves sequentially the 7,8 and 7′,8′ double bonds adjacent to a 3-OH-β-ionone ring and that the conversion of zeaxanthin to crocetin dialdehyde proceeds via the C30 intermediate 3-OH-β-apo-8′-carotenal. In contrast, zeaxanthin cleavage dioxygenase (ZCD), an enzyme previously claimed to mediate crocetin formation, did not cleave zeaxanthin or 3-OH-β-apo-8′-carotenal in the test systems used. Sequence comparison and structure prediction suggest that ZCD is an N-truncated CCD4 form, lacking one blade of the β-propeller structure conserved in all CCDs. These results constitute strong evidence that CCD2 catalyzes the first dedicated step in crocin biosynthesis. Similar to CCD1, CCD2 has a cytoplasmic localization, suggesting that it may cleave carotenoids localized in the chromoplast outer envelope.

  10. Ring-hydroxylating dioxygenases involved in PAH biodegradation : structure, function, biodiversity


    Jouanneau, Yves; Martin, Florence; Krivobok, Serge; Willison, John Christopher


    International audience; The first step in the biodegradation of PAHs by aerobic bacteria is catalyzed by metalloenzymes known as ring-hydroxylating dioxygenases (RHDs). Because of the hydrophobic nature and chemical resistance of PAHs, their initial attack by RHDs is a difficult reaction, which is critical to the whole degradation process. This chapter gives an overview of the current knowledge on the genetics, structure, catalytic mechanism and diversity of RHDs involved in PAH degradation. ...

  11. 4-Hydroxyphenylpyruvate dioxygenase inhibitors in combination with safeners: solutions for modern and sustainable agriculture. (United States)

    Ahrens, Hartmut; Lange, Gudrun; Müller, Thomas; Rosinger, Chris; Willms, Lothar; van Almsick, Andreas


    Inhibitors of 4-hydroxyphenylpyruvate dioxygenase (HPPD) prevent plant carotenoid pigment formation, which in turn leads to chlorophyll degradation. This "bleaching" herbicide mode of action provides weed-control products for various crops, such as rice, corn, and cereals. Combinations with suitable safeners allow the full exploitation of the potential of this compound class to selectively control major weed problems, including rapidly increasing cases of resistance against other important herbicide classes.

  12. Characterization of an indoleamine 2,3-dioxygenase-like protein found in humans and mice. (United States)

    Ball, Helen J; Sanchez-Perez, Angeles; Weiser, Silvia; Austin, Christopher J D; Astelbauer, Florian; Miu, Jenny; McQuillan, James A; Stocker, Roland; Jermiin, Lars S; Hunt, Nicholas H


    Indoleamine 2,3-dioxygenase (INDO) and tryptophan 2,3-dioxygenase (TDO) each catalyze the first step in the kynurenine pathway of tryptophan metabolism. We describe the discovery of another enzyme with this activity, indoleamine 2,3-dioxygenase-like protein (INDOL1), which is closely related to INDO and is expressed in mice and humans. The corresponding genes have a similar genomic structure and are situated adjacent to each other on human and mouse chromosome 8. They are likely to have arisen by gene duplication before the origin of the tetrapods. The expression of INDOL1 is highest in the mouse kidney, followed by epididymis, and liver. Expression of mouse INDOL1 was further localized to the tubular cells in the kidney and the spermatozoa. INDOL1 was assigned its name because of its structural similarity to INDO. We demonstrate that INDOL1 catalyses the conversion of tryptophan to kynurenine therefore a more appropriate nomenclature for the enzymes might be INDO-1 and INDO-2, or the more commonly-used abbreviations, IDO-1 and IDO-2. Although the two proteins have similar enzymatic activities, their different expression patterns within tissues and during malaria infection, suggests a distinct role for each protein. This identification of INDOL1 may help to explain the regulation of the diversity of physiological and patho-physiological processes in which the kynurenine pathway is involved.

  13. Loss of ETHE1, a mitochondrial dioxygenase, causes fatal sulfide toxicity in ethylmalonic encephalopathy. (United States)

    Tiranti, Valeria; Viscomi, Carlo; Hildebrandt, Tatjana; Di Meo, Ivano; Mineri, Rossana; Tiveron, Cecilia; Levitt, Michael D; Prelle, Alessandro; Fagiolari, Gigliola; Rimoldi, Marco; Zeviani, Massimo


    Ethylmalonic encephalopathy is an autosomal recessive, invariably fatal disorder characterized by early-onset encephalopathy, microangiopathy, chronic diarrhea, defective cytochrome c oxidase (COX) in muscle and brain, high concentrations of C4 and C5 acylcarnitines in blood and high excretion of ethylmalonic acid in urine. ETHE1, a gene encoding a beta-lactamase-like, iron-coordinating metalloprotein, is mutated in ethylmalonic encephalopathy. In bacteria, ETHE1-like sequences are in the same operon of, or fused with, orthologs of TST, the gene encoding rhodanese, a sulfurtransferase. In eukaryotes, both ETHE1 and rhodanese are located within the mitochondrial matrix. We created a Ethe1(-/-) mouse that showed the cardinal features of ethylmalonic encephalopathy. We found that thiosulfate was excreted in massive amounts in urine of both Ethe1(-/-) mice and humans with ethylmalonic encephalopathy. High thiosulfate and sulfide concentrations were present in Ethe1(-/-) mouse tissues. Sulfide is a powerful inhibitor of COX and short-chain fatty acid oxidation, with vasoactive and vasotoxic effects that explain the microangiopathy in ethylmalonic encephalopathy patients. Sulfide is detoxified by a mitochondrial pathway that includes a sulfur dioxygenase. Sulfur dioxygenase activity was absent in Ethe1(-/-) mice, whereas it was markedly increased by ETHE1 overexpression in HeLa cells and Escherichia coli. Therefore, ETHE1 is a mitochondrial sulfur dioxygenase involved in catabolism of sulfide that accumulates to toxic levels in ethylmalonic encephalopathy.

  14. Effect of nutrient conditions on the toxicity of naphthalene to Chlorella pyrenoidosa

    Institute of Scientific and Technical Information of China (English)

    Qingxia Kong; Lizhong Zhu; Xueyou Shen


    The toxicity of naphthalene to a freshwater microalga, Chlorella pyrenoidosa, and the subsequent recovery of algae from the damage were investigated under two nutrient conditions, either enriched with nitrogen (N) and phosphorus (P), or starved of N and P.Results showed that C.pyrenoidosa was more sensitive to naphthalene under N,P-enriched condition, and the inhibitory rate generally increased at first and then decreased gradually with the evaporation of naphthalene under both nutrient conditions.Enriched N, P reduced the inhibitory rate at initial naphthalene concentration of 5 and 10 mg/L, but enhanced it at 100 mg/L, at which more severe ultrastucture damages were found than those under N,P-starved condition.Observed damages included partly or totally disappearance of nucleolus,nuclear, and plasma membranes.According to the chlorophyll content and cell density measurements, C.pyrenoidosa could recover from naphthalene damage with initial concentrations ≤ 50 mg/L in 7 days under both nutrient conditions, while they could not recover if the initial concentration of naphthalene was at 100 mg/L.Under the N,P-starved condition, the inability of C.pyrenoidosa to recover from the naphthalene damage was consistent with the results of high inhibitory rate, low value of specific growth rate (SGR, 0.05 day-1), and the severe destruction of cell structure.However, under the N,P-enriched conditions, the observed lower inhibitory rate,higher value of SGR (0.55 day-1), and the intact cell structure of most cells suggested that algae could potentially recover from the naphthalene damage.

  15. Acute naphthalene toxicity presenting with metabolic acidosis:a rare complication

    Institute of Scientific and Technical Information of China (English)

    Karthick C Annamalai; Shrikiran A; Suneel C Mundkur; Chaitanya Varma PV


    Naphthalene moth ball poisoning in children can present with diagnostic and therapeutic challenges. A 2 year old boy who had accidentally consumed unknown number of moth balls presented 3 d later with vomiting, seizures, methemoglobinemia, hemolytic anemia and altered sensorium. He was managed with red blood cell transfusion, IV Methylene blue and Sodium bicarbonate. Clinical and laboratory parameters normalized. We describe this case as ingestional naphthalene poisoning with rare manifestation of metabolic acidosis, with a good outcome after treatment.

  16. Expression Pattern and Clinicopathological Relevance of the Indoleamine 2,3-Dioxygenase 1/Tryptophan 2,3-Dioxygenase Protein in Colorectal Cancer

    Directory of Open Access Journals (Sweden)

    I-Chien Chen


    Full Text Available Aims. Cancer cells use the indoleamine 2,3-dioxygenase 1 (IDO1 pathway to suppress the host’s immune response in order to facilitate survival, growth, invasion, and metastasis of malignant cells. Higher IDO1 expression was shown to be involved in colorectal cancer (CRC progression and to be correlated with impaired clinical outcome. However, the potential correlation between the expression of IDO1 in a CRC population with a low mutation rate of the APC gene remains unknown. Material and Methods. Tissues and blood samples were collected from 192 CRC patients. The expressions of IDO1, tryptophan 2,3-dioxygenase (TDO2, and beta-catenin proteins were analyzed by immunohistochemistry. Microsatellite instability (MSI was determined by PCR amplification of microsatellite loci. Results. The results showed that high IDO1 or TDO2 protein expression was associated with characteristics of more aggressive phenotypes of CRC. For the first time, they also revealed a positive correlation between the abnormal expression of beta-catenin and IDO1 or TDO2 proteins in a CRC population with a low mutation rate of APC. Conclusion. We concluded that an IDO1-regulated molecular pathway led to abnormal expression of beta-catenin in the nucleus/cytoplasm of CRC patients with low mutation rate of APC, making IDO1 an interesting target for immunotherapy in CRC.

  17. Effect of the bioemulsifier emulsan on naphthalene mineralization from coal tar in aqueous systems

    Energy Technology Data Exchange (ETDEWEB)

    Skubal, K.L.; Luthy, R.G.


    Coal tar in aerobic aqueous systems was treated with purified emulsan, the anionic heteropolysaccharide bioemulsifier produced by Acinetobacter calcoaceticus RAG-1; with inocula of various concentrations of stationary phase RAG-1 cells; or with cell-free broth from stationary phase RAG-1 cultures. Naphthalene mineralization by a mixed PAH-degrading population was measured by recovering {sup 14}CO{sub 2} evolved during biotransformation of the [{sup 14}C]naphthalene-labeled coal tar. There was no evidence of naphthalene mineralization by RAG- 1 cells alone. The addition of emulsan, RAG-1 inocula, or cell-free broth to systems containing the PAH-degrading population did not significantly affect naphthalene mineralization in any of the systems tested. Coal tar in these experiments was present either as a free dense nonaqueous phase liquid (DNAPL), or as DNAPL imbibed into microporous silica particles. Emulsification of the tar was not observed in either case. The presence or absence of microporous silica did not affect the extent or rate of naphthalene mineralization, nor did the concentration of RAG-1 inocula or the amount of broth added. The addition of cell-free broth, emulsan, or RAG-1 cells late in the experiments did not yield significantly different results compared to initial addition of these substances. Thus, emulsan and related fractions from RAG-1 cultures were ineffective in altering naphthalene mineralization in this study.

  18. Native Fluorescence Detection Methods and Detectors for Naphthalene and/or Other Volatile Organic Compound Vapors (United States)

    Hug, William F. (Inventor); Bhartia, Rohit (Inventor); Reid, Ray D. (Inventor); Lane, Arthur L. (Inventor)


    Naphthalene, benzene, toluene, xylene, and other volatile organic compounds have been identified as serious health hazards. This is especially true for personnel working with JP8 jet fuel and other fuels containing naphthalene as well as other hazardous volatile organic compounds (VOCs). Embodiments of the invention are directed to methods and apparatus for near-real-time in-situ detection and accumulated dose measurement of exposure to naphthalene vapor and other hazardous gaseous VOCs. The methods and apparatus employ excitation of fluorophors native or endogenous to compounds of interest using light sources emitting in the ultraviolet below 300 nm and measurement of native fluorescence emissions in distinct wavebands above the excitation wavelength. The apparatus of some embodiments are cell-phone-sized sensor/dosimeter "badges" to be worn by personnel potentially exposed to naphthalene or other hazardous VOCs. The badge sensor of some embodiments provides both real time detection and data logging of exposure to naphthalene or other VOCs of interest from which both instantaneous and accumulated dose can be determined. The badges employ a new native fluorescence based detection method to identify and differentiate VOCs. The particular focus of some embodiments are the detection and identification of naphthalene while other embodiments are directed to detection and identification of other VOCs like aromatic hydrocarbons such as benzene, toluene, and xylene.

  19. Efficient removal of naphthalene-2-ol from aqueous solutions by solvent extraction. (United States)

    Shao, Jingjing; Cheng, Yan; Yang, Chunping; Zeng, Guangming; Liu, Wencan; Jiao, Panpan; He, Huijun


    Naphthalene-2-ol is a typical biologically recalcitrant pollutant in dye wastewater. Solvent extraction of naphthalene-2-ol from aqueous solutions using mixed solvents was investigated. Various extractants and diluents were evaluated, and the effects of volume ratio of extractant to diluent, initial pH, initial concentration of naphthalene-2-ol in aqueous solution, extraction time, temperature, volume ratio of organic phase to aqueous phase (O/A), stirring rate and extraction stages, on extraction efficiency were examined separately. Regeneration and reuse of the spent extractant were also investigated. Results showed that tributyl phosphate (TBP) achieved 98% extraction efficiency for naphthalene-2-ol in a single stage extraction, the highest among the 12 extractants evaluated. Extraction efficiency was optimized when cyclohexane and n-octane were used as diluents. The solvent combination of 20% TBP, 20% n-octanol and 60% cyclohexane (V/V) obtained the maximum extraction efficiency for naphthalene-2-ol, 99.3%, within 20min using three cross-current extraction stages under the following extraction conditions: O/A ratio of 1:1, initial pH of 3, 25°C and stirring rate of 150r/min. Recovery of mixed solvents was achieved by using 15% (W/W) NaOH solution at an O:A ratio of 1:1 and a contact time of 15min. The mixed solvents achieved an extraction capacity for naphthalene-2-ol stably higher than 90% during five cycles after regeneration.

  20. Effect of Microbes on the Adsorption of Naphthalene by Graphene Oxide

    Directory of Open Access Journals (Sweden)

    Xiaoyu Li


    Full Text Available The adsorption of naphthalene on graphene oxide (GO nanosheets in presence of Paecilomyces cateniannulatus (P. cateniannulatus was conducted by the batch techniques. The morphology and nanostructure of GO were characterized by SEM, TEM, FTIR, XPS, and Raman. The adsorption kinetics indicated that the adsorption of naphthalene on GO and GO + P. catenlannulatus can be satisfactorily fitted pseudo-first-order and pseudo-second-order kinetic model, respectively. P. catenlannulatus inhibited the adsorption of naphthalene on GO at pH4.0. The adsorption of naphthalene on GO and GO + P. catenlannulatus can be better fitted by Langmuir and Freundlich model, respectively. The change in the conformation of GO was responsible to the increased adsorption of naphthalene by SEM and TEM images. According to FTIR analysis, naphthalene was absorbed by the oxygen-containing functional groups of GO, especially for –COOH. The finding in the study provides the implication for the preconcentration and removal of polycyclic aromatic hydrocarbons from environment cleanup applications.

  1. Atmospheric emission of polychlorinated naphthalenes from iron ore sintering processes. (United States)

    Liu, Guorui; Zheng, Minghui; Du, Bing; Nie, Zhiqiang; Zhang, Bing; Liu, Wenbin; Li, Cheng; Hu, Jicheng


    Iron ore sintering processes constitute significant sources of dioxins, and studies have confirmed a close correlation between polychlorinated naphthalenes (PCNs) and dioxin formation. Thus, iron ore sintering processes are thought to be a potential source of PCNs, although intensive investigations on PCN emissions from sintering processes have not been carried out. Therefore, the aim of the present study was to qualify and quantify PCN emissions from nine sintering plants operating on different industrial scales. PCN concentrations ranged from 3 to 983 ng m(-3) (0.4-23.3 pg TEQ(PCN) m(-3)) and emission factors ranged from 14 to 1749 μg t(-1) (0.5-41.5 ng TEQ(PCN) t(-1)), with a geometric mean of 84 μg t(-1) (2.1 ng TEQ(PCN) t(-1)). The estimated annual emission of PCNs from sintering processes in China was 1390 mg TEQ(PCN). These figures will assist in the development of a PCN emissions inventory. Regarding emission characteristics, PCNs mainly comprised low-chlorinated homologs. The ratios of several characteristic PCN congeners were also measured and compared with those from other sources. Taken together, these results may provide useful information for identifying the sources of PCNs produced by iron ore sintering processes. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Naphthalene and acenaphthene decomposition by electron beam generated plasma application

    Energy Technology Data Exchange (ETDEWEB)

    Ostapczuk, A.; Hakoda, T.; Shimada, A.; Kojima, T. [Institute for Nuclear Chemistry and Technology, Warsaw (Poland)


    The application of non-thermal plasma generated by electron beam (EB) was investigated in laboratory scale to study decomposition of polycyclic aromatic hydrocarbons like naphthalene and acenaphthene in flue gas. PAH compounds were treated by EB with the dose up to 8 kGy in dry and humid base gas mixtures. Experimentally established G-values gained 1.66 and 3.72 mol/100 eV for NL and AC at the dose of 1 kGy. NL and AC removal was observed in dry base gas mixtures showing that the reaction with OH radical is not exclusive pathway to initialize PAH decomposition; however in the presence of water remarkably higher decomposition efficiency was observed. As by-products of NL decomposition were identified compounds containing one aromatic ring and oxygen atoms besides CO and CO{sub 2}. It led to the conclusion that PAH decomposition process in humid flue gas can be regarded as multi-step oxidative de-aromatization analogical to its atmospheric chemistry.

  3. A bimodal fluorescent and photocytotoxic naphthalene diimide for theranostic applications. (United States)

    Salvati, Erica; Doria, Filippo; Manoli, Francesco; D'Angelo, Carmen; Biroccio, Annamaria; Freccero, Mauro; Manet, Ilse


    We report on the potential of a water-soluble tetracationic quaternary ammonium naphthalene diimide (NDI) as multifunctional agent of interest for theranostic applications. The DNA binding ability of this NDI has been investigated. NDI exhibits high binding constants for G-quadruplex DNA but it is not selective for this type of DNA. Taking advantage of its intrinsic fluorescence and singlet oxygen sensitizing ability, cellular uptake, cytotoxicity and photocytotoxicity have been investigated. The intense emission in the red/NIR allows monitoring of the cell permeability of this charged tetracationic NDI, accumulating into the cell nuclei. No dark cytotoxicity has been observed on selected tumor cell lines. Irradiation of the NDI loaded cells with red light reduces cell viability up to 40% and causes a significant increase of the percentage of cells expressing γH2AX foci indicating DNA damage. The presence of distinct DNA damage foci inside the nucleus suggests that the NDI molecule might induce DNA damage in specific sites. To the best of our knowledge this is the first NDI exhibiting PDT activity at μM concentration combined with low dark cytotoxicity.

  4. Mechanism for Clastogenic Activity of Naphthalene. Quarterly Technical Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Buchholz, B. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)


    The project has two main goals: 1) Identify the types of adducts naphthalene (NA) forms with DNA and 2) determine whether adduct formation correlates with site selective tumor formation in defined subcompartments of the respiratory tract (respiratory and olfactory nasal epithelium and airways of mice, rats and rhesus monkeys). Five tasks are associated with the completion of the goals. Task 1: Contracting and Animal Use Approvals. IACUC and ACURO approvals are complete. The subcontract with UC Davis (UCD) was executed in December 2014. Task 2: Perform In Vitro Study for Goal 1. Rat and mouse samples exposures completed. Monkey samples need to be exposed in next quarter. Task 3: Perform In Vitro Study for Goal 2. Mouse and rat ex vivo exposures completed. Monkey samples need to be completed in the next quarter. Task 4: Sample Preparation and Analysis. Mouse and Rat Goal 2 samples completed. Monkey samples remain to be done for Goal 2. Rat samples completed for Goal 1. Mouse and Monkey samples for Goal 1 need to be completed. Task 5: Data Interpretation and Reporting. Poster will be presented at 2016 Society of Toxicology Meeting. Outline for paper on adduct formation complete and similar to poster for SOT meeting.

  5. Development of Naphthalene PLIF for Visualizing Ablation Products From a Space Capsule Heat Shield (United States)

    Combs, C. S.; Clemens, N. T.; Danehy, P. M.


    The Orion Multi-Purpose Crew Vehicle (MPCV) will use an ablative heat shield. To better design this heat shield and others that will undergo planetary entry, an improved understanding of the ablation process would be beneficial. Here, a technique developed at The University of Texas at Austin that uses planar laser-induced fluorescence (PLIF) of a low-temperature sublimating ablator (naphthalene) to enable visualization of the ablation products in a hypersonic flow is applied. Although high-temperature ablation is difficult and expensive to recreate in a laboratory environment, low-temperature sublimation creates a limited physics problem that can be used to explore ablation-product transport in a hypersonic flow-field. In the current work, a subscale capsule reentry vehicle model with a solid naphthalene heat shield has been tested in a Mach 5 wind tunnel. The PLIF technique provides images of the spatial distribution of sublimated naphthalene in the heat-shield boundary layer, separated shear layer, and backshell recirculation region. Visualizations of the capsule shear layer using both naphthalene PLIF and Schlieren imaging compared favorably. PLIF images have shown high concentrations of naphthalene in the capsule separated flow region, intermittent turbulent structures on the heat shield surface, and interesting details of the capsule shear layer structure. It was shown that, in general, the capsule shear layer appears to be more unsteady at lower angels of attack. The PLIF images demonstrated that during a wind tunnel run, as the model heated up, the rate of naphthalene ablation increased, since the PLIF signal increased steadily over the course of a run. Additionally, the shear layer became increasingly unsteady over the course of a wind tunnel run, likely because of increased surface roughness but also possibly because of the increased blowing. Regions with a relatively low concentration of naphthalene were also identified in the capsule backshell

  6. Anaerobic enzyme·substrate structures provide insight into the reaction mechanism of the copper-dependent quercetin 2,3-dioxygenase

    NARCIS (Netherlands)

    Steiner, Roberto A.; Kalk, Kor H.; Dijkstra, Bauke W.


    Quercetin 2,3-dioxygenase (2,3QD) is the only firmly established copper dioxygenase known so far. Depending solely on a mononuclear Cu center, it catalyzes the breakage of the O-heterocycle of flavonols, producing more easily degradable phenolic carboxylic acid ester derivatives. In the enzymatic pr

  7. Anaerobic enzyme-substrate structures provide insight into the reaction mechanism of the copper-dependent quercetin 2,3-dioxygenase

    NARCIS (Netherlands)

    Steiner, RA; Kalk, KH; Dijkstra, BW


    Quercetin 2,3-dioxygenase (2,3QD) is the only firmly established copper dioxygenase known so far. Depending solely on a mononuclear Cu center, it catalyzes the breakage of the O-heterocycle of flavonols, producing more easily degradable phenolic carboxylic acid ester derivatives. In the enzymatic pr

  8. Developmental and stress regulation of gene expression for a 9-cis-epoxycarotenoid dioxygenase, CstNCED, isolated from Crocus sativus stigmas. (United States)

    Ahrazem, Oussama; Rubio-Moraga, Angela; Trapero, Almudena; Gómez-Gómez, Lourdes


    Oxidative cleavage of cis-epoxycarotenoids by 9-cis-epoxycarotenoid dioxygenase (NCED) is the critical step in the regulation of abscisic acid (ABA) synthesis in higher plants. ABA has been associated with dormancy and flower senescence, while also regulating plant adaptive responses to various environmental stresses. An NCED gene, CstNCED, was cloned from Crocus sativus stigmas. The deduced amino acid sequence of the CstNCED protein shared high identity with other monocot NCEDs, and was closely related to the liliopsida enzymes. At the N-terminus of CstNCED a chloroplast transit peptide sequence is located. However, its expression in chloroplast-free tissues suggested localization in other plastid types. The relationship between expression of CstNCED and the endogenous ABA level was investigated in the stigma and corms, where it was developmentally regulated. The senescence of the unpollinated stigma is preceded by an increase in ABA levels and CstNCED expression. In corms, a correlation was observed between CstNCED expression and dormancy. Furthermore, CstNCED expression was correlated with the presence of zeaxanthin in the dormant corms. When detached C. sativus leaves and stigmas were water and salt stressed, increases in CstNCED mRNA were observed. The results provided evidence of the involvement of CstNCED in the regulation of ABA-associated processes such as flower senescence and corm dormancy in monocotyledonous saffron.

  9. Umbilical Cord Tissue-Derived Mesenchymal Stem Cells Induce T Lymphocyte Apoptosis and Cell Cycle Arrest by Expression of Indoleamine 2, 3-Dioxygenase

    Directory of Open Access Journals (Sweden)

    Xiuying Li


    Full Text Available It has been reported that human mesenchymal stem cells are able to inhibit T lymphocyte activation; however, the discrepancy among different sources of MSCs is not well documented. In this study, we have compared the MSCs from bone marrow (BM, adipose tissue (AT, placenta (PL, and umbilical cord (UC to determine which one displayed the most efficient immunosuppressive effects on phytohemagglutinin-induced T cell proliferation. Among them we found that hUC-MSC has the strongest effects on inhibiting T cell proliferation and is chosen to do the further study. We observed that T lymphocyte spontaneously released abundant IFN-γ. And IFN-γ secreted by T lymphocyte could induce the expression of indoleamine 2, 3-dioxygenase (IDO in hUC-MSCs. IDO was previously reported to induce T lymphocyte apoptosis and cell cycle arrest in S phase. When cocultured with hUC-MSCs, T lymphocyte expression of caspase 3 was significantly increased, while Bcl2 and CDK4 mRNA expression decreased dramatically. Addition of 1-methyl tryptophan (1-MT, an IDO inhibitor, restored T lymphocyte proliferation, reduced apoptosis, and induced resumption of the cell cycle. In addition, the changes in caspase 3, CDK4, and Bcl2 expression were reversed by 1-MT. These findings demonstrate that hUC-MSCs induce T lymphocyte apoptosis and cell cycle arrest by expressing abundant IDO and provide an explanation for some of the immunomodulatory effects of MSCs.

  10. St. John's Wort increases brain serotonin synthesis by inhibiting hepatic tryptophan 2, 3 dioxygenase activity and its gene expression in stressed rats. (United States)

    Bano, Samina; Ara, Iffat; Saboohi, Kausar; Moattar, Tariq; Chaoudhry, Bushra


    We aimed to investigate the effects of herbal St. John's Wort (SJW) on transcriptional regulation of hepatic tryptophan 2, 3 - dioxygenase (TDO) enzyme activity and brain regional serotonin (5-HT) levels in rats exposed to forced swim test (FST). TDO mRNA expression was quantified using real-time reverse transcription polymerase chain (RT-PCR) reaction and brain regional indoleamines were determined by high performance liquid chromatography coupled to fluorescence detector. Behavioral analysis shows significant reduction in immobility time in SJW (500mg/kg/ml) administered rats. It was found that pretreatment of SJW to rats did not prevent stress-induced elevation in plasma corticosterone levels however it increases serotonin synthesis by virtue of inhibiting hepatic TDO enzyme activity and its gene expression, ascertaining the notion that there exists an inverse relationship between hepatic TDO enzyme activity and brain 5-HT. The drug also decreases serotonin turnover in all the brain areas (hypothalamus, hippocampus amygdala) in stressed rats endorsing its monoamine oxidase inhibition property. Inhibition of TDO enzyme activity and its gene expression by the drug provides new insights for the development of therapeutic interventions for stress related mental illnesses.

  11. Oxidation of chlorinated olefins by Escherichia coli transformed with dimethyl sulfide monooxygenase genes or cumene dioxygenase genes. (United States)

    Takami, Wako; Yoshida, Takako; Nojiri, Hideaki; Yamane, Hisakazu; Omori, Toshio


    In the present work, it was shown that the dimethyl sulfide (DMS) monooxygenase and the cumene dioxygenase catalyzed oxidation of various chlorinated ethenes, propenes, and butenes. The specific activities of these oxygenases were determined for C(2) to C(4) chlorinated olefins, and the oxidation rates ranged from 0.19 to 4.18 nmol.min(-1).mg(-1) of dry cells by the DMS monooxygenase and from 0.19 to 1.29 nmol.min(-1).mg(-1) of dry cells by the cumene dioxygenase. The oxidation products were identified by gas chromatography-mass spectrometry. Most chlorinated olefins were monooxygenated by the DMS monooxygenase to yield chlorinated epoxides. In the case of the cumene dioxygenase, the substrates lacking any chlorine atom on double-bond carbon atoms were dioxygenated, and those with chlorine atoms attaching to double-bond carbon atoms were monooxygenated to yield allyl alcohols.

  12. Phase diagram of the ternary system lauric acid-capric acid-naphthalene

    Energy Technology Data Exchange (ETDEWEB)

    Longfei, Jin; Fengping, Xiao [College of Chemistry, Central China Normal University, Wuhan 430079 (China)


    The mixture of lauric acid and capric acid is a potential latent heat storage material. However, its eutectic melting temperature is quite high for low-temperature thermal energy storage. Addition of naphthalene is proposed. The ternary system lauric acid-capric acid-naphthalene has been investigated by differential scanning calorimetry (DSC), visual polythermal and chromatography of gases. The phase diagram is of an incongruent eutectic type. The eutectic mixture contains 18.4mol% lauric acid, 63.1mol% capric acid and 18.5mol% naphthalene and melts at 13.3{sup o}C. The peritectic mixture contains 32.4mol% lauric acid, 48.2mol% capric acid and 19.4mol% naphthalene and peritectic temperature of 16.2{sup o}C. The incongruent compound was analysed to be CH{sub 3}(CH{sub 2}){sub 10}COOH.CH{sub 3}(CH{sub 2}){sub 8}COOH. The melting temperature of the lauric acid-capric acid-naphthalene eutectic mixture makes it suitable for cooling applications.

  13. Phenazine–naphthalene-1,5-diamine–water (1/1/2

    Directory of Open Access Journals (Sweden)

    Maria Gdaniec


    Full Text Available The asymmetric unit of the title compound, C12H8N2·C10H10N2·2H2O, contains one half-molecule of phenazine, one half-molecule of naphthalene-1,5-diamine and one water molecule. The phenazine and naphthalene-1,5-diamine molecules are located on inversion centers. The water molecules serve as bridges between the naphthalene-1,5-diamine molecules and also between the naphthalene-1,5-diamine and phenazine molecules. The naphthalene-1,5-diamine and water molecules are connected via N—H...O and O—H...N hydrogen bonds, forming a T4(2 motif. They are arranged into a two-dimensional polymeric structure parallel to (10overline{1} in which the water molecule is a single donor and a double acceptor, whereas the amino group is a double donor and a single acceptor in the hydrogen bonding. These two-dimensional assemblies alternate with the layers of phenazine molecules arranged into a herringbone motif. Each phenazine molecule is hydrogen bonded to two water molecules and thus a three-dimensional framework of hydrogen-bonded molecules is generated.

  14. Specific and Quantitative Assessment of Naphthalene and Salicylate Bioavailability by Using a Bioluminescent Catabolic Reporter Bacterium (United States)

    Heitzer, Armin; Webb, Oren F.; Thonnard, Janeen E.; Sayler, Gary S.


    A bioassay was developed and standardized for the rapid, specific, and quantitative assessment of naphthalene and salicylate bioavailability by use of bioluminescence monitoring of catabolic gene expression. The bioluminescent reporter strain Pseudomonas fluorescens HK44, which carries a transcriptional nahG-luxCDABE fusion for naphthalene and salicylate catabolism, was used. The physiological state of the reporter cultures as well as the intrinsic regulatory properties of the naphthalene degradation operon must be taken into account to obtain a high specificity at low target substrate concentrations. Experiments have shown that the use of exponentially growing reporter cultures has advantages over the use of carbon-starved, resting cultures. In aqueous solutions for both substrates, naphthalene and salicylate, linear relationships between initial substrate concentration and bioluminescence response were found over concentration ranges of 1 to 2 orders of magnitude. Naphthalene could be detected at a concentration of 45 ppb. Studies conducted under defined conditions with extracts and slurries of experimentally contaminated sterile soils and identical uncontaminated soil controls demonstrated that this method can be used for specific and quantitative estimations of target pollutant presence and bioavailability in soil extracts and for specific and qualitative estimations of napthalene in soil slurries. PMID:16348717

  15. Fate of naphthalene in laboratory-scale bioretention cells: implications for sustainable stormwater management. (United States)

    Lefevre, Gregory H; Novak, Paige J; Hozalski, Raymond M


    Bioretention cells are increasingly popular in low-impact development as a means to sustainably mitigate the environmental problems associated with stormwater runoff. Yet, much remains to be known regarding the removal and ultimate fate of pollutants such as petroleum hydrocarbons in bioretention cells. In this work, laboratory-scale bioretention cells were constructed inside sealed glass columns. The columns were periodically spiked with (14)C-naphthalene over a 5-month period and the fate of this representative hydrocarbon and the influence of vegetation on naphthalene fate was studied. Three column setups were used: one planted with a legume (Purple Prairie Clover, Dalea purpureum), one planted with grass (Blue-Joint Grass, Calamagrostis canadensis), and one unplanted (i.e., control). Overall naphthalene removal efficiency was 93% for the planted columns and 78% for the control column. Adsorption to soil was the dominant naphthalene removal mechanism (56-73% of added naphthalene), although mineralization (12-18%) and plant uptake (2-23%) were also important. Volatilization was negligible (hydrocarbon removal from stormwater, and that vegetation can enhance overall performance and stimulate biodegradation.

  16. Comparison of the efficiency of mesoporous silicas as absorbents for removing naphthalene from contaminated water

    Directory of Open Access Journals (Sweden)

    Ali Balati


    Full Text Available Mesoporous silicas MCM-48 and SBA-15 were synthesized and characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM, transmission electron microscopy (TEM and Fourier transform infrared (FTIR spectroscopy. Adsorption capacity of two mesoporous silica for removing naphthalene from waste water was determined. The results indicate that under similar conditions, SBA-15 had a better adsorption capacity than MCM-48. In this context, SBA-15 was modified using 3-aminopropyltrimethoxysilane and the effect of contact time, adsorbent dose, solution pH and concentration of naphthalene was investigated in batch adsorption systems. Solution pH appeared to be a key factor affecting the adsorption of naphthalene by NH2-SBA-15. The adsorption experiments revealed that a higher percentage of up to 79.3% of naphthalene was adsorbed in highly acidic media (pH of 2. The equilibrium data were analyzed using Langmuir and Freundlich isotherms and nonlinear regression analysis. This revealed that based on the correlation coefficient (R2 = 0.979 the Langmuir model provided the best fit to the results. The adsorption kinetic was determined using the pseudo-first order, pseudo-second order and Elovich kinetic models. Of the kinetics models tested, the pseudo-first-order equation provided the best fit to the results (R2 = 0.991 of the absorption of naphthalene by the adsorbent.

  17. Adsorption of naphthalene from aqueous solution on activated carbons obtained from bean pods. (United States)

    Cabal, Belen; Budinova, Temenuzhka; Ania, Conchi O; Tsyntsarski, Boyko; Parra, José B; Petrova, Bilyana


    The preparation of activated carbons from bean pods waste by chemical (K(2)CO(3)) and physical (water vapor) activation was investigated. The carbon prepared by chemical activation presented a more developed porous structure (surface area 1580 m(2) g(-1) and pore volume 0.809 cm(3) g(-1)) than the one obtained by water vapor activation (258 m(2) g(-1) and 0.206 cm(3) g(-1)). These carbons were explored as adsorbents for the adsorption of naphthalene from water solutions at low concentration and room temperature and their properties are compared with those of commercial activated carbons. Naphthalene adsorption on the carbons obtained from agricultural waste was stronger than that of carbon adsorbents reported in the literature. This seems to be due to the presence of large amounts of basic groups on the bean-pod-based carbons. The adsorption capacity evaluated from Freundlich equation was found to depend on both the textural and chemical properties of the carbons. Naphthalene uptake on biomass-derived carbons was 300 and 85 mg g(-1) for the carbon prepared by chemical and physical activation, respectively. Moreover, when the uptake is normalized per unit area of adsorbent, the least porous carbon displays enhanced naphthalene removal. The results suggest an important role of the carbon composition including mineral matter in naphthalene retention. This issue remains under investigation.

  18. Mechanism of S-oxygenation by a cysteine dioxygenase model complex (United States)

    Sastry, G. Narahari


    In this work we present the first computational study on a biomimetic cysteine dioxygenase model complex, [FeII(LN3S)]+ where LN3S is a tetradentate ligand with a bis(imino)pyridyl scaffold and a pendant arylthiolate group. The reaction mechanism of sulfur dioxygenation with O2 was examined by density functional theory (DFT) methods, and compared to results obtained for cysteine dioxygenase. The reaction proceeds via multistate reactivity patterns on competing singlet, triplet and quintet spin state surfaces. The reaction mechanism is analogous to that found for cysteine dioxygenase enzymes [Kumar, D.; Thiel, W.; de Visser, S. P. J. Am. Chem. Soc. 2011, 133, 3869–3882], hence the computations indicate that this complex can closely mimic the enzymatic process. The catalytic mechanism starts from an iron(III)-superoxo complex and the attack of the terminal oxygen atom of the superoxo group on the sulfur atom of the ligand. Subsequently, the dioxygen bond breaks to form an iron(IV)-oxo complex with a bound sulfenato group. After reorganization the second oxygen atom is transferred to the substrate to give a sulfinic acid product. An alternative mechanism involving the direct attack of dioxygen on the sulfur, without involving any iron-oxygen intermediates, was also examined. Importantly, a significant energetic preference for dioxygen coordinating to the iron center prior to attack at sulfur was discovered and serves to elucidate the function of the metal ion in the reaction process. The computational results are in good agreement with experimental observations, and the differences and similarities of the biomimetic complex and the enzymatic CDO center are highlighted. PMID:22091701

  19. Protein engineering of the archetypal nitroarene dioxygenase of Ralstonia sp. strain U2 for activity on aminonitrotoluenes and dinitrotoluenes through alpha-subunit residues leucine 225, phenylalanine 350, and glycine 407. (United States)

    Keenan, Brendan G; Leungsakul, Thammajun; Smets, Barth F; Mori, Masa-aki; Henderson, David E; Wood, Thomas K


    Naphthalene dioxygenase (NDO) from Ralstonia sp. strain U2 has not been reported to oxidize nitroaromatic compounds. Here, saturation mutagenesis of NDO at position F350 of the alpha-subunit (NagAc) created variant F350T that produced 3-methyl-4-nitrocatechol from 2,6-dinitrotoluene (26DNT), that released nitrite from 23DNT sixfold faster than wild-type NDO, and that produced 3-amino-4-methyl-5-nitrocatechol and 2-amino-4,6-dinitrobenzyl alcohol from 2-amino-4,6-dinitrotoluene (2A46DNT) (wild-type NDO has no detectable activity on 26DNT and 2A46DNT). DNA shuffling identified the beneficial NagAc mutation G407S, which when combined with the F350T substitution, increased the rate of NDO oxidation of 26DNT, 23DNT, and 2A46DNT threefold relative to variant F350T. DNA shuffling of NDO nagAcAd also generated the NagAc variant G50S/L225R/A269T with an increased rate of 4-amino-2-nitrotoluene (4A2NT; reduction product of 2,4-dinitrotoluene) oxidation; from 4A2NT, this variant produced both the previously uncharacterized oxidation product 4-amino-2-nitrocresol (enhanced 11-fold relative to wild-type NDO) as well as 4-amino-2-nitrobenzyl alcohol (4A2NBA; wild-type NDO does not generate this product). G50S/L225R/A269T also had increased nitrite release from 23DNT (14-fold relative to wild-type NDO) and generated 2,3-dinitrobenzyl alcohol (23DNBA) fourfold relative to wild-type NDO. The importance of position L225 for catalysis was confirmed through saturation mutagenesis; relative to wild-type NDO, NDO variant L225R had 12-fold faster generation of 4-amino-2-nitrocresol and production of 4A2NBA from 4A2NT as well as 24-fold faster generation of nitrite and 15-fold faster generation of 23DNBA from 23DNT. Hence, random mutagenesis discovered two new residues, G407 and L225, that influence the regiospecificity of Rieske non-heme-iron dioxygenases.

  20. The Targeting of Indoleamine 2,3 Dioxygenase -Mediated Immune Escape in Cancer

    DEFF Research Database (Denmark)

    Iversen, Trine Zeeberg; Andersen, Mads Hald; Svane, Inge Marie


    The era of immunotherapies was unleashed in 2010 with the Food and Drug Administration (FDA) approval of the first therapeutic vaccine sipuleucel-T as a standard treatment for metastatic prostate cancer. Next, the first immune-activating anticytotoxic lymphocyte antigen-4 (CTLA-4) antibody...... a peptide vaccination with a HLA-A2-restricted epitope derived from indoleamine 2,3 dioxygenase (IDO). The overall aim in this trial was to evaluate safety and tolerability of IDO as an anticancer vaccine target in patients with NSCLC and to assess whether immunity correlated to clinical response....

  1. Iron(III) complexes of certain tetradentate phenolate ligands as functional models for catechol dioxygenases

    Indian Academy of Sciences (India)

    Mallayan Palaniandavar; Marappan Velusamy; Ramasamy Mayilmurugan


    Catechol 1,2-dioxygenase (CTD) and protocatechuate 3,4-dioxygenase (PCD) are bacterial non-heme iron enzymes, which catalyse the oxidative cleavage of catechols to cis, cis-muconic acids with the incorporation of molecular oxygen via a mechanism involving a high-spin ferric centre. The iron(III) complexes of tripodal phenolate ligands containing N3O and N2O2 donor sets represent the metal binding region of the iron proteins. In our laboratory iron(III) complexes of mono- and bisphenolate ligands have been studied successfully as structural and functional models for the intradiol-cleaving catechol dioxygenase enzymes. The single crystal X-ray crystal structures of four of the complexes have been determined. One of the bis-phenolato complexes contains a FeN2O2Cl chromophore with a novel trigonal bipyramidal coordination geometry. The Fe-O-C bond angle of 136.1° observed for one of the iron(III) complex of a monophenolate ligand is very similar to that in the enzymes. The importance of the nearby sterically demanding coordinated -NMe2 group has been established and implies similar stereochemical constraints from the other ligated amino acid moieties in the 3,4-PCD enzymes, the enzyme activity of which is traced to the difference in the equatorial and axial Fe-O(tyrosinate) bonds (Fe-O-C, 133, 148°). The nature of heterocyclic rings of the ligands and the methyl substituents on them regulate the electronic spectral features, FeIII/FeII redox potentials and catechol cleavage activity of the complexes. Upon interacting with catecholate anions, two catecholate to iron(III) charge transfer bands appear and the low energy band is similar to that of catechol dioxygenase-substrate complex. Four of the complexes catalyze the oxidative cleavage of H2DBC by molecular oxygen to yield intradiol cleavage products. Remarkably, the more basic N-methylimidazole ring in one of the complexes facilitates the rate-determining productreleasing phase of the catalytic reaction. The present

  2. Compound-Specific Isotope Analysis of Nitroaromatic Contaminant Transformations by Nitroarene Dioxygenases (United States)

    Pati, Sarah G.; Kohler, Hans-Peter E.; Hofstetter, Thomas B.


    Dioxygenation is an important biochemical reaction that often initiates the mineralization of recalcitrant organic contaminants such as nitroaromatic explosives, chlorinated benzenes, and polycyclic aromatic hydrocarbons. However, to assess the extent of dioxygenation in contaminated environments is difficult because of competing transformation processes and further reactions of the dioxygenation products. Compound-specific isotope analysis (CSIA) offers a new approach to reliably quantify biodegradation initiated by dioxygenation based on changes in stable isotope ratios of the pollutant. For CSIA it is essential to know the kinetic isotope effects (KIEs) pertinent to the dioxygenation mechanism of organic contaminants. Unfortunately, the range of KIEs of such reactions is poorly constrained although many dioxygenase enzymes with a broad substrate specificity have been reported. Dioxygenase enzymes usually exhibit complex reaction kinetics involving multiple substrates and substrate-specific binding modes which makes the determination of KIEs challenging. The goal of this study was to explore the magnitude and variability of 13C-, 2H-, and 15N-KIEs for the dioxygenation of one contaminant class, that is nitroaromatic contaminants (NACs). To this end, we investigated the C, H, and N isotope fractionation during the dioxygenation of nitrobenzene (NB), 2-nitrotoluene (2-NT), and 3-nitrotoluene (3-NT) by pure cultures, E. coli clones, cell extracts, and purified enzymes. From isotope fractionations measured in the substrates and reaction products, we determined dioxygenation KIEs for different combinations of the three substrates with nitrobenzene dioxygenase (NBDO) and 2-nitrotoluene dioxygenase (2NTDO). The 13C-, 2H-, and 15N-KIEs for the dioxygenation of NB by NBDO were consistent for all experimental systems considered (i.e., Comamonas sp. Strain JS765, E. coli clones, cell extracts of E. coli clones, and purified NBDO). This observation suggests that the isotope

  3. Structure of the 2, 4′-dihydroxyacetophenone dioxygenase from Alcaligenes sp. 4HAP

    Energy Technology Data Exchange (ETDEWEB)

    Keegan, R.; Lebedev, A. [RAL, Harwell Oxford, Didcot OX11 0FA (United Kingdom); Erskine, P.; Guo, J.; Wood, S. P. [UCL Division of Medicine (Royal Free Campus), Rowland Hill Street, London NW3 2PF (United Kingdom); Hopper, D. J. [Aberystwyth University, Penglais, Aberystwyth SY23 3DA Wales (United Kingdom); Rigby, S. E. J. [University of Manchester, 131 Princess Street, Manchester M1 7DN (United Kingdom); Cooper, J. B., E-mail: [UCL Division of Medicine (Royal Free Campus), Rowland Hill Street, London NW3 2PF (United Kingdom); RAL, Harwell Oxford, Didcot OX11 0FA (United Kingdom)


    The first X-ray structure of a 2, 4′-dihydroxyacetophenone dioxygenase from Alcaligenes sp. 4HAP at a resolution of 2.2 Å is reported. This structure establishes that the enzyme adopts the cupin-fold, forming compact dimers with a pronounced hydrophobic interface between the monomers. Each monomer possesses a catalytic ferrous iron that is coordinated by three histidines (76, 78 and 114) and an additional ligand which has been putatively assigned as a carbonate, although formate and acetate are possibilities. The enzyme 2, 4′-dihydroxyacetophenone dioxygenase (DAD) catalyses the conversion of 2, 4′-dihydroxyacetophenone to 4-hydroxybenzoic acid and formic acid with the incorporation of molecular oxygen. Whilst the vast majority of dioxygenases cleave within the aromatic ring of the substrate, DAD is very unusual in that it is involved in C—C bond cleavage in a substituent of the aromatic ring. There is evidence that the enzyme is a homotetramer of 20.3 kDa subunits, each containing nonhaem iron, and its sequence suggests that it belongs to the cupin family of dioxygenases. In this paper, the first X-ray structure of a DAD enzyme from the Gram-negative bacterium Alcaligenes sp. 4HAP is reported, at a resolution of 2.2 Å. The structure establishes that the enzyme adopts a cupin fold, forming dimers with a pronounced hydrophobic interface between the monomers. The catalytic iron is coordinated by three histidine residues (76, 78 and 114) within a buried active-site cavity. The iron also appears to be tightly coordinated by an additional ligand which was putatively assigned as a carbonate dianion since this fits the electron density optimally, although it might also be the product formate. The modelled carbonate is located in a position which is highly likely to be occupied by the α-hydroxyketone group of the bound substrate during catalysis. Modelling of a substrate molecule in this position indicates that it will interact with many conserved amino acids in


    Naphthalene-1,2-oxide (NPO), 1,2-naphthoquinone (1,2-NPQ) and 1,4-naphthoquinone (1,4-NPQ) are the major metabolites of naphthalene that are thought to be responsible for the cytotoxicity and genotoxicity of this chemical. We measured cysteinyl adducts of these metabolites in ...

  5. A synthetic model of the putative Fe(II)-iminobenzosemiquinonate intermediate in the catalytic cycle of o-aminophenol dioxygenases. (United States)

    Bittner, Michael M; Lindeman, Sergey V; Fiedler, Adam T


    The oxidative ring cleavage of aromatic substrates by nonheme Fe dioxygenases is thought to involve formation of a ferrous-(substrate radical) intermediate. Here we describe the synthesis of the trigonal-bipyramdial complex Fe((Ph2)Tp)(ISQ(tBu)) (2), the first synthetic example of an iron(II) center bound to an iminobenzosemiquinonate (ISQ) radical. The unique electronic structure of this S = 3/2 complex and its one-electron oxidized derivative ([3](+)) have been established on the basis of crystallographic, spectroscopic, and computational analyses. These findings further demonstrate the viability of Fe(2+)-ISQ intermediates in the catalytic cycles of o-aminophenol dioxygenases.

  6. Strong Correlation of Indoleamine 2,3-Dioxygenase 1 Expression with Basal-Like Phenotype and Increased Lymphocytic Infiltration in Triple-Negative Breast Cancer (United States)

    Kim, Sewha; Park, Sanghui; Cho, Min Sun; Lim, Woosung; Moon, Byung-In; Sung, Sun Hee


    Indoleamine 2,3-dioxygenase 1 (IDO1) is an immunosuppressive enzyme involved in tumor immune escape. Blockade of the IDO1 pathway is an emerging modality of cancer immunotherapy. Triple-negative breast cancer (TNBC) lacks established therapeutic targets and may be a good candidate for this novel immunotherapeutic agent. The purpose of this study was to evaluate the clinicopathologic characteristics of the IDO1-expressing TNBC subset. A tissue microarray was constructed from 200 patients with TNBC. Immunohistochemistry (IHC) for IDO1 and TNBC molecular subtype-surrogate markers (AR, GCDFP-15, claudin-3, E-cadherin, CK5/6, and EGFR) was performed using this tissue microarray. Real-time polymerase chain reaction was performed to confirm the IDO1 mRNA expression level in 16 fresh-frozen TNBC samples. Two hundred TNBCs were classified into four subtypes based on surrogate IHC results: 22 luminal androgen receptor type (11.0%), 23 claudin-low type (11.4%), 103 basal-like type (51.5%), and 52 mixed type (26.0%). IDO1 positivity (defined as expression of >10% tumor cells) was observed in 37% of all TNBCs. IDO1 IHC expression was well correlated with mRNA expression. IDO1 positivity was significantly associated with smaller tumor size, dense stromal lymphocytic infiltration, and basal-like phenotype; however, it did not affect the patients' prognosis. IDO1 expression in basal-like TNBCs is considered an immune inhibitory signal that counterbalances active immunity and may reflect the high mutational load of these tumors. Our results suggest which patients with TNBC would be more efficaciously treated with IDO1 blockade. PMID:28123606

  7. Strong Correlation of Indoleamine 2,3-Dioxygenase 1 Expression with Basal-Like Phenotype and Increased Lymphocytic Infiltration in Triple-Negative Breast Cancer. (United States)

    Kim, Sewha; Park, Sanghui; Cho, Min Sun; Lim, Woosung; Moon, Byung-In; Sung, Sun Hee


    Indoleamine 2,3-dioxygenase 1 (IDO1) is an immunosuppressive enzyme involved in tumor immune escape. Blockade of the IDO1 pathway is an emerging modality of cancer immunotherapy. Triple-negative breast cancer (TNBC) lacks established therapeutic targets and may be a good candidate for this novel immunotherapeutic agent. The purpose of this study was to evaluate the clinicopathologic characteristics of the IDO1-expressing TNBC subset. A tissue microarray was constructed from 200 patients with TNBC. Immunohistochemistry (IHC) for IDO1 and TNBC molecular subtype-surrogate markers (AR, GCDFP-15, claudin-3, E-cadherin, CK5/6, and EGFR) was performed using this tissue microarray. Real-time polymerase chain reaction was performed to confirm the IDO1 mRNA expression level in 16 fresh-frozen TNBC samples. Two hundred TNBCs were classified into four subtypes based on surrogate IHC results: 22 luminal androgen receptor type (11.0%), 23 claudin-low type (11.4%), 103 basal-like type (51.5%), and 52 mixed type (26.0%). IDO1 positivity (defined as expression of >10% tumor cells) was observed in 37% of all TNBCs. IDO1 IHC expression was well correlated with mRNA expression. IDO1 positivity was significantly associated with smaller tumor size, dense stromal lymphocytic infiltration, and basal-like phenotype; however, it did not affect the patients' prognosis. IDO1 expression in basal-like TNBCs is considered an immune inhibitory signal that counterbalances active immunity and may reflect the high mutational load of these tumors. Our results suggest which patients with TNBC would be more efficaciously treated with IDO1 blockade.

  8. Implication of Tryptophan 2,3-Dioxygenase and its Novel Variants in the Hippocampus and Cerebellum During the Developing and Adult Brain

    Directory of Open Access Journals (Sweden)

    Masaaki Kanai


    Full Text Available Tryptophan 2,3-dioxygenase (TDO is a first and rate-limiting enzyme for the kynurenine pathway of tryptophan metabolism. Using Tdo-/-mice, we have recently shown that TDO plays a pivotal role in systemic tryptophan metabolism and brain serotonin synthesis as well as emotional status and adult neurogenesis. However, the expression of TDO in the brain has not yet been well characterized, in contrast to its predominant expression in the liver. To further examine the possible role of local TDO in the brain, we quantified the levels of tdo mRNA in various nervous tissues, using Northern blot and quantitative real-time RT-PCR. Higher levels of tdo mRNA expression were detected in the cerebellum and hippocampus. We also identified two novel variants of the tdo gene, termed tdo variant1 and variant2, in the brain. Similar to the known TDO form (TDO full-form, tetramer formation and enzymatic activity were obtained when these variant forms were expressed in vitro. While quantitative real-time RT-PCR revealed that the tissue distribution of these variants was similar to that of tdo full-form, the expression patterns of these variants during early postnatal development in the hippocampus and cerebellum differed. Our findings indicate that in addition to hepatic TDO, TDO and its variants in the brain might function in the developing and adult nervous system. Given the previously reported associations of tdo gene polymorphisms in the patients with autism and Tourette syndrome, the expression of TDO in the brain suggests the possible influence of TDO on psychiatric status. Potential functions of TDOs in the cerebellum, hippocampus and cerebral cortex under physiological and pathological conditions are discussed.

  9. UV absorption cross-sections of phenol and naphthalene at temperatures up to 500 degrees C

    DEFF Research Database (Denmark)

    Grosch, Helge; Sárossy, Zsuzsa; Egsgaard, Helge


    Absorption cross-sections and their temperature dependency, especially in the UV spectral range, of organic compounds such as phenol and naphthalene are of great interest in atmospheric research and high temperature processes. Due to the challenges of producing premixed gases of known concentration......, it is difficult to determine absorption cross-sections in experiments, especially at higher temperatures. In this paper, a gas flow of nitrogen with a stable but unknown concentration of phenol or naphthalene is produced, and their UV absorption spectra between 195 and 350 nm have been measured at higher....... Consequently, the absorption cross-sections for phenol and naphthalene at room temperature, 423 K, 573 K and 773 K in the range of 195-360 nm are presented in this study....

  10. Kinetics of naphthalene adsorption on an activated carbon: comparison between aqueous and organic media. (United States)

    Cabal, B; Ania, C O; Parra, J B; Pis, J J


    The purpose of this work was to explore the kinetics of naphthalene adsorption on an activated carbon from aqueous and organic solutions. Kinetic curves were fitted to different theoretical models, and the results have been discussed in terms of the nature and properties of the solvents, the affinity of naphthalene to the solutions, and the accessibility to the porosity of the activated carbon. Data was fitted to the pseudo-second order kinetic model with good correlation coefficients for all the solution media. The faster adsorption rate was obtained for the most hydrophobic solvent (heptane). The overall adsorption rate of naphthalene seems to be controlled simultaneously by external (boundary layer) followed by intraparticle diffusion in the porosity of the activated carbon when water, ethanol and cyclohexane are used as solvents. In the case of heptane, only two stages were observed (pore diffusion and equilibrium) suggesting that the limiting stage is the intraparticle diffusion. The low value of the boundary thickness supports this observation.

  11. Effects of temperature and surfactants on naphthalene and phenanthrene sorption by soil

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jinghuan; ZENG Jianhui; HE Mengchang


    Adsorption experiments were carried out to investigate the sorption behaviors of naphthalene and phenanthrene in six different soils and to determine the effects of temperature, linear alkylbenzene sulfonate (LAS) and cetylrimethyl ammonium bromide (CTAB) on sorption. The results show that for a given sorbent phenanthrene exhibited greater nonlinear and stronger sorption than naphthalene. There was a strong negative correlation for the Koc values with organic carbon content (foc). The increase of temperature was not favorable to sorption. Sorption decreased along with the increasing aqueous LAS concentration from 0 to 1000 mg/L. At low CTAB concentration (< 100 mg/L), the adsorption increased as CTAB hemimicelles formed on the soil surface. At high concentration, CTAB decreased the adsorption by occupying active hydrophobic adsorption sites and solubilization of naphthalene and phenanthrene.

  12. Determination of nickel by flame atomic-absorption spectrophotometry after separation by adsorption of its nioxime complex on microcrystalline naphthalene. (United States)

    Nagahiro, T; Puri, B K; Katyal, M; Satake, M


    A method has been developed for the determination of nickel in alloys by flame atomic-absorption spectrophotometry after formation of a water-insoluble complex, its adsorption on microcrystalline naphthalene, and dissolution of the complex and naphthalene in nitric acid and xylene.

  13. Visualization of Capsule Reentry Vehicle Heat Shield Ablation Using Naphthalene PLIF (United States)

    Combs, Christopher S.; Clemens, Noel T.; Danehy, Paul M.


    The Orion Multi-Purpose Crew Vehicle (MPCV) will use an ablative heat shield and improved understanding of the ablation process would be beneficial for design purposes. Given that ablation is a multi-physics process involving heat and mass transfer, codes aiming to predict heat shield ablation are in need of experimental data pertaining to the turbulent transport of ablation products for validation. At The University of Texas at Austin, a technique is being developed that uses planar laser-induced fluorescence (PLIF) of a low-temperature sublimating ablator (naphthalene) to visualize the transport of ablation products in a supersonic flow. Since ablation at reentry temperatures can be difficult to recreate in a laboratory setting it is desirable to create a limited physics problem and simulate the ablation process at relatively low temperature conditions using naphthalene. A scaled Orion MPCV model with a solid naphthalene heat shield has been tested in a Mach 5 wind tunnel at various angles of attack in the current work. PLIF imaging reveals the distribution of the ablation products as they are transported into the heat-shield boundary layer and over the capsule shoulders into the separated shear layer and backshell recirculation region. Visualizations of the capsule shear layer using both naphthalene PLIF and Schlieren imaging compared favorably. High concentrations of naphthalene in the capsule separated flow region, intermittent turbulent structures on the heat shield surface, and interesting details of the capsule shear layer structure were observed using the naphthalene PLIF technique. The capsule shear layer was also shown to generally appear to be more turbulent at lower angles of attack. Furthermore, the PLIF signal increased steadily over the course of a run indicating that during a wind tunnel run the model heated up and the rate of naphthalene ablation increased. The shear layer showed increasing signs of turbulence over the course of a wind tunnel run

  14. Monomer and dimer radical cations of benzene, toluene, and naphthalene. (United States)

    Das, Tomi Nath


    Pulse radiolytic generation of monomeric and dimeric cations of benzene, toluene, and naphthalene in aqueous acid media at room temperature and their spectrophotometric characterization is discussed. Results presented include measurements of each aromatic's solubility in H(2)O-H(2)SO(4) and H(2)O-HClO(4) media over the acidity range pH 1 to H(0) -7.0, facile oxidative generation, and real-time identification of appropriate cationic transients with respective lambda(max) (nm) and epsilon (M(-1) cm(-1)) values measured as follows: C(6)H(6)(*+) (443, 1145 +/- 75), C(6)H(5)CH(3)(*+) (428, 1230 +/- 90), C(10)H(8)(*+) (381, 3650 +/- 225, and 687, 2210 +/- 160), (C(6)H(6))(2)(*+) (860, 2835 +/- 235), (C(6)H(5)CH(3))(2)(*+) (950, 1685 +/- 155), and (C(10)H(8))(2)(*+) (1040, 4170 +/- 320). Kinetic measurements reveal the respective formation rates of monomeric cations to be near-diffusion controlled, while the forward rate values for the dimeric species generation are marginally slower. The proton activity corrected pK(a) values are found to remain between -2.6 and -1.3 for the ArH(*+) species (C(6)H(6)(*+) most acidic, C(10)H(8)(*+) least acidic), while the pK(a) values of (ArH)(2)(*+) species vary from -5.0 to -3.0 ((C(6)H(6))(2)(*+) most acidic, (C(10)H(8))(2)(*+) least acidic). In H(0) -5 in aqueous H(2)SO(4), the respective stabilization energy of (C(6)H(6))(2)(*+), (C(6)H(5)CH(3))(2)(*+), and (C(10)H(8))(2)(*+) is estimated to be 16.6, 15.0, and 13.7 kcal mol(-1). Thus, the aqueous acid solution emerges as an alternative medium for typical radical-cationic studies, while offering compatibility for the deprotonated radical characterization near neutral pH.

  15. The role of indoleamine 2,3-dioxygenase in a mouse model of neuroinflammation-induced depression

    NARCIS (Netherlands)

    Dobos, Nikoletta; de Vries, Erik F.J.; Kema, Ido P.; Patas, Konstantinos; Prins, Marloes; Nijholt, Ingrid M.; Dierckx, Rudi A.; Korf, Jakob; den Boer, Johan A.; Luiten, Paul G M; Eisel, Ulrich L M; Smith, Gwenn S.


    Indoleamine 2,3-dioxygenase (IDO), an enzyme which is activated by pro-inflammatory cytokines, has been suggested as a potential link between neuroinflammatory processes in neurodegenerative diseases (like Alzheimer's disease) and depression. The present study aimed to determine whether

  16. The Role of Indoleamine 2,3-Dioxygenase in a Mouse Model of Neuroinflammation-Induced Depression

    NARCIS (Netherlands)

    Dobos, Nikoletta; de Vries, Erik F. J.; Kema, Ido P.; Patas, Konstantinos; Prins, Marloes; Nijholt, Ingrid M.; Dierckx, Rudi A.; Korf, Jakob; den Boer, Johan A.; Luiten, Paul G. M.; Eisel, Ulrich L. M.; Borsello, Tiziana


    Indoleamine 2,3-dioxygenase (IDO), an enzyme which is activated by pro-inflammatory cytokines, has been suggested as a potential link between neuroinflammatory processes in neurodegenerative diseases (like Alzheimer's disease) and depression. The present study aimed to determine whether neuroinflamm

  17. Solid state tautomerism in 2-((phenylimino)methyl)naphthalene-1-ol

    DEFF Research Database (Denmark)

    Nedeltcheva, Daniela; Kamounah, Fadhil S.; Mirolo, Laurent


    The solid state tautomerism of 2-((phenylimino)methyl)naphthalene-1-ol was studied using X-ray measurements and absorption spectroscopy. In the solid state, the keto tautomer predominates. The observed shift in the equilibrium from the enol (dilute solution) to the keto (solid state) forms is exp...

  18. The synthesis and cytotoxic activity of novel organogermanium sesquioxides with anthraquinone or naphthalene moiety

    Institute of Scientific and Technical Information of China (English)


    Four novel organogermanium sesquioxides with anthraquinone or naphthalene moiety were synthesized. The structures were characterized by IR, NMR and elemental analysis, and their cytotoxicities were evaluated against human chronic myeloid leukemia K562 cell lines. The cytotoxicity could be improved by the introduction of planar aromatic chromophore moiety to the parent compound, Ge-132.


    Sorption is one of the primary mechanisms for retarding the movement of organic contaminants in groundwater. Sorption of hydrophobic compounds such as toluene, naphthalene, and DDT is generally assumed to be linearly proportional to solution phase concentration. In the present re...

  20. Development of Methods for Sampling and Analysis of Polychlorinated Naphthalenes in Ambient Air (United States)

    Erickson, Mitchell D.; And Others


    The procedure and sampler described permits detection of less than 50pg of one polychlorinated naphthalene (PCN) isomer. The method uses gas chromatography-mass spectrometry. The PCNs are collected on a glass fiber filter and two polyurethane foam plugs and extracted with toluene at 25 degrees Celsius. (BB)

  1. Draft Genome Sequence of the Model Naphthalene-Utilizing Organism Pseudomonas putida OUS82

    DEFF Research Database (Denmark)

    Tay, Martin; Roizman, Dan; Cohen, Yehuda


    Pseudomonas putida OUS82 was isolated from petrol- and oil-contaminated soil in 1992, and ever since, it has been used as a model organism to study the microbial assimilation of naphthalene and phenanthrene. Here, we report the 6.7-Mb draft genome sequence of P. putida OUS82 and analyze its featu...


    Isomer composition of polychlorinated naphthalenes (PCNs) was measured for municipal waste incinerator fly ash samples,and for emission samples produced from soot and copper deposit experiments conducted at EPA. Two types of PCN isomer patterns were identified. One pattern cxonta...

  3. Synthesis and Antimicrobial Evaluation of 1-[(2-Substituted phenylcarbamoyl]naphthalen-2-yl Carbamates

    Directory of Open Access Journals (Sweden)

    Tomas Gonec


    Full Text Available Series of thirteen 1-[(2-chlorophenylcarbamoyl]naphthalen-2-yl carbamates and thirteen 1-[(2-nitrophenylcarbamoyl]naphthalen-2-yl carbamates with alkyl/cycloalkyl/arylalkyl chains were prepared and characterized. Primary in vitro screening of the synthesized compounds was performed against Staphylococcus aureus, two methicillin-resistant S. aureus strains, Mycobacterium marinum, and M. kansasii. 1-[(2-Chlorophenylcarbamoyl]naphthalen-2-yl ethylcarbamate and 1-[(2-nitrophenylcarbamoyl]naphthalen-2-yl ethylcarbamate showed antistaphylococcal (MICs = 42 µM against MRSA and antimycobacterial (MICs = 21 µM activity against the tested strains comparable with or higher than that of the standards ampicillin and isoniazid. In the case of bulkier carbamate tails (R > propyl/isopropyl, the activity was similar (MICs ca. 70 µM. Screening of the cytotoxicity of both of the most effective compounds was performed using THP-1 cells, and no significant lethal effect was observed (LD50 >30 µM. The structure-activity relationships are discussed.

  4. Synergism between rutile and anatase TiO{sub 2} particles in photocatalytic oxidation of naphthalene

    Energy Technology Data Exchange (ETDEWEB)

    Ohno, Teruhisa; Tokieda, Kojiro; Matsumura, Michio [Research Center for Solar Energy Chemistry, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531 (Japan); Higashida, Suguru [Department of Industrial Chemistry, Osaka Prefectural College of Technology, 26-12 Saiwai, Neyagawa, Osaka 572-8572 (Japan)


    Photocatalytic oxidation of naphthalene was investigated in a mixed solution of acetonitrile and water using various kinds of titanium dioxide (TiO{sub 2}) powders as the photocatalysts and molecular oxygen as the electron acceptor. The main product from naphthalene is 2-formylcinnamaldehyde. For this reaction, anatase small TiO{sub 2} particles, which are commonly used as photocatalyst, are inactive, probably because band bending is necessary for the oxidation of naphthalene. If the particles are not extremely small, pure rutile and pure anatase powders show fairly high activity, and those containing both anatase and rutile phases show the highest activity. When a pure anatase powder is partly (about 90%) converted to the rutile form by heat treatment, the activity is largely enhanced. The activity of pure rutile particles is also enhanced by physically mixing them with a small amount of small-sized anatase particles, which are inactive for this reaction. These results can be explained by the synergism between rutile and anatase particles. We consider that electrons are transferred from rutile particles to anatase particles, i.e. naphthalene is mainly oxidized on rutile particles and oxygen is mainly reduced on anatase particles. This electron transfer process is supported by electrochemical properties of TiO{sub 2} electrodes for reduction of oxygen.

  5. Solid state tautomerism in 2-((phenylimino)methyl)naphthalene-1-ol

    DEFF Research Database (Denmark)

    Nedeltcheva, Daniela; Kamounah, Fadhil S.; Mirolo, Laurent


    The solid state tautomerism of 2-((phenylimino)methyl)naphthalene-1-ol was studied using X-ray measurements and absorption spectroscopy. In the solid state, the keto tautomer predominates. The observed shift in the equilibrium from the enol (dilute solution) to the keto (solid state) forms...

  6. Free flow electrophoresis separation and AMS quantitation of C-naphthalene-protein adducts. (United States)

    Buchholz, Bruce A; Haack, Kurt W; Sporty, Jennifer L; Buckpitt, Alan R; Morin, Dexter


    Naphthalene is a volatile aromatic hydrocarbon to which humans are exposed from a variety of sources including mobile air sources and cigarette smoke. Naphthalene produces dose- (concentration) dependent injury to airway epithelial cells of murine lung which is observed at concentrations well below the current occupational exposure standard. Toxicity is dependent upon the cytochrome P450 mediated metabolic activation of the parent substrate to unstable metabolites which become bound covalently to tissue proteins. Nearly 70 proteins have been identified as forming adducts with reactive naphthalene metabolites using in vitro systems but very little work has been conducted in vivo because reasonably large amounts (100 μCi) of (14)C labeled parent compound must be administered to generate detectable adduct levels on storage phosphor screens following separation of labeled proteins by 2 D gel electrophoresis. The work described here was done to provide proof of concept that protein separation by free flow electrophoresis followed by AMS detection of protein fractions containing protein bound reactive metabolites would provide adducted protein profiles in animals dosed with trace quantities of labeled naphthalene. Mice were administered 200 mg/kg naphthalene intraperitoneally at a calculated specific activity of 2 DPM/nmol (1 pCi/nmol) and respiratory epithelial tissue was obtained by lysis lavage 4 hr post injection. Free flow electrophoresis (FFE) separates proteins in the liquid phase over a large pH range (2.5-11.5) using low molecular weight acids and bases to modify the pH. The apparatus separates fractions into standard 96-well plates that can be used in other protein analysis techniques. The buffers of the fractions have very high carbon content, however, and need to be dialyzed to yield buffers compatible with (14)C-AMS. We describe the processing techniques required to couple FFE to AMS for quantitation of protein adducts.

  7. Wearable real-time direct reading naphthalene and VOC personal exposure monitor (United States)

    Hug, W. F.; Bhartia, R.; Reid, R. D.; Reid, M. R.; Oswal, P.; Lane, A. L.; Sijapati, K.; Sullivan, K.; Hulla, J. E.; Snawder, J.; Proctor, S. P.


    Naphthalene has been identified by the National Research Council as a serious health hazard for personnel working with jet fuels and oil-based sealants containing naphthalene. We are developing a family of miniature, self-contained, direct reading personal exposure monitors (PEMs) to detect, differentiate, quantify, and log naphthalene and other volatile organic compounds (VOCs) in the breathing zone of the wearer or in the hands of an industrial hygienist with limits of detection in the low parts per billion (ppb) range. The VOC Dosimeter (VOCDos) described here is a PEM that provides real-time detection and data logging of exposure as well as accumulated dose, with alarms addressing long term and immediate exposure limits. We will describe the sensor, which employs optical methods with a unique excitation source and rapidly refreshable vapor concentrator. This paper addresses the rapidly increasing awareness of the health risks of inhaling jet fuel vapors by Department of Defense (DOD) personnel engaged in or around jet fueling operations. Naphthalene is a one to three percent component of the 5 billion gallons of jet fuels used annually by DOD. Naphthalene is also a component of many other petroleum products such as asphalt and other oil-based sealants. The DOD is the single largest user of petroleum fuels in the United States (20% of all petroleum fuel used). The VOCDos wearable sensor provides real-time detection and data logging of exposure as well as accumulated dose. We will describe the sensor, which employs endogenous fluorescence from VOCs accumulated on a unique, rapidly refreshable, patent-pending concentrator, excited by a unique deep ultraviolet excitation source.

  8. Central Administration of Lipopolysaccharide Induces Depressive-like Behavior in Vivo and Activates Brain Indoleamine 2,3 Dioxygenase In Murine Organotypic Hippocampal Slice Cultures

    Directory of Open Access Journals (Sweden)

    Kavelaars Annemieke


    Full Text Available Abstract Background Transient stimulation of the innate immune system by an intraperitoneal injection of lipopolysaccharide (LPS activates peripheral and central expression of the tryptophan degrading enzyme indoleamine 2,3 dioxygenase (IDO which mediates depressive-like behavior. It is unknown whether direct activation of the brain with LPS is sufficient to activate IDO and induce depressive-like behavior. Methods Sickness and depressive-like behavior in C57BL/6J mice were assessed by social exploration and the forced swim test, respectively. Expression of cytokines and IDO mRNA was measured by real-time RT-PCR and cytokine protein was measured by enzyme-linked immunosorbent assays (ELISAs. Enzymatic activity of IDO was estimated as the amount of kynurenine produced from tryptophan as determined by high pressure liquid chromatography (HPLC with electrochemical detection. Results Intracerebroventricular (i.c.v. administration of LPS (100 ng increased steady-state transcripts of TNFα, IL-6 and the inducible isoform of nitric oxide synthase (iNOS in the hippocampus in the absence of any change in IFNγ mRNA. LPS also increased IDO expression and induced depressive-like behavior, as measured by increased duration of immobility in the forced swim test. The regulation of IDO expression was investigated using in situ organotypic hippocampal slice cultures (OHSCs derived from brains of newborn C57BL/6J mice. In accordance with the in vivo data, addition of LPS (10 ng/ml to the medium of OHSCs induced steady-state expression of mRNA transcripts for IDO that peaked at 6 h and translated into increased IDO enzymatic activity within 8 h post-LPS. This activation of IDO by direct application of LPS was preceded by synthesis and secretion of TNFα and IL-6 protein and activation of iNOS while IFNγ expression was undetectable. Conclusion These data establish that activation of the innate immune system in the brain is sufficient to activate IDO and induce

  9. Study on Decolourization of α - Methyl Naphthalene%α-甲基萘脱色的研究

    Institute of Scientific and Technical Information of China (English)

    张宇晨; 孙兵; 邹志福


    分析了α-甲基萘着色的原因,采用活性白土吸附法脱除α-甲基萘的红色,同时进行了抗氧化试验,以保证α-甲基萘产品的稳定性。%The cause of α - methyl naphthalene colouration is analyzed. The removal of red colour of α - methyl naphthalene is realized by means of active white soil adsorption process. At the same time, the oxidation- resistant test is conducted so as to ensure the stability of α - methyl naphthalene products.

  10. NahY, a Catabolic Plasmid-Encoded Receptor Required for Chemotaxis of Pseudomonas putida to the Aromatic Hydrocarbon Naphthalene



    Pseudomonas putida G7 exhibits chemotaxis to naphthalene, but the molecular basis for this was not known. A new gene, nahY, was found to be cotranscribed with meta cleavage pathway genes on the NAH7 catabolic plasmid for naphthalene degradation. The nahY gene encodes a 538-amino-acid protein with a membrane topology and a C-terminal region that resemble those of chemotaxis transducer proteins. A P. putida G7 nahY mutant grew on naphthalene but was not chemotactic to this aromatic hydrocarbon....

  11. Mutations in the 4-hydroxyphenylpyruvate dioxygenase gene (HPD) in patients with tyrosinemia type III. (United States)

    Rüetschi, U; Cerone, R; Pérez-Cerda, C; Schiaffino, M C; Standing, S; Ugarte, M; Holme, E


    Tyrosinemia type III (OMIM 276710) is an autosomal recessive disorder caused by the deficiency of 4-hydroxyphenylpyruvate dioxygenase (HPD), the second enzyme in the tyrosine catabolic pathway. The enzyme deficiency results in an accumulation and increased excretion of tyrosine and phenolic metabolites. Only a few cases with the disorder have been described, and the clinical spectrum of the disorder is unknown. Reported patients have presented with mental retardation or neurological symptoms or have been picked up by neonatal screening. We have identified four presumed pathogenic mutations (two missense and two nonsense mutations) in the HPD gene in three unrelated families encompassing four homozygous individuals and one compound heterozygous individual with tyrosinemia type III. Furthermore, a number of polymorphic mutations have been identified in the HPD gene. No correlation of the severity of the mutation and enzyme deficiency and mental function has been found; neither do the recorded tyrosine levels correlate with the clinical phenotype.

  12. Characterization of catechol 1,2-dioxygenase from cell extracts of Sphingomonas xenophaga QYY

    Institute of Scientific and Technical Information of China (English)

    GOU Min; QU YuanYuan; ZHOU JiTi; LI Ang; M.Salah Uddin


    Sphingomonas xenophaga QYY, capable of growing significantly on more than ten kinds of aromatic compounds as sole carbon source, was used to study characterization of catechol 1,2-dioxygenase (C120) in cell extracts. Characterization of the crude C120 showed that the maximum activity was obtained at 40-70℃ and pH 7.8-8.8. Metal ions had different influences on the activity of crude C120. It was suggested that strain QYY possessed an inducible and ferric-dependent C120. Kinetic studies showed that the value of Vmax and Km was 0.25 μmol catechol/L/mg protein/min and 52.85 μmol/L, respectively. In addition, the partial purification of C120 was achieved by a HiTrap Q Sepharose column chromatography.

  13. Characterization of catechol 1,2-dioxygenase from cell extracts of Sphingomonas xenophaga QYY

    Institute of Scientific and Technical Information of China (English)

    M.Salah; Uddin


    Sphingomonas xenophaga QYY, capable of growing significantly on more than ten kinds of aromatic compounds as sole carbon source, was used to study characterization of catechol 1,2-dioxygenase (C12O) in cell extracts. Characterization of the crude C12O showed that the maximum activity was obtained at 40-70℃ and pH 7.8-8.8. Metal ions had different influences on the activity of crude C12O. It was suggested that strain QYY possessed an inducible and ferric-dependent C12O. Kinetic studies showed that the value of Vmax and Km was 0.25 μmol catechol/L/mg protein/min and 52.85 μmol/L, respectively. In addition, the partial purification of C12O was achieved by a HiTrap Q Sepharose column chromatography.

  14. Indoleamine 2,3-dioxygenase specific, cytotoxic T cells as immune regulators

    DEFF Research Database (Denmark)

    Sørensen, Rikke Bæk; Hadrup, Sine Reker; Svane, Inge Marie


    Indoleamine 2,3-dioxygenase (IDO) is an immunoregulatory enzyme that is implicated in suppressing T-cell immunity in normal and pathologic settings. Here, we describe that spontaneous cytotoxic T-cell reactivity against IDO exists not only in patients with cancer but also in healthy persons. We...... show that the presence of such IDO-specific CD8(+) T cells boosted T-cell immunity against viral or tumor-associated antigens by eliminating IDO+ suppressive cells. This had profound effects on the balance between interleukin-17 (IL-17)-producing CD4(+) T cells and regulatory T cells. Furthermore......, this caused an increase in the production of the proinflammatory cytokines IL-6 and tumor necrosis factor-alpha while decreasing the IL-10 production. Finally, the addition of IDO-inducing agents (ie, the TLR9 ligand cytosine-phosphate- guanosine, soluble cytotoxic T lymphocyte-associated antigen 4...

  15. Synthesis and bioevaluation of pyrazole-benzimidazolone hybrids as novel human 4-Hydroxyphenylpyruvate dioxygenase inhibitors. (United States)

    Xu, Yu-Ling; Lin, Hong-Yan; Ruan, Xu; Yang, Sheng-Gang; Hao, Ge-Fei; Yang, Wen-Chao; Yang, Guang-Fu


    4-Hydroxyphenylpyruvate dioxygenase (HPPD), an essential enzyme in tyrosine catabolism, is an important target for treating type I tyrosinemia. Inhibition of HPPD can effectively alleviate the symptoms of type I tyrosinemia. However, only one commercial HPPD inhibitor, 2-(2-nitro-4-trifluoromethylbenzoyl) cyclohexane-1,3-dione (NTBC), has been available for clinical use so far. In the present study, a series of novel pyrazole-benzimidazolone hybrids were designed, synthesized and evaluated as potent human HPPD inhibitors. Most of the new compounds displayed significant inhibitory activity against the recombinant human HPPD. Moreover, compound 9l was identified as the most potent candidate with IC50 value of 0.021 μM against recombinant human HPPD, about 3-fold more potent than NTBC. Thus the pyrazole-benzimidazolone hybrid has great potential to be further developed for the treatment of type I tyrosinemia.

  16. Degradation of phenanthrene and pyrene using genetically engineered dioxygenase producing Pseudomonas putida in soil

    Directory of Open Access Journals (Sweden)

    Mardani Gashtasb


    Full Text Available Bioremediation use to promote degradation and/or removal of contaminants into nonhazardous or less-hazardous substances from the environment using microbial metabolic ability. Pseudomonas spp. is one of saprotrophic soil bacterium and can be used for biodegradation of polycyclic aromatic hydrocarbons (PAHs but this activity in most species is weak. Phenanthrene and pyrene could associate with a risk of human cancer development in exposed individuals. The aim of the present study was application of genetically engineered P. putida that produce dioxygenase for degradation of phenanthrene and pyrene in spiked soil using high-performance liquid chromatography (HPLC method. The nahH gene that encoded catechol 2,3-dioxygenase (C23O was cloned into pUC18 and pUC18-nahH recombinant vector was generated and transformed into wild P. putida, successfully. The genetically modified and wild types of P. putida were inoculated in soil and pilot plan was prepared. Finally, degradation of phenanthrene and pyrene by this bacterium in spiked soil were evaluated using HPLC measurement technique. The results were showed elimination of these PAH compounds in spiked soil by engineered P. putida comparing to dishes containing natural soil with normal microbial flora and inoculated autoclaved soil by wild type of P. putida were statistically significant (p0.05 but it was few impact on this process (more than 2%. Additional and verification tests including catalase, oxidase and PCR on isolated bacteria from spiked soil were indicated that engineered P. putida was alive and functional as well as it can affect on phenanthrene and pyrene degradation via nahH gene producing. These findings indicated that genetically engineered P. putida generated in this work via producing C23O enzyme can useful and practical for biodegradation of phenanthrene and pyrene as well as petroleum compounds in polluted environments.

  17. 2,3-Dihydroxybiphenyl dioxygenase gene was first discovered in Arthrobacter sp. strain P J3

    Institute of Scientific and Technical Information of China (English)

    YANG MeiYing; MA PengDa; LI WenMing; LIU JinYing; LI Liang; ZHU XiaoJuan; WANG XingZhi


    Bacterium strain PJ3, isolated from wastewater and identified as Arthrobacter sp. bacterium based on its 16S rDNA gene, could use carbazole as the sole carbon, nitrogen and energy source. The genomic libraryof strain PJ3 was constructed and a positive clone JM109 (pUCW402) was screened out for the expression of dioxygenase by the ability to form yellow ring-fission product. A 2,3-dihydroxybiphenyl dioxygenase (23DHBD) gene of 933 bp was found in the 3360 bp exogenous fragment of pUCW402 by GenSCAN software and BLAST analysis. The phylogenetic analysis showed that 23DHBD from strain PJ3 formed a deep branch separate from a cluster containing most known 23DHBD in GenBank.Southern hybridization confirmed for the first time that the 23DHBD gene was from the genomic DNA of Arthrobacter sp. PJ3. In order to test the gene function, recombinant bacterium BL21 (pETW-8) was constructed to express 23DHBD. The expression level in BL21 (pETW-8) was highest compared with the recombinant bacteria JM109 (pUCW402) and strain PJ3. We observed that 23DHBD was not absolute specific. The enzyme activity was higher with 2,3-dihydroxybiphenyl as a substrate than with catechol.The substrate specificity assay suggested that 23DHBD was essential for cleavage of bi-cyclic aromatic compounds during the course of aromatic compound biodegradation in Arthrobacter sp. strain PJ3.

  18. Promotion of Germination Using Hydroxamic Acid Inhibitors of 9-cis-Epoxycarotenoid Dioxygenase (United States)

    Awan, Sajjad Z.; Chandler, Jake O.; Harrison, Peter J.; Sergeant, Martin J.; Bugg, Timothy D. H.; Thompson, Andrew J.


    Abscisic acid (ABA) inhibits seed germination and the regulation of ABA biosynthesis has a role in maintenance of seed dormancy. The key rate-limiting step in ABA biosynthesis is catalyzed by 9-cis-epoxycarotenoid dioxygenase (NCED). Two hydroxamic acid inhibitors of carotenoid cleavage dioxygenase (CCD), D4 and D7, previously found to inhibit CCD and NCED in vitro, are shown to have the novel property of decreasing mean germination time of tomato (Solanum lycopersicum L.) seeds constitutively overexpressing LeNCED1. Post-germination, D4 exhibited no negative effects on tomato seedling growth in terms of height, dry weight, and fresh weight. Tobacco (Nicotiana tabacum L.) seeds containing a tetracycline-inducible LeNCED1 transgene were used to show that germination could be negatively and positively controlled through the chemical induction of gene expression and the chemical inhibition of the NCED protein: application of tetracycline increased mean germination time and delayed hypocotyl emergence in a similar manner to that observed when exogenous ABA was applied and this was reversed by D4 when NCED expression was induced at intermediate levels. D4 also improved germination in lettuce (Lactuca sativa L.) seeds under thermoinhibitory temperatures and in tomato seeds imbibed in high osmolarity solutions of polyethylene glycol. D4 reduced ABA and dihydrophaseic acid accumulation in tomato seeds overexpressing LeNCED1 and reduced ABA accumulation in wild type tomato seeds imbibed on polyethylene glycol. The evidence supports a mode of action of D4 through NCED inhibition, and this molecule provides a lead compound for the design of NCED inhibitors with greater specificity and potency.

  19. A "White" Anthocyanin-less Pomegranate (Punica granatum L.) Caused by an Insertion in the Coding Region of the Leucoanthocyanidin Dioxygenase (LDOX; ANS) Gene. (United States)

    Ben-Simhon, Zohar; Judeinstein, Sylvie; Trainin, Taly; Harel-Beja, Rotem; Bar-Ya'akov, Irit; Borochov-Neori, Hamutal; Holland, Doron


    Color is an important determinant of pomegranate fruit quality and commercial value. To understand the genetic factors controlling color in pomegranate, chemical, molecular and genetic characterization of a "white" pomegranate was performed. This unique accession is lacking the typical pomegranate color rendered by anthocyanins in all tissues of the plant, including flowers, fruit (skin and arils) and leaves. Steady-state gene-expression analysis indicated that none of the analyzed "white" pomegranate tissues are able to synthesize mRNA corresponding to the PgLDOX gene (leucoanthocyanidin dioxygenase, also called ANS, anthocyanidin synthase), which is one of the central structural genes in the anthocyanin-biosynthesis pathway. HPLC analysis revealed that none of the "white" pomegranate tissues accumulate anthocyanins, whereas other flavonoids, corresponding to biochemical reactions upstream of LDOX, were present. Molecular analysis of the "white" pomegranate revealed the presence of an insertion and an SNP within the coding region of PgLDOX. It was found that the SNP does not change amino acid sequence and is not fully linked with the "white" phenotype in all pomegranate accessions from the collection. On the other hand, genotyping of pomegranate accessions from the collection and segregating populations for the "white" phenotype demonstrated its complete linkage with the insertion, inherited as a recessive single-gene trait. Taken together, the results indicate that the insertion in PgLDOX is responsible for the "white" anthocyanin-less phenotype. These data provide the first direct molecular, genetic and chemical evidence for the effect of a natural modification in the LDOX gene on color accumulation in a fruit-bearing woody perennial deciduous tree. This modification can be further utilized to elucidate the physiological role of anthocyanins in protecting the tree organs from harmful environmental conditions, such as temperature and UV radiation.

  20. A "White" Anthocyanin-less Pomegranate (Punica granatum L. Caused by an Insertion in the Coding Region of the Leucoanthocyanidin Dioxygenase (LDOX; ANS Gene.

    Directory of Open Access Journals (Sweden)

    Zohar Ben-Simhon

    Full Text Available Color is an important determinant of pomegranate fruit quality and commercial value. To understand the genetic factors controlling color in pomegranate, chemical, molecular and genetic characterization of a "white" pomegranate was performed. This unique accession is lacking the typical pomegranate color rendered by anthocyanins in all tissues of the plant, including flowers, fruit (skin and arils and leaves. Steady-state gene-expression analysis indicated that none of the analyzed "white" pomegranate tissues are able to synthesize mRNA corresponding to the PgLDOX gene (leucoanthocyanidin dioxygenase, also called ANS, anthocyanidin synthase, which is one of the central structural genes in the anthocyanin-biosynthesis pathway. HPLC analysis revealed that none of the "white" pomegranate tissues accumulate anthocyanins, whereas other flavonoids, corresponding to biochemical reactions upstream of LDOX, were present. Molecular analysis of the "white" pomegranate revealed the presence of an insertion and an SNP within the coding region of PgLDOX. It was found that the SNP does not change amino acid sequence and is not fully linked with the "white" phenotype in all pomegranate accessions from the collection. On the other hand, genotyping of pomegranate accessions from the collection and segregating populations for the "white" phenotype demonstrated its complete linkage with the insertion, inherited as a recessive single-gene trait. Taken together, the results indicate that the insertion in PgLDOX is responsible for the "white" anthocyanin-less phenotype. These data provide the first direct molecular, genetic and chemical evidence for the effect of a natural modification in the LDOX gene on color accumulation in a fruit-bearing woody perennial deciduous tree. This modification can be further utilized to elucidate the physiological role of anthocyanins in protecting the tree organs from harmful environmental conditions, such as temperature and UV


    Lifescience Database Archive (English)

    Full Text Available MRNA3ENDTAH3 S000069 17-May-1998 (last modified) kehi Cis element in 3' end region ...of wheat (T.a.) histone H3 mRNA; 3' end formation; Also found in histone genes of other plants, yeast, etc; histone H3; mRNA

  2. Controlled shift in the tautomeric equilibrium of 4-​((phenylimino)​methyl)​naphthalen-​1-​ol

    DEFF Research Database (Denmark)

    Kamounah, Fadhil S.; Deneva, V; Manolova, y


    -​((Phenylimino)​methyl)​naphthalen-​1-​ol and 4-​((phenylimino)​methyl)​-​2-​(piperidin-​1-​ylmethyl)​naphthalen-​1-​ol have been synthesized and their tautomeric properties were investigated using mol. spectroscopy (UV-​vis absorption​/emission and NMR)​, X-​ray crystallog. anal. and quantum...

  3. Prevention of naphthalene-induced cataract and hepatic glutathione loss by the L-cysteine prodrugs, MTCA and PTCA. (United States)

    Rathbun, W B; Nagasawa, H T; Killen, C E


    Rapid-onset cataracts were induced in SPF C57 bl/6 mice by intraperitoneal administration of naphthalene following cytochrome P-450 isozyme induction with phenobarbital. Several L-cysteine prodrugs with masked sulfhydryl groups in the form of thiazolidine-4-carboxylic acids, as well as N-acetyl-L-cysteine, N,S-bis-acetyl-L-cysteine and glutathione ethyl ester, were evaluated for their ability to maintain hepatic and lenticular glutathione at near-normal levels and to prevent naphthalene-induced cataract formation. Each prodrug was administered at three specified times to a cumulative total of 1.5 mole equivalents of the single dose of naphthalene. Three L-cysteine prodrugs delayed but did not prevent cataract formation in 40-60% of the mice over a 72-hr period, while eight of the 13 compounds produced cataract yields similar to the naphthalene control animals, i.e. 83% in 72 hr. However, two L-cysteine prodrugs, 2(R,S)-methylthiazolidine-4(R)-carboxylic acid (MTCA) and 2(R,S)-n-propylthiazolidine-4(R)-carboxylic acid (PTCA), prevented cataract formation in 20 of 21 and 12 of 12 mice, respectively, and maintained hepatic reduced glutathione levels at 82% and 51% of untreated controls. In contrast, glutathione was depressed to 3% of the normal value in those animals treated with naphthalene alone. Lenticular glutathione values were depressed, albeit minimally, in all naphthalene-treated mice regardless of administration of either MTCA or PTCA. The mice protected with either MTCA or PTCA showed no visible effects of naphthalene toxicity or lens opacities at any time. It can be concluded that these L-cysteine prodrugs were effective in preventing naphthalene-induced cataract and maintaining near-normal hepatic glutathione levels.

  4. Structure of the Dioxygenase AsqJ: Mechanistic Insights into a One-Pot Multistep Quinolone Antibiotic Biosynthesis

    KAUST Repository

    Bräuer, Alois


    © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. Multienzymatic cascades are responsible for the biosynthesis of natural products and represent a source of inspiration for synthetic chemists. The FeII/α-ketoglutarate-dependent dioxygenase AsqJ from Aspergillus nidulans is outstanding because it stereoselectively catalyzes both a ferryl-induced desaturation reaction and epoxidation on a benzodiazepinedione. Interestingly, the enzymatically formed spiro epoxide spring-loads the 6,7-bicyclic skeleton for non-enzymatic rearrangement into the 6,6-bicyclic scaffold of the quinolone alkaloid 4′-methoxyviridicatin. Herein, we report different crystal structures of the protein in the absence and presence of synthesized substrates, surrogates, and intermediates that mimic the various stages of the reaction cycle of this exceptional dioxygenase.

  5. Loss of Homogentisate 1,2-Dioxygenase Activity in Bacillus anthracis Results in Accumulation of Protective Pigment. (United States)

    Han, Hesong; Iakovenko, Liudmyla; Wilson, Adam C


    Melanin production is important to the pathogenicity and survival of some bacterial pathogens. In Bacillus anthracis, loss of hmgA, encoding homogentisate 1,2-dioxygenase, results in accumulation of a melanin-like pigment called pyomelanin. Pyomelanin is produced in the mutant as a byproduct of disrupted catabolism of L-tyrosine and L-phenylalanine. Accumulation of pyomelanin protects B. anthracis cells from UV damage but not from oxidative damage. Neither loss of hmgA nor accumulation of pyomelanin alter virulence gene expression, sporulation or germination. This is the first investigation of homogentisate 1,2-dioxygenase activity in the Gram-positive bacteria, and these results provide insight into a conserved aspect of bacterial physiology.

  6. Loss of Homogentisate 1,2-Dioxygenase Activity in Bacillus anthracis Results in Accumulation of Protective Pigment.

    Directory of Open Access Journals (Sweden)

    Hesong Han

    Full Text Available Melanin production is important to the pathogenicity and survival of some bacterial pathogens. In Bacillus anthracis, loss of hmgA, encoding homogentisate 1,2-dioxygenase, results in accumulation of a melanin-like pigment called pyomelanin. Pyomelanin is produced in the mutant as a byproduct of disrupted catabolism of L-tyrosine and L-phenylalanine. Accumulation of pyomelanin protects B. anthracis cells from UV damage but not from oxidative damage. Neither loss of hmgA nor accumulation of pyomelanin alter virulence gene expression, sporulation or germination. This is the first investigation of homogentisate 1,2-dioxygenase activity in the Gram-positive bacteria, and these results provide insight into a conserved aspect of bacterial physiology.

  7. Atom Tunneling in the Hydroxylation Process of Taurine/α-Ketoglutarate Dioxygenase Identified by Quantum Mechanics/Molecular Mechanics Simulations. (United States)

    Álvarez-Barcia, Sonia; Kästner, Johannes


    Taurine/α-ketoglutarate dioxygenase is one of the most studied α-ketoglutarate-dependent dioxygenases (αKGDs), involved in several biotechnological applications. We investigated the key step in the catalytic cycle of the αKGDs, the hydrogen transfer process, by a quantum mechanics/molecular mechanics approach (B3LYP/CHARMM22). Analysis of the charge and spin densities during the reaction demonstrates that a concerted mechanism takes place, where the H atom transfer happens simultaneously with the electron transfer from taurine to the Fe═O cofactor. We found the quantum tunneling of the hydrogen atom to increase the rate constant by a factor of 40 at 5 °C. As a consequence, a quite high kinetic isotope effect close to 60 is obtained, which is consistent with the experimental value.

  8. Is chlorination one of the major pathways in the formation of polychlorinated naphthalenes (PCNs) in municipal solid waste combustion? (United States)

    Ryu, Jae-Yong; Kim, Do-Hyong; Jang, Seong-Ho


    The chlorination patterns of unsubstituted naphthalene were studied using a laminar flow reactor with a 1 cm particle bed of 0.5% (mass) copper(II) chloride (CuCl2) mixed with silicon dioxide (SiO2), operated over a temperature range of 100 to 400 °C and at gas velocities of 2.7 and 0.32 cm/s. The polychlorinated naphthalene (PCN) yield increased until a temperature reached at 250 °C, where a peak yield of 3.07% (percent of naphthalene input, carbon basis) was observed. All PCN homologue groups, mono- through octa-chlorinated naphthalenes, were observed. To test the hypothesis that PCNs in combustion processes are formed via chlorination pathways, the PCN homologue and isomer patterns from the experiments were compared with those observed in municipal solid waste combustion (MSW) incinerators. PCN congeners with 1,4-substituents dominated formation in the naphthalene chlorination experiments, whereas 2,3-substituents were major congeners in both MSW combustion flue gas and fly ash samples. These results suggest that contrary to the hypothesis, chlorination is not a primary PCN formation route in either the flue gas or fly ash from MSW combustion. Even so, naphthalene chlorination pathways presented in this paper provide an improved means for evaluating PCN formation mechanisms in combustion processes.

  9. Naphthalene emissions from moth repellents or toilet deodorant blocks determined using head-space and small-chamber tests

    Institute of Scientific and Technical Information of China (English)

    JO Wan-Kuen; LEE Jong-Hyo; LIM Ho-Jin; JEONG Woo-Sik


    The present study investigated the emissions of naphthalene and other compounds from several different moth repellents (MRs) and one toilet deodorant block (TDB) currently sold in Korea, using a headspace analysis. The emission factors and emission rates of naphthalene were studied using a small-scale environmental chamber. Paper-type products emitted a higher concentration of the total volatile organic compounds (VOCs) (normalized to the weight of test piece) than ball-type products, which in turn emitted higher concentration than a gel-type product. In contrast, naphthalene was either the most or the second highest abundant compound for the four ball products, whereas for paper and gel products it was not detected or was detected at much lower levels. The abundance of naphthalene ranged between 18.4% and 37.3% for ball products. The results show that the lower the air changes per hour (ACH) level was, the higher the naphthalene concentrations became. In general, a low ACH level suggests a low ventilation rate. The emission factor for naphthalene was nearly 100 times higher for a ball MR than for a gel or a paper MR. For the ball MR, the lower ACH level was, the higher both emission rate and emission factor became.

  10. 3-Hydroxy-N′-[(Z-(5-methyl-2-furylmethylidene]naphthalene-2-carbohydrazide

    Directory of Open Access Journals (Sweden)

    Zahid Shafiq


    Full Text Available The asymmetric unit of title compound, C17H14N2O3, contains three independent molecules. In one of these molecules, the 5-methyl-2-furyl group is disordered over two sets of sites with an occupancy ratio of 0.747 (3:0.253 (3. In the two ordered molecules, the furan and naphthalene rings are oriented at dihedral angles of 11.05 (12 and 32.2 (5°. In the disordered molecule, the furan rings with major and minor occupancies are oriented at dihedral angles of 41.4 (2 and 26.6 (13°, respectively, with the corresponding naphthalene ring. An intramolecular O—H...O hydrogen bond occurs within each molecule. In the crystal, molecules are linked by N—H...O, N—H...(N,O and C—H...O interactions.

  11. Electroluminescence and photoluminescence of conjugated polymer films prepared by plasma enhanced chemical vapor deposition of naphthalene

    CERN Document Server

    Rajabi, Mojtaaba; Firouzjah, Marzieh Abbasi; Hosseini, Seyed Iman; Shokri, Babak


    Polymer light-emitting devices were fabricated utilizing plasma polymerized thin films as emissive layers. These conjugated polymer films were prepared by RF Plasma Enhanced Chemical Vapor Deposition (PECVD) using naphthalene as monomer. The effect of different applied powers on the chemical structure and optical properties of the conjugated polymers was investigated. The fabricated devices with structure of ITO/PEDOT:PSS/ plasma polymerized Naphthalene/Alq3/Al showed broadband Electroluminescence (EL) emission peaks with center at 535-550 nm. Using different structural and optical tests, connection between polymers chemical structure and optical properties under different plasma powers has been studied. Fourier transform infrared (FTIR) and Raman spectroscopies confirmed that a conjugated polymer film with a 3-D cross-linked network was developed. By increasing the power, products tended to form as highly cross-linked polymer films. Photoluminescence (PL) spectra of plasma polymers showed different excimerc ...

  12. Performance of a Novel Hydrophobic Mesoporous Material for High Temperature Catalytic Oxidation of Naphthalene

    Directory of Open Access Journals (Sweden)

    Guotao Zhao


    Full Text Available A high surface area, hydrophobic mesoporous material, MFS, has been successfully synthesized by a hydrothermal synthesis method using a perfluorinated surfactant, SURFLON S-386, as the single template. N2 adsorption and TEM were employed to characterize the pore structure and morphology of MFS. Static water adsorption test indicates that the hydrophobicity of MFS is significantly higher than that of MCM-41. XPS and Py-GC/MS analysis confirmed the existence of perfluoroalkyl groups in MFS which led to its high hydrophobicity. MFS was used as a support for CuO in experiments of catalytic combustion of naphthalene, where it showed a significant advantage over MCM-41 and ZSM-5. SEM was helpful in understanding why CuO-MFS performed so well in the catalytic combustion of naphthalene. Experimental results indicated that MFS was a suitable support for catalytic combustion of large molecular organic compounds, especially for some high temperature catalytic reactions when water vapor was present.

  13. Synthetic N-Alkyl/aralkyl-4-methyl-N-(naphthalen-1-ylbenzenesulfonamides as Potent Antibacterial Agents

    Directory of Open Access Journals (Sweden)

    *M. A. Abbasi


    Full Text Available The current research effort involved the reaction of napthalen-1-amine (1 with 4-methylbenzenesulfonyl chloride (2 under dynamic pH control at 9-10, maintained with 10% aqueous Na2CO3 to obtain 4-methyl-N-(naphthalen-1-yl benzenesulfonamide (3. The parent molecule 3 was further substituted at N-atom with alkyl/aralkyl halides (4a-f in polar aprotic solvent; N,N-dimethylformamide, and lithium hydride which acts as a base, to achieve N-alkyl/aralkyl-4-methyl-N-(naphthalen-1-ylbenzenesulfonamides (5a-f. All the synthesized compounds were structurally elucidated by IR, 1H-NMR and EIMS spectral techniques. All the derivatives were further screened for antibacterial and anti-enzymatic potential against various bacterial strains and enzymes, respectively, and were found to be potent antibacterial agents and moderate to weak enzyme inhibitors.

  14. The Formation of Carbon Nanostructures via Catalytic Pyrolysis of Naphthalene under Its Autogenic Pressure

    Directory of Open Access Journals (Sweden)

    Chao-Gang Wang


    Full Text Available The formation of carbon nanotubes (CNTs, spherical carbon nanocapsules (CNCs, and carbon spheres (CSs is accomplished by using the method of reactions under autogenic pressure at elevated temperatures (RAPET. A powder mixture of naphthalene and nickel acetate tetrahydrate is dissociated under its autogenic pressure. The resultant CNTs and CNCs exhibit good graphitic quality, and the diameters range from 50~200 nm. Smooth and monodisperse CSs with the diameter ranging from 5~10 μm can be obtained by pyrolysis of pure naphthalene. Our results show that the reaction temperature and catalyst proportion play a key role in the formation of carbon nanostructures with RAPET method.

  15. 1-[(E-2-(2-Hydroxy-5-methylphenyldiazen-2-ium-1-yl]naphthalen-2-olate

    Directory of Open Access Journals (Sweden)

    Salah Eddine Bouaoud


    Full Text Available The title zwitterion, C17H14N2O2, crystallizes with two independent molecules in the asymmetric unit, both of which are approximately planar, the dihedral angles between the benzene ring and the naphthalene ring system being 4.39 (12° in one molecule and 5.83 (12° in the other, and show an E conformation with respect to the azo double bond. An intramolecular N—H...O hydrogen bond in each molecule helps to establish their near planar conformation. In the crystal, molecules are linked through O—H...O hydrogen bonds into infinite chains running along the a-axis direction. In addition, the chains are stacked along the b axis via π–π interactions between the benzene and the naphthalene rings of adjacent molecules, the centroid–centroid distances being 3.722 (3 and 3.823 (4 Å.

  16. Preparation and Characterization of Aromatic Polybenzoxazoles Copolymers Containing 2,6-Naphthalene Units

    Institute of Scientific and Technical Information of China (English)

    LI Lei; FAN Xing-he; ZHAO Xiao-dong; ZHOU Jing-lun; CHEN Xiao-fang; WAN Xin-hua; ZHOU Qi-feng


    A series of polybenzoxazoles (co)polymers bearing crankshaft units in the main chain was synthesized by the conventional solution polycondensation of 4, 6-diaminorescinol dihydrochloride, terephthalic acid (TA)and 2,6-naphthalene dicarboxylic acid(NDA). All of the polymers show lyotropic liquid crystal behavior in polyphosphoric acid(PPA) and methanesulfonic acid (MSA). The polybenzoxazoles exhibit an excellent thermal resistance although the crankshaft monomer has been introduced into the polymer backbone. The temperature for the 5% weight loss of all the polymers is above 600 ℃. The X-ray diffraction analysis results show that the series of the polymers has a high crystallinity. The introduction of NDA makes a slight decrease in the thermal resistance of the polymers. The maximum absorption peak in the UV-Vis spectra can be adjusted according to the amount of 2,6-naphthalene units in the polymers, which indicates the potential application of the polymers as optoelectric materials.

  17. Fluorescent naphthalene-based benzene tripod for selective recognition of fluoride in physiological condition

    Indian Academy of Sciences (India)

    Barun kumar Datta; Chirantan Kar; Gopal Das


    Aluminium complex of a naphthalene-based benzene tripod ligand system has been reported for the selective recognition of fluoride in aqueous medium in physiological condition. The ligand can selectively recognize Al3+ through enhancement in the fluorescence intensity and this in situ formed aluminium complex recognizes fluoride through quenching of fluorescence. The receptor system detects fluoride in nanomolar range. The sensing property was extended for practical utility to sense fluoride in tap water, pond water and river water.

  18. A Critical Review of Naphthalene Sources and Exposures Relevant to Indoor and Outdoor Air

    Directory of Open Access Journals (Sweden)

    Chunrong Jia


    Full Text Available Both the recent classification of naphthalene as a possible human carcinogen and its ubiquitous presence motivate this critical review of naphthalene’s sources and exposures. We evaluate the environmental literature on naphthalene published since 1990, drawing on nearly 150 studies that report emissions and concentrations in indoor, outdoor and personal air. While naphthalene is both a volatile organic compound and a polycyclic aromatic hydrocarbon, concentrations and exposures are poorly characterized relative to many other pollutants. Most airborne emissions result from combustion, and key sources include industry, open burning, tailpipe emissions, and cigarettes. The second largest source is off-gassing, specifically from naphthalene’s use as a deodorizer, repellent and fumigant. In the U.S., naphthalene’s use as a moth repellant has been reduced in favor of para-dichlorobenzene, but extensive use continues in mothballs, which appears responsible for some of the highest indoor exposures, along with off-label uses. Among the studies judged to be representative, average concentrations ranged from 0.18 to 1.7 μg m-3 in non-smoker’s homes, and from 0.02 to 0.31 μg m-3 outdoors in urban areas. Personal exposures have been reported in only three European studies. Indoor sources are the major contributor to (non-occupational exposure. While its central tendencies fall well below guideline levels relevant to acute health impacts, several studies have reported maximum concentrations exceeding 100 μg m-3, far above guideline levels. Using current but draft estimates of cancer risks, naphthalene is a major environmental risk driver, with typical individual risk levels in the 10-4 range, which is high and notable given that millions of individuals are exposed. Several factors influence indoor and outdoor concentrations, but the literature is inconsistent on their effects. Further investigation is needed to better characterize naphthalene

  19. Bis(1H-imidazol-3-ium naphthalene-1,5-disulfonate

    Directory of Open Access Journals (Sweden)

    Bin Wei


    Full Text Available The asymmetric unit of the title organic salt, 2C3H5N2+·C10H6O6S22−, consists of an imidazolium cation and half a naphthalene-1,5-disulfonate dianion, completed to the full dianion through an inversion center. N—H...S and N—H...O hydrogen bonds link cations and anions in the crystal, forming a chain propagating along [101].

  20. Partitioning of π-electrons in rings of aza-derivatives of naphthalene

    Directory of Open Access Journals (Sweden)



    Full Text Available A recently proposed method for calculating the π-electron contents (EC of rings of heteroatom-containing polycyclic conjugated molecules was applied to the aza-derivatives of naphthalene. The main finding was that a nitrogen atom in position α (resp. β diminishes (resp. increases the EC-value of the respective ring. Such a regularity in the displacement of π-electrons can be (qualitatively rationali­zed by means of resonance-theoretical reasoning.

  1. Synthesis of 2a,8b-Dihydrocyclobuta[a]naphthalene-3,4-diones

    Directory of Open Access Journals (Sweden)

    Kerstin Schmidt


    Full Text Available On irradiation (λ = 350 nm in neat hex-1-yne, naphthalene-1,2-dione monoacetals 1 afford mixtures of pentacyclic photodimers and up to 25% (isolated yield of mixed photocycloadducts 2. Careful acidic hydrolysis of the acetal function of 2 gives the title compounds 3, the overall sequence representing a first approach to a (formal [2 + 2] photocycloadduct of a 1,2-naphthoquinone to an alkyne.

  2. Sequential oxygenation of linoleic acid in the fungus Gaeumannomyces graminis: stereochemistry of dioxygenase and hydroperoxide isomerase reactions. (United States)

    Hamberg, M; Zhang, L Y; Brodowsky, I D; Oliw, E H


    Linoleic acid is sequentially oxygenated to (7S,8S)-dihydroxylinoleic acid by dioxygenase and hydroperoxide isomerase activities present in the fungus Gaeumannomyces graminis (Brodowsky, I. D., Hamberg, M., and Oliw, E. H., J. Biol. Chem. 267, 14738-14745 (1992)). Linoleic acids stereospecifically deuterated at C-7 and C-8 were prepared by biological desaturation of the corresponding stearates and used to determine the stereochemistry of the hydrogen abstractions occurring in the dioxygenase- and hydroperoxide isomerase-catalyzed reactions. The dioxygenase reaction was found to involve stereospecific abstraction of the pro-S hydrogen from C-8 followed by antarafacial insertion of dioxygen to produce (8R)-hydroperoxylinoleic acid. The hydroperoxide isomerase reaction consisted of conversion of (8R)-hydroperoxylinoleic acid into (7S,8S)-dihydroxylinoleic acid by stereospecific elimination of the pro-S hydrogen from C-7 and intramolecular suprafacial insertion of oxygen at C-7. Accordingly, during the conversion of linoleic acid into (8R)-hydroperoxylinoleic acid, the absolute configuration of C-8 was inverted, while the conversion of (8R)-hydroperoxylinoleic acid into (7S,8S)-dihydroxylinoleic acid occurred with retention of absolute configuration at C-7.

  3. The Role of 4-Hydroxyphenylpyruvate Dioxygenase in Enhancement of Solid-Phase Electron Transfer by Shewanella oneidensis MR-1

    Energy Technology Data Exchange (ETDEWEB)

    Turick, Charles E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Beliaev, Alex S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zakrajsek, Brian A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Reardon, Catherine L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lowy, Daniel A. [Nova Research Inc., Alexandria, VA (United States); Poppy, Tara E. [Univ. of South Carolina, Aiken, SC (United States); Maloney, Andrea [Winthrop Univ., Rock Hill, SC (United States); Ekechukwu, Amy A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)


    ABSTRACT - While mechanistic details of dissimilatory metal reduction are far from being understood, it is postulated that the electron transfer to solid metal oxides is mediated by outer membrane associated c-type cytochromes and electron shuttling compounds. This study focuses on the production of homogensitate in Shewanella oneidensis MR-1, an intermediate of the tyrosine degradation pathway, which is a precursor of a redox cycling metabolite, pyomelanin. We determined that two enzymes involved in this pathway, 4-hydroxyphenylpyruvate dioxygenase (4HPPD) and homogentisate 1,2-dioxygenase are responsible for homogentisate production and oxidation, respectively. Inhibition of 4-HPPD activity with the specific inhibitor sulcotrione ([2-(2- chloro- 4- methane sulfonylbenzoyl)-1,3-cyclohexanedione), and deletion of melA, a gene encoding 4-HPPD, resulted in no pyomelanin production by S. oneidensis MR-1. Conversely, deletion of hmgA, which encodes the putative homogentisate 1,2-dioxygenase, resulted in pyomelanin overproduction. The efficiency and rates at which MR-1 reduces hydrous ferric oxide were directly linked to the ability of mutant strains to produce pyomelanin. Electrochemical studies with whole cells demonstrated that pyomelanin substantially increases the formal potential (E°') of S. oneidensis MR-1. Based on our findings, environmental production of pyomelanin likely contributes to an increased solid-phase metal reduction capacity in S. oneidensis MR-1.

  4. Crystallization and preliminary crystallographic analysis of 2-aminophenol 1,6-dioxygenase complexed with substrate and with an inhibitor. (United States)

    Li, De-Feng; Zhang, Jia-Yue; Hou, Yanjie; Liu, Lei; Liu, Shuang-Jiang; Liu, Wei


    Dioxygen activation implemented by nonhaem Fe(II) enzymes containing the 2-His-1-carboxylate facial triad has been extensively studied in recent years. Extradiol dioxygenase is the archetypal member of this superfamily and catalyzes the oxygenolytic ring opening of catechol analogues. Here, the crystallization and preliminary X-ray analysis of 2-aminophenol 1,6-dioxygenase, an enzyme representing a minor subset of extradiol dioxygenases that catalyze the fission of 2-aminophenol rather than catecholic compounds, is reported. Crystals of the holoenzyme with FeII and of complexes with the substrate 2-aminophenol and the suicide inhibitor 4-nitrocatechol were grown using the cocrystallization method under the same conditions as used for the crystallization of the apoenzyme. The crystals belonged to space group C2 and diffracted to 2.3-2.7 Å resolution; the crystal that diffracted to the highest resolution had unit-cell parameters a=270.24, b=48.39, c=108.55 Å, β=109.57°. All X-ray data sets collected from diffraction-quality crystals were suitable for structure determination.

  5. Molecular mechanism of strict substrate specificity of an extradiol dioxygenase, DesB, derived from Sphingobium sp. SYK-6.

    Directory of Open Access Journals (Sweden)

    Keisuke Sugimoto

    Full Text Available DesB, which is derived from Sphingobium sp. SYK-6, is a type II extradiol dioxygenase that catalyzes a ring opening reaction of gallate. While typical extradiol dioxygenases show broad substrate specificity, DesB has strict substrate specificity for gallate. The substrate specificity of DesB seems to be required for the efficient growth of S. sp. SYK-6 using lignin-derived aromatic compounds. Since direct coordination of hydroxyl groups of the substrate to the non-heme iron in the active site is a critical step for the catalytic reaction of the extradiol dioxygenases, the mechanism of the substrate recognition and coordination of DesB was analyzed by biochemical and crystallographic methods. Our study demonstrated that the direct coordination between the non-heme iron and hydroxyl groups of the substrate requires a large shift of the Fe (II ion in the active site. Mutational analysis revealed that His124 and His192 in the active site are essential to the catalytic reaction of DesB. His124, which interacts with OH (4 of the bound gallate, seems to contribute to proper positioning of the substrate in the active site. His192, which is located close to OH (3 of the gallate, is likely to serve as the catalytic base. Glu377' interacts with OH (5 of the gallate and seems to play a critical role in the substrate specificity. Our biochemical and structural study showed the substrate recognition and catalytic mechanisms of DesB.

  6. Crystallization and preliminary crystallographic analysis of the catechol 2,3-dioxygenase PheB from Bacillus stearothermophilus BR219

    Energy Technology Data Exchange (ETDEWEB)

    Sugimoto, Keisuke; Matsufuzi, Kazuki; Ohnuma, Hiroaki [Department of Material Chemistry, Asahikawa National College of Technology, 2-2-1-6 Shunko-dai, Asahikawa, Hokkaido 071-8142 (Japan); Senda, Miki [Japan Biological Information Research Center (JBIRC), Japan Biological Informatics Consortium (JBIC), 2-42 Aomi, Koto-ku, Tokyo 135-0064 (Japan); Fukuda, Masao [Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188 (Japan); Senda, Toshiya, E-mail: [Biological Information Research Center (BIRC), National Institute of Advanced Industrial Science and Technology (AIST), 2-42 Aomi, Koto-ku, Tokyo (Japan); Department of Material Chemistry, Asahikawa National College of Technology, 2-2-1-6 Shunko-dai, Asahikawa, Hokkaido 071-8142 (Japan)


    PheB, an extradiol-cleaving catecholic dioxygenase, was crystallized by the hanging-drop vapour-diffusion method using PEG 4000 as a precipitant. The crystal belongs to the orthorhombic system, space group P2{sub 1}2{sub 1}2{sub 1}, and diffracts to 2.3 Å resolution. Class II extradiol-cleaving catecholic dioxygenase, a key enzyme of aromatic compound degradation in bacteria, cleaves the aromatic ring of catechol by adding two O atoms. PheB is one of the class II extradiol-cleaving catecholic dioxygenases and shows a high substrate specificity for catechol derivatives, which have one aromatic ring. In order to reveal the mechanism of the substrate specificity of PheB, PheB has been crystallized by the hanging-drop vapour-diffusion method using PEG 4000 as a precipitant. The space group of the obtained crystal was P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 65.5, b = 119.2, c = 158.7 Å. The crystal diffracted to 2.3 Å resolution.


    Energy Technology Data Exchange (ETDEWEB)

    Turick, C; Amy Ekechukwu, A


    While mechanistic details of dissimilatory metal reduction are far from being understood, it is postulated that the electron transfer to solid metal oxides is mediated by outer membrane-associated c-type cytochromes and redox active electron shuttling compounds. This study focuses on the production of homogensitate in Shewanella oneidensis MR-1, an intermediate of tyrosine degradation pathway, which is a precursor of a redox cycling metabolite, pyomelanin. In this study, we determined that two enzymes involved in this pathway, 4-hydroxyphenylpyruvate dioxygenase (4HPPD) and homogentisate 1,2-dioxygenase are responsible for homogentisate production and oxidation, respectively. Inhibition of 4-HPPD activity with the specific inhibitor sulcotrione (2-(2-chloro-4-methane sulfonylbenzoyl)-1,3-cyclohexanedione), and deletion of melA, a gene encoding 4-HPPD, resulted in no pyomelanin production by S. oneidensis MR-1. Conversely, deletion of hmgA which encodes the putative homogentisate 1,2-dioxygenase, resulted in pyomelanin overproduction. The efficiency and rates, with which MR-1 reduces hydrous ferric oxide, were directly linked to the ability of mutant strains to produce pyomelanin. Electrochemical studies with whole cells demonstrated that pyomelanin substantially increases the formal potential (E{sup o}{prime}) of S. oneidensis MR-1. Based on this work, environmental production of pyomelanin likely contributes to an increased solid-phase metal reduction capacity in Shewanella oneidensis.

  8. Anti-Toxoplasma Activity of 2-(Naphthalene-2-γlthiol-1H Indole.

    Directory of Open Access Journals (Sweden)

    Qasem Asgari


    Full Text Available This study was undertaken to evaluate the viability, infectivity and immunity of Toxoplasma gondii tachyzoites exposed to 2-(naphthalene-2-ylthio-1H-indole.Tachyzoites of RH strain were incubated in various concentrations of 2-(naphthalene-2-ylthio-1H-indole (25-800 μM for 1.5 hours. Then, they were stained by PI and analyzed by Fluorescence-activated cell sorting (FACS. To evaluate the infectivity, the tachyzoites exposed to the different concentrations of the compound were inoculated to 10 BALB/c mice groups. For Control, parasites exposed to DMSO (0.2% v/v were also intraperitoneally inoculated into two groups of mice. The immunity of the exposed tachyzoites was evaluated by inoculation of the naïve parasite to the survived mice.The LD50 of 2-(naphthalene-2-ylthio-1H-indole was 57 μmol. The longevity of mice was dose dependent. Five mice out of group 400μmol and 3 out of group 800μmol showed immunization to the parasite.Our findings demonstrated the toxoplasmocidal activity of the compound. The presence of a well-organized transporter mechanism for indole compounds within the parasite in conjunction with several effective mechanisms of these compounds on Toxoplasma viability would open a window for production of new drugs and vaccines.

  9. Theoretical Study of Intramolecular Interactions in Peri-Substituted Naphthalenes: Chalcogen and Hydrogen Bonds

    Directory of Open Access Journals (Sweden)

    Goar Sánchez–Sanz


    Full Text Available A theoretical study of the peri interactions, both intramolecular hydrogen (HB and chalcogen bonds (YB, in 1-hydroxy-8YH-naphthalene, 1,4-dihydroxy-5,8-di-YH-naphthalene, and 1,5-dihydroxy-4,8-di-YH-naphthalene, with Y = O, S, and Se was carried out. The systems with a OH:Y hydrogen bond are the most stable ones followed by those with a chalcogen O:Y interaction, those with a YH:O hydrogen bond (Y = S and Se being the least stable ones. The electron density values at the hydrogen bond critical points indicate that they have partial covalent character. Natural Bond Orbital (NBO analysis shows stabilization due to the charge transfer between lone pair orbitals towards empty Y-H that correlate with the interatomic distances. The electron density shift maps and non-covalent indexes in the different systems are consistent with the relative strength of the interactions. The structures found on the CSD were used to compare the experimental and calculated results.

  10. Identification and preliminary evaluation of polychlorinated naphthalene emissions from hot dip galvanizing plants. (United States)

    Liu, Guorui; Lv, Pu; Jiang, Xiaoxu; Nie, Zhiqiang; Liu, Wenbin; Zheng, Minghui


    Hot dip galvanizing (HDG) processes are sources of polychlorinated-p-dioxins and dibenzofurans (PCDD/Fs). Close correlations have been found between the concentration of PCDD/Fs and polychlorinated naphthalenes (PCNs) that are produced and released during industrial thermal processes. We speculated, therefore, that HDG plants are potential PCN sources. In this preliminary study, PCNs were analyzed in solid residues, ash and precipitate from three HDG plants of different sizes. The total PCN concentrations (∑2-8PCNs) in the residue samples ranged from 60.3 to 226pgg(-1). The PCN emission factors for the combined ash and precipitate residues from the HDG plants ranged from 75 to 178ngt(-1) for the dichlorinated and octachlorinated naphthalenes. The preliminary results suggested that the HDG industry might not currently be a significant source of PCN emissions. The trichloronaphthalenes were the dominant homologs followed by the dichloronaphthalenes and the tetrachloronaphthalenes. The PCN congeners CN37/33/34, CN52/60, CN66/67, and CN73 dominated the tetrachlorinated, pentachlorinated, hexachlorinated, and heptachlorinated naphthalene homologs, respectively. The PCNs emitted from the HDG plants had similar homolog distributions and congener profiles to the PCNs emitted from combustion plants and other metallurgical processes. The identification and preliminary evaluation of PCN emissions from HDG plants presented here will help in the prioritization of measures for controlling PCN emissions from industrial sources.

  11. Synthesis of Naphthalene-Based Push-Pull Molecules with a Heteroaromatic Electron Acceptor. (United States)

    Šarlah, David; Juranovič, Amadej; Kožar, Boris; Rejc, Luka; Golobič, Amalija; Petrič, Andrej


    Naphthalene derivatives bearing electron-accepting and electron-donating groups at the 2,6-positions belong to the family of D-π-A push-pull dyes. It has been found that these compounds, e.g., 2-(1-(6-((2-(fluoro)ethyl)(methyl)amino)naphthalen-2-yl)ethylidene)malononitrile (FDDNP), show not only interesting optical properties, such as solvatochromism, but they have the potential to label protein aggregates of different compositions formed in the brain of patients suffering from neurodegenerative diseases like Alzheimer's (AD). In continuation of our research we set our goal to find new FDDNP analogs, which would inherit optical and binding properties but hopefully show better specificity for tau protein aggregates, which are characteristic for neurodegeneration caused by repetitive mild trauma. In this work we report on the synthesis of new FDDNP analogs in which the acceptor group has been formally replaced with an aromatic five- or six-membered heterocycle. The heterocyclic moiety was annealed to the central naphthalene ring either by classical ring closure reactions or by modern transition metal-catalyzed coupling reactions. The chemical characterization, NMR spectra, and UV/vis properties of all new compounds are reported.

  12. Adsorptive removal of naphthalene induced by structurally different Gemini surfactants in a soil-water system. (United States)

    Wei, Jia; Li, Jun; Huang, Guohe; Wang, Xiujie; Chen, Guanghui; Zhao, Baihang


    A new generation of surfactant, Gemini surfactants, have been synthesized and have attracted the attention of various industrial and academic research groups. This study focused on the use of symmetric and dissymmetric quaternary ammonium Gemini surfactants to immobilize naphthalene onto soil particles, and is used as an example of an innovative application to remove HOC in situ using the surfactant-enhanced sorption zone. The sorption capacity of modified soils by Gemini surfactant and natural soils was compared and the naphthalene sorption efficiency, in the absence and presence of Gemini surfactants with different alkyl chain lengths, was investigated in the soil-water system. The results have shown that the increased added Gemini surfactant formed admicelles at the interface of soil/water having superior capability to retard contaminant. Symmetric and dissymmetric Gemini surfactants have opposite effect on the aspect of removing of PAH attributing to their solubilization and sorption behavior in soil-water system. Compared with the natural soil, sorption of naphthalene by Gemini-modified soil is noticeably enhanced following the order of C12-2-16 < C12-2-12 < C12-2-8. However, the symmetric Gemini surfactant C12-2-12 is the optimized one for in situ barrier remediation, which is not only has relative high retention ability but also low dosage.

  13. Ion association in [bmim][PF6]/naphthalene mixtures: an experimental and computational study. (United States)

    Del Pópolo, M G; Mullan, C L; Holbrey, J D; Hardacre, C; Ballone, P


    Mixtures of room temperature ionic liquids (IL) with neutral organic molecules provide a valuable testing ground to investigate the interplay of the ionic and molecular-dipolar state in dense Coulomb systems at near ambient conditions. In the present study, the viscosity eta and the ionic conductivity sigma of 1-n-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF6])/naphthalene mixtures at T = 80 degrees C have been measured at 10 stoichiometries spanning the composition range from pure naphthalene to pure [bmim][PF6]. The viscosity grows nearly monotonically with increasing IL mole fraction ( x), whereas the conductivity per ion displays a clear peak at x approximately 15%. The origin of this maximum has been investigated using molecular dynamics simulations based on a classical force field. Snapshots of the simulated samples show that the conductivity maximum is due to the gradual transition in the IL component from an ionic state at high x to a dipolar fluid made of neutral ion pairs at low x. At concentrations x bmim][PF6]/naphthalene mixtures at low IL concentration.

  14. HIV-1 Tat activates indoleamine 2,3 dioxygenase in murine organotypic hippocampal slice cultures in a p38 mitogen-activated protein kinase-dependent manner

    Directory of Open Access Journals (Sweden)

    Kelley Keith W


    Full Text Available Abstract Background We have established that activation of the tryptophan degrading enzyme indoleamine 2,3 dioxygenase (IDO mediates the switch from cytokine-induced sickness behavior to depressive-like behavior. Because human immunodeficiency virus type 1 (HIV-1 Tat protein causes depressive-like behavior in mice, we investigated its ability to activate IDO in organotypic hippocampal slice cultures (OHSCs derived from neonatal C57BL/6 mice. Methods Depressive-like behavior in C57BL/6J mice was assessed by the forced swim test. Expression of cytokines and IDO mRNA in OHSCs was measured by real-time RT-PCR and cytokine protein was measured by enzyme-linked immunosorbent assays (ELISAs. p38 MAPK phosphorylation was analyzed by western blot. Results Intracerebroventricular (i.c.v. administration of Tat (40 ng induced depressive-like behavior in the absence of sickness. Addition of Tat (40 ng/slice to the medium of OHSCs induced IDO steady-state mRNA that peaked at 6 h. This effect was potentiated by pretreatment with IFNγ. Tat also induced the synthesis and release of TNFα and IL-6 protein in the supernatant of the slices and increased expression of the inducible isoform of nitric oxide synthase (iNOS and the serotonin transporter (SERT. Tat had no effect on endogenous synthesis of IFNγ. To explore the mechanisms of Tat-induced IDO expression, slices were pretreated with the p38 mitogen-activated protein kinase (MAPK inhibitor SB 202190 for 30 min before Tat treatment. SB 202190 significantly decreased IDO expression induced by Tat, and this effect was accompanied by a reduction of Tat-induced expression of TNFα, IL-6, iNOS and SERT. Conclusion These data establish that Tat induces IDO expression via an IFNγ-independent mechanism that depends upon activation of p38 MAPK. Targeting IDO itself or the p38 MAPK signaling pathway could provide a novel therapy for comorbid depressive disorders in HIV-1-infected patients.

  15. Mutagenicity of N-acyloxy-N-alkoxyamides as an indicator of DNA intercalation part 1: evidence for naphthalene as a DNA intercalator. (United States)

    Banks, Tony M; Clay, Samuel F; Glover, Stephen A; Schumacher, Rhiannon R


    N-Acyloxy-N-alkoxyamides are direct-acting mutagens in S. typhimurium TA100 with a linear dependence upon log P that maximises at log P0 = 6.4. Eight N-acyloxy-N-alkoxyamides (2-9) bearing a naphthalene group on any of the three side-chains and with log P0 intercalators. DNA damage profiles for naphthalene-bearing mutagens confirm enhanced reactivity with DNA when naphthalene is incorporated and a different binding mode when compared to mutagens without naphthalene. The effect is independent of whether the naphthalene is attached to an electron-donating alkyl or electron-withdrawing acyl group, alkyl tether length or, in the case of 6 and 7, the point of attachment to naphthalene. A new quantitative structure activity relationship has been constructed for all 58 congeners incorporating log P and an indicator variable, I, for the presence (I = 1) or absence (I = 0) of naphthalene and from which the activity enhancing effect of a naphthalene has been quantified at between three and four log P units. Contrary to conventional views, simple naphthalene groups could target molecules to DNA through intercalation.

  16. Effects and mechanism of action of naphthalene, a petroleum-derived polycyclic aromatic hydrocarbon, on black pigment dispersion in the salt marsh fiddler crab, UCA pugilator

    Energy Technology Data Exchange (ETDEWEB)

    Staub, G.C.


    At a concentration of approximately 8 ppm, naphthalene inhibited circadian black pigment dispersion in the integumentary chromatophores of the fiddler crab no matter what the initial state of the black pigment. The inhibition was concentration dependent. Naphthalene was not toxic to fiddler crabs under these conditions at any concentration up to 16.69 ppm. No chemically induced phase shift in the circadian rhythm of naphthalene exposed crabs occurs. In addition there is no difference in the mean black chromatophore index at midnight between control and naphthalene exposed crabs, indicating that the release of black pigment concentrating hormone (BPCH) is not being influenced by naphthalene. The only possibility remaining is that naphthalene must interfere with some aspect of the control of BPDH release by NE. Exposure to naphthalene does not inhibit black pigment dispersion when crabs are placed on a black background or kept on a black background throughout the experiment. This argues against naphthalene acting to inhibit the synthesis of NE, or to promote its metabolism, since NE is involved in adaptation to a black background. Naphthalene, therefore, must act to prevent the release of BPDH by interfering with some aspect of the presynaptic control of BPDH release by NE.

  17. Indoleamine 2,3-dioxygenase expression in patients with allergic rhinitis: a case-control study

    Directory of Open Access Journals (Sweden)

    Luukkainen Annika


    Full Text Available Abstract Background Indoleamine 2,3-dioxygenase (IDO is a tryptophan catalyzing enzyme. It has been suggested that it has a role in lower airway allergic inflammations, but its role in allergic rhinitis has not been investigated. Objective Our aim was to evaluate the expression of IDO in the nasal mucosa of allergic rhinitis patients allergic to birch pollen during peak exposure to birch pollen allergen and compare it to non-atopic patients. Methods IDO expression was immunohistochemically evaluated from nasal specimens obtained in- and off-season from otherwise healthy non-smoking volunteers both allergic to birch pollen (having mild or moderate allergic rhinoconjunctivitis and non-allergic controls. Results: The IDO expression levels were low in healthy controls and remained low also in patients allergic to birch pollen. There were no differences in the expression of IDO in- and off-season in either healthy or allergic subjects. Conclusions There is a controversy in the role of IDO in upper and lower airways during allergic airway disease. It seems that IDO is associated to allergic inflammations of the lower airways, but does not have a local role in the nasal cavity at least in mild or moderate forms of allergic rhinitis.

  18. Nanomedicine and cancer immunotherapy: focus on indoleamine 2,3-dioxygenase inhibitors (United States)

    Zulfiqar, Bilal; Mahroo, Amnah; Nasir, Kaenat; Farooq, Rai Khalid; Jalal, Nasir; Rashid, Muhammad Usman; Asghar, Kashif


    Nanomedicine application in cancer immunotherapy is currently one of the most challenging areas in cancer therapeutic intervention. Innovative solutions have been provided by nanotechnology to deliver cytotoxic agents to the cancer cells partially affecting the healthy cells of the body during the process. Nanoparticle-based drug delivery is an emerging approach to stimulate the immune responses against cancer. The inhibition of indoleamine 2,3-dioxygenase (IDO) is a pivotal area of research in cancer immunotherapy. IDO is a heme-containing immunosuppressive enzyme, which is responsible for the degradation of tryptophan while increasing the concentration of kynurenine metabolites. Various preclinical studies showed that IDO inhibition in certain diseases may result in significant therapeutic effects. Here, we provide a review of the natural and synthetic inhibitors of IDO. These inhibitors are classified according to their source, inhibitory concentrations, the chemical structure, and the mechanism of action. Tumor-targeted chemotherapy is an advanced technique and has more advantages as compared to the conventional chemotherapy. Search for more efficient and less toxic nanoparticles in conjunction with compounds to inhibit IDO is still an area of interest for several research groups worldwide, especially revealing to be an extensive and a promising area in cancer therapeutic innovations. PMID:28176942

  19. Indoleamine 2,3-dioxygenase: First evidence of expression in rainbow trout (Oncorhynchus mykiss). (United States)

    Cortés, Jimena; Alvarez, Claudio; Santana, Paula; Torres, Elisa; Mercado, Luis


    The role of enzymes as active antimicrobial agents of the innate immunity in teleost fish is proposed in diverse works. Secretion of Indoleamine 2,3-dioxygenase (IDO) has been described in higher vertebrates; it degrades l-tryptophan in extracellular environments associated mainly with mucosal organs. The effect of IDO on decreasing amino acid concentration may inhibit the growth of potential pathogens. In fish the study of this molecule is still. Here we report the identification of an Onchorhyncus mykiss IDO homologue (OmIDO). IDO was cloned, sequenced, and the primary structure shows conservation of key functional sites. The constitutive expression is altered when the fish is challenged with LPS as a pathogen-associated molecular pattern (PAMPs). Up-regulation of IDO was shown preferentially in the fish's mucosal cells. In order to obtain evidence of a possible regulation mechanism, an in vitro cell model was used for to show that OmIDO is induced by rIFN. These study has identified a Indoleamine 2,3-dyoxigenase in O. mykiss will contribute to expands our knowledge of the function this protein in fish immune response. These findings allow to propose the use of OmIDO as a molecular indicator of strength of the animal's immune response and wellbeing.

  20. Indoleamine 2,3 Dioxygenase (IDO Expression and Activity in Relapsing-Remitting Multiple Sclerosis.

    Directory of Open Access Journals (Sweden)

    Roberta Mancuso

    Full Text Available Interferon gamma (IFN-γ production induces the transcription of indoleamine 2,3 dioxygenase (IDO resulting in the reduction of T-cell activation and proliferation through the depletion of tryptophan and the elicitation of Treg lymphocytes. IDO was shown to be involved in the pathogenesis of autoimmune diseases; we investigated whether changes in IDO gene expression and activity could be indicative of onset of relapse in multiple sclerosis (MS patients.IDO and interferon-γ (IFN-γ gene expression, serum IDO activity (Kynurenine/Tryptophan ratio and serum neopterin concentration--a protein released by macrophages upon IFN-γ stimulation--were measured in 51 individuals: 36 relapsing remitting (RR-MS patients (21 in acute phase--AMS, 15 in stable phase--SMS and 15 healthy controls (HC. PBMCs samples in AMS patients were collected before (BT-AMS and during glucocorticoids-based therapy (DT-AMS.IDO expression was increased and IFN-γ was decreased (p<0.001 in BT-AMS compared to SMS patients. Glucocorticoids-induced disease remission resulted in a significant reduction of IDO and IFN-γ gene expression, IDO catalytic activity (p<0.001. Serum neopterin concentration followed the same trend as IDO expression and activity.Measurement of IDO gene expression and activity in blood could be a useful marker to monitor the clinical course of RR-MS. Therapeutic interventions modulating IDO activity may be beneficial in MS.

  1. Tryptophan-2,3-dioxygenase (TDO) inhibition ameliorates neurodegeneration by modulation of kynurenine pathway metabolites (United States)

    Breda, Carlo; Sathyasaikumar, Korrapati V.; Sograte Idrissi, Shama; Notarangelo, Francesca M.; Estranero, Jasper G.; Moore, Gareth G. L.; Green, Edward W.; Kyriacou, Charalambos P.; Schwarcz, Robert; Giorgini, Flaviano


    Metabolites of the kynurenine pathway (KP) of tryptophan (TRP) degradation have been closely linked to the pathogenesis of several neurodegenerative disorders. Recent work has highlighted the therapeutic potential of inhibiting two critical regulatory enzymes in this pathway—kynurenine-3-monooxygenase (KMO) and tryptophan-2,3-dioxygenase (TDO). Much evidence indicates that the efficacy of KMO inhibition arises from normalizing an imbalance between neurotoxic [3-hydroxykynurenine (3-HK); quinolinic acid (QUIN)] and neuroprotective [kynurenic acid (KYNA)] KP metabolites. However, it is not clear if TDO inhibition is protective via a similar mechanism or if this is instead due to increased levels of TRP—the substrate of TDO. Here, we find that increased levels of KYNA relative to 3-HK are likely central to the protection conferred by TDO inhibition in a fruit fly model of Huntington’s disease and that TRP treatment strongly reduces neurodegeneration by shifting KP flux toward KYNA synthesis. In fly models of Alzheimer’s and Parkinson’s disease, we provide genetic evidence that inhibition of TDO or KMO improves locomotor performance and ameliorates shortened life span, as well as reducing neurodegeneration in Alzheimer's model flies. Critically, we find that treatment with a chemical TDO inhibitor is robustly protective in these models. Consequently, our work strongly supports targeting of the KP as a potential treatment strategy for several major neurodegenerative disorders and suggests that alterations in the levels of neuroactive KP metabolites could underlie several therapeutic benefits. PMID:27114543

  2. Indoleamine 2,3-dioxygenase attenuates inhibitor development in gene-therapy-treated hemophilia A mice. (United States)

    Liu, L; Liu, H; Mah, C; Fletcher, B S


    A serious impediment to gene and protein replacement therapy in hemophilia A is the development of inhibitors. Mechanisms responsible for inhibitor development include T-cell-dependent adaptive immune responses and the CD28-B7 signaling pathway that eventually leads to the formation of antibodies directed against factor VIII (FVIII). Indoleamine 2,3-dioxygenase (IDO) is a potent immunosuppressive enzyme that can inhibit T-cell responses and induce T-cell apoptosis by regulation of tryptophan metabolism. Kynurenine, one of the metabolites of tryptophan, has been implicated as an immune modulator. Here we hypothesize that co-delivery of the genes for FVIII and IDO can attenuate inhibitor formation. Using transposon-based gene delivery, we observed long-term therapeutic FVIII expression and significantly reduced inhibitor titers when the genes were co-delivered. Co-expression of FVIII and IDO in the liver was associated with increased plasma kynurenine levels, an inhibition of T-cell infiltration and increased apoptosis of T cells within the liver. These experiments suggest that modulation of tryptophan catabolism through IDO expression provides a novel strategy to reduce inhibitor development in hemophilia gene/protein therapy.

  3. Negative Impact of Hypoxia on Tryptophan 2,3-Dioxygenase Function

    Directory of Open Access Journals (Sweden)

    Frank Elbers


    Full Text Available Tryptophan is an essential amino acid for hosts and pathogens. The liver enzyme tryptophan 2,3-dioxygenase (TDO provokes, by its ability to degrade tryptophan to N-formylkynurenine, the precursor of the immune-relevant kynurenines, direct and indirect antimicrobial and immunoregulatory states. Up to now these TDO-mediated broad-spectrum effector functions have never been observed under hypoxia in vitro, although physiologic oxygen concentrations in liver tissue are low, especially in case of infection. Here we analysed recombinant expressed human TDO and ex vivo murine TDO functions under different oxygen conditions and show that TDO-induced restrictions of clinically relevant pathogens (bacteria, parasites and of T cell proliferation are abrogated under hypoxic conditions. We pinpointed the loss of TDO efficiency to the reduction of TDO activity, since cell survival and TDO protein levels were unaffected. In conclusion, the potent antimicrobial as well as immunoregulatory effects of TDO were substantially impaired under hypoxic conditions that pathophysiologically occur in vivo. This might be detrimental for the appropriate host immune response towards relevant pathogens.

  4. Inhibition of Indoleamine-2,3-dioxygenase (IDO in Glioblastoma Cells by Oncolytic Herpes Simplex Virus

    Directory of Open Access Journals (Sweden)

    Bonnie Reinhart


    Full Text Available Successful oncolytic virus treatment of malignant glioblastoma multiforme depends on widespread tumor-specific lytic virus replication and escape from mitigating innate immune responses to infection. Here we characterize a new HSV vector, JD0G, that is deleted for ICP0 and the joint sequences separating the unique long and short elements of the viral genome. We observed that JD0G replication was enhanced in certain glioblastoma cell lines compared to HEL cells, suggesting that a vector backbone deleted for ICP0 may be useful for treatment of glioblastoma. The innate immune response to virus infection can potentially impede oncolytic vector replication in human tumors. Indoleamine-2,3-dioxygenase (IDO is expressed in response to interferon γ (IFNγ and has been linked to both antiviral functions and to the immune escape of tumor cells. We observed that IFNγ treatment of human glioblastoma cells induced the expression of IDO and that this expression was quelled by infection with both wild-type and JD0G viruses. The role of IDO in inhibiting virus replication and the connection of this protein to the escape of tumor cells from immune surveillance suggest that IDO downregulation by HSV infection may enhance the oncolytic activity of vectors such as JD0G.

  5. Reaction mechanism of cobalt-substituted homoprotocatechuate 2,3-dioxygenase: a QM/MM study. (United States)

    Cao, Lili; Dong, Geng; Lai, Wenzhen


    The reaction mechanisms of cobalt-substituted homoprotocatechuate 2,3-dioxygenase (Co-HPCD) with electron-rich substrate homoprotocatechuate (HPCA) and electron-poor substrate 4-nitrocatechol (4NC) were investigated by quantum mechanical/molecular mechanical (QM/MM) calculations. Our results demonstrated that the Co-O2 adducts has doublet ground state with a Co(III)-O2(•-) character when 4NC was used as the substrate, in good agreement with the EPR spectroscopic experiment. The reactive oxygen species is the doublet Co(III)-O2(•-) for Co-HPCD/4NC and the quartet SQ(•↑)-Co(II)-O2(•-↓) species for Co-HPCD/HPCA, indicating that the substrate plays important roles in the dioxygen activation by Co-HPCD. B3LYP was found to overestimate the rate-limiting barriers in Co-HPCD. TPSSh predicts barriers of 21.5 versus 12.0 kcal/mol for Co-HPCD/4NC versus Co-HPCD/HPCA, which is consistent with the fact that the rate of the reaction is decreased when the substrate was changed from HPCA to 4NC.

  6. Antiparasitic and antiproliferative effects of indoleamine 2,3-dioxygenase enzyme expression in human fibroblasts. (United States)

    Gupta, S L; Carlin, J M; Pyati, P; Dai, W; Pfefferkorn, E R; Murphy, M J


    Studies were carried out to evaluate the proposed role of indoleamine 2,3-dioxygenase (INDO) induction in the antimicrobial and antiproliferative effects of gamma interferon (IFN-gamma) in human fibroblasts. The INDO cDNA coding region was cloned in the pMEP4 expression vector, containing the metallothionein (MTII) promoter in the sense (+ve) or the antisense (-ve) orientation. Human fibroblasts (GM637) stably transfected with the sense construct expressed INDO activity after treatment with CdCl2 or ZnSO4, but cells transfected with the antisense construct did not. The growth of Chlamydia psittaci was strongly inhibited in INDO +ve cells but not in INDO -ve cells after treatment with Cd2+ or Zn2+. The inhibition correlated with the level of INDO activity induced and could be reversed by the addition of excess tryptophan to the medium. The growth of Toxoplasma gondii was also strongly inhibited in INDO +ve cells but not in INDO -ve cells after treatment with Cd2+. Expression of Cd(2+)-induced INDO activity also inhibited thymidine incorporation and led to cytotoxicity in INDO +ve cells but not in INDO -ve cells. Thus, the induction of INDO activity by IFN-gamma may be an important factor in the antimicrobial and antiproliferative effects of IFN-gamma in human fibroblasts. Images PMID:8188349

  7. The immune system strikes back: cellular immune responses against indoleamine 2,3-dioxygenase. (United States)

    Sørensen, Rikke Baek; Berge-Hansen, Linda; Junker, Niels; Hansen, Christina Aaen; Hadrup, Sine Reker; Schumacher, Ton N M; Svane, Inge Marie; Becker, Jürgen C; thor Straten, Per; Andersen, Mads Hald


    The enzyme indoleamine 2,3-dioxygenase (IDO) exerts an well established immunosuppressive function in cancer. IDO is expressed within the tumor itself as well as in antigen-presenting cells in tumor-draining lymph nodes, where it promotes the establishment of peripheral immune tolerance to tumor antigens. In the present study, we tested the notion whether IDO itself may be subject to immune responses. The presence of naturally occurring IDO-specific CD8 T cells in cancer patients was determined by MHC/peptide stainings as well as ELISPOT. Antigen specific cytotoxic T lymphocytes (CTL) from the peripheral blood of cancer patients were cloned and expanded. The functional capacity of the established CTL clones was examined by chrome release assays. The study unveiled spontaneous cytotoxic T-cell reactivity against IDO in peripheral blood as well as in the tumor microenvironment of different cancer patients. We demonstrate that these IDO reactive T cells are indeed peptide specific, cytotoxic effector cells. Hence, IDO reactive T cells are able to recognize and kill tumor cells including directly isolated AML blasts as well as IDO-expressing dendritic cells, i.e. one of the major immune suppressive cell populations. IDO may serve as an important and widely applicable target for anti-cancer immunotherapeutic strategies. Furthermore, as emerging evidence suggests that IDO constitutes a significant counter-regulatory mechanism induced by pro-inflammatory signals, IDO-based immunotherapy holds the promise to boost anti-cancer immunotherapy in general.

  8. On the substrate- and stereospecificity of the plant carotenoid cleavage dioxygenase 7

    KAUST Repository

    Bruno, Mark


    Strigolactones are phytohormones synthesized from carotenoids via a stereospecific pathway involving the carotenoid cleavage dioxygenases 7 (CCD7) and 8. CCD7 cleaves 9-cis-β-carotene to form a supposedly 9-cis-configured β-apo-10′-carotenal. CCD8 converts this intermediate through a combination of yet undetermined reactions into the strigolactone-like compound carlactone. Here, we investigated the substrate and stereo-specificity of the Arabidopsis and pea CCD7 and determined the stereo-configuration of the β-apo-10′-carotenal intermediate by using Nuclear Magnetic Resonance Spectroscopy. Our data unequivocally demonstrate the 9-cis-configuration of the intermediate. Both CCD7s cleave different 9-cis-carotenoids, yielding hydroxylated 9-cis-apo-10′-carotenals that may lead to hydroxylated carlactones, but show highest affinity for 9-cis-β-carotene. © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  9. Cysteine dioxygenase type 1 promotes adipogenesis via interaction with peroxisome proliferator-activated receptor gamma

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Peng; Chen, Yi; Ji, Ning; Lin, Yunfeng; Yuan, Quan; Ye, Ling; Chen, Qianming, E-mail:


    Mammalian cysteine dioxygenase type 1 (CDO1) is an essential enzyme for taurine biosynthesis and the biodegradation of toxic cysteine. As previously suggested, Cdo1 may be a marker of liposarcoma progression and adipogenic differentiation, but the role of Cdo1 in adipogenesis has yet been reported. In this study, we found that the expression of Cdo1 is dramatically elevated during adipogenic differentiation of 3T3-L1 pre-adipocytes and mouse bone marrow-derived mesenchymal stem cells (mBMSCs). Conversely, knockdown of Cdo1 inhibited expression of adipogenic specific genes and lipid droplet formation in 3T3-L1 cells and mBMSCs. Mechanistically, we found Cdo1 interacted with Pparγ in response to adipogenic stimulus. Further, depletion of Cdo1 reduced the recruitment of Pparγ to the promoters of C/EBPα and Fabp4. Collectively, our finding indicates that Cdo1 may be a co-activator of Pparγ in adipogenesis, and may contribute to the development of disease associated with excessive adipose tissue. - Highlights: • Cdo1expression is highly up-regulated during adipogenic differentiation of 3T3-L1 and mBMSCs. • Depletion of Cdo1 inhibited expression of adipogenic specific genes and lipid droplet formation. • Cdo1interacts with Pparγ during adipogenesis. • Knockdown of Cdo1 inhibited Pparγ binding to the promoters of C/EBPα and Fabp4.

  10. Emerging concepts on inhibitors of indoleamine 2,3-dioxygenase in rheumatic diseases. (United States)

    Filippini, P; Del Papa, N; Sambataro, D; Del Bufalo, A; Locatelli, F; Rutella, S


    The enzyme indoleamine 2,3-dioxygenase 1 (IDO1) finely regulates both innate and adaptive immune responses through the degradation of the essential amino acid tryptophan into kynurenine and other downstream metabolites, which suppress effector T-cell function and promote the differentiation of regulatory T cells. A novel role for IDO1 as a signaling molecule and a modifier of innate inflammatory responses is now emerging. In particular, IDO1 can either support or antagonize inflammation in a context- and tissuedependent manner. Studies in experimental arthritis have unravelled a previously unappreciated role for IDO in controlling B-cell activation and autoantibody production. IDO dysregulation has been documented in patients with systemic lupus erythematosus, systemic sclerosis and Sjogren's syndrome, as well as in severe sepsis and chronic kidney disease. This article summarizes the contribution of IDO to the pathophysiology of inflammatory/autoimmune disorders, and discusses whether strategies to restore metabolic equilibrium in the kynurenine pathway might be pursued in diseases states such as rheumatoid arthritis and systemic sclerosis.

  11. Indoleamine 2,3 Dioxygenase as a Potential Therapeutic Target in Huntington's Disease. (United States)

    Mazarei, Gelareh; Leavitt, Blair R


    Within the past decade, there has been increasing interest in the role of tryptophan (Trp) metabolites and the kynurenine pathway (KP) in diseases of the brain such as Huntington's disease (HD). Evidence is accumulating to suggest that this pathway is imbalanced in neurologic disease states. The KP diverges into two branches that can lead to production of either neuroprotective or neurotoxic metabolites. In one branch, kynurenine (Kyn) produced as a result of tryptophan (Trp) catabolism is further metabolized to neurotoxic metabolites such as 3-hydroxykunurenine (3-HK) and quinolinic acid (QA). In the other branch, Kyn is converted to the neuroprotective metabolite kynurenic acid (KA). The enzyme Indoleamine 2,3 dioxygenase (IDO1) catalyzes the conversion of Trp into Kyn, the first and rate-limiting enzymatic step of the KP. This reaction takes place throughout the body in multiple cell types as a required step in the degradation of the essential amino acid Trp. Studies of IDO1 in brain have focused primarily on a potential role in depression, immune tolerance associated with brain tumours, and multiple sclerosis; however the role of this enzyme in neurodegenerative disease has garnered significant attention in recent years. This review will provide a summary of the current understanding of the role of IDO1 in Huntington's disease and will assess this enzyme as a potential therapeutic target for HD.

  12. Induction of 9-cis-epoxycarotenoid dioxygenase in Arabidopsis thaliana seeds enhances seed dormancy. (United States)

    Martínez-Andújar, Cristina; Ordiz, M Isabel; Huang, Zhonglian; Nonogaki, Mariko; Beachy, Roger N; Nonogaki, Hiroyuki


    Full understanding of mechanisms that control seed dormancy and germination remains elusive. Whereas it has been proposed that translational control plays a predominant role in germination, other studies suggest the importance of specific gene expression patterns in imbibed seeds. Transgenic plants were developed to permit conditional expression of a gene encoding 9-cis-epoxycarotenoid dioxygenase 6 (NCED6), a rate-limiting enzyme in abscisic acid (ABA) biosynthesis, using the ecdysone receptor-based plant gene switch system and the ligand methoxyfenozide. Induction of NCED6 during imbibition increased ABA levels more than 20-fold and was sufficient to prevent seed germination. Germination suppression was prevented by fluridone, an inhibitor of ABA biosynthesis. In another study, induction of the NCED6 gene in transgenic seeds of nondormant mutants tt3 and tt4 reestablished seed dormancy. Furthermore, inducing expression of NCED6 during seed development suppressed vivipary, precocious germination of developing seeds. These results indicate that expression of a hormone metabolism gene in seeds can be a sole determinant of dormancy. This study opens the possibility of developing a robust technology to suppress or promote seed germination through engineering pathways of hormone metabolism.

  13. Resveratrol intake enhances indoleamine-2,3-dioxygenase activity in humans. (United States)

    Gualdoni, Guido A; Fuchs, Dietmar; Zlabinger, Gerhard J; Gostner, Johanna M


    Resveratrol is a polyphenol compound found in various nutrients that was shown to have immunomodulatory, anti-cancerogenic, and cardioprotective effects. The regulation of indoleamine-2,3-dioxygenase (IDO), the rate-limiting enzyme in inflammatory tryptophan metabolism, has been proposed to be involved in resveratrol's biological effects. These observations, however, rely on in vitro findings and animal studies. Therefore, we assessed the impact of resveratrol on tryptophan metabolism after oral intake in humans. Healthy volunteers were orally administrated 5g resveratrol (n=8) or placebo (n=2) in a pilot study. IDO activity was determined by analyzing plasma levels of tryptophan and kynurenine. Determination of the immune activation marker neopterin was included in the analysis. Resveratrol administration significantly reduced tryptophan levels 2.5h (presveratrol administration. This is the first evidence of a modulatory effect of orally administered resveratrol on tryptophan metabolism in humans. Since IDO has been shown to play a crucial role in immunity, cancer development and regulation of vascular tone, the modulation of this enzyme might be involved in resveratrol's diverse biological effects. Copyright © 2016. Published by Elsevier Urban & Partner Sp. z o.o.

  14. Functional expression of a valencene dioxygenase from Pleurotus sapidus in E. coli. (United States)

    Zelena, Kateryna; Krings, Ulrich; Berger, Ralf G


    Valencene dioxygenase (ValOx) from the edible basidiomycete Pleurotus sapidus converted the sesquiterpene (+)-valencene to the valuable grapefruit flavour (+)-nootkatone and to nootkatols through intermediate hydroperoxides. Expression of the enzyme was carried out in the cytosol and periplasm of Escherichia coli. The heterologous production led to high yields of inclusion bodies. The poor yield of soluble recombinant protein was improved by various strategies including cold shock expression, chaperone co-expression, and employment of mutant E. coli strains. Up to 60 mg of the biologically active, soluble ValOx was produced by cold shock under control of the cspA promoter at 8 °C in the BL21(DE3)Star strain and co-expression of the E. coli trigger factor. The recombinant enzyme, purified using the N-terminal His tag, showed the catalytic properties of the wild-type enzyme, as was confirmed by the LC-MS analysis of hydroperoxide intermediates and GC-MS analysis of the volatile products. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Tissue distribution, intracellular localization and proteolytic processing of rat 4-hydroxyphenylpyruvate dioxygenase. (United States)

    Neve, Søren; Aarenstrup, Lene; Tornehave, Ditte; Rahbek-Nielsen, Henrik; Corydon, Thomas Juhl; Roepstorff, Peter; Kristiansen, Karsten


    4-hydroxyphenylpyruvate dioxygenase (HPD) is an important enzyme involved in tyrosine catabolism. HPD was shown to be identical to a protein named the F-antigen, exploited by immunologists because of its unique immunological properties. Congenital HPD deficiency is a rare, relatively benign condition known as hereditary type III tyrosinemia. Decreased expression of HPD is often observed in association with the severe type I tyrosinemia, and interestingly, inhibition of HPD activity seems to ameliorate the clinical symptoms of type I tyrosinemia. In this study we present a comprehensive analysis of tissue specific expression and intracellular localization of HPD in the rat. By combined use of in situ hybridization and immunohistochemistry we confirm previously known sites of expression in liver and kidney. In addition, we show that HPD is abundantly expressed in neurons in the cortex, cerebellum and hippocampus. By using immunoelectron microscopy and confocal laser scanning microscopy, we provide evidence that HPD contrary to earlier assumptions specifically localizes to membranes of the endoplasmic reticulum and the Golgi apparatus. Detailed mass spectrometric analyses of HPD purified from rat liver revealed N-terminal and C-terminal processing of HPD, and expression of recombinant HPD suggested that C-terminal processing enhances the enzymatic activity.

  16. Expression and post-translational modification of human 4-hydroxy-phenylpyruvate dioxygenase. (United States)

    Aarenstrup, Lene; Falch, Anne Marie; Jakobsen, Kirsten K; Neve, Søren; Henriksen L, Linda Ø; Tommerup, Niels; Leffers, Henrik; Kristiansen, Karsten


    4-hydroxyphenylpyruvate dioxygenase (HPD) (EC is a key enzyme involved in tyrosine catabolism. Congenital HPD deficiency is a rare, relatively benign condition known as hereditary type III tyrosinemia. The severe type I tyrosinemia, caused by a deficiency of fumarylacetoacetate hydrolase which functions downstream of HPD in the tyrosine degradation pathway, is often associated with decreased expression of HPD, and interestingly, inhibition of HPD activity seems to ameliorate the clinical symptoms of type I tyrosinemia. The HPD gene was previously mapped to the chromosomal region 12q24-->qter. In the present study high-resolution chromosome mapping localized the HPD gene to 12q24.31. DNase I footprinting, revealed that four regions of the HPD promoter were protected by rat liver nuclear proteins. Computer-assisted analyses suggested that these elements might bind Sp1/AP2, HNF4, HNF3/CREB, and C/EBP, respectively. In transient transfection experiments, the proximal 271bp of the promoter conferred basal transcriptional activation in human Chang cells. Sequences in intron 1 were able to enhance the activity of this basal promoter. Finally, vaccinia virus-based expression provided evidence that HPD is subject to phosphorylation, and furthermore, allowed mapping of the HPD protein in the human keratinocyte 2D database.

  17. Mutations in the 4-hydroxyphenylpyruvic acid dioxygenase gene are responsible for tyrosinemia type III and hawkinsinuria. (United States)

    Tomoeda, K; Awata, H; Matsuura, T; Matsuda, I; Ploechl, E; Milovac, T; Boneh, A; Scott, C R; Danks, D M; Endo, F


    The enzyme 4-hydroxyphenylpyruvic acid dioxygenase (HPD) catalyzes the reaction of 4-hydroxyphenylpyruvic acid to homogentisic acid in the tyrosine catabolism pathway. A deficiency in the catalytic activity of HPD may lead to tyrosinemia type III, an autosomal recessive disorder characterized by elevated levels of blood tyrosine and massive excretion of tyrosine derivatives into urine. It has been postulated that hawkinsinuria, an autosomal dominant disorder characterized by the excretion of 'hawkinsin,' may also be a result of HPD deficiency. Hawkinsin is a sulfur amino acid identified as (2-l-cystein-S-yl, 4-dihydroxycyclohex-5-en-1-yl)acetic acid. Patients with hawkinsinuria excrete this metabolite in their urine throughout their life, although symptoms of metabolic acidosis and tyrosinemia improve in the first year of life. We performed analyses of the HPD gene in a patient with tyrosinemia type III and two unrelated patients with hawkinsinuria. A homozygous missense mutation predicting an Ala to Val change at codon 268 (A268V) in the HPD gene was found in the patient with tyrosinemia type III. A heterozygous missense mutation predicting an Ala to Thr change at codon 33 (A33T) was found in the same HPD gene in the two patients with hawkinsinuria. These findings support the hypothesis that alterations in the structure and activity of HPD are causally related to two different metabolic disorders, tyrosinemia type III and hawkinsinuria.

  18. Suicide inactivation of catechol 2,3-dioxygenase from Pseudomonas putida mt-2 by 3-halocatechols

    Energy Technology Data Exchange (ETDEWEB)

    Bartels, I.; Knackmuss, H.J.; Reineke, W.


    The inactivation of catechol 2,3-dioxygenase from Pseudomonas putida mt-2 by 3-chloro- and 3-fluorocatechol and the iron-chelating agent Tiron (catechol-3,5-disulfonate) was studied. Whereas inactivation by Tiron is an oxygen-independent and mostly reversible process, inactivation by the 3-halocatechols was only observed in the presence of oxygen and was largely irreversible. The rate constants for inactivation (K/sub 2/) were 1.62 x 10/sup -3/ sec/sup -1/ for 3-chlorocatechol and 2.38 x 10/sup -3/ sec/sup -1/ for 3-fluorocatechol. The inhibitor constants (K/sub i/) were 23 for 3-chlorocatechol and 17 for 3-fluorocatechol. The kinetic data for 3-fluorocatechol could only be obtained in the presence of 2-mercaptoethanol. Besides inactivated enzyme, some 2-hydroxyhexa-2,4-dienoic acid as the actual suicide product of meta-cleavage. A side product of 3-fluorocatechol cleavage is a yellow compound with the spectral characteristics of a 2-hydroxy-6-oxohexa-2,4-dienoci acid indicating 1,6-cleavage. Rates of inactivation by 3-fluorocatechol were reduced in the presence of superoxide dismutase, catalase, formate, and mannitol, which implies that superoxide anion, hydrogen peroxide, and hydroxyl radical exhibit additional inactivation. 64 references.

  19. Lignans from Carthamus tinctorius suppress tryptophan breakdown via indoleamine 2,3-dioxygenase (United States)

    Kuehnl, Susanne; Schroecksnadel, Sebastian; Temml, Veronika; Gostner, Johanna M.; Schennach, Harald; Schuster, Daniela; Schwaiger, Stefan; Rollinger, Judith M.; Fuchs, Dietmar; Stuppner, Hermann


    Seed extracts of Carthamus tinctorius L. (Asteraceae), safflower, have been traditionally used to treat coronary disease, thrombotic disorders, and menstrual problems but also against cancer and depression. A possible effect of C. tinctorius compounds on tryptophan-degrading activity of enzyme indoleamine 2,3-dioxygenase (IDO) could explain many of its activities. To test for an effect of C. tinctorius extracts and isolated compounds on cytokine-induced IDO activity in immunocompetent cells in vitro methanol and ethylacetate seed extracts were prepared from cold pressed seed cakes of C. tinctorius and three lignan derivatives, trachelogenin, arctigenin and matairesinol were isolated. The influence on tryptophan breakdown was investigated in peripheral blood mononuclear cells (PBMCs). Effects were compared to neopterin production in the same cellular assay. Both seed extracts suppressed tryptophan breakdown in stimulated PBMC. The three structurally closely related isolates exerted differing suppressive activity on PBMC: arctigenin (IC50 26.5 μM) and trachelogenin (IC50 of 57.4 μM) showed higher activity than matairesinol (IC50 >200 μM) to inhibit tryptophan breakdown. Effects on neopterin production were similar albeit generally less strong. Data show an immunosuppressive property of compounds which slows down IDO activity. The in vitro results support the view that some of the anti-inflammatory, anti-cancer and antidepressant properties of C. tinctorius lignans might relate to their suppressive influence on tryptophan breakdown. PMID:23867649

  20. Salmonella overcomes tumor immune tolerance by inhibition of tumor indoleamine 2, 3-dioxygenase 1 expression. (United States)

    Kuan, Yu-Diao; Lee, Che-Hsin


    Over the past decades, Salmonella has been proven capable of inhibiting tumor growth. It can specifically target tumors and due to its facultative anaerobic property, can be more penetrative than other drug therapies. However, the molecular mechanism by which Salmonella inhibits tumor growth is still incompletely known. The antitumor therapeutic effect mediated by Salmonella is associated with an inflammatory immune response at the tumor site and a T cell-dependent immune response. Many tumors have been proven to have a high expression of indoleamine 2, 3-dioxygenase 1 (IDO), which is a rate-limiting enzyme that catalyzes tryptophan to kynurenine, thus causing immune tolerance within the tumor microenvironment. With decreased expression of IDO, increased immune response can be observed, which might be helpful when developing cancer immunotherapy. The expression of IDO was decreased after tumor cells were infected with Salmonella. In addition, Western blot analysis showed that the expression levels of phospho-protein kinase B (P-AKT), phospho-mammalian targets of rapamycin (P-mTOR), and phospho-p70 ribosomal s6 kinase (P-p70s6K) in tumor cells were decreased after Salmonella infection. In conclusion, our results indicate that Salmonella inhibits IDO expression and plays a crucial role in anti-tumor therapy, which might be a promising strategy combined with other cancer treatments.

  1. Novel bacterial bioassay for a high-throughput screening of 4-hydroxyphenylpyruvate dioxygenase inhibitors. (United States)

    Rocaboy-Faquet, Emilie; Noguer, Thierry; Romdhane, Sana; Bertrand, Cédric; Dayan, Franck Emmanuel; Barthelmebs, Lise


    Plant 4-hydroxyphenylpyruvate dioxygenase (HPPD) is the molecular target of a range of synthetic β-triketone herbicides that are currently used commercially. Their mode of action is based on an irreversible inhibition of HPPD. Therefore, this inhibitory capacity was used to develop a whole-cell colorimetric bioassay with a recombinant Escherichia coli expressing a plant HPPD for the herbicide analysis of β-triketones. The principle of the bioassay is based on the ability of the recombinant E. coli clone to produce a soluble melanin-like pigment, from tyrosine catabolism through p-hydroxyphenylpyruvate and homogentisate. The addition of sulcotrione, a HPPD inhibitor, decreased the pigment production. With the aim to optimize the assay, the E. coli recombinant clone was immobilized in sol-gel or agarose matrix in a 96-well microplate format. The limit of detection for mesotrione, tembotrione, sulcotrione, and leptospermone was 0.069, 0.051, 0.038, and 20 μM, respectively, allowing to validate the whole-cell colorimetric bioassay as a simple and cost-effective alternative tool for laboratory use. The bioassay results from sulcotrione-spiked soil samples were confirmed with high-performance liquid chromatography.

  2. Expression Profile of Carotenoid Cleavage Dioxygenase Genes in Summer Squash (Cucurbita pepo L.). (United States)

    González-Verdejo, Clara I; Obrero, Ángeles; Román, Belén; Gómez, Pedro


    Carotenoids are important dietary components that can be found in vegetable crops. The accumulation of these compounds in fruit and vegetables is altered by the activity of carotenoid cleavage dioxygenases (CCDs) enzymes that produce their degradation. The aim of this work was to study the possible implication of CCD genes in preventing carotenoid storage in the horticultural crop summer squash (Cucurbita pepo L.). The relationship between the presence of these compounds and gene expression for CCDs was studied in three varieties showing different peel and flesh colour. Expression analysis for the CCD genes CpNCED1, CpNCED2, CpNCED3, CpNCED9, CpCCD1, CpCCD4a, CpCCD4b and CpCCD8 was carried out on different organs and at several fruit developmental stages. The results showed that the CpCCD4a and CpCCD4b genes were highly expressed in the variety with lowest carotenoid content suggesting a putative role in carotenoid accumulation pattern in summer squash fruit.

  3. Indoleamine 2, 3-dioxygenase (IDO) is essential for dendritic cell activation and chemotactic responsiveness to chemokines

    Institute of Scientific and Technical Information of China (English)

    Shih Ling HWANG; Nancy Pei-Yee CHUNG; Jacqueline Kwai-Yi CHAN; Chen-Lung Steve LIN


    Indoleamine 2, 3-dioxygenase (IDO) is a rate-limiting enzyme for the tryptophan catabolism. In human and murine cells, IDO inhibits antigen-specific T cell proliferation in vitro and suppresses T cell responses to fetal alloantigens during murine pregnancy. In mice, IDO expression is an inducible feature of specific subsets of dendritic cells (DCs),and is important for T cell regulatory properties. However, the effect of IDO and tryptophan deprivation on DC functions remains unknown. We report here that when tryptophan utilization was prevented by a pharmacological inhibitor of IDO, 1-methyl tryptophan (1MT), DC activation induced by pathogenic stimulus lipopolysaccharide (LPS) or inflammatory cytokine TNF-α was inhibited both phenotypically and functionally. Such an effect was less remarkable when DC was stimulated by a physiological stimulus, CD40 ligand. Tryptophan deprivation during DC activation also regulated the expression of CCR5 and CXCR4, as well as DC responsiveness to chemokines. These results suggest that tryptophan usage in the microenvironment is essential for DC maturation, and may also play a role in the regulation of DC migratory behaviors.

  4. Substrate Recognition and Catalysis by the Cofactor-Independent Dioxygenase DpgC+

    Energy Technology Data Exchange (ETDEWEB)

    Fielding,E.; Widboom, P.; Bruner, S.


    The enzyme DpgC belongs to a small class of oxygenases not dependent on accessory cofactors for activity. DpgC is in the biosynthetic pathway for the nonproteinogenic amino acid 3, 5-dihydroxyphenylglycine in actinomycetes bacteria responsible for the production of the vancomycin/teicoplanin family of antibiotic natural products. The X-ray structure of DpgC confirmed the absence of cofactors and defined a novel hydrophobic dioxygen binding pocket adjacent to a bound substrate analogue. In this paper, the role specific amino acids play in substrate recognition and catalysis is examined through biochemical and structural characterization of site-specific enzyme mutations and alternate substrates. The results establish the importance of three amino acids, Arg254, Glu299, and Glu189, in the chemistry of DpgC. Arg254 and Glu189 join to form a specific contact with one of the phenolic hydroxyls of the substrate, and this interaction plays a key role in both substrate recognition and catalysis. The X-ray crystal structure of Arg254Lys was determined to address the role this residue plays in the chemistry. In addition, characterization of alternate substrate analogues demonstrates the presence and position of phenol groups are necessary for both enzyme recognition and downstream oxidation chemistry. Overall, this work defines the mechanism of substrate recognition and specificity by the cofactor-independent dioxygenase DpgC.

  5. Di-μ-chlorido-bis({8-[bis(naphthalen-1-ylphosphanyl]naphthalen-1-yl-κ2C1,P}palladium(II dichloromethane disolvate

    Directory of Open Access Journals (Sweden)

    Wade L. Davis


    Full Text Available The title compound, [Pd2{P(C10H72(C10H6}2Cl2]·2CH2Cl2, shows cyclometalation of one naphthalen-1-yl substituent of each of the phosphane ligands to the Pd dimer in a trans orientation; the complete dimer is generated by a centre of inversion. Two dichloromethane solvent molecules create C—H...Cl interactions with the metal complex, generating supermolecular layers in the ab plane. Additional C—H...π and π–π [centroid–centroid distances = 3.713 (3, 3.850 (4 and 3.926 (3 Å] interactions join these planes into a three-dimensional supermolecular network.

  6. Effects of Hydrogen-bonding Interaction and Polarity on Emission Spectrum of Naphthalene-Triethylamine in Mixed Solvent

    Institute of Scientific and Technical Information of China (English)

    XIE Guo-bin; Yoshimi Sueishi; Shunzo Yamamoto


    The effects of the protic and aprotic polar solvents on the emission spectrum of the naphthalene-triethylamine system in THF were studied under conditions of steady-state illumination. The fluorescence spectrum of the naphthalene-triethylamine system consists of two emission bands, the fluorescence band of naphthalene (band A, 329 nm) and the emission band of the exciplex(band B, 468 nm). The intensities of both the emission bands decrease with increasing the solvent polarity. The intensity of band B also decreases due to the hydrogen-bonding interaction between triethylamine and protic solvent, while that of band A increases. It is thus suggested that the quenching of naphthalene fluorescence by triethylamine in THF occurs through the charge transfer and electron transfer reactions. The spectral changes upon the increase of solvent polarity can be explained by the dependences of the equilibrium constant between exciplex and ion-pair and the rate constant for the electron transfer reaction from triethylamine to the excited naphthalene on the relative permittivity of solvent. It is shown that the formation of intermolecular hydrogen-bonding between triethylamine and protic solvent suppresses the quenching reaction by the decrease in free amine. Acetonitrile has only a polar effect and trichloroacetic acid only a hydrogen-bonding(or protonation) effect, while alcohols have both the effects. The effects of alcohols could be separated into the effects of solvent polarity and intermolecular hydrogen-bonding interaction quantitatively.

  7. Comparative photophysical behaviour of naphthalene-linked crown ethers and aza crown ethers of varying cavity dimensions

    Indian Academy of Sciences (India)

    Subhodip Samanta; Pinki Saha Sardar; Shyam Sundar Maity; Anirban Pal; Maitrayee Basu Roy; Sanjib Ghosh


    A comparative time-resolved emission studies of several naphtho-crown ethers I-V, where metal ions can be complexed in a predetermined orientation with respect to the naphthalene (Naph) - plane and naphthalene-linked aza crown ethers (L1 and L2) have been presented. In both the systems, crown ethers and aza crown ethers, naphthalene fluorescence gets quenched. In the systems I to V, the quenching is mainly due to efficient spin-orbit coupling (SOC) leading to greater population of the lowest triplet state of naphthalene. This SOC depends on the orientation of the crown ring with respect to the Naph--plane. However, in the systems L1 and L2, the quenching is due to photoinduced electron transfer (PET) from nitrogen lone pair of the aza crown ring to naphthalene moiety and consequent exciplex formation. The results have been interpreted using the time-resolved emission studies of all the compounds in various solvents, their alkali metal ion complexes, and protonated ligands.

  8. Naphthalene degradation by bacterial consortium (DV-AL) developed from Alang-Sosiya ship breaking yard, Gujarat, India. (United States)

    Patel, Vilas; Jain, Siddharth; Madamwar, Datta


    Naphthalene degrading bacterial consortium (DV-AL) was developed by enrichment culture technique from sediment collected from the Alang-Sosiya ship breaking yard, Gujarat, India. The 16S rRNA gene based molecular analyzes revealed that the bacterial consortium (DV-AL) consisted of four strains namely, Achromobacter sp. BAB239, Pseudomonas sp. DV-AL2, Enterobacter sp. BAB240 and Pseudomonas sp. BAB241. Consortium DV-AL was able to degrade 1000 ppm of naphthalene in Bushnell Haas medium (BHM) containing peptone (0.1%) as co-substrate with an initial pH of 8.0 at 37°C under shaking conditions (150 rpm) within 24h. Maximum growth rate and naphthalene degradation rate were found to be 0.0389 h(-1) and 80 mg h(-1), respectively. Consortium DV-AL was able to utilize other aromatic and aliphatic hydrocarbons such as benzene, phenol, carbazole, petroleum oil, diesel fuel, and phenanthrene and 2-methyl naphthalene as sole carbon source. Consortium DV-AL was also efficient to degrade naphthalene in the presence of other pollutants such as petroleum hydrocarbons and heavy metals.

  9. Cadmium and naphthalene-induced hyperglycemia in the fiddler crab, Uca pugilator: Differential modes of action on the neutroendocrine system

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, P.S.; Katyayani, R.V.; Fingerman, M. [Tulane Univ., New Orleans, LA (United States)


    Hyperglycemia is a typical response of aquatic organisms to heavy metals. In crustaceans, the medulla terminalis X-organ-sinus gland neuroendocrine complex in the eyestalk is the source of the crustacean hyperglycemic hormone (CHH). The role of CHH in pollutant-induced b1ood glucose changes has only recently begun to be studied. Reddy provided evidence that CHH mediates cadmium-induced hyperglycemia in the red swamp crayfish, Procambarus clarkii. In a study of another hormonally-regulated function, color changes, cadmium exposure resulted in pigment in the melanophores of the fiddler crab, Uca pugilator, becoming less dispersed than in unexposed crabs. Earlier studies showed that, like cadmium, both a PCB, Aroclor 1242, and naphthalene induced black pigment aggregation in Uca poor. In general, when crabs are exposed to a pollutant, hydrocarbon or cadmium, they aggregate the pigment in their melanophores, but apparently by different mechanisms. Hydrocarbons appear to inhibit release of black pigment-dispersing hormone (BDPH), whereas cadmium appears to inhibit its synthesis. These apparent different modes of action of cadmium and naphthalene on the color change mechanism led us to compare the impact of these pollutants on the hormonal regulation of blood glucose in Uca pugilator. The present study was performed to determine (1) whether cadmium and naphthalene induce hyperglycemia in Uca pugilator, (2) whether CH has a role, if naphthalene and cadmium do induce hyperglycemia, and (3) the effects, if any, of cadmium and naphthalene on CHH activity in the eyestalk neuroendocrine complex.

  10. Transcriptional responses in the rat nasal epithelium following subchronic inhalation of naphthalene vapor

    Energy Technology Data Exchange (ETDEWEB)

    Clewell, H.J., E-mail:; Efremenko, A.; Campbell, J.L.; Dodd, D.E.; Thomas, R.S.


    Male and female Fischer 344 rats were exposed to naphthalene vapors at 0 (controls), 0.1, 1, 10, and 30 ppm for 6 h/d, 5 d/wk, over a 90-day period. Following exposure, the respiratory epithelium and olfactory epithelium from the nasal cavity were dissected separately, RNA was isolated, and gene expression microarray analysis was conducted. Only a few significant gene expression changes were observed in the olfactory or respiratory epithelium of either gender at the lowest concentration (0.1 ppm). At the 1.0 ppm concentration there was limited evidence of an oxidative stress response in the respiratory epithelium, but not in the olfactory epithelium. In contrast, a large number of significantly enriched cellular pathway responses were observed in both tissues at the two highest concentrations (10 and 30 ppm, which correspond to tumorigenic concentrations in the NTP bioassay). The nature of these responses supports a mode of action involving oxidative stress, inflammation and proliferation. These results are consistent with a dose-dependent transition in the mode of action for naphthalene toxicity/carcinogenicity between 1.0 and 10 ppm in the rat. In the female olfactory epithelium (the gender/site with the highest incidences of neuroblastomas in the NTP bioassay), the lowest concentration at which any signaling pathway was significantly affected, as characterized by the median pathway benchmark dose (BMD) or its 95% lower bound (BMDL) was 6.0 or 3.7 ppm, respectively, while the lowest female olfactory BMD values for pathways related to glutathione homeostasis, inflammation, and proliferation were 16.1, 11.1, and 8.4 ppm, respectively. In the male respiratory epithelium (the gender/site with the highest incidences of adenomas in the NTP bioassay), the lowest pathway BMD and BMDL were 0.4 and 0.3 ppm, respectively, and the lowest male respiratory BMD values for pathways related to glutathione homeostasis, inflammation, and proliferation were 0.5, 0.7, and 0.9 ppm

  11. Reference: MRNA3ENDTAH3 [PLACE

    Lifescience Database Archive (English)

    Full Text Available MRNA3ENDTAH3 Ohtsubo N, Iwabuchi M The conserved 3'-flanking sequence, AATGGAAATG, ...of the wheat histone H3 gene is necessary for the accurate 3'-end formation of mRNA. Nucleic Acids Res 22:1052-1058 (1994) PubMed: 8152910; ...

  12. Theory of vibrational cooling in molecular crystals: Application to crystalline naphthalene (United States)

    Hill, Jeffrey R.; Dlott, Dana D.


    The process of vibrational cooling (VC) is theoretically investigated in the molecular crystal naphthalene. Specificially we consider the process where a highly excited vibration cools by emitting lower energy vibrations (vibrational relaxation, or VR) and phonons. We also consider the subsequent cooling of emitted optic phonons by emission of acoustic phonons. Using previously determined vibrational lifetimes [J. R. Hill et al., J. Chem. Phys. 88, 949 (1988)], a consistent transition rate matrix is obtained which describes VR of all vibrations and optic phonons at all temperatures. Then a Master equation is solved numerically to obtain the time dependent vibrational populations of all states following impulse excitation of a high frequency vibration. These results are compared to a previously derived analytic model for VC in molecular crystals [J. R. Hill and D. D. Dlott, J. Chem. Phys. 89, 830 (1988)]. In that theory, which is shown to be in good agreement with the naphthalene calculation, the excess vibrational excitation moves to lower energy states and broadens as time increases. The motion toward lower energy states is described by a temperature independent ``vibrational velocity'' (emitted energy per unit time). In naphthalene, the vibrational velocity is V0 ≊9 cm-1 /ps. The VC process occurs on a time scale as much as an order of magnitude longer than an individual VR step. Although VR is highly temperature dependent, VC is not. The VC calculations are used to predict the decay from the initial state, the time dependent populations of transient vibrational excitations, and the return to the vibrationless ground state. All these quantities are directly related to experimental observables such as incoherent anti-Stokes Raman scattering and hot luminescence.

  13. Identification of bacteria utilizing biphenyl, benzoate, and naphthalene in long-term contaminated soil.

    Directory of Open Access Journals (Sweden)

    Ondrej Uhlik

    Full Text Available Bacteria were identified associated with biodegradation of aromatic pollutants biphenyl, benzoate, and naphthalene in a long-term polychlorinated biphenyl- and polyaromatic hydrocarbon-contaminated soil. In order to avoid biases of culture-based approaches, stable isotope probing was applied in combination with sequence analysis of 16 S rRNA gene pyrotags amplified from (13C-enriched DNA fractions. Special attention was paid to pyrosequencing data analysis in order to eliminate the errors caused by either generation of amplicons (random errors caused by DNA polymerase, formation of chimeric sequences or sequencing itself. Therefore, sample DNA was amplified, sequenced, and analyzed along with the DNA of a mock community constructed out of 8 bacterial strains. This warranted that appropriate tools and parameters were chosen for sequence data processing. (13C-labeled metagenomes isolated after the incubation of soil samples with all three studied aromatics were largely dominated by Proteobacteria, namely sequences clustering with the genera Rhodanobacter Burkholderia, Pandoraea, Dyella as well as some Rudaea- and Skermanella-related ones. Pseudomonads were mostly labeled by (13C from naphthalene and benzoate. The results of this study show that many biphenyl/benzoate-assimilating bacteria derive carbon also from naphthalene, pointing out broader biodegradation abilities of some soil microbiota. The results also demonstrate that, in addition to traditionally isolated genera of degradative bacteria, yet-to-be cultured bacteria are important players in bioremediation. Overall, the study contributes to our understanding of biodegradation processes in contaminated soil. At the same time our results show the importance of sequencing and analyzing a mock community in order to more correctly process and analyze sequence data.

  14. Formation and chlorination of polychlorinated naphthalenes (PCNs) in the post-combustion zone during MSW combustion. (United States)

    Jansson, Stina; Fick, Jerker; Marklund, Stellan


    Non- to octa-chlorinated naphthalenes (PCNs) were analyzed in flue gas samples collected simultaneously at three different temperatures (450 degrees C, 300 degrees C and 200 degrees C, respectively) in the post-combustion zone during waste combustion experiments using a laboratory-scale fluidized-bed reactor. PCN homologue profiles in all samples were dominated by the lower chlorinated homologues (mono- to triCN), with successive reductions in abundance with each additional degree of chlorination. The isomer distribution patterns reflected ortho-directionality behavior of the first chlorine substituent, and the beta-positions, i.e. the 2,3,6,7-substitution sites, seemed to be favored for chlorination. Injection of naphthalene into the post-combustion zone resulted in increased PCN levels at 200 degrees C, demonstrating the occurrence of chlorination reactions in the post-combustion zone. However, the increases were restricted to the least-chlorinated homologue (monoCN), probably because there was insufficient residence time for further chlorination. In addition, an episode of poor combustion (manifested by high CO levels) was accompanied by extensive formation of 1,8-diCN, 1,2,3- and 1,2,8-triCN; congeners with substitution patterns that are not thermodynamically favorable. These are believed to be products of PAH breakdown reactions and/or chlorophenol condensation. Overall, PCN formation is likely to occur via more than one pathway, including chlorination of naphthalene that is already present, de novo synthesis from PAHs and, possibly, chlorophenol condensation.

  15. Systems perspectives on mRNA processing

    Institute of Scientific and Technical Information of China (English)

    Adrienne E McKee; Pamela A Silver


    The application of genomic technologies to the study of mRNA processing is increasingly conducted in metazoan organisms in order to understand the complex events that occur during and after transcription. Large-scale systems analyses of mRNA-protein interactions and mRNA dynamics have revealed specificity in mRNA transcription, splicing, transport, translation, and turnover, and have begun to make connections between the different layers of mRNA processing. Here, we review global studies of post-transcriptional processes and discuss the challenges facing our understanding of mRNA regulation in metazoan organisms. In parallel, we examine genome-scale investigations that have expanded our knowledge of RNA-binding proteins and the networks of mRNAs that they regulate.

  16. Acetaminophen inhibits liver trytophan-2,3-dioxygenase activity with a concomitant rise in brain serotonin levels and a reduction in urinary 5-hydroxyindole acetic acid. (United States)

    Daya, S; Anoopkumar-Dukie, S


    The effect of the analgesic agent, acetaminophen was determined on rat forebrain serotonin levels as well as hepatic tryptophan-2,3-dioxygenase (TDO) activity and urinary 5-hydroxyindole acetic acid (5-HIAA). The results show that acetaminophen administration (100mg/kg) over three hours does not affect the holoenzyme of tryptophan-2,3-dioxygenase but significantly inhibits the apoenzyme. This inhibition is accompanied by a concomitant rise in forebrain serotonin levels. This phenomenon is also accompanied by a reduction in urinary 5-HIAA levels. These results suggest that acetaminophen use is accompanied by changes in brain serotonin levels due to inhibition of hepatic tryptophan-2,3-dioxygenase activity. This in turn could explain the possible abuse potential of acetaminophen and its effects on mood at high doses.

  17. Naphthalene/quinoline amides and sulfonylureas as potent and selective antagonists of the EP4 receptor. (United States)

    Burch, Jason D; Farand, Julie; Colucci, John; Sturino, Claudio; Ducharme, Yves; Friesen, Richard W; Lévesque, Jean-François; Gagné, Sébastien; Wrona, Mark; Therien, Alex G; Mathieu, Marie-Claude; Denis, Danielle; Vigneault, Erika; Xu, Daigen; Clark, Patsy; Rowland, Steve; Han, Yongxin


    Two new series of EP(4) antagonists based on naphthalene/quinoline scaffolds have been identified as part of our on-going efforts to develop treatments for inflammatory pain. One series contains an acidic sulfonylurea pharmacophore, whereas the other is a neutral amide. Both series show subnanomolar intrinsic binding potency towards the EP(4) receptor, and excellent selectivity towards other prostanoid receptors. While the amide series generally displays poor pharmacokinetic parameters, the sulfonylureas exhibit greatly improved profile. MF-592, the optimal compound from the sulfonylurea series, has a desirable overall preclinical profile that suggests it is suitable for further development.

  18. Stealth fast photoswitching of negative photochromic naphthalene-bridged phenoxyl-imidazolyl radical complexes. (United States)

    Mutoh, Katsuya; Kobayashi, Yoichi; Hirao, Yasukazu; Kubo, Takashi; Abe, Jiro


    Naphthalene-bridged phenoxyl-imidazolyl radical complex (Np-PIC) is a novel fast switchable negative photochromic compound, which shows the thermal back reaction in the millisecond time scale. Upon UV light irradiation, Np-PIC shows the hypochromic effect in the UVA region due to there being less conjugation in the transient isomer. By replacing the phenoxyl unit with a naphthoxyl unit, the molecular structure has an asymmetric carbon, leading to fast chiroptical switching. This simple molecular design will be a good candidate for the future development of negative photochromic compounds.

  19. Bis(2-methyl-1H-imidazol-3-ium naphthalene-1,5-disulfonate dihydrate

    Directory of Open Access Journals (Sweden)

    Yu-feng Wang


    Full Text Available The asymmetric unit of the title organic salt, 2C4H7N2+·C10H6O6S22−·2H2O, consists of a 2-methylimidazolium cation, a half of a naphthalene-1,5-disulfonate anion, which lies about a center of symmetry, and a water molecule. In the crystal, N—H...O and O—H...O hydrogen bonds link the cations, anions and water molecules into the layers parallel to (111.

  20. Synthesis and Preliminary Properties of Novel Poly(aryl ethers Containing β-Naphthalene Pendant Group

    Directory of Open Access Journals (Sweden)

    L. Wang


    Full Text Available Two novel poly(aryl ethers containing β-naphthalene pendant group were synthesized and the structures of these polymers were confirmed by 1HNMR spectroscopy. The polymers exhibited good thermal stabilities with high Tg of 256°C and 274°C, respectively. The polymers are soluble in common organic solvents, such as DMAc, DMSO, CH2Cl2, and CHCl3, and can be electrospun into microfiber (1–5 µm with lots of nanopores (<100 nm from CHCl3 solution. These fibers showed high hydrophobicity, and the contact angle of fibers is above 120°.

  1. 1-{(Z-[2-Methoxy-5-(trifluoromethylanilino]methylidene}naphthalen-2(1H-one

    Directory of Open Access Journals (Sweden)

    Hakan Kargılı


    Full Text Available The title compound, C19H14F3NO2, crystallizes in the keto–amine tautomeric form, with a strong intramolecular N—H...O hydrogen bond. The molecule is almost planar; the dihedral angle between the naphthalene ring system and the benzene ring is 4.60 (7°. In the crystal, molecules are linked into chains along the c axis by C—H...O hydrogen bonds. The F atoms of the trifluoromethyl group are disordered over two positions with refined site occupancies of 0.668 (9 and 0.332 (9.

  2. Photoelectron spectroscopy of cluster anions of naphthalene and related aromatic hydrocarbons (United States)

    Ando, Naoto; Mitsui, Masaaki; Nakajima, Atsushi


    The electronic structures and structural morphologies of naphthalene cluster anions, (naphthalene)n- (n=3-150), and its related aromatic cluster anions, (acenaphthene)n- (n=4-100) and (azulene)n- (n=1-100), are studied using anion photoelectron spectroscopy. For (naphthalene)n- clusters, two isomers coexist over a wide size range: isomers I and II-1 (28⩽n⩽60) or isomers I and II-2 (n⩾˜60). Their contributions to the photoelectron spectra can be separated using an anion beam hole-burning technique. In contrast, such an isomer coexistence is not observed for (acenaphthene)n- and (azulene)n- clusters, where isomer I is exclusively formed throughout the whole size range. The vertical detachment energies (VDEs) of isomer I (7⩽n⩽100) in all the anionic clusters depend linearly on n-1/3 and their size-dependent energetics are quite similar to one another. On the other hand, the VDEs of isomers II-1 and II-2 produced in (naphthalene)n- clusters with n ⩾˜30 remain constant at 0.84 and 0.99eV, respectively, 0.4-0.6eV lower than those of isomer I. Based upon the ion source condition dependence and the hole-burning photoelectron spectra experiments for each isomer, the energetics and characteristics of isomers I, II-1, and II-2 are discussed: isomer I is an internalized anion state accompanied by a large change in its cluster geometry after electron attachment, while isomers II-1 and II-2 are crystal-like states with little structural relaxation. The nonappearance of isomers II-1 and II-2 for (acenaphthene)n- and (azulene)n- and a comparison with other aromatic cluster anions indicate that a highly anisotropic and symmetric π-conjugated molecular framework, such as found in the linear oligoacenes, is an essential factor for the formation of the crystal-like ordered forms (isomers II-1 and II-2). On the other hand, lowering the molecular symmetry makes their production unfavorable.

  3. Quenching of two conformers of the naphthalene derivative, nabumetone, in water

    Energy Technology Data Exchange (ETDEWEB)

    Valero, M. [Departamento de Quimica Fisica, Facultad de Farmacia, Universidad de Salamanca, Salamanca 37007 (Spain)], E-mail:; Lopez-Cornejo, P. [Departamento de Quimica Fisica, Facultad de Ciencias Quimicas, Universidad de Sevilla, Sevilla (Spain); Costa, S.M.B. [Centro de Quimica Estrutural, Instituto Superior Tecnico, Universidade Tecnica de Lisboa, Lisboa 1049 (Portugal)


    The quenching of the anti-inflammatory drug nabumetone by iodide was studied by means of steady-state and time-resolved fluorescence techniques. A downward curvature in the Stern-Volmer plot was observed. This behaviour has been interpreted based on the existence of two conformers of the drug that interact with the quencher with different ability, plus the low quenching efficiency of the quencher for both conformers. A drug quencher ground state complex was observed to be formed through an electron transfer from the iodide to the naphthalene ring of the nabumetone.

  4. Functional analysis of alpha-DOX2, an active alpha-dioxygenase critical for normal development in tomato plants. (United States)

    Bannenberg, Gerard; Martínez, Marta; Rodríguez, María José; López, Miguel Angel; Ponce de León, Inés; Hamberg, Mats; Castresana, Carmen


    Plant alpha-dioxygenases initiate the synthesis of oxylipins by catalyzing the incorporation of molecular oxygen at the alpha-methylene carbon atom of fatty acids. Previously, alpha-DOX1 has been shown to display alpha-dioxygenase activity and to be implicated in plant defense. In this study, we investigated the function of a second alpha-dioxygenase isoform, alpha-DOX2, in tomato (Solanum lycopersicum) and Arabidopsis (Arabidopsis thaliana). Recombinant Slalpha-DOX2 and Atalpha-DOX2 proteins catalyzed the conversion of a wide range of fatty acids into 2(R)-hydroperoxy derivatives. Expression of Slalpha-DOX2 and Atalpha-DOX2 was found in seedlings and increased during senescence induced by detachment of leaves. In contrast, microbial infection, earlier known to increase the expression of alpha-DOX1, did not alter the expression of Slalpha-DOX2 or Atalpha-DOX2. The tomato mutant divaricata, characterized by early dwarfing and anthocyanin accumulation, carries a mutation at the Slalpha-DOX2 locus and was chosen for functional studies of alpha-DOX2. Transcriptional changes in such mutants showed the up-regulation of genes playing roles in lipid and phenylpropanoid metabolism, the latter being in consonance with the anthocyanin accumulation. Transgenic expression of Atalpha-DOX2 and Slalpha-DOX2 in divaricata partially complemented the compromised phenotype in mature plants and fully complemented it in seedlings, thus indicating the functional exchangeability between alpha-DOX2 from tomato and Arabidopsis. However, deletion of Atalpha-DOX2 in Arabidopsis plants did not provoke any visible phenotypic alteration indicating that the relative importance of alpha-DOX2 in plant physiology is species specific.

  5. Polymers for organic photovoltaics based on 1,5-bis(2-hexyldecyloxy)-naphthalene, thiophene, and benzothiadiazole

    DEFF Research Database (Denmark)

    Carlé, Jon Eggert; Jørgensen, Mikkel; Krebs, Frederik C


    Two new conjugated polymers consisting of the donors 1,5-bis(2-hexyldecyloxy)naphthalene, thiophene, or bithiophene and the acceptor benzothiadiazole has been synthesized and their optical and photovoltaic properties have been characterized. The two polymers were compared with earlier synthesized...... and characterized polymers containing benzene instead of naphthalene. The two polymers absorb light in the visible spectrum (400 to 700 nm). The naphthalene containing polymers had blueshifted absorption spectra compared to the benzene containing polymers and also higher band gaps. In photovoltaic devices...... the bithiophene containing polymer gave the best efficiency of 0.6%, whereas the single thiophene only showed efficiency of 0.005%. This is lower than the best benzene incorporated polymer that showed efficiency up to 2.2%....

  6. Resonance Raman study on indoleamine 2,3-dioxygenase: Control of reactivity by substrate-binding

    Energy Technology Data Exchange (ETDEWEB)

    Yanagisawa, Sachiko; Hara, Masayuki [Graduate School of Life Science and Picobiology Institute, University of Hyogo, Koto 3-2-1, Kamigori-cho, Ako-gun, Hyogo 678-1297 (Japan); Sugimoto, Hiroshi; Shiro, Yoshitsugu [Biometal Science Laboratory, RIKEN SPring-8 Center, Harima Institute, Koto 1-1-1, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Ogura, Takashi, E-mail: [Graduate School of Life Science and Picobiology Institute, University of Hyogo, Koto 3-2-1, Kamigori-cho, Ako-gun, Hyogo 678-1297 (Japan)


    Highlights: • Indoleamine 2,3-dioygenase has been studied by resonance Raman spectroscopy. • Trp-binding to the enzyme induces high frequency shift of the Fe–His stretching mode. • Increased imidazolate character of histidine promotes the O–O bond cleavage step. • A fine-tuning of the reactivity of the O–O bond cleavage reaction is identified. • The results are consistent with the sequential oxygen-atom-transfer mechanism. - Abstract: Resonance Raman spectra of ligand-bound complexes including the 4-phenylimidazole complex and of free and L-Trp-bound forms of indoleamine 2, 3-dioxygenase in the ferric state were examined. Effects on the vinyl and propionate substituent groups of the heme were detected in a ligand-dependent fashion. The effects of phenyl group of 4-phenylimidazole on the vinyl and propionate Raman bands were evident when compared with the case of imidazole ligand. Substrate binding to the ferrous protein caused an upshift of the iron–histidine stretching mode by 3 cm{sup −1}, indicating an increase in negativity of the imidazole ring, which favors the O–O bond cleavage. The substrate binding event is likely to be communicated from the heme distal side to the iron–histidine bond through heme substituent groups and the hydrogen-bond network which includes water molecules, as identified in an X-ray structure of a 4-phenylimidazole complex. The results provide evidence for fine-tuning of the reactivity of O–O bond cleavage by the oxygenated heme upon binding of L-Trp.

  7. The immune system strikes back: cellular immune responses against indoleamine 2,3-dioxygenase.

    Directory of Open Access Journals (Sweden)

    Rikke Baek Sørensen

    Full Text Available BACKGROUND: The enzyme indoleamine 2,3-dioxygenase (IDO exerts an well established immunosuppressive function in cancer. IDO is expressed within the tumor itself as well as in antigen-presenting cells in tumor-draining lymph nodes, where it promotes the establishment of peripheral immune tolerance to tumor antigens. In the present study, we tested the notion whether IDO itself may be subject to immune responses. METHODS AND FINDINGS: The presence of naturally occurring IDO-specific CD8 T cells in cancer patients was determined by MHC/peptide stainings as well as ELISPOT. Antigen specific cytotoxic T lymphocytes (CTL from the peripheral blood of cancer patients were cloned and expanded. The functional capacity of the established CTL clones was examined by chrome release assays. The study unveiled spontaneous cytotoxic T-cell reactivity against IDO in peripheral blood as well as in the tumor microenvironment of different cancer patients. We demonstrate that these IDO reactive T cells are indeed peptide specific, cytotoxic effector cells. Hence, IDO reactive T cells are able to recognize and kill tumor cells including directly isolated AML blasts as well as IDO-expressing dendritic cells, i.e. one of the major immune suppressive cell populations. CONCLUSION: IDO may serve as an important and widely applicable target for anti-cancer immunotherapeutic strategies. Furthermore, as emerging evidence suggests that IDO constitutes a significant counter-regulatory mechanism induced by pro-inflammatory signals, IDO-based immunotherapy holds the promise to boost anti-cancer immunotherapy in general.

  8. Robust crop resistance to broadleaf and grass herbicides provided by aryloxyalkanoate dioxygenase transgenes (United States)

    Wright, Terry R.; Shan, Guomin; Walsh, Terence A.; Lira, Justin M.; Cui, Cory; Song, Ping; Zhuang, Meibao; Arnold, Nicole L.; Lin, Gaofeng; Yau, Kerrm; Russell, Sean M.; Cicchillo, Robert M.; Peterson, Mark A.; Simpson, David M.; Zhou, Ning; Ponsamuel, Jayakumar; Zhang, Zhanyuan


    Engineered glyphosate resistance is the most widely adopted genetically modified trait in agriculture, gaining widespread acceptance by providing a simple robust weed control system. However, extensive and sustained use of glyphosate as a sole weed control mechanism has led to field selection for glyphosate-resistant weeds and has induced significant population shifts to weeds with inherent tolerance to glyphosate. Additional weed control mechanisms that can complement glyphosate-resistant crops are, therefore, urgently needed. 2,4-dichlorophenoxyacetic acid (2,4-D) is an effective low-cost, broad-spectrum herbicide that controls many of the weeds developing resistance to glyphosate. We investigated the substrate preferences of bacterial aryloxyalkanoate dioxygenase enzymes (AADs) that can effectively degrade 2,4-D and have found that some members of this class can act on other widely used herbicides in addition to their activity on 2,4-D. AAD-1 cleaves the aryloxyphenoxypropionate family of grass-active herbicides, and AAD-12 acts on pyridyloxyacetate auxin herbicides such as triclopyr and fluroxypyr. Maize plants transformed with an AAD-1 gene showed robust crop resistance to aryloxyphenoxypropionate herbicides over four generations and were also not injured by 2,4-D applications at any growth stage. Arabidopsis plants expressing AAD-12 were resistant to 2,4-D as well as triclopyr and fluroxypyr, and transgenic soybean plants expressing AAD-12 maintained field resistance to 2,4-D over five generations. These results show that single AAD transgenes can provide simultaneous resistance to a broad repertoire of agronomically important classes of herbicides, including 2,4-D, with utility in both monocot and dicot crops. These transgenes can help preserve the productivity and environmental benefits of herbicide-resistant crops. PMID:21059954

  9. Discovery of a Novel Linoleate Dioxygenase of Fusarium oxysporum and Linoleate Diol Synthase of Colletotrichum graminicola. (United States)

    Sooman, Linda; Oliw, Ernst H


    Fungal pathogens constitute serious threats for many forms of life. The pathogenic fungi Fusarium and Colletotrichum and their formae speciales (f. spp.) infect many types of crops with severe consequences and Fusarium oxysporum can also induce keratitis and allergic conditions in humans. These fungi code for homologues of dioxygenase-cytochrome P450 (DOX-CYP) fusion proteins of the animal heme peroxidase (cyclooxygenase) superfamily. The objective was to characterize the enzymatic activities of the DOX-CYP homologue of Colletotrichum graminicola (EFQ34869) and the DOX homologue of F. oxysporum (EGU79548). The former oxidized oleic and linoleic acids in analogy with 7,8-linoleate diol synthases (LDSs), but with the additional biosynthesis of 8,11-dihydroxylinoleic acid. The latter metabolized fatty acids to hydroperoxides with broad substrate specificity. It oxidized 20:4n-6 and 18:2n-6 to hydroperoxides with an R configuration at the (n-10) positions, and other n-6 fatty acids in the same way. [11S-(2)H]18:2n-6 was oxidized with retention and [11R-(2)H]18:2n-6 with loss of deuterium, suggesting suprafacial hydrogen abstraction and oxygen insertion. Fatty acids of the n-3 series were oxidized less efficiently and often to hydroperoxides with an R configuration at both (n-10) and (n-7) positions. The enzyme spans 1426 amino acids with about 825 residues in the N-terminal domain with DOX homology and 600 residues at the C-terminal domain without homology to other enzymes. We conclude that fungal oxylipins can be formed by two novel subfamilies of cyclooxygenase-related DOX.

  10. The different catalytic roles of the metal-binding ligands in human 4-hydroxyphenylpyruvate dioxygenase. (United States)

    Huang, Chih-Wei; Liu, Hsiu-Chen; Shen, Chia-Pei; Chen, Yi-Tong; Lee, Sung-Jai; Lloyd, Matthew D; Lee, Hwei-Jen


    4-Hydroxyphenylpyruvate dioxygenase (HPPD) is a non-haem iron(II)-dependent oxygenase that catalyses the conversion of 4-hydroxyphenylpyruvate (HPP) to homogentisate (HG). In the active site, a strictly conserved 2-His-1-Glu facial triad co-ordinates the iron ready for catalysis. Substitution of these residues resulted in about a 10-fold decrease in the metal binding affinity, as measured by isothermal titration calorimetry, and a large reduction in enzyme catalytic efficiencies. The present study revealed the vital role of the ligand Glu(349) in enzyme function. Replacing this residue with alanine resulted in loss of activity. The E349G variant retained 5% activity for the coupled reaction, suggesting that co-ordinating water may be able to support activation of the trans-bound dioxygen upon substrate binding. The reaction catalysed by the H183A variant was fully uncoupled. H183A variant catalytic activity resulted in protein cleavage between Ile(267) and Ala(268) and the production of an N-terminal fragment. The H266A variant was able to produce 4-hydroxyphenylacetate (HPA), demonstrating that decarboxylation had occurred but that there was no subsequent product formation. Structural modelling of the variant enzyme with bound dioxygen revealed the rearrangement of the co-ordination environment and the dynamic behaviour of bound dioxygen in the H266A and H183A variants respectively. These models suggest that the residues regulate the geometry of the reactive oxygen intermediate during the oxidation reaction. The mutagenesis and structural simulation studies demonstrate the critical and unique role of each ligand in the function of HPPD, and which correlates with their respective co-ordination position.

  11. In vivo correction with recombinant adenovirus of 4-hydroxyphenylpyruvic acid dioxygenase deficiencies in strain III mice. (United States)

    Kubo, S; Kiwaki, K; Awata, H; Katoh, H; Kanegae, Y; Saito, I; Yamamoto, T; Miyazaki, J; Matsuda, I; Endo, F


    Tyrosinemia type 3, caused by a genetic deficiency of 4-hydroxyphenylpyruvic acid dioxygenase (HPD) in tyrosine catabolism, is characterized by convulsion, ataxia, and mental retardation. The III mouse is a model of tyrosinemia type 3. HPD activity and protein are defective in the liver and its blood tyrosine levels are elevated, the range being between 1,100 and 1,656 microM. We constructed a recombinant adenoviral vector bearing the human HPD cDNA (AdexCAGhHPD), which is expressed under the control of a potent CAG promoter. III mice were injected with 1.0 x 10(8) to 1.0 x 10(9) pfu of AdexCAGhHPD through the tail vein. When 3.0 x 10(8) - 1.0 x 10(9) pfu were injected, blood tyrosine levels decreased within 3 hr, reached a normal range (under 300 microM), and remained at a low level for 2-6 weeks. Hepatic HPD activities also increased as early as 3 hr after the injection of 5.0 x 10(8) pfu, reached the levels comparable to the control mice in 3-7 days, and then decreased, and correlated well to blood tyrosine. Hepatic HPD expression was confirmed by Northern blot and immunoblot analyses. Histology revealed no difference (gross or microscopic) between the liver injected with AdexCAGhHPD and the control. No significant changes in blood tyrosine levels were noted after the second injection of 5.0 x 10(8) pfu of AdexCAGhHPD. Thus, the intravenous administration of the adenoviral vector bearing a foreign gene seems suitable for transient, early gene transfer into the liver.

  12. Characteristics and function of sulfur dioxygenase in Echiuran worm Urechis unicinctus.

    Directory of Open Access Journals (Sweden)

    Litao Zhang

    Full Text Available BACKGROUND: Sulfide is a common toxin to animals and is abundant in coastal and aquatic sediments. Sulfur dioxygenase (SDO is thought to be the key enzyme involved in sulfide oxidation in some organisms. The echiuran worm, Urechis unicinctus, inhabits coastal sediment and tolerates high concentrations of sulfide. The SDO is presumably important for sulfide tolerance in U. unicinctus. RESULTS: The full-length cDNA of SDO from the echiuran worm U. unicinctus, proven to be located in the mitochondria, was cloned and the analysis of its sequence suggests that it belongs to the metallo-β-lactamase superfamily. The enzyme was produced using an E. coli expression system and the measured activity is approximately 0.80 U mg protein(-1. Furthermore, the expression of four sub-segments of the U. unicinctus SDO was accomplished leading to preliminary identification of functional domains of the enzyme. The identification of the conserved metal I (H113, H115, H169 and D188, metal II (D117, H118, H169 and H229 as well as the potential glutathione (GSH (R197, Y231, M279 and I283 binding sites was determined by enzyme activity and GSH affinity measurements. The key residues responsible for SDO activity were identified by analysis of simultaneous mutations of residues D117 and H118 located close to the metal II binding site. CONCLUSION: The recombinant SDO from U. unicinctus was produced, purified and characterized. The metal binding sites in the SDO were identified and Y231 recognized as the mostly important amino acid residue for GSH binding. Our results show that SDO is located in the mitochondria where it plays an important role in sulfide detoxification of U. unicinctus.

  13. Novel aromatic ring-hydroxylating dioxygenase genes from coastal marine sediments of Patagonia

    Directory of Open Access Journals (Sweden)

    Ferrero Marcela A


    Full Text Available Abstract Background Polycyclic aromatic hydrocarbons (PAHs, widespread pollutants in the marine environment, can produce adverse effects in marine organisms and can be transferred to humans through seafood. Our knowledge of PAH-degrading bacterial populations in the marine environment is still very limited, and mainly originates from studies of cultured bacteria. In this work, genes coding catabolic enzymes from PAH-biodegradation pathways were characterized in coastal sediments of Patagonia with different levels of PAH contamination. Results Genes encoding for the catalytic alpha subunit of aromatic ring-hydroxylating dioxygenases (ARHDs were amplified from intertidal sediment samples using two different primer sets. Products were cloned and screened by restriction fragment length polymorphism analysis. Clones representing each restriction pattern were selected in each library for sequencing. A total of 500 clones were screened in 9 gene libraries, and 193 clones were sequenced. Libraries contained one to five different ARHD gene types, and this number was correlated with the number of PAHs found in the samples above the quantification limit (r = 0.834, p nahAc-like genes, phnAc-like genes as identified in Alcaligenes faecalis AFK2, and phnA1-like genes from marine PAH-degraders from the genus Cycloclasticus. Conclusion These results show the presence of hitherto unidentified ARHD genes in this sub-Antarctic marine environment exposed to anthropogenic contamination. This information can be used to study the geographical distribution and ecological significance of bacterial populations carrying these genes, and to design molecular assays to monitor the progress and effectiveness of remediation technologies.

  14. Structural Basis for Substrate and Oxygen Activation in Homoprotocatechuate 2,3-Dioxygenase: Roles of Conserved Active Site Histidine-200


    Kovaleva, Elena G.; Rogers, Melanie S.; Lipscomb, John D.


    Kinetic and spectroscopic studies have shown that the conserved active site residue His200 of the extradiol ring-cleaving homoprotocatechuate 2,3-dioxygenase (FeHPCD) from Brevibacterium fuscum is critical for efficient catalysis. The roles played by this residue are probed here by analysis of the steady state kinetics, pH dependence, and X-ray crystal structures of the FeHPCD position 200 variants His200Asn, His200Gln, and His200Glu alone and in complex with three catecholic substrates (homo...

  15. Purification and properties of protocatechuate 3,4-dioxygenase from Chaetomium piluliferum induced with p-hydroxybenzoic acid. (United States)

    Wojtaś-Wasilewska, M; Trojanowski, J


    1. Protocatechuate 3,4-dioxygenase (protocatechuate : oxygen 3,4-oxidoreductase, EC was isolated from mycelium of Chaetomium piluliferum induced with p-hydroxybenzoic acid. The enzyme was purified about 80-fold by ammonium sulphate fractionation and DEAE-cellulose and Sephadex G-200 chromatography, and was homogeneous on polyacrylamide-gel electrophoresis. 2. The enzyme showed high substrate specificity; its pH optimum was 7.5-8.0, and molecula weight about 76 000 as determined by filtration on Sephadex G-200. The Michaelis constant for protocatechuic acid was 11.1 microM.

  16. Isolation of a naphthalene-degrading strain from activated sludge and bioaugmentation with it in a MBR treating coal gasification wastewater. (United States)

    Xu, Peng; Ma, Wencheng; Han, Hongjun; Jia, Shengyong; Hou, Baolin


    A highly effective naphthalene-degrading bacterial strain was isolated from acclimated activated sludge from a coal gasification wastewater plant, and identified as a Streptomyces sp., designated as strain QWE-35. The optimal pH and temperature for naphthalene degradation were 7.0 and 35°C. The presence of additional glucose and methanol significantly increased the degradation efficiency of naphthalene. The strain showed tolerance to the toxicity of naphthalene at a concentration as great as 200 mg/L. The Andrews mode could be fitted to the degradation kinetics data well over a wide range of initial naphthalene concentrations (10-200 mg/L), with kinetic values q max = 0.84 h(-1), K s = 40.39 mg/L, and K i = 193.76 mg/L. Metabolic intermediates were identified by gas chromatography and mass spectrometry, allowing a new degradation pathway for naphthalene to be proposed for the first time. Strain QWE-35 was added into a membrane bioreactor (MBR) to enhance the treatment of real coal gasification wastewater. The results showed that the removal of chemical oxygen demand and total nitrogen were similar between bioaugmented and non-bioaugmented MBRs, however, significant removal of naphthalene was obtained in the bioaugmented reactor. The findings suggest a potential bioremediation role of Streptomyces sp. QWE-35 in the removal of naphthalene from wastewaters.

  17. A dioxygenase of Pleurotus sapidus transforms (+)-valencene regio-specifically to (+)-nootkatone via a stereo-specific allylic hydroperoxidation. (United States)

    Krügener, Sven; Krings, Ulrich; Zorn, Holger; Berger, Ralf G


    A selective and highly efficient allylic oxidation of the sesquiterpene (+)-valencene to the grapefruit flavour compound (+)-nootkatone was achieved with lyophilisate of the edible mushroom Pleurotus sapidus. The catalytic reaction sequence was elucidated through the identification of intermediate, (+)-valencene derived hydroperoxides. A specific staining of hydroperoxides allowed the semi-preparative isolation of two secondary (+)-valencene hydroperoxides, 6(R)-Isopropenyl-4(R),4a(S)-dimethyl-2,3,4,4a,5,6,7,8-octahydro-naphthalen-4(S)-yl-hydroperoxide and 6(R)-Isopropenyl-4(R),4a(S)-dimethyl-2,3,4,4a,5,6,7,8-octahydro-naphthalen-2(R)-yl-hydroperoxide. Chemical reduction of the biotransformation products yielded a tertiary alcohol identified as 2(R)-Isopropenyl-8(R),8a(S)-dimethyl-1,3,4,7,8,8a-hexahydro-2H-naphthalen-4a(R)-ol. This suggested a lipoxygenase-type oxidation of (+)-valencene via secondary and tertiary hydroperoxides and confirmed homology data of the key enzyme obtained previously from amino acid sequencing.

  18. Synthesis and Characterization of 3-(1-Hydroxy Naphthalene-2-yl-5-(Furan-2-yl-1-Substituted Pyrazolines

    Directory of Open Access Journals (Sweden)



    Full Text Available 2-acetyl-1-naphthol 2 is prepared by Modified Nenchi’s method which on treatment with furfuraldehyde and KOH gives 1-(1-hydroxy naphthalen-2-yl-3-(furan-2-yl prop-2-ene-1-ones 3 in excellent yield. The chalcone 3 when subjected to hydrazine / phenyl hydrazine/ semicarbazide / 2,4 dinitro phenyl hydrazine / isonicotinic acid hydrazide in DMF solvent gives 3-(1-hydroxy naphthalene-2-yl-5-(furan-2-yl-1-substituted pyrazolines 4, 5, 6, 7 and 8 in 35-45% yield. The structural assignments to the compounds 4, 5, 6, 7 and 8 are based on their elemental analysis and spectral data.

  19. Tetrakis(μ-naphthalene-1-acetato-κ2O:O′bis[(N,N-dimethylformamide-κOcopper(II

    Directory of Open Access Journals (Sweden)

    Di-Si Bai


    Full Text Available The asymmetric unit of the title compound, [Cu2(C12H9O24(C3H7NO2], contains two independent centrosymmetric dinuclear copper(II complexes. The central paddle-wheel units are formed by four bridging bidentate naphthalene-1-acetate ligands with two dimethylformamide ligands in the axial positions. The unique CuII ions have slightly distorted square-pyramidal coordination geometries. One of the naphthalene rings is disordered over two sets of sites, with refined occpancies of 0.535 (4 and 0.465 (4.

  20. Transition from melting to carbonization of naphthalene, anthracene, pyrene and coronene at high pressure (United States)

    Chanyshev, Artem D.; Litasov, Konstantin D.; Shatskiy, Anton F.; Sharygin, Igor S.; Higo, Yuji; Ohtani, Eiji


    We have examined the decomposition of naphthalene, anthracene, pyrene and coronene at high pressures and temperatures. Experiments were performed using in situ X-ray diffraction in multianvil apparatus at the SPring-8 synchrotron radiation facility. In the pressure range of 1.5-3.7 GPa decomposition of studied polycyclic aromatic hydrocarbons (PAHs) was detected at 773-973 K. Melting was identified only for naphthalene at 727-730 K and 1.5 GPa. Quenched products analyzed by Raman spectroscopy consist of nano- and microcrystalline graphite. The triple points between solid, liquid and carbonized (decomposed) PAHs were placed at 1-2 GPa and 800-850 K. Analyses of P-V-T data indicate that anthracene and coronene possess very low thermal expansion at 1.3-4.2 GPa. The obtained melting and decomposition parameters for PAH restrict PT-conditions of their formation by local impacts during early planetary history, as well as provide evidences for secondary origin of PAH inclusions in natural mantle minerals from kimberlites.

  1. carbo-Naphthalene: A Polycyclic carbo-Benzenoid Fragment of α-Graphyne. (United States)

    Cocq, Kévin; Saffon-Merceron, Nathalie; Coppel, Yannick; Poidevin, Corentin; Maraval, Valérie; Chauvin, Remi


    A ring carbo-mer of naphthalene, C32 Ar8 (Ar=p-n-pentylphenyl), has been obtained as a stable blue chromophore, after a 19-step synthetic route involving methods inspired from those used in the synthesis of carbo-benzenes, or specifically devised for the present target, like a double Sonogashira-type coupling reaction. The last step is a SnCl2 /HCl-mediated reduction of a decaoxy-carbo-decalin, which is prepared through successive [8+10] macrocyclization steps. Two carbo-benzene references are also described, C18 Ar6 and o-C18 Ar4 (C≡C-SiiPr3 )2 . The carbo-naphthalene bicycle is locally aromatic according to structural and magnetic criteria, as revealed by strong diatropic ring current effects on the deshielding of (1) H nuclei of the Ar groups and on the negative value of the DFT-calculated NICS at the center of the C18 rings (-12.8 ppm). The stability and aromaticity of this smallest fused molecular fragment of α-graphyne allows prediction of the same properties for the carbon allotrope itself.

  2. Ab initio study of long-range electron transfer between biphenyl anion radical and naphthalene

    Institute of Scientific and Technical Information of China (English)

    李象远; 肖顺清; 何福城


    After the separation of the donor, the aeceptor, and the σ-type bridge from the π-σ-π system, the geometries of biphenyl, biphenyl anion radical, naphthalene, and naphthalene anion radical are optimized, and then the reorganization energy for the intermolecular electron transfer (ET) at the levels of HF/4-31G and HF/DZP is calculated. The ET matrix elements of the self-exchange reactions of the π-σ-π systems have been calculated by means of both the direct calculation based on the variational principle, and the transition energy between the molecular orbitals at the linear coordinate R=0.5. For the cross reactions, the ET matrix element and the geometry of the transition state are determined by searching the minimum energy splitting △min along the reaction coordinate. In the evaluation of the solvent reorganization energy of the ET in solution, the Marcus’ two-sphere model has been invoked. A few of ET rate constants for the intramolecular ET reactions for the π-σ-π systems, which contain

  3. Emitting materials based on phenylanthracene-substituted naphthalene derivatives for organic light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyun Woo; Kim, Hye Jeong; Kim, Young Seok; Kim, Jwajin [Department of Chemistry, Sungkyunkwan University, Suwon 440‐746 (Korea, Republic of); Lee, Song Eun; Lee, Ho Won [Department of Information Display, Hongik University, Seoul 121-791 (Korea, Republic of); Kim, Young Kwan, E-mail: [Department of Information Display, Hongik University, Seoul 121-791 (Korea, Republic of); Yoon, Seung Soo, E-mail: [Department of Chemistry, Sungkyunkwan University, Suwon 440‐746 (Korea, Republic of)


    This study reports the emitting materials based on phenylanthracene-substituted naphthalene derivatives to achieve efficient electroluminescent properties for OLED applications. An OLED device using 4,4′-bis(10-phenylanthracen-9-yl)-1,1′-binaphthalene exhibited the blue emission with the CIE coordinates of (0.19, 0.16) and efficient electroluminescent properties with the luminance, power and external quantum efficiency of 1.70 cd/A, 0.79 lm/W and 1.26% at 20 mA/cm{sup 2}, respectively. Also, the other device using 1,4-bis(10-phenylanthracene-9-yl)naphthalene exhibited white emission with the CIE coordinates of (0.34, 0.43) at 7V, respectively. This device exhibits the luminance, power and external quantum efficiency of 2.22 cd/A, 1.13 lm/W and 0.86% at 20 mA/cm{sup 2}, respectively. - Highlights: • We synthesized fluorescent materials based on phenylanthracene derivatives. • Electroluminescence properties of these materials depend on the molecular structures. • These blue and white materials have great potential for application in OLEDs.

  4. Ultrashort cationic naphthalene-derived self-assembled peptides as antimicrobial nanomaterials. (United States)

    Laverty, Garry; McCloskey, Alice P; Gilmore, Brendan F; Jones, David S; Zhou, Jie; Xu, Bing


    Self-assembling dipeptides conjugated to naphthalene show considerable promise as nanomaterial structures, biomaterials, and drug delivery devices. Biomaterial infections are responsible for high rates of patient mortality and morbidity. The presence of biofilm bacteria, which thrive on implant surfaces, are a huge burden on healthcare budgets, as they are highly resistant to current therapeutic strategies. Ultrashort cationic self-assembled peptides represent a highly innovative and cost-effective strategy to form antibacterial nanomaterials. Lysine conjugated variants display the greatest potency with 2% w/v NapFFKK hydrogels significantly reducing the viable Staphylococcus epidermidis biofilm by 94%. Reducing the size of the R-group methylene chain on cationic moieties resulted in reduction of antibiofilm activity. The primary amine of the protruding R-group tail may not be as readily available to interact with negatively charged bacterial membranes. Cryo-SEM, FTIR, CD spectroscopy, and oscillatory rheology provided evidence of supramolecular hydrogel formation at physiological pH (pH 7.4). Cytotoxicity assays against murine fibroblast (NCTC 929) cell lines confirmed the gels possessed reduced cytotoxicity relative to bacterial cells, with limited hemolysis upon exposure to equine erythrocytes. The results presented in this paper highlight the significant potential of ultrashort cationic naphthalene peptides as future biomaterials.

  5. Preparation and Biological Properties of Ring-Substituted Naphthalene-1-Carboxanilides

    Directory of Open Access Journals (Sweden)

    Tomas Gonec


    Full Text Available In this study, a series of twenty-two ring-substituted naphthalene-1-carboxanilides were prepared and characterized. Primary in vitro screening of the synthesized carboxanilides was performed against Mycobacterium avium subsp. paratuberculosis. N-(2-Methoxyphenylnaphthalene-1-carboxamide, N-(3-methoxy-phenylnaphthalene-1-carboxamide, N-(3-methylphenylnaphthalene-1-carboxamide, N-(4-methylphenylnaphthalene-1-carboxamide and N-(3-fluorophenylnaphthalene-1-carboxamide showed against M. avium subsp. paratuberculosis two-fold higher activity than rifampicin and three-fold higher activity than ciprofloxacin. The most effective antimycobacterial compounds demonstrated insignificant toxicity against the human monocytic leukemia THP-1 cell line. The testing of biological activity of the compounds was completed with the study of photosynthetic electron transport (PET inhibition in isolated spinach (Spinacia oleracea L. chloroplasts. The PET-inhibiting activity expressed by IC50 value of the most active compound N-[4-(trifluoromethylphenyl]naphthalene-1-carboxamide was 59 μmol/L. The structure-activity relationships are discussed.

  6. Naphthalene proton sponges as hydride donors: diverse appearances of the tert-amino-effect. (United States)

    Pozharskii, Alexander F; Povalyakhina, Maria A; Degtyarev, Alexander V; Ryabtsova, Oxana V; Ozeryanskii, Valery A; Dyablo, Olga V; Tkachuk, Anna V; Kazheva, Olga N; Chekhlov, Anatolii N; Dyachenko, Oleg A


    It has been shown that the 1-NMe(2) group in the 2-substituted 1,8-bis(dimethylamino)naphthalenes (proton sponges) can intramolecularly donate a hydride ion to an appropriate electron-accepting ortho-substituent such as diarylcarbenium ion, β,β'-dicyanovinyl or methyleneiminium group. This produces the 1-N(+)(Me)=CH(2) functionality and triggers a number of further transformations (tert-amino effect) including peri-cyclization, ortho-cyclization or hydrolytic demethylation. In each particular case, the course of the reaction is determined by the nature of the ortho-substituent and the most potent nucleophile presenting in the reaction mixture. For 2,7-disubstituted 1,8-bis(dimethylamino)naphthalenes, two types of tandem tert-amino effect with the involvement of both peri-NMe(2) groups have been registered. The conclusion was made that proton sponges are generally more active in the tert-amino reactions than the corresponding monodimethylaminoarenes. This is ascribed both to higher electron donor ability of proton sponges and markedly shortened distance between electrophilic C(α)-atom in the ortho-substituent and hydrogen atoms of the nearest NMe(2) group. Most conversions observed proceed in good to high yields and are useful for the preparation of derivatives of benzo[h]quinoline, quino[7,8:7',8']quinoline, 2,3-dihydroperimidine, N,N,N'-trimethyl-1,8-diaminonaphthalene and proton sponge itself.

  7. Unsaturated 15 and 16 Membered Appended Naphthalene Macrocyclic Molecules for The Development of Fluorometric Chemosensors (United States)

    Hasan, S.; Salleh, S.; Hamdan, S.; Yamin, B.


    Unsaturated macrocyclic molecules have got an interest due to their potential in catalysis, ion exchange and electron transfer. Salicaldehyde derivatives macrocyclic molecules have a broad range in synthesis. In this study, two unsaturated macrocyclic molecules (L1 and L2) have been synthesized. The preparation of unsaturated macrocyclic ligands involve two steps; the reaction of salicylaldehyde with 1,2-dibromoethane or 1,4-dibromobutane to produce precursor, then cyclisation were completed using schiff base technique by adding diamines (naphthalene diamine). The ligands were characterized spectroscopically. In FT-IR spectrums, the form of the ligands mainly can be observed on the disappearance of the carbonyl group of aldehyde at approximately 1650cm-1 that was readily assigned to C=O group of salicylaldehyde with the replacement of C=N peak at 1684.13cm-1. The success in producing macrocyclic ligands have been further characterized using fluorescence emission spectroscopy (FES) and revealed the typical emission of naphthalene at ∼430nm. Fluorescence changes of L1 and L2 showed high selectivity for Fe3+ and Cu2+ respectively in the presence of other common metal ions, such as Zn2+, Ni2+ and Co2+. Besides, the ligand was sensitive enough to detect the concentration of ferric ion with the detection limit down to 1.08 x 10-6 M and fluorescence change that was unaffected by the presence of other common coexisting metal ions. Complexation with Co(II) was also attempted.

  8. Cloning and mutagenesis of catechol 2,3-dioxygenase gene from the gram-positive Planococcus sp. strain S5. (United States)

    Hupert-Kocurek, Katarzyna; Stawicka, Agnieszka; Wojcieszyńska, Danuta; Guzik, Urszula


    In this study, the catechol 2,3-dioxygenase gene that encodes a 307- amino-acid protein was cloned from Planococcus sp. S5. The protein was identified to be a member of the superfamily I, subfamily 2A of extradiol dioxygenases. In order to study residues and regions affecting the enzyme's catalytic parameters, the c23o gene was randomly mutated by error-prone PCR. The wild-type enzyme and mutants containing substitutions within either the C-terminal or both domains were functionally produced in Escherichia coli and their activity towards catechol was characterized. The C23OB65 mutant with R296Q substitution showed significant tolerance to acidic pH with an optimum at pH 5.0. In addition, it showed activity more than 1.5 as high as that of the wild type enzyme and its Km was 2.5 times lower. It also showed altered sensitivity to substrate inhibition. The results indicate that residue at position 296 plays a role in determining pH dependence of the enzyme and its activity. Lower activity toward catechol was shown for mutants C23OB58 and C23OB81. Despite lower activity, these mutants showed higher affinity to catechol and were more sensitive to substrate concentration than nonmutated enzyme.

  9. Multistep conversion of para-substituted phenols by phenol hydroxylase and 2,3-dihydroxybiphenyl 1,2-dioxygenase. (United States)

    Qu, Yuanyuan; Shi, Shengnan; Ma, Qiao; Kong, Chunlei; Zhou, Hao; Zhang, Xuwang; Zhou, Jiti


    A multistep conversion system of para-substituted phenols by recombinant phenol hydroxylase (PH(IND)) and 2,3-dihydroxybiphenyl 1,2-dioxygenase (BphC(LA-4)) was constructed in this study. Docking studies with different para-substituted phenols and corresponding catechols inside of the active site of PH(IND) and BphC(LA-4) predicted that all the substrates should be transformed. High-performance liquid chromatography-mass spectrometry analysis showed that the products of multistep conversion were the corresponding para-substituted catechols and semialdehydes. For the first-step conversion, the formation rate of 4-fluorocatechol (0.39 μM/min/mg dry weight) by strain PH(IND) hydroxylation was 1.15, 6.50, 3.00, and 1.18-fold higher than the formation of 4-chlorocatechol, 4-bromocatechol, 4-nitrocatechol, and 4-methylcatechol, respectively. For the second-step conversion, the formation rates of semialdehydes by strain BphC(LA-4) were as follows: 5-fluoro-HODA>5-chloro-HODA>2-hydroxy-5-nitro-ODA>5-bromo-HODA>2-hydroxy-5-methyl-ODA. The present study suggested that the multistep conversion by both ring hydroxylase and cleavage dioxygenase should be potential in the synthesis of industrial precursors and provide a novel avenue in the wastewater recycling treatment.

  10. Structure and mechanism leading to formation of the cysteine sulfinate product complex of a biomimetic cysteine dioxygenase model. (United States)

    Sallmann, Madleen; Kumar, Suresh; Chernev, Petko; Nehrkorn, Joscha; Schnegg, Alexander; Kumar, Devesh; Dau, Holger; Limberg, Christian; de Visser, Sam P


    Cysteine dioxygenase is a unique nonheme iron enzyme that is involved in the metabolism of cysteine in the body. It contains an iron active site with an unusual 3-His ligation to the protein, which contrasts with the structural features of common nonheme iron dioxygenases. Recently, some of us reported a truly biomimetic model for this enzyme, namely a trispyrazolylborato iron(II) cysteinato complex, which not only has a structure very similar to the enzyme-substrate complex but also represents a functional model: Treatment of the model with dioxygen leads to cysteine dioxygenation, as shown by isolating the cysteine part of the product in the course of the work-up. However, little is known on the conversion mechanism and, so far, not even the structure of the actual product complex had been characterised, which is also unknown in case of the enzyme. In a multidisciplinary approach including density functional theory calculations and X-ray absorption spectroscopy, we have now determined the structure of the actual sulfinato complex for the first time. The Cys-SO2 (-) functional group was found to be bound in an η(2) -O,O-coordination mode, which, based on the excellent resemblance between model and enzyme, also provides the first support for a corresponding binding mode within the enzymatic product complex. Indeed, this is again confirmed by theory, which had predicted a η(2) -O,O-binding mode for synthetic as well as the natural enzyme.

  11. Overexpression of the rice carotenoid cleavage dioxygenase 1 gene in Golden Rice endosperm suggests apocarotenoids as substrates in planta. (United States)

    Ilg, Andrea; Yu, Qiuju; Schaub, Patrick; Beyer, Peter; Al-Babili, Salim


    Carotenoids are converted by carotenoid cleavage dioxygenases that catalyze oxidative cleavage reactions leading to apocarotenoids. However, apocarotenoids can also be further truncated by some members of this enzyme family. The plant carotenoid cleavage dioxygenase 1 (CCD1) subfamily is known to degrade both carotenoids and apocarotenoids in vitro, leading to different volatile compounds. In this study, we investigated the impact of the rice CCD1 (OsCCD1) on the pigmentation of Golden Rice 2 (GR2), a genetically modified rice variety accumulating carotenoids in the endosperm. For this purpose, the corresponding cDNA was introduced into the rice genome under the control of an endosperm-specific promoter in sense and anti-sense orientations. Despite high expression levels of OsCCD1 in sense plants, pigment analysis revealed carotenoid levels and patterns comparable to those of GR2, pleading against carotenoids as substrates in rice endosperm. In support, similar carotenoid contents were determined in anti-sense plants. To check whether OsCCD1 overexpressed in GR2 endosperm is active, in vitro assays were performed with apocarotenoid substrates. HPLC analysis confirmed the cleavage activity of introduced OsCCD1. Our data indicate that apocarotenoids rather than carotenoids are the substrates of OsCCD1 in planta.

  12. Molecular basis for catalysis and substrate-mediated cellular stabilization of human tryptophan 2,3-dioxygenase (United States)

    Lewis-Ballester, Ariel; Forouhar, Farhad; Kim, Sung-Mi; Lew, Scott; Wang, YongQiang; Karkashon, Shay; Seetharaman, Jayaraman; Batabyal, Dipanwita; Chiang, Bing-Yu; Hussain, Munif; Correia, Maria Almira; Yeh, Syun-Ru; Tong, Liang


    Tryptophan 2,3-dioxygenase (TDO) and indoleamine 2,3-dioxygenase (IDO) play a central role in tryptophan metabolism and are involved in many cellular and disease processes. Here we report the crystal structure of human TDO (hTDO) in a ternary complex with the substrates L-Trp and O2 and in a binary complex with the product N-formylkynurenine (NFK), defining for the first time the binding modes of both substrates and the product of this enzyme. The structure indicates that the dioxygenation reaction is initiated by a direct attack of O2 on the C2 atom of the L-Trp indole ring. The structure also reveals an exo binding site for L-Trp, located ~42 Å from the active site and formed by residues conserved among tryptophan-auxotrophic TDOs. Biochemical and cellular studies indicate that Trp binding at this exo site does not affect enzyme catalysis but instead it retards the degradation of hTDO through the ubiquitin-dependent proteasomal pathway. This exo site may therefore provide a novel L-Trp-mediated regulation mechanism for cellular degradation of hTDO, which may have important implications in human diseases. PMID:27762317

  13. Activity of a Carboxyl-Terminal Truncated Form of Catechol 2,3-Dioxygenase from Planococcus sp. S5

    Directory of Open Access Journals (Sweden)

    Katarzyna Hupert-Kocurek


    Full Text Available Catechol 2,3-dioxygenases (C23Os, E.C. are two domain enzymes that catalyze degradation of monoaromatic hydrocarbons. The catalytically active C-domain of all known C23Os comprises ferrous ion ligands as well as residues forming active site pocket. The aim of this work was to examine and discuss the effect of nonsense mutation at position 289 on the activity of catechol 2,3-dioxygenase from Planococcus strain. Although the mutant C23O showed the same optimal temperature for activity as the wild-type protein (35°C, it exhibited activity slightly more tolerant to alkaline pH. Mutant enzyme exhibited also higher affinity to catechol as a substrate. Its Km (66.17 µM was approximately 30% lower than that of wild-type enzyme. Interestingly, removal of the C-terminal residues resulted in 1.5- to 1.8-fold (P<0.05 increase in the activity of C23OB61 against 4-methylcatechol and 4-chlorocatechol, respectively, while towards catechol the activity of the protein dropped to about 80% of that of the wild-type enzyme. The results obtained may facilitate the engineering of the C23O for application in the bioremediation of polluted areas.

  14. Naphthalene poisoning (United States)

    ... K. General approach to the poisoned patient. In: Marx J, ed. Rosen's Emergency Medicine: Concepts and Clinical ... 147. Levine MD, Zane R. Chemical injuries. In: Marx J, ed. Rosen's Emergency Medicine: Concepts and Clinical ...

  15. The paradoxical patterns of expression of indoleamine 2,3-dioxygenase in colon cancer

    Directory of Open Access Journals (Sweden)

    Ding Ya


    Full Text Available Abstract Background One of the putative mechanisms of tumor immune escape is based on the hypothesis that carcinomas actively create an immunosuppressed state via the expression of indoleamine 2,3-dioxygenase (IDO, both in the cancer cells and in the immune cells among the tumor-draining lymph nodes (TDLN. In an attempt to verify this hypothesis, the patterns of expression of IDO in the cancer cells and the immune cells among colon cancers were examined. Methods Seventy-one cases of pathologically-confirmed colon cancer tissues matched with adjacent non-cancerous tissues, lymph node metastases, and TDLN without metastases were collected at the Sun Yat-sen Cancer Center between January 2000 and December 2000. The expression of IDO and Bin1, an IDO regulator, was determined with an immunohistochemical assay. The association between IDO or Bin1 expression and TNM stages and the 5-year survival rate in colon cancer patients was analyzed. Results IDO and Bin1 were detected in the cytoplasm of cancer cells and normal epithelium. In primary colon cancer, the strong expression of IDO existed in 9/71 cases (12.7%, while the strong expression of Bin1 existed in 33/71 cases (46.5%. However, similar staining of IDO and Bin1 existed in the adjacent non-cancerous tissues. Among the 41 cases with primary colon tumor and lymph node metastases, decreased expression of IDO was documented in the lymph node metastases. Furthermore, among the TDLN without metastases, a higher density of IDO+cells was documented in 21/60 cases (35%. Both univariate and multivariate analyses revealed that the density of IDO+cells in TDLN was an independent prognostic factor. The patients with a higher density of IDO+cells in TDLN had a lower 5-year survival rate (37.5% than the cells with a lower density (73.1%. Conclusion This study demonstrated paradoxical patterns of expression of IDO in colon cancer. The high density IDO+cells existed in TDLN and IDO was down-regulated in lymph

  16. NO binding to Mn-substituted homoprotocatechuate 2,3-dioxygenase: relationship to O₂ reactivity. (United States)

    Hayden, Joshua A; Farquhar, Erik R; Que, Lawrence; Lipscomb, John D; Hendrich, Michael P


    Iron(II)-containing homoprotocatechuate 2,3-dioxygenase (FeHPCD) activates O2 to catalyze the aromatic ring opening of homoprotocatechuate (HPCA). The enzyme requires Fe(II) for catalysis, but Mn(II) can be substituted (MnHPCD) with essentially no change in the steady-state kinetic parameters. Near simultaneous O2 and HPCA activation has been proposed to occur through transfer of an electron or electrons from HPCA to O2 through the divalent metal. In O2 reactions with MnHPCD-HPCA and the 4-nitrocatechol (4NC) complex of the His200Asn (H200N) variant of FeHPCD, this transfer has resulted in the detection of a transient M(III)-O2 (·-) species that is not observed during turnover of the wild-type FeHPCD. The factors governing formation of the M(III)-O2 (·-) species are explored here by EPR spectroscopy using MnHPCD and nitric oxide (NO) as an O2 surrogate. Both the HPCA and the dihydroxymandelic substrate complexes of MnHPCD bind NO, thus representing the first reported stable MnNO complexes of a nonheme enzyme. In contrast, the free enzyme, the MnHPCD-4NC complex, and the MnH200N and MnH200Q variants with or without HPCA bound do not bind NO. The MnHPCD-ligand complexes that bind NO are also active in normal O2-linked turnover, whereas the others are inactive. Past studies have shown that FeHPCD and the analogous variants and catecholic ligand complexes all bind NO, and are active in normal turnover. This contrasting behavior may stem from the ability of the enzyme to maintain the approximately 0.8-V difference in the solution redox potentials of Fe(II) and Mn(II). Owing to the higher potential of Mn, the formation of the NO adduct or the O2 adduct requires both strong charge donation from the bound catecholic ligand and additional stabilization by interaction with the active-site His200. The same nonoptimal electronic and structural forces that prevent NO and O2 binding in MnHPCD variants may lead to inefficient electron transfer from the catecholic substrate to

  17. NO Binding to Mn-Substituted Homoprotocatechuate 2,3-Dioxygenase: Relationship to O2 Reactivity (United States)

    Hayden, Joshua A.; Farquhar, Erik R.; Que, Lawrence; Lipscomb, John D.; Hendrich, Michael P.


    Homoprotocatechuate 2,3-dioxygenase (FeHPCD) activates O2 to catalyze the aromatic ring opening of 3,4-dihydroxyphenylacetic acid (HPCA). The enzyme requires FeII for catalysis, but MnII can be substituted (MnHPCD) with essentially no change in the steady-state kinetic parameters. Near simultaneous O2 and HPCA activation has been proposed to occur through transfer of an electron(s) from HPCA to O2 through the divalent metal. In O2 reactions with MnHPCD-HPCA and the 4-nitrocatechol (4NC) complex of the His200Asn (H200N) variant of FeHPCD, this transfer has resulted in the detection of a transient MIII-O2•− species not observed during turnover of the wild type FeHPCD. The factors governing formation of the MIII-O2•− species are explored here with EPR spectroscopy using MnHPCD and nitric oxide (NO) as an O2 surrogate. Both the HPCA and dihydroxymandelic substrate complexes of MnHPCD bind NO, thus representing the first reported stable MnNO complexes of a nonheme enzyme. In contrast, the free enzyme, the MnHPCD-4NC complex, and the MnH200N and MnH200Q variants with or without HPCA bound do not bind NO. The MnHPCD-ligand complexes that bind NO are also active in normal O2-linked turnover, whereas the others are inactive. Past studies have shown that FeHPCD and the analogous variants and catecholic ligand complexes all bind NO, and are active in normal turnover. This contrasting behavior may stem from ability of the enzyme to maintain the ~0.8 V difference in the solution redox potentials of FeII and MnII. Due to the higher potential of Mn, the formation of the NO or O2 adduct requires both strong charge donation from the bound catecholic ligand and additional stabilization by interaction with the active site His200. The same non-optimal electronic and structural forces that prevent NO and O2 binding in MnHPCD variants may lead to inefficient electron transfer from the catecholic substrate to the metal center in variants of FeHPCD during O2-linked turnover

  18. Immuno-regulatory function of indoleamine 2,3 dioxygenase through modulation of innate immune responses.

    Directory of Open Access Journals (Sweden)

    Malihe-Sadat Poormasjedi-Meibod

    Full Text Available Successful long-term treatment of type-1 diabetes mainly relies on replacement of β-cells via islet transplantation. Donor shortage is one of the main obstacles preventing transplantation from becoming the treatment of choice. Although animal organs could be an alternative source for transplantation, common immunosuppressive treatments demonstrate low efficacy in preventing xenorejection. Immunoprotective effects of indoleamine 2,3-dioxygenase (IDO on T-cell mediated allorejection has been extensively studied. Our studies revealed that IDO expression by fibroblasts, induced apoptosis in T-cells while not affecting non-immune cell survival/function. Since macrophages play a pivotal role in xenograft rejection, herein we investigated the effect of IDO-induced tryptophan deficiency/kynurenine accumulation on macrophage function/survival. Moreover, we evaluated the local immunosuppressive effect of IDO on islet-xenograft protection. Our results indicated that IDO expression by bystander fibroblasts significantly reduced the viability of primary macrophages via apoptosis induction. Treatment of peritoneal macrophages by IDO-expressing fibroblast conditioned medium significantly reduced their proinflammatory activity through inhibition of iNOS expression. To determine whether IDO-induced tryptophan starvation or kynurenine accumulation is responsible for macrophage apoptosis and inhibition of their proinflammatory activity, Raw264.7 cell viability and proinflammatory responses were evaluated in tryptophan deficient medium or in the presence of kynurenine. Tryptophan deficiency, but not kynurenine accumulation, reduced Raw264.7 cell viability and suppressed their proinflammatory activity. Next a three-dimensional islet-xenograft was engineered by embedding rat islets within either control or IDO-expressing fibroblast-populated collagen matrix. Islets morphology and immune cell infiltration were then studied in the xenografts transplanted into the C57

  19. The effects of trace elements, cations, and environmental conditions on protocatechuate 3,4-dioxygenase activity

    Directory of Open Access Journals (Sweden)

    Andréa Scaramal da Silva


    Full Text Available Phenanthracene is a highly toxic organic compound capable of contaminating water and soils, and biodegradation is an important tool for remediating polluted environments. This study aimed to evaluate the effects of trace elements, cations, and environmental conditions on the activity of the protocatechol 3,4-dioxygenase (P3,4O enzyme produced by the isolate Leifsonia sp. in cell-free and immobilized extracts. The isolate was grown in Luria Bertani broth medium (LB amended with 250 mg L-1 of phenanthrene. Various levels of pH (4.0-9.0, temperature (5-80 °C, time (0-90 min, trace elements (Cu2+, Hg2+ and Fe3+, and cations (Mg2+, Mn2+, K+ and NH4+ were tested to determine which conditions optimized enzyme activity. In general, the immobilized extract exhibited higher enzyme activity than the cell-free extract in the presence of trace elements and cations. Adding iron yielded the highest relative activity for both cell-free and immobilized extracts, with values of 16 and 99 %, respectively. Copper also increased enzyme activity for both cell-free and immobilized extracts, with values of 8 and 44 %, respectively. Enzyme activity in the phosphate buffer was high across a wide range of pH, reaching 80 % in the pH range between 6.5 and 8.0. The optimum temperatures for enzyme activity differed for cell-free and immobilized extracts, with maximum enzyme activity observed at 35 ºC for the cell-free extract and at 55 ºC for the immobilized extract. The cell-free extract of the P3,4O enzyme exhibited high activity only during the first 3 min of incubation, when it showed 50 % relative activity, and dropped to 0 % after 60 min of incubation. By contrast, activity in the immobilized extract was maintained during 90 min of incubation. This isolate has important characteristics for phenanthrene biodegradation, producing high quantities of the P3,4O enzyme that forms part of the most important pathway for PAH biodegradation.

  20. Characterization of metal binding in the active sites of acireductone dioxygenase isoforms from Klebsiella ATCC 8724. (United States)

    Chai, Sergio C; Ju, Tingting; Dang, Marina; Goldsmith, Rachel Beaulieu; Maroney, Michael J; Pochapsky, Thomas C


    The two acireductone dioxygenase (ARD) isozymes from the methionine salvage pathway of Klebsiella ATCC 8724 present an unusual case in which two enzymes with different structures and distinct activities toward their common substrates (1,2-dihydroxy-3-oxo-5-(methylthio)pent-1-ene and dioxygen) are derived from the same polypeptide chain. Structural and functional differences between the two isozymes are determined by the type of M2+ metal ion bound in the active site. The Ni2+-bound NiARD catalyzes an off-pathway shunt from the methionine salvage pathway leading to the production of formate, methylthiopropionate, and carbon monoxide, while the Fe2+-bound FeARD' catalyzes the on-pathway formation of methionine precursor 2-keto-4-methylthiobutyrate and formate. Four potential protein-based metal ligands were identified by sequence homology and structural considerations. Based on the results of site-directed mutagenesis experiments, X-ray absorption spectroscopy (XAS), and isothermal calorimetry measurements, it is concluded that the same four residues, His96, His98, Glu102 and His140, provide the protein-based ligands for the metal in both the Ni- and Fe-containing forms of the enzyme, and subtle differences in the local backbone conformations trigger the observed structural and functional differences between the FeARD' and NiARD isozymes. Furthermore, both forms of the enzyme bind their respective metals with pseudo-octahedral geometry, and both may lose a histidine ligand upon binding of substrate under anaerobic conditions. However, mutations at two conserved nonligand acidic residues, Glu95 and Glu100, result in low metal contents for the mutant proteins as isolated, suggesting that some of the conserved charged residues may aid in transfer of metal from in vivo sources or prevent the loss of metal to stronger chelators. The Glu100 mutant reconstitutes readily but has low activity. Mutation of Asp101 results in an active enzyme that incorporates metal in vivo but

  1. Synthesis of a naphthalene-hydroxynaphthalene polymer model compound. Final report, June 13, 1990--September 12, 1991

    Energy Technology Data Exchange (ETDEWEB)


    The objective of this project was the synthesis of one pound of a new naphthalene-hydroxynaphthalene polymer model compound for use in coal combustion studies. Since this compound was an unreported compound, this effort also required the development of a synthetic route to this compound (including routes to the unique and unreported intermediates leading to its synthesis).

  2. Naphthalene induced activities on growth, respiratory metabolism and biochemical composition in juveniles of Metapenaeus affinis (H.Milne Edward, 1837)

    Digital Repository Service at National Institute of Oceanography (India)

    Ansari, Z.A.; Farshchi, P.; Faniband, M.

    and only 5.22% in 0.25 ppm. Metabolic index assessed in terms of oxygen consumption showed a reduction in respiratory rate up to 44.4% in prawns exposed to naphthalene. Activity increased initially but reduced subsequently. Protein content and organic...

  3. The performance studies on swallow-tailed naphthalene diimide derivatives in solution processed inverted bulk heterojunction solar cells (United States)

    Turkmen, Gulsah; Sarica, Hizir; Erten-Ela, Sule


    Two different soluble swallow-tailed naphthalene diimide derivatives were synthesized, 1,4:5,8-naphthalene diimides (NDIs), N,N‧-bis-(1-butylpentyl)-naphthalenetetracarboxylic-1,4:5,8-biscarboximide (NDI-1) and N,N‧-bis-(1-pentylhexyl)-naphthalenetetracarboxylic-1,4:5,8-biscarboximide (NDI-2). Thermal stabilities were also measured with thermal gravimetry analyser (TGA). Naphthalene diimides showed high thermal stability. NDI derivatives exhibited good thermal stabilities that thermal decomposition peak appeared at 438 °C and 421 °C, respectively for NDI-1 and NDI-2. Highly soluble naphthalene diimide derivatives were used in inverted bulk heterojunction solar cells. Two different ZnO cathode layers were used to fabricate bulk heterojunction solar cells. One of them was single layer consists of dense ZnO layer and the other was double layer comprising porous ZnO layer onto dense ZnO layer. Inverted bulk heterojunction devices were designed in a FTO/ ZnO (single or double layer)/P3HT:C60:NDI device geometry. Best efficiency was obtained for FTO/ZnO (single or double layer)/P3HT:C60:NDI-2 device as 8.78 mA/cm2 of short circuit photocurrent density, 300 mV of open circuit voltage, 0.28 of filling factor, 0.74 of overall conversion efficiency.

  4. Influence of 1,3,6 naphthalene trisulfonic acid on microstructure & hardness in electrodeposited Ni-layers

    DEFF Research Database (Denmark)

    Rasmussen, Anette Alsted; Møller, Per; Somers, Marcel A. J.


    The influence of the additive 1,3,6 naphthalene trisulfonic acid on the microstructure and hardness of electrodeposited nickel layers was investigated. The microstructure was characterized using transmission electron microscopy; the Vickers hardness was measured in cross sections. The additive wa...

  5. Isopropylation of Naphthalene over AlMCM-48 Mesoporous Molecular Sieves%AlMCM-48介孔分子筛对萘异丙基化反应的活性

    Institute of Scientific and Technical Information of China (English)

    王树国; 李英; 巩雁军; 吴东; 孙予罕; 钟炳


    The isopropylation of naphthalene with isopropanol over AlMCM-48 mesoporous molecular sieves was studied. AlMCM-48 showed high activity and shape selectivity to the isopropylation of naphthalene. Grafting aluminum on MCM-48 improved its acidity. It was found that with the increasing of Al content, the performance of AlMCM-48 catalysts for naphthalene conversion was enhanced. High naphthalene conversion of 89.5 % was achieved over AlMCM-48 with Si/Al=5.3 under the reaction conditions:n(isopropanol) /n(naphthalene)=2, temperature T=250 ℃ , time t=4 h.

  6. The tomato CAROTENOID CLEAVAGE DIOXYGENASE8 (SlCCD8) regulates rhizosphere signaling, plant architecture and affects reproductive development through strigolactone biosynthesis

    NARCIS (Netherlands)

    Kohlen, W.; Charnikhova, T.; Lammers, M.; Pollina, T.; Toth, P.; Haider, I.; Pozo, M.J.; Maagd, de R.A.; Ruyter-Spira, C.P.; Bouwmeester, H.J.; Lopez-Raez, J.A.


    •Strigolactones are plant hormones that regulate both above- and belowground plant architecture. Strigolactones were initially identified as rhizosphere signaling molecules. In the present work, the tomato (Solanum lycopersicum) CAROTENOID CLEAVAGE DIOXYGENASE 8 (SlCCD8) was cloned and its role in

  7. BW A4C and other hydroxamic acids are potent inhibitors of linoleic acid 8R-dioxygenase of the fungus Gaeumannomyces graminis. (United States)

    Brodowsky, I D; Hamberg, M; Oliw, E H


    Linoleic acid is converted to 8R-hydroperoxylinoleic acid by the soluble 8R-dioxygenase of the fungus Gaeumannomyces graminis. Effects of different lipoxygenase inhibitors on the 8R-dioxygenase were evaluated. Three hydroxamic acid derivatives were investigated. BW A4C (N-(3-phenoxycinnamyl)acetohydroxamic acid) was the most potent with an IC50 of 0.2 microM, followed by zileuton (3-10 microM) and linoleate-hydroxamic acid (0.02 mM). Two other lipoxygenase inhibitors, nordihydroguaiaretic acid and eicosatetraynoic acid, were less potent (IC50 0.09 and 0.15 mM, respectively). The 8R-dioxygenase was also strongly inhibited by commonly used buffer additives, dithiothreitol, beta-mercaptoethanol and phenylmethanesulfonyl fluoride. G. graminis also contains a hydroperoxide isomerase, which converts 8R-hydroperoxylinoleic acid to 7S,8S-dihydroxylinoleic acid. Ammonium sulphate precipitation and gel filtration indicated that the dioxygenase and the hydroperoxide isomerase activities could be separated.

  8. Characterization of MnpC, a hydroquinone dioxygenase likely involved in the meta-nitrophenol degradation by Cupriavidus necator JMP134. (United States)

    Yin, Ying; Zhou, Ning-Yi


    Cupriavidus necator JMP134 utilizes meta-nitrophenol (MNP) as the sole source of carbon, nitrogen, and energy. The metabolic reconstruction of MNP degradation performed in silico suggested that MnpC might have played an important role in MNP degradation. In order to experimentally confirm the prediction, we have now characterized the mnpC-encoded (amino)hydroquinone dioxygenase involved in the ring-cleavage reaction of MNP degradation. Real-time PCR analysis indicated that mnpC played an essential role in MNP degradation. MnpC was purified to homogeneity as an N-terminal six-His-tagged fusion protein, and it was proved to be a dimer as demonstrated by gel filtration. MnpC was a Fe(2+)- and Mn(2+)-dependent dioxygenase, catalyzing the ring-cleavage of hydroquinone to 4-hydroxymuconic semialdehyde in vitro and proposed as an aminohydroquinone dioxygenase involved in MNP degradation in vivo. Phylogenetic analysis suggested that MnpC diverged from the other (chloro)hydroquinone dioxygenases at an earlier point, which might result in the preference for its physiological substrate.

  9. Modeling the 2-His-1-Carboxylate Facial Triad: Iron-Catecholato Complexes as Structural and Functional Models of the Extradiol Cleaving Dioxygenases

    NARCIS (Netherlands)

    Bruijnincx, P.C.A.; Lutz, M.; Spek, A.L.; Hagen, W.R.; Weckhuysen, B.M.; van Koten, G.; Klein Gebbink, R.J.M.


    Mononuclear iron(II)- and iron(III)-catecholato complexes with three members of a new 3,3-bis(1-alkylimidazol-2-yl)propionate ligand family have been synthesized as models of the active sites of the extradiol cleaving catechol dioxygenases. These enzymes are part of the superfamily of dioxygen-activ


    The DNA region encoding biphenyl dioxygenase, the first enzyme in the biphenyl-polychlorinated biphenyl degradation pathway of Pseudomonas species strain LB400, was sequenced. Six open reading frames were identified, four of which are homologous to the components of toluene dioxy...

  11. Scale-up impacts on mass transfer and bioremediation of suspended naphthalene particles in bead mill bioreactors. (United States)

    Wang, Yuching; Riess, Ryan; Nemati, Mehdi; Hill, Gordon; Headley, John


    Scale-up effects on mass transfer and bioremediation of suspended naphthalene particles have been studied in 20 and 58L bead mill bioreactors and compared to data generated earlier with a laboratory scaled bioreactor. The bead mill bioreactor performance with respect to naphthalene mass transfer rate was dependent on the size and loading of the inert particles, as well as the rotational speed of the roller apparatus. The optimum operating conditions were found to be 15mm glass beads at a loading of 50% (total volume of particles/working volume of bioreactor: v/v%) and a bioreactor rotational speed of 50rpm. The highest naphthalene mass transfer coefficients obtained in the large scale system under these optimum conditions (19.6 and 22.4h(-1) for 20 and 58L vessels, respectively) were higher than those determined previously in a 2.5L bead mill bioreactor (0.7h(-1)). The acute toxicity tests indicated that the bioreactor effluent was less toxic than the untreated naphthalene suspension. Biodegradation rates obtained in these large scale bead mill bioreactors under optimum conditions (36-37.4mgL(-1)h(-1)) were higher than those achieved in the control bioreactors of similar sizes (11.4 and 11.6mgL(-1)h(-1)) but were slower than those previously determined in a 2.5L bead mill bioreactor (59-61.5mgL(-1)h(-1)). The limitation of oxygen in the large scale systems and damage of the bacterial cells due to the crushing effects of the large beads are likely contributing factors in the lower observed biodegradation rates. The optimum conditions with respect to naphthalene mass transfer might not necessarily translate to optimum performance with regard to bioremediation.

  12. Isolation,Charcaterization of an Anthracene Degrading Bacterium Martelella sp. AD-3 and Cloning of Dioxygenase Gene%降解蒽嗜盐菌AD-3的筛选、降解特性及加氧酶基因的研究

    Institute of Scientific and Technical Information of China (English)

    崔长征; 冯天才; 于亚琦; 董婓; 杨昕梅; 冯耀宇; 刘勇弟; 林汉平


    Anthracene,among the 16 US EPA polycyclic aromatic hydrocarbons(PAHs),is a typical low molecular weight environmental contaminant,which gains concern on its biodegradation under hypersaline condition.In this study,an anthracene-degrading bacterial strain was isolated from highly saline petroleum-contaminated soil.Based on its physiological,biochemical characteristics and 16S rDNA sequence analysis,the bacteria was preliminary identified and named as Martelella sp. AD-3.The strain was able to utilize anthracene as sole carbon source for growth and the degradation occurred under broad salinities(0.1% to 10%) and varying pHs(6.0 to 10.0).The optimized degradation conditions were initial concentration 25 mg·L^-1,culture temperature 30℃,pH 9.0 and salinity 3%.And 94.6% of anthracene was degraded by strain AD-3 under the optimal conditions within 6 days.Degenerate primers design was performed with a reported dioxygenase α subunit homologous gene.A length of 307 bp fragment of the partial dioxygenase gene sequences(GenBank accession: JF823991.1) was amplified by nested PCR.The clones amino acid sequence from strain AD-3 showed 95% identity to that of the partial naphthalene dioxygenase large-subunit from Marinobacter sp. NCE312(AF295033).The results lay a foundation for the further study of molecular mechanism involved in the PAHs biodegradation by strain AD-3.%蒽是典型的多环芳烃类环境污染物,属于美国EPA优先控制的16种多环芳烃类化合物,其在高盐环境下的生物降解备受关注.本研究从某石油污染的高盐土壤中成功筛选出了1株高效降解蒽的菌株,经过对其生理生化特征和16S rDNA序列分析,初步鉴定并命名该菌株为Martelella sp.AD-3.该菌株在0.1%~10%的盐度和6.0~10.0的pH范围内,均能够降解蒽.其生长和降解蒽的优化条件是:蒽初始浓度25 mg·L^-1、温度30℃、pH值9.0和盐度3%,在优化条件下培养6 d,蒽的降解率可达到94.6%.根据已报道的双

  13. Sawdust Ash as Powder Material for Self-Compacting Concrete Containing Naphthalene Sulfonate

    Directory of Open Access Journals (Sweden)

    Augustine U. Elinwa


    Full Text Available Tests are carried out to determine the fluidity of Ashaka Portland cement paste and its compatibility with sawdust ash (SDA as powder material for self-compacting cement (SCC mixtures. Results of the investigation showed that saturation was achieved at w/c ratios of 0.4 and 0.42, at dosages of naphthalene sulfonate superplasticizers of 3.5% and 2%, respectively. The optimum replacement level for the SCC mixture was 10 wt.% of cement by SDA and 2% of the superplasticizer dosage. The achieved spread and flow time were 26 cm and 8 seconds and are within the specified range of 24 cm to 26 cm and 7 to 11 seconds, respectively. Statistical inference showed that the mix, w/c, and the interaction between the mix and w/c ratio are significant.

  14. Substituted naphthalenes: Stability, conformational flexibility and description of bonding based on ETS-NOCV method (United States)

    Stanković, B.; Ostojić, B. D.; Gruden, M.; Popović, A.; Đorđević, D. S.


    For all dimethylnaphthalenes (DMNs) the transition from a planar ring conformation to a nonplanar one results in energy increase in the range 1.7-2.4 kcal/mol. There is a linear relationship between averaged rigidity constant and relative energy of DMNs. The relative stability of DMNs does not follow the aromatic stabilization based on NICS values. The ETS-NOCV analysis shows that more efficient bonding in the π-electron system is the origin of enhanced stability in laterally substituted (CH3, Cl and NO2) naphthalenes. The results for Caryl-CH3 system indicate more steric repulsion in going from 2,7-DMN to 1,8-DMN following the increase of relative energies.

  15. Poly[μ2-aqua-aqua-μ5-naphthalene-2,7-disulfonato-strontium

    Directory of Open Access Journals (Sweden)

    Shan Gao


    Full Text Available In the crystal structure of the polymeric title compound, [Sr(C10H6O6S2(H2O2]n, the naphthalene-2,7-disulfonate dianion uses one –SO3 unit to bind to two SrII cations and the other –SO3 unit to bind to three SrII cations; of the two coordinated water molecules, one is monodentate to one SrII cation, whereas the other bridges two SrII cations. The μ5-bridging mode of the dianon and the μ2-bridging mode of the water molecule generate a polymeric three-dimensional network which is consolidated by O—H...O hydrogen bonds. The SrII cation exists in an undefined eight-coordinate environment.

  16. Fluorescent deep-blue and hybrid white emitting devices based on a naphthalene-benzofuran compound

    KAUST Repository

    Yang, Xiaohui


    We report the synthesis, photophysics and electrochemical properties of naphthalene-benzofuran compound 1 and its application in organic light emitting devices. Fluorescent deep-blue emitting devices employing 1 as the emitting dopant embedded in 4-4′-bis(9-carbazolyl)-2,2′-biphenyl (CBP) host show the peak external quantum efficiency of 4.5% and Commission Internationale d\\'Énclairage (CIE) coordinates of (0.15, 0.07). Hybrid white devices using fluorescent blue emitting layer with 1 and a phosphorescent orange emitting layer based on an iridium-complex show the peak external quantum efficiency above 10% and CIE coordinates of (0.31, 0.37). © 2013 Published by Elsevier B.V.

  17. In vitro inhibition by stiripentol of rat brain cytochrome P-450-mediated naphthalene hydroxylation. (United States)

    Mesnil, M; Testa, B; Jenner, P


    1. The formation of 1-naphthol from naphthalene was investigated in rat brain 105,000 g particulate fraction. The reaction showed NADPH dependency and was inhibited by carbon monoxide. Michaelis-Menten kinetics were apparent with Vmax = 0.264 pmol/mg protein per min and Km = 22.6 microM. 2. Stiripentol, an antiepileptic drug containing a methylenedioxybenzene moiety, proved to be a potent inhibitor of the reaction, with an IC50 value close to 1 microM under the conditions of study and without preincubation. 3. The inhibitory activity of stiripentol was seen mainly after metabolic activation of the drug. The inhibitory effect appeared progressively when substrate and inhibitor were added together to the incubates, whereas its appearance was more rapid following preincubation of stiripentol.

  18. Growth of large naphthalene and anthracene single-crystal sheets at the liquid–air interface

    Energy Technology Data Exchange (ETDEWEB)

    Postnikov, V. A., E-mail: [Donbas National Academy of Civil Engineering and Architecture (Ukraine); Chertopalov, S. V. [Donetsk National University (Ukraine)


    The growth of organic single crystals of naphthalene (C{sub 10}H{sub 8}) and anthracene (C{sub 14}H{sub 10}) at the liquid‒air interface from a mixture of solvents has been investigated. The growth technique used in the study makes it possible to obtain single-crystal sheets up to 10 mm in size for 24 h. The surface morphology and structure of the crystals have been analyzed by optical microscopy and X-ray diffraction. C{sub 10}H{sub 8} and C{sub 14}H{sub 10} single crystals grow coplanarly along the (001) plane. A thermodynamic model of the flat-crystal nucleus formation at the liquid‒air interface, based on the analysis of the change in the free Gibbs energy, is considered.

  19. Crystal structure of 1-isopropyl-4,7-dimethyl-3-nitro­naphthalene (United States)

    Benharref, Ahmed; Elkarroumi, Jamal; El Ammari, Lahcen; Saadi, Mohamed; Berraho, Moha


    The title compound, C15H17NO2, was synthesized from a mixture of α-himachalene (2-methyl­ene-6,6,9-tri­methylbi­cyclo­[5.4.01,7]undec-8-ene) and β-himachalene (2,6,6,9-tetra­methylbi­cyclo­[5.4.01,7]undeca-1,8-diene), which were isolated from an oil of the Atlas cedar (Cedrus Atlantica). The naphthalene ring system makes dihedral angles of 68.6 (2) and 44.3 (2)°, respectively, with its attached isopropyl C/C/C plane and the nitro group. In the crystal, mol­ecules held together by a C—H⋯O inter­action, forming a chain along [-101]. PMID:26396890

  20. Crystal structure of 1-isopropyl-4,7-dimethyl-3-nitro-naphthalene. (United States)

    Benharref, Ahmed; Elkarroumi, Jamal; El Ammari, Lahcen; Saadi, Mohamed; Berraho, Moha


    The title compound, C15H17NO2, was synthesized from a mixture of α-himachalene (2-methyl-ene-6,6,9-tri-methylbi-cyclo-[5.4.0(1,7)]undec-8-ene) and β-himachalene (2,6,6,9-tetra-methylbi-cyclo-[5.4.0(1,7)]undeca-1,8-diene), which were isolated from an oil of the Atlas cedar (Cedrus Atlantica). The naphthalene ring system makes dihedral angles of 68.6 (2) and 44.3 (2)°, respectively, with its attached isopropyl C/C/C plane and the nitro group. In the crystal, mol-ecules held together by a C-H⋯O inter-action, forming a chain along [-101].

  1. Crystal structure of N,N′-bis[(pyridin-4-ylmethyl]naphthalene diimide

    Directory of Open Access Journals (Sweden)

    Mariana Nicolas-Gomez


    Full Text Available In the centrosymmetric title compound, C26H16N4O4 {systematic name: 6,13-bis[(pyridin-4-ylmethyl]-6,13-diazatetracyclo[,16011,15]hexadeca-1,3,8,10,15-pantaene-5,7,12,14-tetrone}, the central ring system is essentially planar [maximum deviation = 0.0234 (8 Å] and approximately perpendicular to the terminal pyridine ring [dihedral angle = 84.38 (3°]. The molecules displays a trans conformation with the (pyridin-4-ylmethyl groups on both sides of the central naphthalene diimide plane. In the crystal, molecules are linked by π–π stacking between parallel pyridine rings [centroid–centroid distances = 3.7014 (8 and 3.8553 (8 Å] and weak C—H...O hydrogen bonds, forming a three-dimensional supramolecular architecture.

  2. 1-[(4-Bromophenyl(morpholin-4-ylmethyl]naphthalen-2-ol

    Directory of Open Access Journals (Sweden)

    Qun Zhao


    Full Text Available The title compound, C21H20BrNO2, was obtained via a one-pot synthesis from the reaction of 4-bromobenzaldehyde, 2-naphthol and morpholine. In the asymmetric unit, there are four molecules with similar structures. The morpholine ring adopts a chair conformation, and the hydroxy group links with the morpholine via an intramolecular O—H...N hydrogen bond. The bromophenyl ring is approximately perpendicular to the mean pane of the naphthalene system at dihedral angles of 76.7 (3, 81.4 (3, 79.7 (3 and 84.5 (3° in the four independent molecules. Weak C—H...O hydrogen bonds are observed in the crystal.

  3. 1-Benzyl-3-[3-(naphthalen-2-yloxypropyl]imidazolium hexafluorophosphate

    Directory of Open Access Journals (Sweden)

    Kun Huang


    Full Text Available In the title salt, C23H23N2O+·PF6−, the PF6− anion is highly disordered (occupancy ratios of 0.35:0.35:0.3, 0.7:0.15:0.15, 0.7:0.3 and 0.35:0.35:0.15:0.15 with the four F atoms in the equatorial plane rotating about the axial F—P—F bond. The mean plane of the imidazole ring makes dihedral angles of 82.44 (17 and 14.39 (16°, respectively, with the mean planes of the benzene ring and the naphthalene ring system. The crystal structure is stabilized by C—H...F hydrogen bonds. In addition, π–π [centroid–centroid distances = 3.7271 (19–3.8895 (17 Å] and C—H...π interactions are observed.

  4. Growth and characterization of organic nonlinear optical single crystal 2,7-dihydroxy naphthalene (United States)

    Sadhasivam, S.; Rajesh, N. P.


    The organic nonlinear optical crystals of 2,7-dihydroxy naphthalene (2,7-DN) were grown by slow evaporation method using acetone as a solvent. Optically transparent single crystal with sizes up to 15 × 7 × 4 mm3 were grown. Non-centrosymmetry has been studied using X-ray diffraction (XRD) and functional group of 2,7-DN were studied by Raman scattering and FTIR spectral analysis. The optical transmittance was characterized and to be 28%. The melting point of 2,7-DN is 465 K. 2,7-DN found exhibit low dielectric constant of 20-22 in the frequency range of 10 Hz-10 MHz at room temperature. The nonlinear optical and phase matching properties were characterized by Kurtz powder second harmonic generation (SHG) efficiency test.

  5. G-quadruplex fluorescence sensing by core-extended naphthalene diimides. (United States)

    Zuffo, Michela; Doria, Filippo; Botti, Silvia; Bergamaschi, Greta; Freccero, Mauro


    Fluorescent sensing of G-quadruplex nucleic acids (G4s) is an effective strategy to elucidate their role in vitro and in vivo. Small molecule ligands have often been exploited, producing an emission light up upon binding. Naphthalene diimides (NDIs), although potent G4 binders exhibiting red-NIR fluorophores, have only been marginally exploited, as they are usually quenched upon binding. Contrary, aggregating core-extended naphthalene diimides (cex-NDIs) proved to be effective probes. We prepared a library of eighteen cex-NDIs by organic synthesis, characterising their aggregation-dependent absorption and emission properties. Absorption and emission titrations, fluorescent intercalator displacement assay (FID) and circular dichroism (CD) analysis were performed to elucidate their behavior as G4 fluorescent sensors, selectivity and binding mode. cex-NDIs aggregate under aqueous solvents and as a result, their fluorescence is mostly quenched under physiological conditions. Upon G4 binding, they disaggregate into binding monomers, producing a fluorescent light-up with anti-parallel and hybrid G4s. Contrary, with parallel G4s a light-off was recorded. For the formers a groove-like interaction was inferred by ICD signals, while for the latter an end-stacking interaction mode was hypothesized by G4-FID data. cex-NDIs G4 sensing mechanism works via a induced disaggregation. The emission response depends on the G4 topology, which dictates the prevailing -groove or end-stacking- binding mode. This study highlights the potential of cex-NDIs as G4 fluorescent probes. Besides being readily synthesized and conveniently emitting above 600nm, they light-up upon binding to anti-parallel and hybrid G4, complementing a number of other probes' selectivity for the parallel topology. This article is part of a Special Issue entitled "G-quadruplex" Guest Editor: Dr. Concetta Giancola and Dr. Daniela Montesarchio. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Assessment of the impact of naphthalene contamination on mangrove fauna using behavioral bioassays. (United States)

    Mackey, A P; Hodgkinson, M


    Pollution of the marine and estuarine environments by petroleum hydrocarbons is a world wide phenomenon (Connell and Miller 1980) and whilst large scale crude oil spills are the most obvious source of pollution, since the 1970's the impact of chronic, low level hydrocarbon input from sources such as oil refineries has been recognised as having long term ecological consequences, even when there may be no visible evidence of acute effects (Connell and Miller 1980). Mangroves are perhaps the dominant and most important intertidal habitat along subtropical and tropical coastlines and estuaries and as such are located in areas of high risk of acute or chronic petroleum hydrocarbon pollution. Further, once contamination occurs, high levels of hydrocarbons may be expected to remain in mangrove sediments as conditions are not favorable for hydrocarbon depletion by sediment transport or degradation by aerobic bacteria. Much research has focused on determining the acute toxicity of the water soluble fraction of crude or fuel oil to aquatic fauna but relatively little attention has been given to individual hydrocarbons. The medium to low boiling point aromatics such as naphthalene and its alkyl derivatives are the most toxic petroleum fraction to marine organisms (Anderson et al. 1974; Moore and Dwyer 1974) and they are known to provoke behavioral responses in marine animals at sublethal concentrations (Hargrave and Newcomb 1973; Linden 1977; Nagarajah et al. 1985). The goal of this investigation was to investigate the effects of a single aromatic petroleum hydrocarbon, naphthalene, in a subtropical mangrove environment, through the use of behavioral bioassays. The test organism chosen was the intertidal gastropod Ophicardelus quoyi, which is abundant in mangroves throughout eastern Australia.

  7. Self-amplifying mRNA vaccines. (United States)

    Brito, Luis A; Kommareddy, Sushma; Maione, Domenico; Uematsu, Yasushi; Giovani, Cinzia; Berlanda Scorza, Francesco; Otten, Gillis R; Yu, Dong; Mandl, Christian W; Mason, Peter W; Dormitzer, Philip R; Ulmer, Jeffrey B; Geall, Andrew J


    This chapter provides a brief introduction to nucleic acid-based vaccines and recent research in developing self-amplifying mRNA vaccines. These vaccines promise the flexibility of plasmid DNA vaccines with enhanced immunogenicity and safety. The key to realizing the full potential of these vaccines is efficient delivery of nucleic acid to the cytoplasm of a cell, where it can amplify and express the encoded antigenic protein. The hydrophilicity and strong net negative charge of RNA impedes cellular uptake. To overcome this limitation, electrostatic complexation with cationic lipids or polymers and physical delivery using electroporation or ballistic particles to improve cellular uptake has been evaluated. This chapter highlights the rapid progress made in using nonviral delivery systems for RNA-based vaccines. Initial preclinical testing of self-amplifying mRNA vaccines has shown nonviral delivery to be capable of producing potent and robust innate and adaptive immune responses in small animals and nonhuman primates. Historically, the prospect of developing mRNA vaccines was uncertain due to concerns of mRNA instability and the feasibility of large-scale manufacturing. Today, these issues are no longer perceived as barriers in the widespread implementation of the technology. Currently, nonamplifying mRNA vaccines are under investigation in human clinical trials and can be produced at a sufficient quantity and quality to meet regulatory requirements. If the encouraging preclinical data with self-amplifying mRNA vaccines are matched by equivalently positive immunogenicity, potency, and tolerability in human trials, this platform could establish nucleic acid vaccines as a versatile new tool for human immunization. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Ascorbate as a co-factor for fe- and 2-oxoglutarate dependent dioxygenases: physiological activity in tumor growth and progression. (United States)

    Kuiper, Caroline; Vissers, Margreet C M


    Ascorbate is a specific co-factor for a large family of enzymes known as the Fe- and 2-oxoglutarate-dependent dioxygenases. These enzymes are found throughout biology and catalyze the addition of a hydroxyl group to various substrates. The proline hydroxylase that is involved in collagen maturation is well known, but in recent times many new enzymes and functions have been uncovered, including those involved in epigenetic control and hypoxia-inducible factor (HIF) regulation. These discoveries have provided crucial mechanistic insights into how ascorbate may affect tumor biology. In particular, there is growing evidence that HIF-1-dependent tumor progression may be inhibited by increasing tumor ascorbate levels. However, rigorous clinical intervention studies are lacking. This review will explore the physiological role of ascorbate as an enzyme co-factor and how this mechanism relates to cancer biology and treatment. The use of ascorbate in cancer should be informed by clinical studies based on such mechanistic hypotheses.

  9. Inflammation-induced activation of the indoleamine 2,3-dioxygenase pathway: Relevance to cancer-related fatigue. (United States)

    Kim, Sangmi; Miller, Brian J; Stefanek, Michael E; Miller, Andrew H


    Cancer-related fatigue (CRF) is a common complication of cancer and its treatment that can significantly impair quality of life. Although the specific mechanisms remain poorly understood, inflammation is now considered to be a distinct component of CRF in addition to effects of depression, anxiety, insomnia, and other factors. One key biological pathway that may link inflammation and CRF is indoleamine 2,3-dioxygenase (IDO). Induced by inflammatory stimuli, IDO catabolizes tryptophan to kynurenine (KYN), which is subsequently converted into neuroactive metabolites. Here we summarize current knowledge concerning the relevance of the IDO pathway to CRF, including activation of the IDO pathway in cancer patients and, as a consequence, accumulation of neurotoxic KYN metabolites and depletion of serotonin in the brain. Because IDO inhibitors are already being evaluated as therapeutic agents in cancer, the elucidation of the relationship between IDO activation and CRF in cancer patients may lead to novel diagnostic and clinical approaches to managing CRF and its debilitating consequences.

  10. Characteristics and biotechnology applications of aliphatic amino acid hydroxylases belonging to the Fe(II)/α-ketoglutarate-dependent dioxygenase superfamily. (United States)

    Hibi, Makoto; Ogawa, Jun


    The asymmetric hydroxylation of inactive carbon atoms is still an important reaction in the industrial synthesis of valuable chiral compounds such as pharmaceuticals and fine chemicals. Applications of monooxygenation enzymes, like cytochrome P450 monooxygenases, flavin-containing monooxygenases, and Fe(II)/α-ketoglutarate-dependent dioxygenases (Fe/αKG-DOs), are strongly desired as hydroxylation biocatalysts because they have great advantages in regio- and stereoselectivity of the reactions. Recently, several novel Fe/αKG-DOs have been found to catalyze the asymmetric hydroxylation of aliphatic amino acids. Depending on their amino acid sequences, these Fe/αKG-DOs catalyze different types of regioselective hydroxylations, or C3-, C4-, and C5-hydroxylation. Additionally, most also have stereoselective sulfoxidation activities. Here, we have reviewed the characterization and process development of this novel functioning group of Fe/αKG-DOs.

  11. Properties of catechol 1,2-dioxygenase in the cell free extract and immobilized extract of Mycobacterium fortuitum

    Directory of Open Access Journals (Sweden)

    A.S. Silva


    Full Text Available Polycyclic aromatic hydrocarbons (PAH are carcinogenic compounds which contaminate water and soil, and the enzymes can be used for bioremediation of these environments. This study aimed to evaluate some environmental conditions that affect the production and activity of the catechol 1,2-dioxygenase (C12O by Mycobacterium fortuitum in the cell free and immobilized extract in sodium alginate. The bacterium was grown in mineral medium and LB broth containing 250 mg L-1 of anthracene (PAH. The optimum conditions of pH (4.0-9.0, temperature (5-70 ºC, reaction time (10-90 min and the effect of ions in the enzyme activity were determined. The Mycobacterium cultivated in LB shown higher growth and the C12O activity was two-fold higher to that in the mineral medium. To both extracts the highest enzyme activity was at pH 8.0, however, the immobilized extract promoted the increase in the C12O activity in a pH range between 4.0 and 8.5. The immobilized extract increased the enzymatic activity time and showed the highest C12O activity at 45 ºC, 20 ºC higher than the greatest temperature in the cell free extract. The enzyme activity in both extracts was stimulated by Fe3+, Hg2+ and Mn2+ and inhibited by NH4+ and Cu2+, but the immobilization protected the enzyme against the deleterious effects of K+ and Mg2+ in tested concentrations. The catechol 1,2-dioxygenase of Mycobacterium fortuitum in the immobilized extract has greater stability to the variations of pH, temperature and reaction time, and show higher activity in presence of ions, comparing to the cell free extract.

  12. Characterization of the fungal gibberellin desaturase as a 2-oxoglutarate-dependent dioxygenase and its utilization for enhancing plant growth. (United States)

    Bhattacharya, Anjanabha; Kourmpetli, Sofia; Ward, Dennis A; Thomas, Stephen G; Gong, Fan; Powers, Stephen J; Carrera, Esther; Taylor, Benjamin; de Caceres Gonzalez, Francisco Nuñez; Tudzynski, Bettina; Phillips, Andrew L; Davey, Michael R; Hedden, Peter


    The biosynthesis of gibberellic acid (GA(3)) by the fungus Fusarium fujikuroi is catalyzed by seven enzymes encoded in a gene cluster. While four of these enzymes are characterized as cytochrome P450 monooxygenases, the nature of a fifth oxidase, GA(4) desaturase (DES), is unknown. DES converts GA(4) to GA(7) by the formation of a carbon-1,2 double bond in the penultimate step of the pathway. Here, we show by expression of the des complementary DNA in Escherichia coli that DES has the characteristics of a 2-oxoglutarate-dependent dioxygenase. Although it has low amino acid sequence homology with known 2-oxoglutarate-dependent dioxygenases, putative iron- and 2-oxoglutarate-binding residues, typical of such enzymes, are apparent in its primary sequence. A survey of sequence databases revealed that homologs of DES are widespread in the ascomycetes, although in most cases the homologs must participate in non-gibberellin (GA) pathways. Expression of des from the cauliflower mosaic virus 35S promoter in the plant species Solanum nigrum, Solanum dulcamara, and Nicotiana sylvestris resulted in substantial growth stimulation, with a 3-fold increase in height in S. dulcamara compared with controls. In S. nigrum, the height increase was accompanied by a 20-fold higher concentration of GA(3) in the growing shoots than in controls, although GA(1) content was reduced. Expression of des was also shown to partially restore growth in plants dwarfed by ectopic expression of a GA 2-oxidase (GA-deactivating) gene, consistent with GA(3) being protected from 2-oxidation. Thus, des has the potential to enable substantial growth increases, with practical implications, for example, in biomass production.

  13. Cytosolic and plastoglobule-targeted carotenoid dioxygenases from Crocus sativus are both involved in beta-ionone release. (United States)

    Rubio, Angela; Rambla, José Luís; Santaella, Marcella; Gómez, M Dolores; Orzaez, Diego; Granell, Antonio; Gómez-Gómez, Lourdes


    Saffron, the processed stigma of Crocus sativus, is characterized by the presence of several apocarotenoids that contribute to the color, flavor, and aroma of the spice. However, little is known about the synthesis of aroma compounds during the development of the C. sativus stigma. The developing stigma is nearly odorless, but before and at anthesis, the aromatic compound beta-ionone becomes the principal norisoprenoid volatile in the stigma. In this study, four carotenoid cleavage dioxygenase (CCD) genes, CsCCD1a, CsCCD1b, CsCCD4a, and CsCCD4b, were isolated from C. sativus. Expression analysis showed that CsCCD1a was constitutively expressed, CsCCD1b was unique to the stigma tissue, but only CsCCD4a and -b had expression patterns consistent with the highest levels of beta-carotene and emission of beta-ionone derived during the stigma development. The CsCCD4 enzymes were localized in plastids and more specifically were present in the plastoglobules. The enzymatic activities of CsCCD1a, CsCCD1b, and CsCCD4 enzymes were determined by Escherichia coli expression, and subsequent analysis of the volatile products was generated by GC/MS. The four CCDs fell in two phylogenetically divergent dioxygenase classes, but all could cleave beta-carotene at the 9,10(9',10') positions to yield beta-ionone. The data obtained suggest that all four C. sativus CCD enzymes may contribute in different ways to the production of beta-ionone. In addition, the location and precise timing of beta-ionone synthesis, together with its known activity as a fragrance and insect attractant, suggest that this volatile may have a role in Crocus pollination.

  14. Localization of the human indoleamine 2,3-dioxygenase (IDO) gene to the pericentromeric region of human chromosome 8

    Energy Technology Data Exchange (ETDEWEB)

    Burkin, D.J.; Jones, C. (Eleanor Roosevelt Institute for Cancer Research, Denver, CO (United States)); Kimbro, K.S.; Taylor, M.W. (Indiana Univ., Bloomington, IN (United States)); Barr, B.L.; Gupta, S.L. (Hipple Cancer Research Center, Dayton, OH (United States))


    Indoleamine 2,3-dioxygenase (IDO) is the first enzyme in the catabolic pathway for tryptophan. This extrahepatic enzyme differs from the hepatic enzyme, tryptophan 2,3-dioxygenase (TDO), in molecular as well as enzymatic characteristics, although both enzymes catalyze the same reaction: cleavage of tryptophan into N-formylkynurenine. The induction of IDO by IFN-[gamma] plays a role in the antigrowth effect of IFN-[gamma] in cell cultures and in the inhibition of intracellular pathogens, e.g., Toxoplasma gondii and Chlamydia psittaci. Tryptophan is also the precursor for the synthesis of serotonin, and reduced levels of tryptophan and serotonin found in AIDS patients have been correlated with the presence of IFN-[gamma] and consequent elevation of IDO activity. The IDO enzyme has been purified and characterized, and its cDNA and genomic DNA clones have been isolated and analyzed. DNA from hybrid cells containing fragments of human chromosome 8 was used to determine the regional localization of the IDO gene on chromosome 8. The hybrids R30-5B and R30-2A contain 8p11 [yields] qter and 8q13 [yields] qter, respectively. Hybrid 229-3A contains the 8pter [yields] q11. The hybrid R30-2A was negative for the IDO gene, whereas R30-5B and 229-3A were positive as analyzed by PCR and verified by Southern blotting. Only the region close to the centromere is shared by R30-5B and 229-3A hybrids. The results indicate that the IDO gene is located on chromosome 8p11 [yields] q11.

  15. Redox proteins of hydroxylating bacterial dioxygenases establish a regulatory cascade that prevents gratuitous induction of tetralin biodegradation genes (United States)

    Ledesma-García, Laura; Sánchez-Azqueta, Ana; Medina, Milagros; Reyes-Ramírez, Francisca; Santero, Eduardo


    Bacterial dioxygenase systems are multicomponent enzymes that catalyze the initial degradation of many environmentally hazardous compounds. In Sphingopyxis granuli strain TFA tetralin dioxygenase hydroxylates tetralin, an organic contaminant. It consists of a ferredoxin reductase (ThnA4), a ferredoxin (ThnA3) and a oxygenase (ThnA1/ThnA2), forming a NAD(P)H–ThnA4–ThnA3–ThnA1/ThnA2 electron transport chain. ThnA3 has also a regulatory function since it prevents expression of tetralin degradation genes (thn) in the presence of non-metabolizable substrates of the catabolic pathway. This role is of physiological relevance since avoids gratuitous and wasteful production of catabolic enzymes. Our hypothesis for thn regulation implies that ThnA3 exerts its action by diverting electrons towards the regulator ThnY, an iron-sulfur flavoprotein that together with the transcriptional activator ThnR is necessary for thn gene expression. Here we analyze electron transfer among ThnA4, ThnA3 and ThnY by using stopped-flow spectrophotometry and determination of midpoint reduction potentials. Our results indicate that when accumulated in its reduced form ThnA3 is able to fully reduce ThnY. In addition, we have reproduced in vitro the regulatory circuit in the proposed physiological direction, NAD(P)H–ThnA4–ThnA3–ThnY. ThnA3 represents an unprecedented way of communication between a catabolic pathway and its regulatory system to prevent gratuitous induction. PMID:27030382

  16. (18-Crown-6potassium [(1,2,5,6-η-cycloocta-1,5-diene][(1,2,3,4-η-naphthalene]ferrate(−I

    Directory of Open Access Journals (Sweden)

    William W. Brennessel


    Full Text Available The title salt, [K(C12H24O6][Fe(C8H12(C10H8], is the only known naphthalene complex containing iron in a formally negative oxidation state. Each (naphthalene(1,5-codferrate(−I anion is in contact with one (18-crown-6potassium cation via K...C contacts to the outer four carbon atoms of the naphthalene ligand (cod = 1,5-cyclooctadiene, 18-crown-6 = 1,4,7,10,13,16-hexaoxacyclooctadecane. When using the midpoints of the coordinating olefin bonds, the overall geometry of the coordination sphere around iron can be best described as distorted tetrahedral. The naphthalene fold angle between the plane of the iron-coordinating butadiene unit and the plane containing the exo-benzene moiety is 19.2 (1°.

  17. Feasibility study of naphthalene removal: Naphthalene solubilization in aqueous solutions of a triblock copolymer of ethylene oxide and 1,2-butylene oxide, E64B20E64

    Directory of Open Access Journals (Sweden)

    Colin Booth


    Full Text Available Block copolymer E64B20E64, where E denotes oxyethylene, OCH2CH2, B denotes oxybutylene, OCH2CH (C2H5, and the subscripts denote number-average block lengths in repeat units, was synthesized by sequential anionic polymerization. Characterization was by gel permeation chromatography (for molar mass distribution and 13C-NMR spectroscopy (for absolute molar mass and conformation of block architecture. Dynamic and static light scattering were used to study micellization and micelle properties of this copolymer in dilute aqueous solution and in the presence of naphthalene. Dynamic light scattering was used to analyze hydrodynamic radius, rh and hydrodynamic expansion factor, δh. Static light scattering was used to study micelle association number, Nw, thermodynamic expansion factor, δt, and thermodynamic radius, rt. The presence of naphthalene in micellar core increased Nw by 50% and increased micellar size.

  18. Expression and role of indoleamine-2 , 3-dioxygenase and Treg cells in breast cancer%乳腺癌中吲哚胺2,3-双加氧酶和调节性T细胞的表达

    Institute of Scientific and Technical Information of China (English)



    [Objective] To study the expression of indoleamine-2, 3-dioxygenase (IDO) and Treg cells in breast cancer and tumor draining lymph nodes(TDLNs), then to seek the relationship between them. [Methods] RT-PCR and immunohistochemistry was used to detect the mRNA of IDO and the expression of IDO and Foxp3 proteins in breast cancer, TDLNs and benign diseases. [ Results] The mRNA of IDO in TDLNs was higher than breast cancer (P < 0.05) and breast cancer was higher than benign diseases (P < 0.05). Immunohistochemistry results showed that the expression level of IDO in TDLNs was higher than breast cancer (P < 0.05), the breast cancer was higher than benign diseases (P < 0.05). The expression level of IDO protein in breast cancer was associated with clinical stage and pathological type. The positive ratio of Foxp3* Treg cells in breast cancer was higher than the benign diseases( P < 0.05) and the TDLNs was higher than breast cancer (P < 0.05). The expression of IDO in breast cancer was positive correlation with the distribution of Treg cells in breast primary cancer (r2=0.413, P< 0.05 )and in TDLNs (r2=0.528, P < 0.05). [Conclusion] IDO and Treg cells may participate the immune tolerance in breast cancer.%[目的]通过研究在乳腺癌和引流淋巴结中吲哚胺2,3-双加氧酶(indoleamine-2,3-dioxygenase,IDO)和调节性T细胞(Treg cells)的表达,探讨两者之间的关系.[方法]采用半定量RT-PCR法和免疫组织化学检测IDO mRNA和蛋白及Foxp3蛋白在乳腺癌、淋巴结和乳腺良性病变中表达情况.[结果]乳腺癌引流淋巴结中IDO的mRNA水平高于乳腺癌组织(P<0.05),乳腺癌组织中IDO的mRNA水平高于乳腺良性病变组织(P<0.05).免疫组化结果显示示乳腺癌引流淋巴结内IDO表达水平高于原发癌(P<0.05),乳腺癌组织中IDO表达水平高于乳腺良性病变组织(P<0.05).乳腺癌中IDO的表达与病理类型和临床分期相关(P<0.05).乳腺癌中Treg细胞Foxp3+比例高于乳腺良性

  19. Kinetics of naphthalene metabolism in target and non-target tissues of rodents and in nasal and airway microsomes from the Rhesus monkey

    Energy Technology Data Exchange (ETDEWEB)

    Buckpitt, Alan, E-mail: [Department of Molecular Biosciences, School of Veterinary Medicine, UC Davis, Davis, CA 95616 (United States); Morin, Dexter [Department of Molecular Biosciences, School of Veterinary Medicine, UC Davis, Davis, CA 95616 (United States); Murphy, Shannon; Edwards, Patricia; Van Winkle, Laura [Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, UC Davis, Davis, CA 95616 (United States); Center for Health and the Environment, UC Davis, Davis, CA 95616 United States (United States)


    Naphthalene produces species and cell selective injury to respiratory tract epithelial cells of rodents. In these studies we determined the apparent K{sub m}, V{sub max}, and catalytic efficiency (V{sub max}/K{sub m}) for naphthalene metabolism in microsomal preparations from subcompartments of the respiratory tract of rodents and non-human primates. In tissues with high substrate turnover, major metabolites were derived directly from naphthalene oxide with smaller amounts from conjugates of diol epoxide, diepoxide, and 1,2- and 1,4-naphthoquinones. In some tissues, different enzymes with dissimilar K{sub m} and V{sub max} appeared to metabolize naphthalene. The rank order of V{sub max} (rat olfactory epithelium > mouse olfactory epithelium > murine airways ≫ rat airways) correlated well with tissue susceptibility to naphthalene. The V{sub max} in monkey alveolar subcompartment was 2% that in rat nasal olfactory epithelium. Rates of metabolism in nasal compartments of the monkey were low. The catalytic efficiencies of microsomes from known susceptible tissues/subcompartments are 10 and 250 fold higher than in rat airway and monkey alveolar subcompartments, respectively. Although the strong correlations between catalytic efficiencies and tissue susceptibility suggest that non-human primate tissues are unlikely to generate metabolites at a rate sufficient to produce cellular injury, other studies showing high levels of formation of protein adducts support the need for additional studies. - Highlights: • Naphthalene is metabolized with high catalytic efficiency in susceptible tissue. • Naphthalene is metabolized at low catalytic efficiency in non-susceptible tissue. • Respiratory tissues of the non human primate metabolize naphthalene slowly.

  20. The impact of lone pair-π interactions on photochromic properties in 1-D naphthalene diimide coordination networks. (United States)

    Liu, Jian-Jun; Guan, Ying-Fang; Chen, Yong; Lin, Mei-Jin; Huang, Chang-Cang; Dai, Wen-Xin


    Lone pair-π interaction is an important but less studied binding force. Generally, it is too weak to influence the physical properties of supramolecular systems. Herein we reported the first example exhibiting the impact of lone pair-π interactions on photochromic properties of naphthalene diimide based coordination networks. In three isostructural 1-D networks, [(DPNDI)ZnX2] (DPNDI = N,N-di(4-pyridyl)-1,4,5,8-naphthalene diimide, X = Cl for 1, X = Br for 2 and X = I for 3), they exhibit different electron-transfer photochromic behaviors due to different lone pair-π interactions between the capped halogen atoms and electron-deficient DPNDI moieties. Specifically, 1 and 2 but not 3 are photochromic, which is attributed to a stronger lone pair-π interaction in 3 than those in 1 and 2. This study anticipates breaking a new path for designing novel photochromic materials through such unnoticeable supramolecular interactions.

  1. Poly[bis(N,N-dimethylformamide-κO(μ4-naphthalene-1,5-disulfonatomagnesium(II

    Directory of Open Access Journals (Sweden)

    Lauren A. Borkowski


    Full Text Available The structure of the title compound, [Mg(C10H6O6S2(C3H7NO2]n, consists of MgO6 octahedra (overline{1} symmetry connected to naphthalene-1,5-disulfonate ligands (overline{1} symmetry in the equatoral plane, forming a two-dimensional network propagating parallel to (010. The coordination sphere of the Mg atom is completed by the O atoms of two N,N-dimethylformamide (DMF molecules in the axial positions. The title compound represents the first time the naphthalene-1,5-disulfonate anion is bound directly to a Mg2+ atom. Disorder over two positions was found in the DMF molecule in a 0.518 (8:0.482 (8 ratio.

  2. Poly[bis(N,N-dimethylformamide-[kappa]O)([mu]4-naphthalene-1,5-disulfonato)magnesium(II)

    Energy Technology Data Exchange (ETDEWEB)

    Borkowski, Lauren A.; Banerjee, Debasis; Parise, John B. (SBU)


    The structure of the title compound, [Mg(C{sub 10}H{sub 6}O{sub 6}S{sub 2})(C{sub 3}H{sub 7}NO){sub 2}]{sub n}, consists of MgO{sub 6} octahedra ({bar 1} symmetry) connected to naphthalene-1,5-disulfonate ligands ({bar 1} symmetry) in the equatoral plane, forming a two-dimensional network propagating parallel to (010). The coordination sphere of the Mg atom is completed by the O atoms of two N,N-dimethylformamide (DMF) molecules in the axial positions. The title compound represents the first time the naphthalene-1,5-disulfonate anion is bound directly to a Mg{sup 2+} atom. Disorder over two positions was found in the DMF molecule in a 0.518 (8):0.482 (8) ratio.

  3. Conformational isomerization of N-(naphthalen-1-yl)-N-(phenyl(quinolin-3-yl)methyl)amide derivatives

    Institute of Scientific and Technical Information of China (English)


    A series of N-(naphthalen-1-yl)-N-(phenyl(quinolin-3-yl)methyl)amide derivatives were designed and synthesized as anti-Mycobacterium tuberculosis drugs. NMR spectra showed that two conformational isomers of these compounds exist in solution,which is not due to cis-trans isomerization of amide bond. We proposed that the spatial interactions between three large aromatic groups caused the conformational isomerization,which was supported by molecular modeling and X-ray diffraction.

  4. The Application of Suzuki Coupling Reaction on the Preparation of Carbosilane Dendrimers with 4-(Naphthalen-1-yl)phenyl Core

    Institute of Scientific and Technical Information of China (English)


    Carbosilane dendrimers with p-bromophenyl core were synthesized by alternating Grignard and hydrosilylation reaction. And the α-naphthalenyl was connected to the core by the Suzuki coupling reaction. A new carbosilane dendrimer with big π-conjugated structure[4-(naphthalen-1-yl)phenyl core] was given. It shows Suzuki coupling reaction is an effective and powerful core-functionalization method and the satisfactory result can be obtained through prolonging the reaction time with the increase of the generation of dendrimer.

  5. Modified naphthalene diimide as a suitable tetraplex DNA ligand: application to cancer diagnosis and anti-cancer drug (United States)

    Takenaka, Shigeori


    It is known that naphthalene diimide carrying two substituents binds to DNA duplex with threading intercalation. Naphthalene diimide carrying ferrocene moieties, ferrocenylnaphthalene diimide (FND), formed a stable complex with DNA duplex and an electrochemical gene detection was achieved with current signal generated from FND bound to the DNA duplex between target DNA and DNA probe immobilized electrode. FND couldn't bind to the mismatched and its surrounding region of DNA duplex and thus FND was applied to the precision detection of single nucleotide polymorphisms (SNPs) using the improved discrimination ability between fully matched and mismatched DNA hybrids and multi-electrode chip. Some of FND derivatives bound to telomere DNA tetraplex stronger than to DNA duplex and was applied to cancer diagnosis as a measure of the elongated telomere DNA with telomerase as a suitable maker of cancer. Furthermore, cyclic naphthalene diimides realized the extremely high preference for DNA tetraplex over DNA duplex. Such molecules will open an effective anti-cancer drug based on telomerase specific inhibitor.

  6. Concentrations and patterns of polychlorinated naphthalenes in surface sediment samples from Wuxi, Suzhou, and Nantong, in East China. (United States)

    Zhang, Linli; Zhang, Lifei; Dong, Liang; Huang, Yeru; Li, Xiaoxiu


    The concentrations and patterns of polychlorinated naphthalenes (PCNs) were determined in surface sediment samples from Wuxi, Suzhou, and Nantong, in the Yangtze River Delta (East China), which has become urbanized rapidly. The total PCN (tri- to octachlorinated naphthalenes) concentrations in the samples from Wuxi, Suzhou, and Nantong were 0.89-40, 2.8-4600, and 0.60-34 ng/gdry weight, respectively. Unexpectedly high PCN concentrations were found in four of the sediment samples. The PCN concentrations were much higher in the samples from the Beijing-Hangzhou Grand Canal than in the samples from the Yangtze River. The toxic equivalent (TEQ) concentrations (determined from the concentrations of the "dioxin-like" PCNs) ranged from 1.45×10(-7) to 2.16 ng TEQ/g, and the congeners CN-66/67 and CN-73 were the predominant contributors to the TEQs. Independent samples t-tests were performed, and no significant differences were found between the PCN concentrations in the samples from the metropolitan area and the development zone when the four development-zone samples that contained very high PCN concentrations were excluded. The PCN profiles were dominated by the hexa- to octachlorinated naphthalene homologs. The CN-66/67 to CN-71/72 and CN-66 to CN-67 concentration ratios were used to identify specific PCN sources. Emissions from chemical and other industrial plants were found to have strongly influenced the PCN concentrations in sediment in the study area.

  7. Effects of Naphthalene on Plasma Cortisol and Thyroid Levels in Immature and Mature Female Klunzingeri Mulet, Liza klunzingeri

    Directory of Open Access Journals (Sweden)

    Zahra Yarahmadi


    Full Text Available Background: Polycyclic aromatic hydrocarbons (PAHs such as naphthalene (NAP are organic pollutants that have spread widely in littoral marine ecosystems. We aimed to study the effect of acute and prolonged exposure to naphthalene (NAP on plasma cortisol and thyroid levels in mature and immature Liza klunzingeri mulet. Methods: In acute stress experiment, the treatment group received 2μl g-1 sunflower oil containing NAP (50 mg kg-1 intraperitoneally and the controls were injected with sunflower oil alone (2μl g-1. Blood samples were obtained from both groups after 3 h. In prolonged stress experiment, 10 μl g-1 of coconut oil containing NAP (50mg kg-1 was implanted and blood samples were obtained 72 h after injection. Results: Both the acute and prolonged exposure induced significant increase in cortisol and a significant decrease (P<0.05 in thyroid hormone T4 levels. Thyroid T3 hormone levels only decreased significantly (P<0.05 after prolonged exposure. Acute exposure resulted in significant decrease (P<0.05 in T3/T4 ratio only in immature fish. On the other hand, prolonged stress increased T3/T4 ratio in immature fish. Conclusion: Changes in the plasma levels of these hormones indicate low physiological capacity and survival potential of fish in waters polluted with naphthalene.

  8. Near-edge X-ray absorption fine-structure spectroscopy of naphthalene diimide-thiophene co-polymers

    Energy Technology Data Exchange (ETDEWEB)

    Gann, Eliot; McNeill, Christopher R., E-mail: [Department of Materials Engineering, Monash University, Wellington Road, Clayton, Victoria 3800 (Australia); Szumilo, Monika; Sirringhaus, Henning [Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Sommer, Michael [Institute of Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Str. 31, 79104 Freiburg (Germany); Maniam, Subashani; Langford, Steven J. [School of Chemistry, Monash University, Wellington Road, Clayton, Victoria 3800 (Australia); Thomsen, Lars [Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria 3168 (Australia)


    Near-edge X-ray absorption fine-structure (NEXAFS) spectroscopy is an important tool for probing the structure of conjugated polymer films used in organic electronic devices. High-performance conjugated polymers are often donor-acceptor co-polymers which feature a repeat unit with multiple functional groups. To facilitate better application of NEXAFS spectroscopy to the study of such materials, improved understanding of the observed NEXAFS spectral features is required. In order to examine how the NEXAFS spectrum of a donor-acceptor co-polymer relates to the properties of the sub-units, a series of naphthalene diimide-thiophene-based co-polymers have been studied where the nature and length of the donor co-monomer has been systematically varied. The spectra of these materials are compared with that of a thiophene homopolymer and naphthalene diimide monomer enabling peak assignment and the influence of inter-unit electronic coupling to be assessed. We find that while it is possible to attribute peaks within the π* manifold as arising primarily due to the naphthalene diimide or thiophene sub-units, very similar dichroism of these peaks is observed indicating that it may not be possible to separately probe the molecular orientation of the separate sub-units with carbon K-edge NEXAFS spectroscopy.

  9. Crystal Structure and Mechanism of Tryptophan 2,3-Dioxygenase, a Heme Enzyme Involved in Tryptophan Catabolism and in Quinolinate Biosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Zhang,Y.; Kang, S.; Mukherjee, T.; Bale, S.; Crane, B.; Begley, T.; Ealick, S.


    The structure of tryptophan 2,3-dioxygenase (TDO) from Ralstonia metallidurans was determined at 2.4 {angstrom}. TDO catalyzes the irreversible oxidation of L-tryptophan to N-formyl kynurenine, which is the initial step in tryptophan catabolism. TDO is a heme-containing enzyme and is highly specific for its substrate L-tryptophan. The structure is a tetramer with a heme cofactor bound at each active site. The monomeric fold, as well as the heme binding site, is similar to that of the large domain of indoleamine 2,3-dioxygenase, an enzyme that catalyzes the same reaction except with a broader substrate tolerance. Modeling of the putative (S)-tryptophan hydroperoxide intermediate into the active site, as well as substrate analogue and mutagenesis studies, are consistent with a Criegee mechanism for the reaction.

  10. FtmOx1, a non-heme Fe(II) and alpha-ketoglutarate-dependent dioxygenase, catalyses the endoperoxide formation of verruculogen in Aspergillus fumigatus. (United States)

    Steffan, Nicola; Grundmann, Alexander; Afiyatullov, Shamil; Ruan, Hanli; Li, Shu-Ming


    Verruculogen is a tremorgenic mycotoxin and contains an endoperoxide bond. In this study, we describe the cloning, overexpression and purification of a non-heme Fe(ii) and alpha-ketoglutarate-dependent dioxygenase FtmOx1 from Aspergillus fumigatus, which catalyses the conversion of fumitremorgin B to verruculogen by inserting an endoperoxide bond between two prenyl moieties. Incubation with (18)O(2)-enriched atmosphere demonstrated that both oxygen atoms of the endoperoxide bond are derived from one molecule of O(2). FtmOx1 is the first endoperoxide-forming non-heme Fe(ii) and alpha-ketoglutarate-dependent dioxygenase reported so far. A mechanism of FtmOx1-catalysed verruculogen formation is postulated and discussed.

  11. Increased IL-10 mRNA and IL-23 mRNA expression in multiple sclerosis

    DEFF Research Database (Denmark)

    Krakauer, Martin; Sorensen, P; Khademi, M


    of the regulatory cytokine IL-10. The elevated IL-23 mRNA levels in MS patients are noteworthy in view of the newly discovered IL-23-driven Th17 T-cell subset, which is crucial in animal models of MS. Since IFN-beta therapy resulted in decreased IL-23 mRNA levels, the Th17 axis could be another target of IFN...

  12. Dual effects of indoleamine 2,3-dioxygenase inhibitors on the therapeutic effects of cyclophosphamide and cycloplatam on Ehrlich ascites tumor in mice. (United States)

    Bogdanova, L A; Morozkova, T S; Amitina, S A; Mazhukin, D G; Nikolin, V P; Popova, N A; Kaledin, V I


    Ethyl pyruvate, an inhibitor of indoleamine 2,3-dioxygenase, slightly suppressed the growth of transplantable Ehrlich tumor in mice and significantly potentiated the therapeutic effect of cyclophosphamide. Another inhibitor amidoxime produced a similar effect. However, both ethyl pyruvate and amidoxime significantly reduced the effect of cycloplatam therapy. The observed changes can be stipulated by different effects of cyclophosphamide and cycloplatam on the subpopulations of lymphoid cells taking part in the formation of antitumor immunity and resistance to tumors.

  13. Blockage of indoleamine 2,3-dioxygenase regulates Japanese encephalitis via enhancement of type I/II IFN innate and adaptive T-cell responses



    Background Japanese encephalitis (JE), a leading cause of viral encephalitis, is characterized by extensive neuroinflammation following infection with neurotropic JE virus (JEV). Indoleamine 2,3-dioxygenase (IDO) has been identified as an enzyme associated with immunoregulatory function. Although the regulatory role of IDO in viral replication has been postulated, the in vivo role of IDO activity has not been fully addressed in neurotropic virus-caused encephalitis. Methods Mice in which IDO ...

  14. Gene regulation by mRNA editing

    Energy Technology Data Exchange (ETDEWEB)

    Ashkenas, J. [Univ. of Washington, Seattle, WA (United States)


    The commonly cited figure of 10{sup 5} genes in the human genome represents a tremendous underestimate of our capacity to generate distinct gene products with unique functions. Our cells possess an impressive collection of tools for altering the products of a single gene to create a variety of proteins. The different gene products may have related but distinct functions, allowing cells of different types or at different developmental stages to fine-tune their patterns of gene expression. These tools may act in the cytoplasm, as when proteins undergo post-translational modifications, or in the nucleus, in the processing of pre-mRNA. Two forms of intranuclear fine-tuning are well established and widely studied: alternative splicing of pre-mRNAs and alternative polyadenylation site selection. In recent years it has become clear that cells possess yet another tool to create RNA sequence diversity, mRNA editing. The term {open_quotes}editing{close_quotes} is applied to posttranscriptional modifications of a purine or pyrimidine, which alter an mRNA sequence as it is read, for example, by ribosomes. Covalent changes to the structure of nucleotide bases are well known to occur on tRNA and rRNA molecules, but such changes in mRNA sequence are novel in that they have the capacity to change specific protein sequences. 43 refs., 1 fig.

  15. Intermolecular electron transfer from naphthalene derivatives in the higher triplet excited states. (United States)

    Sakamoto, Masanori; Cai, Xichen; Hara, Michihiro; Fujitsuka, Mamoru; Majima, Tetsuro


    Intermolecular electron transfer (ELT) from a series of naphthalene derivatives (NpD) in the higher triplet excited states (T(n)) to carbon tetrachloride (CCl(4)) in Ar-saturated acetonitrile was observed using the two-color two-laser flash photolysis method. The ELT efficiency depended on the driving force of ELT. Since the ELT from the T(n) state occurred competitively with the internal conversion (IC, T(n) --> T(1)) and the triplet energy transfer (ENT), the ELT became apparent only when sufficient free energy change of ELT was attained. On the other hand, ELT from the T(1) state was not observed, although ELT from the T(1) state with sufficiently long lifetime has a slightly exothermic driving force. The fast ELT from the T(n) state and lack of the reactivity of the T(1) state were explained well by the "sticky" dissociative electron-transfer model based on one-electron reductive attachment to CCl(4) leading to the C-Cl bond cleavage.

  16. Theoretical study of the oxidation mechanisms of naphthalene initiated by hydroxyl radicals: the H abstraction pathway. (United States)

    Shiroudi, Abolfazl; Deleuze, Michael S


    Reaction mechanisms for the initial stages of naphthalene oxidation at high temperatures (T ≥ 600 K) have been studied theoretically using density functional theory along with various exchange-correlation functionals, as well as the benchmark CBS-QB3 quantum chemical approach. These stages correspond to the removal of hydrogen atoms by hydroxyl radical and the formation thereby of 1- and 2-naphthyl radicals. Bimolecular kinetic rate constants were estimated by means of transition state theory. The excellent agreement with the available experimental kinetic rate constants demonstrates that a two-step reaction scheme prevails. Comparison with results obtained with density functional theory in conjunction with various exchange-correlation functionals also shows that DFT remains unsuited for quantitative insights into kinetic rate constants. Analysis of the computed structures, bond orders, and free energy profiles demonstrates that the reaction steps involved in the removal of hydrogen atoms by OH radicals satisfy Hammond's principle. Computations of branching ratios also show that these reactions do not exhibit a particularly pronounced site-selectivity.

  17. Quantum Chemical and Kinetic Study on Polychlorinated Naphthalene Formation from 3-Chlorophenol Precursor

    Directory of Open Access Journals (Sweden)

    Fei Xu


    Full Text Available Polychlorinated naphthalenes (PCNs are the smallest chlorinated polycyclic aromatic hydrocarbons (Cl-PAHs and are often called dioxin-like compounds. Chlorophenols (CPs are important precursors of PCN formation. In this paper, mechanistic and kinetic studies on the homogeneous gas-phase formation mechanism of PCNs from 3-CP precursor were investigated theoretically by using the density functional theory (DFT method and canonical variational transition-state theory (CVT with small curvature tunneling contribution (SCT. The reaction priority of different PCN formation pathways were disscussed. The rate constants of crucial elementary steps were deduced over a wide temperature range of 600−1200 K. The mechanisms were compared with the experimental observation and our previous works on the PCN formation from 2-CP and 4-CP. This study shows that pathways ended with Cl elimination are favored over those ended with H elimination from the 3-CP precursor. The formation potential of MCN is larger than that of DCN. The chlorine substitution pattern of monochlorophenols has a significant effect on isomer patterns and formation potential of PCN products. The results can be input into the environmental PCN controlling and prediction models as detailed parameters, which can be used to confirm the formation routes of PCNs, reduce PCN emission and establish PCN controlling strategies.

  18. Quantum Chemical and Kinetic Study on Polychlorinated Naphthalene Formation from 3-Chlorophenol Precursor. (United States)

    Xu, Fei; Shi, Xiangli; Zhang, Qingzhu


    Polychlorinated naphthalenes (PCNs) are the smallest chlorinated polycyclic aromatic hydrocarbons (Cl-PAHs) and are often called dioxin-like compounds. Chlorophenols (CPs) are important precursors of PCN formation. In this paper, mechanistic and kinetic studies on the homogeneous gas-phase formation mechanism of PCNs from 3-CP precursor were investigated theoretically by using the density functional theory (DFT) method and canonical variational transition-state theory (CVT) with small curvature tunneling contribution (SCT). The reaction priority of different PCN formation pathways were disscussed. The rate constants of crucial elementary steps were deduced over a wide temperature range of 600-1200 K. The mechanisms were compared with the experimental observation and our previous works on the PCN formation from 2-CP and 4-CP. This study shows that pathways ended with Cl elimination are favored over those ended with H elimination from the 3-CP precursor. The formation potential of MCN is larger than that of DCN. The chlorine substitution pattern of monochlorophenols has a significant effect on isomer patterns and formation potential of PCN products. The results can be input into the environmental PCN controlling and prediction models as detailed parameters, which can be used to confirm the formation routes of PCNs, reduce PCN emission and establish PCN controlling strategies.

  19. Flower-like supramolecular self-assembly of phosphonic acid appended naphthalene diimide and melamine (United States)

    Bhosale, Rajesh S.; Al Kobaisi, Mohammad; Bhosale, Sidhanath V.; Bhargava, Suresh; Bhosale, Sheshanath V.


    Diverse supramolecular assemblies ranging from nanometres to micrometers of small aromatic π-conjugated functional molecules have attracted enormous research interest in light of their applications in optoelectronics, chemosensors, nanotechnology, biotechnology and biomedicines. Here we study the mechanism of the formation of a flower-shaped supramolecular structure of phosphonic acid appended naphthalene diimide with melamine. The flower-shaped assembly formation was visualised by scanning electron microscope (SEM) and transmission electron microscopy (TEM) imaging, furthermore, XRD and DLS used to determined mode of aggregation. Characteristically, phosphonic acid-substituted at imide position of NDIs possess two important properties resulting in the formation of controlled flower-like nanostructures: (i) the aromatic core of the NDI which is designed to optimize the dispersive interactions (π-π stacking and van der Waals interactions) between the cores within a construct and (ii) phosphonic acid of NDI interact with malamine through molecular recognition i.e. strong hydrogen-bonding (H-bonding). We believe such arrangements prevent crystallization and favour the directional growth of flower-like nanostructure in 3D fashion. These works demonstrate that complex self-assembly can indeed be attained through hierarchical non-covalent interactions of two components. Furthermore, flower-like structures built from molecular recognition by these molecules indicate their potential in other fields if combined with other chemical entities.

  20. Spectrophotometric determination of molybdenum after separation by the adsorption of its trifluoroethylxanthate on naphthalene

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, M.F.; Katyal, Mohan; Puri, B.K.; Satake, Masatada


    Molybdenum reacts with potassium trifluoroethylxanthate to form a water-insoluble complex in the acid concentration range 0.1-3 M, pH 1.0-3.5. This complex is easily adsorbed on to microcrystalline naphthalene from an acetone solution and absorbs in the range 360-370 nm. Beer's law is obeyed over the concentration range 5.0-75.0 of molybdenum in 10 ml of chloroform solution. The molar absorptivity and Sandell sensitivity are 1.041 x 10/sup 4/ l mol/sup -1/ cm-/sup 11/ and 0.0092 cm/sup -2/, respectively. Ten replicate analyses of a sample solution containing 30 of molybdenum gave a mean absorbance of 0.325 with a relative standard deviation of 0.60%. The interferences of various ions were studied and conditions were developed for the determination of molybdenum in some alloy samples.

  1. Carboxymethyl-beta-cyclodextrin mitigates toxicity of cadmium, cobalt, and copper during naphthalene biodegradation. (United States)

    Hoffman, Douglas R; Anderson, Phillip P; Schubert, Carissa M; Gault, Melissa B; Blanford, William J; Sandrin, Todd R


    Hazardous waste sites are commonly contaminated with both organic and metal pollutants. Many metal pollutants have been shown to inhibit organic pollutant biodegradation. We investigated the ability of a modified, polydentate cyclodextrin (carboxymethyl-beta-cyclodextrin, CMCD) to reduce the toxicity of 33.4 microM cadmium, cobalt or copper during naphthalene degradation by a Burkholderia sp. in 120 h aerobic, batch studies. The highest investigated concentration of CMCD, 3340 microM, reduced cadmium, cobalt, and copper toxicity. With each metal, the length of the lag phase was reduced (by as much as 108 h with cobalt or copper), the cell yield was increased (by as much as a factor of 16 with cobalt), and the growth rate was increased (by as much as a factor of 31 with cobalt). The degrader was unable to use CMCD as the sole source of carbon and energy. Our data suggest that the ability of CMCD to complex metals plays an important role in its ability to mitigate metal toxicity and that CMCD has the potential to enhance biodegradation in organic and metal co-contaminated environments.

  2. Evolutionary, computational, and biochemical studies of the salicylaldehyde dehydrogenases in the naphthalene degradation pathway (United States)

    Jia, Baolei; Jia, Xiaomeng; Hyun Kim, Kyung; Ji Pu, Zhong; Kang, Myung-Suk; Ok Jeon, Che


    Salicylaldehyde (SAL) dehydrogenase (SALD) is responsible for the oxidation of SAL to salicylate using nicotinamide adenine dinucleotide (NAD+) as a cofactor in the naphthalene degradation pathway. We report the use of a protein sequence similarity network to make functional inferences about SALDs. Network and phylogenetic analyses indicated that SALDs and the homologues are present in bacteria and fungi. The key residues in SALDs were analyzed by evolutionary methods and a molecular simulation analysis. The results showed that the catalytic residue is most highly conserved, followed by the residues binding NAD+ and then the residues binding SAL. A molecular simulation analysis demonstrated the binding energies of the amino acids to NAD+ and/or SAL and showed that a conformational change is induced by binding. A SALD from Alteromonas naphthalenivorans (SALDan) that undergoes trimeric oligomerization was characterized enzymatically. The results showed that SALDan could catalyze the oxidation of a variety of aromatic aldehydes. Site-directed mutagenesis of selected residues binding NAD+ and/or SAL affected the enzyme’s catalytic efficiency, but did not eliminate catalysis. Finally, the relationships among the evolution, catalytic mechanism, and functions of SALD are discussed. Taken together, this study provides an expanded understanding of the evolution, functions, and catalytic mechanism of SALD. PMID:28233868

  3. The anharmonic quartic force field infrared spectra of three polycyclic aromatic hydrocarbons: Naphthalene, anthracene, and tetracene

    Energy Technology Data Exchange (ETDEWEB)

    Mackie, Cameron J., E-mail:; Candian, Alessandra; Tielens, Alexander G. G. M. [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands); Huang, Xinchuan [SETI Institute, 189 Bernardo Avenue, Suite 100, Mountain View, California 94043 (United States); Maltseva, Elena; Buma, Wybren Jan [University of Amsterdam, Science Park 904, 1098 XH Amsterdam (Netherlands); Petrignani, Annemieke [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands); Radboud University, FELIX Laboratory, Toernooiveld 7, 6525 ED Nijmegen (Netherlands); Oomens, Jos [Radboud University, FELIX Laboratory, Toernooiveld 7, 6525 ED Nijmegen (Netherlands); Lee, Timothy J. [NASA Ames Research Center, Moffett Field, California 94035-1000 (United States)


    Current efforts to characterize and study interstellar polycyclic aromatic hydrocarbons (PAHs) rely heavily on theoretically predicted infrared (IR) spectra. Generally, such studies use the scaled harmonic frequencies for band positions and double harmonic approximation for intensities of species, and then compare these calculated spectra with experimental spectra obtained under matrix isolation conditions. High-resolution gas-phase experimental spectroscopic studies have recently revealed that the double harmonic approximation is not sufficient for reliable spectra prediction. In this paper, we present the anharmonic theoretical spectra of three PAHs: naphthalene, anthracene, and tetracene, computed with a locally modified version of the SPECTRO program using Cartesian derivatives transformed from Gaussian 09 normal coordinate force constants. Proper treatments of Fermi resonances lead to an impressive improvement on the agreement between the observed and theoretical spectra, especially in the C–H stretching region. All major IR absorption features in the full-scale matrix-isolated spectra, the high-temperature gas-phase spectra, and the most recent high-resolution gas-phase spectra obtained under supersonically cooled molecular beam conditions in the CH-stretching region are assigned.

  4. Highly selective and sensitive fluorescent sensor: Thiacalix[4]arene-1-naphthalene carboxylate for Zn2+ ions (United States)

    Darjee, Savan M.; Modi, Krunal M.; Panchal, Urvi; Patel, Chirag; Jain, Vinod K.


    Thiacalix[4]arene based fluorescent sensor bearing two naphthoyl groups, thiacalix-1-naphthalene carboxylate (TCNC) has been synthesized and characterized by 1H NMR, 13C NMR, FTIR, ESI-MS spectroscopic techniques. The interaction behavior of TCNC with various metal ions like Fe3+, Hg2+, Co2+, Ni2+, Cu2+, Cd2+, Pb2+, Mg2+, K+, Na+, and Zn2+ was studied by UV-visible and emission spectrophotometry. It was observed that TCNC recognizes Zn2+ ions with high selectivity and sensitivity. The enhancement of fluorescence intensity due to presence of Zn2+ ions was not perturbed in the presence of high concentration of other associated metal ions. The 1:1 stoichiometry of TCNC:Zn2+ complex was confirmed by job's plot, ESI-MS study and 1H NMR titration. The binding constant and quantum yield were also calculated by using spectrofluorimetric titration data. Linear detection range of zinc ions was found to be 1 nM-740 nM. Furthermore, molecular docking study was performed to evaluate the binding affinity and possible interactions between TCNC and Zn2+ depicting that TCNC interact with Zn2+ via weak intramolecular forces. In addition to that molecular dynamics has also been performed to evaluate the conformational changes and it's structural stability in the particular environment.


    Directory of Open Access Journals (Sweden)



    Full Text Available Results of this study represent the first report of the effect of Naphthalene Acetic Acid (NAA on the pre and post harvest quality of wax apple fruit. The wax apple trees were spray treated with 0, 5, 10 and 20 mg L-1 NAA under field conditions during 2008 to 2011. The experiments were carried out in Completely Randomized Design (CRD with six replications. Leaf chlorophyll content, chlorophyll fluorescence, photosynthetic yield, net photosynthetic rate, drymatter content of leaves and total soluble solids and K+content of wax apple fruits were significantly increased after treatments with 10 mg L-1. Polygalacturonase activity significantly decreased with NAA treatments. The application of 5 mg L-1 NAA increased 27% more bud and reduced 42% less fruit drop compared to the control. In addition, higher protein and phosphate synthase activity of leaves, fruit set, fruit growth, larger fruit size and yield were recorded in NAA treated plants. In storage, treated fruits exhibited higher TSS and firmness and less weight loss, browning, titratable acidity, respiration and ethylene production than the control. It is concluded that spraying with 5 and 10 mg L-1 NAA once a week under field conditions produced better fruit growth and yield of the wax apple and maintained better fruit quality in postharvest storage.

  6. The mitochondrial sulfur dioxygenase ETHYLMALONIC ENCEPHALOPATHY PROTEIN1 is required for amino acid catabolism during carbohydrate starvation and embryo development in Arabidopsis. (United States)

    Krüßel, Lena; Junemann, Johannes; Wirtz, Markus; Birke, Hannah; Thornton, Jeremy D; Browning, Luke W; Poschet, Gernot; Hell, Rüdiger; Balk, Janneke; Braun, Hans-Peter; Hildebrandt, Tatjana M


    The sulfur dioxygenase ETHYLMALONIC ENCEPHALOPATHY PROTEIN1 (ETHE1) catalyzes the oxidation of persulfides in the mitochondrial matrix and is essential for early embryo development in Arabidopsis (Arabidopsis thaliana). We investigated the biochemical and physiological functions of ETHE1 in plant metabolism using recombinant Arabidopsis ETHE1 and three transfer DNA insertion lines with 50% to 99% decreased sulfur dioxygenase activity. Our results identified a new mitochondrial pathway catalyzing the detoxification of reduced sulfur species derived from cysteine catabolism by oxidation to thiosulfate. Knockdown of the sulfur dioxygenase impaired embryo development and produced phenotypes of starvation-induced chlorosis during short-day growth conditions and extended darkness, indicating that ETHE1 has a key function in situations of high protein turnover, such as seed production and the use of amino acids as alternative respiratory substrates during carbohydrate starvation. The amino acid profile of mutant plants was similar to that caused by defects in the electron-transfer flavoprotein/electron-transfer flavoprotein:ubiquinone oxidoreductase complex and associated dehydrogenases. Thus, in addition to sulfur amino acid catabolism, ETHE1 also affects the oxidation of branched-chain amino acids and lysine.

  7. Analysis of multi-domain hypothetical proteins containing iron-sulphur clusters and fad ligands reveal rieske dioxygenase activity suggesting their plausible roles in bioremediation. (United States)

    Sathyanarayanan, Nitish; Nagendra, Holenarasipur Gundurao


    'Conserved hypothetical' proteins pose a challenge not just for functional genomics, but also to biology in general. As long as there are hundreds of conserved proteins with unknown function in model organisms such as Escherichia coli, Bacillus subtilis or Saccharomyces cerevisiae, any discussion towards a 'complete' understanding of these biological systems will remain a wishful thinking. Insilico approaches exhibit great promise towards attempts that enable appreciating the plausible roles of these hypothetical proteins. Among the majority of genomic proteins, two-thirds in unicellular organisms and more than 80% in metazoa, are multi-domain proteins, created as a result of gene duplication events. Aromatic ring-hydroxylating dioxygenases, also called Rieske dioxygenases (RDOs), are class of multi-domain proteins that catalyze the initial step in microbial aerobic degradation of many aromatic compounds. Investigations here address the computational characterization of hypothetical proteins containing Ferredoxin and Flavodoxin signatures. Consensus sequence of each class of oxidoreductase was obtained by a phylogenetic analysis, involving clustering methods based on evolutionary relationship. A synthetic sequence was developed by combining the consensus, which was used as the basis to search for their homologs via BLAST. The exercise yielded 129 multidomain hypothetical proteins containing both 2Fe-2S (Ferredoxin) and FNR (Flavodoxin) domains. In the current study, 40 proteins with N-terminus 2Fe-2S domain and C-terminus FNR domain are characterized, through homology modelling and docking exercises which suggest dioxygenase activity indicating their plausible roles in degradation of aromatic moieties.

  8. A murine model for type III tyrosinemia: lack of immunologically detectable 4-hydroxyphenylpyruvic acid dioxygenase enzyme protein in a novel mouse strain with hypertyrosinemia. (United States)

    Endo, F; Katoh, H; Yamamoto, S; Matsuda, I


    We have characterized a new mutant strain of mouse that has hypertyrosinemia. The blood tyrosine level was persistently high, and increased amounts of 4-hydroxyphenylpyruvic acid and its derivatives were excreted into the urine. Succinylacetone was not detected in urine samples from these mice. All the animals were apparently healthy, and there was no evidence of hepatorenal dysfunction. The hypertyrosinemia was transmitted through an autosomal recessive inheritance. Analyses of hepatic enzymes related to tyrosine metabolism revealed that 4-hydroxyphenylpyruvic acid dioxygenase activity was virtually absent, while fumarylacetoacetase and tyrosine aminotransferases (cytosolic and mitochondrial forms) were normal in these mutant mice. Immunoblot analysis of 4-hydroxyphenylpyruvic acid dioxygenase protein in the liver indicated that the subunit protein of the enzyme was absent. It would appear that hypertyrosinemia in this mutant strain was caused by a genetic defect in 4-hydroxyphenylpyruvic acid dioxygenase. These features are similar to type III tyrosinemia in humans. Analysis of this mutant strain of mouse is expected to provide valuable information on the pathogenesis of human type III tyrosinemia and can also serve as a useful system for studies on tyrosine metabolism.

  9. The Mitochondrial Sulfur Dioxygenase ETHYLMALONIC ENCEPHALOPATHY PROTEIN1 Is Required for Amino Acid Catabolism during Carbohydrate Starvation and Embryo Development in Arabidopsis1[C][W (United States)

    Krüßel, Lena; Junemann, Johannes; Wirtz, Markus; Birke, Hannah; Thornton, Jeremy D.; Browning, Luke W.; Poschet, Gernot; Hell, Rüdiger; Balk, Janneke; Braun, Hans-Peter; Hildebrandt, Tatjana M.


    The sulfur dioxygenase ETHYLMALONIC ENCEPHALOPATHY PROTEIN1 (ETHE1) catalyzes the oxidation of persulfides in the mitochondrial matrix and is essential for early embryo development in Arabidopsis (Arabidopsis thaliana). We investigated the biochemical and physiological functions of ETHE1 in plant metabolism using recombinant Arabidopsis ETHE1 and three transfer DNA insertion lines with 50% to 99% decreased sulfur dioxygenase activity. Our results identified a new mitochondrial pathway catalyzing the detoxification of reduced sulfur species derived from cysteine catabolism by oxidation to thiosulfate. Knockdown of the sulfur dioxygenase impaired embryo development and produced phenotypes of starvation-induced chlorosis during short-day growth conditions and extended darkness, indicating that ETHE1 has a key function in situations of high protein turnover, such as seed production and the use of amino acids as alternative respiratory substrates during carbohydrate starvation. The amino acid profile of mutant plants was similar to that caused by defects in the electron-transfer flavoprotein/electron-transfer flavoprotein:ubiquinone oxidoreductase complex and associated dehydrogenases. Thus, in addition to sulfur amino acid catabolism, ETHE1 also affects the oxidation of branched-chain amino acids and lysine. PMID:24692429

  10. Impact of the simulated diagenesis on sorption of naphthalene and 1-naphthol by soil organic matter and its precursors. (United States)

    Guo, Xiaoying; Wang, Xilong; Zhou, Xinzhe; Ding, Xing; Fu, Bin; Tao, Shu; Xing, Baoshan


    Soil organic matter (SOM) in a peat soil, humic acid, and humin and their precursors (i.e., cellulose and lignin) were treated at high temperature (250 and 400 °C) with high pressure in a sealed platinum reaction kittle to simulate the influence of diagenesis on their composition and structure, and impact of the simulated diagenesis on sorption behaviors of hydrophobic organic compounds (HOCs) (i.e., naphthalene and 1-naphthol) by these samples was investigated. High temperature and pressure treatment greatly influenced chemical composition and physical properties of the original samples and their sorption for both naphthalene and 1-naphthol. Sorption of naphthalene by all samples was jointly regulated by hydrophobic and π-π interactions with their alkyl and aromatic carbon moieties, which was derived from the positive correlation between total hydrophobic carbon content of all sorbents and their organic carbon content-normalized sorption coefficients (Koc) for this compound (p = 0.075). However, sorption of 1-naphthol by the tested sorbents was governed by hydrogen bonding with their O-containing polar functionalities, as derived from the positive correlation between Koc values of 1-Naph and their polarity index ((O+N)/C). Difference in sorption mechanisms of naphthalene and 1-naphthol by the original and treated samples noted the great influence of chemical composition of sorbates on their interaction and essential roles of specific interactions (e.g., hydrogen bonding) in sorption of polar compound (i.e., 1-naphthol) to these sorbents. Surface area (SA) and porosity data of sorbents obtained from N2 sorption-desorption isotherms at 77 K showed that new SA and pores were created during the diagenetic process of all original samples, which provided substantial sorption sites and thus enhanced sorption of naphthalene and 1-naphthol. Among all tested samples, physicochemical properties of cellulose were most strongly affected by the simulated diagenetic process

  11. Tryptophan 2,3-dioxygenase (TDO)-reactive T cells differ in their functional characteristics in health and cancer (United States)

    Hjortsø, Mads Duus; Larsen, Stine Kiaer; Kongsted, Per; Met, Özcan; Frøsig, Thomas Mørch; Andersen, Gitte Holmen; Ahmad, Shamaila Munir; Svane, Inge Marie; Becker, Jürgen C; Straten, Per thor; Andersen, Mads Hald


    Tryptophan-2,3-dioxygenase (TDO) physiologically regulates systemic tryptophan levels in the liver. However, numerous studies have linked cancer with activation of local and systemic tryptophan metabolism. Indeed, similar to other heme dioxygenases TDO is constitutively expressed in many cancers. In the present study, we detected the presence of both CD8+ and CD4+ T-cell reactivity toward TDO in peripheral blood of patients with malignant melanoma (MM) or breast cancer (BC) as well as healthy subjects. However, TDO-reactive CD4+ T cells constituted distinct functional phenotypes in health and disease. In healthy subjects these cells predominately comprised interferon (IFN)γ and tumor necrosis factor (TNF)-α producing Th1 cells, while in cancer patients TDO-reactive CD4+ T-cells were more differentiated with release of not only IFNγ and TNFα, but also interleukin (IL)-17 and IL-10 in response to TDO-derived MHC-class II restricted peptides. Hence, in healthy donors (HD) a Th1 helper response was predominant, whereas in cancer patients CD4+ T-cell responses were skewed toward a regulatory T cell (Treg) response. Furthermore, MM patients hosting a TDO-specific IL-17 response showed a trend toward an improved overall survival (OS) compared to MM patients with IL-10 producing, TDO-reactive CD4+ T cells. For further characterization, we isolated and expanded both CD8+ and CD4+ TDO-reactive T cells in vitro. TDO-reactive CD8+ T cells were able to kill HLA-matched tumor cells of different origin. Interestingly, the processed and presented TDO-derived epitopes varied between different cancer cells. With respect to CD4+ TDO-reactive T cells, in vitro expanded T-cell cultures comprised a Th1 and/or a Treg phenotype. In summary, our data demonstrate that the immune modulating enzyme TDO is a target for CD8+ and CD4+ T cell responses both in healthy subjects as well as patients with cancer; notably, however, the functional phenotype of these T-cell responses differ

  12. Gas-phase naphthalene concentration data recovery in ambient air and its relevance as a tracer of sources of volatile organic compounds (United States)

    Uria-Tellaetxe, Iratxe; Navazo, Marino; de Blas, Maite; Durana, Nieves; Alonso, Lucio; Iza, Jon


    Despite the toxicity of naphthalene and the fact that it is a precursor of atmospheric photooxidants and secondary aerosol, studies on ambient gas-phase naphthalene are generally scarce. Moreover, as far as we are concerned, this is the first published one using long-term hourly ambient gas-phase naphthalene concentrations. In this work, it has been also demonstrated the usefulness of ambient gas-phase naphthalene to identify major sources of volatile organic compounds (VOC) in complex scenarios. Initially, in order to identify main benzene emission sources, hourly ambient measurements of 60 VOC were taken during a complete year together with meteorological data in an urban/industrial area. Later, due to the observed co-linearity of some of the emissions, a procedure was developed to recover naphthalene concentration data from recorded chromatograms to use it as a tracer of the combustion and distillation of petroleum products. The characteristic retention time of this compound was determined comparing previous GC-MS and GC-FID simultaneous analysis by means of relative retention times, and its concentration was calculated by using relative response factors. The obtained naphthalene concentrations correlated fairly well with ethene (r = 0.86) and benzene (r = 0.92). Besides, the analysis of daily time series showed that these compounds followed a similar pattern, very different from that of other VOC, with minimum concentrations at day-time. This, together with the results from the assessment of the meteorological dependence pointed out a coke oven as the major naphthalene and benzene emitting sources in the study area.

  13. Eucalyptus ESTs involved in the production of 9-cis epoxycarotenoid dioxygenase, a regulatory enzyme of abscisic acid production

    Directory of Open Access Journals (Sweden)

    Iraê A. Guerrini


    Full Text Available Abscisic acid (ABA regulates stress responses in plants, and genomic tools can help us to understand the mechanisms involved in that process. FAPESP, a Brazilian research foundation, in association with four private forestry companies, has established the FORESTs database ( A search was carried out in the Eucalyptus expressed sequence tag database to find ESTs involved with 9-cis epoxycarotenoid dioxygenase (NCED, the regulatory enzyme for ABA biosynthesis, using the basic local BLAST alignment tool. We found four clusters (EGEZLV2206B11.g, EGJMWD2252H08.g, EGBFRT3107F10.g, and EGEQFB1200H10.g, which represent similar sequences of the gene that produces NCED. Data showed that the EGBFRT3107F10.g cluster was similar to the maize (Zea mays NCED enzyme, while EGEZLV2206B11.g and EGJMWD2252H08.g clusters were similar to the avocado (Persea americana NCED enzyme. All Eucalyptus clusters were expressed in several tissues, especially in flower buds, where ABA has a special participation during the floral development process.

  14. Ring-hydroxylating dioxygenase (RHD) expression in a microbial community during the early response to oil pollution. (United States)

    Paissé, Sandrine; Goñi-Urriza, Marisol; Stalder, Thibault; Stadler, Thibault; Budzinski, Hélène; Duran, Robert


    The early functional response of a bacterial community from the sediments of a chronically oil-polluted retention basin located at the Etang de Berre (France) was investigated just after petroleum addition. After removing hydrocarbon compounds by natural abiotic and biotic processes, the sediments were maintained in microcosms and Vic Bilh petroleum was added. The diversity and the expression of genes encoding ring-hydroxylating dioxygenases (RHD) were examined just after the petroleum addition until 14 days focussing on the first hours following the contamination. RHD gene copy numbers and diversity were maintained throughout all the incubation period; however, transcripts were detected only during the first 2 days. One dominant RHD gene, immediately and specifically expressed in response to petroleum contamination, was related to RHD gene carried by a plasmid found in Pseudomonas spp. The expression of the RHD genes was correlated with high biodegradation levels observed for low molecular weight PAHs at 7 days of incubation. The study shows that the bacterial metabolism induced just after the oil input is a key stage that could determine the bacterial community structure changes. Monitoring the expression of RHD genes, key genes involved in hydrocarbon degradation, may provide useful information for managing bioremediation processes.

  15. Activation of ethylene-responsive p-hydroxyphenylpyruvate dioxygenase leads to increased tocopherol levels during ripening in mango (United States)

    Singh, Rajesh K.; Ali, Sharique A.; Nath, Pravendra; Sane, Vidhu A.


    Mango is characterized by high tocopherol and carotenoid content during ripening. From a cDNA screen of differentially expressing genes during mango ripening, a full-length p-hydroxyphenylpyruvate dioxygenase (MiHPPD) gene homologue was isolated that encodes a key enzyme in the biosynthesis of tocopherols. The gene encoded a 432-amino-acid protein. Transcript analysis during different stages of ripening revealed that the gene is ripening related and rapidly induced by ethylene. The increase in MiHPPD transcript accumulation was followed by an increase in tocopherol levels during ripening. The ripening-related increase in MiHPPD expression was also seen in response to abscisic acid and to alesser extent to indole-3-acetic acid. The expression of MiHPPD was not restricted to fruits but was also seen in other tissues such as leaves particularly during senescence. The strong ethylene induction of MiHPPD was also seen in young leaves indicating that ethylene induction of MiHPPD is tissue independent. Promoter analysis of MiHPPD gene in tomato discs and leaves of stable transgenic lines of Arabidopsis showed that the cis elements for ripening-related, ethylene-responsive, and senescence-related expression resided within the 1590 nt region upstream of the ATG codon. Functionality of the gene was demonstrated by the ability of the expressed protein in bacteria to convert p-hydroxyphenylpyruvate to homogentisate. These results provide the first evidence for HPPD expression during ripening of a climacteric fruit. PMID:21430290

  16. Structural characterization of Pandoraea pnomenusa B-356 biphenyl dioxygenase reveals features of potent polychlorinated biphenyl-degrading enzymes.

    Directory of Open Access Journals (Sweden)

    Christopher L Colbert

    Full Text Available The oxidative degradation of biphenyl and polychlorinated biphenyls (PCBs is initiated in Pandoraea pnomenusa B-356 by biphenyl dioxygenase (BPDO(B356. BPDO(B356, a heterohexameric (αβ(3 Rieske oxygenase (RO, catalyzes the insertion of dioxygen with stereo- and regioselectivity at the 2,3-carbons of biphenyl, and can transform a broad spectrum of PCB congeners. Here we present the X-ray crystal structures of BPDO(B356 with and without its substrate biphenyl 1.6-Å resolution for both structures. In both cases, the Fe(II has five ligands in a square pyramidal configuration: H233 Nε2, H239 Nε2, D386 Oδ1 and Oδ2, and a single water molecule. Analysis of the active sites of BPDO(B356 and related ROs revealed structural features that likely contribute to the superior PCB-degrading ability of certain BPDOs. First, the active site cavity readily accommodates biphenyl with minimal conformational rearrangement. Second, M231 was predicted to sterically interfere with binding of some PCBs, and substitution of this residue yielded variants that transform 2,2'-dichlorobiphenyl more effectively. Third, in addition to the volume and shape of the active site, residues at the active site entrance also apparently influence substrate preference. Finally, comparison of the conformation of the active site entrance loop among ROs provides a basis for a structure-based classification consistent with a phylogeny derived from amino acid sequence alignments.

  17. Altering substrate specificity of catechol 2,3-dioxygenase from Planococcus sp. strain S5 by random mutagenesis. (United States)

    Hupert-Kocurek, Katarzyna; Wojcieszyńska, Danuta; Guzik, Urszula


    c23o gene, encoding catechol 2,3-dioxygenase from Planococcus sp. strain S5 was randomly mutagenized to generate variant forms of the enzyme with higher degradation activity. Additionally, the effect of introduced mutations on the enzyme structure was analyzed based on the putative 3D models the wild-type and mutant enzymes. C23OB58 and C23OB81 mutant proteins with amino acid substitutions in close proximity to the enzyme surface or at the interface and in the vicinity of the enzyme active site respectively showed the lowest activity towards all catecholic substrates. The relative activity of C23OC61 mutant towards para-substituted catechols was 20-30% lower of the wild-type enzyme. In this mutant all changes: F191I, C268R, Y272H, V280A and Y293D were located within the conserved regions of C-terminal domain. From these F191I seems to have significant implications for enzyme activity. The highest activity towards different catechols was found for mutant C23OB65. R296Q mutation improved the activity of C23O especially against 4-chlorocatechol. The relative activity of above-mentioned mutant detected against this substrate was almost 6-fold higher than the wild-type enzyme. These results should facilitate future engineering of the enzyme for bioremediation.

  18. The carotenoid cleavage dioxygenase CCD2 catalysing the synthesis of crocetin in spring crocuses and saffron is a plastidial enzyme. (United States)

    Ahrazem, Oussama; Rubio-Moraga, Angela; Berman, Judit; Capell, Teresa; Christou, Paul; Zhu, Changfu; Gómez-Gómez, Lourdes


    The apocarotenoid crocetin and its glycosylated derivatives, crocins, confer the red colour to saffron. Crocetin biosynthesis in saffron is catalysed by the carotenoid cleavage dioxygenase CCD2 (AIG94929). No homologues have been identified in other plant species due to the very limited presence of crocetin and its derivatives in the plant kingdom. Spring Crocus species with yellow flowers accumulate crocins in the stigma and tepals. Four carotenoid CCDs, namely CaCCD1, CaCCD2 and CaCCD4a/b and CaCCD4c were first cloned and characterized. CaCCD2 was localized in plastids, and a longer CCD2 version, CsCCD2L, was also localized in this compartment. The activity of CaCCD2 was assessed in Escherichia coli and in a stable rice gene function characterization system, demonstrating the production of crocetin in both systems. The expression of all isolated CCDs was evaluated in stigma and tepals at three key developmental stages in relation with apocarotenoid accumulation. CaCCD2 expression parallels crocin accumulation, but C14 apocarotenoids most likely are associated to the CaCCD1 activity in Crocus ancyrensis flowers. The specific CCD2 localization and its membrane interaction will contribute to the development of a better understanding of the mechanism of crocetin biosynthesis and regulation in the chromoplast.

  19. Triterpenoids isolated from the rhizomes and roots of Gentiana scabra and their inhibition of indoleamine 2,3-dioxygenase. (United States)

    Li, Wei; Li, Lin Ying; Zhou, Wei; Hwang, Inkyu; Ma, Jin Yeul; Kim, Young Ho


    Gentiana scabra Bunge (Gentianaceae) is an important traditional Chinese medicine commonly used as a stomachic or appetite stimulant. In this study, 21 triterpenoids (1-21) were isolated from a methanol extract of the rhizomes and roots of G. scabra. Their structures were elucidated by comparing spectroscopic data with reported values. Among the isolated triterpenoids, scabanol (2) was firstly isolated from natural sources. All isolated compounds were evaluated for their inhibitory activity against indoleamine 2,3-dioxygenase (IDO), which catalyzes the rate limiting reaction for the conversion of tryptophan to kynurenine. Compounds 10 and 11 showed significant inhibitory activities, with IC(50) values of 12.5 and 9.5 μM, respectively. Compound 12 showed a moderate inhibitory effect, with an IC(50) value of 18.7 μM. Compounds 2 and 13 showed weaker inhibitory effects, with IC(50) values of 56.8 and 60.6 μM, respectively. Kynurenine is a potent immune modulator to suppress the functions of a variety of immune cells including T cells and natural killer cells. Given that, our results that a few selected triterpenoids inhibit IDO warrant further studies on their effects on the host immune system as natural immune stimulators.

  20. 4-hydroxyphenylpyruvate dioxygenase catalysis: identification of catalytic residues and production of a hydroxylated intermediate shared with a structurally unrelated enzyme. (United States)

    Raspail, Corinne; Graindorge, Matthieu; Moreau, Yohann; Crouzy, Serge; Lefèbvre, Bertrand; Robin, Adeline Y; Dumas, Renaud; Matringe, Michel


    4-Hydroxyphenylpyruvate dioxygenase (HPPD) catalyzes the conversion of 4-hydroxyphenylpyruvate (HPP) into homogentisate. HPPD is the molecular target of very effective synthetic herbicides. HPPD inhibitors may also be useful in treating life-threatening tyrosinemia type I and are currently in trials for treatment of Parkinson disease. The reaction mechanism of this key enzyme in both plants and animals has not yet been fully elucidated. In this study, using site-directed mutagenesis supported by quantum mechanical/molecular mechanical theoretical calculations, we investigated the role of catalytic residues potentially interacting with the substrate/intermediates. These results highlight the following: (i) the central role of Gln-272, Gln-286, and Gln-358 in HPP binding and the first nucleophilic attack; (ii) the important movement of the aromatic ring of HPP during the reaction, and (iii) the key role played by Asn-261 and Ser-246 in C1 hydroxylation and the final ortho-rearrangement steps (numbering according to the Arabidopsis HPPD crystal structure 1SQD). Furthermore, this study reveals that the last step of the catalytic reaction, the 1,2 shift of the acetate side chain, which was believed to be unique to the HPPD activity, is also catalyzed by a structurally unrelated enzyme.

  1. Reaction mechanism of homoprotocatechuate 2,3-dioxygenase with 4-nitrocatechol: implications for the role of substrate. (United States)

    Dong, Geng; Lai, Wenzhen


    The reaction mechanism of the dioxygen activation by homoprotocatechuate 2,3-dioxygenase (HPCD) with the substrate 4-nitrocatechol was investigated by quantum mechanical/molecular mechanical calculations. Our results demonstrated that the experimentally determined side-on iron-oxygen complex in crystallo is a semiquinone substrate radical (SQ(•))-Fe(III)-hydroperoxo species, which could not act as the reactive species. In fact, the Fe(III)-superoxo species with a hydrogen bond between His200 and the proximal oxygen is the reactive oxygen species. The second-sphere His200 residue was found to play an important role in manipulating the orientation of the superoxide in the Fe-O2 adduct for the further reaction. The rate-limiting step is the attack of the superoxo group on the substrate with a barrier of 17.2 kcal/mol, in good agreement with the experimental value of 16.8 kcal/mol. The reaction mechanism was then compared with the one for HPCD with its native substrate homoprotocatechuate studied recently by the same methods, in which a hybrid SQ(•)-Fe(II)-O2(•-)/Fe(III)-O2(•-) was suggested to be the reactive species. Therefore, our studies suggested that the substrate plays important roles in the dioxygen activation by HPCD.

  2. New Insight into the Cleavage Reaction of Nostoc sp. Strain PCC 7120 Carotenoid Cleavage Dioxygenase in Natural and Nonnatural Carotenoids (United States)

    Heo, Jinsol; Kim, Se Hyeuk


    Carotenoid cleavage dioxygenases (CCDs) are enzymes that catalyze the oxidative cleavage of carotenoids at a specific double bond to generate apocarotenoids. In this study, we investigated the activity and substrate preferences of NSC3, a CCD of Nostoc sp. strain PCC 7120, in vivo and in vitro using natural and nonnatural carotenoid structures. NSC3 cleaved β-apo-8′-carotenal at 3 positions, C-13C-14, C-15C-15′, and C-13′C-14′, revealing a unique cleavage pattern. NSC3 cleaves the natural structure of carotenoids 4,4′-diaponeurosporene, 4,4′-diaponeurosporen-4′-al, 4,4′-diaponeurosporen-4′-oic acid, 4,4′-diapotorulene, and 4,4′-diapotorulen-4′-al to generate novel cleavage products (apo-14′-diaponeurosporenal, apo-13′-diaponeurosporenal, apo-10′-diaponeurosporenal, apo-14′-diapotorulenal, and apo-10′-diapotorulenal, respectively). The study of carotenoids with natural or nonnatural structures produced by using synthetic modules could provide information valuable for understanding the cleavage reactions or substrate preferences of other CCDs in vivo and in vitro. PMID:23524669

  3. Indoleamine 2,3-dioxygenase (IDO) is expressed at feto-placental unit throughout mouse gestation: An immunohistochemical study (United States)

    Hemmati, Shayda; Jeddi-Tehrani, Mahmood; Torkabadi, Ebrahim; Ghassemi, Jamileh; Kazemi sefat, Golnaz Ensieh; Danesh, Parivash; Barzegar Yarmohammadi, Leila; Akhondi, Mohammad Mehdi; Zarnani, Amir Hassan


    Introduction The cells expressing Indoleamine 2, 3-dioxygenase (IDO) in feto-maternal interface mediate tryptophan catabolism, hence protect allogeneic fetus from lethal rejection by maternal immune responses. In this study, we report immuno-localization of IDO+ cells in murine reproductive tract and placenta throughout mouse pregnancy by immunohistochemistry. Materials and Methods Syngeneic pregnant mice were examined for vaginal plug to discover about their state of pregnancy. A total of three pregnant mice were examined at each stage.The examination was further confirmed by the detection of sperm in vaginal smear. On the gestational days of 2nd, 12th and 18th, the uterus and oviduct were removed and expression of IDO was investigated in the endometrium, placenta and oviduct by immunohistochemistry. Results Our results showed that IDO is expressed consistently in feto-maternal interface throughout pregnancy. In endometrium, expression of IDO was predominantly confined to luminal and glandular epithelial cells. Cells at junctional and labyrinth zones of placenta showed strong IDO immunoreactivity as well. Conclusion Expression of IDO at the protein level in reproductive tract of pregnant mice during entire periods of gestation points to its potential protective role in maintenance of pregnancy. In our knowledge this is the first report of expression of IDO in feto-maternal phase during murine pregnancy. PMID:23926466

  4. New insight into the cleavage reaction of Nostoc sp. strain PCC 7120 carotenoid cleavage dioxygenase in natural and nonnatural carotenoids. (United States)

    Heo, Jinsol; Kim, Se Hyeuk; Lee, Pyung Cheon


    Carotenoid cleavage dioxygenases (CCDs) are enzymes that catalyze the oxidative cleavage of carotenoids at a specific double bond to generate apocarotenoids. In this study, we investigated the activity and substrate preferences of NSC3, a CCD of Nostoc sp. strain PCC 7120, in vivo and in vitro using natural and nonnatural carotenoid structures. NSC3 cleaved β-apo-8'-carotenal at 3 positions, C-13 C-14, C-15 C-15', and C-13' C-14', revealing a unique cleavage pattern. NSC3 cleaves the natural structure of carotenoids 4,4'-diaponeurosporene, 4,4'-diaponeurosporen-4'-al, 4,4'-diaponeurosporen-4'-oic acid, 4,4'-diapotorulene, and 4,4'-diapotorulen-4'-al to generate novel cleavage products (apo-14'-diaponeurosporenal, apo-13'-diaponeurosporenal, apo-10'-diaponeurosporenal, apo-14'-diapotorulenal, and apo-10'-diapotorulenal, respectively). The study of carotenoids with natural or nonnatural structures produced by using synthetic modules could provide information valuable for understanding the cleavage reactions or substrate preferences of other CCDs in vivo and in vitro.

  5. Indoleamine 2,3-Dioxygenase Is Involved in the Inflammation Response of Corneal Epithelial Cells to Aspergillus fumigatus Infections.

    Directory of Open Access Journals (Sweden)

    Nan Jiang

    Full Text Available Indoleamine 2,3-dioxygenase (IDO, which is mainly expressed in activated dendritic cells, is known as a regulator of immune responses. However, the role of IDO in immune responses against fungal corneal infection has not been investigated. To evaluate the regulatory mechanisms of IDO in fungal inflammation, we resorted to human corneal epithelial cells (HCECs, known as the first barrier of cornea against pathogenic microorganisms. We found that IDO was significantly up-regulated in corneal epithelium infected with Aspergillus fumigatus (A. fumigatus and HCECs incubated with spores of A. fumigatus. Furthermore, IDO inhibitor (1-methyltryptophan, 1-MT enhanced inflammatory cytokines IL-1β and IL-6 expression which were up-regulated by A. fumigatus spores infection. Dectin-1, as one of the important C-type lectin receptors, can identify β-glucan, and mediate fungal innate immune responses. In the present study, pre-treatment with curdlan, a Dectin-1 agonist, further enhanced IDO expression compared with A. fumigatus stimulation. While laminarin, the Dectin-1 specific inhibitor, partially inhibited IDO expression stimulated by A. fumigatus. Further studies demonstrated inhibition of IDO activity amplified the expressions of inflammatory cytokines IL-1β and IL-6 induced by activation of Dectin-1. These results suggested that IDO was involved in the immune responses of fungal keratitis. The activation of Dectin-1 may contribute to A. fumigatus spores-induced up-regulation of IDO.

  6. Expression of tryptophan 2,3-dioxygenase in mature granule cells of the adult mouse dentate gyrus

    Directory of Open Access Journals (Sweden)

    Ohira, Koji


    Full Text Available Abstract New granule cells are continuously generated in the dentate gyrus of the adult hippocampus. During granule cell maturation, the mechanisms that differentiate new cells not only describe the degree of cell differentiation, but also crucially regulate the progression of cell differentiation. Here, we describe a gene, tryptophan 2,3-dioxygenase (TDO, whose expression distinguishes stem cells from more differentiated cells among the granule cells of the adult mouse dentate gyrus. The use of markers for proliferation, neural progenitors, and immature and mature granule cells indicated that TDO was expressed in mature cells and in some immature cells. In mice heterozygous for the alpha-isoform of calcium/calmodulin-dependent protein kinase II, in which dentate gyrus granule cells fail to mature normally, TDO immunoreactivity was substantially downregulated in the dentate gyrus granule cells. Moreover, a 5-bromo-2'-deoxyuridine labeling experiment revealed that new neurons began to express TDO between 2 and 4 wk after the neurons were generated, when the axons and dendrites of the granule cells developed and synaptogenesis occurred. These findings indicate that TDO might be required at a late-stage of granule cell development, such as during axonal and dendritic growth, synaptogenesis and its maturation.

  7. Absolute configuration-dependent epoxide formation from isoflavan-4-ol stereoisomers by biphenyl dioxygenase of Pseudomonas pseudoalcaligenes strain KF707. (United States)

    Seo, Jiyoung; Kang, Su-Il; Won, Dongho; Kim, Mihyang; Ryu, Ji-Young; Kang, Suk-Woo; Um, Byung-Hun; Pan, Cheol-Ho; Ahn, Joong-Hoon; Chong, Youhoon; Kanaly, Robert A; Han, Jaehong; Hur, Hor-Gil


    Biphenyl dioxygenase from Pseudomonas pseudoalcaligenes strain KF707 expressed in Escherichia coli was found to exhibit monooxygenase activity toward four stereoisomers of isoflavan-4-ol. LC-MS and LC-NMR analyses of the metabolites revealed that the corresponding epoxides formed between C2' and C3' on the B-ring of each isoflavan-4-ol substrate were the sole products. The relative reactivity of the stereoisomers was found to be in the order: (3S,4S)-cis-isoflavan-4-ol > (3R,4S)-trans-isoflavan-4-ol > (3S,4R)-trans-isoflavan-4-ol > (3R,4R)-cis-isoflavan-4-ol and this likely depended upon the absolute configuration of the 4-OH group on the isoflavanols, as explained by an enzyme-substrate docking study. The epoxides produced from isoflavan-4-ols by P. pseudoalcaligenes strain KF707 were further abiotically transformed into pterocarpan, the molecular structure of which is commonly found as part of plant-protective phytoalexins, such as maackiain from Cicer arietinum and medicarpin from Medicago sativa.

  8. Scavenging properties of neutrophil 4-hydroxyphenylpyruvate dioxygenase are based on a hypothesis that does not stand up to scrutiny. (United States)

    Salerno, Costantino; Zicari, Alessandra; Mari, Emanuela; D'Eufemia, Patrizia


    It was previously reported by D'Eufemia et al. [9] that neutrophil preparations from a patient with tyrosinemia type III, i.e. with inherited deficiency of 4-hydroxyphenylpyruvate dioxygenase (HPPD), exhibited a far higher NO release than controls, when NO was estimated in terms of nitrite content in the suspending media. It was hypothesized that HPPD might participate to NO sequestration in neutrophils and that excessive NO release might reflect the lack of the scavenging action in defective cells. In recent control experiments, we found that HPPD activity in neutrophils preparations from healthy subjects is below the detection limit of the enzymatic assay (less than 3nmol product/h per mg protein). This indicates that HPPD concentration in neutrophils is very low, if any, confirming what was already suggested in literature, and rules out the possibility of a prominent role of HPPD as NO scavenger in these cells. Moreover, we found that 500μM l-tyrosine increases nitrite release and accumulation in suspending media of U-937 cells, a human monoblast-like lymphoma cell line which displays many characteristics of macrophages, including the expression of inducible and endothelial nitric oxide synthases. We hypothesize that the increase of nitrite release by patient's neutrophils might be related to the presence of high l-tyrosine concentrations in the blood samples (426μmol/L instead of 52.1±10.9μmol/L as healthy subjects), rather than to HPPD deficiency of in these cells.

  9. P-HYDROXYPHENYLPYRUVATE DIOXYGENASE from Medicago sativa is involved in vitamin E biosynthesis and abscisic acid-mediated seed germination (United States)

    Jiang, Jishan; Chen, Zhihong; Ban, Liping; Wu, Yudi; Huang, Jianping; Chu, Jinfang; Fang, Shuang; Wang, Zan; Gao, Hongwen; Wang, Xuemin


    P-HYDROXYPHENYLPYRUVATE DIOXYGENASE (HPPD) is the first committed enzyme involved in the biosynthesis of vitamin E, and is characterized by catalyzing the conversion of p-hydroxyphenyl pyruvate (HPP) to homogentisic acid (HGA). Here, an HPPD gene was cloned from Medicago sativa L. and designated MsHPPD, which was expressed at high levels in alfalfa leaves. PEG 6000 (polyethylene glycol), NaCl, abscisic acid and salicylic acid were shown to significantly induce MsHPPD expression, especially in the cotyledons and root tissues. Overexpression of MsHPPD was found to significantly increase the level of β-tocotrienol and the total vitamin E content in Arabidopsis seeds. Furthermore, these transgenic Arabidopsis seeds exhibited an accelerated germination time, compared with wild-type seeds under normal conditions, as well as under NaCl and ABA treatments. Meanwhile, the expression level of several genes associated with ABA biosynthesis (NCED3, NCED5 and NCED9) and the ABA signaling pathway (RAB18, ABI3 and ABI5) were significantly down-regulated in MsHPPD-overexpressing transgenic lines, as well as the total free ABA content. Taken together, these results demonstrate that MsHPPD functions not only in the vitamin E biosynthetic pathway, but also plays a critical role in seed germination via affecting ABA biosynthesis and signaling. PMID:28084442

  10. Unity in diversity, a systems approach to regulating plant cell physiology by 2-oxoglutarate-dependent dioxygenases. (United States)

    Kundu, Siddhartha


    Could a disjoint group of enzymes synchronize their activities and execute a complex multi-step, measurable, and reproducible response? Here, I surmise that the alpha-ketoglutarate dependent superfamily of non-haem iron (II) dioxygenases could influence cell physiology as a cohesive unit, and that the broad spectra of substrates transformed is an absolute necessity to this portrayal. This eclectic group comprises members from all major taxa, and participates in pesticide breakdown, hypoxia signaling, and osmotic stress neutralization. The oxidative decarboxylation of 2-oxoglutarate to succinate is coupled with a concomitant substrate hydroxylation and, in most cases, is followed by an additional specialized conversion. The domain profile of a protein sequence was used as an index of miscellaneous reaction chemistry and interpreted alongside existent kinetic data in a linear model of integrated function. Statistical parameters were inferred by the creation of a novel, empirically motivated flat-file database of over 3800 sequences (DB2OG) with putative 2-oxoglutarate dependent activity. The collated information was categorized on the basis of existing annotation schema. The data suggests that 2OG-dependent enzymes incorporate several desirable features of a systems level player. DB2OG, is free, accessible without a login to all users, and available at the following URL (

  11. Transgenic Leucaena leucocephala expressing the Rhizobium gene pydA encoding a meta-cleavage dioxygenase shows reduced mimosine content. (United States)

    Jube, Sandro L R; Borthakur, Dulal


    The use of the tree-legume Leucaena leucocephala (leucaena), which contains high levels of proteins in its foliage, is limited due to the presence of the toxic free amino acid mimosine. The goal of this research was to develop transgenic leucaena with reduced mimosine content. Two genes, pydA and pydB, encoding a meta-cleavage dioxygenase (EC and a pyruvate hydrolase (EC, respectively, from the mimosine-degrading leucaena symbiont Rhizobium sp. strain TAL1145, were used to transform leucaena. These bacterial genes were sequence-optimized for expression in leucaena and cloned into the plant binary vector pCAMBIA3201 for Agrobacterium tumefaciens-mediated transformation. Using immature zygotic embryos as the start explant material, six pydA and three pydB transgenic lines were developed. The presence and expression of the bacterial genes in the transgenic lines were verified by PCR, reverse transcriptase PCR, and Southern analyses. HPLC analyses of the transgenic plants determined that the mimosine contents of the pydA-expressing lines were reduced up to 22.5% in comparison to the wild-type. No significant reduction in mimosine content was observed in the pydB-expressing lines. This is the first example of using a gene from a bacterial symbiont to reduce the toxicity of a tree-legume.

  12. Diazotization of kynurenine by acidified nitrite secreted from indoleamine 2,3-dioxygenase-expressing myeloid dendritic cells. (United States)

    Hara, Toshiaki; Yamakura, Fumiyuki; Takikawa, Osamu; Hiramatsu, Rie; Kawabe, Tsutomu; Isobe, Ken-Ichi; Nagase, Fumihiko


    Indoleamine 2,3-dioxygenase (IDO)-initiated tryptophan metabolism along the kynurenine (Kyn) pathway regulates T-cell responses in some dendritic cells (DC) such as plasmacytoid DC. A Kyn assay using HPLC showed that samples were frequently deproteinized with trichloroacetic acid (TCA). In the present study, bone marrow-derived myeloid DC (BMDC) were differentiated from mouse bone marrow cells with GM-CSF. CpG oligodeoxynucleotides (CpG) induced the expression of IDO protein with NO production in BMDC cultured for 24 h. The concentrations of Kyn in the culture supernatants were not increased by stimulation with CpG but rather decreased by based on the Kyn assay after deproteinization with TCA. The level of Kyn exogenously added into the cell-free culture supernatant of BMDC stimulated with CpG was severely decreased by deproteinization with TCA but not methanol, and the decrease was prevented when BMDC was stimulated with CpG in the presence of a NOS inhibitor. Under acidic conditions, Kyn reacted with nitrite produced by BMDC, and generated a new compound that was not detected by Ehrlich reagent reacting with the aromatic amino residue of Kyn. An analysis by mass spectrometry showed the new compound to be a diazotization form of Kyn. In conclusion, the deproteinization of samples by acidic treatment should be avoided for the Kyn assay when NO is produced.

  13. Lowering intercellular melatonin levels by transgenic analysis of indoleamine 2,3-dioxygenase from rice in tomato plants. (United States)

    Okazaki, Masateru; Higuchi, Kenji; Aouini, Asma; Ezura, Hiroshi


    Melatonin exists in numerous living organisms including vertebrates, insects, fungi, bacteria, and plants. Extensive studies have been conducted on the physiological roles of melatonin in various plant species. In plants, melatonin seems to act in antioxidant protection, as a growth promoter, and in photoperiodism. However, the mechanisms by which melatonin carries out these roles remain unclear. We manipulated the endogenous melatonin content in tomato plants by modifying the metabolic enzyme indoleamine 2,3-dioxygenase (IDO). The OsIDO gene was isolated from rice (Oryza sativa) and characterized using 3-D homology modeling and reverse genetic approaches. The amino acid sequence of OsIDO showed high homology to the Ustilago maydis IDO. The 3-D model structure of OsIDO is composed of a small and a large domain. Transgenic tomato plants constitutively expressing the OsIDO gene exhibited a decrease in their melatonin content. Moreover, the number of lateral leaflets decreased in transgenic plants. Protein extracts taken from these plants showed activity degradation, demonstrating the function of OsIDO. These results suggest the involvement of IDO in plant melatonin metabolism and a possible role in plant leaf development. © 2010 The Authors. Journal of Pineal Research © 2010 John Wiley & Sons A/S.

  14. Eosinophil Granulocytes Account for Indoleamine 2,3-Dioxygenase-Mediated Immune Escape in Human Non Small Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Simonetta Astigiano


    Full Text Available Indoleamine 2,3-dioxygenase (IDO, a catabolizing enzyme of tryptophan, is supposed to play a role in tumor immune escape. Its expression in solid tumors has not yet been well elucidated: IDO can be expressed by the tumor cells themselves, or by ill-defined infiltrating cells, possibly depending on tumor type. We have investigated IDO expression in 25 cases of non small cell lung cancer (NSCLC. Using histochemistry and immunohistochemistry, we found that IDO was expressed not by tumor cells, but by normal cells infiltrating the peritumoral stroma. These cells were neither macrophages nor dendritic cells, and were identified as eosinophil granulocytes. The amount of IDO-positive eosinophils varied in different cases, ranging from a few cells to more than 50 per field at x200 magnification. IDO protein in NSCLC was enzymatically active. Therefore, at least in NSCLC cases displaying a large amount of these cells in the inflammatory infiltrate, IDO-positive eosinophils could exert an effective immunosuppressive action. On analyzing the 17 patients with adequate follow-up, a significant relationship was found between the amount of IDO-positive infiltrate and overall survival. This finding suggests that the degree of IDO-positive infiltrate could be a prognostic marker in NSCLC.

  15. Molecular docking and dynamic simulation studies evidenced plausible immunotherapeutic anticancer property by Withaferin A targeting indoleamine 2,3-dioxygenase. (United States)

    Reddy, S V G; Reddy, K Thammi; Kumari, V Valli; Basha, Syed Hussain


    Indoleamine 2,3-dioxygenase (IDO) is emerging as an important new therapeutic drug target for the treatment of cancer characterized by pathological immune suppression. IDO catalyzes the rate-limiting step of tryptophan degradation along the kynurenine pathway. Reduction in local tryptophan concentration and the production of immunomodulatory tryptophan metabolites contribute to the immunosuppressive effects of IDO. Presence of IDO on dentritic cells in tumor-draining lymph nodes leading to the activation of T cells toward forming immunosuppressive microenvironment for the survival of tumor cells has confirmed the importance of IDO as a promising novel anticancer immunotherapy drug target. On the other hand, Withaferin A (WA) - active constituent of Withania Somnifera ayurvedic herb has shown to be having a wide range of targeted anticancer properties. In the present study conducted here is an attempt to explore the potential of WA in attenuating IDO for immunotherapeutic tumor arresting activity and to elucidate the underlying mode of action in a computational approach. Our docking and molecular dynamic simulation results predict high binding affinity of the ligand to the receptor with up to -11.51 kcal/mol of energy and 3.63 nM of IC50 value. Further, de novo molecular dynamic simulations predicted stable ligand interactions with critically important residues SER167; ARG231; LYS377, and heme moiety involved in IDO's activity. Conclusively, our results strongly suggest WA as a valuable small ligand molecule with strong binding affinity toward IDO.

  16. Molecular Modeling and Dynamic Simulation of Arabidopsis Thaliana Carotenoid Cleavage Dioxygenase Gene: A Comparison with Bixa orellana and Crocus Sativus. (United States)

    Priya, R; Sneha, P; Rivera Madrid, Renata; Doss, C George Priya; Singh, Pooja; Siva, Ramamoorthy


    Carotenoid cleavage dioxygenase (CCD) gene, ubiquitously found in numerous types of plants, are eminent in synthesizing the various volatile compounds (β-ionone, C13 -norisoprenoid, geranylacetone) known as apocarotenoids. These apocarotenoids have various biological functions such as volatile signals, allelopathic interaction and plant defense. In Arabidopsis genome sequence, four potential CCD genes have been identified namely CCD1, CCD4, CCD7, and CCD8. These four genes give rise to diverse biological functions with almost similar sequence identity. In this investigation, an in silico analysis was proposed to study CCD proteins in Arabidopsis thaliana, aiming at constructing three-dimensional (3D) structure for CCD1 proteins of Bixa orellana and Crocus sativus to observe the structural difference among AtCCD (A. thaliana CCD) proteins. The quality of modeled structures was evaluated using RAMPAGE, PSVS protein validation server and Q Mean server. Finally, we utilised molecular dynamics simulation to identify the stability of the predicted CCD protein structures. The molecular dynamic simulation also revealed that AtCCD4 protein showed lesser stability when compared to other CCD proteins. Overall results from molecular dynamics analysis predicted that BoCCD1, CsCCD1, and AtCCD1 show similar structural characteristics. J. Cell. Biochem. 118: 2712-2721, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  17. Polychlorinated naphthalene (PCN) emissions from scrap processing steel plants with electric-arc furnaces. (United States)

    Odabasi, Mustafa; Dumanoglu, Yetkin; Kara, Melik; Altiok, Hasan; Elbir, Tolga; Bayram, Abdurrahman


    Polychlorinated naphthalene (PCN) emissions of scrap iron processing steel plants were explored by measuring concentrations in stack gases of five plants, in the atmosphere (n=11) at a site close to those plants, and in soil at several sites in the region (n=40) in Aliaga, Izmir, Turkey. Observed stack-gas Σ32PCN levels from the plants without scrap preheating (189±157ngNm(-3), average±SD, n=4) showed that they are substantial PCN emitting sources. Stack-gas Σ32PCN level for the plant with scrap preheating was considerably higher (1262ngNm(-3)). Similarly, Σ32PCN emission factor for this plant was substantially higher (11.9mgton(-1)) compared to those without scrap preheating (1.30±0.98mgton(-1)). Results have also suggested that the investigated steel plants emit large quantities of fugitive particle-phase PCNs. Measured soil Σ32PCN concentrations that are considered to be representative of the atmospheric levels were greatly variable in the region, ranging between 0.003 and 10.02μgkg(-1) (dry wt). Their spatial distribution showed that main PCN sources in the region were the iron-steel plants. Ambient air levels (1620±800pgm(-3)) were substantially higher than ones observed around the world and in the study area verifying that the steel plants with electric arc furnaces (EAFs) are important PCN sources. Investigation of possible mechanisms suggested that the combustion processes also contribute to emissions from EAFs in addition to evaporation of PCNs present in the scrap iron.

  18. Gas chromatography–triple quadrupole mass spectrometry for the determination of atmospheric polychlorinated naphthalenes

    Energy Technology Data Exchange (ETDEWEB)

    Li, Fang [Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No. 457 Zhongshan Road, Dalian 116023 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Jin, Jing [Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No. 457 Zhongshan Road, Dalian 116023 (China); Sun, Xiaoli [Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No. 457 Zhongshan Road, Dalian 116023 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Wang, Xueli; Li, Yun; Shah, Syed Mazhar [Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No. 457 Zhongshan Road, Dalian 116023 (China); Chen, Jiping, E-mail: [Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No. 457 Zhongshan Road, Dalian 116023 (China)


    Highlights: • Atmospheric PCNs were detected by isotope-dilution GC–MS/MS. • The pollution levels of PCNs covering from mono- to octa-CNs were investigated comprehensively in air samples. • The dioxin-like toxicity and human exposure levels of PCNs in air samples were estimated. - Abstract: Atmospheric polychlorinated naphthalenes (PCNs) ranging from mono-CNs to octa-CNs were detected using isotope-dilution gas chromatography coupled with triple quadrupole mass spectrometry (GC–MS/MS). The developed instrumental method was successfully applied to the determination of PCNs in technical products. It was observed that there were significant differences in concentrations, homologue profiles, chlorinated contents and total toxic equivalents (∑TEQs) of PCNs for four Halowax products. Subsequently, the validation of the analytical method was evaluated for the determination of PCNs in air samples in terms of method detection limit (MDL), recovery and matrix effect. The results demonstrated that this method could provide satisfactory sensitivity and adequate selectivity with lower cost. It was conducted to comprehensively evaluate the levels, composition patterns, ∑TEQs, and daily intake exposure of PCNs in indoor and outdoor air samples. Concentrations and ∑TEQs of PCNs in air samples ranged 47.7–832.7 pg m{sup −3} and 1.31–5.99 fg m{sup −3}, respectively, and the predominant homologues were di- and tri-CNs in the gas phase. The results indicated that this analytical method was useful for the accurate and specific evaluation of dioxin-like toxicity and human exposure levels of PCNs in the atmosphere.

  19. Polychlorinated naphthalenes and other dioxin-like compounds in Elbe River sediments. (United States)

    Brack, Werner; Bláha, Ludek; Giesy, John P; Grote, Matthias; Moeder, Monika; Schrader, Steffi; Hecker, Markus


    Contamination of Elbe River (Germany) sediments with dioxin-like toxicants was investigated following the 500-year flood (flood that statistically occurs once in 500 years) of 2002. It was hypothesized that large amounts of particulate matter from river beds and associated dioxin-like toxicants were mobilized and transported during this flood event. The investigation focused on polychlorinated naphthalenes (PCNs) that have not been determined previously in the Elbe River. The in vitro H4IIE-luc assay was used as an overall measure for toxicants capable of binding to the aryl hydrocarbon receptor (AhR). The assay was combined with congener-specific instrumental analyses and fractionation to quantify PCN contributions to total AhR-mediated activity relative to polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) and polychlorinated biphenyls (PCBs). Penta- to octachloronaphthalene concentrations of 30 ng/kg dry weight up to 13 microg/kg dry weight were found in Elbe River sediments downstream of Bitterfeld. Concentrations of penta- to octachloronaphthalenes, however, were only approximately 3 microg/kg dry weight at a site in the vicinity of Bitterfeld, where a level of approximately 3 mg/kg dry weight was reported before the flood. Also, the congener pattern of PCNs at this site changed after the flood, and PCN patterns reported previously for Bitterfeld and assigned to chlor-alkali electrolysis with graphite electrodes could now be observed at the sites from downstream of Bitterfeld and Magdeburg. Whereas PCDD/Fs dominated the dioxin-like activity in the middle and lower Elbe River, PCNs contributed as much as 10% of the total AhR-mediated activity. The contribution of PCBs was less significant (maximum, 0.2%). Thus, in Elbe River sediments, PCNs should be considered as relevant contaminants and be included in future monitoring and risk assessment programs.

  20. Identification and characterization of the atmospheric emission of polychlorinated naphthalenes from electric arc furnaces. (United States)

    Liu, Guorui; Zheng, Minghui; Du, Bing; Nie, Zhiqiang; Zhang, Bing; Hu, Jicheng; Xiao, Ke


    Electric arc furnaces (EAF) are well recognized as significant sources of dioxins. EAFs have also been speculated to be sources of polychlorinated naphthalenes (PCNs) due to the close correlation between dioxin and PCN formation. However, assessment on PCN emissions from EAFs has not been carried out. The primary aim of this preliminary study is to identify and characterize the atmospheric emission of PCNs from EAFs. In this preliminary study, stack gas samples from two typical EAFs with different scales (EAF-1, 160 t batch(-1); and EAF-2, 60 t batch(-1)) were collected by automatic isokinetic sampling technique, and PCN congeners in samples were analyzed by isotope dilution high-resolution gas chromatography combined with high-resolution mass spectrometry method. Emission concentrations of PCNs were 458 and 1,099 ng m(-3) for EAF-1 and EAF-2, respectively. The emission factors of PCNs to air were 21.6 and 30.1 ng toxic equivalent t(-1) for EAF-1 and EAF-2, respectively, which suggested that EAF is an important source of PCN release. With regard to the characteristics of PCNs from EAFs, lower chlorinated homologues were dominant. The PCN congeners comprised of CN27/30, CN52/60, CN66/67, and CN73 were the most abundant congeners for tetra-, penta-, hexa-, and hepta-chlorinated homologues, respectively. EAFs were identified to be an important PCN source, and the obtained data are useful for developing a PCN inventory. The congener profiles of PCNs presented here might provide helpful information for identifying the specific sources of PCNs emitted from EAFs.

  1. Angular intensity of nonequilibrium interfacial dynamic light scattering: Succinonitrile and naphthalene (United States)

    Williams, L. M.; Cummins, H. Z.; Ladeira, L. O.; Mesquita, O. N.


    We have investigated the phenomenon of intense dynamic light scattering at the nonequilibrium crystal-melt interface in succinonitrile and naphthalene, in order to resolve the ongoing controversy over its origin. Of the several models that have been proposed to explain this phenomenon, the microbubble model of H. Z. Cummins et al. [Solid State Commun. 60, 857 (1986)] and the mesophase model proposed by J. Bilgram and co-workers [P. Boni, J. H. Bilgram, and W. Kanzig, Phys. Rev. A 28, 2953 (1983)] are the only two still considered to be consistent with most of the experimental observations. In these experiments the angular dependence of the scattered light was investigated. In the mesophase model the angular dependence of the scattered light is described by the Ornstein-Zernike form I(q)=I0(1+q2ξ2)-1, whereas light scattered by bubbles can be modeled by the Mie scattering theory. The data for both materials were found to be incompatible with the Ornstein-Zernike form, but could be reasonably well fit by the Mie theory. The behavior of the onset of scattering was also investigated, and it was found that the product R0t0v2g was a constant, where R0 is the onset radius, t0 the onset time, and vg the crystal growth velocity. This result is consistent with the analysis of Mesquita et al. [Phys. Rev. B 38, 1550 (1988)], in which the onset of the scattering was modeled by considering the rate of buildup of dissolved gas at the advancing crystal-melt interface. The time taken for the disappearance of the scattering after growth was terminated was also investigated. Lastly, the gases dissolved in our samples of succinonitrile were identified by mass spectroscopy and found to have a composition similar to air.

  2. Seasonal and spatial distributions of atmospheric polychlorinated naphthalenes in Shanghai, China. (United States)

    Die, Qingqi; Nie, Zhiqiang; Fang, Yanyan; Yang, Yufei; Gao, Xingbao; Tian, Yajun; He, Jie; Liu, Feng; Huang, Qifei; Tian, Shulei


    Air samples were collected in Shanghai during summer and winter 2013, and the gas and particulate concentrations of polychlorinated naphthalenes (PCNs) were measured. All 75 congeners were quantified and the corresponding toxic equivalents (TEQs) were calculated. PCN concentrations were higher in summer than winter, at 8.22-102 pg/m(3) (average of 61.3 pg/m(3)) in summer and 16.5-61.1 pg/m(3) (average of 37.7 pg/m(3)) in winter. Their seasonal TEQ values were in contrast, at 1.35-7.31 fg/m(3) (average of 3.84 fg/m(3)) in summer and 4.08-23.3 fg/m(3) (average of 8.80 fg/m(3)) in winter, because of the seasonal change in congener profiles. Tri-CNs were the predominant homologs in both the summer and winter samples. However, the major congeners in summer were PCNs containing less chlorine, but these decreased over winter. Air mass back trajectories suggested that wind direction over various sites was similar in the summer and winter seasons, yet there were clear seasonal variations in atmospheric PCN concentrations. Ratios of several characteristic congeners were calculated and the results indicated that the ratios varied only to a limited extent with PCN emissions profile from industrial thermal sources, but varied strongly with profiles of technical PCN and PCN contaminants in polychlorinated biphenyl mixtures. The results of principal component analysis suggest that local industrial thermal emissions (thermal processes containing waste incineration and secondary metal smelting processes) still play a considerable role in influencing the atmospheric PCNs in Shanghai.

  3. Urinary BTEX, MTBE and naphthalene as biomarkers to gain environmental exposure profiles of the general population. (United States)

    Fustinoni, Silvia; Rossella, Federica; Campo, Laura; Mercadante, Rosa; Bertazzi, Pier Alberto


    The aim of this work was to evaluate urinary benzene, toluene, ethylbenzene, m+p-xylene, o-xylene (BTEX), methyl tert-butyl ether (MTBE), ethyl tert-butyl ether (ETBE), and naphthalene (NAP) as biomarkers of exposure to environmental pollutants. Personal air and urine samples from 108 subjects belonging to the Italian general population were compared. Urinary profiles were obtained by headspace gas chromatography-mass spectrometry. BTEX, MTBE, ETBE and NAP median airborne exposures during a 5-h sampling were 4.0, 25.3, 3.8, 9.3, 3.4, 3.4, <0.8, and 3.4 microg/m(3), respectively. Meanwhile, median urinary levels, as geometric means of three determinations were: 122, 397, 74, 127, 43, 49, <15, and 46 ng/L, respectively. Urinary benzene and toluene concentrations were 4.6- and 1.2-fold higher in smokers than in non-smokers. For most chemicals, significant positive correlations between airborne exposure (log-transformed) and the corresponding biological marker (log-transformed) were found, with Pearson's r values for correlation, ranging from 0.228 to 0.396. Multiple linear regression analysis showed that the urinary level of these chemicals was influenced by personal airborne exposure, urinary creatinine, and urinary cotinine, with R(2) 0.733 for benzene. Urinary chemicals are useful biomarkers of environmental exposure. Given the ease of rapidly obtaining urine samples, they represent a non-invasive alternative to blood chemical analysis. The possibility of obtaining urinary exposure profiles makes this method an appealing tool for environmental epidemiology.

  4. Human exposure to polychlorinated naphthalenes through the consumption of edible marine species. (United States)

    Llobet, Juan M; Falcó, Gemma; Bocio, Ana; Domingo, José L


    The concentrations of polychlorinated naphthalenes (PCNs) were determined in samples of 14 edible marine species (sardine, tuna, anchovy, mackerel, swordfish, salmon, hake, red mullet, sole, cuttlefish, squid, clam, mussel and shrimp), which are widely consumed by the population of Catalonia, Spain. The daily intake of PCNs associated with this consumption was also determined. A total of 42 composite samples were analyzed by HRGC/HRMS. The highest PCN levels (ng/kg of fresh weight) were found in salmon (227) followed by mackerel (95) and red mullet (68), while the lowest levels of total PCNs corresponded to shrimp (4.9) and cuttlefish (2.7). With the exception of cephalopods and shellfish species, in which tetra-CN was the predominant homologue, penta-CN (60%) was the predominant contributor to total PCNs. For a standard male adult, PCN intake through the consumption of edible marine species was 1.53 ng/day. The highest contributions to this intake (ng/day) corresponded to salmon (0.41), sole (0.28) and tuna (0.24). Concerning health risks, species-specific TEFs such as those reported by WHO and NATO for PCDD/Fs and dioxin-like PCBs are not currently available for PCN congeners. Although in general terms the results of the present study do not seem to suggest specific risks derived from exposure to PCNs through fish and seafood consumption, to establish the contribution of individual PCN congeners to total TEQ is clearly necessary for the assessment of human health risks.

  5. Concentrations and patterns of polychlorinated naphthalenes in urban air in Beijing, China. (United States)

    Xue, Lingnan; Zhang, Lifei; Yan, Yan; Dong, Liang; Huang, Yeru; Li, Xiaoxiu


    Air samples were collected, using a high-volume air sampler, at an urban site in Beijing from April 2014 to March 2015. The polychlorinated naphthalene (PCN) concentration in the atmosphere in each season was determined. The total PCN (total target tri- to octachloronaphthalene congeners) concentrations were 1.99-19.0 pg/m(3), and the mean was 7.20 pg/m(3). The PCN concentrations were higher in fall than summer, indicating that the concentrations varied significantly over time. The trichloronaphthalene homolog was the predominant PCN homolog in all four seasons. The PCN toxic equivalent (TEQ) concentrations were 0.42-6.89 fg/m(3), and the mean was 1.74 fg/m(3). The CN-66/67 and CN-73 congeners were the predominant contributors to the TEQ concentrations. The mean seasonal TEQ concentration decreased in the order fall (3.18 fg/m(3)) > winter (1.41 fg/m(3)) > summer (1.11 fg/m(3)) > spring (1.03 fg/m(3)). The TEQ concentrations and the PCN concentrations did not follow the same seasonal trends, but the highest TEQ and PCN concentrations were both found in fall. Correlation analysis, ratio analysis, and principal component analysis were used to investigate the sources of PCNs to the Beijing atmosphere. The results suggested that combustion processes may be the main sources of PCNs to the Beijing atmosphere.

  6. Thermal destruction of wastes containing polychlorinated naphthalenes in an industrial waste incinerator. (United States)

    Yamamoto, Takashi; Noma, Yukio; Sakai, Shin-Ichi


    A series of verification tests were carried out in order to confirm that polychlorinated naphthalenes (PCNs) contained in synthetic rubber products (Neoprene FB products) and aerosol adhesives, which were accidentally imported into Japan, could be thermally destroyed using an industrial waste incinerator. In the verification tests, Neoprene FB products containing PCNs at a concentration of 2800 mg/kg were added to industrial wastes at a ratio of 600 mg Neoprene FB product/kg-waste, and then incinerated at an average temperature of 985 °C. Total PCN concentrations were 14 ng/m(3)N in stack gas, 5.7 ng/g in bottom ash, 0.98 ng/g in boiler dust, and 1.2 ng/g in fly ash. Destruction efficiency (DE) and destruction removal efficiency (DRE) of congener No. 38/40, which is considered an input marker congener, were 99.9974 and 99.9995 %, respectively. The following dioxin concentrations were found: 0.11 ng-TEQ/m(3)N for the stack gas, 0.096 ng-TEQ/g for the bottom ash, 0.010 ng-TEQ/g for the boiler dust, and 0.072 ng-TEQ/g for the fly ash. Since the PCN levels in the PCN destruction test were even at slightly lower concentrations than in the baseline test without PCN addition, the detected PCNs are to a large degree unintentionally produced PCNs and does not mainly stem from input material. Also, the dioxin levels did not change. From these results, we confirmed that PCNs contained in Neoprene FB products and aerosol adhesives could be destroyed to a high degree by high-temperature incineration. Therefore, all recalled Neoprene FB products and aerosol adhesives containing PCNs were successfully treated under the same conditions as the verification tests.

  7. Combined humic acid adsorption and enhanced Fenton processes for the treatment of naphthalene dye intermediate wastewater. (United States)

    Gu, Lin; Zhu, Nanwen; Wang, Liang; Bing, Xiaoxiao; Chen, Xiaoliang


    In this work, an humic acid adsorption with an enhanced Fenton oxidation was employed to treat the real effluent originating from the 1-diazo-2-naphthol-4-sulfonic acid (1,2,4-Acid) production plant. In a first step, humic acid with MgSO(4) was selected as adsorbent and precipitant for physicochemical pretreatment, the synergetic effect had led to 39% of COD removal and 89% of colour removal. A multi-staged Fenton oxidation process with inner circulation was introduced subsequently. The TOC, COD, 1,2,4-Acid, NH(4)(+)-N, SS and colour were reduced from 3024 mg/L, 12,780 mg/L, 9103 mg/L, 110 mg/L, 240 mg/L and 25,600 (multiple) to 46 mg/L, 210 mg/L, 21 mg/L, 16 mg/L, 3 mg/L and 25 through the combined process, respectively. Hydrogen peroxide consumed per kg COD had saved up to 36% when two-staged Fenton process with inner circulation (flow-back to influent ratio: 3) was applied. Influence of H(2)O(2) concentration, flow-back to influent ratio and staged Fenton mode were investigated in detail in order to find out the optimal operating parameters. The kinetics of 1,2,4-Acid degradation by two-staged Fenton process was investigated. The evolution of the main intermediates during the degradation process was conducted using the LC-(ESI)-TOF-MS technique, and the results showed a staged degradation pathway from the ring opening of naphthalene compounds to the formation of benzene compounds and carboxyl acids. The combined process had been proved effective in both technical and economic aspects.

  8. Seasonal variation of atmospheric polychlorinated biphenyls and polychlorinated naphthalenes in Japan (United States)

    Hogarh, Jonathan N.; Seike, Nobuyasu; Kobara, Yuso; Masunaga, Shigeki


    This study investigated the seasonality of atmospheric polychlorinated biphenyls (PCBs) and polychlorinated naphthalenes (PCNs) in Japan. Polyurethane foam (PUF) disk passive air samplers (PAS) were deployed simultaneously at 55 sites in spring 2008, summer 2008 and winter 2008/09. Sampler deployment spanned 8 continuous weeks in each season. The non-outlier ranges of the two pollutants (ng/sample) were as follows; ∑190PCBs: 6.5-38.6 (spring), 43.5-220.5 (summer) and 25.9-136 (winter); and ∑63PCNs: 0.4-3.9 (spring), 0.7-7.1 (summer) and 1.1-9.2 (winter). The corresponding values in air were ∑190PCBs (pg m-3): 33-197 (spring), 222-1125 (summer) and 132-694 (winter); and ∑63PCNs (pg m-3): 2.2-20 (spring), 3.5-36 (summer) and 5.7-47 (winter), when sampling rate of 3.5 m3 day-1 was assumed. Thus, the PCBs peaked in summer, while the PCNs mostly peaked in winter; there was an apparent contrast in their seasonality in Japan. For the PCNs, seasonal variability was significant at rural than urban sites. Normally, POPs would show relatively increased air content in summer due to vaporization effect. The PCNs appeared to deviate from such a trend because of overriding input of tri-CNs presumably transported from long range by northwesterly winds in the winter season. The dioxin-like fractions of either pollutant were reduced in winter by about 30-50%.

  9. Polychlorinated naphthalenes (PCNs) in Irish foods: Occurrence and human dietary exposure. (United States)

    Fernandes, A R; Tlustos, C; Rose, M; Smith, F; Carr, M; Panton, S


    The concentrations of selected polychlorinated naphthalene (PCN) congeners (PCNs 52, 53, 66/67, 68, 69, 71/72, 73, 74 and 75) were determined in 100 commonly consumed foods, in the first study on occurrence of these contaminants in the Republic of Ireland. Congener selection was based on current knowledge on PCN occurrence and toxicology, and the availability of reliable reference standards. The determinations were carried out using validated analytical methodology based on 13C10 labelled internal standardisation and measurement by HRGC-HRMS. The results showed PCN occurrence in the majority of studied foods--milk, fish, dairy and meat products, eggs, animal fat, shellfish, offal, vegetables, cereal products, etc. ranging from 0.09 ng kg(-1) whole weight for milk to 59.3 ng kg(-1) whole weight for fish, for the sum of the measured PCNs. The most frequently detected congeners were PCNs 66/67, PCN 52, and PCN 73. The highest concentrations were observed in fish, which generally showed congener profiles that reflect some commercial mixtures. The data compares well with other recently reported data for Western Europe. The dioxin-like toxicity (PCN TEQ) associated with these concentrations is lower than that reported for chlorinated dioxins or PCBs in food from Ireland. The dietary exposure of the Irish adult population to PCNs was calculated following a probabilistic approach, using the full dataset of occurrence and current consumption data. The estimates of dietary intakes at approximately 0.14 pg TEQ kg bw(-1) month(-1) for adults on an average diet, reflects the relatively lower occurrence levels.

  10. 萘-脂肪酸二元体系液相线%The liquidus of binary systems of naphthalene-fatty acid

    Institute of Scientific and Technical Information of China (English)

    金龙飞; 阮德水


    用目视变温法研究了萘-月桂酸、萘-肉豆蔻酸、萘-棕榈酸二元系的固液平衡.三个二元系均为低共熔型,低共熔点分别为:35 ℃,77.1%(wt)月桂酸;44 ℃,73.9%(wt)肉豆蔻酸;52 ℃,67.9%(wt)棕榈酸.%By means of the visual polythermal method,this paper studies the solid-liquid equilibria of binary mixtures of naphthalene-lauric acid,naphthalene-myristic acid and naphthalene-palmitic acid.The result is that the eatectics are 35℃,77.1%(wt) lauric acid,44℃,73.9%(wt) myristic acid,52℃,67.9%(wt) palmitic acid for naphthalene-lauric acid,naphhtalene-myristic acid and naphthalene-palmitic acid,respectively.

  11. Luminescent properties and structure of multicomponent naphthalene-{beta}-cyclodextrin complexes. 1. Effect of adding third parties, o-carborane or/and adamantane

    Energy Technology Data Exchange (ETDEWEB)

    Nazarov, Valery B. [Institute of Problems of Chemical Physics of Russian Academy of Sciences, 142432 Moscow region, Chernogolovka (Russian Federation); Avakyan, Vitaly G., E-mail: [Photochemistry Center of Russian Academy of Sciences, 119421 Moscow, Novatorov 7a (Russian Federation); Rudyak, Vladimir Y.; Alfimov, Michail V. [Photochemistry Center of Russian Academy of Sciences, 119421 Moscow, Novatorov 7a (Russian Federation); Vershinnikova, Tatiana G. [Institute of Problems of Chemical Physics of Russian Academy of Sciences, 142432 Moscow region, Chernogolovka (Russian Federation)


    Luminescence spectra of water solution of {beta}-cyclodextrin ({beta}-CD) inclusion complexes with naphthalene have been studied in the presence of carcass compounds (CC), adamantane and ocarborane, added in solution as the third parties. It was observed that the CC structure completely determines luminescence type displayed by the three-component complex. Adding adamantane to the solution leads to the disappearance of the spontaneous excimer fluorescence observed usually along with a monomer fluorescence of naphthalene and the appearance of the long lived phosphorescence at room temperature. At the same time, introducing o-carborane in solution of {beta}-CD inclusion complexes with naphthalene results in the dramatic growth of intensity of the excimer band at the expense of lowering intensity of monomer fluorescence. These phenomena were explained using results of the quantum-chemical calculation of the structure and complexation energies at the semi-empirical PM3 and DFT levels of theory. - Highlights: > Structure of carcass compounds determines luminescence types for naphthalene - betaCD complex. > Adding o-carborane leads to the growth of excimer fluorescence at low naphthalene concentrations. > Adding adamantane leads to the room temperature phosphorescence without deoxygenation.

  12. Naphthalene, a polycyclic aromatic hydrocarbon, in the fish samples from the Bangsai river of Bangladesh by gas chromatograph–mass spectrometry

    Directory of Open Access Journals (Sweden)

    M. Amzad Hossain


    Full Text Available Naphthalene, a polycyclic aromatic hydrocarbon (PAH, was detected and quantified in the selected varieties of fishes collected from the Bangsai river, one of the contaminated rivers located at Savar near the Dhaka Export Processing Zone (DEPZ, Bangladesh, during the period October 2009. Naphthalene, a carcinogenic compound, was analyzed by GC–MS as it was in the mixture of dichloromethane–hexane (1:1 crude extract of the flesh of fish samples collected from the aforesaid river. A suitable and reliable procedure for the extraction of naphthalene from the fish sample has been developed. A multi-layer clean-up (silica gel column was used, followed by glass fiber filter (GFF paper to eliminate the interfering organic compounds as well as the lipids and fat. It was observed that PAHs deposition on the samples takes place in different morphological parts of the biological materials. The PAH, naphthalene, was found in almost all of the fish samples and the concentration of which was in the range 0.030–1.004 μg/g. Recovery studies with fortified samples indicated that the recovery efficiency for naphthalene was about 79.14%. This concentration is within the range of values reported for other comparable regions of the world.

  13. Doping effect of nano-Ho2O3 and naphthalene in MgB2 superconductor prepared by powder-in-sealed-tube method (United States)

    Hansdah, J. S.; Sarun, P. M.


    The effect on crystal structure, critical temperature (TC), and critical current density (JC) of bulk MgB2 doped with nano-Ho2O3 and naphthalene was studied. Among all the samples studied, the sample doped with 2.5 wt. % nano-Ho2O3 have shown the best field dependent critical current density [JC(H)], i.e., 0.77 × 105 A/cm2 at 2 T and 10 K. While naphthalene doped MgB2 sample has shown the least JC(H) characteristics. The improved JC(H) characteristics in the nano-Ho2O3 doped MgB2 samples are attributed to improved flux pinning properties due to the formation of HoB4 and in naphthalene doped MgB2 samples. The slight lower TC value (37.01 K) in naphthalene doped samples is attributed to the occurrence of lattice defect by the substitution of carbon at boron site of MgB2 superconductor. Lower ΔTC value implies the lesser anisotropy in all the synthesized samples. The flux pinning force density (FP/FPmax) curves are theoretically analyzed using Dew-Hughes model. The result revealed that point pinning is the dominant pinning mechanism for nano-Ho2O3 doped MgB2 samples, while, surface and grain boundary pinning become dominant with increasing naphthalene addition in nano-Ho2O3 doped MgB2 samples.

  14. Exciplex emission and photoinduced energy transfer as a function of cavity dimension in naphthalene-linked aza-crown ethers

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Mailrayee Basu; Samanta, Subhodip; Chattopadhyay, Gautam; Ghosh, Sanjib E-mail:


    We report here the photophysical properties of two derivatives of N-({beta}-methylnaphthalene) aza-crown systems having different cavity dimensions. The aza-crown moiety is attached to {beta}-position of naphthalene moiety by one >CH{sub 2} unit in both the derivatives. The cavity size is found to have a pronounced effect on exciplex formation as well as energy transfer in the systems at room temperature and low temperature, respectively. Both the systems exhibit photoinduced electron transfer (PET) which is evident from their weaker fluorescence emission and their quenched singlet lifetimes as compared to that of free naphthalene. The systems also show a solvent sensitive red shifted broad structureless emission which is assigned to exciplex formation. The ratio of quantum yields of exciplex to monomer emission (phi (cursive,open) Greek{sub Exp}/phi (cursive,open) Greek{sub M}) is lower in the smaller aza-crown (L1) as compared to that in the larger aza-crown (L2) implying a different geometry of the two systems in the excited state. Semi-emperical calculations performed on the systems also corroborate the different geometry of the two systems. Complexation of alkali metals, rare earth ions and protons by the aza-crown moiety results in enhancement of fluorescence emission due to blocking of PET. In the presence of protons, L1 exhibits a new emission due to excimer formation which has not been observed in L2 under similar conditions. The rare earth ion complexes of L1 and L2 at low temperature exhibit energy transfer from the lowest triplet state of naphthalene to the rare earth ion states, the extent of energy transfer being greater in the larger aza-crown (L2) as compared to that in smaller aza-crown system (L1)

  15. Noncatalytic hydrogenation of naphthalene in nanosized membrane reactors with accumulated hydrogen and controlled adjustment of their reaction zone volumes (United States)

    Soldatov, A. P.


    As part of ongoing studies aimed at designing the next generation of nanosized membrane reactors (NMRs) with accumulated hydrogen, the noncatalytic hydrogenation of naphthalene in pores of ceramic membranes (TRUMEM ultrafiltration membranes with D av = 50 and 90 nm) is performed for the first time, using hydrogen preadsorbed in a hybrid carbon nanostructure: mono- and multilayered oriented carbon nanotubes with graphene walls (OCNTGs) that form on inner pore surfaces. In this technique, the reaction proceeds in the temperature range of 330-390°C at contact times of 10-16 h. The feedstock is an 8% naphthalene solution in decane. The products are analyzed via chromatography on a quartz capillary column coated with polydimethylsiloxane (SE-30). It is established for the first time that in NMRs, the noncatalytic hydrogenation of naphthalene occurs at 370-390°C, forming 1,2,3,4-tetrahydronaphthalene in amounts of up to 0.61%. The rate constants and activation energy (123.5 kJ/mol) of the noncatalytic hydrogenation reaction are determined for the first time. The possibility of designing an NMR with an adjustable reaction zone volume is explored. Changes in the pore structure of the membranes after their modification with pyrocarbon nanosized crystallites (PNCs) are therefore studied as well. It is shown that lengthening the process time reduces pore size: within 23 h after the deposition of PNCs, the average pore radius ( r av) falls from 25 to 3.1 nm. The proposed approach would allow us to design nanoreactors of molecular size and conduct hydrogenation reactions within certain guidelines to synthesize new chemical compounds.

  16. Optimization of the synthesis of SAPO-11 for the methylation of naphthalene with methanol by varying templates and template content

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaoxiao [University of Chinese Academy of Sciences, Beijing (China); Zhang, Wei; Zhao, Liangfu; Xiang, Hongwei, E-mail:, E-mail: [Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan (China); Guo, Shaoqing [Taiyuan University of Science and Technology, Taiyuan (China)


    SAPO-11 zeolites were successfully synthesized by using three different templates (diethylamine (DEA), di-n-propylamine (DPA) and di-isopropylamine (DIPA)) and varying DPA contents (nDPA/Al{sub 2}O{sub 3} = 0.8, 1.2, 1.6 and 2.0) under hydrothermal conditions. The samples were characterized by powder X-ray diffractometry (XRD), scanning electron microscopy (SEM), N{sub 2} adsorption-desorption, temperature programmed desorption of ammonia (NH{sub 3} -TPD) and {sup 29}Si magic angle spinning (MAS) nuclear magnetic resonance (NMR). The samples were also evaluated towards the methylation of naphthalene with methanol to produce 2,6-dimethylnaphthalene (2,6-DMN). XRD results indicated that the directing effect of the different templates for AEL (Aluminophosphate-ELeven) structure decreased in the order DPA > DEA > DIPA and the most suitable DPA content was nDPA/Al{sub 2}O{sub 3} = 1.2. N{sub 2} adsorption-desorption results showed that SAPO-11(DPA,1.2) exhibited the broadest pore size distribution, the highest BET specific surface area and the largest pore volume among all the SAPO-11 samples. SAPO-11(DPA,1.2) exhibited high catalytic performances in the methylation of naphthalene due to its high crystallinity, high external surface and broad pore size distribution. The pore structure of SAPO-11 zeolite, rather than its acidity, played an important role in achieving high catalytic performances in the methylation of naphthalene with methanol. (author)

  17. Poly[μ-aqua-aqua-μ4-naphthalene-1,8-dicarboxyl­ato-barium]: a layer structure


    Dan Zhao; Fei Fei Li; Peng Liang; Jun-Ran Ren; Shen Qiu


    The title compound, [Ba(C12H6O4)(H2O)2]n, is represented by a layer-like structure built of BaO8 polyhedra. The asymmetric unit contains a Ba2+ ion, half a coordinating water molecule and half a μ4-bridging naphthalene-1,8-dicarboxylate (1,8-nap) ligand, the whole structure being generated by twofold rotational symmetry. The carboxylate groups of the 1,8-nap ligands act as bridges linking four Ba2+ ions, while each Ba2+ ion is eight-coordinated by O atoms from four 1,8-nap ligands and tw...

  18. 'Click' functionalised polymer resins: a new approach to the synthesis of surface attached bipyridinium and naphthalene diimide [2]rotaxanes. (United States)

    Wilson, Hannah; Byrne, Sean; Bampos, Nick; Mullen, Kathleen M


    Herein we describe the design and synthesis of a series of solid-tethered [2]rotaxanes utilising crown ether-naphthalene diimide or crown ether-bipyridinium host guest interactions. TentaGel polystyrene resins were initially modified in a two-stage procedure to azide functionalised beads before the target supramolecular architectures were attached using a copper catalysed "click" procedure. The final assembly was examined using IR spectroscopy and gel-phase (1)H High Resolution Magic Angle Spinning (HR MAS) NMR spectroscopy. The HR MAS technique enabled a direct comparison between the solid-tethered architectures and the synthesis and characterisation of analogous solution-based [2]rotaxanes to be made.

  19. A pyridyl-monoannulated naphthalene diimide motif self-assembles into tuneable nanostructures by means of solvophobic control. (United States)

    Bhosale, Sheshanath V; Adsul, Mukund; Shitre, Ganesh V; Bobe, Sharad R; Bhosale, Sidhanath V; Privér, Steven H


    The supramolecular self-assembly of the core-substituted naphthalene diimide bearing pyridyl motifs leads to the formation of a variety of nanostructures with pH and solvent control. The detection of HCl can be monitored by UV/Vis and fluorescence spectroscopy, as well as the naked eye, with a change in colour (blue to red, see figure). The cycle is fully reversed by the addition of triethylamine (TEA). Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Crystal structure of 1,1'-[imidazolidine-1,3-diylbis(methyl-ene)]bis-(naphthalen-2-ol). (United States)

    Rivera, Augusto; Rojas, Jicli José; Ríos-Motta, Jaime; Bolte, Michael


    The crystal structure of the title compound, C25H24N2O2, at 173 K has monoclinic (C2/c) symmetry. The mol-ecule is located on a crystallographic twofold rotation axis with only half a mol-ecule in the asymmetric unit. The imidazolidine ring adopts a twist conformation, with a twist about the ring C-C bond. The crystal structure shows the anti-clinal disposition of the two (2-hy-droxy-naphthalen-1-yl)methyl substituents of the imidazolidine ring. The structure displays two intra-molecular O-H⋯N hydrogen bonds, each forming an S(6) ring motif.

  1. Methyl (2Z-2-{[N-(2-formylphenyl-4-methylbenzenesulfonamido]methyl}-3-(naphthalen-1-ylprop-2-enoate

    Directory of Open Access Journals (Sweden)

    R. Madhanraj


    Full Text Available In the title compound, C29H25NO5S, the sulfonyl-bound benzene ring forms dihedral angles of 42.1 (1 and 48.5 (1°, respectively, with the formyl-substituted benzene ring and the naphthalene residue. In the crystal, pairs of C—H...O interactions lead to the formation of R22(10 inversion dimers, which are linked by further C—H...O interactions into supramolecular tapes running along [100]. The crystal packing is further stabilized by C—H...π interactions.


    Institute of Scientific and Technical Information of China (English)


    Polymers of 1- and 2-vinylnaphthalene containing more than about 50mol% sulfonic acid groups dissolve in water to form "hypercoiled" conformations which have many of the properties of micelles. Hydrophobic molecules such as anthracene and perylene are selectively absorbed in these pseudo micellar structures, and their fluorescence emission is sensitized by energy transfer from the surrounding naphthalene chromophores.When irradiated with UV light in the presence of oxygen, the emission of perylene rapidly decreases. It is proposed that this is due to reaction of singlet oxygen with the perylene trapped in the hypercoiled polymer.

  3. Crystal structure of (2S)-3-methyl-2-[(naphthalen-1-ylsulfon­yl)amino]­butanoic acid (United States)

    Danish, Muhammad; Tahir, Muhammad Nawaz; Jabeen, Nabila; Raza, Muhammad Asam


    The title compound, C15H17NO4S, was synthesized from l-valine and naphthalene-1-sulfonyl chloride. The hydrogen-bonded carb­oxy­lic acid groups form a catemer C(4) motif extending along [100]. The catemer structure is reinforced by a rather long N—H⋯O hydrogen bond, between the sulfamide N—H group and a carb­oxy­lic acid O atom [H⋯O = 2.52 (2) Å], and a C—H⋯O hydrogen bond. PMID:25995919

  4. Messenger RNA (mRNA) nanoparticle tumour vaccination (United States)

    Phua, Kyle K. L.; Nair, Smita K.; Leong, Kam W.


    Use of mRNA-based vaccines for tumour immunotherapy has gained increasing attention in recent years. A growing number of studies applying nanomedicine concepts to mRNA tumour vaccination show that the mRNA delivered in nanoparticle format can generate a more robust immune response. Advances in the past decade have deepened our understanding of gene delivery barriers, mRNA's biological stability and immunological properties, and support the notion for engineering innovations tailored towards a more efficient mRNA nanoparticle vaccine delivery system. In this review we will first examine the suitability of mRNA for engineering manipulations, followed by discussion of a model framework that highlights the barriers to a robust anti-tumour immunity mediated by mRNA encapsulated in nanoparticles. Finally, by consolidating existing literature on mRNA nanoparticle tumour vaccination within the context of this framework, we aim to identify bottlenecks that can be addressed by future nanoengineering research.

  5. Transient absorption probe of intermolecular triplet excimer of naphthalene in fluid solutions: Identification of the species based on comparison to the intramolecular triplet excimers of covalently-linked dimers

    Energy Technology Data Exchange (ETDEWEB)

    Wang, X.; Kofron, W.G.; Kong, S.; Rajesh, C.S.; Modarelli, D.A.; Lim, E.C.


    The authors report here the observation of the laser-induced transient absorption spectrum of intermolecular triplet excimers of naphthalene in fluid solution. This assignment is confirmed by comparison to the transient absorption spectra of the intramolecular triplet excimers of covalently linked dimers of naphthalene and quinoxaline.

  6. Recent innovations in mRNA vaccines. (United States)

    Ulmer, Jeffrey B; Geall, Andrew J


    Nucleic acid-based vaccines are being developed as a means to combine the positive attributes of both live-attenuated and subunit vaccines. Viral vectors and plasmid DNA vaccines have been extensively evaluated in human clinical trials and have been shown to be safe and immunogenic, although none have yet been licensed for human use. Recently, mRNA based vaccines have emerged as an alternative approach. They promise the flexibility of plasmid DNA vaccines, without the need for electroporation, but with enhanced immunogenicity and safety. In addition, they avoid the limitations of anti-vector immunity seen with viral vectors, and can be dosed repeatedly. This review highlights the key papers published over the past few years and summarizes prospects for the near future.

  7. Alternative polyadenylation of mRNA precursors (United States)

    Tian, Bin; Manley, James L.


    Alternative polyadenylation (APA) is an RNA-processing mechanism that generates distinct 3′ termini on mRNAs and other RNA polymerase II transcripts. It is widespread across all eukaryotic species and is recognized as a major mechanism of gene regulation. APA exhibits tissue specificity and is important for cell proliferation and differentiation. In this Review, we discuss the roles of APA in diverse cellular processes, including mRNA metabolism, protein diversification and protein localization, and more generally in gene regulation. We also discuss the molecular mechanisms underlying APA, such as variation in the concentration of core processing factors and RNA-binding proteins, as well as transcription-based regulation. PMID:27677860

  8. Synthesis and anti-Parkinson′s screening of some novel 2-(naphthalen-1-yl-N-[2-substituted (4-oxothiazolidin-3-yl]acetamide derivatives

    Directory of Open Access Journals (Sweden)

    S Gomathy


    Full Text Available Context: The objective of this study is to synthesize some novel 2-(naphthalen-1-yl-N-[2-substituted (4-oxothiazolidin-3-yl] acetamide derivatives and to study their anti-Parkinson′s activity. Materials and Methods: Ethyl (naphthalen-1-yl acetate (1 was prepared from naphthalene-1-yl acetic acid in ethanol. Condensation of ethyl (naphthalen-1-yl acetate (1 with an equimolar quantity of hydrazine hydrate in methanol afforded 2-(naphthalen-1-yl acetohydrazide (2. Compound 2 which on condensation with different aromatic aldehydes yielded respective Schiff bases (3a-e. The Schiff bases are then cyclised with mercaptoacetic acid in dioxane to yield the corresponding naphthalene bearing 4-thiazolidinone derivatives (4a-e. The structures of the synthesized compounds have been established based on their analytical and spectral data such as FT-IR, Mass and NMR spectroscopy. Results: The synthesized compounds were evaluated for their anti-Parkinson′s screening using in vitro free radical scavenging assay. Compounds 4c, 4d, and 4e showed potent free radical scavenging activity giving 82%, 74% and 76% respectively. Three compounds 4c, 4d and 4e were taken for in vivo anti-Parkinson′s screening by 6-Hydroxydopamine lesioned rat′s model (6-OHDA. Among these, one of the 4-thiazolidinone derivatives having a 3-nitro phenyl group at 2 nd position 4c exhibited maximum anti-Parkinson′s activity. Conclusion: Thiazolidinone derivatives showed significant anti-Parkinson′s activity in the 6-OHDA lesioned rat model. The estimated parameters were closely relevant to clinical parkinsonism, and the drug treatment protected the diseased brain of a rat. We appreciate further detailed studies with these drugs in anti-Parkinson′s pharmacology and toxicology.

  9. 萘系高效减水剂接枝改性研究%The research of a new naphthalene superplasticizer with graft modification

    Institute of Scientific and Technical Information of China (English)

    官梦芹; 方云辉; 郑飞龙


    以工业萘、浓硫酸、甲醛、液碱、木质素磺酸钠为主要原料合成一种新型萘系高效减水剂.其合成工艺条件为:m(工业萘)∶m(浓硫酸)∶m(甲醛)∶m(木质素磺酸钠)=100∶115∶61∶32,磺化温度(163±2)℃,磺化时间3h,缩合温度(120±2)℃,缩合时间5.5 h.性能对比试验结果表明,木质素磺酸钠与萘磺酸盐接枝改性合成的新型萘系高效减水剂的减水率高、坍落度损失小,合成成本低,大大改善了萘系减水剂的性能.%We synthetized a new kind of synthetic naphthalene superplasticizer with industrial naphthalene .concentrated sulfune acid,formaldehyde,alkali and liquid lignin sulfonic acid sodium as the main raw materials. The synthetic process condition:in-dustrial naphthalene: concentrated sulfuric acid: formaldehyde:lignin sulfonic acid sodium=100:115:61:32. Preparing sulphonation temperature was (163+2) ℃,and the time was 3 hours. Condensation temperature was(120±2) ℃,the time was 5.5 hours. The comparison experiment showed that the new naphthalene superplasticizer synthesized by lignin sulfonic acid sodium and naphthalene sulfonate with graft modification had higher water reducing ratio, low slumps losses and synthesis cost, greatly improved the properties of naphthalene superplasticizer.

  10. Trace Analysis of Metals Using Naphthalene Part I Spectrophotometric Determination of Cobalt after Extraction of Its Chinoform Complex with Molten Naphthalene


    SATAKE, Masatada; PURl, Bal K.; YUH, Ju Chieng; CHANG, Lih-Fen


    A new method is described for naphthalene extraction andspectrophotometric determination of trace cobalt with chinoform.The method is based on the formation of the colored complex whichis extractable with molten naphthalene and on the dissolution ofthe extract in dimethylformamide. This solution follows Beer'slaw at 428 nm over the range of 3-43 μg of cobalt per 10 ml ofdimethylformamide. The color of the complex is stable for 90min. The various factors such as pH, amounts of reagent andnapht...

  11. Genome sequence of the deltaproteobacterial strain NaphS2 and analysis of differential gene expression during anaerobic growth on naphthalene.

    Directory of Open Access Journals (Sweden)

    Raymond J DiDonato

    Full Text Available BACKGROUND: Anaerobic polycyclic hydrocarbon (PAH degradation coupled to sulfate reduction may be an important mechanism for in situ remediation of contaminated sediments. Steps involved in the anaerobic degradation of 2-methylnaphthalene have been described in the sulfate reducing strains NaphS3, NaphS6 and N47. Evidence from N47 suggests that naphthalene degradation involves 2-methylnaphthalene as an intermediate, whereas evidence in NaphS2, NaphS3 and NaphS6 suggests a mechanism for naphthalene degradation that does not involve 2-methylnaphthalene. To further characterize pathways involved in naphthalene degradation in NaphS2, the draft genome was sequenced, and gene and protein expression examined. RESULTS: Draft genome sequencing, gene expression analysis, and proteomic analysis revealed that NaphS2 degrades naphthoyl-CoA in a manner analogous to benzoyl-CoA degradation. Genes including the previously characterized NmsA, thought to encode an enzyme necessary for 2-methylnaphthalene metabolism, were not upregulated during growth of NaphS2 on naphthalene, nor were the corresponding protein products. NaphS2 may possess a non-classical dearomatizing enzyme for benzoate degradation, similar to one previously characterized in Geobacter metallireducens. Identification of genes involved in toluene degradation in NaphS2 led us to determine that NaphS2 degrades toluene, a previously unreported capacity. The genome sequence also suggests that NaphS2 may degrade other monoaromatic compounds. CONCLUSION: This study demonstrates that steps leading to the degradation of 2-naphthoyl-CoA are conserved between NaphS2 and N47, however while NaphS2 possesses the capacity to degrade 2-methylnaphthalene, naphthalene degradation likely does not proceed via 2-methylnaphthalene. Instead, carboxylation or another form of activation may serve as the first step in naphthalene degradation. Degradation of toluene and 2-methylnaphthalene, and the presence of at least one

  12. Exchange of polychlorinated biphenyls (PCBs) and polychlorinated naphthalenes (PCNs) between air and a mixed pasture sward. (United States)

    Barber, Jonathan L; Thomas, Gareth O; Bailey, Rebekah; Kerstiens, Gerhard; Jones, Kevin C


    To improve understanding of air-to-vegetation transfer of persistent organic pollutants (POPs), uptake and depuration of polychlorinated biphenyls (PCBs) and polychlorinated naphthalenes (PCNs) between grass sward and air was investigated. Pasture swards were placed in fanned (2 m s(-1) wind speed) and unfanned conditions for a period of 20 days and sampled at intervals. Depuration was carried out after a short (4 days) and a long (14 days) exposure period. Prior to contamination, a mixed pasture sward at a semi-rural location contained sigmaPCN concentrations 15-20% of the sigmaPCB concentration. Uptake of both PCBs and PCNs was broadly linear in fanned and unfanned conditions over the 20-day period, i.e., the pasture did not reach equilibrium with the air. Uptake rates (fluxes) were greater under the fanned conditions. The difference in uptake rates between fanned and unfanned conditions increased with degree of chlorination for both PCBs and PCNs, ranging between a factor of 2 for tri-chlorinated PCBs and PCNs and a factor 5 for octa-chlorinated PCBs. Depuration results over the first hours were very scattered, showing an initial period of loss, followed by an increase in concentrations, possibly as a result of re-volatilization of PCBs from the soil in the trays, with consequent recapture by the overlying sward. Rapid clearance was observed over the following days, but depuration of PCBs and PCNs was still incomplete after 14 days, with 20% of the initial concentration of the sigmaPCBs and 10% of the sigmaPCNs retained by the sward. There was no difference in the proportion of POPs retained in the sward between the 4- and 14-day contamination treatments. POP-specific differences in the amount of compound "trapped" in leaves after contamination were observed. The results show that, although changes in the rate of air movement around a pasture have an effect on the uptake rate of POPs into the vegetation, plant-side resistance controls both the air-to-pasture and

  13. Protective Effect of Rosemary (Rosmarinus Officinalis Extract on Naphthalene Induced Nephrotoxicity in Adult Male Albino Rat

    Directory of Open Access Journals (Sweden)

    Neveen M. El-Sherif


    Full Text Available Background: Naphthalene (NA is a common environmental contaminant and is abundant in tobacco smoke. Rosemary (Rosmarinus officinalis is a herb commonly used as a spice and flavoring agents in food processing and is useful in the treatment of many diseases. Aim of the work: To study the nephrotoxicity of NA and to evaluate the possible protective role of rosemary extract in adult male albino rat. Materials and Methods: 25 animals were divided into three groups: Group I (Control group, Group II (NA treated group received NA at a dose of 200 mg/kg/day dissolved in 5 ml/kg corn oil orally by gastric tube, Group III (protected group received rosemary extract (10 ml/kg/day followed after 60 min by NA at the same previous dose orally by gastric tube. The experiment lasted 30 days. The following parameters were studied: Biochemical assessment of renal function, histological, immunohistochemical, morphometric studies and statistical analysis of the results. Results: NA treatment resulted in a highly significant increase in the mean values of serum urea and creatinine. NA induced histological changes in the form of glomerular congestion. Some glomeruli demonstrated marked mesangial expansion and hence that Bowman's spaces were almost completely obliterated. Shrinkage of renal glomeruli with widening of Bowman's spaces could also be seen. Focal tubular dilatation with appearance of casts inside the tubules was observed. Congested peritubular blood vessels and interstitial hemorrhage were also seen. The medullary region demonstrated vascular congestion and fibrosis. Focal cellular infiltration was presented in the interstitium. The renal cortex of NA treated rats showed a noticeable down regulation in alkaline phosphatase positive immunoreactive cells in some proximal convoluted tubules. NA induced up regulation of positive immunoreaction for inducible nitric oxide synthase in the proximal and distal convoluted tubules as well as in the collecting tubules

  14. Effects of Naphthalene Acetic Acid and Carbaryl on Fruit Thinning in ‘Kinnow’ Mandarin Trees

    Directory of Open Access Journals (Sweden)

    Golnar Safaei-Nejad


    Full Text Available Several fruit trees including some cultivars of citrus tend to develop irregular bearing. Fruit thinning has been used for hundreds of years to manipulate blooming and crop load to improve the alternate bearing process. Frequently, combination sprays of two or more chemical thinners are used in various fruit trees and the thinning responses were additive and more effective than individual compounds. In this study, we investigated the effects of Naphthalene acetic acid and carbaryl alone and in combination in thinning of ‘Kinnow’ mandarin (Citrus reticulata Blanco trees. Some characteristics such as fruit weight, diameter and volume, total soluble solid (TSS, titrable acidity (TA, TSS/TA, vitamin C and peel thickness were measured prior to harvest for 2010 and 2011 as a complete randomized block design with 13 treatments and four replications. Results showed that the application of NAA and carbaryl alone in June drop stage of fruit growth increased fruit thinning percentage, TSS of fruit juice, fruit weight, volume, diameter and length. These chemical thinners improved fruit size significantly by increasing the leaf/fruit ratio. Combination sprays could not effectively thin fruits than individual chemicals and thus had no effect on fruit size. Fruit characteristics such as TA, ascorbic acid, TSS/TA ratio and peel thickness were not affected by our treatments.  Normal 0 false false false EN-US X-NONE AR-SA /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin-top:0cm; mso-para-margin-right:0cm; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0cm; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso

  15. The Ternary Complex of PrnB (the Second Enzyme in the Pyrrolnitrin Biosynthesis Pathway), Tryptophan, and Cyanide Yields New Mechanistic Insights into the Indolamine Dioxygenase Superfamily* (United States)

    Zhu, Xiaofeng; van Pée, Karl-Heinz; Naismith, James H.


    Pyrrolnitrin (3-chloro-4-(2′-nitro-3′-chlorophenyl)pyrrole) is a broad-spectrum antifungal compound isolated from Pseudomonas pyrrocinia. Four enzymes (PrnA, PrnB, PrnC, and PrnD) are required for pyrrolnitrin biosynthesis from tryptophan. PrnB rearranges the indole ring of 7-Cl-l-tryptophan and eliminates the carboxylate group. PrnB shows robust activity in vivo, but in vitro activity for PrnB under defined conditions remains undetected. The structure of PrnB establishes that the enzyme belongs to the heme b-dependent indoleamine 2,3-dioxygenase (IDO) and tryptophan 2,3-dioxygenase (TDO) family. We report the cyanide complex of PrnB and two ternary complexes with both l-tryptophan or 7-Cl-l-tryptophan and cyanide. The latter two complexes are essentially identical and mimic the likely catalytic ternary complex that occurs during turnover. In the cyanide ternary complexes, a loop previously disordered becomes ordered, contributing to the binding of substrates. The conformations of the bound tryptophan substrates are changed from that seen previously in the binary complexes. In l-tryptophan ternary complex, the indole ring now adopts the same orientation as seen in the PrnB binary complexes with other tryptophan substrates. The amide and carboxylate group of the substrate are orientated in a new conformation. Tyr321 and Ser332 play a key role in binding these groups. The structures suggest that catalysis requires an l-configured substrate. Isothermal titration calorimetry data suggest d-tryptophan does not bind after cyanide (or oxygen) coordinates with the distal (or sixth) site of heme. This is the first ternary complex with a tryptophan substrate of a member of the tryptophan dioxygenase superfamily and has mechanistic implications. PMID:20421301

  16. Study of 'Redhaven' peach and its white-fleshed mutant suggests a key role of CCD4 carotenoid dioxygenase in carotenoid and norisoprenoid volatile metabolism

    Directory of Open Access Journals (Sweden)

    Tartarini Stefano


    Full Text Available Abstract Background Carotenoids are plant metabolites which are not only essential in photosynthesis but also important quality factors in determining the pigmentation and aroma of flowers and fruits. To investigate the regulation of carotenoid metabolism, as related to norisoprenoids and other volatile compounds in peach (Prunus persica L. Batsch., and the role of carotenoid dioxygenases in determining differences in flesh color phenotype and volatile composition, the expression patterns of relevant carotenoid genes and metabolites were studied during fruit development along with volatile compound content. Two contrasted cultivars, the yellow-fleshed 'Redhaven' (RH and its white-fleshed mutant 'Redhaven Bianca' (RHB were examined. Results The two genotypes displayed marked differences in the accumulation of carotenoid pigments in mesocarp tissues. Lower carotenoid levels and higher levels of norisoprenoid volatiles were observed in RHB, which might be explained by differential activity of carotenoid cleavage dioxygenase (CCD enzymes. In fact, the ccd4 transcript levels were dramatically higher at late ripening stages in RHB with respect to RH. The two genotypes also showed differences in the expression patterns of several carotenoid and isoprenoid transcripts, compatible with a feed-back regulation of these transcripts. Abamine SG - an inhibitor of CCD enzymes - decreased the levels of both isoprenoid and non-isoprenoid volatiles in RHB fruits, indicating a complex regulation of volatile production. Conclusions Differential expression of ccd4 is likely to be the major determinant in the accumulation of carotenoids and carotenoid-derived volatiles in peach fruit flesh. More in general, dioxygenases appear to be key factors controlling volatile composition in peach fruit, since abamine SG-treated 'Redhaven Bianca' fruits had strongly reduced levels of norisoprenoids and other volatile classes. Comparative functional studies of peach carotenoid

  17. Respiratory Syncytial Virus-Infected Mesenchymal Stem Cells Regulate Immunity via Interferon Beta and Indoleamine-2,3-Dioxygenase (United States)

    Cheung, Michael B.; Sampayo-Escobar, Viviana; Green, Ryan; Moore, Martin L.; Mohapatra, Subhra; Mohapatra, Shyam S.


    Respiratory syncytial virus (RSV) has been reported to infect human mesenchymal stem cells (MSCs) but the consequences are poorly understood. MSCs are present in nearly every organ including the nasal mucosa and the lung and play a role in regulating immune responses and mediating tissue repair. We sought to determine whether RSV infection of MSCs enhances their immune regulatory functions and contributes to RSV-associated lung disease. RSV was shown to replicate in human MSCs by fluorescence microscopy, plaque assay, and expression of RSV transcripts. RSV-infected MSCs showed differentially altered expression of cytokines and chemokines such as IL-1β, IL6, IL-8 and SDF-1 compared to epithelial cells. Notably, RSV-infected MSCs exhibited significantly increased expression of IFN-β (~100-fold) and indoleamine-2,3-dioxygenase (IDO) (~70-fold) than in mock-infected MSCs. IDO was identified in cytosolic protein of infected cells by Western blots and enzymatic activity was detected by tryptophan catabolism assay. Treatment of PBMCs with culture supernatants from RSV-infected MSCs reduced their proliferation in a dose dependent manner. This effect on PBMC activation was reversed by treatment of MSCs with the IDO inhibitors 1-methyltryptophan and vitamin K3 during RSV infection, a result we confirmed by CRISPR/Cas9-mediated knockout of IDO in MSCs. Neutralizing IFN-β prevented IDO expression and activity. Treatment of MSCs with an endosomal TLR inhibitor, as well as a specific inhibitor of the TLR3/dsRNA complex, prevented IFN-β and IDO expression. Together, these results suggest that RSV infection of MSCs alters their immune regulatory function by upregulating IFN-β and IDO, affecting immune cell proliferation, which may account for the lack of protective RSV immunity and for chronicity of RSV-associated lung diseases such as asthma and COPD. PMID:27695127

  18. High activity of indoleamine 2,3 dioxygenase enzyme predicts disease severity and case fatality in bacteremic patients. (United States)

    Huttunen, Reetta; Syrjänen, Jaana; Aittoniemi, Janne; Oja, Simo S; Raitala, Annika; Laine, Janne; Pertovaara, Marja; Vuento, Risto; Huhtala, Heini; Hurme, Mikko


    Indoleamine 2,3-dioxygenase (IDO), which is the rate-limiting enzyme for tryptophan (trp) catabolism, may play a critical role in various inflammatory disorders. Recent studies on trauma patients have suggested that the degradation of trp is associated with the development of sepsis. The role of IDO activity in bacteremic patients is unclear. We studied IDO activity in 132 patients with bacteremia caused by Staphylococcus aureus, Streptococcus pneumoniae, beta-hemolytic streptococcae, or Eschericia coli. The serum concentrations of trp and its metabolite kynurenine (kyn) were measured by reverse-phase high-performance liquid chromatography 1 to 4 days after the positive blood culture and on recovery. The kyn-to-trp ratio (kyn/trp), reflecting the activity of the IDO enzyme, was calculated. The maximum value in the ratio for every patient during 1 to 4 days after positive blood culture was used in analysis. The maximum kyn/trp ratio was significantly higher in nonsurvivors versus those who survived (193.7 vs. 82.4 micromol/mmol; P = 0.001). The AUC(ROC) of maximal kyn/trp in the prediction of case fatality was 0.75 (95% confidence interval, 0.64-0.87), and the kyn/trp ratio at a cutoff level of 120 micromol/mmol showed 83% sensitivity and 69% specificity for fatal disease. A kyn/trp ratio greater than 120 micromol/mmol was associated with increased risk of death versus low (

  19. Indoleamine 2,3-dioxygenase 1 (IDO1 activity correlates with immune system abnormalities in multiple myeloma

    Directory of Open Access Journals (Sweden)

    Bonanno Giuseppina


    Full Text Available Abstract Background Multiple myeloma (MM is a plasma cell malignancy with a multifaceted immune dysfunction. Indoleamine 2,3-dioxygenase 1 (IDO1 degrades tryptophan into kynurenine (KYN, which inhibits effector T cells and promote regulatory T-cell (Treg differentiation. It is presently unknown whether MM cells express IDO1 and whether IDO1 activity correlates with immune system impairment. Methods We investigated IDO1 expression in 25 consecutive patients with symptomatic MM and in 7 patients with either monoclonal gammopathy of unknown significance (MGUS; n=3 or smoldering MM (SMM; n=4. IDO1-driven tryptophan breakdown was correlated with the release of hepatocyte growth factor (HGF and with the frequency of Treg cells and NY-ESO-1-specific CD8+ T cells. Results KYN was increased in 75% of patients with symptomatic MM and correlated with the expansion of CD4+CD25+FoxP3+ Treg cells and the contraction of NY-ESO-1-specific CD8+ T cells. In vitro, primary MM cells promoted the differentiation of allogeneic CD4+ T cells into bona fide CD4+CD25hiFoxP3hi Treg cells and suppressed IFN-γ/IL-2 secretion, while preserving IL-4 and IL-10 production. Both Treg expansion and inhibition of Th1 differentiation by MM cells were reverted, at least in part, by d,l-1-methyl-tryptophan, a chemical inhibitor of IDO. Notably, HGF levels were higher within the BM microenvironment of patients with IDO+ myeloma disease compared with patients having IDO- MM. Mechanistically, the antagonism of MET receptor for HGF with SU11274, a MET inhibitor, prevented HGF-induced AKT phosphorylation in MM cells and translated into reduced IDO protein levels and functional activity. Conclusions These data suggest that IDO1 expression may contribute to immune suppression in patients with MM and possibly other HGF-producing cancers.

  20. Immunoprotective role of indoleamine 2,3-dioxygenase in engraftment of allogenic skin substitute in wound healing. (United States)

    Bahar, Mohammad Ali; Nabai, Layla; Ghahary, Aziz


    Delayed wound healing can significantly impact survival of patients who suffer from severe thermal injury. In general, the use of a wound coverage, particularly with those of bilayer skin substitute, would be ideal to promote healing and prevent infection and fluid loss. Although the use of an autologous skin substitute is desirable, its preparation is time consuming and its immediate availability is impossible. To overcome this difficulty, the authors have previously demonstrated that the expression of indoleamine 2,3 dioxygenase (IDO) could function as a local immune suppressive factor in protecting allogenic fibroblasts and keratinocytes without using any immunosuppressive medication in a wound healing animal model. IDO, which is naturally expressed in the placenta by trophoblast cells during pregnancy, plays an essential role in maternal tolerance toward the fetus. The potent and selective local immunosuppressive function of IDO makes this enzyme a very promising tool for engineering a nonrejectable skin allograft. Here, the authors reviewed and discussed how the expression of IDO by the primary cells of our skin substitute can serve as a source of IDO enzyme activity and generate a tryptophan-deficient environment. Under this condition, only skin cells but not immune cells (CD4(+) and CD8(+) cells) would survive and protect engraftment of this engineered and shelf-ready skin substitute to be used not only as wound coverage but also as a rich source of wound healing promoting factors. Therefore, this review summarizes the body of work on immunoprotective role of IDO in engraftment of allogenic skin substitute in wound healing, which has recently been reported by the authors' research group and others.

  1. Structural Basis for Substrate and Oxygen Activation in Homoprotocatechuate 2,3-Dioxygenase: Roles of Conserved Active Site Histidine-200 (United States)

    Kovaleva, Elena G.; Rogers, Melanie S.; Lipscomb, John D.


    Kinetic and spectroscopic studies have shown that the conserved active site residue His200 of the extradiol ring-cleaving homoprotocatechuate 2,3-dioxygenase (FeHPCD) from Brevibacterium fuscum is critical for efficient catalysis. The roles played by this residue are probed here by analysis of the steady state kinetics, pH dependence, and X-ray crystal structures of the FeHPCD position 200 variants His200Asn, His200Gln, and His200Glu alone and in complex with three catecholic substrates (homoprotocatechuate, 4-sulfonylcatechol, and 4-nitrocatechol) possessing substituents with different inductive capacity. Structures solved at 1.35 –1.75 Å resolution show that there is essentially no change in overall active site architecture or substrate binding mode for these variants when compared to the structures of the wild type enzyme and its analogous complexes. This shows that the maximal 50-fold decrease in kcat for ring cleavage, the dramatic changes in pH dependence, and the switch from ring cleavage to ring oxidation of 4-nitrocatechol by the FeHPCD variants can be attributed specifically to the properties of the altered second sphere residue and the substrate. The results suggest that proton transfer is necessary for catalysis, and that it occurs most efficiently when the substrate provides the proton and His200 serves as a catalyst. However, in the absence of an available substrate proton, a defined proton-transfer pathway in the protein can be utilized. Changes in steric bulk and charge of the residue at position 200 appear capable of altering the rate-limiting step in catalysis, and perhaps, the nature of the reactive species. PMID:26267790

  2. Structural Basis for Substrate and Oxygen Activation in Homoprotocatechuate 2,3-Dioxygenase: Roles of Conserved Active Site Histidine 200. (United States)

    Kovaleva, Elena G; Rogers, Melanie S; Lipscomb, John D


    Kinetic and spectroscopic studies have shown that the conserved active site residue His200 of the extradiol ring-cleaving homoprotocatechuate 2,3-dioxygenase (FeHPCD) from Brevibacterium fuscum is critical for efficient catalysis. The roles played by this residue are probed here by analysis of the steady-state kinetics, pH dependence, and X-ray crystal structures of the FeHPCD position 200 variants His200Asn, His200Gln, and His200Glu alone and in complex with three catecholic substrates (homoprotocatechuate, 4-sulfonylcatechol, and 4-nitrocatechol) possessing substituents with different inductive capacity. Structures determined at 1.35-1.75 Å resolution show that there is essentially no change in overall active site architecture or substrate binding mode for these variants when compared to the structures of the wild-type enzyme and its analogous complexes. This shows that the maximal 50-fold decrease in kcat for ring cleavage, the dramatic changes in pH dependence, and the switch from ring cleavage to ring oxidation of 4-nitrocatechol by the FeHPCD variants can be attributed specifically to the properties of the altered second-sphere residue and the substrate. The results suggest that proton transfer is necessary for catalysis, and that it occurs most efficiently when the substrate provides the proton and His200 serves as a catalyst. However, in the absence of an available substrate proton, a defined proton-transfer pathway in the protein can be utilized. Changes in the steric bulk and charge of the residue at position 200 appear to be capable of altering the rate-limiting step in catalysis and, perhaps, the nature of the reactive species.

  3. Role of 9-Lipoxygenase and α-Dioxygenase Oxylipin Pathways as Modulators of Local and Systemic Defense

    Institute of Scientific and Technical Information of China (English)

    Jorge Vicente; Tomás Cascón; Begonya Vicedo; Pilar García-Agustín; Mats Hamberg; Carmen Castresana


    Plant 9-lipoxygenases(9-LOX)and α-dioxygenases(α-DOX)initiate the synthesis of oxylipins after bacterial infection.Here,the role of these enzymes in plants' defense was investigated using individual Arabidopsis thaliana lox1 and dox1 mutants and a double lox1 dox1 mutant.Studies with Pseudomonas syringae pv.tomato(Pst)revealed the enhanced susceptibility of lox1 to the virulent strain Pst DC3000 and the partial impairment of lox1 and dox1 mutants to activate systemic acquired resistance.Notably,both defects were enhanced in the lox1 dox1 plants as compared with individual mutants.We found that pre-treatment with 9-LOX- and α-DOX-generated oxylipins protected plant tissues against bacterial infection.The strongest effect in this respect was exerted by 9-ketooctadecatrienoic acid(9-KOT),which is produced from linolenic acid by 9-LOX.Quantification of 9-KOT revealed its accumulation after bacterial infection.The levels were reduced in lox1 and lox1 dox1 plants but strongly increased in the dox1 mutant due to metabolic interaction of the two pathways.Transcriptional analyses indicated that 9-KOT pre-treatment modifies hormone homeostasis during bacterial infection.The nature of the changes detected suggested that 9-KOT interferes with the hormonal changes caused by bacterial effectors.This notion was substantiated by the finding that 9-KOT failed to reduce the growth of PstDC3000hrpA,a mutant compromised in effector secretion,and of the avirulent strain Pst DC3000 avrRpm1.Further support for the action of the 9-LOX- and α-DOX-oxylipin pathways as modulators of hormone homeostasis was the observation that lox1 dox1 seedlings are hypersensitive to the growth-inhibitory effect of ABA and showed enhanced activation of ABA-inducible marker genes as compared with wild-type plants.

  4. Purification and Characterization of Catechol 1,2-Dioxygenase from Acinetobacter sp. Y64 Strain and Escherichia coli Transformants. (United States)

    Lin, J; Milase, R N


    This study intends to purify and characterize catechol 1,2-dioxygenase (C1,2O) of phenol-degrading Acinetobacter sp. Y64 and of E. coli transformant. Acinetobacter sp. Y64 was capable of degrading 1000 mg/L of phenol within 14 ± 2 h at 30 °C, 160 rpm and pH of 7. One C1,2O of 36 kDa was purified using ammonium sulphate precipitation and Hitrap QFF column chromatograph with 49% recovery and a 10.6-fold increase in purity. Purified Y64 C1,2O had temperature and pH optimum at 37 °C and pH 7.7 respectively with the Michaelis constant of 17.53 µM and the maximal velocity of 1.95 U/mg, respectively. The presence of Fe(3+) or Fe(2+) enhanced the activity of Y64 C1,2O while other compounds such as Ca(2+), and EDTA had an inhibitory effect. 80% of C1,2O activity remained using 4-nitrocatechol as substrate while 2% remained using 3-methylcatechol compared with that using catechol. Y64 catA gene encoding C1,2O was amplified using PCR cloned into pET22b vector and expressed in Escherichia coli BL21 DE3 (pLysS) after transformation. Purified and cloned Y64 C1,2O show no significant differences in the biochemical properties. The phylogenetic tree based on the protein sequences indicates that these C1,2Os possess a common ancestry.

  5. Structure of Naegleria Tet-like dioxygenase (NgTet1) in complexes with a reaction intermediate 5-hydroxymethylcytosine DNA. (United States)

    Hashimoto, Hideharu; Pais, June E; Dai, Nan; Corrêa, Ivan R; Zhang, Xing; Zheng, Yu; Cheng, Xiaodong


    The family of ten-eleven translocation (Tet) dioxygenases is widely distributed across the eukaryotic tree of life, from mammals to the amoeboflagellate Naegleria gruberi. Like mammalian Tet proteins, the Naegleria Tet-like protein, NgTet1, acts on 5-methylcytosine (5mC) and generates 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC) in three consecutive, Fe(II)- and α-ketoglutarate-dependent oxidation reactions. The two intermediates, 5hmC and 5fC, could be considered either as the reaction product of the previous enzymatic cycle or the substrate for the next cycle. Here we present a new crystal structure of NgTet1 in complex with DNA containing a 5hmC. Along with the previously solved NgTet1-5mC structure, the two complexes offer a detailed picture of the active site at individual stages of the reaction cycle. In the crystal, the hydroxymethyl (OH-CH2-) moiety of 5hmC points to the metal center, representing the reaction product of 5mC hydroxylation. The hydroxyl oxygen atom could be rotated away from the metal center, to a hydrophobic pocket formed by Ala212, Val293 and Phe295. Such rotation turns the hydroxyl oxygen atom away from the product conformation, and exposes the target CH2 towards the metal-ligand water molecule, where a dioxygen O2 molecule would occupy to initiate the next round of reaction by abstracting a hydrogen atom from the substrate. The Ala212-to-Val (A212V) mutant profoundly limits the product to 5hmC, probably because the reduced hydrophobic pocket size restricts the binding of 5hmC as a substrate. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  6. A novel l-isoleucine-4′-dioxygenase and l-isoleucine dihydroxylation cascade in Pantoea ananatis (United States)

    Smirnov, Sergey V; Sokolov, Pavel M; Kotlyarova, Veronika A; Samsonova, Natalya N; Kodera, Tomohiro; Sugiyama, Masakazu; Torii, Takayoshi; Hibi, Makoto; Shimizu, Sakayu; Yokozeki, Kenzo; Ogawa, Jun


    A unique operon structure has been identified in the genomes of several plant- and insect-associated bacteria. The distinguishing feature of this operon is the presence of tandem hilA and hilB genes encoding dioxygenases belonging to the PF13640 and PF10014 (BsmA) Pfam families, respectively. The genes encoding HilA and HilB from Pantoea ananatis AJ13355 were cloned and expressed in Escherichia coli. The culturing of E. coli cells expressing hilA (E. coli-HilA) or both hilA and hilB (E. coli-HilAB) in the presence of l-isoleucine resulted in the conversion of l-isoleucine into two novel biogenic compounds: l-4′-isoleucine and l-4,4′-dihydroxyisoleucine, respectively. In parallel, two novel enzymatic activities were detected in the crude cell lysates of the E. coli-HilA and E. coli-HilAB strains: l-isoleucine, 2-oxoglutarate: oxygen oxidoreductase (4′-hydroxylating) (HilA) and l-4′-hydroxyisoleucine, 2-oxoglutarate: oxygen oxidoreductase (4-hydroxylating) (HilB), respectively. Two hypotheses regarding the physiological significance of C-4(4′)-hydroxylation of l-isoleucine in bacteria are also discussed. According to first hypothesis, the l-isoleucine dihydroxylation cascade is involved in synthesis of dipeptide antibiotic in P. ananatis. Another unifying hypothesis is that the C-4(4′)-hydroxylation of l-isoleucine in bacteria could result in the synthesis of signal molecules belonging to two classes: 2(5H)-furanones and analogs of N-acyl homoserine lactone. PMID:23554367

  7. An ancient relative of cyclooxygenase in cyanobacteria is a linoleate 10S-dioxygenase that works in tandem with a catalase-related protein with specific 10S-hydroperoxide lyase activity. (United States)

    Brash, Alan R; Niraula, Narayan P; Boeglin, William E; Mashhadi, Zahra


    In the course of exploring the scope of catalase-related hemoprotein reactivity toward fatty acid hydroperoxides, we detected a novel candidate in the cyanobacterium Nostoc punctiforme PCC 73102. The immediate neighboring upstream gene, annotated as "cyclooxygenase-2," appeared to be a potential fatty acid heme dioxygenase. We cloned both genes and expressed the cDNAs in Escherichia coli, confirming their hemoprotein character. Oxygen electrode recordings demonstrated a rapid (>100 turnovers/s) reaction of the heme dioxygenase with oleic and linoleic acids. HPLC, including chiral column analysis, UV, and GC-MS of the oxygenated products, identified a novel 10S-dioxygenase activity. The catalase-related hemoprotein reacted rapidly and specifically with linoleate 10S-hydroperoxide (>2,500 turnovers/s) with a hydroperoxide lyase activity specific for the 10S-hydroperoxy enantiomer. The products were identified by NMR as (8E)10-oxo-decenoic acid and the C8 fragments, 1-octen-3-ol and 2Z-octen-1-ol, in ∼3:1 ratio. Chiral HPLC analysis established strict enzymatic control in formation of the 3R alcohol configuration (99% enantiomeric excess) and contrasted with racemic 1-octen-3-ol formed in reaction of linoleate 10S-hydroperoxide with hematin or ferrous ions. The Nostoc linoleate 10S-dioxygenase, the sequence of which contains the signature catalytic sequence of cyclooxygenases and fungal linoleate dioxygenases (YRWH), appears to be a heme dioxygenase ancestor. The novel activity of the lyase expands the known reactions of catalase-related proteins and functions in Nostoc in specific transformation of the 10S-hydroperoxylinoleate.

  8. Acute damage by naphthalene triggers expression of the neuroendocrine marker PGP9.5 in airway epithelial cells

    DEFF Research Database (Denmark)

    Poulsen, T.T.; Naizhen, X.; Linnoila, R.I.


    Protein Gene Product 9.5 (PGP9.5) is highly expressed in nervous tissue. Recently PGP9.5 expression has been found to be upregulated in the pulmonary epithelium of smokers and in non-small cell lung cancer, suggesting that it also plays a role in carcinogen-inflicted lung epithelial injury...... airways compared to controls, indicating that the rise in PGP9.5 in the airway epithelium is related to downregulation of p27(Kip1). This study is the first to specifically identify the carcinogen naphthalene as an inducer of PGP9.5 expression in non-neuroendocrine epithelium after acute lung injury...... and carcinogenesis. We investigated the expression of PGP9.5 in mice in response to two prominent carcinogens found in tobacco smoke: Naphthalene and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). By immunostaining, we found that PGP9.5 protein was highly expressed throughout the airway epithelium in the days...

  9. Synthesis, characterization and DNA interaction of new copper(II) complexes of Schiff base-aroylhydrazones bearing naphthalene ring. (United States)

    Gökçe, Cansu; Gup, Ramazan


    Two new copper(II) complexes with the condensation products of methyl 2-naphthyl ketone with 4-hydroxybenzohydrazide, 4-hydroxy-N'-[(1Z)-1-(naphthalen-2-yl)ethylidene]benzohydrazide [HL(1)] and (Z)-ethyl 2-(4-(2-(1-(naphthalen-2-yl)ethylidene)hydrazinecarbonyl)phenoxy)acetate (HL(2)) were synthesized and characterized by elemental analysis, infrared spectra, UV-Vis electronic absorption spectra, magnetic susceptibility measurements, TGA, powder XRD and SEM-EDS. The binding properties of the copper(II) complexes with calf thymus DNA were studied by using the absorption titration method. DNA cleavage activities of the synthesized copper complexes were examined by using agarose gel electrophoresis. The effect of complex concentration on the DNA cleavage reactions in the absence and presence of H2O2 was also investigated. The experimental results suggest that the copper complexes bind significantly to calf thymus DNA by both groove binding and intercalation modes and cleavage effectively pBR322 DNA. The mechanistic studies demonstrate that a hydrogen peroxide-derived species and singlet oxygen ((1)O2) are the active oxidative species for DNA cleavage.

  10. Synthesis and Thermal Crosslinking Behavior of Poly(aryl ether ketone)s Containing 1,4-Naphthalene Moieties

    Institute of Scientific and Technical Information of China (English)

    NIU Ya-ming; ZHANG Yun-he; CHEN Xing-bo; WANG Gui-bin; JIANG Zhen-hua


    A new monomer, 1,4-bis(4-fluorobenzoyl) naphthalene(compound 2) was synthesized via a two-step reaction. 1,4-Naphthalenedicarboxylic acid chloride(compound 1) was prepared by using the acyl chlorization reaction of 1,4-naphthalenedicarboxylic acid with thionyl chloride. The Friedel-Crafts acylation of compound 1 with fluorobenzene afforded compound 2 in a 80% yield. The polycondensation of compound 2 with various bisphenols in tetramethylene sulfone(TMS) in the presence of excess potassium carbonate as a condensation reagent was carried out at 210 ℃ to quantitatively afford the corresponding poly(aryl ether ketone)s(compounds 3_8) containing 1,4-naphthalene moieties. Thermal analyses showed that the polymers have Tg values ranging from 496 to 500 K and are thermally stable in air with initial mass loss above 500 ℃. These novel polymers exhibited an excellent solubility in organic solvents including NMP, DMAc, and chloroform, etc. In addition, the glass transition temperatures of these polymers increased and the polymers became insoluble in chloroform after treated at 260 ℃, indicating the occurrence of a thermal crosslinking reaction.

  11. The far infrared spectrum of naphthalene characterized by high resolution synchrotron FTIR spectroscopy and anharmonic DFT calculations. (United States)

    Pirali, O; Goubet, M; Huet, T R; Georges, R; Soulard, P; Asselin, P; Courbe, J; Roy, P; Vervloet, M


    Using synchrotron radiation, we performed the rotationally resolved Fourier transform infrared absorption spectroscopy of three bands of naphthalene C10H8, namely ν(46)-0 (centered at 782 cm(-1), 12.7 μm), ν(47)-0 (centered at 474 cm(-1), 21 μm), and ν(48)-0 (centered at 167 cm(-1), 60 μm). The intense CH bending out of plane ν(46)-0 band was recorded under supersonic jet-cooled conditions using a molecular beam (the Jet-AILES apparatus) and the low frequency ν(47)-0 and ν(48)-0 bands were measured at room temperature in a long absorption path cell. The simultaneous rotational analysis of these bands permitted us to refine the ground state (GS) and ν(46) rotational spectroscopic constants and to provide the first sets of constants for the ν(47) and ν(48) modes. The experimental rotational constants were then used as reference data to calibrate theoretical models in order to provide new insights into the accuracy of anharmonic calculations. The B97-1 functional associated with the cc-pVTZ and ANO-RCC basis sets gave a consistent set of results, for rotational constants and fundamental frequencies. The data presented here pave the way for the search of naphthalene through its far-infrared spectrum in different objects of the interstellar medium.

  12. Molecular anions of polydeprotonated naphthalenes: An investigation on the metastability and deprotonation energies using nuclear-charge stabilization method

    Energy Technology Data Exchange (ETDEWEB)

    Sangwan, Poonam; Vikas, E-mail:, E-mail: [Quantum Chemistry Group, Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigrah 160014 (India)


    The dianions and trianions of doubly- and triply-deprotonated naphthalenes are investigated using density functional theory (DFT) computations employing hybrid, long-range, and dispersion corrected exchange-correlation functionals. The investigated polyanionic species are found to be metastable with negative electron affinity and are further treated using a nuclear-charge stabilization method. The tunneling lifetimes of these anionic species were estimated to be a few femtoseconds. Notably, the deprotonated energies (DPEs) of naphthalene leading to the formation of triply deprotonated trianions are observed to be affected by the metastability of the dianions and trianions. For the deprotonation of doubly deprotonated dianions, the DPE calculated using the improved methodology based on the stabilization method is found to be nearly 100 kcal/mol more than that computed using the conventional procedure. Though the various DFT approximations employed are in a good agreement for predicting the lifetimes of the metastable species but in the prediction of electron-affinities and deprotonation energies, the dispersion-corrected DFT-D3 significantly disagrees with the long-range corrected DFT methods employing cam-B3LYP and ωB97XD exchange-correlation functionals.

  13. 5,5′-Bis(naphthalen-2-yl)-2,2′-bi(1,3,4-oxadiazole) (United States)

    Wang, Haitao; Jia, Xiaoshi; Qu, Songnan; Bai, Binglian; Li, Min


    The title mol­ecule, C24H14N4O2, lies on an inversion centre and the asymmetric unit containg one half-mol­ecule. The naphthalene ring systems are twisted slightly with respect to the oxadiazole rings, making a dihedral angle of 1.36 (6)°. These mol­ecules are π-stacked along the crystallographic a axis, with an inter­planar distance of 3.337 (1) Å. Adjacent mol­ecules are slipped from the ‘ideal’ cofacial π-stack in both the long and short mol­ecular axis (the long mol­ecular axis is defined as the line through the naphthalene C atom in the 6-position and the mol­ecular center, the short mol­ecular axis is in the mol­ecular plane perpendicular to it). The slip distance along the long mol­ecular axis (S 1) is 7.064 (1) Å, nearly a two-ring-length displacement. The side slip (S 2, along the short mol­ecular axis) is 1.159 (8) Å. PMID:22199854

  14. Effect of Kohl-Chikni Dawa – a compound ophthalmic formulation of Unani medicine on naphthalene-induced cataracts in rats

    Directory of Open Access Journals (Sweden)

    Zaidi Zehra


    Full Text Available Abstract Background Cataracts are the leading cause of blindness worldwide, accounting for 13-27% of cases. Kohl-Chikni Dawa (KCD is reputed for its beneficial effects in the treatment of premature cataracts. However, its efficacy is yet to be tested. To investigate the rationality of the therapeutic use of Kohl-Chikni Dawa (KCD in Unani medicine. Methods The effect of Kohl-Chikni Dawa eye drops on naphthalene-induced cataracts in rats was investigated by slit-lamp biomicroscopic analysis. The normal group of experimental animals was administered with mineral oil (orally, while other groups were given naphthalene (orally along with local application of KCD eye drops (once and twice daily, placebo and distilled water (twice daily. Initial morphological changes of the lenses were observed twice a week for two weeks, and thereafter once a week for four weeks. Results Local application of KCD (twice daily caused significant reduction in the lens opacification after 2 to 4 weeks of naphthalene administration. Conclusion KCD eye drops may have the potential to delay progression of naphthalene-induced cataracts in rats.

  15. A simple but accurate potential for the naphthalene-argon complex: applications to collisional energy transfer and matrix isolated IR spectroscopy. (United States)

    Calvo, F; Falvo, Cyril; Parneix, Pascal


    An explicit polarizable potential for the naphthalene-argon complex has been derived assuming only atomic contributions, aiming at large scale simulations of naphthalene under argon environment. The potential was parametrized from dedicated quantum chemical calculations at the CCSD(T) level, and satisfactorily reproduces available structural and energetic properties. Combining this potential with a tight-binding model for naphthalene, collisional energy transfer is studied by means of dedicated molecular dynamics simulations, nuclear quantum effects being accounted for in the path-integral framework. Except at low target temperature, nuclear quantum effects do not alter the average energies transferred by the collision or the collision duration. However, the distribution of energy transferred is much broader in the quantum case due to the significant zero-point energy and the higher density of states. Using an ab initio potential for the Ar-Ar interaction, the IR absorption spectrum of naphthalene solvated by argon clusters or an entire Ar matrix is computed via classical and centroid molecular dynamics. The classical spectra exhibit variations with growing argon environment that are absent from quantum spectra. This is interpreted by the greater fluxional character experienced by the argon atoms due to vibrational delocalization.

  16. Liquid-phase oxidation of naphthalene with H ₂O ₂ in the presence of ordered mesoporous V-m-Al ₂O ₃ catalysts

    Indian Academy of Sciences (India)



    The ordered mesoporous V-m- Al ₂O ₃ catalysts were successfully synthesized via a facile one-pot evaporation-induced self-assembly (EISA) strategy and applied in the liquid-phase oxidation of naphthalene with hydrogen peroxide in the presence of ascorbic acid as a reductant. The physicochemical properties of the catalysts were investigated using various techniques, like XRD, N₂ sorption, UV-Vis spectra, Raman spectroscopy, XPS, XRF and TEM. Small-angle XRD, N₂ sorption and TEM results show that mesoporous V-m- Al ₂O ₃ catalysts possess a highly ordered mesostructure with large surface areas and narrow pore-size distributions. Highangle XRD, UV-Vis spectra and Raman spectroscopy results indicate that VOx species were homogeneously incorporated in thematrix ofmesoporous Al ₂O ₃.The catalytic performance in the liquid oxidation of naphthalene with H ₂O ₂ over 8V-m- Al ₂O ₃ catalyst (naphthalene conversion 45.4% and phthalic anhydride selectivity 61.0%) was higher than other catalysts. The vanadium species incorporated in the 8V-m- Al ₂O ₃ sample were stable, and its catalytic stability was kept well even after repeated use for 5 times, which indicates a green and economical pathway for naphthalene degradation.

  17. Searching iron sensors in plants by exploring the link among 2’-OG-dependent dioxygenases, the iron deficiency response and metabolic adjustments occurring under iron deficiency

    Directory of Open Access Journals (Sweden)



    Full Text Available Knowledge accumulated on the regulation of iron (Fe homeostasis, its intracellular trafficking and transport across various cellular compartments and organs in plants; storage proteins, transporters and transcription factors involved in Fe metabolism have been analysed in detail in recent years. However, the key sensor(s of cellular plant Fe status triggering the long-distance shoot-root signalling and leading to the root Fe-deficiency responses is (are still unknown. Local Fe sensing is also a major task for roots, for adjusting the internal Fe requirements to external Fe availability: how such sensing is achieved and how it leads to metabolic adjustments in case of nutrient shortage, is mostly unknown. Two proteins belonging to the 2′-OG dependent dioxygenases family accumulate several folds in Fe-deficient Arabidopsis roots. Such proteins require Fe(II as enzymatic cofactor; one of their subgroups, the HIF-P4H (Hypoxia Inducible Factor- Prolyl 4-Hydroxylase, is an effective oxygen sensor in animal cells. We envisage here the possibility that some members of the 2′-OG dioxygenase family may be involved in the Fe-deficiency response and in the metabolic adjustments to Fe deficiency or even in sensing Fe, in plant cells.

  18. Spectroscopic and computational studies of NTBC bound to the non-heme iron enzyme (4-hydroxyphenyl)pyruvate dioxygenase: active site contributions to drug inhibition. (United States)

    Neidig, Michael L; Decker, Andrea; Kavana, Michael; Moran, Graham R; Solomon, Edward I


    (4-Hydroxyphenyl)pyruvate dioxygenase (HPPD) is an alpha-keto-acid-dependent dioxygenase which catalyzes the conversion of (4-hydroxyphenyl)pyruvate (HPP) to homogentisate as part of tyrosine catabolism. While several di- and tri-ketone alkaloids are known as inhibitors of HPPD and used commercially as herbicides, one such inhibitor, [2-nitro-4-(trifluoromethyl)benzoyl]-1,3-cyclohexanedione (NTBC), has also been used therapeutically to treat type I tyrosinemia and alkaptonuria in humans. To gain further insight into the mechanism of inhibition by NTBC, a combination of CD/MCD spectroscopy and DFT calculations of HPPD/Fe(II)/NTBC has been performed to evaluate the contribution of the Fe(II)-NTBC bonding interaction to the high affinity of this drug for the enzyme. The results indicate that the bonding of NTBC to Fe(II) is very similar to that for HPP, both involving similar pi-backbonding interactions between NTBC/HPP and Fe(II). Combined with the result that the calculated binding energy of NTBC is, in fact, approximately 3 kcal/mol less than that for HPP, the bidentate coordination of NTBC to Fe(II) is not solely responsible for its extremely high affinity for the enzyme. Thus, the pi-stacking interactions between the aromatic rings of NTBC and two phenyalanine residues, as observed in the crystallography of the HPPD/Fe(II)/NTBC complex, appear to be responsible for the observed high affinity of drug binding.

  19. Hydroxylation of aspartic acid in domains homologous to the epidermal growth factor precursor is catalyzed by a 2-oxoglutarate-dependent dioxygenase. (United States)

    Stenflo, J; Holme, E; Lindstedt, S; Chandramouli, N; Huang, L H; Tam, J P; Merrifield, R B


    3-Hydroxyaspartic acid and 3-hydroxyasparagine are two rare amino acids that are present in domains homologous to the epidermal growth factor precursor in vitamin K-dependent plasma proteins as well as in proteins that do not require vitamin K for normal biosynthesis. They are formed by posttranslational hydroxylation of aspartic acid and asparagine, respectively. The first epidermal growth factor-like domain in factor IX (residues 45-87) was synthesized with aspartic acid in position 64, replacing 3-hydroxyaspartic acid. It was used as substrate in a hydroxylase assay with rat liver microsomes as the source of enzyme and reaction conditions that satisfy the requirements of 2-oxoglutarate-dependent dioxygenases. The synthetic peptide stimulated the 2-oxoglutarate decarboxylation in contrast to synthetic, modified epidermal growth factor (Met-21 and His-22 deleted and Glu-24 replaced by Asp) and synthetic peptides corresponding to residues 60-71 in human factor IX. This indicates that the hydroxylase is a 2-oxoglutarate-dependent dioxygenase with a selective substrate requirement. Images PMID:2492106

  20. Preparation, crystallization and X-ray diffraction analysis to 1.5 Å resolution of rat cysteine dioxygenase, a mononuclear iron enzyme responsible for cysteine thiol oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, Chad R. [Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853-8001 (United States); Hao, Quan [MacCHESS at the Cornell High Energy Synchrotron Source, Cornell University, Ithaca, NY 14853-8001 (United States); Stipanuk, Martha H., E-mail: [Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853-8001 (United States)


    Recombinant rat cysteine dioxygenase (CDO) has been expressed, purified and crystallized and X-ray diffraction data have been collected to 1.5 Å resolution. Cysteine dioxygenase (CDO; EC is an ∼23 kDa non-heme iron metalloenzyme that is responsible for the oxidation of cysteine by O{sub 2}, yielding cysteinesulfinate. CDO catalyzes the first step in the conversion of cysteine to taurine, as well as the first step in the catabolism of cysteine to pyruvate plus sulfate. Recombinant rat CDO was heterologously expressed, purified and crystallized. The protein was expressed as a fusion protein bearing a polyhistidine tag to facilitate purification, a thioredoxin tag to improve solubility and a factor Xa cleavage site to permit removal of the entire N-terminus, leaving only the 200 amino acids inherent to the native protein. A multi-step purification scheme was used to achieve >95% purity of CDO. The optimal CDO crystals diffracted to 1.5 Å resolution and belonged to space group P4{sub 3}2{sub 1}2 or P4{sub 1}2{sub 1}2, with unit-cell parameters a = b = 57.55, c = 123.06 Å, α = β = γ = 90°. CDO shows little homology to any other proteins; therefore, the structure of the enzyme will be determined by ab initio phasing using a selenomethionyl derivative.

  1. Molecular Cloning and Characterization of a New Cold-active Extradiol Dioxygenase from a Metagenomic Library Derived from Polychlorinated Biphenyl-contaminated Soil

    Institute of Scientific and Technical Information of China (English)

    REN He-jun; LU Yang; ZHOU Rui; DAI Chun-yan; WANG Yan; ZHANG Lan-ying


    To find new extradiol dioxygenases(EDOs,EC,a metagenomics library was constructed from polychlorinated biphenyl-contaminated soil and was screened for some dioxygenase with aromatic ring cleavage activity.A novel EDO,designated as BphC_A,was identified and heterologously expressed in Escherichia coli.The deduced amino acid sequence of BphC_A exhibited a homology of less than 60% with other known EDOs.Phylogenetic analysis of BphC_A suggests that the protein is a novel member of the EDO family.The enzyme exhibits higher substrate affinity and catalytic efficiency toward 3-methylcatechol than toward 2,3-dihydroxybiphenyl or catechol,the preferred substrate of other known EDOs.The optimum activity of purified BphC_A occurred at pH=8.5 and 35 ℃,and BphC_A showed more than 40% of its initial activity at 5 ℃.The activity of purified BphC_A was significantly induced by Mn2+ and slightly reduced bv Al3+,Cu2+ and Zn2+.

  2. PEROMBAKAN SENYAWA HIDROKARBON AROMATIS POLISIKLIK (NAFTALEN PADA KADAR TINGGI OLEH Pseudomonas NY-I (Biodegradation of Polycyclic Aromatic Hydrocarbon (Naphthalene at High Concentration by Pseudomonas NY-1

    Directory of Open Access Journals (Sweden)

    Yanisworo Wijayaratih


    Full Text Available ABSTRAK Naftalen merupakan salah satu senyawa hidrokarbon aromatis polisiklik (HAP yang banyak dijumpai dalam minyak bumi, batu bara dan hasil alam lainnya. Meskipun bukan senyawa xenobiotik, naftalen dapat menjadi persoalan yang serius karena penggunaannya yang luas dan penanganan yang tidak hati-hati. Naftalen diketahui bersifat mutagenik. Penelitian ini dilakukan untuk mendapatkan isolat bakteri yang dapat merombak naftalen dan mempelajari kemampuannya merombak naftalen kadar tinggi dalam medium mineral (MM cair. Tanah yang tercemari minyak bumi dan sumber isolat diperoleh dari unit pengolah minyak Pertamina, Cilacap. Isolat dipreroleh melalui kultur diperkaya menggunakan naftalen. Jumlah naftalen yang ditambahkan ke dalam MM cair sebesar 907, 1362 dan 1813 ppm. Inkubasi dilakukan selama 28 hari dalam keadaan gelap. Parameter yang diamati meliputi: jumlah sel hidup dengan metode drop plate dan kadar naftalen sisa dengan menggunakan GC. Hasil penelitian menunjukkan bahwa isolat bakteri yang dipilih, teridentifikasi sebagai Pseudomonas NY-l. Dalam MM cair, naftalen pada semua konsentrasi terombak pada kecepatan yang mirip. Jumlah naftalen yang terombak adalah 777,3 ppm, 728,6 ppm dan 837,2 ppm dari konsentrasi awal berturut-turut sebesar 907, 1362, dan 1813 ppm.   ABSTRACT Naphthalene is one of the Polycyclic Aromatic Hydrocarbons (PAHs, found in petroleum, coal and other natural products. although, it is nonxenobiotic, it could cause a serious problem when improperly used and handled. It is considered as a mutagenic compound. This study is primarily concerned with the isolation of bacteria that could utilize naphthalene and the investigation of its biodegradation ability of naphthalene in high concentration in liquid mineral media (MM. The contaminated soil and isolates were obtained from oil treatment unit, Pertamina, Cilacap. Bacterial isolation was conducted through enriched culture. Naphthalene was added to the liquid MM at the

  3. Staphylococcus aureus CstB is a novel multidomain persulfide dioxygenase-sulfurtransferase involved in hydrogen sulfide detoxification (United States)

    Shen, Jiangchuan; Keithly, Mary E.; Armstrong, Richard N.; Higgins, Khadine A.; Edmonds, Katherine A.; Giedroc, David P.


    Hydrogen sulfide (H2S) is both a lethal gas and an emerging gasotransmitter in humans, suggesting that cellular H2S level must be tightly regulated. CstB is encoded by the cst operon of the major human pathogen Staphylococcus aureus (S. aureus) and is under the transcriptional control of the persulfide sensor CstR and H2S. Here we show that CstB is a multifunctional Fe(II)-containing persulfide dioxygenase (PDO), analogous to the vertebrate protein ETHE1 (Ethylmalonic Encephalopathy Protein 1). Chromosomal deletion of ethe1 is fatal in vertebrates. In the presence of molecular oxygen (O2), hETHE1 oxidizes glutathione persulfide (GSSH) to generate sulfite and reduced glutathione. In contrast, CstB oxidizes major cellular low molecular weight (LMW) persulfide substrates from S. aureus, coenzyme A persulfide (CoASSH) and bacillithiol persulfide (BSSH), directly to generate thiosulfate (TS) and reduced thiols, thereby avoiding the cellular toxicity of sulfite. Both Cys201 in the N-terminal PDO domain (CstBPDO) and Cys408 in the C-terminal rhodanese domain (CstBRhod) strongly enhance the TS generating activity of CstB. CstB also possesses persulfide transferase (PT; reverse rhodanese) activity which generates TS when provided with LMW persulfides and sulfite, as well as conventional thiosulfate transferase (TST; rhodanese) activity; both activities require Cys408. CstB protects S. aureus against H2S toxicity with C201S and C408S cstB genes unable to rescue a NaHS-induced ΔcstB growth phenotype. Induction of the cst operon by NaHS reveals that functional CstB impacts the cellular TS concentrations. These data collectively suggest that CstB may have evolved to facilitate the clearance of LMW persulfides that occur upon the elevation of the level of cellular H2S and hence may have an impact on bacterial viability under H2S stress, in concert with the other enzymes encoded by the cst operon. PMID:26177047

  4. Indoleamine 2,3-dioxygenases with very low catalytic activity are well conserved across kingdoms: IDOs of Basidiomycota. (United States)

    Yuasa, Hajime J; Ball, Helen J


    Indoleamine 2,3-dioxygenase (IDO) is a tryptophan-degrading enzyme and is found in animals, fungi and bacteria. In fungi, its primary role is to supply nicotinamide adenine dinucleotide (NAD(+)) via the kynurenine pathway. A number of organisms possess more than one IDO gene, for example, mammals have IDO1 and IDO2 genes. We previously reported that the Pezizomycotina fungi commonly possess three types of IDO genes, IDOα, IDOβ and IDOγ. In this study, we surveyed the nature of IDO genes from Basidiomycota fungi, which are categorized into three subphyla (Agaricomycotina, Pucciniomycotina and Ustilaginomycotina). The Agaricomycotina fungi generally have three types of IDO genes (IDOa, IDOb and IDOc), which are distinct from Pezizomycotina three isozymes. Pucciniomycotina and Ustilaginomycotina species possess two types of IDO; one forms a monophyletic clade with Agaricomycotina IDOs in the phylogenetic tree, these IDOs are referred to as "typical Basidiomycota IDOs". The other is IDOγ, which showed more than 40% identity with Pezizomycotina and ciliate IDOγ. We previously demonstrated that IDO2 in mammals and IDOγ in Perzizomycotina fungi have much lower catalytic efficiencies in an in vitro assay, compared with the other IDO isoforms found in the respective species. We have developed a functional assay to determine whether particular IDO enzymes have sufficient enzymatic activity to rescue a yeast strain where IDO-deletion has rendered it auxotrophic for nicotinic acid. IDOα and IDOβ showed comparable catalytic efficiency, both of them could function in the Pezizomycotina fungal L-Trp metabolism. The catalytic efficiency and functional capacity of the Basidiomycota IDOa and IDOb were similar to Pezizomycotina IDOα/IDOβ. We found that Basidiomycota IDOc could not rescue the nicotinic acid auxotroph, similar to other IDO enzymes with low catalytic efficiency (mammalian IDO2 and most fungal IDOγ). Our study suggests that some fungal IDO enzymes function in

  5. 3,4-Dihydroxyphenylacetate 2,3-dioxygenase from Pseudomonas aeruginosa: An Fe(II)-containing enzyme with fast turnover (United States)

    Kamutira, Philaiwarong; Watthaisong, Pratchaya; Thotsaporn, Kittisak; Tongsook, Chanakan; Juttulapa, Maneerat; Nijvipakul, Sarayut; Chaiyen, Pimchai


    3,4-dihydroxyphenylacetate (DHPA) dioxygenase (DHPAO) from Pseudomonas aeruginosa (PaDHPAO) was overexpressed in Escherichia coli and purified to homogeneity. As the enzyme lost activity over time, a protocol to reactivate and conserve PaDHPAO activity has been developed. Addition of Fe(II), DTT and ascorbic acid or ROS scavenging enzymes (catalase or superoxide dismutase) was required to preserve enzyme stability. Metal content and activity analyses indicated that PaDHPAO uses Fe(II) as a metal cofactor. NMR analysis of the reaction product indicated that PaDHPAO catalyzes the 2,3-extradiol ring-cleavage of DHPA to form 5-carboxymethyl-2-hydroxymuconate semialdehyde (CHMS) which has a molar absorptivity of 32.23 mM-1cm-1 at 380 nm and pH 7.5. Steady-state kinetics under air-saturated conditions at 25°C and pH 7.5 showed a Km for DHPA of 58 ± 8 μM and a kcat of 64 s-1, indicating that the turnover of PaDHPAO is relatively fast compared to other DHPAOs. The pH-rate profile of the PaDHPAO reaction shows a bell-shaped plot that exhibits a maximum activity at pH 7.5 with two pKa values of 6.5 ± 0.1 and 8.9 ± 0.1. Study of the effect of temperature on PaDHPAO activity indicated that the enzyme activity increases as temperature increases up to 55°C. The Arrhenius plot of ln(k’cat) versus the reciprocal of the absolute temperature shows two correlations with a transition temperature at 35°C. Two activation energy values (Ea) above and below the transition temperature were calculated as 42 and 14 kJ/mol, respectively. The data imply that the rate determining steps of the PaDHPAO reaction at temperatures above and below 35°C may be different. Sequence similarity network analysis indicated that PaDHPAO belongs to the enzyme clusters that are largely unexplored. As PaDHPAO has a high turnover number compared to most of the enzymes previously reported, understanding its biochemical and biophysical properties should be useful for future applications in biotechnology

  6. Effects of polycyclic aromatic hydrocarbons on microbial community structure and PAH ring hydroxylating dioxygenase gene abundance in soil. (United States)

    Sawulski, Przemyslaw; Clipson, Nicholas; Doyle, Evelyn


    Development of successful bioremediation strategies for environments contaminated with recalcitrant pollutants requires in-depth knowledge of the microorganisms and microbial processes involved in degradation. The response of soil microbial communities to three polycyclic aromatic hydrocarbons, phenanthrene (3-ring), fluoranthene (4-ring) and benzo(a)pyrene (5-ring), was examined. Profiles of bacterial, archaeal and fungal communities were generated using molecular fingerprinting techniques (TRFLP, ARISA) and multivariate statistical tools were employed to interpret the effect of PAHs on community dynamics and composition. The extent and rate of PAH removal was directly related to the chemical structure, with the 5-ring PAH benzo(a)pyrene degraded more slowly than phenathrene or fluoranthene. Bacterial, archaeal and fungal communities were all significantly affected by PAH amendment, time and their interaction. Based on analysis of clone libraries, Actinobacteria appeared to dominate in fluoranthene amended soil, although they also represented a significant portion of the diversity in phenanthrene amended and unamended soils. In addition there appeared to be more γ-Proteobacteria and less Bacteroidetes in soil amended with either PAH compared to the control. The soil bacterial community clearly possessed the potential to degrade PAHs as evidenced by the abundance of PAH ring hydroxylating (PAH-RHDα) genes from both gram negative (GN) and gram positive (GP) bacteria in PAH-amended and control soils. Although the dioxygenase gene from GP bacteria was less abundant in soil than the gene associated with GN bacteria, significant (p PAH-RHDα gene were observed during phenanthrene and fluoranthene degradation, whereas there was no significant difference in the abundance of the GN PAH-RHDα gene during the course of the experiment. Few studies to-date have examined the effect of pollutants on more than one microbial community in soil. The current study provides

  7. Effect of phytoremediation on concentrations of benzene, toluene, naphthalene, and dissolved oxygen in groundwater at a former manufactured gas plant site, Charleston, South Carolina, USA, 1998–2014 (United States)

    Landmeyer, James E.; Effinger, Thomas N.


    Concentrations of benzene, toluene, naphthalene, and dissolved oxygen in groundwater at a former manufactured gas plant site near Charleston, South Carolina, USA, have been monitored since the installation of a phytoremediation system of hybrid poplar trees in 1998. Between 2000 and 2014, the concentrations of benzene, toluene, and naphthalene (BT&N) in groundwater in the planted area have decreased. For example, in the monitoring well containing the highest concentrations of BT&N, benzene concentrations decreased from 10,200 µg/L to less than 4000 µg/L, toluene concentrations decreased from 2420 µg/L to less than 20 µg/L, and naphthalene concentrations decreased from 6840 µg/L to less than 3000 µg/L. Concentrations of BT&N in groundwater in all wells were observed to be lower during the summer months relative to the winter months of a particular year during the first few years after installing the phytoremediation system, most likely due to increased transpiration and contaminant uptake by the hybrid poplar trees during the warm summer months; this pathway of uptake by trees was confirmed by the detection of benzene, toluene, and naphthalene in trees during sampling events in 2002, and later in the study in 2012. These data suggest that the phytoremediation system affects the groundwater contaminants on a seasonal basis and, over multiple years, has resulted in a cumulative decrease in dissolved-phase contaminant concentrations in groundwater. The removal of dissolved organic contaminants from the aquifer has resulted in a lower demand on dissolved oxygen supplied by recharge and, as a result, the redox status of the groundwater has changed from anoxic to oxic conditions. This study provides much needed information for water managers and other scientists on the viability of the long-term effectiveness of phytoremediation in decreasing groundwater contaminants and increasing dissolved oxygen at sites contaminated by benzene, toluene, and naphthalene.

  8. mRNA pseudoknot structures can act as ribosomal roadblocks

    DEFF Research Database (Denmark)

    Hansen, Jesper Tholstrup; Oddershede, Lene Broeng; Sørensen, Michael Askvad


    Several viruses utilize programmed ribosomal frameshifting mediated by mRNA pseudoknots in combination with a slippery sequence to produce a well defined stochiometric ratio of the upstream encoded to the downstream-encoded protein. A correlation between the mechanical strength of mRNA pseudoknot...

  9. Functional Integration of mRNA Translational Control Programs

    Directory of Open Access Journals (Sweden)

    Melanie C. MacNicol


    Full Text Available Regulated mRNA translation plays a key role in control of cell cycle progression in a variety of physiological and pathological processes, including in the self-renewal and survival of stem cells and cancer stem cells. While targeting mRNA translation presents an attractive strategy for control of aberrant cell cycle progression, mRNA translation is an underdeveloped therapeutic target. Regulated mRNAs are typically controlled through interaction with multiple RNA binding proteins (RBPs but the mechanisms by which the functions of distinct RBPs bound to a common target mRNA are coordinated are poorly understood. The challenge now is to gain insight into these mechanisms of coordination and to identify the molecular mediators that integrate multiple, often conflicting, inputs. A first step includes the identification of altered mRNA ribonucleoprotein complex components that assemble on mRNAs bound by multiple, distinct RBPs compared to those recruited by individual RBPs. This review builds upon our knowledge of combinatorial control of mRNA translation during the maturation of oocytes from Xenopus laevis, to address molecular strategies that may mediate RBP diplomacy and conflict resolution for coordinated control of mRNA translational output. Continued study of regulated ribonucleoprotein complex dynamics promises valuable new insights into mRNA translational control and may suggest novel therapeutic strategies for the treatment of disease.

  10. Synthesis and Crystal Structure of 1-H-Pyrrole-2-carboxylic Acid [2-(Naphthalen-1-ylamino)-ethyl]-amide

    Institute of Scientific and Technical Information of China (English)

    YIN Zhen-Ming; WANG Jian-Ying


    1-H-Pyrrole-2-carboxylic acid [2-(naphthalen-1-ylamino)-ethyl]-amide has been synthesized and characterized. Its crystal is of monoclinic, space group P21/n with a = 5.930(6), b =12.144(13), c = 20.10(2) (A),β = 95.709(17)°, V= 1441(3) (A), Z= 4, C17H17N3O, Mr= 279.34, Dc=1.288 g/cm3, F(000) = 592, μ(MoKα) = 0.083 mm-1, S = 1.019, R = 0.0473 and wR = 0.1181 for 1713 observed reflections with 1 > 2σ(Ⅰ). X-ray diffraction reveals that two molecules of the title compound form a dimer through a pair of N-H…O hydrogen bonds.

  11. Crystal structure of (E)-N-[(E)-3-(4-meth-oxy-phen-yl)allyl-idene]naphthalen-1-amine. (United States)

    Lee, Jae Kyun; Cha, Joo Hwan; Cho, Yong Seo; Min, Sun-Joon; Lee, Joon Kyun


    In the title compound, C20H17NO, the dihedral angle between the mean planes of the 4-meth-oxy-phenyl ring and the naphthalene ring is 69.50 (7)°. The meth-oxy group is almost coplanar with the benzene ring to which it is connected [Cb-Cb-Om-Cm torsion angle of -7.9 (2)°; b = benzene and m = meth-oxy] and the imine group displays a C-C-N=C torsion angle is -57.2 (2)°. The imine (C=N) group has an E conformation. In the crystal, weak π-π inter-actions between the benzene rings [centroid-centroid distance = 3.7781 (10) Å] are observed.

  12. 1-[2-(2-Methoxyphenylaminoethylamino]-3-(naphthalene-1- yloxypropan-2-ol May Be a Promising Anticancer Drug

    Directory of Open Access Journals (Sweden)

    Tomoyuki Nishizaki


    Full Text Available We have originally synthesized the naftopidil analogue 1-[2-(2-methoxyphenylaminoethylamino]-3-(naphthalene-1-yloxypropan-2-ol (HUHS 1015 as a new anticancer drug. HUHS1015 induces cell death in a wide variety of human cancer cell lines originated from malignant pleural mesothelioma, lung cancer, hepatoma, gastric cancer, colorectal cancer, bladder cancer, prostate cancer, and renal cancer. HUHS1015-induced cell death includes necrosis (necroptosis and apoptosis, and the underlying mechanism differs depending upon cancer cell types. HUHS1015 effectively suppresses tumor growth in mice inoculated with NCI-H2052, MKN45, or CW2 cells, with a potential similar to or higher than that of currently used anticancer drugs. Here we show how HUHS1015 might offer brilliant hope for cancer therapy.

  13. Naphthalene Bis(4,8-diamino-1,5-dicarboxyl)amide Building Block for Semiconducting Polymers. (United States)

    Eckstein, Brian J; Melkonyan, Ferdinand S; Manley, Eric F; Fabiano, Simone; Mouat, Aidan R; Chen, Lin X; Facchetti, Antonio; Marks, Tobin J


    We report a new naphthalene bis(4,8-diamino-1,5-dicarboxyl)amide (NBA) building block for polymeric semiconductors. Computational modeling suggests that regio-connectivity at the 2,6- or 3,7-NBA positions strongly modulates polymer backbone torsion and, therefore, intramolecular -conjugation and aggregation. Optical, electrochemical, and X-ray diffraction characterization of 3,7- and 2,6-dithienyl-substituted NBA molecules and corresponding isomeric NBA-bithiophene co-polymers P1 and P2, respectively, reveal the key role of regio-connectivity. Charge transport measurements demonstrate that while the twisted 3,7-NDA-based P1 is a poor semiconductor, the planar 2,6-functionalized NBA polymers (P2-P4) exhibit ambipolarity with µe and µh of up to 0.39 and 0.32 cm2/(V·s) , respectively.

  14. Diagnostics for specific PAHs in the far-IR: searching neutral naphthalene and anthracene in the Red Rectangle

    CERN Document Server

    Mulas, G; Joblin, C; Toublanc, D


    Context. In the framework of the interstellar polycyclic aromatic hydrocarbons (PAHs) hypothesis, far-IR skeletal bands are expected to be a fingerprint of single species in this class. Aims. We address the question of detectability of low energy PAH vibrational bands, with respect to spectral contrast and intensity ratio with ``classical'' Aromatic Infrared Bands (AIBs). Methods. We extend our extablished Monte-Carlo model of the photophysics of specific PAHs in astronomical environments, to include rotational and anharmonic band structure. The required molecular parameters were calculated in the framework of the Density Functional Theory. Results. We calculate the detailed spectral profiles of three low-energy vibrational bands of neutral naphthalene, and four low-energy vibrational bands of neutral anthracene. They are used to establish detectability constraints based on intensity ratios with ``classical'' AIBs. A general procedure is suggested to select promising diagnostics, and tested on available Infra...

  15. A naphthalene benzimidazole-based chemosensor for the colorimetric and on-off fluorescent detection of fluoride ion (United States)

    Li, Dongmei; Zhong, Zhimin; Zheng, Gengxiu; Tian, Zhongzhen


    A novel naphthalene benzimidazole (NBI)-based chemosensor (D2) was developed for fluoride ion (F-) detection. The absorption spectrum of D2 changed dramatically from yellow to blue in the visible region accompanied with a 225 nm red shift of its absorption maximum upon the addition of F- in DMSO. D2 also exhibited a fluorescence turn-off response towards the fluoride ion. The emission intensity of D2 decreased drastically along the increasing F- concentration and the detection limit for F- was as low as 3.2 × 10- 9 mol/L. 1H NMR and HRMS-ESI results indicated that the formation of NBI-O- through the desilylation reaction of F- with NBI-OSi was responsible for the spectral changes. Overall, this kind of NBI-type molecules represent a new type chemosensor for the spectral detection of fluoride ion in solution.

  16. Probing dimensionality beyond the linear sequence of mRNA. (United States)

    Del Campo, Cristian; Ignatova, Zoya


    mRNA is a nexus entity between DNA and translating ribosomes. Recent developments in deep sequencing technologies coupled with structural probing have revealed new insights beyond the classic role of mRNA and place it more centrally as a direct effector of a variety of processes, including translation, cellular localization, and mRNA degradation. Here, we highlight emerging approaches to probe mRNA secondary structure on a global transcriptome-wide level and compare their potential and resolution. Combined approaches deliver a richer and more complex picture. While our understanding on the effect of secondary structure for various cellular processes is quite advanced, the next challenge is to unravel more complex mRNA architectures and tertiary interactions.

  17. 1-Anilino-8-naphthalene sulfonate (ANS is not a desirable probe for determining the molten globule state of chymopapain.

    Directory of Open Access Journals (Sweden)

    Atiyatul Qadeer

    Full Text Available The molten globule (MG state of proteins is widely detected through binding with 1-anilino-8-naphthalene sulphonate (ANS, a fluorescent dye. This strategy is based upon the assumption that when in molten globule state, the exposed hydrophobic clusters of protein are readily bound by the nonpolar anilino-naphthalene moiety of ANS molecules which then produce brilliant fluorescence. In this work, we explored the acid-induced unfolding pathway of chymopapain, a cysteine proteases from Carica papaya, by monitoring the conformational changes over a pH range 1.0-7.4 by circular dichroism, intrinsic fluorescence, ANS binding, acrylamide quenching, isothermal titration calorimetry (ITC and dynamic light scattering (DLS. The spectroscopic measurements showed that although maximum ANS fluorescence intensity was observed at pH 1.0, however protein exhibited ∼80% loss of secondary structure which does not comply with the characteristics of a typical MG-state. In contrast at pH 1.5, chymopapain retains substantial amount of secondary structure, disrupted side chain interactions, increased hydrodynamic radii and nearly 30-fold increase in ANS fluorescence with respect to the native state, indicating that MG-state exists at pH 1.5 and not at pH 1.0. ITC measurements revealed that ANS molecules bound to chymopapain via hydrophobic interaction were more at pH 1.5 than at pH 1.0. However, a large number of ANS molecules were also involved in electrostatic interaction with protein at pH 1.0 which, together with hydrophobically interacted molecules, may be responsible for maximum ANS fluorescence. We conclude that maximum ANS-fluorescence alone may not be the criteria for determining the MG of chymopapain. Hence a comprehensive structural analysis of the intermediate is essentially required.

  18. Control of gene expression during T cell activation: alternate regulation of mRNA transcription and mRNA stability

    Directory of Open Access Journals (Sweden)

    Gorospe Myriam


    Full Text Available Abstract Background Microarray technology has become highly valuable for identifying complex global changes in gene expression patterns. The effective correlation of observed changes in gene expression with shared transcription regulatory elements remains difficult to demonstrate convincingly. One reason for this difficulty may result from the intricate convergence of both transcriptional and mRNA turnover events which, together, directly influence steady-state mRNA levels. Results In order to investigate the relative contribution of gene transcription and changes in mRNA stability regulation to standard analyses of gene expression, we used two distinct microarray methods which individually measure nuclear gene transcription and changes in polyA mRNA gene expression. Gene expression profiles were obtained from both polyA mRNA (whole-cell and nuclear run-on (newly transcribed RNA across a time course of one hour following the activation of human Jurkat T cells with PMA plus ionomycin. Comparative analysis revealed that regulation of mRNA stability may account for as much as 50% of all measurements of changes in polyA mRNA in this system, as inferred by the absence of any corresponding regulation of nuclear gene transcription activity for these groups of genes. Genes which displayed dramatic elevations in both mRNA and nuclear run-on RNA were shown to be inhibited by Actinomycin D (ActD pre-treatment of cells while large numbers of genes regulated only through altered mRNA turnover (both up and down were ActD-resistant. Consistent patterns across the time course were observed for both transcribed and stability-regulated genes. Conclusion We propose that regulation of mRNA stability contributes significantly to the observed changes in gene expression in response to external stimuli, as measured by high throughput systems.

  19. Effects of DNA replication on mRNA noise. (United States)

    Peterson, Joseph R; Cole, John A; Fei, Jingyi; Ha, Taekjip; Luthey-Schulten, Zaida A


    There are several sources of fluctuations in gene expression. Here we study the effects of time-dependent DNA replication, itself a tightly controlled process, on noise in mRNA levels. Stochastic simulations of constitutive and regulated gene expression are used to analyze the time-averaged mean and variation in each case. The simulations demonstrate that to capture mRNA distributions correctly, chromosome replication must be realistically modeled. Slow relaxation of mRNA from the low copy number steady state before gene replication to the high steady state after replication is set by the transcript's half-life and contributes significantly to the shape of the mRNA distribution. Consequently both the intrinsic kinetics and the gene location play an important role in accounting for the mRNA average and variance. Exact analytic expressions for moments of the mRNA distributions that depend on the DNA copy number, gene location, cell doubling time, and the rates of transcription and degradation are derived for the case of constitutive expression and subsequently extended to provide approximate corrections for regulated expression and RNA polymerase variability. Comparisons of the simulated models and analytical expressions to experimentally measured mRNA distributions show that they better capture the physics of the system than previous theories.

  20. Remarkable Role of Indoleamine 2,3-Dioxygenase and Tryptophan Metabolites in Infectious Diseases: Potential Role in Macrophage-Mediated Inflammatory Diseases

    Directory of Open Access Journals (Sweden)

    Yuki Murakami


    Full Text Available Indoleamine 2,3-dioxygenase 1 (IDO1, the L-tryptophan-degrading enzyme, plays a key role in the immunomodulatory effects on several types of immune cells. Originally known for its regulatory function during pregnancy and chronic inflammation in tumorigenesis, the activity of IDO1 seems to modify the inflammatory state of infectious diseases. The pathophysiologic activity of L-tryptophan metabolites, kynurenines, is well recognized. Therefore, an understanding of the regulation of IDO1 and the subsequent biochemical reactions is essential for the design of therapeutic strategies in certain immune diseases. In this paper, current knowledge about the role of IDO1 and its metabolites during various infectious diseases is presented. Particularly, the regulation of type I interferons (IFNs production via IDO1 in virus infection is discussed. This paper offers insights into new therapeutic strategies in the modulation of viral infection and several immune-related disorders.