WorldWideScience

Sample records for naphthalene dioxygenase mrna

  1. In situ, real-time catabolic gene expression: Extraction and characterization of naphthalene dioxygenase mRNA transcripts from groundwater

    International Nuclear Information System (INIS)

    Wilson, M.S.; Bakermans, C.; Madsen, E.L.

    1999-01-01

    The authors developed procedures for isolating and characterizing in situ-transcribed mRNA from groundwater microorganisms catabolizing naphthalene at a coal tar waste-contaminated site. Groundwater was pumped through 0.22-microm-pore-size filters, which were then frozen to dry ice-ethanol. RNA was extracted from the frozen filters by boiling sodium dodecyl sulfate lysis and acidic phenol-chloroform extraction. Transcript characterization was performed with a series of PCR primers designed to amplify nahAc homologs. Several primer pairs were found to amplify nahAc homologs representing the entire diversity of the naphthalene-degrading genes. The environmental RNA extract was reverse transcribed, and the resultant mixture of cDNAs was amplified by PCR. A digoxigenin-labeled probe mixture was produced by PCR amplification of groundwater cDNA. This probe mixture hybridized under stringent conditions with the corresponding PCR products from naphthalene-degrading bacteria carrying a variety of nahAc homologs, indicating that diverse dioxygenase transcripts had been retrieved from groundwater. Diluted and undiluted cDNA preparations were independently amplified, and 28 of the resulting PCR products were cloned and sequenced. Sequence comparisons revealed two major groups related to the dioxygenase genes ndoB and dntAc, previously cloned from Pseudomonas putida NCIB 9816-4 and Burkholderia sp. strain DNT, respectively. A distinctive subgroup of sequences was found only in experiments performed with the undiluted cDNA preparation. To the authors' knowledge, these results are the first to directly document in situ transcription of genes encoding naphthalene catabolism at a contaminated site by indigenous microorganisms. The retrieved sequences represent greater diversity than has been detected at the study site by culture-based approaches

  2. Regiospecific and stereoselective hydroxylation of 1-indanone and 2-indanone by naphthalene dioxygenase and toluene dioxygenase.

    OpenAIRE

    Resnick, S M; Torok, D S; Lee, K; Brand, J M; Gibson, D T

    1994-01-01

    The biotransformation of 1-indanone and 2-indanone to hydroxyindanones was examined with bacterial strains expressing naphthalene dioxygenase (NDO) and toluene dioxygenase (TDO) as well as with purified enzyme components. Pseudomonas sp. strain 9816/11 cells, expressing NDO, oxidized 1-indanone to a mixture of 3-hydroxy-1-indanone (91%) and 2-hydroxy-1-indanone (9%). The (R)-3-hydroxy-1-indanone was formed in 62% enantiomeric excess (ee) (R:S, 81:19), while the 2-hydroxy-1-indanone was racemi...

  3. Regiospecific and stereoselective hydroxylation of 1-indanone and 2-indanone by naphthalene dioxygenase and toluene dioxygenase.

    Science.gov (United States)

    Resnick, S M; Torok, D S; Lee, K; Brand, J M; Gibson, D T

    1994-09-01

    The biotransformation of 1-indanone and 2-indanone to hydroxyindanones was examined with bacterial strains expressing naphthalene dioxygenase (NDO) and toluene dioxygenase (TDO) as well as with purified enzyme components. Pseudomonas sp. strain 9816/11 cells, expressing NDO, oxidized 1-indanone to a mixture of 3-hydroxy-1-indanone (91%) and 2-hydroxy-1-indanone (9%). The (R)-3-hydroxy-1-indanone was formed in 62% enantiomeric excess (ee) (R:S, 81:19), while the 2-hydroxy-1-indanone was racemic. The same cells also formed 2-hydroxy-1-indanone from 2-indanone. Purified NDO components oxidized 1-indanone and 2-indanone to the same products produced by strain 9816/11. P. putida F39/D cells, expressing TDO, oxidized 2-indanone to (S)-2-hydroxy-1-indanone of 76% ee (R:S, 12:88) but did not oxidize 1-indanone efficiently. Purified TDO components also oxidized 2-indanone to (S)-2-hydroxy-1-indanone of 90% ee (R:S, 5:95) and failed to oxidize 1-indanone. Oxidation of 1- and 2-indanone in the presence of [18O]oxygen indicated that the hydroxyindanones were formed by the incorporation of a single atom of molecular oxygen (monooxygenation) rather than by the dioxygenation of enol tautomers of the ketone substrates. As alternatives to chemical synthesis, these biotransformations represent direct routes to 3-hydroxy-1-indanone and 2-hydroxy-1-indanone as the major products from 1-indanone and 2-indanone, respectively.

  4. Stereospecific oxidation of (R)- and (S)-1-indanol by naphthalene dioxygenase from Pseudomonas sp. strain NCIB 9816-4.

    OpenAIRE

    Lee, K; Resnick, S M; Gibson, D T

    1997-01-01

    A recombinant Escherichia coli strain which expresses naphthalene dioxygenase (NDO) from Pseudomonas sp. strain NCIB 9816-4 oxidized (S)-1-indanol to trans-(1S,3S)-indan-1,3-diol (95.5%) and (R)-3-hydroxy-1-indanone (4.5%). The same cells oxidized (R)-1-indanol to cis-1,3-indandiol (71%), (R)-3-hydroxy-1-indanone (18.2%), and cis-1,2,3-indantriol (10.8%). Purified NDO oxidized (S)-1-indenol to both syn- and anti-2,3-dihydroxy-1-indanol.

  5. Stereospecific oxidation of (R)- and (S)-1-indanol by naphthalene dioxygenase from Pseudomonas sp. strain NCIB 9816-4.

    Science.gov (United States)

    Lee, K; Resnick, S M; Gibson, D T

    1997-05-01

    A recombinant Escherichia coli strain which expresses naphthalene dioxygenase (NDO) from Pseudomonas sp. strain NCIB 9816-4 oxidized (S)-1-indanol to trans-(1S,3S)-indan-1,3-diol (95.5%) and (R)-3-hydroxy-1-indanone (4.5%). The same cells oxidized (R)-1-indanol to cis-1,3-indandiol (71%), (R)-3-hydroxy-1-indanone (18.2%), and cis-1,2,3-indantriol (10.8%). Purified NDO oxidized (S)-1-indenol to both syn- and anti-2,3-dihydroxy-1-indanol.

  6. Abundance of dioxygenase genes similar to Ralstonia sp strain U2 nagAc is correlated with naphthalene concentrations in coal tar-contaminated freshwater sediments

    Energy Technology Data Exchange (ETDEWEB)

    Dionisi, H.M.; Chewning, C.S.; Morgan, K.H.; Menn, F.M.; Easter, J.P; Sayler, G.S. [University of Tennessee, Knoxville, TN (United States). Center for Environmental Biotechnology

    2004-07-01

    We designed a real-time PCR assay able to recognize dioxygenase large-subunit gene sequences with more than 90% similarity to the Ralstonia sp. strain U2 nagAc gene (nagAc-like gene sequences) in order to study the importance of organisms carrying these genes in the biodegradation of naphthalene. Sequencing of PCR products indicated that this real-time PCR assay was specific and able to detect a variety of nagAc-like gene sequences. One to 100 ng of contaminated-sediment total DNA in 25-{mu}l reaction mixtures produced an amplification efficiency of 0.97 without evident PCR inhibition. The assay was applied to surficial freshwater sediment samples obtained in or in close proximity to a coal tar-contaminated Superfund site. Naphthalene concentrations in the analyzed samples varied between 0.18 and 106 mg/kg of dry weight sediment. The assay for nagAc-like sequences indicated the presence of (4.1 {+-} 0.7) X 10{sup 3} to (2.9 {+-} 0.3) X 10{sup 5} copies of nagAc-like dioxygenase genes per mug of DNA extracted from sediment samples. These values corresponded to (1.2 {+-} 0.6) X 10{sup 5} to (5.4 {+-} 0.4) X 10{sup 7} copies of this target per g of dry weight sediment when losses of DNA during extraction were taken into account. There was a positive correlation between naphthalene concentrations and nagAc-like gene copies per microgram of DNA = 0.89) and per gram of dry weight sediment = 0.77). These results provide evidence of the ecological significance of organisms carrying nagAc-like genes in the biodegradation of naphthalene.

  7. Cometabolic Degradation of Dibenzofuran and Dibenzothiophene by a Naphthalene-Degrading Comamonas sp. JB.

    Science.gov (United States)

    Ji, Xiangyu; Xu, Jing; Ning, Shuxiang; Li, Nan; Tan, Liang; Shi, Shengnan

    2017-12-01

    Comamonas sp. JB was used to investigate the cometabolic degradation of dibenzofuran (DBF) and dibenzothiophene (DBT) with naphthalene as the primary substrate. Dehydrogenase and ATPase activity of the growing system with the presence of DBF and DBT were decreased when compared to only naphthalene in the growing system, indicating that the presence of DBF and DBT inhibited the metabolic activity of strain JB. The pathways and enzymes involved in the cometabolic degradation were tested. Examination of metabolites elucidated that strain JB cometabolically degraded DBF to 1,2-dihydroxydibenzofuran, subsequently to 2-hydroxy-4-(3'-oxo-3'H-benzofuran-2'-yliden)but-2-enoic acid, and finally to catechol. Meanwhile, strain JB cometabolically degraded DBT to 1,2-dihydroxydibenzothiophene and subsequently to the ring cleavage product. A series of naphthalene-degrading enzymes including naphthalene dioxygenase, 1,2-dihydroxynaphthalene dioxygenase, salicylaldehyde dehydrogenase, salicylate hydroxylase, and catechol 2,3-oxygenase have been detected, confirming that naphthalene was the real inducer of expression the degradation enzymes and metabolic pathways were controlled by naphthalene-degrading enzymes.

  8. Broad specificity dioxygenase enzymes and the bioremediation of hazardous aromatic pollutants

    International Nuclear Information System (INIS)

    Bonus, P.A.; Nies, L.

    1996-01-01

    The release of aromatic compounds to the environment is a major source of global pollution. In particular, the contamination of soil and groundwater with benzene, toluene, and xylenes (BTX) is the most ubiquitous form of aromatic pollution. The major source of BTX contamination is the release of gasoline and other petroleum products. This research focused on the improvement of bioremediation of BTX through a better understanding of broad specificity dioxygenase enzymes produced by soil and sediment bacteria. The investigation utilized pure bacterial strains isolated on biphenyl, naphthalene, or toluene. These isolated aerobic bacteria were then used to investigate the specificity of the initial enzymatic attack on aromatic compounds including BTX and polychlorinated biphenyls (PCBs). The enzymatic specificity and competency of the five isolates selected for study were determined through the use of growth tests and two rapid assay techniques. The growth tests were conducted on mineral agar plates or in liquid cultures, and they were used to determine substrate specificity. In addition, rapid assays for both BTX and PCBs were carried out using various growth substrates. These assays allowed further clarification of the specificity of the dioxygenase enzymes involved in aromatic degradation. Preliminary results of the PCB assay show that biphenyl and naphthalene isolated organisms grown on biphenyl, benzoate, naphthalene, and succinate maintain production of broad specificity dioxygenase enzymes able to degrade PCBs. Likewise, the BTX assay confirms that biphenyl and naphthalene selected organisms grown on their respective selection substrates completely degrade BTX including all three xylene isomers. In comparison, the toluene selected organism that was studied was unable to degrade PCBs, but it was able to degrade all BTX constituents

  9. Near-IR MCD of the nonheme ferrous active site in naphthalene 1,2-dioxygenase: correlation to crystallography and structural insight into the mechanism of Rieske dioxygenases.

    Science.gov (United States)

    Ohta, Takehiro; Chakrabarty, Sarmistha; Lipscomb, John D; Solomon, Edward I

    2008-02-06

    Near-IR MCD and variable temperature, variable field (VTVH) MCD have been applied to naphthalene 1,2-dioxygenase (NDO) to describe the coordination geometry and electronic structure of the mononuclear nonheme ferrous catalytic site in the resting and substrate-bound forms with the Rieske 2Fe2S cluster oxidized and reduced. The structural results are correlated with the crystallographic studies of NDO and other related Rieske nonheme iron oxygenases to develop molecular level insights into the structure/function correlation for this class of enzymes. The MCD data for resting NDO with the Rieske center oxidized indicate the presence of a six-coordinate high-spin ferrous site with a weak axial ligand which becomes more tightly coordinated when the Rieske center is reduced. Binding of naphthalene to resting NDO (Rieske oxidized and reduced) converts the six-coordinate sites into five-coordinate (5c) sites with elimination of a water ligand. In the Rieske oxidized form the 5c sites are square pyramidal but transform to a 1:2 mixture of trigonal bipyramial/square pyramidal sites when the Rieske center is reduced. Thus the geometric and electronic structure of the catalytic site in the presence of substrate can be significantly affected by the redox state of the Rieske center. The catalytic ferrous site is primed for the O2 reaction when substrate is bound in the active site in the presence of the reduced Rieske site. These structural changes ensure that two electrons and the substrate are present before the binding and activation of O2, which avoids the uncontrolled formation and release of reactive oxygen species.

  10. Benzylic monooxygenation catalyzed by toluene dioxygenase from Pseudomonas putida

    International Nuclear Information System (INIS)

    Wackett, L.P.; Kwart, L.D.; Gibson, D.T.

    1988-01-01

    Toluene dioxygenase, a multicomponent enzyme system known to oxidize mononuclear aromatic hydrocarbons to cis-dihydrodiols, oxidized indene and indan to 1-indenol and 1-indanol, respectively. In addition, the enzyme catalyzed dioxygen addition to the nonaromatic double bond of indene to form cis-1,2-indandiol. The oxygen atoms in 1-indenol and cis-1,2-indandiol were shown to be derived from molecular oxygen, whereas 70% of the oxygen in 1-indanol was derived from water. All of the isolated products were optically active as demonstrated by 19 F NMR and HPLC discrimination of diastereomeric esters and by chiroptic methods. The high optical purity of (-)-(1R)-indanol (84% enantiomeric excess) and the failure of scavengers of reactive oxygen species to inhibit the monooxygenation reaction supported the contention that monooxygen insertion is mediated by an active-site process. Experiments with 3-[ 2 H] indene indicated that equilibration between C-1 and C-3 occurred prior to the formation of the carbon-oxygen bond to yield 1-indenol. Naphthalene dioxygenase also oxidized indan to 1-indanol, which suggested that benzylic monoxygenation may be typical of this group of dioxygenases

  11. [Degradation characteristics of naphthalene with a Pseudomonas aeruginosa strain isolated from soil contaminated by diesel].

    Science.gov (United States)

    Liu, Wen-Chao; Wu, Bin-Bin; Li, Xiao-Sen; Lu, Dian-Nan; Liu, Yong-Min

    2015-02-01

    Abstract: A naphthalene-degrading bacterium (referred as HD-5) was isolated from the diesel-contaminated soil and was assigned to Pseudomonas aeruginosa according to 16S rDNA sequences analysis. Gene nah, which encodes naphthalene dioxygenase, was identified from strain HD-5 by PCR amplification. Different bioremediation approaches, including nature attenuation, bioaugmentation with strain Pseudomonas aeruginosa, biostimulation, and an integrated degradation by bioaugmentation and biostimulation, were evaluated for their effectiveness in the remediating soil containing 5% naphthalene. The degradation rates of naphthalene in the soil were compared among the different bioremediation approaches, the FDA and dehydrogenase activity in bioremediation process were measured, and the gene copy number of 16S rRNA and nah in soil were dynamically monitored using real-time PCR. It was shown that the naphthalene removal rate reached 71.94%, 62.22% and 83.14% in approaches of bioaugmentation (B), biostimulation(S) and integrated degradation composed of bioaugmentation and biostimulation (BS), respectively. The highest removal rate of naphthalene was achieved by using BS protocol, which also gives the highest FDA and dehydrogenase activity. The gene copy number of 16S rRNA and nah in soil increased by about 2.67 x 10(11) g(-1) and 8.67 x 10(8) g(-1) after 31 days treatment using BS protocol. Above-mentioned results also demonstrated that the screened bacterium, Pseudomonas aeruginosa, could grow well in naphthalene-contaminated soil and effectively degrade naphthalene, which is of fundamental importance for bioremediation of naphthalene-contaminated soil.

  12. Diversity of 16S rRNA and dioxygenase genes detected in coal-tar-contaminated site undergoing active bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, M; Khanna, S [NIIT Univ, Neemrana (India). Dept. of Biotechnology & Bioinformation

    2010-04-15

    In order to develop effective bioremediation strategies for polyaromatic hydrocarbons (PAHs) degradation, the composition and metabolic potential of microbial communities need to be better understood, especially in highly PAH contaminated sites in which little information on the cultivation-independent communities is available. Coal-tar-contaminated soil was collected, which consisted of 122-122.5 mg g{sup -1} total extractable PAH compounds. Biodegradation studies with this soil indicated the presence of microbial community that is capable of degrading the model PAH compounds viz naphthalene, phenanthrene and pyrene at 50 ppm each. PCR clone libraries were established from the DNA of the coal-tar-contaminated soil, targeting the 16S rRNA to characterize (I) the microbial communities, (ii) partial gene fragment encoding the Rieske iron sulfur center {alpha}-subunit) common to all PAH dioxygenase enzymes and (iii) {beta}-subunit of dioxygenase. Phylotypes related to Proteobacteria ({Alpha}-, {Epsilon}- and Gammaproteobacteria), Acidobacteria, Actinobacteria, Firmicutes, Gemmatimonadetes and Deinococci were detected in 16S rRNA derived clone libraries. Many of the gene fragment sequences of alpha-subunit and beta-subunit of dioxygenase obtained from the respective clone libraries fell into clades that are distinct from the reference dioxygenase gene sequences. Presence of consensus sequence of the Rieske type (2Fe2S) cluster binding site suggested that these gene fragments encode for {alpha}-subunit of dioxygenase gene. Sequencing of the cloned libraries representing {alpha}-subunit gene fragments (Rf1) and beta-subunit of dioxygenase showed the presence of hitherto unidentified dioxygenase in coal-tar-contaminated soil.

  13. Molecular analysis of manufactured gas plant soils for naphthalene mineralization

    International Nuclear Information System (INIS)

    Sanseverino, J.; Werner, C.; Fleming, J.; Applegate, B.M.; King, J.M.H.; Sayler, G.S.; Blackburn, J.

    1991-01-01

    New molecular tools are being developed and tested to ascertain the biodegradability of hazardous wastes by soil bacterial population. The potential for manufactured gas plant (MGP) soil bacterial populations to degrade naphthalene, as a component mixture of polynuclear aromatic hydrocarbons, was evaluated by the detection of a naphthalene biodegradative genotype by DNA probe hybridization with DNA extracts and colonies of cultured bacteria of the MGP soils. The activity of the naphthalene-degrading populations was evaluated by mineralization assays, 14 CO 2 production from 14 C-naphthalene. Direct messenger RNA (mRNA) extraction from MGP soil was evaluated as an instantaneous measure of naphthalene catabolic gene expression in MGP soil. The bioavailability of naphthalene for bacterial degradation within the MGP soils was assessed by measuring the bioluminescent response of a naphthalene-lux catabolic reporter strain Pseudomonas fluorescens HK44 (pUTK21). DNA extracted from 5 MGP soils and 1 creosote-contaminated soil and hybridized with a nahA gene probe indicated that the naphthalene degradative genes were present in all samples in the range of 0.06 to 0.95 ng/100 μl DNA extract which was calculated to represent 3.58 x 10 8 to 1.05 x 10 10 nahA positive cells/g soil. Phenanthrene, anthracene, and benzo(a)pyrene were mineralized also by some of the soils. NAH7 homologous messenger RNA transcripts were detectable in one MGP soil and in the creosote-contaminated soil

  14. Identification and characterization of genes encoding polycyclic aromatic hydrocarbon dioxygenase and polycyclic aromatic hydrocarbon dihydrodiol dehydrogenase in Pseudomonas putida OUS82.

    OpenAIRE

    Takizawa, N; Kaida, N; Torigoe, S; Moritani, T; Sawada, T; Satoh, S; Kiyohara, H

    1994-01-01

    Naphthalene and phenanthrene are transformed by enzymes encoded by the pah gene cluster of Pseudomonas putida OUS82. The pahA and pahB genes, which encode the first and second enzymes, dioxygenase and cis-dihydrodiol dehydrogenase, respectively, were identified and sequenced. The DNA sequences showed that pahA and pahB were clustered and that pahA consisted of four cistrons, pahAa, pahAb, pahAc, and pahAd, which encode ferredoxin reductase, ferredoxin, and two subunits of the iron-sulfur prot...

  15. Characterization of arene di-oxygenases involved in polycyclic aromatic hydrocarbons biodegradation in Mycobacterium sp. 6PY1; Caracterisation d'arene dioxygenases impliquees dans la biodegradation des hydrocarbures aromatiques polycycliques chez Mycobacterium sp. 6PY1

    Energy Technology Data Exchange (ETDEWEB)

    Kuony, S.

    2005-06-15

    This thesis deals with the bacterial biodegradation of pollutants called polycyclic aromatic hydrocarbons (PAHs). The bacterium Mycobacterium sp. 6PY1 was isolated from a polluted soil for its ability to use pyrene, a 4-ring PAH, as sole source of carbon and energy. To learn about the pyrene metabolic pathway, the identification of the enzymes involved in this process has been undertaken using a proteomic approach. This approach revealed the occurrence of two ring-hydroxylating di-oxygenases in strain 6PY1, which could catalyze the initial attack of pyrene. The goal of this study was to clone the genes encoding the di-oxygenases identified in Mycobacterium sp. 6PY1, over-express these genes in an heterologous system in order to facilitate the purification of the corresponding enzymes, and determine the biochemical and catalytic properties of these enzymes. The pdoA1B1 genes encoding the terminal component of a di-oxygenase were cloned and over-expressed in Escherichia coli. The catalytic properties of this enzyme, called Pdo1, were determined in vivo by measuring the oxidation products of 2- to 4-ring PAHs by gas chromatography coupled to mass spectrometry (GC-MS). Analysis of the selectivity of the enzyme, as determined using GC-MS, showed that Pdo1 preferentially oxidized 3- or 4-ring PAHs, including phenanthrene and pyrene, but was inactive on di-aromatic compounds such as naphthalene and biphenyl. Pdo1 was unstable and was therefore purified in inactive form. The genes encoding a second di-oxygenase component were found in a locus containing two other catabolic genes. The pdoA2B2 genes encoded an enzyme called Pdo2 showing a narrow specificity towards 2- to 3-ring PAHs, and a high preference for phenanthrene. Pdo2 is an a3{beta}3 hexamer, containing [2Fe-2S] Rieske clusters which confer it a characteristic absorbance spectrum. A third set of genes possibly encoding another di-oxygenase was discovered in the genome of Mycobacterium sp. 6PY1. This set is closely

  16. Probiotics Differently Affect Gut-Associated Lymphoid Tissue Indolamine-2,3-Dioxygenase mRNA and Cerebrospinal Fluid Neopterin Levels in Antiretroviral-Treated HIV-1 Infected Patients: A Pilot Study.

    Science.gov (United States)

    Scagnolari, Carolina; Corano Scheri, Giuseppe; Selvaggi, Carla; Schietroma, Ivan; Najafi Fard, Saeid; Mastrangelo, Andrea; Giustini, Noemi; Serafino, Sara; Pinacchio, Claudia; Pavone, Paolo; Fanello, Gianfranco; Ceccarelli, Giancarlo; Vullo, Vincenzo; d'Ettorre, Gabriella

    2016-09-27

    Recently the tryptophan pathway has been considered an important determinant of HIV-1 infected patients' quality of life, due to the toxic effects of its metabolites on the central nervous system (CNS). Since the dysbiosis described in HIV-1 patients might be responsible for the microbial translocation, the chronic immune activation, and the altered utilization of tryptophan observed in these individuals, we speculated a correlation between high levels of immune activation markers in the cerebrospinal fluid (CSF) of HIV-1 infected patients and the over-expression of indolamine-2,3-dioxygenase (IDO) at the gut mucosal surface. In order to evaluate this issue, we measured the levels of neopterin in CSF, and the expression of IDO mRNA in gut-associated lymphoid tissue (GALT), in HIV-1-infected patients on effective combined antiretroviral therapy (cART), at baseline and after six months of probiotic dietary management. We found a significant reduction of neopterin and IDO mRNA levels after the supplementation with probiotic. Since the results for the use of adjunctive therapies to reduce the levels of immune activation markers in CSF have been disappointing so far, our pilot study showing the efficacy of this specific probiotic product should be followed by a larger confirmatory trial.

  17. New naphthalene whole-cell bioreporter for measuring and assessing naphthalene in polycyclic aromatic hydrocarbons contaminated site.

    Science.gov (United States)

    Sun, Yujiao; Zhao, Xiaohui; Zhang, Dayi; Ding, Aizhong; Chen, Cheng; Huang, Wei E; Zhang, Huichun

    2017-11-01

    A new naphthalene bioreporter was designed and constructed in this work. A new vector, pWH1274_Nah, was constructed by the Gibson isothermal assembly fused with a 9 kb naphthalene-degrading gene nahAD (nahAa nahAb nahAc nahAd nahB nahF nahC nahQ nahE nahD) and cloned into Acinetobacter ADPWH_lux as the host, capable of responding to salicylate (the central metabolite of naphthalene). The ADPWH_Nah bioreporter could effectively metabolize naphthalene and evaluate the naphthalene in natural water and soil samples. This whole-cell bioreporter did not respond to other polycyclic aromatic hydrocarbons (PAHs; pyrene, anthracene, and phenanthrene) and demonstrated a positive response in the presence of 0.01 μM naphthalene, showing high specificity and sensitivity. The bioluminescent response was quantitatively measured after a 4 h exposure to naphthalene, and the model simulation further proved the naphthalene metabolism dynamics and the salicylate-activation mechanisms. The ADPWH_Nah bioreporter also achieved a rapid evaluation of the naphthalene in the PAH-contaminated site after chemical spill accidents, showing high consistency with chemical analysis. The engineered Acinetobacter variant had significant advantages in rapid naphthalene detection in the laboratory and potential in situ detection. The state-of-the-art concept of cloning PAHs-degrading pathway in salicylate bioreporter hosts led to the construction and assembly of high-throughput PAH bioreporter array, capable of crude oil contamination assessment and risk management. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Naphthalene distributions and human exposure in Southern California

    Science.gov (United States)

    Lu, Rong; Wu, Jun; Turco, Richard P.; Winer, Arthur M.; Atkinson, Roger; Arey, Janet; Paulson, Suzanne E.; Lurmann, Fred W.; Miguel, Antonio H.; Eiguren-Fernandez, Arantzazu

    The regional distribution of, and human exposure to, naphthalene are investigated for Southern California. A comprehensive approach is taken in which advanced models are linked for the first time to quantify population exposure to the emissions of naphthalene throughout Southern California. Naphthalene is the simplest and most abundant of the polycyclic aromatic hydrocarbons found in polluted urban environments, and has been detected in both outdoor and indoor air samples. Exposure to high concentrations of naphthalene may have adverse health effects, possibly causing cancer in humans. Among the significant emission sources are volatilization from naphthalene-containing products, petroleum refining, and combustion of fossil fuels and wood. Gasoline and diesel engine exhaust, with related vaporization from fuels, are found to contribute roughly half of the daily total naphthalene burden in Southern California. As part of this study, the emission inventory for naphthalene has been verified against new field measurements of the naphthalene-to-benzene ratio in a busy traffic tunnel in Los Angeles, supporting the modeling work carried out here. The Surface Meteorology and Ozone Generation (SMOG) airshed model is used to compute the spatial and temporal distributions of naphthalene and its photooxidation products in Southern California. The present simulations reveal a high degree of spatial variability in the concentrations of naphthalene-related species, with large diurnal and seasonal variations as well. Peak naphthalene concentrations are estimated to occur in the early morning hours in the winter season. The naphthalene concentration estimates obtained from the SMOG model are employed in the Regional Human Exposure (REHEX) model to calculate population exposure statistics. Results show average hourly naphthalene exposures in Southern California under summer and winter conditions of 270 and 430 ng m -3, respectively. Exposure to significantly higher concentrations

  19. Differential Expression of Cysteine Dioxygenase 1 in Complex Karyotype Liposarcomas

    Directory of Open Access Journals (Sweden)

    Mohammed Shaker

    2014-01-01

    Full Text Available Altered cysteine dioxygenase 1 (CDO1 gene expression has been observed in several cancers but has not yet been investigated in liposarcomas. The aim of this study was to evaluate CDO1 expression in a cohort of liposarcomas and to determine its association with clinicopathological features. Existing microarray data indicated variable CDO1 expression in liposarcoma subtypes. CDO1 mRNA from a larger cohort of liposarcomas was quantified by real time-PCR, and CDO1 protein expression was determined by immunohistochemistry (IHC in more than 300 tumor specimens. Well-differentiated liposarcomas (WDLSs had significantly higher CDO1 gene expression and protein levels than dedifferentiated liposarcomas (DDLSs ( P < 0.001. Location of the tumor was not predictive of the expression level of CDO1 mRNA in any histological subtype of liposarcoma. Recurrent tumors did not show any difference in CDO1 expression when compared to primary tumors. CDO1 expression was upregulated as human mesenchymal stem cells (hMSCs undergo differentiation into mature adipocytes. Our results suggest that CDO1 is a marker of liposarcoma progression and adipogenic differentiation.

  20. Relationship of Abortion and the Expression of Indoleamine 2,3- dioxygenase (IDO) in Villus and Syncytiotrophoblasts

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Objective To study the relationship of abortion and the expression of indoleamine 2,3- dioxygenase (IDO) in villus and syncytiotrophoblast in vitro.Methods RT-PCR was applied to analyze the mRNA transcription of IDO in villus of normal pregnancy and inevitable abortion and JAR cells as well. Immunohistochemistry was applied to analyze the expression of IDO protein in villus. Western blot was applied to determinate the expression of IDO protein on cultured syncytiotrophoblast. Highperformance liquid chromatography was applied to determinate whether there was kynurenine in cell culture medium of syncytiotrophoblast.Results The expression of IDO mRNA and protein in villus of inevitable abortion was lower than that of normal pregnancy; IDO mRNA did not express in JAR cells. IDO protein expressed on cultured syncytiotrophoblast, and there was kynurenine in cell culture medium of syncytiotrophoblast.Conclusion Appropriate expression of IDO in villus is necessary for maintenance of normal pregnancy and an active IDO protein expresses in syncytiotrophoblast.

  1. Mechanism for Clastogenic Activity of Naphthalene

    Energy Technology Data Exchange (ETDEWEB)

    Buchholz, Bruce A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-09-29

    Naphthalene incubations form DNA adducts in vitro in a dose dependent manner in both mouse and rat tissues. Rodent tissue incubations with naphthalene indicate that naphthalene forms as many DNA adducts as Benzo(a)pyrene, a known DNA binding carcinogen. The mouse airway has the greatest number of DNA adducts, corresponding to the higher metabolic activation of naphthalene in this location. Both rat tissues, the rat olfactory (tumor target) and the airways (non-tumor target), have similar levels of NA-DNA adducts, indicating that short term measures of initial adduct formation do not directly correlate with sites of tumor formation in the NTP bioassays.

  2. Mechanism for Clastogenic Activity of Naphthalene

    Energy Technology Data Exchange (ETDEWEB)

    Buchholz, Bruce A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-06-24

    Naphthalene incubations form DNA adducts in vitro in a dose dependent manner in both mouse and rat tissues. Rodent tissue incubations with naphthalene indicate that naphthalene forms as many DNA adducts as Benzo(a)pyrene, a known DNA binding carcinogen. The mouse airway has the greatest number of DNA adducts, corresponding to the higher metabolic activation of naphthalene in this location. Both rat tissues, the rat olfactory (tumor target) and the airways (non-tumor target), have similar levels of NA-DNA adducts, indicating that short term measures of initial adduct formation do not directly correlate with sites of tumor formation in the NTP bioassays.

  3. Advances of naphthalene degradation in Pseudomonas putida ND6

    Science.gov (United States)

    Song, Fu; Shi, Yifei; Jia, Shiru; Tan, Zhilei; Zhao, Huabing

    2018-03-01

    Naphthalene is one of the most common and simple polycyclic aromatic hydrocarbons. Degradation of naphthalene has been greatly concerned due to its economic, free-pollution and its fine effect in Pseudomonas putida ND6. This review summarizes the development history of naphthalene degradation, the research progress of naphthalene degrading gene and naphthalene degradation pathway of Pseudomonas putida ND6, and the researching path of this strain. Although the study of naphthalene degradation is not consummate in Pseudomonas putida ND6, there is a potential capability for Pseudomonas putida ND6 to degrade the naphthalene in the further research.

  4. Probing the molecular determinants of aniline dioxygenase substrate specificity by saturation mutagenesis.

    Science.gov (United States)

    Ang, Ee L; Obbard, Jeffrey P; Zhao, Huimin

    2007-02-01

    Aniline dioxygenase is a multicomponent Rieske nonheme-iron dioxygenase enzyme isolated from Acinetobacter sp. strain YAA. Saturation mutagenesis of the substrate-binding pocket residues, which were identified using a homology model of the alpha subunit of the terminal dioxygenase (AtdA3), was used to probe the molecular determinants of AtdA substrate specificity. The V205A mutation widened the substrate specificity of aniline dioxygenase to include 2-isopropylaniline, for which the wild-type enzyme has no activity. The V205A mutation also made 2-isopropylaniline a better substrate for the enzyme than 2,4-dimethylaniline, a native substrate of the wild-type enzyme. The I248L mutation improved the activity of aniline dioxygenase against aniline and 2,4-dimethylaniline approximately 1.7-fold and 2.1-fold, respectively. Thus, it is shown that the alpha subunit of the terminal dioxygenase indeed plays a part in the substrate specificity as well as the activity of aniline dioxygenase. Interestingly, the equivalent residues of V205 and I248 have not been previously reported to influence the substrate specificity of other Rieske dioxygenases. These results should facilitate future engineering of the enzyme for bioremediation and industrial applications.

  5. 2-[3-(Naphthalen-2-ylphenyl]naphthaleneCAS 103068–17–3.

    Directory of Open Access Journals (Sweden)

    Mark L. Wolfenden

    2013-02-01

    Full Text Available The title compound, C26H18, consists of a benzene ring with meta-substituted 2-naphthalene substituents, which are essentially planar [r.m.s. deviations = 0.022 (1 and 0.003 (1 Å]. The conformation is syn, with equivalent torsion angles about the benzene–naphthalene bonds of −36.04 (13 and +34.14 (13°. The molecule has quasi-Cs molecular symmetry.

  6. Mechanisms for naphthalene removal during electrolytic aeration.

    Science.gov (United States)

    Goel, Ramesh K; Flora, Joseph R V; Ferry, John

    2003-02-01

    Batch tests were performed to investigate chemical and physical processes that may result during electrolytic aeration of a contaminated aquifer using naphthalene as a model contaminant. Naphthalene degradation of 58-66% took place electrolytically and occurred at the same rates at a pH of 4 and 7. 1,4-naphthoquinone was identified as a product of the electrolysis. Stripping due to gases produced at the electrodes did not result in any naphthalene loss. Hydrogen peroxide (which may be produced at the cathode) did not have any effect on naphthalene, but the addition of ferrous iron (which may be present in aquifers) resulted in 67-99% disappearance of naphthalene. Chlorine (which may be produced from the anodic oxidation of chloride) can effectively degrade naphthalene at pH of 4, but not at a pH of 7. Mono-, di- and poly chloronaphthalenes were identified as oxidation products. Ferric iron coagulation (due to the oxidation of ferrous iron) did not significantly contribute to naphthalene loss. Overall, electrolytic oxidation and chemical oxidation due to the electrolytic by-products formed are significant abiotic processes that could occur and should be accounted for if bioremediation of PAH-contaminated sites via electrolytic aeration is considered. Possible undesirable products such as chlorinated compounds may be formed when significant amounts of chlorides are present.

  7. Synthesis and photophysical characterizations of thermal-stable naphthalene benzimidazoles.

    Science.gov (United States)

    Erten-Ela, Sule; Ozcelik, Serdar; Eren, Esin

    2011-07-01

    Microwave-assisted synthesis, photophysical and electrochemical properties of thermal-stable naphthalene benzimidazoles and naphthalimides are studied in this paper. Microwave-assisted synthesis of naphthalene benzimidazoles provide higher yields than the conventional thermal synthesis. Comparative photophysical properties of naphthalene benzimidazoles and naphthalimides are revealed that conjugation of electron-donating group onto naphthalimide moiety increases fluorescence quantum yields. Fluorophore-solvent interactions are also investigated using Lippert-Mataga equation for naphthalimides and naphthalene benzimidazoles. Thermal stabilities of naphthalene benzimidazoles are better than naphthalimides due to increased aromaticity. The experimental E(LUMO) levels of naphthalene benzimidazoles are found to be between 3.15 and 3.28 eV. Therefore, naphthalene benzimidazole derivatives consisting of anchoring groups are promising materials in organic dye sensitized solar cells. © Springer Science+Business Media, LLC 2011

  8. Enhanced biodegradation of naphthalene in MGP aquifer microcosms

    International Nuclear Information System (INIS)

    Durant, N.D.; Jonkers, C.A.A.; Wilson, L.P.; Bouwer, E.J.

    1995-01-01

    Subsurface sediments collected from a former manufactured-gas-plant (MGP) site contain bacteria capable of mineralizing significant amounts of 14 C-naphthalene in aerobic (8.5 mg/L O 2 ) sediment-water microcosms incubated at 10 C. The extent to which electron-acceptor (O 2 and NO 3 - ) and nutrient (NO 3 - and PO 4 3- ) amendments enhanced naphthalene mineralization in these sediments varied considerably. Oxygen-amended conditions (21 mg/L O 2 ) resulted in the greatest rate and extent of biodegradation for most sediments. Data suggested, however, that some MGP-site sediments prefer mixed NO 3 - /O 2 electron-acceptor conditions for naphthalene biodegradation. Significant denitrification was observed in the nitrate-amended sediments exhibiting naphthalene mineralization. In most cases, PO 4 3- complexed with the sediments either had no effect or inhibited naphthalene mineralization. Sediments unable to mineralize naphthalene over the 6-week incubation period were characterized by low pH ( 4 2- (>500 mg/L) conditions

  9. Assay of cysteine dioxygenase activity

    International Nuclear Information System (INIS)

    Bagley, P.J.; Stipanuk, M.H.

    1990-01-01

    It has been proposed that rat liver contains two cysteine dioxygenase enzymes which convert cysteine to cysteinesulfinic acid, one which is stimulated by NAD + and has a pH optimum of 6.8 and one which is not stimulated by NAD + and has a pH optimum of 9.0. This led the authors to reinvestigate assay conditions for measuring cysteine dioxygenase activity in rat liver homogenate. An HPLC method, using an anion exchange column (Dionex Amino-Pac trademark PA1 (4x250 mm)) was used to separate the [ 35 S]cysteinesulfinic acid produced from [ 35 S]cysteine in the incubation mixture. They demonstrated that inclusion of hydroxylamine prevented further metabolism of cysteinesulfinic acid. which occurred rapidly in the absence of hydroxylamine

  10. Dietary curcumin prevents ocular toxicity of naphthalene in rats.

    Science.gov (United States)

    Pandya, U; Saini, M K; Jin, G F; Awasthi, S; Godley, B F; Awasthi, Y C

    2000-06-05

    Administration of naphthalene is known to cause cataract formation in rats and rabbits and naphthalene-initiated cataract is frequently used as a model for studies on senile cataract in humans. Oxidative stress has been implicated in the mechanism of naphthalene-induced cataract. Curcumin, a constituent of turmeric, a spice used in Indian curry dishes, is an effective antioxidant and is known to induce the enzymes of glutathione-linked detoxification pathways in rats. During the present studies, we have examined whether low levels of dietary curcumin could prevent naphthalene-induced opacification of rat lens. The presence of apoptotic cells in lens epithelial cells was also examined by catalytically incorporating labeled nucleotide to DNA with either Klenow fragment of DNA polymerase or by terminal deoxynucleotidyl transferase (TdT), which forms polymeric tail using the principle of TUNEL assay. The results of these studies demonstrated that the rats treated with naphthalene and kept on a diet supplemented with only 0.005% (w/w) curcumin had significantly less opacification of lenses as compared to that observed in rats treated only with naphthalene. Our studies also demonstrate, for the first time, that naphthalene-initiated cataract in lens is accompanied and perhaps preceded by apoptosis of lens epithelial cells and that curcumin attenuates this apoptotic effect of naphthalene.

  11. Synthesis and Photophysical Characterizations of Thermal -Stable Naphthalene Benzimidazoles

    OpenAIRE

    Erten Ela, Şule; Özçelik, Serdar; Eren, Ersin

    2011-01-01

    Microwave-assisted synthesis, photophysical and electrochemical properties of thermal-stable naphthalene benzimidazoles and naphthalimides are studied in this paper. Microwave-assisted synthesis of naphthalene benzimidazoles provide higher yields than the conventional thermal synthesis. Comparative photophysical properties of naphthalene benzimidazoles and naphthalimides are revealed that conjugation of electron-donating group onto naphthalimide moiety increases fluorescence ...

  12. Exploring the mechanism of tryptophan 2,3-dioxygenase

    Science.gov (United States)

    Thackray, Sarah J.; Mowat, Christopher G.; Chapman, Stephen K.

    2008-01-01

    The haem proteins TDO (tryptophan 2,3-dioxygenase) and IDO (indoleamine 2,3-dioxygenase) are specific and powerful oxidation catalysts that insert one molecule of dioxygen into L-tryptophan in the first and rate-limiting step in the kynurenine pathway. Recent crystallographic and biochemical analyses of TDO and IDO have greatly aided our understanding of the mechanisms employed by these enzymes in the binding and activation of dioxygen and tryptophan. In the present paper, we briefly discuss the function, structure and possible catalytic mechanism of these enzymes. PMID:19021508

  13. Anaerobic degradation of naphthalene by the mixed bacteria under nitrate reducing conditions

    International Nuclear Information System (INIS)

    Dou Junfeng; Liu Xiang; Ding Aizhong

    2009-01-01

    Mixed bacteria were enriched from soil samples contaminated with polycyclic aromatic hydrocarbons (PAHs). The anaerobic degradation characteristics by the enriched bacteria with different initial naphthalene concentrations were investigated under nitrate reducing conditions. The results showed that the mixed bacteria could degrade nearly all the naphthalene over the incubations of 25 days when the initial naphthalene concentration was below 30 mg/L. The degradation rates of naphthalene increased with increasing initial concentrations. A high naphthalene concentration of 30 mg/L did not inhibit neither on the bacterial growth nor on the naphthalene degradation ability. The accumulation of nitrite was occurred during the reduction of nitrate, and a nitrite concentration of 50 mg/L had no inhibition effect on the degradation of naphthalene. The calculation of electron balances revealed that most of the naphthalene was oxidized whereas a small proportion was used for cell synthesis.

  14. Naphthalene degradation and biosurfactant activity by Bacillus cereus 28BN

    Energy Technology Data Exchange (ETDEWEB)

    Tuleva, B.; Christova, N. [Inst. of Microbiology, Bulgarian Academy of Sciences, Sofia (Bulgaria); Jordanov, B.; Nikolova-Damyanova, B. [Inst. of Organic Chemistry, Sofia (Bulgaria); Petrov, P. [National Center of Infectious and Parasitic Diseases, Sofia (Bulgaria)

    2005-08-01

    Biosurfactant activity and naphthalene degradation by a new strain identified as Bacillus cereus 28BN were studied. The strain grew well and produced effective biosurfactants in the presence of n-alkanes, naphthalene, crude oil and vegetable oils. The biosurfactants were detected by the surface tension lowering of the medium, thin layer chromatography and infrared spectra analysis. With (2%) naphthalene as the sole carbon source, high levels of rhamnolipids at a concentration of 2.3 g l{sup -1} were determined in the stationary growth. After 20 d of incubation 72 {+-} 4% of the initial naphthalene was degraded. This is the first report for a Bacillus cereus rhamnolipid producing strain that utilized naphthalene under aerobic conditions. The strain looks promising for application in environmental technologies. (orig.)

  15. Naphthalene and Naphthoquinone: Distributions and Human Exposure in the Los Angeles Basin

    Science.gov (United States)

    Lu, R.; Wu, J.; Turco, R.; Winer, A. M.; Atkinson, R.; Paulson, S.; Arey, J.; Lurmann, F.

    2003-12-01

    Naphthalene is the simplest and most abundant of the polycyclic aromatic hydrocarbons (PAHs). Naphthalene is found primarily in the gas-phase and has been detected in both outdoor and indoor samples. Evaporation from naphthalene-containing products (including gasoline), and during refining operations, are important sources of naphthalene in air. Naphthalene is also emitted during the combustion of fossil fuels and wood, and is a component of vehicle exhaust. Exposure to high concentrations of naphthalene can damage or destroy red blood cells, causing hemolytic anemia. If inhaled over a long period of time, naphthalene may cause kidney and liver damage, skin allergy and dermatitis, cataracts and retinal damage, as well as attack the central nervous system. Naphthalene has been found to cause cancer as a result of inhalation in animal tests. Naphthoquinones are photooxidation products of naphthalene and the potential health effects of exposure to these quinones are a current focus of research. We are developing and applying models that can be used to assess human exposure to naphthalene and its photooxidation products in major air basins such as California South Coast Air Basin (SoCAB). The work utilizes the Surface Meteorology and Ozone Generation (SMOG) airshed model, and the REgional Human EXposure (REHEX) model, including an analysis of individual exposure. We will present and discuss simulations of basin-wide distributions of, and human exposures to, naphthalene and naphthoquinone, with emphasis on the uncertainties in these estimates of atmospheric concentrations and human exposure. Regional modeling of pollutant sources and exposures can lead to cost-effective and optimally health-protective emission control strategies.

  16. Probes of the catalytic site of cysteine dioxygenase.

    Science.gov (United States)

    Chai, Sergio C; Bruyere, John R; Maroney, Michael J

    2006-06-09

    The first major step of cysteine catabolism, the oxidation of cysteine to cysteine sulfinic acid, is catalyzed by cysteine dioxygenase (CDO). In the present work, we utilize recombinant rat liver CDO and cysteine derivatives to elucidate structural parameters involved in substrate recognition and x-ray absorption spectroscopy to probe the interaction of the active site iron center with cysteine. Kinetic studies using cysteine structural analogs show that most are inhibitors and that a terminal functional group bearing a negative charge (e.g. a carboxylate) is required for binding. The substrate-binding site has no stringent restrictions with respect to the size of the amino acid. Lack of the amino or carboxyl groups at the alpha-carbon does not prevent the molecules from interacting with the active site. In fact, cysteamine is shown to be a potent activator of the enzyme without being a substrate. CDO was also rendered inactive upon complexation with the metal-binding inhibitors azide and cyanide. Unlike many non-heme iron dioxygenases that employ alpha-keto acids as cofactors, CDO was shown to be the only dioxygenase known to be inhibited by alpha-ketoglutarate.

  17. Kinetic Evaluation of Naphthalene Removal using Acid - Modified ...

    African Journals Online (AJOL)

    Kinetic evaluation of naphthalene onto acid – modified and unmodified bentonite clay mineral was investigated by means of the effects of concentration, contact time and pH. The amount of naphthalene adsorbed was determined spectrophotometrically. The optimum pH value and equilibrium contact time for the adsorption ...

  18. Utilizing dendritic scaffold for feasible formation of naphthalene ...

    Indian Academy of Sciences (India)

    the effect of dendritic scaffolds on the feasibility of naphthalene excimer formation has not been reported in the literature. Here, we report synthesis and photophysical study of naphthalene functionalized zero and first genera- tion PAMAM dendrimers in order to understand the mechanism of excimer formation in the system.

  19. Multi-functionalized naphthalene complexes for hydrogen storage

    International Nuclear Information System (INIS)

    Kalamse, Vijayanand; Wadnerkar, Nitin; Chaudhari, Ajay

    2013-01-01

    A density functional study of hydrogen uptake capacity of multi-functionalized naphthalene with Ti and Li metal atom has been carried out. It is observed that, the naphthalene functionalized with two Ti atoms can interact with total eight hydrogen molecules in which each Ti metal atom interacts with four hydrogen molecules. Naphthalene decorated with two Li atoms can interact with total three H 2 molecules only. First ( 19 Li) and second ( 20 Li) Li atom can interact with only one and two hydrogen molecule respectively. It is observed that, hydrogen molecules bind strongly to the C 10 H 8 Ti 2 complex than C 10 H 8 Li 2 complex. The gravimetric hydrogen uptake capacity of C 10 H 8 Ti 2 and C 10 H 8 Li 2 complex is found to be 6.72 and 3.73 wt% respectively. Moreover, after functionalizing naphthalene with four Li atoms, the uptake capacity is increased to 7.20 wt %. However, the thermochemistry result favors to Ti functionalized naphthalene complex (C 10 H 8 Ti 2 ) for hydrogen storage over Li functionalized naphthalene (both C 10 H 8 Li 2 and C 10 H 8 Li 4 ) complexes. Atom-centered density matrix propagation (ADMP) molecular dynamics simulations have been performed which showed that C 10 H 8 Li 2 and C 10 H 8 Li 4 complex cannot bind single hydrogen molecule at room temperature whereas C 10 H 8 Ti 2 can bind five hydrogen molecules. -- Highlights: ► The gravimetric H 2 uptake capacity of C 10 H 8 Ti 2 complex is 6.72 wt%. ► Uptake capacity of C 10 H 8 Li 2 and C 10 H 8 Li 4 complex is 3.73 and 7.20 wt% respectively. ► C 10 H 8 Ti is more promising material for hydrogen adsorption. ► C 10 H 8 Ti 2 can bind five hydrogen molecules as shown by ADMP-MD results.

  20. Mechanism of S-oxygenation by a cysteine dioxygenase model complex

    OpenAIRE

    Kumar, Devesh; Sastry, G. Narahari; Goldberg, David P.; de Visser, Sam P.

    2011-01-01

    In this work we present the first computational study on a biomimetic cysteine dioxygenase model complex, [FeII(LN3S)]+ where LN3S is a tetradentate ligand with a bis(imino)pyridyl scaffold and a pendant arylthiolate group. The reaction mechanism of sulfur dioxygenation with O2 was examined by density functional theory (DFT) methods, and compared to results obtained for cysteine dioxygenase. The reaction proceeds via multistate reactivity patterns on competing singlet, triplet and quintet spi...

  1. Phenazine–naphthalene-1,5-diamine–water (1/1/2

    Directory of Open Access Journals (Sweden)

    Maria Gdaniec

    2009-12-01

    Full Text Available The asymmetric unit of the title compound, C12H8N2·C10H10N2·2H2O, contains one half-molecule of phenazine, one half-molecule of naphthalene-1,5-diamine and one water molecule. The phenazine and naphthalene-1,5-diamine molecules are located on inversion centers. The water molecules serve as bridges between the naphthalene-1,5-diamine molecules and also between the naphthalene-1,5-diamine and phenazine molecules. The naphthalene-1,5-diamine and water molecules are connected via N—H...O and O—H...N hydrogen bonds, forming a T4(2 motif. They are arranged into a two-dimensional polymeric structure parallel to (10overline{1} in which the water molecule is a single donor and a double acceptor, whereas the amino group is a double donor and a single acceptor in the hydrogen bonding. These two-dimensional assemblies alternate with the layers of phenazine molecules arranged into a herringbone motif. Each phenazine molecule is hydrogen bonded to two water molecules and thus a three-dimensional framework of hydrogen-bonded molecules is generated.

  2. Naphthalene: Drinking water health advisory

    Energy Technology Data Exchange (ETDEWEB)

    1990-03-01

    The Drinking Water Health Advisory, Office of Water, U.S. Environmental Protection Agency, has issued its report on the chemical, naphthalene. Naphthalene is used in the manufacture of phthalic and anthranilic acids and other derivatives, and in making dyes; in the manufacture of resins, celluloid, lampblack and smokeless gunpowder; and as moth repellant, insecticide, anthelmintic, vermicide, and intestinal antiseptic. The report covers the following areas: the occurrence of the chemical in the environment; its environmental fate; the chemical's absorption, distribution, metabolism, and excretion in the human body; and its health effects on humans and animals, including its mutagenicity and carcinogenicity characteristics. Also included is the quantification of its toxicological effects.

  3. Indoleamine 2,3-dioxygenase vaccination

    DEFF Research Database (Denmark)

    Andersen, Mads Hald; Svane, Inge Marie

    2015-01-01

    Indoleamine 2,3-dioxygenase (IDO) is an immunoregulatory enzyme. Remarkably, we discovered IDO-specific T cells that can influence adaptive immune reactions in patients with cancer. Further, a recent phase I clinical trial demonstrated long-lasting disease stabilization without toxicity in patien...... with non-small-cell lung cancer (NSCLC) who were vaccinated with an IDO-derived HLA-A2-restricted epitope....

  4. Further studies of the thermal and photochemical diels-alder reactions of N-methyl-1,2,4-triazoline-3,5-dione (MeTAD) with naphthalene and some substituted naphthalenes

    Science.gov (United States)

    Breton; Newton

    2000-05-19

    MeTAD thermally reacted with naphthalene (2) and methylated naphthalenes to give equilibrium mixtures of starting materials and [4 + 2] cycloadducts. Methyl substitution on the naphthalene ring generally increased both the amount of cycloadduct formed and the rate of cycloaddition relative to 2. The isolated cycloadducts were all thermally labile and quantitatively reverted to the parent naphthalene in the presence of 2,3-dimethyl-2-butene as a trap for liberated MeTAD. The rates of the cycloreversion reactions were affected by substitution patterns but not appreciably by solvent. A mechanism for the cycloaddition reaction is presented that proposes the involvement of a charge-transfer complex. Photochemically, MeTAD demonstrated lower regioselectivity in its reactions with substituted naphthalenes relative to the corresponding thermal reactions.

  5. Vapor pressures and enthalpies of vaporization of a series of 1- and 2-halogenated naphthalenes

    International Nuclear Information System (INIS)

    Verevkin, Sergey P.

    2003-01-01

    Molar enthalpies of vaporization, Δ l g H m 0 , of 1-methyl-naphthalene, 1-chloro-napthalene, 2-chloro-naphthalene, 1-bromo-naphthalene, 2-bromo-naphthalene, and 1-iodo-naphthalene, as well as molar enthalpies of sublimation, Δ s g H m 0 , of 2-chloro-naphthalene and 2-bromo-naphthalene have been obtained from the temperature dependence of the vapor pressure determined with the transpiration method. These values and the correlation gas-chromatography method, based on the Kovat's index, have been used to determine Δ l g H m 0 and Δ s g H m 0 of 2-iodo-naphthalene. Results obtained in this work have been compared with those from the literature and found consistent

  6. Structures of the multicomponent Rieske non-heme iron toluene 2, 3-dioxygenase enzyme system

    Energy Technology Data Exchange (ETDEWEB)

    Friemann, Rosmarie [Department of Molecular Biology, Swedish University of Agricultural Sciences, Box 590, 751 24 Uppsala (Sweden); Lee, Kyoung [Department of Microbiology, Changwon National University, Changwon, Kyoungnam 641-773 (Korea, Republic of); Department of Microbiology, The University of Iowa, Iowa City, Iowa 52242 (United States); Brown, Eric N. [Department of Biochemistry, The University of Iowa, Iowa City, Iowa 52242 (United States); Gibson, David T. [Department of Microbiology, The University of Iowa, Iowa City, Iowa 52242 (United States); Eklund, Hans [Department of Molecular Biology, Swedish University of Agricultural Sciences, Box 590, 751 24 Uppsala (Sweden); Ramaswamy, S., E-mail: s-ramaswamy@uiowa.edu [Department of Biochemistry, The University of Iowa, Iowa City, Iowa 52242 (United States); Department of Molecular Biology, Swedish University of Agricultural Sciences, Box 590, 751 24 Uppsala (Sweden)

    2009-01-01

    The crystal structures of the three-component toluene 2, 3-dioxygenase system provide a model for electron transfer among bacterial Rieske non-heme iron dioxygenases. Bacterial Rieske non-heme iron oxygenases catalyze the initial hydroxylation of aromatic hydrocarbon substrates. The structures of all three components of one such system, the toluene 2, 3-dioxygenase system, have now been determined. This system consists of a reductase, a ferredoxin and a terminal dioxygenase. The dioxygenase, which was cocrystallized with toluene, is a heterohexamer containing a catalytic and a structural subunit. The catalytic subunit contains a Rieske [2Fe–2S] cluster and mononuclear iron at the active site. This iron is not strongly bound and is easily removed during enzyme purification. The structures of the enzyme with and without mononuclear iron demonstrate that part of the structure is flexible in the absence of iron. The orientation of the toluene substrate in the active site is consistent with the regiospecificity of oxygen incorporation seen in the product formed. The ferredoxin is Rieske type and contains a [2Fe–2S] cluster close to the protein surface. The reductase belongs to the glutathione reductase family of flavoenzymes and consists of three domains: an FAD-binding domain, an NADH-binding domain and a C-terminal domain. A model for electron transfer from NADH via FAD in the reductase and the ferredoxin to the terminal active-site mononuclear iron of the dioxygenase is proposed.

  7. Biodegradation of naphthalene from nonaqueous-phase liquids

    International Nuclear Information System (INIS)

    Ghoshal, S.; Luthy, R.G.; Ramaswami, A.

    1995-01-01

    Dissolution of polycyclic aromatic hydrocarbons (PAHs) from a non-aqueous-phase liquid (NAPL) to the aqueous phase renders these compounds bioavailable to microorganisms. Subsequent biodegradation of organic phase PAH then results in a depletion of PAH from the NAPL. This study focuses on identifying the rate-controlling processes affecting naphthalene biomineralization from a complex multicomponent NAPL, coal tar, and a simple two-component NAPL. A simplified dissolution degradation model is presented to identify quantitative criteria to assess whether mass transfer or biokinetic limitations control the overall rate of biotransformation of PAH compounds. Results show that the rate of mass transfer may control the overall rate of biotransformation in certain systems. Mass transfer does not limit biodegradation in slurry systems when coal tar is distributed in the micropores of a large number of small microporous silica particles. The end points of naphthalene degradation from the NAPLs have been evaluated, and results suggest that depletion of a significant mass of naphthalene from the NAPL phase is possible

  8. Biodegradation of naphthalene and phenanthren by Bacillus subtilis 3KP

    Science.gov (United States)

    Ni'matuzahroh, Trikurniadewi, N.; Pramadita, A. R. A.; Pratiwi, I. A.; Salamun, Fatimah, Sumarsih, Sri

    2017-06-01

    The purposes of this research were to know growth response, degradation ability, and uptake mechanism of naphthalene and phenanthrene by Bacillus subtilis 3KP. Bacillus subtilis 3KP was grown on Mineral Synthetic (MS) medium with addition of 1% yeast extract and naphthalene and phenanthrene respectively 200 ppm in different cultures. Bacillus subtilis 3KP growth response was monitored by Total Plate Count (TPC) method, the degradation ability was monitored by UV-Vis spectrophotometer, and the uptake mechanism of hydrocarbon was monitored by emulsification activity, decrease of surface tension, and activity of Bacterial Adherence to Hydrocarbon (BATH). Bacillus subtilis 3KP was able to grow and show biphasic growth pattern on both of substrates. Naphthalene and phenanthrene were used as a carbon source for Bacillus subtilis 3KP growth that indicated by the reduction of substrate concomitant with the growth. At room temperature conditions (± 30°C) and 90 rpm of agitation for 7 days, Bacillus subtilis 3KP could degrade naphthalene in the amount of 70.5% and phenanthrene in the amount of 24.8%. Based on the analysis of UV-Vis spectrophotometer, three metabolites, 1-hydroxy-2-naphthoic acid, salicylic acid, and pyrocatechol were found in both cultures. The metabolite identification became basis of propose degradation pathway of naphthalene and phenanthrene by Bacillus subtilis 3KP. The results of hydrocarbon uptake mechanism test show that Bacillus subtilis 3KP used all of the mechanism to degrade naphthalene and phenanthrene.

  9. Hydration of a Large Anionic Charge Distribution - Naphthalene-Water Cluster Anions

    Science.gov (United States)

    Weber, J. Mathias; Adams, Christopher L.

    2010-06-01

    We report the infrared spectra of anionic clusters of naphthalene with up to three water molecules. Comparison of the experimental infrared spectra with theoretically predicted spectra from quantum chemistry calculations allow conclusions regarding the structures of the clusters under study. The first water molecule forms two hydrogen bonds with the π electron system of the naphthalene moiety. Subsequent water ligands interact with both the naphthalene and the other water ligands to form hydrogen bonded networks, similar to other hydrated anion clusters. Naphthalene-water anion clusters illustrate how water interacts with negative charge delocalized over a large π electron system. The clusters are interesting model systems that are discussed in the context of wetting of graphene surfaces and polyaromatic hydrocarbons.

  10. Does a concomitant exposure to lead influence unfavorably the naphthalene subchronic toxicity and toxicokinetics?

    Science.gov (United States)

    Katsnelson, Boris A; Minigaliyeva, Ilzira A; Degtyareva, Tamara D; Privalova, Larisa I; Beresneva, Tatyana A

    2014-01-01

    Rats were given 20 times during 40 d either naphthalene per gavage or the same and lead acetate intraperitoneally in single doses corresponding to 5% of the respective 50% lethal doses. The concomitant exposure to lead not only added some typical indicators of lead toxicity to the moderate naphthalene intoxication picture but also exaggerated some less specific indices for intoxication. However, a number of such indices testified to attenuation of naphthalene's adverse effects under the impact of lead. Lead also lowered urinary excretion of both total and conjugated naphthalene, while the free- to total naphthalene ratio in urine sharply increased. These results corroborate implicitly the initial hypothesis that lead, being an inhibitor of cytochrome P450, hinders phase I of the naphthalene biotransformation and, thus, the formation of derivates which can be more toxic but are capable of entering into reactions of conjugation with resulting detoxication and elimination of naphthalene from the body. © 2013 SETAC.

  11. Characterization of naphthalene degradation by Streptomyces sp. QWE-5 isolated from active sludge.

    Science.gov (United States)

    Xu, Peng; Ma, Wencheng; Han, Hongjun; Hou, Baolin; Jia, Shengyong

    2014-01-01

    A bacterial strain, QWE-5, which utilized naphthalene as its sole carbon and energy source, was isolated and identified as Streptomyces sp. It was a Gram-positive, spore-forming bacterium with a flagellum, with whole, smooth, convex and wet colonies. The optimal temperature and pH for QWE-5 were 35 °C and 7.0, respectively. The QWE-5 strain was capable of completely degrading naphthalene at a concentration as high as 100 mg/L. At initial naphthalene concentrations of 10, 20, 50, 80 and 100 mg/L, complete degradation was achieved within 32, 56, 96, 120 and 144 h, respectively. Kinetics of naphthalene degradation was described using the Andrews equation. The kinetic parameters were as follows: qmax (maximum specific degradation rate) = 1.56 h⁻¹, Ks (half-rate constant) = 60.34 mg/L, and KI (substrate-inhibition constant) = 81.76 mg/L. Metabolic intermediates were identified by gas chromatography and mass spectrometry, allowing a new degradation pathway for naphthalene to be proposed. In this pathway, monooxygenation of naphthalene yielded naphthalen-1-ol. Further degradation by Streptomyces sp. QWE-5 produced acetophenone, followed by adipic acid, which was produced as a combination of decarboxylation and hydroxylation processes.

  12. Indoleamine 2,3-dioxygenase-expressing leukemic dendritic cells impair a leukemia-specific immune response by inducing potent T regulatory cells.

    Science.gov (United States)

    Curti, Antonio; Trabanelli, Sara; Onofri, Chiara; Aluigi, Michela; Salvestrini, Valentina; Ocadlikova, Darina; Evangelisti, Cecilia; Rutella, Sergio; De Cristofaro, Raimondo; Ottaviani, Emanuela; Baccarani, Michele; Lemoli, Roberto M

    2010-12-01

    The immunoregulatory enzyme indoleamine 2,3-dioxygenase, which catalyzes the conversion of tryptophan into kynurenine, is expressed in a significant subset of patients with acute myeloid leukemia, resulting in the inhibition of T-cell proliferation and the induction of regulatory T cells. Acute myeloid leukemia cells can be differentiated into dendritic cells, which have increased immunogenicity and have been proposed as vaccines against leukemia. Leukemic dendritic cells were generated from acute myeloid leukemia cells and used as stimulators in functional assays, including the induction of regulatory T cells. Indoleamine 2,3-dioxygenase expression in leukemic dendritic cells was evaluated at molecular, protein and enzymatic levels. We demonstrate that, after differentiation into dendritic cells, both indoleamine 2,3-dioxygenase-negative and indoleamine 2,3-dioxygenase-positive acute myeloid leukemia samples show induction and up-regulation of indoleamine 2,3-dioxygenase gene and protein, respectively. Indoleamine 2,3-dioxygenase-positive acute myeloid leukemia dendritic cells catabolize tryptophan into kynurenine metabolite and inhibit T-cell proliferation through an indoleamine 2,3-dioxygenase-dependent mechanism. Moreover, indoleamine 2,3-dioxygenase-positive leukemic dendritic cells increase the number of allogeneic and autologous CD4(+)CD25(+) Foxp3(+) T cells and this effect is completely abrogated by the indoleamine 2,3-dioxygenase-inhibitor, 1-methyl tryptophan. Purified CD4(+)CD25(+) T cells obtained from co-culture with indoleamine 2,3-dioxygenase-positive leukemic dendritic cells act as regulatory T cells as they inhibit naive T-cell proliferation and impair the complete maturation of normal dendritic cells. Importantly, leukemic dendritic cell-induced regulatory T cells are capable of in vitro suppression of a leukemia-specific T cell-mediated immune response, directed against the leukemia-associated antigen, Wilms' tumor protein. These data identify

  13. Fluorescent aggregates in naphthalene containing poly(urethane-urea)s

    International Nuclear Information System (INIS)

    Simas, E.R.; Akcelrud, Leni

    2003-01-01

    A series of segmented poly(urethane-urea)s containing naphthalene in the hard block and hexamethylene spacers in the soft block was prepared. The hard to soft segment ratio was varied systematically, to afford a series of polymers with various chromophore concentrations and a constant length of the chromophoric block, using a three-step synthetic procedure. The absorption, fluorescence and fluorescence-excitation spectra of solutions and films of the block copolymers provide strong evidence for aggregation. A red-shifted fluorescence spectrum peaking at 420 nm gains in intensity as the naphthalene concentration is increased. The excitation spectrum of this new emission is well to the red of the normal naphthalene absorption spectrum, consistent with the UV spectrum. Formation of a fluorescent ground state dimer (or higher aggregate) is proposed to account for these observations

  14. MEASUREMENT OF HEMOGLOBIN AND ALBUMIN ADDUCTS OF NAPHTHALENE-1,2-OXIDE, 1,2-NAPHTHOQUINONE AND 1,4-NAPHTHOQUINONE AFTER ADMINISTRATION OF NAPHTHALENE TO F344 RATS

    Science.gov (United States)

    Naphthalene-1,2-oxide (NPO), 1,2-naphthoquinone (1,2-NPQ) and 1,4-naphthoquinone (1,4-NPQ) are the major metabolites of naphthalene that are thought to be responsible for the cytotoxicity and genotoxicity of this chemical. We measured cysteinyl adducts of these metabolites in ...

  15. Polyaniline nanotubes and their dendrites doped with different naphthalene sulfonic acids

    International Nuclear Information System (INIS)

    Zhang Zhiming; Wei Zhixiang; Zhang Lijuan; Wan Meixiang

    2005-01-01

    Polyaniline (PANI) nanotubes (130-250 nm in average diameter) doped with α-naphthalene sulfonic acid (α-NSA), β-naphthalene sulfonic acid (β-NSA) and 1,5-naphthalene disulfonic acid were synthesized via a self-assembly process. It was found that the formation yield, morphology (hollow or solid), size, crystalline and electrical properties of the nanostructures are affected by the position and number of -SO 3 H groups attached to the naphthalene ring of NSA as well as the synthesis conditions. Moreover, these nanotubes aggregate to form a dendritic morphology when the polymerization is performed at a static state. The micelles composed of dopant or dopant/anilinium cations might act in a template-like fashion in forming self-assembled PANI nanotubes, which was further confirmed by X-ray diffraction measurements, while the aggregated morphology of the nanotubes might result from polymer chain interactions including π-π interactions, hydrogen and ionic bonds

  16. The nongenotoxic carcinogens naphthalene and para-dichlorobenzene suppress apoptosis in Caenorhabditis elegans.

    Science.gov (United States)

    Kokel, David; Li, Yehua; Qin, Jun; Xue, Ding

    2006-06-01

    Naphthalene (1) and para-dichlorobenzene (PDCB, 2), which are widely used as moth repellents and air fresheners, cause cancer in rodents and are potential human carcinogens. However, their mechanisms of action remain unclear. Here we describe a novel method for delivering and screening hydrophobic chemicals in C. elegans and apply this technique to investigate the ways in which naphthalene and PDCB may promote tumorigenesis in mammals. We show that naphthalene and PDCB inhibit apoptosis in C. elegans, a result that suggests a cellular mechanism by which these chemicals may promote the survival and proliferation of latent tumor cells. In addition, we find that a naphthalene metabolite directly inactivates caspases by oxidizing the active site cysteine residue; this suggests a molecular mechanism by which these chemicals suppress apoptosis. Naphthalene and PDCB are the first small-molecule apoptosis inhibitors identified in C. elegans. The power of C. elegans molecular genetics, in combination with the possibility of carrying out large-scale chemical screens in this organism, makes C. elegans an attractive and economic animal model for both toxicological studies and drug screens.

  17. Simultaneous quantification of multiple urinary naphthalene metabolites by liquid chromatography tandem mass spectrometry.

    Directory of Open Access Journals (Sweden)

    Daniel C Ayala

    Full Text Available Naphthalene is an environmental toxicant to which humans are exposed. Naphthalene causes dose-dependent cytotoxicity to murine airway epithelial cells but a link between exposure and human pulmonary disease has not been established. Naphthalene toxicity in rodents depends on P450 metabolism. Subsequent biotransformation results in urinary elimination of several conjugated metabolites. Glucuronide and sulfate conjugates of naphthols have been used as markers of naphthalene exposure but, as the current studies demonstrate, these assays provide a limited view of the range of metabolites generated from the parent hydrocarbon. Here, we present a liquid chromatography tandem mass spectrometry method for measurement of the glucuronide and sulfate conjugates of 1-naphthol as well as the mercapturic acids and N-acetyl glutathione conjugates from naphthalene epoxide. Standard curves were linear over 2 log orders. On column detection limits varied from 0.91 to 3.4 ng; limits of quantitation from 1.8 to 6.4 ng. The accuracy of measurement of spiked urine standards was -13.1 to + 5.2% of target and intra-day and inter-day variability averaged 7.2 (± 4.5 and 6.8 (± 5.0 %, respectively. Application of the method to urine collected from mice exposed to naphthalene at 15 ppm (4 hrs showed that glutathione-derived metabolites accounted for 60-70% of the total measured metabolites and sulfate and glucuronide conjugates were eliminated in equal amounts. The method is robust and directly measures several major naphthalene metabolites including those derived from glutathione conjugation of naphthalene epoxide. The assays do not require enzymatic deconjugation, extraction or derivatization thus simplifying sample work up.

  18. Crystal Structure of Mammalian Cysteine dioxygenase: A Novel Mononuclear Iron Center for Cysteine Thiol Oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Simmons,C.; Liu, Q.; Huang, Q.; Hao, Q.; Begley, T.; Karplus, P.; Stipanuk, M.

    2006-01-01

    Cysteine dioxygenase is a mononuclear iron-dependent enzyme responsible for the oxidation of cysteine with molecular oxygen to form cysteinesulfinate. This reaction commits cysteine to either catabolism to sulfate and pyruvate or to the taurine biosynthetic pathway. Cysteine dioxygenase is a member of the cupin superfamily of proteins. The crystal structure of recombinant rat cysteine dioxygenase has been determined to 1.5 Angstroms resolution, and these results confirm the canonical cupin {beta}-sandwich fold and the rare cysteinyl-tyrosine intramolecular crosslink (between Cys93 and Tyr157) seen in the recently reported murine cysteine dioxygenase structure. In contrast to the catalytically inactive mononuclear Ni(II) metallocenter present in the murine structure, crystallization of a catalytically competent preparation of rat cysteine dioxygenase revealed a novel tetrahedrally coordinated mononuclear iron center involving three histidines (His86, His88, and His140) and a water molecule. Attempts to acquire a structure with bound ligand using either co-crystallization or soaks with cysteine revealed the formation of a mixed disulfide involving Cys164 near the active site, which may explain previously observed substrate inhibition. This work provides a framework for understanding the molecular mechanisms involved in thiol dioxygenation and sets the stage for exploring the chemistry of both the novel mononuclear iron center and the catalytic role of the cysteinyl-tyrosine linkage.

  19. EPR characterization of the mononuclear Cu-containing Aspergillus japonicus quercetin 2,3-dioxygenase reveals dramatic changes upon anaerobic binding of substrates

    NARCIS (Netherlands)

    Kooter, Ingeborg M.; Steiner, Roberto A.; Dijkstra, Bauke W.; Noort, Paula I. van; Egmond, Maarten R.; Huber, Martina

    Quercetin 2,3-dioxygenase (2,3QD) is a copper-containing dioxygenase that catalyses the oxidation of the flavonol quercetin to 2-protocatechuoylphloroglucinol carboxylic acid with concomitant production of carbon monoxide. In contrast to iron dioxygenases, very little is known about copper

  20. Disposition of naphthalene and its metabolites in the brain of rainbow trout (Salmo gairdneri)

    International Nuclear Information System (INIS)

    Collier, T.K.; Krahn, M.M.; Malins, D.C.

    1980-01-01

    Rainbow trout (Salmo gairdneri) were exposed to orally administered [ 3 H]naphthalene. Another group received naphthyl glucuronic acid and naphthyl sulfate via iv injection. Brain, liver, and blood were assayed for the parent compound and/or total metabolites. Individual naphthalene derivatives were determined by high-performance liquid chromatography (hplc) using either radiometric or on-line fluorimetric detection systems. Naphthalene concentrations in brain (8.2 pmol/mg dry wt at 16 hr after feeding) approximated those found at the same time in liver (7.4 pmol/mg dry wt). A nonconjugated naphthalene derivative, 1,2-dihydro-1,2-dihydroxynaphthalene, also accumulated in brain (0.041 pmol/mg dry wt after 16 hr), although to a lesser degree than in liver (0.10 pmol/mg dry wt after 16 hr). Conjugated naphthalene derivatives, 1-naphthyl sulfate and 1-naphthyl glucuronic acid, although present in liver and blood, were largely excluded from the brain. Low naphthalene hydroxylase activity (<2.0 pmol product formed/mg protein/min) indicated that the trout brain has a minimal ability to oxidize aromatic hydrocarbons. These findings suggest that the brain of adult trout is substantially different from other tissues (e.g., liver and blood) with respect to the disposition of naphthalene and its metabolites

  1. Thiol dioxygenase turnover yields benzothiazole products from 2-mercaptoaniline and O2-dependent oxidation of primary alcohols.

    Science.gov (United States)

    Morrow, William P; Sardar, Sinjinee; Thapa, Pawan; Hossain, Mohammad S; Foss, Frank W; Pierce, Brad S

    2017-10-01

    Thiol dioxygenases are non-heme mononuclear iron enzymes that catalyze the O 2 -dependent oxidation of free thiols (-SH) to produce the corresponding sulfinic acid (-SO 2 - ). Previous chemical rescue studies identified a putative Fe III -O 2 - intermediate that precedes substrate oxidation in Mus musculus cysteine dioxygenase (Mm CDO). Given that a similar reactive intermediate has been identified in the extradiol dioxygenase 2, 3-HCPD, it is conceivable that these enzymes share other mechanistic features with regard to substrate oxidation. To explore this possibility, enzymatic reactions with Mm CDO (as well as the bacterial 3-mercaptopropionic acid dioxygenase, Av MDO) were performed using a substrate analogue (2-mercaptoaniline, 2ma). This aromatic thiol closely approximates the catecholic substrate of homoprotocatechuate of 2, 3-HPCD while maintaining the 2-carbon thiol-amine separation preferred by Mm CDO. Remarkably, both enzymes exhibit 2ma-gated O 2 -consumption; however, none of the expected products for thiol dioxygenase or intra/extradiol dioxygenase reactions were observed. Instead, benzothiazoles are produced by the condensation of 2ma with aldehydes formed by an off-pathway oxidation of primary alcohols added to aqueous reactions to solubilize the substrate. The observed oxidation of 1º-alcohols in 2ma-reactions is consistent with the formation of a high-valent intermediate similar to what has been reported for cytochrome P450 and mononuclear iron model complexes. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Simplified MPN method for enumeration of soil naphthalene degraders using gaseous substrate.

    Science.gov (United States)

    Wallenius, Kaisa; Lappi, Kaisa; Mikkonen, Anu; Wickström, Annika; Vaalama, Anu; Lehtinen, Taru; Suominen, Leena

    2012-02-01

    We describe a simplified microplate most-probable-number (MPN) procedure to quantify the bacterial naphthalene degrader population in soil samples. In this method, the sole substrate naphthalene is dosed passively via gaseous phase to liquid medium and the detection of growth is based on the automated measurement of turbidity using an absorbance reader. The performance of the new method was evaluated by comparison with a recently introduced method in which the substrate is dissolved in inert silicone oil and added individually to each well, and the results are scored visually using a respiration indicator dye. Oil-contaminated industrial soil showed slightly but significantly higher MPN estimate with our method than with the reference method. This suggests that gaseous naphthalene was dissolved in an adequate concentration to support the growth of naphthalene degraders without being too toxic. The dosing of substrate via gaseous phase notably reduced the work load and risk of contamination. The result scoring by absorbance measurement was objective and more reliable than measurement with indicator dye, and it also enabled further analysis of cultures. Several bacterial genera were identified by cloning and sequencing of 16S rRNA genes from the MPN wells incubated in the presence of gaseous naphthalene. In addition, the applicability of the simplified MPN method was demonstrated by a significant positive correlation between the level of oil contamination and the number of naphthalene degraders detected in soil.

  3. Natural CD4+ T-cell responses against indoleamine 2,3-dioxygenase

    DEFF Research Database (Denmark)

    Munir, Shamaila; Larsen, Stine Kiaer; Iversen, Trine Zeeberg

    2012-01-01

    The enzyme indoleamine 2,3-dioxygenase (IDO) contributes to immune tolerance in a variety of settings. In cancer IDO is expressed within the tumor itself as well as in antigen-presenting cells in tumor-draining lymph nodes, where it endorses the establishment of peripheral immune tolerance to tum...... antigens. Recently, we described cytotoxic CD8(+) T-cell reactivity towards IDO-derived peptides.......The enzyme indoleamine 2,3-dioxygenase (IDO) contributes to immune tolerance in a variety of settings. In cancer IDO is expressed within the tumor itself as well as in antigen-presenting cells in tumor-draining lymph nodes, where it endorses the establishment of peripheral immune tolerance to tumor...

  4. Enhancement of naphthalene tolerance in transgenic Arabidopsis plants overexpressing the ferredoxin-like protein (ADI1) from rice.

    Science.gov (United States)

    Fu, Xiao-Yan; Zhu, Bo; Han, Hong-Juan; Zhao, Wei; Tian, Yong-Sheng; Peng, Ri-He; Yao, Quan-Hong

    2016-01-01

    The ADI1 Arabidopsis plants enhanced tolerance and degradation efficiency to naphthalene and had great potential for phytoremediation of naphthalene in the plant material before composting or harvesting and removal. Naphthalene is a global environmental concern, because this substance is assumed to contribute considerably to human cancer risk. Cleaning up naphthalene contamination in the environment is crucial. Phytoremediation is an efficient technology to clean up contaminants. However, no gene that can efficiently degrade exogenous recalcitrant naphthalene in plants has yet been discovered. Ferredoxin (Fd) is a key player of biological electron transfer reaction in the PAH degradation process. The biochemical pathway for bacterial degradation of naphthalene has been well investigated. In this study, a rice gene, ADI1, which codes for a putative photosynthetic-type Fd, has been transformed into Arabidopsis thaliana. The transgenic Arabidopsis plants enhanced tolerance and degradation efficiency of naphthalene. Compared with wild-type plants, transgenic plants assimilated naphthalene from the culture media faster and removed more of this substance. When taken together, our findings suggest that breeding plants with overexpressed ADI1 gene is an effective strategy to degrade naphthalene in the environment.

  5. Microbial community structure and biodegradation activity of particle-associated bacteria in a coal tar contaminated creek

    Energy Technology Data Exchange (ETDEWEB)

    Jennifer M. DeBruyn; Gary S. Sayler [University of Tennessee, Knoxville, TN (United States). Center for Environmental Biotechnology and Department of Microbiology

    2009-05-01

    The Chattanooga Creek Superfund site (Chattanooga, TN) is one of the most polluted waterways in the southeastern U.S. with high polycyclic aromatic hydrocarbon (PAH) concentrations in the sediments. PAHs associate with suspended solids in the water column, and may be redeposited onto the floodplain. These suspended particles represent an interesting but understudied environment for PAH-degrading microbial communities. This study tested the hypotheses that particle-associated bacterial (PAB) communities have genotypic potential (PAH-dioxygenase genes) and activity (naphthalene and pyrene mineralization), and can contribute to natural attenuation of PAHs in Chattanooga Creek. Upstream of the Superfund site, mineralization ranged from 0.2 to 2.0% of added {sup 14}C-naphthalene and 0 to 0.1% {sup 14}C-pyrene (after 40 h), with first order biodegradation rate constants (k{sub 1}) ranging from 1.09 to 9.18 x 10{sup -5} h{sup -1} and 0 to 1.13 x 10{sup -6} h{sup -1}, respectively. Mineralization was significantly greater in PAB communities within the contaminated zone, with 11.8 to 31.2% {sup 14}C-naphthalene (k{sup 1} 5.34 to 14.2 x 10-4 h{sup -1}) and 1.3 to 6.6% {sup 14}C-pyrene mineralized (k{sub 1} 2.89 to 15.0 x 10{sup -5} h{sup -1}). Abundances of nagAc (naphthalene dioxygenase) and nidA (pyrene dioxygenase) genes indicated that PAB communities harbored populations with genetic potential for both low- and high-molecular weight PAH degradation, and quantification of Mycobacterium 16S rDNA genes indicated that PAH-degrading mycobacteria are also prevalent in this environment. Phylogenetic comparisons (T-RFLPs) between PAB and sediments indicated these microbial communities were taxonomically distinct, but shared some functional similarities, namely PAH catabolic genotypes, mineralization capabilities, and community structuring along a contamination gradient. 38 refs., 4 figs., 2 tabs.

  6. A new process for the synthesis of naphthalene based tanning agent

    International Nuclear Information System (INIS)

    Mahboob, S.J.; Subhopoto, M.I.; Dewani, R.; Pervez, M.K.; Nazir, F.

    2010-01-01

    A new process developed for the preparation of naphthalene catechu tanning agent consisted of sulphonation of naphthalene, condensation with formaldehyde, combining with naturally occurring catechol, followed by neutralization of the reaction mixture. The product was then dried, analyzed and tested for application on wet blue leather which showed excellent tanning properties. (author)

  7. Batch study, equilibrium and kinetics of adsorption of naphthalene using waste tyre rubber granules

    Directory of Open Access Journals (Sweden)

    Felix A. Aisien

    2014-04-01

    Full Text Available The potential use of waste tyre rubber granules (WTRG for the batch adsorption of naphthalene from aqueous solutions was investigated. The effect of various operational variables such as contact time, initial naphthalene concentration, adsorbent dose, size of adsorbent particles, and temperature of solution on the adsorption capacity of WTRG was evaluated. The adsorption of naphthalene by WTRG was a fast kinetic process with an equilibrium contact time of 60 min. A low temperature (5°C, small adsorbent particle size (0.212 mm and higher adsorbent dosage favored the adsorption process. Results of isotherm studies revealed that adsorption of naphthalene was best described by the Langmuir isotherm equation (R2=0.997 while the kinetics of the process was best described by the Lagergren pseudofirst order kinetic equation (R2=0.998. This study has demonstrated the suitability of WTRG for the removal of naphthalene from aqueous solution.

  8. Recommended Vapor Pressure of Solid Naphthalen

    Czech Academy of Sciences Publication Activity Database

    Růžička, K.; Fulem, Michal; Růžička, V.

    2005-01-01

    Roč. 50, - (2005), s. 1956-1970 ISSN 0021-9568 Institutional research plan: CEZ:AV0Z10100521 Keywords : solid naphthalene * vapor pressure * enthalpy of vaporization * enthalpy of fusion Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.610, year: 2005

  9. A biological pathway linking inflammation and depression: activation of indoleamine 2,3-dioxygenase

    Directory of Open Access Journals (Sweden)

    Christmas DM

    2011-07-01

    Full Text Available David M Christmas, JP Potokar, Simon JC DaviesAcademic Unit of Psychiatry, School of Social and Community Medicine, University of Bristol, Bristol, UK A presentation relating to this manuscript was made by Dr David Christmas at the 9th International Meeting on Clinical Pharmacology in Psychiatry (9th IMCPP in Copenhagen, Denmark in September 2010Abstract: This article highlights the evidence linking depression to increased inflammatory drive and explores putative mechanisms for the association by reviewing both preclinical and clinical literature. The enzyme indoleamine 2,3-dioxygenase is induced by proinflammatory cytokines and may form a link between immune functioning and altered neurotransmission, which results in depression. Increased indoleamine 2,3-dioxygenase activity may cause both tryptophan depletion and increased neurotoxic metabolites of the kynurenine pathway, two alterations which have been hypothesized to cause depression. The tryptophan-kynurenine pathway is comprehensively described with a focus on the evidence linking metabolite alterations to depression. The use of immune-activated groups at high risk of depression have been used to explore these hypotheses; we focus on the studies involving chronic hepatitis C patients receiving interferon-alpha, an immune activating cytokine. Findings from this work have led to novel strategies for the future development of antidepressants including inhibition of indoleamine 2,3-dioxygenase, moderating the cytokines which activate it, or addressing other targets in the kynurenine pathway.Keywords: depression, inflammation, indoleamine 2,3-dioxygenase, kynurenine, serotonin, tryptophan

  10. STABILITY OF HEMOGLOBIN AND ALBUMIN ADDUCTS OF NAPHTHALENE OXIDE, 1,2-NAPHTHOQUINONE, AND 1,4-NAPHTHOQUINONE

    Science.gov (United States)

    Naphthalene is an important industrial chemical, which has recently been shown to cause tumors of the respiratory tract in rodents. It is thought that one or more reactive metabolites of naphthalene, namely, naphthalene-1,2-oxide (NPO), 1,2-naphthoquinone (1,2-NPQ), and 1,4-na...

  11. Novel leads from Heliotropium ovalifolium, 4,7,8-trimethoxy-naphthalene-2-carboxylic acid and 6-hydroxy-5,7-dimethoxy-naphthalene-2-carbaldehyde show specific IL-6 inhibitory activity in THP-1 cells and primary human monocytes.

    Science.gov (United States)

    Kulkarni-Almeida, Asha; Suthar, Ashish; Goswami, Hitesh; Vishwakarma, Ram; Chauhan, Vijay Singh; Balakrishnan, Arun; Sharma, Somesh

    2008-12-01

    From our screening program, we identified the anti-inflammatory effects of the extracts of Heliotropium ovalifolium in its ability to inhibit specific cytokines. The H. ovalifolium extract was found to be moderately active with an IC(50) equaling 10 microg/ml for inhibition of interleukin-6 (IL-6) in a human monocytic cell line. Interleukin-6 is a pleiotropic cytokine with implications in the regulation of the immune response, inflammation and hematopoiesis. This prompted us to examine and identify the active molecules that are responsible for the bioactivity in THP-1 cells. Bioassay guided fractionation identified two compounds 4,7,8-trimethoxy-naphthalene-2-carboxylic acid and 6-hydroxy-5,7-dimethoxy-naphthalene-2-carbaldehyde with an IC(50) of 2.4 and 2.0 microM for IL-6 inhibition and an IC(50) of 15.6 and 7.0 microM for tumor necrosis factor-alpha (TNF-alpha) inhibition in THP-1 cells. The protein expression data were supported by the inhibitory effect on mRNA gene expression. The compounds isolated from H. ovalifolium were also non-toxic in human peripheral blood monocytes from normal donors and the activity profile was similar to that obtained on THP-1 cells. Thus, we believe that these scaffolds may be of interest to develop leads for treating rheumatoid arthritis, psoriasis, ulcerative colitis, Crohn's disease and other inflammatory disorders. However, more detailed investigations need to be carried out to explain the efficacy of these compounds as drugs.

  12. Characterization of dioxygenases and biosurfactants produced by crude oil degrading soil bacteria

    Directory of Open Access Journals (Sweden)

    Santhakumar Muthukamalam

    Full Text Available ABSTRACT Role of microbes in bioremediation of oil spills has become inevitable owing to their eco friendly nature. This study focused on the isolation and characterization of bacterial strains with superior oil degrading potential from crude-oil contaminated soil. Three such bacterial strains were selected and subsequently identified by 16S rRNA gene sequence analysis as Corynebacterium aurimucosum, Acinetobacter baumannii and Microbacterium hydrocarbonoxydans respectively. The specific activity of catechol 1,2 dioxygenase (C12O and catechol 2,3 dioxygenase (C23O was determined in these three strains wherein the activity of C12O was more than that of C23O. Among the three strains, Microbacterium hydrocarbonoxydans exhibited superior crude oil degrading ability as evidenced by its superior growth rate in crude oil enriched medium and enhanced activity of dioxygenases. Also degradation of total petroleum hydrocarbon (TPH in crude oil was higher with Microbacterium hydrocarbonoxydans. The three strains also produced biosurfactants of glycolipid nature as indicated d by biochemical, FTIR and GCMS analysis. These findings emphasize that such bacterial strains with superior oil degrading capacity may find their potential application in bioremediation of oil spills and conservation of marine and soil ecosystem.

  13. Synthesis of 2-Isopropyl Naphthalene Catalyzed by Et3NHCl-AlCl3 Ionic Liquids

    Institute of Scientific and Technical Information of China (English)

    Li Chenmin; Qi Xin; Tang Xiangyang

    2014-01-01

    In this paper, 2-isopropyl naphthalene has been synthesized by the reaction of naphthalene and isopropyl bromide, using triethylamine hydrochloride-aluminum chloride ionic liquid as the catalyst. The effect of the catalyst composition, the reaction time, the reaction temperature, the ionic liquid dosage, as well as the molar ratio of the reagents on the 2-isopropyl naphthalene yield was systematically investigated. The optimal reaction conditions cover:an AlCl3 to Et3NHCl ratio of 2.0, a reaction time of 3 h, a reaction temperature of 15.0℃, a volume fraction of ionic liquid to the mixture (isopropyl bromide, n-dodecane and n-hexane) of 9%, and a naphthalene/isopropyl bromide molar ratio of 4.0. Under the optimal reaction condi-tions, the conversion of isopropyl bromide reached 98%and the selectivity of 2-isopropyl naphthalene was equal to 80%. The test results veriifed good catalytic activity upon using Et3NHCl-AlCl3 ionic liquid as the catalyst for alkylation of naph-thalene with isopropyl bromide. The activity of the ionic liquid remains unchanged after it has been recycled for 4 times.

  14. Removal effectiveness and mechanisms of naphthalene and heavy metals from artificially contaminated soil by iron chelate-activated persulfate

    International Nuclear Information System (INIS)

    Yan, Dickson Y.S.; Lo, Irene M.C.

    2013-01-01

    The effectiveness and mechanisms of naphthalene and metal removal from artificially contaminated soil by FeEDTA/FeEDDS-activated persulfate were investigated through batch experiments. Using FeEDTA-activated persulfate, higher naphthalene removal from the soil at 7 h was achieved (89%), compared with FeEDDS-activated persulfate (75%). The removal was mainly via the dissolution of naphthalene partitioned on mineral surfaces, followed by activated persulfate oxidation. Although EDDS is advantageous over EDTA in terms of biodegradability, it is not preferable for iron chelate-activated persulfate oxidation since persulfate was consumed to oxidize EDDS, resulting in persulfate inadequacy for naphthalene oxidation. Besides, 55 and 40% of naphthalene were removed by FeEDTA and FeEDDS alone, respectively. Particularly, 21 and 9% of naphthalene were degraded in the presence of FeEDTA and FeEDDS alone, respectively, which caused by electrons transfer among dissolved organic matter, Fe 2+ /Fe 3+ and naphthalene. Over 35, 36 and 45% of Cu, Pb and Zn were removed using FeEDTA/FeEDDS-activated persulfate. -- Highlights: ► FeEDTA/FeEDDS-activated persulfate oxidation removed PAH and heavy metal from soil. ► More naphthalene was removed by FeEDTA-activated persulfate compared to FeEDDS. ► Persulfate was consumed to oxidize EDDS in FeEDDS-activated persulfate oxidation. ► Metals can be extracted from soil by free EDTA/EDDS dissociated from FeEDTA/FeEDDS. ► Naphthalene oxidation can be induced by e − transfer among Fe 2+ , DOM and naphthalene. -- This study focuses on the potencies and mechanisms of naphthalene and metal removal from contaminated soil by FeEDTA/FeEDDS-activated persulfate

  15. A Thermal Dehydrogenative Diels–Alder Reaction of Styrenes for the Concise Synthesis of Functionalized Naphthalenes

    Science.gov (United States)

    Kocsis, Laura S.; Benedetti, Erica

    2012-01-01

    Functionalized naphthalenes are valuable building blocks in many important areas. A microwave-assisted, intramolecular dehydrogenative Diels-Alder reaction of styrenyl derivatives to provide cyclopenta[b]naphthalene substructures not previously accessible using existing synthetic methods is described. The synthetic utility of these uniquely functionalized naphthalenes was demonstrated by a single-step conversion of one of these cycloadducts to a fluorophore bearing a structural resemblance to Prodan. PMID:22913473

  16. A thermal dehydrogenative Diels-Alder reaction of styrenes for the concise synthesis of functionalized naphthalenes.

    Science.gov (United States)

    Kocsis, Laura S; Benedetti, Erica; Brummond, Kay M

    2012-09-07

    Functionalized naphthalenes are valuable building blocks in many important areas. A microwave-assisted, intramolecular dehydrogenative Diels-Alder reaction of styrenyl derivatives to provide cyclopenta[b]naphthalene substructures not previously accessible using existing synthetic methods is described. The synthetic utility of these uniquely functionalized naphthalenes was demonstrated by a single-step conversion of one of these cycloadducts to a fluorophore bearing a structural resemblance to Prodan.

  17. Isolation of recombinant cysteine dioxygenase protein from Trichophyton mentagrophytes

    Czech Academy of Sciences Publication Activity Database

    Kašperová, A.; Kunert, J.; Horynová, M.; Weigl, E.; Sebela, M.; Lenobel, René; Raška, M.

    2011-01-01

    Roč. 54, č. 5 (2011), E456-E462 ISSN 0933-7407 R&D Projects: GA ČR GA301/08/1649 Institutional research plan: CEZ:AV0Z50380511 Keywords : Cysteine dioxygenase * dermatophytes * recombinant protein * keratinolytic fungi * cDNA Subject RIV: CE - Biochemistry Impact factor: 2.247, year: 2011

  18. Synthesis and Antimicrobial Evaluation of 1-[(2-Substituted phenylcarbamoyl]naphthalen-2-yl Carbamates

    Directory of Open Access Journals (Sweden)

    Tomas Gonec

    2016-09-01

    Full Text Available Series of thirteen 1-[(2-chlorophenylcarbamoyl]naphthalen-2-yl carbamates and thirteen 1-[(2-nitrophenylcarbamoyl]naphthalen-2-yl carbamates with alkyl/cycloalkyl/arylalkyl chains were prepared and characterized. Primary in vitro screening of the synthesized compounds was performed against Staphylococcus aureus, two methicillin-resistant S. aureus strains, Mycobacterium marinum, and M. kansasii. 1-[(2-Chlorophenylcarbamoyl]naphthalen-2-yl ethylcarbamate and 1-[(2-nitrophenylcarbamoyl]naphthalen-2-yl ethylcarbamate showed antistaphylococcal (MICs = 42 µM against MRSA and antimycobacterial (MICs = 21 µM activity against the tested strains comparable with or higher than that of the standards ampicillin and isoniazid. In the case of bulkier carbamate tails (R > propyl/isopropyl, the activity was similar (MICs ca. 70 µM. Screening of the cytotoxicity of both of the most effective compounds was performed using THP-1 cells, and no significant lethal effect was observed (LD50 >30 µM. The structure-activity relationships are discussed.

  19. Process for refining naphthalene, etc

    Energy Technology Data Exchange (ETDEWEB)

    Petroff, G

    1922-05-13

    A process is described for the refining of naphthalene, its distillates, and mineral oils by the use of dilute sulfuric acid, characterized in that the oils are oxidized with oxygen of the air and thereafter are treated with 65 to 75 percent sulfuric acid to separate the unsaturated hydrocarbons in the form of polymerized products whereby, if necessary, heating and application of usual or higher pressure can take place.

  20. Naphthalene Diels-Alder in a self-assembled molecular flask.

    Science.gov (United States)

    Murase, Takashi; Horiuchi, Shinnosuke; Fujita, Makoto

    2010-03-10

    Despite its inertness toward pericyclic reactions under common conditions, naphthalenes readily undergo Diels-Alder reactions when coencapsulated with a suitable dienophile within the cavity of a self-assembled host. Localization of the reactant pair significantly reduces the entropic cost of the reaction, and preorganization within the host cavity controls both the regio- and stereoselectivity of the reaction: electronically disfavored exo adducts were obtained, and with substituted naphthalenes, the reaction takes place on the less electron-rich, unsubstituted ring. Our findings highlight the fact that judicious tuning of substrate size and shape within molecular flasks can unveil new and unusual reactivities for otherwise unreactive molecules.

  1. Novel carotenoid cleavage dioxygenase catalyzes the first dedicated step in saffron crocin biosynthesis

    KAUST Repository

    Frusciante, Sarah; Diretto, Gianfranco; Bruno, Mark; Ferrante, Paola; Pietrella, Marco; Prado-Cabrero, Alfonso; Rubio-Moraga, Á ngela L.; Beyer, Peter D.; Gó mez-Gó mez, Lourdes; Al-Babili, Salim; Giuliano, Giovanni

    2014-01-01

    Crocus sativus stigmas are the source of the saffron spice and accumulate the apocarotenoids crocetin, crocins, picrocrocin, and safranal, responsible for its color, taste, and aroma. Through deep transcriptome sequencing, we identified a novel dioxygenase, carotenoid cleavage dioxygenase 2 (CCD2), expressed early during stigma development and closely related to, but distinct from, the CCD1 dioxygenase family. CCD2 is the only identified member of a novel CCD clade, presents the structural features of a bona fide CCD, and is able to cleave zeaxanthin, the presumed precursor of saffron apocarotenoids, both in Escherichia coli and in maize endosperm. The cleavage products, identified through high-resolution mass spectrometry and comigration with authentic standards, are crocetin dialdehyde and crocetin, respectively. In vitro assays show that CCD2 cleaves sequentially the 7,8 and 7′,8′ double bonds adjacent to a 3-OH-β-ionone ring and that the conversion of zeaxanthin to crocetin dialdehyde proceeds via the C30 intermediate 3-OH-β-apo-8′-carotenal. In contrast, zeaxanthin cleavage dioxygenase (ZCD), an enzyme previously claimed to mediate crocetin formation, did not cleave zeaxanthin or 3-OH-β-apo-8′-carotenal in the test systems used. Sequence comparison and structure prediction suggest that ZCD is an N-truncated CCD4 form, lacking one blade of the β-propeller structure conserved in all CCDs. These results constitute strong evidence that CCD2 catalyzes the first dedicated step in crocin biosynthesis. Similar to CCD1, CCD2 has a cytoplasmic localization, suggesting that it may cleave carotenoids localized in the chromoplast outer envelope.

  2. Novel carotenoid cleavage dioxygenase catalyzes the first dedicated step in saffron crocin biosynthesis

    KAUST Repository

    Frusciante, Sarah

    2014-08-05

    Crocus sativus stigmas are the source of the saffron spice and accumulate the apocarotenoids crocetin, crocins, picrocrocin, and safranal, responsible for its color, taste, and aroma. Through deep transcriptome sequencing, we identified a novel dioxygenase, carotenoid cleavage dioxygenase 2 (CCD2), expressed early during stigma development and closely related to, but distinct from, the CCD1 dioxygenase family. CCD2 is the only identified member of a novel CCD clade, presents the structural features of a bona fide CCD, and is able to cleave zeaxanthin, the presumed precursor of saffron apocarotenoids, both in Escherichia coli and in maize endosperm. The cleavage products, identified through high-resolution mass spectrometry and comigration with authentic standards, are crocetin dialdehyde and crocetin, respectively. In vitro assays show that CCD2 cleaves sequentially the 7,8 and 7′,8′ double bonds adjacent to a 3-OH-β-ionone ring and that the conversion of zeaxanthin to crocetin dialdehyde proceeds via the C30 intermediate 3-OH-β-apo-8′-carotenal. In contrast, zeaxanthin cleavage dioxygenase (ZCD), an enzyme previously claimed to mediate crocetin formation, did not cleave zeaxanthin or 3-OH-β-apo-8′-carotenal in the test systems used. Sequence comparison and structure prediction suggest that ZCD is an N-truncated CCD4 form, lacking one blade of the β-propeller structure conserved in all CCDs. These results constitute strong evidence that CCD2 catalyzes the first dedicated step in crocin biosynthesis. Similar to CCD1, CCD2 has a cytoplasmic localization, suggesting that it may cleave carotenoids localized in the chromoplast outer envelope.

  3. Native Fluorescence Detection Methods and Detectors for Naphthalene and/or Other Volatile Organic Compound Vapors

    Science.gov (United States)

    Hug, William F. (Inventor); Bhartia, Rohit (Inventor); Reid, Ray D. (Inventor); Lane, Arthur L. (Inventor)

    2014-01-01

    Naphthalene, benzene, toluene, xylene, and other volatile organic compounds have been identified as serious health hazards. This is especially true for personnel working with JP8 jet fuel and other fuels containing naphthalene as well as other hazardous volatile organic compounds (VOCs). Embodiments of the invention are directed to methods and apparatus for near-real-time in-situ detection and accumulated dose measurement of exposure to naphthalene vapor and other hazardous gaseous VOCs. The methods and apparatus employ excitation of fluorophors native or endogenous to compounds of interest using light sources emitting in the ultraviolet below 300 nm and measurement of native fluorescence emissions in distinct wavebands above the excitation wavelength. The apparatus of some embodiments are cell-phone-sized sensor/dosimeter "badges" to be worn by personnel potentially exposed to naphthalene or other hazardous VOCs. The badge sensor of some embodiments provides both real time detection and data logging of exposure to naphthalene or other VOCs of interest from which both instantaneous and accumulated dose can be determined. The badges employ a new native fluorescence based detection method to identify and differentiate VOCs. The particular focus of some embodiments are the detection and identification of naphthalene while other embodiments are directed to detection and identification of other VOCs like aromatic hydrocarbons such as benzene, toluene, and xylene.

  4. Effect of additional carbon source on naphthalene biodegradation by Pseudomonas putida G7

    International Nuclear Information System (INIS)

    Lee, Kangtaek; Park, Jin-Won; Ahn, Ik-Sung

    2003-01-01

    Addition of a carbon source as a nutrient into soil is believed to enhance in situ bioremediation by stimulating the growth of microorganisms that are indigenous to the subsurface and are capable of degrading contaminants. However, it may inhibit the biodegradation of organic contaminants and result in diauxic growth. The objective of this work is to study the effect of pyruvate as another carbon source on the biodegradation of polynuclear aromatic hydrocarbons (PAHs). In this study, naphthalene was used as a model PAH, ammonium sulfate as a nitrogen source, and oxygen as an electron acceptor. Pseudomonas putida G7 was used as a model naphthalene-degrading microorganism. From a chemostat culture, the growth kinetics of P. putida G7 on pyruvate was determined. At concentrations of naphthalene and pyruvate giving similar growth rates of P. putida G7, diauxic growth of P. putida G7 was not observed. It is suggested that pyruvate does not inhibit naphthalene biodegradation and can be used as an additional carbon source to stimulate the growth of P. putida G7 that can degrade polynuclear aromatic hydrocarbons

  5. 40 CFR 61.134 - Standard: Naphthalene processing, final coolers, and final-cooler cooling towers.

    Science.gov (United States)

    2010-07-01

    ... coolers, and final-cooler cooling towers. 61.134 Section 61.134 Protection of Environment ENVIRONMENTAL... Standard: Naphthalene processing, final coolers, and final-cooler cooling towers. (a) No (“zero”) emissions are allowed from naphthalene processing, final coolers and final-cooler cooling towers at coke by...

  6. Polymers for organic photovoltaics based on 1,5-bis(2-hexyldecyloxy)-naphthalene, thiophene, and benzothiadiazole

    DEFF Research Database (Denmark)

    Carlé, Jon Eggert; Jørgensen, Mikkel; Krebs, Frederik C

    2011-01-01

    Two new conjugated polymers consisting of the donors 1,5-bis(2-hexyldecyloxy)naphthalene, thiophene, or bithiophene and the acceptor benzothiadiazole has been synthesized and their optical and photovoltaic properties have been characterized. The two polymers were compared with earlier synthesized...... and characterized polymers containing benzene instead of naphthalene. The two polymers absorb light in the visible spectrum (400 to 700 nm). The naphthalene containing polymers had blueshifted absorption spectra compared to the benzene containing polymers and also higher band gaps. In photovoltaic devices...

  7. Characterization of model peptide adducts with reactive metabolites of naphthalene by mass spectrometry.

    Directory of Open Access Journals (Sweden)

    Nathalie T Pham

    Full Text Available Naphthalene is a volatile polycyclic aromatic hydrocarbon generated during combustion and is a ubiquitous chemical in the environment. Short term exposures of rodents to air concentrations less than the current OSHA standard yielded necrotic lesions in the airways and nasal epithelium of the mouse, and in the nasal epithelium of the rat. The cytotoxic effects of naphthalene have been correlated with the formation of covalent protein adducts after the generation of reactive metabolites, but there is little information about the specific sites of adduction or on the amino acid targets of these metabolites. To better understand the chemical species produced when naphthalene metabolites react with proteins and peptides, we studied the formation and structure of the resulting adducts from the incubation of model peptides with naphthalene epoxide, naphthalene diol epoxide, 1,2-naphthoquinone, and 1,4-naphthoquinone using high resolution mass spectrometry. Identification of the binding sites, relative rates of depletion of the unadducted peptide, and selectivity of binding to amino acid residues were determined. Adduction occurred on the cysteine, lysine, and histidine residues, and on the N-terminus. Monoadduct formation occurred in 39 of the 48 reactions. In reactions with the naphthoquinones, diadducts were observed, and in one case, a triadduct was detected. The results from this model peptide study will assist in data interpretation from ongoing work to detect peptide adducts in vivo as markers of biologic effect.

  8. The role of adrenal hormones in the activation of tryptophan 2,3-dioxygenase by nicotinic acid in rat liver.

    Science.gov (United States)

    Sainio, E L

    1997-09-01

    In this study, our previous finding that nicotinic acid activates tryptophan 2,3-dioxygenase as strongly as tryptophan was investigated in further detail. This study focused on the role of the adrenals in the activation process. Adrenalectomy abolished the activation due to nicotinic acid, but not the activation caused by tryptophan. The role of corticoids and/or adrenomedullary hormones in the enzyme activation was studied, by supplementing these hormones in adrenalectomized rats using minipumps implanted under the skin. The results showed that the enhanced activity of tryptophan 2,3-dioxygenase caused by nicotinic acid was partly restored by adrenaline following adrenalectomy but not by corticosterone supplementation. The results were supported by further experiments in which the rats were treated with adrenaline or corticosterone intraperitoneally before nicotinic acid administration. The conclusion that adrenaline participates in the regulation of tryptophan 2,3-dioxygenase should promote further study to determine whether adrenaline is a general modulator of this enzyme. This experimental model generated new information on the activation mechanism of tryptophan 2,3-dioxygenase by nicotinic acid.

  9. Modern methods for the sythesis of substituted naphthalenes

    CSIR Research Space (South Africa)

    De Koning, CB

    2003-01-01

    Full Text Available of methanol afforded the naphthalene product 24 in 82% yield. Frontier molecular orbital calculations may be used to predict the formation of the preferred regioisomer, although experimentally, mixtures of regioisomers may still be formed.41,42 A recent...

  10. Separation of uranium(VI) by liquid-solid extraction with tri-n-octylphosphine oxide diluted with naphthalene

    International Nuclear Information System (INIS)

    Shigetomi, Y.; Kojima, T.; Kamba, H.; Yamamoto, Y.

    1980-01-01

    Liquid-liquid distribution with tri-n-octylphosphine oxide (TOPO) and molten naphthalene has been investigated for the extraction of 20 metals from nitric acid and hydrochloric acid solutions. Uranium is quantitatively extracted from 1 M nitric acid or hydrochloric acid by using 100 mg of TOPO and 200 mg of naphthalene and shaking for 5 min at 80 0 C, and separated from transition metals, alkaline earth metals and rare earth metals (except scandium). Addition of naphthalene increases the extraction efficiency. (Auth.)

  11. Adsorption of naphthalene and ozone on atmospheric air/ice interfaces coated with surfactants: a molecular simulation study.

    Science.gov (United States)

    Liyana-Arachchi, Thilanga P; Valsaraj, Kalliat T; Hung, Francisco R

    2012-03-15

    The adsorption of gas-phase naphthalene and ozone molecules onto air/ice interfaces coated with different surfactant species (1-octanol, 1-hexadecanol, or 1-octanal) was investigated using classical molecular dynamics (MD) simulations. Naphthalene and ozone exhibit a strong preference to be adsorbed at the surfactant-coated air/ice interfaces, as opposed to either being dissolved into the bulk of the quasi-liquid layer (QLL) or being incorporated into the ice crystals. The QLL becomes thinner when the air/ice interface is coated with surfactant molecules. The adsorption of both naphthalene and ozone onto surfactant-coated air/ice interfaces is enhanced when compared to bare air/ice interface. Both naphthalene and ozone tend to stay dissolved in the surfactant layer and close to the QLL, rather than adsorbing on top of the surfactant molecules and close to the air region of our systems. Surfactants prefer to orient at a tilted angle with respect to the air/ice interface; the angular distribution and the most preferred angle vary depending on the hydrophilic end group, the length of the hydrophobic tail, and the surfactant concentration at the air/ice interface. Naphthalene prefers to have a flat orientation on the surfactant coated air/ice interface, except at high concentrations of 1-hexadecanol at the air/ice interface; the angular distribution of naphthalene depends on the specific surfactant and its concentration at the air/ice interface. The dynamics of naphthalene molecules at the surfactant-coated air/ice interface slow down as compared to those observed at bare air/ice interfaces. The presence of surfactants does not seem to affect the self-association of naphthalene molecules at the air/ice interface, at least for the specific surfactants and the range of concentrations considered in this study.

  12. [Characteristics of natural strains of naphthalene-utilizing bacteria of the genus Pseudomonas].

    Science.gov (United States)

    Levchuk, A A; Vasilenko, S L; Bulyga, I M; Titok, M A; Thomas, K M

    2005-01-01

    Sixty-three strains of bacteria capable of utilizing naphthalene as the sole source of carbon and energy were isolated from 137 samples of soil taken in different sites in Belarus. All isolated bacteria contained extrachromosomal genetic elements of 45 to 150 kb in length. It was found that bacteria of 31 strains contained the IncP-9 incompatibility group plasmids, bacteria of one strain carried a plasmid containing replicons IncP-9 and IncP-7, and bacteria of 31 strains contained unidentified plasmids. Primary identification showed that the hosts of plasmids of naphthalene biodegradation are fluorescent bacteria of the genus Pseudomonas (P. putida and P. aeruginosa; a total of 47 strains) and unidentified nonfluorescent microorganisms (a total of 16 strains). In addition to the ability to utilize naphthalene, some strains exhibited the ability to stimulate the growth and development of the root system of Secale cereale.

  13. Naphthalene Poisoning in Children: a Report of Two

    African Journals Online (AJOL)

    emergency ward with a history of ' Gzmphofingestion three days before presentation. He had developed fever ... hospitalization, and had had an uneventful neonatal period. There was no history ofineonatal jaundice. .... and methylthio derivatives which are excreted as glucuronide conjugates in the urine. Naphthalene.

  14. Isolation of naphthalene-degrading bacteria from tropical marine sediments

    International Nuclear Information System (INIS)

    Zhuang, W.-Q.; Tay, J.-H.; Maszenan, A.M.; Tay, S.T.-L.

    2003-01-01

    Oil pollution is a major environmental concern in many countries, and this has led to a concerted effort in studying the feasibility of using oil-degrading bacteria for bioremediation. Although many oil-degrading bacteria have been isolated from different environments, environmental conditions can impose a selection pressure on the types of bacteria that can reside in a particular environment. This study reports the successful isolation of two indigenous naphthalene-degrading bacteria from oil-contaminated tropical marine sediments by enrichment culture. Strains MN-005 and MN-006 were characterized using an extensive range of biochemical tests. The 16S ribosomal deoxyribonucleic acid (rDNA) sequence analysis was also performed for the two strains. Their naphthalene degradation capabilities were determined using gas chromatography and DAPI counting of bacterial cells. Strains MN-005 and MN-006 are phenotypically and phylogenetically different from each other, and belong to the genera Staphylococcus and Micrococcus, respectively. Strains MN-005 and MN-006 has maximal specific growth rates (μ max ) of 0.082±0.008 and 0.30±0.02 per hour, respectively, and half-saturation constants (K s ) of 0.79±0.10 and 2.52±0.32 mg per litre, respectively. These physiological and growth studies are useful in assessing the potential of these indigenous isolates for in situ or ex situ naphthalene pollutant bioremediation in tropical marine environments. (author)

  15. Substrate and pH-Dependent Kinetic Profile of 3-Mercaptopropionate Dioxygenase from Pseudomonas aeruginosa.

    Science.gov (United States)

    Fellner, Matthias; Aloi, Sekotilani; Tchesnokov, Egor P; Wilbanks, Sigurd M; Jameson, Guy N L

    2016-03-08

    Thiol dioxygenases catalyze the synthesis of sulfinic acids in a range of organisms from bacteria to mammals. A thiol dioxygenase from the bacterium Pseudomonas aeruginosa oxidizes both 3-mercaptopropionic acid and cysteine, with a ∼70 fold preference for 3-mercaptopropionic acid over all pHs. This substrate reactivity is widened compared to other thiol dioxygenases and was exploited in this investigation of the residues important for activity. A simple model incorporating two protonation events was used to fit profiles of the Michaelis-Menten parameters determined at different pH values for both substrates. The pKs determined using plots of k(cat)/Km differ at low pH, but not in a way easily attributable to protonation of the substrate alone and share a common value at higher pH. Plots of k(cat) versus pH are also quite different at low pH showing the monoprotonated ES complexes with 3-mercaptopropionic acid and cysteine have different pKs. At higher pH, k(cat) decreases sigmoidally with a similar pK regardless of substrate. Loss of reactivity at high pH is attributed to deprotonation of tyrosine 159 and its influence on dioxygen binding. A mechanism is proposed by which deprotonation of tyrosine 159 both blocks oxygen binding and concomitantly promotes cystine formation. Finally, the role of tyrosine 159 was further probed by production of a G95C variant that is able to form a cysteine-tyrosine crosslink homologous to that found in mammalian cysteine dioxygenases. Activity of this variant is severely impaired. Crystallography shows that when un-crosslinked, the cysteine thiol excludes tyrosine 159 from its native position, while kinetic analysis shows that the thioether bond impairs reactivity of the crosslinked form.

  16. Naphthalene degradation by bacterial consortium (DV-AL) developed from Alang-Sosiya ship breaking yard, Gujarat, India.

    Science.gov (United States)

    Patel, Vilas; Jain, Siddharth; Madamwar, Datta

    2012-03-01

    Naphthalene degrading bacterial consortium (DV-AL) was developed by enrichment culture technique from sediment collected from the Alang-Sosiya ship breaking yard, Gujarat, India. The 16S rRNA gene based molecular analyzes revealed that the bacterial consortium (DV-AL) consisted of four strains namely, Achromobacter sp. BAB239, Pseudomonas sp. DV-AL2, Enterobacter sp. BAB240 and Pseudomonas sp. BAB241. Consortium DV-AL was able to degrade 1000 ppm of naphthalene in Bushnell Haas medium (BHM) containing peptone (0.1%) as co-substrate with an initial pH of 8.0 at 37°C under shaking conditions (150 rpm) within 24h. Maximum growth rate and naphthalene degradation rate were found to be 0.0389 h(-1) and 80 mg h(-1), respectively. Consortium DV-AL was able to utilize other aromatic and aliphatic hydrocarbons such as benzene, phenol, carbazole, petroleum oil, diesel fuel, and phenanthrene and 2-methyl naphthalene as sole carbon source. Consortium DV-AL was also efficient to degrade naphthalene in the presence of other pollutants such as petroleum hydrocarbons and heavy metals. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Isolation of a naphthalene-degrading strain from activated sludge and bioaugmentation with it in a MBR treating coal gasification wastewater.

    Science.gov (United States)

    Xu, Peng; Ma, Wencheng; Han, Hongjun; Jia, Shengyong; Hou, Baolin

    2015-03-01

    A highly effective naphthalene-degrading bacterial strain was isolated from acclimated activated sludge from a coal gasification wastewater plant, and identified as a Streptomyces sp., designated as strain QWE-35. The optimal pH and temperature for naphthalene degradation were 7.0 and 35°C. The presence of additional glucose and methanol significantly increased the degradation efficiency of naphthalene. The strain showed tolerance to the toxicity of naphthalene at a concentration as great as 200 mg/L. The Andrews mode could be fitted to the degradation kinetics data well over a wide range of initial naphthalene concentrations (10-200 mg/L), with kinetic values q max = 0.84 h(-1), K s = 40.39 mg/L, and K i = 193.76 mg/L. Metabolic intermediates were identified by gas chromatography and mass spectrometry, allowing a new degradation pathway for naphthalene to be proposed for the first time. Strain QWE-35 was added into a membrane bioreactor (MBR) to enhance the treatment of real coal gasification wastewater. The results showed that the removal of chemical oxygen demand and total nitrogen were similar between bioaugmented and non-bioaugmented MBRs, however, significant removal of naphthalene was obtained in the bioaugmented reactor. The findings suggest a potential bioremediation role of Streptomyces sp. QWE-35 in the removal of naphthalene from wastewaters.

  18. Structure of the 2, 4′-dihydroxyacetophenone dioxygenase from Alcaligenes sp. 4HAP

    Energy Technology Data Exchange (ETDEWEB)

    Keegan, R.; Lebedev, A. [RAL, Harwell Oxford, Didcot OX11 0FA (United Kingdom); Erskine, P.; Guo, J.; Wood, S. P. [UCL Division of Medicine (Royal Free Campus), Rowland Hill Street, London NW3 2PF (United Kingdom); Hopper, D. J. [Aberystwyth University, Penglais, Aberystwyth SY23 3DA Wales (United Kingdom); Rigby, S. E. J. [University of Manchester, 131 Princess Street, Manchester M1 7DN (United Kingdom); Cooper, J. B., E-mail: jon.cooper@ucl.ac.uk [UCL Division of Medicine (Royal Free Campus), Rowland Hill Street, London NW3 2PF (United Kingdom); RAL, Harwell Oxford, Didcot OX11 0FA (United Kingdom)

    2014-09-01

    The first X-ray structure of a 2, 4′-dihydroxyacetophenone dioxygenase from Alcaligenes sp. 4HAP at a resolution of 2.2 Å is reported. This structure establishes that the enzyme adopts the cupin-fold, forming compact dimers with a pronounced hydrophobic interface between the monomers. Each monomer possesses a catalytic ferrous iron that is coordinated by three histidines (76, 78 and 114) and an additional ligand which has been putatively assigned as a carbonate, although formate and acetate are possibilities. The enzyme 2, 4′-dihydroxyacetophenone dioxygenase (DAD) catalyses the conversion of 2, 4′-dihydroxyacetophenone to 4-hydroxybenzoic acid and formic acid with the incorporation of molecular oxygen. Whilst the vast majority of dioxygenases cleave within the aromatic ring of the substrate, DAD is very unusual in that it is involved in C—C bond cleavage in a substituent of the aromatic ring. There is evidence that the enzyme is a homotetramer of 20.3 kDa subunits, each containing nonhaem iron, and its sequence suggests that it belongs to the cupin family of dioxygenases. In this paper, the first X-ray structure of a DAD enzyme from the Gram-negative bacterium Alcaligenes sp. 4HAP is reported, at a resolution of 2.2 Å. The structure establishes that the enzyme adopts a cupin fold, forming dimers with a pronounced hydrophobic interface between the monomers. The catalytic iron is coordinated by three histidine residues (76, 78 and 114) within a buried active-site cavity. The iron also appears to be tightly coordinated by an additional ligand which was putatively assigned as a carbonate dianion since this fits the electron density optimally, although it might also be the product formate. The modelled carbonate is located in a position which is highly likely to be occupied by the α-hydroxyketone group of the bound substrate during catalysis. Modelling of a substrate molecule in this position indicates that it will interact with many conserved amino acids in

  19. Conversion of cresols and naphthalene in the hydroprocessing of three-component model mixtures simulating fast pyrolysis tars

    Energy Technology Data Exchange (ETDEWEB)

    Wandas, R.; Surygala, J.; Sliwka, E. [Technical University of Wroclaw, Wroclaw (Poland). Inst. of Chemistry and Technology of Petroleum and Coal

    1996-05-01

    The hydroconversion of o-, m- and p-cresols in three-component model mixtures with naphthalene and n-hexadecane was investigated over a CoMo/Al{sub 2}O{sub 3} catalyst at 360{degree}C, a hydrogen pressure of 7 MPa and a reaction time of 60 min. The results were compared with those obtained for cresols and naphthalene as single model compounds. A lower efficiency of cresol hydrodeoxygenation as well as naphthalene hydrogenation in the mixtures was found than in the conversion of the single compounds. Conversion mechanisms of cresols in the mixtures with naphthalene are considerably more complex than for individual components. Beside typical catalytic reactions, they include radical reactions in which tetralin, formed by naphthalene hydrogenation, participates as a labile-hydrogen source. The cresol reaction products in such systems include phenol, xylenols, xylenes and dimethycyclohexanes, i.e. compounds essentially absent in hydroconversion of cresols as single substances. Under the experimental conditions, the hydrodeoxygenation efficiency of the cresol isomers decreases in the sequence: para {gt} metal {gt} ortho. 22 refs., 3 figs., 3 tabs.

  20. Physico-mechanical properties of naphthalene-acenaphthene eutectic system by different modes of solidification

    International Nuclear Information System (INIS)

    Sharma, B.L.; Gupta, S.; Tandon, S.; Kant, R.

    2008-01-01

    Anisotropic crystal growth kinetics from compositional melts encompassing the entire naphthalene-acenaphthene eutectic system, evidentially, evinces the dislocation mechanism. Rheological properties of eutectic phase melts at different temperatures explore the occurrence of molecular interactions emanating molecular clusters, rich in one phase or the other, in the eutectic melt. Microscopic studies confirm the crystalline faceted-faceted structure of the naphthalene-acenaphthene eutectic system. Implicit in the present work is the concept of strength-growth relationship that follows an identical form of the Weibull probability distribution curve. The curve exhibits two cut-off points corresponding to a lower strength limit in the slow and fast growth regions, and an upper strength limit in the moderate growth region. Relational essence between microstructural parameters essentially structuring morphology and excess thermodynamic functions implicitly governing molten state of the naphthalene-acenaphthene eutectic system is extracted

  1. Photosynthesis-Inhibiting Activity of 1-[(2-Chlorophenylcarbamoyl]- and 1-[(2-Nitrophenylcarbamoyl]naphthalen-2-yl Alkylcarbamates

    Directory of Open Access Journals (Sweden)

    Tomas Gonec

    2017-07-01

    Full Text Available Eight 1-[(2-chlorophenylcarbamoyl]naphthalen-2-yl alkylcarbamates and eight 1-[(2-nitrophenylcarbamoyl]naphthalen-2-yl alkylcarbamates were tested for their activity related to the inhibition of photosynthetic electron transport (PET in spinach (Spinacia oleracea L. chloroplasts. The PET-inhibiting activity of the compounds was relatively low; the corresponding IC50 values ranged from 0.05 to 0.664 mmol/L; and the highest activity within the series of compounds was observed for 1-[(2-chlorophenyl-carbamoyl]naphthalen-2-yl propylcarbamate. It has been proven that the compounds are PET-inhibitors in photosystem II. Despite rather low PET-inhibiting activities, primary structure-activity trends can be discussed.

  2. Rotation and diffusion of naphthalene on Pt(111)

    Science.gov (United States)

    Kolsbjerg, E. L.; Goubert, G.; McBreen, P. H.; Hammer, B.

    2018-03-01

    The behavior of naphthalene on Pt(111) surfaces is studied by combining insight from scanning tunneling microscopy (STM) and van der Waals enabled density functional theory. Adsorption, diffusion, and rotation are investigated by a series of variable temperature STM experiments revealing naphthalene ability to rotate on-site with ease with a rotational barrier of 0.69 eV. Diffusion to neighbouring sites is found to be more difficult. The experimental results are in good agreement with the theoretical investigations which confirm that the barrier for diffusion is slightly higher than the one for rotation. The theoretical barriers for rotation and translation are found to be 0.75 and 0.78 eV, respectively. An automatic mapping of the possible diffusion pathways reveals very detailed diffusion paths with many small local minima that would have been practically impossible to find manually. This automated procedure provides detailed insight into the preferred diffusion pathways that are important for our understanding of molecule-substrate interactions.

  3. Application of UV/TiO2/H2O2 Advanced Oxidation to Remove Naphthalene from Water

    Directory of Open Access Journals (Sweden)

    Behroz Karimi

    2016-11-01

    Full Text Available Naphthalene is released into the environment by burning such organic materials as fossil fuels and wood and in industrial and vehicle exhaust emissions. Naphthalene is used in the manufacture of plastics, resins, fuels, and dyes. The aim of this study was to evaluate the performance of UV/TiO2/H2O2 process to decompose naphthalene in aqueous solutions. For this purpose, the photocatalytic degradation of naphthalene was investigated under UV light irradiation in the presence of TiO2 and H2O2 under a variety of conditions. Photodegradation efficiencies of H2O2/UV, TiO2/UV, and H2O2/TiO2/UV processes were compared in a batch reactor using the low pressure mercury lamp irradiation. The effects of operating parameters such as reaction time (min; solution pH; and initial naphthalene, TiO2, and H2O2 concentrations on photodegradation were examined. In the UV/TiO2/H2O2 system with a naphthalene concentration of 15 mg/L, naphthalene removal efficiencies of 63, 75, 80, 88, 92, 95, 96.5, and 98% were achieved, respectively, for reaction times of 5, 10, 20, 30, 40, 50, 60, 100 and 120 min. This is while removal efficienciesof 50, 59.5, 69, 80, 85, 88, 91, and 95% were obtained in the UV/TiO2 system under the same conditions. For initial pH values of 3, 4, 5, 6, 7,9, 10, and 12, naphthalene removal efficiencies of approximately 96.8, 85.5, 86, 75.5, 68.8, 57.8, and 52.5% were acheived, respectively, with the UV/TiO2/H2O2 system. Thus, it may be claiomed that, compared to either H2O2/UV or TiO2/UV process, the H2O2/TiO2/UV process yielded a far more efficient photodegradation.

  4. Decomposition of naphthalene by dc gliding arc gas discharge.

    Science.gov (United States)

    Yu, Liang; Li, Xiaodong; Tu, Xin; Wang, Yu; Lu, Shengyong; Yan, Jianhua

    2010-01-14

    Gliding arc discharge has been proved to be effective in treatment of gas and liquid contaminants. In this study, physical characteristics of dc gliding arc discharge and its application to naphthalene destruction are investigated with different external resistances and carrier gases. The decomposition rate increases with increasing of oxygen concentration and decreases with external resistance. This value can be achieved up to 92.3% at the external resistance of 50 kOmega in the oxygen discharge, while the highest destruction energy efficiency reaches 3.6 g (kW h)(-1) with the external resistance of 93 kOmega. Possible reaction pathways and degradation mechanisms in the plasma with different gases are proposed by qualitative analysis of postdestructed products. In the air and oxygen gliding arc discharges, the naphthalene degradation is mainly governed by reactions with oxygen-derived radicals.

  5. Rational synthesis of AB-type N-substituted core-functionalized naphthalene diimides (cNDIs).

    Science.gov (United States)

    Berezin, Andrey A; Sciutto, Andrea; Demitri, Nicola; Bonifazi, Davide

    2015-04-17

    Acid-mediated transformation of tetraethyl 2,6-diethoxynaphthalene-1,4,5,8-tetracarboxylate selectively affords the core-substituted naphthalene-anhydride-ester (cNAE) in quantitative yield. This anhydride can be selectively converted into hetero-N-substituted core-functionalized naphthalene diimides (cNDIs) through sequential condensation reactions in the presence of the precursor amine with very high isolated yields over four steps. The approach can be applied to prepare a large variety of heterocyclic, aromatic, and aliphatic heterodiimides.

  6. Free flow electrophoresis separation and AMS quantitation of 14C-naphthalene-protein adducts

    International Nuclear Information System (INIS)

    Buchholz, Bruce A.; Haack, Kurt W.; Sporty, Jennifer L.; Buckpitt, Alan R.; Morin, Dexter

    2010-01-01

    Naphthalene is a volatile aromatic hydrocarbon to which humans are exposed from a variety of sources including mobile air sources and cigarette smoke. Naphthalene produces dose-(concentration)dependent injury to airway epithelial cells of murine lung which is observed at concentrations well below the current occupational exposure standard. Toxicity is dependent upon the cytochrome P450 mediated metabolic activation of the parent substrate to unstable metabolites which become bound covalently to tissue proteins. Nearly 70 proteins have been identified as forming adducts with reactive naphthalene metabolites using in vitro systems but very little work has been conducted in vivo because reasonably large amounts (100 μCi) of 14 C labeled parent compound must be administered to generate detectable adduct levels on storage phosphor screens following separation of labeled proteins by 2D gel electrophoresis. The work described here was done to provide proof of concept that protein separation by free flow electrophoresis followed by AMS detection of protein fractions containing protein bound reactive metabolites would provide adducted protein profiles in animals dosed with trace quantities of labeled naphthalene. Mice were administered 200 mg/kg naphthalene intraperitoneally at a calculated specific activity of 2 DPM/nmol (1 pCi/nmol) and respiratory epithelial tissue was obtained by lysis lavage 4 h post injection. Free flow electrophoresis (FFE) separates proteins in the liquid phase over a large pH range (2.5-11.5) using low molecular weight acids and bases to modify the pH. The apparatus separates fractions into standard 96-well plates that can be used in other protein analysis techniques. The buffers of the fractions have very high carbon content, however, and need to be dialyzed to yield buffers compatible with 14 C-AMS. We describe the processing techniques required to couple FFE to AMS for quantitation of protein adducts.

  7. Free flow electrophoresis separation and AMS quantitation of 14C-naphthalene-protein adducts

    Science.gov (United States)

    Buchholz, Bruce A.; Haack, Kurt W.; Sporty, Jennifer L.; Buckpitt, Alan R.; Morin, Dexter

    2010-04-01

    Naphthalene is a volatile aromatic hydrocarbon to which humans are exposed from a variety of sources including mobile air sources and cigarette smoke. Naphthalene produces dose-(concentration)dependent injury to airway epithelial cells of murine lung which is observed at concentrations well below the current occupational exposure standard. Toxicity is dependent upon the cytochrome P450 mediated metabolic activation of the parent substrate to unstable metabolites which become bound covalently to tissue proteins. Nearly 70 proteins have been identified as forming adducts with reactive naphthalene metabolites using in vitro systems but very little work has been conducted in vivo because reasonably large amounts (100 μCi) of 14C labeled parent compound must be administered to generate detectable adduct levels on storage phosphor screens following separation of labeled proteins by 2D gel electrophoresis. The work described here was done to provide proof of concept that protein separation by free flow electrophoresis followed by AMS detection of protein fractions containing protein bound reactive metabolites would provide adducted protein profiles in animals dosed with trace quantities of labeled naphthalene. Mice were administered 200 mg/kg naphthalene intraperitoneally at a calculated specific activity of 2 DPM/nmol (1 pCi/nmol) and respiratory epithelial tissue was obtained by lysis lavage 4 h post injection. Free flow electrophoresis (FFE) separates proteins in the liquid phase over a large pH range (2.5-11.5) using low molecular weight acids and bases to modify the pH. The apparatus separates fractions into standard 96-well plates that can be used in other protein analysis techniques. The buffers of the fractions have very high carbon content, however, and need to be dialyzed to yield buffers compatible with 14C-AMS. We describe the processing techniques required to couple FFE to AMS for quantitation of protein adducts.

  8. Molecular cloning and characterization of cDNAs encoding carotenoid cleavage dioxygenase in bitter melon (Momordica charantia).

    Science.gov (United States)

    Tuan, Pham Anh; Park, Sang Un

    2013-01-01

    Carotenoid cleavage dioxygenases (CCDs) are a family of enzymes that catalyze the oxidative cleavage of carotenoids at various chain positions to form a broad spectrum of apocarotenoids, including aromatic substances, pigments and phytohormones. Using the rapid amplification of cDNA ends (RACE) PCR method, we isolated three cDNA-encoding CCDs (McCCD1, McCCD4, and McNCED) from Momordica charantia. Amino acid sequence alignments showed that they share high sequence identity with other orthologous genes. Quantitative real-time RT PCR (reverse transcriptase PCR) analysis revealed that the expression of McCCD1 and McCCD4 was highest in flowers, and lowest in roots and old leaves (O-leaves). During fruit maturation, the two genes displayed differential expression, with McCCD1 peaking at mid-stage maturation while McCCD4 showed the lowest expression at that stage. The mRNA expression level of McNCED, a key enzyme involved in abscisic acid (ABA) biosynthesis, was high during fruit maturation and further increased at the beginning of seed germination. When first-leaf stage plants of M. charantia were exposed to dehydration stress, McNCED mRNA expression was induced primarily in the leaves and, to a lesser extend, in roots and stems. McNCED expression was also induced by high temperature and salinity, while treatment with exogenous ABA led to a decrease. These results should be helpful in determining the substrates and cleavage sites catalyzed by CCD genes in M. charantia, and also in defining the roles of CCDs in growth and development, and in the plant's response to environmental stress. Copyright © 2012 Elsevier GmbH. All rights reserved.

  9. Tn5-induced pBS286 plasmid mutations blocking early stages of napthalene oxidation

    International Nuclear Information System (INIS)

    Kosheleva, I.A.; Tsoi, T.V.; Ivashina, T.V.; Selifonov, S.A.; Starovoitov, I.I.; Boronin, A.M.

    1988-01-01

    The authors present data on the further analysis of the structural and functional organization of the nah region of plasmid pBS286 controlling the constitutive oxidation of naphthalene by Pseudomonas putida cells. They have studied Tn5-induced mutations blocking early stages of naphthalene oxidation. They present and discuss data providing evidence that, in contrast to plasmid NAH7, the mechanism of regulation of the nahl operon of plasmid NPL-1, the parent plasmid of plasmid pBS286, with inducible synthesis of naphthalene dioxygenase can include elements of a negative control with participation of the regulatory locus R, located proximal to the structural nah genes and closely linked to or overlapped by the inverted control DNA segment (4.2 kb). They also present data on the possibility of regulation of the activity of the catechol-splitting meta-pathway genes with the participation of products of early stages of naphthalene oxidation

  10. Characterization and Functional Identification of a Novel Plant 4,5-Extradiol Dioxygenase Involved in Betalain Pigment Biosynthesis in Portulaca grandiflora

    Science.gov (United States)

    Christinet, Laurent; Burdet, Frédéric X.; Zaiko, Maïa; Hinz, Ursula; Zrÿd, Jean-Pierre

    2004-01-01

    Betalains are pigments that replace anthocyanins in the majority of families of the plant order Caryophyllales. Betalamic acid is the common chromophore of betalains. The key enzyme of the betalain biosynthetic pathway is an extradiol dioxygenase that opens the cyclic ring of dihydroxy-phenylalanine (DOPA) between carbons 4 and 5, thus producing an unstable seco-DOPA that rearranges nonenzymatically to betalamic acid. A gene for a 4,5-DOPA-dioxygenase has already been isolated from the fungus Amanita muscaria, but no homolog was ever found in plants. To identify the plant gene, we constructed subtractive libraries between different colored phenotypes of isogenic lines of Portulaca grandiflora (Portulacaceae) and between different stages of flower bud formation. Using in silico analysis of differentially expressed cDNAs, we identified a candidate showing strong homology at the level of translated protein with the LigB domain present in several bacterial extradiol 4,5-dioxygenases. The gene was expressed only in colored flower petals. The function of this gene in the betalain biosynthetic pathway was confirmed by biolistic genetic complementation in white petals of P. grandiflora genotypes lacking the gene for color formation. This gene named DODA is the first characterized member of a novel family of plant dioxygenases phylogenetically distinct from Amanita sp. DOPA-dioxygenase. Homologs of DODA are present not only in betalain-producing plants but also, albeit with some changes near the catalytic site, in other angiosperms and in the bryophyte Physcomitrella patens. These homologs are part of a novel conserved plant gene family probably involved in aromatic compound metabolism. PMID:14730069

  11. Fused Heterocyclic Compounds as Potent Indoleamine-2,3-dioxygenase 1 Inhibitors.

    Science.gov (United States)

    Panda, Subhankar; Roy, Ashalata; Deka, Suman Jyoti; Trivedi, Vishal; Manna, Debasis

    2016-12-08

    Uncontrolled metabolism of l-tryptophan (l-Trp) in the immune system has been recognized as a critical cellular process in immune tolerance. Indoleamine 2,3-dioxygenase 1 (IDO1) enzyme plays an important role in the metabolism of a local l-Trp through the kynurenine pathway in the immune systems. In this regard, IDO1 has emerged as a therapeutic target for the treatment of diseases that are associated with immune suppression like chronic infections, cancer, and others. In this study, we synthesized a series of pyridopyrimidine, pyrazolopyranopyrimidine, and dipyrazolopyran derivatives. Further lead optimizations directed to the identification of potent compounds, 4j and 4l (IC 50 = 260 and 151 nM, respectively). These compounds also exhibited IDO1 inhibitory activities in the low nanomolar range in MDA-MB-231 cells with very low cytotoxicity. Stronger selectivity for the IDO1 enzyme (>300-fold) over tryptophan 2,3-dioxygenase (TDO) enzyme was also observed for these compounds. Hence, these fused heterocyclic compounds are attractive candidates for the advanced study of IDO1-dependent cellular function and immunotherapeutic applications.

  12. Recovery of naphthalene, anthracene, etc. , from tar

    Energy Technology Data Exchange (ETDEWEB)

    1920-12-25

    A process is described for the recovery of naphthalene, anthracene, and the like from tar oils and similar liquors, characterized in that the oil is treated in a rapidly rotating hammer mill, such as a colloid mill, with water sufficient, in the presence or absence of suitable solvents, for the only portion preferably in the presence of emulsifiers; and is filtered through a filter with fine pores.

  13. Synthesis of new derivatives of naphthalene

    International Nuclear Information System (INIS)

    Rivera Marrero, Suchitil; Sablon Carrazana, Marquiza; Lopez Barroso, Rosa Maria

    2011-01-01

    Alzheimer's disease (AD) is the most common cause of dementia and there is no cure for this disease. It is known that it is triggered by the apparition of the senile plaques produced for the agglomeration of β-amyloid peptides. AD's reliable diagnosis is done post-mortem. Recently, non-invasive methods are evaluated for in vivo diagnosis of this disease by means of imaging techniques PET (Positron Emission Tomography), SPECT (Single Photon Emission Computed Tomography) and MRI (Magnetic Resonance Imaging). In the case of the SPECT technique, new organic compounds labeled with radionuclides 1 23I , 1 25I , and 99 mT c have been described. Epidemiological studies have revealed that the use of non-steroidal anti-inflammatory drugs decreases the relative risk of AD. In the last years, the search of compounds with similar structures it has increased in order to be used as labels or drugs. The objective of this paper was to synthesize new naphthalene derivatives, for its further use as quelating agents of 99 mT c, for the detection of β-amyloid plaque in the AD. Thus, spacer arms with different lengths were introduced at β-position (or 1-) of naphthalene molecule through various different reactions. The compounds were structurally characterized by IR, 1 H -NMR and 13 C - NMR spectroscopies and mass spectrometry

  14. studies on the adsorption of naphthalene and pyrene from aqueous

    African Journals Online (AJOL)

    Admin

    The effectiveness of dried ground orange peels in adsorbing naphthalene and ... which are affordable and readily available have given ... banana pith, coconut husk and saw dust, biogas .... alcohol strength was purchased from Alconi Nigeria.

  15. Nicholas reactions in the construction of cyclohepta[de]naphthalenes and cyclohepta[de]naphthalenones. The total synthesis of microstegiol.

    Science.gov (United States)

    Taj, Rafiq A; Green, James R

    2010-12-03

    The application of the Nicholas reaction chemistry of 2,7-dioxygenated naphthalenes in the synthesis of cyclohepta[de]napthalenes and in the synthesis of (±)-microstegiol (1) is presented. The substitution profile of Nicholas monosubstitution (predominantly C-1) and disubstitution reactions (predominantly 1,6-) on 2,7-dioxygenated napthalenes is reported. Application of a 1,8-dicondensation product and selected C-1 monocondensation products to the construction of cyclohepta[de]naphthalenes by way of ring closing metathesis and intramolecular Friedel-Crafts reactions, respectively, is described. Deprotection of the C-7 oxygen function to the corresponding naphthol allows tautomerization to cyclohepta[de]naphthalene-1-ones upon seven-membered-ring closure in most cases, and replacement of the C-2 oxygen function in the naphthalene by a methyl group ultimately allows the synthesis of (±)-microstegiol.

  16. Photoinduced Charge Transport Spectra for Porphyrin and Naphthalene Derivative-based Dendrimers

    Science.gov (United States)

    Park, J. H.; Wu, Y.; Parquette, J. R.; Epstein, A. J.

    2006-03-01

    Dendrimers are important chemical structures for harvesting charge. We prepared model dendrimers using two porphyrin derivatives and a naphthalene derivative. Films of these porphyrin derivatives have a strong Soret band (˜430nm) and four significant Q-bands; the naphthalene derivative has strong absorption at 365 and 383nm. Two kinds of photovoltaic cell structures [ITO/BaytronP/(thick or thin) dendrimer/Al] are constructed to investigate the optical response spectra of dendrimers under electric potential(V) on the cell (range from -1V to 2V). To obtain pure optical responses, incident light is modulated with an optical chopper and a lock-in amplifier is used to measure current (IAC) and phase (θ). For the excitation of the Soret band, IAC and θ do not change substantially with change of sign and amplitude of V. For Q-bands and naphthalene absorption bands, θ nearly follows the polarity of V on the cells and IAC is linear with V. Hence, IAC is nearly ohmic for Q- band although there are shifts due to built-in-potential. IAC for Soret band is almost same for thick and thin active layer cells. In contrast, IAC increases with thickness increase for Q bands. Mechanisms of photogeneration and charge transport will be discussed.

  17. Comparative study of electron conduction in azulene and naphthalene

    Indian Academy of Sciences (India)

    Wintec

    tional or electronic devices. Recent advances in experi- mental techniques have allowed ... stimulates us to study the electronic conduction in azulene molecule and to compare that with its isomer, naphthalene. ..... ernment of India, for funding and (SD) acknowledges CSIR,. Government of India, for a research fellowship.

  18. Application of a luminescence-based biosensor for assessing naphthalene biodegradation in soils from a manufactured gas plant

    International Nuclear Information System (INIS)

    Paton, G.I.; Reid, B.J.; Semple, K.T.

    2009-01-01

    Despite numerous reviews suggesting that microbial biosensors could be used in many environmental applications, in reality they have failed to be used for which they were designed. In part this is because most of these sensors perform in an aqueous phase and a buffered medium, which is in contrast to the nature of genuine environmental systems. In this study, a range of non-exhaustive extraction techniques (NEETs) were assessed for (i) compatibility with a naphthalene responsive biosensor and (ii) correlation with naphthalene biodegradation. The NEETs removed a portion of the total soil naphthalene in the order of methanol > HPCD > βCD > water. To place the biosensor performance to NEETs in context, a biodegradation experiment was carried out using historically contaminated soils. By coupling the HPCD extraction with the biosensor, it was possible to assess the fraction of the naphthalene capable of undergoing microbial degradation in soil. - Exposure of microbial biosensors to cyclodextrin solutions allows the assessment of the degradable fraction of contaminants in soil.

  19. Free flow electrophoresis separation and AMS quantitation of {sup 14}C-naphthalene-protein adducts

    Energy Technology Data Exchange (ETDEWEB)

    Buchholz, Bruce A., E-mail: bbuchholz@llnl.go [Center for AMS, LLNL, 7000 East Avenue, Livermore, CA 94551 (United States); Haack, Kurt W.; Sporty, Jennifer L. [Center for AMS, LLNL, 7000 East Avenue, Livermore, CA 94551 (United States); Buckpitt, Alan R.; Morin, Dexter [Department of Molecular Biosciences, School of Veterinary Medicine, UC Davis, Davis, CA 95616 (United States)

    2010-04-15

    Naphthalene is a volatile aromatic hydrocarbon to which humans are exposed from a variety of sources including mobile air sources and cigarette smoke. Naphthalene produces dose-(concentration)dependent injury to airway epithelial cells of murine lung which is observed at concentrations well below the current occupational exposure standard. Toxicity is dependent upon the cytochrome P450 mediated metabolic activation of the parent substrate to unstable metabolites which become bound covalently to tissue proteins. Nearly 70 proteins have been identified as forming adducts with reactive naphthalene metabolites using in vitro systems but very little work has been conducted in vivo because reasonably large amounts (100 muCi) of {sup 14}C labeled parent compound must be administered to generate detectable adduct levels on storage phosphor screens following separation of labeled proteins by 2D gel electrophoresis. The work described here was done to provide proof of concept that protein separation by free flow electrophoresis followed by AMS detection of protein fractions containing protein bound reactive metabolites would provide adducted protein profiles in animals dosed with trace quantities of labeled naphthalene. Mice were administered 200 mg/kg naphthalene intraperitoneally at a calculated specific activity of 2 DPM/nmol (1 pCi/nmol) and respiratory epithelial tissue was obtained by lysis lavage 4 h post injection. Free flow electrophoresis (FFE) separates proteins in the liquid phase over a large pH range (2.5-11.5) using low molecular weight acids and bases to modify the pH. The apparatus separates fractions into standard 96-well plates that can be used in other protein analysis techniques. The buffers of the fractions have very high carbon content, however, and need to be dialyzed to yield buffers compatible with {sup 14}C-AMS. We describe the processing techniques required to couple FFE to AMS for quantitation of protein adducts.

  20. Nitration of naphthalene and remarks on the mechanism of electrophilic aromatic nitration*

    Science.gov (United States)

    Olah, George A.; Narang, Subhash C.; Olah, Judith A.

    1981-01-01

    Naphthalene was nitrated with a variety of nitrating agents. Comparison of data with Perrin's electrochemical nitration [Perrin, C. L. (1977) J. Am. Chem. Soc. 99, 5516-5518] shows that nitration of naphthalene gives an α-nitronaphthalene to β-nitronaphthalene ratio that varies between 9 and 29 and is thus not constant. Perrin's data, therefore, are considered to be inconclusive evidence for the proposed one-electron transfer mechanism for the nitration of naphthalene and other reactive aromatics. Moodie and Schoefield [Hoggett, J. G., Moodie, R. B., Penton, J. R. & Schoefield, K. (1971) Nitration and Aromatic Reactivity (Cambridge Univ. Press, London)], as well as Perrin, independently concluded that, in the general scheme of nitration of reactive aromatics, there is the necessity to introduce into the classical Ingold mechanism an additional step involving a distinct intermediate preceding the formation of the Wheland intermediate (σ complexes). This view coincides with our two-step mechanistic picture [Kuhn, S. J. & Olah, G. A. (1961) J. Am. Chem. Soc. 83, 4564-4571] of the nitronium salt nitration of aromatic hydrocarbons (including benzene and toluene), in which low substrate selectivity but high positional selectivity was found, indicating the independence of substrate from positional selectivity. PMID:16593026

  1. Nitration of naphthalene and remarks on the mechanism of electrophilic aromatic nitration.

    Science.gov (United States)

    Olah, G A; Narang, S C; Olah, J A

    1981-06-01

    Naphthalene was nitrated with a variety of nitrating agents. Comparison of data with Perrin's electrochemical nitration [Perrin, C. L. (1977) J. Am. Chem. Soc. 99, 5516-5518] shows that nitration of naphthalene gives an alpha-nitronaphthalene to beta-nitronaphthalene ratio that varies between 9 and 29 and is thus not constant. Perrin's data, therefore, are considered to be inconclusive evidence for the proposed one-electron transfer mechanism for the nitration of naphthalene and other reactive aromatics. Moodie and Schoefield [Hoggett, J. G., Moodie, R. B., Penton, J. R. & Schoefield, K. (1971) Nitration and Aromatic Reactivity (Cambridge Univ. Press, London)], as well as Perrin, independently concluded that, in the general scheme of nitration of reactive aromatics, there is the necessity to introduce into the classical Ingold mechanism an additional step involving a distinct intermediate preceding the formation of the Wheland intermediate (sigma complexes). This view coincides with our two-step mechanistic picture [Kuhn, S. J. & Olah, G. A. (1961) J. Am. Chem. Soc. 83, 4564-4571] of the nitronium salt nitration of aromatic hydrocarbons (including benzene and toluene), in which low substrate selectivity but high positional selectivity was found, indicating the independence of substrate from positional selectivity.

  2. Singlet exciton interactions in crystalline naphthalene

    International Nuclear Information System (INIS)

    Heisel, F.; Miehe, J.A.; Sipp, B.

    1978-01-01

    The decay of prompt fluorescence in crystalline naphthalene at 300 K, excited by picosecond 266 nm pulse, has been studied as a function of excitation intensity. Experimental decay curves can be fitted only when the exponential distribution in depth of excitation and the radial (gaussian) intensity profile of the excitation are both taken into account. From analysis of decay at early time ( -10 cm 3 s -1 . If the reaction is diffusion-limited, this rate implies an average singlet diffusivity Dsub(S)=(2+-1)10 -4 cm 2 s -1

  3. Simultaneous determination of naphthalene and anthraquinone derivatives in Rumex nepalensis Spreng. roots by HPLC: comparison of different extraction methods and validation.

    Science.gov (United States)

    Gautam, Raju; Srivastava, Amit; Jachak, Sanjay M

    2011-01-01

    Rumex nepalensis contains mainly anthraquinone and naphthalene derivatives. Although HPLC methods have been reported for the analysis of anthraquinones, neither a phytochemical analysis of Rumex species nor the simultaneous determination of anthraquinone and naphthalene derivatives in other samples has been reported so far. To develop and validate a HPLC method for the simultaneous determination of anthraquinone and naphthalene derivatives in R. nepalensis roots. Anthraquinones and naphthalenes were extracted from R. nepalensis roots by three methods (reflux, ultrasonication and pressurized liquid extraction) using methanol. Separation was achieved on an RP C₁₈ column with a gradient mobile phase consisting of 0.05% orthophosphoric acid in water (solvent A) and methanol (solvent B) using a UV detector (254 nm). Small differences were observed in the contents of anthraquinone and naphthalene derivatives extracted by the three methods. Chrysophanol-8-O-β-D-glucopyranoside and nepodin were detected as major constituents. The method showed a good linearity (r² > 0.9992), high precision (RSD anthraquinones and naphthalenes in R. nepalensis and other Rumex species for both quality control as well as routine analytical purposes. Copyright © 2010 John Wiley & Sons, Ltd.

  4. Studies on the adsorption of naphthalene and pyrene from aqueous ...

    African Journals Online (AJOL)

    The effectiveness of dried ground orange peels in adsorbing naphthalene and pyrene from an aqueous stream has been investigated in terms of variation in concentration, adsorbent dosage, agitation time and particle size. Experimental batch data was correlated by Freundlich and Langmuir isotherm models.

  5. Kinetics of naphthalene metabolism in target and non-target tissues of rodents and in nasal and airway microsomes from the Rhesus monkey

    Energy Technology Data Exchange (ETDEWEB)

    Buckpitt, Alan, E-mail: arbuckpitt@ucdavis.edu [Department of Molecular Biosciences, School of Veterinary Medicine, UC Davis, Davis, CA 95616 (United States); Morin, Dexter [Department of Molecular Biosciences, School of Veterinary Medicine, UC Davis, Davis, CA 95616 (United States); Murphy, Shannon; Edwards, Patricia; Van Winkle, Laura [Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, UC Davis, Davis, CA 95616 (United States); Center for Health and the Environment, UC Davis, Davis, CA 95616 United States (United States)

    2013-07-15

    Naphthalene produces species and cell selective injury to respiratory tract epithelial cells of rodents. In these studies we determined the apparent K{sub m}, V{sub max}, and catalytic efficiency (V{sub max}/K{sub m}) for naphthalene metabolism in microsomal preparations from subcompartments of the respiratory tract of rodents and non-human primates. In tissues with high substrate turnover, major metabolites were derived directly from naphthalene oxide with smaller amounts from conjugates of diol epoxide, diepoxide, and 1,2- and 1,4-naphthoquinones. In some tissues, different enzymes with dissimilar K{sub m} and V{sub max} appeared to metabolize naphthalene. The rank order of V{sub max} (rat olfactory epithelium > mouse olfactory epithelium > murine airways ≫ rat airways) correlated well with tissue susceptibility to naphthalene. The V{sub max} in monkey alveolar subcompartment was 2% that in rat nasal olfactory epithelium. Rates of metabolism in nasal compartments of the monkey were low. The catalytic efficiencies of microsomes from known susceptible tissues/subcompartments are 10 and 250 fold higher than in rat airway and monkey alveolar subcompartments, respectively. Although the strong correlations between catalytic efficiencies and tissue susceptibility suggest that non-human primate tissues are unlikely to generate metabolites at a rate sufficient to produce cellular injury, other studies showing high levels of formation of protein adducts support the need for additional studies. - Highlights: • Naphthalene is metabolized with high catalytic efficiency in susceptible tissue. • Naphthalene is metabolized at low catalytic efficiency in non-susceptible tissue. • Respiratory tissues of the non human primate metabolize naphthalene slowly.

  6. Naphthalene degradation in seawater by UV irradiation: The effects of fluence rate, salinity, temperature and initial concentration

    International Nuclear Information System (INIS)

    Jing, Liang; Chen, Bing; Zhang, Baiyu; Zheng, Jisi; Liu, Bo

    2014-01-01

    Highlights: • The removal of naphthalene follows first order kinetics in seawater. • Irradiance and temperature are the most influential factors. • An increase in irradiance can linearly promote photodegradation. • High salinity suppresses the photodegradation of naphthalene. - Abstract: A large amount of oil pollution at sea is produced by the operational discharge of oily wastewater. The removal of polycyclic aromatic hydrocarbons (PAHs) from such sources using UV irradiation has become attractive, yet the photolysis mechanism in seawater has remained unclear. This study examines the photodegradation kinetics of naphthalene in natural seawater through a full factorial design of experiments (DOE). The effects of fluence rate, salinity, temperature and initial concentration are investigated. Results show that fluence rate, temperature and the interaction between temperature and initial concentration are the most influential factors. An increase in fluence rate can linearly promote the photodegradation process. Salinity increasingly impedes the removal of naphthalene because of the existence of free-radical scavengers and photon competitors. The results will help understand the photolysis mechanism of PAHs and develop more effective methods for treating oily seawater generated from offshore industries

  7. Effects of benzylaminopurine and naphthalene acetic acid on ...

    African Journals Online (AJOL)

    This study was conducted to evaluate the pineapple regeneration and shoot growth as affected by 6- benzylaminopurine (BAP) at 2.0 mg/l and naphthalene acetic acid (NAA) at 0.2 mg/l in vitro. BAP and NAA at the concentration of 2.0 and 0.2 mg/l were used in this study. BAP at 2.0 mg/l significantly affected the production ...

  8. Structure of the Dioxygenase AsqJ: Mechanistic Insights into a One-Pot Multistep Quinolone Antibiotic Biosynthesis

    KAUST Repository

    Brä uer, Alois; Beck, Philipp; Hintermann, Lukas; Groll, Michael

    2015-01-01

    © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. Multienzymatic cascades are responsible for the biosynthesis of natural products and represent a source of inspiration for synthetic chemists. The FeII/α-ketoglutarate-dependent dioxygenase AsqJ from Aspergillus nidulans is outstanding because it stereoselectively catalyzes both a ferryl-induced desaturation reaction and epoxidation on a benzodiazepinedione. Interestingly, the enzymatically formed spiro epoxide spring-loads the 6,7-bicyclic skeleton for non-enzymatic rearrangement into the 6,6-bicyclic scaffold of the quinolone alkaloid 4′-methoxyviridicatin. Herein, we report different crystal structures of the protein in the absence and presence of synthesized substrates, surrogates, and intermediates that mimic the various stages of the reaction cycle of this exceptional dioxygenase.

  9. Structure of the Dioxygenase AsqJ: Mechanistic Insights into a One-Pot Multistep Quinolone Antibiotic Biosynthesis

    KAUST Repository

    Bräuer, Alois

    2015-11-10

    © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. Multienzymatic cascades are responsible for the biosynthesis of natural products and represent a source of inspiration for synthetic chemists. The FeII/α-ketoglutarate-dependent dioxygenase AsqJ from Aspergillus nidulans is outstanding because it stereoselectively catalyzes both a ferryl-induced desaturation reaction and epoxidation on a benzodiazepinedione. Interestingly, the enzymatically formed spiro epoxide spring-loads the 6,7-bicyclic skeleton for non-enzymatic rearrangement into the 6,6-bicyclic scaffold of the quinolone alkaloid 4′-methoxyviridicatin. Herein, we report different crystal structures of the protein in the absence and presence of synthesized substrates, surrogates, and intermediates that mimic the various stages of the reaction cycle of this exceptional dioxygenase.

  10. INDOLEAMINE 2,3-DIOXYGENASE (IDO AND IMMUNE TOLERANCE

    Directory of Open Access Journals (Sweden)

    Coma-del-Corral MJ

    2013-09-01

    Full Text Available SUMMARY: Indoleamine 2,3-dioxygenase (IDO is an intracellular and extrahepatic enzyme predominantly found in many cells, especially macrophages. Tryptophan degradation generates kynurenine, and this pathway of tryptophan metabolism is an effective mechanism for modulating the immune response. The IDO facilitates immune tolerance and is one of the main actors involved in the inhibition of cell proliferation, including activated T cells. IDO induces production of reactive oxygen species (ROS and nitric oxide (NO radicals. Several pathways involved in the regulation of immune response are regulated by redox mechanisms. Reactive oxygen and nitrogen species (ROS-RNS and other redox active molecules play key roles in immunity.

  11. Microwave-assisted intramolecular dehydrogenative Diels-Alder reactions for the synthesis of functionalized naphthalenes/solvatochromic dyes.

    Science.gov (United States)

    Kocsis, Laura S; Benedetti, Erica; Brummond, Kay M

    2013-04-01

    Functionalized naphthalenes have applications in a variety of research fields ranging from the synthesis of natural or biologically active molecules to the preparation of new organic dyes. Although numerous strategies have been reported to access naphthalene scaffolds, many procedures still present limitations in terms of incorporating functionality, which in turn narrows the range of available substrates. The development of versatile methods for direct access to substituted naphthalenes is therefore highly desirable. The Diels-Alder (DA) cycloaddition reaction is a powerful and attractive method for the formation of saturated and unsaturated ring systems from readily available starting materials. A new microwave-assisted intramolecular dehydrogenative DA reaction of styrenyl derivatives described herein generates a variety of functionalized cyclopenta[b]naphthalenes that could not be prepared using existing synthetic methods. When compared to conventional heating, microwave irradiation accelerates reaction rates, enhances yields, and limits the formation of undesired byproducts. The utility of this protocol is further demonstrated by the conversion of a DA cycloadduct into a novel solvatochromic fluorescent dye via a Buchwald-Hartwig palladium-catalyzed cross-coupling reaction. Fluorescence spectroscopy, as an informative and sensitive analytical technique, plays a key role in research fields including environmental science, medicine, pharmacology, and cellular biology. Access to a variety of new organic fluorophores provided by the microwave-assisted dehydrogenative DA reaction allows for further advancement in these fields.

  12. Synthesis and two-electron redox behavior of diazuleno[2,1-a:1,2-c]naphthalenes.

    Science.gov (United States)

    Ito, Shunji; Nomura, Akiko; Morita, Noboru; Kabuto, Chizuko; Kobayashi, Hirokazu; Maejima, Seiko; Fujimori, Kunihide; Yasunami, Masafumi

    2002-10-18

    The Diels-Alder reaction of di-2-azulenylacetylene with tetraphenylcyclopentadienone afforded 7,8,9,10-tetraphenyldiazuleno[2,1-a:1,2-c]naphthalene in one pot via autoxidation of the presumed 1,2-di-2-azulenylbenzene derivative. In contrast, a similar reaction of bis(1-methoxycarbonyl-2-azulenyl)acetylene with tetraphenylcyclopentadienone gave the 1,2-di-2-azulenylbenzene derivative. The following cyclodehydrogenation reaction of the benzene derivative with iron(III) chloride afforded diazuleno[2,1-a:1,2-c]naphthalene 6,11-bismethoxycarbonyl derivative. The redox behavior of these novel diazuleno[2,1-a:1,2-c]naphthalenes was examined by cyclic voltammetry (CV). These compounds exhibited two-step oxidation waves at +0.22 to +0.71 V upon CV, which revealed the formation of a radical cation and dication stabilized by the fused two azulene rings under the electrochemical oxidation conditions. Since the 1,2-di-2-azulenylbenzene derivative was oxidized at higher oxidation potentials (+0.83 and +1.86 V), the fusion of the two azulene rings to naphthalene increased electron-donating properties because of the formation of a closed-shell dicationic structure. Formation of the radical cation was characterized by UV-vis spectroscopy under the electrochemical oxidation conditions, although no evidence was obtained for the presumed dication under the conditions of the UV-vis spectroscopy measurement.

  13. Loss-of-Function Mutation in the Dioxygenase-Encoding FTO Gene Causes Severe Growth Retardation and Multiple Malformations

    Science.gov (United States)

    Boissel, Sarah; Reish, Orit; Proulx, Karine; Kawagoe-Takaki, Hiroko; Sedgwick, Barbara; Yeo, Giles S.H.; Meyre, David; Golzio, Christelle; Molinari, Florence; Kadhom, Noman; Etchevers, Heather C.; Saudek, Vladimir; Farooqi, I. Sadaf; Froguel, Philippe; Lindahl, Tomas; O'Rahilly, Stephen; Munnich, Arnold; Colleaux, Laurence

    2009-01-01

    FTO is a nuclear protein belonging to the AlkB-related non-haem iron- and 2-oxoglutarate-dependent dioxygenase family. Although polymorphisms within the first intron of the FTO gene have been associated with obesity, the physiological role of FTO remains unknown. Here we show that a R316Q mutation, inactivating FTO enzymatic activity, is responsible for an autosomal-recessive lethal syndrome. Cultured skin fibroblasts from affected subjects showed impaired proliferation and accelerated senescence. These findings indicate that FTO is essential for normal development of the central nervous and cardiovascular systems in human and establish that a mutation in a human member of the AlkB-related dioxygenase family results in a severe polymalformation syndrome. PMID:19559399

  14. Naphthalene and pyrene degradation in contaminated soil as a ...

    African Journals Online (AJOL)

    The effect of soil particle size distribution and percent organic matter on the degradation rate of naphthalene and pyrene in a water medium of 7.05 ml/min at 27 ± 2oC in a soil reactor was studied. Analysis of the pattern of disappearance of these polycyclic aromatic hydrocarbons (PAHs) using various particle sizes showed ...

  15. Gas-phase naphthalene concentration data recovery in ambient air and its relevance as a tracer of sources of volatile organic compounds

    Science.gov (United States)

    Uria-Tellaetxe, Iratxe; Navazo, Marino; de Blas, Maite; Durana, Nieves; Alonso, Lucio; Iza, Jon

    2016-04-01

    Despite the toxicity of naphthalene and the fact that it is a precursor of atmospheric photooxidants and secondary aerosol, studies on ambient gas-phase naphthalene are generally scarce. Moreover, as far as we are concerned, this is the first published one using long-term hourly ambient gas-phase naphthalene concentrations. In this work, it has been also demonstrated the usefulness of ambient gas-phase naphthalene to identify major sources of volatile organic compounds (VOC) in complex scenarios. Initially, in order to identify main benzene emission sources, hourly ambient measurements of 60 VOC were taken during a complete year together with meteorological data in an urban/industrial area. Later, due to the observed co-linearity of some of the emissions, a procedure was developed to recover naphthalene concentration data from recorded chromatograms to use it as a tracer of the combustion and distillation of petroleum products. The characteristic retention time of this compound was determined comparing previous GC-MS and GC-FID simultaneous analysis by means of relative retention times, and its concentration was calculated by using relative response factors. The obtained naphthalene concentrations correlated fairly well with ethene (r = 0.86) and benzene (r = 0.92). Besides, the analysis of daily time series showed that these compounds followed a similar pattern, very different from that of other VOC, with minimum concentrations at day-time. This, together with the results from the assessment of the meteorological dependence pointed out a coke oven as the major naphthalene and benzene emitting sources in the study area.

  16. Passive Sampling and Analysis of Naphthalene in Internal Combustion Engine Exhaust with Retracted SPME Device and GC-MS

    Directory of Open Access Journals (Sweden)

    Nassiba Baimatova

    2017-07-01

    Full Text Available Exhaust gases from internal combustion engines are the main source of urban air pollution. Quantification of Polycyclic aromatic hydrocarbons (PAHs in the exhaust gases is needed for emissions monitoring, enforcement, development, and testing of control technologies. The objective was to develop quantification of gaseous naphthalene in diesel engine exhaust based on diffusion-controlled extraction onto a retracted solid-phase microextraction (SPME fiber coating and analysis on gas chromatography-mass spectrometry (GC-MS. Extraction of naphthalene with retracted fibers followed Fick’s law of diffusion. Extracted mass of naphthalene was proportional to Cg, t, Dg, T and inversely proportional to Z. Method detection limit (p = 0.95 was 11.5 ppb (0.06 mg·m−3 at t = 9 h, Z = 10 mm and T = 40 °C, respectively. It was found that the % mass extracted of naphthalene by SPME needle assembly depended on the type of fiber. Storage time at different temperatures did not affect analyte losses extracted by polydimethylsiloxane (PDMS 100 µm fiber. The developed method was tested on exhaust gases from idling pickup truck and tractor, and compared side-by-side with a direct injection of sampled exhaust gas method. Time-weighted average (TWA concentrations of naphthalene in exhaust gases from idling pickup truck and a tractor ranged from 0.08 to 0.3 mg·m−3 (15.3–53.7 ppb.

  17. Preparation and Biological Properties of Ring-Substituted Naphthalene-1-Carboxanilides

    Directory of Open Access Journals (Sweden)

    Tomas Gonec

    2014-07-01

    Full Text Available In this study, a series of twenty-two ring-substituted naphthalene-1-carboxanilides were prepared and characterized. Primary in vitro screening of the synthesized carboxanilides was performed against Mycobacterium avium subsp. paratuberculosis. N-(2-Methoxyphenylnaphthalene-1-carboxamide, N-(3-methoxy-phenylnaphthalene-1-carboxamide, N-(3-methylphenylnaphthalene-1-carboxamide, N-(4-methylphenylnaphthalene-1-carboxamide and N-(3-fluorophenylnaphthalene-1-carboxamide showed against M. avium subsp. paratuberculosis two-fold higher activity than rifampicin and three-fold higher activity than ciprofloxacin. The most effective antimycobacterial compounds demonstrated insignificant toxicity against the human monocytic leukemia THP-1 cell line. The testing of biological activity of the compounds was completed with the study of photosynthetic electron transport (PET inhibition in isolated spinach (Spinacia oleracea L. chloroplasts. The PET-inhibiting activity expressed by IC50 value of the most active compound N-[4-(trifluoromethylphenyl]naphthalene-1-carboxamide was 59 μmol/L. The structure-activity relationships are discussed.

  18. Isolation and characterization of two novel halotolerant Catechol 2, 3-dioxygenases from a halophilic bacterial consortium

    Science.gov (United States)

    Guo, Guang; Fang, Tingting; Wang, Chongyang; Huang, Yong; Tian, Fang; Cui, Qijia; Wang, Hui

    2015-12-01

    Study of enzymes in halophiles will help to understand the mechanism of aromatic hydrocarbons degradation in saline environment. In this study, two novel catechol 2,3-dioxygenases (C23O1 and C23O2) were cloned and overexpressed from a halophilic bacterial consortium enriched from an oil-contaminated saline soil. Phylogenetic analysis indicated that the novel C23Os and their relatives formed a new branch in subfamily I.2.A of extradiol dioxygenases and the sequence differences were further analyzed by amino acid sequence alignment. Two enzymes with the halotolerant feature were active over a range of 0-30% salinity and they performed more stable at high salinity than in the absence of salt. Surface electrostatic potential and amino acids composition calculation suggested high acidic residues content, accounting for their tolerance to high salinity. Moreover, two enzymes were further characterized. The enzymes activity both increased in the presence of Fe3+, Fe2+, Cu2+ and Al3+ and showed no significant inhibition by other tested metal ions. The optimal temperatures for the C23Os were 40 °C and 60 °C and their best substrates were catechol and 4-methylcatechol respectively. As the firstly isolated and characterized catechol dioxygenases from halophiles, the two halotolerant C23Os presented novel characteristics suggesting their potential application in aromatic hydrocarbons biodegradation.

  19. Simultaneous solid phase extraction of cobalt, strontium and cesium from liquid radioactive waste using microcrystalline naphthalene

    International Nuclear Information System (INIS)

    Hamed, Mostafa Mohamed; Attallah, Mohamed Fathy; Metwally, Sayed Sayed

    2014-01-01

    Most of the procedures developed for the extraction of cobalt, strontium and cesium by solid phase extraction do not employ simultaneous extraction of them. In this study, rapid simultaneous removal of Co 2+ , Sr 2+ and Cs + on microcrystalline naphthalene as solid-phase extractant was investigated. These ions were allowed to form chelates with oxine and then adsorbed on freshly microcrystalline naphthalene from aqueous solutions. The solid phase extraction procedure (SPE) was optimized by using model solution containing Co 2+ , Sr 2+ and Cs + in batch system. The effects of different parameters such as variation in pH, reagent concentration, standing time, naphthalene solution concentration and contact time on the simultaneous removal of these ions was studied. The obtained results indicated that, sorption was found to be rapid, and the percentage removal of Co 2+ , Sr 2+ and Cs + was found to be 98, 79 and 68% within 10 min, respectively. The kinetics of the sorption process was investigated to understand the kinetic characteristics of sorption of metal chelates onto microcrystalline naphthalene. The developed procedure has been successfully applied to the removal and recovery of 60 Co and 134 Cs from liquid radioactive waste. The parameters can be used for designing a plant for treatment of wastewater economically.

  20. Transcriptional responses in the rat nasal epithelium following subchronic inhalation of naphthalene vapor

    International Nuclear Information System (INIS)

    Clewell, H.J.; Efremenko, A.; Campbell, J.L.; Dodd, D.E.; Thomas, R.S.

    2014-01-01

    Male and female Fischer 344 rats were exposed to naphthalene vapors at 0 (controls), 0.1, 1, 10, and 30 ppm for 6 h/d, 5 d/wk, over a 90-day period. Following exposure, the respiratory epithelium and olfactory epithelium from the nasal cavity were dissected separately, RNA was isolated, and gene expression microarray analysis was conducted. Only a few significant gene expression changes were observed in the olfactory or respiratory epithelium of either gender at the lowest concentration (0.1 ppm). At the 1.0 ppm concentration there was limited evidence of an oxidative stress response in the respiratory epithelium, but not in the olfactory epithelium. In contrast, a large number of significantly enriched cellular pathway responses were observed in both tissues at the two highest concentrations (10 and 30 ppm, which correspond to tumorigenic concentrations in the NTP bioassay). The nature of these responses supports a mode of action involving oxidative stress, inflammation and proliferation. These results are consistent with a dose-dependent transition in the mode of action for naphthalene toxicity/carcinogenicity between 1.0 and 10 ppm in the rat. In the female olfactory epithelium (the gender/site with the highest incidences of neuroblastomas in the NTP bioassay), the lowest concentration at which any signaling pathway was significantly affected, as characterized by the median pathway benchmark dose (BMD) or its 95% lower bound (BMDL) was 6.0 or 3.7 ppm, respectively, while the lowest female olfactory BMD values for pathways related to glutathione homeostasis, inflammation, and proliferation were 16.1, 11.1, and 8.4 ppm, respectively. In the male respiratory epithelium (the gender/site with the highest incidences of adenomas in the NTP bioassay), the lowest pathway BMD and BMDL were 0.4 and 0.3 ppm, respectively, and the lowest male respiratory BMD values for pathways related to glutathione homeostasis, inflammation, and proliferation were 0.5, 0.7, and 0.9 ppm

  1. Transcriptional responses in the rat nasal epithelium following subchronic inhalation of naphthalene vapor

    Energy Technology Data Exchange (ETDEWEB)

    Clewell, H.J., E-mail: hclewell@thehamner.org; Efremenko, A.; Campbell, J.L.; Dodd, D.E.; Thomas, R.S.

    2014-10-01

    Male and female Fischer 344 rats were exposed to naphthalene vapors at 0 (controls), 0.1, 1, 10, and 30 ppm for 6 h/d, 5 d/wk, over a 90-day period. Following exposure, the respiratory epithelium and olfactory epithelium from the nasal cavity were dissected separately, RNA was isolated, and gene expression microarray analysis was conducted. Only a few significant gene expression changes were observed in the olfactory or respiratory epithelium of either gender at the lowest concentration (0.1 ppm). At the 1.0 ppm concentration there was limited evidence of an oxidative stress response in the respiratory epithelium, but not in the olfactory epithelium. In contrast, a large number of significantly enriched cellular pathway responses were observed in both tissues at the two highest concentrations (10 and 30 ppm, which correspond to tumorigenic concentrations in the NTP bioassay). The nature of these responses supports a mode of action involving oxidative stress, inflammation and proliferation. These results are consistent with a dose-dependent transition in the mode of action for naphthalene toxicity/carcinogenicity between 1.0 and 10 ppm in the rat. In the female olfactory epithelium (the gender/site with the highest incidences of neuroblastomas in the NTP bioassay), the lowest concentration at which any signaling pathway was significantly affected, as characterized by the median pathway benchmark dose (BMD) or its 95% lower bound (BMDL) was 6.0 or 3.7 ppm, respectively, while the lowest female olfactory BMD values for pathways related to glutathione homeostasis, inflammation, and proliferation were 16.1, 11.1, and 8.4 ppm, respectively. In the male respiratory epithelium (the gender/site with the highest incidences of adenomas in the NTP bioassay), the lowest pathway BMD and BMDL were 0.4 and 0.3 ppm, respectively, and the lowest male respiratory BMD values for pathways related to glutathione homeostasis, inflammation, and proliferation were 0.5, 0.7, and 0.9 ppm

  2. Crystal structure of bromidobis(naphthalen-1-ylantimony(III

    Directory of Open Access Journals (Sweden)

    Omar bin Shawkataly

    2014-10-01

    Full Text Available In the title compound, [SbBr(C10H72], the SbIII atom has a distorted trigonal–pyramidal coordination geometry and the planes of the two naphthalene ring systems make a dihedral angle of 80.26 (18°. An intramolecular C—H...Br hydrogen bond forms an S(5 ring motif. In the crystal, weak C—H...Br interactions link the molecules into helical chains along the b-axis direction.

  3. Anti-Toxoplasma Activity of 2-(Naphthalene-2-γlthiol-1H Indole.

    Directory of Open Access Journals (Sweden)

    Qasem Asgari

    2015-06-01

    Full Text Available This study was undertaken to evaluate the viability, infectivity and immunity of Toxoplasma gondii tachyzoites exposed to 2-(naphthalene-2-ylthio-1H-indole.Tachyzoites of RH strain were incubated in various concentrations of 2-(naphthalene-2-ylthio-1H-indole (25-800 μM for 1.5 hours. Then, they were stained by PI and analyzed by Fluorescence-activated cell sorting (FACS. To evaluate the infectivity, the tachyzoites exposed to the different concentrations of the compound were inoculated to 10 BALB/c mice groups. For Control, parasites exposed to DMSO (0.2% v/v were also intraperitoneally inoculated into two groups of mice. The immunity of the exposed tachyzoites was evaluated by inoculation of the naïve parasite to the survived mice.The LD50 of 2-(naphthalene-2-ylthio-1H-indole was 57 μmol. The longevity of mice was dose dependent. Five mice out of group 400μmol and 3 out of group 800μmol showed immunization to the parasite.Our findings demonstrated the toxoplasmocidal activity of the compound. The presence of a well-organized transporter mechanism for indole compounds within the parasite in conjunction with several effective mechanisms of these compounds on Toxoplasma viability would open a window for production of new drugs and vaccines.

  4. Strong eld ionization of naphthalene: angular shifts and molecular potential

    DEFF Research Database (Denmark)

    Dimitrovski, Darko; Maurer, Jochen; Christensen, Lauge

    We analyze the photoelectron momentum distributions from strong eld ionization of xed-in-space naphthalene molecules by circularly polarized laser pulses. By direct comparison between experiment and theory, we show that the angular shifts in the photoelectron momentum distributions are very...... sensitive to the exact form of the molecular potential....

  5. Haemolytic toxicity due to domestic naphthalene ball exposure in a ...

    African Journals Online (AJOL)

    This report presents a 29year-old male, Commercial tricycle driver, Ibo by tribe, Christian and single and was admitted with fatigue , severe abdominal pain , vomiting , yellowish coloration of the eyes and passage of dark urine (cocacola colored) following the use of naphthalene ball for the purpose of repelling mosquitoes ...

  6. Crystallization and preliminary crystallographic analysis of maganese(II)-dependent 2,3-dihydroxybiphenyl 1,2-dioxygenase from Bacillus sp. JF8

    International Nuclear Information System (INIS)

    Senda, Miki; Hatta, Takashi; Kimbara, Kazuhide; Senda, Toshiya

    2010-01-01

    A thermostable manganese(II)-dependent 2,3-dihydroxybiphenyl-1,2-dioxygenase derived from Bacillus sp. JF8 was crystallized in two forms using the sitting-drop vapour-diffusion method. Both crystals diffracted to approximately 1.3 Å resolution. A thermostable manganese(II)-dependent 2,3-dihydroxybiphenyl-1,2-dioxygenase derived from Bacillus sp. JF8 was crystallized. The initial screening for crystallization was performed by the sitting-drop vapour-diffusion method using a crystallization robot, resulting in the growth of two crystal forms. The first crystal belonged to space group P1, with unit-cell parameters a = 62.7, b = 71.4, c = 93.6 Å, α = 71.2, β = 81.0, γ = 64.0°, and diffracted to 1.3 Å resolution. The second crystal belonged to space group I222, with unit-cell parameters a = 74.2, b = 90.8, c = 104.3 Å, and diffracted to 1.3 Å resolution. Molecular-replacement trials using homoprotocatechuate 2,3-dioxygenase from Arthrobacter globiformis (28% amino-acid sequence identity) as a search model provided a satisfactory solution for both crystal forms

  7. The FTO (fat mass and obesity associated gene codes for a novel member of the non-heme dioxygenase superfamily

    Directory of Open Access Journals (Sweden)

    Andrade-Navarro Miguel A

    2007-11-01

    Full Text Available Abstract Background Genetic variants in the FTO (fat mass and obesity associated gene have been associated with an increased risk of obesity. However, the function of its protein product has not been experimentally studied and previously reported sequence similarity analyses suggested the absence of homologs in existing protein databases. Here, we present the first detailed computational analysis of the sequence and predicted structure of the protein encoded by FTO. Results We performed a sequence similarity search using the human FTO protein as query and then generated a profile using the multiple sequence alignment of the homologous sequences. Profile-to-sequence and profile-to-profile based comparisons identified remote homologs of the non-heme dioxygenase family. Conclusion Our analysis suggests that human FTO is a member of the non-heme dioxygenase (Fe(II- and 2-oxoglutarate-dependent dioxygenases superfamily. Amino acid conservation patterns support this hypothesis and indicate that both 2-oxoglutarate and iron should be important for FTO function. This computational prediction of the function of FTO should suggest further steps for its experimental characterization and help to formulate hypothesis about the mechanisms by which it relates to obesity in humans.

  8. Controlled shift in the tautomeric equilibrium of 4-​((phenylimino)​methyl)​naphthalen-​1-​ol

    DEFF Research Database (Denmark)

    Kamounah, Fadhil S.; Deneva, V; Manolova, y

    2013-01-01

    -​((Phenylimino)​methyl)​naphthalen-​1-​ol and 4-​((phenylimino)​methyl)​-​2-​(piperidin-​1-​ylmethyl)​naphthalen-​1-​ol have been synthesized and their tautomeric properties were investigated using mol. spectroscopy (UV-​vis absorption​/emission and NMR)​, X-​ray crystallog. anal. and quantum-​c...

  9. Naphthalene, a polycyclic aromatic hydrocarbon, in the fish samples from the Bangsai river of Bangladesh by gas chromatograph–mass spectrometry

    Directory of Open Access Journals (Sweden)

    M. Amzad Hossain

    2014-12-01

    Full Text Available Naphthalene, a polycyclic aromatic hydrocarbon (PAH, was detected and quantified in the selected varieties of fishes collected from the Bangsai river, one of the contaminated rivers located at Savar near the Dhaka Export Processing Zone (DEPZ, Bangladesh, during the period October 2009. Naphthalene, a carcinogenic compound, was analyzed by GC–MS as it was in the mixture of dichloromethane–hexane (1:1 crude extract of the flesh of fish samples collected from the aforesaid river. A suitable and reliable procedure for the extraction of naphthalene from the fish sample has been developed. A multi-layer clean-up (silica gel column was used, followed by glass fiber filter (GFF paper to eliminate the interfering organic compounds as well as the lipids and fat. It was observed that PAHs deposition on the samples takes place in different morphological parts of the biological materials. The PAH, naphthalene, was found in almost all of the fish samples and the concentration of which was in the range 0.030–1.004 μg/g. Recovery studies with fortified samples indicated that the recovery efficiency for naphthalene was about 79.14%. This concentration is within the range of values reported for other comparable regions of the world.

  10. Luminescent properties and structure of multicomponent naphthalene-{beta}-cyclodextrin complexes. 1. Effect of adding third parties, o-carborane or/and adamantane

    Energy Technology Data Exchange (ETDEWEB)

    Nazarov, Valery B. [Institute of Problems of Chemical Physics of Russian Academy of Sciences, 142432 Moscow region, Chernogolovka (Russian Federation); Avakyan, Vitaly G., E-mail: avak@photonics.ru [Photochemistry Center of Russian Academy of Sciences, 119421 Moscow, Novatorov 7a (Russian Federation); Rudyak, Vladimir Y.; Alfimov, Michail V. [Photochemistry Center of Russian Academy of Sciences, 119421 Moscow, Novatorov 7a (Russian Federation); Vershinnikova, Tatiana G. [Institute of Problems of Chemical Physics of Russian Academy of Sciences, 142432 Moscow region, Chernogolovka (Russian Federation)

    2011-09-15

    Luminescence spectra of water solution of {beta}-cyclodextrin ({beta}-CD) inclusion complexes with naphthalene have been studied in the presence of carcass compounds (CC), adamantane and ocarborane, added in solution as the third parties. It was observed that the CC structure completely determines luminescence type displayed by the three-component complex. Adding adamantane to the solution leads to the disappearance of the spontaneous excimer fluorescence observed usually along with a monomer fluorescence of naphthalene and the appearance of the long lived phosphorescence at room temperature. At the same time, introducing o-carborane in solution of {beta}-CD inclusion complexes with naphthalene results in the dramatic growth of intensity of the excimer band at the expense of lowering intensity of monomer fluorescence. These phenomena were explained using results of the quantum-chemical calculation of the structure and complexation energies at the semi-empirical PM3 and DFT levels of theory. - Highlights: > Structure of carcass compounds determines luminescence types for naphthalene - betaCD complex. > Adding o-carborane leads to the growth of excimer fluorescence at low naphthalene concentrations. > Adding adamantane leads to the room temperature phosphorescence without deoxygenation.

  11. Clinical significance of LUNX mRNA, CK19 mRNA, CEA mRNA expression in detecting micrometastasis from lung cancer

    International Nuclear Information System (INIS)

    Zhu Guangying; Liu Delin; Chen Jie

    2003-01-01

    Objective: To evaluate the sensitivity, specificity and clinical significance of CK19 mRNA, CEA mRNA and LUNX mRNA for detecting micrometastasis by sampling the peripheral blood and regional lymph nodes of lung cancer patients. Methods: Reverse transcriptase chain reaction (RT-PCR) was used to detect LUNX mRNA, CK19 mRNA, CEA mRNA for micrometastasis by sampling the peripheral blood of 48 lung cancer patients and 44 regional lymph nodes of such patients treated by curative resection. Peripheral blood of 30 patients with pulmonary benign lesions and 10 normal healthy volunteers and lymph nodes of 6 patients with benign pulmonary diseases served as control. Results: 1) LUNX mRNA, CK19 mRNA, CEA mRNA were expressed in all (35/35) lung cancer tissues. 2) In the peripheral blood from 48 lung cancer patients, 30 (62.5%) were positive for LUNX mRNA, 24 (50.0%) positive for CK19 mRNA and 32(66.7%) positive for CEA mRNA. The positive detection rates of micrometastasis in 44 lymph nodes from lung cancer patients were 36.4% (16 out of 44) for LUNX mRNA, 27.3% (12 out of 44) for CK19 mRNA and 40.9% (18 out of 44) for CEA mRNA. 3) In the 30 blood samples from patients with pulmonary benign diseases, 2 (6.7%) expressed CK19 mRNA, but none expressed LUNX mRNA or CEA mRNA. All the 3 molecular markers were negative in the 10 blood samples from healthy volunteers. In 11 lymph nodes from patients with pulmonary benign lesions, none was positive for any of the three markers. 4) In 44 regional lymph nodes from lung cancer patients, 6 (13.6%) were positive for metastasis by histopathological examination, with a positive rate significantly lower than that of the RT-PCR (P<0.05). 5) The micrometastatic positive rate in the peripheral blood of 40 non-small cell lung cancer (NSCLC) patients was significantly related to TNM stage (P=0.01). Conclusions: LUNX mRNA, CK19 MRNA, CEA mRNA are all appropriate target genes for the detection of micrometastasis from lung cancer. LUNX mRNA and CEA mRNA

  12. Preparation and Biological Properties of Ring-Substituted Naphthalene-1-Carboxanilides

    Czech Academy of Sciences Publication Activity Database

    Goněc, T.; Kos, J.; Nevin, E.; Govender, R.; Peško, M.; Tengler, J.; Kushkevych, I.; Štastná, V.; Oravec, Michal; Kolař, P.; Mahony, J. O.; Králová, K.; Coffey, A.; Jampílek, J.

    2014-01-01

    Roč. 19, č. 7 (2014), s. 10386-10409 ISSN 1420-3049 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0073 Institutional support: RVO:67179843 Keywords : Naphthalene * lipophilicity * in vitro antimycobacterial activity * in vitro cytotoxicity * photosynthetic electron transport inhibition * spinach chloroplasts Subject RIV: EH - Ecology, Behaviour Impact factor: 2.416, year: 2014

  13. (E-1-(4-Aminophenyl-3-(naphthalen-2-ylprop-2-en-1-one

    Directory of Open Access Journals (Sweden)

    Thawanrat Kobkeatthawin

    2011-05-01

    Full Text Available The molecule of the title chalcone derivative, C19H15NO, exists in a trans configuration with respect to the C=C double bond. The molecule is slightly twisted with a dihedral angle of 6.12 (12° between the benzene ring and the naphthalene ring system. The prop-2-en-1-one bridge is nearly planar, with an r.m.s. deviation of 0.0194 (2, and makes dihedral angles of 8.05 (19 and 11.47 (18° with the benzene ring and the naphthalene ring system, respectively. In the crystal, molecules are linked by N—H...O hydrogen bonds into chains along the b axis. Weak N—H...π and C—H...π interactions and a short N...O contact [2.974 (4 Å] are also observed.

  14. Humidity effects on surface dielectric barrier discharge for gaseous naphthalene decomposition

    Science.gov (United States)

    Abdelaziz, Ayman A.; Ishijima, Tatsuo; Seto, Takafumi

    2018-04-01

    Experiments are performed using dry and humid air to clarify the effects of water vapour on the characteristics of surface dielectric barrier discharge (SDBD) and investigate its impact on the performance of the SDBD for decomposition of gaseous naphthalene in air stream. The current characteristics, including the discharge and the capacitive currents, are deeply analyzed and the discharge mechanism is explored. The results confirmed that the humidity affected the microdischarge distribution without affecting the discharge mode. Interestingly, it is found that the water vapour had a significant influence on the capacitance of the reactor due to its deposition on the discharge electrode and the dielectric, which, in turn, affects the power loss in the dielectric and the total power consumed in the reactor. Thus, the factor of the humidity effect on the power loss in the dielectric should be considered in addition to its effect on the attachment coefficient. Additionally, there was an optimum level of the humidity for the decomposition of naphthalene in the SDBD, and its value depended on the gas composition, where the maximum naphthalene decomposition efficiency in O2/H2O is achieved at the humidity level ˜10%, which was lower than that obtained in air/H2O (˜28%). The results also revealed that the role of the humidity in the decomposition efficiency was not significant in the humidified O2 at high power level. This was attributed to the significant increase in oxygen-derived species (such as O atoms and O3) at high power, which was enough to overcome the negative effects of the humidity.

  15. THE ROLE OF 4-HYDROXYPHENYLPYRUVATE DIOXYGENASE IN ENHANCEMENT OF SOLID-PHASE ELECTRON TRANSFER BY SHEWANELLA ONEIDENSIS MR-1

    Energy Technology Data Exchange (ETDEWEB)

    Turick, C; Amy Ekechukwu, A

    2007-06-01

    While mechanistic details of dissimilatory metal reduction are far from being understood, it is postulated that the electron transfer to solid metal oxides is mediated by outer membrane-associated c-type cytochromes and redox active electron shuttling compounds. This study focuses on the production of homogensitate in Shewanella oneidensis MR-1, an intermediate of tyrosine degradation pathway, which is a precursor of a redox cycling metabolite, pyomelanin. In this study, we determined that two enzymes involved in this pathway, 4-hydroxyphenylpyruvate dioxygenase (4HPPD) and homogentisate 1,2-dioxygenase are responsible for homogentisate production and oxidation, respectively. Inhibition of 4-HPPD activity with the specific inhibitor sulcotrione (2-(2-chloro-4-methane sulfonylbenzoyl)-1,3-cyclohexanedione), and deletion of melA, a gene encoding 4-HPPD, resulted in no pyomelanin production by S. oneidensis MR-1. Conversely, deletion of hmgA which encodes the putative homogentisate 1,2-dioxygenase, resulted in pyomelanin overproduction. The efficiency and rates, with which MR-1 reduces hydrous ferric oxide, were directly linked to the ability of mutant strains to produce pyomelanin. Electrochemical studies with whole cells demonstrated that pyomelanin substantially increases the formal potential (E{sup o}{prime}) of S. oneidensis MR-1. Based on this work, environmental production of pyomelanin likely contributes to an increased solid-phase metal reduction capacity in Shewanella oneidensis.

  16. Implication of Tryptophan 2,3-Dioxygenase and its Novel Variants in the Hippocampus and Cerebellum During the Developing and Adult Brain

    Directory of Open Access Journals (Sweden)

    Masaaki Kanai

    2010-07-01

    Full Text Available Tryptophan 2,3-dioxygenase (TDO is a first and rate-limiting enzyme for the kynurenine pathway of tryptophan metabolism. Using Tdo-/-mice, we have recently shown that TDO plays a pivotal role in systemic tryptophan metabolism and brain serotonin synthesis as well as emotional status and adult neurogenesis. However, the expression of TDO in the brain has not yet been well characterized, in contrast to its predominant expression in the liver. To further examine the possible role of local TDO in the brain, we quantified the levels of tdo mRNA in various nervous tissues, using Northern blot and quantitative real-time RT-PCR. Higher levels of tdo mRNA expression were detected in the cerebellum and hippocampus. We also identified two novel variants of the tdo gene, termed tdo variant1 and variant2, in the brain. Similar to the known TDO form (TDO full-form, tetramer formation and enzymatic activity were obtained when these variant forms were expressed in vitro. While quantitative real-time RT-PCR revealed that the tissue distribution of these variants was similar to that of tdo full-form, the expression patterns of these variants during early postnatal development in the hippocampus and cerebellum differed. Our findings indicate that in addition to hepatic TDO, TDO and its variants in the brain might function in the developing and adult nervous system. Given the previously reported associations of tdo gene polymorphisms in the patients with autism and Tourette syndrome, the expression of TDO in the brain suggests the possible influence of TDO on psychiatric status. Potential functions of TDOs in the cerebellum, hippocampus and cerebral cortex under physiological and pathological conditions are discussed.

  17. Expression of gentisate 1,2-dioxygenase (gdoA) genes involved in aromatic degradation in two haloarchaeal genera.

    Science.gov (United States)

    Fairley, D J; Wang, G; Rensing, C; Pepper, I L; Larkin, M J

    2006-12-01

    Gentisate-1,2-dioxygenase genes (gdoA), with homology to a number of bacterial dioxygenases, and genes encoding a putative coenzyme A (CoA)-synthetase subunit (acdB) and a CoA-thioesterase (tieA) were identified in two haloarchaeal isolates. In Haloarcula sp. D1, gdoA was expressed during growth on 4-hydroxybenzoate but not benzoate, and acdB and tieA were not expressed during growth on any of the aromatic substrates tested. In contrast, gdoA was expressed in Haloferax sp. D1227 during growth on benzoate, 3-hydroxybenzoate, cinnamate and phenylpropionate, and both acdB and tieA were expressed during growth on benzoate, cinnamate and phenylpropionate, but not on 3-hydroxybenzoate. This pattern of induction is consistent with these genes encoding steps in a CoA-mediated benzoate pathway in this strain.

  18. Blue-Emitting Arylalkynyl Naphthalene Derivatives via a Hexadehydro-Diels-Alder Cascade Reaction.

    Science.gov (United States)

    Xu, Feng; Hershey, Kyle W; Holmes, Russell J; Hoye, Thomas R

    2016-10-05

    We describe here three alkynyl substituted naphthalenes that display promising luminescence characteristics. Each compound is easily and efficiently synthesized in three steps by capitalizing on the hexadehydro-Diels-Alder (HDDA) cycloisomerization reaction in which an intermediate benzyne is captured by tetraphenylcyclopentadienone, a classical trap for benzyne itself. These compounds luminesce in the deep blue when stimulated either optically (i.e., photoluminescence in both solution and solid films) or electrically [in a light-emitting diode (LED)]. The photophysical properties are relatively insensitive to the electronic nature of the substituents (H, OMe, CO 2 Me) that define these otherwise identical compounds. Overall, our observations suggest that the twisted nature of the five adjacent aryl groups serves to minimize the intermolecular interaction between core naphthalene units in different sample morphologies. These compounds represent promising leads for the identification of others of value as the emissive component of organic LEDs (OLEDs).

  19. Degradation and mineralization of the polycyclic aromatic hydrocarbons anthracene and naphthalene in intertidal marine sediments

    International Nuclear Information System (INIS)

    Bauer, J.E.; Capone, D.G.

    1985-01-01

    The degradation of the polynuclear aromatic hydrocarbons (PAHs) anthracene and naphthalene by the microbiota of intertidal sediments was investigated in laboratory studies. No mineralization of either PAH was observed in the absence of oxygen. Both rates and total amounts of PAH mineralization were strongly controlled by oxygen content and temperature of the incubations. Inorganic nitrogen and glucose amendments had minimal effects on PAH mineralization. The rates and total amounts of PAH mineralized were directly related to compound concentration, pre-exposure time, and concentration. Maximum mineralization was observed at the higher concentrations (5 to 100 μg/g [ppm]) of both PAHs. Optimal acclimation to anthracene and naphthalene (through pre-exposures to the compounds) occurred at the highest acclimation concentration (1,000 ppm). However, acclimation to a single concentration (100 ppm) resulted in initial relative mineralization rates over a range of re-exposure concentrations (1 to 1,000 ppm) being nearly identical. Maximum mineralization of both PAHs occurred after intermediate periods (1 to 2 weeks) of pre-exposure. The fraction of the total heterotrophic population capable of utilizing anthracene or naphthalene as sole carbon source was also greatest after 2 weeks

  20. A dioxygenase of Pleurotus sapidus transforms (+)-valencene regio-specifically to (+)-nootkatone via a stereo-specific allylic hydroperoxidation.

    Science.gov (United States)

    Krügener, Sven; Krings, Ulrich; Zorn, Holger; Berger, Ralf G

    2010-01-01

    A selective and highly efficient allylic oxidation of the sesquiterpene (+)-valencene to the grapefruit flavour compound (+)-nootkatone was achieved with lyophilisate of the edible mushroom Pleurotus sapidus. The catalytic reaction sequence was elucidated through the identification of intermediate, (+)-valencene derived hydroperoxides. A specific staining of hydroperoxides allowed the semi-preparative isolation of two secondary (+)-valencene hydroperoxides, 6(R)-Isopropenyl-4(R),4a(S)-dimethyl-2,3,4,4a,5,6,7,8-octahydro-naphthalen-4(S)-yl-hydroperoxide and 6(R)-Isopropenyl-4(R),4a(S)-dimethyl-2,3,4,4a,5,6,7,8-octahydro-naphthalen-2(R)-yl-hydroperoxide. Chemical reduction of the biotransformation products yielded a tertiary alcohol identified as 2(R)-Isopropenyl-8(R),8a(S)-dimethyl-1,3,4,7,8,8a-hexahydro-2H-naphthalen-4a(R)-ol. This suggested a lipoxygenase-type oxidation of (+)-valencene via secondary and tertiary hydroperoxides and confirmed homology data of the key enzyme obtained previously from amino acid sequencing.

  1. Polychlorinated naphthalenes in human adipose tissue from New York, USA

    International Nuclear Information System (INIS)

    Kunisue, Tatsuya; Johnson-Restrepo, Boris; Hilker, David R.; Aldous, Kenneth M.; Kannan, Kurunthachalam

    2009-01-01

    Polychlorinated naphthalenes (PCNs) are persistent, bioaccumulative, and toxic contaminants. Prior to this study, the occurrence of PCNs in human adipose tissues from the USA has not been analyzed. Here, we have measured concentrations of PCNs in human adipose tissue samples collected in New York City during 2003-2005. Concentrations of PCNs were in the range of 61-2500 pg/g lipid wt. in males and 21-910 pg/g lipid wt. in females. PCN congeners 52/60 (1,2,3,5,7/1,2,4,6,7) and 66/67 (1,2,3,4,6,7/1,2,3,5,6,7) were predominant, collectively accounting for 66% of the total PCN concentrations. Concentrations of PCNs in human adipose tissues were 2-3 orders of magnitude lower than the previously reported concentrations of polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs). Concentrations of PCNs were not correlated with PCB concentrations. The contribution of PCNs to dioxin-like toxic equivalents (TEQs) in human adipose tissues was estimated to be <1% of the polychlorinated dibenzo-p-dioxin/dibenzofuran (PCDD/F)-TEQs. - Polychlorinated naphthalenes have been measured in human adipose tissues from the USA for the first time

  2. Induction of 9-cis-epoxycarotenoid dioxygenase in Arabidopsis thaliana seeds enhances seed dormancy

    OpenAIRE

    Martínez-Andújar, Cristina; Ordiz, M. Isabel; Huang, Zhonglian; Nonogaki, Mariko; Beachy, Roger N.; Nonogaki, Hiroyuki

    2011-01-01

    Full understanding of mechanisms that control seed dormancy and germination remains elusive. Whereas it has been proposed that translational control plays a predominant role in germination, other studies suggest the importance of specific gene expression patterns in imbibed seeds. Transgenic plants were developed to permit conditional expression of a gene encoding 9-cis-epoxycarotenoid dioxygenase 6 (NCED6), a rate-limiting enzyme in abscisic acid (ABA) biosynthesis, using the ecdysone recept...

  3. Atom Tunneling in the Hydroxylation Process of Taurine/α-Ketoglutarate Dioxygenase Identified by Quantum Mechanics/Molecular Mechanics Simulations.

    Science.gov (United States)

    Álvarez-Barcia, Sonia; Kästner, Johannes

    2017-06-01

    Taurine/α-ketoglutarate dioxygenase is one of the most studied α-ketoglutarate-dependent dioxygenases (αKGDs), involved in several biotechnological applications. We investigated the key step in the catalytic cycle of the αKGDs, the hydrogen transfer process, by a quantum mechanics/molecular mechanics approach (B3LYP/CHARMM22). Analysis of the charge and spin densities during the reaction demonstrates that a concerted mechanism takes place, where the H atom transfer happens simultaneously with the electron transfer from taurine to the Fe═O cofactor. We found the quantum tunneling of the hydrogen atom to increase the rate constant by a factor of 40 at 5 °C. As a consequence, a quite high kinetic isotope effect close to 60 is obtained, which is consistent with the experimental value.

  4. Enhanced oxidation of naphthalene using plasma activation of TiO2/diatomite catalyst.

    Science.gov (United States)

    Wu, Zuliang; Zhu, Zhoubin; Hao, Xiaodong; Zhou, Weili; Han, Jingyi; Tang, Xiujuan; Yao, Shuiliang; Zhang, Xuming

    2018-04-05

    Non-thermal plasma technology has great potential in reducing polycyclic aromatic hydrocarbons (PAHs) emission. But in plasma-alone process, various undesired by-products are produced, which causes secondary pollutions. Here, a dielectric barrier discharge (DBD) reactor has been developed for the oxidation of naphthalene over a TiO 2 /diatomite catalyst at low temperature. In comparison to plasma-alone process, the combination of plasma and TiO 2 /diatomite catalyst significantly enhanced naphthalene conversion (up to 40%) and CO x selectivity (up to 92%), and substantially reduced the formation of aerosol (up to 90%) and secondary volatile organic compounds (up to near 100%). The mechanistic study suggested that the presence of the TiO 2 /diatomite catalyst intensified the electron energy in the DBD. Meantime, the energized electrons generated in the discharge activated TiO 2 , while the presence of ozone enhanced the activity of the TiO 2 /diatomite catalyst. This plasma-catalyst interaction led to the synergetic effect resulting from the combination of plasma and TiO 2 /diatomite catalyst, consequently enhanced the oxidation of naphthalene. Importantly, we have demonstrated the effectiveness of plasma to activate the photocatalyst for the deep oxidation of PAH without external heating, which is potentially valuable in the development of cost-effective gas cleaning process for the removal of PAHs in vehicle applications during cold start conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Quinone methides tethered to naphthalene diimides as selective G-quadruplex alkylating agents.

    Science.gov (United States)

    Di Antonio, Marco; Doria, Filippo; Richter, Sara N; Bertipaglia, Carolina; Mella, Mariella; Sissi, Claudia; Palumbo, Manlio; Freccero, Mauro

    2009-09-16

    We have developed novel G-quadruplex (G-4) ligand/alkylating hybrid structures, tethering the naphthalene diimide moiety to quaternary ammonium salts of Mannich bases, as quinone-methide precursors, activatable by mild thermal digestion (40 degrees C). The bis-substituted naphthalene diimides were efficiently synthesized, and their reactivity as activatable bis-alkylating agents was investigated in the presence of thiols and amines in aqueous buffered solutions. The electrophilic intermediate, quinone-methide, involved in the alkylation process was trapped, in the presence of ethyl vinyl ether, in a hetero Diels-Alder [4 + 2] cycloaddition reaction, yielding a substituted 2-ethoxychroman. The DNA recognition and alkylation properties of these new derivatives were investigated by gel electrophoresis, circular dichroism, and enzymatic assays. The alkylation process occurred preferentially on the G-4 structure in comparison to other DNA conformations. By dissecting reversible recognition and alkylation events, we found that the reversible process is a prerequisite to DNA alkylation, which in turn reinforces the G-quadruplex structural rearrangement.

  6. Stepwise O-Atom Transfer in Heme-Based Tryptophan Dioxygenase: Role of Substrate Ammonium in Epoxide Ring Opening.

    Science.gov (United States)

    Shin, Inchul; Ambler, Brett R; Wherritt, Daniel; Griffith, Wendell P; Maldonado, Amanda C; Altman, Ryan A; Liu, Aimin

    2018-03-28

    Heme-based tryptophan dioxygenases are established immunosuppressive metalloproteins with significant biomedical interest. Here, we synthesized two mechanistic probes to specifically test if the α-amino group of the substrate directly participates in a critical step of the O atom transfer during catalysis in human tryptophan 2,3-dioxygenase (TDO). Substitution of the nitrogen atom of the substrate to a carbon (probe 1) or oxygen (probe 2) slowed the catalytic step following the first O atom transfer such that transferring the second O atom becomes less likely to occur, although the dioxygenated products were observed with both probes. A monooxygenated product was also produced from probe 2 in a significant quantity. Analysis of this new product by HPLC coupled UV-vis spectroscopy, high-resolution mass spectrometry, 1 H NMR, 13 C NMR, HSQC, HMBC, and infrared (IR) spectroscopies concluded that this monooxygenated product is a furoindoline compound derived from an unstable epoxyindole intermediate. These results prove that small molecules can manipulate the stepwise O atom transfer reaction of TDO and provide a showcase for a tunable mechanism by synthetic compounds. The product analysis results corroborate the presence of a substrate-based epoxyindole intermediate during catalysis and provide the first substantial experimental evidence for the involvement of the substrate α-amino group in the epoxide ring-opening step during catalysis. This combined synthetic, biochemical, and biophysical study establishes the catalytic role of the α-amino group of the substrate during the O atom transfer reactions and thus represents a substantial advance to the mechanistic comprehension of the heme-based tryptophan dioxygenases.

  7. Molecular mechanism of strict substrate specificity of an extradiol dioxygenase, DesB, derived from Sphingobium sp. SYK-6.

    Directory of Open Access Journals (Sweden)

    Keisuke Sugimoto

    Full Text Available DesB, which is derived from Sphingobium sp. SYK-6, is a type II extradiol dioxygenase that catalyzes a ring opening reaction of gallate. While typical extradiol dioxygenases show broad substrate specificity, DesB has strict substrate specificity for gallate. The substrate specificity of DesB seems to be required for the efficient growth of S. sp. SYK-6 using lignin-derived aromatic compounds. Since direct coordination of hydroxyl groups of the substrate to the non-heme iron in the active site is a critical step for the catalytic reaction of the extradiol dioxygenases, the mechanism of the substrate recognition and coordination of DesB was analyzed by biochemical and crystallographic methods. Our study demonstrated that the direct coordination between the non-heme iron and hydroxyl groups of the substrate requires a large shift of the Fe (II ion in the active site. Mutational analysis revealed that His124 and His192 in the active site are essential to the catalytic reaction of DesB. His124, which interacts with OH (4 of the bound gallate, seems to contribute to proper positioning of the substrate in the active site. His192, which is located close to OH (3 of the gallate, is likely to serve as the catalytic base. Glu377' interacts with OH (5 of the gallate and seems to play a critical role in the substrate specificity. Our biochemical and structural study showed the substrate recognition and catalytic mechanisms of DesB.

  8. Central Administration of Lipopolysaccharide Induces Depressive-like Behavior in Vivo and Activates Brain Indoleamine 2,3 Dioxygenase In Murine Organotypic Hippocampal Slice Cultures

    Directory of Open Access Journals (Sweden)

    Kavelaars Annemieke

    2010-08-01

    Full Text Available Abstract Background Transient stimulation of the innate immune system by an intraperitoneal injection of lipopolysaccharide (LPS activates peripheral and central expression of the tryptophan degrading enzyme indoleamine 2,3 dioxygenase (IDO which mediates depressive-like behavior. It is unknown whether direct activation of the brain with LPS is sufficient to activate IDO and induce depressive-like behavior. Methods Sickness and depressive-like behavior in C57BL/6J mice were assessed by social exploration and the forced swim test, respectively. Expression of cytokines and IDO mRNA was measured by real-time RT-PCR and cytokine protein was measured by enzyme-linked immunosorbent assays (ELISAs. Enzymatic activity of IDO was estimated as the amount of kynurenine produced from tryptophan as determined by high pressure liquid chromatography (HPLC with electrochemical detection. Results Intracerebroventricular (i.c.v. administration of LPS (100 ng increased steady-state transcripts of TNFα, IL-6 and the inducible isoform of nitric oxide synthase (iNOS in the hippocampus in the absence of any change in IFNγ mRNA. LPS also increased IDO expression and induced depressive-like behavior, as measured by increased duration of immobility in the forced swim test. The regulation of IDO expression was investigated using in situ organotypic hippocampal slice cultures (OHSCs derived from brains of newborn C57BL/6J mice. In accordance with the in vivo data, addition of LPS (10 ng/ml to the medium of OHSCs induced steady-state expression of mRNA transcripts for IDO that peaked at 6 h and translated into increased IDO enzymatic activity within 8 h post-LPS. This activation of IDO by direct application of LPS was preceded by synthesis and secretion of TNFα and IL-6 protein and activation of iNOS while IFNγ expression was undetectable. Conclusion These data establish that activation of the innate immune system in the brain is sufficient to activate IDO and induce

  9. Vibronic relaxation in molecular mixed crystals : Pentacene in naphthalene and p-terphenyl

    NARCIS (Netherlands)

    Hesselink, Wim H.; Wiersma, Douwe A.

    1981-01-01

    Picosecond photon echo techniques are used to measure directly vibronic relaxation times in the first excited singlet state of pentacene in naphthalene and p-terphenyl. In regions of low (< 300 cm–1) and high (> 1000 cm–1) vibrational energy, relaxation is fast (τ <2 ps) due to direct phonon

  10. Electronic properties of semiconducting naphthalene bisimide derivatives—Ultraviolet photoelectron spectroscopy versus electrochemistry

    International Nuclear Information System (INIS)

    Rybakiewicz, Renata; Gawrys, Pawel; Tsikritzis, Dimitris; Emmanouil, Konstantinos; Kennou, Stella; Zagorska, Malgorzata; Pron, Adam

    2013-01-01

    Highlights: ► Electrochemical method for the determination of the ionization potential (IP) in organic semiconductors was validated. ► Excellent correlation was found between the IP values determined electrochemically and by UPS for naphthalene bisimides. ► Excellent correlation was found between the calculated (DFT) IP values and the experimentally determined ones. -- Abstract: Key parameters for organic semiconductors used as active layers in organic electronic devices are: solution processability, charge carriers mobility as well as the electron affinity (EA) and the ionization potential (IP) which determine their redox properties and by consequence their air stability. The purpose of the present work was to investigate the influence of different substituents at imide nitrogen atom (alkylaryl, thienylene and triarylamine) and at naphthalene core (triarylamine) on the IP and EA values in recently synthesized naphthalene bisimide derivatives, tested as promising semiconductors for flexible n-channel or ambipolar organic field effect transistors (OFETs). The ionization potentials were determined by Ultra-violet Photoelectron Spectroscopy (UPS) for thin semiconductor films evaporated in ultra-high vacuum. The values obtained by photoelectron spectroscopy were compared with the ones determined from electrochemical investigations of the semiconductors dissolved in an electrolyte solution. Using cyclic voltammetry the IPs was estimated from the onset of the first oxidation peak whereas EAs from the onset of the first reduction peak. In cases where it was not possible to record the oxidation wave in the electrolyte electrochemical window, the IPs values were calculated by subtracting the energy of the spectroscopically (UV–vis–NIR) determined band gap from the EA values and changing the sign. A good correlation between the spectroscopic (UPS) and electrochemical data was found

  11. Study on the Novel Dicyanate Ester Resin Containing Naphthalene Unit

    Institute of Scientific and Technical Information of China (English)

    Hong Qiang YAN; Hong Yun PENG; Li JI; Guo Rong QI

    2004-01-01

    The novel dicyanate ester resin containing naphthalene unit (DNCY) was synthesized, and characterized by FT-IR, 1H-NMR, 13C-NMR and elemental analysis (EA).The thermal properties of DNCY resin was studied by thermal degradation analysis at a heating rate of 10 (C /min-1 in N2 and air. The DNCY resin exhibited better thermal and thermal-oxidative stability than bisphenol A dicyanate (BACY) resin.

  12. A Critical Review of Naphthalene Sources and Exposures Relevant to Indoor and Outdoor Air

    Directory of Open Access Journals (Sweden)

    Chunrong Jia

    2010-07-01

    Full Text Available Both the recent classification of naphthalene as a possible human carcinogen and its ubiquitous presence motivate this critical review of naphthalene’s sources and exposures. We evaluate the environmental literature on naphthalene published since 1990, drawing on nearly 150 studies that report emissions and concentrations in indoor, outdoor and personal air. While naphthalene is both a volatile organic compound and a polycyclic aromatic hydrocarbon, concentrations and exposures are poorly characterized relative to many other pollutants. Most airborne emissions result from combustion, and key sources include industry, open burning, tailpipe emissions, and cigarettes. The second largest source is off-gassing, specifically from naphthalene’s use as a deodorizer, repellent and fumigant. In the U.S., naphthalene’s use as a moth repellant has been reduced in favor of para-dichlorobenzene, but extensive use continues in mothballs, which appears responsible for some of the highest indoor exposures, along with off-label uses. Among the studies judged to be representative, average concentrations ranged from 0.18 to 1.7 μg m-3 in non-smoker’s homes, and from 0.02 to 0.31 μg m-3 outdoors in urban areas. Personal exposures have been reported in only three European studies. Indoor sources are the major contributor to (non-occupational exposure. While its central tendencies fall well below guideline levels relevant to acute health impacts, several studies have reported maximum concentrations exceeding 100 μg m-3, far above guideline levels. Using current but draft estimates of cancer risks, naphthalene is a major environmental risk driver, with typical individual risk levels in the 10-4 range, which is high and notable given that millions of individuals are exposed. Several factors influence indoor and outdoor concentrations, but the literature is inconsistent on their effects. Further investigation is needed to better characterize naphthalene

  13. SEARCHING FOR NAPHTHALENE CATION ABSORPTION IN THE INTERSTELLAR MEDIUM

    International Nuclear Information System (INIS)

    Searles, Justin M.; Destree, Joshua D.; Snow, Theodore P.; Salama, Farid; York, Donald G.; Dahlstrom, Julie

    2011-01-01

    Interstellar naphthalene cations (C 10 H + 8 ) have been proposed by a study to be the carriers of a small number of diffuse interstellar bands (DIBs). Using an archive of high signal-to-noise spectra obtained at the Apache Point Observatory, we used two methods to test the hypothesis. Both methods failed to detect significant absorption at lab wavelengths of interstellar spectra with laboratory spectra. We thereby conclude that C 10 H + 8 is not a DIB carrier in typical reddened sight lines.

  14. Indoleamine 2,3-dioxygenase-dependent tryptophan metabolites contribute to tolerance induction during allergen immunotherapy in a mouse model

    NARCIS (Netherlands)

    Taher, Yousef A.; Piavaux, Benoit J. A.; Gras, Renee; van Esch, Betty C. A. M.; Hofman, Gerard A.; Bloksma, Nanne; Henricks, Paul A. J.; van Oosterhout, Antoon J. M.

    Background: The tryptophan-catabolizing enzyme indoleamine 2,3-dioxygenase (IDO) has been implicated in immune suppression and tolerance induction. Objective: We examined (1) whether IDO activity is required during tolerance induction by allergen immunotherapy or for the subsequent suppressive

  15. Carbon-coated boron using low-cost naphthalene for substantial enhancement of Jc in MgB2 superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Ranot, Mahipal; Shinde, K. P.; Oh, Y. S.; Kang, S. H.; Jang, S. H.; Hwang, D. Y.; Chung, K. C. [Korea Institute of Materials Science, Changwon (Korea, Republic of)

    2017-09-15

    Carbon coating approach is used to prepare carbon-doped MgB{sub 2} bulk samples using low-cost naphthalene (C{sub 10}H{sub 8}) as a carbon source. The coating of carbon (C) on boron (B) powders was achieved by direct pyrolysis of naphthalene at 120 degrees C and then the C-coated B powders were mixed well with appropriate amount of Mg by solid state reaction method. X-ray diffraction analysis revealed that there is a noticeable shift in (100) and (110) Bragg reflections towards higher angles, while no shift was observed in (002) reflections for MgB2 doped with carbon. As compared to un-doped MgB{sub 2}, a systematic enhancement in Jc(H) properties with increasing carbon doping level was observed for naphthalene-derived C-doped MgB{sub 2} samples. The substantial enhancement in Jc is most likely due to the incorporation of C into MgB{sub 2} lattice and the reduction in crystallite size, as evidenced by the increase in the FWHM values for doped samples.

  16. Ultraviolet Irradiation of Naphthalene in H2O Ice: Implications for Meteorites and Biogenesis

    Science.gov (United States)

    Bernstein, Max P.; Dworkin, Jason; Sandford, Scott A.; Allamandola, Louis J.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    The polycyclic aromatic hydrocarbon (PAH) naphthalene was exposed to ultraviolet radiation in H2O ice under astrophysical conditions, and the products were analyzed using infrared spectroscopy and high performance liquid chromatography. As we found in our earlier studies on the photoprocessing of coronene in H2O ice, aromatic alcohols and ketones (quinones) were formed. The regiochemistry of the reactions is described and leads to specific predictions of the relative abundances of various oxidized naphthalenes that should exist in meteorites if interstellar ice photochemistry influenced their aromatic inventory. Since oxidized PAHs are present in carbon-rich meteorites and interplanetary dust particles (IDPs), and ubiquitous in and fundamental to biochemistry, the delivery of such extraterrestrial molecules to the early Earth may have played a role in the origin and evolution of life.

  17. Fluorescent deep-blue and hybrid white emitting devices based on a naphthalene-benzofuran compound

    KAUST Repository

    Yang, Xiaohui; Zheng, Shijun; Chae, HyunSik; Li, Sheng; Mochizuki, Amane; Jabbour, Ghassan E.

    2013-01-01

    We report the synthesis, photophysics and electrochemical properties of naphthalene-benzofuran compound 1 and its application in organic light emitting devices. Fluorescent deep-blue emitting devices employing 1 as the emitting dopant embedded in 4

  18. Nearly Perfect Triplet-Triplet Energy Transfer from Wannier Excitons to Naphthalene in Organic-Inorganic Hybrid Quantum-Well Materials

    Science.gov (United States)

    Ema, K.; Inomata, M.; Kato, Y.; Kunugita, H.; Era, M.

    2008-06-01

    We report the observation of extremely efficient energy transfer (greater than 99%) in an organic-inorganic hybrid quantum-well structure consisting of perovskite-type lead bromide well layers and naphthalene-linked ammonium barrier layers. Time-resolved photoluminescence measurements confirm that the transfer is triplet-triplet Dexter-type energy transfer from Wannier excitons in the inorganic well to the triplet state of naphthalene molecules in the organic barrier. Using measurements in the 10 300 K temperature range, we also investigated the temperature dependence of the energy transfer.

  19. Implication of Tryptophan 2,3-Dioxygenase and its Novel Variants in the Hippocampus and Cerebellum during the Developing and Adult Brain

    Directory of Open Access Journals (Sweden)

    Masaaki Kanai

    2010-01-01

    Full Text Available Tryptophan 2,3-dioxygenase (TDO is a first and rate-limiting enzyme for the kynurenine pathway of tryptophan metabolism. Using Tdo −/− mice, we have recently shown that TDO plays a pivotal role in systemic tryptophan metabolism and brain serotonin synthesis as well as emotional status and adult neurogenesis. However, the expression of TDO in the brain has not yet been well characterized, in contrast to its predominant expression in the liver. To further examine the possible role of local TDO in the brain, we quantified the levels of tdo mRNA in various nervous tissues, using Northern blot and quantitative real-time RT-PCR. Higher levels of tdo mRNA expression were detected in the cerebellum and hippocampus. We also identified two novel variants of the tdo gene, termed tdo variant1 and variant2, in the brain. Similar to the known TDO form (TDO full-form, tetramer formation and enzymatic activity were obtained when these variant forms were expressed in vitro . While quantitative real-time RT-PCR revealed that the tissue distribution of these variants was similar to that of tdo full-form, the expression patterns of these variants during early postnatal development in the hippocampus and cerebellum differed. Our findings indicate that in addition to hepatic TDO, TDO and its variants in the brain might function in the developing and adult nervous system. Given the previously reported associations of tdo gene polymorphisms in the patients with autism and Tourette syndrome, the expression of TDO in the brain suggests the possible influence of TDO on psychiatric status. Potential functions of TDOs in the cerebellum, hippocampus and cerebral cortex under physiological and pathological conditions are discussed.

  20. Ultrasound-promoted synthesis of 2-organoselanyl-naphthalenes using Oxone® in aqueous medium as an oxidizing agent

    Directory of Open Access Journals (Sweden)

    Gelson Perin

    2018-05-01

    Full Text Available A green methodology to synthesize 2-organoselanyl-naphthalenes based on the reaction of alkynols with diaryl diselenides is described. The electrophilic species of selenium were generated in situ, by the oxidative cleavage of the Se–Se bond of diaryl diselenides by Oxone® using water as the solvent. The reactions proceeded efficiently under ultrasonic irradiation as an alternative energy source, using a range of alkynols and diorganyl diselenides as starting materials. Through this methodology, the corresponding 2-organoselanyl-naphthalenes were obtained in moderate to good yields (56–94% and in short reaction times (0.25–2.3 h.

  1. Dispersion of low frequency vibrations in the deuterated naphthalene crystal

    International Nuclear Information System (INIS)

    Bokhenkov, E.L.; Sheka, E.; Natkaniec, I.

    1977-01-01

    The dispersion curves of the lattice vibrations and of the two lowest intramolecular vibrations in d 8 -naphthalene (C 10 D 8 ) crystal have been measured by coherent inelastic neutron scattering for the [010] and the [100] directions at the temperature of 98 K and partially at 5 K. The results are compared with calculations based on the Kitaigorodskii parameters for C-C, C-H and H-H interactions in organic molecular crystals. (author)

  2. Effect of aging on mass transfer naphthalene from creosotes to water

    International Nuclear Information System (INIS)

    Alshafie, M.; Ghoshal, S.

    2002-01-01

    Semi-gelatinous interfacial films or 'skins' have been observed to form at the interface of creosote and water when creosote is aged (contacted over an extended time period) in water under quiescent conditions for a few days. The objective of the research is to investigate whether aging of creosote-water interfaces and the formation of interfacial films retard dissolution of a target solute, naphthalene, from samples of creosote. Mass transfer experiments were conducted in gently stirred flow-through reactors where the NAPL was coated on glass beads so as to keep the NAPL and the aqueous phases segregated. The aqueous concentration in the reactor effluent was determined in samples collected at different time points and the equilibrium partitioning coefficients and area-independent mass transfer coefficients were calculated. Over the period of one week, the mass transfer rate coefficients of the naphthalene from creosote to water underwent approximately 30% reduction. Further reduction was observed up to 3 weeks of aging. This significant reduction in mass transfer coefficient has important implications on potential rates of dissolution of the solutes, and thus on rates of clean up of creosote-contaminated sites. (author)

  3. Targeting the immunoregulatory indoleamine 2,3 dioxygenase pathway in immunotherapy

    Science.gov (United States)

    Johnson, Burles A; Baban, Babak; Mellor, Andrew L

    2009-01-01

    Natural immune tolerance is a formidable barrier to successful immunotherapy to treat established cancers and chronic infections. Conversely, creating robust immune tolerance via immunotherapy is the major goal in treating autoimmune and allergic diseases, and enhancing survival of transplanted organs and tissues. In this review, we focus on a natural mechanism that creates local T-cell tolerance in many clinically relevant settings of chronic inflammation involving expression of the cytosolic enzyme indoleamine 2,3-dioxygenase (IDO) by specialized subsets of dendritic cells. IDO-expressing dendritic cells suppress antigen-specific T-cell responses directly, and induce bystander suppression by activating regulatory T cells. Thus, manipulating IDO is a promising strategy to treat a range of chronic inflammatory diseases. PMID:20161103

  4. Indoleamine 2,3-Dioxygenase Fine-Tunes Immune Homeostasis in Atherosclerosis and Colitis through Repression of Interleukin-10 Production

    NARCIS (Netherlands)

    Metghalchi, Sarvenaz; Ponnuswamy, Padmapriya; Simon, Tabassome; Haddad, Yacine; Laurans, Ludivine; Clement, Marc; Dalloz, Marion; Romain, Melissa; Esposito, Bruno; Koropoulis, Vincent; Lamas, Bruno; Paul, Jean-Louis; Cottin, Yves; Kotti, Salma; Bruneval, Patrick; Callebert, Jacques; den Ruijter, Hester; Launay, Jean-Marie; Danchin, Nicolas; Sokol, Harry; Tedgui, Alain; Taleb, Soraya; Mallat, Ziad

    2015-01-01

    Indoleamine 2,3-dioxygenase 1 (Ido1) is a rate-limiting enzyme that catalizes the degradation of tryptophan along the kynurenine pathway. Here, we show that Ido1 activity sustains an immunostimulatory potential through inhibition of interleukin (Il)10. In atherosclerosis, Ido1-dependent inhibition

  5. An isoelectronic NO dioxygenase reaction using a nonheme iron(III)-peroxo complex and nitrosonium ion.

    Science.gov (United States)

    Yokoyama, Atsutoshi; Han, Jung Eun; Karlin, Kenneth D; Nam, Wonwoo

    2014-02-18

    Reaction of a nonheme iron(III)-peroxo complex, [Fe(III)(14-TMC)(O2)](+), with NO(+), a transformation which is essentially isoelectronic with that for nitric oxide dioxygenases [Fe(III)(O2˙(-)) + NO], affords an iron(IV)-oxo complex, [Fe(IV)(14-TMC)(O)](2+), and nitrogen dioxide (NO2), followed by conversion to an iron(III)-nitrato complex, [Fe(III)(14-TMC)(NO3)(F)](+).

  6. PBTK modeling demonstrates contribution of dermal and inhalation exposure components to end-exhaled breath concentrations of naphthalene.

    Science.gov (United States)

    Kim, David; Andersen, Melvin E; Chao, Yi-Chun E; Egeghy, Peter P; Rappaport, Stephen M; Nylander-French, Leena A

    2007-06-01

    Dermal and inhalation exposure to jet propulsion fuel 8 (JP-8) have been measured in a few occupational exposure studies. However, a quantitative understanding of the relationship between external exposures and end-exhaled air concentrations has not been described for occupational and environmental exposure scenarios. Our goal was to construct a physiologically based toxicokinetic (PBTK) model that quantitatively describes the relative contribution of dermal and inhalation exposures to the end-exhaled air concentrations of naphthalene among U.S. Air Force personnel. The PBTK model comprised five compartments representing the stratum corneum, viable epidermis, blood, fat, and other tissues. The parameters were optimized using exclusively human exposure and biological monitoring data. The optimized values of parameters for naphthalene were a) permeability coefficient for the stratum corneum 6.8 x 10(-5) cm/hr, b) permeability coefficient for the viable epidermis 3.0 x 10(-3) cm/hr, c) fat:blood partition coefficient 25.6, and d) other tissue:blood partition coefficient 5.2. The skin permeability coefficient was comparable to the values estimated from in vitro studies. Based on simulations of workers' exposures to JP-8 during aircraft fuel-cell maintenance operations, the median relative contribution of dermal exposure to the end-exhaled breath concentration of naphthalene was 4% (10th percentile 1% and 90th percentile 11%). PBTK modeling allowed contributions of the end-exhaled air concentration of naphthalene to be partitioned between dermal and inhalation routes of exposure. Further study of inter- and intraindividual variations in exposure assessment is required to better characterize the toxicokinetic behavior of JP-8 components after occupational and/or environmental exposures.

  7. 1-[(E-2-(2-Hydroxy-5-methylphenyldiazen-2-ium-1-yl]naphthalen-2-olate

    Directory of Open Access Journals (Sweden)

    Salah Eddine Bouaoud

    2013-08-01

    Full Text Available The title zwitterion, C17H14N2O2, crystallizes with two independent molecules in the asymmetric unit, both of which are approximately planar, the dihedral angles between the benzene ring and the naphthalene ring system being 4.39 (12° in one molecule and 5.83 (12° in the other, and show an E conformation with respect to the azo double bond. An intramolecular N—H...O hydrogen bond in each molecule helps to establish their near planar conformation. In the crystal, molecules are linked through O—H...O hydrogen bonds into infinite chains running along the a-axis direction. In addition, the chains are stacked along the b axis via π–π interactions between the benzene and the naphthalene rings of adjacent molecules, the centroid–centroid distances being 3.722 (3 and 3.823 (4 Å.

  8. Hydrogenation of naphthalene on NiMo- Ni- and Ru/Al{sub 2}O{sub 3} catalysts. Langmuir-Hinshelwood kinetic modelling

    Energy Technology Data Exchange (ETDEWEB)

    Monteiro-Gezork, Ana Cristina Alves; Winterbottom, John Mike [Department of Chemical Engineering, School of Engineering, The University of Birmingham, Birmingham B15 2TT (United Kingdom); Natividad, Reyna [Department of Chemical Engineering, Faculty of Chemistry, Universidad Autonoma del Estado de Mexico, Paseo Colon Esq. Tollocan, Toluca, Edo. de Mexico, Mexico CP 50120 (Mexico)

    2008-01-30

    The importance of the hydrodearomatisation (HDA) is increasing together with tightening legislation of fuel quality and exhaust emissions. The present study focuses on hydrogenation (HYD) kinetics of the model aromatic compound naphthalene, found in typical diesel fraction, in n-hexadecane over a NiMo (nickel molybdenum), Ni (nickel) and Ru (ruthenium) supported on trilobe alumina (Al{sub 2}O{sub 3}) catalysts. Kinetic reaction expressions based on the mechanistic Langmuir-Hinshelwood (L-H) model were derived and tested by regressing the experimental data that translated the effect of both naphthalene and hydrogen concentration at a constant temperature (523.15 and 573.15 K over the NiMo catalyst and at 373.15 K over the Ni and Ru/Al{sub 2}O{sub 3} catalysts) on the initial reaction rate. The L-H equation, giving an adequate fit to the experimental data with physically meaningful parameters, suggested a competitive adsorption between hydrogen and naphthalene over the presulphided NiMo catalyst and a non-competitive adsorption between these two reactants over the prereduced Ni and Ru/Al{sub 2}O{sub 3} catalysts. In addition, the adsorption constant values indicated that the prereduced Ru catalyst was a much more active catalyst towards naphthalene HYD than the prereduced Ni/Al{sub 2}O{sub 3} or the presulphided NiMo/Al{sub 2}O{sub 3} catalyst. (author)

  9. Preconcentration of uranium, thorium, zirconium, titanium, molybdenum and vanadium with oxine supported on microcrystalline naphthalene and their determinations by ICP-AES

    International Nuclear Information System (INIS)

    Kumar, Naveen; Kumar, Sanjay; Kumar, Vijay; Nandakishore, S.S.; Bangroo, P.N.

    2013-01-01

    As an effective technique for separation and preconcentration of trace elements, solid-liquid extraction with microcrystalline naphthalene has received great attention in recent years. The application of the adsorption of the metal complexes on microcrystalline naphthalene has greatly enhanced the utility of solid-liquid extraction in trace analysis. A survey of the literature revealed that single element detection techniques such as spectrophotometry, atomic absorption spectrometry, and polarography were mostly combined with this separation method. However, multi-element simultaneous detection techniques, like ICP-AES and ICP-MS were seldom used as the detectors in this solid-liquid extraction method. The aim of this work was to attempt to adopt the reagent oxine for the separation and subsequent determination of U, Th, Zr, Ti, Mo and V by ICP-AES, after adsorption of their oxinate complexes on microcrystalline naphthalene

  10. An isoelectronic NO dioxygenase reaction using a nonheme iron(III)-peroxo complex and nitrosonium ion†

    Science.gov (United States)

    Yokoyama, Atsutoshi; Han, Jung Eun; Karlin, Kenneth D.; Nam, Wonwoo

    2014-01-01

    Reaction of a nonheme iron(III)-peroxo complex, [FeIII(14-TMC)(O2)]+, with NO+, a transformation which is essentially isoelectronic with that for nitric oxide dioxygenases [Fe(III)(O2•−) + NO], affords an iron(IV)-oxo complex, [FeIV(14-TMC)(O)]2+, and nitrogen dioxide (NO2), followed by conversion to an iron(III)-nitrato complex, [FeIII(14-TMC)(NO3)(F)]+. PMID:24394960

  11. An isoelectronic NO dioxygenase reaction using a nonheme iron(III)-peroxo complex and nitrosonium ion†

    OpenAIRE

    Yokoyama, Atsutoshi; Han, Jung Eun; Karlin, Kenneth D.; Nam, Wonwoo

    2014-01-01

    Reaction of a nonheme iron(III)-peroxo complex, [FeIII(14-TMC)(O2)]+, with NO+, a transformation which is essentially isoelectronic with that for nitric oxide dioxygenases [Fe(III)(O2•−) + NO], affords an iron(IV)-oxo complex, [FeIV(14-TMC)(O)]2+, and nitrogen dioxide (NO2), followed by conversion to an iron(III)-nitrato complex, [FeIII(14-TMC)(NO3)(F)]+.

  12. Low indoleamine 2,3-dioxygenase activity in persistent food allergy in children.

    Science.gov (United States)

    Buyuktiryaki, B; Sahiner, U M; Girgin, G; Birben, E; Soyer, O U; Cavkaytar, O; Cetin, C; Arik Yilmaz, E; Yavuz, S T; Kalayci, O; Baydar, T; Sackesen, C

    2016-02-01

    Indoleamine 2,3-dioxygenase (IDO), which degrades tryptophan (Trp) to kynurenine (Kyn), has been demonstrated to contribute to modulation of allergic responses. However, the role of IDO in food allergy has not yet been elucidated. Serum Trp and Kyn concentrations were analyzed by high-pressure liquid chromatography. Expression of IDO gene was measured by real-time PCR. The levels of interleukin (IL)-4, IL-10, and interferon (IFN)-γ in cell culture supernatants were measured by ELISA. Kyn/Trp (IDO activity) was significantly lower in subjects with food allergy (n = 100) than in aged-matched healthy controls (n = 112) (P = 0.004). Kyn/Trp was decreased from healthy through completely tolerant, partially tolerant, and reactive ones [LN transformation (mean ± SEM) healthy: 3.9 ± 0.02 μM/mM; completely tolerant: 3.83 ± 0.04; partially tolerant: 3.8 ± 0.06; reactive: 3.7 ± 0.04] (P = 0.008). The frequency of genetic polymorphisms of IDO did not reveal a significant association with Trp, Kyn, and Kyn/Trp in healthy and food-allergic cases. Culture of PBMC experiments yielded that IDO mRNA expression was not different between tolerant and reactive groups. IL-4 synthesis when stimulated with casein increased significantly in subjects who are reactive and tolerant to foods (P = 0.042, P = 0.006, respectively). Increase in IL-10 synthesis was observed only in children tolerant to milk, but not in reactive ones. IFN-γ synthesis, when stimulated with IL-2 and β-lactoglobulin in cell culture, was significantly higher in subjects tolerant to milk than in the reactive ones (P = 0.005 and P = 0.029, respectively). Our results imply the probability of involvement of IDO in development of tolerance process, and we presume that high IDO activity is associated with nonresponsiveness to food allergens despite allergen sensitization. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. 4-Hydroxyphenylpyruvate Dioxygenase Inhibitors: From Chemical Biology to Agrochemicals.

    Science.gov (United States)

    Ndikuryayo, Ferdinand; Moosavi, Behrooz; Yang, Wen-Chao; Yang, Guang-Fu

    2017-10-04

    The development of new herbicides is receiving considerable attention to control weed biotypes resistant to current herbicides. Consequently, new enzymes are always desired as targets for herbicide discovery. 4-Hydroxyphenylpyruvate dioxygenase (HPPD, EC 1.13.11.27) is an enzyme engaged in photosynthetic activity and catalyzes the transformation of 4-hydroxyphenylpyruvic acid (HPPA) into homogentisic acid (HGA). HPPD inhibitors constitute a promising area of discovery and development of innovative herbicides with some advantages, including excellent crop selectivity, low application rates, and broad-spectrum weed control. HPPD inhibitors have been investigated for agrochemical interests, and some of them have already been commercialized as herbicides. In this review, we mainly focus on the chemical biology of HPPD, discovery of new potential inhibitors, and strategies for engineering transgenic crops resistant to current HPPD-inhibiting herbicides. The conclusion raises some relevant gaps for future research directions.

  14. Draft Genome Sequence of the Model Naphthalene-Utilizing Organism Pseudomonas putida OUS82

    DEFF Research Database (Denmark)

    Tay, Martin; Roizman, Dan; Cohen, Yehuda

    2014-01-01

    Pseudomonas putida OUS82 was isolated from petrol- and oil-contaminated soil in 1992, and ever since, it has been used as a model organism to study the microbial assimilation of naphthalene and phenanthrene. Here, we report the 6.7-Mb draft genome sequence of P. putida OUS82 and analyze its...

  15. Indoleamine 2,3-dioxygenase 1 (IDO1) inhibitors activate the aryl hydrocarbon receptor

    Energy Technology Data Exchange (ETDEWEB)

    Moyer, Benjamin J. [Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Dartmouth Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH 03756 (United States); Rojas, Itzel Y. [Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Dartmouth Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH 03756 (United States); Murray, Iain A. [Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA 16802 (United States); Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802 (United States); Lee, Seokwon; Hazlett, Haley F. [Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Dartmouth Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH 03756 (United States); Perdew, Gary H. [Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA 16802 (United States); Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802 (United States); Tomlinson, Craig R., E-mail: Craig.R.Tomlinson@Dartmouth.edu [Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Dartmouth Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH 03756 (United States); Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Dartmouth Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH 03756 (United States)

    2017-05-15

    Indoleamine 2,3-dioxygenase 1 (IDO1) plays a key role in the immune system by regulating tryptophan levels and T cell differentiation. Several tumor types overexpress IDO1 to avoid immune surveillance making IDO1 of interest as a target for therapeutic intervention. As a result, several IDO1 inhibitors are currently being tested in clinical trials for cancer treatment as well as several other diseases. Many of the IDO1 inhibitors in clinical trials naturally bear structural similarities to the IDO1 substrate tryptophan, as such, they fulfill many of the structural and functional criteria as potential AHR ligands. Using mouse and human cell-based luciferase gene reporter assays, qPCR confirmation experiments, and CYP1A1 enzyme activity assays, we report that some of the promising clinical IDO1 inhibitors also act as agonists for the aryl hydrocarbon receptor (AHR), best known for its roles in xenobiotic metabolism and as another key regulator of the immune response. The dual role as IDO antagonist and AHR agonist for many of these IDO target drugs should be considered for full interrogation of their biological mechanisms and clinical outcomes. - Highlights: • Indoleamine-2,3-dioxygenase 1 (IDO1) inhibitors are in cancer clinical trials. • Some IDO1 inhibitors also potently activate AHR signaling. • The dual role of the IDO1 inhibitors may explain some past paradoxical findings. • AHR induction studies must be included in assessing clinical suitability.

  16. Indoleamine 2,3-dioxygenase 1 (IDO1) inhibitors activate the aryl hydrocarbon receptor

    International Nuclear Information System (INIS)

    Moyer, Benjamin J.; Rojas, Itzel Y.; Murray, Iain A.; Lee, Seokwon; Hazlett, Haley F.; Perdew, Gary H.; Tomlinson, Craig R.

    2017-01-01

    Indoleamine 2,3-dioxygenase 1 (IDO1) plays a key role in the immune system by regulating tryptophan levels and T cell differentiation. Several tumor types overexpress IDO1 to avoid immune surveillance making IDO1 of interest as a target for therapeutic intervention. As a result, several IDO1 inhibitors are currently being tested in clinical trials for cancer treatment as well as several other diseases. Many of the IDO1 inhibitors in clinical trials naturally bear structural similarities to the IDO1 substrate tryptophan, as such, they fulfill many of the structural and functional criteria as potential AHR ligands. Using mouse and human cell-based luciferase gene reporter assays, qPCR confirmation experiments, and CYP1A1 enzyme activity assays, we report that some of the promising clinical IDO1 inhibitors also act as agonists for the aryl hydrocarbon receptor (AHR), best known for its roles in xenobiotic metabolism and as another key regulator of the immune response. The dual role as IDO antagonist and AHR agonist for many of these IDO target drugs should be considered for full interrogation of their biological mechanisms and clinical outcomes. - Highlights: • Indoleamine-2,3-dioxygenase 1 (IDO1) inhibitors are in cancer clinical trials. • Some IDO1 inhibitors also potently activate AHR signaling. • The dual role of the IDO1 inhibitors may explain some past paradoxical findings. • AHR induction studies must be included in assessing clinical suitability.

  17. Performance of a Novel Hydrophobic Mesoporous Material for High Temperature Catalytic Oxidation of Naphthalene

    Directory of Open Access Journals (Sweden)

    Guotao Zhao

    2014-01-01

    Full Text Available A high surface area, hydrophobic mesoporous material, MFS, has been successfully synthesized by a hydrothermal synthesis method using a perfluorinated surfactant, SURFLON S-386, as the single template. N2 adsorption and TEM were employed to characterize the pore structure and morphology of MFS. Static water adsorption test indicates that the hydrophobicity of MFS is significantly higher than that of MCM-41. XPS and Py-GC/MS analysis confirmed the existence of perfluoroalkyl groups in MFS which led to its high hydrophobicity. MFS was used as a support for CuO in experiments of catalytic combustion of naphthalene, where it showed a significant advantage over MCM-41 and ZSM-5. SEM was helpful in understanding why CuO-MFS performed so well in the catalytic combustion of naphthalene. Experimental results indicated that MFS was a suitable support for catalytic combustion of large molecular organic compounds, especially for some high temperature catalytic reactions when water vapor was present.

  18. Emitting materials based on phenylanthracene-substituted naphthalene derivatives for organic light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyun Woo; Kim, Hye Jeong; Kim, Young Seok; Kim, Jwajin [Department of Chemistry, Sungkyunkwan University, Suwon 440‐746 (Korea, Republic of); Lee, Song Eun; Lee, Ho Won [Department of Information Display, Hongik University, Seoul 121-791 (Korea, Republic of); Kim, Young Kwan, E-mail: kimyk@wow.hongik.ac.kr [Department of Information Display, Hongik University, Seoul 121-791 (Korea, Republic of); Yoon, Seung Soo, E-mail: ssyoon@skku.edu [Department of Chemistry, Sungkyunkwan University, Suwon 440‐746 (Korea, Republic of)

    2015-09-15

    This study reports the emitting materials based on phenylanthracene-substituted naphthalene derivatives to achieve efficient electroluminescent properties for OLED applications. An OLED device using 4,4′-bis(10-phenylanthracen-9-yl)-1,1′-binaphthalene exhibited the blue emission with the CIE coordinates of (0.19, 0.16) and efficient electroluminescent properties with the luminance, power and external quantum efficiency of 1.70 cd/A, 0.79 lm/W and 1.26% at 20 mA/cm{sup 2}, respectively. Also, the other device using 1,4-bis(10-phenylanthracene-9-yl)naphthalene exhibited white emission with the CIE coordinates of (0.34, 0.43) at 7V, respectively. This device exhibits the luminance, power and external quantum efficiency of 2.22 cd/A, 1.13 lm/W and 0.86% at 20 mA/cm{sup 2}, respectively. - Highlights: • We synthesized fluorescent materials based on phenylanthracene derivatives. • Electroluminescence properties of these materials depend on the molecular structures. • These blue and white materials have great potential for application in OLEDs.

  19. Emitting materials based on phenylanthracene-substituted naphthalene derivatives for organic light-emitting diodes

    International Nuclear Information System (INIS)

    Lee, Hyun Woo; Kim, Hye Jeong; Kim, Young Seok; Kim, Jwajin; Lee, Song Eun; Lee, Ho Won; Kim, Young Kwan; Yoon, Seung Soo

    2015-01-01

    This study reports the emitting materials based on phenylanthracene-substituted naphthalene derivatives to achieve efficient electroluminescent properties for OLED applications. An OLED device using 4,4′-bis(10-phenylanthracen-9-yl)-1,1′-binaphthalene exhibited the blue emission with the CIE coordinates of (0.19, 0.16) and efficient electroluminescent properties with the luminance, power and external quantum efficiency of 1.70 cd/A, 0.79 lm/W and 1.26% at 20 mA/cm 2 , respectively. Also, the other device using 1,4-bis(10-phenylanthracene-9-yl)naphthalene exhibited white emission with the CIE coordinates of (0.34, 0.43) at 7V, respectively. This device exhibits the luminance, power and external quantum efficiency of 2.22 cd/A, 1.13 lm/W and 0.86% at 20 mA/cm 2 , respectively. - Highlights: • We synthesized fluorescent materials based on phenylanthracene derivatives. • Electroluminescence properties of these materials depend on the molecular structures. • These blue and white materials have great potential for application in OLEDs

  20. Influence of 1,3,6 naphthalene trisulfonic acid on microstructure & hardness in electrodeposited Ni-layers

    DEFF Research Database (Denmark)

    Rasmussen, Anette Alsted; Møller, Per; Somers, Marcel A. J.

    2002-01-01

    The influence of the additive 1,3,6 naphthalene trisulfonic acid on the microstructure and hardness of electrodeposited nickel layers was investigated. The microstructure was characterized using transmission electron microscopy; the Vickers hardness was measured in cross sections. The additive wa...

  1. Theoretical study of the oxidation mechanisms of naphthalene initiated by hydroxyl radicals: the OH-addition pathway.

    Science.gov (United States)

    Shiroudi, Abolfazl; Deleuze, Michael S; Canneaux, Sébastien

    2014-07-03

    The oxidation mechanisms of naphthalene by OH radicals under inert (He) conditions have been studied using density functional theory along with various exchange-correlation functionals. Comparison has been made with benchmark CBS-QB3 theoretical results. Kinetic rate constants were correspondingly estimated by means of transition state theory and statistical Rice-Ramsperger-Kassel-Marcus (RRKM) theory. Comparison with experiment confirms that, on the OH-addition reaction pathway leading to 1-naphthol, the first bimolecular reaction step has an effective negative activation energy around -1.5 kcal mol(-1), whereas this step is characterized by an activation energy around 1 kcal mol(-1) on the OH-addition reaction pathway leading to 2-naphthol. Effective rate constants have been calculated according to a steady state analysis upon a two-step model reaction mechanism. In line with experiment, the correspondingly obtained branching ratios indicate that, at temperatures lower than 410 K, the most abundant product resulting from the oxidation of naphthalene by OH radicals must be 1-naphthol. The regioselectivity of the OH(•)-addition onto naphthalene decreases with increasing temperatures and decreasing pressures. Because of slightly positive or even negative activation energies, the RRKM calculations demonstrate that the transition state approximation breaks down at ambient pressure (1 bar) for the first bimolecular reaction steps. Overwhelmingly high pressures, larger than 10(5) bar, would be required for restoring to some extent (within ∼5% accuracy) the validity of this approximation for all the reaction channels that are involved in the OH-addition pathway. Analysis of the computed structures, bond orders, and free energy profiles demonstrate that all reaction steps involved in the oxidation of naphthalene by OH radicals satisfy Leffler-Hammond's principle. Nucleus independent chemical shift indices and natural bond orbital analysis also show that the computed

  2. 6-Substituted 3,4-dihydro-naphthalene-2-carboxylic acids: synthesis and structure-activity studies in a novel class of human 5alpha reductase inhibitors.

    Science.gov (United States)

    Baston, Eckhard; Salem, Ola I A; Hartmann, Rolf W

    2002-10-01

    Novel 3,4-dihydro-naphthalene-2-carboxylic acids were synthesized and evaluated for 5alpha reductase inhibitory activity. This enzyme exists in two isoforms and is a pharmacological target for the treatment of benign prostatic hyperplasia, male pattern baldness and acne. In the present study non-steroidal compounds capable of mimicking the transition state of the steroidal substrates were prepared. The synthetic strategy for the preparation of compounds 1-6 consisted of triflation followed by subsequent Heck-type carboxylation or methoxy carbonylation for 6-phenyl-3,4-dihydronaphthalen-2(1H)-one 1c. A Negishi-type coupling reaction between 6-(trifluoro-methanesulfonyloxy)-3,4-dihydro-naphthalene-2-carboxylic acid methyl ester 7b and various aryl bromides led, after further transformations, to 6-substituted 3,4-dihydro-naphthalene-2-carboxylic acids 7-15. In a similar way the corresponding naphthalene-2-carboxylic acids 16 and 17 were obtained. The DU 145 cell line and prostate homogenates served as enzyme sources for the human type 1 and type 2 isozymes, whereas ventral prostate was employed to evaluate rat isozyme inhibitory potency. The most active inhibitors identified in this study were 6-[4-(N,N-dicyclohexylaminocarbonyl)phenyl]-3,4-dihydro-naphthalene-2-carboxylic acid (3) (IC50 = 0.09 microM, rat type 1), 6-[3-(N,N-dicyclohexylaminocarbonyl)phenyl]-3,4-dihydro-naphthalene-2-carboxylic acid (13) (IC50 = 0.75 microM, human type 2; IC50 = 0.81 microM, human type 1) and 6-[4-(N,N-diisopropylamino-carbonyl)phenyl]naphthalene-2-carboxylic acid (16) (IC50 = 0.2 microM, human type 2). The latter compound was shown to deactivate the enzyme in an uncompetitive manner (Ki = 90 nM; Km, Testosterone = 0.8-1.0 microM) similar to the steroidal inhibitor Epristeride. Select inhibitors (13 and 16) were tested in vivo using testosterone propionate-treated, juvenile, orchiectomized SD-rats. None of the compounds was active at a dose of 25 mg/kg. This result might in part be

  3. Conformationally constrained farnesoid X receptor (FXR) agonists: heteroaryl replacements of the naphthalene.

    Science.gov (United States)

    Bass, Jonathan Y; Caravella, Justin A; Chen, Lihong; Creech, Katrina L; Deaton, David N; Madauss, Kevin P; Marr, Harry B; McFadyen, Robert B; Miller, Aaron B; Mills, Wendy Y; Navas, Frank; Parks, Derek J; Smalley, Terrence L; Spearing, Paul K; Todd, Dan; Williams, Shawn P; Wisely, G Bruce

    2011-02-15

    To improve on the drug properties of GSK8062 1b, a series of heteroaryl bicyclic naphthalene replacements were prepared. The quinoline 1c was an equipotent FXR agonist with improved drug developability parameters relative to 1b. In addition, analog 1c lowered body weight gain and serum glucose in a DIO mouse model of diabetes. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Interactions between the HIV-1 Unspliced mRNA and Host mRNA Decay Machineries

    Directory of Open Access Journals (Sweden)

    Daniela Toro-Ascuy

    2016-11-01

    Full Text Available The human immunodeficiency virus type-1 (HIV-1 unspliced transcript is used both as mRNA for the synthesis of structural proteins and as the packaged genome. Given the presence of retained introns and instability AU-rich sequences, this viral transcript is normally retained and degraded in the nucleus of host cells unless the viral protein REV is present. As such, the stability of the HIV-1 unspliced mRNA must be particularly controlled in the nucleus and the cytoplasm in order to ensure proper levels of this viral mRNA for translation and viral particle formation. During its journey, the HIV-1 unspliced mRNA assembles into highly specific messenger ribonucleoproteins (mRNPs containing many different host proteins, amongst which are well-known regulators of cytoplasmic mRNA decay pathways such as up-frameshift suppressor 1 homolog (UPF1, Staufen double-stranded RNA binding protein 1/2 (STAU1/2, or components of miRNA-induced silencing complex (miRISC and processing bodies (PBs. More recently, the HIV-1 unspliced mRNA was shown to contain N6-methyladenosine (m6A, allowing the recruitment of YTH N6-methyladenosine RNA binding protein 2 (YTHDF2, an m6A reader host protein involved in mRNA decay. Interestingly, these host proteins involved in mRNA decay were shown to play positive roles in viral gene expression and viral particle assembly, suggesting that HIV-1 interacts with mRNA decay components to successfully accomplish viral replication. This review summarizes the state of the art in terms of the interactions between HIV-1 unspliced mRNA and components of different host mRNA decay machineries.

  5. Chlorido{(E-1-[(2-methoxyphenyldiazenyl]naphthalen-2-olato}palladium(II

    Directory of Open Access Journals (Sweden)

    Assia Mili

    2016-04-01

    Full Text Available In the title complex, [Pd(C17H13N2O2Cl], the PdII atom is tetracoordinated by an N and two O atoms of an (E-1-[(2-methoxyphenyldiazenyl]naphthalen-2-olate ligand and by a Cl atom, and has a square-planar coordination. In the crystal, molecules are linked by pairs of C—H...Cl hydrogen bonds, forming inversion dimers. The dimers are linked via offset π–π interactions [intercentroid distance = 3.546 (3 Å], forming chains running parallel to [100].

  6. Acute damage by naphthalene triggers expression of the neuroendocrine marker PGP9.5 in airway epithelial cells

    DEFF Research Database (Denmark)

    Poulsen, T.T.; Naizhen, X.; Linnoila, R.I.

    2008-01-01

    Protein Gene Product 9.5 (PGP9.5) is highly expressed in nervous tissue. Recently PGP9.5 expression has been found to be upregulated in the pulmonary epithelium of smokers and in non-small cell lung cancer, suggesting that it also plays a role in carcinogen-inflicted lung epithelial injury...... neuroendocrine markers was found in the non-neuroendocrine epithelial cells after naphthalene exposure. In contrast, immunostaining for the cell cycle regulator p27(Kip1), which has previously been associated with PGP9.5 in lung cancer cells, revealed transient downregulation of p27(Kip1) in naphthalene exposed...... and further strengthens the accumulating evidence of PGP9.5 as a central player in lung epithelial damage and early carcinogenesis Udgivelsesdato: 2008/9/26...

  7. Cloning of two individual cDNAS encoding 9-cis-epoxycarotenoid dioxygenase from Gentiana lutea, their tissue-specific expression and physiological effect in transgenic tobacco.

    Science.gov (United States)

    Zhu, Changfu; Kauder, Friedrich; Römer, Susanne; Sandmann, Gerhard

    2007-02-01

    Two 9-cis-epoxycarotenoid dioxygenase (NCED) cDNAs have been cloned from a petal library of Gentiana lutea. Both cDNAs carry a putative transit sequence for chloroplast import and differ mainly in their length and the 5'-flanking regions. GlNCED1 was evolutionary closely related to Arabidopsis thaliana NCED6 whereas GlNCED2 showed highest homology to tomato NCED1 and A. thaliana NCED3. The amounts of GlNCED2 transcript were below Northern detection in G. lutea. In contrast, GlNCED1 was specifically expressed at higher levels in developing flowers when petals start appearing. By genetic engineering of tobacco with coding regions of either gene under a constitutive promoter, their function was further analyzed. Although mRNA of both genes was detectable in the corresponding transgenic plants, a physiological effect was only found for GlNCED1 but not for GlNCED2. In germination experiments of GlNCED1 transgenic lines, delayed radicle formation and cotyledon appearance were observed. However, the transformants exhibited no improved tolerance against desiccation stress. In contrast to other plants with over-expressed NCEDs, prolonged delay of seed germination is the only abscisic-acid-related phenotypic effect in the GlNCED1 transgenic lines.

  8. Pseudomonas putida CSV86: a candidate genome for genetic bioaugmentation.

    Directory of Open Access Journals (Sweden)

    Vasundhara Paliwal

    Full Text Available Pseudomonas putida CSV86, a plasmid-free strain possessing capability to transfer the naphthalene degradation property, has been explored for its metabolic diversity through genome sequencing. The analysis of draft genome sequence of CSV86 (6.4 Mb revealed the presence of genes involved in the degradation of naphthalene, salicylate, benzoate, benzylalcohol, p-hydroxybenzoate, phenylacetate and p-hydroxyphenylacetate on the chromosome thus ensuring the stability of the catabolic potential. Moreover, genes involved in the metabolism of phenylpropanoid and homogentisate, as well as heavy metal resistance, were additionally identified. Ability to grow on vanillin, veratraldehyde and ferulic acid, detection of inducible homogentisate dioxygenase and growth on aromatic compounds in the presence of heavy metals like copper, cadmium, cobalt and arsenic confirm in silico observations reflecting the metabolic versatility. In silico analysis revealed the arrangement of genes in the order: tRNA(Gly, integrase followed by nah operon, supporting earlier hypothesis of existence of a genomic island (GI for naphthalene degradation. Deciphering the genomic architecture of CSV86 for aromatic degradation pathways and identification of elements responsible for horizontal gene transfer (HGT suggests that genetic bioaugmentation strategies could be planned using CSV86 for effective bioremediation.

  9. Synthesis of N and La co-doped TiO{sub 2}/AC photocatalyst by microwave irradiation for the photocatalytic degradation of naphthalene

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Dandan; Wu, Zhansheng, E-mail: wuzhans@126.com; Tian, Fei; Ye, Bang-Ce; Tong, Yanbin, E-mail: tongyanbin@sina.com

    2016-08-15

    La and N co-doped TiO{sub 2} nanoparticles supported on activated carbon (TiO{sub 2}/AC) were synthesized through a microwave-assisted sol–gel method for the synergistic removal of naphthalene solution by photocatalytic degradation. Results showed that the La and N ions were incorporated into the TiO{sub 2} framework in both the anatase and rutile phases of TiO{sub 2} for single doped and co-doped samples, which narrowed the band gap of TiO{sub 2} from 2.82 to 2.20 eV. The PL spectra of the samples showed a decrease in the recombination centers when N and La were introduced in TiO{sub 2}/AC. The 0.001La-N-TiO{sub 2}/AC photocatalyst exhibited the highest degradation efficiency of 93.5% for naphthalene under visible light within 120 min. This result was attributed to a synergistic effect involving the efficient inhibition of the recombination of photogenerated electrons and holes, the increase in surface hydroxyl, surface area, volume pores, and the increase of uptake in the visible light region. In addition, the high apparent rate constant indicated that La and N co-doping result in the increase of photoactivity. This study demonstrated the co-doped TiO{sub 2}/AC is a highly efficient photocatalyst for the removal of naphthalene. The results provided valuable information on the mechanism of naphthalene decomposition. - Highlights: • N, La codoped TiO{sub 2}/AC catalysts were synthesized by microwave-assisted. • N and La doping inhibit the recombination of photogenerated electrons and holes. • 0.001La-N-TiO{sub 2}/AC obtains photodegradation efficiency of 93.5% for naphthalene. • The photocatalysts possess good photochemical stability and reusability.

  10. Engineering Non-Heme Mono- and Dioxygenases for Biocatalysis

    Directory of Open Access Journals (Sweden)

    Adi Dror

    2012-09-01

    Full Text Available Oxygenases are ubiquitous enzymes that catalyze the introduction of one or two oxygen atoms to unreactive chemical compounds. They require reduction equivalents from NADH or NADPH and comprise metal ions, metal ion complexes, or coenzymes in their active site. Thus, for industrial purposes, oxygenases are most commonly employed using whole cell catalysis, to alleviate the need for co-factor regeneration. Biotechnological applications include bioremediation, chiral synthesis, biosensors, fine chemicals, biofuels, pharmaceuticals, food ingredients and polymers. Controlling activity and selectivity of oxygenases is therefore of great importance and of growing interest to the scientific community. This review focuses on protein engineering of non-heme monooxygenases and dioxygenases for generating improved or novel functionalities. Rational mutagenesis based on x-ray structures and sequence alignment, as well as random methods such as directed evolution, have been utilized. It is concluded that knowledge-based protein engineering accompanied with targeted libraries, is most efficient for the design and tuning of biocatalysts towards novel substrates and enhanced catalytic activity while minimizing the screening efforts.

  11. Cyclopenta[b]naphthalene cyanoacrylate dyes: synthesis and evaluation as fluorescent molecular rotors.

    Science.gov (United States)

    Kocsis, Laura S; Elbel, Kristyna M; Hardigree, Billie A; Brummond, Kay M; Haidekker, Mark A; Theodorakis, Emmanuel A

    2015-03-14

    We describe the design, synthesis and fluorescent profile of a family of environment-sensitive dyes in which a dimethylamino (donor) group is conjugated to a cyanoacrylate (acceptor) unit via a cyclopenta[b]naphthalene ring system. This assembly satisfies the typical D-π-A motif of a fluorescent molecular rotor and exhibits solvatochromic and viscosity-sensitive fluorescence emission. The central naphthalene ring system of these dyes was synthesized via a novel intramolecular dehydrogenative dehydro-Diels-Alder (IDDDA) reaction that permits incorporation of the donor and acceptor groups in variable positions around the aromatic core. A bathochromic shift of excitation and emission peaks was observed with increasing solvent polarity but the dyes exhibited a complex emission pattern with a second red emission band when dissolved in nonpolar solvents. Consistent with other known molecular rotors, the emission intensity increased with increasing viscosity. Interestingly, closer spatial proximity between the donor and the acceptor groups led to decreased viscosity sensitivity combined with an increased quantum yield. This observation indicates that structural hindrance of intramolecular rotation dominates when the donor and acceptor groups are in close proximity. The examined compounds give insight into how excited state intramolecular rotation can be influenced by both the solvent and the chemical structure.

  12. Crystal structures of a copper(II and the isotypic nickel(II and palladium(II complexes of the ligand (E-1-[(2,4,6-tribromophenyldiazenyl]naphthalen-2-ol

    Directory of Open Access Journals (Sweden)

    Souheyla Chetioui

    2016-08-01

    Full Text Available In the copper(II complex, bis{(E-1-[(2,4,6-tribromophenyldiazenyl]naphthalen-2-olato}copper(II, [Cu(C16H8Br3N2O2], (I, the metal cation is coordinated by two N atoms and two O atoms from two bidentate (E-1-[(2,4,6-tribromophenyldiazenyl]naphthalen-2-olate ligands, forming a slightly distorted square-planar environment. In one of the ligands, the tribromobenzene ring is inclined to the naphthalene ring system by 37.4 (5°, creating a weak intramolecular Cu...Br interaction [3.134 (2 Å], while in the other ligand, the tribromobenzene ring is inclined to the naphthalene ring system by 72.1 (6°. In the isotypic nickel(II and palladium(II complexes, namely bis{(E-1-[(2,4,6-tribromophenyldiazenyl]naphthalen-2-olato}nickel(II, [Ni(C16H8Br3N2O2], (II, and bis{(E-1-[(2,4,6-tribromophenyldiazenyl]naphthalen-2-olato}palladium(II, [Pd(C16H8Br3N2O2], (III, respectively, the metal atoms are located on centres of inversion, hence the metal coordination spheres have perfect square-planar geometries. The tribromobenzene rings are inclined to the naphthalene ring systems by 80.79 (18° in (II and by 80.8 (3° in (III. In the crystal of (I, molecules are linked by C—H...Br hydrogen bonds, forming chains along [010]. The chains are linked by C—H...π interactions, forming sheets parallel to (011. In the crystals of (II and (III, molecules are linked by C—H...π interactions, forming slabs parallel to (10-1. For the copper(II complex (I, a region of disordered electron density was corrected for using the SQUEEZE routine in PLATON [Spek (2015. Acta Cryst. C71, 9–18]. The formula mass and unit-cell characteristics of the disordered solvent molecules were not taken into account during refinement.

  13. Interactive effects of naphthalene treatment and the onset of vitellogenesis on energy metabolism in liver and gonad, and plasma steroid hormones of rainbow trout Oncorhynchus mykiss.

    Science.gov (United States)

    Tintos, Adrián; Gesto, Manuel; Alvarez, Rosa; Míguez, Jesús M; Soengas, José L

    2006-10-01

    The purpose of the study was to assess in female fish the possible interaction between treatment with a polycyclic aromatic hydrocarbon (PAH) like naphthalene and the onset of vitellogenesis. In a first experiment, female rainbow trout (Oncorhynchus mykiss) at stages 2-3 (previtellogenesis) or 4 (early vitellogenesis) were intraperitoneally injected (2 microl g(-1)) with vegetable oil alone (control) or containing naphthalene (50 mg kg(-1)) to be sampled 3 h later. A second experiment was similarly designed but using fish intraperitoneally implanted (10 microl g(-1)) with slow-release coconut oil implants alone (control) or containing 50 mg naphthalene kg(-1) body mass that were sampled 3 days after injection. On each sampling time, plasma levels of cortisol and 17beta-estradiol, and several metabolic parameters in plasma, liver and gonad were assessed. In controls, early vitellogenic fish compared with previtellogenic fish displayed changes that in some cases are confirmatory of previous studies whereas in other cases provide new information in plasma (increased amino acid levels), liver (decreased capacity for exporting glucose and reduced amino acid levels) and gonad (decreased amino acid levels). Naphthalene treatment produced in previtellogenic fish decreased 17beta-estradiol levels in plasma, increased plasma glucose or decreased liver gluconeogenic capacity whereas no major effects were noticed on parameters involved in lipid, amino acid and lactate metabolism. Differential effects of naphthalene treatment were noticed in early vitellogenic fish such as decreased 17beta-estradiol and glucose levels in plasma, increased hexokinase and glucokinase and lack of changes in fructose 1,6-bisphosphatase activities in liver, and a lower decrease of amino acid levels in gonad. Those alterations produced by naphthalene treatment resulted in a decreased capacity for covering the energy demand of vitellogenesis in liver and gonad that could contribute to a delay and

  14. Prognostic Significance of Promoter DNA Hypermethylation of cysteine dioxygenase 1 (CDO1 Gene in Primary Breast Cancer.

    Directory of Open Access Journals (Sweden)

    Naoko Minatani

    Full Text Available Using pharmacological unmasking microarray, we identified promoter DNA methylation of cysteine dioxygenase 1 (CDO1 gene in human cancer. In this study, we assessed the clinicopathological significance of CDO1 methylation in primary breast cancer (BC with no prior chemotherapy. The CDO1 DNA methylation was quantified by TaqMan methylation specific PCR (Q-MSP in 7 BC cell lines and 172 primary BC patients with no prior chemotherapy. Promoter DNA of the CDO1 gene was hypermethylated in 6 BC cell lines except SK-BR3, and CDO1 gene expression was all silenced at mRNA level in the 7 BC cell lines. Quantification of CDO1 methylation was developed using Q-MSP, and assessed in primary BC. Among the clinicopathologic factors, CDO1 methylation level was not statistically significantly associated with any prognostic factors. The log-rank plot analysis elucidated that the higher methylation the tumors harbored, the poorer prognosis the patients exhibited. Using the median value of 58.0 as a cut-off one, disease specific survival in BC patients with CDO1 hypermethylation showed significantly poorer prognosis than those with hypomethylation (p = 0.004. Multivariate Cox proportional hazards model identified that CDO1 hypermethylation was prognostic factor as well as Ki-67 and hormone receptor status. The most intriguingly, CDO1 hypermethylation was of robust prognostic relevance in triple negative BC (p = 0.007. Promoter DNA methylation of CDO1 gene was robust prognostic indicator in primary BC patients with no prior chemotherapy. Prognostic relevance of the CDO1 promoter DNA methylation is worthy of being paid attention in triple negative BC cancer.

  15. Diels-Alder Reaction of Isobenzofurans/Cyclopentadienones with Tetrathiafulvalene: Preparation of Naphthalene, Fluoranthene, and Fluorenone Derivatives.

    Science.gov (United States)

    Karunakaran, Jayachandran; Mohanakrishnan, Arasambattu K

    2018-02-16

    Diels-Alder reaction of 1,3-diarylbenzo[c]furan/cyclopentadienone with TTF followed by triflic acid mediated cleavage of the resulting adducts led to the formation of the respective 1,4-diaryl substituted naphthalenes, fluoranthenes, and fluorenones. The photophysical properties of representative diaryl-substituted hydrocarbons are also reported.

  16. Identification of an evolutionary conserved structural loop that is required for the enzymatic and biological function of tryptophan 2,3-dioxygenase

    NARCIS (Netherlands)

    Michels, Helen; Seinstra, Renee I.; Uitdehaag, Joost C. M.; Koopman, Mandy; van Faassen, Martijn; Martineau, Celine N.; Kema, Ido P.; Buijsman, Rogier; Nollen, Ellen A. A.

    2016-01-01

    The enzyme TDO (tryptophan 2,3-dioxygenase; TDO-2 in Caenorhabditis elegans) is a potential therapeutic target to cancer but is also thought to regulate proteotoxic events seen in the progression of neurodegenerative diseases. To better understand its function and develop specific compounds that

  17. 1-[(4-Bromophenyl(morpholin-4-ylmethyl]naphthalen-2-ol

    Directory of Open Access Journals (Sweden)

    Qun Zhao

    2012-03-01

    Full Text Available The title compound, C21H20BrNO2, was obtained via a one-pot synthesis from the reaction of 4-bromobenzaldehyde, 2-naphthol and morpholine. In the asymmetric unit, there are four molecules with similar structures. The morpholine ring adopts a chair conformation, and the hydroxy group links with the morpholine via an intramolecular O—H...N hydrogen bond. The bromophenyl ring is approximately perpendicular to the mean pane of the naphthalene system at dihedral angles of 76.7 (3, 81.4 (3, 79.7 (3 and 84.5 (3° in the four independent molecules. Weak C—H...O hydrogen bonds are observed in the crystal.

  18. Emission of Polychlorinated Naphthalenes during Thermal Related Processes

    Science.gov (United States)

    Liu, Guorui; Zheng, Minghui; Du, Bing; Liu, Wenbin; Zhang, Bing; Xiao, Ke

    2010-05-01

    Due to the structural similarity of polychlorinated naphthalenes (PCNs) to those of dioxins, PCNs exhibit toxicological properties similar to dioxins (Olivero-Verbel et al., 2004). Based on their high toxicity, persistence, bioaccumulation, and long-distance transmission, PCNs were also selected as a candidate POP for the UN-ECE (United Nations Economic Commission for Europe) POP protocol (Lerche et al., 2002). In addition, some studies suggested that PCNs contributed a greater proportion of the dioxin-like activity than polychlorinated biphenyls (PCBs) and polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDD/Fs) contributed in some locations (Kannan et al., 1998). However, the identification and quantitation for PCN sources are very scarce compared with PCDD/Fs. Understanding the emission levels and developing the emission inventory of PCNs is important for regulatory and source reduction purposes. In this study, several potential sources were preliminarily investigated for PCN release. Coking process (CP), iron ore sintering (IOS), and electric arc furnace steel making units (AF) were selected due to their huge activity level of industrial production in China. Municipal solid waste incineration (MSWI) and medical waste incineration (MWI) were also investigated because of the possible high concentration of PCNs in stack gas. Two plants were investigated for each thermal related process, except for MWI with one incinerator was investigated. The stack gas samples were collected by automatic isokinetic sampling system (Isostack Basic, TCR TECORA, Milan Italy). Isotope dilution high resolution gas chromatography coupled with high resolution mass spectrometry (HRGC/HRMS) technique was used for the identification and quantitation of PCN congeners. The concentrations of PCNs from the selected thermal processes were determined in this study. The average concentrations of total PCNs were 26 ng Nm-3 for CP, 65 ng Nm-3 for IOS, 720 ng Nm-3 for AF, 443 ng Nm-3 for MSWI, and

  19. Metabolism of chlorobiphenyls by a variant biphenyl dioxygenase exhibiting enhanced activity toward dibenzofuran

    International Nuclear Information System (INIS)

    Viger, Jean-François; Mohammadi, Mahmood; Barriault, Diane; Sylvestre, Michel

    2012-01-01

    Highlights: ► Burkholderia xenovorans LB400 biphenyl dioxygenase (BphAE LB400 ) metabolizes PCBs. ► Asn338Gln/Leu409Phe double mutation speeds up electron transfer of enzyme reaction. ► We tested how the mutations affect the PCB-degrading abilities of BphAE LB400 variants. ► The same mutations also broaden the PCB substrate range of BphAE LB400 variants. -- Abstract: The biphenyl dioxygenase of Burkholderia xenovorans LB400 (BphAE LB400 ) catalyzes the dihydroxylation of biphenyl and of several polychlorinated biphenyls (PCBs) but it poorly oxidizes dibenzofuran. In this work we showed that BphAE RR41 , a variant which was previously found to metabolize dibenzofuran more efficiently than its parent BphAE LB400 , metabolized a broader range of PCBs than BphAE LB400 . Hence, BphAE RR41 was able to metabolize 2,6,2′,6′-, 3,4,3′,5′- and 2,4,3′,4′-tetrachlorobiphenyl that BphAE LB400 is unable to metabolize. BphAE RR41 was obtained by changing Thr335Phe336Asn338Ile341Leu409 of BphAE LB400 to Ala335Met336Gln338Val341Phe409. Site-directed mutagenesis was used to create combinations of each substitution, in order to assess their individual contributions. Data show that the same Asn338Glu/Leu409Phe substitution that enhanced the ability to metabolize dibenzofuran resulted in a broadening of the PCB substrates range of the enzyme. The role of these substitutions on regiospecificities toward selected PCBs is also discussed.

  20. Crystal structure of 3-methoxy-2-[5-(naphthalen-1-yl-4,5-dihydro-1H-pyrazol-3-yl]phenol

    Directory of Open Access Journals (Sweden)

    Dongsoo Koh

    2015-11-01

    Full Text Available In the title compound, C20H18N2O2, the central pyrazoline ring has an envelope conformation with the atom substituted by the naphthalene ring as the flap. It bridges a benzene ring and a naphthalene ring system which are almost normal to one another, making a dihedral angle of 82.03 (6 °. There is an intramolecular O—H...N hydrogen bond forming an S(6 ring motif. In the crystal, molecules are linked by pairs of N—H...π interactions, forming inversion dimers. There are also C—H...π interactions present and the dimers are linked via C—H...O hydrogen bonds, forming ribbons propagating along the a-axis direction.

  1. Equatorenes: synthesis and properties of chiral naphthalene, phenanthrene, chrysene, and pyrene possessing bis(1-adamantyl) groups at the peri-position.

    Science.gov (United States)

    Yamamoto, Koji; Oyamada, Naohiro; Xia, Sheng; Kobayashi, Yuta; Yamaguchi, Masahiko; Maeda, Hiroaki; Nishihara, Hiroshi; Uchimaru, Tadafumi; Kwon, Eunsang

    2013-11-06

    Chiral polycyclic aromatic hydrocarbons containing bis(1-adamantyl) groups at the peri-positions, named equatorenes, were synthesized in optically pure form starting from optically pure 4,5-bis(1-adamantyl)-8-methoxy-1-naphthol. A sequential Diels-Alder reaction of furan and arynes generated from 1,2-bromotriflates provided tricyclic and tetracyclic epoxides, and acid-catalyzed aromatization gave phenanthrol and chrysenol. Deoxygenation reactions involving the hydrogenolysis of triflates gave 1,8-bis(1-adamantyl)naphthalene, 1,10-bis(1-adamantyl)phenanthrene, and 1,12-bis(1-adamantyl)chrysene. 3,4-Bis(1-adamantyl)pyrene was synthesized from phenanthrol by Sonogashira coupling and Pt-catalyzed cyclization. Essentially no racemization occurred during the synthesis. X-ray analysis indicated the distorted naphthalene moiety possessing the peri-diadamantyl groups and the flat structure of the other benzene rings. UV-vis analysis of the equatorenes showed considerable redshifts compared with that of the corresponding achiral arenes. Electrochemical analysis of the naphthalene and pyrene indicated that the distortion decreased the highest occupied molecular orbital stability with no marked effect on the lowest unoccupied molecular orbital energy level, and the origin was discussed on the basis of calculation results.

  2. Synthesis of beta zeolite with mesopores from a milk containing precursor and its performance in naphthalene isopropylation

    Czech Academy of Sciences Publication Activity Database

    Tokarová, V.; Šťávová, G.; Nováková, J.; Stiborová, S.; Kašpárek, A.; Zukal, Arnošt

    2017-01-01

    Roč. 222, č. 1 (2017), s. 343-356 ISSN 1878-5190 Institutional support: RVO:61388955 Keywords : Beta zeolite * Mesopores * Naphthalene isopropylation Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 1.264, year: 2016

  3. Dynamic quantum crystallography: lattice-dynamical models refined against diffraction data. II. Applications to L-alanine, naphthalene and xylitol.

    Science.gov (United States)

    Hoser, Anna A; Madsen, Anders Ø

    2017-03-01

    In the first paper of this series [Hoser & Madsen (2016). Acta Cryst. A72, 206-214], a new approach was introduced which enables the refinement of frequencies of normal modes obtained from ab initio periodic computations against single-crystal diffraction data. In this contribution, the performance of this approach is tested by refinement against data in the temperature range from 23 to 205 K on the molecular crystals of L-alanine, naphthalene and xylitol. The models, which are lattice-dynamical models derived at the Γ point of the Brillouin zone, are able to describe the atomic vibrations of L-alanine and naphthalene to a level where the residual densities are similar to those obtained from the independent atom model. For the more flexible molecule xylitol, larger deviations are found. Hydrogen ADPs (anisotropic displacement parameters) derived from the models are in similar or better agreement with neutron diffraction results than ADPs obtained by other procedures. The heat capacity calculated after normal mode refinement for naphthalene is in reasonable agreement with the heat capacity obtained from calorimetric measurements (to less than 1 cal mol -1  K -1 below 300 K), with deviations at higher temperatures indicating anharmonicity. Standard uncertainties and correlation of the refined parameters have been derived based on a Monte Carlo procedure. The uncertainties are quite small and probably underestimated.

  4. What Is the Structure of the Naphthalene-Benzene Heterodimer Radical Cation? Binding Energy, Charge Delocalization, and Unexpected Charge-Transfer Interaction in Stacked Dimer and Trimer Radical Cations.

    Science.gov (United States)

    Attah, Isaac K; Platt, Sean P; Meot-Ner Mautner, Michael; El-Shall, M Samy; Peverati, Roberto; Head-Gordon, Martin

    2015-04-02

    The binding energy of the naphthalene(+•)(benzene) heterodimer cation has been determined to be 7.9 ± 1 kcal/mol for C10H8(+•)(C6H6) and 8.1 ± 1 kcal/mol for C10H8(+•)(C6D6) by equilibrium thermochemical measurements using the mass-selected drift cell technique. A second benzene molecule binds to the C10H8(+•)(C6D6) dimer with essentially the same energy (8.4 ± 1 kcal/mol), suggesting that the two benzene molecules are stacked on opposite sides of the naphthalene cation in the (C6D6)C10H8(+•)(C6D6) heterotrimer. The lowest-energy isomers of the C10H8(+•)(C6D6) and (C6D6)C10H8(+•)(C6D6) dimer and trimer calculated using the M11/cc-pVTZ method have parallel stacked structures with enthalpies of binding (-ΔH°) of 8.4 and 9.0 kcal/mol, respectively, in excellent agreement with the experimental values. The stacked face-to-face class of isomers is calculated to have substantial charge-transfer stabilization of about 45% of the total interaction energy despite the large difference between the ionization energies of benzene and naphthalene. Similarly, significant delocalization of the positive charge is found among all three fragments of the (C6D6)C10H8(+•)(C6D6) heterotrimer, thus leaving only 46% of the total charge on the central naphthalene moiety. This unexpectedly high charge-transfer component results in activating two benzene molecules in the naphthalene(+•)(benzene)2 heterotrimer cation to associate with a third benzene molecule at 219 K to form a benzene trimer cation and a neutral naphthalene molecule. The global minimum of the C10H8(+•)(C6H6)2 heterotrimer is found to be the one where the naphthalene cation is sandwiched between two benzene molecules. It is remarkable, and rather unusual, that the binding energy of the second benzene molecule is essentially the same as that of the first. This is attributed to the enhanced charge-transfer interaction in the stacked trimer radical cation.

  5. Cloning and characterization of the promoter of the 9-cis-epoxycarotenoid dioxygenase gene in Arachis hypogaea L.

    Science.gov (United States)

    Liang, Jianhua; Yang, Lixia; Chen, Xiong; Li, Ling; Guo, Dongliang; Li, Haihang; Zhang, Biyu

    2009-09-01

    We cloned the promoter of the 9-cis-epoxycarotenoid dioxygenase gene from Arachis hypogaea L. beta-Glucuronidase (GUS) histochemical staining and GUS activity assay indicated that the activity of the promoter was exhibited predominantly in the leaves and enhanced by water and NaCl stresses, and by application of abscisic acid (ABA) and salicylic acid (SA) in transgenic Arabidopsis. Moreover, two novel ABRE-like (abscisic acid response element) elements were identified in the promoter region.

  6. Toward Singlet-Triplet Bistable Nonalternant Kekulé Hydrocarbons: Azulene-to-Naphthalene Rearrangement.

    Science.gov (United States)

    Das, Soumyajit; Wu, Jishan

    2015-12-04

    Recent developments of open-shell singlet diradicaloids motivated the search for stable singlet-triplet bistable nonalternant polycyclic hydrocarbons. During the synthesis of this type of molecule, such as the dibenzo-cyclohepta[def]fluorene 3, an unexpected azulene-to-naphthalene rearrangement was observed at room temperature, which resulted in new nonalternant hydrocarbons 8a/8b with a closed-shell singlet ground state. These studies provided insight into the unique chemistry of azulene and challenges for the synthesis of singlet-triplet bistable polycyclic hydrocarbons.

  7. NUCLEOTIDE SEQUENCING AND TRANSCRIPTIONAL MAPPING OF THE GENES ENCODING BIPHENYL DIOXYGENASE, A MULTICOM- PONENT POLYCHLORINATED-BIPHENYL-DEGRADING ENZYME IN PSEUDOMONAS STRAIN LB400

    Science.gov (United States)

    The DNA region encoding biphenyl dioxygenase, the first enzyme in the biphenyl-polychlorinated biphenyl degradation pathway of Pseudomonas species strain LB400, was sequenced. Six open reading frames were identified, four of which are homologous to the components of toluene dioxy...

  8. Characterization of excited electronic states of naphthalene by resonance Raman and hyper-Raman scattering

    International Nuclear Information System (INIS)

    Bonang, C.C.; Cameron, S.M.

    1992-01-01

    The first resonance Raman and hyper-Raman scattering from naphthalene are reported. Fourth harmonic of a mode-locked Nd:YAG laser is used to resonantly excite the 1 B 1u + transition, producing Raman spectra that confirm the dominance of the vibronically active ν 28 (b 3g ) mode and the Franck--Condon active a g modes, ν 5 and ν 3 . A synchronously pumped stilbene dye laser and its second harmonic are employed as the excitation sources for hyper-Raman and Raman scattering from the overlapping 1 B 2 u + and 1 A g - states. The Raman spectra indicate that the equilibrium geometry of naphthalene is distorted primarily along ν 5 , ν 8 , and ν 7 normal coordinates upon excitation to 1 B 2 u + . The hyper-Raman spectrum shows that ν 25 (b 2u ) is the mode principally responsible for vibronic coupling between the 1 A g - and 1 B 2u + states. The results demonstrate the advantageous features of resonance hyper-Raman scattering for the case of overlapping one- and two-photon allowed transitions. Calculations based on simple molecular orbital configurations are shown to qualitatively agree with the experimental results

  9. Effect of conjugated linoleic acids on the activity and mRNA expression of 5- and 15-lipoxygenases in human macrophages.

    Science.gov (United States)

    Stachowska, Ewa; Dziedziejko, Violetta; Safranow, Krzysztof; Jakubowska, Katarzyna; Olszewska, Maria; Machaliñski, Bogusław; Chlubek, Dariusz

    2007-06-27

    Lipoxygenases are a family of non-heme enzyme dioxygenases. The role of lipoxygenases is synthesis of hydroperoxides of fatty acids, which perform signaling functions in the body. Studies on conjugated linoleic acids (CLAs) as fatty acids with a potential anti-atherosclerotic function have recently been initiated. The aim of the study was to test the effect of CLAs and linoleic acid on 5- and 15-lipoxygenase (5-LO, 15-LO-1) enzyme activity, their mRNA expression, and concentration in the cells. It was also desired to determine whether the CLAs are substrates for the enzymes. For the experiments monocytic cell line (THP-1) and monocytes obtained from human venous blood were used. Monocytes were differentiated to macrophages: THP-1 (CD14+) by PMA administration (100 nM for 24 h) and monocytes from blood (CD14+) by 7-day cultivation with the autologous serum (10%). After differentiation, macrophages were cultured with 30 microM CLAs or linoleic acid for 48 h. The 15- and 5-lipoxygenase products were measured by HPLC method. mRNA expression and protein content were analyzed by real-time PCR and Western blot analysis. The in vitro studies proved that both CLA isomers are not substrates for 15-LO-1; in ex vivo studies hydroxydecadienoic acid (HODE) concentration was significantly reduced (p = 0.019). The trans-10,cis-12 CLA isomer reduced HODE concentration by 28% (p = 0.046) and the cis-9,trans-11 CLA isomer by 35% (p = 0.028). In macrophages obtained from THP-1 fatty acids did not change significantly mRNA expression of the majority of the investigated genes. CLAs did not change the content of 5-LO and 15-LO-1 proteins in macrophages obtained from peripheral blood. Linoleic acid induced 15-LO-1 expression (2.6 times, p < 0.05). CLAs may perform the function of an inhibitor of lipoxygenase 15-LO-1 activity in macrophages.

  10. Metabolism of chlorobiphenyls by a variant biphenyl dioxygenase exhibiting enhanced activity toward dibenzofuran

    Energy Technology Data Exchange (ETDEWEB)

    Viger, Jean-Francois; Mohammadi, Mahmood; Barriault, Diane [Institut National de la Recherche Scientifique, INRS-Institut Armand-Frappier, Laval, Quebec, Canada H4K 1C2 (Canada); Sylvestre, Michel, E-mail: Michel.Sylvestre@iaf.inrs.ca [Institut National de la Recherche Scientifique, INRS-Institut Armand-Frappier, Laval, Quebec, Canada H4K 1C2 (Canada)

    2012-03-09

    Highlights: Black-Right-Pointing-Pointer Burkholderia xenovorans LB400 biphenyl dioxygenase (BphAE{sub LB400}) metabolizes PCBs. Black-Right-Pointing-Pointer Asn338Gln/Leu409Phe double mutation speeds up electron transfer of enzyme reaction. Black-Right-Pointing-Pointer We tested how the mutations affect the PCB-degrading abilities of BphAE{sub LB400} variants. Black-Right-Pointing-Pointer The same mutations also broaden the PCB substrate range of BphAE{sub LB400} variants. -- Abstract: The biphenyl dioxygenase of Burkholderia xenovorans LB400 (BphAE{sub LB400}) catalyzes the dihydroxylation of biphenyl and of several polychlorinated biphenyls (PCBs) but it poorly oxidizes dibenzofuran. In this work we showed that BphAE{sub RR41}, a variant which was previously found to metabolize dibenzofuran more efficiently than its parent BphAE{sub LB400}, metabolized a broader range of PCBs than BphAE{sub LB400}. Hence, BphAE{sub RR41} was able to metabolize 2,6,2 Prime ,6 Prime -, 3,4,3 Prime ,5 Prime - and 2,4,3 Prime ,4 Prime -tetrachlorobiphenyl that BphAE{sub LB400} is unable to metabolize. BphAE{sub RR41} was obtained by changing Thr335Phe336Asn338Ile341Leu409 of BphAE{sub LB400} to Ala335Met336Gln338Val341Phe409. Site-directed mutagenesis was used to create combinations of each substitution, in order to assess their individual contributions. Data show that the same Asn338Glu/Leu409Phe substitution that enhanced the ability to metabolize dibenzofuran resulted in a broadening of the PCB substrates range of the enzyme. The role of these substitutions on regiospecificities toward selected PCBs is also discussed.

  11. Umbilical Cord Tissue-Derived Mesenchymal Stem Cells Induce T Lymphocyte Apoptosis and Cell Cycle Arrest by Expression of Indoleamine 2, 3-Dioxygenase

    Directory of Open Access Journals (Sweden)

    Xiuying Li

    2016-01-01

    Full Text Available It has been reported that human mesenchymal stem cells are able to inhibit T lymphocyte activation; however, the discrepancy among different sources of MSCs is not well documented. In this study, we have compared the MSCs from bone marrow (BM, adipose tissue (AT, placenta (PL, and umbilical cord (UC to determine which one displayed the most efficient immunosuppressive effects on phytohemagglutinin-induced T cell proliferation. Among them we found that hUC-MSC has the strongest effects on inhibiting T cell proliferation and is chosen to do the further study. We observed that T lymphocyte spontaneously released abundant IFN-γ. And IFN-γ secreted by T lymphocyte could induce the expression of indoleamine 2, 3-dioxygenase (IDO in hUC-MSCs. IDO was previously reported to induce T lymphocyte apoptosis and cell cycle arrest in S phase. When cocultured with hUC-MSCs, T lymphocyte expression of caspase 3 was significantly increased, while Bcl2 and CDK4 mRNA expression decreased dramatically. Addition of 1-methyl tryptophan (1-MT, an IDO inhibitor, restored T lymphocyte proliferation, reduced apoptosis, and induced resumption of the cell cycle. In addition, the changes in caspase 3, CDK4, and Bcl2 expression were reversed by 1-MT. These findings demonstrate that hUC-MSCs induce T lymphocyte apoptosis and cell cycle arrest by expressing abundant IDO and provide an explanation for some of the immunomodulatory effects of MSCs.

  12. Homogentisate 1,2 dioxygenase is expressed in brain: implications in alkaptonuria.

    Science.gov (United States)

    Bernardini, Giulia; Laschi, Marcella; Geminiani, Michela; Braconi, Daniela; Vannuccini, Elisa; Lupetti, Pietro; Manetti, Fabrizio; Millucci, Lia; Santucci, Annalisa

    2015-09-01

    Alkaptonuria is an ultra-rare autosomal recessive disease developed from the lack of homogentisate 1,2-dioxygenase (HGD) activity, causing an accumulation in connective tissues of homogentisic acid (HGA) and its oxidized derivatives in polymerized form. The deposition of ochronotic pigment has been so far attributed to homogentisic acid produced by the liver, circulating in the blood, and accumulating locally. In the present paper, we report the expression of HGD in the brain. Mouse and human brain tissues were positively tested for HGD gene expression by western blotting. Furthermore, HGD expression was confirmed in human neuronal cells that also revealed the presence of six HGD molecular species. Moreover, once cultured in HGA excess, human neuronal cells produced ochronotic pigment and amyloid. Our findings indicate that alkaptonuric brain cells produce the ochronotic pigment in loco and this may contribute to induction of neurological complications.

  13. Petroleum compounds in the marine food web: short-term experiments on the fate of naphthalene in Calanus

    Energy Technology Data Exchange (ETDEWEB)

    Corner, E D.S.; Harris, R P; Kilvington, C C; O' Hara, S C.M.

    1976-01-01

    Adult female Calanus helgolandicus Claus immersed for 24 h in sea-water solutions of (1-/sup 14/C)naphthalene accumulated a detectable quantity (3.6 pg/animal) from concentrations as low as 0.10 ..mu..g/l. Feeding experiments using barnacle nauplii or diatoms as foods showed that the dietary route of entry was more important quantitatively than direct uptake from solution in that in order to ensure that the same quantity of radioactivity in the animals was attained by the two routes the level of hydrocarbon in solution had always to be far greater than that present as particulate food. Relevant to these observations was the further finding that after naphthalene had been accumulated directly from solution in sea water depuration was rapid and only a small fraction, less than 5 percent, of the original radioactivity could be detected after 10 days; by contrast, when the hydrocarbon was taken up by way of the food depuration was much slower, so that at the end of 10 days about a third of the original level of radioactivity still remained in the animals. Short-term experiments in which Calanus were fed on labelled diets for 24 h under bacteria-free conditions showed that at the end of this period over 90 percent of the radioactivity in the animals was present as unchanged naphthalene. However, more than two thirds of that released by the animals was in some form other than the hydrocarbon, a finding consistent with the view that Calanus is able to metabolize it.

  14. Photoinduced toxicity of three polycyclic aromatic hydrocarbons (fluoranthene, pyrene, and naphthalene) to the duckweed Lemna gibba L. G-3

    International Nuclear Information System (INIS)

    Ren, L.; Huang, X.D.; McConkey, B.J.; Dixon, D.G.; Greenberg, B.M.

    1994-01-01

    The authors recently demonstrated that light dramatically enhances the hazards of three polycyclic aromatic hydrocarbons (PAHs), anthracene, phenanthrene, and benzo[a]pyrene, to the duckweed Lemna gibba L. G-3 (X.-D. Huang, D. G. Dixon, and B. M. Greenberg, 1993, Environ. Toxicol. Chem., 12, 1067-1077). To extend this research, growth and chlorosis were used as end points to assess the photoinduced toxicity of three additional PAHs, fluoranthene, pyrene, and naphthalene, to L. gibba in the presence of simulated solar radiation (a light source with a UV-B: UV-A:visible light ratio equivalent to that of sunlight). The phytotoxicity of these three PAHs was photoactivated, with ultraviolet radiation being the only spectral region that enhanced the harmful effects of the chemicals. Dose-response curves based on chemical concentration and light intensity revealed that the order of phytotoxic strength was fluoranthene > pyrene > naphthalene. To explore whether photomodification (in addition to photosensitization) of fluoranthene, pyrene, and naphthalene could contribute to photoinduced toxicity, the chemicals were irradiated prior to (as opposed to simultaneously with) application to the plans. The rates of photomodification of the three PAHs were rapid enough for the photooxidized compounds to contribute to toxicity, and the photomodified PAHs were more toxic than the parent compounds. As well, toxicity could be correlated to photomodification; impacts increased in parallel with the extent of photomodification

  15. Homogentisate 1,2 dioxygenase is expressed in human osteoarticular cells: implications in alkaptonuria.

    Science.gov (United States)

    Laschi, Marcella; Tinti, Laura; Braconi, Daniela; Millucci, Lia; Ghezzi, Lorenzo; Amato, Loredana; Selvi, Enrico; Spreafico, Adriano; Bernardini, Giulia; Santucci, Annalisa

    2012-09-01

    Alkaptonuria (AKU) results from defective homogentisate1,2-dioxygenase (HGD), causing degenerative arthropathy. The deposition of ochronotic pigment in joints is so far attributed to homogentisic acid produced by the liver, circulating in the blood and accumulating locally. Human normal and AKU osteoarticular cells were tested for HGD gene expression by RT-PCR, mono- and 2D-Western blotting. HGD gene expression was revealed in chondrocytes, synoviocytes, osteoblasts. Furthermore, HGD expression was confirmed by Western blotting, that also revealed the presence of five enzymatic molecular species. Our findings indicate that AKU osteoarticular cells produce the ochronotic pigment in loco and this may strongly contribute to induction of ochronotic arthropathy. Copyright © 2011 Wiley Periodicals, Inc.

  16. 1,4-Bis(5-(naphthalen-1-yl)thiophen-2-yl)naphthalene, a small molecule, functions as a novel anti-HIV-1 inhibitor targeting the interaction between integrase and cellular Lens epithelium-derived growth factor.

    Science.gov (United States)

    Gu, Wan-gang; Ip, Denis Tsz-Ming; Liu, Si-jie; Chan, Joseph H; Wang, Yan; Zhang, Xuan; Zheng, Yong-tang; Wan, David Chi-Cheong

    2014-04-25

    Translocation of viral integrase (IN) into the nucleus is a critical precondition of integration during the life cycle of HIV, a causative agent of Acquired Immunodeficiency Syndromes (AIDS). As the first discovered cellular factor to interact with IN, Lens epithelium-derived growth factor (LEDGF/p75) plays an important role in the process of integration. Disruption of the LEDGF/p75-IN interaction has provided a great interest for anti-HIV agent discovery. In this work, we reported that one small molecular compound, 1,4-bis(5-(naphthalen-1-yl)thiophen-2-yl)naphthalene(Compound 15), potently inhibit the IN-LEDGF/p75 interaction and affect the HIV-1 IN nuclear distribution at 1 μM. The putative binding mode of Compound 15 was constructed by a molecular docking simulation to provide structural insights into the ligand-binding mechanism. Compound 15 suppressed viral replication by measuring p24 antigen production in HIV-1IIIB acute infected C8166 cells with EC50 value of 11.19 μM. Compound 15 might supply useful structural information for further anti-HIV agent discovery. Copyright © 2014. Published by Elsevier Ireland Ltd.

  17. Full-length mRNA sequencing uncovers a widespread coupling between transcription initiation and mRNA processing.

    Science.gov (United States)

    Anvar, Seyed Yahya; Allard, Guy; Tseng, Elizabeth; Sheynkman, Gloria M; de Klerk, Eleonora; Vermaat, Martijn; Yin, Raymund H; Johansson, Hans E; Ariyurek, Yavuz; den Dunnen, Johan T; Turner, Stephen W; 't Hoen, Peter A C

    2018-03-29

    The multifaceted control of gene expression requires tight coordination of regulatory mechanisms at transcriptional and post-transcriptional level. Here, we studied the interdependence of transcription initiation, splicing and polyadenylation events on single mRNA molecules by full-length mRNA sequencing. In MCF-7 breast cancer cells, we find 2700 genes with interdependent alternative transcription initiation, splicing and polyadenylation events, both in proximal and distant parts of mRNA molecules, including examples of coupling between transcription start sites and polyadenylation sites. The analysis of three human primary tissues (brain, heart and liver) reveals similar patterns of interdependency between transcription initiation and mRNA processing events. We predict thousands of novel open reading frames from full-length mRNA sequences and obtained evidence for their translation by shotgun proteomics. The mapping database rescues 358 previously unassigned peptides and improves the assignment of others. By recognizing sample-specific amino-acid changes and novel splicing patterns, full-length mRNA sequencing improves proteogenomics analysis of MCF-7 cells. Our findings demonstrate that our understanding of transcriptome complexity is far from complete and provides a basis to reveal largely unresolved mechanisms that coordinate transcription initiation and mRNA processing.

  18. mRNA Cancer Vaccines-Messages that Prevail.

    Science.gov (United States)

    Grunwitz, Christian; Kranz, Lena M

    2017-01-01

    During the last decade, mRNA became increasingly recognized as a versatile tool for the development of new innovative therapeutics. Especially for vaccine development, mRNA is of outstanding interest and numerous clinical trials have been initiated. Strikingly, all of these studies have proven that large-scale GMP production of mRNA is feasible and concordantly report a favorable safety profile of mRNA vaccines. Induction of T-cell immunity is a multi-faceted process comprising antigen acquisition, antigen processing and presentation, as well as immune stimulation. The effectiveness of mRNA vaccines is critically dependent on making the antigen(s) of interest available to professional antigen-presenting cells, especially DCs. Efficient delivery of mRNA into DCs in vivo remains a major challenge in the mRNA vaccine field. This review summarizes the principles of mRNA vaccines and highlights the importance of in vivo mRNA delivery and recent advances in harnessing their therapeutic potential.

  19. Principles of mRNA transport in yeast.

    Science.gov (United States)

    Heym, Roland Gerhard; Niessing, Dierk

    2012-06-01

    mRNA localization and localized translation is a common mechanism by which cellular asymmetry is achieved. In higher eukaryotes the mRNA transport machinery is required for such diverse processes as stem cell division and neuronal plasticity. Because mRNA localization in metazoans is highly complex, studies at the molecular level have proven to be cumbersome. However, active mRNA transport has also been reported in fungi including Saccharomyces cerevisiae, Ustilago maydis and Candida albicans, in which these events are less difficult to study. Amongst them, budding yeast S. cerevisiae has yielded mechanistic insights that exceed our understanding of other mRNA localization events to date. In contrast to most reviews, we refrain here from summarizing mRNA localization events from different organisms. Instead we give an in-depth account of ASH1 mRNA localization in budding yeast. This approach is particularly suited to providing a more holistic view of the interconnection between the individual steps of mRNA localization, from transcriptional events to cytoplasmic mRNA transport and localized translation. Because of our advanced mechanistic understanding of mRNA localization in yeast, the present review may also be informative for scientists working, for example, on mRNA localization in embryogenesis or in neurons.

  20. Probing the structural basis of oxygen binding in a cofactor-independent dioxygenase.

    Science.gov (United States)

    Li, Kunhua; Fielding, Elisha N; Condurso, Heather L; Bruner, Steven D

    2017-07-01

    The enzyme DpgC is included in the small family of cofactor-independent dioxygenases. The chemistry of DpgC is uncommon as the protein binds and utilizes dioxygen without the aid of a metal or organic cofactor. Previous structural and biochemical studies identified the substrate-binding mode and the components of the active site that are important in the catalytic mechanism. In addition, the results delineated a putative binding pocket and migration pathway for the co-substrate dioxygen. Here, structural biology is utilized, along with site-directed mutagenesis, to probe the assigned dioxygen-binding pocket. The key residues implicated in dioxygen trafficking were studied to probe the process of binding, activation and chemistry. The results support the proposed chemistry and provide insight into the general mechanism of dioxygen binding and activation.

  1. Increased Tregs associated with elevated Indoleamine-2,3-dioxygenase activity and an imbalanced Kynurenine pathway in IFNpositive primary Sjögren's syndrome

    NARCIS (Netherlands)

    N.I. Maria (Naomi); C.G. van Helden-Meeuwsen; Z. Brkić (Zana); S.M.J. Paulissen (Sandra); E.C. Steenwijk (Eline); V.A.S.H. Dalm (Virgil); P.L.A. van Daele (Paul); M.P. van Hagen (Martin); F.G.M. Kroese (Frans G.); J.A.G. van Roon (J. A G); A. Harkin (Andrew); A.W. Dik (Willem); H.A. Drexhage (Hemmo); E.W. Lubberts (Erik); M.A. Versnel (Marjan)

    2016-01-01

    textabstractIntroduction Indoleamine-2,3-dioxygenase (IDO), the rate-limiting enzyme converting tryptophan (TRP) to kynurenine (KYN), is driven in part by type I/II IFNs. Naïve T cells are polarized into FoxP3+ regulatory T cells (Tregs) upon exposure to either IDO+ cells or KYN. Recent studies

  2. Increased IL-10 mRNA and IL-23 mRNA expression in multiple sclerosis: interferon-beta treatment increases IL-10 mRNA expression while reducing IL-23 mRNA expression

    DEFF Research Database (Denmark)

    Krakauer, M.; Sorensen, P.; Khademi, M.

    2008-01-01

    volunteers served to confirm initial findings. mRNA was analyzed by real-time reverse transcriptase polymerase chain reaction (PCR). RESULTS: We found elevated expression of interleukin (IL)-23 and IL-10 in untreated MS patients. IFN-beta therapy increased IL-10 and decreased IL-23 expression independently...... of the regulatory cytokine IL-10. The elevated IL-23 mRNA levels in MS patients are noteworthy in view of the newly discovered IL-23-driven Th17 T-cell subset, which is crucial in animal models of MS. Since IFN-beta therapy resulted in decreased IL-23 mRNA levels, the Th17 axis could be another target of IFN...

  3. Nucleolin Mediates MicroRNA-directed CSF-1 mRNA Deadenylation but Increases Translation of CSF-1 mRNA*

    Science.gov (United States)

    Woo, Ho-Hyung; Baker, Terri; Laszlo, Csaba; Chambers, Setsuko K.

    2013-01-01

    CSF-1 mRNA 3′UTR contains multiple unique motifs, including a common microRNA (miRNA) target in close proximity to a noncanonical G-quadruplex and AU-rich elements (AREs). Using a luciferase reporter system fused to CSF-1 mRNA 3′UTR, disruption of the miRNA target region, G-quadruplex, and AREs together dramatically increased reporter RNA levels, suggesting important roles for these cis-acting regulatory elements in the down-regulation of CSF-1 mRNA. We find that nucleolin, which binds both G-quadruplex and AREs, enhances deadenylation of CSF-1 mRNA, promoting CSF-1 mRNA decay, while having the capacity to increase translation of CSF-1 mRNA. Through interaction with the CSF-1 3′UTR miRNA common target, we find that miR-130a and miR-301a inhibit CSF-1 expression by enhancing mRNA decay. Silencing of nucleolin prevents the miRNA-directed mRNA decay, indicating a requirement for nucleolin in miRNA activity on CSF-1 mRNA. Downstream effects followed by miR-130a and miR-301a inhibition of directed cellular motility of ovarian cancer cells were found to be dependent on nucleolin. The paradoxical effects of nucleolin on miRNA-directed CSF-1 mRNA deadenylation and on translational activation were explored further. The nucleolin protein contains four acidic stretches, four RNA recognition motifs (RRMs), and nine RGG repeats. All three domains in nucleolin regulate CSF-1 mRNA and protein levels. RRMs increase CSF-1 mRNA, whereas the acidic and RGG domains decrease CSF-1 protein levels. This suggests that nucleolin has the capacity to differentially regulate both CSF-1 RNA and protein levels. Our finding that nucleolin interacts with Ago2 indirectly via RNA and with poly(A)-binding protein C (PABPC) directly suggests a nucleolin-Ago2-PABPC complex formation on mRNA. This complex is in keeping with our suggestion that nucleolin may work with PABPC as a double-edged sword on both mRNA deadenylation and translational activation. Our findings underscore the complexity of

  4. Purification and properties of protocatechuate 3,4-dioxygenase from Chaetomium piluliferum induced with p-hydroxybenzoic acid.

    Science.gov (United States)

    Wojtaś-Wasilewska, M; Trojanowski, J

    1980-01-01

    1. Protocatechuate 3,4-dioxygenase (protocatechuate : oxygen 3,4-oxidoreductase, EC 1.13.11.3) was isolated from mycelium of Chaetomium piluliferum induced with p-hydroxybenzoic acid. The enzyme was purified about 80-fold by ammonium sulphate fractionation and DEAE-cellulose and Sephadex G-200 chromatography, and was homogeneous on polyacrylamide-gel electrophoresis. 2. The enzyme showed high substrate specificity; its pH optimum was 7.5-8.0, and molecula weight about 76 000 as determined by filtration on Sephadex G-200. The Michaelis constant for protocatechuic acid was 11.1 microM.

  5. Naphthalene-based fluorescent probes for glutathione and their applications in living cells and patients with sepsis

    Science.gov (United States)

    Li, Jun; Kwon, Younghee; Chung, Kyung Soo; Lim, Chang Su; Lee, Dayoung; Yue, Yongkang; Yoon, Jisoo; Kim, Gyoungmi; Nam, Sang-Jip; Chung, Youn Wook; Kim, Hwan Myung; Yin, Caixia; Ryu, Ji-Hwan; Yoon, Juyoung

    2018-01-01

    Rationale: Among the biothiols-related diseases, sepsis is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection and can result in severe oxidative stress and damage to multiple organs. In this study, we aimed to develop a fluorescence chemosensor that can both detect GSH and further predict sepsis. Methods: In this study, two new naphthalene dialdehyde compounds containing different functional groups were synthesized, and the sensing abilities of these compounds towards biothiols and its applications for prediction of sepsis were investigated. Results: Our study revealed that the newly developed probe 6-methoxynaphthalene-2, 3-dicarbaldehyde (MNDA) has two-photon is capable of detecting GSH in live cells with two-photon microscopy (TPM) under the excitation at a wavelength of 900 nm. Furthermore, two GSH detection probes naphthalene-2,3-dicarboxaldehyde (NDA) and 6-fluoronaphthalene-2,3-dicarbaldehyde (FNDA) not only can detect GSH in living cells, but also showed clinical significance for the diagnosis and prediction of mortality in patients with sepsis. Conclusions: These results open up a promising direction for further medical diagnostic techniques. PMID:29507630

  6. NRVS Studies of the Peroxide Shunt Intermediate in a Rieske Dioxygenase and Its Relation to the Native FesupII/supOinf2/infReaction

    Czech Academy of Sciences Publication Activity Database

    Sutherlin, K. D.; Rivard, B. S.; Böttger, L. H.; Liu, L. V.; Rogers, M. S.; Srnec, Martin; Park, K.; Yoda, Y.; Kitao, S.; Kobayashi, Y.; Saito, M.; Seto, M.; Hu, M.; Zhao, J.; Lipscomb, J. D.; Solomon, E. I.

    2018-01-01

    Roč. 140, č. 16 (2018), s. 5544-5559 ISSN 0002-7863 Institutional support: RVO:61388955 Keywords : NRVS studies * Rieske dioxygenase * mononuclear nonheme iron enzymes Subject RIV: CF - Physical ; The oretical Chemistry OBOR OECD: Physical chemistry Impact factor: 13.858, year: 2016

  7. Selected chlorobornanes, polychlorinated naphthalenes and brominated flame retardants in Bjornoya (Bear Island) freshwater biota

    International Nuclear Information System (INIS)

    Evenset, Anita; Christensen, Guttorm N.; Kallenborn, Roland

    2005-01-01

    Levels of selected sparsely investigated persistent organic pollutants (POPs) have been measured in organisms from two Arctic lakes on Bjornoya (Bear Island). Elevated levels of chlorobornanes (CHBs) (up to 46.7 ng/g wet weight=ww), polybrominated diphenyl ethers (PBDEs) (up to 27.2 ng/g ww), polybrominated biphenyls (PBBs) (up to 1.1 ng/g ww) and polychlorinated naphthalenes (PCNs, only 4 congeners) (up to 62.7 pg/g ww), were measured in biota from Lake Ellasjoen. In Lake Oyangen, located only 5 km north of Ellasjoen, levels of these contaminants were significantly lower. δ 15 N-values were 7-10%o higher in organisms from Ellasjoen as compared to Oyangen. This is attributed to biological inputs related to seabird activities. The present study illustrates that contaminants such as CHBs, brominated flame retardants and PCNs accumulate in the Ellasjoen food web in a manner similar to PCBs and conventional organochlorine pesticides. Transport mechanisms that control PCB and DDT distributions, i.e. atmospheric long-range transport and biotransport by seabirds, are also relevant for the contaminants investigated in the present study. - Elevate levels of chlorobornanes, polychlorinated naphthalenes and brominated flame retardants have been measured in biota from a Norwegian Arctic lake

  8. Fate and degradation of petroleum hydrocarbons in stormwater bioretention cells

    Science.gov (United States)

    LeFevre, Gregory Hallett

    This dissertation describes the investigation of the fate of hydrocarbons in stormwater bioretention areas and those mechanisms that affect hydrocarbon fate in such systems. Seventy-five samples from 58 bioretention areas were collected and analyzed to measure total petroleum hydrocarbon (TPH) residual and biodegradation functional genes. TPH residual in bioretention areas was greater than background sites but low overall (hydrocarbon biodegradation. Field soils were capable of mineralizing naphthalene, a polycyclic aromatic hydrocarbon (PAH) when incubated in the laboratory. In an additional laboratory investigation, a column study was initiated to comprehensively determine naphthalene fate in a simulated bioretention cell using a 14C-labeled tracer. Sorption to soil was the greatest sink of naphthalene in the columns, although biodegradation and vegetative uptake were also important loss mechanisms. Little leaching occurred following the first flush, and volatilization was insignificant. Significant enrichment of naphthalene degrading bacteria occurred over the course of the experiment as a result of naphthalene exposure. This was evident from enhanced naphthalene biodegradation kinetics (measured via batch tests), significant increases in naphthalene dioxygenase gene quantities, and a significant correlation observed between naphthalene residual and biodegradation functional genes. Vegetated columns outperformed the unplanted control column in terms of total naphthalene removal and biodegradation kinetics. As a result of these experiments, a final study focused on why planted systems outperform unplanted systems was conducted. Plant root exudates were harvested from hydroponic setups for three types of plants. Additionally, a solution of artificial root exudates (AREs) as prepared. Exudates were digested using soil bacteria to create metabolized exudates. Raw and metabolized exudates were characterized for dissolved organic carbon, specific UV absorbance

  9. Suppression of 9-cis-epoxycarotenoid dioxygenase, which encodes a key enzyme in abscisic acid biosynthesis, alters fruit texture in transgenic tomato.

    Science.gov (United States)

    Sun, Liang; Sun, Yufei; Zhang, Mei; Wang, Ling; Ren, Jie; Cui, Mengmeng; Wang, Yanping; Ji, Kai; Li, Ping; Li, Qian; Chen, Pei; Dai, Shengjie; Duan, Chaorui; Wu, Yan; Leng, Ping

    2012-01-01

    Cell wall catabolism during fruit ripening is under complex control and is key for fruit quality and shelf life. To examine the role of abscisic acid (ABA) in tomato (Solanum lycopersicum) fruit ripening, we suppressed SlNCED1, which encodes 9-cis-epoxycarotenoid dioxygenase (NCED), a key enzyme in the biosynthesis of ABA. To suppress SlNCED1 specifically in tomato fruits, and thus avoid the pleiotropic phenotypes associated with ABA deficiency, we used an RNA interference construct driven by the fruit-specific E8 promoter. ABA accumulation and SlNCED1 transcript levels in the transgenic fruit were down-regulated to between 20% and 50% of the levels measured in the control fruit. This significant reduction in NCED activity led to a down-regulation in the transcription of genes encoding major cell wall catabolic enzymes, specifically polygalacturonase (SlPG), pectin methyl esterase (SlPME), β-galactosidase precursor mRNA (SlTBG), xyloglucan endotransglycosylase (SlXET), endo-1,4-β-cellulose (SlCels), and expansin (SlExp). This resulted in an increased accumulation of pectin during ripening. In turn, this led to a significant extension of the shelf life to 15 to 29 d compared with a shelf life of only 7 d for the control fruit and an enhancement of fruit firmness at the mature stage by 30% to 45%. In conclusion, ABA affects cell wall catabolism during tomato fruit ripening via down-regulation of the expression of major catabolic genes (SlPG, SlPME, SlTBG, SlXET, SlCels, and SlExp).

  10. Optimization of the synthesis of SAPO-11 for the methylation of naphthalene with methanol by varying templates and template content

    International Nuclear Information System (INIS)

    Wang, Xiaoxiao; Zhang, Wei; Zhao, Liangfu; Xiang, Hongwei; Guo, Shaoqing

    2013-01-01

    SAPO-11 zeolites were successfully synthesized by using three different templates (diethylamine (DEA), di-n-propylamine (DPA) and di-isopropylamine (DIPA)) and varying DPA contents (nDPA/Al 2 O 3 = 0.8, 1.2, 1.6 and 2.0) under hydrothermal conditions. The samples were characterized by powder X-ray diffractometry (XRD), scanning electron microscopy (SEM), N 2 adsorption-desorption, temperature programmed desorption of ammonia (NH 3 -TPD) and 29 Si magic angle spinning (MAS) nuclear magnetic resonance (NMR). The samples were also evaluated towards the methylation of naphthalene with methanol to produce 2,6-dimethylnaphthalene (2,6-DMN). XRD results indicated that the directing effect of the different templates for AEL (Aluminophosphate-ELeven) structure decreased in the order DPA > DEA > DIPA and the most suitable DPA content was nDPA/Al 2 O 3 = 1.2. N 2 adsorption-desorption results showed that SAPO-11(DPA,1.2) exhibited the broadest pore size distribution, the highest BET specific surface area and the largest pore volume among all the SAPO-11 samples. SAPO-11(DPA,1.2) exhibited high catalytic performances in the methylation of naphthalene due to its high crystallinity, high external surface and broad pore size distribution. The pore structure of SAPO-11 zeolite, rather than its acidity, played an important role in achieving high catalytic performances in the methylation of naphthalene with methanol. (author)

  11. One-pot synthesis of phthalazines and pyridazino-aromatics: a novel strategy for substituted naphthalenes.

    Science.gov (United States)

    Kessler, Simon N; Wegner, Hermann A

    2012-07-06

    A new one-pot strategy for the synthesis of phthalazines and pyridazino-aromatics starting from aromatic aldehydes has been developed. A variety of substituents ranging from electron withdrawing to donating is tolerated furnishing the desired 1,2-diazine in good to excellent yields. The products have been applied to the bidentate Lewis acid catalyzed inverse electron-demand Diels-Alder (IEDDA) reaction opening a novel two-step entry into substituted naphthalenes, such as Naproxen.

  12. Molecular dynamics simulations and free energy calculations on the enzyme 4-hydroxyphenylpyruvate dioxygenase.

    Science.gov (United States)

    De Beer, Stephanie B A; Glättli, Alice; Hutzler, Johannes; Vermeulen, Nico P E; Oostenbrink, Chris

    2011-07-30

    4-Hydroxyphenylpyruvate dioxygenase is a relevant target in both pharmaceutical and agricultural research. We report on molecular dynamics simulations and free energy calculations on this enzyme, in complex with 12 inhibitors for which experimental affinities were determined. We applied the thermodynamic integration approach and the more efficient one-step perturbation. Even though simulations seem well converged and both methods show excellent agreement between them, the correlation with the experimental values remains poor. We investigate the effect of slight modifications on the charge distribution of these highly conjugated systems and find that accurate models can be obtained when using improved force field parameters. This study gives insight into the applicability of free energy methods and current limitations in force field parameterization. Copyright © 2011 Wiley Periodicals, Inc.

  13. Induction of indoleamine 2, 3-dioxygenase in human dendritic cells by a cholera toxin B subunit-proinsulin vaccine.

    Directory of Open Access Journals (Sweden)

    Jacques C Mbongue

    Full Text Available Dendritic cells (DC interact with naïve T cells to regulate the delicate balance between immunity and tolerance required to maintain immunological homeostasis. In this study, immature human dendritic cells (iDC were inoculated with a chimeric fusion protein vaccine containing the pancreatic β-cell auto-antigen proinsulin linked to a mucosal adjuvant the cholera toxin B subunit (CTB-INS. Proteomic analysis of vaccine inoculated DCs revealed strong up-regulation of the tryptophan catabolic enzyme indoleamine 2, 3-dioxygenase (IDO1. Increased biosynthesis of the immunosuppressive enzyme was detected in DCs inoculated with the CTB-INS fusion protein but not in DCs inoculated with proinsulin, CTB, or an unlinked combination of the two proteins. Immunoblot and PCR analyses of vaccine treated DCs detected IDO1mRNA by 3 hours and IDO1 protein synthesis by 6 hours after vaccine inoculation. Determination of IDO1 activity in vaccinated DCs by measurement of tryptophan degradation products (kynurenines showed increased tryptophan cleavage into N-formyl kynurenine. Vaccination did not interfere with monocytes differentiation into DC, suggesting the vaccine can function safely in the human immune system. Treatment of vaccinated DCs with pharmacological NF-κB inhibitors ACHP or DHMEQ significantly inhibited IDO1 biosynthesis, suggesting a role for NF-κB signaling in vaccine up-regulation of dendritic cell IDO1. Heat map analysis of the proteomic data revealed an overall down-regulation of vaccinated DC functions, suggesting vaccine suppression of DC maturation. Together, our experimental data indicate that CTB-INS vaccine induction of IDO1 biosynthesis in human DCs may result in the inhibition of DC maturation generating a durable state of immunological tolerance. Understanding how CTB-INS modulates IDO1 activity in human DCs will facilitate vaccine efficacy and safety, moving this immunosuppressive strategy closer to clinical applications for prevention

  14. Degradation of phenanthrene and pyrene using genetically engineered dioxygenase producing Pseudomonas putida in soil

    Directory of Open Access Journals (Sweden)

    Mardani Gashtasb

    2016-01-01

    Full Text Available Bioremediation use to promote degradation and/or removal of contaminants into nonhazardous or less-hazardous substances from the environment using microbial metabolic ability. Pseudomonas spp. is one of saprotrophic soil bacterium and can be used for biodegradation of polycyclic aromatic hydrocarbons (PAHs but this activity in most species is weak. Phenanthrene and pyrene could associate with a risk of human cancer development in exposed individuals. The aim of the present study was application of genetically engineered P. putida that produce dioxygenase for degradation of phenanthrene and pyrene in spiked soil using high-performance liquid chromatography (HPLC method. The nahH gene that encoded catechol 2,3-dioxygenase (C23O was cloned into pUC18 and pUC18-nahH recombinant vector was generated and transformed into wild P. putida, successfully. The genetically modified and wild types of P. putida were inoculated in soil and pilot plan was prepared. Finally, degradation of phenanthrene and pyrene by this bacterium in spiked soil were evaluated using HPLC measurement technique. The results were showed elimination of these PAH compounds in spiked soil by engineered P. putida comparing to dishes containing natural soil with normal microbial flora and inoculated autoclaved soil by wild type of P. putida were statistically significant (p0.05 but it was few impact on this process (more than 2%. Additional and verification tests including catalase, oxidase and PCR on isolated bacteria from spiked soil were indicated that engineered P. putida was alive and functional as well as it can affect on phenanthrene and pyrene degradation via nahH gene producing. These findings indicated that genetically engineered P. putida generated in this work via producing C23O enzyme can useful and practical for biodegradation of phenanthrene and pyrene as well as petroleum compounds in polluted environments.

  15. Molecular Characterization of the Genes pcaG and pcaH, Encoding Protocatechuate 3,4-Dioxygenase, Which Are Essential for Vanillin Catabolism in Pseudomonas sp. Strain HR199

    Science.gov (United States)

    Overhage, Jörg; Kresse, Andreas U.; Priefert, Horst; Sommer, Horst; Krammer, Gerhard; Rabenhorst, Jürgen; Steinbüchel, Alexander

    1999-01-01

    Pseudomonas sp. strain HR199 is able to utilize eugenol (4-allyl-2-methoxyphenol), vanillin (4-hydroxy-3-methoxybenzaldehyde), or protocatechuate as the sole carbon source for growth. Mutants of this strain which were impaired in the catabolism of vanillin but retained the ability to utilize eugenol or protocatechuate were obtained after nitrosoguanidine mutagenesis. One mutant (SK6169) was used as recipient of a Pseudomonas sp. strain HR199 genomic library in cosmid pVK100, and phenotypic complementation was achieved with a 5.8-kbp EcoRI fragment (E58). The amino acid sequences deduced from two corresponding open reading frames (ORF) identified on E58 revealed high degrees of homology to pcaG and pcaH, encoding the two subunits of protocatechuate 3,4-dioxygenase. Three additional ORF most probably encoded a 4-hydroxybenzoate 3-hydroxylase (PobA) and two putative regulatory proteins, which exhibited homology to PcaQ of Agrobacterium tumefaciens and PobR of Pseudomonas aeruginosa, respectively. Since mutant SK6169 was also complemented by a subfragment of E58 that harbored only pcaH, this mutant was most probably lacking a functional β subunit of the protocatechuate 3,4-dioxygenase. Since this mutant was still able to grow on protocatechuate and lacked protocatechuate 4,5-dioxygenase and protocatechuate 2,3-dioxygenase, the degradation had to be catalyzed by different enzymes. Two other mutants (SK6184 and SK6190), which were also impaired in the catabolism of vanillin, were not complemented by fragment E58. Since these mutants accumulated 3-carboxy muconolactone during cultivation on eugenol, they most probably exhibited a defect in a step of the catabolic pathway following the ortho cleavage. Moreover, in these mutants cyclization of 3-carboxymuconic acid seems to occur by a syn absolute stereochemical course, which is normally only observed for cis,cis-muconate lactonization in pseudomonads. In conclusion, vanillin is degraded through the ortho-cleavage pathway

  16. 1-Benzyl-3-[3-(naphthalen-2-yloxypropyl]imidazolium hexafluorophosphate

    Directory of Open Access Journals (Sweden)

    Kun Huang

    2011-08-01

    Full Text Available In the title salt, C23H23N2O+·PF6−, the PF6− anion is highly disordered (occupancy ratios of 0.35:0.35:0.3, 0.7:0.15:0.15, 0.7:0.3 and 0.35:0.35:0.15:0.15 with the four F atoms in the equatorial plane rotating about the axial F—P—F bond. The mean plane of the imidazole ring makes dihedral angles of 82.44 (17 and 14.39 (16°, respectively, with the mean planes of the benzene ring and the naphthalene ring system. The crystal structure is stabilized by C—H...F hydrogen bonds. In addition, π–π [centroid–centroid distances = 3.7271 (19–3.8895 (17 Å] and C—H...π interactions are observed.

  17. Production of 10S-hydroxy-8(E)-octadecenoic acid from oleic acid by whole recombinant Escherichia coli cells expressing 10S-dioxygenase from Nostoc punctiforme PCC 73102 with the aid of a chaperone.

    Science.gov (United States)

    Kim, Min-Ji; Seo, Min-Ju; Shin, Kyung-Chul; Oh, Deok-Kun

    2017-01-01

    To increase the production of 10S-hydroxy-8(E)-octadecenoic acid from oleic acid by whole recombinant Escherichia coli cells expressing Nostoc punctiforme 10S-dioxygenase with the aid of a chaperone. The optimal conditions for 10S-hydroxy-8(E)-octadecenoic acid production by recombinant cells co-expressing chaperone plasmid were pH 9, 35 °C, 15 % (v/v) dimethyl sulfoxide, 40 g cells l -1 , and 10 g oleic acid l -1 . Under these conditions, recombinant cells co-expressing chaperone plasmid produced 7.2 g 10S-hydroxy-8(E)-octadecenoic acid l -1 within 30 min, with a conversion yield of 72 % (w/w) and a volumetric productivity of 14.4 g l -1 h -1 . The activity of recombinant cells expressing 10S-dioxygenase was increased by 200 % with the aid of a chaperone, demonstrating the first biotechnological production of 10S-hydroxy-8(E)-octadecenoic acid using recombinant cells expressing 10S-dioxygenase.

  18. Bis(2-methyl-1H-imidazol-3-ium naphthalene-1,5-disulfonate dihydrate

    Directory of Open Access Journals (Sweden)

    Yu-feng Wang

    2012-06-01

    Full Text Available The asymmetric unit of the title organic salt, 2C4H7N2+·C10H6O6S22−·2H2O, consists of a 2-methylimidazolium cation, a half of a naphthalene-1,5-disulfonate anion, which lies about a center of symmetry, and a water molecule. In the crystal, N—H...O and O—H...O hydrogen bonds link the cations, anions and water molecules into the layers parallel to (111.

  19. Purification of Biotransformation Products of Cis-Isoflavan-4-ol by Biphenyl Dioxygenase of Pseudomonas pseudoalcaligenes KF707 Strain Expressed in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Tri Ratna Sulistiyani

    2013-04-01

    Full Text Available Isoflavone has multiple beneficial effects on human health, especially through its antioxidant and anticancer activities. The biotransformation of isoflavone using byphenyl dioxygenase could be performed to extend the diversity of flavonoids and to improve their biological and physiological properties. Biotransformation of two enantiomers (3R, 4R-cis-isoflavan-4-ol and (3S, 4S-cis-isoflavan-4-ol by E. coli JM109 (pJHF108 carrying a biphenyl dioxygenase gene from P. pseudoalcaligenesKF707 produced two products, designated as CM1 andCM2. The products had a retention time of 11.9 and 14.6 min, respectively, and the same absorption peaks at 204, 220, and 275 nm. CM1 and CM2 had [M-H2O+H]+ at m/z 225. Based on the molecular mass and hydrolysis products, we proposed that epoxidation occurred on cis-isoflavan-4-ol. Chloroform extraction instead of ethyl acetate extraction was performed to improve the stability of cismetabolites, CM1 and CM2.

  20. Positive photocatalysis of a Diels-Alder reaction by quenching of excited naphthalene-indole charge-transfer complex with cyclohexadiene.

    Science.gov (United States)

    Gonzalez-Béjar, María; Stiriba, Salah-Eddine; Miranda, Miguel A; Pérez-Prieto, Julia

    2007-02-01

    [reaction: see text] Naphthalene photo-catalyzes formation of cyclohexadiene-indole cycloadducts in a wavelength-dependent process. Steady-state irradiation and time-resolved fluorescence studies agree well with NP-InH ground-state charge transfer (CT) complexes as the key species responsible for the photo-catalyzed process.

  1. Presence of albumin mRNA precursors in nuclei of analbuminemic rat liver lacking cytoplasmic albumin mRNA.

    OpenAIRE

    Esumi, H; Takahashi, Y; Sekiya, T; Sato, S; Nagase, S; Sugimura, T

    1982-01-01

    Analbuminemic rats, which lack serum albumin, were previously found to have no albumin mRNA in the cytoplasm of the liver. In the present study, the existence of nuclear albumin mRNA precursors in the liver of analbuminemic rats was examined by RNA X cDNA hybridization kinetics. Albumin mRNA precursors were present in the nuclei of analbuminemic rat liver at almost normal levels, despite the absence of albumin mRNA from the cytoplasm. Nuclear RNA of analbuminemic rat liver was subjected to el...

  2. 1-{(Z-[2-Methoxy-5-(trifluoromethylanilino]methylidene}naphthalen-2(1H-one

    Directory of Open Access Journals (Sweden)

    Hakan Kargılı

    2013-02-01

    Full Text Available The title compound, C19H14F3NO2, crystallizes in the keto–amine tautomeric form, with a strong intramolecular N—H...O hydrogen bond. The molecule is almost planar; the dihedral angle between the naphthalene ring system and the benzene ring is 4.60 (7°. In the crystal, molecules are linked into chains along the c axis by C—H...O hydrogen bonds. The F atoms of the trifluoromethyl group are disordered over two positions with refined site occupancies of 0.668 (9 and 0.332 (9.

  3. A mechanistic study on the reaction pathways leading to benzene and naphthalene in cellulose vapor phase cracking

    International Nuclear Information System (INIS)

    Norinaga, Koyo; Yang, Huamei; Tanaka, Ryota; Appari, Srinivas; Iwanaga, Keita; Takashima, Yuka; Kudo, Shinji; Shoji, Tetsuya; Hayashi, Jun-ichiro

    2014-01-01

    The reaction pathways leading to aromatic hydrocarbons such as benzene and naphthalene in gas-phase reactions of multi-component mixtures derived from cellulose fast pyrolysis were studied both experimentally and numerically. A two-stage tubular reactor was used for evaluating the reaction kinetics of secondary vapor phase cracking of the nascent pyrolysates at temperature ranging from 400 to 900 °C, residence time from 0.2 to 4.3 s, and at 241 kPa. The products of alkyne and diene were identified from the primary pyrolysis of cellulose even at low temperature range 500–600 °C. These products include acetylene, propyne, propadiene, vinylacetylene, and cyclopentadiene. Experiments were also numerically validated by a detailed chemical kinetic model consisting of more than 8000 elementary step-like reactions with over 500 chemical species. Acceptable capabilities of the kinetic model in predicting concentration profiles of the products enabled us to assess reaction pathways leading to benzene and naphthalene via the alkyne and diene from primary pyrolysates of cellulose. C 3 alkyne and diene are primary precursors of benzene at 650 °C, while combination of ethylene and vinylacetylene produces benzene dominantly at 850 °C. Cyclopentadiene is a prominent precursor of naphthalene. Combination of acetylene with propyne or allyl radical leads to the formation of cyclopentadiene. Furan and acrolein are likely important alkyne precursors in cellulose pyrolysis at low temperature, whereas dehydrogenations of olefins are major route to alkyne at high temperatures. - Highlights: • Analytical pyrolysis experiments provided data for kinetic modeling. • Detailed chemical kinetic model was used and evaluated. • Alkyne and diene were important intermediates for aromatic hydrocarbon formation. • Reaction pathways leading to aromatic hydrocarbons were proposed

  4. Formation of nitro products from the gas-phase OH radical-initiated reactions of toluene, naphthalene, and biphenyl: effect of NO2 concentration.

    Science.gov (United States)

    Nishino, Noriko; Atkinson, Roger; Arey, Janet

    2008-12-15

    Aromatic hydrocarbons, including polycyclic aromatic hydrocarbons (PAHs), are released into the atmosphere principally during incomplete combustion and account for approximately 20% of nonmethane organic compounds in urban air. Reaction with OH radicals is the dominant atmospheric chemical loss process for aromatic hydrocarbons, leading mainly to the formation of an OH-aromatic or OH-PAH adduct which then reacts with O2 and/or NO2. For OH-monocyclic aromatic adducts, reaction with O2 dominates under atmospheric conditions; however, no data are available concerning the relative importance of reactions of OH-PAH adducts with O2 and NO2. We have measured formation yields of 3-nitrotoluene, 1- and 2-nitronaphthalene, and 3-nitrobiphenyl from the OH radical-initiated reactions of toluene, naphthalene, and biphenyl as a function of NO2 concentration. Our data showthatthe OH-aromatic adduct reactions with O2 and NO2 are of equal importance in the atmosphere at NO2 mixing ratios of approximately 3.3 ppmV for toluene, approximately 0.06 ppmV for naphthalene, and approximately 0.6 ppmV for biphenyl. Ambient concentrations of toluene, naphthalene, and biphenyl and their nitrated products measured at a site in the Los Angeles air basin are consistent with our laboratory measurements.

  5. Naphthalene induced activities on growth, respiratory metabolism and biochemical composition in juveniles of Metapenaeus affinis (H.Milne Edward, 1837)

    Digital Repository Service at National Institute of Oceanography (India)

    Ansari, Z.A.; Farshchi, P.; Faniband, M.

    Toxicity of naphthalene was carried out on Metapenaeus affinis (H. Milne Edward, 1837) to investigate its effects on growth, metabolic index and biochemical constituents. Growth rate in terms of weight gain was 32.13% in control, 12.12% in 0.125 ppm...

  6. Synthesis of naphthalenes through three-component coupling of alkynes, Fischer carbene complexes, and benzaldehyde hydrazones via isoindole intermediates.

    Science.gov (United States)

    Duan, Shaofeng; Sinha-Mahapatra, Dilip K; Herndon, James W

    2008-04-17

    The synthesis of naphthalene derivatives through three-component coupling of 2-alkynylbenzaldehyde hydrazones with carbene complexes and electron-deficient alkynes has been examined. The reaction involves formation of an isoindole derivative, followed by intramolecular Diels-Alder reaction, followed by nitrene extrusion. The reaction was highly regioselective using unsymmetrical alkynes.

  7. Synthesis of Naphthalenes through Three-Component Coupling of Alkynes, Fischer Carbene Complexes, and Benzaldehyde Hydrazones via Isoindole Intermediates

    OpenAIRE

    Duan, Shaofeng; Sinha-Mahapatra, Dilip K.; Herndon, James W.

    2008-01-01

    The synthesis of naphthalene derivatives through three-component coupling of 2-alkynylbenzaldehyde hydrazones with carbene complexes and electron-deficient alkynes has been examined. The reaction involves formation of an isoindole derivative, followed by intramolecular Diels–Alder reaction, followed by nitrene extrusion. The reaction was highly regioselective using unsymmetrical alkynes.

  8. Indoleamine 2,3-dioxygenase-expressing leukemic dendritic cells impair a leukemia-specific immune response by inducing potent T regulatory cells

    OpenAIRE

    Curti, A; Trabanelli, S; Onofri, C; Aluigi, M; Salvestrini, V; Ocadlikova, D; Evangelisti, C; Rutella, S; De Cristofaro, R; Ottaviani, E; Baccarani, M; Lemoli, RM

    2010-01-01

    Background: The immunoregulatory enzyme indoleamine 2,3-dioxygenase, which catalyzes the conversion of tryptophan into kynurenine, is expressed in a significant subset of patients with acute myeloid leukemia, resulting in the inhibition of T-cell proliferation and the induction of regulatory T cells. Acute myeloid leukemia cells can be differentiated into dendritic cells, which have increased immunogenicity and have been proposed as vaccines against leukemia.\\ud Design and Methods: Leukemic d...

  9. Preconcentration of uranium, thorium, zirconium, titanium, molybdenum and vanadium with oxine supported on microcrystalline naphthalene and their determinations by inductively coupled plasma atomic emission spectrometry

    International Nuclear Information System (INIS)

    Naveen Kumar, P.; Sanjay Kumar; Vijay Kumar; Nandakishore, S.S.; Bangroo, P.N.

    2013-01-01

    A sensitive and rapid method for the determination of uranium, thorium, zirconium, titanium, molybdenum and vanadium by inductively coupled plasma atomic emission spectrometry (ICP-AES) after solid-liquid extraction with microcrystalline naphthalene is developed. Analytes were quantitatively adsorbed as their oxinate complexes on naphthalene and determined by ICP-AES after stripping with 2 M HCl. The effect of various experimental parameters such as pH, reagent amounts, naphthalene amount and stripping conditions on the determination of these elements was investigated in detail. Under the optimized experimental conditions, the detection limits of this method for U (VI), Th (IV), Zr (IV), Ti (IV), Mo (VI) and V (V) were 20.0 ng mL -1 and the relative standard deviations obtained for three replicate determinations at a concentration of 1.0 µg mL -1 were 1.5-3.0%. The proposed method has been applied in the analysis of SY-2, SY-3 and pre-analysed samples for U, Th, Zr, Ti, Mo and V the analytical results are in good agreement with recommended values. (author)

  10. Optimization of the synthesis of SAPO-11 for the methylation of naphthalene with methanol by varying templates and template content

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaoxiao [University of Chinese Academy of Sciences, Beijing (China); Zhang, Wei; Zhao, Liangfu; Xiang, Hongwei, E-mail: zw7234@sxicc.ac.cn, E-mail: lfzhao@sxicc.ac.cn [Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan (China); Guo, Shaoqing [Taiyuan University of Science and Technology, Taiyuan (China)

    2013-07-15

    SAPO-11 zeolites were successfully synthesized by using three different templates (diethylamine (DEA), di-n-propylamine (DPA) and di-isopropylamine (DIPA)) and varying DPA contents (nDPA/Al{sub 2}O{sub 3} = 0.8, 1.2, 1.6 and 2.0) under hydrothermal conditions. The samples were characterized by powder X-ray diffractometry (XRD), scanning electron microscopy (SEM), N{sub 2} adsorption-desorption, temperature programmed desorption of ammonia (NH{sub 3} -TPD) and {sup 29}Si magic angle spinning (MAS) nuclear magnetic resonance (NMR). The samples were also evaluated towards the methylation of naphthalene with methanol to produce 2,6-dimethylnaphthalene (2,6-DMN). XRD results indicated that the directing effect of the different templates for AEL (Aluminophosphate-ELeven) structure decreased in the order DPA > DEA > DIPA and the most suitable DPA content was nDPA/Al{sub 2}O{sub 3} = 1.2. N{sub 2} adsorption-desorption results showed that SAPO-11(DPA,1.2) exhibited the broadest pore size distribution, the highest BET specific surface area and the largest pore volume among all the SAPO-11 samples. SAPO-11(DPA,1.2) exhibited high catalytic performances in the methylation of naphthalene due to its high crystallinity, high external surface and broad pore size distribution. The pore structure of SAPO-11 zeolite, rather than its acidity, played an important role in achieving high catalytic performances in the methylation of naphthalene with methanol. (author)

  11. Urinary Naphthol as a Biomarker of Exposure: Results from an Oral Exposure to Carbaryl and Workers Occupationally Exposed to Naphthalene

    Directory of Open Access Journals (Sweden)

    Craig Sams

    2017-01-01

    Full Text Available Urinary naphthol is an established human biomarker used for assessing both occupational and environmental exposure. However, 1-naphthol is a metabolite of the insecticide carbaryl while both the 1- and 2-isomers are metabolites of naphthalene. Thus, urinary 1-naphthol levels will reflect combined exposure to both substances, particularly at environmental levels. The interpretation of biomarkers is aided by knowledge of levels following well-characterised exposure scenarios. This study reports urinary 1-naphthol levels in five volunteers administered an oral dose of carbaryl at the acceptable daily intake (ADI, 0.008 mg/kg. The elimination half-life was 3.6 h and the mean 1-naphthol level in 24 h total urine collections, normalised for a 70 kg individual, was 37.4 µmol/mol creatinine (range 21.3–84.3. Peak levels in spot-urine samples were around 200 µmol/mol creatinine. For comparison, 327 post-shift urine samples obtained from 90 individual workers exposed occupationally to naphthalene had 1-naphthol levels from below the limit of detection (naphthalene in these populations is well controlled.

  12. The development of a MIP-optosensor for the detection of monoamine naphthalenes in drinking water.

    Science.gov (United States)

    Valero-Navarro, Angel; Salinas-Castillo, Alfonso; Fernández-Sánchez, Jorge F; Segura-Carretero, Antonio; Mallavia, Ricardo; Fernández-Gutiérrez, Alberto

    2009-03-15

    To enhance the advantages of fluorescent flow-through sensing for drinking water we have designed a novel sensing matrix based on molecularly imprinted polymers (MIPs). The synergic combination of a tailor-made MIP recognition with a selective room temperature fluorescence detection is a novel concept for optosensing devices and is assessed here for the simple and selective determination of pollutants in water. We describe a simple approach to preparing synthetic receptors for monoamine naphthalene compounds (MA-NCs) using non-covalent molecular imprinting techniques and naphthalene as template. We examine in detail the binding characteristics of the imprinted polymer and describe the flow-through sensor of MA-NCs by solid-surface fluorescence. Its detection limits for recognizing 1-naphthylamine (1-NA) and 2-naphthylamine (2-NA) separately are 26 ngmL(-1) and 50 ngmL(-1), respectively, and it also determines 1-NA and 2-NA simultaneously with a detection limit of 45 ngmL(-1). All the instrumental, chemical and flow variables were carefully optimized and an interference study was carried out to demonstrate its applicability and selectivity. Finally, we applied it to the analysis of 1-NA and 2-NA in tap and mineral waters, obtaining a 98% average recovery rate.

  13. Synthesis of Naphthalenes through Three-Component Coupling of Alkynes, Fischer Carbene Complexes, and Benzaldehyde Hydrazones via Isoindole Intermediates

    Science.gov (United States)

    Duan, Shaofeng; Sinha-Mahapatra, Dilip K.; Herndon, James W.

    2008-01-01

    The synthesis of naphthalene derivatives through three-component coupling of 2-alkynylbenzaldehyde hydrazones with carbene complexes and electron-deficient alkynes has been examined. The reaction involves formation of an isoindole derivative, followed by intramolecular Diels–Alder reaction, followed by nitrene extrusion. The reaction was highly regioselective using unsymmetrical alkynes. PMID:18351767

  14. Expression, purification, crystallization and preliminary X-ray analysis of a novel N-substituted branched-chain l-amino-acid dioxygenase from Burkholderia ambifaria AMMD

    International Nuclear Information System (INIS)

    Qin, Hui-Min; Miyakawa, Takuya; Nakamura, Akira; Xue, You-Lin; Kawashima, Takashi; Kasahara, Takuya; Hibi, Makoto; Ogawa, Jun; Tanokura, Masaru

    2012-01-01

    Diffraction data were collected to a limiting resolution of 2.4 Å from a crystal of selenomethionyl-labelled SadA, an l-amino-acid dioxygenase. Ferrous ion- and α-ketoglutarate-dependent dioxygenase from Burkholderia ambifaria AMMD (SadA) catalyzes the C3-hydroxylation of N-substituted branched-chain l-amino acids, especially N-succinyl-l-leucine, coupled to the conversion of α-ketoglutarate to succinate and CO 2 . SadA was expressed in Escherichia coli, purified and crystallized using the sitting-drop vapour-diffusion method at 293 K. Crystals of selenomethionine-substituted SadA were obtained using a reservoir solution containing PEG 3000 as the precipitant at pH 9.5 and diffracted X-rays to 2.4 Å resolution. The crystal belonged to space group P2 1 2 1 2 1 , with unit-cell parameters a = 49.3, b = 70.9, c = 148.2 Å. The calculated Matthews coefficient (V M = 2.1 Å 3 Da −1 , 41% solvent content) suggested that the crystal contains two molecules per asymmetric unit

  15. On the substrate- and stereospecificity of the plant carotenoid cleavage dioxygenase 7

    KAUST Repository

    Bruno, Mark; Hofmann, Manuel; Vermathen, Martina; Alder, Adrian; Beyer, Peter D.; Al-Babili, Salim

    2014-01-01

    Strigolactones are phytohormones synthesized from carotenoids via a stereospecific pathway involving the carotenoid cleavage dioxygenases 7 (CCD7) and 8. CCD7 cleaves 9-cis-β-carotene to form a supposedly 9-cis-configured β-apo-10′-carotenal. CCD8 converts this intermediate through a combination of yet undetermined reactions into the strigolactone-like compound carlactone. Here, we investigated the substrate and stereo-specificity of the Arabidopsis and pea CCD7 and determined the stereo-configuration of the β-apo-10′-carotenal intermediate by using Nuclear Magnetic Resonance Spectroscopy. Our data unequivocally demonstrate the 9-cis-configuration of the intermediate. Both CCD7s cleave different 9-cis-carotenoids, yielding hydroxylated 9-cis-apo-10′-carotenals that may lead to hydroxylated carlactones, but show highest affinity for 9-cis-β-carotene. © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  16. On the substrate- and stereospecificity of the plant carotenoid cleavage dioxygenase 7

    KAUST Repository

    Bruno, Mark

    2014-05-01

    Strigolactones are phytohormones synthesized from carotenoids via a stereospecific pathway involving the carotenoid cleavage dioxygenases 7 (CCD7) and 8. CCD7 cleaves 9-cis-β-carotene to form a supposedly 9-cis-configured β-apo-10′-carotenal. CCD8 converts this intermediate through a combination of yet undetermined reactions into the strigolactone-like compound carlactone. Here, we investigated the substrate and stereo-specificity of the Arabidopsis and pea CCD7 and determined the stereo-configuration of the β-apo-10′-carotenal intermediate by using Nuclear Magnetic Resonance Spectroscopy. Our data unequivocally demonstrate the 9-cis-configuration of the intermediate. Both CCD7s cleave different 9-cis-carotenoids, yielding hydroxylated 9-cis-apo-10′-carotenals that may lead to hydroxylated carlactones, but show highest affinity for 9-cis-β-carotene. © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  17. Unraveling the electronic structures of low-valent naphthalene and anthracene iron complexes: X-ray, spectroscopic, and density functional theory studies

    NARCIS (Netherlands)

    Schnoeckelborg, E.M.; Khusniyarov, M.M.; de Bruin, B.; Hartl, F.; Langer, T.; Eul, M.; Schulz, S.; Poettgen, R.; Wolf, R.

    2012-01-01

    Naphthalene and anthracene transition metalates are potent reagents, but their electronic structures have remained poorly explored. A study of four Cp*-substituted iron complexes (Cp* = pentamethylcyclopentadienyl) now gives rare insight into the bonding features of such species. The highly oxygen-

  18. Remarkable Role of Indoleamine 2,3-Dioxygenase and Tryptophan Metabolites in Infectious Diseases: Potential Role in Macrophage-Mediated Inflammatory Diseases

    OpenAIRE

    Murakami, Yuki; Hoshi, Masato; Imamura, Yukio; Arioka, Yuko; Yamamoto, Yasuko; Saito, Kuniaki

    2013-01-01

    Indoleamine 2,3-dioxygenase 1 (IDO1), the L-tryptophan-degrading enzyme, plays a key role in the immunomodulatory effects on several types of immune cells. Originally known for its regulatory function during pregnancy and chronic inflammation in tumorigenesis, the activity of IDO1 seems to modify the inflammatory state of infectious diseases. The pathophysiologic activity of L-tryptophan metabolites, kynurenines, is well recognized. Therefore, an understanding of the regulation of IDO1 and th...

  19. Antitumour agents as inhibitors of tryptophan 2,3-dioxygenase

    Energy Technology Data Exchange (ETDEWEB)

    Pantouris, Georgios; Mowat, Christopher G., E-mail: C.G.Mowat@ed.ac.uk

    2014-01-03

    Highlights: •∼2800 National Cancer Institute USA compounds have been screened as potential inhibitors of TDO and/or IDO. •Seven compounds with anti-tumour properties have been identified as potent inhibitors. •NSC 36398 (taxifolin, dihydroquercetin) is selective for TDO with a K{sub i} of 16 M. •This may help further our understanding of the role of TDO in cancer. -- Abstract: The involvement of tryptophan 2,3-dioxygenase (TDO) in cancer biology has recently been described, with the enzyme playing an immunomodulatory role, suppressing antitumour immune responses and promoting tumour cell survival and proliferation. This finding reinforces the need for specific inhibitors of TDO that may potentially be developed for therapeutic use. In this work we have screened ∼2800 compounds from the library of the National Cancer Institute USA and identified seven potent inhibitors of TDO with inhibition constants in the nanomolar or low micromolar range. All seven have antitumour properties, killing various cancer cell lines. For comparison, the inhibition potencies of these compounds were tested against IDO and their inhibition constants are reported. Interestingly, this work reveals that NSC 36398 (dihydroquercetin, taxifolin), with an in vitro inhibition constant of ∼16 μM, is the first TDO-selective inhibitor reported.

  20. Self-amplifying mRNA vaccines.

    Science.gov (United States)

    Brito, Luis A; Kommareddy, Sushma; Maione, Domenico; Uematsu, Yasushi; Giovani, Cinzia; Berlanda Scorza, Francesco; Otten, Gillis R; Yu, Dong; Mandl, Christian W; Mason, Peter W; Dormitzer, Philip R; Ulmer, Jeffrey B; Geall, Andrew J

    2015-01-01

    This chapter provides a brief introduction to nucleic acid-based vaccines and recent research in developing self-amplifying mRNA vaccines. These vaccines promise the flexibility of plasmid DNA vaccines with enhanced immunogenicity and safety. The key to realizing the full potential of these vaccines is efficient delivery of nucleic acid to the cytoplasm of a cell, where it can amplify and express the encoded antigenic protein. The hydrophilicity and strong net negative charge of RNA impedes cellular uptake. To overcome this limitation, electrostatic complexation with cationic lipids or polymers and physical delivery using electroporation or ballistic particles to improve cellular uptake has been evaluated. This chapter highlights the rapid progress made in using nonviral delivery systems for RNA-based vaccines. Initial preclinical testing of self-amplifying mRNA vaccines has shown nonviral delivery to be capable of producing potent and robust innate and adaptive immune responses in small animals and nonhuman primates. Historically, the prospect of developing mRNA vaccines was uncertain due to concerns of mRNA instability and the feasibility of large-scale manufacturing. Today, these issues are no longer perceived as barriers in the widespread implementation of the technology. Currently, nonamplifying mRNA vaccines are under investigation in human clinical trials and can be produced at a sufficient quantity and quality to meet regulatory requirements. If the encouraging preclinical data with self-amplifying mRNA vaccines are matched by equivalently positive immunogenicity, potency, and tolerability in human trials, this platform could establish nucleic acid vaccines as a versatile new tool for human immunization. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Solid-phase extraction and determination of trace elements in environmental samples using naphthalene adsorbent

    International Nuclear Information System (INIS)

    Pourreza, N.

    2004-01-01

    Naphthalene co-precipitated with quaternary ammonium salt such as tetraoctyl ammonium bromide and methyltrioctyl ammonium chloride have been used as adsorbent for solid phase extraction of metal ions such as Hg, Cd and Fe. The metal ions are retained on the adsorbent in a column as their complexes with suitable ligands and eluted by an eluent before instrumental measurements. The optimization of the procedures for solid phase extraction and consequent determination of trace elements and application to environmental samples especially water samples will be discussed. (author)

  2. Exciplex emission and photoinduced energy transfer as a function of cavity dimension in naphthalene-linked aza-crown ethers

    International Nuclear Information System (INIS)

    Roy, Mailrayee Basu; Samanta, Subhodip; Chattopadhyay, Gautam; Ghosh, Sanjib

    2004-01-01

    We report here the photophysical properties of two derivatives of N-(β-methylnaphthalene) aza-crown systems having different cavity dimensions. The aza-crown moiety is attached to β-position of naphthalene moiety by one >CH 2 unit in both the derivatives. The cavity size is found to have a pronounced effect on exciplex formation as well as energy transfer in the systems at room temperature and low temperature, respectively. Both the systems exhibit photoinduced electron transfer (PET) which is evident from their weaker fluorescence emission and their quenched singlet lifetimes as compared to that of free naphthalene. The systems also show a solvent sensitive red shifted broad structureless emission which is assigned to exciplex formation. The ratio of quantum yields of exciplex to monomer emission (phi (cursive,open) Greek Exp /phi (cursive,open) Greek M ) is lower in the smaller aza-crown (L1) as compared to that in the larger aza-crown (L2) implying a different geometry of the two systems in the excited state. Semi-emperical calculations performed on the systems also corroborate the different geometry of the two systems. Complexation of alkali metals, rare earth ions and protons by the aza-crown moiety results in enhancement of fluorescence emission due to blocking of PET. In the presence of protons, L1 exhibits a new emission due to excimer formation which has not been observed in L2 under similar conditions. The rare earth ion complexes of L1 and L2 at low temperature exhibit energy transfer from the lowest triplet state of naphthalene to the rare earth ion states, the extent of energy transfer being greater in the larger aza-crown (L2) as compared to that in smaller aza-crown system (L1)

  3. The immune system strikes back: cellular immune responses against indoleamine 2,3-dioxygenase

    DEFF Research Database (Denmark)

    Sørensen, Rikke Baek; Berge-Hansen, Linda; Junker, Niels

    2009-01-01

    BACKGROUND: The enzyme indoleamine 2,3-dioxygenase (IDO) exerts an well established immunosuppressive function in cancer. IDO is expressed within the tumor itself as well as in antigen-presenting cells in tumor-draining lymph nodes, where it promotes the establishment of peripheral immune tolerance...... to tumor antigens. In the present study, we tested the notion whether IDO itself may be subject to immune responses. METHODS AND FINDINGS: The presence of naturally occurring IDO-specific CD8 T cells in cancer patients was determined by MHC/peptide stainings as well as ELISPOT. Antigen specific cytotoxic T...... of the major immune suppressive cell populations. CONCLUSION: IDO may serve as an important and widely applicable target for anti-cancer immunotherapeutic strategies. Furthermore, as emerging evidence suggests that IDO constitutes a significant counter-regulatory mechanism induced by pro-inflammatory signals...

  4. Study of 'Redhaven' peach and its white-fleshed mutant suggests a key role of CCD4 carotenoid dioxygenase in carotenoid and norisoprenoid volatile metabolism

    Directory of Open Access Journals (Sweden)

    Tartarini Stefano

    2011-01-01

    Full Text Available Abstract Background Carotenoids are plant metabolites which are not only essential in photosynthesis but also important quality factors in determining the pigmentation and aroma of flowers and fruits. To investigate the regulation of carotenoid metabolism, as related to norisoprenoids and other volatile compounds in peach (Prunus persica L. Batsch., and the role of carotenoid dioxygenases in determining differences in flesh color phenotype and volatile composition, the expression patterns of relevant carotenoid genes and metabolites were studied during fruit development along with volatile compound content. Two contrasted cultivars, the yellow-fleshed 'Redhaven' (RH and its white-fleshed mutant 'Redhaven Bianca' (RHB were examined. Results The two genotypes displayed marked differences in the accumulation of carotenoid pigments in mesocarp tissues. Lower carotenoid levels and higher levels of norisoprenoid volatiles were observed in RHB, which might be explained by differential activity of carotenoid cleavage dioxygenase (CCD enzymes. In fact, the ccd4 transcript levels were dramatically higher at late ripening stages in RHB with respect to RH. The two genotypes also showed differences in the expression patterns of several carotenoid and isoprenoid transcripts, compatible with a feed-back regulation of these transcripts. Abamine SG - an inhibitor of CCD enzymes - decreased the levels of both isoprenoid and non-isoprenoid volatiles in RHB fruits, indicating a complex regulation of volatile production. Conclusions Differential expression of ccd4 is likely to be the major determinant in the accumulation of carotenoids and carotenoid-derived volatiles in peach fruit flesh. More in general, dioxygenases appear to be key factors controlling volatile composition in peach fruit, since abamine SG-treated 'Redhaven Bianca' fruits had strongly reduced levels of norisoprenoids and other volatile classes. Comparative functional studies of peach carotenoid

  5. Ability of bacterial biphenyl dioxygenases from Burkholderia sp. LB400 and Comamonas testosteroni B-356 to catalyse oxygenation of ortho-hydroxychlorobiphenyls formed from PCBs by plants

    International Nuclear Information System (INIS)

    Francova, K.; Mackova, M.; Macek, T.; Sylvestre, M.

    2004-01-01

    Bacterial dioxygenases are useful in breakdown of PCB products associated with plants. - Capacity of enzymes of the biphenyl/chlorobiphenyl pathway, especially biphenyl dioxygenase (BPDO) of two polychlorinated biphenyls (PCB) degrading bacteria, Burkholderia sp. LB400 and Comamonas testosteroni B-356, to metabolize ortho-substituted hydroxybiphenyls was tested.,These compounds found among plant products of PCB metabolism, are carrying chlorine atoms on the hydroxyl-substituted ring. The abilities of His-tagged purified LB400 and B-356 BPDOs to catalyze the oxygenation of 2-hydroxy-3-chlorobiphenyl, 2-hydroxy-5-chlorobiphenyl and 2-hydroxy-3,5-dichlorobiphenyl were compared. Both enzyme preparations catalyzed the hydroxylation of the three chloro-hydroxybiphenyls on the non-substituted ring. Neither LB400 BPDO nor B-356 BPDO oxygenated the substituted ring of the ortho-hydroxylated biphenyl. The fact that metabolites generated by both enzymes were identical for all three hydroxychlorobiphenyls tested; exclude any other mode of attack of these compounds by LB400 BPDOs than the ortho-meta oxygenation

  6. Functional expression of a valencene dioxygenase from Pleurotus sapidus in E. coli.

    Science.gov (United States)

    Zelena, Kateryna; Krings, Ulrich; Berger, Ralf G

    2012-03-01

    Valencene dioxygenase (ValOx) from the edible basidiomycete Pleurotus sapidus converted the sesquiterpene (+)-valencene to the valuable grapefruit flavour (+)-nootkatone and to nootkatols through intermediate hydroperoxides. Expression of the enzyme was carried out in the cytosol and periplasm of Escherichia coli. The heterologous production led to high yields of inclusion bodies. The poor yield of soluble recombinant protein was improved by various strategies including cold shock expression, chaperone co-expression, and employment of mutant E. coli strains. Up to 60 mg of the biologically active, soluble ValOx was produced by cold shock under control of the cspA promoter at 8 °C in the BL21(DE3)Star strain and co-expression of the E. coli trigger factor. The recombinant enzyme, purified using the N-terminal His tag, showed the catalytic properties of the wild-type enzyme, as was confirmed by the LC-MS analysis of hydroperoxide intermediates and GC-MS analysis of the volatile products. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Experimental determination and prediction of liquid-solid equilibria for binary (methyl palimitate + naphthalene mixture

    Directory of Open Access Journals (Sweden)

    Benziane M.

    2013-07-01

    Full Text Available Solid-liquid equilibria for binary mixtures of {Methyl palmitate (1 + Naphthalene (2} were measured using differential scanning calorimeter (DSC. Simple eutectic behaviours for this system are observed. The experimental results were correlated by means of the NRTL, Wilson, UNIQUAC and ideal models. The root-mean-square deviations of the solubility temperatures for all measured data vary from 0.5477 K (for UNIQUAC model to 3.34K; the deviation depend on the model used. The best solubility correlation was obtained with UNIQUAC model and this observation confirms previous results.

  8. Suppression of 9-cis-Epoxycarotenoid Dioxygenase, Which Encodes a Key Enzyme in Abscisic Acid Biosynthesis, Alters Fruit Texture in Transgenic Tomato1[W][OA

    Science.gov (United States)

    Sun, Liang; Sun, Yufei; Zhang, Mei; Wang, Ling; Ren, Jie; Cui, Mengmeng; Wang, Yanping; Ji, Kai; Li, Ping; Li, Qian; Chen, Pei; Dai, Shengjie; Duan, Chaorui; Wu, Yan; Leng, Ping

    2012-01-01

    Cell wall catabolism during fruit ripening is under complex control and is key for fruit quality and shelf life. To examine the role of abscisic acid (ABA) in tomato (Solanum lycopersicum) fruit ripening, we suppressed SlNCED1, which encodes 9-cis-epoxycarotenoid dioxygenase (NCED), a key enzyme in the biosynthesis of ABA. To suppress SlNCED1 specifically in tomato fruits, and thus avoid the pleiotropic phenotypes associated with ABA deficiency, we used an RNA interference construct driven by the fruit-specific E8 promoter. ABA accumulation and SlNCED1 transcript levels in the transgenic fruit were down-regulated to between 20% and 50% of the levels measured in the control fruit. This significant reduction in NCED activity led to a down-regulation in the transcription of genes encoding major cell wall catabolic enzymes, specifically polygalacturonase (SlPG), pectin methyl esterase (SlPME), β-galactosidase precursor mRNA (SlTBG), xyloglucan endotransglycosylase (SlXET), endo-1,4-β-cellulose (SlCels), and expansin (SlExp). This resulted in an increased accumulation of pectin during ripening. In turn, this led to a significant extension of the shelf life to 15 to 29 d compared with a shelf life of only 7 d for the control fruit and an enhancement of fruit firmness at the mature stage by 30% to 45%. In conclusion, ABA affects cell wall catabolism during tomato fruit ripening via down-regulation of the expression of major catabolic genes (SlPG, SlPME, SlTBG, SlXET, SlCels, and SlExp). PMID:22108525

  9. Degradation of naphthalene and fluorene by radiolysis using accelerated electrons

    International Nuclear Information System (INIS)

    Flores de Jesus, I.

    2003-01-01

    The volume of the dangerous wastes in global level is causing the poisoning of planet and all of the ecosystems, degrading the life level of millions of humans and causing serious problems in the public health. Since a years ago the volumes of organic effluents generated by the few industry and small populations were so tiny that a natural debugger process in a time and space delimited, acquiring again their natural characteristics and they could be used again. Nowadays these wastes are so numerous and precise in some cases that the capacity of natural purification in the receiving channel is not enough, in addition to the difficulty to treat them in conventional processes, this leads to the decrease in the water's quality making impossible its future use and causing with this a serious ecological problem. This fact has motivated the development of measures that tend to the conservation of the environment and in consequence, the development of debugger technologies with no generation of sub products that often are more dangerous than the originals, due to the previous thing, the treatment by means of radiation of the water is impelled since is a method that allows to degrade or to eliminate in simultaneous form pathogenic microorganisms and organic substances. The radiation by means of electrons beams is a method of advanced treatment who allows to degrade organic compounds, transforming them in compounds with less molecular weight, and in the best of the cases until its oxidation to carbon dioxide and water. In the present thesis the objective is the study of naphthalene and fluorene degradation by means of radiation with electron beams, establishing the operating conditions of the accelerator of Pelletron type. This research is supported by the Instituto Nacional de Investigaciones Nucleares, of a joint way with a series of antecedents in this subject, established in previous research with respect to the treatment of residual waters in a great scale, giving

  10. Partitioning of naphthalene, methylnaphthalenes and biphenyl between wastewater treatment sludges and water

    International Nuclear Information System (INIS)

    Southworth, G.R.; Keller, J.L.

    1984-01-01

    Partition coefficients (K/sub p/) describing the partitioning of naphthalene, methylnaphthalenes and biphenyl between organic-rich wastes and water were determined using 14 C-tracer techniques as well as high performance liquid chromatographic analysis of the wastes and their aqueous extracts. Results of the two procedures were in good agreement. The concentrations of the specific organics in the wastes were not good predictors of concentrations in aqueous extracts, since K/sub p/ varied among the materials tested. Predictions of k/sub p/ based on organic carbon content of the sludges were well below observed values. Oil content of the wastes and oil-water partition coefficients appeared to be important factors in determining K/sub p/. 11 references, 5 tables

  11. Considerations of the Effects of Naphthalene Moieties on the Design of Proton-Conductive Poly(arylene ether ketone) Membranes for Direct Methanol Fuel Cells.

    Science.gov (United States)

    Wang, Baolong; Hong, Lihua; Li, Yunfeng; Zhao, Liang; Wei, Yuxue; Zhao, Chengji; Na, Hui

    2016-09-14

    Novel sulfonated poly(arylene ether ketones) (SDN-PAEK-x), consisting of dual naphthalene and flexible sulfoalkyl groups, were prepared via polycondensation, demethylation, and sulfobutylation grafting reaction. Among them, SDN-PAEK-1.94 membrane with the highest ion exchange capacity (IEC = 2.46 mequiv·g(-1)) exhibited the highest proton conductivity, which was 0.147 S· cm(-1) at 25 °C and 0.271 S·cm(-1) at 80 °C, respectively. The introduction of dual naphthalene moieties is expected to achieve much enhanced properties compared to those of sulfonated poly(arylene ether ketones) (SNPAEK-x), consisting of single naphthalene and flexible sulfoalkyl groups. Compared with SNPAEK-1.60 with a similar IEC, SDN-PAEK-1.74 membrane showed higher proton conductivity, higher IEC normalized conductivity, and higher effective proton mobility, although it had lower analytical acid concentration. The SDN-PAEK-x membranes with IECs higher than 1.96 mequiv·g(-1) also exhibited higher proton conductivity than that of recast Nafion membrane. Furthermore, SDN-PAEK-1.94 displayed a better single cell performance with a maximum power density of 60 mW·cm(-2) at 80 °C. Considering its high proton conductivity, excellent single cell performance, good mechanical stabilities, low membrane swelling, and methanol permeability, SDN-PAEK-x membranes are promising candidates as alternative polymer electrolyte membranes to Nafion for direct methanol fuel cell applications.

  12. Effect of phytoremediation on concentrations of benzene, toluene, naphthalene, and dissolved oxygen in groundwater at a former manufactured gas plant site, Charleston, South Carolina, USA, 1998–2014

    Science.gov (United States)

    Landmeyer, James E.; Effinger, Thomas N.

    2016-01-01

    Concentrations of benzene, toluene, naphthalene, and dissolved oxygen in groundwater at a former manufactured gas plant site near Charleston, South Carolina, USA, have been monitored since the installation of a phytoremediation system of hybrid poplar trees in 1998. Between 2000 and 2014, the concentrations of benzene, toluene, and naphthalene (BT&N) in groundwater in the planted area have decreased. For example, in the monitoring well containing the highest concentrations of BT&N, benzene concentrations decreased from 10,200 µg/L to less than 4000 µg/L, toluene concentrations decreased from 2420 µg/L to less than 20 µg/L, and naphthalene concentrations decreased from 6840 µg/L to less than 3000 µg/L. Concentrations of BT&N in groundwater in all wells were observed to be lower during the summer months relative to the winter months of a particular year during the first few years after installing the phytoremediation system, most likely due to increased transpiration and contaminant uptake by the hybrid poplar trees during the warm summer months; this pathway of uptake by trees was confirmed by the detection of benzene, toluene, and naphthalene in trees during sampling events in 2002, and later in the study in 2012. These data suggest that the phytoremediation system affects the groundwater contaminants on a seasonal basis and, over multiple years, has resulted in a cumulative decrease in dissolved-phase contaminant concentrations in groundwater. The removal of dissolved organic contaminants from the aquifer has resulted in a lower demand on dissolved oxygen supplied by recharge and, as a result, the redox status of the groundwater has changed from anoxic to oxic conditions. This study provides much needed information for water managers and other scientists on the viability of the long-term effectiveness of phytoremediation in decreasing groundwater contaminants and increasing dissolved oxygen at sites contaminated by benzene, toluene, and naphthalene.

  13. Synthesis of Hβ (core)/SAPO-11 (shell) Composite Molecular Sieve and its Catalytic Performances in the Methylation of Naphthalene with Methanol

    International Nuclear Information System (INIS)

    Wang, Xiaoxiao; Zhao, Liangfu; Guo, Shaoqing

    2013-01-01

    Hβ (core)/SAPO-11 (shell) composite molecular sieve was synthesized by the hydrothermal method in order to combine the advantages of Hβ and SAPO-11 for the methylation of naphthalene with methanol. For comparison, the mechanical mixture was prepared through the blending of Hβ and SAPO-11. The physicochemical properties of Hβ, SAPO-11, the composite and the mechanical mixture were characterized by various characterization methods. The characterization results indicated that Hβ/SAPO-11 composite molecular sieve exhibited a core-shell structure, with the Hβ phase as the core and the SAPO-11 phase as the shell. The pore diameter of the composite was between that of Hβ and SAPO-11. The composite had fewer acid sites than Hβ and mechanical mixture while more acid sites than SAPO-11. The experimental results indicated that the composite exhibited high catalytic performances for the methylation of naphthalene with methanol

  14. Replacement of Tyrosine 181 by Phenylalanine in Gentisate 1,2-Dioxygenase I from Pseudomonas alcaligenes NCIMB 9867 Enhances Catalytic Activities

    Science.gov (United States)

    Tan, Chew Ling; Yeo, Chew Chieng; Khoo, Hoon Eng; Poh, Chit Laa

    2005-01-01

    xlnE, encoding gentisate 1,2-dioxygenase (EC 1.13.11.4), from Pseudomonas alcaligenes (P25X) was mutagenized by site-directed mutagenesis. The mutant enzyme, Y181F, demonstrated 4-, 3-, 6-, and 16-fold increases in relative activity towards gentisate and 3-fluoro-, 4-methyl-, and 3-methylgentisate, respectively. The specific mutation conferred a 13-fold higher catalytic efficiency (kcat/Km) on Y181F towards 3-methylgentisate than that of the wild-type enzyme. PMID:16237038

  15. Structure and mechanism leading to formation of the cysteine sulfinate product complex of a biomimetic cysteine dioxygenase model.

    Science.gov (United States)

    Sallmann, Madleen; Kumar, Suresh; Chernev, Petko; Nehrkorn, Joscha; Schnegg, Alexander; Kumar, Devesh; Dau, Holger; Limberg, Christian; de Visser, Sam P

    2015-05-11

    Cysteine dioxygenase is a unique nonheme iron enzyme that is involved in the metabolism of cysteine in the body. It contains an iron active site with an unusual 3-His ligation to the protein, which contrasts with the structural features of common nonheme iron dioxygenases. Recently, some of us reported a truly biomimetic model for this enzyme, namely a trispyrazolylborato iron(II) cysteinato complex, which not only has a structure very similar to the enzyme-substrate complex but also represents a functional model: Treatment of the model with dioxygen leads to cysteine dioxygenation, as shown by isolating the cysteine part of the product in the course of the work-up. However, little is known on the conversion mechanism and, so far, not even the structure of the actual product complex had been characterised, which is also unknown in case of the enzyme. In a multidisciplinary approach including density functional theory calculations and X-ray absorption spectroscopy, we have now determined the structure of the actual sulfinato complex for the first time. The Cys-SO2 (-) functional group was found to be bound in an η(2) -O,O-coordination mode, which, based on the excellent resemblance between model and enzyme, also provides the first support for a corresponding binding mode within the enzymatic product complex. Indeed, this is again confirmed by theory, which had predicted a η(2) -O,O-binding mode for synthetic as well as the natural enzyme. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Iptycenes with an acridinone motif developed through [4+2] cycloaddition of tethered naphthalene and iminoquinone via a radical reaction.

    Science.gov (United States)

    Raju, Selvam; Annamalai, Pratheepkumar; Chen, Pei-Ling; Liu, Yi-Hung; Chuang, Shih-Ching

    2017-06-06

    A new class of iptycenes was developed by combining 2-(naphthalen-1-yl)anilines and p-benzoquinones through copper(ii)-mediated radical cyclisation. This unusual cyclisation reaction resulted in the robust and efficient syntheses of iptycenes with an acridinone motif. These iptycenes can be further transformed into planar acridinone heterocyclics through the Diels-Alder reaction.

  17. [Effects of lipopolysaccharides extracted from Porphyromonas endodontalis on the expression of IL-1beta mRNA and IL-6 mRNA in osteoblasts].

    Science.gov (United States)

    Yang, Di; Li, Ren; Qiu, Li-Hong; Li, Chen

    2009-04-01

    To quantify the IL-1 beta mRNA and IL-6 mRNA expression induced by lipopolysaccharides (LPS)extracted from Porphyromonas endodontalis(P.e) in osteoblasts, and to relate P.e-LPS to bone absorption pathogenesis in lesions of chronical apical periodontitis. MG63 was treated with different concentrations of P.e-LPS(0-50 microg/mL) for different hours(0-24h). The expression of IL-1 beta mRNA and IL-6 mRNA was detected by reverse transcription polymerase chain reaction (RT-PCR).Statistical analysis was performed using one- way ANOVA and Dunnett t test with SPSS11.0 software package. The level of IL-1 beta mRNA and IL-6 mRNA increased significantly after treatment with P.e-LPS at more than 5 microg/mL (P<0.01)and for more than 1 hour (P<0.01), which indicated that P.e-LPS induced osteoblasts to express IL-1 beta mRNA and IL-6 mRNA in dose and time dependent manners. P.e-LPS may promote bone resorption in lesions of chronical apical periodontitis by inducing IL-1 beta mRNA and IL-6 mRNA expression in osteoblasts.

  18. Molecular evolution of flavonoid dioxygenases in the family Apiaceae.

    Science.gov (United States)

    Gebhardt, Yvonne; Witte, Simone; Forkmann, Gert; Lukacin, Richard; Matern, Ulrich; Martens, Stefan

    2005-06-01

    Plant species of the family Apiaceae are known to accumulate flavonoids mainly in the form of flavones and flavonols. Three 2-oxoglutarate-dependent dioxygenases, flavone synthase or flavanone 3 beta-hydroxylase and flavonol synthase are involved in the biosynthesis of these secondary metabolites. The corresponding genes were cloned recently from parsley (Petroselinum crispum) leaves. Flavone synthase I appears to be confined to the Apiaceae, and the unique occurrence as well as its high sequence similarity to flavanone 3beta-hydroxylase laid the basis for evolutionary studies. In order to examine the relationship of these two enzymes throughout the Apiaceae, RT-PCR based cloning and functional identification of flavone synthases I or flavanone 3beta-hydroxylases were accomplished from Ammi majus, Anethum graveolens, Apium graveolens, Pimpinella anisum, Conium maculatum and Daucus carota, yielding three additional synthase and three additional hydroxylase cDNAs. Molecular and phylogenetic analyses of these sequences were compatible with the phylogeny based on morphological characteristics and suggested that flavone synthase I most likely resulted from gene duplication of flavanone 3beta-hydroxylase, and functional diversification at some point during the development of the apiaceae subfamilies. Furthermore, the genomic sequences from Petroselinum crispum and Daucus carota revealed two introns in each of the synthases and a lack of introns in the hydroxylases. These results might be explained by intron losses from the hydroxylases occurring at a later stage of evolution.

  19. Novel Rearrangements in the Reactions Directed Toward Preparation of Spiro-N,N-ketals: Reactions of Naphthalene-1,8-diamine with Ninhydrin and Isatin

    Directory of Open Access Journals (Sweden)

    Keiji Kobayashi

    2012-11-01

    Full Text Available Spiro-N,N-ketal 5, consisting of a phthaloperine heterocyclic ring and a naphtha[1,8-ef][1,4]diazepine ring, was obtained along with spiro-N,N-ketal 2 via 2,2-condensation in the reaction of ninhydrin with naphthalene-1,8-diamine. Their molecular structures were elucidated by X-ray crystal structural analysis. Aside from these spiro compounds, the diazapleiadiene compound 3 formed by 1,2-condensation and the 1,4-isoquinolinedione compound 4 arising from ring expansion were isolated. When isatin was reacted with naphthalene-1,8-diamine, spiro-N,N-ketal 6 and the two 1H-perimidine-based compounds 7 and 8 were isolated. Compound 8 was revealed to undergo a fast dynamic prototropic tautomerization in solution. Plausible mechanisms of the formation of the products are proposed.

  20. Stereospecific hydroxylation of indan by Escherichia coli containing the cloned toluene dioxygenase genes from Pseudomonas putida F1.

    Science.gov (United States)

    Brand, J M; Cruden, D L; Zylstra, G J; Gibson, D T

    1992-01-01

    Escherichia coli JM109(pDTG601), containing the todC1C2BA genes encoding toluene dioxygenase from Pseudomonas putida F1, oxidizes indan to (-)-(1R)-indanol (83% R) and trans-1,3-indandiol. Under similar conditions, P. putida F39/D oxidizes indan to (-)-(1R)-indanol (96% R), 1-indanone, and trans-1,3-indandiol. The differences in the enantiomeric composition of the 1-indanols formed by the two organisms are due to the presence of a 1-indanol dehydrogenase in P. putida F39/D that preferentially oxidizes (+)-(1S)-indanol. PMID:1444374

  1. CYP3A5 mRNA degradation by nonsense-mediated mRNA decay.

    Science.gov (United States)

    Busi, Florent; Cresteil, Thierry

    2005-09-01

    The total CYP3A5 mRNA level is significantly greater in carriers of the CYP3A5*1 allele than in CYP3A5*3 homozygotes. Most of the CYP3A5*3 mRNA includes an intronic sequence (exon 3B) containing premature termination codons (PTCs) between exons 3 and 4. Two models were used to investigate the degradation of CYP3A5 mRNA: a CYP3A5 minigene consisting of CYP3A5 exons and introns 3 to 6 transfected into MCF7 cells, and the endogenous CYP3A5 gene expressed in HepG2 cells. The 3'-untranslated region g.31611C>T mutation has no effect on CYP3A5 mRNA decay. Splice variants containing exon 3B were more unstable than wild-type (wt) CYP3A5 mRNA. Cycloheximide prevents the recognition of PTCs by ribosomes: in transfected MCF7 and HepG2 cells, cycloheximide slowed down the degradation of exon 3B-containing splice variants, suggesting the participation of nonsense-mediated decay (NMD). When PTCs were removed from pseudoexon 3B or when UPF1 small interfering RNA was used to impair the NMD mechanism, the decay of the splice variant was reduced, confirming the involvement of NMD in the degradation of CYP3A5 splice variants. Induction could represent a source of variability for CYP3A5 expression and could modify the proportion of splice variants. The extent of CYP3A5 induction was investigated after exposure to barbiturates or steroids: CYP3A4 was markedly induced in a pediatric population compared with untreated neonates. However, no effect could be detected in either the total CYP3A5 RNA, the proportion of splice variant RNA, or the protein level. Therefore, in these carriers, induction is unlikely to switch on the phenotypic CYP3A5 expression in carriers of CYP3A5*3/*3.

  2. Reduction of benzene and naphthalene mass transfer from crude oils by aging-induced interfacial films.

    Science.gov (United States)

    Ghoshal, Subhasis; Pasion, Catherine; Alshafie, Mohammed

    2004-04-01

    Semi-rigid films or skins form at the interface of crude oil and water as a result of the accumulation of asphaltene and resin fractions when the water-immiscible crude oil is contacted with water for a period of time or "aged". The time varying patterns of area-independent mass transfer coefficients of two compounds, benzene and naphthalene, for dissolution from crude oil and gasoline were determined. Aqueous concentrations of the compounds were measured in the eluent from flow-through reactors, where a nondispersed oil phase and constant oil-water interfacial area were maintained. For Brent Blend crude oil and for gasoline amended with asphaltenes and resins, a rapid decrease in both benzene and naphthalene mass transfer coefficients over the first few days of aging was observed. The mass transfer coefficients of the two target solutes were reduced by up to 80% over 35 d although the equilibrium partition coefficients were unchanged. Aging of gasoline, which has negligible amounts of asphaltene and resin, did not result in a change in the solute mass transfer coefficients. The study demonstrates that formation of crude oil-water interfacial films comprised of asphaltenes and resins contribute to time-dependent decreases in rates of release of environmentally relevant solutes from crude oils and may contribute to the persistence of such solutes at crude oil-contaminated sites. It is estimated that the interfacial film has an extremely low film mass transfer coefficient in the range of 10(-6) cm/min.

  3. Synthesis and Preliminary Properties of Novel Poly(aryl ethers Containing β-Naphthalene Pendant Group

    Directory of Open Access Journals (Sweden)

    L. Wang

    2014-01-01

    Full Text Available Two novel poly(aryl ethers containing β-naphthalene pendant group were synthesized and the structures of these polymers were confirmed by 1HNMR spectroscopy. The polymers exhibited good thermal stabilities with high Tg of 256°C and 274°C, respectively. The polymers are soluble in common organic solvents, such as DMAc, DMSO, CH2Cl2, and CHCl3, and can be electrospun into microfiber (1–5 µm with lots of nanopores (<100 nm from CHCl3 solution. These fibers showed high hydrophobicity, and the contact angle of fibers is above 120°.

  4. Poly[μ2-aqua-aqua-μ5-naphthalene-2,7-disulfonato-strontium

    Directory of Open Access Journals (Sweden)

    Shan Gao

    2011-12-01

    Full Text Available In the crystal structure of the polymeric title compound, [Sr(C10H6O6S2(H2O2]n, the naphthalene-2,7-disulfonate dianion uses one –SO3 unit to bind to two SrII cations and the other –SO3 unit to bind to three SrII cations; of the two coordinated water molecules, one is monodentate to one SrII cation, whereas the other bridges two SrII cations. The μ5-bridging mode of the dianon and the μ2-bridging mode of the water molecule generate a polymeric three-dimensional network which is consolidated by O—H...O hydrogen bonds. The SrII cation exists in an undefined eight-coordinate environment.

  5. Protective Effect of Rosemary (Rosmarinus Officinalis) Extract on Naphthalene Induced Nephrotoxicity in Adult Male Albino Rat

    OpenAIRE

    Neveen M. El-Sherif; Noha Mohy Issa

    2015-01-01

    Background: Naphthalene (NA) is a common environmental contaminant and is abundant in tobacco smoke. Rosemary (Rosmarinus officinalis) is a herb commonly used as a spice and flavoring agents in food processing and is useful in the treatment of many diseases. Aim of the work: To study the nephrotoxicity of NA and to evaluate the possible protective role of rosemary extract in adult male albino rat. Materials and Methods: 25 animals were divided into three groups: Group I (Control group), G...

  6. Genome-Wide Analysis of the Biosynthesis and Deactivation of Gibberellin-Dioxygenases Gene Family in Camellia sinensis (L. O. Kuntze

    Directory of Open Access Journals (Sweden)

    Cheng Pan

    2017-09-01

    Full Text Available Gibberellins (GAs, a class of diterpenoid phytohormones, play a key role in regulating diverse processes throughout the life cycle of plants. Bioactive GA levels are rapidly regulated by Gibberellin-dioxygenases (GAox, which are involved in the biosynthesis and deactivation of gibberellin. In this manuscript, a comprehensive genome-wide analysis was carried out to find all GAox in Camellia sinensis. For the first time in a tea plant, 14 CsGAox genes, containing two domains, DIOX_N (PF14226 and 2OG-FeII_Oxy, were identified (PF03171. These genes all belong to 2-oxoglutarate-dependent dioxygenases (2-ODD, including four CsGA20ox (EC: 1.14.11.12, three CsGA3ox (EC: 1.14.11.15, and seven CsGA2ox (EC: 1.14.11.13. According to the phylogenetic classification as in Arabidopsis, the CsGAox genes spanned five subgroups. Each CsGAox shows tissue-specific expression patterns, although these vary greatly. Some candidate genes, which may play an important role in response to external abiotic stresses, have been identified with regards to patterns, such as CsGA20ox2, CsGA3ox2, CsGA3ox3, CsGA2ox1, CsGA2ox2, and CsGA2ox4. The bioactive GA levels may be closely related to the GA20ox, GA3ox and GA2ox genes. In addition, the candidate genes could be used as marker genes for abiotic stress resistance breeding in tea plants.

  7. Naphthalene bisimides asymmetrically and symmetrically N-substituted with triarylamine - comparison of spectroscopic, electrochemical, electronic and self-assembly properties

    Czech Academy of Sciences Publication Activity Database

    Rybakiewicz, R.; Zapala, J.; Djurado, D.; Nowakowski, R.; Toman, Petr; Pfleger, Jiří; Verilhac, J.-M.; Zagorska, M.; Pron, A.

    2013-01-01

    Roč. 15, č. 5 (2013), s. 1578-1587 ISSN 1463-9076 R&D Projects: GA ČR(CZ) GAP205/10/2280; GA MŠk 7E10040 EU Projects: European Commission(XE) 247745 - FlexNet Institutional research plan: CEZ:AV0Z40500505 Institutional support: RVO:61389013 Keywords : naphthalene bisimides * density functional theory * electrochemistry Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 4.198, year: 2013

  8. Crystallization and preliminary X-ray diffraction analyses of the redox-controlled complex of terminal oxygenase and ferredoxin components in the Rieske nonhaem iron oxygenase carbazole 1,9a-dioxygenase

    Energy Technology Data Exchange (ETDEWEB)

    Matsuzawa, Jun; Aikawa, Hiroki; Umeda, Takashi [The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657 (Japan); Ashikawa, Yuji [The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657 (Japan); Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555 (Japan); Suzuki-Minakuchi, Chiho [The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657 (Japan); Kawano, Yoshiaki [RIKEN SPring-8 Center, RIKEN Harima Branch, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan); Fujimoto, Zui [National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602 (Japan); Okada, Kazunori [The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657 (Japan); Yamane, Hisakazu [Teikyo University, 1-1 Toyosatodai, Utsunomiya, Tochigi 320-0003 (Japan); Nojiri, Hideaki, E-mail: anojiri@mail.ecc.u-tokyo.ac.jp [The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657 (Japan)

    2014-09-25

    A crystal was obtained of the complex between reduced terminal oxygenase and oxidized ferredoxin components of carbazole 1,9a-dioxygenase. The crystal belonged to space group P2{sub 1} and diffracted to 2.25 Å resolution. The initial reaction in bacterial carbazole degradation is catalyzed by carbazole 1,9a-dioxygenase, which consists of terminal oxygenase (Oxy), ferredoxin (Fd) and ferredoxin reductase components. The electron-transfer complex between reduced Oxy and oxidized Fd was crystallized at 293 K using the hanging-drop vapour-diffusion method with PEG 3350 as the precipitant under anaerobic conditions. The crystal diffracted to a maximum resolution of 2.25 Å and belonged to space group P2{sub 1}, with unit-cell parameters a = 97.3, b = 81.6, c = 116.2 Å, α = γ = 90, β = 100.1°. The V{sub M} value is 2.85 Å{sup 3} Da{sup −1}, indicating a solvent content of 56.8%.

  9. Measurements of the phase behavior of ternary systems of interest to the GAS process: III. The system CO2 + toluene plus naphthalene

    NARCIS (Netherlands)

    Breure, B.; Kordikowski, A.; Wilmes, B; Peters, C.J.

    2013-01-01

    Systems consisting of a supercritical gas, an organic solvent and an organic solute are of interest for the gas-antisolvent (GAS) process. In this work the phase behavior of the ternary system carbon dioxide + toluene + naphthalene was studied in a Cailletet apparatus over the temperature range

  10. mRNA localization mechanisms in Trypanosoma cruzi.

    Directory of Open Access Journals (Sweden)

    Lysangela R Alves

    Full Text Available Asymmetric mRNA localization is a sophisticated tool for regulating and optimizing protein synthesis and maintaining cell polarity. Molecular mechanisms involved in the regulated localization of transcripts are widespread in higher eukaryotes and fungi, but not in protozoa. Trypanosomes are ancient eukaryotes that branched off early in eukaryote evolution. We hypothesized that these organisms would have basic mechanisms of mRNA localization. FISH assays with probes against transcripts coding for proteins with restricted distributions showed a discrete localization of the mRNAs in the cytoplasm. Moreover, cruzipain mRNA was found inside reservosomes suggesting new unexpected functions for this vacuolar organelle. Individual mRNAs were also mobilized to RNA granules in response to nutritional stress. The cytoplasmic distribution of these transcripts changed with cell differentiation, suggesting that localization mechanisms might be involved in the regulation of stage-specific protein expression. Transfection assays with reporter genes showed that, as in higher eukaryotes, 3'UTRs were responsible for guiding mRNAs to their final location. Our results strongly suggest that Trypanosoma cruzi have a core, basic mechanism of mRNA localization. This kind of controlled mRNA transport is ancient, dating back to early eukaryote evolution.

  11. Spectrophotometric determination of ruthenium (III) and rhodium (III) with 9,10-phenanthrenequinone monoxime after extraction into molten naphthalene

    International Nuclear Information System (INIS)

    Wasey, A.; Bansal, R.K.; Puri, B.K.; Satake, Masatada.

    1983-01-01

    9,10-Phenanthrenequinone monoxime has been used as a reagent for the spectrophotometric determination of ruthenium(III) and rhodium(III) after extraction into molten naphthalene. The extracted mixture of the metal complex and naphthalene was dissolved in chloroform and ruthenium and rhodium were determined spectrophotometrically. Beer's law holds in the concentration range of 0.2-4.1 μg/cm 3 for ruthenium and 0.3-5.3 μg/cm 3 for rhodium in 10 cm 3 of the final solution. The molar absorptivities and Sandell sensitivities are calculated to be 9.70 x 10 3 l mol -1 cm -1 and 0.01 μg/cmsup(2 ) (660 nm) for ruthenium and 1.13 x 10 4 l mol -1 cm -1 and 0.009 μg/cm 2 (410 nm) for rhodium respectively. Aliquots containing 2.0 μg of ruthenium and 4.1 μg of rhodium give mean absorbances of 0.192 and 0.451 with standard deviations of 0.0017 and 0.0039, respectively. Interference of various ions has been studied and the method has been applied to the determination of ruthenium and rhodium in various synthetic mixtures. This procedure is also applied to the simultaneous determination of ruthenium and rhodium present together in a solution. (author)

  12. Methyl (2Z-2-{[N-(2-formylphenyl-4-methylbenzenesulfonamido]methyl}-3-(naphthalen-1-ylprop-2-enoate

    Directory of Open Access Journals (Sweden)

    R. Madhanraj

    2012-02-01

    Full Text Available In the title compound, C29H25NO5S, the sulfonyl-bound benzene ring forms dihedral angles of 42.1 (1 and 48.5 (1°, respectively, with the formyl-substituted benzene ring and the naphthalene residue. In the crystal, pairs of C—H...O interactions lead to the formation of R22(10 inversion dimers, which are linked by further C—H...O interactions into supramolecular tapes running along [100]. The crystal packing is further stabilized by C—H...π interactions.

  13. Inhibition of para-Hydroxyphenylpyruvate Dioxygenase by Analogues of the Herbicide Nitisinone As a Strategy to Decrease Homogentisic Acid Levels, the Causative Agent of Alkaptonuria.

    Science.gov (United States)

    Laschi, Marcella; Bernardini, Giulia; Dreassi, Elena; Millucci, Lia; Geminiani, Michela; Braconi, Daniela; Marzocchi, Barbara; Botta, Maurizio; Manetti, Fabrizio; Santucci, Annalisa

    2016-04-05

    Alkaptonuria (AKU) is a rare multisystem metabolic disease caused by deficient activity of homogentisate 1,2-dioxygenase (HGD), which leads to the accumulation of homogentisic acid (HGA). Currently, there is no treatment for AKU. The sole drug with some beneficial effects is the herbicide nitisinone (1), an inhibitor of p-hydroxyphenylpyruvate dioxygenase (4-HPPD). 1 has been used as a life-saving drug in infants with type I tyrosinemia despite severe side effects due to the buildup of tyrosine. Four clinical trials of nitisinone to treat AKU have shown that 1 consistently decreases HGA levels, but also caused the accumulation of tyrosine in blood serum. Moreover, the human preclinical toxicological data for 1 are incomplete. In this work, we performed pharmacodynamics and toxicological evaluations of 1, providing the first report of LD50 values in human cells. Intracellular tyrosinemia was also evaluated. Three additional 4-HPPD inhibitors with a more favorable profile than that of 1 in terms of IC50, LD50, and tyrosine accumulation were also identified among commercially available compounds. These may be promising starting points for the development of new therapeutic strategies for the treatment of AKU. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. DNA methylcytosine dioxygenase ten-eleven translocation 2 enhances lipopolysaccharide-induced cytokine expression in human dental pulp cells by regulating MyD88 hydroxymethylation.

    Science.gov (United States)

    Wang, Xinxuan; Feng, Zhihui; Li, Qimeng; Yi, Baicheng; Xu, Qiong

    2018-04-13

    Dental pulp inflammation is a bacterially driven inflammation process characterized by the local accumulation of cytokines/chemokines that participate in destructive processes in the pulp. Multiple mechanisms are involved in dental pulp inflammation, including epigenetic events, such as DNA methylation/demethylation. Ten-eleven translocation 2 (TET2) is a recently discovered DNA methylcytosine dioxygenase that plays important roles in inflammatory disease. However, its role in the inflammatory response of dental pulp is unknown. We observed elevated mRNA and protein levels of TET2 after lipopolysaccharide (LPS) stimulation in human dental pulp cells (hDPCs). To identify the effects of TET2 on cytokine expression, TET2 was knocked down and cytokines were detected using a cytokine antibody array after LPS stimulation. The protein expression of GM-CSF, IL-6, IL-8 and RANTES decreased in the LPS-induced hDPCs following TET2 knockdown. The downregulated expression levels of IL-6 and IL-8 were further confirmed by real-time quantitative polymerase chain reaction (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA). Additionally, the phosphorylation levels of IKK-α/β, p65 and IκBα of the NF-κB signaling pathway were decreased in the TET2-silenced group. Furthermore, the global 5-hydroxymethylcytosine (5hmC) level was significantly decreased and the genomic 5-methylcytosine (5mC) level was increased in the TET2-deficient hDPCs; TET2 depletion resulted in a decrease in the 5hmC level of the MyD88 promoter following LPS stimulation. These findings indicate that TET2 knockdown inhibits LPS-induced inflammatory response in hDPCs by downregulating MyD88 hydroxymethylation. Thus, TET2-dependent DNA demethylation might play an important role in dental pulp inflammation as an epigenetic regulator.

  15. A "White" Anthocyanin-less Pomegranate (Punica granatum L.) Caused by an Insertion in the Coding Region of the Leucoanthocyanidin Dioxygenase (LDOX; ANS) Gene.

    Science.gov (United States)

    Ben-Simhon, Zohar; Judeinstein, Sylvie; Trainin, Taly; Harel-Beja, Rotem; Bar-Ya'akov, Irit; Borochov-Neori, Hamutal; Holland, Doron

    2015-01-01

    Color is an important determinant of pomegranate fruit quality and commercial value. To understand the genetic factors controlling color in pomegranate, chemical, molecular and genetic characterization of a "white" pomegranate was performed. This unique accession is lacking the typical pomegranate color rendered by anthocyanins in all tissues of the plant, including flowers, fruit (skin and arils) and leaves. Steady-state gene-expression analysis indicated that none of the analyzed "white" pomegranate tissues are able to synthesize mRNA corresponding to the PgLDOX gene (leucoanthocyanidin dioxygenase, also called ANS, anthocyanidin synthase), which is one of the central structural genes in the anthocyanin-biosynthesis pathway. HPLC analysis revealed that none of the "white" pomegranate tissues accumulate anthocyanins, whereas other flavonoids, corresponding to biochemical reactions upstream of LDOX, were present. Molecular analysis of the "white" pomegranate revealed the presence of an insertion and an SNP within the coding region of PgLDOX. It was found that the SNP does not change amino acid sequence and is not fully linked with the "white" phenotype in all pomegranate accessions from the collection. On the other hand, genotyping of pomegranate accessions from the collection and segregating populations for the "white" phenotype demonstrated its complete linkage with the insertion, inherited as a recessive single-gene trait. Taken together, the results indicate that the insertion in PgLDOX is responsible for the "white" anthocyanin-less phenotype. These data provide the first direct molecular, genetic and chemical evidence for the effect of a natural modification in the LDOX gene on color accumulation in a fruit-bearing woody perennial deciduous tree. This modification can be further utilized to elucidate the physiological role of anthocyanins in protecting the tree organs from harmful environmental conditions, such as temperature and UV radiation.

  16. T-lymphocyte cytokine mRNA expression in cystic echinococcosis.

    Science.gov (United States)

    Fauser, S; Kern, P

    1997-04-01

    In the present study we investigated cytokine mRNA expression by peripheral blood mononuclear cells (PBMC) from patients with cystic echinococcosis (CE) after stimulation with different antigens. By using reverse transcriptase polymerase chain reaction (RT-PCR) we could demonstrate that restimulation with crude Echinococcus granulosus antigen (Eg-Ag) induced or enhanced Th2 cytokine mRNA expression, especially IL-5 (by using antigen from sheep cyst fluid) in 23 out of 26 investigated CE patients and IL-10 (by using antigen from camel cyst fluid) in 10 out of 10 investigated CE patients. In contrast, IL-5 mRNA expression was absent in PBMC of healthy controls after Eg-Ag stimulation. To determine the specificity of this reaction we stimulated PBMC from 11 CE patients with crude Echinococcus multilocularis antigen (Em-Ag) and PBMC from 8 CE patients with Toxocara canis antigen (Tc-Ag). We found that the PBMC of patients showed a similar mRNA cytokine pattern on stimulation with Em-Ag when compared with Eg-Ag stimulation. The cytokine mRNA pattern on stimulation with Tc-Ag, however, resembled the cytokine mRNA pattern of unstimulated PBMC. Furthermore, the stimulation of PBMC with crude Mycobacterium tuberculosis antigen (H37Ra) and purified protein derivative (PPD) of M. tuberculosis revealed distinct IL-5 mRNA expression in all investigated CE patients, whereas in healthy controls IL-5 mRNA expression was very weak or totally absent. Thus, our results indicate an induction of Th2 cytokine mRNA expression in CE patients, which is frequently observed in parasite infections. Interestingly, this response persists after stimulation with tuberculosis antigens, which normally induce Th1 response.

  17. Direct measurements of the enthalpy of solution of solid solute in supercritical fluids: study on the CO2-naphthalene system.

    Science.gov (United States)

    Zhang, X; Han, B; Zhang, J; Li, H; He, J; Yan, H

    2001-10-01

    A setup for a calorimeter for simultaneously measuring the solubility and the solution enthalpy of solid solutes in supercritical fluids (SCFs) has been established. The enthalpy of solution of naphthalene in supercritical CO2 was measured at 308.15 K in the pressure range from 8.0-11.0 MPa. It was found that the enthalpy of solution (deltaH) was negative in the pressure range from 8.0 to 9.5 MPa, and the absolute value decreased with increasing pressure. In this pressure range, the dissolution of the solute was enthalpy driven. However, the deltaH became positive at pressures higher than 9.5 MPa, and the dissolution was entropy driven. Monte Carlo simulation was performed to analyze the local structural environment of the solvated naphthalene molecules in supercritical CO2 under the experimental conditions for the calorimetric measurements. By combining the enthalpy data and the simulation results, it can be deduced that the energy level of CO2 in the high compressible region is higher than that at higher pressures, which results in the large negative enthalpy of solution and the larger degree of solvent-solute clustering in the high compressible region.

  18. Sawdust Ash as Powder Material for Self-Compacting Concrete Containing Naphthalene Sulfonate

    Directory of Open Access Journals (Sweden)

    Augustine U. Elinwa

    2014-01-01

    Full Text Available Tests are carried out to determine the fluidity of Ashaka Portland cement paste and its compatibility with sawdust ash (SDA as powder material for self-compacting cement (SCC mixtures. Results of the investigation showed that saturation was achieved at w/c ratios of 0.4 and 0.42, at dosages of naphthalene sulfonate superplasticizers of 3.5% and 2%, respectively. The optimum replacement level for the SCC mixture was 10 wt.% of cement by SDA and 2% of the superplasticizer dosage. The achieved spread and flow time were 26 cm and 8 seconds and are within the specified range of 24 cm to 26 cm and 7 to 11 seconds, respectively. Statistical inference showed that the mix, w/c, and the interaction between the mix and w/c ratio are significant.

  19. Expression of calmodulin mRNA in rat olfactory neuroepithelium.

    Science.gov (United States)

    Biffo, S; Goren, T; Khew-Goodall, Y S; Miara, J; Margolis, F L

    1991-04-01

    A calmodulin (CaM) cDNA was isolated by differential hybridization screening of a lambda gt10 library prepared from rat olfactory mucosa. This cDNA fragment, containing most of the open reading frame of the rat CaMI gene, was subcloned and used to characterize steady-state expression of CaM mRNA in rat olfactory neuroepithelium and bulb. Within the bulb mitral cells are the primary neuronal population expressing CaM mRNA. The major CaM mRNA expressed in the olfactory mucosa is 1.7 kb with smaller contributions from mRNAs of 4.0 and 1.4 kb. CaM mRNA was primarily associated with the olfactory neurons and, despite the cellular complexity of the tissue and the known involvement of CaM in diverse cellular processes, was only minimally evident in sustentacular cells, gland cells or respiratory epithelium. Following bulbectomy CaM mRNA declines in the olfactory neuroepithelium as does olfactory marker protein (OMP) mRNA. In contrast to the latter, CaM mRNA makes a partial recovery by one month after surgery. These results, coupled with those from in situ hybridization, indicate that CaM mRNA is expressed in both mature and immature olfactory neurons. The program regulating CaM gene expression in olfactory neurons is distinct from those controlling expression of B50/GAP43 in immature, or OMP in mature, neurons respectively.

  20. Expression Profile of Carotenoid Cleavage Dioxygenase Genes in Summer Squash (Cucurbita pepo L.).

    Science.gov (United States)

    González-Verdejo, Clara I; Obrero, Ángeles; Román, Belén; Gómez, Pedro

    2015-06-01

    Carotenoids are important dietary components that can be found in vegetable crops. The accumulation of these compounds in fruit and vegetables is altered by the activity of carotenoid cleavage dioxygenases (CCDs) enzymes that produce their degradation. The aim of this work was to study the possible implication of CCD genes in preventing carotenoid storage in the horticultural crop summer squash (Cucurbita pepo L.). The relationship between the presence of these compounds and gene expression for CCDs was studied in three varieties showing different peel and flesh colour. Expression analysis for the CCD genes CpNCED1, CpNCED2, CpNCED3, CpNCED9, CpCCD1, CpCCD4a, CpCCD4b and CpCCD8 was carried out on different organs and at several fruit developmental stages. The results showed that the CpCCD4a and CpCCD4b genes were highly expressed in the variety with lowest carotenoid content suggesting a putative role in carotenoid accumulation pattern in summer squash fruit.

  1. Ability of bacterial biphenyl dioxygenases from Burkholderia sp. LB400 and Comamonas testosteroni B-356 to catalyse oxygenation of ortho-hydroxychlorobiphenyls formed from PCBs by plants

    Czech Academy of Sciences Publication Activity Database

    Francová, K.; Macková, M.; Macek, Tomáš; Sylvestre, M.

    2004-01-01

    Roč. 127, - (2004), s. 41-48 ISSN 0269-7491 R&D Projects: GA ČR GA526/01/1292 Grant - others:Natural Science and Engineering Research(CA) RGPIN39579-02; NATO Collaborative linkage(XE) SA(EST.GLC.977477)5941SA Institutional research plan: CEZ:AV0Z4055905 Keywords : PCB degradation * biphenyl dioxygenases * enzyme specificity Subject RIV: CE - Biochemistry Impact factor: 2.205, year: 2004

  2. Fluorescent deep-blue and hybrid white emitting devices based on a naphthalene-benzofuran compound

    KAUST Repository

    Yang, Xiaohui

    2013-08-01

    We report the synthesis, photophysics and electrochemical properties of naphthalene-benzofuran compound 1 and its application in organic light emitting devices. Fluorescent deep-blue emitting devices employing 1 as the emitting dopant embedded in 4-4′-bis(9-carbazolyl)-2,2′-biphenyl (CBP) host show the peak external quantum efficiency of 4.5% and Commission Internationale d\\'Énclairage (CIE) coordinates of (0.15, 0.07). Hybrid white devices using fluorescent blue emitting layer with 1 and a phosphorescent orange emitting layer based on an iridium-complex show the peak external quantum efficiency above 10% and CIE coordinates of (0.31, 0.37). © 2013 Published by Elsevier B.V.

  3. Whole-genome analysis of mRNA decay in Plasmodium falciparum reveals a global lengthening of mRNA half-life during the intra-erythrocytic development cycle.

    Science.gov (United States)

    Shock, Jennifer L; Fischer, Kael F; DeRisi, Joseph L

    2007-01-01

    The rate of mRNA decay is an essential element of post-transcriptional regulation in all organisms. Previously, studies in several organisms found that the specific half-life of each mRNA is precisely related to its physiologic role, and plays an important role in determining levels of gene expression. We used a genome-wide approach to characterize mRNA decay in Plasmodium falciparum. We found that, globally, rates of mRNA decay increase dramatically during the asexual intra-erythrocytic developmental cycle. During the ring stage of the cycle, the average mRNA half-life was 9.5 min, but this was extended to an average of 65 min during the late schizont stage of development. Thus, a major determinant of mRNA decay rate appears to be linked to the stage of intra-erythrocytic development. Furthermore, we found specific variations in decay patterns superimposed upon the dominant trend of progressive half-life lengthening. These variations in decay pattern were frequently enriched for genes with specific cellular functions or processes. Elucidation of Plasmodium mRNA decay rates provides a key element for deciphering mechanisms of genetic control in this parasite, by complementing and extending previous mRNA abundance studies. Our results indicate that progressive stage-dependent decreases in mRNA decay rate function are a major determinant of mRNA accumulation during the schizont stage of intra-erythrocytic development. This type of genome-wide change in mRNA decay rate has not been observed in any other organism to date, and indicates that post-transcriptional regulation may be the dominant mechanism of gene regulation in P. falciparum.

  4. Effects of methoxy and formyl substituents on the energetics and reactivity of α-naphthalenes: a calorimetric and computational study.

    Science.gov (United States)

    Silva, Ana L R; Freitas, Vera L S; Ribeiro da Silva, Maria D M C

    2014-07-01

    A combined experimental and computational study was developed to evaluate and understand the energetics and reactivity of formyl and methoxy α-naphthalene derivatives. Static bomb combustion calorimetry and the Calvet microcalorimetry were the experimental techniques used to determine the standard (p(o)=0.1 MPa) molar enthalpies of formation, in the liquid phase, ΔfHm(o)(l), and of vaporization, Δl(g)Hm(o), at T=298.15K, respectively, of the two liquid naphthalene derivatives. Those experimental values were used to derive the values of the experimental standard molar enthalpies of formation, in the gaseous phase, ΔfHm(o)(g), of 1-methoxynaphthalene, (-3.0 ± 3.1)kJmol(-1), and of 1-formylnaphthalene, (36.3 ± 4.1)kJ mol(-1). High-level quantum chemical calculations at the composite G3(MP2)//B3LYP level were performed to estimate the values of the ΔfHm(o)(g) of the two compounds studied resulting in values in very good agreement with experimental ones. Natural bond orbital (NBO) calculations were also performed to determine more about the structure and reactivity of this class of compounds. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Thermogravimetric study of thermal decontamination of soils polluted by hexachlorobenzene, 4-chlorobiphenyl, naphthalene, or n-decane.

    Science.gov (United States)

    Risoul, V; Pichon, C; Trouvé, G; Peters, W A; Gilot, P; Prado, G

    1999-02-15

    To determine decontamination behavior as affected by temperature, shallow beds of a clay-rich, a calcerous, and a sedimentary soil, artificially polluted with hexachlorobenzene, 4-chlorobiphenyl, naphthalene, or n-decane, were separately heated at 5 degrees C min-1 in a thermogravimetric analyzer. Temperatures for deep cleaning of the calcerous and the sedimentary soil increased with increasing boiling point (bp) of the aromatic contaminants, but removal efficiencies still approached 100% well below the bp. Decontamination rates were therefore modelled according to a pollutant evaporation-diffusion transport model. For the calcerous and sedimentary soils, this model reasonably correlated removal of roughly the first 2/3 of the naphthalene, but gave only fair predictions for hexachlorobenzene and 4-chlorobiphenyl. It was necessary to heat the clay soil above the aromatics bp to achieve high decontamination efficiencies. Weight loss data imply that for temperatures from near ambient to as much as 150 degrees C, interactions of each aromatic with the clay soil, or its decomposition products, result in lower net volatilization of the contaminated vs. neat clay. A similar effect was observed in heating calcerous soil polluted with hexachlorobenzene from near ambient to about 140 degrees C. Decontamination mechanisms remain to be established, although the higher temperatures needed to remove aromatics from the clay may reflect a more prominent role for surface desorption than evaporation. This would be consistent with our estimates that the clay can accommodate all of the initial pollutant loadings within a single surface monolayer, whereas the calcerous and sedimentary soils cannot.

  6. Origin of the Proton-transfer Step in the Cofactor-free (1H)-3-Hydroxy-4-oxoquinaldine 2,4-Dioxygenase

    Science.gov (United States)

    Hernandez-Ortega, Aitor; Quesne, Matthew G.; Bui, Soi; Heuts, Dominic P. H. M.; Steiner, Roberto A.; Heyes, Derren J.; de Visser, Sam P.; Scrutton, Nigel S.

    2014-01-01

    Dioxygenases catalyze a diverse range of chemical reactions that involve the incorporation of oxygen into a substrate and typically use a transition metal or organic cofactor for reaction. Bacterial (1H)-3-hydroxy-4-oxoquinaldine 2,4-dioxygenase (HOD) belongs to a class of oxygenases able to catalyze this energetically unfavorable reaction without any cofactor. In the quinaldine metabolic pathway, HOD breaks down its natural N-heteroaromatic substrate using a mechanism that is still incompletely understood. Experimental and computational approaches were combined to study the initial step of the catalytic cycle. We have investigated the role of the active site His-251/Asp-126 dyad, proposed to be involved in substrate hydroxyl group deprotonation, a critical requirement for subsequent oxygen reaction. The pH profiles obtained under steady-state conditions for the H251A and D126A variants show a strong pH effect on their kcat and kcat/Km constants, with a decrease in kcat/Km of 5500- and 9-fold at pH 10.5, respectively. Substrate deprotonation studies under transient-state conditions show that this step is not rate-limiting and yield a pKa value of ∼7.2 for WT HOD. A large solvent isotope effect was found, and the pKa value was shifted to ∼8.3 in D2O. Crystallographic and computational studies reveal that the mutations have a minor effect on substrate positioning. Computational work shows that both His-251 and Asp-126 are essential for the proton transfer driving force of the initial reaction. This multidisciplinary study offers unambiguous support to the view that substrate deprotonation, driven by the His/Asp dyad, is an essential requirement for its activation. PMID:24482238

  7. Isomerization and self-condensation reactions subsequent the. beta. -decay of tritiated naphthalene in the presence of liquid and gaseous benzene

    Energy Technology Data Exchange (ETDEWEB)

    Angelini, G.; Keheyan, Y.; Lilla, E.; Perez, G. (Consiglio Nazionale delle Ricerche, Rome (Italy). Ist. di Chimica Nucleare)

    1990-01-01

    Tritiated napththylium ions, generated by spontaneous {beta}-decay of (1,4-{sup 3}H) naphthalene, have been allowed to react with benzene molecules in gaseous and liquid phase. The isomeric phenylnaphthalenes and fluoranthene have been found among the reaction products. The differences between the reactivity pattern of naphthylium ion in the two phases can be explained by the different efficiency of collisional stabilization of the excited reaction intermediates. (orig.).

  8. [Impacts of the formula of Suoquanwan(SQW) on expression of AQP-2 mRNA and AVPR-V2 mRNA in the kidney of rat polyuria model of Yang-deficiency].

    Science.gov (United States)

    Cao, Hong-Ying; Wu, Qing-He; Huang, Ping; He, Jin-Yang

    2009-06-01

    To observe the impacts of the formula of Suoquanwan (SQW) on the expression of AQP-2 mRNA and AVPR-V2 mRNA in the kidney of rat polyuria model of Yang-deficiency. The model rats were induced by adenine (250 mg/kg) for 4 weeks, then treated respectively with SQW or dDAVP. The expression of AQP-2 mRNA and AVPR-V2 mRNA in kidney of Yang-deficiency model by realtime fluorescence quantitative PCR method were investigated. In model rats, the expression of AQP-2 mRNA and AVPR-V2 mRNA in the kidney decreased, dDAVP and SQW high dose could increased the expression of AQP-2 mRNA and AVPR-V2 mRNA in the kidney. The others had no influence on the expression of AQP-2 mRNA and AVPR-V2 mRNA in the kidney. SQW can increase the expression of AQP-2 mRNA and AVPR-V2 mRNA in the kidney of rat polyuria model of Yang-deficiency.

  9. Staphylococcus aureus RNAIII binds to two distant regions of coa mRNA to arrest translation and promote mRNA degradation.

    Directory of Open Access Journals (Sweden)

    Clément Chevalier

    2010-03-01

    Full Text Available Staphylococcus aureus RNAIII is the intracellular effector of the quorum sensing system that temporally controls a large number of virulence factors including exoproteins and cell-wall-associated proteins. Staphylocoagulase is one major virulence factor, which promotes clotting of human plasma. Like the major cell surface protein A, the expression of staphylocoagulase is strongly repressed by the quorum sensing system at the post-exponential growth phase. Here we used a combination of approaches in vivo and in vitro to analyze the mechanism used by RNAIII to regulate the expression of staphylocoagulase. Our data show that RNAIII represses the synthesis of the protein through a direct binding with the mRNA. Structure mapping shows that two distant regions of RNAIII interact with coa mRNA and that the mRNA harbors a conserved signature as found in other RNAIII-target mRNAs. The resulting complex is composed of an imperfect duplex masking the Shine-Dalgarno sequence of coa mRNA and of a loop-loop interaction occurring downstream in the coding region. The imperfect duplex is sufficient to prevent the formation of the ribosomal initiation complex and to repress the expression of a reporter gene in vivo. In addition, the double-strand-specific endoribonuclease III cleaves the two regions of the mRNA bound to RNAIII that may contribute to the degradation of the repressed mRNA. This study validates another direct target of RNAIII that plays a role in virulence. It also illustrates the diversity of RNAIII-mRNA topologies and how these multiple RNAIII-mRNA interactions would mediate virulence regulation.

  10. Structural insights into substrate and inhibitor binding sites in human indoleamine 2,3-dioxygenase 1

    Energy Technology Data Exchange (ETDEWEB)

    Lewis-Ballester, Ariel; Pham, Khoa N.; Batabyal, Dipanwita; Karkashon, Shay; Bonanno, Jeffrey B.; Poulos, Thomas L.; Yeh, Syun-Ru (Einstein); (UCI)

    2017-11-22

    Human indoleamine 2,3-dioxygenase 1 (hIDO1) is an attractive cancer immunotherapeutic target owing to its role in promoting tumoral immune escape. However, drug development has been hindered by limited structural information. Here, we report the crystal structures of hIDO1 in complex with its substrate, Trp, an inhibitor, epacadostat, and/or an effector, indole ethanol (IDE). The data reveal structural features of the active site (Sa) critical for substrate activation; in addition, they disclose a new inhibitor-binding mode and a distinct small molecule binding site (Si). Structure-guided mutation of a critical residue, F270, to glycine perturbs the Si site, allowing structural determination of an inhibitory complex, where both the Sa and Si sites are occupied by Trp. The Si site offers a novel target site for allosteric inhibitors and a molecular explanation for the previously baffling substrate-inhibition behavior of the enzyme. Taken together, the data open exciting new avenues for structure-based drug design.

  11. Novel mutations in the homogentisate 1,2 dioxygenase gene identified in Jordanian patients with alkaptonuria.

    Science.gov (United States)

    Al-sbou, Mohammed

    2012-06-01

    This study was conducted to identify mutations in the homogentisate 1,2 dioxygenase gene (HGD) in alkaptonuria patients among Jordanian population. Blood samples were collected from four alkaptonuria patients, four carriers, and two healthy volunteers. DNA was isolated from peripheral blood. All 14 exons of the HGD gene were amplified using the polymerase chain reaction (PCR) technique. The PCR products were then purified and analyzed by sequencing. Five mutations were identified in our samples. Four of them were novel C1273A, T1046G, 551-552insG, T533G and had not been previously reported, and one mutation T847C has been described before. The types of mutations identified were two missense mutations, one splice site mutation, one frameshift mutation, and one polymorphism. We present the first molecular study of the HGD gene in Jordanian alkaptonuria patients. This study provides valuable information about the molecular basis of alkaptonuria in Jordanian population.

  12. Electronic absorption spectroscopy of matrix-isolated polycyclic aromatic hydrocarbon cations. I - The naphthalene cation (C10H8/+/)

    Science.gov (United States)

    Salama, F.; Allamandola, L. J.

    1991-01-01

    The ultraviolet, visible, and near-infrared absorption spectra of naphthalene (C10H8) and its radical ion (C10H8/+/), formed by vacuum ultraviolet irradiation, were measured in argon and neon matrices at 4.2 K. The associated vibronic band systems and their spectroscopic assignments are discussed together with the physical and chemical conditions governing ion production in the solid phase. The absorption coefficients were calculated for the ion and found lower than previous values, presumably due to the low polarizability of the neon matrix.

  13. Two three-dimensional coordination polymers of lead(II) with iminodiacetate and naphthalene-dicarboxylate anions: Synthesis, characterization and luminescence behavior

    Energy Technology Data Exchange (ETDEWEB)

    Hazari, Debdoot; Jana, Swapan Kumar [Department of Chemistry and Chemical Technology, Vidyasagar University, Midnapore 721 102, West Bengal (India); Fleck, Michel [Institute of Mineralogy and Crystallography, University of Vienna, Geozentrum, Althanstr. 9, A-1090 Vienna (Austria); Zangrando, Ennio [Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste (Italy); Dalai, Sudipta, E-mail: sudipta@mail.vidyasagar.ac.in [Department of Chemistry and Chemical Technology, Vidyasagar University, Midnapore 721 102, West Bengal (India)

    2014-11-15

    Two lead(II) compounds [Pb{sub 3}(idiac){sub 3}(phen){sub 2}(H{sub 2}O)]·2(H{sub 2}O) (1) and [Pb(ndc)]{sub n} (2), where H{sub 2}idiac=iminodiacetic acid, phen=1,10-phenanthroline and H{sub 2}ndc=naphthalene-2,6-dicarboxylic acid, have been synthesized and structurally characterized. Single crystal X-ray diffraction analysis showed that compound 1 is a discrete trinuclear complex (of two-fold symmetry) which evolves to a supramolecular 3D network via π–π interactions, while in compound 2 the naphthalene dicarboxylate anion act as a linker to form a three dimensional architecture, where the anion adopts a bis-(bidentate bridging) coordination mode connecting four Pb(II) centers. The photoluminescence property of the two complexes has been studied. - graphical abstract: Two new topologically different 1D coordination polymers formed by Pb{sub 4} clusters have been synthesized and characterized by x-ray analysis. The luminescence and thermal properties have been studied. - Highlights: • 1 is a trinuclear complex of Pb(II) growing to 3D network via weak interactions. • In 1, layers of (4,4) rhomboidal topology are identified. • In 2, the ndc anion adopts interesting bis-(bidentate bridging) coordination. • In 2, network is reinforced by C–H…π-ring interactions between the ndc rings.

  14. Liquid-solid extraction of uranium (VI) with TOPO - molten naphthalene and determination by laser fluorimetry in geological samples

    International Nuclear Information System (INIS)

    Kumar, Sanjay; Krishnakumar, M.; Patwardhan, A.A.

    2007-01-01

    A simple, rapid, sensitive, cost-effective and efficient method for separation of uranium using tri-n-octylphosphine oxide (TOPO)-molten naphthalene as solid phase extractant and its determination by laser fluorimetry in geological samples (rock, soil, sediment) was developed. Under optimum conditions, using 50 mg TOPO and 100 mg naphthalene, 50 - 5000 ng of uranium in 10 ml sample solution (3% (v/v) HNO 3 ) could be extracted quantitatively. The extracted uranium was stripped using tetra sodium pyrophosphate (5% (v/v) solution, pH adjusted to 7.0 with H 3 PO 4 ) and determined by laser fluorimetry. The influence of different acid concentrations, the amount of solid phase extractant, sample volumes, different stripping reagents, their volumes and effect of foreign ions on the extraction and determination of uranium (VI) were investigated. Synthetic samples of varying concentration as regards uranium were prepared and analysed. Recoveries ranging from 90% to 105% were obtained. The method was validated by analyzing four certified reference materials namely, BL-5, DH-1a, SY-2, SY-3 and the values obtained for uranium agreed well with the certified values. The method was also applied to the determination of uranium in geological samples (rock, soil and sediment) by laser fluorimetry and the results obtained compared favorably with those obtained from the pellet fluorimetry method. Following the proposed method, determination limit for uranium was found to be 1 μg/g with RSD ± 10%. (author)

  15. Induction of 9-cis-epoxycarotenoid dioxygenase in Arabidopsis thaliana seeds enhances seed dormancy.

    Science.gov (United States)

    Martínez-Andújar, Cristina; Ordiz, M Isabel; Huang, Zhonglian; Nonogaki, Mariko; Beachy, Roger N; Nonogaki, Hiroyuki

    2011-10-11

    Full understanding of mechanisms that control seed dormancy and germination remains elusive. Whereas it has been proposed that translational control plays a predominant role in germination, other studies suggest the importance of specific gene expression patterns in imbibed seeds. Transgenic plants were developed to permit conditional expression of a gene encoding 9-cis-epoxycarotenoid dioxygenase 6 (NCED6), a rate-limiting enzyme in abscisic acid (ABA) biosynthesis, using the ecdysone receptor-based plant gene switch system and the ligand methoxyfenozide. Induction of NCED6 during imbibition increased ABA levels more than 20-fold and was sufficient to prevent seed germination. Germination suppression was prevented by fluridone, an inhibitor of ABA biosynthesis. In another study, induction of the NCED6 gene in transgenic seeds of nondormant mutants tt3 and tt4 reestablished seed dormancy. Furthermore, inducing expression of NCED6 during seed development suppressed vivipary, precocious germination of developing seeds. These results indicate that expression of a hormone metabolism gene in seeds can be a sole determinant of dormancy. This study opens the possibility of developing a robust technology to suppress or promote seed germination through engineering pathways of hormone metabolism.

  16. The growth of bacteria cells in naphthalene and ethanol-bearing systems in the presence of cadmium

    Science.gov (United States)

    Gomes, D. S.; Benzaquem, J.; Rogrigues Augusto, C.; Barboza, E.; Gomes Ferreira Leite, S.

    2003-05-01

    The present work is aimed to show thé effects of cadmium in thé growth oftwo bacteria species in the presenceof'llilplltlalele solubilized in ethanol. The Pseudomonas putida culture and 116, isolated from gasoline soil contaminated with ability to biosurfactant production, were able to growth in naphthalene ethanol until 20 ppm concentration. When a cadmium solution was added ofthis naphthaiene médium we detected a largest bacterial growth with 0.18 ppm of cadmium. We also detected um adaptation period in the growth on the 1.8 and 18 ppm oftthe metal once the final protein concentrations was almost the same in all cxperimental conditions.

  17. Preparation, crystallization and X-ray diffraction analysis to 1.5 Å resolution of rat cysteine dioxygenase, a mononuclear iron enzyme responsible for cysteine thiol oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, Chad R. [Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853-8001 (United States); Hao, Quan [MacCHESS at the Cornell High Energy Synchrotron Source, Cornell University, Ithaca, NY 14853-8001 (United States); Stipanuk, Martha H., E-mail: mhs6@cornell.edu [Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853-8001 (United States)

    2005-11-01

    Recombinant rat cysteine dioxygenase (CDO) has been expressed, purified and crystallized and X-ray diffraction data have been collected to 1.5 Å resolution. Cysteine dioxygenase (CDO; EC 1.13.11.20) is an ∼23 kDa non-heme iron metalloenzyme that is responsible for the oxidation of cysteine by O{sub 2}, yielding cysteinesulfinate. CDO catalyzes the first step in the conversion of cysteine to taurine, as well as the first step in the catabolism of cysteine to pyruvate plus sulfate. Recombinant rat CDO was heterologously expressed, purified and crystallized. The protein was expressed as a fusion protein bearing a polyhistidine tag to facilitate purification, a thioredoxin tag to improve solubility and a factor Xa cleavage site to permit removal of the entire N-terminus, leaving only the 200 amino acids inherent to the native protein. A multi-step purification scheme was used to achieve >95% purity of CDO. The optimal CDO crystals diffracted to 1.5 Å resolution and belonged to space group P4{sub 3}2{sub 1}2 or P4{sub 1}2{sub 1}2, with unit-cell parameters a = b = 57.55, c = 123.06 Å, α = β = γ = 90°. CDO shows little homology to any other proteins; therefore, the structure of the enzyme will be determined by ab initio phasing using a selenomethionyl derivative.

  18. The RDE-10/RDE-11 complex triggers RNAi-induced mRNA degradation by association with target mRNA in C. elegans.

    Science.gov (United States)

    Yang, Huan; Zhang, Ying; Vallandingham, Jim; Li, Hua; Li, Hau; Florens, Laurence; Mak, Ho Yi

    2012-04-15

    The molecular mechanisms for target mRNA degradation in Caenorhabditis elegans undergoing RNAi are not fully understood. Using a combination of genetic, proteomic, and biochemical approaches, we report a divergent RDE-10/RDE-11 complex that is required for RNAi in C. elegans. Genetic analysis indicates that the RDE-10/RDE-11 complex acts in parallel to nuclear RNAi. Association of the complex with target mRNA is dependent on RDE-1 but not RRF-1, suggesting that target mRNA recognition depends on primary but not secondary siRNA. Furthermore, RDE-11 is required for mRNA degradation subsequent to target engagement. Deep sequencing reveals a fivefold decrease in secondary siRNA abundance in rde-10 and rde-11 mutant animals, while primary siRNA and microRNA biogenesis is normal. Therefore, the RDE-10/RDE-11 complex is critical for amplifying the exogenous RNAi response. Our work uncovers an essential output of the RNAi pathway in C. elegans.

  19. Indoleamine 2,3-Dioxygenase (IDO) Enzyme Links Innate Immunity and Altered T-Cell Differentiation in Non-ST Segment Elevation Acute Coronary Syndrome.

    Science.gov (United States)

    Zara, Chiara; Severino, Anna; Flego, Davide; Ruggio, Aureliano; Pedicino, Daniela; Giglio, Ada Francesca; Trotta, Francesco; Lucci, Claudia; D'Amario, Domenico; Vinci, Ramona; Pisano, Eugenia; La Rosa, Giulio; Biasucci, Luigi Marzio; Crea, Filippo; Liuzzo, Giovanna

    2017-12-26

    Atherosclerosis is a chronic inflammatory disease characterized by a complex interplay between innate and adaptive immunity. Dendritic cells (DCs) play a key role in T-cell activation and regulation by promoting a tolerogenic environment through the expression of the immunosuppressive enzyme indoleamine 2,3-dioxygenase (IDO), an intracellular enzyme involved in tryptophan catabolism. IDO expression and activity was analyzed in monocytes derived DCs (MDDCs) from non-ST segment elevation myocardial infarction (NSTEMI) patients, stable angina (SA) patients and healthy controls (HC) by real-time quantitative polymerase chain reaction (RT-qPCR) before and after in vitro maturation with lipopolysaccharide (LPS). The amount of tryptophan catabolite; kynurenine; was evaluated in the culture supernatants of mature-MDDCs by ELISA assay. Autologous mixed lymphocyte reaction (MLR) between mature-MDDCs and naïve T-cells was carried out to study the differentiation towards T-helper 1 (Th1) and induced regulatory T-cells (iTreg). Analysis of IDO mRNA transcripts in mature-MDDCs revealed a significant reduction in cells isolated from NSTEMI (625.0 ± 128.2; mean ± SEM) as compared with those from SA (958.5 ± 218.3; p = 0.041) and from HC (1183.6 ± 231.6; p = 0.034). Furthermore; the concentration of kynurenine was lower in NSTEMI patients (2.78 ± 0.2) and SA (2.98 ± 0.25) as compared with HC (5.1 ± 0.69 ng/mL; p = 0.002 and p = 0.016; respectively). When IDO-competent mature-MDDCs were co-cultured with allogeneic naïve T-cells, the ratio between the percentage of generated Th1 and iTreg was higher in NSTEMI (4.4 ± 2.9) than in SA (1.8 ± 0.6; p = 0.056) and HC (0.9 ± 0.3; p = 0.008). In NSTEMI, the tolerogenic mechanism of the immune response related to IDO production by activated MDDCs is altered, supporting their role in T-cell dysregulation.

  20. Indoleamine 2,3-Dioxygenase (IDO Enzyme Links Innate Immunity and Altered T-Cell Differentiation in Non-ST Segment Elevation Acute Coronary Syndrome

    Directory of Open Access Journals (Sweden)

    Chiara Zara

    2017-12-01

    Full Text Available Atherosclerosis is a chronic inflammatory disease characterized by a complex interplay between innate and adaptive immunity. Dendritic cells (DCs play a key role in T-cell activation and regulation by promoting a tolerogenic environment through the expression of the immunosuppressive enzyme indoleamine 2,3-dioxygenase (IDO, an intracellular enzyme involved in tryptophan catabolism. IDO expression and activity was analyzed in monocytes derived DCs (MDDCs from non-ST segment elevation myocardial infarction (NSTEMI patients, stable angina (SA patients and healthy controls (HC by real-time quantitative polymerase chain reaction (RT-qPCR before and after in vitro maturation with lipopolysaccharide (LPS. The amount of tryptophan catabolite; kynurenine; was evaluated in the culture supernatants of mature-MDDCs by ELISA assay. Autologous mixed lymphocyte reaction (MLR between mature-MDDCs and naïve T-cells was carried out to study the differentiation towards T-helper 1 (Th1 and induced regulatory T-cells (iTreg. Analysis of IDO mRNA transcripts in mature-MDDCs revealed a significant reduction in cells isolated from NSTEMI (625.0 ± 128.2; mean ± SEM as compared with those from SA (958.5 ± 218.3; p = 0.041 and from HC (1183.6 ± 231.6; p = 0.034. Furthermore; the concentration of kynurenine was lower in NSTEMI patients (2.78 ± 0.2 and SA (2.98 ± 0.25 as compared with HC (5.1 ± 0.69 ng/mL; p = 0.002 and p = 0.016; respectively. When IDO-competent mature-MDDCs were co-cultured with allogeneic naïve T-cells, the ratio between the percentage of generated Th1 and iTreg was higher in NSTEMI (4.4 ± 2.9 than in SA (1.8 ± 0.6; p = 0.056 and HC (0.9 ± 0.3; p = 0.008. In NSTEMI, the tolerogenic mechanism of the immune response related to IDO production by activated MDDCs is altered, supporting their role in T-cell dysregulation.

  1. Naphthalene Bis(4,8-diamino-1,5-dicarboxyl)amide Building Block for Semiconducting Polymers.

    Science.gov (United States)

    Eckstein, Brian J; Melkonyan, Ferdinand S; Manley, Eric F; Fabiano, Simone; Mouat, Aidan R; Chen, Lin X; Facchetti, Antonio; Marks, Tobin J

    2017-10-18

    We report a new naphthalene bis(4,8-diamino-1,5-dicarboxyl)amide (NBA) building block for polymeric semiconductors. Computational modeling suggests that regio-connectivity at the 2,6- or 3,7-NBA positions strongly modulates polymer backbone torsion and, therefore, intramolecular π-conjugation and aggregation. Optical, electrochemical, and X-ray diffraction characterization of 3,7- and 2,6-dithienyl-substituted NBA molecules and corresponding isomeric NBA-bithiophene copolymers P1 and P2, respectively, reveals the key role of regio-connectivity. Charge transport measurements demonstrate that while the twisted 3,7-NDA-based P1 is a poor semiconductor, the planar 2,6-functionalized NBA polymers (P2-P4) exhibit ambipolarity, with μ e and μ h of up to 0.39 and 0.32 cm 2 /(V·s), respectively.

  2. The AlkB Family of Fe(II)/α-Ketoglutarate-dependent Dioxygenases: Repairing Nucleic Acid Alkylation Damage and Beyond.

    Science.gov (United States)

    Fedeles, Bogdan I; Singh, Vipender; Delaney, James C; Li, Deyu; Essigmann, John M

    2015-08-21

    The AlkB family of Fe(II)- and α-ketoglutarate-dependent dioxygenases is a class of ubiquitous direct reversal DNA repair enzymes that remove alkyl adducts from nucleobases by oxidative dealkylation. The prototypical and homonymous family member is an Escherichia coli "adaptive response" protein that protects the bacterial genome against alkylation damage. AlkB has a wide variety of substrates, including monoalkyl and exocyclic bridged adducts. Nine mammalian AlkB homologs exist (ALKBH1-8, FTO), but only a subset functions as DNA/RNA repair enzymes. This minireview presents an overview of the AlkB proteins including recent data on homologs, structural features, substrate specificities, and experimental strategies for studying DNA repair by AlkB family proteins. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. mRNA processing in yeast

    International Nuclear Information System (INIS)

    Stevens, A.

    1982-01-01

    Investigations in this laboratory center on basic enzymatic reactions of RNA. Still undefined are reactions involved in the conversion of precursors of mRA (pre-mRNA) to mRNA in eukaryotes. The pre-mRNA is called heterogeneous nuclear RNA and is 2 to 6 times larger than mRNA. The conversion, called splicing, involves a removal of internal sequences called introns by endoribonuclease action followed by a rejoining of the 3'- and 5'-end fragments, called exons, by ligating activity. It has not been possible yet to study the enzymes involved in vitro. Also undefined are reactions involved in the turnover or discarding of certain of the pre-mRNA molecules. Yeast is a simple eukaryote and may be expected to have the same, but perhaps simpler, processing reactions as the higher eukaryotes. Two enzymes involved in the processing of pre-mRNA and mRNA in yeast are under investigation. Both enzymes have been partially purified from ribonucleoprotein particles of yeast. The first is a unique decapping enzyme which cleaves [ 3 H]m 7 Gppp [ 14 C]RNA-poly (A) of yeast, yielding [ 3 H]m 7 GDP and is suggested by the finding that the diphosphate product, m 7 GpppA(G), and UDP-glucose are not hydrolyzed. The second enzyme is an endoribonuclease which converts both the [ 3 H] and [ 14 C] labels of [ 3 H]m 7 Gppp[ 14 C]RNA-poly(A) from an oligo(dT)-cellulose bound form to an unbound, acid-insoluble form. Results show that the stimulation involves an interaction of the labeled RNA with the small nuclear RNA. The inhibition of the enzyme by ethidium bromide and its stimulation by small nuclear RNA suggest that it may be a processing ribonuclease, requiring specific double-stranded features in its substrate. The characterization of the unique decapping enzyme and endoribonuclease may help to understand reactions involved in the processing of pre-mRNA and mRNA in eukaryotes

  4. mRNA transfection of mouse and human neural stem cell cultures

    OpenAIRE

    McLenachan, Samuel; Zhang, D.; Palomo, A.B.; Edel, Michael John; Chen, F.K.

    2013-01-01

    The use of synthetic mRNA as an alternative gene delivery vector to traditional DNA-based constructs provides an effective method for inducing transient gene expression in cell cultures without genetic modification. Delivery of mRNA has been proposed as a safer alternative to viral vectors in the induction of pluripotent cells for regenerative therapies. Although mRNA transfection of fibroblasts, dendritic and embryonic stem cells has been described, mRNA delivery to neurosphere cultures has ...

  5. A novel link between Sus1 and the cytoplasmic mRNA decay machinery suggests a broad role in mRNA metabolism

    Directory of Open Access Journals (Sweden)

    Llopis Ana

    2010-03-01

    Full Text Available Abstract Background Gene expression is achieved by the coordinated action of multiple factors to ensure a perfect synchrony from chromatin epigenetic regulation through to mRNA export. Sus1 is a conserved mRNA export/transcription factor and is a key player in coupling transcription initiation, elongation and mRNA export. In the nucleus, Sus1 is associated to the transcriptional co-activator SAGA and to the NPC associated complex termed TREX2/THSC. Through these associations, Sus1 mediates the nuclear dynamics of different gene loci and facilitate the export of the new transcripts. Results In this study, we have investigated whether the yeast Sus1 protein is linked to factors involved in mRNA degradation pathways. We provide evidence for genetic interactions between SUS1 and genes coding for components of P-bodies such as PAT1, LSM1, LSM6 and DHH1. We demonstrate that SUS1 deletion is synthetic lethal with 5'→3' decay machinery components LSM1 and PAT1 and has a strong genetic interaction with LSM6 and DHH1. Interestingly, Sus1 overexpression led to an accumulation of Sus1 in cytoplasmic granules, which can co-localise with components of P-bodies and stress granules. In addition, we have identified novel physical interactions between Sus1 and factors associated to P-bodies/stress granules. Finally, absence of LSM1 and PAT1 slightly promotes the Sus1-TREX2 association. Conclusions In this study, we found genetic and biochemical association between Sus1 and components responsible for cytoplasmic mRNA metabolism. Moreover, Sus1 accumulates in discrete cytoplasmic granules, which partially co-localise with P-bodies and stress granules under specific conditions. These interactions suggest a role for Sus1 in gene expression during cytoplasmic mRNA metabolism in addition to its nuclear function.

  6. New naphthalene polyimide with unusual molar absorption coefficient and excited state properties: Synthesis, photophysics and electrochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Ozser, Mustafa E. [Girne American University, Faculty of Engineering and Architecture, Department of Industrial Engineering, Girne, North Cyprus (Cyprus); Yucekan, Ilke; Bodapati, Jagadeesh B. [Eastern Mediterranean University, Faculty of Arts and Sciences, Department of Chemistry, Famagusta, North Cyprus (Cyprus); Icil, Huriye, E-mail: huriye.icil@emu.edu.tr [Eastern Mediterranean University, Faculty of Arts and Sciences, Department of Chemistry, Famagusta, North Cyprus (Cyprus)

    2013-11-15

    A high molecular weight 1,4,5,8-naphthalene polyimide (ENPI) by one-step polycondensation mechanism and for comparison its monomeric diimide (ENDI) were synthesized; the photophysical and electrochemical properties were studied in detail for ENPI. Monomer has shown unusual insolubility so that the characterization proven to be difficult, whereas ENPI has shown better solubility. The molecular weight data obtained by GPC for the polymer were M{sub n}=8240 and M{sub w}=34,000 g mol{sup −1} respectively with a polydispersity of 4.13. The polyimide exhibited outstandingly high molar absorption coefficients as 599,000, 1,021,000, and 972,700 M{sup −1} cm{sup −1}, which is first time reported in literature for the characteristic 0–2, 0–1, and 0–0 electronic transitions, respectively. ENPI showed concentration dependent and red shifted excimer emission in 1,1,2,2-tetrachloroethane (TCE). The polymer has undergone multielectron reductions in CHCl{sub 3} solution below 100 mV s{sup −1} scan rates which merged into two reversible one-electron reduction peaks at higher scan rates. In solid-state, similar scan rate dependent reduction peaks were noticed. The LUMO, HOMO and optical band gap values obtained for ENPI were −3.73, −6.91, and 3.18 eV respectively. ENDI polymer with striking features has great potential as new sensitizer for efficient dye sensitized organic cells. Highlights: • A high molecular weight naphthalene polyimide was synthesized (M{sub w}=34,000 g mol{sup −1}). • The oligoether polyimide exhibited outstanding molar absorptivity (972,700 M{sup −1} cm{sup −1}). • A red shifted excimer emission has been observed. • The polymer has undergone multielectron reductions.

  7. Simultaneous preconcentration of Cu, Fe and Pb as methylthymol blue complexes on naphthalene adsorbent and flame atomic absorption determination

    International Nuclear Information System (INIS)

    Pourreza, Nahid; Hoveizavi, Reza

    2005-01-01

    A simultaneous preconcentration method was developed for determination of trace amounts of Cu, Fe and Pb by atomic absorption spectrometry. The method is based on the retention of their methylthymol blue complexes by naphthalene methyltrioctyl ammonium chloride adsorbent in a column. The adsorbed metal complexes were eluted from the column with nitric acid and Cu, Fe and Pb were determined by flame atomic absorption spectrometry. Several parameters such as pH of the sample solution, ligand concentration, volume of the sample and the amount of methyltrioctyl ammonium chloride loaded on naphthalene were evaluated. The effect of diverse ions on the preconcentration was also investigated. A preconcentration factor of up to 100 or more can easily be achieved depending on the volume of the sample taken. The calibration graphs were obtained in the range of 5-40, 10-100 and 10-200 ng ml -1 for Cu, Fe and Pb in the initial solution, respectively, when using 500 ml of the solution. The detection limit based on three standard deviations of the blank was 0.54, 3.1, and 4.5 ng ml -1 for Cu, Fe and Pb, respectively. The relative standard deviations (R.S.D.) of 0.62-1.4% for Cu, 1.9-3.4% for Fe and 1.0-2.2% for Pb were obtained. The method was applied to the determination of Cu, Fe and Pb in river and wastewater samples

  8. Mechanism for Clastogenic Activity of Naphthalene. Quarterly Technical Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Buchholz, B. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-02-05

    The project has two main goals: 1) Identify the types of adducts naphthalene (NA) forms with DNA and 2) determine whether adduct formation correlates with site selective tumor formation in defined subcompartments of the respiratory tract (respiratory and olfactory nasal epithelium and airways of mice, rats and rhesus monkeys). Five tasks are associated with the completion of the goals. Task 1: Contracting and Animal Use Approvals. IACUC and ACURO approvals are complete. The subcontract with UC Davis (UCD) was executed in December 2014. Task 2: Perform In Vitro Study for Goal 1. Rat and mouse samples exposures completed. Monkey samples need to be exposed in next quarter. Task 3: Perform In Vitro Study for Goal 2. Mouse and rat ex vivo exposures completed. Monkey samples need to be completed in the next quarter. Task 4: Sample Preparation and Analysis. Mouse and Rat Goal 2 samples completed. Monkey samples remain to be done for Goal 2. Rat samples completed for Goal 1. Mouse and Monkey samples for Goal 1 need to be completed. Task 5: Data Interpretation and Reporting. Poster will be presented at 2016 Society of Toxicology Meeting. Outline for paper on adduct formation complete and similar to poster for SOT meeting.

  9. Indoleamine 2,3-dioxygenase and immune changes under antidepressive treatment in major depression in females.

    Science.gov (United States)

    Zoga, Margarita; Oulis, Panagiotis; Chatzipanagiotou, Stylianos; Masdrakis, Vasilios G; Pliatsika, Paraskevi; Boufidou, Fotini; Foteli, Stefania; Soldatos, Constantin R; Nikolaou, Chryssoula; Papageorgiou, Charalampos

    2014-01-01

    Indoleamine 2, 3-dioxygenase (IDO) induction has been suggested as a mechanism by which immune activation affects tryptophan metabolism and serotonin synthesis in major depressive disorder (MDD). We investigated IDO and changes in inflammatory mediators in patients with MDD undergoing effective treatment. Forty female patients with MDD and 40 controls were recruited. Serum IDO was assessed by enzyme-linked immunosorbent assay (ELISA). We also determined tumor necrosis factor-α (TNFα), interferon-γ (IFNγ), C-reactive protein (CRP) and serotonin concentrations. Patients' baseline concentrations of IDO and immune mediators were higher and serotonin concentrations were lower compared to controls. IDO and TNFα concentrations decreased under treatment and IDO changes were positively correlated with patient improvement. IFNγ and CRP concentrations remained unchanged. Serotonin concentration tended to increase. IDO might play an important role in the pathophysiology of MDD. Moreover, antidepressant therapy might reduce IDO production through an IFNγ-independent pathway. Finally, peripheral concentration of IDO assessed by ELISA might be a useful marker of MDD. Copyright © 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  10. Lignans from Carthamus tinctorius suppress tryptophan breakdown via indoleamine 2,3-dioxygenase

    Science.gov (United States)

    Kuehnl, Susanne; Schroecksnadel, Sebastian; Temml, Veronika; Gostner, Johanna M.; Schennach, Harald; Schuster, Daniela; Schwaiger, Stefan; Rollinger, Judith M.; Fuchs, Dietmar; Stuppner, Hermann

    2013-01-01

    Seed extracts of Carthamus tinctorius L. (Asteraceae), safflower, have been traditionally used to treat coronary disease, thrombotic disorders, and menstrual problems but also against cancer and depression. A possible effect of C. tinctorius compounds on tryptophan-degrading activity of enzyme indoleamine 2,3-dioxygenase (IDO) could explain many of its activities. To test for an effect of C. tinctorius extracts and isolated compounds on cytokine-induced IDO activity in immunocompetent cells in vitro methanol and ethylacetate seed extracts were prepared from cold pressed seed cakes of C. tinctorius and three lignan derivatives, trachelogenin, arctigenin and matairesinol were isolated. The influence on tryptophan breakdown was investigated in peripheral blood mononuclear cells (PBMCs). Effects were compared to neopterin production in the same cellular assay. Both seed extracts suppressed tryptophan breakdown in stimulated PBMC. The three structurally closely related isolates exerted differing suppressive activity on PBMC: arctigenin (IC50 26.5 μM) and trachelogenin (IC50 of 57.4 μM) showed higher activity than matairesinol (IC50 >200 μM) to inhibit tryptophan breakdown. Effects on neopterin production were similar albeit generally less strong. Data show an immunosuppressive property of compounds which slows down IDO activity. The in vitro results support the view that some of the anti-inflammatory, anti-cancer and antidepressant properties of C. tinctorius lignans might relate to their suppressive influence on tryptophan breakdown. PMID:23867649

  11. Indoleamine 2,3-dioxygenase and iron are required for Mycobacterium leprae survival.

    Science.gov (United States)

    de Mattos Barbosa, Mayara Garcia; da Silva Prata, Rhana Berto; Andrade, Priscila Ribeiro; Ferreira, Helen; de Andrade Silva, Bruno Jorge; da Paixão de Oliveira, Jéssica Araújo; Assis, Tayná Quintella; de Toledo-Pinto, Thiago Gomes; de Lima Bezerra, Ohanna Cavalcanti; da Costa Nery, José Augusto; Rosa, Patricia Sammarco; Bozza, Marcelo Torres; Lara, Flávio Alves; Moraes, Milton Ozório; Schmitz, Veronica; Sarno, Euzenir Nunes; Pinheiro, Roberta Olmo

    2017-11-01

    Our previous study has demonstrated that IL-10 may modulate both indoleamine 2,3-dioxygenase (IDO) and CD163 expression in lepromatous leprosy (LL) cells, favoring Mycobacterium leprae persistence through induction of regulatory pathways and iron storage. Here, we observed that in LL lesion cells there is an increase in the expression of proteins involved in iron metabolism such as hemoglobin (Hb), haptoglobin, heme oxygenase 1 and transferrin receptor 1 (TfR1) when compared to tuberculoid leprosy (BT) cells. We also found increased iron deposits and diminished expression of the iron exporter ferroportin 1 in LL lesion cells. Hemin, but not FeSO 4 stimulation, was able to enhance M. leprae viability by a mechanism that involves IDO. Analysis of cell phenotype in lesions demonstrated a predominance of M2 markers in LL when compared with BT lesion cells. A positive correlation between CD163 and PPARG with the bacillary index (BI) was observed. In contrast, TNF, STAT1 and CSF2 presented a negative correlation with the BI. In summary, this study demonstrates that iron may regulate IDO expression by a mechanism that involves IL-10, which may contribute for the predominance of M2-like phenotype in LL lesions that favors the phagocytosis and maintenance of M. leprae in host cells. Copyright © 2017 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  12. Consequences of metaphase II oocyte cryopreservation on mRNA content.

    Science.gov (United States)

    Chamayou, S; Bonaventura, G; Alecci, C; Tibullo, D; Di Raimondo, F; Guglielmino, A; Barcellona, M L

    2011-04-01

    We studied the consequences of freezing/thawing processes on mRNA contents in MII oocytes after slow-freezing/rapid thawing (SF/RT) and vitrification/warming (V/W) protocols, and compared the results to fresh MII oocytes. We quantified the nuclear transcript mRNA responsible for the translation of proteins belonging either to trans-regulatory protein family or to functional structural proteins such as proteins involved in DNA structural organization (NAP1L1, TOP1, H1F0H1), chromosomal structure maintenance (SMC, SCC3, RAD21, SMC1A, SMC1B, STAG3, REC8), mitochondrial energetic pathways (ATP5GJ, SDHC), cell cycle regulation and processes (CLTA, MAPK6, CKS2) and staminal cell potency-development competence stage (DPPA3, OCT4, FOXJ2). Surplus MII oocytes were donated from patients in IVF cycles and divided in three groups of 15 oocytes. Group 1 was comprised of non-cryopreserved oocytes and Groups 2 and 3 underwent SF/RT and V/W procedures, respectively. There was an overall decrease of mRNA extracted from cryopreserved oocytes compared to control group. Only 39.4% of mRNA content were preserved after SF/RT while 63.3% of mRNA content were maintained after V/W. Oocyte cryopreservation is associated with molecular injury associated with the decrease of stored mRNA. However the V/W protocol is more conservative than SF/RT resulting in a level of mRNA sufficient to maintain biologic functions in the subsequent fertilized oocyte. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Structural insights into the metabolism of 2-chlorodibenzofuran by an evolved biphenyl dioxygenase

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Pravindra; Mohammadi, Mahmood; Dhindwal, Sonali; Pham, Thi Thanh My; Bolin, Jeffrey T.; Sylvestre, Michel (INRS); (IIT-India); (Purdue)

    2012-06-28

    The biphenyl dioxygenase of Burkholderia xenovorans LB400 (BphAE{sub LB400}) is a Rieske-type oxygenase that catalyzes the stereospecific oxygenation of many heterocyclic aromatics including dibenzofuran. In a previous work, we evolved BphAE{sub LB400} and obtained BphAE{sub RR41}. This variant metabolizes dibenzofuran and 2-chlorodibenzofuran more efficiently than BphAE{sub LB400}. However, the regiospecificity of BphAE{sub RR41} toward these substrates differs. Dibenzofuran is metabolized principally through a lateral dioxygenation whereas 2-chlorodibenzofuran is metabolized principally through an angular dioxygenation. In order to explain this difference, we examined the crystal structures of both substrate-bound forms of BphAE{sub RR41} obtained under anaerobic conditions. This structure analysis, in combination with biochemical data for a Ser283Gly mutant provided evidences that the substrate is compelled to move after oxygen-binding in BphAE{sub RR41}:dibenzofuran. In BphAE{sub RR41}:2-chlorodibenzofuran, the chlorine atom is close to the side chain of Ser283. This contact is missing in the BphAE{sub RR41}:dibenzofuran, and strong enough in the BphAE{sub RR41}:2-chlorodibenzofuran to help prevent substrate movement during the catalytic reaction.

  14. Interferon-γ regulates the proliferation and differentiation of mesenchymal stem cells via activation of indoleamine 2,3 dioxygenase (IDO.

    Directory of Open Access Journals (Sweden)

    Juliana Croitoru-Lamoury

    Full Text Available The kynurenine pathway (KP of tryptophan metabolism is linked to antimicrobial activity and modulation of immune responses but its role in stem cell biology is unknown. We show that human and mouse mesenchymal and neural stem cells (MSCs and NSCs express the complete KP, including indoleamine 2,3 dioxygenase 1 (IDO and IDO2, that it is highly regulated by type I (IFN-β and II interferons (IFN-γ, and that its transcriptional modulation depends on the type of interferon, cell type and species. IFN-γ inhibited proliferation and altered human and mouse MSC neural, adipocytic and osteocytic differentiation via the activation of IDO. A functional KP present in MSCs, NSCs and perhaps other stem cell types offers novel therapeutic opportunities for optimisation of stem cell proliferation and differentiation.

  15. In human granulosa cells from small antral follicles, androgen receptor mRNA and androgen levels in follicular fluid correlate with FSH receptor mRNA

    DEFF Research Database (Denmark)

    Nielsen, M. E.; Rasmussen, I. A.; Kristensen, S. G.

    2011-01-01

    significantly with the expression of AMHRII, but did not correlate with any of the hormones in the follicular fluid. These data demonstrate an intimate association between AR expression in immature granulosa cells, and the expression of FSHR in normal small human antral follicles and between the follicular......Human small antral follicles (diameter 3-9 mm) were obtained from ovaries surgically removed for fertility preservation. From the individual aspirated follicles, granulosa cells and the corresponding follicular fluid were isolated in 64 follicles, of which 55 were available for mRNA analysis (24...... and to the follicular fluid concentrations of AMH, inhibin-B, progesterone and estradiol. AR mRNA expression in granulosa cells and the follicular fluid content of androgens both showed a highly significant positive association with the expression of FSHR mRNA in granulosa cells. AR mRNA expression also correlated...

  16. Investigation into the fate of C-14-labelled xenobiotics(naphthalene, phenanthrene, 2,4,5,2 ',4',5 '-hexachlorobiphenyl, octachlorostyrene) in Bermudian corals

    OpenAIRE

    Solbakken, Jan Erik; Knap, A.H.; Sleeter, T.D.; Searle, C.E.; Palmork, Karsten H.

    1983-01-01

    Uptake and elimination of 4 labelled lipid-soluble xenobiotics (naphthalene, phenanthrene, 2,4,5,2',4',5'-hexachlorobiphen(yPlC B), octachlorostyrene) were studied in 19 anthozoans and 1 hydrozoan common to Bermudian waters. The concentration of radioactiv~ty In the tissues was determined using liquid scintillation counting. All organisms tested took up radioactivity from the water. However, elimination rates were very slow compared to those of other marine organisms. Naphthale...

  17. Crystal structure of N,N′-bis[2-((benzyl{[5-(dimethylaminonaphthalen-1-yl]sulfonyl}aminoethyl]naphthalene-1,8:4,5-tetracarboximide 1,2-dichlorobenzene trisolvate

    Directory of Open Access Journals (Sweden)

    Miguel Ángel Claudio-Catalán

    2016-10-01

    Full Text Available The asymmetric unit of the title compound, C56H50N6O8S2·3C6H4Cl2, contains two half-molecules of the parent, A and B, which both have crystallographic inversion symmetry, together with three 2,3-dichlorobenzene molecules of solvation. Molecules A and B are conformationally similar, with dihedral angles between the central naphthalenediimide ring and the peripheral naphthalene and benzyl rings of 2.43 (7, 81.87 (7° (A and 3.95 (7, 84.88 (7° (B, respectively. The conformations are stabilized by the presence of intramolecular π–π interactions between the naphthalene ring and the six-membered diimide ring of the central naphthalenediimide moiety, with ring centroid-to-centroid distances of 3.5795 (8 Å (A and 3.5640 (8 Å (B. In the crystal, C—H...O hydrogen bonds link the molecules into infinite supramolecular chains along the c axis. These chains are interconnected through C—H...π and offset π–π interactions, generating supramolecular nanotubes which are filled by 1,2-dichlorobenzene molecules.

  18. 1-[2-(2-Methoxyphenylaminoethylamino]-3-(naphthalene-1- yloxypropan-2-ol May Be a Promising Anticancer Drug

    Directory of Open Access Journals (Sweden)

    Tomoyuki Nishizaki

    2014-12-01

    Full Text Available We have originally synthesized the naftopidil analogue 1-[2-(2-methoxyphenylaminoethylamino]-3-(naphthalene-1-yloxypropan-2-ol (HUHS 1015 as a new anticancer drug. HUHS1015 induces cell death in a wide variety of human cancer cell lines originated from malignant pleural mesothelioma, lung cancer, hepatoma, gastric cancer, colorectal cancer, bladder cancer, prostate cancer, and renal cancer. HUHS1015-induced cell death includes necrosis (necroptosis and apoptosis, and the underlying mechanism differs depending upon cancer cell types. HUHS1015 effectively suppresses tumor growth in mice inoculated with NCI-H2052, MKN45, or CW2 cells, with a potential similar to or higher than that of currently used anticancer drugs. Here we show how HUHS1015 might offer brilliant hope for cancer therapy.

  19. In vitro modulation of cytochrome P450 reductase supported indoleamine 2,3-dioxygenase activity by allosteric effectors cytochrome b(5) and methylene blue.

    Science.gov (United States)

    Pearson, Josh T; Siu, Sophia; Meininger, David P; Wienkers, Larry C; Rock, Dan A

    2010-03-30

    Indoleamine 2,3-dioxygenase (IDO) is a heme-containing dioxygenase involved in the degradation of several indoleamine derivatives and has been indicated as an immunosuppressive. IDO is an attractive target for therapeutic intervention in diseases which are known to capitalize on immune suppression, including cancer, HIV, and inflammatory diseases. Conventionally, IDO activity is measured through chemical reduction by the addition of ascorbate and methylene blue. Identification of potential coenzymes involved in the reduction of IDO in vivo should improve in vitro reconstitution systems used to identify potential IDO inhibitors. In this study we show that NADPH-cytochrome P450 reductase (CPR) is capable of supporting IDO activity in vitro and that oxidation of l-Trp follows substrate inhibition kinetics (k(cat) = 0.89 +/- 0.04 s(-1), K(m) = 0.72 +/- 0.15 microM, and K(i) = 9.4 +/- 2.0 microM). Addition of cytochrome b(5) to CPR-supported l-Trp incubations results in modulation from substrate inhibition to sigmoidal kinetics (k(cat) = 1.7 +/- 0.3 s(-1), K(m) = 1.5 +/- 0.9 microM, and K(i) = 1.9 +/- 0.3). CPR-supported d-Trp oxidations (+/-cytochrome b(5)) exhibit Michaelis-Menten kinetics. Addition of methylene blue (minus ascorbate) to CPR-supported reactions resulted in inhibition of d-Trp turnover and modulation of l-Trp kinetics from allosteric to Michaelis-Menten with a concurrent decrease in substrate affinity for IDO. Our data indicate that CPR is capable of supporting IDO activity in vitro and oxidation of tryptophan by IDO displays substrate stereochemistry dependent atypical kinetics which can be modulated by the addition of cytochrome b(5).

  20. A Refined Model for the Structure of Acireductone Dioxygenase from Klebsiella ATCC 8724 Incorporating Residual Dipolar Couplings

    Energy Technology Data Exchange (ETDEWEB)

    Pochapsky, Thomas C., E-mail: pochapsk@brandeis.edu; Pochapsky, Susan S.; Ju Tingting [Brandeis University, Department of Chemistry (United States); Hoefler, Chris [Brandeis University, Department of Biochemistry (United States); Liang Jue [Brandeis University, Department of Chemistry (United States)

    2006-02-15

    Acireductone dioxygenase (ARD) from Klebsiella ATCC 8724 is a metalloenzyme that is capable of catalyzing different reactions with the same substrates (acireductone and O{sub 2}) depending upon the metal bound in the active site. A model for the solution structure of the paramagnetic Ni{sup 2+}-containing ARD has been refined using residual dipolar couplings (RDCs) measured in two media. Additional dihedral restraints based on chemical shift (TALOS) were included in the refinement, and backbone structure in the vicinity of the active site was modeled from a crystallographic structure of the mouse homolog of ARD. The incorporation of residual dipolar couplings into the structural refinement alters the relative orientations of several structural features significantly, and improves local secondary structure determination. Comparisons between the solution structures obtained with and without RDCs are made, and structural similarities and differences between mouse and bacterial enzymes are described. Finally, the biological significance of these differences is considered.

  1. The decapping activator Edc3 and the Q/N-rich domain of Lsm4 function together to enhance mRNA stability and alter mRNA decay pathway dependence in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Susanne Huch

    2016-10-01

    Full Text Available The rate and regulation of mRNA decay are major elements in the proper control of gene expression. Edc3 and Lsm4 are two decapping activator proteins that have previously been shown to function in the assembly of RNA granules termed P bodies. Here, we show that deletion of edc3, when combined with a removal of the glutamine/asparagine rich region of Lsm4 (edc3Δ lsm4ΔC reduces mRNA stability and alters pathways of mRNA degradation. Multiple tested mRNAs exhibited reduced stability in the edc3Δ lsm4ΔC mutant. The destabilization was linked to an increased dependence on Ccr4-mediated deadenylation and mRNA decapping. Unlike characterized mutations in decapping factors that either are neutral or are able to stabilize mRNA, the combined edc3Δ lsm4ΔC mutant reduced mRNA stability. We characterized the growth and activity of the major mRNA decay systems and translation in double mutant and wild-type yeast. In the edc3Δ lsm4ΔC mutant, we observed alterations in the levels of specific mRNA decay factors as well as nuclear accumulation of the catalytic subunit of the decapping enzyme Dcp2. Hence, we suggest that the effects on mRNA stability in the edc3Δ lsm4ΔC mutant may originate from mRNA decay protein abundance or changes in mRNPs, or alternatively may imply a role for P bodies in mRNA stabilization.

  2. Nuclear Imprisonment: Viral Strategies to Arrest Host mRNA Nuclear Export

    Directory of Open Access Journals (Sweden)

    Beatriz M. A. Fontoura

    2013-07-01

    Full Text Available Viruses possess many strategies to impair host cellular responses to infection. Nuclear export of host messenger RNAs (mRNA that encode antiviral factors is critical for antiviral protein production and control of viral infections. Several viruses have evolved sophisticated strategies to inhibit nuclear export of host mRNAs, including targeting mRNA export factors and nucleoporins to compromise their roles in nucleo-cytoplasmic trafficking of cellular mRNA. Here, we present a review of research focused on suppression of host mRNA nuclear export by viruses, including influenza A virus and vesicular stomatitis virus, and the impact of this viral suppression on host antiviral responses.

  3. Nuclear Imprisonment: Viral Strategies to Arrest Host mRNA Nuclear Export

    Science.gov (United States)

    Kuss, Sharon K.; Mata, Miguel A.; Zhang, Liang; Fontoura, Beatriz M. A.

    2013-01-01

    Viruses possess many strategies to impair host cellular responses to infection. Nuclear export of host messenger RNAs (mRNA) that encode antiviral factors is critical for antiviral protein production and control of viral infections. Several viruses have evolved sophisticated strategies to inhibit nuclear export of host mRNAs, including targeting mRNA export factors and nucleoporins to compromise their roles in nucleo-cytoplasmic trafficking of cellular mRNA. Here, we present a review of research focused on suppression of host mRNA nuclear export by viruses, including influenza A virus and vesicular stomatitis virus, and the impact of this viral suppression on host antiviral responses. PMID:23872491

  4. Pronounced Side Chain Effects in Triple Bond-Conjugated Polymers Containing Naphthalene Diimides for n-Channel Organic Field-Effect Transistors

    KAUST Repository

    Nam, Sungho

    2018-03-23

    Three triple bond-conjugated naphthalene diimide (NDI) copolymers, poly{[N,N′-bis(2-R1)-naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-[(2,5-bis(2-R2)-1,4-phenylene)bis(ethyn-2,1-diyl)]} (PNDIR1-R2), were synthesized via Sonogashira coupling polymerization with varying alkyl side chains at the nitrogen atoms of the imide ring and 2,5-positions of the 1,4-diethynylbenzene moiety. Considering their identical polymer backbone structures, the side chains were found to have a strong influence on the surface morphology/nanostructure, thus playing a critical role in charge-transporting properties of the three NDI-based copolymers. Among the polymers, the one with an octyldodecyl (OD) chain at the nitrogen atoms of imide ring and a hexadecyloxy (HO) chain at the 2,5-positions of 1,4-diethynylbenzene, P(NDIOD-HO), exhibited the highest electron mobility of 0.016 cm2 V–1 s–1, as compared to NDI-based copolymers with an ethylhexyl chain at the 2,5-positions of 1,4-diethynylbenzene. The enhanced charge mobility in the P(NDIOD-HO) layers is attributed to the well-aligned nano-fiber-like surface morphology and highly ordered packing structure with a dominant edge-on orientation, thus enabling efficient in-plane charge transport. Our results on the molecular structure–charge transport property relationship in these materials may provide an insight into novel design of n-type conjugated polymers for applications in the organic electronics of the future.

  5. Crystallization and preliminary X-ray diffraction analysis of the electron-transfer complex between the terminal oxygenase component and ferredoxin in the Rieske non-haem iron oxygenase system carbazole 1,9a-dioxygenase

    International Nuclear Information System (INIS)

    Ashikawa, Yuji; Fujimoto, Zui; Noguchi, Haruko; Habe, Hiroshi; Omori, Toshio; Yamane, Hisakazu; Nojiri, Hideaki

    2005-01-01

    The electron-transfer complex between the terminal oxygenase and ferredoxin of carbazole 1,9a-dioxygenase was crystallized and diffraction data were collected to 1.90 Å resolution. Carbazole 1,9a-dioxygenase, which consists of an oxygenase component (CARDO-O) and the electron-transport components ferredoxin (CARDO-F) and ferredoxin reductase (CARDO-R), catalyzes dihydroxylation at the C1 and C9a positions of carbazole. The electron-transport complex between CARDO-O and CARDO-F crystallizes at 293 K using hanging-drop vapour diffusion with the precipitant PEG MME 2000 (type I crystals) or PEG 3350 (type II). Blossom-shaped crystals form from a pile of triangular plate-shaped crystals. The type I crystal diffracts to a maximum resolution of 1.90 Å and belongs to space group P2 1 , with unit-cell parameters a = 97.1, b = 89.8, c = 104.9 Å, α = γ = 90, β = 103.8°. Diffraction data for the type I crystal gave an overall R merge of 8.0% and a completeness of 100%. Its V M value is 2.63 Å 3 Da −1 , indicating a solvent content of 53.2%

  6. Crystallization and preliminary X-ray diffraction analysis of the electron-transfer complex between the terminal oxygenase component and ferredoxin in the Rieske non-haem iron oxygenase system carbazole 1,9a-dioxygenase

    Energy Technology Data Exchange (ETDEWEB)

    Ashikawa, Yuji [Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657 (Japan); Fujimoto, Zui [Department of Biochemistry, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602 (Japan); Noguchi, Haruko; Habe, Hiroshi; Omori, Toshio; Yamane, Hisakazu; Nojiri, Hideaki, E-mail: anojiri@mail.ecc.u-tokyo.ac.jp [Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657 (Japan)

    2005-06-01

    The electron-transfer complex between the terminal oxygenase and ferredoxin of carbazole 1,9a-dioxygenase was crystallized and diffraction data were collected to 1.90 Å resolution. Carbazole 1,9a-dioxygenase, which consists of an oxygenase component (CARDO-O) and the electron-transport components ferredoxin (CARDO-F) and ferredoxin reductase (CARDO-R), catalyzes dihydroxylation at the C1 and C9a positions of carbazole. The electron-transport complex between CARDO-O and CARDO-F crystallizes at 293 K using hanging-drop vapour diffusion with the precipitant PEG MME 2000 (type I crystals) or PEG 3350 (type II). Blossom-shaped crystals form from a pile of triangular plate-shaped crystals. The type I crystal diffracts to a maximum resolution of 1.90 Å and belongs to space group P2{sub 1}, with unit-cell parameters a = 97.1, b = 89.8, c = 104.9 Å, α = γ = 90, β = 103.8°. Diffraction data for the type I crystal gave an overall R{sub merge} of 8.0% and a completeness of 100%. Its V{sub M} value is 2.63 Å{sup 3} Da{sup −1}, indicating a solvent content of 53.2%.

  7. Indole-based assay to assess the effect of ethanol on Pseudomonas putida F1 dioxygenase activity.

    Science.gov (United States)

    da Silva, Márcio Luis Busi; Alvarez, Pedro J J

    2010-06-01

    Toluene dioxygenase (TDO) is ubiquitous in nature and has a broad substrate range, including benzene, toluene, ethylbenzene and xylenes (BTEX). Pseudomonas putida F1 (PpF1) induced on toluene is known to produce indigo from indole through the activity of TDO. In this work, a spectrophotometric assay previously developed to measure indole to indigo production rates was modified to characterize the effects of various ethanol concentrations on toluene aerobic biodegradation activity and assess catabolite repression of TDO. Indigo production rate by cells induced on toluene alone was 0.0012 +/- 0.0006 OD(610) min(-1). The presence of ethanol did not fully repress TDO activity when toluene was also available as a carbon source. However, indigo production rates by PpF1 grown on ethanol:toluene mixtures (3:1 w/w) decreased by approximately 50%. Overall, the proposed spectrophotometric assay is a simple approach to quantify TDO activity, and demonstrates how the presence of ethanol in groundwater contaminated with reformulated gasoline is likely to interfere with naturally occurring microorganisms from fully expressing their aerobic catabolic potential towards hydrocarbons bioremediation.

  8. Isolation and Functional Characterization of Carotenoid Cleavage Dioxygenase-1 from Laurus nobilis L. (Bay Laurel) Fruits.

    Science.gov (United States)

    Yahyaa, Mosaab; Berim, Anna; Isaacson, Tal; Marzouk, Sally; Bar, Einat; Davidovich-Rikanati, Rachel; Lewinsohn, Efraim; Ibdah, Mwafaq

    2015-09-23

    Bay laurel (Laurus nobilis L.) is an agriculturally important tree used in food, drugs, and the cosmetics industry. Many of the health beneficial properties of bay laurel are due to volatile terpene metabolites that they contain, including various norisoprenoids. Despite their importance, little is known about the norisoprenoid biosynthesis in Laurus nobilis fruits. We found that the volatile norisoprenoids 6-methyl-5-hepten-2-one, pseudoionone, and β-ionone accumulated in Laurus nobilis fruits in a pattern reflecting their carotenoid content. A full-length cDNA encoding a potential carotenoid cleavage dioxygenase (LnCCD1) was isolated. The LnCCD1 gene was overexpressed in Escherichia coli, and recombinant protein was assayed for its cleavage activity with an array of carotenoid substrates. The LnCCD1 protein was able to cleave a variety of carotenoids at the 9,10 (9',10') and 5,6 (5',6') positions to produce 6-methyl-5-hepten-2-one, pseudoionone, β-ionone, and α-ionone. Our results suggest a role for LnCCD1 in Laurus nobilis fruit flavor biosynthesis.

  9. Highly Efficient Stable Expression of Indoleamine 2,3 Dioxygenase Gene in Primary Fibroblasts

    Directory of Open Access Journals (Sweden)

    Rezakhanlou Alireza

    2010-03-01

    Full Text Available Abstract Indoleamine 2,3 dioxygenase (IDO is a potent immunomodulatory enzyme that has recently attracted significant attention for its potential application as an inducer of immunotolerance in transplantation. We have previously demonstrated that a collagen matrix populated with IDO-expressing fibroblasts can be applied successfully in suppressing islet allogeneic immune response. Meanwhile, a critical aspect of such immunological intervention relies largely on effective long-term expression of the IDO gene. Moreover, gene manipulation of primary cells is known to be challenging due to unsatisfactory expression of the exogenous gene. In this study, a lentiviral gene delivery system has been employed to transduce primary fibroblasts. We used polybrene to efficiently deliver the IDO gene into primary fibroblasts and showed a significant increase (about tenfold in the rate of gene transfection. In addition, by the use of fluorescence-activated cell sorting, a 95% pure population of IDO-expressing fibroblasts was successfully obtained. The efficiency of the IDO expression and the activity of the enzyme have been confirmed by Western blotting, fluorescence-activated cell sorting analysis, and Kynurenine assay, respectively. The findings of this study revealed simple and effective strategies through which an efficient and stable expression of IDO can be achieved for primary cells which, in turn, significantly improves its potential as a tool for achieving immunotolerance in different types of transplantation.

  10. Anion-Controlled Architecture and Photochromism of Naphthalene Diimide-Based Coordination Polymers

    Directory of Open Access Journals (Sweden)

    Jian-Jun Liu

    2018-02-01

    Full Text Available Three new cadmium coordination polymers, namely [Cd(NO32(DPNDI(CH3OH]·CH3OH (1, [Cd(SCN2(DPNDI] (2, and [Cd(DPNDI2(DMF2]·2ClO4 (3 (DPNDI = N,N-di(4-pyridyl-1,4,5,8-naphthalene diimide, DMF = N,N-dimethylformamide have been synthesized by reactions of DPNDI with Cd(NO32, Cd(SCN2, and Cd(ClO42, respectively. Compound 1 is a one-dimensional coordination polymer with strong lone pair-π interactions between the coordinated NO3− anions and the imide ring of DPNDI; while 2 is a two-dimensional network with a (4, 4 net topology. In the case of 3, due to the presence of uncoordinated perchlorate counter ions, it exhibits a non-interpenetrated square-grid coordination polymer containing one-dimensional rhomboid channels. The structural diversity in these compounds is attributed to different coordination abilities and geometries of counter anions. Due to the presence of electron-deficient NDI moiety, the photochromic behavior of these compounds was studied. Interestingly, only compounds 1 and 3 exhibit color changes under light irradiation. The influence of the anions on the photochromism process of the NDI-based materials has been discussed.

  11. Discovery of Novel Inhibitors of Indoleamine 2,3-Dioxygenase 1 Through Structure-Based Virtual Screening

    Directory of Open Access Journals (Sweden)

    Guoqing Zhang

    2018-03-01

    Full Text Available Indoleamine 2,3-dioxygenase 1 (IDO1 is an intracellular monomeric heme-containing enzyme that catalyzes the first and the rate limiting step in catabolism of tryptophan via the kynurenine (KYN pathway, which plays a significant role in the proliferation and differentiation of T cells. IDO1 has been proven to be an attractive target for anticancer therapy and chronic viral infections. In the present study, a class of IDO1 inhibitors with novel scaffolds were identified by virtual screening and biochemical validation, in which the compound DC-I028 shows moderate IDO1 inhibitory activity with an IC50 of 21.61 μM on enzymatic level and 89.11 μM on HeLa cell. In the following hit expansion stage, DC-I02806, an analog of DC-I028, showed better inhibitory activity with IC50 about 18 μM on both enzymatic level and cellular level. The structure–activity relationship (SAR of DC-I028 and its analogs was then discussed based on the molecular docking result. The novel IDO1 inhibitors of DC-I028 and its analogs may provide useful clues for IDO1 inhibitor development.

  12. Discovery of Novel Inhibitors of Indoleamine 2,3-Dioxygenase 1 Through Structure-Based Virtual Screening

    Science.gov (United States)

    Zhang, Guoqing; Xing, Jing; Wang, Yulan; Wang, Lihao; Ye, Yan; Lu, Dong; Zhao, Jihui; Luo, Xiaomin; Zheng, Mingyue; Yan, Shiying

    2018-01-01

    Indoleamine 2,3-dioxygenase 1 (IDO1) is an intracellular monomeric heme-containing enzyme that catalyzes the first and the rate limiting step in catabolism of tryptophan via the kynurenine (KYN) pathway, which plays a significant role in the proliferation and differentiation of T cells. IDO1 has been proven to be an attractive target for anticancer therapy and chronic viral infections. In the present study, a class of IDO1 inhibitors with novel scaffolds were identified by virtual screening and biochemical validation, in which the compound DC-I028 shows moderate IDO1 inhibitory activity with an IC50 of 21.61 μM on enzymatic level and 89.11 μM on HeLa cell. In the following hit expansion stage, DC-I02806, an analog of DC-I028, showed better inhibitory activity with IC50 about 18 μM on both enzymatic level and cellular level. The structure–activity relationship (SAR) of DC-I028 and its analogs was then discussed based on the molecular docking result. The novel IDO1 inhibitors of DC-I028 and its analogs may provide useful clues for IDO1 inhibitor development. PMID:29651242

  13. Niacin metabolism and indoleamine 2,3-dioxygenase activation in malnourished patients with flaky paint dermatosis.

    Science.gov (United States)

    Maltos, André Luiz; Portari, Guilherme Vannucchi; Moraes, Giselle Vanessa; Monteiro, Marina Casteli Rodrigues; Vannucchi, Helio; da Cunha, Daniel Ferreira

    2015-06-01

    Flaky paint dermatosis, characterized by extensive, often bilateral areas of flaking and pigmentation, mostly in sun unexposed areas is considered a feature of kwashiorkor in both children and adults, and must be differentiated from other dermatosis, including chapped and xerotica skin, and pellagra. In this case series we provide evidence that malnourished patients with flaky paint dermatosis and infection/inflammation shown laboratory data suggestive of indoleamine 2,3-dioxygenase (IDO) activation, besides decreased urinary excretion of N1-methylnicotinamide (N1 MN), a marker of pellagra. We study nine adult patients showing flaky paint dermatosis and clinical features of infection or inflammation, and increased serum C-reactive protein, characteristic of the presence of acute phase response syndrome. As a group, they had low or deficient urinary N1 MN excretion (0.52 ± 0.39 mg/g creatinine) compatible with pellagra. They also showed low serum tryptophan levels (dermatosis showed laboratory data suggestive of IDO activation, besides decreased N1 MN urinary excretion. Taken together, the data support the idea that flaky paint dermatosis could be a skin manifestation of niacin deficiency. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Assessing mRNA nuclear export in mammalian cells by microinjection.

    Science.gov (United States)

    Lee, Eliza S; Palazzo, Alexander F

    2017-08-15

    The nuclear export of mRNAs is an important yet little understood part of eukaryotic gene expression. One of the easiest methods for monitoring mRNA export in mammalian tissue culture cells is through the microinjection of DNA plasmids into the nucleus and monitoring the distribution of the transcribed product over time. Here we describe how to setup a microscope equipped with a micromanipulator used in cell microinjections, and we explain how to perform a nuclear mRNA export assay and obtain the nuclear export rate for any given mRNA. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Indoleamine 2,3-dioxygenase expression in patients with allergic rhinitis: a case-control study

    Directory of Open Access Journals (Sweden)

    Luukkainen Annika

    2011-12-01

    Full Text Available Abstract Background Indoleamine 2,3-dioxygenase (IDO is a tryptophan catalyzing enzyme. It has been suggested that it has a role in lower airway allergic inflammations, but its role in allergic rhinitis has not been investigated. Objective Our aim was to evaluate the expression of IDO in the nasal mucosa of allergic rhinitis patients allergic to birch pollen during peak exposure to birch pollen allergen and compare it to non-atopic patients. Methods IDO expression was immunohistochemically evaluated from nasal specimens obtained in- and off-season from otherwise healthy non-smoking volunteers both allergic to birch pollen (having mild or moderate allergic rhinoconjunctivitis and non-allergic controls. Results: The IDO expression levels were low in healthy controls and remained low also in patients allergic to birch pollen. There were no differences in the expression of IDO in- and off-season in either healthy or allergic subjects. Conclusions There is a controversy in the role of IDO in upper and lower airways during allergic airway disease. It seems that IDO is associated to allergic inflammations of the lower airways, but does not have a local role in the nasal cavity at least in mild or moderate forms of allergic rhinitis.

  16. Characterization and subcellular compartmentation of recombinant 4-hydroxyphenylpyruvate dioxygenase from Arabidopsis in transgenic tobacco.

    Science.gov (United States)

    Garcia, I; Rodgers, M; Pepin, R; Hsieh, T F; Matringe, M

    1999-04-01

    4-Hydroxyphenylpyruvate dioxygenase (4HPPD) catalyzes the formation of homogentisate (2,5-dihydroxyphenylacetate) from p-hydroxyphenylpyruvate and molecular oxygen. In plants this enzyme activity is involved in two distinct metabolic processes, the biosynthesis of prenylquinones and the catabolism of tyrosine. We report here the molecular and biochemical characterization of an Arabidopsis 4HPPD and the compartmentation of the recombinant protein in chlorophyllous tissues. We isolated a 1508-bp cDNA with one large open reading frame of 1338 bp. Southern analysis strongly suggested that this Arabidopsis 4HPPD is encoded by a single-copy gene. We investigated the biochemical characteristics of this 4HPPD by overproducing the recombinant protein in Escherichia coli JM105. The subcellular localization of the recombinant 4HPPD in chlorophyllous tissues was examined by overexpressing its complete coding sequence in transgenic tobacco (Nicotiana tabacum), using Agrobacterium tumefaciens transformation. We performed western analyses for the immunodetection of protein extracts from purified chloroplasts and total leaf extracts and for the immunocytochemistry on tissue sections. These analyses clearly revealed that 4HPPD was confined to the cytosol compartment, not targeted to the chloroplast. Western analyses confirmed the presence of a cytosolic form of 4HPPD in cultured green Arabidopsis cells.

  17. Single step production of Cas9 mRNA for zygote injection.

    Science.gov (United States)

    Redel, Bethany K; Beaton, Benjamin P; Spate, Lee D; Benne, Joshua A; Murphy, Stephanie L; O'Gorman, Chad W; Spate, Anna M; Prather, Randall S; Wells, Kevin D

    2018-03-01

    Production of Cas9 mRNA in vitro typically requires the addition of a 5´ cap and 3´ polyadenylation. A plasmid was constructed that harbored the T7 promoter followed by the EMCV IRES and a Cas9 coding region. We hypothesized that the use of the metastasis associated lung adenocarcinoma transcript 1 (Malat1) triplex structure downstream of an IRES/Cas9 expression cassette would make polyadenylation of in vitro produced mRNA unnecessary. A sequence from the mMalat1 gene was cloned downstream of the IRES/Cas9 cassette described above. An mRNA concentration curve was constructed with either commercially available Cas9 mRNA or the IRES/ Cas9/triplex, by injection into porcine zygotes. Blastocysts were genotyped to determine if differences existed in the percent of embryos modified. The concentration curve identified differences due to concentration and RNA type injected. Single step production of Cas9 mRNA provides an alternative source of Cas9 for use in zygote injections.

  18. Synthesis and photophysical properties of a series of cyclopenta[b]naphthalene solvatochromic fluorophores.

    Science.gov (United States)

    Benedetti, Erica; Kocsis, Laura S; Brummond, Kay M

    2012-08-01

    The synthesis and photophysical properties of a series of naphthalene-containing solvatochromic fluorophores are described within. These novel fluorophores are prepared using a microwave-assisted dehydrogenative Diels-Alder reaction of styrene, followed by a palladium-catalyzed cross coupling reaction to install an electron donating amine group. The new fluorophores are structurally related to Prodan. Photophysical properties of the new fluorophores were studied and intriguing solvatochromic behavior was observed. For most of these fluorophores, high quantum yields (60-99%) were observed in methylene chloride in addition to large Stokes shifts (95-226 nm) in this same solvent. As the solvent polarity increased, so did the observed Stokes shift with one derivative displaying a Stokes shift of ~300 nm in ethanol. All fluorophore emission maxima, and nearly all absorption maxima were significantly red-shifted when compared to Prodan. Shifting the absorption and emission maxima of a fluorophore into the visible region increases its utility in biological applications. Moreover, the cyclopentane portion of the fluorophore structure provides an attachment point for biomolecules that will minimize disruptions of the photophysical properties.

  19. Single-cell mRNA transfection studies: delivery, kinetics and statistics by numbers.

    Science.gov (United States)

    Leonhardt, Carolin; Schwake, Gerlinde; Stögbauer, Tobias R; Rappl, Susanne; Kuhr, Jan-Timm; Ligon, Thomas S; Rädler, Joachim O

    2014-05-01

    In artificial gene delivery, messenger RNA (mRNA) is an attractive alternative to plasmid DNA (pDNA) since it does not require transfer into the cell nucleus. Here we show that, unlike for pDNA transfection, the delivery statistics and dynamics of mRNA-mediated expression are generic and predictable in terms of mathematical modeling. We measured the single-cell expression time-courses and levels of enhanced green fluorescent protein (eGFP) using time-lapse microscopy and flow cytometry (FC). The single-cell analysis provides direct access to the distribution of onset times, life times and expression rates of mRNA and eGFP. We introduce a two-step stochastic delivery model that reproduces the number distribution of successfully delivered and translated mRNA molecules and thereby the dose-response relation. Our results establish a statistical framework for mRNA transfection and as such should advance the development of RNA carriers and small interfering/micro RNA-based drugs. This team of authors established a statistical framework for mRNA transfection by using a two-step stochastic delivery model that reproduces the number distribution of successfully delivered and translated mRNA molecules and thereby their dose-response relation. This study establishes a nice connection between theory and experimental planning and will aid the cellular delivery of mRNA molecules. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Nonsense mutations in the human β-globin gene affect mRNA metabolism

    International Nuclear Information System (INIS)

    Baserga, S.J.; Benz, E.J. Jr.

    1988-01-01

    A number of premature translation termination mutations (nonsense mutations) have been described in the human α- and β-globin genes. Studies on mRNA isolated from patients with β 0 -thalassemia have shown that for both the β-17 and the β-39 mutations less than normal levels of β-globin mRNA accumulate in peripheral blood cells. (The codon at which the mutation occurs designates the name of the mutation; there are 146 codons in human β-globin mRNA). In vitro studies using the cloned β-39 gene have reproduced this effect in a heterologous transfection system and have suggested that the defect resides in intranuclear metabolism. The authors have asked if this phenomenon of decreased mRNA accumulation is a general property of nonsense mutations and if the effect depends on the location or the type of mutation. Toward this end, they have studied the effect of five nonsense mutations and two missense mutations on the expression of human β-globin mRNA in a heterologous transfection system. In all cases studied, the presence of a translation termination codon correlates with a decrease in the steady-state level of mRNA. The data suggest that the metabolism of a mammalian mRNA is affected by the presence of a mutation that affects translation

  1. Response of PAH-degrading genes to PAH bioavailability in the overlying water, suspended sediment, and deposited sediment of the Yangtze River.

    Science.gov (United States)

    Xia, Xinghui; Xia, Na; Lai, Yunjia; Dong, Jianwei; Zhao, Pujun; Zhu, Baotong; Li, Zhihuang; Ye, Wan; Yuan, Yue; Huang, Junxiong

    2015-06-01

    The degrading genes of hydrophobic organic compounds (HOCs) serve as indicators of in situ HOC degradation potential, and the existing forms and bioavailability of HOCs might influence the distribution of HOC-degrading genes in natural waters. However, little research has been conducted to study the relationship between them. In the present study, nahAc and nidA genes, which act as biomarkers for naphthalene- and pyrene-degrading bacteria, were selected as model genotypes to investigate the response of polycyclic aromatic hydrocarbon (PAH)-degrading genes to PAH bioavailability in the overlying water, suspended sediment (SPS), and deposited sediment of the Yangtze River. The freely dissolved concentration, typically used to reflect HOC bioavailability, and total dissolved, as well as sorbed concentrations of PAHs were determined. Phylogenetic analysis showed that all the PAH-ring hydroxylating dioxygenase gene sequences of Gram-negative bacteria (PAH-RHD[GN]) were closely related to nahAc, nagAc, nidA, and uncultured PAH-RHD genes. The PAH-RHD[GN] gene diversity as well as nahAc and nidA gene copy numbers decreased in the following order: deposited sediment>SPS>overlying water. The nahAc and nidA gene abundance was not significantly correlated with environmental parameters but was significantly correlated with the bioavailable existing forms of naphthalene and pyrene in the three phases. The nahAc gene copy numbers in the overlying water and deposited sediment were positively correlated with freely dissolved naphthalene concentrations in the overlying and pore water phases, respectively, and so were nidA gene copy numbers. This study suggests that the distribution and abundance of HOC-degrading bacterial population depend on the HOC bioavailability in aquatic environments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Docking studies of antidepressants against single crystal structure of tryptophan 2, 3-dioxygenase using Molegro Virtual Docker software.

    Science.gov (United States)

    Dawood, Shazia; Zarina, Shamshad; Bano, Samina

    2014-09-01

    Tryptophan 2, 3-dioxygenase (TDO) a heme containing enzyme found in mammalian liver is responsible for tryptophan (Trp) catabolism. Trp is an essential amino acid that is degraded in to N-formylkynurenine by the action of TDO. The protein ligand interaction plays a significant role in structural based drug designing. The current study illustrates the binding of established antidepressants (ADs) against TDO enzyme using in-silico docking studies. For this purpose, Fluoxetine, Paroxetine, Sertraline, Fluvoxamine, Seproxetine, Citalopram, Moclobamide, Hyperforin and Amoxepine were selected. In-silico docking studies were carried out using Molegro Virtual Docker (MVD) software. Docking results show that all ADs fit well in the active site of TDO moreover Hyperforin and Paroxetine exhibited high docking scores of -152.484k cal/mol and -139.706k cal/mol, respectively. It is concluded that Hyperforin and Paroxetine are possible lead molecules because of their high docking scores as compared to other ADs examined. Therefore, these two ADs stand as potent inhibitors of TDO enzyme.

  3. Clinical values of AFP, GPC3 mRNA in peripheral blood for prediction of hepatocellular carcinoma recurrence following OLT: AFP, GPC3 mRNA for prediction of HCC.

    Science.gov (United States)

    Wang, Yuliang; Shen, Zhongyang; Zhu, Zhijun; Han, Ruifa; Huai, Mingsheng

    2011-03-01

    Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide. Annually, about 200,000 patients died of HCC in China. Liver transplantation (LT) holds great theoretical appeal in treating HCC. However, the high recurrence rate after transplantation is the most important limiting factor for long-term survival. To assess the value of alpha-fetoprotein (AFP) messenger RNA (mRNA), Glypican-3 (GPC3) mRNA-expressing cells in the peripheral blood (PB) for prediction of HCC recurrence following orthotopic liver transplantation (OLT). 29 patients with HCC who underwent OLT with a minimum clinical follow-up of 12 months were included in this retrospective study. We detected AFP mRNA, GPC3 mRNA-expressing cells in the PB by TaqMan real-time reverse transcriptase-polymerase chain reaction (RT-PCR), pre-, intra- and post-operatively. The early recurrence of patients was evaluated. 8 (28%), 15 (52%), and 9 (31%) patients had AFP mRNA detected pre-, intra-, and post-operatively, respectively. With 12 months of follow-up, HCC recurred in 7 (24%) patients. Univariate analysis revealed that positive pre- and post-operative AFP mRNA, TNM stage as well as vascular invasion were significant predictors for the HCC recurrence. Multivariate analysis revealed that being positive for AFP mRNA pre-operatively remained a significant risk factor for HCC recurrence after OLT. GPC3 mRNA was expressed in all PB samples. There was no significant difference in the expression levels of GPC3 mRNA between the HCC and control groups. There were no significant differences in GPC3 mRNA expression values between those patients with and without tumor recurrence. The pre-operative detection of circulating AFP mRNA-expressing cells could be a useful predictor for HCC recurrence following OLT. GPC3 mRNA-expressing cells in PB seem to have no diagnostic value.

  4. Primary induction of vitellogenin mRNA in the rooster by 17beta-estradiol.

    Science.gov (United States)

    Burns, A T; Deeley, R G; Gordon, J I; Udell, D S; Mullinix, K P; Goldberger, R F

    1978-01-01

    We have studied the kinetics of vitellogenin mRNA accumulation in rooster liver after a primary injection of 17beta-estradiol. The levels of vitellogenin mRNA have been determined both by hybridization of total cellular RNA to vitellogenin cDNA and by translation of vitellogenin mRNA in a wheat germ cell-free system. The results obtained by both methods of analysis are in good agreement and indicate that vitellogenin mRNA is present in the liver of normal roosters at a level of 0-5 molecules per liver cell and increases in amount during the 3 days following injection of estrogen, reaching a level of almost 6000 molecules per cell at the peak of the response. The level of vitellogenin mRNA declined exponentially during the next 14 days with a half-life of 29 hr, reaching a level of less than 10 molecules per cell at 17 days after injection of the hormone. The levels of vitellogenin mRNA after stimulation with estrogen have been correlated with the in vivo rate of synthesis of the vitellogenin polypeptide. The results indicate that the rate of vitellogenin synthesis is closely correlated with the level of vitellogenin mRNA. On the basis of these findings, we conclude that vitellogenin mRNA does not exist in the liver in an untranslated form after withdrawal from estrogen. PMID:273910

  5. Synthesis of 5-hydroxyectoine from ectoine: crystal structure of the non-heme iron(II and 2-oxoglutarate-dependent dioxygenase EctD.

    Directory of Open Access Journals (Sweden)

    Klaus Reuter

    2010-05-01

    Full Text Available As a response to high osmolality, many microorganisms synthesize various types of compatible solutes. These organic osmolytes aid in offsetting the detrimental effects of low water activity on cell physiology. One of these compatible solutes is ectoine. A sub-group of the ectoine producer's enzymatically convert this tetrahydropyrimidine into a hydroxylated derivative, 5-hydroxyectoine. This compound also functions as an effective osmostress protectant and compatible solute but it possesses properties that differ in several aspects from those of ectoine. The enzyme responsible for ectoine hydroxylation (EctD is a member of the non-heme iron(II-containing and 2-oxoglutarate-dependent dioxygenases (EC 1.14.11. These enzymes couple the decarboxylation of 2-oxoglutarate with the formation of a high-energy ferryl-oxo intermediate to catalyze the oxidation of the bound organic substrate. We report here the crystal structure of the ectoine hydroxylase EctD from the moderate halophile Virgibacillus salexigens in complex with Fe(3+ at a resolution of 1.85 A. Like other non-heme iron(II and 2-oxoglutarate dependent dioxygenases, the core of the EctD structure consists of a double-stranded beta-helix forming the main portion of the active-site of the enzyme. The positioning of the iron ligand in the active-site of EctD is mediated by an evolutionarily conserved 2-His-1-carboxylate iron-binding motif. The side chains of the three residues forming this iron-binding site protrude into a deep cavity in the EctD structure that also harbours the 2-oxoglutarate co-substrate-binding site. Database searches revealed a widespread occurrence of EctD-type proteins in members of the Bacteria but only in a single representative of the Archaea, the marine crenarchaeon Nitrosopumilus maritimus. The EctD crystal structure reported here can serve as a template to guide further biochemical and structural studies of this biotechnologically interesting enzyme family.

  6. High ALK mRNA expression has a negative prognostic significance in rhabdomyosarcoma

    Science.gov (United States)

    Bonvini, P; Zin, A; Alaggio, R; Pawel, B; Bisogno, G; Rosolen, A

    2013-01-01

    Background: Anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase aberrantly expressed in cancer, but its clinical and functional importance remain controversial. Mutation or amplification of ALK, as well as its expression levels assessed by conventional immunohistochemistry methods, has been linked to prognosis in cancer, although with potential bias because of the semi-quantitative approaches. Herein, we measured ALK mRNA expression in rhabdomyosarcoma (RMS) and determined its clinical impact on patients' stratification and outcome. Methods: Specimens were obtained from RMS patients and cell lines, and ALK expression was analysed by quantitative RT–PCR, western blotting, IHC, and copy number analysis. Results: High ALK mRNA expression was detected in the vast majority of PAX3/7-FOXO1-positive tumours, whereas PAX3/7-FOXO1-negative RMS displayed considerably lower amounts of both mRNA and protein. Notably, ALK mRNA distinguished unfavourable PAX3/7-FOXO1-positive tumours from PAX3/7-FOXO1-negative RMS (Ptumour size (PALK mRNA levels were of prognostic relevance by Cox univariate regression analysis and correlated with increased risk of relapse (P=0.001) and survival (P=0.01), whereas by multivariate analysis elevated ALK mRNA expression resulted a negative prognostic marker when clinical stage was not included. Conclusion: Quantitative assessment of ALK mRNA expression helps to improve risk stratification of RMS patients and identifies tumours with adverse biological characteristics and aggressive behaviour. PMID:24149177

  7. mRNA transfection of mouse and human neural stem cell cultures.

    Directory of Open Access Journals (Sweden)

    Samuel McLenachan

    Full Text Available The use of synthetic mRNA as an alternative gene delivery vector to traditional DNA-based constructs provides an effective method for inducing transient gene expression in cell cultures without genetic modification. Delivery of mRNA has been proposed as a safer alternative to viral vectors in the induction of pluripotent cells for regenerative therapies. Although mRNA transfection of fibroblasts, dendritic and embryonic stem cells has been described, mRNA delivery to neurosphere cultures has not been previously reported. Here we sought to establish an efficient method for delivering mRNA to primary neurosphere cultures. Neurospheres derived from the subventricular zone of adult mice or from human embryonic stem cells were transfected with EGFP mRNA by lipofection and electroporation. Transfection efficiency and expression levels were monitored by flow cytometry. Cell survival following transfection was examined using live cell counting and the MTT assay. Both lipofection and electroporation provided high efficiency transfection of neurospheres. In comparison with lipofection, electroporation resulted in increased transfection efficiencies, but lower expression per cell and shorter durations of expression. Additional rounds of lipofection renewed EGFP expression in neurospheres, suggesting this method may be suitable for reprogramming applications. In summary, we have developed a protocol for achieving high efficiency transfection rates in mouse and human neurosphere cell culture that can be applied for future studies of gene function studies in neural stem cells, such as defining efficient differentiation protocols for glial and neuronal linages.

  8. mRNA Transfection of Mouse and Human Neural Stem Cell Cultures

    Science.gov (United States)

    McLenachan, Samuel; Zhang, Dan; Palomo, Ana Belén Alvarez; Edel, Michael J.; Chen, Fred K.

    2013-01-01

    The use of synthetic mRNA as an alternative gene delivery vector to traditional DNA-based constructs provides an effective method for inducing transient gene expression in cell cultures without genetic modification. Delivery of mRNA has been proposed as a safer alternative to viral vectors in the induction of pluripotent cells for regenerative therapies. Although mRNA transfection of fibroblasts, dendritic and embryonic stem cells has been described, mRNA delivery to neurosphere cultures has not been previously reported. Here we sought to establish an efficient method for delivering mRNA to primary neurosphere cultures. Neurospheres derived from the subventricular zone of adult mice or from human embryonic stem cells were transfected with EGFP mRNA by lipofection and electroporation. Transfection efficiency and expression levels were monitored by flow cytometry. Cell survival following transfection was examined using live cell counting and the MTT assay. Both lipofection and electroporation provided high efficiency transfection of neurospheres. In comparison with lipofection, electroporation resulted in increased transfection efficiencies, but lower expression per cell and shorter durations of expression. Additional rounds of lipofection renewed EGFP expression in neurospheres, suggesting this method may be suitable for reprogramming applications. In summary, we have developed a protocol for achieving high efficiency transfection rates in mouse and human neurosphere cell culture that can be applied for future studies of gene function studies in neural stem cells, such as defining efficient differentiation protocols for glial and neuronal linages. PMID:24386231

  9. mRNA transfection of mouse and human neural stem cell cultures.

    Science.gov (United States)

    McLenachan, Samuel; Zhang, Dan; Palomo, Ana Belén Alvarez; Edel, Michael J; Chen, Fred K

    2013-01-01

    The use of synthetic mRNA as an alternative gene delivery vector to traditional DNA-based constructs provides an effective method for inducing transient gene expression in cell cultures without genetic modification. Delivery of mRNA has been proposed as a safer alternative to viral vectors in the induction of pluripotent cells for regenerative therapies. Although mRNA transfection of fibroblasts, dendritic and embryonic stem cells has been described, mRNA delivery to neurosphere cultures has not been previously reported. Here we sought to establish an efficient method for delivering mRNA to primary neurosphere cultures. Neurospheres derived from the subventricular zone of adult mice or from human embryonic stem cells were transfected with EGFP mRNA by lipofection and electroporation. Transfection efficiency and expression levels were monitored by flow cytometry. Cell survival following transfection was examined using live cell counting and the MTT assay. Both lipofection and electroporation provided high efficiency transfection of neurospheres. In comparison with lipofection, electroporation resulted in increased transfection efficiencies, but lower expression per cell and shorter durations of expression. Additional rounds of lipofection renewed EGFP expression in neurospheres, suggesting this method may be suitable for reprogramming applications. In summary, we have developed a protocol for achieving high efficiency transfection rates in mouse and human neurosphere cell culture that can be applied for future studies of gene function studies in neural stem cells, such as defining efficient differentiation protocols for glial and neuronal linages.

  10. Protein Structure and the Sequential Structure of mRNA

    DEFF Research Database (Denmark)

    Brunak, Søren; Engelbrecht, Jacob

    1996-01-01

    entries in the Brookhaven Protein Data Bank produced 719 protein chains with matching mRNA sequence, amino acid sequence, and secondary structure assignment, By neural network analysis, we found strong signals in mRNA sequence regions surrounding helices and sheets, These signals do not originate from......A direct comparison of experimentally determined protein structures and their corresponding protein coding mRNA sequences has been performed, We examine whether real world data support the hypothesis that clusters of rare codons correlate with the location of structural units in the resulting...... protein, The degeneracy of the genetic code allows for a biased selection of codons which may control the translational rate of the ribosome, and may thus in vivo have a catalyzing effect on the folding of the polypeptide chain, A complete search for GenBank nucleotide sequences coding for structural...

  11. Tissue-specific mRNA expression profiling in grape berry tissues

    Science.gov (United States)

    Grimplet, Jerome; Deluc, Laurent G; Tillett, Richard L; Wheatley, Matthew D; Schlauch, Karen A; Cramer, Grant R; Cushman, John C

    2007-01-01

    Background Berries of grape (Vitis vinifera) contain three major tissue types (skin, pulp and seed) all of which contribute to the aroma, color, and flavor characters of wine. The pericarp, which is composed of the exocarp (skin) and mesocarp (pulp), not only functions to protect and feed the developing seed, but also to assist in the dispersal of the mature seed by avian and mammalian vectors. The skin provides volatile and nonvolatile aroma and color compounds, the pulp contributes organic acids and sugars, and the seeds provide condensed tannins, all of which are important to the formation of organoleptic characteristics of wine. In order to understand the transcriptional network responsible for controlling tissue-specific mRNA expression patterns, mRNA expression profiling was conducted on each tissue of mature berries of V. vinifera Cabernet Sauvignon using the Affymetrix GeneChip® Vitis oligonucleotide microarray ver. 1.0. In order to monitor the influence of water-deficit stress on tissue-specific expression patterns, mRNA expression profiles were also compared from mature berries harvested from vines subjected to well-watered or water-deficit conditions. Results Overall, berry tissues were found to express approximately 76% of genes represented on the Vitis microarray. Approximately 60% of these genes exhibited significant differential expression in one or more of the three major tissue types with more than 28% of genes showing pronounced (2-fold or greater) differences in mRNA expression. The largest difference in tissue-specific expression was observed between the seed and pulp/skin. Exocarp tissue, which is involved in pathogen defense and pigment production, showed higher mRNA abundance relative to other berry tissues for genes involved with flavonoid biosynthesis, pathogen resistance, and cell wall modification. Mesocarp tissue, which is considered a nutritive tissue, exhibited a higher mRNA abundance of genes involved in cell wall function and

  12. Tissue-specific mRNA expression profiling in grape berry tissues

    Directory of Open Access Journals (Sweden)

    Cramer Grant R

    2007-06-01

    Full Text Available Abstract Background Berries of grape (Vitis vinifera contain three major tissue types (skin, pulp and seed all of which contribute to the aroma, color, and flavor characters of wine. The pericarp, which is composed of the exocarp (skin and mesocarp (pulp, not only functions to protect and feed the developing seed, but also to assist in the dispersal of the mature seed by avian and mammalian vectors. The skin provides volatile and nonvolatile aroma and color compounds, the pulp contributes organic acids and sugars, and the seeds provide condensed tannins, all of which are important to the formation of organoleptic characteristics of wine. In order to understand the transcriptional network responsible for controlling tissue-specific mRNA expression patterns, mRNA expression profiling was conducted on each tissue of mature berries of V. vinifera Cabernet Sauvignon using the Affymetrix GeneChip® Vitis oligonucleotide microarray ver. 1.0. In order to monitor the influence of water-deficit stress on tissue-specific expression patterns, mRNA expression profiles were also compared from mature berries harvested from vines subjected to well-watered or water-deficit conditions. Results Overall, berry tissues were found to express approximately 76% of genes represented on the Vitis microarray. Approximately 60% of these genes exhibited significant differential expression in one or more of the three major tissue types with more than 28% of genes showing pronounced (2-fold or greater differences in mRNA expression. The largest difference in tissue-specific expression was observed between the seed and pulp/skin. Exocarp tissue, which is involved in pathogen defense and pigment production, showed higher mRNA abundance relative to other berry tissues for genes involved with flavonoid biosynthesis, pathogen resistance, and cell wall modification. Mesocarp tissue, which is considered a nutritive tissue, exhibited a higher mRNA abundance of genes involved in cell

  13. Kinetics of lipid-nanoparticle-mediated intracellular mRNA delivery and function

    Science.gov (United States)

    Zhdanov, Vladimir P.

    2017-10-01

    mRNA delivery into cells forms the basis for one of the new and promising ways to treat various diseases. Among suitable carriers, lipid nanoparticles (LNPs) with a size of about 100 nm are now often employed. Despite high current interest in this area, the understanding of the basic details of LNP-mediated mRNA delivery and function is limited. To clarify the kinetics of mRNA release from LNPs, the author uses three generic models implying (i) exponential, (ii) diffusion-controlled, and (iii) detachment-controlled kinetic regimes, respectively. Despite the distinct differences in these kinetics, the associated transient kinetics of mRNA translation to the corresponding protein and its degradation are shown to be not too sensitive to the details of the mRNA delivery by LNPs (or other nanocarriers). In addition, the author illustrates how this protein may temporarily influence the expression of one gene or a few equivalent genes. The analysis includes positive or negative regulation of the gene transcription via the attachment of the protein without or with positive or negative feedback in the gene expression. Stable, bistable, and oscillatory schemes have been scrutinized in this context.

  14. Indoleamine 2,3-dioxygenase and regulatory T cells in acute myeloid leukemia.

    Science.gov (United States)

    Mansour, Iman; Zayed, Rania A; Said, Fadwa; Latif, Lamyaa Abdel

    2016-09-01

    The microenvironment of acute myeloid leukemia (AML) is suppressive for immune cells. Regulatory T cells (Tregs) have been recognized to play a role in helping leukemic cells to evade immunesurveillance. The mesenchymal stem cells (MSCs) are essential contributors in immunomodulation of the microenvironment as they can promote differentiation of Tregs via the indoleamine 2,3-dioxygenase (IDO) pathway. The aim of the present work was to evaluate the expression of IDO in bone marrow derived MSCs and to study its correlation to percentage of Tregs. Thirty-seven adult bone marrow samples were cultured in appropriate culture medium to isolate MSCs. Successful harvest of MSCs was determined by plastic adherence, morphology, and positive expression of CD271 and CD105; negative expression of CD34 and CD45 using flowcytometry. MSCs were examined for IDO expression by immunocytochemistry using anti-IDO monoclonal antibody. CD4+ CD25+ cells (Tregs) were measured in bone marrow samples by flowcytometry. MSCs were successfully isolated from 20 of the 37 bone marrow samples cultured. MSCs showed higher expression of IDO and Tregs percentage was higher in AML patients compared to control subjects (P = 0.002 and P < 0.001, respectively). A positive correlation was found between IDO expression and Tregs percentage (P value = 0.012, r = 0.5). In this study, we revealed an association between high IDO expression in MSCs and elevated levels of Tregs which could have an important role in the pathogenesis of AML, providing immunosuppressive microenvironment.

  15. Regulation of mRNA Translation Is a Novel Mechanism for Phthalate Toxicity.

    Directory of Open Access Journals (Sweden)

    Jun Ling

    Full Text Available Phthalates are a group of plasticizers that are widely used in many consumer products and medical devices, thus generating a huge burden to human health. Phthalates have been known to cause a number of developmental and reproductive disorders functioning as endocrine modulators. They are also involved in carcinogenesis with mechanisms less understood. To further understand the molecular mechanisms of phthalate toxicity, in this study we reported a new effect of phthalates on mRNA translation/protein synthesis, a key regulatory step of gene expression. Butyl benzyl phthalate (BBP was found to directly inhibit mRNA translation in vitro but showed a complicated pattern of affecting mRNA translation in cells. In human kidney embryonic cell (HEK-293T, BBP increased cap-dependent mRNA translation at lower concentrations but showed inhibitory effect at higher concentrations. Cap-independent translation was not affected. On the other hand, mono (2-ethylhexyl phthalate (MEHP as a major metabolite of another important phthalate di (2-ethylhexyl phthalate (DEHP inhibited both can-dependent and -independent mRNA translation in vivo. In contrast, BBP and MEHP exhibited an overall promoting effect on mRNA translation in cancer cells. Mechanistic studies identified that the level and phosphorylation of eIF4E-BP (eIF4E binding protein and the amount of eIF4GI in eIF4F complex were altered in accordance with the effect of BBP on translation. BBP was also identified to directly bind to eIF4E, providing a further mechanism underlying the regulation of mRNA by phthalate. At the cellular level BBP inhibited normal cell growth but slightly promoted cancer cells (HT29 growth. Overall, this study provides the first evidence that phthalates can directly regulate mRNA translation as a novel mechanism to mediate their biological toxicities.

  16. Microbial production of the aromatic building-blocks (S)-styrene oxide and (R)-1,2-phenylethanediol from renewable resources.

    Science.gov (United States)

    McKenna, Rebekah; Pugh, Shawn; Thompson, Brian; Nielsen, David R

    2013-12-01

    (S)-Styrene oxide and (R)-1,2-phenylethanediol are chiral aromatic molecular building blocks used commonly as precursors to pharmaceuticals and other specialty chemicals. Two pathways have been engineered in Escherichia coli for their individual biosynthesis directly from glucose. The novel pathways each constitute extensions of the previously engineered styrene pathway, developed by co-expressing either styrene monooxygenase (SMO) or styrene dioxygenase (SDO) to convert styrene to (S)-styrene oxide and (R)-1,2-phenylethanediol, respectively. StyAB from Pseudomonas putida S12 was determined to be the most effective SMO. SDO activity was achieved using NahAaAbAcAd of Pseudomonas sp. NCIB 9816-4, a naphthalene dioxygenase with known broad substrate specificity. Production of phenylalanine, the precursor to both pathways, was systematically enhanced through a number of mutations, most notably via deletion of tyrA and over-expression of tktA. As a result, (R)-1,2-phenylethanediol reached titers as high as 1.23 g/L, and at 1.32 g/L (S)-styrene oxide titers already approach their toxicity limit. As with other aromatics, product toxicity was strongly correlated with a model of membrane accumulation and disruption. This study additionally demonstrates that greater flux through the styrene pathway can be achieved if its toxicity is addressed, as achieved in this case by reacting styrene to less toxic products. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Simultaneous isolation of mRNA and native protein from minute samples of cells

    DEFF Research Database (Denmark)

    Petersen, Tonny Studsgaard; Andersen, Claus Yding

    2014-01-01

    Precious biological samples often lack a sufficient number of cells for multiple procedures, such as extraction of mRNA while maintaining protein in a non-denatured state suitable for subsequent characterization. Here we present a new method for the simultaneous purification of mRNA and native...... in their native state for traditional protein assays. We validated the procedure using neonatal rat ovaries and small numbers of human granulosa cells, demonstrating the extraction of mRNA suitable for gene expression analysis with simultaneous isolation of native proteins suitable for downstream characterization...... proteins from samples containing small numbers of cells. Our approach utilizes oligodeoxythymidylate [oligo(dT)25]-coated paramagnetic beads in an optimized reaction buffer to isolate mRNA comparable in quantity and quality to mRNA isolated with existing methods, while maintaining the proteins...

  18. Physical change in cytoplasmic messenger ribonucleoproteins in cells treated with inhibitors of mRNA transcription

    International Nuclear Information System (INIS)

    Dreyfuss, G.; Adam, S.A.; Choi, Y.D.

    1984-01-01

    Exposure of intact cells to UV light brings about cross-linking of polyadenylated mRNA to a set of cytoplasmic proteins which are in direct contact with the mRNA in vivo. Substantial amounts of an additional protein of molecular weight 38,000 become cross-linked to the mRNA when cells are treated with inhibitors of mRNA synthesis (actinomycin D, camptothecin, and 5,6-dichloro-1-beta-D-ribofuranosyl benzimidazole) or after infection with vesicular stomatitis virus. Cordycepin, which inhibits polyadenylation but not mRNA synthesis, has no such effect. Inhibitors of protein synthesis and of rRNA synthesis are also without effect on 38K cross-linking to mRNA. The onset of the effect of inhibitors of mRNA synthesis on the UV cross-linkable interaction between mRNA and 38K is rapid and reaches a maximal level in less than 60 min, and it is completely and rapidly reversible. In cells treated with actinomycin D, the amount of 38K which becomes cross-linked to mRNA is proportional to the extent of inhibition of mRNA synthesis. The association of 38K with mRNA during transcriptional arrest does not require protein synthesis because simultaneous treatment with the protein synthesis inhibitor emetine does not interfere with it. The effectors which promote the interaction of 38K with mRNA do not affect the proteins which are in contact with polyadenylated heterogeneous nuclear RNA and do not markedly affect protein synthesis in the cell. The 38K protein can be isolated with the polyribosomal polyadenylated fraction from which it was purified, and monoclonal antibodies against it were prepared

  19. Astrocyte cultures derived from human brain tissue express angiotensinogen mRNA

    International Nuclear Information System (INIS)

    Milsted, A.; Barna, B.P.; Ransohoff, R.M.; Brosnihan, K.B.; Ferrario, C.M.

    1990-01-01

    The authors have identified human cultured cell lines that are useful for studying angiotensinogen gene expression and its regulation in the central nervous system. A model cell system of human central nervous system origin expressing angiotensinogen has not previously been available. Expression of angiotensinogen mRNA appears to be a basal property of noninduced human astrocytes, since astrocytic cell lines derived from human glioblastomas or nonneoplastic human brain tissue invariably produced angiotensinogen mRNA. In situ hybridization histochemistry revealed that angiotensinogen mRNA production was not limited to a subpopulation of astrocytes because >99% of cells in these cultures contained angiotensinogen mRNA. These cell lines will be useful in studies of the molecular mechanisms controlling angiotensin synthesis and the role of biologically active angiotensin in the human brain by allowing the authors to examine regulation of expression of the renin-angiotensin system in human astrocyte cultures

  20. A selective splicing variant of hepcidin mRNA in hepatocellular carcinoma cell lines

    International Nuclear Information System (INIS)

    Toki, Yasumichi; Sasaki, Katsunori; Tanaka, Hiroki; Yamamoto, Masayo; Hatayama, Mayumi; Ito, Satoshi; Ikuta, Katsuya; Shindo, Motohiro; Hasebe, Takumu; Nakajima, Shunsuke; Sawada, Koji; Fujiya, Mikihiro; Torimoto, Yoshihiro; Ohtake, Takaaki; Kohgo, Yutaka

    2016-01-01

    Hepcidin is a main regulator of iron metabolism, of which abnormal expression affects intestinal absorption and reticuloendothelial sequestration of iron by interacting with ferroportin. It is also noted that abnormal iron accumulation is one of the key factors to facilitate promotion and progression of cancer including hepatoma. By RT-PCR/agarose gel electrophoresis of hepcidin mRNA in a hepatocellular carcinoma cell line HLF, a smaller mRNA band was shown in addition to the wild-type hepcidin mRNA. From sequencing analysis, this additional band was a selective splicing variant of hepcidin mRNA lacking exon 2 of HAMP gene, producing the transcript that encodes truncated peptide lacking 20 amino acids at the middle of preprohepcidin. In the present study, we used the digital PCR, because such a small amount of variant mRNA was difficult to quantitate by the conventional RT-PCR amplification. Among seven hepatoma-derived cell lines, six cell lines have significant copy numbers of this variant mRNA, but not in one cell line. In the transient transfection analysis of variant-type hepcidin cDNA, truncated preprohepcidin has a different character comparing with native preprohepcidin: its product is insensitive to digestion, and secreted into the medium as a whole preprohepcidin form without maturation. Loss or reduction of function of HAMP gene by aberrantly splicing may be a suitable phenomenon to obtain the proliferating advantage of hepatoma cells. - Highlights: • An aberrant splicing variant of hepcidin mRNA lacking exon 2 of HAMP gene. • Absolute quantification of hepcidin mRNA by digital PCR amplification. • Hepatoma-derived cell lines have significant copies of variant-type hepcidin mRNA. • Truncated preprohepcidin is secreted from cells without posttranslational cleavage.

  1. A selective splicing variant of hepcidin mRNA in hepatocellular carcinoma cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Toki, Yasumichi [Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Hokkaido 078-8510 (Japan); Sasaki, Katsunori, E-mail: k-sasaki@asahikawa-med.ac.jp [Department of Gastrointestinal Immunology and Regenerative Medicine, Asahikawa Medical University, Hokkaido 078-8510 (Japan); Tanaka, Hiroki [Department of Legal Medicine, Asahikawa Medical University, Hokkaido 078-8510 (Japan); Yamamoto, Masayo; Hatayama, Mayumi; Ito, Satoshi; Ikuta, Katsuya; Shindo, Motohiro; Hasebe, Takumu; Nakajima, Shunsuke; Sawada, Koji; Fujiya, Mikihiro [Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Hokkaido 078-8510 (Japan); Torimoto, Yoshihiro [Oncology Center, Asahikawa Medical University Hospital, Hokkaido 078-8510 (Japan); Ohtake, Takaaki; Kohgo, Yutaka [Department of Gastroenterology, International University of Health and Welfare Hospital, Tochigi 329-2763 (Japan)

    2016-08-05

    Hepcidin is a main regulator of iron metabolism, of which abnormal expression affects intestinal absorption and reticuloendothelial sequestration of iron by interacting with ferroportin. It is also noted that abnormal iron accumulation is one of the key factors to facilitate promotion and progression of cancer including hepatoma. By RT-PCR/agarose gel electrophoresis of hepcidin mRNA in a hepatocellular carcinoma cell line HLF, a smaller mRNA band was shown in addition to the wild-type hepcidin mRNA. From sequencing analysis, this additional band was a selective splicing variant of hepcidin mRNA lacking exon 2 of HAMP gene, producing the transcript that encodes truncated peptide lacking 20 amino acids at the middle of preprohepcidin. In the present study, we used the digital PCR, because such a small amount of variant mRNA was difficult to quantitate by the conventional RT-PCR amplification. Among seven hepatoma-derived cell lines, six cell lines have significant copy numbers of this variant mRNA, but not in one cell line. In the transient transfection analysis of variant-type hepcidin cDNA, truncated preprohepcidin has a different character comparing with native preprohepcidin: its product is insensitive to digestion, and secreted into the medium as a whole preprohepcidin form without maturation. Loss or reduction of function of HAMP gene by aberrantly splicing may be a suitable phenomenon to obtain the proliferating advantage of hepatoma cells. - Highlights: • An aberrant splicing variant of hepcidin mRNA lacking exon 2 of HAMP gene. • Absolute quantification of hepcidin mRNA by digital PCR amplification. • Hepatoma-derived cell lines have significant copies of variant-type hepcidin mRNA. • Truncated preprohepcidin is secreted from cells without posttranslational cleavage.

  2. Creatine kinase and alpha-actin mRNA levels decrease in diabetic rat hearts

    International Nuclear Information System (INIS)

    Popovich, B.; Barrieux, A.; Dillmann, W.H.

    1987-01-01

    Diabetic cardiomyopathy is associated with cardiac atrophy and isoenzyme redistribution. To determine if tissue specific changes occur in mRNAs coding for α-actin and creatine kinase (CK), they performed RNA blot analysis. Total ventricular RNA from control (C) and 4 wk old diabetic (D) rats were hybridized with 32 P cDNA probes for α-actin and CK. A tissue independent cDNA probe, CHOA was also used. Signal intensity was quantified by photodensitometry. D CK mRNA was 47 +/- 16% lower in D vs C. Insulin increases CK mRNA by 20% at 1.5 hs, and completely reverses the deficit after 4 wks. D α-actin mRNA is 66 +/- 18% lower in D vs C. Insulin normalized α-actin mRNA by 5 hs. CHOA mRNA is unchanged in D vs C, but D + insulin CHOA mRNA is 30 +/- 2% lower than C. In rats with diabetic cardiomyopathy, muscle specific CK and α-actin mRNAs are decreased. Insulin treatment reverses these changes

  3. Differential spatio-temporal expression of carotenoid cleavage dioxygenases regulates apocarotenoid fluxes during AM symbiosis.

    Science.gov (United States)

    López-Ráez, Juan A; Fernández, Iván; García, Juan M; Berrio, Estefanía; Bonfante, Paola; Walter, Michael H; Pozo, María J

    2015-01-01

    Apocarotenoids are a class of compounds that play important roles in nature. In recent years, a prominent role for these compounds in arbuscular mycorrhizal (AM) symbiosis has been shown. They are derived from carotenoids by the action of the carotenoid cleavage dioxygenase (CCD) enzyme family. In the present study, using tomato as a model, the spatio-temporal expression pattern of the CCD genes during AM symbiosis establishment and functioning was investigated. In addition, the levels of the apocarotenoids strigolactones (SLs), C13 α-ionol and C14 mycorradicin (C13/C14) derivatives were analyzed. The results suggest an increase in SLs promoted by the presence of the AM fungus at the early stages of the interaction, which correlated with an induction of the SL biosynthesis gene SlCCD7. At later stages, induction of SlCCD7 and SlCCD1 expression in arbusculated cells promoted the production of C13/C14 apocarotenoid derivatives. We show here that the biosynthesis of apocarotenoids during AM symbiosis is finely regulated throughout the entire process at the gene expression level, and that CCD7 constitutes a key player in this regulation. Once the symbiosis is established, apocarotenoid flux would be turned towards the production of C13/C14 derivatives, thus reducing SL biosynthesis and maintaining a functional symbiosis. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  4. Detection of melatonin receptor mRNA in human muscle

    International Nuclear Information System (INIS)

    Li Lei

    2004-01-01

    To verify the expression of melatonin receptor mRNA in human, muscle, muscle beside vertebrae was collected to obtain total RNA and the mRNA of melatonin receptor was detected by RT-PCR method. The electrophoretic results of RT-PCR products by mt 1 and MT 2 primer were all positive and the sequence is corresponding with human melatonin receptor cDNA. It suggests that melatonin may act on the muscle beside vertebrae directly and regulate its growth and development. (authors)

  5. Differential regulation of renal cyclooxygenase mRNA by dietary salt intake

    DEFF Research Database (Denmark)

    Jensen, B L; Kurtz, A

    1997-01-01

    RNA correlated directly with salt intake. We conclude that dietary salt intake influences renal cyclooxygenase mRNAs zone-specifically with opposite responses between cortex and medulla. Cortical COX II-mediated prostaglandin formation is probably important in low salt states whereas medullary COX I......Experiments were done to investigate the influence of dietary salt intake on renal cyclooxygenase (COX) I and II mRNA levels. To this end rats were fed either a low NaCl diet (LS; 0.02% NaCl wt/wt) or a high NaCl diet (HS diet; 4% NaCl wt/wt) for 5, 10 and 20 days. After 10 days Na excretion...... differed 760-fold, plasma renin activity and renin mRNA were increased eight- and threefold in LS compared to HS animals. Total renal COX I mRNA decreased 50% following the LS diet and did not change after the HS diet. Conversely, COX II mRNA declined after HS intake and transiently increased after salt...

  6. Myeloperoxidase mRNA detection for lineage determination of leukemic blasts: retrospective analysis.

    Science.gov (United States)

    Crisan, D; Anstett, M J

    1995-07-01

    Myeloperoxidase (MPO) mRNA is an early myeloid marker; its detection in the morphologically and immunophenotypically primitive blasts of acute undifferentiated leukemia (AUL) establishes myeloid lineage and allows reclassification as acute myelogenous leukemia with minimal differentiation (AML-MO). We have previously reported a procedure for MPO mRNA detection by RT-PCR (reverse transcription-polymerase chain reaction) and an adaptation for use of routine hematology smears. This variant procedure allows retrospective analysis of mRNA and is used in the present study to evaluate the lineage of leukemic blasts in seven cases with morphology and cytochemistry consistent with AUL. All hematology smears used in this study were air-dried, unstained or Wright-stained and stored at room temperature for periods varying between 3 days and 2 years. MPO mRNA was detected in six cases, establishing the myeloid lineage of the blasts and the diagnosis of AML-MO. In the remaining case, the blasts were MPO mRNA negative, confirming the diagnosis of AUL. The RT-PCR procedure for retrospective mRNA analysis is useful in the clinical setting, due to its high specificity and sensitivity, speed (less than 24 h), safety (no radioactivity) and convenient use of routine hematology smears; it is particularly attractive in clinical situations when fresh or frozen specimens are no longer available at the time when the need for molecular diagnostics becomes apparent.

  7. Three-Dimensional Mapping of mRNA Export through the Nuclear Pore Complex

    Directory of Open Access Journals (Sweden)

    Steven J. Schnell

    2014-11-01

    Full Text Available The locations of transcription and translation of mRNA in eukaryotic cells are spatially separated by the nuclear envelope (NE. Plenty of nuclear pore complexes (NPCs embedded in the NE function as the major gateway for the export of transcribed mRNAs from the nucleus to the cytoplasm. Whereas the NPC, perhaps one of the largest protein complexes, provides a relatively large channel for macromolecules to selectively pass through it in inherently three-dimensional (3D movements, this channel is nonetheless below the diffraction limit of conventional light microscopy. A full understanding of the mRNA export mechanism urgently requires real-time mapping of the 3D dynamics of mRNA in the NPC of live cells with innovative imaging techniques breaking the diffraction limit of conventional light microscopy. Recently, super-resolution fluorescence microscopy and single-particle tracking (SPT techniques have been applied to the study of nuclear export of mRNA in live cells. In this review, we emphasize the necessity of 3D mapping techniques in the study of mRNA export, briefly summarize the feasibility of current 3D imaging approaches, and highlight the new features of mRNA nuclear export elucidated with a newly developed 3D imaging approach combining SPT-based super-resolution imaging and 2D-to-3D deconvolution algorithms.

  8. Evidence for a Complex Class of Nonadenylated mRNA in Drosophila

    Science.gov (United States)

    Zimmerman, J. Lynn; Fouts, David L.; Manning, Jerry E.

    1980-01-01

    The amount, by mass, of poly(A+) mRNA present in the polyribosomes of third-instar larvae of Drosophila melanogaster, and the relative contribution of the poly(A+) mRNA to the sequence complexity of total polysomal RNA, has been determined. Selective removal of poly(A+) mRNA from total polysomal RNA by use of either oligo-dT-cellulose, or poly(U)-sepharose affinity chromatography, revealed that only 0.15% of the mass of the polysomal RNA was present as poly(A+) mRNA. The present study shows that this RNA hybridized at saturation with 3.3% of the single-copy DNA in the Drosophila genome. After correction for asymmetric transcription and reactability of the DNA, 7.4% of the single-copy DNA in the Drosophila genome is represented in larval poly(A+) mRNA. This corresponds to 6.73 x 106 nucleotides of mRNA coding sequences, or approximately 5,384 diverse RNA sequences of average size 1,250 nucleotides. However, total polysomal RNA hybridizes at saturation to 10.9% of the single-copy DNA sequences. After correcting this value for asymmetric transcription and tracer DNA reactability, 24% of the single-copy DNA in Drosophila is represented in total polysomal RNA. This corresponds to 2.18 x 107 nucleotides of RNA coding sequences or 17,440 diverse RNA molecules of size 1,250 nucleotides. This value is 3.2 times greater than that observed for poly(A+) mRNA, and indicates that ≃69% of the polysomal RNA sequence complexity is contributed by nonadenylated RNA. Furthermore, if the number of different structural genes represented in total polysomal RNA is ≃1.7 x 104, then the number of genes expressed in third-instar larvae exceeds the number of chromomeres in Drosophila by about a factor of three. This numerology indicates that the number of chromomeres observed in polytene chromosomes does not reflect the number of structural gene sequences in the Drosophila genome. PMID:6777246

  9. N-channel thin-film transistors based on 1,4,5,8-naphthalene tetracarboxylic dianhydride with ultrathin polymer gate buffer layer

    International Nuclear Information System (INIS)

    Tanida, Shinji; Noda, Kei; Kawabata, Hiroshi; Matsushige, Kazumi

    2009-01-01

    N-channel operation of thin-film transistors based on 1,4,5,8-naphthalene tetracarboxylic dianhydride (NTCDA) with a 9-nm-thick poly(methyl methacrylate) (PMMA) gate buffer layer was examined. The uniform coverage of the ultrathin PMMA layer on an SiO 2 gate insulator, verified by X-ray reflectivity measurement, caused the increase of electron field-effect mobility because of the suppression of electron traps existing on the SiO 2 surface. In addition, air stability for n-channel operation of the NTCDA transistor was also improved by the PMMA layer which possibly prevented the adsorption of ambient water molecules onto the SiO 2 surface.

  10. Arc mRNA induction in striatal efferent neurons associated with response learning.

    Science.gov (United States)

    Daberkow, D P; Riedy, M D; Kesner, R P; Keefe, K A

    2007-07-01

    The dorsal striatum is involved in motor-response learning, but the extent to which distinct populations of striatal efferent neurons are differentially involved in such learning is unknown. Activity-regulated, cytoskeleton-associated (Arc) protein is an effector immediate-early gene implicated in synaptic plasticity. We examined arc mRNA expression in striatopallidal vs. striatonigral efferent neurons in dorsomedial and dorsolateral striatum of rats engaged in reversal learning on a T-maze motor-response task. Male Sprague-Dawley rats learned to turn right or left for 3 days. Half of the rats then underwent reversal training. The remaining rats were yoked to rats undergoing reversal training, such that they ran the same number of trials but ran them as continued-acquisition trials. Brains were removed and processed using double-label fluorescent in situ hybridization for arc and preproenkephalin (PPE) mRNA. In the reversal, but not the continued-acquisition, group there was a significant relation between the overall arc mRNA signal in dorsomedial striatum and the number of trials run, with rats reaching criterion in fewer trials having higher levels of arc mRNA expression. A similar relation was seen between the numbers of PPE(+) and PPE(-) neurons in dorsomedial striatum with cytoplasmic arc mRNA expression. Interestingly, in behaviourally activated animals significantly more PPE(-) neurons had cytoplasmic arc mRNA expression. These data suggest that Arc in both striatonigral and striatopallidal efferent neurons is involved in striatal synaptic plasticity mediating motor-response learning in the T-maze and that there is differential processing of arc mRNA in distinct subpopulations of striatal efferent neurons.

  11. Remarkable Role of Indoleamine 2,3-Dioxygenase and Tryptophan Metabolites in Infectious Diseases: Potential Role in Macrophage-Mediated Inflammatory Diseases

    Directory of Open Access Journals (Sweden)

    Yuki Murakami

    2013-01-01

    Full Text Available Indoleamine 2,3-dioxygenase 1 (IDO1, the L-tryptophan-degrading enzyme, plays a key role in the immunomodulatory effects on several types of immune cells. Originally known for its regulatory function during pregnancy and chronic inflammation in tumorigenesis, the activity of IDO1 seems to modify the inflammatory state of infectious diseases. The pathophysiologic activity of L-tryptophan metabolites, kynurenines, is well recognized. Therefore, an understanding of the regulation of IDO1 and the subsequent biochemical reactions is essential for the design of therapeutic strategies in certain immune diseases. In this paper, current knowledge about the role of IDO1 and its metabolites during various infectious diseases is presented. Particularly, the regulation of type I interferons (IFNs production via IDO1 in virus infection is discussed. This paper offers insights into new therapeutic strategies in the modulation of viral infection and several immune-related disorders.

  12. A glimpse at mRNA dynamics reveals cellular domains and rapid trafficking through granules

    NARCIS (Netherlands)

    Gemert, Alice Myriam Christi van

    2011-01-01

    mRNA transport and targeting are essential to gene expression regulation. Specific mRNA sequences can bind several proteins and together form RiboNucleoProtein particles (RNP). The various proteins within the RNP determine mRNA fate: translation, transport or decay. RNP composition varies with

  13. Feasibility of scaffold production using Ti-13Nb-13Zr alloy and naphthalene as space holder

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, Persio Mozart; Komorizono, Amanda Akemy; Antonini, Leonardo; Rodrigues Junior, Durval, E-mail: persiomozart@usp.br [Universidade de Sao Paulo (USP), Lorena, SP (Brazil). Escola de Engenharia

    2016-07-01

    Full text: The tissue engineering has as goal the repairing of bone defects, usually using a synthetic structure with pores in three dimensions, named scaffold. The structure of the scaffolds present interconnected pores, with controlled porosity, according to the process used to produce the scaffold. The present work has as main objective the processing of the Ti-13Nb-13Zr alloy (percentages in weight) using the powder metallurgy technique named space-holder, to obtain porous scaffolds for osseointegration. Firstly, elementary powders of Ti, Nb, and Zr were weighted to obtain the composition 74wt.%Ti+13wt.%Nb+13wt.%Zr, such that 3.5g was direct mixed with naphthalene, named 'control' condition, and 3.5g was milled in a SPEX mill for 8h (sample MA8h), using grinding midia of tungsten carbide and isopropyl alcohol as process controlling agent. Both powders, in 'control' and MA8h conditions, were mixed with naphthalene powder (50% in volume and particle size in the range from 500μm to 1mm) for 30 minutes. The powders mixed with naftalen were pressed to obtain green bodies and sintered at 1000°C for 1h in vacuum better than 5 x 10{sup -5} mbar. The sintered samples were characterized using XRD, He picnometry, optical microscopy, SEM-EDX, and microhardness test. From the XRD results, it could be found the presence of titanium α and β phases, also present in the SEM-EDX analyses. The SEM analyses also showed, in the samples, the presence of widmantäten microstructure and a structure of pores, with size in the range from 300μm to 1mm. The observed pores were also interconnected and were connected to the surface. From the results of He picnometry and microscopy, it could be observed that the samples presented porosity in the range from 30% to 50% in volume. It could be concluded that it is possible to obtain scaffolds of the Ti-13Nb-13Zr alloy using the techniques developed in the present work. (author)

  14. Human apolipoprotein B (apoB) mRNA: Identification of two distinct apoB mRNAs, an mRNA with the apoB-100 sequence and an apoB mRNA containing a premature in-frame translational stop codon, in both liver and intestine

    International Nuclear Information System (INIS)

    Higuchi, K.; Hospattankar, A.V.; Law, S.W.; Meglin, N.; Cortright, J.; Brewer, H.B. Jr.

    1988-01-01

    Human apolipoprotein B (apoB) is present in plasma as two separate isoproteins, designated apoB-100 (512 kDa) and apoB-48 (250 kDa). ApoB is encoded by a single gene on chromosome 2, and a single nuclear mRNA is edited and processed into two separate apoB mRNAs. A 14.1-kilobase apoB mRNA codes for apoB-100, and the second mRNA, which codes for apoB-48, contains a premature stop codon generated by a single base substitution of cytosine to uracil at nucleotide 6,538, which converts the translated CAA codon coding for the amino acid glutamine at residue 2,153 in apoB-100 to a premature in-frame stop codon (UAA). Two 30-base synthetic oligonucleotides, designated apoB-Stop and apoB-Gln, were synthesized containing the complementary sequence to the stop codon (UAA) and glutamine codon (CAA), respectively. The combined results from these studies establish that both human intestine and liver contain the two distinct apoB mRNAs, an mRNA that codes for apoB-100 and an apoB mRNA that contains the premature stop codon, which codes for apoB-48. The premature in-frame stop codon is not tissue specific and is present in both human liver and intestine

  15. Prokaryotic Homologs of the Eukaryotic 3-Hydroxyanthranilate 3,4-Dioxygenase and 2-Amino-3-Carboxymuconate-6-Semialdehyde Decarboxylase in the 2-Nitrobenzoate Degradation Pathway of Pseudomonas fluorescens Strain KU-7†

    OpenAIRE

    Muraki, Takamichi; Taki, Masami; Hasegawa, Yoshie; Iwaki, Hiroaki; Lau, Peter C. K.

    2003-01-01

    The 2-nitrobenzoic acid degradation pathway of Pseudomonas fluorescens strain KU-7 proceeds via a novel 3-hydroxyanthranilate intermediate. In this study, we cloned and sequenced a 19-kb DNA locus of strain KU-7 that encompasses the 3-hydroxyanthranilate meta-cleavage pathway genes. The gene cluster, designated nbaEXHJIGFCDR, is organized tightly and in the same direction. The nbaC and nbaD gene products were found to be novel homologs of the eukaryotic 3-hydroxyanthranilate 3,4-dioxygenase a...

  16. Complexity on Acute Myeloid Leukemia mRNA Transcript Variant

    Directory of Open Access Journals (Sweden)

    Carlo Cattani

    2011-01-01

    Full Text Available This paper deals with the sequence analysis of acute myeloid leukemia mRNA. Six transcript variants of mlf1 mRNA, with more than 2000 bps, are analyzed by focusing on the autocorrelation of each distribution. Through the correlation matrix, some patches and similarities are singled out and commented, with respect to similar distributions. The comparison of Kolmogorov fractal dimension will be also given in order to classify the six variants. The existence of a fractal shape, patterns, and symmetries are discussed as well.

  17. Extracellular tumor-related mRNA in plasma of lymphoma patients and survival implications.

    Directory of Open Access Journals (Sweden)

    Vanesa Garcia

    Full Text Available BACKGROUND: We studied anomalous extracellular mRNAs in plasma from patients with diffuse large B-cell lymphoma (DLBCL and their survival implications. mRNAs studied have been reported in the literature as markers of poor (BCL2, CCND2, MYC and favorable outcome (LMO2, BCL6, FN1 in tumors. These markers were also analyzed in lymphoma tissues to test possible associations with their presence in plasma. METHODOLOGY/PRINCIPAL FINDINGS: mRNA from 42 plasma samples and 12 tumors from patients with DLBCL was analyzed by real-time PCR. Samples post-treatment were studied. The immunohistochemistry of BCL2 and BCL6 was defined. Presence of circulating tumor cells was determined by analyzing the clonality of the immunoglobulin heavy-chain genes by PCR. In DLBCL, MYC mRNA was associated with short overall survival. mRNA targets with unfavorable outcome in tumors were associated with characteristics indicative of poor prognosis, with partial treatment response and with short progression-free survival in patients with complete response. In patients with low IPI score, unfavorable mRNA targets were related to shorter overall survival, partial response, high LDH levels and death. mRNA disappeared in post-treatment samples of patients with complete response, and persisted in those with partial response or death. No associations were found between circulating tumor cells and plasma mRNA. Absence of BCL6 protein in tumors was associated with presence of unfavorable plasma mRNA. CONCLUSIONS/SIGNIFICANCE: Through a non-invasive procedure, tumor-derived mRNAs can be obtained in plasma. mRNA detected in plasma did not proceed from circulating tumor cells. In our study, unfavorable targets in plasma were associated with poor prognosis in B-cell lymphomas, mainly MYC mRNA. Moreover, the unfavorable targets in plasma could help us to classify patients with poor outcome within the good prognosis group according to IPI.

  18. The hypoxic proteome is influenced by gene-specific changes in mRNA translation

    International Nuclear Information System (INIS)

    Koritzinsky, Marianne; Seigneuric, Renaud; Magagnin, Michael G.; Beucken, Twan van den; Lambin, Philippe; Wouters, Bradly G.

    2005-01-01

    Background and purpose: Hypoxia causes a rapid reduction in mRNA translation efficiency. This inhibition does not affect all mRNA species to the same extent and can therefore contribute significantly to hypoxia-induced differential protein expression. Our aim in this study was to characterize changes in gene expression during acute hypoxia and evaluate the contribution of regulation via mRNA translation on these changes. For each gene, the contribution of changes in mRNA abundance versus mRNA translation was determined. Materials and methods: DU145 prostate carcinoma cells were exposed to 4 h of hypoxia ( 2 ). Efficiently translated mRNAs were isolated by sedimentation through a sucrose gradient. Affymetrix microarray technology was used to evaluate both the transcriptional and translational contribution to gene expression. Results were validated by quantitative PCR. Results: One hundred and twenty genes were more than 4-fold upregulated by hypoxia in the efficiently translated fraction of mRNA, in comparison to only 76 genes at the level of transcription. Of the 50 genes demonstrating the largest changes in translation, 11 were found to be more than 2-fold over represented in the translated fraction in comparison to their overall transcriptional level. The gene with the highest translational contribution to its induction was CITED-2, which is a negative regulator of HIF-1 transcriptional activity. Conclusions: Gene-specific regulation of mRNA translation contributes significantly to differential gene expression during hypoxia

  19. Impairment of FOS mRNA stabilization following translation arrest in granulocytes from myelodysplastic syndrome patients.

    Science.gov (United States)

    Feng, Xiaomin; Shikama, Yayoi; Shichishima, Tsutomu; Noji, Hideyoshi; Ikeda, Kazuhiko; Ogawa, Kazuei; Kimura, Hideo; Takeishi, Yasuchika; Kimura, Junko

    2013-01-01

    Although quantitative and qualitative granulocyte defects have been described in myelodysplastic syndromes (MDS), the underlying molecular basis of granulocyte dysfunction in MDS is largely unknown. We recently found that FOS mRNA elevation under translation-inhibiting stimuli was significantly smaller in granulocytes from MDS patients than in healthy individuals. The aim of this study is to clarify the cause of the impaired FOS induction in MDS. We first examined the mechanisms of FOS mRNA elevation using granulocytes from healthy donors cultured with the translation inhibitor emetine. Emetine increased both transcription and mRNA stability of FOS. p38 MAPK inhibition abolished the emetine-induced increase of FOS transcription but did not affect FOS mRNA stabilization. The binding of an AU-rich element (ARE)-binding protein HuR to FOS mRNA containing an ARE in 3'UTR was increased by emetine, and the knockdown of HuR reduced the FOS mRNA stabilizing effect of emetine. We next compared the emetine-induced transcription and mRNA stabilization of FOS between MDS patients and healthy controls. Increased rates of FOS transcription by emetine were similar in MDS and controls. In the absence of emetine, FOS mRNA decayed to nearly 17% of initial levels in 45 min in both groups. In the presence of emetine, however, 76.7±19.8% of FOS mRNA remained after 45 min in healthy controls, versus 37.9±25.5% in MDS (Pknowledge, this is the first report demonstrating attenuation of stress-induced FOS mRNA stabilization in MDS granulocytes.

  20. Insights into the Reaction Mechanism of Aromatic Ring Cleavage by Homogentisate Dioxygenase: A Quantum Mechanical/Molecular Mechanical Study.

    Science.gov (United States)

    Qi, Yue; Lu, Jiarui; Lai, Wenzhen

    2016-05-26

    To elucidate the reaction mechanism of the ring cleavage of homogentisate by homogentisate dioxygenase, quantum mechanical/molecular mechanical (QM/MM) calculations were carried out by using two systems in different protonation states of the substrate C2 hydroxyl group. When the substrate C2 hydroxyl group is ionized (the ionized pathway), the superoxo attack on the substrate is the rate-limiting step in the catalytic cycle, with a barrier of 15.9 kcal/mol. Glu396 was found to play an important role in stabilizing the bridge species and its O-O cleavage product by donating a proton via a hydrogen-bonded water molecule. When the substrate C2 hydroxyl group is not ionized (the nonionized pathway), the O-O bond cleavage of the bridge species is the rate-limiting step, with a barrier of 15.3 kcal/mol. The QM/MM-optimized geometries for the dioxygen and alkylperoxo complexes using the nonionized model (for the C2 hydroxyl group) are in agreement with the experimental crystal structures, suggesting that the C2 hydroxyl group is more likely to be nonionized.

  1. Eucalyptus ESTs involved in the production of 9-cis epoxycarotenoid dioxygenase, a regulatory enzyme of abscisic acid production

    Directory of Open Access Journals (Sweden)

    Iraê A. Guerrini

    2005-01-01

    Full Text Available Abscisic acid (ABA regulates stress responses in plants, and genomic tools can help us to understand the mechanisms involved in that process. FAPESP, a Brazilian research foundation, in association with four private forestry companies, has established the FORESTs database (https://forests.esalq.usp.br. A search was carried out in the Eucalyptus expressed sequence tag database to find ESTs involved with 9-cis epoxycarotenoid dioxygenase (NCED, the regulatory enzyme for ABA biosynthesis, using the basic local BLAST alignment tool. We found four clusters (EGEZLV2206B11.g, EGJMWD2252H08.g, EGBFRT3107F10.g, and EGEQFB1200H10.g, which represent similar sequences of the gene that produces NCED. Data showed that the EGBFRT3107F10.g cluster was similar to the maize (Zea mays NCED enzyme, while EGEZLV2206B11.g and EGJMWD2252H08.g clusters were similar to the avocado (Persea americana NCED enzyme. All Eucalyptus clusters were expressed in several tissues, especially in flower buds, where ABA has a special participation during the floral development process.

  2. Characterization of a major late herpes simplex virus type 1 mRNA.

    Science.gov (United States)

    Costa, R H; Devi, B G; Anderson, K P; Gaylord, B H; Wagner, E K

    1981-05-01

    A major, late 6-kilobase (6-kb) mRNa mapping in the large unique region of herpes simplex virus type 1 (HSV-1) was characterized by using two recombinant DNA clones, one containing EcoRI fragment G (0.190 to 0.30 map units) in lambda. WES.B (L. Enquist, M. Madden, P. Schiop-Stansly, and G. Vandl Woude, Science 203:541-544, 1979) and one containing HindIII fragment J (0.181 to 0.259 map units) in pBR322. This 6-kb mRNA had its 3' end to the left of 0.231 on the prototypical arrangement of the HSV-1 genome and was transcribed from right to left. It was bounded on both sides by regions containing a large number of distinct mRNA species, and its 3' end was partially colinear with a 1.5-kb mRNA which encoded a 35,000-dalton polypeptide. The 6-kb mRNA encoded a 155,000-dalton polypeptide which was shown to be the only one of this size detectable by hybrid-arrested translation encoded by late polyadenylated polyribosomal RNA. The S1 nuclease mapping experiments indicated that there were no introns in the coding sequence for this mRNA and that its 3' end mapped approximately 800 nucleotides to the left of the BglII site at 0.231, whereas its 5' end extended very close to the BamHI site at 0.266.

  3. Coordinated Regulations of mRNA Synthesis and Decay during Cold Acclimation in Arabidopsis Cells.

    KAUST Repository

    Arae, Toshihiro

    2017-04-18

    Plants possess a cold acclimation system to acquire freezing tolerance through pre-exposure to non-freezing low temperatures. The transcriptional cascade of C-repeat binding factors (CBFs)/dehydration response element-binding factors (DREBs) is considered a major transcriptional regulatory pathway during cold acclimation. However, little is known regarding the functional significance of mRNA stability regulation in the response of gene expression to cold stress. The actual level of individual mRNAs is determined by a balance between mRNA synthesis and degradation. Therefore, it is important to assess the regulatory steps to increase our understanding of gene regulation. Here, we analyzed temporal changes in mRNA amounts and half-lives in response to cold stress in Arabidopsis cell cultures based on genome-wide analysis. In this mRNA decay array method, mRNA half-life measurements and microarray analyses were combined. In addition, temporal changes in the integrated value of transcription rates were estimated from the above two parameters using a mathematical approach. Our results showed that several cold-responsive genes, including Cold-regulated 15a, were relatively destabilized, whereas the mRNA amounts were increased during cold treatment by accelerating the transcription rate to overcome the destabilization. Considering the kinetics of mRNA synthesis and degradation, this apparently contradictory result supports that mRNA destabilization is advantageous for the swift increase in CBF-responsive genes in response to cold stress.

  4. 2'-O-methylation in mRNA disrupts tRNA decoding during translation elongation.

    Science.gov (United States)

    Choi, Junhong; Indrisiunaite, Gabriele; DeMirci, Hasan; Ieong, Ka-Weng; Wang, Jinfan; Petrov, Alexey; Prabhakar, Arjun; Rechavi, Gideon; Dominissini, Dan; He, Chuan; Ehrenberg, Måns; Puglisi, Joseph D

    2018-03-01

    Chemical modifications of mRNA may regulate many aspects of mRNA processing and protein synthesis. Recently, 2'-O-methylation of nucleotides was identified as a frequent modification in translated regions of human mRNA, showing enrichment in codons for certain amino acids. Here, using single-molecule, bulk kinetics and structural methods, we show that 2'-O-methylation within coding regions of mRNA disrupts key steps in codon reading during cognate tRNA selection. Our results suggest that 2'-O-methylation sterically perturbs interactions of ribosomal-monitoring bases (G530, A1492 and A1493) with cognate codon-anticodon helices, thereby inhibiting downstream GTP hydrolysis by elongation factor Tu (EF-Tu) and A-site tRNA accommodation, leading to excessive rejection of cognate aminoacylated tRNAs in initial selection and proofreading. Our current and prior findings highlight how chemical modifications of mRNA tune the dynamics of protein synthesis at different steps of translation elongation.

  5. Quantitative PCR--new diagnostic tool for quantifying specific mRNA and DNA molecules

    DEFF Research Database (Denmark)

    Schlemmer, B O; Sorensen, B S; Overgaard, J

    2004-01-01

    of a subset of ligands from the EGF system is increased in bladder cancer. Furthermore, measurement of the mRNA concentration gives important information such as the expression of these ligands correlated to the survival of the patients. In addition to the alterations at the mRNA level, changes also can occur...... at the DNA level in the EGF system. Thus, it has been demonstrated that the number of genes coding for the human epidermal growth factor receptor 2 (HER2) is increased in a number of breast tumors. It is now possible to treat breast cancer patients with a humanized antibody reacting with HER2...... of mRNA or DNA in biological samples. In this study quantitative PCR was used to investigate the role of the EGF (epidermal growth factor) system in cancer both for measurements of mRNA concentrations and for measurements of the number of copies of specific genes. It is shown that the mRNA expression...

  6. Applying the breaks on gene expression - mRNA deadenylation by Pop2p

    DEFF Research Database (Denmark)

    Andersen, Kasper Røjkjær; Jonstrup, Anette Thyssen; Van, Lan Bich

    When driving a car, control of the brakes is just as important as control of the accelerator pedal. Likewise, in gene expression, regulation of mRNA degradation is as important as regulation of its synthesis (Mühlemann, 2005). The rate-determining step of mRNA decay in eukaryotes seems to be the ......When driving a car, control of the brakes is just as important as control of the accelerator pedal. Likewise, in gene expression, regulation of mRNA degradation is as important as regulation of its synthesis (Mühlemann, 2005). The rate-determining step of mRNA decay in eukaryotes seems...... to be the shortening of the poly(A) tail (deadenylation), as this step is slower than the subsequent decapping and degradation of the mRNA body. The Mega-Dalton Ccr4-Not complex contains two exonucleases, Ccr4p and Pop2p, responsible for this process. It is not known at present why two conserved nucleases are needed...

  7. HLA-G allelic variants are associated with differences in the HLA-G mRNA isoform profile and HLA-G mRNA levels

    DEFF Research Database (Denmark)

    Hviid, Thomas Vauvert F; Hylenius, Sine; Rørbye, Christina

    2003-01-01

    between mother and fetus in several ways. Finally, the expression of membrane-bound HLA-G and soluble HLA-G has been proposed to influence the outcome of pregnancy, and an aberrant HLA-G expression in pre-eclamptic placentas and spontaneous abortions has been reported. Here, an association between certain...... HLA-G polymorphisms and the mRNA levels of the different alternatively spliced HLA-G isoforms in first trimester trophoblast cell populations is reported. Several alternatively spliced HLA-G mRNA isoforms, including a 14-bp polymorphism in the 3'UTR end (exon 8) of the HLA-G gene, are expressed...

  8. Effect of in vitro estrogenic pesticides on human oestrogen receptor α and β mRNA levels

    DEFF Research Database (Denmark)

    Theander Grünfeld, Heidi; Bonefeld-Jørgensen, Eva Cecilie

    2004-01-01

    of the ERα mRNA level, but only significantly for prochloraz, dieldrin, and tolchlofos-methyl. Alone no pesticides affected the ERβ mRNA level significantly, but chlorpyrifos increased the mRNA level weakly. Co-exposure with E2 elicited a significant increased ERβ mRNA level by prochloraz, fenarimol...

  9. Regulation of mRNA translation influences hypoxia tolerance

    International Nuclear Information System (INIS)

    Koritzinsky, M.; Wouters, B.G.; Koumenis, C.

    2003-01-01

    Hypoxia is a heterogenous but common characteristic of human tumours and poor oxygenation is associated with poor prognosis. We believe that the presence of viable hypoxic tumor cells reflects in part an adaptation and tolerance of these cells to oxygen deficiency. Since oxidative phosphorylation is compromized during hypoxia, adaptation may involve both the upregulation of glycolysis as well as downregulation of energy consumption. mRNA translation is one of the most energy costly cellular processes, and we and others have shown that global mRNA translation is rapidly inhibited during hypoxia. However, some mRNAs, including those coding for HIF-1 α and VEGF, remain efficiently translated during hypoxia. Clearly, the mechanisms responsible for the overall inhibition of translation during hypoxia does not compromize the translation of certain hypoxia-induced mRNA species. We therefore hypothesize that the inhibition of mRNA translation serves to promote hypoxia tolerance in two ways: i) through conservation of energy and ii) through differential gene expression involved in hypoxia adaptation. We have recently identified two pathways that are responsible for the global inhibition of translation during hypoxia. The phosphorylation of the eukaryotic initiation factor eIF2 α by the ER resident kinase PERK results in down-regulation of protein synthesis shortly after the onset of hypoxia. In addition, the initiation complex eIF4F is disrupted during long lasting hypoxic conditions. The identification of the molecular pathways responsible for the inhibition of overall translation during hypoxia has rendered it possible to investigate their importance for hypoxia tolerance. We have found that mouse embryo fibroblasts that are knockout for PERK and therefore not able to inhibit protein synthesis efficiently during oxygen deficiency are significantly less tolerant to hypoxia than their wildtype counterparts. We are currently also investigating the functional significance

  10. Efficient in vitro Clonal Propagation of Muscari neglectum Guss. Ex. Ten Using Thidiazuron- α Naphthalene Acetic Acid

    Directory of Open Access Journals (Sweden)

    Çiğdem Alev Özel

    2016-12-01

    Full Text Available Muscari neglectum Guss. Ex Ten, is an ornamental, herbaceous perennial plant species that grows in the Mediterranean countries with attractive and scented blue-colored flowers. The plant has low seed output, seed dormancy, low germination and propagation rates. This study aimed to develop a reliable microclonal propagation protocol for M. neglectum using TDZ (Thidiazuron-NAA (α Naphthalene acetic acid to induce bulblets, roots, and acclimatization of the regenerated bulblets. Maximum number of bulblets per explant (8.25±0.05 was noted on MS medium containing 0.0454 µM TDZ-5.37 µM NAA. The bulblets regenerated in each type of culture medium were very vigorous, and acclimatized easily following rooting on a subculture. Here we show that this protocol is a useful clonal micropropagation system for this important ornamental plant.

  11. An investigation of nutrient-dependent mRNA translation in Drosophila larvae

    Directory of Open Access Journals (Sweden)

    Sabarish Nagarajan

    2014-10-01

    Full Text Available The larval period of the Drosophila life cycle is characterized by immense growth. In nutrient rich conditions, larvae increase in mass approximately two hundred-fold in five days. However, upon nutrient deprivation, growth is arrested. The prevailing view is that dietary amino acids drive this larval growth by activating the conserved insulin/PI3 kinase and Target of rapamycin (TOR pathways and promoting anabolic metabolism. One key anabolic process is protein synthesis. However, few studies have attempted to measure mRNA translation during larval development or examine the signaling requirements for nutrient-dependent regulation. Our work addresses this issue. Using polysome analyses, we observed that starvation rapidly (within thirty minutes decreased larval mRNA translation, with a maximal decrease at 6–18 hours. By analyzing individual genes, we observed that nutrient-deprivation led to a general reduction in mRNA translation, regardless of any starvation-mediated changes (increase or decrease in total transcript levels. Although sugars and amino acids are key regulators of translation in animal cells and are the major macronutrients in the larval diet, we found that they alone were not sufficient to maintain mRNA translation in larvae. The insulin/PI3 kinase and TOR pathways are widely proposed as the main link between nutrients and mRNA translation in animal cells. However, we found that genetic activation of PI3K and TOR signaling, or regulation of two effectors – 4EBP and S6K – could not prevent the starvation-mediated translation inhibition. Similarly, we showed that the nutrient stress-activated eIF2α kinases, GCN2 and PERK, were not required for starvation-induced inhibition of translation in larvae. These findings indicate that nutrient control of mRNA translation in larvae is more complex than simply amino acid activation of insulin and TOR signaling.

  12. Localization of insulin receptor mRNA in rat brain by in situ hybridization

    International Nuclear Information System (INIS)

    Marks, J.L.; Porte, D. Jr.; Stahl, W.L.; Baskin, D.G.

    1990-01-01

    Insulin receptor mRNA was demonstrated in rat brain slices by in situ hybridization with three 35 S-oligonucleotide probes and contact film autoradiography. Specificity was confirmed by showing that (a) excess unlabeled probe abolished the signal, (b) an oligonucleotide probe for rat neuropeptide Y mRNA showed a different distribution of hybridization signal, and (c) the distribution of insulin receptor binding was consistent with the distribution of insulin receptor mRNA. Insulin receptor mRNA was most abundant in the granule cell layers of the olfactory bulb, cerebellum and dentate gyrus, in the pyramidal cell body layers of the pyriform cortex and hippocampus, in the choroid plexus and in the arcuate nucleus of the hypothalamus

  13. Interleukin-21 mRNA expression during virus infections

    DEFF Research Database (Denmark)

    Holm, Christian; Nyvold, Charlotte Guldborg; Paludan, Søren Riis

    2006-01-01

    and activational effects of IL-21 on different leukocytes come into play in vivo in an immune response has so far not been fully investigated. We show here for the first time in vivo, that IL-21 mRNA is produced in the spleen when mice are challenged with herpes simplex virus type 2 (HSV-2) or lymphocytic...... choriomeningitis virus (LCMV). We show in HSV-2 challenged mice that this production takes place in CD4+ T cell fractions and is absent in CD4+ T cell-depleted fractions. We also show that the peak of IL-21 mRNA production in both the HSV-2 and LCMV-challenged mice coincides with the onset of the adaptive immune...

  14. Evolutionarily distinct carotenoid cleavage dioxygenases are responsible for crocetin production in Buddleja davidii.

    Science.gov (United States)

    Ahrazem, Oussama; Diretto, Gianfranco; Argandoña, Javier; Rubio-Moraga, Ángela; Julve, José Manuel; Orzáez, Diego; Granell, Antonio; Gómez-Gómez, Lourdes

    2017-07-20

    Crocetin, one of the few colored apocarotenoids known in nature, is present in flowers and fruits and has long been used medicinally and as a colorant. Saffron is the main source of crocetin, although a few other plants produce lower amounts of this apocarotenoid. Notably, Buddleja davidii accumulates crocetin in its flowers. Recently, a carotenoid dioxygenase cleavage enzyme, CCD2, has been characterized as responsible for crocetin production in Crocus species. We searched for CCD2 homologues in B. davidii and identified several CCD enzymes from the CCD1 and CCD4 subfamilies. Unexpectedly, two out of the three CCD4 enzymes, namely BdCCD4.1 and BdCCD4.3, showed 7,8;7',8' activity in vitro and in vivo over zeaxanthin. In silico analyses of these enzymes and CCD2 allowed the determination of key residues for this activity. Both BdCCD4 genes are highly expressed during flower development and transcripts levels parallel the accumulation of crocins in the petals. Phylogenetic analysis showed that BdCCD4.2 grouped with almost all the characterized CCD4 enzymes, while BdCCD4.1 and BdCCD4.3 form a new sub-cluster together with CCD4 enzymes from certain Lamiales species. The present study indicates that convergent evolution led to the acquisition of 7,8;7',8' apocarotenoid cleavage activity in two separate CCD enzyme families. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  15. Structural insights into the metabolism of 2-chlorodibenzofuran by an evolved biphenyl dioxygenase

    International Nuclear Information System (INIS)

    Kumar, Pravindra; Mohammadi, Mahmood; Dhindwal, Sonali; Pham, Thi Thanh My; Bolin, Jeffrey T.; Sylvestre, Michel

    2012-01-01

    Highlights: ► Regiospecificity of BphAE RR41 toward dibenzofuran and 2-chlorodibenzofuran differs. ► We compared the structures of the substrate-bound forms of the enzyme with both substrates. ► Dibenzofuran is compelled to move during the catalytic reaction. ► Ser283 contact with 2-chlorodibenzofuran helps prevent substrate movement during the reaction. -- Abstract: The biphenyl dioxygenase of Burkholderia xenovorans LB400 (BphAE LB400 ) is a Rieske-type oxygenase that catalyzes the stereospecific oxygenation of many heterocyclic aromatics including dibenzofuran. In a previous work, we evolved BphAE LB400 and obtained BphAE RR41 . This variant metabolizes dibenzofuran and 2-chlorodibenzofuran more efficiently than BphAE LB400 . However, the regiospecificity of BphAE RR41 toward these substrates differs. Dibenzofuran is metabolized principally through a lateral dioxygenation whereas 2-chlorodibenzofuran is metabolized principally through an angular dioxygenation. In order to explain this difference, we examined the crystal structures of both substrate-bound forms of BphAE RR41 obtained under anaerobic conditions. This structure analysis, in combination with biochemical data for a Ser283Gly mutant provided evidences that the substrate is compelled to move after oxygen-binding in BphAE RR41 :dibenzofuran. In BphAE RR41 :2-chlorodibenzofuran, the chlorine atom is close to the side chain of Ser283. This contact is missing in the BphAE RR41 :dibenzofuran, and strong enough in the BphAE RR41 :2-chlorodibenzofuran to help prevent substrate movement during the catalytic reaction.

  16. Region specific regulation of glutamic acid decarboxylase mRNA expression by dopamine neurons in rat brain.

    Science.gov (United States)

    Lindefors, N; Brene, S; Herrera-Marschitz, M; Persson, H

    1989-01-01

    In situ hybridization histochemistry and RNA blots were used to study the expression of glutamic acid decarboxylase (GAD) mRNA in rats with or without a unilateral lesion of midbrain dopamine neurons. Two populations of GAD mRNA positive neurons were found in the intact caudate-putamen, substantia nigra and fronto-parietal cortex. In caudate-putamen, only one out of ten of the GAD mRNA positive neurons expressed high levels, while in substantia nigra every second of the positive neurons expressed high levels of GAD mRNA. Relatively few, but intensively labelled neurons were found in the intact fronto-parietal cerebral cortex. In addition, one out of six of the GAD mRNA positive neurons in the fronto-parietal cortex showed a low labeling. On the ipsilateral side, the forebrain dopamine deafferentation induced an increase in the number of neurons expressing high levels of GAD mRNA in caudate-putamen, and a decrease in fronto-parietal cortex. A smaller decrease was also seen in substantia nigra. However, the total number of GAD mRNA positive neurons were not significantly changed in any of these brain regions. The changes in the levels of GAD mRNA after the dopamine lesion were confirmed by RNA blot analysis. Hence, midbrain dopamine neurons appear to control neuronal expression of GAD mRNA by a tonic down-regulation in a fraction of GAD mRNA positive neurons in caudate-putamen, and a tonic up-regulation in a fraction of GAD mRNA positive neurons in fronto-parietal cortex and substantia nigra.

  17. Exogenous mRNA encoding tetanus or botulinum neurotoxins expressed in Aplysia neurons

    NARCIS (Netherlands)

    Mochida, Sumiko; Poulain, Bernard; Eisel, Ulrich; Binz, Thomas; Kurazono, Hisao; Niemann, Heiner; Tauc, Ladislav; Bullock, Theodore H.

    1990-01-01

    Injection of exogenous mRNA purified from various tissue preparations into cellular translation systems such as Xenopus oocytes has allowed expression of complex proteins (e.g., receptors for neurotransmitters). No evidence for expression of injected exogenous mRNA, however, has been reported in

  18. Two novel mutations in the homogentisate-1,2-dioxygenase gene identified in Chinese Han Child with Alkaptonuria.

    Science.gov (United States)

    Li, Hongying; Zhang, Kaihui; Xu, Qun; Ma, Lixia; Lv, Xin; Sun, Ruopeng

    2015-03-01

    Alkaptonuria (AKU) is an autosomal recessive disorder of tyrosine metabolism, which is caused by a defect in the enzyme homogentisate 1,2-dioxygenase (HGD) with subsequent accumulation of homogentisic acid. Presently, more than 100 HGD mutations have been identified as the cause of the inborn error of metabolism across different populations worldwide. However, the HGD mutation is very rarely reported in Asia, especially China. In this study, we present mutational analyses of HGD gene in one Chinese Han child with AKU, which had been identified by gas chromatography-mass spectrometry detection of organic acids in urine samples. PCR and DNA sequencing of the entire coding region as well as exon-intron boundaries of HGD have been performed. Two novel mutations were identified in the HGD gene in this AKU case, a frameshift mutation of c.115delG in exon 3 and the splicing mutation of IVS5+3 A>C, a donor splice site of the exon 5 and exon-intron junction. The identification of these mutations in this study further expands the spectrum of known HGD gene mutations and contributes to prenatal molecular diagnosis of AKU.

  19. Natural selection and algorithmic design of mRNA.

    Science.gov (United States)

    Cohen, Barry; Skiena, Steven

    2003-01-01

    Messenger RNA (mRNA) sequences serve as templates for proteins according to the triplet code, in which each of the 4(3) = 64 different codons (sequences of three consecutive nucleotide bases) in RNA either terminate transcription or map to one of the 20 different amino acids (or residues) which build up proteins. Because there are more codons than residues, there is inherent redundancy in the coding. Certain residues (e.g., tryptophan) have only a single corresponding codon, while other residues (e.g., arginine) have as many as six corresponding codons. This freedom implies that the number of possible RNA sequences coding for a given protein grows exponentially in the length of the protein. Thus nature has wide latitude to select among mRNA sequences which are informationally equivalent, but structurally and energetically divergent. In this paper, we explore how nature takes advantage of this freedom and how to algorithmically design structures more energetically favorable than have been built through natural selection. In particular: (1) Natural Selection--we perform the first large-scale computational experiment comparing the stability of mRNA sequences from a variety of organisms to random synonymous sequences which respect the codon preferences of the organism. This experiment was conducted on over 27,000 sequences from 34 microbial species with 36 genomic structures. We provide evidence that in all genomic structures highly stable sequences are disproportionately abundant, and in 19 of 36 cases highly unstable sequences are disproportionately abundant. This suggests that the stability of mRNA sequences is subject to natural selection. (2) Artificial Selection--motivated by these biological results, we examine the algorithmic problem of designing the most stable and unstable mRNA sequences which code for a target protein. We give a polynomial-time dynamic programming solution to the most stable sequence problem (MSSP), which is asymptotically no more complex

  20. Lower FOXO3 mRNA expression in granulosa cells is involved in unexplained infertility.

    Science.gov (United States)

    Yamamoto, Hikaru; Yamashita, Yoshiki; Saito, Natsuho; Hayashi, Atsushi; Hayashi, Masami; Terai, Yoshito; Ohmichi, Masahide

    2017-06-01

    The aim of this study was to investigate whether FOXO1 and FOXO3 mRNA expression in granulosa cells is the cause of unexplained infertility. Thirty-one patients aged infertility and 18 with male partner infertility as a control group) whose serum anti-Müllerian hormone level was >0.5 ng/μL were enrolled in the study. All patients underwent oocyte retrieval under a short protocol from June 2012 to October 2013. Real-time PCR was carried out using mRNA extracted from granulosa cells retrieved from mature follicles. We compared FOXO1 and FOXO3 mRNA expression ratios in granulosa cells between the unexplained infertility group and the male infertility group. The relation between FOXO1 and FOXO3 mRNA expression ratios in granulosa cells and assisted reproduction technology clinical outcome was also examined. FOXO3 mRNA expression ratio was significantly lower in the unexplained infertility group than in the male infertility group. Moreover, FOXO3 mRNA expression ratio showed a positive correlation with both the number of retrieved oocytes and serum anti-Müllerian hormone level. A positive correlation was also identified between FOXO1 mRNA expression and total dose of hMG. As well, the number of retrieved oocytes in the unexplained infertility group was statistically lower than that in the male infertility group. A lower FOXO3 mRNA expression in granulosa cells leads to poor oocyte development in patients with unexplained infertility undergoing controlled ovarian stimulation for in vitro fertilization-embryo transfer. © 2017 Japan Society of Obstetrics and Gynecology.

  1. Early-onset ocular ochronosis in a girl with alkaptonuria (AKU) and a novel mutation in homogentisate 1,2-dioxygenase (HGD).

    Science.gov (United States)

    Gucev, Z S; Slaveska, N; Laban, N; Danilovski, D; Tasic, V; Pop-Jordanova, N; Zatkova, A

    2011-01-01

    Alkaptonuria (AKU) is a disorder of phenylalanine/tyrosine metabolism due to a defect in the enzyme homogentisate 1,2-dioxygenase (HGD). This recessive disease is caused by mutations in the HGD gene. We report a 14-year-old girl who was referred after presenting black urine. Careful examination revealed ochronosis of the conjunctiva. There was no affection of the cardiac valves. Elevated excretion of homogentisic acid in urine was found. Sequence analysis of the HGD gene from genomic DNA revealed that the patient is a compound heterozygote with a previously described mutation (c.473C>T, p.Pro158Leu), and a novel one (c.821C>T, p.Pro274Leu). Her mother is heterozygous for the novel mutation, while the brother is heterozygous for the previously described mutation. In summary, we describe an alkaptonuric patient with ocular ochronosis and a novel HGD mutation, c.821C>T, p.Pro274Leu.

  2. Influenza polymerase encoding mRNAs utilize atypical mRNA nuclear export.

    Science.gov (United States)

    Larsen, Sean; Bui, Steven; Perez, Veronica; Mohammad, Adeba; Medina-Ramirez, Hilario; Newcomb, Laura L

    2014-08-28

    Influenza is a segmented negative strand RNA virus. Each RNA segment is encapsulated by influenza nucleoprotein and bound by the viral RNA dependent RNA polymerase (RdRP) to form viral ribonucleoproteins responsible for RNA synthesis in the nucleus of the host cell. Influenza transcription results in spliced mRNAs (M2 and NS2), intron-containing mRNAs (M1 and NS1), and intron-less mRNAs (HA, NA, NP, PB1, PB2, and PA), all of which undergo nuclear export into the cytoplasm for translation. Most cellular mRNA nuclear export is Nxf1-mediated, while select mRNAs utilize Crm1. Here we inhibited Nxf1 and Crm1 nuclear export prior to infection with influenza A/Udorn/307/1972(H3N2) virus and analyzed influenza intron-less mRNAs using cellular fractionation and reverse transcription-quantitative polymerase chain reaction (RT-qPCR). We examined direct interaction between Nxf1 and influenza intron-less mRNAs using immuno purification of Nxf1 and RT-PCR of associated RNA. Inhibition of Nxf1 resulted in less influenza intron-less mRNA export into the cytoplasm for HA and NA influenza mRNAs in both human embryonic kidney cell line (293 T) and human lung adenocarcinoma epithelial cell line (A549). However, in 293 T cells no change was observed for mRNAs encoding the components of the viral ribonucleoproteins; NP, PA, PB1, and PB2, while in A549 cells, only PA, PB1, and PB2 mRNAs, encoding the RdRP, remained unaffected; NP mRNA was reduced in the cytoplasm. In A549 cells NP, NA, HA, mRNAs were found associated with Nxf1 but PA, PB1, and PB2 mRNAs were not. Crm1 inhibition also resulted in no significant difference in PA, PB1, and PB2 mRNA nuclear export. These results further confirm Nxf1-mediated nuclear export is functional during the influenza life cycle and hijacked for select influenza mRNA nuclear export. We reveal a cell type difference for Nxf1-mediated nuclear export of influenza NP mRNA, a reminder that cell type can influence molecular mechanisms. Importantly, we

  3. Real-time RT-PCR analysis of mRNA decay: half-life of Beta-actin mRNA in human leukemia CCRF-CEM and Nalm-6 cell lines

    Directory of Open Access Journals (Sweden)

    Barredo Julio C

    2002-03-01

    Full Text Available Abstract Background We describe an alternative method to determine mRNA half-life (t1/2 based on the Real-Time RT-PCR procedure. This approach was evaluated by using the β-actin gene as a reference molecule for measuring of mRNA stability. Results Human leukemia Nalm-6 and CCRF-CEM cells were treated with various concentrations of Actinomycin D to block transcription and aliquots were removed periodically. Total RNA was isolated and quantified using the RiboGreen® fluorescent dye with the VersaFluor Fluorometer System. One μg of total RNA was reverse transcribed and used as template for the amplification of a region of the β-actin gene (231 bp. To generate the standard curve, serial ten-fold dilutions of the pBactin-231 vector containing the cDNA amplified fragment were employed, β-actin mRNAs were quantified by Real-Time RT-PCR using the SYBR® Green I fluorogenic dye and data analyzed using the iCycle iQ system software. Using this method, the β-actin mRNA exhibited a half-life of 6.6 h and 13.5 h in Nalm-6 and CCRF-CEM cells, respectively. The t1/2 value obtained for Nalm-6 is comparable to those estimated from Northern blot studies, using normal human leukocytes (5.5 h. Conclusions We have developed a rapid, sensitive, and reliable method based on Real-Time RT-PCR for measuring mRNA half-life. Our results confirm that β-actin mRNA half-life can be affected by the cellular growth rate.

  4. Cysteine dioxygenase type 1 promotes adipogenesis via interaction with peroxisome proliferator-activated receptor gamma

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Peng; Chen, Yi; Ji, Ning; Lin, Yunfeng; Yuan, Quan; Ye, Ling; Chen, Qianming, E-mail: qmchen@scu.edu.cn

    2015-02-27

    Mammalian cysteine dioxygenase type 1 (CDO1) is an essential enzyme for taurine biosynthesis and the biodegradation of toxic cysteine. As previously suggested, Cdo1 may be a marker of liposarcoma progression and adipogenic differentiation, but the role of Cdo1 in adipogenesis has yet been reported. In this study, we found that the expression of Cdo1 is dramatically elevated during adipogenic differentiation of 3T3-L1 pre-adipocytes and mouse bone marrow-derived mesenchymal stem cells (mBMSCs). Conversely, knockdown of Cdo1 inhibited expression of adipogenic specific genes and lipid droplet formation in 3T3-L1 cells and mBMSCs. Mechanistically, we found Cdo1 interacted with Pparγ in response to adipogenic stimulus. Further, depletion of Cdo1 reduced the recruitment of Pparγ to the promoters of C/EBPα and Fabp4. Collectively, our finding indicates that Cdo1 may be a co-activator of Pparγ in adipogenesis, and may contribute to the development of disease associated with excessive adipose tissue. - Highlights: • Cdo1expression is highly up-regulated during adipogenic differentiation of 3T3-L1 and mBMSCs. • Depletion of Cdo1 inhibited expression of adipogenic specific genes and lipid droplet formation. • Cdo1interacts with Pparγ during adipogenesis. • Knockdown of Cdo1 inhibited Pparγ binding to the promoters of C/EBPα and Fabp4.

  5. Tryptophan-2,3-dioxygenase (TDO) inhibition ameliorates neurodegeneration by modulation of kynurenine pathway metabolites.

    Science.gov (United States)

    Breda, Carlo; Sathyasaikumar, Korrapati V; Sograte Idrissi, Shama; Notarangelo, Francesca M; Estranero, Jasper G; Moore, Gareth G L; Green, Edward W; Kyriacou, Charalambos P; Schwarcz, Robert; Giorgini, Flaviano

    2016-05-10

    Metabolites of the kynurenine pathway (KP) of tryptophan (TRP) degradation have been closely linked to the pathogenesis of several neurodegenerative disorders. Recent work has highlighted the therapeutic potential of inhibiting two critical regulatory enzymes in this pathway-kynurenine-3-monooxygenase (KMO) and tryptophan-2,3-dioxygenase (TDO). Much evidence indicates that the efficacy of KMO inhibition arises from normalizing an imbalance between neurotoxic [3-hydroxykynurenine (3-HK); quinolinic acid (QUIN)] and neuroprotective [kynurenic acid (KYNA)] KP metabolites. However, it is not clear if TDO inhibition is protective via a similar mechanism or if this is instead due to increased levels of TRP-the substrate of TDO. Here, we find that increased levels of KYNA relative to 3-HK are likely central to the protection conferred by TDO inhibition in a fruit fly model of Huntington's disease and that TRP treatment strongly reduces neurodegeneration by shifting KP flux toward KYNA synthesis. In fly models of Alzheimer's and Parkinson's disease, we provide genetic evidence that inhibition of TDO or KMO improves locomotor performance and ameliorates shortened life span, as well as reducing neurodegeneration in Alzheimer's model flies. Critically, we find that treatment with a chemical TDO inhibitor is robustly protective in these models. Consequently, our work strongly supports targeting of the KP as a potential treatment strategy for several major neurodegenerative disorders and suggests that alterations in the levels of neuroactive KP metabolites could underlie several therapeutic benefits.

  6. Selective translation of the measles virus nucleocapsid mRNA by La protein

    Directory of Open Access Journals (Sweden)

    Yoshihisa eInoue

    2011-08-01

    Full Text Available Measles, caused by measles virus (MeV infection, is the leading cause of death in children because of secondary infections attributable to MeV-induced immune suppression. Recently, we have shown that wild-type MeVs induce the suppression of protein synthesis in host cells (referred to as "shutoff" and that viral mRNAs are preferentially translated under shutoff conditions in infected cells. To determine the mechanism behind the preferential translation of viral mRNA, we focused on the 5 untranslated region (UTR of nucleocapsid (N mRNA. The La/SSB autoantigen (La was found to specifically bind to an N-5UTR probe. Recombinant La enhanced the translation of luciferase mRNA containing the N-5UTR (N-fLuc, and RNA interference of La suppressed N-fLuc translation. Furthermore, recombinant MeV lacking the La-binding motif in the N-5UTR displayed delayed viral protein synthesis and growth kinetics at an early phase of infection. These results suggest that La induced predominant translation of N mRNA via binding to its 5UTR under shutoff conditions. This is the first report on a cellular factor that specifically regulates paramyxovirus mRNA translation.

  7. Expression of tryptophan 2,3-dioxygenase in mature granule cells of the adult mouse dentate gyrus

    Directory of Open Access Journals (Sweden)

    Ohira, Koji

    2010-09-01

    Full Text Available Abstract New granule cells are continuously generated in the dentate gyrus of the adult hippocampus. During granule cell maturation, the mechanisms that differentiate new cells not only describe the degree of cell differentiation, but also crucially regulate the progression of cell differentiation. Here, we describe a gene, tryptophan 2,3-dioxygenase (TDO, whose expression distinguishes stem cells from more differentiated cells among the granule cells of the adult mouse dentate gyrus. The use of markers for proliferation, neural progenitors, and immature and mature granule cells indicated that TDO was expressed in mature cells and in some immature cells. In mice heterozygous for the alpha-isoform of calcium/calmodulin-dependent protein kinase II, in which dentate gyrus granule cells fail to mature normally, TDO immunoreactivity was substantially downregulated in the dentate gyrus granule cells. Moreover, a 5-bromo-2'-deoxyuridine labeling experiment revealed that new neurons began to express TDO between 2 and 4 wk after the neurons were generated, when the axons and dendrites of the granule cells developed and synaptogenesis occurred. These findings indicate that TDO might be required at a late-stage of granule cell development, such as during axonal and dendritic growth, synaptogenesis and its maturation.

  8. Refining the reaction mechanism of O2 towards its co-substrate in cofactor-free dioxygenases

    Directory of Open Access Journals (Sweden)

    Pedro J. Silva

    2016-12-01

    Full Text Available Cofactor-less oxygenases perform challenging catalytic reactions between singlet co-substrates and triplet oxygen, in spite of apparently violating the spin-conservation rule. In 1-H-3-hydroxy-4-oxoquinaldine-2,4-dioxygenase, the active site has been suggested by quantum chemical computations to fine tune triplet oxygen reactivity, allowing it to interact rapidly with its singlet substrate without the need for spin inversion, and in urate oxidase the reaction is thought to proceed through electron transfer from the deprotonated substrate to an aminoacid sidechain, which then feeds the electron to the oxygen molecule. In this work, we perform additional quantum chemical computations on these two systems to elucidate several intriguing features unaddressed by previous workers. These computations establish that in both enzymes the reaction proceeds through direct electron transfer from co-substrate to O2 followed by radical recombination, instead of minimum-energy crossing points between singlet and triplet potential energy surfaces without formal electron transfer. The active site does not affect the reactivity of oxygen directly but is crucial for the generation of the deprotonated form of the co-substrates, which have redox potentials far below those of their protonated forms and therefore may transfer electrons to oxygen without sizeable thermodynamic barriers. This mechanism seems to be shared by most cofactor-less oxidases studied so far.

  9. RNA-Binding Proteins Revisited – The Emerging Arabidopsis mRNA Interactome

    KAUST Repository

    Köster, Tino

    2017-04-13

    RNA–protein interaction is an important checkpoint to tune gene expression at the RNA level. Global identification of proteins binding in vivo to mRNA has been possible through interactome capture – where proteins are fixed to target RNAs by UV crosslinking and purified through affinity capture of polyadenylated RNA. In Arabidopsis over 500 RNA-binding proteins (RBPs) enriched in UV-crosslinked samples have been identified. As in mammals and yeast, the mRNA interactomes came with a few surprises. For example, a plethora of the proteins caught on RNA had not previously been linked to RNA-mediated processes, for example proteins of intermediary metabolism. Thus, the studies provide unprecedented insights into the composition of the mRNA interactome, highlighting the complexity of RNA-mediated processes.

  10. RNA-Binding Proteins Revisited – The Emerging Arabidopsis mRNA Interactome

    KAUST Repository

    Kö ster, Tino; Marondedze, Claudius; Meyer, Katja; Staiger, Dorothee

    2017-01-01

    RNA–protein interaction is an important checkpoint to tune gene expression at the RNA level. Global identification of proteins binding in vivo to mRNA has been possible through interactome capture – where proteins are fixed to target RNAs by UV crosslinking and purified through affinity capture of polyadenylated RNA. In Arabidopsis over 500 RNA-binding proteins (RBPs) enriched in UV-crosslinked samples have been identified. As in mammals and yeast, the mRNA interactomes came with a few surprises. For example, a plethora of the proteins caught on RNA had not previously been linked to RNA-mediated processes, for example proteins of intermediary metabolism. Thus, the studies provide unprecedented insights into the composition of the mRNA interactome, highlighting the complexity of RNA-mediated processes.

  11. Postage for the messenger: Designating routes for Nuclear mRNA Export

    Science.gov (United States)

    Natalizio, Barbara J.; Wente, Susan R.

    2013-01-01

    Transcription of messenger(m) RNA occurs in the nucleus, making the translocation of mRNA across the nuclear envelope (NE) boundary a critical determinant of proper gene expression and cell survival. A major mRNA export route occurs via the NXF1-dependent pathway through the nuclear pore complexes (NPCs) embedded in the NE. However, recent findings have discovered new evidence supporting the existence of multiple mechanisms for crossing the NE, including both NPC-mediated and NE budding-mediated pathways. An analysis of the trans-acting factors and cis components that define these pathways reveals shared elements as well as mechanistic differences. We review here the current understanding of the mechanisms that characterize each pathway and highlight the determinants that influence mRNA transport fate. PMID:23583578

  12. Nonparametric testing for DNA copy number induced differential mRNA gene expression

    NARCIS (Netherlands)

    van Wieringen, W.N.; van de Wiel, M.A.

    2009-01-01

    The central dogma of molecular biology relates DNA with mRNA. Array CGH measures DNA copy number and gene expression microarrays measure the amount of mRNA. Methods that integrate data from these two platforms may uncover meaningful biological relationships that further our understanding of cancer.

  13. Nerve growth factor mRNA in brain: localization by in situ hybridization

    International Nuclear Information System (INIS)

    Rennert, P.D.; Heinrich, G.

    1986-01-01

    Nerve Growth Factor is a 118 amino acid polypeptide that plays an important role in the differentiation and survival of neurons. The recent discovery that a mRNA that encodes beta Nerve Growth Factor is present in brain suggests that the Nerve Growth Factor gene may not only regulate gene expression of peripheral but also of central neurons. To identify the site(s) of Nerve Growth Factor mRNA production in the brain and to determine which cells express the Nerve Growth Factor gene, the technique of in situ hybridization was employed. A 32P-labeled RNA probe complementary to Nerve Growth Factor mRNA hybridized to cells in the stratum granulosum of the dentate gyrus and the stratum pyramidale of the hippocampus. These observations identify for the first time cellular sites of Nerve Growth Factor gene expression in the central nervous system, and suggest that Nerve Growth Factor mRNA is produced by neurons

  14. Expression and significance of cyclooxygenase-2 mRNA in benign and malignant ascites

    Science.gov (United States)

    Lu, Jing; Li, Xiao-Feng; Kong, Li-Xia; Ma, Lin; Liao, Su-Huan; Jiang, Chang-You

    2013-01-01

    AIM: To investigate the mRNA expression of cyclooxygensae-2 (COX-2) in benign and malignant ascites, and to explore the difference in COX-2 mRNA expression among different diseases. METHODS: A total of 36 samples were collected from the Fifth Affiliated Hospital of Sun Yat-Sen University and divided into two experimental groups: benign ascites (n = 21) and malignant ascites (n = 15). Benign ascites included cirrhotic ascites (n = 10) and tuberculous ascites (n = 5). Malignant ascites included oophoroma (n = 7), cancer of colon (n = 5), cancer of the liver (n = 6), gastric cancer (n = 2), and bladder carcinoma (n = 1). The mRNA expression of COX-2 in ascites was examined with reverse transcriptase polymerase chain reaction (RT-PCR) technology, and the positive rate of COX-2 mRNA was compared between different diseases. RESULTS: The positive rate of COX-2 mRNA in malignant ascites was 42.9% (9/21), which was significantly higher than in benign ascites, 6.7% (1/15), difference being significant between these two groups (χ2 = 4.051, P = 0.044). The proportion of the positive rate in the malignant ascites was as follows: ovarian cancers 57.1% (4/7), colon cancer 40.0% (2/5), liver cancer 33.3% (2/6), gastric cancer 50.0% (1/2), and bladder cancer 0.00% (0/1). However, there was no significant difference in COX-2 mRNA expression among various tumors with malignant ascites (χ2 = 1.614, P = 0.806). Among the benign ascites, COX-2 mRNA levels were different between the tuberculous ascites (0/5) and cirrhotic ascites (1/10), but there was no significant difference (P = 1.000). CONCLUSION: COX-2 mRNA, detected by RT-PCR, is useful in the differential diagnosis of benign and malignant ascites, which also has potential value in the clinical diagnosis of tumors. PMID:24187465

  15. The potential role of IGF-I receptor mRNA in rats with diabetic retinopathy

    Institute of Scientific and Technical Information of China (English)

    匡洪宇; 邹伟; 刘丹; 史榕荇; 程丽华; 殷慧清; 刘晓民

    2003-01-01

    Objective To evaluate the potential role of insulin-like growth factor-1 receptor mRNA(IGF-IR mRNA) in the onset and development of retinopathy in diabetic rats.Methods A diabetic model was duplicated in Wistar rats. The early changes in the retina were examined using light and transmission electron microscopy. Expression of IGF-IR mRNA was analyzed using in situ hybridization.Results Weak expression of IGF-IR mRNA(5%) was found in retinas of normal rats, but was significantly increased (15% and 18%) in the retinas of diabetic rats after 3 and 6 months of diabetes (P<0.01). In situ hybridization and morphological study demonstrated that there was a positive correlation between IGF-IR mRNA expression and retinal changes at various stages.Conclusion Increased IGF-IR mRNA might play an important role in the onset and development of diabetic retinopathy.

  16. Naturally occurring BRCA2 alternative mRNA splicing events in clinically relevant samples

    DEFF Research Database (Denmark)

    Fackenthal, James D; Yoshimatsu, Toshio; Zhang, Bifeng

    2016-01-01

    patterns and thereby disrupt gene function. mRNA analyses are therefore among the tests used to interpret the clinical significance of some genetic variants. However, these could be confounded by the appearance of naturally occurring alternative transcripts unrelated to germline sequence variation...... to characterise the spectrum of naturally occurring BRCA2 mRNA alternate-splicing events. METHODS: mRNA was prepared from several blood and breast tissue-derived cells and cell lines by contributing ENIGMA laboratories. cDNA representing BRCA2 alternate splice sites was amplified and visualised using capillary...... or agarose gel electrophoresis, followed by sequencing. RESULTS: We demonstrate the existence of 24 different BRCA2 mRNA alternate-splicing events in lymphoblastoid cell lines and both breast cancer and non-cancerous breast cell lines. CONCLUSIONS: These naturally occurring alternate-splicing events...

  17. Exciplex ensemble modulated by excitation mode in intramolecular charge-transfer dyad: effects of temperature, solvent polarity, and wavelength on photochemistry and photophysics of tethered naphthalene-dicyanoethene system.

    Science.gov (United States)

    Aoki, Yoshiaki; Matsuki, Nobuo; Mori, Tadashi; Ikeda, Hiroshi; Inoue, Yoshihisa

    2014-09-19

    Solvent, temperature, and excitation wavelength significantly affected the photochemical outcomes of a naphthalene-dicyanoethene system tethered by different number (n) of methylene groups (1-3). The effect of irradiation wavelength was almost negligible for 2a but pronounced for 3a. The temperature dependence and theoretical calculations indicated the diversity of exciplex conformations, an ensemble of which can be effectively altered by changing excitation wavelength to eventually switch the regioselectivity of photoreactions.

  18. FLT3-ITD and MLL-PTD influence the expression of MDR-1, MRP-1, and BCRP mRNA but not LRP mRNA assessed with RQ-PCR method in adult acute myeloid leukemia.

    Science.gov (United States)

    Nasilowska-Adamska, Barbara; Solarska, Iwona; Paluszewska, Monika; Malinowska, Iwona; Jedrzejczak, Wieslaw W; Warzocha, Krzysztof

    2014-04-01

    Fms-like tyrosine kinase 3-internal tandem duplication (FLT3-ITD) and mixed-lineage leukemia gene-partial tandem duplication (MLL-PTD) are aberrations associated with leukemia which indicate unsatisfactory prognosis. Downstream regulatory targets of FLT3-ITD and MLL-PTD are not well defined. We have analyzed the expression of MDR-1, multidrug resistant protein-1 (MRP-1), breast cancer resistance protein (BCRP), and lung resistance protein (LRP) messenger RNA (mRNA) in relation to the mutational status of FLT3-ITD and MLL-PTD in 185 acute myeloid leukemia (AML) adult patients. The real-time quantitative polymerase chain reaction method was performed to assess the expression of the MDR-1, MRP-1, BCRP, and LRP mRNA, and the results were presented as coefficients calculated using an intermediate method according to Pfaffl's rule. Significantly higher expressions of MDR-1 mRNA were found in patients who did not harbor FLT3-ITD (0.20 vs. 0.05; p = 0.0001) and MRP-1 mRNA in patients with this mutation (0.96 vs. 0.70; p = 0.002) and of BCRP mRNA in patients with MLL-PTD (0.61 vs. 0.38; p = 0.03). In univariate analysis, the high expression of MDR-1 mRNA (≥0.1317) negatively influenced the outcome of induction therapy (p = 0.05), whereas the high expression of BCRP mRNA (≥1.1487) was associated with a high relapse rate (RR) (p = 0.013). We found that the high expression of MDR-1 (≥0.1317), MRP-1 (≥0.8409), and BCRP mRNA (≥1.1487) significantly influenced disease-free survival (DFS; p = 0.059, 0.032, and 0.009, respectively) and overall survival (0.048, 0.014, and 0.059, respectively). Moreover, a high expression of BCRP mRNA (≥1.1487) proved to be an independent prognostic factor for RR (p = 0.01) and DFS (p = 0.002) in multivariate analysis. The significant correlation between the expression of MDR-1, MRP-1, and BCRP mRNA and FLT3-ITD or MLL-PTD in AML patients requires further investigation.

  19. Vapor pressures, thermodynamic stability, and fluorescence properties of three 2,6-alkyl naphthalenes.

    Science.gov (United States)

    Santos, Ana Filipa L O M; Oliveira, Juliana A S A; Ribeiro da Silva, Maria D M C; Monte, Manuel J S

    2016-03-01

    This work reports the experimental determination of relevant thermodynamic properties and the characterization of luminescence properties of the following polycyclic aromatic hydrocarbons (PAHs): 2,6-diethylnaphthalene, 2,6-diisopropylnaphthalene and 2,6-di-tert-butylnaphthalene. The standard (p(o) = 0.1 MPa) molar enthalpies of combustion, ΔcHm(o), of the three compounds were determined using static bomb combustion calorimetry. The vapor pressures of the crystalline phase of 2,6-diisopropylnaphthalene and 2,6-di-tert-butylnaphthalene were measured at different temperatures using the Knudsen effusion method and the vapor pressures of both liquid and crystalline phases of 2,6-diethylnaphthalene were measured by means of a static method. The temperatures and the molar enthalpies of fusion of the three compounds were determined using differential scanning calorimetry. The gas-phase molar heat capacities and absolute entropies of the three 2,6-dialkylnaphthalenes studied were determined computationally. The thermodynamic stability of the compounds in both the crystalline and gaseous phases was evaluated by the determination of the Gibbs energies of formation and compared with the ones reported in the literature for 2,6-dimethylnaphthalene. From fluorescence spectroscopy measurements, the optical properties of the compounds studied and of naphthalene were evaluated in solution and in the solid state. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Photophysical behavior in spread monolayers. Dansyl fluorescence as a probe for polarity at the air-water interface. [N-(5-(dimethylamino)naphthalene-1-sulfonyl)dihexadecylamine

    Energy Technology Data Exchange (ETDEWEB)

    Grieser, F.; Thistlethwaite, P.; Urquhart, R.; Patterson, L.K.

    1987-09-24

    The emission spectrum of N-(5-(dimethylamino)naphthalene-1-sulfonyl)dihexadecylamine (dansyldihexadecylamine) in monolayers at the air-water interface has been studied. In some cases sudden shifts in the dansyl emission can be correlated with particular features of the surface pressure-area isotherms. These spectral shifts can be explained in terms of a change in the conformation of the head group on the surface and with aggregation of the dansyldihexadecylamine. In other cases the dansyl emission shows a blue shift with increasing compression that can be associated with reduced head-group hydration.

  1. Rift Valley fever virus NSS gene expression correlates with a defect in nuclear mRNA export.

    Science.gov (United States)

    Copeland, Anna Maria; Van Deusen, Nicole M; Schmaljohn, Connie S

    2015-12-01

    We investigated the localization of host mRNA during Rift Valley fever virus (RVFV) infection. Fluorescence in situ hybridization revealed that infection with RVFV altered the localization of host mRNA. mRNA accumulated in the nuclei of RVFV-infected but not mock-infected cells. Further, overexpression of the NSS gene, but not the N, GN or NSM genes correlated with mRNA nuclear accumulation. Nuclear accumulation of host mRNA was not observed in cells infected with a strain of RVFV lacking the gene encoding NSS, confirming that expression of NSS is likely responsible for this phenomenon. Published by Elsevier Inc.

  2. Polychlorinated naphthalenes in urban soils: analysis, concentrations, and relation to other persistent organic pollutants

    International Nuclear Information System (INIS)

    Krauss, Martin; Wilcke, Wolfgang

    2003-01-01

    Some of the first data on polychlorinated naphthalenes (PCNs) in soils are presented from a rural-urban-industrial gradient. - We determined the concentrations of 35 PCNs, 12 PCBs, and 20 PAHs in 49 urban topsoils under different land use (house garden, roadside grassland, alluvial grassland, park areas, industrial sites, agricultural sites) and in nine rural topsoils. The sums of concentrations of 35 PCNs (Σ35 PCNs) were -1 in urban soils and -1 in rural soils. The PCN, PCB, and PAH concentrations were highest at industrial sites and in house gardens. While rural soils receive PCNs, PCBs, and PAHs by common atmospheric deposition, there are site-specific sources of PCNs, PCBs, and PAHs for urban soils such as deposition of contaminated technogenic materials. The PCN, PCB, and PAH concentrations decreased from the central urban to the rural area. In the same order the contribution of lower chlorinated PCNs and PCBs increased because they are more volatile and subject to increased atmospheric transport. The PCNs 52+60, and 73 were more abundant in soil samples than in Halowax mixtures, indicating that combustion contributed to the PCN contamination of the soils

  3. Crimean-Congo Hemorrhagic Fever Virus Nucleocapsid Protein Augments mRNA Translation.

    Science.gov (United States)

    Jeeva, Subbiah; Cheng, Erdong; Ganaie, Safder S; Mir, Mohammad A

    2017-08-01

    Crimean-Congo hemorrhagic fever virus (CCHFV) is a tick-borne Nairovirus of the Bunyaviridae family, causing severe illness with high mortality rates in humans. Here, we demonstrate that CCHFV nucleocapsid protein (CCHFV-NP) augments mRNA translation. CCHFV-NP binds to the viral mRNA 5' untranslated region (UTR) with high affinity. It facilitates the translation of reporter mRNA both in vivo and in vitro with the assistance of the viral mRNA 5' UTR. CCHFV-NP equally favors the translation of both capped and uncapped mRNAs, demonstrating the independence of this translation strategy on the 5' cap. Unlike the canonical host translation machinery, inhibition of eIF4F complex, an amalgam of three initiation factors, eIF4A, eIF4G, and eIF4E, by the chemical inhibitor 4E1RCat did not impact the CCHFV-NP-mediated translation mechanism. However, the proteolytic degradation of eIF4G alone by the human rhinovirus 2A protease abrogated this translation strategy. Our results demonstrate that eIF4F complex formation is not required but eIF4G plays a critical role in this translation mechanism. Our results suggest that CCHFV has adopted a unique translation mechanism to facilitate the translation of viral mRNAs in the host cell cytoplasm where cellular transcripts are competing for the same translation apparatus. IMPORTANCE Crimean-Congo hemorrhagic fever, a highly contagious viral disease endemic to more than 30 countries, has limited treatment options. Our results demonstrate that NP favors the translation of a reporter mRNA harboring the viral mRNA 5' UTR. It is highly likely that CCHFV uses an NP-mediated translation strategy for the rapid synthesis of viral proteins during the course of infection. Shutdown of this translation mechanism might selectively impact viral protein synthesis, suggesting that an NP-mediated translation strategy is a target for therapeutic intervention against this viral disease. Copyright © 2017 American Society for Microbiology.

  4. The mRNA expression of XRCC repair genes in mice after γ-ray radiation

    International Nuclear Information System (INIS)

    Wang Qin; Yue Jingyin; Li Jin; Mu Chuanjie; Fan Feiyue

    2006-01-01

    Objective: To investigate the role of XRCC repair genes in radioresistance of IRM-2 inbred mice. Methods: Northern hybridization was used to measure mRNA expression of XRCC1 and XRCC5 genes in IRM-2 inbred mice. ICR/JCL and 615 after exposure to different doses of γ-ray radiation at different postirradiation time. Results: The levels of XRCC1 and XRCC5 mRNA expression in control IRM-2 mice were higher significantly than those in their control parental mice (P<0.01 and P<0.05). The mRNA expression of XRCC genes in ICR/JCL and 615 mice all increased to some extent after exposure 1, 2 and 4 Gy radiation. But the levels were significantly higher at 2h postirradiation (P<0.05) . The levels of XRCC mRNA expression in IRM-2 mice did not increase significnatly compared with the control mice after exposure 1 and 2 Gy radiation. But the levels of XRCC1 and XRCC5 mRNA expression increased markedly at 4Gy 1h postirradiation (P<0.05 and P<0.01). Conclusion: The basal levels of XRCC1 and XRCC5 mRNA expression in IRM-2 mice were high. The high level of XRCC5 mRNA expression was involved in the repair of DNA double strand breaks induced by higher dose radiation, which perhaps was one of radioresistance causes of IRM-2 mice. (authors)

  5. All-in-one detector of circulating mRNA based on a smartphone

    Science.gov (United States)

    Cmiel, Vratislav; Gumulec, Jaromir; Svoboda, Ondrej; Raudenska, Martina; Hudcova, Kristyna; Sekora, Jiri; Balogh, Jaroslav; Masarik, Michal; Provaznik, Ivo

    2016-03-01

    Metallothionein is significantly elevated in various tumors, notably in prostate cancer on both mRNA and protein level. We demonstrated a strong predictive potential of free circulating metallothionein 2A isoform mRNA for patients with this cancer. Circulating mRNA detection relies on expensive equipment and requires high level of expertise. In this work we developed compact "all-in-one" laboratory system which replace microvolume spectrophotometer, thermocycler and realtime PCR machines. We managed to design and construct a microprocessor controlled heating/cooling chamber that ensures required temperature gradient. The chamber includes implemented optical system to enable fluorescence excitation and fluorescence analysis using a smart-phone.

  6. Relative workload determines exercise-induced increases in PGC-1alpha mRNA

    DEFF Research Database (Denmark)

    Nordsborg, Nikolai Baastrup; Lundby, Carsten; Leick, Lotte

    2010-01-01

    INTRODUCTION:: The hypothesis that brief intermittent exercise induced increases in human skeletal muscle metabolic mRNA is dependent on relative workload was investigated. METHODS:: Trained (n=10) and untrained (n=8) subjects performed exhaustive intermittent cycling exercise (4x4 min @ 85% of VO2...... peak, interspersed by 3 min). Trained subjects also performed the intermittent exercise at the same absolute workload as untrained, corresponding to 70% of VO2 peak (n=6). RESULTS:: Exercise at 85% of VO2 peak elevated (P... and untrained, respectively. PGC-1alpha mRNA expression was increased (Pelevated (3.1+/-0.7 mM) and PGC-1alpha mRNA content was less (P

  7. Bioinspired nanocomplex for spatiotemporal imaging of sequential mRNA expression in differentiating neural stem cells.

    Science.gov (United States)

    Wang, Zhe; Zhang, Ruili; Wang, Zhongliang; Wang, He-Fang; Wang, Yu; Zhao, Jun; Wang, Fu; Li, Weitao; Niu, Gang; Kiesewetter, Dale O; Chen, Xiaoyuan

    2014-12-23

    Messenger RNA plays a pivotal role in regulating cellular activities. The expression dynamics of specific mRNA contains substantial information on the intracellular milieu. Unlike the imaging of stationary mRNAs, real-time intracellular imaging of the dynamics of mRNA expression is of great value for investigating mRNA biology and exploring specific cellular cascades. In addition to advanced imaging methods, timely extracellular stimulation is another key factor in regulating the mRNA expression repertoire. The integration of effective stimulation and imaging into a single robust system would significantly improve stimulation efficiency and imaging accuracy, producing fewer unwanted artifacts. In this study, we developed a multifunctional nanocomplex to enable self-activating and spatiotemporal imaging of the dynamics of mRNA sequential expression during the neural stem cell differentiation process. This nanocomplex showed improved enzymatic stability, fast recognition kinetics, and high specificity. With a mechanism regulated by endogenous cell machinery, this nanocomplex realized the successive stimulating motif release and the dynamic imaging of chronological mRNA expression during neural stem cell differentiation without the use of transgenetic manipulation. The dynamic imaging montage of mRNA expression ultimately facilitated genetic heterogeneity analysis. In vivo lateral ventricle injection of this nanocomplex enabled endogenous neural stem cell activation and labeling at their specific differentiation stages. This nanocomplex is highly amenable as an alternative tool to explore the dynamics of intricate mRNA activities in various physiological and pathological conditions.

  8. Expression of galectin-9 mRNA in obese children with polymorphism of the lactase gene

    Directory of Open Access Journals (Sweden)

    A.E. Abaturov

    2018-02-01

    Full Text Available Background. The aim of the study is to investigate the association of expression of galectin-9 (Gal-9 mRNA and lactose malabsorption in obese children with polymorphism (SNP of the lactase gene (LCT and to study the efficacy of lactase deficiency therapy using exogenous lactase preparations. Materials and methods. Seventy obese children (BMI > 95th percentile and 16 children without obesity aged 6–18 years were examined. There was studied SNP LCT (material for investigation venous blood by real-time PCR, expression of Gal-9 mRNA (study material buccal epithelium by real-time PCR with reverse transcription, malabsorption of lactose by hydrogen breath test (HBT. Among obese children, 38 children with genotype C/C 13910 presented the first observation group, 32 children with phenotype identical genotypes C/T 13910 and T/T 13910, p > 0.05, presented the second group. Children from the first observation group also determined the level of expression of Gal-9 mRNA and lactose malabsorption after using exogenous lactase preparations. Results. The genotype C/C 13910 was determined in 38 (54.3 %, genotype C/T 13910 in 22 (31.4 % and genotype T/T in 10 (14.3 % patients. Malabsorption of lactose in children with genotype C/C 13910 averaged 32.7 ± 10.4 pmm, in children with genotypes C/T 13910 — 26.3 ± 4.9 pmm (p > 0.05 and with genotype T/T 13910 and was absent in children without obesity (p < 0.05. The average level of expression of Gal-9 mRNA in children with genotype C/C 13910 was 564.3 ± 32.8 RU DmRNA Gal-9/mRNA actin, in children with genotypes C/T and T/T 13910 — 61.04 ± 15.30 RU DmRNA Gal-9/mRNA actin, p < 0.01. It is of great importance that the children with genotype C/C 13910 and lactose malabsorption (n = 20 had the lowest average level of expression of Gal-9 mRNA (42.47 ± 13.30 RU DmRNA Gal-9/mRNA actin whereas the children with genotype C/C 13910 and without lactose malabsorption (n =18 had the largest level (1086

  9. Generation of human induced pluripotent stem cells using non-synthetic mRNA.

    Science.gov (United States)

    Rohani, L; Fabian, C; Holland, H; Naaldijk, Y; Dressel, R; Löffler-Wirth, H; Binder, H; Arnold, A; Stolzing, A

    2016-05-01

    Here we describe some of the crucial steps to generate induced pluripotent stem cells (iPSCs) using mRNA transfection. Our approach uses a V. virus-derived capping enzyme instead of a cap-analog, ensuring 100% proper cap orientation for in vitro transcribed mRNA. V. virus' 2'-O-Methyltransferase enzyme creates a cap1 structure found in higher eukaryotes and has higher translation efficiency compared to other methods. Use of the polymeric transfection reagent polyethylenimine proved superior to other transfection methods. The mRNA created via this method did not trigger an intracellular immune response via human IFN-gamma (hIFN-γ) or alpha (hIFN-α) release, thus circumventing the use of suppressors. Resulting mRNA and protein were expressed at high levels for over 48h, thus obviating daily transfections. Using this method, we demonstrated swift activation of pluripotency associated genes in human fibroblasts. Low oxygen conditions further facilitated colony formation. Differentiation into different germ layers was confirmed via teratoma assay. Reprogramming with non-synthetic mRNA holds great promise for safe generation of iPSCs of human origin. Using the protocols described herein we hope to make this method more accessible to other groups as a fast, inexpensive, and non-viral reprogramming approach. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  10. Photodynamic antisense regulation of mRNA having a point mutation with psoralen-conjugated oligonucleotide.

    Science.gov (United States)

    Higuchi, Maiko; Yamayoshi, Asako; Kobori, Akio; Murakami, Akira

    2008-01-01

    Nucleic acid-based drugs, such as antisense oligonucleotide, ribozyme, and small interfering RNA, are specific compounds that inhibit gene expression at the post-transcriptional level. To develop more effective nucleic acid-based drugs, we focused on photo-reactive antisense oligonucleotides. We have optimized the structure of psoralen-conjugated oligonucleotide to improve their sequence selectivity and photo-crosslinking efficiency. Previously, we reported that photo reactive oligonucleotides containing 2'-O-psoralenyl-methoxyethyl adenosine (2'-Ps-eom) showed drastic photo-reactivity with a strictly sequence specific manner in vitro. In this report, we evaluated the binding ability toward intracellular target mRNA. The 2'-Ps-eom selectively photo-cross-linked to the target mRNA extracted from cells. The 2'-Ps-eom also cross-linked to target mRNA in cells. Furthermore, 2'-Ps-eom did not cross-link to mRNA having a mismatch base. These results suggest that 2'-Ps-eom is a powerful antisense molecule to inhibit the expression of mRNA having a point mutation.

  11. ZMS regulation of M2 muscarinic receptor mRNA stability requires protein factor

    International Nuclear Information System (INIS)

    Zhang Yongfang; Xia Zongqin; Hu Ya'er

    2010-01-01

    Aim The aim of this work is to study the elevation mechanism of ZMS on muscarinic M2 receptor mRNA expression. Methods Actinomycin D was added to cultured CHOm2 cells to stop the de novo synthesis of M2 receptor mRNA and samples were taken at various times to determine the time course of mRNA of M2 receptor with real-time quantitative RT-PCR. Half-life of M2 receptor mRNA and the effect of ZMS on the half-life was obtained from the slope of the exponential curves. Cycloheximide was added at 4 h prior to and 24 h after the addition of ZMS to examine the effect of de novo protein synthesis on the action of ZMS. Results The half-life of m2 mRNA was prolonged by ZMS treatment without cycloheximide (4.75±0.54 h and 2.13 h±0.23 h for ZMS and vehicle treated groups, respectively, P<0.05). When cycloheximide was added to the culture medium 4h prior to the addition of ZMS, the effect of ZMS in prolonging the half-life of m2 mRNA disappeared (3.06 h±0.23 h and 3.00 h±l.20 h for cells with and without ZMS, respectively). However, when the ZMS was added to the medium 24h prior to the addition of cycloheximide, the action of ZMS was not abolished by cycloheximide (half-life was 5.43 h±1.13 h and 2.46 h±0.09 h for cells with and without ZMS, respectively). Conclusion These data suggest that de novo protein synthesis was required for the increase in M2 mRNA stability induced by ZMS. (authors)

  12. UCP2 mRNA expression is dependent on glucose metabolism in pancreatic islets

    International Nuclear Information System (INIS)

    Dalgaard, Louise T.

    2012-01-01

    Highlights: ► UCP2 mRNA levels are decreased in islets of Langerhans from glucokinase deficient mice. ► UCP2 mRNA up-regulation by glucose is dependent on glucokinase. ► Absence of UCP2 increases GSIS of glucokinase heterozygous pancreatic islets. ► This may protect glucokinase deficient mice from hyperglycemic damages. -- Abstract: Uncoupling Protein 2 (UCP2) is expressed in the pancreatic β-cell, where it partially uncouples the mitochondrial proton gradient, decreasing both ATP-production and glucose-stimulated insulin secretion (GSIS). Increased glucose levels up-regulate UCP2 mRNA and protein levels, but the mechanism for UCP2 up-regulation in response to increased glucose is unknown. The aim was to examine the effects of glucokinase (GK) deficiency on UCP2 mRNA levels and to characterize the interaction between UCP2 and GK with regard to glucose-stimulated insulin secretion in pancreatic islets. UCP2 mRNA expression was reduced in GK+/− islets and GK heterozygosity prevented glucose-induced up-regulation of islet UCP2 mRNA. In contrast to UCP2 protein function UCP2 mRNA regulation was not dependent on superoxide generation, but rather on products of glucose metabolism, because MnTBAP, a superoxide dismutase mimetic, did not prevent the glucose-induced up-regulation of UCP2. Glucose-stimulated insulin secretion was increased in UCP2−/− and GK+/− islets compared with GK+/− islets and UCP2 deficiency improved glucose tolerance of GK+/− mice. Accordingly, UCP2 deficiency increased ATP-levels of GK+/− mice. Thus, the compensatory down-regulation of UCP2 is involved in preserving the insulin secretory capacity of GK mutant mice and might also be implicated in limiting disease progression in MODY2 patients.

  13. Protein functional features are reflected in the patterns of mRNA translation speed.

    Science.gov (United States)

    López, Daniel; Pazos, Florencio

    2015-07-09

    The degeneracy of the genetic code makes it possible for the same amino acid string to be coded by different messenger RNA (mRNA) sequences. These "synonymous mRNAs" may differ largely in a number of aspects related to their overall translational efficiency, such as secondary structure content and availability of the encoded transfer RNAs (tRNAs). Consequently, they may render different yields of the translated polypeptides. These mRNA features related to translation efficiency are also playing a role locally, resulting in a non-uniform translation speed along the mRNA, which has been previously related to some protein structural features and also used to explain some dramatic effects of "silent" single-nucleotide-polymorphisms (SNPs). In this work we perform the first large scale analysis of the relationship between three experimental proxies of mRNA local translation efficiency and the local features of the corresponding encoded proteins. We found that a number of protein functional and structural features are reflected in the patterns of ribosome occupancy, secondary structure and tRNA availability along the mRNA. One or more of these proxies of translation speed have distinctive patterns around the mRNA regions coding for certain protein local features. In some cases the three patterns follow a similar trend. We also show specific examples where these patterns of translation speed point to the protein's important structural and functional features. This support the idea that the genome not only codes the protein functional features as sequences of amino acids, but also as subtle patterns of mRNA properties which, probably through local effects on the translation speed, have some consequence on the final polypeptide. These results open the possibility of predicting a protein's functional regions based on a single genomic sequence, and have implications for heterologous protein expression and fine-tuning protein function.

  14. The ribosome structure controls and directs mRNA entry, translocation and exit dynamics

    International Nuclear Information System (INIS)

    Kurkcuoglu, Ozge; Doruker, Pemra; Jernigan, Robert L; Sen, Taner Z; Kloczkowski, Andrzej

    2008-01-01

    The protein-synthesizing ribosome undergoes large motions to effect the translocation of tRNAs and mRNA; here, the domain motions of this system are explored with a coarse-grained elastic network model using normal mode analysis. Crystal structures are used to construct various model systems of the 70S complex with/without tRNA, elongation factor Tu and the ribosomal proteins. Computed motions reveal the well-known ratchet-like rotational motion of the large subunits, as well as the head rotation of the small subunit and the high flexibility of the L1 and L7/L12 stalks, even in the absence of ribosomal proteins. This result indicates that these experimentally observed motions during translocation are inherently controlled by the ribosomal shape and only partially dependent upon GTP hydrolysis. Normal mode analysis further reveals the mobility of A- and P-tRNAs to increase in the absence of the E-tRNA. In addition, the dynamics of the E-tRNA is affected by the absence of the ribosomal protein L1. The mRNA in the entrance tunnel interacts directly with helicase proteins S3 and S4, which constrain the mRNA in a clamp-like fashion, as well as with protein S5, which likely orients the mRNA to ensure correct translation. The ribosomal proteins S7, S11 and S18 may also be involved in assuring translation fidelity by constraining the mRNA at the exit site of the channel. The mRNA also interacts with the 16S 3' end forming the Shine–Dalgarno complex at the initiation step; the 3' end may act as a 'hook' to reel in the mRNA to facilitate its exit

  15. Regulation of the growth hormone (GH) receptor and GH-binding protein mRNA

    Energy Technology Data Exchange (ETDEWEB)

    Kaji, Hidesuke; Ohashi, Shin-Ichirou; Abe, Hiromi; Chihara, Kazuo [Kobe Univ. School of Medicine, Kobe (Japan)

    1994-12-31

    In fasting rats, a transient increase in growth hormone-binding protein (GHBP) mRNA levels was observed after 1 day, in muscle, heart, and liver, but not in fat tissues. The liver GH receptor (GHR) mRNA level was significantly increased after 1 day (but not after 5 days) of bovine GH (bGH) treatment in fed rats. Both the liver GHR mRNA level and the net increment of plasma IGF-I markedly decreased after 5 days of bGH administration in fasting rats. These findings suggest that GHR and GHBP mRNAs in the liver are expressed in a different way and that the expression of GHBP mRNA is regulated differently between tissues, at least in rats. The results also suggest that refractoriness to GH in a sustained fasting state might be beneficial in preventing anabolic effects of GH. In humans, GHR mRNA in lymphocytes, from subjects with either GH-deficiency or acromegaly, could be detected by the reverse transcription-polymerase chain reaction method. In one patient with partial GH insensitivity, a heterozygous missense mutation (P561T) was identified in the cytoplasmic domain of GHR. 15 refs., 4 figs.

  16. Oestradiol reduces Liver Receptor Homolog-1 mRNA transcript stability in breast cancer cell lines

    International Nuclear Information System (INIS)

    Lazarus, Kyren A.; Zhao, Zhe; Knower, Kevin C.; To, Sarah Q.; Chand, Ashwini L.; Clyne, Colin D.

    2013-01-01

    Highlights: •LRH-1 is an orphan nuclear receptor that regulates tumor proliferation. •In breast cancer, high mRNA expression is associated with ER+ status. •In ER−ve cells, despite very low mRNA, we found abundant LRH-1 protein. •Our data show distinctly different LRH-1 protein isoforms in ER− and ER+ breast cancer cells. •This is due to differences in LRH-1 mRNA and protein stability rates. -- Abstract: The expression of orphan nuclear receptor Liver Receptor Homolog-1 (LRH-1) is elevated in breast cancer and promotes proliferation, migration and invasion in vitro. LRH-1 expression is regulated by oestrogen (E 2 ), with LRH-1 mRNA transcript levels higher in oestrogen receptor α (ERα) positive (ER+) breast cancer cells compared to ER− cells. However, the presence of LRH-1 protein in ER− cells suggests discordance between mRNA transcript levels and protein expression. To understand this, we investigated the impact of mRNA and protein stability in determining LRH-1 protein levels in breast cancer cells. LRH-1 transcript levels were significantly higher in ER+ versus ER− breast cancer cells lines; however LRH-1 protein was expressed at similar levels. We found LRH-1 mRNA and protein was more stable in ER− compared to ER+ cell lines. The tumor-specific LRH-1 variant isoform, LRH-1v4, which is highly responsive to E 2 , showed increased mRNA stability in ER− versus ER+ cells. In addition, in MCF-7 and T47-D cell lines, LRH-1 total mRNA stability was reduced with E 2 treatment, this effect mediated by ERα. Our data demonstrates that in ER− cells, increased mRNA and protein stability contribute to the abundant protein expression levels. Expression and immunolocalisation of LRH-1 in ER− cells as well as ER− tumors suggests a possible role in the development of ER− tumors. The modulation of LRH-1 bioactivity may therefore be beneficial as a treatment option in both ER− and ER+ breast cancer

  17. Oestradiol reduces Liver Receptor Homolog-1 mRNA transcript stability in breast cancer cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Lazarus, Kyren A. [Cancer Drug Discovery Laboratory, Prince Henry’s Institute of Medical Research, Clayton, Victoria 3168 (Australia); Environmental and Biotechnology Centre, Swinburne University, Hawthorn, Victoria 3122 (Australia); Zhao, Zhe; Knower, Kevin C. [Cancer Drug Discovery Laboratory, Prince Henry’s Institute of Medical Research, Clayton, Victoria 3168 (Australia); To, Sarah Q. [Cancer Drug Discovery Laboratory, Prince Henry’s Institute of Medical Research, Clayton, Victoria 3168 (Australia); Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3168 (Australia); Chand, Ashwini L. [Cancer Drug Discovery Laboratory, Prince Henry’s Institute of Medical Research, Clayton, Victoria 3168 (Australia); Clyne, Colin D., E-mail: Colin.clyne@princehenrys.org [Cancer Drug Discovery Laboratory, Prince Henry’s Institute of Medical Research, Clayton, Victoria 3168 (Australia); Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3168 (Australia)

    2013-08-30

    Highlights: •LRH-1 is an orphan nuclear receptor that regulates tumor proliferation. •In breast cancer, high mRNA expression is associated with ER+ status. •In ER−ve cells, despite very low mRNA, we found abundant LRH-1 protein. •Our data show distinctly different LRH-1 protein isoforms in ER− and ER+ breast cancer cells. •This is due to differences in LRH-1 mRNA and protein stability rates. -- Abstract: The expression of orphan nuclear receptor Liver Receptor Homolog-1 (LRH-1) is elevated in breast cancer and promotes proliferation, migration and invasion in vitro. LRH-1 expression is regulated by oestrogen (E{sub 2}), with LRH-1 mRNA transcript levels higher in oestrogen receptor α (ERα) positive (ER+) breast cancer cells compared to ER− cells. However, the presence of LRH-1 protein in ER− cells suggests discordance between mRNA transcript levels and protein expression. To understand this, we investigated the impact of mRNA and protein stability in determining LRH-1 protein levels in breast cancer cells. LRH-1 transcript levels were significantly higher in ER+ versus ER− breast cancer cells lines; however LRH-1 protein was expressed at similar levels. We found LRH-1 mRNA and protein was more stable in ER− compared to ER+ cell lines. The tumor-specific LRH-1 variant isoform, LRH-1v4, which is highly responsive to E{sub 2}, showed increased mRNA stability in ER− versus ER+ cells. In addition, in MCF-7 and T47-D cell lines, LRH-1 total mRNA stability was reduced with E{sub 2} treatment, this effect mediated by ERα. Our data demonstrates that in ER− cells, increased mRNA and protein stability contribute to the abundant protein expression levels. Expression and immunolocalisation of LRH-1 in ER− cells as well as ER− tumors suggests a possible role in the development of ER− tumors. The modulation of LRH-1 bioactivity may therefore be beneficial as a treatment option in both ER− and ER+ breast cancer.

  18. Expression kinetics of nucleoside-modified mRNA delivered in lipid nanoparticles to mice by various routes.

    Science.gov (United States)

    Pardi, Norbert; Tuyishime, Steven; Muramatsu, Hiromi; Kariko, Katalin; Mui, Barbara L; Tam, Ying K; Madden, Thomas D; Hope, Michael J; Weissman, Drew

    2015-11-10

    In recent years, in vitro transcribed messenger RNA (mRNA) has emerged as a potential therapeutic platform. To fulfill its promise, effective delivery of mRNA to specific cell types and tissues needs to be achieved. Lipid nanoparticles (LNPs) are efficient carriers for short-interfering RNAs and have entered clinical trials. However, little is known about the potential of LNPs to deliver mRNA. Here, we generated mRNA-LNPs by incorporating HPLC purified, 1-methylpseudouridine-containing mRNA comprising codon-optimized firefly luciferase into stable LNPs. Mice were injected with 0.005-0.250mg/kg doses of mRNA-LNPs by 6 different routes and high levels of protein translation could be measured using in vivo imaging. Subcutaneous, intramuscular and intradermal injection of the LNP-encapsulated mRNA translated locally at the site of injection for up to 10days. For several days, high levels of protein production could be achieved in the lung from the intratracheal administration of mRNA. Intravenous and intraperitoneal and to a lesser extent intramuscular and intratracheal deliveries led to trafficking of mRNA-LNPs systemically resulting in active translation of the mRNA in the liver for 1-4 days. Our results demonstrate that LNPs are appropriate carriers for mRNA in vivo and have the potential to become valuable tools for delivering mRNA encoding therapeutic proteins. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Dwell-Time Distribution, Long Pausing and Arrest of Single-Ribosome Translation through the mRNA Duplex.

    Science.gov (United States)

    Xie, Ping

    2015-10-09

    Proteins in the cell are synthesized by a ribosome translating the genetic information encoded on the single-stranded messenger RNA (mRNA). It has been shown that the ribosome can also translate through the duplex region of the mRNA by unwinding the duplex. Here, based on our proposed model of the ribosome translation through the mRNA duplex we study theoretically the distribution of dwell times of the ribosome translation through the mRNA duplex under the effect of a pulling force externally applied to the ends of the mRNA to unzip the duplex. We provide quantitative explanations of the available single molecule experimental data on the distribution of dwell times with both short and long durations, on rescuing of the long paused ribosomes by raising the pulling force to unzip the duplex, on translational arrests induced by the mRNA duplex and Shine-Dalgarno(SD)-like sequence in the mRNA. The functional consequences of the pauses or arrests caused by the mRNA duplex and the SD sequence are discussed and compared with those obtained from other types of pausing, such as those induced by "hungry" codons or interactions of specific sequences in the nascent chain with the ribosomal exit tunnel.

  20. Sequence-engineered mRNA Without Chemical Nucleoside Modifications Enables an Effective Protein Therapy in Large Animals

    Science.gov (United States)

    Thess, Andreas; Grund, Stefanie; Mui, Barbara L; Hope, Michael J; Baumhof, Patrick; Fotin-Mleczek, Mariola; Schlake, Thomas

    2015-01-01

    Being a transient carrier of genetic information, mRNA could be a versatile, flexible, and safe means for protein therapies. While recent findings highlight the enormous therapeutic potential of mRNA, evidence that mRNA-based protein therapies are feasible beyond small animals such as mice is still lacking. Previous studies imply that mRNA therapeutics require chemical nucleoside modifications to obtain sufficient protein expression and avoid activation of the innate immune system. Here we show that chemically unmodified mRNA can achieve those goals as well by applying sequence-engineered molecules. Using erythropoietin (EPO) driven production of red blood cells as the biological model, engineered Epo mRNA elicited meaningful physiological responses from mice to nonhuman primates. Even in pigs of about 20 kg in weight, a single adequate dose of engineered mRNA encapsulated in lipid nanoparticles (LNPs) induced high systemic Epo levels and strong physiological effects. Our results demonstrate that sequence-engineered mRNA has the potential to revolutionize human protein therapies. PMID:26050989

  1. Identification of stress responsive genes by studying specific relationships between mRNA and protein abundance.

    Science.gov (United States)

    Morimoto, Shimpei; Yahara, Koji

    2018-03-01

    Protein expression is regulated by the production and degradation of mRNAs and proteins but the specifics of their relationship are controversial. Although technological advances have enabled genome-wide and time-series surveys of mRNA and protein abundance, recent studies have shown paradoxical results, with most statistical analyses being limited to linear correlation, or analysis of variance applied separately to mRNA and protein datasets. Here, using recently analyzed genome-wide time-series data, we have developed a statistical analysis framework for identifying which types of genes or biological gene groups have significant correlation between mRNA and protein abundance after accounting for potential time delays. Our framework stratifies all genes in terms of the extent of time delay, conducts gene clustering in each stratum, and performs a non-parametric statistical test of the correlation between mRNA and protein abundance in a gene cluster. Consequently, we revealed stronger correlations than previously reported between mRNA and protein abundance in two metabolic pathways. Moreover, we identified a pair of stress responsive genes ( ADC17 and KIN1 ) that showed a highly similar time series of mRNA and protein abundance. Furthermore, we confirmed robustness of the analysis framework by applying it to another genome-wide time-series data and identifying a cytoskeleton-related gene cluster (keratin 18, keratin 17, and mitotic spindle positioning) that shows similar correlation. The significant correlation and highly similar changes of mRNA and protein abundance suggests a concerted role of these genes in cellular stress response, which we consider provides an answer to the question of the specific relationships between mRNA and protein in a cell. In addition, our framework for studying the relationship between mRNAs and proteins in a cell will provide a basis for studying specific relationships between mRNA and protein abundance after accounting for potential

  2. Safety, immune and clinical responses in metastatic melanoma patients vaccinated with a long peptide derived from indoleamine 2,3-dioxygenase in combination with ipilimumab

    DEFF Research Database (Denmark)

    Bjørn, Jon; Iversen, Trine Zeeberg; Nitschke, Nikolaj Juul

    2016-01-01

    antibody ipilimumab (ipi). METHODS: Ten patients with metastatic melanoma participated in a phase I first-in-human clinical study assessing safety of combining ipi with a 21-mer synthetic peptide vaccine from IDO denoted IDOlong. Secondary and tertiary end points included vaccine and clinical response......BACKGROUND AIM: Indoleamine 2,3-dioxygenase (IDO) is an emerging new target in cancer therapy that can be targeted with active immunotherapy (e.g. through peptide vaccination). Furthermore, IDO has been identified as a key mechanism underlying resistance to treatment with the checkpoint blocking....... RESULTS: Treatment was generally safe and well tolerated. Vaccine related adverse reactions included grade I and II erythema, oedema and pruritus at the vaccination site, which were manageable with mild topical corticosteroids. One patient developed presumed ipi-induced colitis. It initially responded...

  3. Inhibition of Xenograft tumor growth by gold nanoparticle-DNA oligonucleotide conjugates-assisted delivery of BAX mRNA.

    Directory of Open Access Journals (Sweden)

    Ji-Hyun Yeom

    Full Text Available Use of non-biological agents for mRNA delivery into living systems in order to induce heterologous expression of functional proteins may provide more advantages than the use of DNA and/or biological vectors for delivery. However, the low efficiency of mRNA delivery into live animals, using non-biological systems, has hampered the use of mRNA as a therapeutic molecule. Here, we show that gold nanoparticle-DNA oligonucleotide (AuNP-DNA conjugates can serve as universal vehicles for more efficient delivery of mRNA into human cells, as well as into xenograft tumors generated in mice. Injections of BAX mRNA loaded on AuNP-DNA conjugates into xenograft tumors resulted in highly efficient mRNA delivery. The delivered mRNA directed the efficient production of biologically functional BAX protein, a pro-apoptotic factor, consequently inhibiting tumor growth. These results demonstrate that mRNA delivery by AuNP-DNA conjugates can serve as a new platform for the development of safe and efficient gene therapy.

  4. Structural insights into the metabolism of 2-chlorodibenzofuran by an evolved biphenyl dioxygenase

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Pravindra [Department of Biological Sciences and Center for Cancer Research, Purdue University, West Lafayette, IN 47907 (United States); Department of Biotechnology, Indian Institute of Technology, Roorkee 247667 (India); Mohammadi, Mahmood [Institut National de la Recherche Scientifique (INRS-Institut Armand-Frappier), Laval, QC, Canada H7V 1B7 (Canada); Dhindwal, Sonali [Department of Biotechnology, Indian Institute of Technology, Roorkee 247667 (India); Pham, Thi Thanh My [Institut National de la Recherche Scientifique (INRS-Institut Armand-Frappier), Laval, QC, Canada H7V 1B7 (Canada); Bolin, Jeffrey T. [Department of Biological Sciences and Center for Cancer Research, Purdue University, West Lafayette, IN 47907 (United States); Sylvestre, Michel, E-mail: Michel.Sylvestre@iaf.inrs.ca [Institut National de la Recherche Scientifique (INRS-Institut Armand-Frappier), Laval, QC, Canada H7V 1B7 (Canada)

    2012-05-18

    Highlights: Black-Right-Pointing-Pointer Regiospecificity of BphAE{sub RR41} toward dibenzofuran and 2-chlorodibenzofuran differs. Black-Right-Pointing-Pointer We compared the structures of the substrate-bound forms of the enzyme with both substrates. Black-Right-Pointing-Pointer Dibenzofuran is compelled to move during the catalytic reaction. Black-Right-Pointing-Pointer Ser283 contact with 2-chlorodibenzofuran helps prevent substrate movement during the reaction. -- Abstract: The biphenyl dioxygenase of Burkholderia xenovorans LB400 (BphAE{sub LB400}) is a Rieske-type oxygenase that catalyzes the stereospecific oxygenation of many heterocyclic aromatics including dibenzofuran. In a previous work, we evolved BphAE{sub LB400} and obtained BphAE{sub RR41}. This variant metabolizes dibenzofuran and 2-chlorodibenzofuran more efficiently than BphAE{sub LB400}. However, the regiospecificity of BphAE{sub RR41} toward these substrates differs. Dibenzofuran is metabolized principally through a lateral dioxygenation whereas 2-chlorodibenzofuran is metabolized principally through an angular dioxygenation. In order to explain this difference, we examined the crystal structures of both substrate-bound forms of BphAE{sub RR41} obtained under anaerobic conditions. This structure analysis, in combination with biochemical data for a Ser283Gly mutant provided evidences that the substrate is compelled to move after oxygen-binding in BphAE{sub RR41}:dibenzofuran. In BphAE{sub RR41}:2-chlorodibenzofuran, the chlorine atom is close to the side chain of Ser283. This contact is missing in the BphAE{sub RR41}:dibenzofuran, and strong enough in the BphAE{sub RR41}:2-chlorodibenzofuran to help prevent substrate movement during the catalytic reaction.

  5. Single-cell mRNA cytometry via sequence-specific nanoparticle clustering and trapping

    Science.gov (United States)

    Labib, Mahmoud; Mohamadi, Reza M.; Poudineh, Mahla; Ahmed, Sharif U.; Ivanov, Ivaylo; Huang, Ching-Lung; Moosavi, Maral; Sargent, Edward H.; Kelley, Shana O.

    2018-05-01

    Cell-to-cell variation in gene expression creates a need for techniques that can characterize expression at the level of individual cells. This is particularly true for rare circulating tumour cells, in which subtyping and drug resistance are of intense interest. Here we describe a method for cell analysis—single-cell mRNA cytometry—that enables the isolation of rare cells from whole blood as a function of target mRNA sequences. This approach uses two classes of magnetic particles that are labelled to selectively hybridize with different regions of the target mRNA. Hybridization leads to the formation of large magnetic clusters that remain localized within the cells of interest, thereby enabling the cells to be magnetically separated. Targeting specific intracellular mRNAs enablescirculating tumour cells to be distinguished from normal haematopoietic cells. No polymerase chain reaction amplification is required to determine RNA expression levels and genotype at the single-cell level, and minimal cell manipulation is required. To demonstrate this approach we use single-cell mRNA cytometry to detect clinically important sequences in prostate cancer specimens.

  6. Phenylpropanoid 2,3-dioxygenase involved in the cleavage of the ferulic acid side chain to form vanillin and glyoxylic acid in Vanilla planifolia.

    Science.gov (United States)

    Negishi, Osamu; Negishi, Yukiko

    2017-09-01

    Enzyme catalyzing the cleavage of the phenylpropanoid side chain was partially purified by ion exchange and gel filtration column chromatography after (NH 4 ) 2 SO 4 precipitation. Enzyme activities were dependent on the concentration of dithiothreitol (DTT) or glutathione (GSH) and activated by addition of 0.5 mM Fe 2+ . Enzyme activity for ferulic acid was as high as for 4-coumaric acid in the presence of GSH, suggesting that GSH acts as an endogenous reductant in vanillin biosynthesis. Analyses of the enzymatic reaction products with quantitative NMR (qNMR) indicated that an amount of glyoxylic acid (GA) proportional to vanillin was released from ferulic acid by the enzymatic reaction. These results suggest that phenylpropanoid 2,3-dioxygenase is involved in the cleavage of the ferulic acid side chain to form vanillin and GA in Vanilla planifolia.

  7. Correlation of circadian changes in tyrosine aminotransferase and tryptophan-2-3-dioxygenase in rat liver to irradiation at different times of the day

    International Nuclear Information System (INIS)

    Toropila, M.; Ahlers, I.; Datelinka, I.; Ahlersova, E.

    1987-01-01

    Male SPF Wistar rats adapted to a 12:12 h light:dark regimen were irradiated at 3-hour intervals in the course of 24 h with a dose of 14.35 Gy of X-rays; 24 h after irradiation or sham irradiation and starvation for the same length of time, and also in fed intact rats, tyrosine aminotransferase and tryptophan-2-3-dioxygenase activities in the liver, and the serum corticosterone level were determined. Although lethal irradiation modified the given enzyme activities, it did not abolish their circadian rhythm, evidently in association with the low sensitivity of the liver to ionizing radiation. In the irradiated animals (compared with sham-irradiated animals), the serum corticosterone concentration fell during the light part of the day and at the beginning of the dark part. (author). 3 figs., 13 refs

  8. The development of clinical activity in relapsing-remitting MS is associated with a decrease of FasL mRNA and an increase of Fas mRNA in peripheral blood

    NARCIS (Netherlands)

    Lopatinskaya, L.; Boxel van-Dezaire, A.H.H.; Barkhof, F.; Polman, C.H.; Lucas, C.J.; Nagelkerken, L.

    2003-01-01

    In this longitudinal study, we examined the expression of Fas, FasL, CCR3, CCR5 and CXCR3 mRNA in peripheral blood mononuclear cells (PBMCs) of secondary progressive (SP) and relapsing-remitting (RR) multiple sclerosis (MS) patients. In RR patients, FasL, CCR3 and CCR5 mRNA levels were increased

  9. Complement mRNA in the mammalian brain: responses to Alzheimer's disease and experimental brain lesioning.

    Science.gov (United States)

    Johnson, S A; Lampert-Etchells, M; Pasinetti, G M; Rozovsky, I; Finch, C E

    1992-01-01

    This study describes evidence in the adult human and rat brain for mRNAs that encode two complement (C) proteins, C1qB and C4. C proteins are important effectors of humoral immunity and inflammation in peripheral tissues but have not been considered as normally present in brain. Previous immunocytochemical studies showed that C proteins are associated with plaques, tangles, and dystrophic neurites in Alzheimer's disease (AD), but their source is unknown. Combined immunocytochemistry and in situ hybridization techniques show C4 mRNA in pyramidal neurons and C1qB mRNA in microglia. Primary rat neuron cultures also show C1qB mRNA. In the cortex from AD brains, there were two- to threefold increases of C1qB mRNA and C4 mRNA, and increased C1qB mRNA prevalence was in part associated with microglia. As a model for AD, we examined entorhinal cortex perforant path transection in the rat brain, which caused rapid increases of C1qB mRNA in the ipsilateral, but not contralateral, hippocampus and entorhinal cortex. The role of brain-derived acute and chronic C induction during AD and experimental lesions can now be considered in relation to functions of C proteins that pertain to cell degeneration and/or cell preservation and synaptic plasticity.

  10. NONOates regulate KCl cotransporter-1 and -3 mRNA expression in vascular smooth muscle cells.

    Science.gov (United States)

    Di Fulvio, Mauricio; Lauf, Peter K; Shah, Shalin; Adragna, Norma C

    2003-05-01

    Nitric oxide (NO) donors regulate KCl cotransport (KCC) activity and cotransporter-1 and -3 (KCC1 and KCC3) mRNA expression in sheep erythrocytes and in primary cultures of rat vascular smooth muscle cells (VSMCs), respectively. In this study, we used NONOates as rapid and slow NO releasers to provide direct evidence implicating NO as a regulator of KCC3 gene expression at the mRNA level. In addition, we used the expression of KCC3 mRNA to further investigate the mechanism of action of these NO donors at the cellular level. Treatment of VSMCs with rapid NO releasers, like NOC-5 and NOC-9, as well as with the direct NO-independent soluble guanylyl cyclase (sGC) stimulator YC-1, acutely increased KCC3 mRNA expression in a concentration- and time-dependent manner. The slow NO releaser NOC-18 had no effect on KCC3 gene expression. A specific NO scavenger completely prevented the NONOate-induced KCC3 mRNA expression. Inhibition of sGC with LY-83583 blocked the NONOate- and YC-1-induced KCC3 mRNA expression. This study shows that in primary cultures of rat VSMCs, the fast NO releasers NOC-9 and NOC-5, but not the slow NO releaser NOC-18, acutely upregulate KCC3 mRNA expression in a NO/sGC-dependent manner.

  11. Resonance Raman study on indoleamine 2,3-dioxygenase: Control of reactivity by substrate-binding

    Energy Technology Data Exchange (ETDEWEB)

    Yanagisawa, Sachiko; Hara, Masayuki [Graduate School of Life Science and Picobiology Institute, University of Hyogo, Koto 3-2-1, Kamigori-cho, Ako-gun, Hyogo 678-1297 (Japan); Sugimoto, Hiroshi; Shiro, Yoshitsugu [Biometal Science Laboratory, RIKEN SPring-8 Center, Harima Institute, Koto 1-1-1, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Ogura, Takashi, E-mail: ogura@sci.u-hyogo.ac.jp [Graduate School of Life Science and Picobiology Institute, University of Hyogo, Koto 3-2-1, Kamigori-cho, Ako-gun, Hyogo 678-1297 (Japan)

    2013-06-20

    Highlights: • Indoleamine 2,3-dioygenase has been studied by resonance Raman spectroscopy. • Trp-binding to the enzyme induces high frequency shift of the Fe–His stretching mode. • Increased imidazolate character of histidine promotes the O–O bond cleavage step. • A fine-tuning of the reactivity of the O–O bond cleavage reaction is identified. • The results are consistent with the sequential oxygen-atom-transfer mechanism. - Abstract: Resonance Raman spectra of ligand-bound complexes including the 4-phenylimidazole complex and of free and L-Trp-bound forms of indoleamine 2, 3-dioxygenase in the ferric state were examined. Effects on the vinyl and propionate substituent groups of the heme were detected in a ligand-dependent fashion. The effects of phenyl group of 4-phenylimidazole on the vinyl and propionate Raman bands were evident when compared with the case of imidazole ligand. Substrate binding to the ferrous protein caused an upshift of the iron–histidine stretching mode by 3 cm{sup −1}, indicating an increase in negativity of the imidazole ring, which favors the O–O bond cleavage. The substrate binding event is likely to be communicated from the heme distal side to the iron–histidine bond through heme substituent groups and the hydrogen-bond network which includes water molecules, as identified in an X-ray structure of a 4-phenylimidazole complex. The results provide evidence for fine-tuning of the reactivity of O–O bond cleavage by the oxygenated heme upon binding of L-Trp.

  12. Glial and tissue-specific regulation of Kynurenine Pathway dioxygenases by acute stress of mice

    Directory of Open Access Journals (Sweden)

    Carlos R. Dostal

    2017-12-01

    Full Text Available Stressors activate the hypothalamic-pituitary-adrenal (HPA axis and immune system eliciting changes in cognitive function, mood and anxiety. An important link between stress and altered behavior is stimulation of the Kynurenine Pathway which generates neuroactive and immunomodulatory kynurenines. Tryptophan entry into this pathway is controlled by rate-limiting indoleamine/tryptophan 2,3-dioxygenases (DOs: Ido1, Ido2, Tdo2. Although implicated as mediating changes in behavior, detecting stress-induced DO expression has proven inconsistent. Thus, C57BL/6J mice were used to characterize DO expression in brain-regions, astrocytes and microglia to characterize restraint-stress-induced DO expression. Stress increased kynurenine in brain and plasma, demonstrating increased DO activity. Of three Ido1 transcripts, only Ido1-v1 expression was increased by stress and within astrocytes, not microglia, indicating transcript- and glial-specificity. Stress increased Ido1-v1 only in frontal cortex and hypothalamus, indicating brain-region specificity. Of eight Ido2 transcripts, Ido2-v3 expression was increased by stress, again only within astrocytes. Likewise, stress increased Tdo2-FL expression in astrocytes, not microglia. Interestingly, Ido2 and Tdo2 transcripts were not correspondingly induced in Ido1-knockout (Ido1KO mice, suggesting that Ido1 is necessary for the central DO response to acute stress. Unlike acute inflammatory models resulting in DO induction within microglia, only astrocyte DO expression was increased by acute restraint-stress, defining their unique role during stress-dependent activation of the Kynurenine Pathway. Keywords: Stress, Ido, Tdo, Kynurenine, Astrocyte, Liver

  13. Cup regulates oskar mRNA stability during oogenesis.

    Science.gov (United States)

    Broyer, Risa M; Monfort, Elena; Wilhelm, James E

    2017-01-01

    The proper regulation of the localization, translation, and stability of maternally deposited transcripts is essential for embryonic development in many organisms. These different forms of regulation are mediated by the various protein subunits of the ribonucleoprotein (RNP) complexes that assemble on maternal mRNAs. However, while many of the subunits that regulate the localization and translation of maternal transcripts have been identified, relatively little is known about how maternal mRNAs are stockpiled and stored in a stable form to support early development. One of the best characterized regulators of maternal transcripts is Cup - a broadly conserved component of the maternal RNP complex that in Drosophila acts as a translational repressor of the localized message oskar. In this study, we have found that loss of cup disrupts the localization of both the oskar mRNA and its associated proteins to the posterior pole of the developing oocyte. This defect is not due to a failure to specify the oocyte or to disruption of RNP transport. Rather, the localization defects are due to a drop in oskar mRNA levels in cup mutant egg chambers. Thus, in addition to its role in regulating oskar mRNA translation, Cup also plays a critical role in controlling the stability of the oskar transcript. This suggests that Cup is ideally positioned to coordinate the translational control function of the maternal RNP complex with its role in storing maternal transcripts in a stable form. Published by Elsevier Inc.

  14. Survivin mRNA antagonists using locked nucleic acid, potential for molecular cancer therapy

    DEFF Research Database (Denmark)

    Fisker, Niels; Westergaard, Majken; Hansen, Henrik Frydenlund

    2007-01-01

    We have investigated the effects of different locked nucleic acid modified antisense mRNA antagonists against Survivin in a prostate cancer model. These mRNA antagonists were found to be potent inhibitors of Survivin expression at low nanomolar concentrations. Additionally there was a pronounced ...

  15. Regulation of mouse hepatic CYP2D9 mRNA expression by growth and adrenal hormones.

    Science.gov (United States)

    Jarukamjorn, Kanokwan; Sakuma, Tsutomu; Jaruchotikamol, Atika; Oguro, Miki; Nemoto, Nobuo

    2006-02-01

    The constitutive expression of CYP2D9 is sexually dimorphic, namely, strong in males, but diminutive in females. Repetition of mimic growth hormone (GH) secretion pattern impressively returned the mRNA expression level to that in intact mice: the GH secretion pattern's regulation of CYP2D9 mRNA expression has been predominantly disrupted by exogenous GH-administration. The extensive decline of CYP2D9 mRNA expression becoming a sexually non-specific P450 in 9-week-old male mice exposed as neonates to monosodium L-glutamate (MSG) suggested that the male GH secretion pattern is a key to the regulation of male-specific CYP2D9 mRNA expression in adult mice. Dexamethasone (Dex) showed possibility to induce CYP2D9 mRNA expression in adult MSG-neonatally treated mice of either sex. However, the antagonism was observed by co-administration of Dex and GH in the males. Dex-administration in adrenalectomized mice significantly elevated CYP2D9 mRNA expression levels. These findings suggest that an adrenal hormone participates in the regulatory mechanism of CYP2D9 mRNA expression in association with GH.

  16. Expression kinetics of nucleoside-modified mRNA delivered in lipid nanoparticles to mice by various routes

    OpenAIRE

    Pardi, Norbert; Tuyishime, Steven; Muramatsu, Hiromi; Kariko, Katalin; Mui, Barbara L; Tam, Ying K; Madden, Thomas D; Hope, Michael J; Weissman, Drew

    2015-01-01

    In recent years, in vitro transcribed messenger RNA (mRNA) has emerged as a potential therapeutic platform. To fulfill its promise, effective delivery of mRNA to specific cell types and tissues needs to be achieved. Lipid nanoparticles (LNPs) are efficient carriers for short-interfering RNAs and have entered clinical trials. However, little is known about the potential of LNPs to deliver mRNA. Here, we generated mRNA-LNPs by incorporating HPLC purified, 1-methylpseudouridine-containing mRNA c...

  17. Charge transport in organic molecular semiconductors from first principles: The bandlike hole mobility in a naphthalene crystal

    Science.gov (United States)

    Lee, Nien-En; Zhou, Jin-Jian; Agapito, Luis A.; Bernardi, Marco

    2018-03-01

    Predicting charge transport in organic molecular crystals is notoriously challenging. Carrier mobility calculations in organic semiconductors are dominated by quantum chemistry methods based on charge hopping, which are laborious and only moderately accurate. We compute from first principles the electron-phonon scattering and the phonon-limited hole mobility of naphthalene crystal in the framework of ab initio band theory. Our calculations combine GW electronic bandstructures, ab initio electron-phonon scattering, and the Boltzmann transport equation. The calculated hole mobility is in very good agreement with experiment between 100 -300 K , and we can predict its temperature dependence with high accuracy. We show that scattering between intermolecular phonons and holes regulates the mobility, though intramolecular phonons possess the strongest coupling with holes. We revisit the common belief that only rigid molecular motions affect carrier dynamics in organic molecular crystals. Our paper provides a quantitative and rigorous framework to compute charge transport in organic crystals and is a first step toward reconciling band theory and carrier hopping computational methods.

  18. Hepatic chemerin mRNA in morbidly obese patients with nonalcoholic fatty liver disease.

    Science.gov (United States)

    Kajor, Maciej; Kukla, Michał; Waluga, Marek; Liszka, Łukasz; Dyaczyński, Michał; Kowalski, Grzegorz; Żądło, Dominika; Berdowska, Agnieszka; Chapuła, Mateusz; Kostrząb-Zdebel, Anna; Bułdak, Rafał J; Sawczyn, Tomasz; Hartleb, Marek

    The aim of this study was to investigate hepatic chemerin mRNA, serum chemerin concentration, and immunohistochemical staining for chemerin and and chemokine receptor-like 1 (CMKLR1) in hepatic tissue in 56 morbidly obese women with nonalcoholic fatty liver disease (NAFLD) and to search for a relationship with metabolic and histopathological features. Chemerin mRNA was assessed by quantitative real-time PCR, chemerin, and CMKLR1 immunohistochemical expression with specific antibodies, while serum chemerin concentration was assessed with commercially available enzyme-linked immunosorbent assays. Serum chemerin concentration reached 874.1 ±234.6 ng/ml. There was no difference in serum chemerin levels between patients with BMI steatosis, and definite nonalcoholic steatohepatitis (NASH). Liver chemerin mRNA was observed in all included patients and was markedly, but insignificantly, higher in those with BMI ≥ 40 kg/m2, hepatocyte ballooning, greater extent of steatosis, and definite NASH. Hepatic chemerin mRNA might be a predictor of hepatic steatosis, hepatocyte ballooning, and NAFLD activity score (NAS) but seemed not to be a primary driver regulating liver necroinflammatory activity and fibrosis. The lack of association between serum chemerin and hepatic chemerin mRNA may suggest that adipose tissue but not the liver is the main source of chemerin in morbidly obese women.

  19. The actin binding cytoskeletal protein Moesin is involved in nuclear mRNA export.

    Science.gov (United States)

    Kristó, Ildikó; Bajusz, Csaba; Borsos, Barbara N; Pankotai, Tibor; Dopie, Joseph; Jankovics, Ferenc; Vartiainen, Maria K; Erdélyi, Miklós; Vilmos, Péter

    2017-10-01

    Current models imply that the evolutionarily conserved, actin-binding Ezrin-Radixin-Moesin (ERM) proteins perform their activities at the plasma membrane by anchoring membrane proteins to the cortical actin network. Here we show that beside its cytoplasmic functions, the single ERM protein of Drosophila, Moesin, has a novel role in the nucleus. The activation of transcription by heat shock or hormonal treatment increases the amount of nuclear Moesin, indicating biological function for the protein in the nucleus. The distribution of Moesin in the nucleus suggests a function in transcription and the depletion of mRNA export factors Nup98 or its interacting partner, Rae1, leads to the nuclear accumulation of Moesin, suggesting that the nuclear function of the protein is linked to mRNA export. Moesin localizes to mRNP particles through the interaction with the mRNA export factor PCID2 and knock down of Moesin leads to the accumulation of mRNA in the nucleus. Based on our results we propose that, beyond its well-known, manifold functions in the cytoplasm, the ERM protein of Drosophila is a new, functional component of the nucleus where it participates in mRNA export. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Rift Valley fever virus NS{sub S} gene expression correlates with a defect in nuclear mRNA export

    Energy Technology Data Exchange (ETDEWEB)

    Copeland, Anna Maria; Van Deusen, Nicole M.; Schmaljohn, Connie S., E-mail: Connie.s.schmaljohn.civ@mail.mil

    2015-12-15

    We investigated the localization of host mRNA during Rift Valley fever virus (RVFV) infection. Fluorescence in situ hybridization revealed that infection with RVFV altered the localization of host mRNA. mRNA accumulated in the nuclei of RVFV-infected but not mock-infected cells. Further, overexpression of the NS{sub S} gene, but not the N, G{sub N} or NS{sub M} genes correlated with mRNA nuclear accumulation. Nuclear accumulation of host mRNA was not observed in cells infected with a strain of RVFV lacking the gene encoding NS{sub S}, confirming that expression of NS{sub S} is likely responsible for this phenomenon. - Highlights: • Rift Valley fever virus (RVFV) infection alters the localization of host mRNA. • mRNA accumulates in the nuclei of RVFV-infected but not mock-infected cells. • NS{sub S} is likely responsible for mRNA relocalization to the nucleus.